
REFERENCE GUIDE

BORLAND

Windows API Guide

Reference

Volume 1

Version 3.0
for the MS-DOS and PC-DOS
Operating Systems

BORLAND INTERNATIONAL INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001, scons VALLEY, CA 95067-0001

Copyright 1991, Borland International. All rights reserved.

Rl

Copyright © 1991 by Borland International. All rights reserved. All
Borland products are trademarks or registered trademarks of
Borland International, Inc. Other brand and product names are
trademarks or registered trademarks of their respective holders.

PRINTED IN THE USA.
10 9 8 7 6 5 4 3

c o N T

Introduction 1
Windows features .. 1

Window manager interface 2
Window manager interface function
groups 3

Graphics device interface 3
Graphics device interface function
groups 3

System services interface 4
System services interface function
groups 4

Naming conventions 4
Parameter names 5

Windows calling convention 5
Manual overview 6

Volume 1 6
Volume2 7
Document conventions 8

Other recommended reading 10
Windows functions 10

Part 1 Windows functions

Chapter 1 Window manager interface
functions 13

Message functions 14
Generating and processing messages . 15
Translating messages 16
Examining messages 17
Sending messages 17
Avoiding message deadlocks 18

Window-creation functions. 19
Window classes 20

System global classes 20
Application global classes 21
Application local classes 21

E N T s

How Windows locates a class. 21
How Windows determines the owner of a
class 22
Registering a Window class 22
Shared Window classes 22
Predefined Window classes 22
Elements of a Window class 23

Class name .. 24
Window-function address 24
Instance handle 24
Class cursor .. 25
Class icon 25
Class background brush 25
Class menu 26

Class styles 27
Internal data structures 28
Window subclassing 28
Redrawing the client area 29
Class and private display contexts 29
Window function 30

Window messages 32
Default window function 33

Window styles 34
Overlapped windows 34
Owned windows 35
Pop-up windows 35
Child windows 35

Multiple document interface windows. 37
Title bar 38
System menu .. 38
Scroll bars 38
Menus 38
Window state 40
Life cycle of a window 40

Display and movement functions 42

Input functions 43
Hard ware functions 43
Painting functions 44

How Windows manages the display .. 45
Display context types 46

Common display context. 46
Class display context 47
Private display context 48
Window display context 49

Display-context cache 49
Painting sequence 50
WM_P AINT message. 50
Update region 51
Window background 52
Brush alignment 52
Painting rectangular areas 53
Drawing icons .. 53
Drawing formatted text 54
Drawing gray text 56
Nonclient-area painting 57

Dialog box functions 57
Uses for dialog boxes 59

Modeless dialog box 59
Modal dialog box 59
System-modal dialog box 60

Creating a dialog box 60
Dialog box template 60
Dialog box measurements 61

Return values from a dialog box 61
Controls in a dialog box. 62

Control identifiers 62
General control styles. 62
Buttons 63
Edit controls 64
List boxes and directory listings 64
Combo boxes 65
Owner-draw dialog box controls ... 65
Messages for dialog box controls ... 66

Dialog box keyboard interface 66
Scrolling in dialog boxes 68

Scrolling functions 68
Standard scroll bars and scroll-bar
controls .. 68

Scroll-bar thumb 69
Scrolling requests 70
Processing scroll messages 70
Scrolling the client area 71
Hiding a standard scroll bar 71

Menu functions .. 72
Information functions 73
System functions .. 73
Clipboard functions 74
Error functions 74
Caret functions 75

Creating and displaying a caret 75
Sharing the caret 76

Cursor functions 76
Pointing devices and the cursor 77
Displaying and hiding the cursor 77
Positioning the cursor 78
The cursor hotspot and confining the
cursor 78
Creating a custom cursor 78

Hook functions 79
Filter-function chain 79
Installing a filter function 80

Property functions 80
Using property lists 81

Rectangle functions 82
Using rectangles in a Windows
application 83
Rectangle coordinates 83
Creating and manipulating rectangles. 84

Chapter 2 Graphics device interface
functions 87

Device-context functions 88
Device-context attributes 88
Saving a device context
Deleting a device context
Compatible device contexts
Information contexts

