
2.0

BORLAND

Bar/ana C++
Version 2.0

BORLAND INTERNATIONAL INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001, SCOTTS VALLEY, CA 95067-0001

Rl

Copyright © 1991 by Borland International. All rights reserved. All
Borland products are trademarks or registered trademarks of
Borland International. Inc. Other brand and product names are
trademarks or registered trademarks of their respective holders.
Windows, as used in this manual, refers to Microsoft's
implementation of a windows system.

PRINTED IN THE USA.
10987654

c o N T

Introduction 1
Typefaces used in this book 2

Chapter 1 The Programmers Platform 3
Starting up and exiting 4

Running in real mode 4
Running in protected mode 4

Windows and protected mode 5
Command-line options 5

The Ib option 5
The I d option 6
The Ie and I x options 7
The Ih option 7
The II option .. 7
The 1m option. 7
The I p option 7
The I r option. 8

Exiting Borland C++ 8
The components 8

The menu bar and menus 8
Shortcuts 10

Borland C++ windows 13
Window management 15

The status line 16
Dialog boxes 17

Check boxes and radio buttons 18
Input boxes and lists 18

Editing 19
Project and configuration files 20

Turbo C files 20
Borland C++ project files 20

Configuration files 21
Loading project files 21
The project directory 22
Desktop files 22
Changing project files 22

E N T s

Default files 22

Chapter 2 Menus and options
reference 25

:: (System) menu .. 26
About 27
Clear Desktop 27
Repaint Desktop 27
Transfer items 27

File menu .. 27
Open 28
Using the File list box. 29
New 29
Save 29
Save As 30
Save All 30
Change Dir 30
Print 31
Get Info 31
DOS Shell. 32
Quit 33

Edit menu 33
Undo 34
Redo 35
Cut 35
Copy 35
Paste 35
Copy Example. 36
Show Clipboard 36
Clear 36

Search menu 36
Find 37
Replace 38
Search Again .. 39
Go to Line Number 39
Previous Error .. 40

Next Error 40
Locate Function 40

Runmenu 41
Run 41

Source code the same 41
Source code modified 41

Program Reset ; 42
Go to Cursor 42
Trace Into .. 42
Step Over .. 43
Arguments .. 44

Compile menu. .. 45
Compile to OBI 45
Make EXE File .. 45
Link EXE File 46
Build All .. 46
Remove Messages ~ 46

Debug menu 46
Inspect 47

Ordinal Inspector windows 48
Pointer Inspector windows 48
Array Inspector windows 49
Structure and union Inspector
windows 49
Function Inspector windows 49
Class Inspector windows 50
Constant Inspector window 50
Type Inspector window 50

Evaluate/Modify 50
Call Stack .. 51
Watches 54

Add Watch. .. 54
Delete Watch 54
Edit Watch .. 54
Remove All Watches 55

Toggle Breakpoint 55
Breakpoints 55

Project menu 57
Open Project 57
Close Project 58
Add Item 58
Delete Item. .. 58
Local Options 59
Include Files 60

ii

Options menu 60
Compiler 61

Code Generation. 61
Entry /Exit Code 65
C++ Options 67
Optimizations 68
Source 69
Messages 70
Names 73

Transfer 74
Transfer macros 76
Running DOS commands 82
Transfer memory settings 82

Make 82
Linker 84
The Set Application Options dialog
box 86
Debugger .. 87
Directories 89
Environment 90

Preferences. .. 90
Editor 92
Mouse 94
Desktop 94

Save 95
Window menu 95

Size/Move 95
Zoom 96
Tile 96
Cascade 96
Next 96
Close 96
Message 96
Output 97
Watch 97
User Screen 97
Register 98
Project 98
Project Notes 98
List 98

Help menu ... ". .. 98
Contents .. 100
Index " ... 100

Topic Search 100

Previous Topic 100
Help on Help .. 101

Chapter 3 Building a Windows
application 103

The basic process 103
Compiling and linking within the IDE . 104

Understanding resource files 105
Understanding module definition
files 105
Compiling and linking WHELLO ... 105

Setting compile and link options .. 106
Compiling and linking from the command
line 107

Compiling from the command line .. 107
Linking from the command line 108
Using a makefile 109

Another makefile for Windows ... 110
Prologs and epilogs 111

The _export keyword 113
Prologs, epilogs, and exports: a
summary 113

Memory models 115
Linking for Windows 115

Linking in the IDE 116
Linking with TLINK 116

Linker options 116
Linking .OB] and .LIB files 117
Linking .OBJ and .LIB files for
DLLs 118

Building a project for a Windows
program 118
WinMain 120
The Resource Compiler 120

Resource Compiler syntax. 121
Dynamic link libraries 123

Compiling and linking a DLL within the
IDE 123
Compiling and linking a DLL from the
commandline 123

Module definition files 124
Import libraries 124

Creating DLLs 125
LibMain and WEP 125

iii

Pointers ill:ld memory 126
Static data in DLLs 127

C++ classes and pointers 127

Chapter 4 Managing multi-file
projects 131

Using the project manager 132
Error tracking 135

Stopping a make 136
Syntax errors in multiple source files . 136
Saving or deleting messages 137

The power of the Project Manager 137
Autodependency checking 138

Using different file translators 138
Overriding libraries 141
More Project Manager features 141

Looking at files in a project 143
Notes for your project 144

Chapter 5 The editor from A to Z 145
The new and the old. 145
Editor reference 146

Jumping around 148
Block commands. 148
Other editing commands 150
Search and replace 151

Searching and searching again 151
Search and replace 152

Pair matching 152
Directional and nondirectional
matching ... -. 153

Nestable delimiters. 154
Comment delimiters 154

Chapter 6 The command-line
compiler 157

Using the command-line compiler 158
Running in real mode 158
Running in protected mode 158
Using the options 159

Option precedence rules 160
Syntax and file names 163
Response files 163
Configuration files 164

Option precedence rules 164

Compiler options 165
Memory model 166
Macro definitions 167
Code generation options 167

The -v and -vi options. 171
Optimization options 172
Source code options 173
Error-reporting options 174

ANSI violations 175
Frequent errors 175
Portability warnings 176
C++ warnings 176

Segment-naming control 177
Compilation control options 178
EMS and extended memory options . 180
C++ virtual tables 182

Linker options .. 183
Environment options 183

Searching for include and library
files 184
File-search algorithms 185

An annotated example 186

Chapter 7 Utilities 189
IMPDEF (module definition files) 190
IMPLIB (import libraries) 192

Re-creating IMPORT. LIB 193
MAKE: The program manager 193

How MAKE works 194
Starting MAKE 195

The BUlL TINS.MAK file 196
Command-line options 196

A simple use of MAKE 197
Creating makefiles 200
Components of a makefile 200

Comments 201
Command lists 201

Prefixes .. 202
Command body 202
Batching programs 203
Executing DOS commands 205

Explicit rules 206
Special considerations 207
Examples 207

iv

Automatic dependency
checking .. 208

Implicit rules 208
Macros 211

Defining macros 212
Using macros. 212
Special considerations 212
Predefined macros 213
File name macros 214

Directives 215
Dot directives 216

.path.ext 216
File-inclusion directive 217
Conditional execution directives .. 218

Expressions allowed in conditional
directives 219

. Error directive 220
Macro undefinition directive 221

MAKE errors .. 221
TLIB: The Turbo Librarian 225

Why use object module libraries? ... 225
The TLIB command line 226

The operation list 227
File and module names 227
TLIB operations. 227

Using response files 228
Creating an extended dictionary: The IE
option 229
Setting the page size: The IP option . 229
Advanced operation: The I C option . 230
Examples 231

TLINK (linker) 231
Invoking TLINK 232

An example of linking for DOS ... 233
An example of linking for Win-
dows 233
File names on the TLINK command
line 233
Using response files 235
The TLINK configuration file 236
Using TLINK with Borland C++
modules 236

Startup code 237
Libraries .. 238

Using TLINK with BCC 240
TLINK options 241

The TLINK configuration file 241
/3 (80386 32-bit code) 241
/ A (align segments) 242
/c (case sensitivity) 242
/C (case sensitive exports) 242
/ d (duplicate symbols) 242
/e (no extended dictionary) 243
/i (uninitialized trailing segments) .243
/1 (line numbers) 243
/L (library search paths) 244
/m, Is, and /x (map options) 244
/n (ignore default libraries) 246
/0 (overlays) 246
/P (pack code segments) 247
/t (tiny model.COM file) 247
/Td and /Tw (target options) 248
/v (debugging information) 248
/ y (expanded or extended
memory) .. 249
Restrictions 249

The module definition file 250
Module definition file defaults 250

v

A quick example 251
Module definition reference 252

CODE 252
DATA 253
DESCRIPTION 254
EXETYPE 254
EXPORTS. .. 254
HEAPSIZE 255
IMPORTS. .. 255
LIBRARY 256
NAME 256
SEC;MENTS 257
STACKSIZE 258
STUB 258

TLINK messages 258

Appendix A Precompiled headers 271
How they work .. 271

Drawbacks .. 272
Using precompiled headers 272

Setting file names 273
Establishing identity 273
Optimizing precompiled headers 274

Index 277

T A B

1.1: General hot keys 10
1.2: Menu hot keys 11
1.3: Editing hot keys 11
1.4: Window management hot keys 12
1.5: Online Help hot keys 12
1.6: Debugging/Running hot keys 12
1.7: Manipulating windows 15
2.1: Get Info settings 32
2.2: Format specifiers recognized in

debugger expressions 53
3.1: Compiler options and the _export

keyword 115
3.2: Startup and library files for DLLs ... 118
3.3: Resource Compiler options 122
5.1: Full summary of editor commands .. 146
5.2: Block commands in depth 149
5.3: Other editor commands in depth ... 150

vi

L E s

5.4: Delimiter pairs 154
6.1: Command-line options summary ... 160
7.1: IMPLIB options 193
7.2: MAKE options 197
7.3: MAKE prefixes 202
7.4: MAKE macros 213
7.5: MAKE directives 215
7.6: MAKE operators 220
7.7: TLIB options 226
7.8: TLIB action symbols 228
7.9: TLINK options 232
7.10: DOS application .OBJ and .LIB files .239
7.11: Windows application .OBJ and .LIB

files 240
7.12: DLL object and library files 240
7.13: TLINK overlay options 246

F G u

1.1: A typical window 14
1.2: A typical status line 16
1.3: A sample dialog box 17
2.1: The Load a File dialog box 28
2.2: The Save File As dialog box 30
2.3: The Change Directory dialog box 31
2.4: The Get Info box 32
2.5: The Find dialog box 37
2.6: The Replace dialog box 39
2.7: The Go to Line Number dialog box . .40
2.8: The Locate Function dialog box 40
2.9: The Arguments dialog box 44
2.10: The Evaluate/Modify dialog box ... 50
2.11: The Breakpoints dialog box 55
2.12: The Breakpoint Modify /New dialog

box 56
2.13: The Project File dialog box 57
2.14: The Add Item to Project List dialog

box 58
2.15: The Override Options dialog box ... 59
2.16: The Include Files dialog box 60
2.17: The Code Generation dialog box 61
2.18: The Advanced Code Generation dialog

box 63
2.19: The Entry/Exit Code dialog box 65
2.20: The C++ options dialog box 67
2.21: The Optimizations Options dialog

box 68

vii

R E s

2.22: The Source Options dialog box 69
2.23: The Compiler Messages dialog box .70
2.24: The Portability warnings dialog box .71
2.25: The ANSI Violations dialog box 72
2.26: The More ANSI Violations dialog

box 72
2.27: The C++ Warnings dialog box 72
2.28: The Frequent Errors dialog box 73
2.29: The More Frequent Errors dialog

box 73
2.30: The Segment Names dialog box 74
2.31: The Transfer dialog box 74
2.32: The Modify/New Transfer Item dialog

box 75
2.33: The Make dialog box 83
2.34: The Linker dialog box 84
2.35: Set Application Options 86
2.36: The Debugger dialog box 87
2.37: The Directories dialog box 89
2.38: The Preferences dialog box 91
3.1: Compiling and linking a Windows

program 104
5.1: Search for match to square bracket or

parenthesis 154
5.2: Forward search I 155
5.3: Forward search II 155
5.4: Backward search 156
7.1: Detailed map of segments 245

N T R

Introduction

o D u c T o N

If you haven't already done so, read the introduction, Chapter 1
("Installing Borland C++"), and Chapter 2 ("Navigating the
Borland C++ manuals") in Getting Started for information on the
overall organization of the Borland C++ manuals. Those chapters
tell you about many of the highlights of Borland C++, how to
install Borland C++, and how to use the manuals most effectively.

This book, the User's Guide, contains reference-style information
on the Programmer's Platform (the IDE), using Borland C++ to
write a Windows application, the Project Manager, the integrated
editor, the command-line compiler, and some of the many utilities
included with Borland C++. See the introduction and Chapter 2,
"Navigating the Borland C++ manuals," in Getting Started for
information on how to most effectively use the Borland C++
documentation set.

Here is a breakdown of the chapters in this book:

Chapter 1: The Programmer's Platform introduces the features of
the Programmer's Platform, giving information and examples of
how to use the IDE to full advantage. It includes information on
how to start up and exit from the IDE.

Chapter 2: Menus and options reference provides a complete
reference to the menus and options of the IDE.

Chapter 3: Building a Windows application tells you what you
need and how to pull it together to write an application for
Microsoft's Windows.

Chapter 4: Managing multi-file projects tells how to use the
Project Manager to manage multi-file projects.

Chapter 5: The editor from A to Z provides a complete reference
to the editor.

Chapter 6: The command-line compiler tells how to use the
command-line compiler. It also explains configuration files.

Chapter 7: Utilities describes some of the utility programs that
come with Borland C++.

Appendix A: Precompiled headers describes some of the utility
programs that come with Borland C++.

Typefaces used in this book

The typefaces used in this manual are described in Getting Started.

2 Borland C++ User's Guide

c H A p T E R

1

The Programmer's Platform

Borland's Programmer's Platform, also known as the integrated
development environment or IDE for short, has everything you
need to write, edit, compile, link, and debug your programs. For
example, it provides

II multiple, movable, resizable windows

• mouse support

• dialog boxes
• cut-and-paste and cut-and-paste commands

• full editor undo and redo

• examples ready to copy from Help

• a built-in assembler
• quick transfer to other programs (like T ASM) and back again

• an editor macro language

The IDE runs in two modes: protected and real. Under "Starting
up and exiting," you'll find a description of how to start up the
IDE in either mode, and what the differences are. Since the IDE
works the same in either mode, this chapter, and Chapter 2 (the
menu reference) don't address the differences and the
implications for your programs.

This chapter is divided into two main sections: "Starting up and
exiting" tells you how to enter and exit the IDE; "The
components," starting on page 8, discusses the generic compo-

Chapter 1, The Programmer's Platform 3

nents that comprise the IDE. Chapter 2, starting on page 25,
provides a reference to each menu item and dialog box.

Starting up and exiting

4

Running in real
mode

Running in
protected mode

You can run the IDE in either real or protected mode. You can use
protected mode if you have a 286, 386, or i486 machine with 640K
of conventional RAM and at least 576K of extended or (simulated
or real) expanded memory. Otherwise, use real mode.

Note that, although you may be running Borland C++ in
protected mode, you are still generating applications to run in real
mode. The greatest advantages to using Borland C++ in protected
mode are:

• both the compiler and your application have much more room
to run than if you were running Borland C++ in real mode

• the linker runs faster

To invoke the IDE in real mode, type Be at the DOS prompt; you
can follow it with one or more options.

Running Borland C++ in protected mode requires a small amount
of preparation. It involves interaction between three files:
BCX.EXE, BCX.OVY, and TKERNEL.EXE. BCX.EXE loads
TKERNEL and BCX.OVY, which is the protected-mode version of
the IDE. Although BCX.EXE loads these files automatically, so
that you don't need to be concerned with invoking them yourself,
they do both need to be on the path or in the BCX.EXE startup
directory so it can find them.

Once you've verified that the correct directories are on the path,
running Borland C++ in protected mode is as simple as running it
in real mode; the syntax is identical except for using BCX in the
place ofBC. .

The options and menus are identical to those for BC; therefore, for
the remainder of this chapter, when we mention the IDE we mean
both BC and BCX (unless specifically called out otherwise).

Borland C++ User's Guide

.. BCX.EXE loads TKERNEL each time you invoke BCX. You can
save some loading time by preloading TKERNEL; before rwming
BCX, type

Windows and
protected mode

You can a/so run the
protected mode versions of
the command-line compiler

and TLINK under Windows
using the same procedure.

Command-line

TKERNEL hi=yes

on the DOS command line. This has the added benefit of storing
most of TKERNEL in extended memory, freeing more
conventional memory for your application. When you are
through with your Borland c++ session, type

TKERNEL rem

to remove TKERNEL.

You can use the protected mode version of the IDE while rwming
Windows. To do so, first load TKERNEL.EXE with the command:

TKERNEL hi=yes kilos=nnnn

where nnnn is the number of Kbytes to be managed by the kernel.
We suggest kilos=2048. The remaining extended memory is
available for Windows and other programs. Then run Windows
in standard mode (type the command WIN / s). With Windows in
standard mode, you can't run the IDE in a virtualized DOS
window, but only as a full screen.

You can only run the protected mode IDE in Windows standard
or real mode, 'not in enhanced mode.

options The command-line options for Borland C++'s IDE are: fb, Id, Ie, /h,
II, 1m, Ip, Irx, Is, and Ix. These options use this syntax:

BC I BCX [option [option ...]] [sourcename I projectname [sourcename]]

where sourcename is any ASCII file (default extension assumed),
projectname is your project file (it must have the .PRJ extension),
and option can be one or more of the options.

The /b option The fb option causes Borland C++ to recompile and link all the
files in your project, print the compiler messages to the standard
output device, and then return to the operating system. This
option allows you to invoke Borland C++ from a batch file so you
can automate builds of projects. Before the build, Borland C++
will load a default project file or one given on the command line.

Chapter 7, The Programmer's Platform 5

6

Borland C++ determines what .EXE to build based on the project
file or the file currently loaded in the Editor if no project file is
found.

Enter the BC or BCX command with either Ib alone or the project file
name followed by lb. For example,

Be /b

Be myproj.prj /b

Unless a project file is loaded, you can specify the name of a pro
gram to be compiled and linked on the command line. Type in the
program name after the BC or BCX command, followed by /b:

Be myprog /b

The /d option The Id option causes Borland C++ to work in dual monitor mode
if it detects appropriate hardware (for example, a monochrome
card and a color card); otherwise, the /d option is ignored. Use
dual monitor mode when you run or debug a program, or shell to
DOS (File I DOS Shell).

If your system has two monitors, DOS treats one monitor as the
active monitor. Use the DOS MODE command to switch between
the two monitors (MODE coao, for example, or MODE MONO). In dual
monitor mode, the normal Borland C++ screen will appear on the
inactive monitor, and program output will go to the active
monitor. So when you type BC / d or BCX / d at the DOS prompt on
one monitor, Borland C++ will come up on the other monitor.
When you want to test your program on a particular monitor, exit
Borland C++, switch the active monitor to the one you want to
test with, and then issue the BC / d or BCX / d command again. Pro
gram output will then go to the monitor where you typed the BC
or BCX command.

Keep the following in mind when using the Id option:

• Don't change the active monitor (by using the DOS MODE
command, for example) while you are in a DOS shell (File I DOS
Shell).

• User programs that directly access ports on the inactive moni
tor's video card are not supported, and can cause unpredictable
results.

• When you run or debug programs that explicitly make use of
dual monitors, do not use the Borland C++ dual monitor option
(ld).

Borland C++ User's Guide

The /e and /x options

Of the three options, Ie, Ix,
and Irx, Ix is the best to use,

followed by Ie, with Irx the
third best.

Normally, Turbo C++ swaps to a hard disk when allocating mem
ory. The / e option tells Borland C++ to swap to expanded mem
ory, the / x option tells Borland C++ to swap to extended memory .
The / e option is enabled by default. The syntax for these two
options is as follows:

/e[=n]

where n equals the number of pages of expanded memory that
you want the IDE to use for swapping. A page is 16K.

/x[=[r][,n]]

where n is the number of kilobytes of extended memory that you
want the IDE to use for swapping and r is the number of kilobytes
of extended memory to reserve for other programs.

.. You can also use these options with the protected-mode version
of the IDE (BCX). If you are using simulated EMS (such as that
provided by QEMM or 386MAX), BCX will also use the simulated
EMS; use the Ix option.

The /h option If you type BC/h or BCX/h on the command line, you'll get a list of
all the command-line options available. Their default values will
also be shown.

The /1 option Use the II option if you're running Borland C++ on an LCD
screen.

The /m option The 1m option lets you do a make rather than a build (that is, only
outdated source files in your project are recompiled and linked).
Follow the instructions for the Ib option, but use 1m instead.

The /p option Use the Ip option, which controls palette swapping on EGA video
adapters, when your program modifies the EGA palette registers.
The EGA palette will be restored each time the screen is swapped.

In general, you don't need to use this option unless your program
modifies the EGA palette registers or unless your program uses
BGI to change the palette:

Chapter 7, The Programmer's Platform 7

The /r option

Exiting Borland
C++

You return to the IDE affer
you exit the program you

transferred to.

Use the Irx option if all your extended or expanded memory has
been allocated to a RAM disk. The x in Irx is the letter of the "fast"
swap drive. For example, Ird will use drive D as the swap drive.
This option is primarily for when you have committed all your
extended or expanded memory to a RAM disk for other purposes.

There are three ways to leave the IDE.

• The first method exits the IDE "permanently;" you have to type '
BC or BCX again to reenter it. To exit this way, choose File I Quit
(or press Alt-X). If you've made changes that you haven't saved,
you'll see a prompt asking if you want to save your programs
before exiting.

• The next method allows you to shell out from the IDE to enter
commands at the DOS command line. To use this method,
choose File I DOS Shell. You can enter any normal DOS com
mands, and you can even run other programs from the com
mand line. When you're ready to return to the IDE, type EXIT at
the command line and press Enter. The IDE reappears just as
you left it.

• The third method lets you temporarily transfer to another pro
gram without leaving the IDE. To do so, choose a program from
the :: menu. If there are no programs installed on this menu,
you can add some with the Options I Transfer command.

The components

The menu bar

There are three visible components to the IDE: the menu bar at the
top, the window area in the middle, and the status line at the bot
tom. Many menu items also offer dialog boxes. Before we describe
each menu item in the IDE, we'll explain these more generic
components.

and menus The menu bar is your primary access to all the menu commands.
The only time the menu bar is not visible is when you're viewing
your program's output or transferring to another program. You'll

8 Borland C++ User's Guide

To cancel an action,
press Esc.

Borland C++ uses only the left
mouse button. You can,

however, customize the right
button and make other

mouse option changes, by
choosing Options I Mouse

(see page 90).

see a highlighted menu title when the menu bar is active; that
menu title is the currently selected menu.

If a menu command is followed by an ellipsis (...), choosing the
command displays a dialog box. If the command is followed by
an arrow (~), the command leads to another menu (a pop-up
menu). If the command has neither an ellipsis nor an arrow, the
action occurs as soon as you choose the command.

Here is how you choose menu commands using just the
keyboard:

1. Press F10. This makes the menu bar active; the next thing you
type will relate to the items on the menu bar.

2. Use the arrow keys to select the menu you want to display.
Then press Enter.

As a shortcut for this step, you can just press the highlighted
letter of the menu title. For example, from the menu bar, press
E to move to and display the Edit menu. From anywhere,
press Alt and the highlighted letter (such as Alt-E) to display the
menu you want.

3. Use the arrow keys again to select the command you want.
Then press Enter.

Again, as a shortcut, you can just press the highlighted letter
of a command to choose it once the menu is displayed.

At this point, Borland C++ either carries out the command,
displays a dialog box, or displays another menu.

You can also use a mouse to choose commands.

1. Click the desired menu title to display the menu.

2. Click the desired command.

Or, drag straight from the menu title down to the menu
command. Release the mouse button on the command you want.
(If you change your mind, just drag off the menu; no command
will be chosen.)

Note that some menu commands are unavailable when it would
make no sense to choose them. However, you can still get online
help about currently unavailable commands.

Chapter 7, The Programmer's Platform 9

10

Shortcuts Borland C++ offers a number of quick ways to choose menu
commands. (For example, the click-drag method for mouse users.)
From the keyboard, you can use a number of keyboard shortcuts
(or hot keys) to access the menu bar and choose commands. Short
cuts for dialog boxes work just as they do in a menu. (But be
aware that you need to hold down Alt while pressing the high
lighted letter when moving from an input box to a group of
buttons or boxes.) Here's a list of the shortcuts available:

Table 1.1
General hot keys

Do this ...

Press Aft plus the highlighted
letter of the command Gust
press the highlighted letter
in a dialog box). For the
:: menu, press Alt-Spacebar.

Type the keystrokes next to a
menu command.

To accomplish this ...

Display the menu or carry out the
command.

Carry out the command.

For example, to cut selected text, press Alt-E T (for Edit I Cut) or
you can just press Shift-Del, the shortcut displayed next to it.

Many menu items have corresponding hot keys; one- or two-key
shortcuts that immediately activate that command or dialog box.
The following table lists the most-used Borland C++ hot keys.

Key(s) Menu item Function

F1 Help Displays a help screen.
F2 File I Save Saves the file that's in the active

Edit window.
F3 File I Open Brings up a dialog box so you can

open a file.
F4 Run I Go to Cursor Runs your program to the line

where the cursor is positioned.
F5 Window I Zoom Zooms the active window.
F6 Window I Next Cycles through all open windows.
F7 Run I Trace Into Runs your program in debug mode,

tracing into functions.
FB Run I Step Over Runs your program in debug mode,

stepping over function calls.
F9 Compile I Invokes the Project Manager to

Make EXE File make an .EXE file.
F10 (none) Takes you to the menu bar.

Borland C++ User's Guide

Table 1.1: General hot keys (continued)

Table 1.2
Menu hot keys Key(s) Menu item Function

Aft-Spacebar ==menu Takes you to the == (System) menu
AIt-C Compile menu Takes you to the Compile menu
AIt-D Debug menu Takes you to the Debug menu
AIt-E Edit menu Takes you to the Edit menu
AIt-F File menu Takes you to the File menu
Aft-H Help menu Takes you to the Help menu
AIt-O Options menu Takes you to the Options menu
Alt-P Project menu Takes you to the Project menu
AIt-R Run menu Takes you to the Run menu
AIt-S Search menu Takes you to the Search menu
AIt-W Window menu Takes you to the Window menu
AIt-X File I Quit Exits Borland C++ to DOS

Table 1.3
Editing hot keys Key(s) Menu item Function

Clrl-Del Edit I Clear Removes selected text from the
window and doesn't put it in the
Clipboard

Clr/-Ins Edit I Copy Copies selected text to Clipboard
Shift-Del Edit I Cut Places selected text in the

Clipboard, deletes selection
Shift-Ins Edit I Paste Pastes text from the Clipboard into

the active window
Alt-Bkspc Edit I Undo Restores the text in the active

window to a previous state.
Ctrl-L Search I Search Again Repeats last Find or Replace

command
F2 File I Save Saves the file in the active Edit

window
F3 File I Open Lets you open a file

Chapter 7, The Programmer's Platform 11

Table 1.3: Editing hot keys (continued)

Table 1.4
Window management hot Key(s) Menu item Function

keys AIt-# Displays a window, where # is the
number of the window you want to
view

Alt-O Window I List Displays a list of open windows
AIt-F3 Window I Close Closes the active window
Alt-F4 Debug I Inspect Opens an Inspector window
Alt-FS Window I User Screen Displays User Screen
FS Window I Zoom Zooms/ unzooms the active

window
F6 Window I Next Switches the active window
Ctrl-FS Changes size or position of active

window

Table 1.5
Online Help hot keys Key(s) Menu item Function

F1 Help I Contents Opens a context-sensitive help
screen

F1 F1 Brings up Help on Help. Gust press
F1 when you're already in the help
system.)

Shift-F1 Help I Index Brings up Help index
Aft-F1 Help I Previous Topic Displays previous Help screen
Ctrl-F1 Help I Topic Search Calls up language-specific help in

Editor only

Table 1.6
Debugging/Running hot keys Key(s) Menu item Function

Alt-F4 Debug I Inspect Opens an Inspector window
Aft-Fl Search I Previous Error Takes you to previous error
Aft-F8 Search I Next Error Takes you to next error
Aft-F9 Compile I Compile to OBI Compiles to .OBJ
Ctrl-F2 Run I Program Reset Resets running program
Ctrl·F3 Debug I Call Stack Brings up call stack
Ctrl-F4 Debug I Evaluate/Modify Evaluates an expression
Ctrl·F7 Debug I Add Watch Adds a watch expression
Ctr/-F8 Debug I Toggle Breakpoint Sets or dears conditional

breakpoint
Ctrl-F9 Run I Run Runs program
F4 Run I Go To Cursor Runs program to cursor position
F7 Run I Trace Into Executes tracing into functions
F8 Run I Step Over Executes skipping function calls
F9 Compile I Make EXE File Makes (compiles/links) program

12 Borland C++ User's Guide

Borland C++
windows

If you exit Borland C++ with a
file open in a window, you

are returned to your desktop,
open file and all, when you

next use Borland C++.

Most of what you see and do in the IDE happens in a window. A
window is a screen area that you can open, close, move, resize,
zoom, tile, and overlap.

You can have many windows open in the IDE, but only one
window can be active at any time. The active window is the one
that you're currently working in. Any command you choose or
text you type generally applies only to the active window. (If you
have the same file open in several windows, the action will apply
to the file everywhere that it's open.)

You can spot the active window easily: It's the one with the
double-lined border around it. The active window always has a
close box, a zoom box, and scroll bars. If your windows are over
lapping, the active window is always the one on "top" of all the
others (the frontmost one).

There are several types of windows, but most of them have these
things in common:

13 a title bar
.. a close box
• scroll bars
.azoom box
• a window number (1 to 9)

The Edit window also displays the current line and column num
bers in the lower left comer. If you've modified your file, an aste
risk (*) will appear to the left of the column and line numbers.

This is what a typical window looks like:

Chapter 7, The Programmer's Platform 13

Figure 1.2
A typical window

Shortcut: Aft-Spacebar invokes
theEimenu.

Shortcut: Double-click the
title bar of a window to zoom

or restore it.

14

Cl ick the
~to
quickly close
the window.

I

The lIIII!I!li contai ns
the name of the wi ndow.

T " "

'"
I

[1]======= Window Title ======: =[t]~

I ...
The first nine ~

~: ~::-:~t~ I
Use a mouse to scroll the
contents of the wi ndow

T J m::::::::::::~::::::::::::::::m:::::::::::::::::::::::::::m::::::::::::C::iii::

Drag any corner to make
windows larger or smaller

'"

The close box of a window is the box in the upper left comer. Click
this box to quickly close the window. (Or choose Window I Close
or press Alt-F3.) The Inspector and Help windows are considered
temporary; you can close them by pressing Esc.

The title bar, the topmost horizontal bar of a window, contains the
name of the window and the window number. Double-clicking
the title bar zooms the window. You can also drag the title bar to
move the window around.

The zoom box of a window appears in the upper right comer. If the
icon in that comer is an up arrow (t), you can click the arrow to
enlarge the window to the largest size possible. 1£ the icon is a
doubleheaded arrow (~), the window is already at its maximum
size. In that case, clicking it returns the window to its previous
size. To zoom a window from the keyboard, choose Window I
Zoom, or press F5.

Borland C++ User's Guide

Scroll bars also show you
where you are in your file.

0..

The first nine windows you open in Borland c++ have a window
number in the upper right border. Alt-O gives you a list of all
windows you have open. You can make a window active (and
thereby bring it to the top of the heap) by pressing Alt in
combination with the window number. For example, if the Help
window is #5 but has gotten buried under the other windows,
Alt-5 brings it to the front.

Scroll bars are horizontal or vertical bars that look like this:

~
111I11I"1'1I11I1"11I1"11"11111'1I11I11I11I'1I11I11I"I'CII"'U'1I11I11I1 ... ItIIlIIl.II.IIIIIIII.III.IIIIII I .. IIIIII I .. III ... IIII .. III ~
..... IIU .. III .. IIIIIIIIII IIIIII III III 11111 11111 1 1111 ""11111
.... 111 11111 .. 11 1111 11111 111 .. ' 111 .. 111111 11111.111111111 111,,,1.11 .. 1 .. .

You use these bars with a mouse to scroll the contents of the
window. Click the arrow at either end to scroll one line at a time.
(Keep the mouse button pressed to scroll continuously.) You can
click the shaded area to either side of the scroll box to scroll a
page at a time. Finally, you can drag the scroll box to any spot on
the bar to quickly move to a spot in the window relative to the
position of the scroll box.

You can drag any comer to make a window larger or smaller. To
resize using the keyboard, choose Size/Move from the Window
menu, or press Ctrl-F5.

Window management Table 1.7 gives you a quick rundown of how to handle windows
in Borland C++. Note that you don't need a mouse to perform
these actions-a keyboard works just fine.

Table 1.7
Manipulating windows To accomplish this: Use one of these methods ---

Open an Edit window Choose File I Open to open a file and

Open other windows

Close a window

Activate a window

Chapter 7, The Programmer's Platform

display it in a window, or press F3.

Choose the desired window from the
Window menu

Choose Close from the Window menu (or
press Alt-F3), or click the close box of the
window.

Click anywhere in the window, or

Press Aft plus the window number (1 to 9,
in the upper right border of the window),
or

15

16

The status line

Figure 1.3
A typical status line

Table 1.7: Manipulating windows (continued)

Move the active window

Resize the active window

Zoom the active window

Choose Window I List or press A/t-O and
select the window from the list, or

Choose Window I Next or F6 to make the
next window active (next in the order you
first opened them).

Drag its title bar, or press Ctrl-F5 (Window I
Size/Move) and use the arrow keys to
place the window where you want it, then
press Enter.

Drag any comer. Or choose Window I
Size/Move and press Shift while you use
the arrow keys to resize the window, then
press Enter. The shortcut is to press Ctrl-F5
and then use Shift and the arrow keys.

Click the zoom box in the upper right
corner of the window, or

Double-click the window's title bar, or

Choose Window I Zoom, or press F5.

The status line appears at the bottom of the screen; it

• reminds you of basic keystrokes and shortcuts (or hot keys)
applicable at that moment in the active window .

• lets you click the shortcuts to carry out the action instead of
choosing the command from the menu or pressing the shortcut
keystroke.

• tells you what the program is doing. For example, it displays
"Savingfilename ... " when an Edit file is being saved.

• offers one-line hints on any selected menu command and dialog
box items.

The status line changes as you switch windows or activities. One
of the most common status lines is the one you see when you're
actually writing and editing programs in an Edit window. Here is
what it looks like:

Fl Help F2 Save F3 Open F7 Trace Fa Step F9 Make FlO Menu

Borland C++ User's Guide

Dialog boxes

Figure 1.4
A sample dialog box

If you have a color monitor,
Borland C++ uses different

colors for various elements of
the dialog box.

When you've selected a menu title or command, the status line
changes to display a one-line summary of the function of the
selected item. For example, if the Options menu title is selected
(highlighted), the status line reads "Set defaults for IDE, compiler,
debugger; define transfer programs." Similarly, when the Edit I
Cut command is selected, the status line reads "Remove the
selected text and put it in the Clipboard."

If a menu command has an ellipsis after it (...), the command
opens a dialog box. A dialog box is a convenient way to view and
set multiple options. When you're making settings in dialog
boxes, you work with five basic types of onscreen controls: radio
buttons, check boxes, action buttons, input boxes, and list boxes.
Here's a sample dialog box that illustrates some of these items:

This dialog box has three standard buttons: OK, Cancel, and Help.
If you choose OK, the choices in the dialog box are made; if you
choose Cancel, nothing changes and no action is made, but the
dialog box is put away. Choose Help to open a Help window
about this dialog box. Esc is always a keyboard shortcut for
Cancel (even if no Cancel button appears).

If you're using a mouse, click the button you want. When you're
using the keyboard, press Alt and the highlighted letter of an item
to activate it. For example, Alt-K selects the OK button. Press Tab or
Shift-Tab to move forward or back from one item to another in a
dialog box. Each element is highlighted when it becomes active.

In this dialog box, OK is the default button, which means you need
only press Enter to choose that button. (On monochrome systems,
arrows indicate the default; on color monitors, default buttons are

Chapter 7, The Programmer's Platform 17

18

Check boxes and
radio buttons

[Xl Checked check box
[] Unchecked check box

e) None
ee) Emulation
e) 8087

Input boxes and lists

highlighted.) You can select another button with Tab; press Enterto
choose that button. Be aware that tabbing to a button makes that
button the default.

The dialog box also has check boxes. When you select a check box,
an x appears in it to show you it's on. An empty box indicates it's
off. To set a check box to on, click it or its text, by pressing Tab
until the check box is highlighted and then pressing Spacebar, or
by selecting Aft and the highlighted letter. You can have any
number of check boxes checked at any time.

If several check boxes apply to a topic, they appear as a group. In
that case, tabbing moves to the group. Once the group is selected,
use the arrow keys to select the item you want, and then press
Spacebar to choose it. On monochrome monitors, the active check
box or group of check boxes will have a chevron symbol (») to the
left and right. When you press Tab, the chevrons move to the next
group of checkboxes or radio buttons.

The dialog box also has radio buttons. Radio buttons are so called
because they act just like the buttons on a car radio. There is
always one-and only one-button pushed in at a time. Push one
in, and the one that was in pops out.

Radio buttons differ from check boxes in that they present
mutually exclusive choices. For this reason, radio buttons always
come in groups, and exactly one (no more, no less) radio button
can be on in anyone group at anyone time. To choose a radio
button, click it or its text. From the keyboard, select Aft and the
highlighted letter, or press Tab until the group is highlighted and
then use the arrow keys to choose a particular radio button. Press
Tab or Shift-Tab again to leave the group with the new radio button
chosen. The column to the left gives an example a a set of radio
buttons.

Dialog boxes can also contain input boxes, which allow you to
type in text. Most basic text-editing keys work in the text box (for
example, arrow keys, Home, End, and insert/overwrite toggles by
Ins). If you continue to type once you reach the end of the box, the
contents automatically scroll. If there's more text than what shows
in the box, arrowheads appear at the end (~and ~). You can click
the arrowheads to scroll or drag the text. If you need to enter
control characters (such as AL or AM) in the input box, then prefix

Borland C++ User's Guide

You can control whether
history lists are saved to the

desktop using Options I
Environment I Desktop.

Editing

the character with a AP. So, for example, entering APAL enters a
AL into the input box. (This ability is useful for search strings.)

If an input box has a down-arrow icon to its right, there is a
history list associated with that input box. Press Enter to select an
item from this list. In the list you'll find text you typed into this
box the last few times you used this dialog box. The Find box, for
example, has such a history list, which keeps track of the text you
searched for previously. If you want to reenter text that you
already entered, press J, or click the t icon. You can also edit an
entry in the history list. Press Esc to exit from the history list
without making a selection.

Here is what a history list for the Fin~ text box might look like if
you had used it seven times previously:

Text to find ••••••• U

struct date
printf(1I
printf(
char buf[7]
/*
return (0
return 0

A final component of many dialog boxes is a list box. A list box
lets you scroll through and select from variable-length lists (often
file names) without leaving a dialog box. If a blinking cursor
appears in the list box and you know what you're looking for, you
can type the word (or the first few letters of the word) and
Borland C++ will search for it.

You make a list box active by clicking it or by choosing the high
lighted letter of the list title (or press Tab until it's highlighted).
Once a list box is displayed, you can use the scroll box to move
through the list or press t or J, from the keyboard.

If you're a longtime user of Borland products, the following sum
mary of our major editing features can help you identify the areas
that are different from our older products .

• multi-file capabilities let you open several files at once

Chapter 7, The Programmer's Platform 19

Project and
configuration files

20

Turbo C files

Borland C++ project
files

• multiple windows let you have several views onto the same file
or different files

• block mode that is switchable between persistent and
destructive (see page 93)

• mouse support
• support for large files (greater than 64K; limited to 8 megabytes

for all edit windows combined)

• Shift i J. ~ ~ for selecting text
• edit windows that you can move, resize, or overlap
• a sophisticated macro language, so you can create your own

editor commands (documented online)

• a built-in assembler and support for inline assembler code
• an undo and redo feature with an extensive buffer
• the ability to paste examples from the Help window
• an editable Clipboard that allows cutting, copying, and pasting

in or between windows

• a Transfer function that lets you run other programs and
capture output to an editor without leaving Borland C++

The IDE handles configuration files differently than Turbo C. The
focus of the IDE has changed from configuration-based to
project-based. This means that instead of loading a configuration
C.TC) file that defines your project, you load a project file that
contains everything needed to build your program.

In Turbo C, all options (compiler, environment, and so on) are
stored in the .TC file. The project file consists of an ASCII list of
file names that comprise the project. Thus, the information
needed to build the program that the project represents is spread
across two files: the project file and the .TC file.

The IDE places all information needed to build a program into a
binary project file. This includes compiler and linker options,
directory paths, project specific settings (for example, program
heap size, autodependencies used, and so on), and special
translators (such as TASM). In addition, the project file contains
other general information on the project, such as compilation
statistics (shown in the project window), and cached auto-

Borland C++ User's Guide

Configuration files

You might need only one
copy of the. TC file on your
hard disk. When kept with

the BC.EXE file, the
TCCONFIG. TC file Is loaded,
unless there is another copy

in the current directory.

dependency information. Chapter 4, "Managing multi-file pro
jects," covers project files and the Project Manager in depth.

The TCCONFIG.TC file contains only environmental (or global)
information; project files (.PRJ) now contain information on all
other settings and options except those shown in the following
list. For instance, the TCCONFIG.TC file knows whether to save
breakpoints and watchpoints, but, if activated, the breakpoints
and watchpoints themselves will be saved in the .PRJ. Thus the
.TC file is no longer required to build programs defined by a
project. The information stored in the . TC file includes

• editor key binding and macros
• editor mode setting (such as autoindent, use tabs, etc.)
• color tables
• 25/43 line setting
• mouse preferences
• auto-save flags
• history lists

Project files for the IDE correspond to the .CFG configuration files
that you supply to the command-line compiler (the default
command-line compiler configuration file is TURBOC.CFG). The
PRJCFG utility can convert .PRJ files to .CFG files and .CFG files
to .PRJ files. See Chapter 7, page 189 for more information.

Loading project files You can load project files in any of three ways:

1. When invoking Borland C++, give the project name with the
.PRJ extension after the Be command; for example,

BC myproj ,PRJ

You must use the ,PRJ extension in order to differentiate it
from source files.

2. If there is only one .PRJ file in the current directory, the IDE
assumes that this directory is dedicated to this project and
automatically loads it. Thus, typing BC (or Bex) alone while the
current directory contains one project file causes that project
file to be loaded.

3. From within the IDE, you load a project file using the Project I
Open Project command.

Chapter 7, The Programmer's Platform 21

The project directory

Desktop files

You can set some of these
options on or off using

Options I Environment I
Desktop.

When a project file is loaded from a directory other than the
current directory, the current DOS directory is set to where the
project is loaded from. This allows your project to be defined in
terms of relative paths in the Options I Directories dialog box and
also allows projects to move from one drive to another or from
one directory branch to another. Note, however, that changing
directories after loading a project may make the relative paths
incorrect and your project unbuildable. If this happens, change
the current directory back to where the project was loaded from.

Each project file has an associated desktop file (prjname.DSK). This
file contains state information about the associated project. While
none of the information it contains is needed to build the project,
all of the information is directly related to the project. The desktop
file includes

• the context information for each file in the project (that is, the
position in the file, the location of the window on the screen,
and so on)

• the history lists for various input boxes (for example, search
strings, file masks, and so on)

• layout of the windows on the desktop

• the contents of the Clipboard

• watch expressions

• breakpoints

Changing project files Because each project file has its own desktop file, changing to
another project file causes the newly loaded project's desktop to
be used. Thus changing from one existing project to another
existing project can change your entire window layout. When you
create a new project (by using Project I Open Project and typing in
a new .PRJ file), the new project's desktop inherits the previous
desktop. When you select Project I Close Project, the default
project is loaded and you get the default desktop and project
settings.

Default files When no project file is loaded, there are two default files that
serve as global place holders for project- and state-related infor
mation: TCDEF.DPR and TCDEF.DSK files, collectively referred
to as the default project.

22 Bor/and C++ User's Guide

These files are usually stored in the same directory as BC.EXE,
and are created if they are not found. When you run the IDE from
a directory without loading a project file, you get the desktop and
settings from these files. These files are updated when you change
any project-related options (for example, compiler options) or
when your desktop changes (for example, the window layout).

Chapter 7, The Programmer's Platform 23

24 Borland C++ User's Guide

c H A p T E R

2

Menus and options reference

This chapter provides a reference to each menu item and dialog
box. It is arranged in the order that the menus appear on the
screen. For information on starting and exiting the IDE, using the
IDE command-line options, and general information on how the
IDE works, see Chapter 1. Here is a high-level summary of the
menus:

Chapter 2, Menus and options reference 25

- File Edit Search Run Compil e Debug Proj ect Options Window Help J
I I I

About ••• Run Ctrl-F9 Compiler ~ r--
Cl ear desktop Program reset Ctrl-F2 Transfer •••
Repaint desktop Go to cursor F4 Make •••

Trace into F7 Linker •••
Transfer items Step over F8 Appl i cati on •••

Arguments ••• Debugger •••
Di rectori es •••

Environment

.~ I I

Open ... F3 Compi 1 e to OBJ C:MYFILLOBJ Save •••
New Make EXE file C:MYFILL EXE
Save F2 Link EXE file
Save as ••• Build all I
Save all Preferences •••

Remove messages Editor ...
Change dir ... Mouse •••
Print Desktop ...
Get info ...
DOS shell I Quit Alt-X

Code generation ...
Entry/Exit Code ...
C++ options ...
Optimi zati ons •••
Source •••
Messages •••
Names •••

I I Undo Alt-Bsp I Redo Inspect... Al t-F4
Evaluate/Modify ••• Ctrl-F4 Size/Move Ctrl-F5

Cut Shift-Del Call stack ... Ctrl-F3 Zoom F5
Copy Ctrl-Ins Watches ~

~
Tile

Paste Shi ft-Ins Toggle breakpoint Ctrl-F8 Cascade
Copy examgle Breakpoi nts ••• Next F6
Show clip oard Close Alt-F3

Clear Ctrl-Del I Message
Add watch ••• Ctrl-F7 Output
Delete watch Watch
Edit watch ... User screen Alt-F5
Remove all watches Register

Project
Project notes

I I
List Alt-O

Find ... Open proj ect •••
I Replace ... Close project

Search again Contents
Go to 1 i ne number ... Add item ... Index Shift-Fl
Previ ous error Alt-F7 Delete item Topi c search Ctrl-Fl
Next error Alt-F8 Local options ... Previ ous topi c Alt-Fl
Locate function Include files ... Help on help

- (System) menu

26

The :: menu appears on the far left of the menu bar. Aft-Spacebar is
the fastest way to get there. When you pull down this menu, you
see several general system-wide commands (About, Clear

Borland C++ User's Guide

About

Clear Desktop

Repaint Desktop

Transfer items

File menu

a I About

Desktop, Repaint Desktop) and the names of programs you've
installed with the Options I Transfer command.

The first command in the menu is About. When you choose this
command, a dialog box appears that shows you copyright and
version information for Borland c++. Press Esc or click OK (or
press Enter) to close the box.

Choose:: I Clear Desktop to close all windows and clear all history
lists. This command is useful when you're starting a new project.

Choose:: I Repaint Desktop to have Borland C++ redraw the
screen. You may need to do this, for example, if a memory
resident program has left stray characters on the screen, or
possibly if you have screen-swapping turned off (Options I
Debug I Display swapping) and you're stepping through a
program.

Any programs you've installed with the Transfer dialog box
(Options I Transfer) appear here. To run one of these programs,
choose its name from the :: menu. To install programs that will
then appear in this menu, choose Options I Transfer.

If you have more than one program installed with the same
shortcut letter on this menu, the first program listed with that
shortcut will be selected. You can select the second item by
clicking it or by using the arrow keys to move to it and then
pressing Enter.

The File menu lets you open and create program files in Edit
windows. The menu also lets you save your changes, perform
other file functions, shell to DOS, and quit.

Chapter 2, Menus and options reference 27

File I Open

28

Open

[ffi

Figure 2.1
The Load a File dialog box

The File I Open command displays a file-selection dialog box for
you to select a program file to open in an Edit window. Here is
what the box looks like:

.. INTROll.C
INTR012.C
INTR013.C
INTR014.C
INTR015.C
INTR016.C
INTR017.C

C

The dialog box contains an input box, a file list, buttons labeled
Open, Replace, Cancel, and Help, and an information panel that
describes the selected file. Now you can do any of these actions:

• Type in a full file name and choose Replace or Open. Open
loads the file into a new Edit window. An Edit window must be
active if you choose Replace; the contents of the window is
replaced with the selected file.

• Type in a file name with wildcards, which filters the file list to
match your specifications.

• Press J, to choose a file specification from a history list of file
specifications you've entered earlier.

• View the contents of different directories by selecting a
directory name in the file list.

The input box lets you enter a file name explicitly or lets you enter
a file name with standard DOS wildcards (* and ?) to filter the
names appearing in the history list box. If you enter the entire
name and press Enter, Borland C++ opens it. (If you enter a file
name that Borland C++ can't find, it automatically creates and
opens a new file with that name.)

If you press J, when the cursor is blinking in the input box, a
history list drops down below the box. This list displays the last
eight file names you've entered. Choose a name from the list by

Borland C++ User's Guide

If you choose Replace
instead of Open, the

selected file replaces the file
in the active Edit window

instead of opening up a new
window.

Using the File list
box

You can also type a
lowercase letter to search for

a file name and an
uppercase letter to search

for a directory name.

New

Save
[ill

File I Open

double-clicking it or selecting it with the arrow keys and pressing
Enter.

Once you've typed in or selected the file you want, choose the
Open button (choose Cancel if you change your mind). You can
also just press Enter once the file is selected, or you can double
click the file name.

The File list box displays all file names in the current directory
that match the specifications in the input box, displays the parent
directory, and displays all subdirectories. Click the list box or
press Tab until the list box name is highlighted. You can now
press J, or i to select a file name, and then press Enter to open it.
You can also double-click any file name in the box to open it. You
might have to scroll the box to see all the names. If you have more
than one pane of names, you can also use ~ and ~ .

The file information panel at the bottom of the Load a File dialog
box displays path name, file name, date, time, and size of the file
you've selected in the list box. (None of the items on this panel are
selectable.) As you scroll through the list box, the panel is
updated for each file.

The File I New command lets you open a new Edit window with
the default name NONAMExx.C (the xx stands for a number from
00 to 99). These NONAME files are used as a temporary edit
buffer; Borland c++ prompts you to name a NONAME file when
you save it.

The File I Save command saves the file in the active Edit window
to disk. (This menu item is disabled if there's no active Edit
window.) If the file has a default name (NONAMEOO.C, or the
like), Borland C++ opens the Save Editor File dialog box to let you
rename and save it in a different directory or on a different drive.
This dialog box is identical to the one opened for the Save As
command, described next.

Chapter 2, Menus and options reference 29

File I Save As

Save As

Figure 2.2
The Save File As dialog box

Save All

Change Dir

30

The File I Save As command lets you save the file in the active
Edit window under a different name, in a different directory, or
on a different drive. When you choose this command, you see the
Save File As dialog box:

~ INTROll.C
INTR012.C
INTR013.C
INTR014.C
INTR015.C
INTR016.C
INTR017.C

.c

Enter the new name, optionally with drive and directory, and
click or choose OK. All windows containing this file are updated
with the new name.

The File I Save All command works just like the Save command
except that it saves the contents of all modified files, not just the
file in the active Edit window. This command is disabled if no
Edit windows are open.

The File I Change Dir command lets you specify a drive and a
directory to make current. The current directory is the one
Borland c++ uses to save files and to look for files. (When using
relative paths in Options I Directories, they are relative to this
current directory only.)

Here is what the Change Directory dialog box looks like:

Borland C++ User's Guide

Figure 2.3
The Change Directory dialog

box

Print

Get Info

File I Change Dir

There are two ways to change directories:

• Type in the path of the new directory in the input box and press
Enter, or

II Choose the directory you want in the Directory tree (if you're
using the keyboard, press Enter to make it the current directory),
then choose OK or press Esc to exit the dialog box.

If you choose the OK button, your changes will be made and the
dialog box put away. If you choose the Chdir button, the
Directory Tree list box changes to the selected directory and
displays the subdirectories of the currently highlighted directory
(pressing Enter or double-clicking on that entry gives you the same
result). If you change your mind about the directory you've
picked and you want to go back to the previous one (and you've
yet to exit the dialog box), choose the Revert button.

The File I Print command lets you print the contents of the active
Edit, Output, or Message window. Borland C++ expands tabs
(replaces tab characters with the appropriate number of spaces)
and then sends it to the DOS print handler. This command is
disabled if the active window cannot be printed. Use Ctrl-K P to
print selected text only.

The File I Get Info command displays a box with information on
the current file.

Chapter 2, Menus and options reference 31

File I Get Info

Figure 2.4
The Get Info box

Table 2.1
Get Info settings

After reviewing the
information in this box, press

Enter to put the box away.

DOS Shell

32

The information here is for display only; you can't change any of
the settings in this box. The following table tells you what each
line in the Get Info box means and where you can go to change
the settings if you want to:

Setting

Current directory
Current file
Extended memory in use

Expanded memory in use

Lines compiled
Total warnings
Total errors
Total time

Program loaded
Program exit code

Available memory

Last step time

Meaning

The default directory.
File in the active window.
Amount of extended memory reserved by
Borland C++i displays 0 when the IDE is in
protected mode.
Amount of expanded memory reserved by
Borland C++.
Number of lines compiled.
Number of warnings issued.
Number of errors generated.
Amount of time your program has run
(debugger only).
Debugging status.
DOS termination code of last terminated
program.
Amount of free DOS (640K) memory. In
protected mode, this value is the number of
bytes of extended memory.
Amount of time spent in last debug step.

The File I DOS Shell command lets you temporarily exit Borland
c++ to enter a DOS command or program. To return to Borland
C++, type EXIT and press Enter.

You may find that when you're debugging, there's not enough
memory to execute this command. If that's the case, terminate the
debug session by choosing Run I Program Reset (Ctrl-F2).

Bor/and c++ User's Guide

Edit menu

File I DOS Shell

.. Don't install any TSR programs (like SideKick) while you've
shelled to DOS, because memory may get misallocated.

Quit

[][][KJ

Note: In dual monitor mode, the DOS command line appears on
the Borland C++ screen rather than the User Screen. This allows
you to switch to DOS without disturbing the output of your pro
gram. Since your program output is available on one monitor in
the system, Window I User Screen and Alt-F5 are disabled.

You can also use the transfer items on the :: (System) menu to
quickly switch to another program without leaving Borland C++.

The File I Quit command exits Borland C++, removes it from
memory, and returns you to the DOS command line. If you have
made any changes that you haven't saved, Borland C++ asks you
if you want to save them before exiting.

The Edit menu lets you cut, copy, and paste text in Edit windows.
If you make mistakes, you can undo changes, and even reverse
the effect of your most recent undo. You can also open a
Clipboard window to view or edit its contents, and copy text from
the Message and Output windows.

Before you can use most of the commands on this menu, you need
to know about selecting text (because most editor actions apply to
selected text). Selecting text means highlighting it. You can select
text either with keyboard commands or with a mouse; the
principle is the same even though the actions are different.

From the keyboard you can use any of these methods:

• Press Shift while pressing any arrow key.
• To select text from the keyboard, press Ctrl-K B to mark the start

of the block. Then move the cursor to the end of the text and
press Ctrl-K K.

• To select a single word, move the cursor to the word and press
Ctrl-KT.

• To select an entire line, press Ctrl-K L.

Chapter 2, Menus and options reference 33

Edit

.... With a mouse:

34

Undo
@O I Backspace I

If you delete large blocks,
you may lose your Undo

information.

• To select text with a mouse, drag the mouse pointer over the
desired text. If you need to continue the selection past a
window's edge, just drag off the side and the window will
automatically scroll.

• To select a single line, double-click anywhere in the line.
• To select text line-by-line, click-drag over the text (that is, click

once and then quickly press the mouse button again and begin
to drag).

• To extend or reduce the selection, Shift-click anywhere in the
document (that is, hold Shift and clIck).

Once you have selected text, the commands in the Edit menu
become available, and the Clipboard becomes useful.

The Clipboard is the magic behind cutting and pasting. It's a
special window in Borland C++ that holds text that you have cut
or copied, so you can paste it elsewhere. The Clipboard works in
close concert with the commands in the Edit menu.

Here's an explanation of each command in the Edit menu.

The Edit I Undo command restores the file in the current window
to the way it was before the most-recent edit or cursor movement.
There are restrictions on what operations can be undone. Undo
will insert any characters that have been deleted, delete any
characters that have been inserted, replace any characters that
have been overwritten, and move the cursor back to a prior
position.

Undoing a block operation restores the block markers to the value
they had prior to the operation. Undo will not change any flag
option setting that has a global effect. For example, if you use the
Ins key to change from Insert to Overwrite mode, then choose
Undo, you won't change back into Insert mode. However, if you
delete a character, switch to Overwrite mode, then choose Undo,
the character you just deleted will be inserted. The effect of the
operation that you performed (deleting a character) is undone
regardless of the mode setting.

Changing global editing options may make Undo act differently
than you expect. For instance, if you press Tab, then change the

Borland C++ User's Guide

Redo

Paste
I Shift 1lli!J

Edit I Undo

value of Tab Width in the Editor Options dialog box, then choose
Undo, the cursor will move to the old tab location (based on
certain values in the Undo buffer). As soon as you start typing,
however, the cursor will move to the new tab location.

The Group Undo option in the Editor Options dialog box
(Options I Environment I Editor) affects Undo and Redo. See page
93 for information on Group Undo.

The Edit I Redo command reverses the effect of the most recent
Undo command. The Redo command only has an effect
immediately after an Undo command or after another Redo
command. A series of Redo commands reverses the effects of a
series of Undo commands.

The Edit I Cut command removes the selected text from your
document and places the text in the Clipboard. You can then
paste that text into any other document (or somewhere else in the
same document) by choosing Paste. The text remains selected in
the Clipboard so that you can paste the same text many times.

The Edit I Copy command leaves the selected text intact but places
an exact copy of it in the Clipboard. You can then paste that text
into any other document by choosing Paste. You can also copy
text from a Help window: With the keyboard, use Shift and the
arrow keys; with the mouse, click and drag the text you want to
copy. If the Output or Message window is the active window
when you select Edit I Copy, the entire contents of the window
buffer (including any nonvisible portion) get copied to the
Clipboard.

The Edit I Paste command inserts text from the Clipboard into the
current window at the cursor position. The text that is actually
pasted is the currently marked block in the Clipboard window.
You cannot paste to either the Output or Message window.

Chapter 2, Menus and options reference 35

Edit I Copy Example

Copy Example

Show Clipboard

Normally the Clipboard
contents are saved across
sessions, although you can
control that using Options I

Environment I Desktop.

Clear

@@@ill

Search menu

36

The Edit I Copy Example command copies the preselected
example text in the current Help window to the Clipboard. The
examples are already predefined as pastable blocks, so you don't
need to bother with marking the example you want.

The Edit I Show Clipboard command opens the Clipboard
window, which stores the text you cut and copy from other
windows. The text that's currently selected (highlighted) is the
text Borland C++ uses when you choose Paste.

You can think of the Clipboard window as a history list of your
cuts and copies. And you can edit the Clipboard so that the text
you paste is precisely the text you want. Borland C++ uses
whatever text is selected in the Clipboard when you choose Paste.

The Clipboard window is just like other Edit windows; you can
move it, resize it, and scroll and edit its contents. The only
difference you'll find in the Clipboard window is when you
choose to cut or copy text. When you select text in the Clipboard
window and choose Cut or Copy, the selected text immediately
appears at the bottom of the window. (Remember, any text that
you cut or copy is appended to the end of the Clipboard-so you
can paste it later.)

The Edit I Clear command removes the selected text but does not
put it into the Clipboard. This means you cannot paste the text as
you could if you had chosen Cut or Copy. The cleared text is not
retrievable. You can clear the Clipboard itself by selecting all the
text in the Clipboard, then selecting Edit I Clear.

The Search menu lets you search for text, function declarations,
and error locations in your files.

Borland C++ User's Guide

Find

~[]][£J

Figure 2.5
The Find dialog box

I[X] Case sensitive!

I [] Whole words OnlY!

I[] Regular expreSSion!

Search I Find

The Search I Find command displays the Find dialog box, which
lets you type in the text you want to search for and set options
that affect the search. (Ctrl-Q F is another shortcut for this
command.)

The Find dialog box contains several buttons and check boxes:

Check the Case Sensitive box if you do want Borland C++ to
differentiate uppercase from lowercase.

Check the Whole Words Only box if you want Borland C++ to
search for words only (that is, the string must have punctuation
or space characters on both sides).

Check the Regular Expression box if you want Borland C++ to
recognize GREP-like wildcards in the search string. The wildcards
are A, $, ., *, +, [], and \. Here's what they mean:

A

$

*

+

A circumflex at the start of the string matches the start of a
line.

A dollar sign at the end of the expression matches the end
of a line.

A period matches any character.

A character followed by an asterisk matches any number of
occurrences (including zero) of that character. For example,
bo* matches bot, b, boo, and also be.

A character followed by a plus sign matches any number of
occurrences (but not zero) of that character. For example,
bo+ matches bot and boo, but not be or b.

Chapter 2, Menus and options reference 37

Search I Find

38

Direction
(e) Forward
() Backward

Scope
(e) Global
() Selected text

Ori9in
(e) From Cursor
() Entire Scope

Replace

[] Characters in brackets match anyone character that
appears in the brackets but no others. For example [botl
matches b, 0, or t.

[A] A circumflex at the start of the string in brackets means not.
Hence, [Abotl matches any characters except b, 0, or t.

[-] A hyphen within the brackets signifies a range of
characters. For example, [b-ol matches any character from b
througho.

\ A backslash before a wildcard character tells Borland C++
to treat that character literally, not as a wildcard. For
example, \ A matches A and does not look for the start of a
line.

Enter the string in the input box and choose OK to begin the
search, or choose Cancel to forget it. If you want to enter a string
that you searched for previously, pr~ss J, to show a history list to·
choose from.

You can also pick up the word that your cursor is currently on in
the Edit window tClnd use it in the Find box by simply invoking
Find from the Search menu. You can take additional characters
from the text by pressing -7 .

Choose from the Direction radio buttons to decide which
direction you want Borland C++ to search-starting from the
origin (which you can set with the Origin radio buttons).

Choose from the Scope buttons to determine how much of the file
to search in. You can search the entire file (Global) or only the
selected text.

Choose from the Origin buttons to determine where the search
begins. When Entire Scope is chosen, the Direction radio buttons
determine whether the search starts at the beginning or the end of
the scope. You choose the range of scope you want with the Scope
radio buttons.

The Search I Replace command displays a dialog box that lets you
type in the text you want to search for and text you want to
replace it with.

Borland C++ User's Guide

Figure 2.6
The Replace dialog box

Search Again

@!illcg

Go to Line

Search I Replace

The Replace dialog box contains several radio buttons and check
boxes-many of which are identical to the Find dialog box,
discussed previously. An additional checkbox, Prompt on
Replace, controls whether you're prompted for each change.

Enter the search string and the replacement string in the input
boxes and choose OK or Change All to begin the search, or choose
Cancel to forget it. If you want to enter a string you used
previously, press.!. to show a history list to choose from.

If Borland C++ finds the specified text, it asks you if you want to
make the replacement. If you choose OK, it will find and replace
only the first instance of the search item. If you choose Change
All, it replaces all occurrences found, as defined by Direction,
Scope, and Origin.

As with the Find dialog box, you can pick up the word your
cursor is currently on in the Edit window and use it in the Text to
Find input box by simply invoking Find or Replace from the
Search menu. And you can add more text from the Edit window
by pressing ~ .

The Search I Search Again command repeats the last Find or
Replace command. All settings you made in the last dialog box
used (Find or Replace) remain in effect when you choose Search
Again.

Number The Search I Go to Line Number command prompts you for the
line number you want to find.

Chapter 2, Menus and options reference 39

Search I Go to Line Number

Figure 2.7
The Go to Une Number

dialog box

Previous Error

[]DUD

Next Error

[]DmJ

Locate Function

Figure 2.8
The Locate Function dialog

box

40

Here is what the dialog box looks like:

Borland C++ displays the current line number and column
number in the lower left comer of every Edit window.

The Search I Previous Error command moves the cursor to the
location of the previous error or warning message. This command
is available only if there are messages in the Message window
that have associated line numbers. These messages are generated
by compile and transfer commands that use a Capture messages
filter.

The Search I Next Error command moves the cursor to the location
of the next error or warning message. This command is available
only if there are messages in the Message window that have
associated line numbers. These messages are generated by
compile and transfer commands that use a Capture messages
filter.

The Search I Locate Function command displays a dialog box for
you to enter the name of a function to search for. This command is
available only during a debugging session.

Enter the name of a function or press J,. to choose a name from the
history list. As opposed to the Find command, this command
finds the declaration of the function, not instances of its use.

Bor/and c++ User's Guide

Run menu

Run
@!illffi]

If you want to have all
Borland C++ S features

available, keep Source
Debugging set to On.

Source code the same

Search I Locate Function

The Run menu's commands run your program, and also start and
end debugging sessions.

The Run I Run command runs your program, using any
arguments you pass to it with the Run I Arguments command. If
the source code has been modified since the last compilation, it
will also invoke the Project Manager to recompile and link your
program. (The Project Manager is a program building tool
incorporated into the IDE; see Chapter 4, "Managing multi-file
projects," for more on this feature.)

If you don't want to debug your program, you can compile and
link it with the Source Debugging radio button set to None
(which makes your program compile and link faster) or to
Standalone (which gives the program more room to run) in the
Options I Debugger dialog box. If you compile your program with
this check box set to On, the resulting executable code will contain
debugging information that will affect the behavior of the Run I
Run command in the following ways:

If you have not modified your source code since the last
compilation,

• the Run I Run command causes your program to run to the next
breakpoint, or to the end if no breakpoints have been set.

Source code modified If you have modified your source code since the last compilation,

• and if you're already stepping through your program using the
Run I Step Over or Run I Trace Into commands, Run I Run
prompts you whether you want to rebuild your program:

• If you answer yes, the Project Manager recompiles and links
your program, and sets it to run from the beginning .

• If you answer no, your program runs to the next breakpoint
or to the end if no breakpoints are set.

EI and if you are not in an active debugging session, the Project
Manager recompiles your program and sets it to run from the
beginning.

Chapter 2, Menus and options reference 41

RunlRun

42

Pressing Glrl-Break causes Borland C++ to stop execution on the
next source line in your program. If Borland C++ is unable to find
a source line, a second Glrl-Break will terminate the program and
return you to the IDE.

Windows You can't run or debug Windows applications within the IDE. If
you try to do so, you'll get an error dialog box to that effect.

Program Reset

@!illCill

Go to Cursor

em

Trace Into

[ill

The Run I Program Reset command stops the current debugging
session, releases memory your program has allocated, and closes
any open files that your program was using. Use this command
when you're debugging and there's not enough memory to run
transfer programs or invoke a DOS shell.

The Run I Go to Cursor command runs your program from the
run bar (the highlighted bar in your code) to the line the cursor is
on in the current Edit window. If the cursor is at a line that does
not contain an executable statement, the command displays a
warning. Run I Go to Cursor can also initiate a debug session.

Go to Cursor does not set a permanent breakpoint, but it does
allow the program to stop at a permanent breakpoint if it
encounters one before the line the cursor is on. If this occurs, you
must choose the Go to Cursor command again.

Use Go to Cursor to advance the run bar to the part of your pro
gram you want to debug. If you want your program to stop at a
certain statement every time it reaches that point, set a breakpoint
on that line.

Note that if you position the cursor on a line of code that is not
executed, your program will run to the next breakpoint or the end
if no breakpoints are encountered. You can always use Glrl-Break to
stop a running program.

The Run I Trace Into command runs your program statement-by
statement. When it reaches a function call, it executes each state
ment within the function, instead of executing the function as a
single step (see Run I Step Over). If a statement contains no calls

Borland C++ User's Guide

Step Over

rn:J

Run I Trace Into

to functions accessible to the debugger, Trace Into stops at the
next executable statement.

Use the Trace Into command to move the run position into a
function called by the function you are now debugging. See the
next section for an illustration of the differences between the
Trace Into and Step Over commands.

If the statement contains a call to a function accessible to the
debugger, Trace Into halts at the beginning of the function's
definition. Subsequent Trace Into or Step Over commands run the
statements in the function's definition. When the debugger leaves
the function, it resumes evaluating the statement that contains the
call; for example,

if (funcl() && func2())
do_something () ;

With the run bar on the if statement, F7will trace into func1;
when on the return in func1, F7 will trace into func2. F8 will step
over func2 and stop on do-something.

Note: The Trace Into command recognizes only functions defined
in a source file compiled with two options set on:

• In the Code Generation dialog box (Options I Compiler), the
Debug Info in OBJs check box must be checked .

• The Source Debugging radio buttons must be set to On (in the
Options I Debugger dialog box).

The Run I Step Over command executes the next statement in the
current function. It does not trace into calls to lower-level
functions, even if they are accessible to the debugger.

Use Step Over to run the function you are now debugging, one
statement at a time without branching off into other functions.

Here is an example of the difference between Run I Trace Into and
Run I Step Over. These are the first 12 lines of a program loaded
into an Edit window:

int findit (void)
{

return(2);

1* Line 1 *1

Chapter 2, Menus and options reference 43

Run I Step Over

44

Arguments

Figure 2.9
The Arguments dialog box

You only need to enter the
arguments here, not the

program name.

void main (void)
{

int i, j;

/* Line 6 */

i = findit(); /* Line 10 */
printf("%d\n", i); /* Line 11 */
j = 0; . . . /* Line 12 */

findit is a user-defined function in a module that has been
compiled with debugging information. Suppose the run bar is on
line 10 of your program. To position the run bar on line 10, place
the cursor on line 10 and either press F4 or select Run I Go to
Cursor .

• If you now choose Run I Trace Into, the run bar will move to the
first line of the findit function (line 1 of your program), allowing
you to step through the function .

• If you choose Run I Step Over, the find it function will execute
and the return value will be assigned to i. Then the run bar will
move to line 11.

If the run bar had been on line 11 of your program, it would have
made no difference which command you chose; Run I Trace Into
and Run I Step Over both would have executed the printf function
and moved the run bar to line 12. This is because the printf
function does not contain debug information.

The Run I Arguments command allows you to give your running
programs command-line arguments exactly as if you had typed
them on the DOS command line. DOS redirection commands will
be ignored.

When you choose this command, a dialog box appears with a
single input box.

Arguments take affect only when your program is started. If you
are already debugging and wish to change the arguments, then
you can select Program Reset to start the program with the new
arguments.

Borland C++ User's Guide

Compile menu

Compile to OBJ

[][][ffi

Make EXE File

[ffi

For more information on the
Project Manager, see

Chapter 4, "Managing
multi-file projects. "

Run I Arguments

Use the commands on the Compile menu to compile the program
in the active window or to make or build your project. To use the
Compile, Make, Build, and Link commands, you must have a file
open in an active Edit window or a project defined (for Make,
Build, and Link). For example, if you open a Message or Watch
window, those selections will be disabled.

The Compile I Compile to OBI command compiles the active
editor file (a .C or .CPP file to an .OBI file). The menu always
displays the name of the file to be created; for example,

IcomPile to OBJ c: EXAMPLE.OBJ I

When Borland C++ is compiling, a status box pops up to display
the compilation progress and results. When compiling/linking is
complete, press any key to remove this box. If any errors or
warnings occurred, the Message window becomes active and
displays and highlights the first error.

The Compile I Make EXE File command invokes the Project
Manager to make an .EXE file. The menu always displays the
name of the .EXE file to be created; for example,

IMake EXE File c: EXAMPLE. EXE I

The .EXE file name listed is derived from one of two names in the
following order:

• the project file (.PRJ) specified with the Project I Open Project
command

• the name of the file in the active Edit window (if no project is
defined, you'll get the default project defined by the file
TCDEF.DPR)

Compile I Make EXE File rebuilds only the files that aren't current.

Chapter 2, Menus and options reference 45

Compile I Link EXE File

Link EXE File

Build All

Remove

The Compile I Link EXE File command takes the current .OBI and
.LIB files (either the defaults or those defined in the current
project file) and links them without doing a make; this produces a
new .EXE file.

The Compile I Build All command rebuilds all the files in your
project regardless of whether they're out of date.

This command is similar to Compile I Make EXE File except that it
is unconditional. It performs the following steps:

1. It deletes the appropriate precompiled header (.SYM) file, if it
exists.

2. It deletes any cached auto dependency information in the
project.

3. It sets the date and time of all the project's .OBI files to zero

4. Finally, it does a make.

If you abort a Build All command by pressing Glr/-Break or get
errors that stop the build, you can pick up where it left off simply
by choosing Compile I Make EXE File.

Messages The Compile I Remove Messages command removes all messages
from the Message window.

Debug menu

Windows

46

The commands on the Debug menu control all the features of the
jntegrated debugger. You can change default settings for these
commands in the Options I Debugger dialog box.

You can't run or debug Windows applications within the IDE. If
you try to do so, you'll get an error dialog box to that effect. You
must run them under Microsoft Windows and use Turbo
Debugger for Windows.

Borland C++ User's Guide

Inspect

[][)[E]

Debug I Inspect

The Debug I Inspect command opens an Inspector window that
lets you examine and modify values in a data element. The type of
element you're inspecting determines the type of information
presented in the window. In Borland C++, you can inspect simple
(ordinal) data types like char or unsigned long, pointers, arrays,
structures, classes, types, unions, and functions.

There are two ways to open an Inspector window:

• You can position the cursor on the data element you want to
inspect, then choose Alt-F4.

• You can also choose Debug I Inspect to bring up the Inspector
dialog box, and then type in the variable or expression you
want to inspect. Alternatively, you can position the cursor on an
expression, select Debug I Inspect, and, while in this dialog box,
press ~ to bring in more of the expression. Press Enter to
inspect it.

To close an Inspector window, make sure the window is active
(topmost) and press Esc or choose Window I Close.

Here are some additional inspection operations you can perform:

• Sub-inspecting: Once you're in an Inspector window, you can
inspect certain elements to isolate the view. When an inspector
item is inspectable, the status line displays the message 1/ .J
Inspect." To sub-inspect an item, you move the inspect bar to
the desired item and press Enter.

II Modifying inspector items: When an inspector item can be
modified, the status line displays 1/ Alt-M Modify Field." Move
the cursor to the desired item and press AIt-M; a dialog box will
prompt you for the new value.

D Range-inspect: When you are inspecting certain elements, you
can change the range of values that is displayed. For example,
you can range-inspect pointer variables to tell Borland C++
how many elements the pointer points to. You can range
inspect an inspector when the status line displays the message
"Set index range" and the command Alt-I.

The following sections briefly describe the eight types of Inspector
windows possible.

Chapter 2, Menus and options reference 47

Debug I Inspect

48

Ordinal Inspector
windows

Pointer Inspector
windows

Ordinal Inspector windows show you the value of simple data
items, such as

char x = 4;
unsigned long y = 123456L;

These Inspector windows only have a single line of information
following the top line (which usually displays the address of the
variable, though it may display the word "constant" or have other
information in it, depending on what you're inspecting). To the
left appears the type of the scalar variable (char, unsigned long,
and so forth), and to the right appears its present value. The value
can be displayed as decimal, hex, or both. It's usually displayed
first in decimal, with the hex values in parentheses (using the
standard C hex prefix of Ox).

If the variable being displayed is of type char, the character
equivalent is also displayed. If the present value does not have a
printing character equivalent, the backslash (\) followed by a hex
value displays the character value. This character value appears
before the decimal or hex values.

Pointer Inspector windows show y01,l the value of data items that
point to other data items, such as

char *p = "abc";
int tip = 0;
int **ipp = &ip;

Pointer Inspector windows usually have a top line that contains
the address of the pointer variable and the address being pointed
to, followed by a single line of information.

To the left appears [0], indicating the first member of an array. To
the right appears the value of the item being pointed to. If the
value is a complex data item such as a structure or an array, as
much of it as possible is displayed, with the values enclosed in
braces ({ and n.
If the pointer is of type char and appears to be pointing to a null
terminated character string, more information appears, showing
the value of each item in the character array. To the left in each
line appears the array index ([1], [2], and so on), and the value
appears to the right as it would in a scalar Inspector window. In
this case, the entire string is also displayed on the top line, along

Bor/and c++ User's Guide

Array Inspector
windows

Structure and union
Inspector windows

Function Inspector
windows

Debug I Inspect

with the address of the pointer variable and the address of the
string that it points to.

Array Inspector windows show you the value of arrays of data
items, such as

long thread[3] [4J [5J;
char message [] = "eat these words";

There is a line for each member of the array. To the left on each
line appears the array index of the item. To the right appears the
value of the item being pointed to. If the value is a complex data
item such as a structure or array, as much of it as possible is
displayed, with the values enclosed in braces ({ and I).

Structure and union Inspector windows show you the value of
the members in your structure, class, and union data items. For
example,

struct date {
int year;
char month;
char day;

} today;

union {
int small;
long large;

} holder;

Structures and unions appear the same in Inspector windows.
These Inspector windows have as many items after the address as
there are members in the structure or union. Each item shows the
name of the member on the left and its value on the right,
displayed in a format appropriate to its C data type.

Function Inspector windows show the return type of the function
at the bottom of the inspector. Each parameter that a function is
called with appears after the memory address at the top of the list.

Function Inspector windows give you information about the
calling parameters, return data type, and calling conventions for a
function.

Chapter 2, Menus and options reference 49

Debug I Inspect

Class Inspector
windows

Constant Inspector
window

Type Inspector window

Evaluate/Modify

@@Cill

Figure 2.10
The Evaluate/Modify dialog

box

50

The Class (or object) Inspector window lets you inspect the details
of a class variable. The window displays names and values for
members and methods defined by the class.

The window can be divided into two panes horizontally, with the
top pane listing the data fields or members of the class, and the
bottom pane listing the member function names and the function
addresses. Press Tab to move between the two panes of the Class
Inspector window.

If the highlighted data field is a class or a pointer to a class,
pressing Enter opens another Class Inspector window for the
highlighted type. In this way, you can quickly inspect complex
nested structures of classes with a minimum of keystrokes.

Constant Inspector windows are much like Ordinal Inspector
windows, but they have no address and can never be modified.

The Type Inspector window lets you examine a type. There is a
Type Inspector window for each kind of instance inspector
described here. The difference between them is that instance
inspectors display the value of a field and type inspectors display
the type of a field.

The Debug I-Evaluate/Modify command evaluates a variable or
expression, displays its value, and, if appropriate, lets you modify
the value. The command opens a dialog box containing three
fields: the Expression field, the Result field, and the New Value
field. Here is what the dialog box looks like:

Borland C++ User's Guide

The Evaluate button is the
default button; when you

tab to the New Value field,
the Modify button becomes

the default.

Call Stack

@!ill[]IJ

Debug I Evaluate/Modify

The Expression field shows a default expression consisting of the
word at the cursor in the Edit window. You can evaluate the
default expression by pressing Enter, or you can edit or replace it
first. You can also press ~ to extend the default expression by
copying additional characters from the Edit window.

You can evaluate any valid C expression that doesn't contain

II function calls

.. symbols or macros defined with #define

• local or static variables not in the scope of the function being
executed

If the debugger can evaluate the expression, it displays the value
in the Result field. If the expression refers to a variable or simple
data element, you can move the cursor to the New Value field and
enter an expression as the new value.

Press Esc to close the dialog box. If you've changed the contents of
the New Value field but do not select Modify, the debugger will
ignore the New Value field when you close the dialog box.

Use a repeat expression to display the values of consecutive data
elements. For example, for an array of integers named xarray,

II xarray [0] ,5 displays five consecutive integers in decimal.

• xarray [0], 5x displays five consecutive integers in hexadecimal.

An expression used with a repeat count must represent a single
data element. The debugger views the data element as the first
element of an array if it isn't a pointer, or as a pointer to an array
if it is.

The Debug I Evaluate/Modify command displays each type of
value in an appropriate format. For example, it displays an int as
an integer in base 10 (decimal), and an array as a pointer in base
16 (hexadecimal). To get a different display format, precede the
expression with a comma followed by one of the format specifiers
shown in Table 2.2.

The Debug I Call Stack command opens a dialog box containing
the call stack. The Call Stack window shows the sequence of
functions your program called to reach the function now running.

Chapter 2, Menus and options reference 51

Debug I Call Stack

Compiling with Standard
Stack Frame unchecked (0 I
C I Code Generation) causes
some functions to be omitted

from the call stack. Overlays
can have the same effect.

52

For more details, see
page 66.

At the bottom of the stack is main; at the top is the function that's
now running.

Each entry on the stack displays the name of the function called
and the values of the parameters passed to it.

Initially the entry at the top of the stack is highlighted. To display
the current line of any other function on the call stack, select that
function's name and press Enter. The cursor moves to the line
containing the call to the function next above it on the stack.

For example, suppose the call stack lookp.d like this:

func2 ()
func! ()
main()

This tells you that main called func1, and func1 called func2. If
you wanted to see the currently executing line of func1, you could
select func1 in the call stack and press Enter. The code for func1
would appear in the Edit window, with the cursor positioned on
the call to func2.

To return to the current line of the function now being run (that
is, to the run position), select the topmost function in the call stack
and press Enter.

Borland C++ User's Guide

Table 2.2: Format specifiers recognized In debugger expressions

Character Function

C Character. Shows special display characters for control characters (ASCII 0 through 31);
by default, such characters are shown using the appropriate C escape sequences (\n, \t,
and so on). Affects characters and strings.

S String. Shows control characters (ASCII 0 through 31) as ASCII values using the
appropriate C escape sequences. Since this is the default character and string display
format, the S specifier is only useful in conjunction with the M specifier.

D Decimal. Shows all integer values in decimal. Affects simple integer expressions as well as
arrays and structures containing integers.

H or X Hexadecimal. Shows all integer values in hexadecimal with the Ox prefix. Affects simple
integer expressions as well as arrays and structures containing integers.

Fn Floating point. Shows n significant digits (n is an integer between 2 and 18). The default
value is 7. Affects only floating-point values.

M Memory dump. Displays a memory dump, starting with the address of the indicated
expression. The expression must be a construct that would be valid on the left side of an
assignment statement, i.e., a construct that denotes a memory address; otherwise, the M
specifier is ignored.

By default, each byte of the variable is shown as two hex digits. Adding a D specifier with
the M causes the bytes to be displayed in decimal. Adding an H or X specifier causes the
bytes to be displayed in hex. An S or a C specifier causes the variable to be displayed as a
string (with or without special characters). The default number of bytes displayed
corresponds to the size of the variable, but a repeat count can be used to specify an exact
number of bytes.

P Pointer. Displays pointers in seg:ofs format with additional information about the address
pointed to, rather than the default hardware-oriented seg:ofs format. Specifically, it tells
you the region of memory in which the segment is located, and the name of the variable at
the offset address, if appropriate. The memory regions are as follows:

R

Memory region

OOOO:OOOO-OOOO:03FF
OOOO:0400-0000:04FF
OOOO:0500-Borland C++

Borland C++-User Program PSP
User Program PSP

User Program-top of RAM

AOOO:OOOO-AFFF:FFFF
BOOO:OOOO-B7FF:FFFF
B800:0000-BFFF:FFFF
COOO:OOOO-EFFF:FFFF
FOOO:OOOO-FFFF:FFFF

Evaluate message

Interrupt vector table
BIOS data area
M5-DOS/TSRs

Borland C++
User Process PSP

Name of a static user variable if its address falls inside the
variables allocated memory; otherwise nothing

EGA/VGA Video RAM
Monochrome Display RAM
Color Display RAM
EMS Pages/ Adaptor BIOS ROMs
BIOS ROMs

Structure/Union. Displays field names as well as values, such as {X:l, Y:I0, 2:5 }. Affects
only structures and unions.

Chapter 2, Menus and options reference 53

Debug I Watches

54

Watches

Add Watch
@!ill(fl]

The Debug I Watches command opens a pop-up menu of
commands that control the use of watch expressions. Watch
expressions can be saved across sessions; see Options I
Environment I Desktop. The following sections describe the
commands in this pop-up menu.

The Add Watch command inserts a watch expression into the
Watch window.

When you choose this command, the debugger opens a dialog
box and prompts you to enter a watch expression. The default
expression is the word at the cursor in the current Edit window.
There's also a history list available if you want to quickly enter an
expression you've used before.

When you type a valid expression and press Enter or click OK, the
debugger adds the expression and its current value to the Watch
window. If the Watch window is the active window, you can
insert a new watch expression by pressing Ins.

Delete Watch The Delete Watch command deletes the current watch expression
from the Watch window (which must be the active window in
order to use this command). To delete a watch expression other
than the current one, select the desired watch expression and
press Del or Gtrl-Y.

Edit Watch The Edit Watch command allows you to edit the current watch
expression in the Watch window. A history list is available to save
you time retyping.

When you choose this command, the debugger opens a dialog
box containing a copy of the current watch expression. Edit the
expression and press Enter. The debugger replaces the original
version of the expression with the edited one.

You can also edit a watch expression from inside the Watch
window by selecting the expression and pressing Enter.

Borland C++ User's Guide

Debug I Watches I Remove All Watches

Remove All Watches The Remove All Watches command deletes all watch expressions
from the Watch window.

Toggle Breakpoint

@illCill

Breakpoints

Figure 2.11
The Breakpoints dialog box

The Debug I Toggle Breakpoint command lets you set or clear an
unconditional breakpoint on the line where the cursor is
positioned. When a breakpoint is set, it is marked by a breakpoint
highlight. Breakpoints can be saved across sessions using
Options I Environment I Desktop. See the following section for
more information on breakpoints.

The Debug I Breakpoints command opens a dialog box that lets
you control the use of breakpoints-both conditional and
unconditional ones. Here is what the dialog box looks like:

.==-- Break oints
~,--, --'-'-, -. :~. ~.\~~~

-Breakpoint List Linel Condition Pass
4W*IWW:i MW,.;MQMMi fiM%SkkIS:V'JSJPW·

-)IGWJ~ IImIJ lI!mmJ tBJ .. ilmmJ ~
-==--====---=--========-

The dialog box shows you all set breakpoints, their line numbers,
and the conditions. The condition has a history list so you can
select a breakpoint condition that you've used before.

You can remove breakpoints from your program by choosing the
Delete button. You can also view the source where existing
breakpoints are set by choosing the View button. View moves the
cursor to the selected breakpoint. This command does not run
your code; it only positions the cursor at active breakpoints in the
Edit window.

Choose Edit to add the new one to the list. When you edit a
breakpoint, this dialog box appears over the first one:

Chapter 2, Menus and options reference 55

Debug I Breakpoints

Figure 2.12
The Breakpoint Modify/New

dialog box

56

Again, line number and conditions are that of the breakpoints
you've set. Use Pass Count to set how many times the breakpoint
should be skipped before stopping. The At button lets you specify
a breakpoint at a particular function (you must be debugging to
access this).

This dialog box also has a New button, which lets you enter
breakpoint information for a new breakpoint, and a Modify
button, which accepts the settings of the box.

Your program stops wherever it encounters a breakpoint in the
course of running. When the program stops, the run bar is on the
line containing the breakpoint. (The breakpoint highlight is
obscured by the run bar; it reappears when the run bar moves on.)

When a source file is edited, each breakpoint" sticks" to the line
where it is set. Breakpoints stay set until you:

• delete the source line a breakpoint is set on
• clear a breakpoint with Toggle Breakpoint

Borland C++ will attempt to track breakpoints in two cases:

• If you edit a file containing breakpoints and then don't save the
edited version of the file.

• If you edit a file containing breakpoints and then continue the
current debugging session without remaking the program.
(Borland C++ displays the warning prompt "Source modified,
rebuild?")

Before you compile a source file, you can set a breakpoint on any
line, even a blank line or a comment. When you compile and run
the file, Borland C++ validates any breakpoints that are set and
gives you a chance to remove, ignore, or change invalid
breakpoints. When you are debugging the file, Borland C++
knows which lines contain executable statements, and will warn
you if you try to set invalid breakpoints.

Borland C++ User's Guide

Project menu

If you have project files in
Turbo C 2.0, you can convert
them to Borland C++ format

using the standalone utility
PRJCNVT. See UTIL. DOC for

details.

Open Project

Figure 2.13
The Project File dialog box

Debug I Breakpoints

You can set an unconditional breakpoint without going through
the dialog box by choosing the Debug I Toggle Breakpoint
command.

The Project menu contains all the project management commands
to

• create a project
• add or delete files from your project (for examples on how to

use the Project Manager, see Chapter 4, "Managing multi-file
projects")

• specify which program your source file should be translated
with

• set options for a file in the project

• specify which command-line override options to use for the
translator program

• specify what the resulting object module is to be called, where it
should be placed, whether the module is an overlay, and
whether the module should contain debug information

• view included files for a specific file in the project

The Open Project command displays the Load Project File dialog
box, which allows you to select and load a project or create a new
project by typing in a name.

+- FI GDEMO. PRJ
LISTDEMO.PRJ
MCIRCLE.PRJ
PIXEL. PRJ
VCIRCLE.PRJ
WHELLO.PRJ
STARTUP\

Chapter 2, Menus and options reference 57

Project I Open Project

Close Project

Add Item

Figure 2.14
The Add Item to Project List

dialog box

Delete Item

58

This dialog box lets you select a file rtame similar to the File I Open
dialog box, discussed on page 28. The file you select will be used
as a project file, which is a file that contains all the information
needed to build your project's executable. Borland C++ uses the
project name when it creates the .EXE and .MAP files. A typical
project file has the extension .PRJ.

Choose Project I Close Project when you want to remove your
project and return to the default project (TCDEF.DPR).

Choose Project I Add Item when you want to add a file to the
project list. This brings up the Add Item to Project List dialog box:

This dialog box is set up much like the Load File dialog box (File I
Open). Choosing the Add button puts the currently highlighted
file in the Files list into the Project window. The chosen file is
added to the Project window File list immediately after the high
light bar in the Project window. The highlight bar is advanced
each time a file is added. (When the Project Window is active, you
can press Ins to add a file.)

Choose Project I Delete Item when you want to delete a file in the
Project window. When the Project window is active, you can
press Del to delete a file.

Borland c++ User's Guide

Local Options

Figure 2.15
The Override Options dialog

box

These command-line options
are not supported: c,

Efilename, e, /pathname, L,
/x,M,Q,y.

I[] Overlay this module I

Project I Local Options

The Local Options command opens the following dialog box:

The Override Options dialog box lets you include command-line
override options for a particular project-file module. It also lets
you give a specific path and name for the object file and lets you
choose a translator for the module.

Any program you installed in the Transfer dialog box with the
Translator option checked appears in the list of Project File
Translators (see page 74 for information on the Transfer dialog
box).

Check the Overlay this Module option if you want the selected
module or library (or project item) to be overlaid. This item is
local to one file. It is disabled if the qverlay support checkbox is
not marked (in Options I Compile I Code Generation).

I [] Exclude debug information I Check the Exclude Debug Information option to prevent debug
1..... _________ ...J. information included in the module you've selected from going

I[] Exclude from link

into the .EXE.

Use this switch on already debugged modules of large programs.
You can change which modules have debug information simply
by checking this box and then re-linking (no compiling is
required).

Check the Exclude from Link option if you don't want this
module linked in.

Chapter 2, Menus and options reference 59

Project I Include Files

Include Files

Figure 2.16
The Include Flies dialog box

Options menu

60

Choose Project I Include Files to display the Include Files dialog
box; do this when you want to see which files are included by the
file you chose from the Project window. When you're in the
Project Window, you can press Spacebar to display the Include
Files dialog box. This command is disabled if you've yet to build a
project.

The Include Files dialog box looks like this:

:. \INCLUDE

After a file has been compiled, information is collected about that
file (notice that the Project window has code size information). In
this state, the Project manager also knows which include file the
module references. You can view the active Edit window's include
files in the Include Files dialog box. From the Project Manager
window, press Spacebar to display the dialog box. From an Edit
window, go to the Project menu and choose Include Files. You can
scroll through the list of files displayed. The default action is to
view the selected file, so pressing Enter opens that include file into
an Edit window.

The Options menu contains commands that let you view and
change various default settings in Borland C++. Most of the
commands in this menu lead to a dialog box.

Borland C++ User's Guide

Compiler

Options I Compiler

The Options I Compiler command displays a pop-up menu that
gives you several options to set that affect code compilation. The
following sections describe these commands.

Code Generation The Code Generation command displays a dialog box. The
settings in this box tell the compiler to prepare the object code in
certain ways. The dialog box looks like this:

Figure 2.17
The Code Generation dialog

box

Model
() Ti ny
(.) Small
() Medium
() Compact
() Large
() Huge

Options
[X] Treat enums as 1nts
[] Word alignment
[] Duplicate strings merged
[] Unsigned characters
[] Precompiled headers

Here are what the various buttons and check boxes mean:

The Model buttons determine which memory model you want to
use. The memory model chosen determines the default method of
memory addressing. The default memory model is Small. Refer to
Chapter 6, "Memory management," in the Programmer's Guide for
more information about memory models in general. There are
some restrictions about which memory models you can use
effectively for different types of Windows executables; see page
115 in Chapter 3 for a discussion of those restrictions.

The options control various code generation defaults .

• When checked, Treat enums as ints causes the compiler to
always allocate a whole word. Unchecked, this option tells the
compiler to allocate an unsigned or signed byte if the minimum
and maximum values of the enumeration are both within the
range of 0 to 255 or -128 to 127, respectively .

• Word Alignment (when checked) tells Borland C++ to align
noncharacter data (within structures and unions only) at even
addresses. When this option is off (unchecked), Borland C++

Chapter 2, Menus and options reference 61

Options I Compiler I Code Generation

See Appendix A for more on
precompiled headers.

Assume SS equals DS
ee) Default for memory model
e) Never
() Always

IDefines

62

uses byte-aligning, where data (again, within structures and
unions only) can be aligned at either odd or even addresses,
depending on which is the next available address.
Word alignment increases the speed with which 80x86
processors fetch and store the data.

• Duplicate 5trings Merged (when checked) tells Borland C++ to
merge two strings when one matches another. This produces
smaller programs, but can introduce bugs if you modify one
string.

• Unsigned Characters (when checked) tells Borland C++ to treat
all char declarations as if they were unsigned char type.

• Check Precompiled Headers when you want the IDE to
generate and use precompiled headers. Precompiled headers
can dramatically increase compilation speeds, though they
require a considerable amount of disk space. When this option
is off (the default), the IDE will neither generate nor use
precompiled headers. Precompiled headers are saved in
PROJECTNAME.5YM.

If the Default For Memory Model radio button is pushed, whether
the stack segment (55) is assumed to be equal to the data segment
(DS) is dependent on the memory model used. Usually, the
compiler assumes that 55 is equal to 05 in the small, tiny, and
medium memory models (except for DLLs). 5ee pages 112 and
166 for detailed and specific explanations of what the compiler
assumes for each memory model and for Windows applications
and DLLs.

When the Never radio button is pushed, the compiler will not
assume 55 is equal to D5.

The Always button tells the compile~ to always assume that SS is
equal to DS. It causes the IDE to substitute the COFx.OBJ startup
module for COx.OBJ to place the stack in the data segment.

Use the Defines input box to enter macro definitions to the
preprocessor. You can separate multiple defines with semicolons
(;) and assign values with an equal sign (=); for example,

TESTCODE;PROGCONST=5

Leading and trailing spaces will be stripped, but embedded
spaces are left intact. If you want to include a semicolon in a
macro, you must place a backslash (\) in front of it.

Borland C++ User's Guide

Figure 2.18
The Advanced Code

Generation dialog box

Floating Point
() None
(e) Emulation
() 8087
() 80287

Instruction Set
(e) 8088/8086
() 80186
() 80286

Oetions
LX] Generate underbars
[] Line numbers debug info
[X] Debug info in OBJs
[X] Fast floating point
[] Fast huge poi nters
[] Generate COMDEFs
[] Automatic far data

Options I Compiler I Code Generation

The Code Generation dialog box has a button called More that
takes you to the Advanced Code Generation dialog box. Here's
what that dialog box looks like:

The Floating Point buttons let you decide how you want Borland
C++ to handle floating-point numbers.

• Choose None if you're not using floating point. (If you choose
None and you use floating-point calculations in your program,
you get link errors.)

EI Choose Emulation if you want your program to detect whether
your computer has an 80x87 coprocessor (and to use it if you
do). If it is not present, your program will emulate the 80x87.

• Choose 8087 or 80287 to generate direct 8087 or 80287 inline
code.

The Instruction Set radio buttons let you choose what instruction
set to generate code for. The default instruction set, 8088/8086,
works with all PCs.

The advanced options are shown to the left.

• When checked, the Generate Underbars option automatically
adds an underbar, or underscore, character (_) in front of every
global identifier (that is, functions and global variables). If you
are linking with standard libraries, this box must be checked.

• Line Numbers Debug Info (when checked) includes line
numbers in the object and object map files (the latter for use by
a symbolic debugger). This increases the size of the object and
map files but does not affect the speed of the executable pro
gram.

Since the compiler might group together common code from
multiple lines of source text during jump optimization, or
might reorder lines (which makes line-number tracking
difficult), you might want to make sure the Jump Optimization

Chapter 2, Menus and options reference 63

Options I Compiler I Code Generation

See page 769 for more
details on fast huge pointers.

This option is ignored if you're
using the tiny, small, or

medium memory models.

64

check box (Options I Compiler I Optimizations) is off
(unchecked) when this option is checked.

• Debug Info in OBJs controls whet4er debugging information is
included in object (.OBD files. The default for this check box is
on (checked), which you need in order to use both the
integrated debugger and the standalone Turbo Debugger.

• This option allows you to link and create larger object files.
While this option doesn't affect execution speed, it does affect
compilation time. We recommend that you have this option
checked. If you want debugging information with this option
checked, turn off debug information in Options I Debugging, or,
even better, link with debugging information, then use TDSTRIP
-5 to strip it off to a separate .IDS file for debugging. IDSTRIP
is documented in the online file called UTIL.DOC.

• Fast Floating Point lets you optimize floating-point operations
without regard to explicit or implicit type conversions. When
this option is unchecked, the compiler follows strict ANSI rules
regarding floating-point conversions.

• The Fast Huge Pointers option normalizes huge pointers only
when a segment wrap-around occurs in the offset portion of the
segment. This greatly speeds up the computation of huge
pointer expressions, but must be used with caution, as it can
cause problems for huge arrays if array elements cross a
segment boundary.

• When checked, the Generate COMDEFs option allows a
definition of a variable to appear in header files as long as it is
not initialized. Thus a definition such as int SomeArray [256] i
could appear in a header file that is then included in many
modules, and the compiler will generate it as a communal
variable (a COMDEF record rather than a PUBDEF record). The
linker will then only generate one instance of the variable so it
will not be a duplicate definition linker error.

• The Automatic Far Data option and the Far Data Threshold
type-in box work together. When checked, the Automatic Far
Data option tells the compiler to automatically generate far
objects; the Far Data Threshold < 32767> specifies the size
portion needed to complete the command. The size value is
ignored if Automatic Far Data is not checked.

Borland C++ User's Guide

Entry/Exit Code

See Chapter 3 for more on
prolog and epilog code.

Figure 2.19
The Entry/Exit Code dialog

box

Options I Compiler I Entry/Exit Code

When you compile a C or c++ program for Windows or DOS, the
compiler needs to know which kind of prolog and epilog to create
for each of a module's functions.

If the program is intended for Windows, the compiler generates a
different prolog and epilog than it would for OOS. Because of
this, you must use the the Entry/Exit Code Generation dialog box
to set the appropriate application. If you use the Set Application
Options dialog box (described on page 86), the settings in the
Entry /Exit Code dialog box will already be correct for the type of
application you choose.

This dialog box also allows you to select the calling convention
and to set a couple of stack options. All options affect what code is
generated for function calls and returns.

.. You can set prolog/ epilog code for DOS or for Windows, but not
for both.

If you want to set the prolog/ epilog code for a DOS application,
you need to select DOS Standard or DOS Overlay.

• Push the DOS Standard radio button to tell the compiler to
generate code that may not be safe for overlays. If you don't
plan to create an overlaid application, use this option.

• Push the DOS Overlay radio button to tell the compiler to
generate overlay safe code. Use this option when you're
creating an overlaid application.

If you want to set the prolog/ epilog code for a Windows applica
tion, you need to select one of five options.

• Windows All Functions Exportable is the most general kind of
Windows executable, although not necessarily the most
efficient. It assumes that all functions are capable of being called

Chapter 2, Menus and options reference 65

Options I Compiler I Entry/Exit Code

66

Calling Convention

~. ~ ~ascal

Important!

Stack Options
[X] Standard Stack Frame
[] Test Stack Overflow

by the Windows kernel or by other modules, and generates the
necessary overhead information for every function, whether the
function needs it or not. The module definition file will control
which functions actually get exported.

• Use Windows Explicit Functions Exported if you have
functions that will not be called the Windows kernel; it isn't
necessary to generate export-compatible prolog/ epilog code
information for these functions. The _export keyword provides
a way to tell the compiler which specific functions will be
exported: Only those far functions with _export will be given
the special Windows prolog/ epilog code.

• Push the Windows Smart Callbacks button to select Borland
C++ smart callbacks. See page 112 in Chapter 3 for details on
smart callbacks.
The compiler must be able to assume that DS = S5 for all
functions in the module. You therefore should not choose Smart
Callbacks for a module that will be compiled under the huge
memory model.

• Push the Windows DLL All Functions Exportable button to
create an .OBJ file to be linked as a .DLL with all functions
exportable.

• Push the Windows DLL Explicit Functions Exported button to
create an .OBJ file to be linked as a .DLL with certain functions
explicitly selected to be exported. Otherwise this is essentially
the same as Windows Explicit Functions Exported, see that
discussion for more.

The Calling Convention options cause the compiler to generate
either a C calling sequence or a Pascal calling sequence for
function calls. The differences between C and Pascal calling
conventions are in the way each handles stack cleanup, order of
parameters, case, and prefix (underbar) of global identifiers.

Do not change this option unless you're an expert and have read
Chapter 9, "Interfacing with assembly language," in the Programmer's
Guide.

• Standard Stack Frame (when checked) generates a standard
stack frame (standard function entry and exit code). This is
helpful when debugging-it simplifies the process of tracing
back through the stack of called subroutines.

If you compile a source file with this option off (unchecked),
any function that does not use local variables and has no
parameters is compiled with abbreviated entry and return code.

Bor/and c++ User's Guide

Options I Compiler I Entry/Exit Code

This makes the code shorter and faster, but prevents the
Debug I Call Stack com11land from "seeing" the function. Thus,
you should always check the option when you compile a source
file for debugging.

• When checked, the Test Stack Overflow generates code to check
for a stack overflow at run time. Even though this costs space
and time in a program, it can be a real lifesaver, since a stack
overflow bug can be difficult to track down.

c++ Options The c++ Options command displays a dialog box that contains
settings that tell the compiler to prepare the object code in certain
ways when using c++.

Figure 2.20
The C++ options dialog box

C++ Virtual Tables
ee) Smart
e) Local
e) External
e) Publ i c

The C++ Virtual Tables radio buttons let you control c++ virtual
tables and the expansion of inline functions when debugging.

• The Smart option generates C++ virtual tables (and inline
functions not expanded inline) so that only one instance of a
given virtual table or inline function will be included in the
program. This produces the smallest and most efficient
executables, but uses .OBI (and .ASM) extensions only available
with TLINK 3.0 and TASM 2.0 (or newer).

• The Local option generates local virtual tables (and inline
functions not expanded inline) such that each module gets its
own private copy of each virtual table or inline function it uses;
this option uses only standard .OBI (and .ASM) constructs, but
produces larger executables.

• The External option generates external references to virtual
tables; one or more of the modules comprising the program
must be compiled with the Public option to supply the
definitions for the virtual tables.

• The Public option generates public definitions for virtual tables.

Chapter 2, Menus and options reference 67

Options I Compiler I C++ Options

Use c++ Compiler
(e) CPP extension only
() C++ always

The Use C++ Compiler radio buttons tell Borland C++ whether to
always compile your programs as C++ code, or to always compile
·your code as C code except when the file extension is .CPP.

[Xl Out-of-line inline functions • Use Out-of-Line Inline Functions when you want to step
[1 Far virtual tables through or set breakpoints on inline functions .

68

• The Far Virtual Tables option causes virtual tables to be created
in the code segment instead of the data segment, and makes
virtual table pointers into full 32-bit pointers (the latter is done
automatically if you are using the huge memory model).
There are two primary reasons for using this option: to remove
the virtual tables from the data segment, which may be getting
full, and to be able to share objects (of classes with virtual
functions) between modules that use different data segments
(for example; a DLL and an executable using that DLL). You
must compile all modules that may share objects either entirely
with or entirely without this option. You can achieve the same
effect by using the huge or _export modifiers on a class-by-class
basis.

Optimizations The Optimizations command displays a dialog box. The settings
in this box tell the compiler to prepare the object code in certain
ways to optimize the size or speed. The dialog box looks like this:

Figure 2.21
The Optimizations Options

dialog box

O~timization Options
1 Register optimization
1 Jump optimization

The Optimizations Options affect how optimization of your code
occurs.

• Register Optimization suppresses the reloading of registers by
remembering the contents of registers and reusing them as
often as possible.
Exercise caution when using this option. The compiler can't
detect whether a value has been modified indirectly by a
pointer.

Borland C++ User's Guide

Important!

Register Variables
e) None
e) Register keyword
ee) Automatic

Optimize For
ee) Size
e) Speed

Source

Figure 2.22
The Source Options dialog

box

Options I Compiler I Optimizations

• Jump Optimization reduces the code size by eliminating
redundant jumps and reorganizing loops and switch
statements.
When this option is checked, the sequences of tracing and
stepping in the debugger can be confusing, since there might be
multiple lines of source code associated with a particular
generated code sequence. For best stepping results, turn this
option off (uncheck it) while you are debugging.

The Register Variables radio buttons suppress or enable the use of
register variables.

With Automatic chosen, register variables are automatically
assigned for you. With None chosen, the compiler does not use
register variables even if you've used the register keyword. With
Register keyword chosen, the compiler uses register variables
only if you use the register keyword and a register is available.
(See Chapter 6, "Memory management," in the Programmer's Guide
for more details.)

Generally, you can keep this option set to Automatic unless
you're interfacing with preexisting assembly code that does not
support register variables.

The Optimize For buttons let you change Borland C++'s code
generation strategy. Normally the compiler optimizes for size,
choosing the smallest code sequence possible. You can also have
the compiler optimize for speed, so that it chooses the fastest
sequence for a given task. If you are creating Windows
applications, normally you'll want to optimize for speed.

The Source command displays a dialog box. The settings in this
box tell the compiler to expect certain types of source code. The
dialog box looks like this:

Chapter 2, Menus and options reference 69

Options I Compiler I Source

70

Source Options
[] Nested corrments

Keywords
(e) Borland C++
() ANSI
() UNIX V
() Kernighan and Ritchie

IIdentifier Length 321

Messages

Figure 2.23
The Compiler Messages

dialog box

The Nested Comments checkbox allows you to nest comments in
Borland C++ source files. Nested comments are not allowed in
standard C implementations, and they are not portable.

The Keyword radio buttons tell the compiler how to recognize
keywords in your programs.

• Choosing Borland C++ tells the compiler to recognize the
Borland C++ extension keywords, including near, far, huge,
asm, cdecl, pascal, interrupt, _es, _export, _ds, _cs, _ss, and
the register pseudovariables LAX, _BX, and so on). For a
complete list, refer to Chapter 1, "Lexical grammar," in the Pro
grammer's Guide.

• Choosing ANSI tells the compiler to recognize only ANSI
keywords and treat any Borland C++ extension keywords as
normal identifiers.

• Choosing UNIX V tells the compiler to recognize only UNIX V
keywords and treat any Borland C++ extension keywords as
normal identifiers.

iii Choosing Kerrtighan and Ritchie tells the compiler to recognize
only the K&R extension keywords and treat any Borland C++
extension keywords as normal identifiers.

Use the Identifier Length input box to specify the number (n) of
significant characters in an identifier. Except in C++, which
recognizes identifiers of unlimited length, all identifiers are
treated as distinct only if their first n characters are distinct. This
includes variables, preprocessor mac,ro names, and structure
member names. The number can be from 1 to 32; the default is 32.

The Messages command displays a dialog box that lets you set
several options that affect compiler error messages in the IDE.

Borland C++ User's Guide

Errors: stop after 25
Warnings: stop after 100

[X] Display warnings

Iportability···1

Figure 2.24
The Portability warnings

dialog box

IANSI Violations··.1

Options I Compiler I Messages

• The Errors: Stop After option causes compilation to stop after a
specified number of errors have been detected. The default is
25, but you can enter any number from 0 to 255. (Entering 0
causes compilation to continue until the end of the file.)

• The Warnings: Stop After option causes compilation to stop
after a specified number of warnings have been detected. The
default is 100, but you can enter any number from 0 to 255.
(Entering 0 causes compilation to continue until the end of the
file or until the error limit has been reached, whichever comes
first.)

• The Display Warnings option (when checked) means that any
or all of the following warning types can be displayed if chosen:

• Portability warnings
• ANSI violations
• C++ warnings
• Frequent errors

When this option is off (unchecked), none of these warnings will
be displayed.

When you choose the Portability button in the Compiler Messages
dialog box, another dialog box appears that lets you make specific
settings in this category:

I!!!!Pe!!~!!!!on
Non-portable pointer comparison
Constant out of range in comparison
Constant is long
Conversion may lose significant digits
Mixing pointers to signed and unsigned char

7LIEIIJ~ LlmmJ IUIl:IIJ
--====--=--===========

Check the warnings you want to be notified of and uncheck the
ones you don't. Choose OK to return to the Compiler Messages
dialog box.

When you choose the ANSI Violations button in the Compiler
Messages dialog box, another dialog box appears that lets you
make specific settings in this category. Here is what this dialog
box looks like:

Chapter 2, Menus and options reference 71

Options I Compiler I Messages

Figure 2.25
The ANSI Violations dialog

box

Figure 2.26
The More ANSI Violations

dialog box

Ic++ warnings···1

Figure 2.27
The C++ Warnings dialog box

72

ons may n rn a va ue
Both return and return of a value used
Suspicious pointer conversi on
Undefi ned structure 'i dent'
Redefinition of 'ident' is not identical
H d ill th th di it

tm1mII!I!II -+~f- ~ IIIiBmII

================================-

Check the warnings you want to be notified of and uncheck the
ones you don't. Choose OK to return to the Compiler Messages
dialog box.

When you choose the More ANSI Violations button in the ANSI
Violations dialog box, another dialog box appears with more
settings you can make in this category:

ses on 0 e
Goto bypasses initialization of a local variable
Untyped bit field assumed signed int
'ident' declared as both external and static
Declare 'ident' prior to use in prototype
Division by zero
Initializing 'ident' with 'ident'
Thi i iti li ti i 1 ti 11 b k t d ,

-+Lll!IllJf- ~ [UgJ

===---=====--====--====--======

Check or uncheck these warnings just like in the previous dialog
box's and choose OK to return to the ANSI Violations dialog box.

When you choose the C++ Warnings button in the Compiler
Messages dialog box, another dialog box appears that lets you
make specific settings in this category. Here is what this dialog
box looks like:

============

gnmen
e initialization without a class name

Functions containing 'ident' are not expanded inline
Functi on 'i dent' shoul d have a prototype
'i dent' is both a structure tag and a name
Temporary used to i ni ti ali ze 'i dent'
Temporary used for parameter 'ident'
The constant member 'ident' is not initialized
This style of function definition is now obsolete
Use of 'overload' is now unnecessary and obsolete
Obso 1 ete syntax. use '::' instead
Assigning 'ident' to 'ident'
'ident' hides virtual function 'ident'
Non-const function 'i dent' called for const object

-+Lll!IllJf- ~ [UgJ

==========================

Bor/and C++ User's Guide

IFrequent errors ••• I

Figure 2.28
The Frequent Errors dialog

box

Figure 2.29
The More Frequent Errors

dialog box

Options I Compiler I Messages

Check the warnings you want to be notified of and uncheck the
ones you don't. Choose OK to return to the Compiler Messages
dialog box.

When you choose the Frequent Errors button in the Compiler
Messages dialog box, another dialog box appears that lets you
make specific settings in this category. Here is what this dialog
box looks like:

Unreachable code
Code has no effect
Possible use of 'ident' before definition
'ident' is assigned a value that is never used
Parameter 'i dent' is never used
P ibl it' t

IGlllDII!IJ -)1II!aII~ ~ ~

-=======--=========

Check the errors you want to be notified of and uncheck the ones
you don't. Choose OK to return to the Compiler Messages dialog
box.

Choosing the More button takes you to the More Frequent Errors
dialog box:

uous on
dent' decl ared but never used

Ambi guous operators need parentheses
Structure passed by value
No declarati on for functi on 'i dent'
Call to function with no prototype
Restarting compile using assembly
Unknown assembler instruction
Function definition cannot be a typedef'ed declaration
Ill-formed pragma
Array vari ab 1 e 'i dent' is near

-)1II!aII~ ~ ~

===============--=======

Check or uncheck these errors like in the previous dialog boxes
and choose OK to return to the Frequent Errors dialog box.

Names The Names command brings up the following dialog box, which
lets you change the default segment, group, and class names for
code, data, and BSS sections. Don't change the settings in this
command unless you are an expert and have read Chapter 6, UMemory
management," in the Programmer's Guide.

Chapter 2, Menus and options reference 73

Options I Compiler I Names

Figure 2.30
The Segment Names dialog

box

-"111.-.. -The asterisk means that the
default names will be used if

no other names are
specified. See page 777 for

the default names.

74

Transfer

Figure 2.31
The Transfer dialog box

The Options I Transfer command lets you add or delete programs
in the :: menu. Once you've done so, you can run those programs
without actually leaving Borland C++. You return to Borland C++
after you exit the program you transferred to. The Transfer
command displays this dialog box:

The Transfer dialog box has two sections:

• the Program Titles list
• the Transfer buttons

The Program Titles section lists short descriptions of programs
that have been installed and are ready to execute. You might need
to scroll the list box to see all the programs available.

The Transfer buttons let you edit and delete the names of
programs you can transfer to, as well as cancel any changes
you've made to the transfer list. There's also a Help button to get
more information about using the transfer dialog box. Here's a
rundown of the buttons.

Borland C++ User's Guide

Options I Transfer

The Edit button Choose Edit to add or change the Program Titles list that appears
in the :: menu. The Edit button displays the Modify/New Trans
fer Item dialog box.

Figure 2.32
The Modify/New Transfer

Item dialog box

For a full description of these
powerful macros, see the

following section, "Transfer
macros."

This step is optional.

If you're positioned on a transfer item when you select Edit, the
input boxes in the Modify/New dialog box are automatically
filled in; otherwise they're blank.

Using the Modify/New dialog box, you take these steps to add a
new file to the Transfer dialog box:

1. Type a short description of the program you're adding on the
Program Title input box. (Note that when using a translator in
a project, it must match the transfer title exactly.)

Note that if you want your program to have a keyboard
shortcut (like the 5 in the Save command or the t in the Cut
command), you should include a tilde (....) in the name. What
ever character follows the tilde appears in bold or in a special
color in the :: menu, indicating that you can press that key to
choose the program from the menu.

2. Tab to Program Path and enter the program name and
optionally include the full path to the program. (If you don't
enter an explicit path, only programs in the current directory
or programs in your regular DOS path will be found.)

3. Tab to Command Line and type any parameters or macro
commands you want passed to the program. Macro
commands always start with a dollar sign ($) and are entered
in uppercase. For example, if you enter $CAP EDIT, all output
from the program will be redirected to a special Edit window
in Borland C++.

4. If you want to assign a hot key, tab to the Hot Key options and
assign a shortcut to this program. Transfer shortcuts must be

Chapter 2, Menus and options reference 75

Options I Transfer

I[] Translator I

The Delete button

Transfer macros

The transfer macros are listed
alphabetically and

described in more detail
starting on page 77.

76

Shift plus a function key. Keystrokes already assigned appear
in the list but are unavailable.

5. Now click or choose the New button to add this program to
the list.

To modify an existing transfer program, cursor to it in the
Program Titles list of the Transfer dialog box and then choose
Edit. After making the changes in the Modify/New Transfer
dialog box, choose the Modify button.

The Translator check box lets you put the Transfer program into
the Project File Translators list (the list you see when you choose
Project I Local Options). Check this option when you add a
transfer program that is used to build part of your project.

The Delete button removes the currently selected program from
the list and the :: menu.

The IDE recognizes certain strings of characters called transfer
macros in the parameter string of the Modify/New Transfer Item
dialog box. There are three kinds of macros: state, file name, and
instruction.

State macros are expanded according to the state of the IDE. The
state macros are

$COL
$CONFIG
$DEF
$ERRCOL
$ERRLINE

$ERRNAME
$INC
$LIB
$LINE
$PRJNAME

File name macros are actually functions that take file names as
arguments and return various parts of the file name. They allow
you to build up new file name specifications from existing file
names. For example, you can pass TDUMP a macro like this:

$DIR($EXENAME) $ NAME ($EDNAME) .OBJ

This macro gives you the output directory path, the file name
only in the active Edit window, and an explicit extension. If your
current directory is C: \ WORK, your output directory is TEST,
and the active editor contains MYPROG.C, then TDUMP receives
the parameter

c:\WORK\TEST\MYPROG.OBJ

Borland C++ User's Guide

You can use any program
that has line-oriented

messages output (file and
line number) with this macro.

Options I Transfer

The file name macros are

$DIR
$DRIVEO
$EDNAME
$EXENAME

$EXTO
$NAMEO
$OUTNAME

Instruction macros tell the IDE to perform some action or make
some setting. The instruction macros are

$CAP EDIT $PROMPT
$CAP MSGifilter) $RC
$DEPO $SA VE ALL
$IMPLIB $SA VB CUR
$MEM(kb to reserve) $SA VB PROMPT
$NOSWAP $TASM

$CAP EDIT: This macro tells the IDE to redirect program output
into a standard file. After the transfer program is completed, a
new editor window is created, and the captured output is
displayed. The captured output resides in a special Edit window
titled Transfer Output.

For $CAP EDIT to work correctly, the transfer program must
write to DOS standard output.

$CAP MSG(filter): Captures program output into the Message
window, using filter as a DOS filter for converting program output
into Message window format.

We've provided four filters for this macro: GREP2MSG.EXE for
GREP, IMPL2MSG.EXE for IMPLIB, RC2MSG.EXE for the
Resource Compiler, and TASM2MSG.EXE for Turbo Assembler
(TASM). We've included the source code for these filters so you
can write your own filters for other transfer programs you install.

$COl: Column number of current editor. If the active window is
not an editor, then the string is set to O.

$CONFIG: Complete file name of the current configuration file.
This is a null string if no configuration file is defined. This macro
is intended for use by programs that access or modify the
configuration file. Besides providing the name of the file, this
macro causes the current configuration to be saved (if modified)
and reloaded when control returns to the IDE.

Chapter 2, Menus and options reference 77

Options I Transfer

TEML is a Pascal-like
language that has many

built-in primitive editor
commands. Its use is
documented online.

This macro is only used by the
project manager.

78

Use this macro with the Turbo Editor Macro Language (TEML)
compiler. With it, you can edit the TEML script file in an editor
and then invoke the Turbo Editor Macro Compiler (TEMC) to
process the script. When the configuration file is reloaded, your
new or modified editor commands will be in effect. When
installing TEMC as a transfer item, use the following command
line:

$EDNAME $CONFIG

This assumes the current Edit window contains the TEML script
file to be processed.

$DEF: Pulls in the contents of the Options I Compiler I Code
Generation "Defines" type-in box. Use this macro to specify
define directives to an external translator.

$DEP(): This macro provides the ability to automatically rebuild
resources as part of a project make if one of the resource
components has been modified. For example, let's say your Win
dows resource MYAPP1.RES for your application MYAPP1.EXE
consists of the following files:

• MYAPP1.RC (the resource source file)
• MYAPP1.H (the header file for MYAPP1.EXE)
• MYAPP1.ICO (the icon for MYAPP1.EXE, included in

MYAPP1.RC)
• MYAPP1.BMP (the bitmap used with MYAPP1.EXE, included

in MYAPP1.RC)

To ensure that MYAPP1.RES gets recompiled any time you
update one of the components, you'd add the following
dependencies to the Options field in the Project I Local Options
dialog box for MYAPP1.RC: .

$DEP(MYAPP1.H MYAPP1.ICO MYAPP1.BMP)

When you choose Compile I Make, the project manager scans for
the $DEP macro and verifies that all explicit dependencies given
are older than the resulting MYAPP1.RES file. If one or more
aren't, the project manager recompiles MYAPP1.RC.

You can give explicit dependencies to any makeable project item.
Just place the files you want the source to be dependent on in
parentheses, separated by blanks, commas, or semicolons. If
autodependency checking is on, explicit dependencies are
checked after any auto dependencies.

Bor/and c++ User's Guide

Options I Transfer

$DIR(): Directory of the file argument, full path.

$DRIVE(): Drive of the file argument, in the form D:.

$EDNAME: Complete file name of file in active editor. This is a
null string if the active window is not an editor.

$ERRCOL: Column number of current error in file $ERRNAME. If
there are no messages, then string is expanded to null string.

$ERRLINE: Line number of current error in file $ERRNAME. If
there are no messages, then string is expanded to null string.

$ERRNAME: Complete file name of file referred to by the selected
messages in the Message window. This is a null string if there are
no messages or the currently selected message does not refer to a
file.

$EXENAME: Program's file name (including output path), based
on the project name or, if there is no project defined, then the
name of the .EXE that would be produced from the active editor
window. If the Windows DLL Linker option is selected, the file's
extension will be .DLL.

$EXT(): Extension of the file argument; this includes the dot (for
example, .CPP).

$IMPLlB: Executes IMPLIB.This macro expands to

$NOSWAP $CAP MSG(IMPL2MSG)
$DRIVE($EXENAME) $DIR($EXENAME) $ NAME ($EXENAME) .LIB $EXENAMEldef_name

If the Use DLL File Exports radio button is pushed (Options I
MAKE I Generate Import Library), $EXENAME is part of the
expansion. If the Use DEF file Exports radio button is pushed, the
name of the DEF file in the project (represented by del_name) is
used.

$INC: Pulls in the contents of the Options I Directories I Include
Directories type-in box.

$LlB: Pulls in the contents of the Op~ions I Directories I Library
Directories type-in box.

$LlNE: Line number of current editor. If the active window is not
an editor, then the string is set to o.
$MEM(Kb to reserve): This macro tells the IDE how much
memory to try to give the transfer program. The IDE gives up as
much memory as possible, to either the amount specified or the

Chapter 2, Menus and options reference 79

Options I Transfer

80

maximum available, whichever is smaller. You'll get an error if no
memory is specified.

$NAME(): Name part of the file argument; does not include the
dot.

$NOSWAP: This macro tells the IDE not to swap to the User
Screen when running the program. It pops up a box that indicates
which transfer program is running. Use this macro in conjunction
with$CAP.

$OUTNAME: This macro expands to the path and file name that
appear in the Project I Local Options Output Path type-in box (in
the active edit window). For example, if the project contains
STARS.C, the default Output Path type-in is STARS.OB}. So if
STARS.C is in the active edit window, $OUTNAME expands to
STARS.OB}. If you've edited the type-in box so it says .. \MOON. XYZ,
$OUTNAME will expand to .. \MOON.XYZ. This macro is useful
when you are specifying modules for your user-defined
translators. For example, you could define a TLIB translator and
set the command line to

TLIB MYLIB +$OUTNAME

which adds the object module of the file in the active edit window
to the library MYLIB.

$PRJNAME: The current project file. Null string if no project is
defined.

$PROMPT: This macro tells the IDE to display the expanded
parameter string before calling the transfer program. The
command line that will be passed is displayed in a dialog box.
This allows you to change or add to the string before it is
passed.The position of $PROMPT command in the command line
determines what is shown in the dialog prompt box. You can
place constant parameters in the command line by placing them
before $PROMPT. For example, the Ie in

/ c $PROMPT dir

is constant and doesn't show in the dialog box, but dir can be
edited before the command is run.

$RC: This macro is predefined for use with the Resource
Compiler. Since the Resource Compiler can be invoked for two
separate reasons, $RC is expanded differently depending on
whether you are compiling a .RC file into a .RES file or binding
the .RES file to an executable file.

Borland C++ User's Guide

Options I Transfer

In any case, in order to change the behavior of the Resource
Compiler

• when compiling an .RC file, change the command line in
Project I Local Options for the .RC file in the Project Manager

• when binding a .RES file to an .EXE or a DLL, change the
options in Options I Transfer I Resource Compiler

If you are compiling a .Re file into a .RES file, $RC is expanded
like this:

$SAVE CUR $NOSWAP $CAP MSG(RC2MSG) -R -I$INC -FO $OUTNAME $EDNAME

If you are binding a .RES to an .EXE file, $RC is expanded like
this:

$NOSWAP $CAP MSG(RC2MSG) res_name $EXENAME

The variable res_name is defined as one of the following, in this
order:

1. If there is a file in the project with a .RES extension, res_name
will be that file.

2. If there is no file with a .RES extension, and there is a file with
a .RC extension, res_name is the name given by $OUTNAME
for the .RC file.

3. If neither of the above apply (implying there are no resources),
res_name is blank.

$SAVE ALL: This macro tells the IDE to save all modified files in
all Edit windows that have been modified, without prompting.

$SAVE CUR: This macro tells the IDE to save the file in the
current editor if it has been modified. This ensures that the
invoked program will use the latest version of the source file.

$SAVE PROMPT: This macro tells the IDE to prompt when there
are unsaved files in editor windows. You will be asked if you
want to save any unsaved files.

$TASM: This macro is predefined for use with Turbo Assembler. It
uses the TASM2MSG filter to trap TASM messages. $TASM is
essentially shorthand for this:

$NOSWAP $SAVE CUR $CAP MSG(TASM2MSG) $EDNAME,$OUTNAME

WRITEMSG(filename): This macro copies the contents of the
Message window to the specified ASCII file. The translator can

Chapter 2, Menus and options reference 81

Options I Transfer

82

Running DOS
commands

Transfer memory
settings

Make

parse the file and act on the messages so desired. For example,
WRITEMSG(C: \MESSAGES.TXT) writes to the file
MESSAGES. TXT on your root directory.

If you want to run DOS commands from within the integrated
environment, you can set up a simple transfer macro that will let
you do so. Just add this transfer item:

command Ic $MEM(128) $PROMPT

When you invoke this transfer item, a dialog box appears and
prompts you for DOS input. Since the $PROMPT command
appears later in the string, the text command /c won't show up in
the dialog's input box. This lets you just type dir, chkdsk, del *. *,
or whatever DOS command you want to run.

Different programs have different memory needs. For example,
GREP can run in very little memory, where many popular editors
require 200-300K to work well.

If you use the $MEM() macro, you can specify (on a program-by
program basis) how much memory the IDE should give to the
transfer programs. The less memory you devote to a transfer
program, the quicker the transfer to and from the program occurs.

There may be some cases where the IDE cannot give up as much
memory as you requested. When this happens, the IDE gives up
as much as it can. There are certain states in the IDE that require
more memory than others; for example, while debugging a
program, the IDE will tie up more resources than when not
debugging. Use Program Reset (Ctrl-F2) to free up debugging
memory.

In those cases where you want the IDE to give up all its memory,
give it a large number, like 640K. How much memory is actually
given up is dependent on how much you have when you start
Borland C++.

The Options I Make command displays a dialog box that lets you
set conditions for project management. Here's what the dialog box
looks like:

Borland C++ User's Guide

Figure 2.33
The Make dialog box

Break Make On
e } Warnings
ee} Errors
e } Fatal errors
e } Link

I ~. ~ ~~e DLL fi 1 e exports
() Use DEF fi 1 e exports

I [X] Check Auto-dependenci es I

See the $DEPO transfer
macro on page 78.

Options I Make

Use the Break Make On radio buttons to set the condition that will
stop the making of a project. The default is to stop after compiling
a file with errors.

The Generate Import Library buttons control when and how
IMPLIB is executed during the MAKE process. The Use DLL File
Exports option generates an import library that consists of the
exports in the DLL. The Use DEF File Exports generates an import
library of exports in the DEF file. If either of these options is
checked, MAKE invokes IMPLIB after the linker has created the
DLL. This option controls how the transfer macro $IMPLIB gets
expanded.

When the Check Auto-dependencies option is checked, the Project
Manager automatically checks dependencies for every .OBI file on
disk that has a corresponding.C source file in the project list.

The Project Manager opens the .OBI file and looks for information
about files included in the source code. This information is always
placed in the .OBI file by both Borland C++ and the command
line version of Borland C++ when the source module is compiled.
Then every file that was used to build the .OBJ file is checked for
time and date against the time and date information in the .OBI
file. The source file is recompiled if the dates are different. This is
called an autodependency check. If this option is off (unchecked), no
such file checking is done.

After the C source file is successfully compiled, the project file
contains valid dependency infromation for that file. Once that
valid information is in the project file, the Project Manager does
the autodependency check using that information. This is much
faster than reading each .OBI file.

Chapter 2, Menus and options reference 83

Options I Linker

84

Linker

Figure 2.34
The Unker dialog box

Ma!~lF6~~
Segments
Publics

() Detai 1 ed

(e Standard DOS EXE outlut
(Overlaid DOS EXE
(Windows EXE
() Wi ndows DLL

I [] Initialize segments I

I [] Defaul t 11 brari es I

I[X] Graphics libraryl

The Options I Linker command lets you make several settings that
affect linking. The Linker command opens this dialog box:

This dialog box has several check boxes and radio buttons. The
following sections contain short descriptions of what each does.

Use the Map File radio buttons to choose the type of map file to be
produced. For settings other than Off, the map file is placed in the
output directory defined in the Options I Directories dialog box.
The default setting for the map file is Off.

Use these radio buttons to set your application type. Standard
DOS EXE produces a normal executable that runs under DOS.
Overlaid DOS EXE produces an executable that is capable of
being overlaid. Windows EXE produces a Windows application,
while Windows DLL produces a Windows dynamic link library.

If checked, Initialize Segments tells the linker to initialize
uninitialized segments. (This is normally not needed and will
make your .EXE files larger.)

When you're linking with modules created by a compiler other
than Borland C++, the other compiler may have placed a list of
default libraries in the object file.

If the Default Libraries option is checked, the linker tries to find
any undefined routines in these libraries as well as in the default
libraries supplied by Borland C++. If this option is off
(unchecked), the linker searches only the default libraries
supplied by Borland C++ and ignores any defaults in .OB} files.

The Graphics Library option controls the automatic searching of
the BGI graphics library. When this option is checked (the

Borland C++ User's Guide

I[X] Warn duplicate symbols I

I [] "No stack" warning

I[X] Case-sensitive Linkl

I [] Case-sensitive exports I

I[] Pack code segments I

Code Pack Size 8192
Segment Alignment 512

Options I Linker

default), it's possible to build and run single-file graphics
programs without using a project file. Unchecking this option
speeds up the link step a bit because the linker doesn't have to
search in the BGI graphics library file.

Note: You can uncheck this option and still build programs that
use BGI graphics, provided you add the name of the BGI graphics
library (GRAPHICS. LIB) to your project list.

The Warn Duplicate Symbols option affects whether the linker
warns you of previously encountered symbols in .LIB files.

The "No Stack" Warning option affects whether the linker
generates the "No stack" message. It's normal for a program
generated under the tiny model to display this message if the
message is not turned off.

The Case-Sensitive Link option affects whether the linker is case
sensitive. Normally, this option should be checked, since C and
C++ are both case-sensitive languages.

By default, the linker ignores case with the names in the
IMPORTS and EXPORTS sections of the module definition file. If
you want the linker be case-sensitive in regard to these names,
check this option. This option is probably only useful when you
are trying to export non-callback functions from DLLs-as in
exported C++ member functions. This option isn't necessary for
normal Windows callback functions (declared FAR PASCAL).

This option applies only to Windows applications and DLLs.
When this option is checked, the linker tries to minimize the
number of code segments by packing multiple code segments
together; typically, this will improve performance. This option
will never create segments greater than 64K.

You can change the default code packing size to anything
between 1 and 65,536 with Code Pack Size. See page 247 for a
more in-depth discussion of desirable sizes.

With Segment Alignment, you can set the segment alignment.
Note that the alignment factor will be automatically rounded up
to the nearest power of two (meaning that if you enter 650, it will
be rounded up to 1,024). The possible numbers you can enter
must fall in the range of 2 to 65,535.

Chapter 2, Menus and options reference 85

Options I Application

86

The Set
Application

Options dialog
box

Figure 2.35
Set Application Options

This dialog box provides the easiest and safest way to set up
compilation and linking for a DOS or Windows executable. To use
this dialog box, simply push one of the buttons. Borland C++ will
verify and, if necessary, changes some of the settings in the Code
Generation, Entry/Exit Code Generation, and Linker dialog
boxes. See page 65 (Entry/Exit Code) for detailed information on
the code generated. Use this dialog box for initial setup only.

The standard options for applications and libraries each
accomplish a set of tasks. You can choose only one button at a
time. The current settings fields are updated when you press the
button.

DOS Standard:

• pushes the Small memory model radio button in the Code
Generation dialog box

• unchecks Assume SS not equal DS in the Code Generation
dialog box

• pushes the DOS Standard radio button in the Entry/Exit Code
Generation dialog box

• pushes the Standard DOS .EXE radio button in the Linker
dialog box

• checks the Graphics Library option in the Linker dialog box

DOS Overlay:

• pushes the Medium memory model button in the Code
Generation dialog box

• unchecks Assume SS not equal DS in the Code Generation
dialog box

Bor/and c++ User's Guide

Debugger

Figure 2.36
The Debugger dialog box

Options I Application

• pushes the DOS Overlay button in the Entry/Exit Code
Generation dialog box

• pushes the Overlaid DOS .EXE button in the Linker dialog box

• checks the Graphics Library option in the Linker dialog box

Windows App:

• pushes the Small memory model button in the Code Generation
dialog box

• unchecks Assume SS not equal DS in the Code Generation
dialog box

• pushes the Windows All Functions Exportable button in the
Entry /Exlt Code Generation dialog box

II pushes the Windows .EXE button in the Linker dialog box

• unchecks the Graphics Library option in the Linker dialog box

Windows DLL:

.. pushes the Compact memory model button in the Code
Generation dialog box

• checks Assume SS not equal DS in the Code Generation dialog
box

• pushes the Windows DLL All Functions Exportable button in
the Entry/Exit Code Generation dialog box

• unchecks the Graphics Library option in the Linker dialog box

The Options I Debugger command lets you make several settings
affecting the integrated debugger. This command opens this
dialog box:

The following sections describe the contents of this box.

Chapter 2, Menus and options reference 87

Options I Debugger

Source Debugging
ee) On
e) Standalone
e) None

Display Swapping
e) None
ee) Smart
e) Always

The Source Debugging radio buttons determine whether
debugging information is included in the executable file and how
the .EXE is run under Borland C++.

Programs linked with this option set to On (the default) can be
debugged with either the integrated ~ebugger or the standalone
Turbo Debugger. Switch this back to On when you want to debug
in the IDE.

If you set this option to Standalone, programs can be debugged
only with Turbo Debugger, although they can still be run in
Borland C++.

If you set this option to None, programs cannot be debugged with
either debugger, because no debugging information has been
placed in the .EXE file.

The Display Swapping radio buttons let you set when the
integrated debugger will change display windows while running
a program.

If you set Display Swapping to None, the debugger does not swap
the screen at all. You should only use this setting for debugging
sections of code that you're certain do not output to the screen.

When you run your program in debug mode with the default
setting of Smart, the debugger looks at the code being executed to
see whether it will generate output to the screen. If the code does
output to the screen (or if it calls a function), the screen is
swapped from the IDE screen to the User Screen long enough for
output to be displayed, then is swapped back. Otherwise, no
swapping occurs.

Be aware of the following with smart swapping:

• It swaps on any function call, even if the function does no
screen output.

• In some situations, the IDE screen might be modified without
being swapped; for example, if a timer interrupt routine writes
to the screen.

If you set Display Swapping to Always, the debugger swaps
screens every time a statement executes. You should choose this
setting any time the IDE screen is likely to be overwritten by your
running program.

Note If you're debugging in dual monitor mode (that is, you used the
Borland C++ command-line Id option), you can see your

88 Bor/and C++ User's Guide

Inspectors
[XJ Show inherited
[X] Show methods

() Show decimal
() Show hex
ee) Show both

Program Heap Size
64 Kbytes

Usually, it's only meaningful to
increase heap size when
working with large data

models.

Directories

Figure 2.37
The Directories dialog box

Options I Debugger

program's output on one monitor and the Borland C++ screen on
the other. In this case, Borland C++ never swaps screens and the
Display Swapping setting has no effect.

In the Inspectors checkboxes, when Show Inherited is checked, it
tells the integrated debugger to display all member functions and
methods-whether they are defined within the inspected class or
inherited from a base class. When this option is not checked, only
those fields defined in the type of the inspected object are
displayed.

When checked, the Show Methods option tells the integrated
debugger to display member functions when you inspect a class.

Check the Show Decimal, Show Hex, or Show Both radio buttons
when you want to control how the values in inspectors are
displayed. Show both is on by default.

You can use the Program Heap Size input box to input how much
memory Borland C++ should assign a program when you debug
it. The actual amount of memory that Borland C++ tries to give to
the program is equal to the size of the executable image plus the
amount you specify here.

The default value for the program heap size is 64 Kbytes. You
may want to increase this value if your program uses dynamically
allocated objects.

The Options I Directories command lets you tell Borland C++
where to find the files it needs to compile, link, and output binary
and map files. This command opens the following dialog box
containing three input boxes:

Here is what each input box is for:

• The Include Directories input box specifies the directory that
contains your include files. Standard include files are those

Chapter 2, Menus and options reference 89

Options I Directories

Environment

given in angle brackets «» in an #include statement (for
example, #include <myfile.h». These directories are also
searched for quoted Includes not found in the current directory.
Multiple directory names are allowed, separated by semicolons.

• The Library Directories input box specifies the directories that
contain your Borland C++ startup object files (CO?OBJ) and
run-time library files (.LIB files) and any other libraries that
your project may use. Multiple directory names are allowed,
separated by semicolons.

• The Output Directory input box specifies the directory that
stores your .OBJ, .EXE, and .MAP files. Borland C++ looks for
that directory when doing a make or run, and to check dates
and times of .0BJs and .EXEs. If the entry is blank, the files are
stored in the current directory.

Use the following guidelines when entering directories in these
input boxes:

• You must separate multiple directory path names (if allowed)
with a semicolon (;). You can use up to a maximum of 127
characters (including whitespace).

• Whitespace before and after the semicolon is allowed but not
required.

• Relative and absolute path names are allowed, including path
names relative to the logged position in drives other than the
current one. For example,

C:\C\LIB;C:\C\MYLIBS;A:\BORLANDC\MATHLIBS;A: .. \VIDLIBS

The Options I Environment command lets you make
environment-wide settings. This command opens a menu that lets
you choose settings from Preferences, Editor, Mouse, and Desktop.

Preferences Here's what the Preferences dialog box looks like:

90 Bor/and C++ User's Guide

Figure 2.38
The Preferences dialog box

Screen Size
(e) 25 1 i nes
() 43/50 lines

Source Tracking
() New window
(e) Current window

Auto Save
[] Editor Fil es
[X] Envi ronment
[X] Desktop
[X] Project

Options I Environment I Preferences

The Screen Size radio buttons let you specify whether your IDE
screen is displayed in 25 lines or 43/50 lines. One or both of these
buttons will be available, depending on the type of video adapter
in your PC.

When set to 25 lines (the default), Borland C++ uses 25 lines and
80 columns. This is the only screen size available to systems with
a monochrome display or Color Graphics Adapter (CGA).

If your PC has EGA or VGA, you can set this option to 43/50
lines. The IDE is displayed in 43 lines by 80 columns if you have
an EGA, or 50 lines by 80 columns if you have a VGA.

When stepping source or viewing the source from the Message
window, the IDE opens a new window whenever it encounters a
file that is not already loaded. Selecting Current Window causes
the IDE to replace the contents of the topmost Edit window with
the new file instead of opening a new Edit window.

If Editor Files is checked in the Auto Save options, and if the file
has been modified since the last time you saved it, Borland C++
automatically saves the source file in the Edit window whenever
you choose the Run I Run (or any debug/run command) or File I
DOS Shell command.

When the Environment option is checked, all the settings you
made in this dialog box will be saved automatically when you exit
Borland C++.

When Desktop is checked, Borland C++ controls whether your
desktop is saved on exit and whether it's restored when you
return to Borland C++.

When the Project option is checked, Borland C++ saves all your
project, auto-dependency, and module settings on exit and
restores them when you return to Borland C++.

Chapter 2, Menus and options reference 91

Options I Environment I Preferences

92

[] Save Old Messages

Editor

Editor Opti ons
[X] Create backup files
[X] Insert mode
[X] Autoindent mode

~
X] Use tab character
X Optimal fill X~ Backspace unindents

[Xl Cursor through tabs
[Group undo
[X Persisten blocks

When Save Old Messages is checked, Borland C++ saves the error
messages currently in the Message window, appending any
messages from further compiles to the window. When a file is
compiled, any messages for that file are removed from the
Message window and new messages are added to the end.
Messages are not saved from one session to the next. When you
uncheck this box, Borland C++ automatically clears messages
before a compile, a make, or a transfer that uses the Message
window.

If you choose Editor from the Environment menu, these are the
options you can pick from:

• When Create Backup Files is checked (the default), Borland
C++ automatically creates a backup of the source file in the Edit
window when you choose File I Save and gives the backup file
the extension .BAK.

• When Insert Mode is not checked, any text you type into Edit
windows overwrites existing text. When the option is checked,
text you type is inserted (pushed to the right). Pressing Ins
toggles Insert mode when you're working in an Edit window.

• When Autoindent Mode is checked, pressing Enter in an Edit
window positions the cursor under the first nonblank character
in the preceding nonblank line. This can be a great aid in
keeping your program code more readable.

• When Use Tab Character is checked, Borland C++ inserts a true
tab character (ASCII 9) when you press Tab. When this option is
not checked, Borland C++ replaces tabs with spaces. If there are
any lines with characters on them prior to the current line, the
cursor is positioned at the first corresponding column of
characters following the next whitespace found. If there is no
"next" whitespace, the cursor is positioned at the end of the
line. After the end of the line, each Tab press is determined by
the Tab Size setting.

• When you check Optimal Fill, Borland C++ begins every
autoindented line with the minimum number of characters
possible, using tabs and spaces as necessary. This produces
lines with fewer characters than when Optimal Fill is not
checked.

• When Backspace Unindents is checked (which is the default)
and the cursor is on a blank line or the first non-blank character

Borland C++ User's Guide

ITab Size 81

Options I Environment I Editor

of a line, the Backspace key aligns (outdents) the line to the
previous indentation level.

• When you check Cursor Through Tabs, the arrow keys will
move the cursor to the middle of tabs; otherwise the cursor
jumps several columns when cursoring over a tab.

• When Group Undo is unchecked, choosing Edit I Undo reverses
the effect of a single editor command or keystroke. For
example, if you type ABC, it will take three Undo commands to
delete C, then B, thenA.

If Group Undo is checked, Undo reverses the effects of the
previous command and all immediately preceding commands
of the same type. The types of commands that are grouped are
insertions, deletions, overwrites, and cursor movements. For
example, if you type ABC, one Undo command deletes ABC.

For the purpose of grouping, inserting a carriage return is
considered an insertion followed by a cursor movement. For
example, if you press Enter, then type ABC, choosing Undo once
will delete the ABC, and choosing Undo again will move the
cursor to the new carriage return. Choosing Edit I Redo at that
point would move the cursor to the following line. Another
Redo would insert ABC. (See page 34 for more information
about Undo and Redo.)

• When this option is checked (the default), marked blocks
behave as they always have in Borland's C and C++ products.
With this option unchecked, marked blocks behave differently
in these instances:

1. Pressing the Del key or the Backspace key clears the entire
selected text.

2. Inserting text (pressing a character, pasting from clipboard)
replaces the entire selected text with the inserted text.

3. Moving the cursor out of the block de-selects the text.

If you check Use Tab Character in this dialog box and press Tab,
Borland C++ inserts a tab character in the file and the cursor
moves to the next tab stop. The Tab Size input box allows you to
dictate how many characters to move for each tab stop. Legal
values are 2 through 16; the default is 8.

To change the way tabs are displayed in a file, just change the tab
size value to the size you prefer. Borland C++ redisplays all tabs

Chapter 2, Menus and options reference 93

Options I Environment I Editor

94

IDefault Extension CPP I

Mouse

Right Mouse Button
() Nothing

!ej Topic search
Go to cursor
Breakpoint

() Inspect
() Evaluate
() Add watch

Mouse Double Click
Fast Test Slow ___ .·m~l!!1.tIm-

[] Reverse Mouse Buttons I

in that file in the size you chose. You can save this new tab size in
your configuration file by choosing Options I Save Options.

The Default Extension input box lets you tell Borland C++ which
extension to use as the default when compiling and loading your
source code. Changing this extension doesn't affect the history
lists in the current desktop.

When you choose Mouse from the Environment menu, the Mouse
Options dialog box is displayed, which contains all the settings
for your mouse. These are the options available to you:

The Right Mouse Button radio buttons determine the effect of
pressing the right button of the mouse (or the left button, if the
reverse mouse buttons option is checked). Topic Search is the
default.

Here's a list of what the right button would do if you choose
something other than Nothing:

Topic Search
Go to Cursor
Breakpoint
Inspect
Evaluate
Add Watch

Same as Help I Topic Search
Same as Run I Go To Cursor
Same as Debug I Toggle Breakpoint
Same as Debug I Inspect
Same as Debug I Evaluate
Same as Debug I Watches I Add Watch

In the Mouse Double Click box, you can change the slider control
bar to adjust the double-click speed of your mouse by using the
arrow keys.

Moving the scroll box closer to Fast means Borland C++ requires
a shorter time between clicks to recognize a double click. Moving
the scroll box closer to Slow means Borland C++ will still
recognize a double click even if you wait longer between clicks.

If you want to experiment with different settings, you can
double-click the Test button above the scroll bar. When you
successfully double-click the bar it becomes highlighted.

When Reverse Mouse Buttons is checked, the active button on
your mouse is the rightmost one instead of the leftmost. Note,
however, that the buttons won't actually be switched until you
choose the OK button.

Depending on how you hold your mouse and whether you're
right- or left-handed, the right mouse button might be more
comfortable to use than the left.

Borland C++ User's Guide

Desktop

Desktop Preferences
[X] History lists
[X] Cl i pboard
[] Watch expressions
[] Breakpoi nts

Save

Window menu

Size/Move

@!Oem

Options I Environment I Desktop

The Desktop dialog box lets you set whether history lists, the
contents of the Clipboard, watch expressions, and breakpoints are
saved across sessions. History lists and the contents of the
Clipboard are saved by default; because watch expressions and
breakpoints may not be meaningful across sessions, they are not
saved by default. You can change these defaults by unchecking or
checking the respective options.

The Options I Save command brings up a dialog box that lets you
save settings that you've made in both the Find and Replace
dialog boxes (off the Search menu) and in the Options menu
(which includes all the dialog boxes that are part of those
commands) for IDE, Desktop, and Project items. Options are
stored in three files, which represent each of these categories. If it
doesn't find the files, Borland C++ looks in the Executable direc
tory (from which BC.EXE or BCX.EXE is run) for the same file.

The Window menu contains window management commands.
Most of the windows you open from this menu have all the
standard window elements like scroll bars, a close box, and zoom
boxes. Refer to page 13 for information on these elements and
how to use them.

At the bottom of the Window menu, the Window I List command
appears. Choose this command for a list of all open windows as
well as recently closed ones. (A recently closed window appears
with closed before it; choose it to reopen it.)

Choose Window I Size/Move to change the size or position of the
active window.

When you choose this command, the active window moves in
response to the arrow keys. When the window is where you want
it, press Enter. You can also move a window by dragging its title
bar.

Chapter 2, Menus and options reference 95

Window I Size/Move

96

Zoom

em

Tile

Cascade

Next
[ill

Close

@J[0

Message

If you press Shift while you use the arrow keys, you can change
the size of the window. When it's the size you want it, press Enter.
If a window has a resize comer, you can drag that comer or any
other comer to resize it.

Choose Window I Zoom to resize the active window to the
maximum size. If the window is already zoomed to the max, you
can choose this command again to restore it to its previous size.
You can also double-click anywhere on the top line (except where
an icon appears) of a window to zoom or unzoom it.

Choose Window I Tile to tile all your open windows.

Choose Window I Cascade to stack all open windows.

Choose Window I Next to make the next window active, which
makes it the topmost open window.

Choose Window I Close to close the active window. You can also
click the close box in the upper left comer to close a window.

Choose Window I Message to open the Message window and
make it active. The Message window displays error and warning
messages, which you can use for reference, or you can select them
and have the corresponding location be highlighted in the Edit
window. When a message refers to a file that is not currently
loaded, you can press the Spacebar to load that file. You can also
display transfer program output in this window.

When an error is selected in the Message window, press Enter to
show the location of the error in the Edit window and make the
Edit window active at the point of error.

Borland C++ User's Guide

Output

Watch

User Screen

Window I Output

To close the window, click its close box or choose Window I Close.

Choose Window I Output to open the Output window and make it
active. The Output window displays text from any DOS
command-line text and any text generated from your program (no
graphics).

The Output window is handy while debugging because you can
view your source code, variables, and output all at once. This is
especially useful when you've set the Options I Environment
dialog box to a 43/50 line display and you are running a standard
25-line mode program. In that case, you can see almost all of the
program output and still have plenty of lines to view your source
code and variables.

If you would rather see your program's text on the full screen-or
if your program generates graphics-choose the Window I User
Screen command instead.

To close the window, click its close box or choose Window I Close.

Choose Window I Watch to open the Watch window and make it
active. The Watch window displays expressions and their
changing values so you can keep an eye on how your program
evaluates key values.

You use the commands in the Debug I Watches pop-up menu to
add or remove watches from this window. Refer to the section on
this menu for information on how to use the Watch window (page
54).

To close the window, click its close box or choose Window I Close.

Choose Window I User Screen to view your program's full-screen
output. If you would rather see your program output in a Borland
C++ window, choose the Window I Output command instead.
Clicking or pressing any key returns you to the IDE.

Chapter 2, Menus and options reference 97

Window I Register

Register

Project

Project Notes

List

Help menu

98

Choose Window I Register to open the Register window and make
it active.

The Register window displays CPU registers and is used when
debugginginline ASM and TASM modules in your project.

To close the window, click its close box or choose Window I Close.

Choose Window I Project to open the Project window, which lets
you view files that you're using to create your program.

Choose Window I Project Notes to write down any details, make
to-do lists, or list any other information about your project files.

Choose Window I List to get a list of all the windows you've
opened. The list contains the names of all files that are currently
open as well as any of the last eight files you've opened in an Edit
window but have since closed. A recently closed file appears in
the list prefixed with the word closed.

When you choose an already open file from the list, Borland C++
brings the window to the front and makes it active. When you
choose a closed file from the list, Borland C++ reopens the file in
an Edit window the same size and location as when the window
was closed. The cursor is positioned at its last location.

Press Alt-O to pop up a complete list of all open windows and all
Edit windows you've closed. For a full rundown of how to
manage windows, see page 15.

The Help menu gives you access to online help in a special
window. There is help information on virtually all aspects of the

Borland C++ User's Guide

When getting help in a
dialog box or menu, you

cannot resize the window or
copy to the clipboard. In this

instance, Tab takes you to
dialog box controls, not the

next keyword.

Window I List

IDE and Borland c++. (Also, one-line menu and dialog box hints
appear on the status line whenever you select a command.)

To open the Help window, do one of these actions:

• Press F1 at any time (including from any dialog box or when
any menu command is selected) .

• When an Edit window is active and the cursor is positioned on
a word, press Ctrl-F1 to get language help.

a Click Help whenever it appears on the status line or in a dialog
box.

To close the Help window, press Esc, click the close box, or choose
Window I Close. You can keep the Help window onscreen while
you work in another window unless you opened the Help
window from a dialog box or pressed F1 when a menu command
was selected. (If you press F6 or click on another window while
you're in Help, the Help window remains onscreen.)

Help screens often contain keywords (highlighted text) that you
can choose to get more information. Press Tab to move to any
keyword; press Enter to get more detailed help. (As an alternative,
move the cursor to the highlighted keyword and press Enter. With
a mouse, you can double-click any keyword to open the help text
for that item.

You can also cursor around the Help screen and press Ctrl-F1 on
any word to get help. If the word is not found, an incremental
search is done in the index and the closest match displayed.

When the Help window is active, you can copy from the window
and paste that text into an Edit window. You do this just the same
as you would in an Edit window: Select the text first (using
Shift~ , Left arrow, Up arrow, Down arrow), choose Edit I Copy,
move to an Edit window, then choose Edit I Paste.

To select text in the Help window, drag across the desired text or,
when positioned at the start of the block, press Shift~,~, I, J, to
mark a block.

You can also copy preselected program examples from help
screens by choosing the Edit I Copy Example command.

Chapter 2, Menus and options reference 99

Help I Contents

Contents

Index

You can also tab to a
keyword to select it.

Topic Search

Previous Topic

100

The Help I Contents command opens the Help window with the
main table of contents displayed. From this window, you can
branch to any other part of the help system.

You can get help on Help by pressing F1 when the Help window
is active. You can also reach this screen by clicking on the status
line.

The Help I Index command opens a dialog box displaying a full list
of help keywords (the special highlighted text in help screens that
let you quickly move to a related screen).

You can scroll the list or you can incrementally search it by
pressing letters from the keyboard. For example, to see what's
available under "printing," you can type p r i. When you type p,
the cursor jumps to the first keyword that starts with p. When you
then type r, the cursor then moves to the first keyword that starts
with pro When you then type i, the cursor moves to the first
keyword that starts with pri, and so on.

When you find a keyword that interests you, choose it by
cursoring to it and pressing Enter. (You can also double-click it.)

The Help I Topic Search command displays language help on the
currently selected item.

To get language help, position the cursor on an item in an Edit
window and choose Topic Search. You can get help on things like
function names (printf, for example), header files, reserved words,
and so on. If an item is not in the help system, the help index
displays the closest match.

The Help I Previous Topic command opens the Help window and
redisplays the text you last viewed. .

Borland C++ User's Guide

Help on Help

Borland c++ lets you back up through 20 previous help screens.
You can also click on the status line to view the last help screen
displayed.

The Help I Help on Help command opens up a text screen that
explains how to use the Borland c++ help system. If you're
already in help, you can bring up this screen by pressing F1.

Chapter 2, Menus and options reference 101

102 Borland C++ User's Guide

c H A p T E R

3

Building a Windows application

This chapter explains how to use Borland C++ to build Windows
applications or dynamic link libraries (DLLs). This chapter does
not explain the intricacies of designing Windows applications, nor
does it teach you how to program under Windows-these topics
are far beyond the scope of this chapter or this book.

The basic process

Compiling and linking a module for Windows is basically the
same as it is for DOS. The compiler first generates an object file
(which differs from a DOS compilation primarily in the special
Windows prolog and epilog code that wraps each function). The
prolog and epilog code varies depending on which Windows
compilation options are used; these options are described later.

To create a Windows module for the memory model you are
compiling under, the linker links the object files with the
appropriate Borland C++ startup code, various libraries, and the
module definition file.

Finally, either the IDE, the makefile, or the programmer invokes
the Resource Compiler to bind the resources to the module.
Figure 3.1 illustrates the entire process.

The next section, "Compiling and linking with the IDE/' gives
you a quick example of how to compile, link, and run a Windows
program in the Borland C++ IDE. If you normally compile and

Chapter 3, Building a Windows application 103

Figure 3.1
Compiling and linking a Win

dows program

link from the command line or from a makefile, then you should
read "Compiling and linking from the command line," starting on
page 107.

Compiling and linking within the IDE

You can find complete
descriptions of the various

IDE commands and options
in Chapter 2.

104

By way of example, you'll be producing a simple Windows
application called WHELLO, which creates a window and writes
a text message to that window. WHELLO.EXE is produced by
compiling and linking the following three files:

• WHELLO.CPP, the C++ source file
• WHELLO.RC, the resource file
• WHELLO.DEF, the module definition file

Borland C++ User's Guide

Understanding
resource files Windows applications typically use resources, which can be icons,

dialog boxes, fonts, cursors, and bitmaps. These resources can be
created by the Resource Toolkit and are defined in a file called a
resource file. For this application, the resource file is
WHELLO.RC .

Understanding
module definition

files
Module definition files are

described in detail on page
250.

Compiling and
linking WHELLO

. RC resource files are source files, also called resource script files.
Before an .RC file can be added to an executable, the .RC file must
first be compiled by the Resource Compiler into a binary format;
compilation creates a .RES file. For instance, compiling
WHELLO.RC with the Resource Compiler creates WHELLO.RES.
The Resource Compiler is also used to bind .RES resource files to
an executable file.

To build a final Windows application, complete with resources,
you need to invoke the Resource Compiler in order to bind the
.RES file to the .EXE file. The Resource Compiler does three
things:

1. It compiles .RC files to .RES files.

2. It binds the .RES file to the compiled module (.EXE or .DLL).

3. It marks the .EXE or .DLL as Windows-compatible.

The module definition file WHELLO.DEF provides information to
the linker about the contents and system requirements of a Win
dows application. Because TLINK and the built-in linker have
other ways of finding out the information contained in the
module definition, module definition files are not required for
Borland C++'s linker to create a Windows application, although
one is included here for the sake of example.

Here's how you tum these three files into a Windows application:

1. If you haven't done so already, go to the \BORLANDC\
EXAMPLES directory and start the Borland C++ IDE by
typing BCX (protected mode version) or BC from the DOS

Chapter 3, Building a Windows application 105

106

Setting compile and
link options

command line. If you are already in the IDE, change to the \
BORLANDC\EXAMPLES directory with File I Change dir.

2. Choose Project I Open Project. In the Project Name box, type
WHELLO.PRJ. Press Enter or click OK to open a new project
with the name WHELLO.

3. Choose Project I Add item and type whello . * in the Name box,
so that you'll get a list of all the WHELLO files.

4. Add the three files WHELLO.CPP, WHELLO.RC, and
WHELLO.DEF for the application. Close the Project dialog box
after you've added the three files.

5. Choose Options I Application to open the Set Application
Options dialog box. Choose Windows App. The information
pane at the top of the dialog box changes. Each of the four
buttons at the bottom of the dialog checks and sets several
other options in the IDE (see Chapter 2, page 86 for details).

6. Choose Compile I Build all to build the project.

7. Exit the IDE by pressing Alt-X or choosing File I Quit.

8. From the DOS command line, type

win whello

DOS will load Windows, which will itself run the WHELLO
application.

That's all there is to building and running a Windows application
with Borland C++. You can generalize this process into the
following checklist:

1. Create a project.
2. Add the source files, resource files, import libraries (if

necessary), and the module definition file (if necessary) to the
project.

3. Set up the compilation and link environment with the Set
Application Options dialog box, or with a combination of
other settings and options.

4. Build the project.

5. Run the application under Windows.

The bulk of the setup in this example is accomplished by the Set
Application Options dialog box. The action buttons in this dialog
box check or set various other options in other dialog boxes.
Borland C++ makes it easy for you to change the settings that

Bor/and c++ User's Guide

control compilation and linkage of your programs, so you'll want
to familiarize yourself with the following dialog boxes (all
described in full in Chapter 2):

• The Code Generation dialog box sets such things as the
memory model, tells the compiler to use pre-compiled headers,
and more. Choose Options I Compiler I Code Generation to see
this dialog box.

• The Entry/Exit Code Generation dialog box sets Borland C++
compiler options for prolog and epilog code generation, and
export options. Choose Options I Compiler I Entry /Exit Code
and browse through the contents of this dialog box.

• The Make dialog box (Options I Make). The Generate Import
Library options allow you to create an import library for a DLL.
An import library makes it possible to declare all of the
functions in a DLL as imports to another module without using
a module definition file (see Chapter 7, page 192).

• The Linker dialog box (Options I Linker) sets options for the
type of output you want from the linker-such as a standard
DOS .EXE, an overlaid DOS .EXE, a Windows .EXE, or a Win
dows DLL-as well as a number of other linker options.

Compiling and linking from the command line

Compiling from
the command

line

If you know how to compile and link a C++ or C program for
DOS, then you already know almost all you need to know to do
the same thing for Windows. You'll need three files to compile
and link the example application:

• WHELLO.CPP, the C++ source code

• WHELLO.DEF, the module definition file

• WHELLO.RC, the resource file

To compile and link WHELLO.CPP for a Windows application,
type

Bee -W whello.cpp

Given this command line, Borland C++ compiles WHELLO.CPP
into WHELLO.OBJ, then links in the correct libraries and startup
code automatically. To suppress the link phase, add the -c option

Chapter 3, Building a Windows application 107

108

Linking from the
command line

to the command line. To include debugging information, add the
-v option.

The -W option tells the command-line compiler that you want a
Windows application. There are other Windows options (of the
form -Wxxx) that give the compiler more specific instructions
about the compilation and code generation of a Windows
application (for instance, -WD to create a DLL). You can find
detailed descriptions of all the command-line options in Chapter
6.

Once the WHELLO application is compiled and linked, the only
thing left to do is add the resources. First, compile the
WHELLO.RC file with the command

rc -r whello.rc

This produces a WHELLO.RES file (-r instructs the Resource
Compiler to not add the result to the executable of the same
name). Now, invoke the Resource Compiler again to add the
binary resource file to the executable.

rc whello.res whello.exe

Actually, the Resource Compiler makes it easier than we've
shown here, because it can compile an .RC file into a .RES file and
then add it to the executable all in one step. Furthermore, if the
executable file has the same first name as the resource file, then
you don't need to specify the executable file on the command line
at all. So, the previous two commands can be rewritten like this:

rc whello

To load Windows and run the application, type

win whello

To link WHELLO.OBJ with the correct libraries and startup code,
invoke TLINK with the following command-line:

TLINK ITw Iv Ie ILC:\BORLANDC\LIB cOws whello, whello, , import cwins cs,
whello

The TLINK command line is composed of options and five file
names or groups of file names; each file or group of files is
separated by a comma.

Borland C++ User's Guide

Using a makefile

The rrw option means to link for (target) Windows, Iv tells TLINK
to include debugging information, and Ie forces case to be
significant in public and external symbols. IL, followed by a path
name, tells TLINK where to look for library files and for the
startup .OBI code.

The object files to link are listed next in the command line.
COWS. OBI is the initialization module for the small memory
model, and WHELLO.OBI is program module for this application.
The .OBI extension is assumed for both these files.

The next file on the command line, WHELLO, is the name you
want TLINK to give the executable file. The .EXE extension is
assumed when you create a Windows application, and the .OLL
extension is assumed when you create a OLL. For more details on
how TLINK knows whether you want an .EXE or .OLL, see the
section "Linker options" on page 116.

The next file on the command line is the name you want to give
the map file. If no name is given, as in this example, TLINK gives
the map file the name of the executable and adds the .MAP
extension. After you run this command, you'll notice the file
WHELLO.MAP in the examples directory.

The library files to link are listed after the map file. CWINS.Lm is
the small memory model run-time library for Windows, CS.LIB is
the regular run-time library, and llvIPORT.LIB is the library that
provides access to the built-in Windows functions. The .Lm
extension is assumed for all library files.

The last file name on the TLINK command line is the module
definition file, WHELLO.DEF (the .DEF extension is assumed).
Module definition files are described briefly on page 105, and in
detail in Chapter 7, page 250.

Since you probably won't want to type in the full command lines
for the command line compiler and TLINK every time you want
to build a Windows application, it's a good idea to create a
makefile for your application.

The makefile for the WHELLO application is WHELLO.MAK.
Note that for this example, the libraries are in C:\BORLANDC\
LIB, and the include files are in C: \ BORLANDC\INCLUDE. The
following section explains each rule in the makefile.

Chapter 3, Building a Windows application 109

110

Another makefile for
Windows

To run MAKE on this makefile, type

make -fwhello.mak

The first rule tells MAKE how to make the final executable from
WHELLO.EXE and a WHELLO.RES, and how to make the
intermediate executable from the object file and the module
definition file. (See the alternate makefile at the end of this section
for a more generalized approach to building a Windows
application.)

whello.exe: whello.obj whello.def whello.res
tlink ITw Iv In Ic C:\BORLANDC\L1B\cOws whello,\

whello,\
, \
C:\BORLANDC\L1B\cwins C:\BORLANDC\L1B\cs

C:\BORLANDC\L1B\import,\
whello

rc whello.res

The next rule tells MAKE how to make required .OBJ files from
.CPP files of the same name. The options are: make a Windows
application (-W), compile only (-c), use the small memory model
(-ms), and include debugging info (-v) .

. cpp.obj:
BCC -c -ms -v -w $<

This last rule tells MAKE how to make required .RES files (final
resource files) from .RC files of the same name .

. rC.res:
rc -r -iC:\BORLANDC\1NCLUDE $<

The -r option tells the Resource Compiler to compile the
resources only (instead of also adding them to the executable of
the same name). The -i options specifies the directory in which to
search for include files.

The following makefile is a more general-purpose make file than
the one shown previously. It can be easily modified by redefining
the macros OBJS, INCP ATH, and FLAGS. TLINK is not invoked
in a separate rule; instead, BCC invokes TLINK automatically.

OBJS = whello.obj
1NCPATH = C:\BORLANDC\1NCLUDE
FLAGS = -W -v -1$ (1NCPATH)

test.exe: $ (OBJS) whello.def whello.res

Bor/and C++ User's Guide

BCC $ (FLAGS) -ewhello.exe @&&!
$ (OBJS)

rc whello.res

.c.obj:
BCC -c $ (FLAGS) {$< }

. cpp. obj:
BCC -c $ (FLAGS) {$< }

.rc.res:
rc -r -i$(INCPATH) $<

Prologs and epilogs

See page 3 for description
and usage of the _export

keyword.

When you compile a module for Windows, the compiler needs to
know which kind of prolog and epilog to create for each of a
module's functions. Settings in the IDE and options for the
command-line compiler control the creation of the prolog and
epilog. The prolog and epilog perform several functions,
including ensuring that the correct data segment is active during
callback functions, and marking near and far stack frames for the
Windows stack-crawling mechanism.

The need for prologs and epilogs is not new to Windows; they
must be generated for code intended for DOS as well. However, if
the program is intended for Windows, the compiler generates a
different prolog and epilog than it would for DOS.

The prolog and epilog code is automatically generated by the
compiler, though various compiler options or IDE options dictate
the exact instructions contained in the code.

The following list describes the effects of the different
Prolog/Epilog Code Generation options and their corresponding
command-line compiler options. To set these options in the IDE,
choose Options I Compiler I Entry/Exit Code .

• Windows All Functions Exportabl~ (-W). This option creates a
Windows application object module with all far functions
exportable.

This is the most general kind of Windows application module,
although not necessarily the most efficient. The compiler
generates a prolog and epilog for every far function that makes
the function exportable. This does not mean that all far

Chapter 3, Building a Windows application 111

112

functions actually will be exported, it only means that the
function can be exported. In order to actually export one of
these functions, you must either use the _export keyword or
add an entry for the function name in the EXPORTS section of
the module definition file .

• Windows Explicit Functions Exported (-WE). This option
creates an object module with only those functions marked as
_export exportable.

Since, in any given application module, many of the functions
will not be exported, it is not necessary for the compiler to
include the special prolog and epilog for exportable functions
unless a particular function is known to be exported. The
_export keyword in a function definition tells the compiler to
use the special prolog and epilog required for exported
functions. All functions not flagged with _export receive
abbreviated prolog and epilog code, resulting in a smaller
object file and slightly faster execution.
Note that the Windows explicit functions exported option only
works in conjunction with the _export keyword. This option
does not export those functions listed in the EXPORTS section
of a module definition file. In fact, you can't use this option and
provide the names of the exported functions in the EXPORTS
section. If you do, the compiler will generate prolog and epilog
code that is incompatible with exported functions; incorrect
behavior will result when these functions are called .

• Windows Smart Callbacks (-WS). This option creates an object
module with functions using smart callbacks.
This form of prolog and epilog makes use of the assumption
that DS = SS; in other words, that the default data segment is
the same as the stack segment; this eliminates the need for the
special Windows code (called a thunk) that is created for
exported functions. This form of prolog and epilog can improve
performance because calls to functions in the module do not
have to be redirected through the thunks.
Exported functions here do not need the _export keyword, and
do not need to be listed in the EXPORTS section of the module
definition file, because the linker does not need to create an
export entry for them in the executable.
When you use functions compiled and linked with smart
callbacks, you do not need to precede them with a call to
MakeProcInstance (which rewrites the function's prolog in such
a way that it uses a smart callback).

Borland C++ User's Guide

There are no smart col/backs
for DLLs since DLLs assume

DS /=$$.

The _export
keyword

Prologs, epilogs,
and exports: a

summary

Because of the assumption that DS = SS, you can't use this
option for modules in a DLL (applications are fine, but not
DLLs). Furthermore, you must not explicitly change DS in your
program (not a very safe practice under Windows in any
circumstance) .

• WindowsDLL All Functions Exportable (-WO). This option
creates a DLL object module with all functions exportable.

This prolog and epilog code is used for functions which will
reside in a DLL. It also supports the exporting of these
functions. This is similar to the corresponding non-DLL option,
Object Module With All Functions Exportable .

• Windows DLL Explicit Functions Exported (-WDE).

This prolog and epilog code is used for functions which will
reside in a DLL. However, any functions which are to be
exported must explicitly specify _export in the function
definition. This is similar to the corresponding non-DLL option,
Object module with only explicitly designated functions
exportable.

The keyword _export in a function definition is used to tell the
compiler to compile the function as exportable. It also tells the
linker to export the function. In a function declaration, _export
immediately precedes the function name; for example,

LONG FAR PASCAL _export MainWindowProc(HWND hWnd, unsigned iMessage,
WORD wParam, LONG IParam)

You can also use _export with a C++ class definition; see page
127.

There are two steps to exporting a function. First, the compiler
must create the correct prolog and epilog for the function; if so,
the function is called exportable. Second, the linker must create an
entry for every export function in the header section of the
executable. All of this occurs so that the correct data segment can
be bound to the function at run-time.

If a function is flagged with the _export keyword and any of the
Windows compiler options is used, it will be compiled as
exportable and linked as an export.

Chapter 3, Building a Windows application 113

114

If a function is not flagged with the _export keyword, then
Borland c++ will take one of the following actions:

• If you compile with the -W or -WD option (or with the IDE
equivalent of either option), the function will be compiled as
exportable.
If the function is listed in the EXPORTS section of the module
definition file; then the function will be linked as an export. If it
is not listed in the module definition file, or if no module
definition file is linked, then it won't be linked as an export.

• If you compile with the -WE or -WOE option (or with the IDE
equivalent of either option), the function will not be compiled as
exportable. Including this function in the EXPORTS section of
the module definition will cause it be exported, but, because the
prolog is incorrect, the program will run incorrectly. You may
get the Windows error message, "Unrecoverable application
error".

The following table summarizes the ~ffect of the combination of
the Windows compiler options and the _export keyword:

Borland C++ User's Guide

Table 3.1: Compiler options and the _export keyword

Function flagged
with _export? Yes Yes Yes Yes No No No No

Function listed
in EXPORTS? Yes Yes No No Yes Yes No No

And the compiler -Wor -WE or -Wor -WE or -Wor -WE or -Wor -WE or
option is: -WO -WOE -WO -WOE -WO -WOE -WO -WOE

Will function
be exportable? Yes Yes Yes Yes Yes No Yes No

Will function
be exported? Yes Yes Yes Yes Yes Yes* No** No

The function will be exported in some sense, but, because the prolog and epilog won't be correct, the function
won't work as expected.

** This combination also makes little sense. It's inefficient to compile all functions as exportable if you don't actually
export some of them.

Memory models

You can use the small, medium, compact, or large memory
models with any kind of Windows executable, including DLLs.
Do not use the tiny or the huge model for any Windows
executable. Borland C++ doesn't restrict you from setting the tiny
or huge model either on the command line or in the IDE, but the
code that is generated won't work under Windows. See the
section "Linking .OBJ and .LIB files for DLLs" on page 118 for
more information.

Linking for Windows

In general, Borland C++ needs to take object files compiled with
the correct Windows options and then link them with the proper
Windows initialization code, run-time and math libraries, and a
module definition file. Settings in the Linker dialog box in the IDE
do this for you automatically; if you use TLINK, you must specify
all the options and files.

Chapter 3, Building a Windows application 115

Linking in the IDE

Linking with TLiNK

starting with this version,
TLINK is sensitive to the case

of its options.

With the Linker dialog box in the IDE, you can set link options for
a Windows application or DLL. Options in the IDE override
settings in the module definition file. This means if you check the
Windows EXE box instead of the Windows DLL box, and the
module definition file has a LIBRARY statement instead of a
NAME statement, the file will be linked as a Windows
application, not a DLL.

The linker uses the COWx.OBJ initialization file for applications
and the CODx.OBJ initialization file for DLLs, where x depends on
the memory model set in the Code Generation dialog box. For
both Windows options, the linker· uses the current project object
files and libraries, IMPORT. LIB, CWINx.LIB, MA THx.Lffi, and
Cx.LIB.

Borland C++ allows you to override the default setting for a
memory model, even with an incorrect model. See the discussion
of the Code Generation dialog box on page 61.

TLINK is discussed in detail in Chapter 7, "Utilities". This section
discusses only those aspects of TLINK that affect linking a Win
dows executable.

To provide a way to link a module definition file, the new syntax
of the TLINK command line is:

TLINK objjiles, exejile, mapjile, libjiles, deffile

For a list of TLINK messages (errors and warnings), see Chapter
7.

Linker options There are three options that you can pass to TLINK to control its
linkage of Windows executables and DLLs .

116

• Use the ITw option to create a Windows .EXE or .DLL according
to the settings in the module definition file. If you have a
NAME statement in the module definition file, TLINK will link
it as a Windows executable; if you have a LffiRARY statement
in the .DEF file, the files will be linked as a DLL.

If no module definition file is specified on the TLINK command
line, this option causes the files to be linked as a Windows .EXE.

Bor/and C++ User's Guide

Linking .OBJ and .LlB
files

Important! Do not link in
EMU.LlB or FP87.LlB. Borland

C++ takes care of the
floating-point math

automatically.

You don't need this option if you are using a module definition
file in which the EXETYPE statement specifies WINDOWS .

• Use the ITwe option to specify a Windows executable. This
overrides settings in the module definition file. For instance,
even if you have a LIBRARY statement in the include .DEF file,
TLINK will link the files as an .EXE.

II Use the ITwd option to specify a Windows DLL. This overrides
settings in the module definition file.

When you're linking a Windows executable, do not use the b
option to overlay files, or the It or ITde option to make a .COM
file.

The list of object files must begin with the file COWx.OBJ or
CODx.OBJ (for DLLs), followed by the names of the other object
files to link. User libraries and IMPORT. LIB can be included
anywhere on the list, although, by convention, they are usually
listed before the standard libraries. The other required libraries
must be in this order:

.. CWINx.LIB
II MATHx.LIB
.Cx.LIB

To create a Windows application executable, you might use this
response file, named WINRESP:

ITw Ie \BORLANDC\LIB\COWS winappl winapp2
winapp
winapp
\BORLANDC\LIB\IMPORT \BORLANDC\LIB\CWINS \BORLANDC\LIB\CS
;,rinapp.def

where

• The ITw option tells TLINK to generate a Windows application
or DLL. If a module definition file were not included in the link,
TLINK would create a Windows application. If the module
definition file is included and it contains instructions to create a
DLL, then TLINK will create a DLL.

• The Ie option tells TLINK to be sensitive to case during linking.

• \BORLANDC\LIB\COWS is the standard Windows
initialization file and WINAPPl and WINAPP2 are the
module's object files.

• WINAPP is the name of the target Windows executable.

Chapter 3, Building a Windows application 117

• TLINK will name the map file WINAPP.MAP.
• \BORLANDC\LIB\CWINS is the small memory model run

time library for Windows, LIB\CS is the regular run-time
library, and \ BORLANDC \ LIB \ IMPORT is the library that
provides access to the built-in Windows functions.

• WINAPP.DEF is the Windows module definition file for the
object files named.

To use this response file on the TLINK command line, type

TLINK @winresp

.. After linking the application or DLL, you must invoke the
Resource Compiler to add resources to the image. The Windows
3.x Resource Compiler also marks the image as Windows 3.x
compatible. Even if you have no resources, you need to run the
Resource Compiler.

Linking .OBJ and .LlB You need to link different .OBJ and .LIB files for a DLL than for a
files for DLLs Windows application. If the linker is invoked either from the IDE

or from the command-line compiler BCC or BCCX, the correct
.OBJ and .LIB files will be linked in automatically. If you invoke
TLINK explicitly, then you need to know which files to link in for
a DLL. The following table summarizes the memory models,
startup files, and hbraries:

Table 3.2
Startup and library files for

DLLs
Model

Small
Compact
Medium
Large

Startup file

CODS.OBJ
CODC.OBJ
CODM.OBJ
CODL.OBJ

Library

CWINC.Lffi
CWINC.Lffi
CWINL.Lffi
CWINL.Lffi

The compact memory model library is used for both small and
compact because it creates far data pointers and near code
pointers. The large memory model library is used for both
medium and large because it creates far data pointers as well as
far code pointers. DLLs can only have far pointers to data; near
pointers are not allowed.

Building a project for a Windows program

118

You can use the Project Manager to build Windows applications
and DLLs. Building a Windows program usually requires adding

Borland C++ User's Guide

a module definition file (.DEF) and resource file (.RC or .RES) to
the project.

Specifying an .RC file is similar to specifying a source file in a
project. The Project Manager will invoke the Resource Compiler
once to compile it to an .RES file, and a second time to bind the
.RES to the module and to mark the module as Windows
compatible. Specifying an .RES file is similar to specifying an
object file. The Project Manager will invoke the Resource
Compiler only to bind it to the module and to mark the module as
Windows-compatible.

For example, if you enter HELLO.CPP, HELLO.RC, and
HELLO.DEF into a project, the Borland C++ Project Manager will

• create HELLO. OBI by compiling HELLO.CPP with the C++
compiler

• create HELLO. RES by compiling HELLO.RC with the Resource
Compiler

• create HELLO.EXE by linking HELLO. OBI with its appropriate
libraries, using information contained in HELLO.DEF

• create the final HELLO.EXE by using the Resource Compiler to
bind the resources contained in HELLO. RES to HELLO.EXE

When you add an .RC file to a project, the Project Manager
automatically assigns the default translator to be the Resource
Compiler. In addition, the default output name is file. RES (not
file.OBI). Finally, "Exclude from Link" is selected because TLINK
should not link the resulting .RES file.

During a make, the Project Manager recompiles the .RC file if it is
newer than the .RES file, in the same way that it recompiles
HELLO.C if it is newer than HELLO. OBI. No autodependencies
are checked because that information is not available.

During a make, the Project Manager runs the Resource Compiler
after any relink because the Resource Compiler also marks the
image as Windows 3.x compatible. Even if you have no resources,
you need to run the Resource Compiler.

The Project Manager will not attempt to compile a file with the
.DEF extension.

Chapter 3, Building a Windows application 119

WinMain

The Win Main function is the main entry point for a Windows
application; you must supply it.

The following parameters are passed to Win Main:

int PASCAL WinMain(HANDLE hlnstance, HANDLE hPrevlnstance,
LPSTR IpCmdLine, int nCmdShow)

The HANDLE and LPSTR types are defined in windows.h.

HANDLE hlnstance is the instance handle of the application. Each
instance of a Windows application will have a unique instance
handle. This handle is used as an argument to several Windows
functions and can be used to distinguish between multiple
instances of a given application.

HANDLE hPrevlnstance is the handle of the previous instance of
this application. hPrevlnstance is NULL if this is the first instance.

LPSTR lpCmdLine is a far pointer to a null-terminated command
line string. This value can be specified when invoking the
application from the program manager or from a call to Win Exec.

int nCmdShow is an integer which specifies how to display
the application's window. This value should be passed to
ShowWindow. See documentation on ShowWindow for the
possible values nCmdShow may take on.

The return value from WinMain is not currently used by Win
dows. However, it can be useful during debugging since Turbo
Debugger can display this value upon termination of your
program.

The Resource Compiler

120

The Resource Compiler does three things

• it compiles resource script files (.RC) and the resource files
(.lCD, .CUR, and so on) into a binary file (.RES)

• it binds compiled resources to a compiled and linked
application

• it marks the .EXE or .DLL as Windows 3.x compatible

Bor/and C++ User's Guide

Resource
Compiler syntax

Windows resources are icons, dialog boxes, fonts, menus, cursors,
and bitmaps. These resources are created independently of the
application or DLL. See the Resource Toolkit for more information
on creating resources.

From the IDE, the Resource Compiler is invoked by the Project
Manager when building a Windows project. Any .RC file (source
file) included in a project causes Borland C++ to invoke the
Resource Compiler to compile it to a .RES file. Then, after TLINK
has linked the project's application or DLL, the Resource Compiler
marks and binds the resources to it.

From the command line, you can compile the resource files you
want to use in your Windows application with the Resource
Compiler. When you're ready to build the application, you use the
Resource Compiler to bind the .RES file to the .EXE or .DLL.

In a make file, add the .RES file to the list of files in the explicit
rule that governs the build of the final .EXE. In that rule, also add
the command to invoke the Resource Compiler with the correct
.RES file. You can also add a rule to invoke the Resource Compiler
on an out-of-date .RES file. See the example of a make file on page
109.

This is how you invoke the Resource Compiler from the
command line:

RC [options] ResourceFile [ModuleFile]

For example, to compile WHELLO.RC file and add it to
WHELLO.EXE, you would give this command line:

rc whello

This simplest form only works if the resource file and the
executable file share the same name. If WHELLO.RC was instead
named WHELLORS.RC, you would type

rc whellors whello

To compile only the WHELLO.RC resource file (and not add the
resulting WHELLO.RES to WHELLO.EXE), use the -R option,
like this:

rc -r whello

Chapter 3, Building a Windows application 121

You would then have a WHELLO.RES file. To add WHELLO.RES
to WHELLO.EXE, type

rc whello.res

To mark a module as Windows-compatible, but not add any
resources to it, simply invoke the Resource Compiler with the
module name (note that the file name must have one of these
extensions: .EXE, .DLL, or .DRV). For example,

rc whello.exe

The following table describes the Resource Compiler options.
Note that Resource Compiler options are not case sensitive (-e is
the same as -E). Also, options that take no arguments can be
combined (for instance, -kpr is legal).

Table 3.3: Resource Compiler options

Option

-?
-d Symbol
-e
-fe FileName
-fo FileName
-h
-i Path

-k

-I

-lim32
-m

-multinst
-p

-r
-t

-v
-x

122

What it does

Lists help on Resource Compiler options (also -H).
Defines Symbol for the preprocessor.
Changes location of global memory for a DLL to above the EMS bank line
Renames the .EXE file to FileName.
Renames the .RES file to FileName.
Lists help on Resource Compiler options (also -?).
After searching the current directory for include files and resource files, RC searches
the directory named in Path. The -i option can be repeated if you want to specify
more than one search path. Also see the description for the -x option.
Turns off load optimization for segments and resources. (Normally, the Resource
Compiler preloads all data segments, nondiscardable code segments, and the
entry-point code segment, even if the segments were not marked as PRELOAD in
the module definition file. In addition, the Resource Compiler normally places all
preloaded segments in a contiguous area in the executable file.)
Informs Windows that the application will be using expanded memory, according
to the LIM 3.2 specification.
Same as -I option.
Assigns each instance of a task to a different EMS bank, if the expanded memory
under Windows is configured under EMS 4.0.
Same as -m option.
Makes a DLL private to one or more instances of a single application, which might
result in performance gains.
Compile the .RC file into a .RES file, but do not add it to an .EXE.
Creates application to be run only in standard mode or 386 enhanced mode
(protected mode). If the user tries to run in real mode, a message will be displayed.
Display all compiler progress messages (compile verbose).
Excludes searching in the directories named in the INCLUDE environment variable.
Also see the description for the -i option.

Borland C++ User's Guide

Dynamic link libraries

Compiling and
linking a DLL

within the IDE

Compiling and
linking a DLL from

the command
line

A dynamic link library (DLL) is a library of functions that a Win
dows module can call to accomplish a task. If you've written a
Windows application, then you've already used DLLs. The files
KERNEL.EXE, USER.EXE, and GDLEXE are actually DLLs, not
applications (as the .EXE extension implies). The references to the
API functions that you call from these modules are resolved at
run time (dynamic linking), instead of at link time (static linking).

To compile and link a DLL from within the IDE, follow these
steps:

1. Create the DLL source files. Optionally, create the resource file
and the module definition file.

2. Choose Project I Open to start a new project.

3. Choose Project I Add item, and add the source and resource
files for the DLL.

4. If you have created a module definition file for the DLL, add it
to the project. (Note that Borland C++ can link without one.)

5. Choose Options I Application I Windows dynamic link library.

To link without a module definition file for the DLL, you must
have flagged every function to be exported in the DLL with
the keyword _export. (The _export keyword should
immediately precede the function name.) In addition, choose
Options I Compiler I Entry/Exit Code I Windows DLL explicit
functions exportable.

6. Choose Compile I Build all.

To compile and link a DLL composed of the source file
LIBXAMP.CPP, type

Bee -ND libxamp.cpp

The command-line compiler takes care of linking in the correct
startup code and libraries. The -WO option tells the compiler to
build a Windows DLL with all functions exportable. To compile
and link with explicit functions exportable, you would use the
-WOE option and use the _export keyword for export functions.

Chapter 3, Building a Windows application 123

To link a DLL with the command-line linker TLINK, you might
use this command line

TLINK ITwd Iv Ie ILC:\BORLANDC\LIB cOds libxamp, libxamp, , cwinc cs
import,libxamp

The ITwd option indicates a Windows DLL, Iv tells TLINK to
include debugging information, and Ie forces case to be significant
in public and external symbols. The IL option specifies a library
and startup file search path.

See page 118 for an explanation of the library and object files
needed to link a DLL.

Module definition files A module definition file is not strictly necessary to link either a
DLL or a Windows application. See page 250 for information on
default module definition file replacement settings.

There are two ways to tell the linker about export functions:

• To link with a module definition file, create an EXPORTS
section in the module definition file that lists all the functions
that will be used by other applications. (A utility called
IM:PDEF can help you do this, see page 190.)

• To link without a module definition file, you must flag every
function to be exported in the DLL with the keyword _export.
In addition, when you build or link the DLL, you must choose
Options I Compiler I Entry/Exit Code I Windows DLL Explicit
Functions Exportable.

A function must be exported from a DLL before it can be
imported to another DLL or application.

Import libraries If a Windows application module or another DLL uses functions
from a DLL, you have two ways to tell the linker about them:

• You can add an IM:PORTS section to the module definition file
and list every function from DLLs that the module will use.

• Or you can include the import library for the DLLs when you
link the module. (A utility called IM:PLIB creates an import
library for one or more DLLs; see page 192 for details.)

124 Borland C++ User's Guide

Creating DLLs
The following sections provide information on the specifics of
writing a DLL.

LibMain and WEP The LibMain function is the main entry point for a Windows DLL;
you must supply it yourself.

Windows calls LibMain once, when the library is first loaded.
LibMain performs initialization for the DLL. This initialization
depends almost entirely on the function of the particular DLL, but
might include the following tasks:

• Unlocking the data segment with UnlockData, if it has been
declared as MOVEABLE

• Setting up global variables for the DLL, if it uses any

• Registering Windows for the DLL

Note The DLL startup code CODx.OBJ initializes the local heap
automatically; you do not need to include code in LibMain to do
this.

This function is called by Windows (actually by the run-time
library) upon DLL initialization. You must supply it when
building a DLL. The following parameters are passed to LibMain:

int PASCAL LibMain (HANDLE hInstance, WORD wDataSeg,
WORD cbHeapSize, LPSTR lpCmdLine)

HANDLE, WORD, and LPSTR are defined in windows.h

HANDLE hlnstance is the instance handle of the DLL.

WORD wDataSeg is the value of the data segment (DS) register.

WORD cbHeapSize is the size of the local heap specified in the
module definition file for the DLL.

LPSTR IpCmdLine is a far pointer to the command line specified
when the DLL was loaded. This is almost always null since DLLs
are typically loaded automatically with no parameters. It is
possible, however, to supply a command line to a DLL when it is
loaded explicitly.

The return value for LibMain is either 1 (successful initialization)
or 0 (failure in inititalization). If 0, Windows will unload the DLL
from memory.

Chapter 3, Building a Windows application 125

The exit point of a DLL is the function WEP (which stands for
Windows exit procedure). This function is not necessary in a DLL
(since the Borland c++ run-time libraries provide a default one)
but can be supplied by the writer of a DLL to perform any
cleanup of the DLL before it is unloaded from memory. Windows
will call the WEP procedure just prior to unloading the DLL.

WEP should perform any cleanup required for the DLL. Under
Borland C++, WEP does not need to be exported. Borland C++
defines its own WEP that calls your WEP, and then performs
system cleanup. This is the prototype for WEP:

int FAR PASCAL REP (int nPararneter)

int nParameter is either WEP _SYSTEMEXIT or WEP _FREE_DLL.
The former means that all of Windows is shutting down and the
latter indicates that just this DLL is being unloaded.

WEP should return 1 to indicate success. Windows currently
doesn't do anything with this return value.

Pointers and memory Functions in a DLL are not linked directly into a Windows
application, they are called at run time. This means that calls to
DLL functions will be far calls, because the DLL will have a
different code segment than the application. The data used by
called DLL functions will need to be far as well.

126

Let's say you have a Windows application called APPi, a DLL
defined by LSOURCE1.C, and a header file for that DLL called
lsource1.h. Function f1, which operates on a string, is called by the
application.

If you want the function to work correctly regardless of the
memory model the DLL will be compiled under, you need to
explicitly make the function and its data far. In the header file, the
function prototype would take this form:

extern FAR f(char FAR *dstring);

In the DLL, the implementation of the function would take this
form:

far fl(char far *dstring)
{

For the function to be used by the application, the function would
also need to be compiled as exportable and then exported. To

Bor/and C++ User's Guide

c++ classes and
pointers

accomplish this, you can either compile the DLL with all functions
exportable (-WD) and list f1 in the EXPORTS section of the
module definition file, or you can flag the function with the
_export keyword, like so:

far _export fl(char far *dstring)
{

If you compile the DLL under the large model (far data, far code),
then you don't need to explicitly define the function or its data far
in the DLL. In the header file, the prototype would still take this
form

extern FAR f(char FAR *dstring);

because the prototype would need to be correct for a module
compiled with a smaller memory model. But in the DLL, the
function could be defined like this:

_export fl(char *dstring)
{

Static data in DLLs

Through a DLL's functions, all applications using the DLL have
access to that DLL's global data. A particular function will use the
same data, regardless of the application that called it. If you want
a DLL's global data to be protected for use by a single application,
you would need to write that protection yourself. The DLL itself
does not have a mechanism for making global data available to a
single application. If you need data to be private for a given caller
of a DLL, you will need to dynamically allocate the data and
manage the access to that data manually. Static data in a DLL is
global to all callers of a DLL.

A C++ class that is used only inside a DLL does not need to be
declared as far. If the class is to be used from another DLL or a
Windows application, then it requires special handling.

All of the the data members and member functions of a shared
class need to be far. This can be accomplished by declaring the
class members as far or compiling the DLL under the large

Chapter 3, Building a Windows application 127

128

memory model. The classes also must be exported, which can be
accomplished two different ways:

• either include the names of all the class members in the
EXPORTS section of the module definition file, then compile
the DLL with the compiler option that makes all functions
exportable (-WD)

• or mark the entire class with the _export keyword, and compile
the DLL with the compiler option that makes explicit functions
exportable (-WDE)

c++ classes use virtual table pointers and include a hidden this
pointer. Both of these pointers need to be far pointers as well.
There are two basic ways to accomplish this.

One way is to simply compile the DLL modules and the
application using the DLL with the Far C++ Virtual Table Pointers
option (Options I Compiler I C++ options in the IDE or -Vf from
the command line). This causes all virtual table pointers and this
parameters to be full 32-bit pointers. The advantage of this
approach is that it does not require any source code changes. It
may be less efficient than possible, though; all classes, shared or
not, suffer the overhead of 32-bit pointers.

A more efficient approach is to declare the shared classes huge
instead of far. This tells the compiler to use full 32-bit pointers for
those classes only. Note that a huge class can only inherit from
other huge classes. Here is an example of a huge class declaration:

class huge DLLclass
{

etc ...
};

For a class that is defined in a DLL to be usable from a Windows
application, its non-inline member functions and static data
members must be made available by making them exported
names. This can be done by adding their public (mangled) names
to the EXPORTS section of the DLL module definition file, but this
can be rather tedious.

There's an easier alternative: declare the classes to be exported as
_export. Whenever a class is declared as _export, Borland C++
treats it as huge (with 32-bit pointers), and automatically exports
all of its non-inline member functions and static data members. If

Borland C++ User's Guide

you declare a class as _export, you can't also declare it as far or
huge. Lexport implies huge, which implies far.)

If you declare the class in an include file that is included both by
the DLL source files and by the source files of the application
using the DLL, such a class should be declared _export when
compiling the DLL, and merely huge when compiling the
application. To do this, you can use the __ DLL __ macro, which is
defined by the compiler when it's building a DLL. The following
code could be a part of an include file that defines a shared class:

#ifdef DLL
#define EXPORT _export
#else
#define EXPORT huge
#endif

class EXPORT DLLclass
{

... etc ...
};

Note that the compiler encodes (in the mangled name) the
information that a given class member is a member of a huge
class. This ensures that when a program using huge and non
huge classes is linked, any mismatches are caught by the linker.

Chapter 3, Building a Windows application 129

130 Borland C++ User's Guide

c H A p T E R

4

Managing multi-file projects

Since most programs consist of more than one file, having a way
to automatically identify those that need to be recompiled and
linked would be ideal. Borland C++'s built-in Project Manager
does just that and more.

The Project Manager allows you to specify the files belonging to
the project. Whenever you rebuild your project, the Project
Manager automatically updates the information kept in the
project file. This project file, which includes

• all the files in the project
• where to find them on the disk
• which files depend on which other files being compiled first

(auto-dependency issues)

• which compilers and command-line options need to be used
when creating each part of the program

II where to put the resulting program
,. code size, data size, and number of lines from the last compile

Using the Project Manager is easy. To build a project,

• pick a name for the project file (from Project I Open Project)

• add source files using the Project I Add Item dialog box

• tell Borland C++ to Compile I Make EXE File

Then, with the project-management commands available on the
Project menu, you can

Chapter 4, Managing multi-file projects 131

• add or delete files from your project

• set options for a file in the project
• view included files for a specific file in the project

All the files In this chapter are Let's take a look at an example of how the Project Manager works.
in the Examples directory.

Using the project manager

If you have project files from
Turbo C, use the utility

PRJCNVT.EXE to convert
them,' for details, see

UTfL.DOC on disk.

132

Suppose you have a program that consists of a main source file,
MYMAIN.C, a support file, MYFUNCS.C, that contains functions
and data referenced from the main file, and myfuncs.h.
MYMAIN.C looks like this:

tinclude <stdio.h>
Unclude "myfuncs.h"

main (int argc, char *argv[))
{

char *s;

if (argc > 1)
s = argv[l);

else
s = "the universe";

printf("%s %s.\n",GetString(),s);

MYFUNCS.C looks like this:

char ss [) = "The restaurant at the end of";

char *GetString(void)
{

return ss;

And myfuncs.h looks like this:

extern char *GetString(void);

These files make up the program that we'll now describe to the
Project Manager.

Borland C++ User's Guide

These names can be the
same (except for the exten

sions), but they don't have to
be. The name of your

executable file (and any
map file produced by the

linker) is based on the project
file:Sname.

If the project file you load is
in another directory,"the

current directory will be set
to where the project file is

loaded.

You can change the file
name specification to

whatever you want with the
Name input box,' *. C is the

default.

The first step is to tell Borland C++ the name of the project file
that you're going to use: Call it MYPROG.PRJ. Notice that the
name of the project file is not the same as the name of the main
file (MYMAIN.C). And in this case, the executable file will be
MYPROG.EXE (and if you choose to generate it, the map file will
be MYPROG.MAP).

Press Alt-P to go to the Project menu and choose Open Project. This
brings up the Load Project File dialog box, which contains a list of
all the files in the current directory with the extension .PRJ, and
date, time, and size information about the first project file. Since
you're starting a new file, type in the name MYPROG in the Load
Project File input box.

Notice that once a project is opened, the Add Item, Delete Item,
Local Options, and Include Files options are enabled on the
Project menu.

You can keep your project file in any directory; to put it
somewhere other than the current directory, just specify the path
as part of the file name. (You must also specify the path for source
files if they're in different directories.) Note that all files and
corresponding paths are relative to the directory where the project
file is loaded from. After you enter the project file name, you'll see
a Project window.

The Project window contains the current project file name
(MYPROG) and information about the files you've selected to be
part of your current project. For each file, the name and path
(location) are shown. Once the file is compiled, it also shows the
number of lines in the file and the amount of code and data in
bytes generated by the compiler.

The status line at the bottom of the screen shows which actions
can be performed at this point: F1 gives you help, Ins adds files to
the Project, Del deletes a file from the Project, Ctrl-O lets you select
options for a file, Spacebar lets you view information about the
include files required by a file in the Project, Enter opens an editor
window for the currently selected file, and F10 takes you to the
main menu. Press Ins now to add a file to the project list.

The Add Item to Project List dialog box appears; this dialog lets
you select and add source files to your project. The Files list box
shows all files with the .C extension in the current directory.
(MYMAIN.C and MYFUNCS.C both appear in this list.) Three
action buttons are available: Add, Cancel, and Help.

Chapter 4, Managing multi-file projects 133

If you copy the wrong file to
the Project window, press Esc

to return to the Project
window, then Del to remove
the current file (marked with

a.) from the list.

Note that the Add button
commits your change;

pressing Esc when you're in
the dialog box just puts the

dialog box away.

134

You can also view your
output by choosing

Window I Output.

Since the Add button is the default, you can place a file in the
Project window by typing its name in the Name input box and
pressing Enter or by choosing it in the Files list box. You can also
search for a file in the Files list box by typing the first few letters
of the one you want. In this case, typing my should take you right
to MYFUNCS.C; press Enter. You'll see that MYFUNCS gets added
to the Project window and then you're returned to the Add Item
dialog box to add another file. Go ahead and add MYMAIN.C.
Borland c++ will compile files in the exact order they appear in
the project.

Press Esc to close the dialog box and return to the Project window.
Notice that the Lines, Code, and Data fields in the Project window
show n/ a. This means the information is not available until the
modules are actually compiled.

I;: File Edit Search Proj ect Opt ions Wi ndow Help
-----------------1~

===4=I.t]'91

B •

After all compiler options and directories have been set, Borland
C++ will know everything it needs to know about how to build
the program called MYPROG.EXE using the source code in
MYMAIN.C, MYFUNCS.C, and myfuncs.h. Now you'll actually
build the project.

Press FlO to go to the main menu. Now make MYPROG.EXE by
pressing F9 (or choose Compile I Make EXE File). Then run your
program by pressing Ctrl-F9 (or choose Run I Run). To view your
output, choose Window I User Screen (or press Alt-F5), then press
any key to return to the IDE.

Borland C++ User's Guide

For more information on .PRJ
and .DSK files, refer to the

section, "Project and
configuration files," in

Chapter 2.

You can specify a project to
load on the DOS command
line like this: Be myprog.prj.

Error tracking

Changing these fifes makes
them out of date with their

object files, so doing a make
will recompile them.

When you leave the IDE, the project file you've been working on
is automatically saved on disk; you can disable this by uncheck
ing Project in the Preferences dialog box (Options I Environment).

The saved project consists of two files: the project file (.PRJ) and
the desktop file (.DSK). The project file contains the information
required to build the project's related executable (.EXE). The build
information consists of compiler options,
INCLUDE/LIB/OUTPUT paths,linker options, make options,
and transfer items. The desktop file contains the state of all
windows at the last time you were using the project.

The next time you use Borland C++, you can jump right into your
project by reloading the project file. Borland C++ automatically
loads a project file if it is the only .PRJ file in the current directory;
otherwise the default project and desktop (TCDEF.*) are loaded.
Since your program files and their corresponding paths are
relative to the project file's directory, you can work on any project
by moving to the project file's directory and bringing up Borland
C++. The correct file will be loaded for you automatically. If no
project file is found in the current directory, the default project file
is loaded.

As with single-file programs, syntax errors that generate compiler
warning and error messages in multifile programs can be selected
and viewed from the Message window.

To see this, let's introduce some syntax errors into the two files,
MYMAIN.C and MYFUNCS.C. From MYMAIN.C, remove the
first angle bracket in the first line and remove the c in char from
the fifth line. These changes will generate five errors and two
warnings in MYMAIN.

In MYFUNCS.C, remove the first r from return in the fifth line.
This change will produce two errors and one warning.

Since you want to see the effect of tracking in multiple files, you
need to modify the criterion Borland C++ uses to decide when to
stop the make process. This is done by setting a radio button in
the Make dialog box (Options I Make).

Chapter 4, Managing multi-file projects 135

Stopping a make

136

Syntax errors in
multiple source

files

You can choose the type of message you want the make to stop on
by setting one of the Break Make On options in the Make dialog
box (Options I Make). The default is Errors, which is normally the
setting you'd want to use. However, you can have a make stop
after compiling a file with warnings, with errors, or with fatal
errors, or have it stop before it tries to link.

The usefulness of each of these modes is really determined by the
way you like to fix errors and warnings. If you like to fix errors
and warnings as soon as you see them, you should set Break
Make On to Warnings or maybe to Errors. If you prefer to get an
entire list of errors in all the source files before fixing them up,
you should set the radio button to Fatal Errors or to Link. To de
monstrate errors in multiple files, choose Fatal Errors in the Make
dialog box.

Since you've already introduced syntax errors into MYMAIN.C
and MYFUNCS.C, go ahead and press F9 (Make) to "make the
project." The Compiling window shows the files being compiled
and the number of errors and Warnings in each file and the total
for the make. Press any key when the Errors: Press any key
message flashes.

Your cursor is now positioned on the first error or warning in the
Message window. If the file that the message refers to is in the
editor, the highlight bar in the Edit window shows you where the
compiler detected a problem. You can scroll up and down in the
Message window to view the different messages.

Note that there is a "Compiling" message for each source file that
was compiled. These messages serve as file boundaries, separat
ing the various messages generated by each module and its in
clude files. When you scroll to a message generated in a different
source file, the Edit window will only track in files that are
currently loaded.

Thus, moving to a message that refers to a file that is not loaded
causes the Edit window's highlight bar to tum off. Press Spacebar
to load that file and continue tracking; the highlight bar will re
appear. If you choose one of these messages (that is, press Enter
when positioned on it), Borland C++ loads the file it references

Borland C++ User's Guide

Saving or deleting

into an Edit window and places the cursor on the error. If you
then return to the Message window (press Alt-W M), tracking
resumes in that file.

The Source Tracking options in the Preferences dialog box
(Options I Environment) help you determine which window a file
is loaded into. You can use these settings when you're message
tracking and debug stepping.

Note that Previous message and Next message (Alt-F7 and Aft-F8)
are affected by the Source Tracking setting. These commands will
always find the next or previous error and will load the file using
the method specified by the Source Tracking setting.

messages Normally, whenever you start to make a project, the Message
window is cleared out to make room for new messages. Some
times, however, it is desirable to keep messages around between
makes.

Consider the following example: You have a project that has
many source files and your program is set to stop on Errors. In
this case, after compiling many files with warnings, one error in
one file stops the make. You fix that error and want to find out if
the compiler will accept the fix. But if you do a make or compile
again, you lose your earlier warning messages. To avoid this,
check Save Old Messages in the Preferences dialog box (Options I
Environment). This way the only messages removed are the ones
that result from the files you recompile. Thus, the old messages
for a given file are replaced with any new messages that the com
piler may generate.

You can always get rid of all your messages by choosing
Compile I Remove Messages, which zaps all the current messages.
Unchecking Save Old Messages and running another make will
also get rid of any old messages.

The power of the Project Manager

When you made your previous project, you dealt with the most
basic situation: a list of C source file names. The Project Manager
provides you with a lot of power to go beyond this simple
situation.

Chapter 4, Managing multi-file projects 137

Autodependency
checking The Project Manager collects auto dependency information at

compile time and caches these so that only files compiled outside
the IDE need to be processed. The Project Manager can automat
ically check dependencies between source files in the project list
(including files they themselves include) and their corresponding
object files. This is useful when a particular C source file depends
on other files. It is common for a C source to include several
header files (.h files) that define the interface to external routines.
If the interface to those routines changes, you'll want the file that
uses those routines to be recompiled.

If you've checked the Auto-Dependencies option (Options I Make),
Make obtains time-date stamps for all .C files and the files in
cluded by these. Then make compares the date/time information
of all these files with their date/time at last compile. If any
date/time is different, the source file is recompiled.

If the Auto-Dependencies option is unchecked, the .C files are
checked against .OBI files. If earlier.C files exist, the source file is
recompiled.

When a file is compiled, the IDE's compiler and the command-line
compiler put dependency information into the .OBI files. The
Project Manager uses this to verify that every file that was used to
build the .OBI file is checked for time and date against the time
and date information in the .OBI file. The.C source file is
recompiled if the dates are different.

That's all there is to dependencies. You get the power of more
traditional makes while avoiding long dependency lists.

Using different file translators

138

So far you've built projects that use Borland c++ as the only
language translator. Many projects consist of both C code and
assembler code, and possibly code written in other languages. It
would be nice to have some way to tell Borland C++ how to build
such modules using the same dependency checks that we've just
described. With the Project Manager, you don't need to worry
about forgetting to rebuild those files when you change some of

Borland C++ User's Guide

the source code, or about whether you've put them in the right
directory, and so on.

For every source file that you have included in the list in the
Project window, you can specify

• which program (Borland C++, TASM, and so on) is to be used
to make its target file

• which command-line options to give that program

• whether the module is to be an overlay

• what the resulting module is called and where it will be placed
(this information is used by the project manager to locate files
needed for linking)

• whether the module should contain debug information

• whether the module should be included in the link

By default, the IDE's compiler is chosen as the translator for each
module, using no command-line override options, using the
Output directory for output, assuming that the module is not an
overlay, and assuming that debug information is not to be
excluded.

Let's look at a simple example. Go to the Project window and
move to the file MYFUNCS.C. Now press Ctrl-O to bring up the
Override Options dialog box for this file:

Chapter 4, Managing multi-file projects 139

140

Except for Borland C++, each of the names in the Project File
Translators list box is a reference to a program defined in the
Transfer dialog box (Options I Transfer).

Press Esc, then F10 to return to the main menu, then choose
Options I Transfer. The Transfer dialog box that appears contains a
list of all the transfer programs currently defined. Use the arrow
keys to select Turbo Assembler and press Enter. (Since the Edit
button is the default, pressing Enterbrings up the Modify/New
Transfer Item dialog box.) Here you see that Turbo Assembler is
defined as the program TASM in the current path. Notice that the
Translator check box is marked with an X; this translator item is
then displayed in the Override Options dialog box. Press Esc to
return to the Transfer dialog box.

Suppose you want to compile the MYFUNCS module using the
Borland C++ command-line compiler instead of the IDE's
compiler. To do so, you would perform the following steps:

1. First, you need to define BCC as one of the Project File
Translators in the Transfer dialog box. Cursor past the last
entry in the Program Titles list, then press Enter to bring up the
Modify /New Transfer Item dialog box. In the Program Title
input box, type Borland Ctt Command-Line Compiler; in the
Program Path input box, type BCC; and in the command line,
type $EDNAME.

2. Then check Translator by pressing Spacebar and press Enter
(New is the default action button). Back at the Transfer dialog
box, you see that Borland C++ command-line (compiler doesn't
show) is now in the Program Titles list box. Tab to OK and
press Enter.

3. Back in the Project window, press Ctrl-O to go to the Override
Options dialog box again. Notice that Borland c++ Command
Line Compiler is now a choice on the Project File Translators list
for MYFUNCS.C (as well as for all of your other files).

Tab to the Project File Translators list box and highlight
Borland C++ Command-Line Compiler (at this point, pressing
Enter or tabbing to another group will choose this entry). Use
the Command-Line Options input box to add any command
line options you want to give BCC when compiling
MYFUNCS.

MYFUNCS.C now compiles using BCC.EXE, while all of your
other source modules compile with BC.EXE. The Project Manager

Borland C++ User's Guide

will apply the same criteria to MYFUNCS.C when deciding
whether to recompile the module during a make as it will to all
the modules that are compiled with BC.EXE.

Overriding libraries

In some cases, it's necessary to override the standard startup files
or libraries. You override the startup file by placing a file called
COx.OBJ as the first name in your project file, where x stands for
any DOS name (for example, COMINE.OBJ). It's critical that the
name start with CO, that it is the first file in your project, and that
it have an explicit .OBJ extension.

To override the standard library, all you need to do is place a
special library name anywhere in the list of names in the Project
window. The name of the library must start with a C, followed by
a letter representing the model (such as S for the small model); the
remaining characters, up to six, can be anything you want for a
file name. You must use an explicit .LIB extension (for example,
CSMYFILE.LIB or CSNEW.LIB).

When the standard library is overridden, MAKE will not try to
link in the math libraries (based on the Floating Point setting in
the Advanced Code Generation dialog box of the Options I
Compiler menu). If you want these libraries linked in when you
override the standard library, you must explicitly include them in
the Project.

More Project Manager features

Let's take a look at some of the other features the Project Manager
has to offer. When you're working on a project that involves many
source files, you want to be able to easily view portions of those
files, and be able to record notes about what you're doing as
you're working. You'll also want to be able to quickly access files
that are included by others. The Project Manager provides these
features and more.

For example, expand MYMAIN.C to include a call to a function
named GetMyTime:

#include <stdio.h>
#include "myfuncs.h"

Chapter 4, Managing multi-file projects 141

142

#include "mytime.h"

main (int argc, char *argv[])
{

char *s;

if (argc > 1)
s = argv[l];

else
s = "the universe";

printf ("%s %s opens at %d. \n", GetString (), s, GetMyTime (HOUR)) ;

This code adds two include files to MYMAIN: myfuncs.h and
mytime.h. These files contain the prototypes that define the
GetString and GetMyTime functions, which are called from
MYMAIN. myfuncs.h contains

extern char *GetString(void);

mytime.h contains

#define HOUR 1
#define MINUTE 2
#define SECOND 3
extern int GetMyTime(int);

Go ahead and put the actual code for GetMyTime into a new
source file called MYTIME.C:

#include <time.h>
#include "mytime.h"

int GetMyTime(int which)
{

struct tm
time t

*timeptr;
secsnow;

time(&secsnow);
timeptr = localtime(&secsnow);
switch (which) {

case HOUR:
return (timeptr -> tm_hour);

case MINUTE:
return (timeptr -> tm_min);

case SECOND:
return (timeptr -> t~sec);

MYTIME includes the standard header file time.h, which contains
the prototype of the time and localtime functions, and the

Borland C++ User's Guide

Looking at files in
a project

definition of tm and time_t, among other things. It also includes
mytime.h in order to define HOUR, MINUTE, and SECOND.

Create these new files, then use Project I Open Project to open
MYPROG.PR}. The files MYMAIN.C and MYFUNCS.C are still in
the Project window. Now to build your expanded project, you
add the file name MYTIME.C to the Project window. Press Ins (or
choose Project I Add Item) to bring up the Add Item dialog box. If
you placed MYTIME.C in the current directory, use the Files list
box to choose it now. If MYTIME.C is in a different directory, tab
to the Name input box and type in MYTIME.C and its path. Once
you've used either of these methods, press Enter to actually add
the file. The Add button is the default action button.

Now press F9to make the project. MYMAIN.C will be recompiled
because you've made changes to it since you last compiled it.
MYFUNCS.C won't be recompiled, because you haven't made
any changes to it since the make in the earlier example.
MYTIME.C will be compiled for the first time.

In the MYPROG project window, move to MYMAIN.C, and press
Spacebar (or Project I Include Files) to display the Include Files
dialog box. This dialog box contains the name of the selected file,
several buttons, and a list of include files and locations (paths).
The first file in the Include Files list box is highlighted; the list box
lists all the files that were included by the file MYMAIN.C. If any
of the include files is located outside of the current directory, the
path to the file is shown in the Location field of the list box.

As each source file is compiled, the information about which
include files are included by which source files is stored in the
source file's .OB} file. If you access the Include Files dialog box
before you perform a make, it might contain no files or it might
have filesJeft over from a previous compile (which may be out of
date). To load one of the include files into an Edit window,
highlight the file you want and press Enter (or click on View).

Let's take a look at MYMAIN.C, one of the files in the Project.
Simply choose the file using the arrow keys or the mouse, then
press Enter. This brings up an edit window with MYMAIN.C
loaded. Now you can make changes to the file, scroll through it,
search for text, or whatever else you need to do. When you are
finished with the file, save your changes if any (F2), then press Alt
F3 to close the Edit window.

Chapter 4, Managing multi-file projects 143

144

Notes for your

Suppose that after browsing around in MYMAIN.C, you realize
that what you really wanted to do was look at mytime.h, one of
the files that MYMAIN.C includes. Highlight MYMAIN.C in the
Project window, then press Spacebar to bring up the Include Files
dialog box for MYMAIN. (Alternatively, while MYMAIN.C is the
active Edit window, select Project I Include Items or Alt-P I.) Now
choose mytime.h in the Include Files box and press the View
button. This brings up an Edit window with mytime.h loaded.
When you're done, press Alt-F3 to close the mytime.h Edit
window.

project Now that you've had a chance to see the code in MYMAIN.C and
mytime.h, you've decided you'll optimize it as soon as you can.
Choose Window I Project Notes. This brings up a new Edit
window that is kept as part of your project file. Type in the
following:

Change History:

Chuck G.

Added check for out of memory in DBADDFIELD.

Harry B.

Fixed bug 0183.

Each project maintains its own notes file, so that you can keep
notes that go with the project you're currently working on; they're
at the touch of a button as soon as you select the project file. Press
Alt-F3 now to close the Project Notes Edit window.

Borland C++ User's Guide

c H

You might want to read this
chapter even if you are

familiar with the editor in
other Borland language

products. The Programmer's
Platform (the IDE) includes

improvements to the editor.
Context-sensitive help is

always just a keystroke away
(Ft).

A p T E R

5

The editor from A to Z

This chapter is a reference to the IDE's full range of editing com
mands. Table 5.1 contains a list of all of the editor commands; the
tables and text that follow it cover those aspects of the editor that
need further explanation.

Remember, this chapter is concerned just with the editor. For an
in-depth discussion of the Programmer's Platform as a whole,
refer to Chapter 1. For a detailed reference to each menu and
option, see Chpater 2.

The new and the old

You can still use Borland's familiar hot key combinations to move
around your file, insert, copy, and delete text, and search and
replace. However, you now have two brand-new menus on the
menu bar: the Edit menu and the Search menu. In addition, you
can use a mouse to accomplish many of the cursor movement and
block-marking key commands.

The Edit menu contains commands for cutting, copying, and
pasting in a file, cupying examples from Help to an Edit Window,
and viewing the Clipboard. When you first start the IDE, an Edit
window is already active. To open other Edit windows, go to the
File menu and choose Open. From an Edit window, you still press
F10 to get to the menu bar; to return to the Edit window, keep

Chapter 5, The editor from A to Z 145

pressing Esc until you are out of the menus. If you have a mouse,
you can also just click anywhere in the Edit window.

... As always, you enter text pretty much as if you were using a type
writer. To end a line, press Enter. When you've entered enough
lines to fill the screen, the top line scrolls off the screen. Don't
worry, it isn't lost, and you can move back and forth in your text
with the scrolling commands that are described later.

If you want to undo some changes, you can use the Undo
command, described in detail on page 34 in Chapter 2.

Editor reference

146

Table 5.7 summarizes aI/
editor commands.

Table 5.1
Full summary of editor

commands

A word is defined as a
sequence of characters
separated by one of the
following: space < > , :
.()()"'*+-/$

#_=I-?!"%&:
@ \, and all control and

graphic characters.

The editor is much more powerful than the quick tutorial can
show. In addition to the menu choices, it uses approximately 50
commands to move the cursor around, page through text, find
and replace strings, and so on. These commands can be grouped
into four main categories:

• Cursor movement
• Insert and delete operations
• Block operations
• Miscellaneous editing operations

Most of these commands need no explanation. Those that do are
described in the text followmg Table 5.1.

Movement

Cursor movement commands

Basic cursor movement
Character left
Character right
Word left
Word right
Lineup
Line down
Scroll up one line
Scroll down one line
Page up
Page down

Command

~

~

Ctrl~
Ctr/~
l'
J.
Ctrl-W
Ctrl-Z
PgUp
PgDn

Borland C++ User's Guide

Table 5.1: Full summary of editor commands (continued)

ID.L Many of the
commands in this table can
a/so be performed with the

mouse. See Chapter 2.

Movement

Long distance
Beginning of line
End of line
Top of window
Bottom of window
Beginning of file
End of file
Beginning of block
End of block
Last cursor position

Insert and delete commands

Insert mode on/off

Delete character left of cursor
Delete character at cursor
Delete word right
Insert line
Delete line
Delete to end of line

Block commands

Mark block
Mark single word
Copy block

Move block

Delete block
Read block from disk
Write block to disk
Hide/ display block
Print block
Indent block
Unindent block

Other editing commands

Autoindent on/off
Control character prefix**
Find place marker
Go to menu bar
New file
Open file
Optimal fill mode on/off
Pair matching
Print file
Quit IDE
Repeat last search
Restore error message

Chapter 5, The editor from A to Z

Command

Home
End
Ctrl Home
Ctrl End
Ctrl PgUp
Ctrl PgDn
Ctrl-Q B
Ctrl-Q K
Ctrl-Q P

Options I Environment I Editor or
Ins
Backspace
Del
Ctrl-T
Clr/-N
Clrl-Y
Ctrl-Q Y

Shift..L., i, -7, f-, Clrl-K B, Ctrl-K K
Clrl-KT
Edit I Copy, Edit I Paste or

Ctrl-Ins, Shift-Ins
Edit I Cut, Edit I Paste or

Shift-Del, Shift-Ins
Edit I Clear or Cirl-Del
Ctrl-K R
Ctrl-K W
Ctrl-K H
File I Print or Ctrl-K P
Cirl-K I
Clr/-K U

Options I Environment I Editor*
Ctrl-P
Ctrl-Q n***
F10
File I New
File I Open (F3)
Options I Environment I Editor*
Ctrl-Q [and Ctrl-Q J
File I Print
File I Quit (Alt-X)
Search I Search Again or Ctr/-L
Ctrl-Q W

147

Jumping around

Block commands

148

Table 5.1: Full summary of editor commands (continued)

Movement

Undo changes
Return to editor from menus
Save
Search
Search and replace
Set place marker
Tab
Tab mode
Unindent mode

Command

Edit I Undo
Esc
FileISave(F2)
Search I Find or Ctrl-Q F
Search I Replace or Ctrl-Q A
Ctrl-K rt**
Tab
Options I Environment I Editor*
Options I Environment I Editor*

*This command opens the Environment Options dialog box, in which you can set
the appropriate check box or radio buttons.

**Enter control characters by first pressing Gtrl-P, then pressing the desired control
character. Depending on your screen setup, control characters appear as low
intensity or inverse capital letters.

***n represents a number from 0 to 9.

There are three cursor movement commands that need further
explanation:

Ctrl-Q B and Ctrl-Q K move the cursor to the block-begin or block
end marker. Both these commands work even if the block is not
displayed (see "Hide/ display block" in Table 5.2). Ctrl-Q B works
even if the block-end marker is not set, and Ctrl-Q K works even if
the block-begin marker is not set.

Beginning of block Ctrl-Q B
End of block Ctrl-Q K
Last cursor position Ctrl-Q P

Ctrl-Q P moves to the last position of the cursor before the last
command. This command is particularly useful after a search or
search-and-replace operation has been executed, and you'd like to
return to where you were at before you ran the search.

A block of text is any amount of text, from a single character to
hundreds of lines, that has been surrounded with special block
marker characters. There can be only one block in a window at a
time. A block is marked by placing a block-begin marker on the
first character and a block-end marker after the last character of

Borland C++ User's Guide

the desired portion of the text. Once marked, the block can be
copied, moved, deleted, printed, or written to a file.

Table 5.2: Block commands In depth

Movement

Mark block

Mark single

Copy block

Move block

Delete block

Write block
to disk

Read block
from disk

Hide/ display
block

Print block
Print

Command(s)

Shift J-, i, ~,
~

etrl-K T

Edit I Copy, etrl-Ins
Edit I Paste, Shift-Ins

Function

Marks (highlights) a block as the cursor is moved. Marked text
is displayed in a different intensity.

Marks a single word as a block. If the cursor is placed within a
word, that word will be marked. If it is not within a word, then
the word to the left of the cursor will be marked.

Copies a previously marked block to the Clipboard and pastes it
to the current cursor position. The original block is unchanged,
and the block markers are placed around the new copy of the
block. If no block is marked or the cursor is within the marked
block, nothing happens.

Edit I Cut, Shift-Del Moves a previously marked block from its original position to the
Edit I Paste, Shift-Ins Clipboard and pastes it to the cursor position. The block disap

pears from its original position; the markers remain around the
block at its new position. If no block is marked, nothing happens.

Edit I Clear, etrl-Del
etrl-KY

etrl-KW

Ctrl-K R

etrl-K H

etrl-K P
File I Print

Deletes a previously marked block. No provision exists to
restore a deleted block, so be careful with this command.

Writes a previously marked block to a file. The block is left
unchanged, and the markers remain in place. When you give this
command, you are prompted for the name of the file to write to.
The file can be given any legal name (the default extension is .C).
If you prefer to use a file name without an extension, append a
period to the end of its name.

Note: You can use wildcards to select a file to overwrite; a
directory is displayed. If the file specified already exists, a warn
ing is issued before the existing file is overwritten. If no block is
marked, nothing happens.

Reads a disk file into the current text at the cursor position,
exactly as if it were a block. The text read is then marked as a
block. When this command is issued, you are prompted for the
name of the file to read. You can use wildcards to select a file to
read; a directory is displayed. The file specified can be any legal
filename.

Causes the visual marking of a block to be alternately switched off
and on. The block manipulation commands (copy, move, delete,
print, and write to a file) work only when the block is displayed.
Block-related cursor movements Gump to beginning/ end of
block) work whether the block is hidden or displayed.

Sends the marked block in the active Edit window to the printer.
Sends the entire file in the active Edit window to the printer.

Chapter 5, The editor from A to Z 149

Other editing
commands The next table describes certain editing commands in more detail.

The table is arranged alphabetically by the name of the command.

Table 5.3: Other editor commands in depth

Movement

Autoindent

Find place
marker

New file

Open file

Quit edit

Undo changes

Save file

Set place

Tab

Tab mode

150

Command(s)

Options I
Environment I
Editor

Gtrl-Q n

File I New

FileIOpen(F3)

File I Quit (Alt-X)

Edit I Undo

FileISave(F2)

Gtrl-K n

Tab

Options I
Environment I

Editor

Function

Opens the Editor Options dialog box, in which you can toggle the
Autoindent Mode check box. Provides automatic indenting of
successive lines. When Autoindent is active, the indentation of the
current line is repeated on each following line; that is, when you press
Enter, the cursor does not return to column one but to the starting
column of the preceding non-empty line. When you want to change the
indentation, use the Spacebar and f- key to select the new column.
Autoindent is on by default.

Finds up to ten place markers (n can be any number in the range 0 to 9)
in text. Move the cursor to any previously set marker by pressing Gtrl-Q
and the marker number.

Opens a new window.

Lets you load an existing file into an Edit window.

Quits Borland c++. You are asked whether you want to save the file to
disk.

Lets you undo editing changes.

Saves the file and returns to the editor.

Mark up to ten places in text by pressing Gtrl-K, followed by a single
marker digit (0 to 9). After marking your location, you can work
elsewhere in the file and then easily return to your marked location by
using the Gtrl-Q N command (being sure to use the same marker
number). You can have ten places marked in each window.

Tabs default to eight columns apart in the Borland c++ editor.

Opens the Editor Options dialog box, in which you can set the Use Tab
Character check box. When the option is on, you can insert tab
characters (ASCII character 9); when it's off, the tab is automatically
inserted as the correct number of spaces.

Borland C++ User's Guide

Search and
replace The Search I Find and Search I Replace commands let you

search for (and optionally replace) strings of up to 30 charac
ters.

The search string is a/so The search string can contain any characters, including
called the target string. control characters. You can enter control characters with the

Searching and
searching again

Gtrl-P prefix. For example, enter a Gtrl· Tby holding down the
GIrl key as you press P and then T. You can include a line
break in a search string by specifying Gfrl-M (carriage return).
(For searching regular expressions, take a look at the text file
about GREP.)

The following sections list the steps for performing these
operations.

1. Choose Search I Find. This opens the Find dialog box.

2. Type the string you are looking for (up to 30 letters) into
the Text to Find input box.

3. You can also set various search options:

a The Direction radio buttons control whether you do a
forward or backward search .

• The Scope radio buttons control how much of the file
you search .

• The Origin radio buttons control where the search
begins.

II The Options check boxes determine whether the
search will be case sensitive for whole words only, and
for regular expressions.

Use Tab or your mouse to cycle through the options. Use
i and -!, to set the radio buttons and Space to toggle the
check boxes.

4. Finally, choose the OK button to carry out the search or
the Cancel button to cancel. Borland c++ performs the
operation.

5. If you want to search for the same item repeatedly, use
Search I Search Again.

Chapter 5, The editor from A to Z 151

152

Search and replace 1. Choose Search I Replace. This opens the Replace dialog
box.

Pair matching

2. Type the string you are looking for (up to 30 letters) into
the Text to Find input box.

3. Press Tab or use your mouse to move to the New Text
input box. Type in the replacement string.

4. You can then set the same search options as in the Find
dialog box.

5. Finally, choose OK or Change All to begin the search, or
choose Cancel to cancel. Borland C++ performs the
operation. Choosing Change All will replace every
occurrence found.

6. If you want to stop the operation, press Esc at any point
when the search has paused.

There you are, debugging your source file that is full of
functions, parenthesized expressions, nested comments, and
a whole slew of other constructs that use delimiter pairs. In
fact, your file is riddled with

• braces: { and}

• angle brackets: < and>
• parentheses: (and)

• brackets: [and]
• comment markers: /* and * /
• double quotes: "

• single quotes: '

Finding the match to a particular paired construct can be
tricky. Suppose you have a complicated expression with a
number of nested expressions, and you want to make sure
all the parentheses are properly balanced. Or say you're at
the beginning of a function that stretches over several
screens, and you want to jump to the end of that function.
With Borland C++'s handy pair-matching commands, the
solution is at your fingertips. Here's what you do:

Borland C++ User's Guide

Directional and
nondirectional

matching

Opening braces and
brackets and closing braces

and parentheses are
directional; the editor knows
which way to search for the

mate, so It doesn't matter
which match pair command

you give.

1. Place the cursor on the delimiter in question (for
example, the opening brace of some function that
stretches for a couple of screens).

2. To locate the mate to this selected delimiter, simply press
Ctrl-Q [. (In the example given, the mate should be at the
end of the function.)

3. The editor immediately moves the cursor to the delimiter
that matches the one you selected. If it moves to the one
you had intended to be the mate, you know that the
intervening code contains no unmatched delimiters of
that type. If it moves to the wrong delimiter, you know
there's trouble in River City; now all you need to do is
track down the source of the problem.

We've told you the basics of Borland C++'s "Match Pair"
commands; now you need some details about what you can
and can't do with these commands, and notes about a few
subtleties to keep in mind. This section covers the following
points:

III There are actually two match pair editing commands: one
for forward matching (Ctrl-Q [) and the other for backward
matching (Ctrl-Q J) .

• The way the editor searches for comment delimiters (/*
and * j) is slightly different from the way it performs the
other searches .

• If there is no mate for the delimiter you've selected, the
editor doesn't move the cursor.

Two match pair commands are necessary because some
delimiters are nondirectional.

For example, suppose you tell the editor to find the match
for an opening brace ({) or an opening bracket ([). The
editor knows the matching delimiter can't be located before
the one you've selected, so it searches forward for a match. If
you tell the editor to find the mate to a closing brace (}) or a
closing parenthesis ()), it knows that the mate can't be
located after the selected delimiter, so it automatically
searches backward for a match.

However, if you tell the editor to find the match for a double
quote (") or a single quote (,), it doesn't know automat
ically which way to go. You must specify the search

Chapter 5, The editor from A to Z 153

Double and single quotes
are not directional. You must

specify the correct match
pair command.

Table 5.4
Delimiter pairs

Nestable delimiters are
explained after this table.

Figure 5.'
Search for match to square

bracket or parenthesis

154

direction by giving the correct match pair command. If you
give the command Gtrl-Q Gtrl-!, the editor searches forward for
the match; if you give the command Gtrl-Q Gtrl-], it searches
backward for the match.

The following table summarizes the delimiter pairs, whether
they imply search direction, and whether they are nestable:

Delimiter pair Direction implied? Are they nestable?

{ Yes Yes
(Yes Yes
[Yes Yes
< > Yes Yes

1* *1 Yes Yes and No

" " No No
No No

Nestable delimiters

Nestable means that, when the editor is searching for the
mate to a directional delimiter, it keeps track of how many
delimiter levels it enters and exits during the search.

This is best illustrated with some examples:

matched pair matched pair matched pair

~ ~~
arrl [arr2 [x]] (x > 0) && (y < 0)

T
matched pair matched pair

Comment delimiters

Because comment delliniters are two-character delliniters,
you must take care when you highlight one for a match pair
search. In either case, the editor recognizes only the first of
the two characters: the slash (/) part of a /* comment
delimiter, or the asterisk (*) part of a * / delimiter. If you
place the cursor on the second character in either of these

Bor/and c++ User's Guide

The search will be affected if
unmatched delimiters of the

same type in comments,
quotes, or conditional

compilation sections fall
between the matched pair.

Figure 5.2
Forward search I

Note

Figure 5.3
Forward search II

delimiters, the editor won't know what you're looking for,
so it won't do any searching at all.

Also, as shown in Table 5.4, comment delimiters are
sometimes nestable, sometimes not ("Yes and No"). This is
not a vagary or an inability to decide: It is a test dependent
on multiple conditions. ANSI-compatible C programs
cannot contain nested comments, but Borland C++ provides
an optional nested comments feature that you can set to on
or off. This feature affects the nestability of comment
delimiters when it comes to pair matching.

• If Nested Comments is checked, the editor treats
comment delimiters as nestable and keeps track of the
delimiter levels it enters and exits in the search for a
match.

• If Nested Comments is unchecked, the editor won't treat
comment delimiters as nestable; when a /* pair is
selected, the first * / pair the editor finds is the match (and
vice versa).

To set Nested Comments, choose Options I Compiler I
Source. This opens the Source Options dialog box; use
Spacebar to set the Nested Comments check box, then choose
the OK button to confirm the setting.

Here are some examples to illustrate these differences. In the
first two examples, the search is performed with Ctrl-Q [. In
Figure 5.2, Nested Comments is checked. In Figure 5.3,
Nested Comments is unchecked. In the third example, a
backward search is performed using Ctrl-Q 1 with Nested
Comments still unchecked.

/* /* /* /* Here are some nested comments. */ */ */ *(

I match level match level -----'.
selected found

A backward search from the found * / will yield the selected
/* when Nested Comments is checked.

/* /* /* /* Here are some nested comments. */ */ */ */

I match level match level I
selected found

Chapter 5, The editor from A to Z 155

156

Figure 5.4
Backward search

/* /* /* /* Here are some nested comments. */ */ */ */

I match level match level I
selected found

Bor/and C++ User's Guide

c H

The command-line compiler
lets you invoke 0/1 the

functions of the IDE compiler
from the DOS command line.

A p T E R

6

The command-line compiler

As an alternative to using the IDE, you can compile and run your
programs with the command-line interface, hereafter referred to
as the command-line compiler. The command-line compiler does
more than just compile your files. It is in effect a command-line
version of the IDE. Almost anything you can do within the IDE
can also be done using the command-line compiler. You can set
warnings on or off, use EMS or not, run in real or protected mode,
invoke TASM (or another assembler) to assemble .ASM source
files, and so on. In fact, to compile only you have to use the -c
option at the command line.

This chapter is organized into two parts. The first describes how
to use the command-line compiler and provides a summary table
of all the options. The second part, starting on page 165, presents
the options organized functionally (with groups of related
options).

The summary table, Table 6.1 (starting on page 160), summarizes
the command-line compiler options and provides a page-number
cross-reference to where you can find more detailed information
about each option. The options are also indexed individually so
you can find discussions relating to them in other chapters and
other books in the Borland C++ manuals.

Chapter 6, The command-line compiler 157

Using the command-line compiler

Running in real
mode

You can a/so use a configur
ation file. See page 764 for

details.

Running in
protected mode

158

You can run the command-line compiler in either real or pro
tected mode. You can use protected mode if you have a 286, 386,
or i486 machine with at least 640K conventional RAM and at least
576K extended or simulated expanded memory; most of the time
you'll probably prefer to use it. Otherwise, use real mode.

Note that, although you may be running Borland C++ in
protected mode, you are still generating applications to run in real
mode. The greatest advantage to using Borland C++ in protected
mode is that the compiler has much more room to run than if you
were running it in real mode, while your application has more
real-mode memory.

To invoke Borland c++ from the command line in real mode, type
Bee at the DOS prompt and follow it with a set of command-line
arguments. Command-line arguments include compiler and
linker options and file names. The generic command-line format
is

BCC [option [option ...]]filename [filename ...]

With two exceptions, each command-line option is preceded by a
hyphen (-) and is separated from the BCC command, other op
tions, and following file names by at least one space.

Running Borland C++ in protected mode involves interaction
between three files: BCCX.EXE, BCCX.OVY, and TKERNEL.EXE.
BCCX.EXE loads TKERNEL and BCCX.OVY, which is the
protected-mode version of the command-line compiler. Although
BCCX.EXE loads these files automatically, so that you don't need
to be concerned with invoking them yourself, they do both need
to be on the path or in the BCCX.EXE startup directory so it can
find them.

Once you've verified that the paths are set correctly, running
Borland c++ in protected mode is as simple as running it in real
mode; the syntax is identical except for using BCCX in the place of
BCC:

Borland C++ User's Guide

BCCX [option [option ...]] filename [filename ...]

The options and file names are identical to those for BCC;
therefore, for the remainder of this chapter, when we mention the
command-line compiler we mean both BCC and BCCX (unless we
specifically state otherwise).

.. BCCX.EXE loads TKERNEL each time you invoke BCCX. You can
save a great deal of loading time by preloading TKERNEL; before
running BCCX, type

Using the options

Compiler options are further
divided into ten groups.

Use this feature to override
settings in configuration files.

TKERNEL hi==yes

on the DOS command line. When you are through with your
Borland C++ session, type

TKERNEL rem

to remove TKERNEL.

If you are using the command-line compiler in conjunction with
Windows, you'll need to type

TKERNEL hi==yes kilos==1024

and invoke Windows using the Is (standard mode) option.

The options are divided into three general types:

• compiler options, described starting on page 165
Blinker options, described starting on page 183
• environment options, described starting on page 183

To see an onscreen list of the options, type Bee or Beex (without
any options or file names) at the DOS prompt. Then press Enter.

In order to select command-line options, enter a hyphen (-)
immediately followed by the option letter (for example, -I). To
turn an option off, add a second hyphen after the option letter.
This is true for all toggle options (those that turn an option on or
off): A trailing hyphen (-) turns the option off, and a trailing plus
sign (+) or nothing turns it on. So, for example, -C and -C+ both
turn nested comments on, while -C- turns nested comments off.

Chapter 6, The command-line compiler 159

Option precedence
rules

The option precedence rules are simple; command-line options
are evaluated from left to right, and the following rules apply:

• For any option that is not an -lor -L option, a duplication on
the right overrides the same option on the left. (Thus an off
option on the right cancels an on option to the left.)

• The -I and -L options on the left, however, take precedence
over those on the right.

Table 6.1: Command-line options summary

Option

@filename
+filename

-1
-1-
-2
-A
-A-,-AT
-AK
-AU
-a
-a-
-B
-b
-b-
-C
-C-
-c
-Dname
-Dname=string
-d
-d-
-Efilename
-efilename
-Fc
-Ff
-Ff=size
-Fm
-Fs
-f
-f-
-£f
-£f-
-f87
-f287

160

Page

163
164

167
167
167
174
174
174
174
167
167
178
168
168
174
174
178
167
167
168
168
178
183
168
168
168
168
168
169
169
169
169
169
169

Function

Gives the command-line compiler a response file name
Tell the command-line compiler to use the alternate configuration file
filename
Generate 80186 instructions
Generate 8088/8086 instructions
Generate 80286 protected-mode compatible instructions
Use only ANSI keywords
Use Borland C++ keywords (default)
Use only Kernighan and Ritchie keywords
Use only UNIX keywords
Align word
Align byte (default)
Compile and call the assembler to process inline assembly code
Make enums word-sized (default)
Make enums signed or unsigned
Nested comments on
Nested comments off (default)
Compile to .OBI but do not link
Define name to the string consisting of the null character
Defines name to string
Merge duplicate strings on
Merge duplicate strings off (default)
Use filename as the assembler to use
Link to produce filename.EXE
Generates COMDEFs
Creates far variables automatically
Creates far variables automatically; sets the threshold
Enables the -Fc, -Ff, and -Fs options
Assume DS = SS in all memory models
Emulate floating point (default)
Don't do floating point
Fast floating point (default)
Strict ANSI floating point
Use 8087 hardware instructions
Use 80287 hardware instructions

Borland C++ User's Guide

Table 6.1: Command-line options summary (continued)

Option

-G
-G-
-gn
-H
-H-
-Hu
-H=filename
-h
-Ipath
-in
-jn
-K
-K-
-k
-Lpath
-Ix
-l-x
-M
-mc
-mh
-ml
-mm
-mm!
-ms
-ms!
-mt
-mt!
-N
-npath
-0
-0-
-ofilename
-P
-Pext
-P-
-P-ext

-p
-p-
-Qe
-Qe-
-Qx
-Qx=nnnn

-Qx=nnnn,yyyy

-Qx=,yyyy
-Qx-

Page

172
172
174
178
178
178
178
169
184
174
175
170
170
170
184
183
183
183
166
166
166
166
166
166
166
166
166
170
184
172
172
179
179
179
179
179

170
170
180
180
181
181

181

181
181

Function

Optimize for speed
Optimize for size (default)
Warnings: stop after n messages
Causes the compiler to generate and use precompiled headers
Turns off generation and use of precompiled headers (default)
Tells the compiler to use but not generate precompiled headers
Sets the name of the file for precompiled headers
Use fast huge pointer arithmetic
Directories for include files
Make significant identifier length to be n
Errors: stop after n messages
Default character type unsigned
Default character type signed (default)
Standard stack frame on (default)
Directories for libraries
Pass option x to the linker (can use more than one x)
Suppress option x for the linker
Instruct the linker to create a map file
Compile using compact memory model
Compile using huge memory model
Compile using large memory model
Compile using medium memory model
Compile using medium model; assume DS != SS
Compile using small memory model (default)
Compile using small model; assume DS != SS
Compile using tiny memory model
Compile using tiny model; assume DS != SS
Check for stack overflow
Set the output directory
Optimize jumps
No optimization (default)
Compile source file to filename.obj
Perform a C++ compile regardless of source file extension
Perform a C++ compile and set the default extension to ext
Perform a C++ or C compile depending on source file extension (default)
Perform a C++ or C compile depending on extension; set default extension
to ext
Use Pascal calling convention
Use C calling convention (default)
Instructs the compiler to use all available EMS memory (default)
Instructs the compiler to not use any EMS memory
Instructs the compiler to use all available extended memory
Instructs the compiler to reserve nnnn Kbytes of extended memory for other
programs, and to use the rest itself
Instructs the compiler to reserve nnnn Kbytes of extended memory for other
programs and yyyy for itself
Instructs the compiler to reserve yyyy Kbytes of extended memory for itself
Instructs the compiler to not use any extended memory

Chapter 6, The command-line compiler 161

Table 6.1: Command-line options summary (continued)

Option Page Function

-r
-r-
-rd
-S
-Tstring
-T-
-Una me
-u
-u-
-V
-Vs
-VO,-V1
-Vf
-v,-v-
-vi,-vi-
-W
-WD

-WDE

-WE
-WS
-w
-wxxx
-w-xxx
-X
-y
-Yo
-y
-z
-zAname
-zBname
-zCname
-zDname
-zEname
-zFname
-zGname
-zHname
-zPname
-zRname
-zSname
-zTname
-zX*

162

172
172
173
179
179
179
167
170
170
182
182
182
182
171
172
179
180

180

180
180
175
175
175
171
171
171
171
173
177
177
177
177
177
177
177
177
177
178
178
178
178

Use register variables on (default)
Suppresses the use of register variables.
Only allow declared register variables to be kept in registers
Produce .ASM output file
Pass string as an option to TASM or assembler specified with -E
Remove all previous assembler options
Undefine any previous definitions of name
Generate underscores (default)
Disables underscores
Smart C++ virtual tables
Local C++ virtual tables
External and Public C++ virtual tables
Far C++ virtual tables
Source debugging on
Controls expansion of inline functions
Creates an .OBI for Windows with all functions exportable
Creates an .OBI for Windows to be linked as a .DLL with all functions
exportable
Creates an .OBI for Windows to be linked as a .DLL with explicit export
functions
Creates an .OBI for Windows with explicit export functions
Creates an .OBI for Windows that uses smart callbacks
Display warnings on
Enable xxx warning message
Disable xxx warning message
Disable compiler autodependency output
Enable overlay code generation
Overlay the compiled files
Line numbers on
Enable register usage optimization
Code class
BSS class
Code segment
BSSsegment
Far segment
Far class
BSSgroup
Far group
Code group
Data segment
Data group
Data class
Use default name for X. (default)

Borland C++ User's Guide

Syntax and file
names

c++ files have the extension
.CPP; see page 779 for

information on changing the
default extension.

Response files
Response fifes allow you to

have longer command
strings than DOS normally

allows.

Borland C++ compiles files according to the following
set of rules:

filename.asm Invoke TASM to assemble to .OB}
filename.obj Include as object at link time
filename. lib Include as library at link time
filename Compile FILENAME.CPP
filename.cpp Compile FILENAME.CPP
filename.c Compile FILENAME.C
filename.xyz Compile FILENAME.XYZ

For example, given the following command line

BCC -a -f -c -0 -z -emyexe oldfilel oldfile2 next file

Borland C++ compiles OLDFILE1.CPP, OLDFILE2.CPP, and
NEXTFILE.CPP to an .OBJ,linking them to produce an executable
program file named MYEXE.EXE with word alignment (-a),
floating-point emulation (-f), nested comments (-C), optimization
(-0), and register usage optimization (-Z) selected.

Borland C++ invokes TASM if you give it an .ASM file on the
command line or if a .C or .CPP file contains inline assembly. The
options that the command-line compiler gives to T ASM are

/D __ MODEL __ /D __ lang __ /m! /floatopt

where MODEL is one of: TINY, SMALL, MEDIUM, COMPACT,
LARGE, or HUGE. The Iml option tells TASM to assemble with
case sensitivity on. lang is CDECL or PASCAL; floatopt is r when
you've specified -f87 or -f287; e otherwise.

If you need to specify many options and/or files on the command
line, you can place them in an ASCII text file, called a response file
(you can of course name it anything you like). You can then tell
the command-line compiler to read its command line from this
file by including the appropriate file name prefixed with @. You
can specify any number of such files, and you can mix them freely
with other options and/or file names.

For example, suppose the file MOON.RSP contains STARS.C and
RAIN.C. This command

BCC SUN.C @MOON.RSP ANYONE.C

Chapter 6, The command-line compiler 163

Configuration files
TURBOC.CFG is not the same

as TCCONFIG. TC, which Is
the default IDE version of a

configuration file.

164

Option precedence
rules

will cause Borland c++ to compile the files SUN.C, ST ARS.C,
RAIN.C, and ANYONE.C in real mode. It expands to

BCC SUN.C STARS.C RAIN.C ANYONE.C

Any options included in a response file are evaluated just as
though they had been typed in on the command line. See page
160 for what those rules are.

If you find you use a certain set of options over and over again,
you can list them in a configuration file, called TURBOC.CFG by
default. If you have a TURBOC.CFG configuration file, you don't
need to worry about using it. When you run BCC (or BCCX), it
automatically looks for TURBOC.CFG in the current directory. If
it doesn't find it there and if you're running DOS 3.x or higher,
Borland C++ then looks in the startup directory (where BCC.EXE
or BCCX.EXE resides).

You can create more than one configuration file; each must have a
unique name. To specify the alternate configuration file name, in
clude its file name, prefixed with +, anywhere on the BCC (or
BCCX) command line. For example, to read the option settings
from the file D: \ALT.CFG, you could use the following command
line:

BCC +D:\ALT.CFG

Your configuration file can be used in addition to or instead of
options entered on the command line. If you don't want to use
certain options that are listed in your configuration file, you can
override them with options on the command line.

You can create the TURBOC.CFG file (or any alternate configura
tion file) using any standard ASCII editor or word processor, such
as Borland C++'s integrated editor. You can list options (separated
by spaces) on the same line or list them on separate lines.

In general, you can just remember that options given on the com
mand line override the same options specified in the configura
tion file. This ability to override configuration file options with
command-line options is an important one. If, for example, your
configuration file contains several options, including the -a op
tion (which you want to turn ofj), you can still use the configura
tion file but override the -a option by listing -a- in the command
line. However, the rules are a little more detailed than that. The

Borland C++ User's Guide

option precedence rules detailed on page 160 apply, with these
additional rules:

1. When the options from the configuration file are combined
with the command-line options, any -I and -L options in the
configuration file are appended to the right of the command
line options. This means that the include and library direc
tories specified in the command line are the first ones that
Borland C++ searches (thereby giving the command-line-I
and -L directories priority over those in the configuration file).

2. The remaining configuration file options are inserted imme
diately after the BCC (or BCCX) command (to the left of any
command-line options). This gives the command-line options
priority over the configuration file options.

Compiler options

Borland C++'s command-line compiler options fall into ten
groups; the page references to the left of each group tell where
you can find a discussion of each kind of option:

See page 166. 1. Memory model options let you tell Borland C++ which
memory model to use when compiling your program.

See page 167. 2. Macro definitions let you define and undefine macros on the
command line.

See page 167. 3. Code generation options govern characteristics of the gen
erated code, such as the floating-point option, calling con
vention, character type, or CPU instructions.

See page 172. 4. Optimization options let you specify how the object code is to
be optimized; for size or speed, with or without the use of re
gister variables, and with or without assumptions about ali
ases.

See page 173. 5. Source code options cause the compiler to recognize (or
ignore) certain features of the source code; implementation
specific (non-ANSI, non-Kernighan and Ritchie, and non
UNIX) keywords, nested comments, and identifier lengths.

See page 174. 6. Error-reporting options let you tailor which warning messages
the compiler will report, and the maximum number of warn
ings and errors that can occur before the compilation stops.

See page 177. 7. Segment-naming control options allow you to rename seg
ments and to reassign their groups and classes.

Chapter 6, The command-line compiler 165

See page 778. 8. Compilation control options let you direct the compiler to

• compile to assembly code (rather than to an object module)
• compile a source file that contains inline assembly (there are

other ways though: use #pragma inline or just ignore it)
• compile without linking
• compile for Windows applications
• use precompiled headers or not

See page 780. 9. EMS and extended memory options let you control how much
expanded and extended memory Borland c++ uses.

See page 782. 10. C++ virtual table options let you control how virtual tables are
handled.

Memory model

See Chapter 6 in the Pro
grammer's Guide for in

depth information on the
memory models (what they

are, how to use them).

You can't use the -N option
when using one of the OS 1=

SSmodels.

166

Memory model options let you tell Borland c++ which memory
model to use when compiling your program. The memory models
are: tiny, small, medium, compact, large, and huge.

-me Compile using compact memory model
-mh Compile using huge memory model
-ml Compile using large memory model
-mm Compile using medium memory model
-mm! Compile using medium model; D5 != 5S
-ms Compile using small memory model (the default)
-ms! Compile using small model; D5 != 5S
-mt Compile using tiny memory model
-mt! Compile using tiny model; DS != 55

The net effect of the -mt!, -ms!, and -mm! options is actually very
small. If you take the address of a stack variable (auto or param
eter), the default (when DS == 5S) is to make the resulting pointer
a near (DS relative) pointer. In this way one can simply assign the
address to a default sized pointer in those models without
problems. When D5 != 55, the pointer type created when you take
the address of a stack variable is an _ss pointer. This means that
the pointer can be freely assigned or passed to a far pointer or to a
_ss pointer. But for the memory models affected, assigning the
address to a near or default-sized pointer will produce a "Suspi
cious pointer conversion" warning. Such warnings are usually
errors, and the warning defaults to on. You should regard this
kind of warning as a likely error.

Borland C++ User's Guide

Macro definitions

Code generation
options

Macro definitions let you define and undefine macros (also called
manifest or symbolic constants) on the command line. The default
definition is the null string. Macros defined on the command line
override those in your source file.

-Oname Defines the named identifier name to the empty
string.

-0 name= string Defines the named identifier name to the string
string after the equal sign. string cannot contain
any spaces or tabs.

-Uname Undefines any previous definitions of the
named identifier name.

Borland C++ lets you make multiple #define entries on the
command line in any of the following ways:

II You can include multiple entries after a single -0 option, sepa
rating entries with a semicolon (this is known as "ganging"
options):

BCC -Dxxx;yyy=l;zzz=NO MYFILE.C

• You can place more than one -0 option on the command line:

BCC -Dxxx -Dyyy=l -Dzzz=NO MYFILE.C

• You can mix ganged and multiple -0 listings:

BCC -Dxxx -Dyyy=l;zzz=NO MYFILE.C

Code generation options govern characteristics of the generated
code, such as the floating-point option, calling convention, charac
ter type, or CPU instructions.

-1 This option causes Borland C++ to generate extended
80186 instructions. It also generates 80286 programs
running in real mode, such as with the IBM PCI AT under
DOS.

-1- Tells the compiler to generate 8088/8086 instructions.

-2 This option causes Borland C++ to generate 80286
protected-mode compatible instructions.

Chapter 6, The command-line compiler 167

168

-a This option forces integer size and larger items to be
aligned on a machine-word boundary. Extra bytes are
inserted in a structure to ensure member alignment.
Automatic and global variables are aligned properly. char
and unsigned char variables and fields can be placed at
any address; all others are placed at an even-numbered
address. This option is off by default (-a-), allowing byte
wise alignment.

-b This option (which is on by default) tells the compiler to
always allocate a whole word for enumeration types.
(This is the way Turbo C 2.0 treats enumerations.)

-b- This option tells the compiler to allocate an unsigned or
signed byte if the minimum and maximum values of the
enumeration are both within the range of 0 to 255 or -128
to 127, respectively.

-d This option tells the compiler to merge literal strings
when one string matches another, thereby producing
smaller programs. This option is off by default (-d-).

-Fc This generates communal variables (COMDEFs) for
global"C" variables that are not initialized and not
declared as static or extern. The advantage of using this
option is that header files that are included in several
source files can contain declarations of global variables.
So long as a given variable doesn't need to be initialized
to a nonzero value, you don't need to include a definition
for it in any of the source files. You can use this option
when porting code that takes advantage of a similar
feature with another implementation.

-Ff

In the tiny, small, and medium models, the generated
COMDEFs will be near; in the compact, large, and huge
models they will be far.

When you use this option, global variables greater than or
equal to the threshold size are automatically made far by
the compiler. The threshold size defaults to 32,767; you
can change it with the -Ff=size option. This option is
useful for code that doesn't use the huge memory model
but declares enough large global variables that their total
size exceeds (or is close to) 64K.

Borland C++ User's Guide

-Ff= Use this option to change the threshold size used by the
size -Ff option.

-Fm This option enables all the other -F options (-Fe, -Ff and
-Fs). You can use it as a handy shortcut when porting
code from other compilers.

-Fs This option tells the compiler to assume that DS is equal
to SS in all memory models; you can use it when porting
code originally written for an implementation that makes
the stack part of the data segment. When you specify this
option, the compiler will link in an alternate startup
module (COFx.OBJ) that will place the stack in the data
segment.

-f This option tells the compiler to emulate 80x87 calls at run
time if the run-time system does not have an 80x87; if it
does have one, the compiler calls the 80x87 chip for
floating-point calculations (the default).

-f- This option specifies that the program contains no
floating-point calculations, so no floating-point libraries
will be linked at the link step.

-ff With this option, the compiler optimizes floating-point
operations without regard to explicit or implicit type
conversions. Answers can be faster than under ANSI
operating mode. See Chapter 7, "Math," in the Program
mer's Guide for details.

-ff- This option turns off the fast floating-point option. The
compiler follows strict ANSI rules regarding floating
point conversions.

-f87 This option tells the compiler to generate floating-point
operations using inline 80x87 instructions rather than
using calls to 80x87 emulation library routines. It specifies
that a math coprocessor will be available at run time;
therefore, programs compiled with this option will not
run on a machine that does not have a math coprocessor.

-f287 This option is similar to -f87, but uses instructions that
are only available with an 80287 (or higher) chip.

-h This option offers an alternative way of calculating huge
pointer expressions; a way which is much faster but must
be used with caution. When you use this option, huge

Chapter 6, The command-line compiler 169

-K

-k

-N

-p

170

pointers are normalized only when a segment
wraparound occurs in the offset part. This will cause
problems for huge arrays if any array elements cross a
segment boundary. This option is off by default.

Normally, Borland c++ normalizes a huge pointer
whenever adding to or subtracting from it. This ensures
that, for example, if you have a huge array of structs
that's larger than 64K, indexing into the array and
selecting a struct field will always work with structs of
any size. Borland c++ accomplishes this by always
normalizing the results of huge pointer operations, so that
the offset part contains a number that's no higher than 15.
That way, a segment wraparound never occurs with huge
pointers. The disadvantage of this approach is that it
tends to be quite expensive in terms of execution speed.

This option tells the compiler to treat all char declarations
as if they were unsigned char type. This allows for com
patibility with other compilers that treat char declarations
as unsigned. By default, char declarations are signed
(-K-).

This option generates a standard stack frame, which is
useful when using a debugger to trace back through the
stack of called subroutines. This option is on by default.

This option generates stack overflow logic at the entry of
each function, which causes a stack overflow message to
appear when a stack overflow is detected. This is costly in
terms of both program size and speed but is provided as
an option because stack overflows can be very difficult to
detect. If an overflow is detected, the message "Stack
overflow!" is printed and the program exits with an exit
code of 1.

This option forces the compiler to generate all subroutine
calls and all functions using the Pascal parameter-passing
sequence. The resulting function calls are smaller and
faster. Functions must pass the correct number and type
of arguments, unlike normal C use, which permits a vari
able number of function arguments. You can use the
cdecl statement to override this option and specifically
declare functions to be C-type. This option is off by
default (-p-).

Bor/and c++ User's Guide

Unless you are an expert,
don't use -u-. See Chapter

9, "Interfacing with assembly
language, " in the Program

mer's Guide for details about
underscores.

-u With -u selected, when you declare an identifier, Borland
C++ automatically puts an underscore (_) in front of the
identifier before saving the identifier in the object module.

-x

Borland C++ treats Pascal-type identifiers (those modified
by the pascal keyword) differently-they are uppercase
and are not prefixed with an underscore.

Underscores for C and C++ identifiers are optional, but
on by default. You can turn them off with -u-. However,
if you are using the standard Borland c++ libraries, you
will encounter problems unless you rebuild the libraries.
(To do this, you will need the Borland C++ run-time
library source code; contact Borland for more
information.)

This option disables generation of autodependency infor
mation in the output file. Modules compiled with this
option enabled will not be able to use the autodepen
dency feature of MAKE or of the IDE. Normally this
option is only used for files that are to be put into .LIB
files (to save disk space).

Note that you cannot use this -V
option if you are using any of

This option generates overlay-compatible code. Every file
in an overlaid program must be compiled with this op
tion; see Chapter 6, "Memory management," in the Pro
grammer's Guide for details on overlays.

the -W (Windows
applications) options (and

vice versa).

-Vo This option overlays the compiled file(s); see Chapter 6 in
the Programmer's Guide for details.

-y This option includes line numbers in the object file for use
by a symbolic debugger, such as Turbo Debugger. This in
creases the size of the object file but doesn't affect size or
speed of the executable program. This option is useful
only in concert with a symbolic debugger that can use the
information. In general, -y is more useful than -y with
Turbo Debugger.

The -v and -vi options -y

Turbo Debugger is both a
source level (symbolic) and

assembly level debugger.

This option tells the compiler to include debugging infor
mation in the .OBI file so that the file(s) being compiled
can be debugged with either Borland C++'s integrated de
bugger or the standalone Turbo Debugger. The compiler
also passes this option on to the linker so it can include
the debugging information in the .EXE file.

Chapter 6, The command-line compiler 171

Optimization
options

To facilitate debugging, this option also causes c++ inline
functions to be treated as normal functions. If you want to
avoid that, use -vi.

-vi With this option enabled, c++ inline functions will be ex-
panded inline.

In order to control the expansion of inline functions, the operation
of the -v option is slightly different for c++. When inline function
expansion is not enabled, the function will be generated and
called like any other function. Debugging in the presence of inline
expansion can be extremely difficult, so we provide the following
options:

-v This option turns debugging on and inline expansion off

-v- This option turns debugging off and inline expansion on

-vi This option turns inline expansion on

-vi- This option turns inline expansion off

So, for example, if you want to tum both debugging and inline
expansion on, you must use -v -vi.

Optimization options let you specify how the object code is to be
optimized; for size or speed, with or without the use of register
variables, and with or without assumptions about aliases.

-G This option causes the compiler to bias its optimization in
favor of speed over size.

-G- This option, the default, causes the compiler to bias its
optimization in favor of size over speed (where smaller is
better).

-0 This option eliminates redundant jumps (such as jumps to
jumps) and multiple copies of identical code that jump to
the same location. It also suppresses redundant register
loads. When -Z is not on, this will not change the be
havior of your program (except, of course, that the code
becomes more efficient).

-0- When you disable optimizations, your code will compile
very quickly but may be less efficient.

-r This option enables the use of register variables (the
default).

172 Bor/and C++ User's Guide

Unless you are an expert, -r
don't use -r-.

-rd

Exercise caution when using -z
this option. The compiler

cannot detect if a register
has been invalidated

indirectly by a pointer.

This option suppresses the use of register variables. When
you are using this option, the compiler won't use register
variables, and it won't preserve and respect register vari
ables (SI,DI) from any caller. For that reason, you should
not have code that uses register variables call code which
has been compiled with -r-.

On the other hand, if you are interfacing with existing
assembly-language code that does not preserve SI,DI, the
-r- option allows you to call that code from Borland c++.

This option only allows declared register variables to be
kept in registers.

This option allows the compiler to assume that variables
are not accessed both directly and via a pointer in the
same function. It only has an effect when used with -0.

The compiler keeps a table that reflects the current
contents of registers. If a variable had to be loaded from
memory into a register, the compiler remembers that the
register now contains a copy of the variable. If the vari
able is used again, the compiler uses the copy in the
register rather than the value in memory.

The -Z option determines how the compiler handles
indirect assignments (that is, assignments via pointers, or
assignments via reference in C++). Normally it assumes
that such assignments could potentially change any vari
able. Therefore it has to forget about all copies of vari
ables in registers (that is, erase the table). -Z tells the com
piler that indirect assignments will not change variables,
and that it is therefore safe to retain the copies.

The bottom line is that if you access a variable both
directly and via a pointer within the same function,
setting -Z can generate wrong code and is therefore
unsafe to use. On the other hand, it will produce slightly
faster code.

Source code
options Source code options cause the compiler to recognize (or ignore)

certain features of the source code; implementation-specific (non
ANSI, non-Kernighan and Ritchie, and non-UNIX) keywords,

Chapter 6, The command-line compiler 173

See Chapter 1, "Lexical
grammar, " in the Program

mers Guide for a complete
list of the Borland C++

keywords,

174

Error-reporting
options

nested comments, and identifier lengths. These options are most
significant if you plan to port your code to other systems.

-A This option compiles ANSI-compatible code: Any of the
Borland C++ extension keywords are ignored and can be
used as normal identifiers. These keywords include

asm _ds far _Ioadds
cdecl _es huge near
_cs _export interrupt pascal

and the register pseudovariables, such as _AX, _BX, _SI,
and so on.

-A- This option tells the compiler to use Borland C++
keywords. -AT is an alternate version of this option.

-AK This option tells the compiler to use only Kernighan and
Ritchie keywords.

-AU This option tells the compiler to use only UNIX key
words.

-C This option allows you to nest comments. Comments may
not normally be nested.

-in This option causes the compiler to recognize only the first
n characters of identifiers. All identifiers, whether vari
ables, preprocessor macro names, or structure member
names, are treated as distinct only if their first n char
acters are distinct.

By default, Borland C++ uses 32 characters per identifier.
Other systems, including some UNIX compilers, ignore
characters beyond the first eight. If you are porting to
these other environments, you may wish to compile your
code with a smaller number of significant characters.
Compiling in this manner will help you see if there are
any name conflicts in long identifiers when they are
truncated to a shorter significant length.

Error-reporting options let you tailor which warning messages
the compiler will report, and the maximum number of warnings
and errors that can occur before the compilation stops.

Bor/and c++ User's Guide

For more information on
these warnings, see Chapter

70, "Error messages," in the
Programmer's Guide.

The asterisk (*) indicates that
the option is on by default.

All others are off by default.

-gn This option tells Borland c++ to stop compiling after n
warning messages.

-jn This option tells the compiler to stop compiling after n
error messages.

-w This option causes the compiler to display warning
messages. You can turn this off with -w-. You can
enable or disable specific warning messages with
-wxxx, described in the following paragraphs.

-wxxx This option enables the specific warning message
indicated by xxx. The option -w-xxx suppresses the
warning message indicated by xxx. The possible
options for -wxxx are listed here and divided into four
categories: ANSI violations, frequent errors (including
more frequent errors), portability warnings, and c++
warnings. You can also use the pragma warn in your
source code to control these options. See Chapter 4,
"The preprocessor," in the Programmer's Guide.

ANSI violations

-wbbf
-wbfs*
-wbig*
-wdcl*
-wdpu*
-wdup*
-weas
-wext*
-wpin
-wret*
-wstu*
-wsus*
-wvoi*
-wzdi*

Bit fields must be signed or unsigned into
Untyped bit field assumed signed into
Hexadecimal value contains more than three digits.
Declaration does not specify a tag or an identifier.
Declare function prior to use in prototype.
Redefinition of macro is not identical.
Assigning integer _val to enumeration.

. Identifier is declared as both external and static.
This initialization is only partially bracketed.
Both return and return with a value used.
Undefined structure structure.
Suspicious pointer conversion.
Void functions may not return a value.
Division by zero.

Frequent errors

-wamb
-wamp
-wasc*
-wasm
-waus*

Ambiguous operators need parentheses.
Superfluous & with function or array.
Restarting compile using assembly.
Unknown assembler instruction.
Identifier is assigned a value that is never used.

Chapter 6, The command-line compiler 175

176

-wdef
-weff*
-wfdt*
-will*
-wnod
-wpar*
-wpia*
-wpro
-wrch*
-wrvl*
-wstv
-wuse

Possible use of identifier before definition.
Code has no effect.
Function definition cannot be a typedef'd declaration.
Ill-formed pragma.
No declaration for functionfunction.
Parameter parameter is never used.
Possibly incorrect assignment.
Call to function with no prototype.
Unreachable code.
Function should return a value.
Structure passed by value.
Identifier declared but never used.

Portability warnings

-wcln
-wcpt*
-wrng*
-wrpt*
-wsig
-wucp

Constant is long.
Nonportable pointer comparison.
Constant out of range in comparison.
Nonportable pointer conversion.
Conversion may lose significant digits.
Mixing pointers to signed and unsigned char.

c++ warnings

-watt*

-wbei*
-whid*
-winl*
-wlin*
-wlvc*
-wncf*
-wnci*
-wobi*

-wofp*
-womf*
-wovl*
-wscp*

Assignment to this is obsolete; use X::operator new
instead.
Initialization with inappropriate type.
Functionl hides virtual function function2.
Functions containing identifier are not expanded inline.
Temporary used to initialize identifier.
Temporary used for parameter in call to identifier.
Non-const function function called const object.
The constant member identifier is not initialized.
Base initialization without a class name is now
obsolete.
This style of function definition is now obsolete.
Obsolete syntax; use :: instead.
Use of overload is now unnecessary and obsolete.
Identifier is both a structure tag and a name; now
obsolete.

Borland C++ User's Guide

Segment-naming
control

Don't use these options
unless you have a good

understanding of segmen
tation on the 8086 processor.

Under normal circumstances,
you will not need to specify

segment names.

Segment-naming control options allow you to rename segments
and to reassign their groups and classes.

-zAname This option changes the name of the code segment
class to name. By default, the code segment is
assigned to class CODE.

-zBname

-zCname

-zDname

This option changes the name of the uninitialized
data segment class to name. By default, the
uninitialized data segments are assigned to class
BSS.

This option changes the name of the code segment
to name. By default, the code segment is named
_TEXT, except for the medium, large and huge
models, where the name is filename_TEXT. (filename
here is the source file name.)

This option changes the name of the uninitialized
data segment to name. By default, the uninitialized
data segment is named _BSS, except in the huge
model, where no uninitialized data segment is
generated.

See Chapter 6, "Memory -zEname
management, " in the Pro-

This option changes the name of the segment where
far objects are put to name. By default, the segment
name is the name of the far object followed by
_FAR. A name beginning with an asterisk (*) indi
cates that the default string should be used.

grammer's Guide for more
on for objects.

-zFname

-zGname

-zHname

Chapter 6, The command-line compiler

This option changes the name of the class for far
objects to name. By default, the name is FAR_DATA.
A name beginning with an asterisk (*) indicates that
the default string should be used.

This option changes the name of the uninitialized
data segment group to name. By default, the data
group is named DGROUP, except in the huge
model, where there is no data group.

This option causes far objects to be put into group
name. By default, far objects are not put into a group.
A name beginning with an asterisk (*) indicates that
the default string should be used.

177

Compilation
control options

-zPname

-zRname

-zSname

-zTname

-zX*

This option causes any output files to be generated
with a code group for the code segment named
name.

This option sets the name of the initialized data
segment to name. By default, the initialized data
segment is named _DATA, except in the huge
model, where the segment is named filename_DATA.

This option changes the name of the initialized data
segment group to name. By default, the data group is
named DGROUP, except in the huge model, where
there is no data group.

This option sets the name of the initialized data
segment class to name. By default the initialized data
segment class is named DATA.

This option uses the default name for X. For
example, -zA * assigns the default class name CODE
to the code segment.

Compilation control options allow you to control compilation of
source files, such as whether your code is compiled as C or C++,
whether to use precompiled headers, and what kind of Windows
executable file is created. For more detailed information on how
to create an Windows application, see Chapter 3.

-8

-c

-Efilename

This option compiles and calls the assembler to
process inline assembly code.

This option compiles and assembles the named
.C, .CPP, and .ASM files, but does not execute a
link command.

This option uses name as the name of the
assembler to use. By default, TASM is used.

See Appendix A for more on -H
precompiled headers.

This option causes the compiler to generate and
use precompiled headers.

-H-

-Hu

178

This option turns off generation and use of pre
compiled headers (this is the default).

This option tells the compiler to use but not gen
erate precompiled headers.

Borland C++ User's Guide

-H=filename This option sets the name of the file for precom
piled headers. The default is TCDEF.SYM
(located in the BCC or BCCX startup directory).
This option also turns on generation and use of
precompiled headers; that is, it also has the effect
of-H.

-0 filename This option compiles the named file to the
specified filename.obj.

Note that this option _p
behaves differently from the

This option causes the compiler to compile your
code as c++ always, regardless of extension. The
compiler will assume that all files have .CPP
extensions unless a different extension is
specified with the code.

-p option in Turbo C++ l.x.

-Pext

If you want to use your code -p
written under Turbo Cor

Turbo C++ without having to
think about file-name

extensions, use either -P- or
-P-C.

-P-ext

-s

-Tstring

-T-

Chapter 6, The command-line compiler

This option causes the compiler to compile all
files as C++; it changes the default extension to
whatever you specify with ext. This option is
available because some programmers use.C or
another extension as their default extension for
c++ code.

This option tells the compiler to compile a file as
either C or C++, based on its extension. The
default extension is .CPP. This option is the
default.

This option also tells the compiler to compile
code based on the extension (.CPP as C++ code,
all other file-name extensions as C code). It
further specifies what the default extension is to
be.

This option compiles the named source files and
produces assembly language output files (.ASM),
but does not assemble. When you use this option,
Borland C++ will include the C or C++ source
lines as comments in the produced .ASM file.

This option passes string as an option to T ASM
(or as an option to the assembler defined with
-E).

This option removes all previously defined
assembler options.

179

These five options (-W, -WD, -W
-WDE, -WE, and -WS) relate
to creating Windows appli

cations. Note that you
cannot use any of these

options if you are using the
-Yoption (and vice versa).

-WO

-WOE

-WE

Don't use this option for -WS
modules that will be

compiled under the huge
memory model.

This option creates the most general kind of Win
dows executable, although not necessarily the
most efficient. The compiler generates export
information for every far function. This does not
mean that all far functions actually will be
exported, it only means that export information is
created for each far function. In order to actually
export one of these functions, you must either use
the _export keyword or add an entry for the
function name in the EXPORTS section of the
module definition file.

This option creates a module for use in a .DLL
with all functions exportable.

This option creates a module for use in a .DLL
with only explicit functions exportable.

This option creates an object module with only
function explicitly designated with _export as
exportable.

This option creates an .OB] with functions using
smart callbacks. This option is recommended if
you are writing Windows applications (not DLLs)
which can assume SS = DS (most can). This
option simplifies Windows programming; for
instance, using it, you no longer need
MakeProclnstance or FreeProclnstance, nor do
you need to export your WndProcs; instead, you
can directly call a WndProc. Enabling this option
results in faster Windows executables.

EMS and
extended

memory options
If you have extended or expanded memory and you are not run
ning the command-line compiler in protected mode, you may still
want to have the compiler use all available memory. That's where
these options come in.

-Qe

180

This option instructs the compiler to use all EMS
memory it can find. This is on by default for the
real-mode version of the command-line compiler
(BCC). It speeds up your compilations, especially
for large source files.

Bor/and c++ User's Guide

-Qe=yyyy

-Qe-

If you are in doubt about -Qx
your systems' overall use of

extended memory, don't use
this option. Also, don't use

this option when running
BCCX.EXE.

-Qx=nnnn

This option instructs the compiler to use yyyy
pages (in 16K page sizes) of EMS memory for
itself.

This option instructs the compiler not to use any
EMS memory.

This option instructs BCC to use all extended
memory it can find. Like -Qe, this speeds up
compilations of large source files. However,
unlike -Qe, this option has to be used with care,
because another program might be already using
extended memory and not be recognized.

For example, using the VDISK RAM disk driver
with this option is safe, while some disk caches
are not.

This option instructs the compiler to reserve nnnn
Kbytes of extended memory for other programs
and use the rest for itself. To figure out how much
memory to reserve, you have to add up the
memory that is used at the bottom of extended
memory by resident programs like RAM disks or
disk caches.

For example, if you use a disk cache, you might
set it up so that it uses the first 512 Kbytes of
extended memory. To tell the compiler to use the
rest, you would specify -Qx=512.

If you aren't sure how much extended memory is
used by resident utilities like RAM disks or disk
caches, it is better not to use this option.

-Qx=nnnn,yyyy This option instructs the compiler to reserve nnnn
Kbytes extended memory for other programs and
yyyy Kbytes of extended memory for itself.

-Qx=,yyyy

-Qx-

Chapter 6, The command-line compiler

This option instructs the compiler to reserve yyyy
Kbytes of extended memory for itself. The comma
is essential.

This option instructs the compiler not to use any
extended memory. This is the default.

181

c++ virtual tables

182

The -v option controls the c++ virtual tables. There are five varia
tions of the -v option:

-v Smart c++ virtual tables
-Vs Local C++ virtual tables
-YO External C++ virtual tables
-V1 Public C++ virtual tables
-Vf Far C++ virtual tables

-v Use this option when you want to generate C++ virtual
tables (and inline functions not expanded inline) so
that only one instance of a given virtual table or inline
function will be included in the program. This
produces the smallest and most efficient executables,
but uses .OBJ and .ASM extensions only available with
TLINK 3.0 and TASM 2.0 (or newer).

-Vs Use this option when you want Borland C++ to
generate local virtual tables (and inline functions not
expanded inline) such that each module gets its own
private copy of each virtual table (or inline function) it
uses. This option uses only standard .OBJ (and .ASM)
constructs, but produces larger executables.

-YO, -V1 These options work together to create global virtual
tables. If you don't want to use the Smart or Local
options (-V or -Vs), you can use -YO and -V1 to
produce and reference global virtual tables. -YO
generates external references to virtual tables; -V1
produces public definitions for virtual tables.

-Vf

When using these two options, at least one of the
modules in the program must be compiled with the
-V1 option to supply the definitions for the virtual
tables. All other modules should be compiled with the
-YO option to refer to that Public copy of the virtual
tables.

You can use this option independently of or in
conjunction with any of the other virtual table options.
It causes virtual tables to be created in the code
segment instead of the data segment, and makes
virtual table pointers into full 32-bit pointers (the latter

Borland C++ User's Guide

Linker options

is done automatically if you are using the huge
memory model).

There are two primary reasons for using this option: to
remove the virtual tables from the data segment, which
may be getting full, and to be able to share objects (of
classes with virtual functions) between modules that
use different data segments (for example, a DLL and an
executable using that DLL). You must compile all
modules that may share objects either entirely with or
entirely without this option. You can achieve the same
effect by using the huge or _export modifiers on a
class-by-class basis.

See the section on TUNK in -efilename
Chapter 7 for a list of linker

This option derives the executable program's name
from filename by adding the file extension .EXE (the
program name will then be filename.EXE). filename
must immediately follow the -e, with no inter
vening whitespace. Without this option, the linker
derives the .EXE file's name from the name of the
first source or object file in the file name list. The
default extension is .DLL when you are suing -WO
or-WOE.

options.

-Ix

-M

This option (which is a lowercase 1) passes option x
to the linker. The option -I-x suppresses option x.
More than one option can appear after the -I.

This option forces the linker to produce a full link
map. The default is to produce no link map.

Environment options

When working with environment options, bear in mind that
Borland C++ recognizes two types of library files: implicit and
user-specified (also known as explicit library files). These are
defined and discussed on page 185.

-Ipath This option (which is an uppercase I) causes the
compiler to search path (the drive specifier or path
name of a subdirectory) for include files (in

Chapter 6, The command-line compiler 183

184

Searching for
include and

library files

-Lpath

-npath

addition to searching the standard places). A
drive specifier is a single letter, either uppercase
or lowercase, followed by a colon (:). A directory
is any valid directory or directory path. You can
use more than one -I directory option.

This option forces the linker to get the COx.OB}
start-up object file and the Borland C++ library
files (Cx.LIB, CPx.LIB, MATHx.LIB, EMU.LIB,
and FP87.LIB) from the named directory. By
default, the linker looks for them in the current
directory.

This option places any .OBJ or .ASM files created
by the compiler in the directory or drive named
by path.

Borland C++ can search multiple directories for include and
library files. This means that the syntax for the library directories
(-L) and include directories (-I) command-line options, like that
of the #define option (-0), allows multiple listings of a given
option.

Here is the syntax for these options:

Library directories: -Ldirname[;dirname; ...]
Include directories: -Idirname[;dirname; ...]

The parameter dirname used with -L and -I can be any directory
or directory path.

You can enter these multiple directories on the command line in
the following ways:

• You can "gang" multiple entries with a single -L or -I option,
separating ganged entries with a semicolon, like this:

Bee -Ldirnamel;dirname2;dirname3 -linel;inc2;ine3 myfile.e .

• You can place more than one of each option on the command
line, like this:

Bee -Ldirnamel -Ldirname2 -Ldirname3 -linel -line2 -line3 myfile.e

• You can mix ganged and multiple listings, like this:

Bee -Ldirnamel;dirname2 -Ldirname3 -linel;ine2 -line3 myfile.e

Borland C++ User's Guide

Note

File-search
algorithms

Your code written under any
version of Turbo C or Turbo

C++ will work without
problems in Borland C++.

If you list multiple -L or -I options on the command line, the
result is cumulative: The compiler searches all the directories
listed, or defines the specified constants, in order from left to
right.

The IDE also supports multiple library directories through the
"ganged entry" syntax.

The Borland c++ include-file search algorithms search for the
#include files listed in your source code in the following way:

• If you put an #include <sornefile. h> statement in your source
code, Borland c++ searches for somefile.h only in the specified
include directories.

• If, on the other hand, you put an #include "sornefile.h" state
ment in your code, Borland C++ searches for somefile.hfirst in
the current directory; if it does not find the header file there, it
then searches in the include directories specified in the
command line.

The library file search algorithms are similar to those for include
files:

• Implicit libraries: Borland C++ searches for implicit libraries
only in the specified library directories; this is similar to the
search algorithm for #include <somefile.h>. [Implicit library files
are the ones Borland C++ automatically links in. These are the
Cx.LIB and CWINx.LIB files, EMU. LIB or FP87.LIB,
MATHx.LIB, IMPORT. LIB, OVERLAY.LIB, and the start-up
object files (COx.OBJ, COWx.OBJ, or CODx.OBJ).]

• Explicit libraries: Where Borland C++ searches for explicit
(user-specified) libraries depends in part on how you list the
library file name. (Explicit library files are the ones you list on
the command line or in a project file; these are file names with a
.LIB extension.)

• If you list an explicit library file name with no drive or direc
tory (like this: rnylib.lib), Borland C++ searches for that
library in the current directory first. Then (if the first search
was unsuccessful), it looks in the specified library directories.
This is similar to the search algorithm for #include
"somefile .h" .

Chapter 6, The command-line compiler 185

186

An annotated
example

• If you list a user-specified library with drive and/or directory
information (like this: c:mystuff\mylibl.lib), Borland C++
searches only in the location you explicitly listed as part of the
library path name and not in the specified library directories.

Here is an example of a real-mode Borland C++ command line
that incorporates multiple library and include directory options.

1. Your current drive is C:, and your current directory is
C: \ TURBOC, where BCC.EXE resides. Your A drive's current
position is A: \ ASTROLIB.

2. Your include files (.h or "header" files) are located in
C: \ TURBOC \ INCLUDE.

3. Your startup files (COT. OBI, COS. OBI, ... , COH.OBJ) are in
C:\TURBOC.

4. Your standard Borland C++ library files (CS.LIB, CM.LIB, ... ,
MATHS.LIB, MATHM.Lffi, ... , EMU.LIB, FP87.LIB, and so
forth) are in C: \ TURBOC\LIB.

5. Your custom library files for star systems (which you created
and manage with TLIB) are in C: \ TURBOC\ST ARLIB. One of
these libraries is P ARX. LIB.

6. Your third-party-generated library files for quasars are in the
A drive in \ASTROLIB. One of these libraries is WARP.LIB.

Under this configuration, you enter the following command:

BCC -rnm -Llib;starlib -linclude orion.c umaj.c parx.lib a:\astrolib\warp.lib

Borland C++ compiles ORION.C and UMAI.C to .OBI files.

It then searches C: \ TURBOC\INCLUDE for the include files in
your source code, then links them with the medium model start
up code (COM.OBJ), the medium model libraries (CM.LIB,
MA THM.LIB), the standard floating-point emulation library
(EMU.LIB), and the user-specified libraries (PARX.LIB and
WARP. LIB), producing an executable file named ORION.EXE.

It searches for the startup code in C:\ TURBOC (then stops
because they're there); it searches for the standard libraries in
C: \ TURBOC\LIB (and stops because they're there).

When it searches for the user-specified library P ARX.LIB, the
compiler first looks in the current directory, C: \ TURBOC. Not
finding the library there, the compiler then searches the library

Borland C++ User's Guide

directories in order: first C: \ TURBOC\ LIB, then C: \ TURBOC\
STARLIB (where it locates P ARX.LIB).

Since an explicit path is given for the library WARP.LIB (A: \
ASTROLIB\WARP.LIB), the compiler only looks there.

Chapter 6, The command-line compiler 187

188 Bor/and c++ User's Guide

c H

Chapter 7, Utilities

A p T E R

7

Utilities

Borland c++ comes with a host of powerful standalone utilities
that you can use with your Borland C++ files or other modules.
These are

II BGIOBJ, a conversion utility for graphics drivers and fonts
(documented online)

• CPP, the preprocessor (documented online)
II GREP, a file-search utility (documented online)

• IMPDEF, which creates a module definition file

• IMPLIB, which generates an import library
.. MAKE, the standalone program manager

11 OBJXREF, an object module cross-referencer (documented
online)

• PRJCFG, which updates options in a project file from a
configuration file, or converts a project file to a configuration
file (documented online)

• PRJCNVT, which converts Turbo C project files to the Borland
C++ format (documented online)

• PRJ2MAK, which converts Borland C++ project files to MAKE
files (documented online)

II THELP, the Turbo Help utility (documented online)

• TLIB, the Turbo Librarian

• TLINK, the Turbo Linker
• TOUCH, the file date and time changer (documented online)

189

• TRANCOPY, which copies transfer items from one project to
another (documented online)

• TRIGRAPH, a character-conversion utility (documented online)

This chapter explains what IMPDEF, IMPLIB, MAKE, TLm, and
TLINK do, and illustrates, with code and command-line
examples, how to use them. The rest of these utilities are
documented in a text file called UTIL.DOC included with your
distribution disks.

IMPDEF (module definition files)

An import library is used to
provide access to a DLL S

functions. See page 192 for
more details.

190

IMPDEF works with IMPLIB to let you customize an import
library to suit the needs of a specific application.

The syntax is

IMPDEF DestName.DEF SourceName.DLL

This creates a module definition file named DestName.DEF from
the file SourceName.DLL. The module definition file would look
something like this:

LIBRARY FileName

DESCRIPTION'Description'

EXPORTS
ExportFuncName @Ordinal

ExportFuncName @Ordinal

where FileName is the DLL's root filename, Description is the value
of the DESCRIPTION statement if the DLL was previously linked
with a module definition file that included a DESCRIPTION
statement, ExportFuncName names an exported function and
Ordinal is that function's ordinal value (an integer).

IMPDEF creates an editable source file that lists all of the export
functions in the DLL. You can edit this .DEF file to contain only
those functions that you would want to make available to a
particular application, then run IMPLIB on the edited .DEF file.
This process results in an import library that contains import
information for a specific subset of a DLL/s export functions.

For instance, let's say you're distributing a DLL that provides
functions to be used by several applications. Every export

Borland C++ User's Guide

Chapter 7, Utilities

IMPDEF

function in the DLL is defined with _export. Now, if all of the
applications used all of the DLL's exports, then you could simply
use IMPLIB to make one import library for the DLL, and deliver
that import library with the DLL. This import library would
provide import information for all of the DLL's exports. The
import library could be linked to any application, thus
eliminating the need for the particular application to list every
DLL function it uses in the IMPORTS section of its module
definition file.

Now, let's say you want to give only a handful of the DLL's
exports to a particular application. Ideally, you want a customized
import library to be linked to that application-an import library
that only provides import information for the subset of functions
that the application will use. All of the other export functions in
the DLL will be hidden to that client application.

To create an import library that satisfies these conditions, run
IMPDEF on the compiled and linked DLL. IMPDEF produces a
module definition file that contains an EXPORT section listing all
of the DLL's export functions. You can edit that module definition
file, removing EXPORTS section entries for those functions that
you don't want in the customized import library. Once you've
removed the exports that you don't want, run IMPLIB on the
module definition file. The result will be an import library that
contains import information for only those export functions listed
in the EXPORTS section of the module definition file.

This utility is particularly handy for a DLL that uses c++ classes,
for two reasons. First, if you use the _export keyword when
defining a class, all of the non-inline member functions and static
data members for that class are exported. It's easier to let IMPDEF
make a module definition file for you because it lists all the
exported functions, automatically including the member functions
and static data members.

Since the names of these functions are mangled, it would be very
tedious to list them all in the EXPORTS section of a module
definition file simply so that you could create an import library
from the module definition file. If you use IMPDEF to create the
module definition file, it will include the ordinal value for each
exported function, as well as that function's original name in a
comment following the function entry, if the exported name is
mangled. So, for instance, the module definition file created by
IMPDEF for a DLL that used C++ classes would look something
like this:

191

IMPDEF

LIBRARY FileName

DESCRIPTION 'Description'

EXPORTS
MangledExportFuncName @Ordinal; ExportFuncName

MangledExportFuncName @Ordinal; ExportFuncName

where FileName is the DLL's root filename, Description is the value
of the DESCRIPTION statement if the DLL was previously linked
with a module definition file that included a DESCRIPTION
statement, MangledExportFuncName provides the mangled name,
Ordinal is that function's ordinal value (an integer), and
ExportFuncName gives the function's original name.

IMPLIB (import libraries)

192

The IMPLIB utility creates an import library that can be
substituted for part or all of the IMPORTS section of a module
definition file for a Windows application.

If a module uses functions from DLLs, you have two ways to tell
the linker about them:

• You can add an IMPORTS section to the module definition file
and list every function from DLLs that the module will use .

• Or you can include the import library for the DLLs when you
link the module.

If you've created a Windows application, you've already used at
least one import library, IMPORT. LIB. IMPORT. LIB is the import
library for the Windows USER.EXE, GDI.EXE, and KERNEL.EXE
DLLs. (IMPORT. LIB is linked automatically when you build a
Windows application in the IDE; if you've used only the IDE to
build applications, then you might not have seen it before.)

An import library lists some or all of the exported functions for
one or more DLLs. IMPLIB creates an import library directly from
DLLs or from module definition files for DLLs (or a combination
of the two).

To create an import library for a DLL, type

IMPLIB Options LibName DefFiles Dlls

Borland C++ User's Guide

Table 7.1
IMPLIB options

You can use either a hyphen
or a slash to precede IMPUB ~

options.

Re-creating
IMPORT.L1B

IMPLIB

where Options is an optional list of one or more IMPLIB options,
LibName (required) is the name for the new import library, DefFiles
is a list of one or more existing module definition files for one or
more DLLs, and Dlls is a list of one or more existing DLLs. You
must specify at least one DLL or module definition file.

Option

Ii

What it does

Tells IMPLIB to ignore WEP, the Windows exit
procedure required to end a DLL. Use this option if you
are specifying more than one DLL on the IMPUB
command line.

Warning control:
I t Terse warnings.
Iv Verbose warnings.
Iw No warnings.

See page 190 for information on using IMPDEF and IMPLIB to
customize an import library to suit the needs of a specific
applicaiton.

When Microsoft releases new versions of Windows you will
probably need to replace the current version of IMPORT. LIB with
a new one. The easiest way to do this is to build it yourself.

This command line builds the current version of IMPORT. LIB:

IMPLIB /1 IMPORT.LIB GDI.EXE KERNEL.EXE USER.EXE KEYBOARD.DRV
SOUND.DRV WIN87EM.DLL

If Windows is extended so that it uses additional DLLs, any new
DLLs
will also have to appear on the command line.

MAKE: The program manager

Chapter 7, Utilities

Borland's command-line MAKE, derived from the UNIX program
of the same name, helps you keep the executable versions of your
programs current. Many programs consist of many source files,
each of which may need to pass through preprocessors, assem
blers, compilers, and other utilities before being combined with
the rest of the program. Forgetting to recompile a module that has
been changed-or that depends on something you've changed-

193

To find out how to create a
makefile for Windows

programs, see Chapter 3,
page 109.

How MAKE works

can lead to frustrating bugs. On the other hand, recompiling
everything just to be safe can be a tremendous waste of time.

MAKE solves this problem. You provide MAKE with a descrip
tion of how the source and object files of your program are pro
cessed to produce the finished product. MAKE looks at that
description and at the date stamps on your files, then does what's
necessary to create an up-to-date version. During this process,
MAKE may invoke many different compilers, assemblers,linkers,
and utilities, but it never does more than is necessary to update
the finished program.

MAKE's usefulness extends beyond programming applications.
You can use MAKE to control any process that involves selecting
files by name and processing them to produce a finished product.
Some common uses include text processing, automatic backups,
sorting files by extension into other directories, and cleaning
temporary files out of your directory.

MAKE keeps your program up-to-date by performing the
following tasks:

• Reads a special file (called a makefile) that you have created.
This file tells MAKE which .OBI and library files have to be
linked in order to create your executable file, and which source
and header files have to be compiled to create each .OBI file.

• Checks the time and date of each .OBI file against the time and
date of the source and header files it depends on. If any of these
is later than the .OBI file, MAKE knows that the file has been
modified and that the source file must be recompiled.

• Calls the compiler to recompile the source file.
• Once all the .OBI file dependencies have been checked, checks

the date and time of each of the .OBI files against the date and
time of your executable file.

• If any of the .OBI files is later than the .EXE file, calls the linker
to recreate the .EXE file.

Cautionl MAKE relies completely upon the time stamp DOS places on each
file. This means that, in order for MAKE to do its job, your
system's time and date must be set correctly. If you own an AT or
a PS/2, make sure that the battery is in good repair. Weak batter
ies can cause your system's clock to lose track of the date and
time, and MAKE will no longer work as it should.

194 Borland C++ User's Guide

Starting MAKE

MAKE stops if any command
it has executed is aborted

via a Control-Break. Thus, a
Control-Break stops the

currently executing com
mand and MAKE as well.

Chapter 7, Utilities

MAKE

The original IBM PC and most compatibles didn't come with a
built-in clock or calendar. If your system falls into this category,
and you haven't added a clock, be sure to set the system time and
date correctly (using the DOS DATE and TIME commands) each
time you start your machine.

To use MAKE, type make at the DOS prompt. MAKE then looks for
a file specifically named MAKEFILE. If MAKE can't find
MAKE FILE, it looks for MAKEFILE.MAK; if it can't find that or
BUILTINS.MAK (described later), it halts with an error message.

What if you want to use a file with a name other than MAKEFILE
or MAKEFILE.MAK? You give MAKE the file (-f) option, like this:

MAKE -fMYFILE.MAK

The general syntax for MAKE is

make [option [option]] [target [target ...]]

where option is a MAKE option (discussed later), and target is the
name of a target file to make.

Here are the MAKE syntax rules:

• The word make is followed by a space, then a list of make
options.

• Each make option must be separated from its adjacent options
by a space. Options can be placed in any order, and any number
of these options can be entered (as long as there is room in the
command line). All options that do not specify a string (-s or -a,
for example) can have an optional- or + after them. This
specifies whether you wish to turn the option off (-) or on (+).

II The list of MAKE options is followed by a space, then an
optional list of targets.

II Each target must also be separated from its adjacent targets by a
space. MAKE evaluates the target files in the order listed, re
compiling their constituents as necessary.

If the command line does not include any target names, MAKE
uses the first target file mentioned in an explicit rule. If one or
more targets are mentioned on the command line, they will be
built as necessary.

195

MAKE

The BUILTINS.MAK file You will often find that there are MAKE macros and rules that
you use again and again. There are three ways of handling them.

• First, you can put them in every makefile you create.

• Second, you can put them all in one file and use the !include
directive in each makefile you create. (See page 215 for more on
directives.)

• Third, you can put them all in a BUlL TINS.MAI< fil~.

Each time you run MAKE, it looks for a BUlL TINS.MAK file;
however, there is no requirement that any BUlL TINS.MAK file
exist. If MAKE finds a BUlL TINS.MAK file, it interprets that file
first. If MAKE cannot find a BUlL TINS.MAK file, it proceeds
directly to interpreting MAl<EFILE (or whatever makefile you
specify).

The first place MAKE searches for BUlL TINS.MAI< is the current
directory. If it's not there, and if you're running under DOS 3.0 or
higher, MAKE then searches the directory from which
MAKE.EXE was invoked. You should place the BUlL TINS.MAK
file in the same directory as the MAKE.EXE file.

MAKE always searches for the makefile in the current directory
only. This file contains the rules for the particular executable
program file being built. Both BUlL TINS.MAK and the makefile
files have identical syntax rules.

MAKE also searches for any !include files (see page 217 for more
on this MAKE directive) in the current directory. If you use the-I
(include) option, it will also search in the directory specified with
the -I option.

Command-line options Here's a complete list of MAl<E's command-line options. Note that
case (upper or lower) is significant; the option -d is not a valid
substitution for -D.

196 Borland C++ User's Guide

MAKE

Table 7.2: MAKE options

Option What it does

-1 or -h Prints a help message. The default options are displayed with plus signs following.

-a Causes an automatic dependency check on .OBI files.

-8 Builds all targets regardless of file dates.

-Didentifier Defines the named identifier to the string consisting of the single character 1 (one).

-Diden=string Defines the named identifier iden to the string after the equal sign. The string cannot
contain any spaces or tabs.

-ffilename Uses filename as the MAKE file. Hfilename does not exist and no extension is given, tries
FILENAME.MAK.

-i Does not check (ignores) the exit status of all programs run. Continues regardless of
exit status. This is equivalent to putting '-' in front of all commands in the MAKEFILE
(described below).

-I directory Searches for include files in the indicated directory (as well as in the current directory).

-K Keeps (does not erase) temporary files created by MAKE. All temporary files have the
form MAKEnnnn.$$$, where nnnn ranges from 0000 to 9999. See page 202 for more on
temporary files.

-n Prints the commands but does not actually perform them. This is useful for debugging
a makefile.

-s Does not print commands before executing. Normally, MAKE prints each command as
it is about to be executed.

-5 Swaps MAKE out of memory while executing commands. This significantly reduces
the memory overhead of MAKE, allowing it to compile very large modules.

-Uidentifier Undefines any previous definitions of the named identifier.

-W Writes the current specified non-string options (like -s and -a) to MAKE.EXE. (This
makes them default.)

A simple use of
MAKE

MAKE can a/so backup files,
pull files out of different

subdirectories, and even
automatically run your

programs should the data
files they use be modified.

Chapter 7, Utilities

For our first example, let's look at a simple use of MAKE that
doesn't involve programming. Suppose you're writing a book,
and decide to keep each chapter of the manuscript in a separate
file. (Let's assume, for the purposes of this example, that your
book is quite short: It has three chapters, in the files CHAP1.MSS,
CHAP2.MSS, and CHAP3.MSS.) To produce a current draft of the
book, you run each chapter through a formatting program, called
FORM.EXE, then use the DOS COPY command to concatenate the
outputs to make a single file containing the draft, like this:

197

MAKE

198

Chap1.MSS /onn.9> Chapt1.TXT

Chap2.MSS /onn.9> Chapt2.TXT Book.TXT

Chap3.MSS /orm.9> Chap3.TXT

Like programming, writing a book requires a lot of concentration.
As you write, you may modify one or more of the manuscript
files, but you don't want to break your concentration by noting
which ones you've changed. On the other hand, you don't want to
forget to pass any of the files you've changed through the
formatter before combining it with the others, or you won't have a
fully updated draft of your book!

One inelegant and time-consuming way to solve this problem is
to create a batch file that reformats every one of the manuscript
files. It might contain the following commands:

FORM CHAP1.MSS
FORM CHAP2.MSS
FORM CHAP 3 .MSS
COPY fA CHAP1.TXT+CHAP2.TXT+CHAP3.TXT BOOK. TXT

Running this batch file would always produce an updated version
of your book. However, suppose that, over time, your book got
bigger and one day contained 15 chapters. The process of refor
matting the entire book might become intolerably long.

MAKE can come to the rescue in this sort of situation. All you
need to do is create a file, usually named MAKEFILE, which tells
MAKE what files BOOK.TXT depends on and how to process
them. This file will contain rules that explain how to rebuild
BOOK. TXT when some of the files it depends on have been
changed.

In this example, the first rule in your makefile might be

BOOK. TXT: CHAP1.TXT CHAP2.TXT CHAP3.TXT
COPY fA CHAP1.TXT+CHAP2.TXT+CHAP3.TXT BOOK. TXT

What does this mean? The first line (the one that begins with
book. txt:) says that BOOK. TXT depends on the formatted text of

Borland C++ User's Guide

Chapter 7, Utilities

MAKE

each of the three chapters. If any of the files that BOOK.TXT
depends on are newer than BOOK. TXT itself, MAKE must rebuild
BOOK.TXT by executing the COpy command on the subsequent
line.

This one rule doesn't tell the whole story, though. Each of the
chapter files depends on a manuscript (.MSS) file. If any of the
CHAP?TXT files is newer than the corresponding .MSS file, the
.MSS file must be recreated. Thus, you need to add more rules to
the makefile as follows:

CHAP1.TXT: CHAP1.MSS
FORM CHAPl.MSS

CHAP2.TXT: CHAP2.MSS
FORM CHAP2.MSS

CHAP3.TXT: CHAP3.MSS
FORM CHAP3.MSS

Each of these rules shows how to format one of the chapters, if
necessary, from the original manuscript file.

MAKE understands that it must update the files that another file
depends ,on before it attempts to update that file. Thus, if you
change CHAP3.MSS, MAKE is smart enough to reformat Chapter
3 before combining the .TXT files to create BOOK.TXT.

We can add one more refinement to this simple example. The
three rules look very much the same-in fact, they're identical
except for the last character of each file name. And, it's pretty easy
to forget to add a new rule each time you start a new chapter. To
solve these problems, MAKE allows you to create something
called an implicit rule, which shows how to make one type of file
from another, based on the files' extensions. In this case, you can
replace the three rules for the chapters with one implicit rule:

.MSS.TXT:
FORM $* .MSS

This rule says, in effect, "If you need to make a .TXT file out of an
.MSS file to make things current, here's how to do it." (You'll still
have to update the first rule-the one that makes BOOK.TXT, so
that MAKE knows to concatenate the new chapters into the
output file. This rule, and others following, make use of a macro.
See page 211 for an in-depth discussion of macros.)

199

MAKE

Creating
makefiles

Components of a
makefile

200

Once you have the makefile in place, all you need to do to create
an up-to-date draft of the book is type a single command at the
DOS prompt: MAKE.

Creating a program from an assortment of program files, include
files, header files, object files, and so on, is very similar to the
text-processing example you just looked at. The main difference is
that the commands you'll use at each step of the process will
invoke preprocessors, compilers, assemblers, and linkers instead
of a text formatter and the DOS COPY command. Let's explore
how to create makefiles-the files that tell MAKE how to do these
things-in greater depth.

A makefile contains the definitions and relationships needed to
help MAKE keep your program(s) up-to-date. You can create as
many makefiles as you want and name them whatever you want;
MAKEFILE is just the default name that MAKE looks for if you
don't specify a makefile when you run MAKE.

You create a makefile with any ASCII text editor, such as the IDE
built-in editor, Sprint, or SideKick. All ru1es, definitions, and
directives end at the end of a line. If a line is too long, you can
continue it to the next line by placing a backslash (\) as the last
character on the line.

Use whitespace (blanks and tabs) to separate adjacent identifiers
(such as dependencies) and to indent commands within a rule.

Creating a makefile is basically like writing a program, with defi
nitions, commands, and directives. These are the constructs
allowed in a makefile:

• comments

• explicit ru1es

• implicit rules
• macro definitions

• directives:

• file inclusion directives
• conditional execution directives

Borland C++ User's Guide

MAKE

• error detection directives
• macro undefinition directives

Let's look at each of these in more detail.

Comments Comments begin with a pound sign (#) character; the rest of the
line following the # is ignored by MAKE. Comments can be
placed anywhere; they don't have to start in a particular column.

Explicit and implicit rules are
discussed following the
section on commands.

Command lists

Chapter 7, Utilities

A backslash will not continue a comment onto the next line;
instead, you must use a # on each line. In fact, you cannot use a
backslash as a continuation character in a line that has a comment.
If the backslash precedes the #, it is no longer the last character on
the line; if it follows the #, then it is part of the comment itself.

Here are some examples of comments in a makefile:

Makefile for my book

This file updates the file BOOK. TXT each time I
change one of the .MSS files

Explicit rule to make BOOK. TXT from six chapters. Note the
continuation lines.

BOOK. TXT: CHAP1.TXT CHAP2.TXT CHAP3.TXT\
CHAP4.TXT CHAPS. TXT CHAP6.TXT
COPY /A CHAP1.TXT+CHAP2.TXT+CHAP3.TXT+CHAP4.TXT+\

CHAPS.TXT+CHAP6.TXT BOOK. TXT

Implicit rule to format individual chapters
.MSS.TXT:

FORM $*.MSS

Both explicit and implicit rules (discussed later) can have lists of
commands. This section describes how these commands are pro
cessed by MAKE.

Commands in a command list take the form

[prefix ...] command_body

Each command line in a command list consists of an (optional) list
of prefixes, followed by a single command body.

201

MAKE

Table 7.3
MAKE prefixes

Prefixes

The prefixes allowed in a command modify the treatment of these
commands by MAKE. The prefix is either the at-sign (@) or a
hyphen (-) followed immediately by a number.

Prefix What it does

@ Prevents MAKE from displaying the command before
executing it. The display is hidden even if the -s option is not
given on the MAKE command line. This prefix applies only
to the command on which it appears.

Exit codes are those returned -num
by the executed commands

Affects how MAKE treats exit codes. If a number (num) is
provided, then MAKE aborts processing only if the exit status
exceeds the number given. In this example, MAKE aborts
only if the exit status exceeds 4:

(within the program).

202

-4 MYPROG SAMPLE.X

If no -num prefix is given and the status is nonzero, MAKE
stops and deletes the current target file.

With a hyphen but no number, MAKE will not check the exit
status at all. Regardless of the exit status, MAKE continues.

Command body

The command body is treated exactly as if it were entered as a
line to the DOS command line, with the exception that pipes (I)
are not supported.

In addition to the <, >, and» redirection operators, MAKE adds
the« and && operators. These operators create a file on the fly
for input to a command. The « operator creates a temporary file
and redirects the command's standard input so that it comes from
the created file. If you have a program that accepted input from
stdin, the command

MYPROG «!
This is a test

would create a temporary file containing the string "This is a
test \ nil , redirecting it to be the sole input to myprog. The excla
mation point (!) is a delimiter in this example; you can use any
character except # or \ as a delimiter for the file. The first line
containing the delimiter character as its first character ends the
file. The rest of the line following the delimiter character (in this

Borland C++ User's Guide

MAKE

case, an exclamation point) is considered part of the preceding
command.

The && operator is similar to «. It creates a temporary file, but
instead of making the file the standard input to the command, the
&& operator is replaced with the temporary file's name. This is
useful when you want MAKE to create a file that's going to be
used as input to a program. The following example creates a
"response file" for TLINK:

Macros are covered starting
on page 277.

MYPROG.EXE: $ (MYOBJS)
TLINK Ie @&&!

Chapter 7, Utilities

cos $ (MYOBJS)
$*
$*
$ (MYLIBS) EMU.LIB MATHS.LIB CS.LIB

Note that macros (indicated by $ signs) are expanded when the
file is created. The $* is replaced with the name of the file being
built, without the extension, and $(MYOBJS) and $(MYLIBS) are
replaced with the values of the macros MYOBJS and MYLIBS.
Thus, TLINK might see a file that looks like this:

cos A.OBJ B.OBJ C.OBJ D.OBJ
MYPROG
MYPROG
W.LIB X.LIB Y.LIB Z.LIB EMU.LIB MATHS.LIB CS.LIB

.. All temporary files are deleted unless you use the -K command
line option. Use the -K option to "debug" your temporary files if
they don't appear to be working correctly.

Batching programs

MAKE allows utilities that can operate on a list of files to be
batched. Suppose, for example, that MAKE needs to submit
several C files to Borland c++ for processing. MAKE could run
BCC.EXE once for each file, but it's much more efficient to invoke
BCC.EXE with a list of all the files to be compiled on the com
mand line. This saves the overhead of reloading Borland c++
each time.

MAKE's batching feature lets you accumulate the names of files to
be processed by a command, combine them into a list, and invoke
that command only once for the whole list.

203

MAKE

204

To cause MAKE to batch commands, you use braces in the
command line:

command {batch-item} ... rest-oj-command

This command syntax delays the execution of the command until
MAKE determines what command (if any) it has to invoke next. If
the next command is identical except for what's in the braces, the
two commands will be combined by appending the parts of the
commands that appeared inside the braces.

Here's an example that shows how batching works. Suppose
MAKE decides to invoke the following three commands in
succession:

Bee {filel.c }
Bee {file2.c }
Bee {file3.c }

Rather than invoking Borland c++ three times, MAKE issues the
single command

Bee filel.c file2.c file3.c

Note that the spaces at the ends of the file names in braces are
essential to keep them apart, since the contents of the braces in
each command are concatenated exactly as-is.

Here's an example that uses an implicit rule. Suppose your
makefile had an implicit rule to compile C programs to .OBI files:

.c.obj:
Bee -c {$< }

As MAKE uses the implicit rule on each C file, it expands the
macro $< into the actual name of the file and adds that name to
the list of files to compile. (Again, note the space inside the braces
to keep the names separate.) The list grows until one of three
things happens:

• MAKE discovers that it has to run a program other than BCC

• there are no more commands to process

• MAKE runs out of room on the command line

If MAKE runs out of room on the command line, it puts as much
as it can on one command line, then puts the rest on the next
command line. When the list is done, MAKE invokes BCC (with
the -c option) on the whole list of files at once.

Borland C++ User's Guide

Chapter 7, Utilities

MAKE

Executing DOS commands

MAKE executes the DOS "internal" commands listed here by
invoking a copy of COMMAND.COM to perform them:

break del path
cd dir prompt
chdir echo rd
cls erase rem
copy for ren
ctty md rename
date mkdir rmdir

set
time
type
ver
verify
vol

MAKE searches for any other command name using the DOS
search algorithm:

1. MAKE first searches for the file in the current directory, then
searches each directory in the path.

2. In each directory, MAKE first searches for a file of the specified
name with the extension .COM. If it doesn't find it, it searches
for the same file name with an .EXE extension. Failing that,
MAKE searches for a file by the specified name with a .BAT
extension.

3. If MAKE finds a .BAT file, it invokes a copy of COM
MAND.COM to execute the batch file.

If you supply a file-name extension in the command line, MAKE
searches only for that extension. Here are some examples:

II This command causes COMMAND.COM to change the current
directory to C: \ include:

cd c:\include

II MAKE uses the full search algorithm in searching for the
appropriate files to perform this command:

tlink lib\cOs x y,z,z,lib\cs

• MAKE searches for this file using only the .COM extension:

myprog.com geo.xyz

• MAKE executes this command using the explicit file name
provided:

c:\myprogs\fil.exe -r

205

MAKE

206

Explicit rules The first rule in the example on page 201 is an explicit rule-a rule
that specifies complete file names explicitly. Explicit rules take the
form

target [target] ... : [source source ...]
[command]
[command]

where target is the file to be updated, source is a file on which
target depends, and command is any valid DOS command
(including invocation of .BAT files and execution of .COM and
.EXE files).

Explicit rules define one or more target names, zero or more
source files, and an optional list of commands to be performed.
Target and source file names listed in explicit rules can contain
normal DOS drive and directory specifications; they can also
contain wildcards.

.. Syntax here is important.

• target must be at the start of a line (in column 1).
• The source file(s) must be preceded by at least one space or tab,

after the colon.

• Each command must be indented, (must be preceded by at least
one blank or tab). As mentioned before, the backslash can be
used as a continuation character if the list of source files or a
given command is too long for one line.

Both the source files and the commands are optional; it is possible
to have an explicit rille consisting only of target [target ... J
followed by a colon.

The idea behind an explicit rule is that the command or com
mands listed will create or update target, usually using the source
files. When MAKE encounters an explicit rille, it first checks to see
if any of the source files are themselves target files elsewhere in the
makefile. If so, MAKE evaluates that rille first.

Once all the source files have been created or updated based on
other rilles, MAKE checks to see if target exists. If not, each com
mand is invoked in the order given. If target does exist, its time
and date of last modification are compared against the time and
date for each source. If any source has been modified more recently
than target, the list of commands is executed.

Borland C++ User's Guide

Chapter 7, Utilities

MAKE

A given file name can occur on the left side of an explicit rule only
once in a given execution of MAKE.

Each command line in an explicit rule begins with whitespace.
MAKE considers all lines following an explicit rille to be part of
the command list for that rille, up to the next line that begins in
column 1 (without any preceding whitespace) or to the end of the
file. Blank lines are ignored.

Special considerations

An explicit rille with no command lines following it is treated a
little differently than an explicit rille with command lines .

.. If an explicit rille includes commands, the only files that the
target depends on are the ones listed in the explicit rille .

.. If an explicit rille has no commands, the targets depend on two
sets of files: the files given in the explicit rule, and any file that
matches an implicit rille for the target(s). This lets you specify a
dependency to be handled by an implicit rule. For example,

.c.obj
Bee -c $<

prog .obj:

prog.obj depends on prog.c; MAKE executes the command line

Bee -c prog.c

if PROG.OBI is out of date.

Examples

Here are some examples of explicit rilles:

1. prog.exe: myprog.obj prog2.obj
Bee myprog.obj prog2.obj

2. myprog.obj: myprog.c include\stdio.h
Bee -c myprog.c

3. prog2.obj: prog2.c include\stdio.h
Bee -c -K prog2.c

The three examples are from the same makefile. Only the modilles
affected by a change are rebuilt. If PROG2.C is changed, it's the
only one recompiled; the same holds true for MYPROG.C. But if
the include file stdio.h is changed, both are recompiled. (The link

207

MAKE

step is done if any of the .OBI files in the dependency list have
changed, which will happen when a recompile results from a
change to a source file.)

Automatic dependency checking

Borland C++ works with MAKE to provide automatic
dependency checking for include files. BCC and BC produce .OBI
files that tell MAKE what include files were used to create those
.OBI files. MAKE's -a command-line option checks this
information and makes sure that everything is up-to-date.

When MAKE does an automatic dependency check, it reads the
include files' names, times, and dates from the .OBI file. The
auto dependency check will also work for include files inside of
include files. If any include files have been modified, MAKE
causes the .OBI file to be recompiled. For example, consider the
following explicit rule:

myprog.obj: myprog.c include\stdio.h
BCC -c myprog.c

Now assume that the following source file, called MYPROG.C,
has been compiled with BCC (version 2.0 or later):

#include <stdio.h>
#include "dcl.h"

void myprog() {}

If you then invoke MAKE with the following command line

make -a myprog.obj

it checks the time and date of MYPROG.C, and also of stdio.h and
dcl.h.

Implicit rules MAKE allows you to define implicit rules as well as explicit ones.
Implicit rules are generalizations of explicit rules; they apply to all
files that have certain identifying extensions.

Here's an example that illustrates the relationship between the
two rules. Consider this explicit rule from the preceding example.
The rule is typical because it follows a general principle: An .OBI
file is dependent on the .C file with the same file name and is
created by executing BCC. In fact, you might have a makefile
where you have several (or even several dozen) explicit rules
following this same format.

208 Borland C++ User's Guide

Chapter 7, Utilities

MAKE

By rewriting the explicit rule as an implicit rule, you can eliminate
all the explicit rules of the same form. As an implicit rule, it
would look like this:

.c.obj:
BCC -c $<

This rule means /I Any file with the extension .C can be translated
to a file of the same name with the extension .OBJ using this
sequence of commands." The .OBJ file is created with the second
line of the rule, where $< represents the file's name with the source
(.C) extension. (The symbol $< is a special macro. Macros are
discussed starting on page 211. The $< macro will be replaced by
the full name of the appropriate .C source file each time the com
mand executes.)

Here's the syntax for an implicit rule:

.source _extension. target _extension:
[command]
[command]

As before, the commands are optional and must be indented.

source_extension (which must begin with its period in column 1) is
the extension of the source file; that is, it applies to any file having
the format

fname.source_extension

Likewise, the target_extension refers to the file

fname.target _extension

where fname is the same for both files. In other words, this implicit
rule replaces all explicit rules having the format

fname.targeCextension: fname.source_extension
[command]
[command]

for any fname.

Note MAKE uses implicit rules if it can't find any explicit rules for a
given target, or if an explicit rule with no commands exists for the
target.

The extension of the file name in question is used to determine
which implicit rule to use. The implicit rule is applied if a file is

209

MAKE

210

found with the same name as the target, but with the mentioned
source extension.

For example, suppose you had a makefile (named MAKEFILE)
whose contents were

.c.obj:
Bee -c $<

If you had a C program named RA TIO.C that you wanted to
compile to RATIO.OBJ, you could use the command

make ratio.obj

MAKE would take RATIO.OBJ to be the target. Since there is no
explicit rule for creating RA TIO.OBJ, MAKE applies the implicit
rule and generates the command

Bee -c ratio.c

which, of course, does the compile step necessary to create
RATIO.OBI·

MAKE also uses implicit rules if you give it an explicit rule with
no commands. Suppose you had the following implicit rule at the
start of your makefile:

.c.obj:
Bee -c $<

You could then remove the command from the rule:

myprog.obj: myprog.c include\stdio.h
Bee -c myprog.c

and it would execute exactly as before.

If you're using Borland c++ and you enable automatic
dependency checking in MAKE, you can remove all explicit
dependencies that have .OBJ files as targets. With automatic
dependency checking enabled and implicit rules, the three-rule C
example shown in the section on explicit rules becomes

.c.obj:
Bee -c $<

prog.exe: myprog.obj prog2.obj
tlink lib\cOs myprog prog2, prog, , lib\cs

You can write several implicit rules with the same target exten
sion. If more than one implicit rule exists for a given target exten
sion, the rules are checked in the order in which they appear in

Borland C++ User's Guide

Chapter 7, Utilities

MAKE

the makefile, until a match is found for the source extension, or
until MAKE has checked all applicable rwes.

MAKE uses the first implicit rwe that involves a file with the
source extension. Even if the commands of that ru1e fail, no more
implicit rwes are checked.

All lines following an implicit rule, up to the next line that begins
without whitespace or to the end of the file, are considered to be
part of the command list for the ru1e.

Macros Often, you'll find yourself using certain commands, file names, or
options again and again in your makefile. For instance, if you're
writing a e program that uses the medium memory model, all
your Bee commands will use the option -mm, which means to
compile to the medium memory model. But suppose you wanted
to switch to the large memory model. You could go through and
change all the -mm options to -ml. Or, you could define a macro.

A macro is a name that represents some string of characters. A
macro definition gives a macro name and the expansion text;
thereafter, when MAKE encounters the macro name, it replaces
the name with the expansion text.

Suppose you defined the following macro at the start of your
makefile:

MODEL = m

This line defines the macro MODEL, which is now equivalent to the
string m. Using this macro, you cowd write each command to
invoke the e compiler to look something like this:

Bee -c -m$(MODEL) myprog.c

When you run MAKE, each macro (in this case, $ (MODEL)) is
replaced with its expansion text (here, m). The command that's
actually executed would be

Bee -c -rom myprog.c

Now, changing memory models is easy. If you change the first
line to

MODEL = 1

you've changed all the commands to use the large memory model.
In fact, if you leave out the first line altogether, you can specify
which memory model you want each time you run MAKE, using
the -0 (define) command-line option:

211

MAKE

212

make -DMODEL = 1

This tells MAKE to treat MODEL as a macro with the expansion
text 1.

Defining macros

Macro definitions take the form

macro_name = expansion text

where macro_name is the name of the macro. macro_name should
be a string of letters and digits with no whitespace in it, although
you can have whitespace between macro_name and the equal sign
(=). The expansion text is any arbitrary string containing letters,
digits, whitespace, and punctuation; it is ended by newline.

If macro_name has previously been defined, either by a macro
definition in the makefile or by the -D option on the MAKE com
mand line, the new definition replaces the old.

Case is significant in macros; that is, the macro names model,
Model, and MODEL are all different.

Using macros

You invoke macros in your makefile using this format

$(macro_name)

You need the parentheses for all invocations, even if the macro
name is just one character long (with the exception of the pre
defined macros). This construct-$ (macro_name)-is known as a
macro invocation.

When MAKE encounters a macro invocation, it replaces the
invocation with the macro's expansion text. If the macro is not
defined, MAKE replaces it with the null string.

Special considerations

Macros in macros: Macros cannot be invoked on the left side
(macro_name) of a macro definition. They can be used on the right
side (expansion text), but they are not expanded until the macro
being defined is invoked. In other words, when a macro
invocation is expanded, any macros embedded in its expansion
text are also expanded.

Borland C++ User's Guide

See page 275 for information
on directives.

Table 7.4
MAKE macros

Chapter 7, Utilities

MAKE

Macros in rules: Macro invocations are expanded immediately in
rule lines.

Macros in directives: Macro invocations are expanded imme
diately in !if and !elif directives. If the macro being invoked in an
!if or !elif directive is not currently defined, it is expanded to the
value 0 (FALSE).

Macros in commands: Macro invocations in commands are
expanded when the command is executed.

Predefined macros

MAKE comes with several special macros built in: $d, $*, $<, $:,
$., and $&. The first is a test to see if a macro name is defined; it's
used in the conditional directives !if and !elif. The others are file
name macros, used in explicit and implicit rules. In addition, the
current DOS environment strings (the strings you can view and
set using the DOS SET command) are automatically loaded as
macros. Finally, MAKE defines two macros: __ MSDOS_ -J

defined to be 1 (one); and __ MAKE_ -J defined to be MAKE's
version number in hexadecimal (for this version, Ox0300).

Macro

$d
$*
$<
$:
$.
$&

What it does

Defined test macro
Base file name macro with path
Full file name macro with path
Path only macro
Full file name macro, no path
Base file name macro, no path

Defined Test Macro ($d): The defined test macro ($d) expands to 1
if the given macro name is defined, or to 0 if it is not. The content
of the macro's expansion text does not matter. This special macro
is allowed only in !if and !elif directives.

For example, suppose you want to modify your makefile so that if
you don't specify a memory model, it'll use the medium one. You
could put this at the start of your makefile:

!if !$d(MODEL) # if MODEL is not defined
MODEL=m # define it to m (MEDIUM)
!endif

If you then invoke MAKE with the command line

make -DMODEL=l

213

MAKE

214

then MODEL is defined as 1. If, however, you just invoke MAKE
by itself,

make

then MODEL is defined as m, your /I default" memory model.

File name macros

The various file name macros work in similar ways, expanding to
some variation of the full path name of the file being built.

Base file name macro ($*): The base file name macro is allowed in
the commands for an explicit or an implicit rule. This macro ($*)
expands to the file name being built, excluding any extension, like
this:

File name is A:\P\TESTFILE.C
$* expands to A:\P\TESTFILE

For example, you could modify this explicit rule

prog.exe: myprog.obj prog2.obj
tlink lib\cOs myprog prog2, prog, , lib\cs

to look like this:

prog.exe: myprog.obj prog2.obj
tlink lib\cOs myprog prog2, $*, , lib\cs

When the command in this rule is executed, the macro $* is
replaced by the target file name without an extension and with a
path. For implicit rilles, this macro is very useful.

For example, an implicit rille might look like this:

.c.obj:
BCC -c $*

Full file name macro ($<): The full file name macro ($<) is also
used in the commands for an explicit or implicit rule. In an
explicit rille, $< expands to the full target file name (including
extension), like this:

File name is A:\P\TESTFILE.C
$< expands to A:\P\TESTFILE.C

For example, the rille

mylib.obj: mylib.c
copy $< \oldobjs
BCC -c $*

Borland C++ User's Guide

Directives

Table 7.5
MAKE directives

Chapter 7, Utilities

MAKE

copies MYLIB.OBJ to the directory \OLDOBJS before compiling
MYLIB.C.

In an implicit rule, $< takes on the file name plus the source exten
sion. For example, the implicit rule

.c.obj:
Bee -c $*.c

produces exactly the same result as

.c.obj:
Bee -c $<

because the extension of the target file name must be .C.

File-name path macro ($:): This macro expands to the path name
(without the file name), like this:

File name is A:\P\TESTFILE.e
$: expands to A:\P\

File-name and extension macro ($.): This macro expands to the
file name, with an extension but without the path name, like this:

File name is A:\P\TESTFILE.e
$. expands to TESTFILE.e

File name only macro ($&): This macro expands to the file name
only, without path or extension, like this:

File name is A:\P\TESTFILE.e
$& expands to TESTFILE

Borland's MAKE allows something that other versions of MAKE
don't: directives similar to those allowed in C, assembler, and
Turbo Pascal. You can use these directives to perform a variety of
useful and powerful actions. Some directives in a makefile begin
with an exclamation point (!) as the first character of the line.
Others begin with a period. Here is the complete list of MAKE
directives:

. autodepend
!elif
!else
!endif
!error
Iif
.ignore

Turns on autodependency checking .
Conditional execution.
Conditional execution.
Conditional execution.
Causes MAKE to stop and print an error message.
Conditional execution.
Tells MAKE to ignore return value of a command .

215

MAKE

216

Table 7.5: MAKE directives (continued)

!include
. noautodepend
. noignore
.nosilent

. noswap

.path.ext

.silent

. swap
lundef

Specifies a file to include in the makefile.
Turns off autodependency checking .
Turns off .Ignore .
Tells MAKE to print commands before executing
them.
Tells MAKE to not swap itself in and out of memory .
Gives MAKE a path to search for files with extension
.EXT.
Tells MAKE to not print commands before executing
them.
Tells MAKE to swap itself in and out of memory .
Causes the definition for a specified macro to be
forgotten.

Dot directives Each of the following directives has a corresponding command
line option, but takes precedence over that option. For example, if
you invoke MAKE like this:

make -a

but the makefile has a .noautodepend directive, then
autodependency checking will be off .

. autodepend and .noautodepend turn on or off auto dependency
checking. They correspond to the -a command-line option .

.ignore and .noignore tell MAKE to ignore the return value of a
command, much like placing the prefix - in front of it (described
earlier). They correspond to the -i command-line option .

. silent and .nosilent tell MAKE whether or not to print commands
before executing them. They correspond to the -s command-line
option .

. swap and .noswap tell MAKE to swap itself out of memory. They
correspond to the -5 option .

. path.ext

This directive, placed in a makefile, tells MAKE where to look for
files of the given extension. For example, if the following is in a
makefile:

.path.c = C:\CSOURCE

.c.obj:
BCC -c $*

Borland C++ User's Guide

MAKE

trnp.exe: trnp.obj
BCC trnp.obj

MAKE will look for TMP.C, the implied source file for TMP.OBJ,
in C: \ CSOURCE instead of the current directory.

The .path is also a macro that has the value of the path. The
following is an example of the use of .path. The source files are
contained in one directory, the .OBJ files in another, and all the
.EXE files in the current directory .

. path.c = C:\CSOURCE

.path.obj = C:\OBJS

.c.obj:
BCC -c -o$(.path.obj)\$& $<

. obj. exe:
BCC -e$&.exe $<

trnp.exe: trnp.obj

File-inclusion directive A file-inclusion directive (!include) specifies a file to be included
into the makefile for interpretation at the point of the directive. It
takes the following form:

Chapter 7, Utilities

!include "filename"

You can nest these directives to any depth. If an include directive
attempts to include a file that has already been included in some
outer level of nesting (so that a nesting loop is about to start), the
inner include directive is rejected as an error.

How do you use this directive? Suppose you created the file
MODEL.MAC that contained the following:

! if ! $d (MODEL)
MODEL=rn
!endif

You could use this conditional macro definition in any makefile
by including the directive

!include "MODEL.MAC"

When MAKE encounters !include, it opens the specified file and
reads the contents as if they were in the makefile itself.

217

MAKE

Conditional execution
directives

Conditional execution directives (!if, !elif, !else, and !endif) give
you a measure of flexibility in constructing makefiles. Rules and
macros can be made conditional, so that a command-line macro
definition (using the -D option) can enable or disable sections of
the makefile.

The format of these directives parallels those in C, assembly
language, and Turbo Pascal:

!if expression
[lines 1
!endif

!if expression
[lines 1
!else
[lines 1
!endif

!if expression
[lines 1
!elif expression
[lines 1
!endif

Note [lines] can be any of the following statement types:

218

• macro_definition
• explicit_rule
• implicit_rule
• include_directive
.if~roup
• error_directive
• undef_directive

The conditional directives form a group, with at least an !if
directive beginning the group and an !endif directive closing the
group.

• One !else directive can appear in the group.
• !elif directives can appear between the !if and any !else

directives.

• Rules, macros, and other directives can appear between the
various conditional directives in any number. Note that
complete rules, with their commands, cannot be split across
conditional directives.

• Conditional directive groups can be nested to any depth.

Borland C++ User's Guide

Chapter 7, Utilities

MAKE

Any rules, commands, or directives must be complete within a
single source file.

All !if directives must have matching !endif directives within the
same source file. Thus the following include file is illegal,
regardless of what's in any file that might include it, because it
doesn't have a matching !endif directive:

!if $ (FILE_COUNT) > 5
some rules

!else
other rules

<end-of-file>

Expressions allowed in conditional directives

Expressions are allowed in an !if or an !elif directive; they use a
C-like syntax. The expression is evaluated as a simple 32-bit
signed integer.

You can enter numbers as decimal, octal, or hexadecimal
constants. If you know the C language, you already know how to
write constants in MAKE; the formats are exactly the same. If you
program in assembly language or Turbo Pascal, be sure to look
closely at the examples that follow. These are legal constants in a
MAKE expression:

4536 # decimal constant
0677 # octal constant (distinguished by leading 0)
Ox23aF # hexadecimal constant (distinguished by leading Ox)

An expression can use any of the following operators:

219

MAKE

Table 7.6
MAKE operators Operator Operation Operator Operation

See "Operator descriptions'
in Chapter 1 of the

Programmer's Guide for
complete descriptions of

these operators.

Unary operators

Negation
Bit complement
Logical NOT

Binary operators

+ Addition

*
I
%

»
«

Subtraction
Multiplication
Division
Remainder

Right shift
Left shift'

& Bitwise AND
I Bitwise OR
A BitwiseXOR

&& Logical AND
II Logical OR

> Greater than
< Less than
>= Greater than or equal
<= Less than or equal
-- Equality
1= Inequality

Ternary operator

? : Conditional expression

The operators have the same precedences as they do in the C
language. Parentheses can be used to group operands in an
expression. See the "Expressions" section in the Programmer's
Guide.

You can invoke macros within an expression; the special macro
$d() is recognized. After all macros have been expanded, the
expression must have proper syntax.

Error directive The error directive (!error) causes MAKE to stop and print a fatal
diagnostic containing the text after !error. It takes the format

220

!error any_text

This directive is designed to be included in conditional directives
to allow a user-defined error condition to abort MAKE. For
example, you could insert the following code in front of the first
explicit rule:

! if ! $d (MODEL)
if MODEL is not defined
!error MODEL not defined
!endif

If you reach this spot without having defined MODEL, then
MAKE stops with this error message:

Fatal makefile 4: Error directive: MODEL not defined

Borland C++ User's Guide

Macro undefinitlon
directive

MAKE errors

Chapter 7, Utilities

MAKE

The macro "undefinition" directive (Iundef) causes any definition
for the named macro to be forgotten. If the macro is currently
undefined, this directive has no effect. The syntax is

!undef macro_name

MAKE diagnostic messages fall into two classes: errors and fatal
errors .

• Errors indicate some sort of syntax or semantic error in the
source makefile .

• When a fatal error occurs, compilation immediately stops. You
must take appropriate action and then restart the compilation.

The following generic names and values appear in the messages
listed in this section. When you get an error message, the
appropriate name or value is substituted.

In manual

argument(s)
expression
filename
line number
message

What you'll see onscreen

The command-line or other argument
An expression
A file name (with or without extension)
A line number
A message string

Messages are listed in ASCII alphabetic order; messages
beginning with symbols come first. Since messages that begin
with one of the variables just listed cannot be alphabetized by
what you will actually see when you receive such a message, all
such messages have been placed at the beginning of each error
message list.

For example, if you have tried to link a file named NOEXIT.C,
you might receive the following actual message:

no exit does not exist--don't know how to make it

To look for this error, you would need to find

filename does not exist-don't know how to make it

at the beginning of the list of error messages.

If the variable occurs later in the text of the error message (for
example, "illegal character in constant expression: expression"),

221

MAKE

you can find the explanation of the message in correct
alphabetical order; in this case, under I.

Fatal error filename does not exist - don't know how to make it
There's a nonexistent file name in the build sequence, and no rule
exists that would allow the file name to be built.

Error Bad file name format in include statement
Include file names must be surrounded by quotes or angle
brackets. The file name was missing the opening quote or angle
bracket.

Error Bad undef statement syntax
An ! undef statement must contain a single identifier and nothing
else as the body of the statement.

Error Character constant too long
Character constants can be only one or two characters long.

Fatal error Circular dependency exists in makefile
The makefile indicates that a file needs to be up-to-date BEFORE
it can be built. Take, for example, the explicit rules:

filea: fileb
fileb: filec
filec: filea

This implies that filea depends on fileb, which depends on filec,
and filec depends on filea. This is illegal, since a file cannot
depend on itself, indirectly or directly.

Error Command arguments too long
The arguments to a command were more than the 127-character
limit imposed by DOS.

Error Command syntax error
This message occurs if

• The first rule line of the makefile contained any leading
whitespace.

• An implicit rille did not consist of .ext.ext:.
• An explicit rule did not contain a name before the : character.

• A macro definition did not contain a name before the =
character.

Error Command too long
The length of a command has exceeded 128 characters. You might
wish to use a response file.

222 Borland C++ User's Guide

MAKE

Error Division by zero
A divide or remainder in an Iif statement has a zero divisor.

Fatal error Error directive: message
MAKE has processed an #error directive in the source file, and the
text of the directive is displayed in the message.

Error Expression syntax error in !if statement
The expression in an !if statement is badly formed-it contains a
mismatched parenthesis, an extra or missing operator, or a
missing or extra constant.

Error File name too long
The file name in an !include directive is too long for the compiler
to process. File names in DOS can be.no longer than 64 characters.

Error If statement too long
An If statement has exceeded 4,096 characters.

Error Illegal character in constant expression <expression>
MAKE encountered some character not allowed in a constant
expression. If the character is a letter, this probably indicates a
misspelled identifier.

Error Illegal octal digit
An octal constant was found containing a digit of 8 or 9.

Fatal error Incorrect command-line argument: argument
You've used incorrect command-line arguments.

Error Macro expansion too long
A macro cannot expand to more than 4,096 characters. This error
often occurs if a macro recursively expands itself. A macro cannot
legally expand to itself.

Error Misplaced elif statement
An !elif directive is missing a matching !if directive.

Error Misplaced else statement
There's an !else directive without any matching !if directive.

Error Misplaced endif statement
There's an !endif directive without any matching Iif directive.

Error No file name ending
The file name in an include statement is missing the correct
closing quote or angle bracket.

Chapter 7, Utilities 223

MAKE

Fatal error No terminator specified for in-line file operator
The makefile contains either the && or « command-line
operators to start an in-line file, but the file is not terminated.

Fatal error Not enough memory
All your working storage has been exhausted. You should
perform your make on a machine with more memory. If you
already have 640K in your machine, you may have to simplify the
source file, or unload some memory-resident programs.

Error Redefinition of target filename
The named file occurs on the left side of more than one explicit
rule.

Error Rule line too long
An implicit or explicit rule was longer than 4,096 characters.

Fatal error Unable to execute command
A command failed to execute; this may be because the command
file could not be found, or because it was misspelled, or (less
likely) because the command itself exists but has been corrupted.

Error Unable to open include file filename
The named file cannot be found. This can also be caused if an
include file included itself. Check whether the named file exists.

Fatal error Unable to open makefile
The current directory does not contain a file named MAKEFILE,
and there is no MAKEFILE.MAK.

Fatal error Unable to redirect input or output
Make was unable to open the temporary files necessary to redirect
input or output. If you are on a network, make sure you have
rights to the current directory.

Error Unexpected end of file in conditional started on line line number
The source file ended before MAKE encountered an !endif. The
!endif was either missing or misspelled.

Error Unknown preprocessor statement
A ! character was encountered at the beginning of a line, and the
statement name following was not error, undef, if, elif, include,
else, or endif.

224 Borland C++ User's Guide

TUB

TLIB: The Turbo Librarian

Why use object
module libraries?

Chapter 7, Utilities

TLIB is a utility that manages libraries of individual .OBI (object
module) files. A library is a convenient tool for dealing with a
collection of object modules as a single unit.

The libraries included with Borland C++ were built with TLIB.
You can use TLIB to build your own libraries, or to modify the
Borland C++ libraries, your own libraries, libraries furnished by
other programmers, or commercial libraries you have purchased.
You can use TLIB to

• create a new library from a group of object modules
• add object modules or other libraries to an existing library
• remove object modules from an existing library

• replace object modules from an existing library
• extract object modules from an existing library
II list the contents of a new or existing library

When it modifies an existing library, TLIB always creates a copy
of the original library with a .BAK extension.

TLIB can also create (and include in the library file) an Extended
Dictionary, which may be used to speed up linking. See the
section on the IE option (page 229) for details.

Although TLIB is not essential to creating executable programs
with Borland C++, it is a useful programmer productivity tool.
You will find TLIB indispensable for large development projects.
H you work with object module libraries developed by others, you
can use TLIB to maintain those libraries when necessary.

When you program in C, you often create a collection of useful C
functions, like the functions in the C run-time library. Because of
C's modularity, you are likely to split those functions into many
separately compiled source files. You use only a subset of
functions from the entire collection in any particular program. It
can become quite tedious, however, to figure out exactly which
files you are using. H you always include all the source files, on
the other hand, your program becomes extremely large and
unwieldy.

225

TUB

The TUB

An object module library solves the problem of managing a
collection of C functions. When you link your program with a
library, the linker scans the library and automatically selects only
those modules needed for the current program. In addition, a
library consumes less disk space than a collection of object
module files, especially if each of the object files is small. A library
also speeds up the action of the linker, because it only opens a
single file, instead of one file for each object module.

command line Run TLIB by typing a TLIB command line at the DOS prompt. To
get a summary of TLIB's usage, just type TLIB and press Enter.

The TLIB command line takes the following general form, where
items listed in square brackets ([like this]) are optional:

tlib libname [lC] [IE] [lPsize] [operations] [, lisifile]

This section summarizes each of these command-line compo
nents; the following sections provide details about using TLIB.
For examples of how to use TLIB, refer to the "Examples" section
on page 231.

Table 7.7: TLiB options

Option

libname

Ie

IE

IPsize

operations

listfile

226

Description

The DOS path name of the library you want to create or manage. Every TLIB command
must be given a libname. Wildcards are not allowed. TLIB assumes an extension of .LIB if
none is given. We recommend that you do not use an extension other than .LIB, since
both BCC and BC's project-make facility require the .UB extension in order to recognize
library files. Note: If the named library does not exist and there are add operations, TLIB
creates the library.

The case-sensitive flag. This option is not normally used; see page 230 for a detailed
explanation.

Create Extended Dictionary; see page 229 for a detailed explanation.

Set the library page size to size; see page 229 for a detailed explanation.

The list of operations TLIB performs. Operations may appear in any order. If you only
want to examine the contents of the library, don't give any operations.

The name of the file listing library contents. The listfile name (if given) must be preceded
by a comma. If you do not give a file name, no listing is produced. The listing is an
alphabetical list of each module. The entry for each module contains an alphabetical list
of each public symbol defined in that module. The default extension for the listfile is
.LST.

You can direct the listing to the screen by using the listfile name CON, or to the printer
by using the name PRN.

Borland C++ User's Guide

TLiB

The operation list The operation list describes what actions you want TLIB to do. It
consists of a sequence of operations given one after the other.
Each operation consists of a one- or two-character action symbol
followed by a file or module name. You can put whitespace
around either the action symbol or the file or module name, but
not in the middle of a two-character action or in a name.

Chapter 7, Utilities

You can put as many operations as you like on the command line,
up to the DOS-imposed line-length limit of 127 characters. The
order of the operations is not important. TLIB always applies the
operations in a specific order:

1. All extract operations are done first.

2. All remove operations are done next.

3. All add operations are done last.

You can replace a module by first removing it, then adding the
replacement module.

File and module names

TLIB finds the name of a module by taking the given file name
and stripping any drive, path, and extension information from it.
(Typically, drive, path, and extension are not given.)

Note that TLIB always assumes reasonable defaults. For example,
to add a module that has an .OBJ extension from the current
directory, you only need to supply the module name, not the path
and .OBJ extension.

Wildcards are never allowed in file or module names.

TLI B operations

TLIB recognizes three action symbols (-, +, *), which you can use
singly or combined in pairs for a total of five distinct operations.
For operations that use a pair of characters, the order of the
characters is not important. The action symbols and what they do
are listed here:

227

TLiB

Table 7.8
TLIB action symbols

To create a library, add
modules to a library that

does not yet exist.

You can't directly rename
modules in a library. To

rename a module, extract
and remove it, rename the
file just created, then add it

228

back into the library.

Using response
files

Action
symbol Name Description

+ Add TLIB adds the named file to the library. If the
file has no extension given, TLIB assumes an
extension of .OBJ. If the file is itself a library
(with a .LIB extension), then the operation adds
all of the modules in the named library to the
target library.

If a module being added already exists, TLIB
displays a message and does not add the new
module.

Remove TLIB removes the named module from the
library. If the module does not exist in the
library, TLIB displays a message.

A remove operation only needs a module name.
TLIB allows you to enter a full path name with
drive and extension included, but ignores
everything except the module name.

* Extract TLIB creates the named file by copying the cor-
responding module from the library to the file.
If the module does not exist, TLIB displays a
message and does not create a file. If the named
file already exists, it is overwritten.

-* Extract & TLIB copies the named module to the
*- Remove corresponding file name and then removes it

from the library. This is just a shorthand for an
extract followed by a remove operation.

-+ Replace TLIB replaces the named module with the cor-
+- responding file. This is just a shorthand for a

remove followed by an add operation.

When you are dealing with a large number of operations, or if
you find yourself repeating certain sets of operations over and
over, you will probably want to start using response files. A
response file is simply an ASCII text file (which can be created
with the Borland C++ editor) that contains all or part of a TLIB
command. Using response files, you can build TLIB commands
larger than would fit on one DOS command line.

To use a response file pathname, specify @pathname at any position
on the TLIB command line. Note that the DOS path length limi
tation is 128 characters.

Borland C++ User's Guide

Creating an
extended

dictionary: The IE
option

Setting the page
size: The /P option

Chapter 7, Utilities

TLiB

• More than one line of text can make up a response file; you use
the "and" character (&) at the end of a line to indicate that
another line follows.

• You don't need to put the entire TLIB command in the response
file; the file can provide a portion of the TLIB command line,
and you can type in the rest.

• You can use more than one response file in a single TLIB
command line.

See "Examples" for a sample response file and a TLIB command
line incorporating it.

To speed up linking with large library files (such as the standard
ex.LIB library), you can direct TLIB to create an extended dictionary
and append it to the library file. This dictionary contains, in a very
compact form, information that is not included in the standard
library dictionary. This information enables TLINK to process
library files faster, especially when they are located on a floppy
disk or a slow hard disk. All the libraries on your distribution
disks contain the extended dictionary.

To create an extended dictionary for a library that is being modi
fied, use the IE option when you invoke TLIB to add, remove, or
replace modules in the library. To create an extended dictionary
for an existing library that you don't want to modify, use the IE
option and ask TLIB to remove a nonexistent module from the
library. TLIB will display a warning that the specified module was
not found in the library, but it will also create an extended
dictionary for the specified library. For example, enter

tlib IE mylib -bogus

TLINK will ignore the debugging information in a library that has
an extended dictionary, unless the Ie option is used on the TLINK
command line.

Every DOS library file contains a dictionary (which appears at the
end of the .LIB file, following all of the object modules). For each
module in the library, this dictionary contains a 16-bit address of
that particular module within the .LIB file; this address is given in
terms of the library page size (it defaults to 16 bytes).

229

TUB

Advanced
operation: The Ie

option

If you want to use the library
with other linkers (or allow

other people to use the
library with other linkers), for

your own protection you
should not use the Ie option.

230

The library page size determines the maximum combined size of
all object modules in the library-it cannot exceed 65,536 pages.
The default (and minimum) page size of 16 bytes allows a library
of about 1 MB in size. To create a larger library, the page size must
be increased using the IP option; the page size must be a power of
2, and it may not be smaller than 16 or larger than 32,768.

All modules in the library must start on a page boundary. For
example, in a library with a page size of 32 (the lowest possible
page size higher than the default 16), on the average 16 bytes will
be lost per object modllle in padding. If you attempt to create a
library that is too large for the given page size, TLIB will issue an
error message and suggest that you use IP with the next available
higher page size.

When you add a module to a library, TLIB maintains a dictionary
of all public symbols defined in the modules of the library. All
symbols in the library must be distinct. If you try to add to the
library a module that would cause a duplicate symbol, TLIB
displays a message and won't add the module.

Normally, when TLIB checks for duplicate symbols in the library,
uppercase and lowercase letters are not considered as distinct. For
example, the symbols lookup and LOOKUP are treated as dupli
cates. Since C does treat uppercase and lowercase letters as
distinct, use the Ie option to add a module to a library that
includes a symbol differing only in case from one already in the
library. The Ie option tells TLIB to accept a module with symbols
in it that differ only in case from symbols already in the library.

It may seem odd that, without the Ie option, TLIB rejects symbols
that differ only in case, especially since C is a case-sensitive
language. The reason is that some linkers fail to distinguish
between symbols in a library that differ only in case. Such linkers,
for example, will treat stars, Stars, and STARS as the same identi
fier. TLINK, on the other hand, has no problem distinguishing
uppercase and lowercase symbols, and it will properly accept a
library containing symbols that differ only in case. In this
example, then, Borland C++ would treat stars, Stars, and STARS
as three separate identifiers. As long as you use the library only
with TLINK, you can use the TLIB Ie option without any
problems.

Borland C++ User's Guide

Examples

TLINK (linker)

Chapter 7, Utilities

Here are some simple examples demonstrating the different
things you can do with TLIB.

1. To create a library named MYLIB.LIB with modules X.OBJ,
Y.OBJ, and Z.OBJ, type

tlib mylib +x +y +z

TLiB

2. To create a library as in #1 and get a listing in MYLIB.LST too,
type

tlib mylib +x +y +z, mylib.lst

3. To get a listing in eS.LST of an existing library eS.LIB, type

tlib cs, cs .lst

4. To replace module X.OBJ with a new copy, add A.OBJ and
delete Z.OBJ from MYLIB.LIB, type

tlib mylib -+x +a -z

5. To extract module Y.OBJ from MYLIB.LIB and get a listing in
MYLIB.LST, type

tlib mylib *y, mylib.lst

6. To create a new library named ALPHA, with modules A.OBJ,
B.OBJ, ... , G.OBJ using a response file:
First create a text file, ALPHA.RSP, with

+a.obj +b.obj +c.obj &
+d.obj +e.obj +f.obj &
+g.obj

Then use the TLIB command, which produces a listing file
named ALPHA.LST:

tlib alpha @alpha.rsp, alpha. 1st

The IDE has its own built-in linker. When you invoke the
command-line compiler Bee or BeeX, TLINK (for Turbo Linker)
is invoked automatically unless you suppress the linking stage. If
you suppress the linking stage, you must invoke TLINK
manually. This section describes how to use TLINK or TLINKX
(protected mode version) as a standalone linker. At the end of this

231

TUNK

Invoking TLiNK

section, you will find a complete list of linker messages generated
by TLINK and by the built-in IDE linker.

By default, the command-line compiler calls TLINK when compil
ation is successful; TLINK then combines object modules and
library files to produce the executable file.

You can invoke TLINK at the DOS command line by typing tlink
with or without parameters. When it is invoked without
parameters, TLINK displays a summary of parameters and
options. The following table briefly describes the TLINK options.

_ Note that this version of TLINK is sensitive to the case of its
options; It is not the same option as fT.

Table 7.9
TLINK options

You can use either a hyphen
or a slash to precede TLlNK's

commands.

232

Option

13
IA=nnnn

Ic
IC

Id
Ie
Ii
II
IL
1m
In
10
IP
Is
It
lTd
ITdc
ITde
ITw
ITwe
ITwd
Iv
Ix
lye
Iyx

What it does

Enable 32-bit processing.
Specify segment alignment for NewExe (Windows)
images.
Treat case as significant in symbols.
Treat EXPORTS and IMPORTS section of module
definition file as case sensitive.
Warn if duplicate symbols in libraries.
Ignore Extended Dictionary.
Initialize all segments.
Include source line numbers.
Specify library search paths.
Create map file with publics.
Don't use default libraries.
Overlay following modules or libraries.
Pack code segments.
Create detailed map of segments.
Generate .COM file. (Also ITdc.)
Create target DOS executable.
Create target DOS .COM file.
Create target DOS .EXE file.
Create target Windows executable (.DLL or .EXE).
Create target Windows application (.EXE).
Create target Windows DLL (.DLL).
Include full symbolic debug information.
Don't create map file.
Use expanded memory for swapping.
Use extended memory for swapping.

The general syntax of a TLINK command line is

TLINK objfiles, exefile, maPfi1e, libfiles, deffile

Borland C++ User's Guide

An example of linking
for DOS

An example of linking
for Windows

Chapter 7, Utilities

TUNK

This syntax specifies that you supply file names in the given order,
separating the file types with commas.

If you supply the TLINK command line

tlink Ie mainline wd In tx,fin,mfin,work\lib\eomm work\lib\support

TLINK will interpret it to mean that

• Case is significant during linking (/c).

II The .OBJ files to be linked are MAINLINE.OBJ, WD.OBJ,
LN.OBJ, and TX.OBJ .

• The executable program name will be FIN.EXE.
a The map file is MFIN.MAP .

.. The library files to be linked in are COMM.LIB and
SUPPORT. LIB, both of which are in subdirectory WORK\LIB.

II No module definition file is specified.

To create a Windows application executable, you might use this
command line:

tlink ITw Ie \BORLANDC\lib\eOws winappl winapp2, winapp, winapp,
\BORLANDC\lib\cwins \BORLANDC\lib\es \BORLANDC\lib\import, winapp.def

where

II The fTw option tells TLINK to generate Windows executables.

11 The Ic option tells TLINK to be sensitive to case during linking.
Note that the EXPORTS and IMPORTS sections in the module
definition file will be still treated as case-insensitive unless the
Ie option is used.

II \BORLANDC\LIB\COWS is the standard Windows
initialization file and WINAPPI and WINAPP2 are the
module's object files; for all three files the .OBJ extension is
assumed.

II WINAPP.EXE is the name of the target Windows executable.
III WINAPP.MAP is the name of the map file.
II \BORLANDC\LIB\CWINS is the small memory model

runtime library for Windows, \BORLANDC\LIB\CS is the
regular runtime library, and \ BORLANDC\ LIB \ IMPORT is the
library that provides access to the built-in Windows functions .

• WINAPP.DEF is the Windows module definition file used to
specify additional link options.

233

TUNK

File names on the TLiNK
command line

234

If you don't specify an executable file name, TLINK derives the
name of the executable by appending .EXE or .DLL to the first
object file name listed.

If you specify a complete file name for the executable file, TLINK
will create the file with that name, but the actual nature of that
executable depends on other options or on settings in the module
definition file. For instance, if you specify WINAPP.EXE, but you
provide the ITwd option, the executable will be created as a DLL
but named WINAPP.EXE-probably not what you intended.
Similarly, if you give WINAPP.DLL as the executable name, but
include a lTd option on the command line, the file will be a DOS
executable.

If no map file name is given, TLINK adds a .MAP extension to the
.EXE file name. If no libraries are included, none will be linked. If
you don't specify a module definition (.DEF) file and you have
used the ITw option, TLINK creates a Windows application based
on default settings.

TLINK assumes or appends extensions to file names that have
none:

• .OBJ for object files
• .EXE for executable files (when you use the It or the ITde optionJ

the executable file extension defaults to .COM rather than .EXE)

• .DLL for dynamic link libraries (when you use the /Twd
option, or the /Tw option and the module definition file
specifies a library)

• .MAP for map files

• .LIB for library files
• .DEF for module definition files.

All of the file names except object files are optional. So, for
instance,

TLINK dosapp dosapp2

links the files DOSAPP.OBJ and DOSAPP2.0BJ, creates a DOS
executable file called DOSAPP.EXE, creates a map file called
DOSAPP.MAP,links no libraries, and uses no module definition
file.

Bor/and c++ User's Guide

Using response files

Because TLINK is now
sensitive to the case of its
options, you may need to

modify response files, batch
files, and makefiles intended

for a previous version of
TLINK.

Chapter 7, Utilities

TUNK

TLINK lets you supply the various parameters on the command
line, in a response file, or in any combination of the two.

A response file is just a text file that contains the options and file
names that you would usually type in after the name TLINK on
your command line.

Unlike the command line, however, a response file can be
continued onto several lines of text. You can break a long list of
object or library files into several lines by ending one line with a
plus character (+) and continuing the list on the next line. When a
plus occurs at the end of a line but it immediately follows one of
the TLINK options that uses + to enable the option (such as Iye+),
the + is not treated as a line continuation character.

You can also start each of the four components on separate lines:
object files, executable file, map file, libraries. When you do this,
you must leave out the comma used to separate components.

To illustrate these features, suppose that you rewrote the
command line

tlink Ie mainline wd In tx,fin,mfin,work\lib\eomm work\lib\support

with the following response file, FINRESP:

Ie mainline wd+
In tx,fin
mfin
work\lib\eomm work\lib\support

You would then enter your TLINK command as

tlink @finresp

Note that you must precede the file name with an "at" character
(@) to indicate that the next name is a response file.

Alternately, you may break your link command into multiple
response files. For example, you can break the previous command
line into the following two response files:

235

TUNK

The TLiNK configuration
file

Using TLiNK with
Borland C++ modules

236

File name

LISTOBJS

LISTLIBS

Contents

mainline+
wd+
In tx
lib\comm+
lib\support

You would then enter the TLINK command as

tlink Ie @listobjs,fin,mfin,@listlibs

The command line version of TLINK looks for a file called
TLINK.CFG first in the current directory, or in the directory from
which it was loaded (DOS 3.0 or higher).

TLINK.CFG is a regular text file that contains a list of valid
TLINK options. Unlike a response file, TLINK.CFG can't list the
groups of file names to be linked.

For instance, the following TLINK.CFG file

ILc:\BORLANDC\lib;c:\winapps\lib
Iv Is
ITw

tells TLINK to search the specified directories for libraries, include
debug information, create a detailed segment map, and produce a
Windows program.

Borland C++ supports six different memory models: tiny, small,
compact, medium, large, and huge. When you create an
executable Borland C++ file using TLINK, you must include the
initialization module and libraries for the memory model being
used.

The general format for linking Borland C++ programs with
TLINKis

tlink CO[W I D]x myobjs, exe,[map], [IMPORT] [mylibs]
[OVERLAY] [CWINx] [EMU I FP87 mathx] Cx, [deffile]

where

myobjs

exe
[map]

= the .OBJ files you want linked, specify path if not
in current directory

= the name to be given the executable file
= the name to be given the map file (optional)

Borland C++ User's Guide

If you are using the tiny
model and you want TLINK to

produce a .COM file, you
must a/so specify the /t or

/Tde option.

TUNK

[mylibs] = the library files you want included at link time
(optional), specify path if not in current
directory, or use IL option to specify search paths

deffile = the module definition file for a Windows
executable

Be sure to include paths for the startup code and libraries (or use
the IL option to specify a list of search paths for startup and
library files). The other file names on this general TLINK com
mand line represent Borland C++ files, as follows:

COx I COFx = initialization module for DOS
COW x I CODx I executable, DOS executable written for

another compiler, Windows application, or
Windows DLL (choose one) with memory
model t (DOS only), s, c, m, I, or h (DOS

IMPORT

OVERLAY

CWINx

EMU I FP87
MATHx

Cx

Startup code

only)
= Windows import library; the library that

provides access to the built-in Windows
functions

= overlay manager library; needed only for
overlaid programs (not compatible with
Windows)

= run-time library for executable under Win
dows with memory model s, c, m, or I

= the floating-point libraries (choose one)
= math library for memory model s, c, m, I,

orh
= run-time library for memory model s, c, m,

l,orh

The initialization modules have the name COx.OBJ, COWx.OBJ, or
CODx.OBJ (for DOS, a Windows application, and a Windows
DLL, respectively), where x is a single letter corresponding to the
model: t for tiny (DOS only), s for small, c for compact, m for
medium, I for large, and h for huge (DOS only).

Newl The COFx.OBJ modules are provided for compatibility with source
files intended for compilers from other vendors. The COFx.OBJ
modules substitute for the COx.OBJ modules; they are to be linked
with DOS applications only, not Windows applications or DLLs.
These initialization modules alter the memory model so that the
stack segment is inside the data segment. The appropriate

Chapter 7, Utilities 237

TUNK

238

COFx.OBJ module will be used automatically if you use either the
-Fs or the -Fm command-line compiler option.

Failure to link in the correct initialization module usually results
in a long list of error messages telling you that certain identifiers
are unresolved, that no stack has been created, or that fixup
overflows occurred.

The initialization module must also appear as the first object file
in the list. The initialization module arranges the order of the
various segments of the program. If it is not first, the program
segments may not be placed in memory properly, causing some
frustrating program bugs.

Be sure that you give an explicit name for the executable file name
on the TLINK command line. Otherwise, your program name will
be something like COx.EXE-probably not what you wanted!

Libraries

-.. The order of objects and libraries is very important. You must
always put the Borland C++ start-up module (COx.OBJ, COFx,
COWx.OBJ, or CODx.OBJ) first in the list of objects. Then, the
library list should contain, in this specific order:

• your own libraries (if any)
• if you want to overlay your program (DOS only), you must

include OVERLAY.LIB; this library must precede the Cx.LID
library

• CWINx.LIB if you want your program to run under Windows
• if you are using floating point math, FP87.LIB or EMU. LIB

(required for DOS only), followed by MA THx.LIB (required for
DOS and Windows)

• Cx.LIB (Borland C++ run-time library file for DOS or Windows)

If you want to create a Windows application or DLL you must
link IMPORT. LIB to provide access to the built-in Windows
functions. IMPORT. LIB can be included anywhere in the list. If
you are using any Borland C++ graphics functions, you must link
in GRA~HICS.LIB anywhere in the list. The graphics library is
independent of memory models, but is for DOS only (not Win
dows).

If your program uses any floating-point, you must include a math
library (MATHx.LIB) in the link command. For DOS applications

Borland C++ User's Guide

Table 7.10
DOS application .OBJ and

.L1B files

Chapter 7, Utilities

TUNK

(but not for Windows applications or DLLs), you will also need to
include either the EMU. LIB or FP87. LIB floating-point libraries.
Borland C++'s two floating-point libraries are independent of the
program's memory model.

• Use EMU. LIB if you want to include floating-point emulation
logic. With EMU. LIB the program will work on machines
whether they have a math coprocessor (80x87) chip or not .

• If you know that the program will always be run on a machine
with a math coprocessor chip, the FP87.LIB library will produce
a smaller and faster executable program.

The math libraries have the name MA THx.LIB, where x is a single
letter corresponding to the model: s, c, m,l, h (the tiny and small
models share the library MA THS.LIB).

You can always include the emulator (DOS only) and math
libraries in a link command line. If you do so, and if your
program does no floating-point work, nothing from those libraries
will be added to your executable program file. However, if you
know there is no floating-point work in your program, you can
save some time in your links by excluding those libraries from the
command line.

You must always include the C run-time library for the program's
memory model. The C run-time libraries have the name Cx.LIB,
where x is a single letter corresponding to the model, as before.
Use the same C run-time library for both DOS and Windows
executables.

If you aren't going to use all six memory models, and your hard
disk space is limited, you may want to keep only the files for the
model(s) you are using. Here's a list of the library files needed for
each memory model (you'll also need FP87.LIB or EMU. LIB for
DOS only, and IMPORT.LIB for Windows):

Regular Compatibility
Startup Startup Math Run-time

Model Module Module Library Library

Tiny COT.OBJ COFT.OBJ MATHS.LIB CS.LIB
Small COS.OBJ COFS.OBJ MATHS.LIB CS.LIB
Compact COCOBJ COFCOBJ MATHCLIB CCLIB
Medium COM.OBJ COFM.OBJ MATHM.LIB CM.LIB
Large COL.OBJ COFL.OBJ MATHL.LIB CL.LIB
Huge COH.OBJ COFH.OBJ MATHH.LIB CH.LIB

239

TUNK

Table 7.11
Windows application .OBJ

and .L1B files

Table 7.12
DLL object and library files

Using TLiNK with Bee

See Chapter 6, "The
command-line complier, " for

more on BCC.

240

Startup for Windows Math
Model applications RTL LibrarY RTL

Small COWS.OBJ CWINS.LIB MATHS.LIB CS.LIB
Compact COWC.OBJ CWINC.LIB MATHC.LIB CC.LIB
Medium COWM.OBJ CWINM.LIB MATHM.LIB CM.LIB
Large COWL.OBJ CWINL.LIB MATHL.LIB CL.LIB

Note that the tiny and small models use the same libraries, but
have different startup files (COT. OBI vs. COS.OBJ).

Model

Small
Compact
Medium
Large

Startup
for DLLs

Windows
RTL

CODS.OBJ CWINC.LIB
CODC.OBJ CWINC.LIB
CODM.OBJ CWINL.LIB
CODL.OBJ CWINL.LIB

Math
Library

MATHS.LIB
MATHC.UB
MATHM.LIB
MATHL.LIB

RTL

CS.LIB
CC.LIB
CM.LIB
CL.LIB

See Chapter 3, page 123 for more information on DLLs.

You can also use BCC, the standalone Borland C++ compiler, as a
"front end" to TLINK that will invoke TLINK with the correct
startup file, libraries, and executable program name.

To do this, you give file names on the BCC command line with
explicit .OBI and .LIB extensions. For example, given the
following BCC command line,

BCC -MX MAINFILE.OBJ SUB1.OBJ MYLIB.LIB

BCC will invoke TLINK with the files COx.OBI, EMU.LID,
MA THx.LIB and Cx.LIB (initialization module, default 8087
emulation library, math library and run-time library for memory
model x). TLINK will link these along with your own modules
MAINLINE.OBI and SUB 1. OBI, and your own library MYLIB.LIB.

To compile and link a Windows program, include one of the -W
options on the compiler command-line, as well as any other
options. The compiler will take care of linking in COWx.OBI,
CWINx.LIB, and IMPORT.LIB.

When BCC invokes TLINK, it uses the Ie (case-sensitive link)
option by default. You can override this default with -I-c).

Bor/and C++ User's Guide

TLiNK options

TUNK

TLINK options can occur anywhere on the command line. The
options consist of a slash (/), a hyphen (-), or the DOS switch
character, followed by the option. (The DOS switch character is I
by default. You can change it by using an !NT 21H call.)

Importantl Starting with this version of TLINK, the case of an option is
significant (/ t is not the same as IT). All options that existed
before this version are lowercase. If you used uppercase options
in response files or make files intended for a previous version of
TLINK, you'll need to modify those files before you use them
with this version.

The TLiNK configuration
file

If you have more than one option, spaces are not significant (Irnle
is the same as 1m Ie), and you can have them appear in different
places on the command line. The following sections describe each
of the options.

The command-line version of TLINK looks for a file called
TLINK.CFG first in the current directory, or in the directory from
which it was loaded (DOS 3.0 or higher).

TLINK.CFG is a regular text file that contains a list of valid
TLINK options. Unlike a response file, TLINK.CFG can't list the
groups of file names to be linked. Whitespace is ignored.

For instance, the following TLINK.CFG file

ILc: \ BORLANDC\lib;c: \winapps\lib
Iv Is
ITw

tells TLINK to search the specified directories for libraries, include
debug information, create a detailed segment map, and produce a
Windows program.

/3 (80386 32-bit code) The 13 option should be used when one or more of the object
modules linked has been produced by TASM or a compatible
assembler, and contains 32-bit code for the 80386 processor. This
option increases the memory requirements of TLINK and slows
down linking, so it should be used only when necessary.

Chapter 7, Utilities 241

IA (align segments) The IA option specifies a byte value on which to align segments.

I c (case sensitivity)

Ie (case sensitive
exports)

Id (duplicate symbols)

242

Segments smaller than the specified value will be padded up to
the value. The syntax is

IA=nnnn

where nnnn is a number which respresents the alignment factor.
nnnn must be a power of two. For instance, /A=16 indicates that
segments should be aligned on a paragraph boundary.

The default segment alignment size is 512. For efficiency, you
should use the smallest value that still allows for correct segment
offsets in the segment table. The file addresses in the segment
table are multiplied by the alignment factor in order to be used as
byte offsets into the executable file. Since the offsets are stored as
16-bit words, 65536 times the alignment factor is the limit of
segment offsets that can be represented in the segment table. If
you get this message, increase the segment alignment value.

The Ie option forces the case to be significant in public and
external symbols.

By default, TLINK treats the EXPORTS and IMPORTS sections of
the module definition file as case-insensitive. The Ie or le+ option
turns on case-sensitivity; le- turns off case-sensitivity.

Normally, TLINK will not warn you if a symbol appears in more
than one library file. If the symbol must be included in the pro
gram, TLINK will use the copy of that symbol in the first file on
the command line in which it is found. Since this is a commonly
used feature, TLINK does not normally warn about the duplicate
symbols. The following hypothetical situation illustrates how you
might want to use this feature.

Suppose you have two libraries: one called SUPPORT. LIB, and a
supplemental one called DEBUGSUP.LIB. Suppose also that
DEBUGSUP.LIB contains duplicates of some of the routines in
SUPPORT.LIB (but the duplicate routines in DEBUGSUP.LIB
include slightly different functionality, such as debugging ver
sions of the routines). If you include DEBUGSUP.LIB first in the
link command, you will get the debugging routines and not the
routines in SUPPORT. LIB.

Borland C++ User's Guide

/ e (no extended
dictionary)

/i (uninitialized trailing
segments)

/1 (line numbers)

Chapter 7, Utilities

TUNK

If you are not using this feature or are not sure which routines are
duplicated, you may include the Id option. TLINK will list all
symbols duplicated in libraries, even if those symbols are not
going to be used in the program .

. Given this option, TLINK will also warn about symbols that
appear both in an .OBJ and a .LIB file. In this case, since the
symbol that appears in the first (left-most) file listed on the com
mand line is the one linked in, the symbol in the .OBJ file is the
one that will be used.

With Borland C++, the distributed libraries you would use in any
given link command do not contain any duplicated symbols. So
while EMU.LIB and FP87.LIB (or CS.LIB and CL.LIB) obviously
have duplicate symbols, they would never rightfully be used
together in a single link. There are no symbols duplicated
between EMU. LIB, MATHS.LIB, and CS.LIB, for example.

The library files that are shipped with Borland C++ all contain an
extended dictionary with information that enables TLINK to link
faster with those libraries. This extended dictionary can also be
added to any other library file using the IE option with TLIB (see
the section on TLIB starting on page 225). The TLINK Ie option
disables the use of this dictionary.

Although linking with libraries that contain an extended
dictionary is faster, you might want to use the Ie option if you
have a program that needs slightly more memory to link when an
extended dictionary is used.

Unless you use Ie to tum off extended dictionary use, TLINK will
ignore any debugging information contained in a library that has
an extended dictionary.

The Ii option causes uninitialized trailing segments to be output
into the executable file even if the segments do not contain data
records. This option is not normally necessary.

The II option creates a section in the .MAP file for source code line
numbers. To use it, you must have created the .OBJ files by com
piling with the -y (Line numbers ... On) or -v (Debug information)
option. If you use the Ix to tell TLINK to create no map at all, this
option will have no effect.

243

TUNK

/L (library search paths) The IL option lets you specify a list of directories that TLINK
searches for libraries if an explicit path is not specified. TLINK
searches the current directory before those specified with the IL
option. For example,

244

/m, /s, and /x (map
options)

TLINK /Lc:\BORLANDC\lib;c:\mylibs splash logo",utils .\logolib

With this command line, TLINK first searches the current
directory for UTILS.LIB, then searches C:\BORLANDC\LIB and
C: \MYLIBS. Because. \ LOGOLIB explicitly names the current
directory, TLINK does not search the libraries specified with the
IL option to find LOGOLIB.LIB.

TLINK also searches for the C or c++ initialization module
(COx.OBJ, COWx.OBJ, CODx.OBJ) on the specified library search
path.

By default, TLINK always creates a map of the executable file.
This default map includes only the list of the segments in the
program, the program start address, and any warning or error
messages produced during the link. If you don't want to create a
map, turn it off with the Ix option.

If you want to create a more complete map, the 1m option will add
a list of public symbols to the map file, sorted alphabetically as
well as in increasing address order. This kind of map file is useful
in debugging. Many debuggers can use the list of public symbols
to allow you to refer to symbolic addresses when you are
debugging.

The Is option creates a map file with segments, public symbols
and the program start address just like the 1m option did, but also
adds a detailed segment map. The following is an example of a
detailed segment map:

Borland C++ User's Guide

Figure 7.1
Detailed map of segments

Chapter 7, Utilities

TUNK

Address Length Class Segment Name Group Module Alignment!
(Bytes) Combining

0000:0000 OE5B C=CODE S=SYMB TEXT G=~none M=SYMB.C ACBP=28
00E5:000B 2735 C=CODE S=QUALIEXT G= none M=QUAL.C ACBP=28
0359:0000 002B C=CODE S=SCOpV TEXT G=(none M=SCOPY ACBP=28
035B:000B 003A C=CODE S=LRSH TEXT G=~none M=LRSH ACBP=20
035F:0005 0083 C=CODE S=PADAIEXT G" none M=PADA ACBP=20
0367:0008 005B C=CODE S=PADDIEXT GTOnel M=PADD ACBP=20
036D:0003 0025 C=CODE S=PSBPIEXT G .. none~ M=PSBP ACBP=20
036F:0008 05CE C=CODE S=BRK TEXT G= none M=BRK ACBP=28
03CC:0006 066F C=CODE S"FLOitr TEXT G" none M"FLOAT ACBP=20
0433:0006 OOOB C"DATA S= DATA- G=DGROUP M=SYMB.(. ACBP"48
0433:0012 00D3 C=DATA S=-DATA G=DGROUP M=QUAL.C ACBP=48
0433:00E6 OOOE C=DATA S=-DATA G=DGROUP M=BRK ACBP=48
0442:0004 0004 C=BSS S"-BSS G=DGROUP M=SYMB.C ACBP=48
0442:0008 0002 C=BSS S=-BSS G=DGROUP M=QUAL.C ACBP=48
0442:000A OOOE C=BSS S=:BSS G=DGROUP M=BRK ACBP=48

For each segment in each module, this map includes the address,
length in bytes, class, segment name, group, module, and ACBP
information.

If the same segment appears in more than one module, each
module will appear as a separate line (for example, SYMB.C).
Except for the ACBP field, the information in the detailed segment
map is self-explanatory.

The ACBP field encodes the A (alignment), C (combination), and B
(big) attributes into a set of four bit fields, as defined by Intel.
TLINK uses only three of the fields, the A, C, and B fields. The
ACBP value in the map is printed in hexadecimal: The following
values of the fields must be OR'ed together to arrive at the ACBP
value printed.

Field Value

The A field 00
(alignment) 20

40
60
80
AD

The C field 00
(combination) 08

The B field 00
(big) 02

Description

An absolute segment.
A byte-aligned segment.
A word-aligned segment.
A paragraph-aligned segment.
A page-aligned segment.
An unnamed absolute portion of storage.

May not be combined.
A public combining segment.

Segment less than 64K.
Segment exactly 64K.

When you request a detailed map with the Is option, the list of
public symbols (if it appears) has public symbols flagged with
"idle" if there are no references to that symbol. For example, this
fragment from the public symbol section of a map file indicates

245

TUNK

246

/n (ignore default
libraries)

/0 (overlays)

that symbols Symboll and Symbol3 are not referenced by the image
being linked:

OC7F:031E idle
OOOO:3EA2
OC7F:0320 idle

Symbol 1
Symbol2
Symbo13

The In option causes the linker to ignore default libraries specified
by some compilers. You may want to use this option when linking
modules written in another language.

The b option causes the code in all modules or libraries specified
after the option to be overlaid. It remains in effect until the next
comma (explicit or implicit) or b- in the command stream. b
turns off overlaying. (Chapter 6, "Memory management," in the
Programmer's Guide covers overlays in more detail.)

The b option can be optionally followed by a segment class name;
this will cause all segments of that class to be overlaid. When no
such name is specified, all segments of classes ending with CODE
will be overlaid. Multiple b options can be given, thus overlaying
segments of several classes; all b options remain in effect until the
next comma or b- is encountered.

The syntax b#xx, where xx is a two-digit hexadecimal number,
overrides the overlay interrupt number, which by default is 3FH.

Here are some examples of b options:

Table 7.13
TLINK overlay options Option Result ---

b Overlay all code segments until next comma or b-.

b- Stop overlaying.

bOVY Overlay segments of class OVY until the next

bCODEbOVLY

b#FO

comma or b-.

Overlay segments of class CODE or class OVL Y
until next comma or b-.

Use interrupt vector OFOH for overlays.

If you use the b option, it will be turned off automatically before
the libraries are processed. If you want to overlay a library, you
must use another b right before all the libraries or right before the
library you want to overlay.

Borland C++ User's Guide

IP (pack code
segments)

It (tiny model
.COM file)

Chapter 7, Utilities

TUNK

You can't use the b option with any rrw option; Windows
applications can't be overlaid. However, in order to achieve
essentially the same results under Windows, use discardable code
segments (see page 250 for information on defining code
segments attributes in the module definition file).

When you use IP, when TLINK links Windows executables,
TLINK combines as many code segments as possible in one
physical segment up to the code segment packing limit. Code
segment packing never creates segments greater than this limit;
TLINK starts a new segment if it needs to.

The default code segment packing limit is 8,192 bytes (8K). To
change it, use

/P==n

where n specifies the number of bytes between 1 and 65,536. You
would probably want the limit to be a multiple of 4K under 386
enhanced mode.

Although the optimum segment size in 386 enhanced mode is 4K,
the default code segment packing size is 8K. Because typical code
segments are likely to be from 4K to 8K, an 8K packing size will
probably result in more effective packing.

Because there is a certain amount of system overhead for every
segment maintained, code segment packing, by reducing the
number of segments to maintain, typically increases performance.
The IP option turns code packing on; it is off by default. IP- turns
off code segment packing (useful if you've turned it on in the
configuration file and want to disable it for a particular link).

If you compile your file in the tiny memory model and link it with
this option toggled on, TLINK will generate a .COM file instead of
the usual .EXE file. Also, when you use It, the default extension
for the executable file is .COM. This works the same as the rrde
option. Neither It or rrde is compatible with the Windows option,
rrw.

Note: .COM files may not exceed 64K in size, cannot have any
segment-relative fixups, cannot define a stack segment, and must
have a starting address equal to 0:100H. When an extension other
than .COM is used for the executable file (.BIN, for example), the
starting address may be either 0:0 or 0:100H.

247

TLiNK

248

lTd and ITw (target
options)

Iv (debugging
information)

TLINK can't generate debugging information for a .COM file. If
you need to debug your program, create and debug it as an .EXE
file, then relink it as a .COMfile. Alternatively, if you have Turbo
Debugger, you can use the TDSTRIP utility with the -c option;
this creates a .COM file from and .EXE.

These options are called target options. You use them (with c, e,
or d) to produce a .COM, .EXE, or .DLL file .

• rrd creates a DOS .EXE file .
• rrdc creates a DOS .COM file.

• rrde creates a DOS .EXE file.
• rrw tells TLINK to create a Windows executable file. This

option is not necessary if you include a module definition file
with an EXETYPE Windows statement. With or without the rrw
option, if the included module definition file h~s a NAME
statement, TLINK creates an application (.EXE)i if the module
definition file has a LIBRARY statement, TLINK creates a DLL.

If no module definition file is included in the link, you must
specify the rrw or rrwe option for a Windows .EXE, or the rrwd
option for a Windows DLL.
None of the rrw options are compatible with the 10 option
(overlay modules).

• rrwe creates Windows .EXE files. The rrwe option overrides a
LIBRARY statement in the module definition file (which
normally causes TLINK to create a DLL).

• rrwd creates Windows DLLs. The rrwd option overrides a
NAME statement in the module definition file (which normally
causes TLINK to create an .EXE file).

The Iv option directs TLINK to include debugging information in
the executable file. If this option is found anywhere on the
command line, debugging information will be included
executable for all object modules that contained debugging
information. You can use the Iv+ and Iv- options to selectively
enable or disable inclusion of debugging information on a
module-by-module basis (but not on the same command line as
Iv). For example, this command

tlink mod! /v+ mod2 mod3 /v- mod4

includes debugging information for modules mod2 and mod3, but
not for modI and mod4.

Bor/and c++ User's Guide

Iy (expanded or
extended memory)

TUNK

TLINK can't generate debugging information for a .COM file (one
created with the It or ITdc options). If you need to debug your
program, create and debug it as an .EXE file, then relink it as a
.COM file. Alternatively, if you have Turbo Debugger, you can
use the TDSTRIP utility with the --c option; this creates a .COM
file from an .EXE.

This option controls TLINK's use of expanded or extended
memory for I/O buffering. If, while reading ~bject files or while
writing the executable file, TLINK needs more memory for active
data structures, it will either purge buffers or swap them to
expanded or extended memory.

In the case of input file buffering, purging simply means throwing
away the input buffer so that its space can be used for other data
structures. In the case of output file buffering, purging means
writing the buffer to its correct place in the executable file. In
either case, you can substantially increase the speed of a link by
allowing these buffers to be swapped to expanded or extended
memory.

TLINK's capacity is not increased by swapping; only its
performance is improved. By default, swapping to expanded
memory is enabled, while swapping to extended memory is
disabled. If swapping is enabled and no appropriate memory
exists in which to swap, then swapping does not occur. If you link
with TLINKX, the protected mode linker, neither of these options
has an effect.

This option has several forms, shown below

lye or Iye+ enable expanded memory swapping (default)
Iye- disable expanded memory swapping
Iyx or /yx+ enable extended memory swapping
Iyx- disable extended memory swapping (default)

Restrictions Previous restrictions that no longer apply:

Chapter 7, Utilities

• TLINK now generates Windows .EXE and .DLL files.

• Common variables are now supported.
II Segments that are of the same name and class that are

uncombinable are now accepted. They aren't combined, and
they appear separately in the map file.

• Any Microsoft code can now be linked with TLINK.

249

TUNK

The module

TLINK can of course be used with Borland c++ (both the IDE and
command-line versions), TASM, and other compilers.

definition file The module definition file provides information to the linker
about the contents and system requirements of a Windows
application. More specifically, it

• names the application or dynamic link library (DLL)

• identifies the type of application as Windows or OS/2
• lists imported functions and exported functions

• describes the code and data segment attributes; allows you to
specify attributes for additional code and data segments

• specifies the size of the heap and stack

• provides for the inclusion of a DOS stub program

Note that the IMPLIB utility can use a module definition file to
create an import library (see page 192). The IMPDEF utility can
actually create a module definition file for use with IMPLIB (see
page 190).

Module definition file
defaults

The module definition file is not strictly necessary to produce a
Windows executable under Borland C++.

250

If no module definition file is specified, the following defaults are
assumed.

CODE
DATA

HEAPSIZE
STACKSIZE

PRELOAD MOVEABLE DISCARDABLE
PRELOAD MOVEABLE MULTIPLE (for
applications) or PRELOAD MOVEABLE
SINGLE (for DLLs)
4096
5120

To replace the EXETYPE statement, the Borland C++ linker can
discover what kind of executable you want to produce by
checking settings in the IDE or options on the command line.

You can include an import library to substitute for the IMPORTS
section of the module definition. .

You can use the _export keyword in the definitions of export
functions in your C and c++ source code to remove the need for
an EXPORTS section. Note, however, that if _export is used to

Borland C++ User's Guide

TUNK

export a function, that function will be exported by name rather
than by ordinal (ordinal is usually more efficient).

If you want to change various attributes from the default, you'll
need to have a module definition file.

A quick example Here's a module definition from the WHELLO example, discussed
on page 104:

Chapter 7, Utilities

NAME WHELLO
DESCRIPTION 'Ctt Windows Hello World'
EXETYPE WINDOWS
CODE MOVEABLE
DATA MOVEABLE MULTIPLE
HEAPSIZE 1024
STACKSIZE 5120
EXPORTS MainWindowProc

Let's take this file apart, statement by statement:

• NAME specifies a name for an application. If you want to build
a DLL instead of an application, you would use the LIBRARY
statement instead. Every module definition file should have
either a NAME statement or a LIBRARY statement, but never
both. The name specified must be the same name as the
executable file.

• DESCRIPTION lets you specify a string that describes your
application or library.

• EXETYPE can be either WINDOWS or OS2. Only WINDOWS is
supported in this version of Borland C++.

• CODE defines the default attributes of code segments. The
MOVEABLE option means that the code segment can be moved
in memory at run-time.

• DATA defines the default attributes of data segments.
MOVEABLE means that it can be moved in memory at run
time. Windows lets you run more than one instance of an
application at the same time. In support of that, the MULTIPLE
options ensures that each instance of the application has its own
data segment.

• HEAPSIZE specifies the size of the application's local heap.

• STACKSIZE specifies the size of the application's local stack.
You can't use the STACKSIZE statement to create a stack for a
DLL.

251

TUNK

• EXPORTS lists those functions in the WHELLO application that
will be called by other applications or by Windows. Functions
that are intended to be called by other modules are called
callbacks, callback functions, or export functions .

• To help you avoid the necessity of creating and maintaining
long EXPORTS sections, Borland C++ provides the _export
keyword. Functions flagged with _export will be identified by
the linker and entered into an export table for the module. If the
Smart Callbacks option is used at compile time (IWS on the
BCC command-line, or Options I Compiler I Entry /Exit Code I
Windows Smart Callbacks), then callback functions do not need
to be listed either in the EXPORTS statement or flagged with
the _export keyword. Borland C++ compiles them in such a
way so that they can be callback functions.

This application doesn't have an IMPORTS statement, because the
only functions it calls from other modules are those from the Win
dows API; those functions are imported via the automatic
inclusion of the IMPORT.LIB import library. When an application
needs to call other external functions, these functions must be
listed in the IMPORTS statement, or included via an import
library (see page 192 for a discussion of import libraries).

This application doesn't include a STUB statement. Borland C++
uses a built-in stub for Windows applications. The built-in stub
simply checks to see if the application was loaded under Win
dows, and, if not, terminates the application with a message that
Windows is required. If you want to write and include a custom
stub, specify the name of that stub with the STUB statement.

Module definition

252

reference This section describes each statement in a module definition file.

CODE The CODE statement defines the default attributes of code
segments. Code segments can have any name, but must belong to
segment classes whose name ends in CODE. For instance, valid
segment class names are CODE or MYCODE. The syntax is

CODE [FIXED I MOVEABLE]
[DISCARDABLE I NONDISCARDABLE]
[PRELOAD I LOADONCALL]

FIXED means that the segment remains at a fixed memory
location; MOVEABLE means that the segment can be moved.

Borland C++ User's Guide

Chapter 7, Utilities

TUNK

DISCARDABLE means that the segment can be discarded if it is
no longer needed. DISCARDABLE implies MOVEABLE.
NONDISCARDABLE means that the segment can't be discarded.

PRELOAD means that the segment is loaded when the module is
first loaded; LOADONCALL means that the segment is loaded
when code in this segment is called. The Resource Compiler and
the Windows loader set the code segment containing the initial
program entry point to PRELOAD regardless of the setting in the
module definition file.

Default attributes for code segments are

FIXED NONDISCARDABLE LOADONCALL

DATA The DATA statement defines the default attributes of data
segments.

The syntax of the DATA statement is

DATA [NONE I SINGLE I MULTIPLE] [FIXED I MOVEABLE]

NONE means that there is no data segment. If you specify NONE,
do not include any other options. This option is available only for
libraries.

SINGLE means that a single segment is shared by all instances of
the module. MULTIPLE means that each instance of an
application has a segment. SINGLE is only valid for libraries;
MULTIPLE is only valid for applications.

FIXED means that the segment remains at a fixed memory
location. MOVEABLE means that the segment can be moved.

The default attributes for data segments in applications are FIXED
MULTIPLE. For libraries the default attributes are FIXED
SINGLE.

The automatic data segment is the segment whose group is
DGROUP. This physical segment also contains the local heap and
stack (see the HEAPSIZE and STACKSIZE module definition file
statements). The Resource Compiler and the Windows loader set
the automatic data segment to be PRELOAD, regardless of the
setting in the module definition file.

253

TUNK

254

DESCRIPTION The DESCRIPTION statement inserts text into the application
module. The DESCRIPTION statement is typically used to embed
author, date, or copyright information. DESCRIPTION is an
optional statement. The syntax is

DESCRIPTION ~Text'

Text specifies an ASCII string delimited with single quotes.

EXElYPE The EXETYPE statement specifies the default executable file
(.EXE) header type (Windows or OS/2). You can only specify
WINDOWS in this version of Borland C++. The syntax is

EXETYPE Type

Type determines the type of header TLINK writes to the
executable file.

EXPORTS The EXPORTS statement defines the names and attributes of the
functions to be exported. The EXPORTS keyword marks the
beginning of the definitions. It can be followed by any number of
export definitions, each on a separate line. The syntax is

EXPORTS
ExportName [Ordinal] [RESIDENTNAME] [NODATA] [Parameter]

ExportName specifies an ASCII string that defines the symbol to be
exported. It has the following form:

<Entry Name>=[InternalName]

InternalName is the name used within the application to refer to
this entry. EntryName is the name listed in the executable file's
entry table is externally visible.

Ordinal defines the function's ordinal value. It has the following
form:

@ordinal

where ordinal is an integer value that specifies the function's
ordinal value.

When an application module or DLL module calls a function
exported from a DLL, the calling module can refer to the function
by name or by ordinal value. In term,s of speed, referring to the
function by ordinal is faster since string comparisons are not
required to locate the function. In terms of memory allocation,

Borland c++ User's Guide

TUNK

exporting a function by ordinal (from the point of view of that
function's DLL) and imp orting/ calling a function by ordinal
(from the point of view of the calling module) is more efficient.
When a function is exported by ordinal, the name resides in the
non-resident name table. When a function is exported by name,
the name resides in the resident name table. The resident name
table for a module is resident in memory whenever the module is
loaded; the non-resident name table isn't.

The RESIDENlNAME option lets you specify that the function's
name must be resident at all times. This is useful only when
exporting by ordinal (when the name wouldn't be resident by
default).

The NODATA option lets you specify that the function is not
bound to a specific data segment. The function will use the
current data segment.

Parameter is an optional integer value that specifies the number of
words the function expects to be passed as parameters.

HEAPSIZE The HEAPSIZE statement defines the number of bytes needed by
the application for its local heap. An application uses the local
heap whenever it allocates local memory. The syntax is

HEAPSIZE bytes

bytes is an integer value that specifies the heap size in bytes. It
must not exceed 65,536 (the physical segment size).

The default heap size is zero. The minimum size is 256 bytes. The
sum total of the automatic data segment (DGROUP), the local
heap, and the stack must not exceed 65,536.

IMPORTS The IMPORTS statement defines the names and attributes of the
functions to be imported from dynamic link libraries. Instead of
listing imported DLL functions in the IMPORTS statement, you
can either specify an import library for the DLL in the TLINK
command line, or-in the IDE-include the import library for the
DLL in the project.

Chapter 7, Utilities

The IMPORTS key word marks the beginning of the definitions. It
can be followed by any number of import definitions, each on a
separate line. The syntax is

IMPORTS
[InternaIName=]ModuleName.Entry

255

TUNK

256

InternalName is an ASCII string that specifies the unique name
that the application will use to call the function.

ModuleName specifies one or more uppercase ASCII characters
that define the name of the executable module that contains the
function. The module name must match the name of the
executable file. For example, the file SAMPLE.DLL has the the
module name SAMPLE.

Entry specifies the function to be imported. It can be either an
ASCII string that names the function, or an integer that gives the
function's ordinal value.

LIBRARY The LIBRARY statement defines the name of a DLL module. A
module definition file can contain either a NAME statement to
indicate an application or a LIBRARY statement to indicate a DLL,
but not both.

Like an application's module name, a library's module name must
match the name of the executable file. For example, the library
MYLIB.DLL has the module name MYLIB. The syntax is

LIBRARY LibraryName

LibraryName specifies an ASCII string that defines the name of the
library module.

The start address of the library module is determined by the
library's object files; it is an internally defined function.

LibraryName is optional. If the parameter is not included, TLINK
uses the filename part of the executable file (that is, the name with
the extension removed).

If the module definition file includes neither a NAME nor a
LIBRARY statement, TLINK assumes a NAME statement without
a ModuleName parameter.

NAME The NAME statement defines the name of the application's
executable module. The module name identifies the module when
exporting functions. The syntax is

NAME ModuleName

ModuleName specifies one or more uppercase ASCII characters
that define the name of the executable module. The module name
must match the name of the executable file. For example, an

Borland C++ User's Guide

TUNK

application with the executable file SAMPLE.EXE has the module
name "SAMPLE".

The ModuleName parameter is optional. If the parameter is not
included, TLINK assumes that the module name matches the
filename of the executable file. For example, if you do not specify
a module name and the executable file is named MYAPP.EXE,
TLINK assumes that the module name is "MYAPP"

If the module definition file includes neither a NAME nor a
LIBRARY statement, TLINK assumes a NAME statement without
a ModuleName parameter.

SEGMENTS The SEGMENTS statement defines the segment attributes of
additional code and data segments. The syntax is

Chapter 7, Utilities

SEGMENTS
SegmentName [CLASS ~ClassName'] [MinAlloc]
[FIXED I MOVEABLE] [DISCARDABLE I
NONDISCARDABLE]
[SHARED I NONSHARED] [PRELOAD I LOADONCALL]

SegmentName specifies a character string that names the new
segment. It can be any name, including the standard segment
names _TEXT and _DATA, which represent the standard code
and data segments.

ClassName is an optional key word that specifies the class name of
the specified segment. If no class name is specified, TLINK uses
the class name CODE by default.

MinAlloc is an optional integer value that specifies the minimum
allocation size for the segment. Currently, TLINK ignores this
value.

FIXED means that the segment remains at a fixed memory
location. The MOVEABLE option means that the segment can be
moved if necessary, in order to compact memory.

DISCARDABLE means that the segment can be discarded if it is
no longer needed; NONDISCARDABLE means that the segment
can not be discarded.

PRELOAD means that the segment is loaded immediately;
LOADONCALL means that the segment is loaded when it is
accessed or called. The Resource Compiler may override the
LOADONCALL option and preload segments instead.

257

TUNK

Default attributes for additional segments are as described for
CODE and DATA segments (depending on the type of additional
segment).

STACKSIZE The STACKSIZE statement defines the number of bytes needed
by the application for its local stack. An application uses the local
stack whenever it makes function calls. Do not use the ST ACK
SIZE statement for dynamic link libraries. The syntax is

STACKSIZE bytes

bytes is an integer value that specifies the stack size in bytes.

If the application makes no function calls, ST ACKSIZE defaults to
o. If your application does make function calls the minimum size
is 5120 bytes (if you specify less, it will be changed to 5120). The
sum total of the automatic data segment (DGROUP), the local
heap, and the stack must not exceed 65,536.

STUB The STUB statement appends a DOS executable file specified by
FileName to the beginning of the module. The executable stub
should display a warning message and terminate if the user
doesn't have Windows loaded.

Borland C++ adds a built-in stub to the beginning of a Windows
application unless a different stub is specified with the STUB
statement. Therefore, you should not use the STUB statement
merely to include WINSTUB.EXE, because the linker will do this
for you automatically.

The syntax is

STUB "FileName"

FileName specifies the name of the DOS executable file that will be
appended to the module. The name must have the DOS file name
format.

If the file named by FileName is not in the current directory,
TLINK searches for the file in the directories specified by the
user's PATH environment variable.

TLINK messages

258

TLINK has three types of messages: fatal errors, errors, and
warnings.

Bor/and C++ User's Guide

Chapter 7, Utilities

TUNK

• A fatal error causes TLINK to stop immediately; the .EXE file is
deleted .

• An error (also called a nonfatal error) does not delete .EXE or
.MAP files, but you shouldn't try to execute the .EXE file. Errors
are treated as fatal errors in the IDE .

.. Warnings are just that: warnings of conditions that you
probably want to fix. When warnings occur, .EXE and .MAP
files are still created.

The following generic names and values appear in the error
messages listed in this section. When you get an error message,
the appropriate name or value is substituted.

In manual

errorcode
filename
group
linenum
module
segment
symbol
XXXXh

What you'll see onscreen

Error code number for internal errors
A file name (with or without extension)
A group name
The line number within a file
A module name
A segment name
A symbol name
A 4-digit hexadecimal number, followed by h

Messages are listed in ASCII alphabetic order; messages
beginning with variable names or numbers come first. Since
messages that begin with one of the variables just listed cannot be
alphabetized by what you will actually see when you receive such
a message, all such messages have been placed at the beginning of
the message list.

If the variable occurs later in the text of the error message (for
example, "Invalid segment definition in module module"), you can
find the message in correct alphabetical order; in this case, under
I.

Warning filename (linenum): Duplicate external name in exports
Two export functions listed in the EXPORTS section of a module
definition file defined the same external name. For instance,

EXPORTS
AnyProc=MyProcl
AnyProc=MyProc2

259

TUNK

Warning filename (linenum): Duplicate internal name in exports
Two export functions listed in the EXPORTS section of the
module definition file defined the same internal name. For
example,

EXPORTS
JlnyProcl=~yProc

JlnyProc2=~yProc

Warning filename (linenum): Duplicate internal name in imports
Two import functions listed in the IMPORTS section of the
module definition file defined the same internal name. For
instance,

or

IMPORTS
JlnyProc=~y~odl.~yProcl
JlnyProc=~y~od2.~yProc2

IMPORTS
~y~odl.~yProc
~y~od2.~yProc

Fatal error filename (linenum): File read error
A DOS error occurred while TLINK read the module definition
file. This usually means that a premature end of file occurred.

Fatal error filename (linenum): Incompatible attribute
This error indicates that TLINK encountered incompatible
segment attributes in a CODE or DATA statement (for instance,
both PRELOAD and LOADONCALL can't be attributes for the
same segment).

Fatal error filename (Iinenum): Missing internal name
In the IMPORTS section of the module definition file there was a
reference to an entry specified via module name and ordinal
number. When an entry is specified by ordinal number an internal
name must be assigned to this import definition. It is this internal
name that your program uses to refer to the imported definition.
The syntax in the module definition file should be:

<internalname>=<modulename>.<ordinal>

Fatal error filename (Iinenum): Syntax error
TLINK found a syntax error in the module definition file. The
filename and line number tell you where the syntax error
occurred.

260 Borland C++ User's Guide

TUNK

Warning symbol conflicts with module module in module module
This indicates an inconsistency in the definition of symbol. This
either means that two virtual fllllctions of this name were
encolllltered with different sizes, or that TLINK fOlllld one virtual
fllllction and one command definition with the same name.

Error or Warning symbol is duplicated in module module
This message can result from a conflict between two symbols
(either public or commllllal) defined in the same module. An error
occurs if both are encolllltered in an .OBJ file. A warning is issued
if TLINK finds the duplicates in a library; in this case, TLINK uses
the first definition ..

Error or Warning symbol defined in module module is duplicated in module
module
This message can result from a conflict between two symbols
(either public or commllllal). This usually means that a symbol is
defined in two modules. An error occurs if both are encolllltered
in the .OBJ file(s), because TLINK doesn't know which is valid. A
warning results if TLINK finds one of the duplicated symbols in a
library and finds the other in an .OBJ file; in this case, TLINK uses
the one in the .OBJ file.

Fatal error 32-bit record encountered
This message occurs when an object file that contains 80386 32-bit
records is encolllltered, and the 13 option has not been used.
Simply restart TLINK with the 13 option.

Warning Attempt to export non-public symbol symbol
A symbol name was listed in the EXPORTS section of the module
definition file, but no symbol of this name was fOlllld as public in
the modules linked. This either implies a mistake in spelling or
case, or that a procedure of this name was not defined.

Error Automatic data segment exceeds 64K
The sum of the DGROUP physical segment, local heap, and stack
exceeded 64K. Either specify smaller values for the HEAPSIZE
and STACKSIZE statements in the module definition file, or
decrease the size of your near data in DGROUP. The map file will
show the sizes of the component segments in DGROUP. The Is
TLINK command-line option may be useful to help you find the
module.

Chapter 7, Utilities 261

TUNK

Fatal error Bad character in parameters
One of the following characters was encountered in the command
line or in a response file:

I/*<=>?[]

or any control character other than horizontal tab, line feed,
carriage return, or Ctr/-Z.

Fatal error Bad object file filename
An ill-formed object file was encountered. This is most commonly
caused by naming a source file or by naming an object file that
was not completely built. This can occur if the machine was
rebooted during a compile, or if a compiler did not delete its
output object file when a Ctr/-Brk was pressed.

Fatal error Bad version number in parameter block
This error indicates an internal inconsistency in the IDE. If it
occurs, exist and restart the IDE. This error will not occur in the
standalone version.

Fatal error Cannot generate COM file: data below initial CS:IP defined
This error results from trying to generate data or code below the
starting address (usually 100) of a .COM file. Be sure that the
starting address is set to 100 by using the (ORG 100H) instruction.
This error message should not occur for programs written in a
high-level language. If it does, ensure that the correct startup
(COx) object module is being linked in.

Fatal error Cannot generate COM file: invalid initi~1 entry point address
You used the fTdc or It option, but the program starting address is
not equal to 100H, which is required with .COM files.

Fatal error Cannot generate COM file: program exceeds 64K
You used the fTdc or It option, but the total program size exceeds
the .COM file limit.

Fatal error Cannot generate COM file: segment-relocatable items present
You used the rrdc or It option, but the program contains
segment-relative fixups, which are not allowed with .COM files.

Fatal error Cannot generate COM file: stack segment present
You used the fTdc or It option, but the program declares a stack
segment, which is not allowed with .COM files.

Error Common segment exceeds 64K
The program had more than 64K of near uninitialized data. Try
declaring some uninitiallzed data as far.

262 Borland C++ User's Guide

TLiNK

Warning Debug info switch ignored for .COM files
Borland C++ does not include debug information for .COM files.
See the description of the Iv option on page 248.

Fatal error DOS error, ax = number

Chapter 7, Utilities

This occurs if a DOS call returned an unexpected error. The ax
value printed is the resulting error code. This could indicate a
TLINK internal error or a DOS error. The only DOS calls TLINK
makes where this error could occur are read, write, seek, and
close.

Warning Duplicate ordinal number in exports
This warning occurs when TLINK encounters two exports with
the same ordinal value. First check the module definition file to
ensure that there are no duplicate ordinal values specified in the
EXPORTS section. If not, then you are linking with modules
which specify exports by ordinals and one of two things
happened: either two export records specify the same ordinal, or
the exports section in the module definition file duplicates an
ordinal in an export record.

Export records (EXPDEF) are comment records found in object
files and libraries which specify that particular variables are to be
exported. Optionally, these records can specify ordinal values
when exporting by ordinal (rather than by name).

Error Fixup overflow at segment:xxxxh, target = segment:xxxh in
module module
Fixup overflow at segment:xxxxh, target = symbol in module
module
Either of these messages indicate an incorrect data or code
reference in an object file that TLINK must fix up at link time.

This message is most often caused by a mismatch of memory
models. A near call to a function in a different code segment is the
most likely cause. This error can also result if you generate a near
call to a data variable or a data reference to a filllction. In either
case the symbol named as the target in the error message is the
referenced variable or function. The reference is in the named
module, so look in the source file of that module for the offending
reference.

In an assembly language program, a fixup overflow frequently
occurs if you have declared an external variable within a segment
definition, but this variable actually exists in a different segment.

263

TUNK

If this technique does not identify the cause of the failure, or if
you are programming in assembly language or a high-level
language besides Borland C++, there may be other possible causes
for this message. Even in Borland C++, this message could be
generated if you are using different segment or group names than
the default values for a given memory model.

Fatal error Group group exceeds 64K
This message will occur if a group exceeds 64K bytes when the
segments of the group are combined.

Warning Group group1 overlaps group group2
This means that TLINK has encountered nested groups. This
warning only occurs when overlays are used or when linking a
Windows program.

Fatal error Illegal group definition: group in module module
This error results from a malformed GRPDEF record in an .OB}
file. This latter case could result from custom-built .OB} files or a
bug in the translator used to generate the .OB} file. If this occurs in
a file created by Borland C++, recompile the file. If the error
persists, contact Borland.

Fatal error Internal linker error errorcode
An error occurred in the intemallogic of TLINK. This error
shouldn't occur in practice, but is listed here for completeness in
the event that a more specific error isn't generated. If this error
persists, write down the errorcode number and contact Borland.

Fnta/ error Internal undefined error
An error occurred in the internal logic of TLINK. This error
shouldn't occur in practice, but is lis~ed here for completeness in
the event that a more specific error isn't generated. If this error
persists, contact Borland.

Warning Invalid entry at segment:xxxxh
A rare internal error of TLINK, listed here for completeness. This
error indicates that a necessary entry was missing from the entry
table of a Windows executable file. If it persists, contact Borland.

Error Invalid entry point offset
This message occurs only when modules with 32-bit records are
linked. It means that the initial program entry point offset exceeds
the DOS limit of 64K.

264 Borland c++ User's Guide

TUNK

Fatal error Invalid initial stack offset
This message occurs only when modules with 32-bit records are
linked. It means that the initial stack pointer value exceeds the
DOS limit of 64K.

Fatal error Invalid limit specified for code segment packing
This error occurs if you used the fP option and specified a size
limit that was out of range. To be valid, the size limit must be
between 1 and 65536 bytes; the default is 4096.

Fatal error Invalid segment definition in module module

Chapter 7, Utilities

This message will generally occur only if a compiler produced a
flawed object file. If this occurs in a file created by Borland C++,
recompile the file. If the problem persists, contact Borland.

Error Invalid size specified for segment alignment
This error occurs if an invalid value is specified for the fA option.
The size specified with fA must be an integral multiple of 2 and
less than 64K. Common values are 16 and 512. This error only
occurs when linking for Windows.

Warning No automatic data segment
No group named DGROUP was found. Because the Borland C++
initialization files define DGROUP, you will only see this error if
you don't link with an initialization file and your program doesn't
define DGROUP. Windows uses DGROUP to find the local data
segment. The DGROUP is required for Windows applications (but
not DLLs) unless DATA NONE is specified in the module
definition file.

Warning No module definition file specified: using defaults
TLINK was invoked with one of the Windows options, but no
module definition file was specified. See page 250 for more
information about module definition file defaults.

Warning No program starting address defined
This warning means that no module defined the initial starting
address of the program. This is almost certainly caused by
forgetting to link in the initialization module COx.OBJ. This
warning should not occur when linking a Windows DLL.

Warning No stack
This warning is issued if no stack segment is defined in any of the
object files or in any of the libraries included in the link. This is a
normal message for the tiny memory model in Borland C++, or

265

TUNK

for any application program that will be converted to a .COM file.
For other programs (except DLLs), this indicates an error.

If a Borland C++ program produces this message for any but the
tiny memory model, make sure you are using the correct COx
startup object files.

Warning No stub for fixup at segmentxxxxh in module module
This error occurs when the target for a fixup is in an overlay
segment, but no stub is found for a target external. This is usually
the result of not making public a symbol in an overlay that is
referenced from the same module.

Fatal error Not enough memory
There is not enough memory to run TLINK. Try removing any
TSR applications currently loaded, or reduce the size of any RAM
disk currently active. Then run TLINK again.

Fatal error Out of memory
TLINK has run out of dynamically allocated memory needed
during the link process. This error is a catchall for running into a
TLINK limit on memory usage. This usually means that too many
modules, externals, groups, or segments have been defined by the
object files being linked together.

Warning Overlays generated and no overlay manager included
This warning is issued if overlays are created but the symbol
__ OVRTRAP __ is not defined in any of the object modules or
libraries linked in. The standard overlay library (OVERLAY.LIB)
defines this symbol.

Warning Overlays ignored in new executable image
This error occurs if you attempt to link a Windows program with
the b option on. Windows executables can't be overlaid, although,
with discardable code segments, you should be able to achieve a
similar effect.

Error Program entry point may not reside ,in an overlay
Although almost all of an application can be overlaid, the initial
starting address cannot reside in an overlay. This error usually
means that an attempt was made to overlay the initialization
module COx.OBJ, for instance, by specifying the b option before
the startup module.

266 Borland C++ User's Guide

TUNK

Fatal error Relocation item exceeds 1 MB DOS limit
The DOS executable file format doesn't support relocation items
for locations exceeding 1MB. Although DOS could never load an
image this big, DOS extenders can, and thus TLINK supports
generating images greater than DOS could load. Even if the image
is loaded with a DOS extender, the DOS executable file format is
limited to describing relocation items in the first 1MB of the
image.

Fatal error Relocation offset overflow
This error only occurs for 32-bit object modules and indicates a
relocation (segment fixup) offset greater than the DOS limit of
64K.

Fatal error Relocation table overflow
This error only occurs for 32 bit object modules. The file being
linked contains more base fixups than the standard DOS
relocation table can hold (base fixups are created mostly by calls
to far functions).

Fatal error Segment segment exceeds 64K
This message occurs if too much data is defined for a given data
or code segment when TLINK combines segments with the same
name from different source files.

Warning Segment segment is in two groups: group1 and group2
The linker found conflicting claims by the two named groups.
Usually, this only happens in assembly language programs. It
means that two modules assigned the segment to two different
groups.

Fatal error Segment alignment factor too small
This error occurs if the segment alignment factor (set with the fA
option) is too small to represent the file addresses of the segments
in the .EXE file. This error only occurs when linking for Windows.
See the documentation for the fA option on page 242 for more
information.

Fatal error Segment too large for segment table
This error should never occur in practice. It means that a segment
was bigger than 64K and its size cannot be represented in the
executable file. This error can only occur when linking for Win
dows; the format of the executable file used for Windows does not
support segments greater than 64K.

Chapter 7, Utilities 267

TUNK

Fatal error Stub program exceeds 64K
This error occurs if a DOS stub program written for a Windows
application exceeds 641<. Stub programs are specified via the
STUB module definition file statement. TLINK only supports stub
programs up to 64K.

Fatal error Table limit exceeded
This message results 'from one of linker's internal tables
overflowing. This usually means that the programs being linked
have exceeded the linker's capacity for public symbols, external
symbols, or for logical segment definitions. Each instance of a
distinct segment name in an object file counts as a logical
segment; if two object files define this segment, then this results in
two logical segments

Error Too many error or warning messages
On the command line or in the IDE, you can set a limit on the
number of errors or warnings that can occur before linking is
stopped. This error indicates that TLINK reached that limit.

Fatal error Unable to open file filename
This occurs if the named file does not exist or is misspelled.

Error Undefined symbol symbol in module module
The named symbol is referenced in the given module but is not
defined anywhere in the set of object files and libraries included
in the link. Check to make sure the symbol is spelled correctly.

You will usually see this error from TLINK for Borland C++
symbols if you did not properly match a symbol's declarations of
pascal and cdecl type in different source files, or if you have
omitted the name of an .OBJ file your program needs. If you are
linking C++ code with C modules, you might have forgotten to
wrap C external declarations in extern "e" { ... }.

Fatal error Unknown option
A forward slash character (/), hyphen (-), or DOS switch
character was encountered on the command line or in a response
file without being followed by one of the allowed options. This
might mean that you used the wrong case to specify an option.

Error User break
TLINK aborts linking when the etrl-Break key is pressed.

268 Borland C++ User's Guide

TUNK

Fatal error Write failed, disk full?
This occurs if TLINK could not write all of the data it attempted
to write. This is almost certainly caused by the disk being full.

Chapter 7, Utilities 269

270 Borland C++ User's Guide

A p p

How they work

E N D x

A

Precompiled headers

Borland c++ can generate and subsequently use precompiled
headers for your projects. Precompiled headers can greatly speed
up compilation times.

When compiling large C and c++ programs, the compiler can
spend up to half of its time parsing header files. When the
compiler parses a header file, it enters declarations and definitions
into its symbol table. If ten of your source files include the same
header file, this header file is parsed ten times, producing the
same symbol table every time.

Precompiled header files cut this process short. During one
compilation, the compiler stores an image of the symbol table on
disk in a file called TCDEF.SYM by default. (TCDEF.SYM is
stored in the same directory as the compiler.)Later, when the same
source file is compiled again (or another source file that includes
the same header files), the compiler reloads TCDEF.SYM from
disk instead of parsing all the header files again. Directly loading
the symbol table from disk is over ten times faster than parsing
the text of the header files.

Precompiled headers will only be used if the second compilation
uses one or more of the same header files as the first one, and if a

Appendix A, Precompiled headers 271

Drawbacks

lot of other things, like compiler options, defined macros and so
on, are also identical.

If, while compiling a source file, Borland C++ discovers that the
first #includes are identical to those of a previous compilation (of
the same source or a different source), it will load the binary
image for those #includes, and parse the remaining #includes.

Use of precompiled headers for a given module is an all or
nothing deal: the precompiled header file is not updated for that
module if compilation of any included header file fails.

When using using precompiled headers, TCDEF.SYM can become
very big, because it contains symbol table images for all sets of
includes encountered in your sources. You can reduce the size of
this file; see "Optimizations" on page 274.

If a header contains any code, then it can't be precompiled. For
example, while C++ class definitions may appear in header files,
you should take care that only member functions that are inline
are defined in the header; heed warnings such as "Functions
containing for are not expanded inline".

USing precompiled headers

272

You can control the use of precompiled headers in any of three
ways:

• from within the IDE, using the Options I Compiler I Code
Generation dialog box (see page 62). The IDE bases the name of
the precompiled header file on the project name, creating
PRO]ECT.5YM

• from the command line using the -H, -H=filename, and -Hu
options (see page 178)

• or from within your code using the pragmas hdrfile and
hdrstop (see Chapter 4 in the Programmer's Guide)

Borland C++ User's Guide

Setting file names

Caution/

Establishing
identity

The compiler uses just one file to store all precompiled headers.
The default file name is TCDEF.SYM. You can explicitly set the
name with the -H=filename command-line option or the #pragma
hdrfile directive.

You may notice that your .SYM file is smaller than it should be. If
this happens, the compiler may have run out of disk space when
writing to the .SYM file. When this happens, the compiler deletes
the .SYM in order to make room for the .OBI file, then starts
creating a new (and therefore shorter) .SYM file. If this happens,
just free up some disk space before compiling.

The following conditions need to be identical in order for a
previously generated precompiled header to be loaded for a
subsequent compilation.

The second or later source file must:

II have the same set of include files in the same order

• have the same macros defined to identical values

• use the same language (C or C++)

• use header files with identical time stamps; these header files
can be included either directly or indirectly

In addition, the subsequent source file must be compiled with the
same settings for the following options:

• memory model, including SS != DS (-mx)
II underscores on extems (-u)
• maximum identifier length (-iL)
• target DOS (default) or Windows (-W or -Wx)
• generate word alignment (-a)
• Pascal calls (-p)
• treat enums as integers (-b)
• default char is unsigned (-K)
• virtual table control (-V x)

Appendix A, Precompiled headers 273

274

Optimizing
precompiled

headers

ASOURCE.C:

BSOURCE.C:

Revised BSOURCE.C:

PREFIX.C

For Borland c++ to most efficiently compile using precompiled
headers, follow these rules:

• Arrange your header files in the same sequence in all source
files.

• Put the largest header files first.
• Prime TCDEF.SYM with often-used initial sequences of header

files.

• Use #pragma hdrstop to terminate the list of header files at
well-chosen places. This lets you make the list of header files in
different sources look similar to the compiler. #pragma hdrstop
is described in more detail in Chapter 4 in the Programmer's
Guide.

For example, given the two source files ASQURCE.C and
BSQURCE.C, both of which include windows.h and myhdr.h,

tinclude <windows.h>
*include "myhdr.h"
*include "xxx.h"
< ... >

*include "zz.h"
tinclude <string.h>
*include "myhdr.h"
tinclude <windows.h>
< ... >

You would rearrange the beginning of BSQURCE.C to:

tinclude <windows.h>
*include "myhdr.h"
*include "zz.h"
tinclude <string.h>
< ..• >

Note that windows.h and myhdr.h are in the same order in
BSQURCE.C as they are in ASQURCE.C. You could also make a
new source called PREFIX.C containing only the header files, like
this:

tinclude <windows.h>
#include "myhdr.h"

Borland C++ User's Guide

If you compile PREFIX.C first (or insert a #pragrna hdrstop in both
ASOURCE.C and BSOURCE.C after the #include "myhdr.h"
statement) the net effect is that after the initial compilation of
PREFIX.C, both ASOURCE.C and BSOURCE.C will be able to
load the symbol table produced by PREFIX.C. The compiler will
then only need to parse xxx.h for ASOURCE.C and zz.h and
string.h for BSOURCE.C.

Appendix A, Precompiled headers 275

276 Borland C++ User's Guide

N

43/50-line display 91
- + and + - (TUB action symbols) 228
<> (angle brackets) in #include directive 89
$* (base file name macro) 214
-2 BCC option (80286 instructions) 167
-1 BCC option (extended 80186 instructions)

167
» (chevron) in dialog boxes 18
$. (file name and extension macro) 215
$& (file name only macro) 215
$: (file name path macro) 215
$< (full file name macro) 214
-? MAKE help opt~on 197
-1 option (extended 80186 instructions) See also

80186 processor, generating extended
instructions

/3 TUNK option (32-bit code) 241
-* and *- (TLIB action symbols) 228
32-bit code 241
- (hyphen) MAKE command (ignore exit status)

202
25-line display 91
(MAKE comment character) 201
386MAX 7
&&operator

MAKE 202, 203
« operator

MAKE 202
» operator

MAKE 202
-? RC help option 122
; (semicolons) in directory path names 90
:: (System) menu 8
- (tilde) in transfer program names 75
* (TLIB action symbol) 228
+ (TLIB action symbol) 228
- (TLIB action symbol) 228
$ editor macros See individual names of

macros; transfer macros

Index

D E

@ MAKE command 202
80x87 math coprocessors See numeric

coprocessors
80x86 processors

32-bit code 241
instruction set 63
instructions 167

extended 167
:: (System) menu 8, 26
~ (arrows) in dialog boxes 17
/P TLINK option (pack code segments)need

index 247

A
-a BCC option (align integers) 167
-A BCC option (ANSI keywords) 174

x

-a MAKE option (autodependency check) 197,
208

About command 27
ACBP field 245
action symbols See TLIB (librarian)
activating

menu bar 9
active window See windows, active
add (TLIB action symbol) 228
Add button 58
Add Item command 58, 133
Add Item to Project List dialog box 58
Add Watch command 54

hot key 12
Advanced Code Generation dialog box 63
alignment

attribute 245
integers 167
word 61

American National Standards Institute See
ANSI

angle brackets «» in #include directive 89

277

ANSI
Borland C++ keywords and 174
compatible code 174
floating point conversion rules 169
keywords

option 174
using only 70

violations 175
ANSI Violations 71, 72
applications

Microsoft Windows See Microsoft Windows
applications
transferring to and from Borland C++ 74

Arguments
command 44
dialog box 44

arguments
command-line compiler 158
variable list 170

arrays
huge

fast huge pointer arithmetic and 64
arrays, inspecting values 49
arrows (~) in dialog boxes 17
.ASM files See assembly language
assembly language

assembling from the command line 157
compiling 178
default assembler 178
directory 184
inline routines 178
options

passing 179
removing 179

output files 179
projects and 138

assembly level debugger See Turbo Debugger
Assume SS equals DS option 62
-AT BeC option (Borland C++ keywords) 174
attributes

ACBP 245
alignment 245
big 245
combining 245

-AU option (UNIX keywords) 174
Auto Save option 91
auto variables See variables, automatic

278

.autodepend MAKE directive 216
autodependencies See also dependencies

explicit dependencies and 78
Autoindent Mode option 92
automatic dependencies 83

checking 138
MAKE (program manager) 197, 208

information
disabling 171

MAKE option 216
Automatic Far Objects option 64
automatic variables See variables, automatic

B
-b BCC option (allocate whole word for enums)

168
-B BCC option (process inline assembler code)

178
/b IDE option (build) 5
-B MAKE option (build all) 197
Backspace Unindents option 92
backup files (.BAK) 92
backward

pair matching 153
searching 38

.BAK files 92
bar, title 14
base file name macro (MAKE) 214
batch files, MAKE 203, 204
BBS segment ~ee also segments
BC.EXE See integrated environment
BCC.EXE See command-line compiler
BCINST See also BCINST menu and command

names
BGI See Borland Graphics Interface
BGIOBJ See The online document VTIL.DOC
big attribute 245
block operations (editor) See editing, block

operations
Borland C++

C and 170
calling convention 66
keywords

as identifiers 70, 174
project files and 138
quitting 8, 33
starting up 4

Borland C++ User's Guide

transferring from 74
Borland Graphics Interface (BGI) See also

graphics
EGA palettes and 7
library 84

Borland c++ See also C++; C language;
keywords

boxes See check boxes; dialog boxes; list boxes;
text, boxes

Break Make On
menu 136
option 83

Breakpoints
command 55
dialog box 55

breakpoints See also debugging; watch
expressions
clearing 56
controlling 55
deleting 55
editing 55
inline functions and 68
losing 56
saving across sessions 94
setting 55
viewing 55

. BSS names 73
bugs See debugging
Build All command 46
build IDE option 5
BUILTINS.MAK 196
buttons

Change 152
Change All 39, 152
choosing 17
in dialog boxes 17
mouse 94
radio 18

c
C++ 67, See also C language; Borland C++

classes See classes
compiling 67
compiling files as 179
DLLs and 127

Index

functions
inline

command-line option (-vi) 172
debugging and 67, 172
virtual tables and 182

help 100
virtual tables See virtual tables
warnings 72, 176

c++ Options
command 67
dialog box 67

C++ Warnings
dialog box 72

-c BCC option (compile but don't link) 178
-C BCC option (nested comments) 174
IC TLIB option (case sensitivity) 226, 230
IC TLINK option (case sensitive imports) 242
Ic TLINK option (case sensitivity) 242
COFx.OBJ 237
C language See also C++

Borland C++ and 170
help 100

COx. OBI 237
Call Stack command 51

hot key 12
callbacks

smart See smart callbacks
memory models and 66
Windows applications and 66

calling
conventions 66

Cancel button 17
$CAP EDIT macro 75
$CAP EDIT transfer macro 77
$CAP MSG transfer macro 77
Cascade command 96
Case-Sensitive Exports option 85
case sensitivity

in searches 37
linking with 85
module definition file and 85,242
TLIB option 226, 230
TLINK and 241,242

cdec1 statement 170
.CFG files See configuration files
Change All button 39, 152
Change button 152

279

Change Dir command 30
Change Directory dialog box 31
characters

control
IDE and 18

data type char See data types, char
tab

printing 31
Check Auto-dependencies option 83
check boxes 18
chevron symbol (») 18
Class Inspector window 50
classes

debugging 50
DLLsand 127, 191
inspecting 49
names 73
sharing objects 68, 183

Clear command 36, 149
hot key 11

Clear Desktop command 27
click speed (mouse) 94
Clipboard 34

clearing 36
editing text in 36
saving across sessions 94
showing 36

close boxes 14
Close command 96

hot key 12
Close Project

command 58
Code Generation

command 61
dialog box 61, 63

code generation
command-line compiler options 167

Code Pack Size option 85
code segment

discard able 246
group 177
names 73
naming and renaming 177

default 178
storing virtual tables in 68, 182

-WD option and 113, 180
$COL transfer macro 77

280

colors and palettes
EGA 7

columns
numbers 13, 77

.COMfiles
generating 237

TUNK247
limitations 247
size 247

combining attribute 245
COMDEFs

generating 168
PUBDEFs versus 64

command line
Borland C++ See command-line compiler
options See command-line compiler, options;
integrated environment, command-line
options
viewing from IDE 97

command-line compiler
arguments 158
compiling and linking with 158

Windowsapplications 108
configuration files See configuration files,

BCC
DLLs and 123
MAKE and 216
options 160, 165

-2 (80286 instructions) 167
80286 instructions (-2) 167
-1 (extended 80186 instructions) 167
-A and -AT (Borland C++ keywords) 174
-H (precompiled headers) 178
-0 Gump optimization) 172
-p (C++ and C compilation) 179
-Wx (Windows applications) 111, 179
-X (disable autodependency information)
171
-y (overlays) 171
-Yo (overlays) 171
-a (align integers) 167
-AI< (Kernighan and Ritchie keywords)
174
allocate whole word for enum (-b) 168
ANSI

compatible code 174
keywords (-A) 174

Borland C++ User's Guide

violations 175
assembler code 178, 179
assembler to use (-E) 178
assume D5 = 55 (-Fs) 169
-AU (UNIX keywords) 174
autodependency information (-X) 171
-b (allocate whole word for enums) 168
-B (process inline assembler) 178
Borland C++ keywords (-A- and -AT)
174
C++ and C compilation (-P) 179
C++ inline functions (-vi) 172
-c (compile and assemble) 178
-C (nested comments) 174
code generation 167
code segment

class name 177
group 177
name 178

comments, nesting (-C) 174
compilation control 178
compile and assemble (-c) 178
configuration files and 159
-D (macro definitions) 167
-d (merge literal strings) 168
data segment

class name 178
group 177, 178
name 177, 178

debugging information (-v) 243
debugging information (-v) 171
#defines 167

ganging 167
directory (-n) 184
.DLLs with all exportables (-WD) 113, 180
.DLLs with explicit exports (-WDE) 180
DLLs with explicit exports (-WDE) 113
-E (assembler to use) 178
-e (EXE program name) 183
emulate 80x87 (-f) 169
enable -F options (-Fm) 169
environment 183
error reporting 174
.EXE file names (-e) 183
extended 80186 instructions (-1) 167
extended and expanded memory 180
-:-f287 (inline 80x87 code) 169

Index

-f87 (inline 80x87 code) 169
-f (emulate 80x87) 169
far global variables (-Ff) 168
far objects (-zE, -zF, and -zH) 177
fast floating point (-ff) 64, 169
fast huge pointers (-h) 169
-Fc (generate COMDEFs) 168
-Ff (far global variables) 168
-Fm (enable -F options) 169
frequent errors 175
Fs (assume D5 = 55) 169
functions, void 175
-G (speed optimization) 172
generate COMDEFs (-Fc) 168
generate underscores (-u) 170
gn (stop on n warnings) 174
-h (fast huge pointers) 169
identifiers, length (-i) 174
include files 184

directory (-I) 160, 183
inline 80x87 code (-f87) 169
integer alignment (-a) 167
-jn (stop on n errors) 175
jump optimization (-0) 172
-k (standard stack frame) 170
-K (unsigned characters) 170
Kernighan and Ritchie keywords (-AK)
174
-1 (linker options) 183
-L (object code and library directory) 160,
184
libraries 184

directory (-L) 160, 184
line numbers (-y) 171
link map (-M) 183
linker (-1) 183
-M (link map) 183
macro definitions (-D) 167
memory model (-rnx) 166
merge literal strings (-d) 168
-n (.OBJ and .A5M directory) 184·
-N (stack overflow logic) 170
nested comments (-C) 174
object code and library directory (-L) 160,
184
object files (-0) 179
.0BJs with explicit exports (-WN) 112,180

281

282

order of evaluation 164
response files and 164

overlays (-Y) 171
overlays (-Yo) 171
Pascal

conventions (-p) 170
identifiers 171

pass options to assembler (-Tstring) 179
pointer conversion, suspicious 175
portability warnings 176
precedence 164

response files and 164
precedence rules 160
precompiled headers (-H) 178
process inline assembler (-B) 178
produce .A5M but don't assemble (-5) 179
project files and 59
-Q (extended and expanded memory) 180
-rd (register variables) 173
redundant load operations (-Z) 173
register usage optimization (-Z) 173
register variables 172, 173
remove assembler options (-T-) 179
-5 (produce .A5M but don't assemble) 179
segment-naming control 177
smart callbacks (-W5) 112
smart callbacks (-W5) 180
speed optimization (-G) 172
stack overflow error message (-N) 170
standard stack frame (-k) 170
stop on n errors(-jn) 175
stop on n warnings (-gn) 174
structures and 175
symbolic debugger 171
syntax 163
-T- (remove assembler options) 179
- Tstnng (pass options to assembler) 179
toggling 159
undefine (-U) 167
underscores (-u) 170, 171
UNIX keywords (-AU) 174
using 159
-v (debugging information) 171,243
-vi (C++ inline functions) 172
virtual tables (-V and -Vn) 182
warnings (-wxxx) 175-176
warnings (-wxxx) 175

-WDE (DLLs with explicit exports) 113
Windows applications (-W) 108, 111, 114
Windows applications (-W) 179
-y (line numbers) 171
-Z (register usage optimization) 173
-zX (code and data segments) 177, 178

protected mode 158
real mode 158
response files 163

option precedence 164
syntax 158
TLINK and 240
Turbo Assembler and 163
using 159
Windows and 107, 159

commands See also command-line compiler,
options; individual command names
choosing

with a mouse 9
with keyboard 9

editor 146-152
block operations 147, 148-149
cursor movement 146, 148
insert and delete 147

printing
MAKE option 216

comments
delimiters 153

pair matching 154, 155
in makefiles 201
nested 69, 174

communal variables 168
compatibility

initialization modules 237
compilation 166, See also compilers

command-line compiler options 178
rules govern~ng 163
speeding up 4, 62, 159
to .EXE file 45, 46
to .OBJ file 45
Windows applications 108

Compile
menu 45

Compile to OBJ command 45
hot key 12

Compiler
command 61

Borland C++ User's Guide

Compiler Messages dialog box 70
compilers See also compilation

C++ 67
code optimization 68
command line See command-line compiler
configuration files See configuration files
memory models See memory models
optimizations

for speed or size 69
speeding up 4, 159
stopping after errors and warnings 70
Turbo editor macro 77

compiling See also compilers
conditional breakpoints See breakpoints,

condi tional
conditional execution directives (MAKE) 218

expressions in 219
$CONFIG transfer macro 77
configuration files 77

command-line compiler 160, 164
creating 164
overriding 159, 164
priority rules 164

IDE 20-23
projects and 20
TCCONFIG.TC 21

saving 95
constants

debugging 50
hexadecimal

too large 175
manifest See macros
octal

too large 175
symbolic See macros

Contents command 100
hot key 12

control characters
entering in IDE 18
format specifier 53

conventions, typographic 2
conversions

floating point
ANSI rules 169

pointers
suspicious 175

specifications See format specifiers

Index

coprocessors See numeric coprocessors
Copy command 35, 149

hot key 11
Copy Example command 36, 99
copying, and pasting See editing, copy and

paste
copyright information 27
CPP (preprocessor) See The online document

UTIL.DOC
.CPP files See C++
CPU registers 98
Create Backup Files option 92
creating new files See files, new
Ctrl-Break 41
Current window option 91
cursor See also editor, cursor movement
Cursor Through Tabs option 93
customizing See also BCINST

IDE 90
Cut command 35, 149

hot key 11
CWINx.LIB 238
Cx.LIB238

o
-D BCC option (macro definitions) 167
-d BCC option (merge literal strings) 168
/d IDE option (dual monitors) 6
$d MAKE macro (defined test) 213

expressions and 220
-D MAKE option (define identifier) 197, 211
-d RC option (define symbol) 122
/d TLINK option (duplicate symbols) 242
data

aligning 61
static, DLLs and 127

data members See C++, data members
data segment

group 177, 178
names 73
naming and renaming 177, 178
removing virtual tables from 68, 182

-WD option and 113, 180
data structures See also arrays; structures
data types

char
default 62

283

changing 170
converting See conversion
floating point See floating point
integers See integers

Debug Info in OBJs option 64
Trace into command and 43

Debug menu 46
debugger, integrated See integrated debugger
Debugger command 87
Debugger Options dialog box 87
debugging See also integrated debugger

arrays 49
breakpoints See breakpoints
call stack 51
classes 49, 50
constants 50
Debug Info in OBJs 64
dialog box choices 87
display swapping 88

dual monitors and 88
excluding information 59
expressions 50
format specifiers 51
functions 49
heap size 89
hot keys 12
information 41, 87,243

command-line compiler option 171
in .EXE or OBJ files 171
storing 64

inspecting values 47
line numbers information 63
MAKE 197
map files 244
pointers 48
stack overflow 67
starting a session 41
Step Over command 43
structures and unions 49
subroutines 66
TLINK and 248
Trace Into command 42
types 50
variables 50
watch expressions See watch expressions
Windows applications 46

284

.DEF files
import libraries and 83

$DEF transfer macro 78
default assembler 178
default buttons 17
Default Extension option 94
Default Libraries option 84
#define directive

command-line compiler options 167
ganging 167

defined test macro (MAKE) 213
Defines option 62

transfer macro 78
Delete Item

command 58
Delete Item command 133
Delete Watch command 54
deleting text

redoing 35
undoing 34, 150

delimiters
directional 153
nesting 154
nondirectional 153
unmatched 155

$DEP transfer macro 78
dependencies 83

automatic See autodependencies
checking

MAKE (program manager) 208
explicit 78

autodependencies and 78
desktop

clearing 27
saving options in 94

desktop files (.DSK)
default 22
projects and 22

Desktop option 91
Desktop Preferences dialog box 94
dialog boxes See also buttons; check boxes; list

boxes; radio buttons
arrows in 17
defined 17
entering text 18

$DIR transfer macro 78
directional delimiters See delimiters

Borland C++ User's Guide

directional pair matching 153
directives 200

MAKE See MAKE (program manager),
directives

Directories
command 89
dialog box 89

directories
.ASM and .OBI

command-line option 184
changing 30
defining 89
include files 160, 183, 184

example 186
MAKE 197
transfer macro 79

libraries 185
command-line option 160, 184
example 186
transfer macro 79

output 90
project files 22
projects 135
semicolons in paths 90
transfer macro 78

disk caches
extended and expanded memory and 181

disk space
running out of 273

display
formats

debugger 51
repainting 27
swapping 88

dual monitors and 88
Display Warnings option 71
DLLs See also import libraries

building 103-129
C++ and

classes 127
mangled names 129

classes and 191
compiler options and 128
compiling and linking 123
creating 66, 79, 113, 125, 180
defined 123
exit point 125

Index

export functions
hiding 191

extended and expanded memory and 122
IMPLIBand

multiple 193
import libraries and 83, 190, 192
initialization functions 125
LibMain function and 125
libraries 117, 118
linker and 83
linking

Resource Compiler and 118
MAKE and 83,238
mangled names and 191
memory models 118
memory models and 115
packing code segments 85,247
pointers and 126
private 122
setting 84
smart callbacks and 113
startup files 118
static data 127
TLINK option 248
virtual tables and 128
WEP function 125

DOS
commands

MAKE and 205
running from the IDE 82

environment strings
macros and 213

MODE command 6
output

viewing from IDE 97
paths

MAKE 216
shelling to

TSRsand 32
wildcards 28

DOS Overlay command 65
DOS Shell command 8, 32
DOS Standard command 65
dot directives (MAKE) 216
double-click speed (mouse) 94
$DRIVE transfer macro 79
DS register (data segment pointer) 62

285

.DSK files
default 22
projects and 22

dual monitor mode 6
dual monitors 6

display swapping and 88
DOS command line and 33

duplicate, strings, merging 62
Duplicate Strings Merged option 62
duplicate symbols 85

.LIB and .OB} files and 243
TLINK and 242

dynamic link libraries See DLLs

E
-E BCe option (assembler to use) 178
-e BCC option (EXE program name) 183
Ie IDE option (expanded memory) 7
-e RC option (EMS) 122
IE TLffi option (extended dictionary) 226,229
Ie TLINK option 243
Edit

command (Turbo C 2.0) 145
menu 33
windows

loading files into 137
Edit Watch command 54
Edit windows

activating 145
cursor

moving 146, 148
option settings 92

editing 19, See also editor; text
autoindent mode 150
block operations 147, 148-149

deleting text 93, 149
hiding I unhiding 149
marking 93
printing 149
reading and writing 149
selecting blocks 33,93, 149

breakpoints 55
Clipboard text 36
commands 146-152

cursor movement 146, 148
insert and delete 147

copy and paste 149, See also Clipboard

286

hot key 11
cut and paste 34, 35, 149
entering text 146
hot keys 11, 146-152
insert mode

overwrite mode vs. 92
matching pairs See pair matching
miscellaneous commands 150
options

setting 92
pair matching See pair matching
pasting See editing, copy and paste
place marker 150
print file 149
quitting 150
redoing undone text edits 35
search and replace 151-152

options 151
selecting text 33
setting defaults 92
tab mode toggle 150
tabs 150
undelete 34, 150
undoing text edits 34, 150
watchpoints 54

editor See also editing
features 19
macro language (TEML)

using 77
macros See also MAKE (program manager),

macros
options

setting 92
redoing undone text edits 35
setting defaults 92
tabs in 92
undoing text edits 34, 150

Editor Files option 91
Editor Options 92
$EDNAME transfer macro 79
E~A See E~anced Graphics Adapter
!ehf MAKE dIrective 218

defined test macro and 213
macros and 213

ellipsis (...) 9, 17
!else MAKE directive 218
EMS See extended and expanded memory

Borland C++ User's Guide

EMU.LIB 238, 239
emulation

80x87169
emulation, 80x87

floating point 63
!endif MAKE directive 218
Enhanced Graphics Adapter (EGA) 91

palette
IDE option 7

Entry /Exit Code
command 65
dialog box 65

enumerations (enum)
assigning integers to 175
treating as integers 61, 168

Environment
command 90

environment
DOS See also integrated environment

environment, DOS
macros and 213

Environment option
Auto Save 91

Environment Options dialog box 147, 150
$ERRCOL transfer macro 79
$ERRUNE transfer macro 79
$ERRNAME transfer macro 79
terror MAKE directive 220
errors See also warnings

ANSI 175
Frequent 73
frequent 175
MAKE (list) 222-224
messages

compile time 135, 136
removing 137
saving 137
searching 40
setting 70

next
hot key 12, 137

previous
hot key 12, 137

reporting
command-line compiler options 174

stopping on n 70

Index

syntax
project files 135, 136

TLINK (list) 258
tracking

project files 135, 136
Esc shortcut 17
Evaluate command

format specifiers and 51
Evaluate/Modify command 50

hot key 12
evaluation order

command-line compiler options 164
in response files 164

examples
copying from Help 36, 99
library and include directories 186
MAKE (program manager) 197

batch files 204
.EXE files

.COM files and 249
crea ting 12, 45, 46
debugging information 248
directory 90
file name transfer macro 79
linking 46
making 10
naming 45
$RC transfer macro and 80
renaming 122
.RES files and 81
TLINK and 248
user-selected name for 183

executable files See .EXE files
$EXENAME transfer macro 79
exit codes

MAKE and 202
exit procedure, Windows 125
exiting Borland C++ 8
expanded memory See extended and expanded

memory
explicit

library files 183
rules (MAKE) 200, 206

_export (keyword)
Windows applications and 66, 112, 113, 180

exports
case sensitive 85

287

expressions See also debugging, watch
expressions
debugging 50
evaluating

restrictions on 51
MAKE and 219, 220
nested

pair matching 152
values

displaying 51
$EXT transfer macro 79
extended 80186 instructions 167
extended and expanded memory

controlling use of 180
disk caches and RAM disks and 181
DLLs and 122
IDE options 7
RAM disk and 8
Resource Compiler and 122
TLINK and 249

extended dictionary
TLIB and 226, 229

extension keywords
ANSI and 174

extensions, file, supplied by TLINK 234
External option

C++ Virtual Tables
command-line option 182

C++ Virtual tables 67
extract and remove (TLIB action) 228

F
-f287 option (inline 80x87 code) 169
-f87 option (inline 80x87 code) 169
-f BeC option (emulate 80x87) 169
-f MAKE option (MAKE file name) 195, 197
far

variables 168
Far Data Threshold type-in box 64
far objects See objects, far
Far option

C++ Virtual tables 68
Fast Floating Point option 64
fast huge pointers 169
Fast Huge Pointers option 64
fatal errors See errors
-Fc BCC option (generate COMDEFs) 168

288

-fe RC option (rename .EXE file) 122
features

editor 19
IDE 3

-Ff BCC option (far global variables) 168
-ff option (fast floating point) 64, 169
file-inclusion directive (!include) 217
File menu 27
file-name macros (MAKE) 215
files See also individual file-name extensions

assembly language See assembly language
backup (.BAK) 92
batch See batch files
C++ SeeC++
closed

reopening 98
.COM 237, 247

.EXE files and 249
TUNK and 248

compiling as C++ or C 179
configuration See configuration files
.CPP See C++
desktop (.DSK)

default 22
projects and 22

editing See editing
executable See .EXE files
extensions 79, 234
include See include files
information in dependency checks 138
information on 31
library See libraries, files
loading into editor 137
make See MAKE (program manager)
map See map files
multiple See projects
names

extensions (meanings) 234
macros

transfer 76
new 29, 150
NONAME29
open

choosing from List window 98
opening 28, 150

hot key 10
out of date, recompiled 138

Borland C++ User's Guide

path
macros 78

printing 31
project (.PRJ) See projects
response See response files
saving 29, 150

all 30, 81
automatically 91
hot key 10
with new name or path 30

source
.ASM

command-line compiler and 157
startup

DLLsand 118
.TC See configuration files, integrated

environment
.TDS 64
updating 194

filling lines with tabs and spaces 92
filters 77

GREP 77
Resource Compiler 77
TASM 77

Find command 37, 151, See also searching
Find dialog box 37, 151

settings
saving 95

floating point See also integers; numbers;
numeric coprocessors
ANSI conversion rules 169
code generation 63
fast 64, 169
format specifier 53
inline 80x87 operations 169
libraries 169

TUNKand238
math coprocessor and 169

-Fm BCC option (enable -F options) 169
-fo RC option (rename .RES file) 122
format specifiers

debugging and 51
table 53

43/50-line display 91
forward

forward searching 38
pair matching 153

Index

FP87.LIB 239
Frequent Errors

warnings 73
frequent errors 73, 175
Frequent Errors dialog box 73
-Fs BCC option (assume DS = SS) 169
full file name macro (MAKE) 214
full link map 183
functions See also scope

C-type 170
call stack and 51
calling conventions 66
export

Windows applications and 65, 111, 112,
180

exporting 113, 180
help 100
inline

C++
precompiled headers and 272

inspecting 49
locating 40
parameters See arguments
searching for 40
stepping over 43
tracing into 42
void

returning a value 175
Windows 113, 180

G
-G BCC option (speed optimization) 172
ganging

command-line compiler options
#define 167
macro definition 167

defined 167, 184
IDE 185
library and include files 184

Generate COMDEFs option 64
Generate Underbars option 63
Get Info

command 31
dialog box 32

global menus See menus
global variables

word-aligning 167

289

-gn BCCoption (stop on n warnings) 174
Go Cursor command 42
Go to Cursor command

hot key 10, 12
Go to Line Number

command 39
dialog box 40

graphics
library

TLINK and 238
Graphics Library option 84
GREP See The online document UTIL.DOC
GREP (file searcher)

capturing messages 77
wildcards in Borland C++ 37

GREP2MSG.EXE 77
group names 73
Group Undo option 93

Undo and Redo commands and 35

H
-h BCC option (fast huge pointers) 169
-H BCe option (precompiled headers) 178
Ih IDE option (list options) 7
-h MAKE option (help) 197
-h RC option (help on options) 122
hdrfile pragma 272, 273
hdrstop pragma 272, 274
header files See also include files

help 100
precompiled See also precompiled headers
searching for 185
variables and 64

heap
size 89

Help
button 17
menu 98
windows

help

closing 99
copying from 36, 99
keywords in 99
opening 99
selecting text in 99

accessing 98
CandC++ 100

290

help on help 101
hot keys 10, 12
IDE 7
index 100
keywords 99
language 100
MAKE 197
previous topic 100
status line 16
table of contents 100

Help on Help command 101
hexadecimal numbers See numbers,

hexadecimal
history lists 19

closing 27
saving across sessions 94
wildcards and 28

hot keys
debugging 12
editing 11
editor 145, 146-152
help 10, 12
make project 136
menus 10, 11
next error 137
previous error 137
transfer macros 75
transfer program names 75
using 10

huge pointers 169
hyphen (-) MAKE command (ignore exit

status) 202

-i BCC option (identifier length) 174
-I BeC option (include files directory) 160, 183
-i MAKE option (ignore exit status) 197
-I MAKE option (include files directory) 196,

197
-i RC option (include files) 122
Ii TLINK option (uninitialized trailing

segments) 243
IDE See integrated environment
identifiers

Borland C++ keywords as 70, 174
defining 211
duplicate 85

Borland C++ User's Guide

length 70
Pascal-type 171
significant length of 167, 174
undefining 167
underscore for 170

!if MAKE directive 218
defined test macro and 213
macros and 213

ignore exit status (MAKE command) 202
.ignore MAKE directive 216
IMPDEF (module definition files) 190-192

IMPLIB and 190
IMPL2MSG.EXE 77
IMPLIB (import libraries) 192-193

DLLSand 193
IMPDEF and 190
warnings 193

$IMPLIB See also import libraries
$IMPLIB transfer macro 79
IMPUB program See import libraries
implicit

library files 183
rule (MAKE) 200

import libraries 192-193, See also DLLs
creating new 193
customizing 190
DLLSand 190
DLLs and 83, 192
generating 83
IMPLIB program

executing 79
module definition files and 124
transfer macro 79

$INC transfer macro 79
#include directive See also include files

angled brackets and 185
directories 89
quotes and 185

!include directive (MAKE) 196,217
Include Directories

input box 89
Include Files

command 60
include files See also header files

automatic dependency checking (MAKE) 208
command-line compiler options 184

Index

directories 160, 183, 184
multiple 186
transfer macro 79

help 100
MAKE 196,217

directories 197
projects 133
Resource Compiler and 122
searching for 185
user-specified 160, 183

Include Files command 133
Include Files dialog box 60
incremental search 19
indenting automatically 92
Index command

hot key 12
Index command (help) 100
indexes See arrays
initialization modules

compatibility 237
used with TLINK 237

initialization modules, used with TLINK 236
initialized data segment See data segment
inline assembly code 178
inline code See assembly language, inline

routines; 80x87 math coprocessor
input boxes 18
Insert Mode option 92
Inspect

command 47
Inspect command

hot key 12
Inspector windows 47

arrays 49
class 50
classes 49
constant 50
function 49
ordinal 48
pointers 48
structures and unions 49
Type 50

Instruction Set radio buttons 63
integers See also floating point; numbers

aligned on word boundary 167
assigning to enumeration 175

291

integrated debugger See also debugging
breakpoints See breakpoints
debugging information for 171

integrated environment 3
command-line arguments and 44
command-line options 5

J

build (lb) 5
dual monitors (ld) 6
EGA palette (lp) 7
expanded memory (Ie) 7
extended memory (I x) 7
help (lh) 7
laptops (11) 7
listing (lh) 7
make (1m) 7
/ P EGA palette 7
RAM disk (lr) 8
syntax 5
/x extended memory 7

co~guration files See configuration files,
mtegrated environment

control characters and 18
customizing 90
debugging See debugging
DLLsand 123
DOS commands and 82
editing See editing
features 3
ganging 185
makes 137
memory needs 82
menus See menus
module definition files and 116
multiple library directories 185
protected mode 4

Windows and 5
real mode 4
settings

saving 95
starting up 4
Windows and 5, 107

linking 116

-jn BCC option (stop on n errors) 175
Jump Optimization

option 68

292

jump optimization 172

K
-k BCC option (standard stack frame) 170
-K BCC option (unsigned characters) 170
-K MAKE option (keep temporary files) 197

203 '
-k RC option (disable load optimization) 122
K&R See Kernighan and Ritchie
Keep Messages command .

toggle 137
Kernighan and Ritchie

keywords 70, 174
keyboard

choosing buttons with 17
choosing commands with 9
selecting text with 33

keys, hot See hot keys
keywords

L

ANSI
command 174

Borland C++ 70
using, as identifiers 174

help 100
Help windows 99
Kernighan and Ritchie

using 174
options 70
register

Register Variables option and 69
UNIX

using 174

-1 BCC option (linker options) 183
-L BeC option (object code and library

directory) 160, 184
/1 IDE option (LCD screen) 7
-I RC option (expanded memory) 122
/1 TLINK option (line numbers) 243
language help 100
laptops

IDE option (/1) 7
left-handed

mouse support for 94
.LIB files See libraries

Borland c++ User's Guide

$LIB transfer macro 79
LibMain (function) 125

return values 125
libname (TLIB option) 226
librarian See TLIB
libraries

command-line compiler options 184
default 84
directories 90, 184

command-line option 160, 184
multiple 186
transfer macro 79

DLLs and 117, 118
duplicate symbols in 243
dynamic link (DLL) See DLLs
explicit and implicit 183
files 90, 160, 184
floating point 169

TLINK and 238
graphics 84

TLINK and 238
import See import libraries
linking 46
math

project library overrides and 141
memory models 240
memory models and 238-240
numeric coprocessor 239
object files 225

creating 228
order of use 238
overiding in projects 141
page size 229
rebuilding 171
routines

BOxB7 floating-point emulation 169
run time

TLINK and 239
searching for 185
TLINK and 236, 238

ignoring 246
user-specified 183
utility See TLIB
Windows applications and 238

Library Directories
input box 90

Index

library files See libraries
-lim32 RC option (expanded memory) 122
$LINE transfer macro 79
line numbers See lines, numbering
Line Numbers Debug Info option 63
lines

filling with tabs and spaces 92
moving cursor to 39
numbering 13, 79

in object files 171
information for debugging 63
TLINK and 243

restoring (in editor) 34, 35, 150
Link EXE File command 46
link map, full 183
Linker

command 84
dialog box 84

Windows and 116
linker See also TLINK

case sensitive linking 85
command-line compiler options 183
DLLsand 83
link map

creating 183
options

from command-line compiler 183
speeding up 4

linking
excluding from 59

list boxes 19
file names 29
searching incrementally 100

List command
hot key 12

List window 95, 98
listfile (TLIB option) 226
literal strings See strings, literal
Load a File dialog box 28, 150
load operations

redundant, suppressing 173
load optimization

disabling (Resource Compiler) 122
local menus See menus
Local option

C++ Virtual tables 67

293

Local Options
C++ Virtual Tables

command-line option 182
command 59, 133

Locate Function
command 40
dialog box 40

. LST files See files; listfile (TLIB option)

M
-M BCC option (link map) 183
ImIDE option (make) 7
-m RC option (expanded memory) 122
macros See also editor, macros; MAKE

(program manager), macros
command-line compiler 167
DOS

environment strings and 213
path (MAKE) 216

editor 77
ganging 167
invocation

defined 212
MAKE See MAKE (program manager),

macros
preprocessor 62
transfer See transfer macros
Turbo editor See The online document

UTIL.DOC
MAKE macro 213

MAKE (p;ogrammanager) 193-224
automatic dependency checking 197, 208
batching files and 203
BUIL TINS.MAK file 196
clocks and 194
commands

@ (hide commands) 202
hiding (@) 202
hyphen (-) (ignore exit status) 202
-num (stop on exit status num) 202

debugging 197
directives

.noautodepend 216

.autodepend 216

294

command-line compiler options and 216
conditional execution 218

expressions in 219
defined 215
dot 216
!elif 218

macros and 213
!else 218
!endif 218
terror 220
file inclusion 217
lif 218

macros and 213
.ignore 216
!include 217
.noignore 216
.nosilent 216
.noswap 216
.silent 216
.swap 216
!undef 221

DLLs and 83, 238
DOS commands and 205
errors (list) 222-224
example 197
exit codes and 202
explicit rules See MAKE (program manager),

rules
functionality 194
hide commands 202
implicit rules See MAKE (program manager),

rules
!include directive 196
integrated environment makes and 137
macros 209, 211, 213

base file name ($*) 214
defined test 213
!elif directive and 213
example 209
file name and extension ($.) 215
file name only ($&) 215
file name path ($:) 215
full file name ($<) 214
lif directive and 213
in expressions $d 220
__ MAKE __ 213
predefined 213
undefining 221
version number 213

Borland C++ User's Guide

makefiles
comments in 201
creating 200
defined 198
naming 200
parts of 200
Windows applications and 109

operators 220
options 196

-? (help) 197
automatic dependency checking (-a) 208
build all (-B) 197
default (-w) 197
define identifier (-D) 197

conditional execution 218
don't print commands (-s) 197
file name (-f) 195, 197
help (-? and -h) 197
ignore exit status (-i) 197
include files directory (-I) 196, 197
keep files (-K) 197, 203
-n (print commands but don't execute) 197
saving (-w) 197
swap MAKE out of memory (-5) 197
undefine (-U) 197
using 195
-W (save options) 197

.path directive 216
printing commands 216
redirection operators 202
rules

explicit
considerations 207
defined 206
example 201,207

implicit 199
discussion 208
example 201

implicit rules
explicit rules and 208

stopping makes 83, 136
swapping in memory 216
syntax 195
wildcards and 206
Windows applications and 109, 238

Make command 82
Make EXE File command 45

Index

hot key 10, 12
makefiles See MAKE (program manager)
makes

IDE option 7
mangled names

DLLsand 191
manifest constants See macros
map files 183

debugging 244
directory 90
generated by TLINK 244
options 84

Match Pair command 152-156
math coprocessors See numeric coprocessors
MATHx.LIB 238
maximize See Zoom command
$MEM transfer macro 79, 82
memory

dump
format specifier 53

extended and expanded See extended and
expanded memory
controlling 180
IDE and 7
RAM disk and 8

heap size 89
requirements

IDE 82
swapping MAKE in 216
transfer programs 79, 82

memory models
automatic far data and 64
changing 61
command-line options 62, 166
compatibility libraries for 237
DLLs 118
initialization modules 237
libraries 240, 238-240
smart callbacks and 66, 112, 180
startup modules 240
tiny

library 240
TLINK and 236, 238
Windows applications and 115

menu bar See menus
menus See also individual menu names

accessing 8

295

Break Make On 136
commands See individual command names
hot keys 10, 11
opening 9, 145
reference 25
with an ellipsis (...) 9, 17
with arrows (~) 9

Message Tracking
toggle 136

Message window 96, 137
capturing output into 77
copying text from 35, 81
removing messages 46

messages See also errors; warnings
appending 91
capturing from programs 77
column number 79
filename 79
line number 79
removing 46
TLINK (list) 258

Messages command 70
Microsoft Windows See also Microsoft Win

dows applications
command-line compiler and 159
_export and 114
libraries 117
modes

IDE and 5
modules

compiling and linking 103
object files 117
options

standard mode (/s) 159
prolog and epilog code 111
resources See resources
running Borland C++ with 5

Microsoft Windows All Functions Exportable
command 65

Microsoft Windows applications 103-129, See
also Microsoft Windows
code segments 85,247
command-line compiler and 107
command-line compiler options 108, 111,
112, 113, 179, 180
debugging 46
_export and 113

296

export functions and 65, 111, 112, 180
IDE and 107
IDE options 65
import libraries 190
linking 116
MAKE and 238
memory models and 115
modes 122
optimizing for 69
overlays and 246
prolog and epilog code 65, 111
Resource Compiler and 103, 105, 118
setting application type 84
setting options for 65, 86
smart callbacks and 66, 112, 180
TLINK and 240
TLINK option 248
WHELLO 104
WinMain function and 120

Microsoft Windows DLL All Functions
Exportable command 66

Microsoft Windows DLL Explicit Functions
Exported command 66

Microsoft Windows Explicit Functions
Exported command 66

Microsoft Windows Smart Callbacks command
66

MODE command (DOS) 6
models, memory See memory models
module definition file

case sensitivity and 242
module definition files 105

defined 124
exported functions and 66
EXPORTS section

case-sensitive 85
IDE options and 116
IMPDEF and 190
import libraries and 124
IMPORTS section

case-sensitive 85
LibMain function and 125
TLINK and 116
/Tw TLINK option and 116, 248

module names, TLIB 227
monitors See screens

dual 6, 33, 88

Borland C++ User's Guide

number of lines 91
More ANSI Violations dialog box 72
More Frequent Errors dialog box 73
mouse

buttons
switching 94

choosing commands with 9, 17
double-click speed 94
left-handed

support for 94
options 94
reversing buttons 94
right button action 94
selecting text with 34
support for 3

Mouse Double Click option 94
Mouse Options dialog box 94
moving text See editing, block operations
multi-source programs See projects
-multinst RC option (expanded memory) 122
multiple files See projects
multiple listings

command-line compiler options
#define 167
include and library 184
macro definition 167

-rnx options (memory models) 166

N
-n BCC option (.OBJ and .ASM directory) 184
-N BCC option (stack overflow logic) 170
-n MAKE option (print commands but don't

execute) 197
In TLINK option (ignore default libraries) 246
$NAME transfer macro 80
Names

command 73
names See identifiers

mangled
DLLsand 129

nested
comments 174
delimiters See delimiters

Nested Comments option 69, 155
New command 29, 150
New Value field 51
New Window option 91

Index

Next command 96
hot key 10, 12

Next Error command 40
hot key 12

.noautodepend MAKE directive 216

.noignore MAKE directive 216
NONAME file name 29
nondirectional delimiters See delimiters
nondirectional pair matching 153
nonfatal errors See errors
.nosilent MAKE directive 216
.noswap MAKE directive 216
$NOSW AP transfer macro 80
null character See characters, null
-num MAKE command 202
numbers See also floating point; integers

column 77
decimal 89

format specifier 53
hexadecimal 89

constants
too large 175

format specifier 53
line 79
octal

constants
too large 175

real See floating point
numeric coprocessors See also floating point

emulating 169
generating c~de for 169
inline instructions 63, 169
libraries

TLINK and 239

o
-0 BCC option Gump optimization) 172
-0 BCC option (object files) 179
10 TLINK option (overlays) 246

ITw option and 246
.OBJ files

compiling 179
creating 45
debugging information 64
dependencies 83
directories 90, 184
DLLsand 117

297

duplicate symbols in 243
libraries

advantages of using 225
creating 228
TUB and 225

line numbers in 171
Windows and 117

object files See .OBJ files
object-oriented programming See c++
objects See also C++

far
class names 177
generating 64
group names 177
segment names 177

OBJXREF See The online document UTIL.DOC
octal numbers See numbers, octal
OKbutton 17
online help See help
OOP SeeC++
Open command 28, 150

hot key 10, 11
Open Project

command 57
operations (TLIB option) 226
operators

MAKE 202, 220
precedence See precedence

Optimal Fill option 92
Optimizations

command 68
dialog box 68

optimizations 68
command-line compiler options 172
fast floating point 64
for speed or size 69
precompiled headers 274
register usage 173
registers

usage 172
Resource Compiler 122
Windows applications and 69

options See specific entries (such as command
line compiler, options)

Options menu 60
settings

saving 95

298

ordinals, inspecting 48
Out-Line Inline Functions option 68
$OUTNAME transfer macro 80
output

capturing 77
to DOS

viewing from IDE 97
User Screen 97

Output command 97
Output Directory

input box 90
Output window

copying text from 35
overlays

generating 171
projects and 59
supporting 65
TLINK and 246
Windows applications and 246

Override Options dialog box 59
Overwrite Mode 92

p
-P BCC option (C++ and C compilation) 179
-p BCC option (Pascal conventions) 170
Ip IDE option (EGA palette) 7
-p RC option (private DLLs) 122
IP TLIB option (page size) 229
Pack Code SegJ;ll.ents option 85
page size (libraries) 229
pair matching 152-156

angle brackets 152
backward 153
braces 152
brackets 152
commands 152
comment delimiters 152, 154, 155
directional 153
double quotes 152
examples 155
forward 153
nested expressions 152
nondirectional 153
parentheses 152
rules 153
single quotes 152

parameter-passing sequence, Pascal 170

Borland C++ User's Guide

parameters See arguments
Pascal

calling convention 66
identifiers of type 171
parameter-passing sequence 170

Paste command 35, 149
hot key 11

pasting See edit, copy and paste
path

transfer macro 80
path names in Directories dialog box 90
.path directive (MAKE) 216
Persistent Blocks option 93
PF87.LIB 238
place markers (editor) 150
pointers

DLLs and 118, 126
fast huge 64, 169
format specifier 53
inspecting values 48
memory regions 53
suspicious conversion 175
virtual table

32-bit 68, 182
-WD option and 128, 180

polymorphism See C++
pop-up menus 9, See also menus
Portability

dialog box 71
portability warnings 71, 176
#pragma hdrfile 272, 273
#pragma hdrstop 272, 274
precedence

command-line compiler options 160, 164
response files and 164

TLIB commands 227
precompiled headers 271-275

command-line options 178
controlling 272
drawbacks 272
how they work 271
inline member functions and 272
optimizing use of 274
rules for 273
using

IDE 62
Preferences dialog box 91

Index

Previous Error command 40
hot key 12

Previous Topic command 100
hot key 12

Print Block command 149
Print command 31
Print File command 149
PRJ2MAK See The online document UTIL.DOC
.PRJ files See projects
PRJCFG See The online document UTIL.DOC
PRJCNVT See The online document UTIL.DOC
$PRJNAME transfer macro 80
procedures See functions
program manager (MAKE) See MAKE

(program manager)
Program Reset command 42

hot key 12
programs

C++ See C++
capturing output 77
ending 41
filename 79
heap size 89
memory assignments 82
multi-source See projects
rebuilding 41, 46
resetting 42
running 41

arguments for 44
to cursor 42
Trace Into 42

transfer
list 140

transferring to external from Borland C++ 74
Project

command 98
menu 57

Project File
dialog box 57

Project Manager 41, 131-144, See also projects
closing projects 58
DLLs and 118
Include files and 60
Resource Compiler and 119
resources and 119
Windows applications and 118

299

Project Name
command 76

Project Notes command 98
Project Notes window 144
Project option 91
projects 131-144, See also Project Manager

autodependency checking 83
speeding up 83

automatic dependency checking and 138
building 131
changing 22
closing 58
default 22
desktop files and 22, 20-23
directories 135
directory 22
error tracking 135, 136
excluding from 59
.EXE filenames and 45
files

adding 133
command-line options and 59
converting 57
deleting 133, 134
file name transfer macro 80
include 133
information 139
list 133
options 133
out of date 138
Turbo C 2.0 57
viewing 143

IDE configuration files and 20
include files 133
information in 131
libraries and

overriding 141
math libraries and 141

loading 21
makes and 137
making

hot key for 136
managing 98
meaning of 58
naming 132
new 133
notes 98, 144

300

overlays and 59
saving 134
translator option 59
translators See also Transfer

default 139
example 140
multiple 138
specifying 139

prolog and epilog code
generating 65, 111

$PROMPT transfer macro 80
protected mode

command-line compiler and 158
IDE 4

Windows and 5
pseudovariables, register

using as identifiers 174
PUBDEFs

COMDEFs versus 64
Public option

c++ Virtual Tables
command-line option 182

C++ Virtual tables 67
pull-down menus See menus

Q
-Q BCC options (extended and expanded

memory) 180
QEMM7
Quit

command 8, 33, 150

R
-r BCC option (register variables) 172
-r RC option (compile .RC to .RES) 122
frx IDE option (RAM disk) 8
radio buttons 18
RAM disk

IDE and 8
RAM disks

extended and expanded memory and 181
RC2MSG.EXE 77
.RC files See also Resource Compiler

compiling into a .RES file 81
$RC transfer macro and 80, 81

$RC transfer macro 80

Bor/and C++ User's Guide

-rd option (register variables) 173
real mode

command-line compiler and 158
IDE 4

real numbers See floating point
rebuilding libraries 171
redirecting program output 77
redirection

operators
MAKE 202

Redo command 35
Group Undo and 35, 93

register (keyword)
Register Variables option and 69

Register command 98
Register Optimization option 68
Register Variables option 69
registers

DS (data segment pointer) 62
pseudovariables

using as identifiers 174
reusing 68
SS (stack segment pointer) 62
variables 173

suppressed 172
toggle 172

windows 98
remove (TLIB action) 228
Remove All Watches command 55
Remove Messages command 46, 137
Repaint Desktop command 27
Replace

command 38, 152
dialog box 39, 152

replace (TLIB action) 228
Replace dialog box

settings
saving 95

.RES files See also resources
binding to an .EXE file 81
$RC transfer macro and 80

resetting programs 42
resident utilities

extended and expanded memory and 181
resize corner 14
resize corners 15

Index

Resource Compiler 120, See also .RC files
behavior

changing 80
capturing messages 77
.EXE files

renaming 122
funcitonality 105
include files 122
invoking 108
linking and 118
messages 122
options 122

help 122
Project Manager and 119
resources

files
renaming 122

syntax 121
transfer macro 80
Windows and 103
Windows applications and 105

resources See also .RES files
adding 108, 118
compiling 120
defined 105
files

renaming 122
Porject Manager and 119
rebuilding automatically 78

response files
defined 163, 235
option precedence 164
TLIB228
TLINK and 235

restrictions, TLINK 249
Result field 51
Reverse Mouse Buttons option 94
Right Mouse Button option 94
Ritchie, Dennis See Kernighan and Ritchie
Run

command 41
menu 41

Run command
hot key 12

running programs 41

301

5
-s BCC option (produce .ASM but don't

assemble) 179
-s MAKE option (don't print commands) 197
-S MAKE option (swap MAKE out of memory)

197
/s Windows option (standard mode) 159
sample programs

copying from Help window 36
$SA VB ALL transfer macro 81
Save All command 30
Save As

command 30
$SA VB CUR transfer macro 81·
Save command 29, 95, 150

hot key 10, 11
Save File As dialog box 30
Save Old Messages option 91
$SA VB PROMPT transfer macro 81
Screen Size

option 91
screens

LCD
IDE option 7

number of lines 91
repainting 27
two

using 6
scroll bars 14, 15
scrolling windows 15
Search Again command 39, 151

hot key 11
search and replace 151-152, See also searching
Search menu 36, 151-152
searching

and replacing text 151, 151-152
direction 38
error and warning messages 40
functions 40
in list boxes 100
include files 185
libraries 185
origin 38
regular expressions 37
repeating 39
and replacing text 38
scope of 38

302

search and replace 38
searching and replacing text 151-152
Segment Alignment option 85
Segment Names dialog box 74
segment-naming control

command-line compiler options 177
segments

aligning 85
code

discardable 246
minimizing 85, 247
packing 85, 247

controlling 177
initializing 84
map of

ACBP field and 245
TLINK and 244

names 73
uninitialized

TLINK and 243
semicolons (;) in directory path names 90
Set Application Options dialog box 86
shortcuts See hot keys
Show Clipboard command 36
.silent MAKE directive 216
simulated EMS 7
Size/Move command 95
smart callbacks

DLLs and 113
memory models and 112, 180
Windows applications and 112, 180

Smart option
C++ Virtual Tables

command-line option 182
c++ Virtual tables 67

software See programs
Source

command 69, 155
Source Debugging command 41

and Trace Into command 43
source files

.ASM
command-line compiler and 157

multiple See projects
separately compiled 225

source-level debugger See Turbo Debugger
Source Options dialog box 69, 155

Borland C++ User's Guide

Source Tracking option 91
Source Tracking options 137
spaces vs. tabs 92
speed

optimization 172
spreadsheets See Turbo Calc
SS register (stack segment pointer) 62
stack

Call Stack command 51
overflow 67, 170
standard frame

generating 170
warnings 85

standalone debugging information 87
standalone utilities 189, See also MAKE

(program manager); TLIB (librarian); TLINK
(linker); TOUCH

standard library files See libraries
standard stack frame

generating 170
Standard Stack Frame command 66
Standard Stack Frame option 52
start-up and exit

command-line compiler 158
IDE 4

startup code (TLINK) 237
startup files

DLLs and 118
startup modules for memory models 240
static data

DLLsand 127
status line 16
Step Over command 43

hot key 10, 12
strings

duplicate
merging 62

format specifier 53
literal

merging 168
structures

ANSI violations 175
format specifier 53
inspecting 49
undefined 175
zero length 175

suppressing load operations 173

Index

.swap MAKE directive 216
swapping

displays 88
to User Screen 80

switches See command-line compiler, options;
integrated environment, options

.SYM files 271, 272
default names 272
disk space and 273
smaller than expected 273

symbolic
constants See macros
debugger See Turbo Debugger

symbols
action See TLIB
duplicate 85

warning (TLINK) 242
syntax

errors
project files 135, 136

IDE command line 5
MAKE 195
Resource Compiler 121
TLIB226
TLINK232

System menu:: 8

T
-T- BCC option (remove assembler options)

179
-t RC option (standard/386 mode) 122
It TLINK option (default to .COM) 247
It TLINK option (generate .COM file) 237, 247
Tab Size option 93
tables, virtual See virtual tables
tabs

characters
printing 31

size of 93
spaces vs. 92
using in the editor 92

TASM See Turbo Assembler
TASM2MSG.EXE 77
$T ASM transfer macro 81
TCCONFIG.TC See configuration files,

integrated environment
TCDEF.DPR files 22

303

TCDEF.DSK files 22
TCDEF.SYM 178,271,272, See also .SYM files
lTd and ITw TLINK options (target file) 116,

248
.TDS files 64
TDSTRIP

debugging information and 64
TLINK and 249

TEML See The online document UTIL.DOC
terminate and stay resident See TSR programs
Test Stack Overflow command 67
text See also editing

blocks See editing, block operations
copy and paste 35
cutting 35
deleting 36
entering 146

in dialog boxes 18
inserting vs. overwriting 92
Message window 81
pasting 35
restoring (in editor) 34, 35, 150
screen display of 91
screen mode See screens, operating modes
selecting 33

Help window 99
THELP See The online document UTIL.DOC
32-bit code 241
13 TUNK option (80386 32-bit code) 241
threshold size

far global variables
setting 168

thunks See smart callbacks
tilde (-) in transfer program names 75
Tile command 96
title bars 14
TKERNEL.EXE

loading 159
loading and unloading 4

TLIB (librarian) 225-231
action symbols 227-228
capabilities 225
examples 231
extended dictionary (I e)

TLINK and 229
module names 227
operations 227

304

precedence 227
options

case sensitivity (I c) 226, 230
IE 226,229
extended dictionary (Ie) 226, 229
libname226
listfile 226
operations 226
page size (lP) 229
using 226

response files
using 228

syntax 226
TLINK (linker) 231-269

ACBP field and 245
assembler code and 241
.COM files and 247, 248
command-lme compiler and 240
debugging information 248
debugging information and 248
errors 258-269
executable file map generated by 244
floating-point libraries 238
graphics library and 238
initialization modules 237
invoking 232
libraries 238
memory models and 236
module definition files and 116
numeric coprocessor libraries 239
options 241

case 241
case sensitive imports (lC) 242
case sensitivity (I c) 242
.COM files (It) 237, 247
.COM files (lTd and ITw) 116,248
debugging information (Iv) 248
DLLs (lTwe) 116,248
duplicate symbols warning (I d) 242
executable files (lTd and ITw) 116,248
extended and expanded memory (ly) 249
extended dictionary (I e) 243
file extension 234, 237
Ii (uninitialized trailing segments) 243
II (source code line numbers) 243
libraries, ignoring (In) 246
line numbers (II) 243

Bor/and C++ User's Guide

map files (1m)
debugging 244
public symbols in 244
segments in 244

In (ignore default libraries) 246
overlays (10) 246
pack code segments (lP) 247
Is (map files) 244
source code line numbers (11) 243
target files 116, 248
lTd (Windows executable) 246
lTd and ITw (target files) 116,248
32-bit assembler code and (13) 241
tiny model .COM files (It) 237, 247
ITw (Windows executable) 246
uninitialized trailing segments (Ii) 243
Iv (debugging information) 248
Windows executable (lTd and ITw) 116,
246,248
Ix (map files) 244
Iy (extended and expanded memory) 249

response files 235
example 235

restrictions 249
segment limit 266
starting 232
startup code 237
syntax 232
target file options (lTd and ITw) 116, 248
TLIB extended dictionary and 229
warnings

defined 258
list 258

Windows applications and 108,240
Toggle Breakpoint command 55

hot key 12
Topic Search command 100

hot key 12
Trace Into command 42

Debug Info in OBJs option and 43
hot key 10, 12
Source Debugging command and 43

trailing segments, uninitialized 243
Transfer See also projects, translators

command 8, 74
dialog box 74

projects and 140

Index

programs 27
editing 75

transfer macros 75
$CAPEDIT 77
$CAPMSG 77
$COL 77
$CONFIG 77
$DEF 78
defined 76
$DEP 78
$DIR 78
DOS commands 82
$DRIVE 79
$EDNAME 79
$ERRCOL 79
$ERRLlNE 79
$ERRNAME 79
$EXENAME 79
$EXT 79
file names 76
glossary of 77
hot keys for 75
how expanded 76
$IMPLIB 79
$INC 79
instruction 77
$LIB 79
$LINE 79
$MEM 79
$NAME 80
$NOSWAP80
$OUTNAME80
$PRJNAME80
$PROMPT80
$RC80
$SAVEALL81
$SAVECUR81
$SA VB PROMPT 81
$TASM81
$WRITEMSG 81

transfer programs
list 140

Translator option 59, 76
translators See projects, translators
Treat enums as ints option 61
TRIGRAPH See The online document

UTIL.DOC

305

TSR programs
shelling to DOS and 32

-Tstring BCC option (pass string to assembler)
179

Turbo Assembler
Borland C++ command-line compiler and
163
capturing messages 77
command-line compiler and 157
default 178
invoking 163
$TASM macro 81
TLINK and 241

TurboC2.0
project files 57

Turbo Debugger
described 171

Turbo Debugger for Windows
Windows applications and 46

Turbo Editor Macro Language compiler See
The online document UTIL.DOC

TURBOC.CFG 164
25-line display 91
typefaces used in this book 2
types

debugging 50
typographic conventions 2

u
-U BCC option (undefine) 167
-u BCC option (underscores) 170
-U MAKE option (undefine) 197
unconditional breakpoints See breakpoints
!undef MAKE directive 221
underbars See underscores
underscores 171

generating automatically 63, 170
Undo command 34, 150

Group Undo and 35, 93
uninitialized data segment See data segment
unions

format specifier 53
inspecting 49

UNIX
keywords 70

using 174
porting Borland C++ files to 174

306

unmatched delimiters 155
Unsigned Characters option 62
Use Tab Character option 92
User Screen 80

hot key 12
User Screen command 97
user-specified library files 183
utiliities See also The online document

VTIL.DOC
utilities

MAKE 193-224
resident

extended and expanded memory and 181
standalone 189
TLIB 225-231
TLINK 231-269

v
-v and -Vn BCC options (C++ virtual tables)

182
-v BCC option (debugging information) 171
-v option (debugging information) 243
-v RC option (display compiler messages) 122
Iv TUNK option (debugging information) 248
variable argument list 170
variables See also scope

automatic
word-aligning 167

communal 168
debugging 50
global

far 168
header files and 64
inspecting values of 47
register 69, 172

version number information 27
-vi option (C++ inline functions) 172
Video Graphics Array Adapter (VGA) 91
virtual tables 67

32-bit pointers and 68, 182
-WD option and 128, 180

controlling 182
DLLs and 128
storing in the code segment 68, 182

-WD option and 128, 180

Borland C++ User's Guide

w
-W BCC options (Windows applications) 111,

179
-W MAKE option (save options) 197
-wxxx BeC options (warnings) 175
warnings See also errors

ANSI Violations 72
C++ 72, 176
command-line options 175-176
enabling and disabling 175
frequent errors 73, 175
IMPLIB 193
options 175-176
portability 71, 176
stopping on n 71
TLINK

defined 258
TLINK (list) 258
types of 71 .

watch expressions See also debuggmg
adding 54
controlling 54
deleting 54, 55
editing 54
saving across sessions 94
watch window 97

Watches command 54
-WD BeC options (.DLLs with all exportables)

180
-WD BCC options (.DLLs with all exports) 113
-WDE BCC options (.DLLs with explicit

exports) 180 .. .
-WDE Bee options (DLLs wIth expliCIt

exports) 113
-WE BCC options (.OBJs with explicit exports)

180
WEP (function) 125

return values 126
WHELLO (Windows program) 104

compiling and linking 105
whole-word searching 37
wildcards 37

DOS 28
GREP37
MAKE and 206

Window menu 95

Index

window number See windows, window
number

windows
active 15

defined 13
cascading 96
Clipboard 36
closed 98
closing 14, 15,27, 96
Edit See Edit, window
elements of 13
Help See Help, windows
Inspector 47
List 98
menu 95
Message 46, 96
moving 16, 95
next 96
open 98
opening 15, 95
Output 97
position

hot key 12
Project 98
Project Notes 98
Register 98
reopening 95
resizing 15, 16, 95
scrolling 14, 15
size

hot key 12
source tracking 91
swapping in debug mode 88

dual monitors and 88
tiling 96
title bar 14
User Screen 97
Watch 97
window number 14
zooming 14, 16, 96

Windows (Microsoft) See Microsoft Windows
Windows All Functions Exportable command

111
Windows DLL All Functions Exportable

command 113
Windows DLL Explicit Functions Exported

command 113

307

Windows Explicit Functions Exported
command 112

Windows Smart Callbacks command 112
WinMain (function) 120

return value 120
-WN Bee options (.OBJs with explicit exports)

112
word aligning

integers 167
Word Alignment option 61
$WRITEMSG transfer macro 81
-WS Bee options (smart callbacks) 112, 180
-wxxx Bee option (warnings) 175
-wxxx Bee options (warnings) 175-176

x
-X Bee option (disable autodependency

information) 171

308

Ix IDE option (extended memory) 7
-x Re option (exclude include directories) 122

y
-y Bee option (line numbers) 171
-Y Bee option (overlays) 171
Iy TLINK option (extended and expanded

memory) 249
-Yo Bee option (overlays) 171

z
-Z Bee option (register usage optimization)

173
zoombox 14
Zoom command 96

hot key 10, 12
-zX options (code and data segments) 177, 178

Borland C++ User's Guide

2.0

B o R L A N D

CORPORATE HEADOUARTERS: liDO GREEN HilLS ROAD, P,O, BOX Bl0001 , SCOTTS VAllEY, CA 95087·0001 , 1401,431·5300.
OFFICES IN: AUSTRALIA, DENMARK, FRANCE, GERMANY, ITAl y, JAPAN, SWEDEN AND THE UNITED KINGDOM. PART. 14MN·TCPOl • BOR 1'73