Drawing-tool functions
Drawing-tool uses

Brushes
Pens

90
90
90
90
91
92
92
93

Color 93
Color-palette functions 95

How color palettes work 96
U sing a color palette 98

Drawing-attribute functions 99
Background mode and color 99
Stretch mode 100
Text color 100

Mapping functions 100
Constrained mapping modes 102
Partially constrained and unconstrained
mapping modes 102

Partially constrained mapping
mode 103
Unconstrained mapping mode 103

Transformation equations 103
Example: MM_TEXT 104
Example: MM_LOENCLISH 105

Coordinate functions 105
Region functions 106
Clipping functions 106
Line-output functions 107

Function coordinates 108
Pen styles, colors, widths. 108

Ellipse and polygon functions 109
Function coordinates 109
Bounding rectangles 110

Bitmap functions. 110
Bitmaps and devices. 111
Device-independent bitmap
functions 111

Text functions 112
Font functions 112

Font family 114
Character cells 115
Altering characters 116

Italic 116
Bold 116
Underline. .. 116
Strikeout. .. 116

Leading 116
Internal leading 117
Externalleading 117

iii

Character set 117
ANSI character set 118
OEM character set 118
Symbol character set 118
Vendor-specific character sets 118

Pitch 118
Average character width 119
Maximum character width 119
Digitized aspect 119
Overhang 119

Selecting fonts with CDI 120
Font-mapping scheme 120
Example of font selection 123

Font files and font resources 124
Metafile functions 124

Creating a metafile 125
Storing a metafile in memory or on
disk. .. 126
Deleting a metafile 127
Changing how Windows plays a
metafile. .. 127

Printer-control functions 127
Printer-escape function 128

Creating output on a printer 128
Banding output 129
Starting and ending a print job 130
Terminating a print job 130
Information escapes. 130
Additional escape calls 131

Environment functions 131

Chapter 3 System services interface
functions 133

Module-management functions 134
Memory-management functions 134
Segment functions 136
Operating-system interrupt functions .. 137
Task functions. .. 138
Resource-management functions 138
String-manipulation functions 139
Atom-management functions 140
Initialization-file functions 141
Communication functions 142

Sound functions
Utility macros and functions
File 1/ 0 functions
Debugging functions
Optimization-tool functions
Application-execution functions

Chapter 4 Functions directory
AccessResource
AddAtom
AddFontResource ,
AdjustWindowRect
AdjustWindowRectEx
AllocDStoCSAlias
AllocResource
AllocSelector
AnimatePalette
AnsiLower
AnsiLowerBuff
AnsiNext
AnsiPrev
AnsiToOem
AnsiToOemBuff
AnsiUpper
AnsiUpperBuff
AnyPopup
AppendMenu
AppendMenu
Arc
ArrangeIconicWindows ,
BeginDeferWindowPos
BeginPaint
BitBlt
BringWindowToTop

)ki3uildCommDCB
CallMsgFilter
CallWindowProc
Catch
ChangeClipboardChain
ChangeMenu
ChangeSelector
CheckDIgButton
CheckMenuItem

142
143
144
144
145
145

147
147
148
148
149
150
150
151
152
152
153
153
154
154
154
155
155
156
156
156
157
159
160
160
161
162
164
164
165
166
166
167
167
168
168
169

CheckRadioButton
ChildWindowFromPoint
Chord

+€learCommBreak
ClientToScreen
ClipCursor
CloseClipboard

i(CloseComm
CloseMetaFile
CloseSound
Close Window
CombineRgn
CopyMetaFile
CopyRect
CountClipboardFormats
CountVoiceNotes
CreateBitmap
CreateBitmapIndirect
CreateBrushIndirect
Crea teCaret
CreateCompatibleBitmap
CreateCompatibleDC
Create Cursor
CreateDC
Create Dialog

Callback function
CreateDialogIndirect

Callback function
Crea teDialogIndirectParam
CreateDialogParam
CreateDIBitmap
CreateDIBPatternBrush
CreateDiscardableBitmap
CreateEllipticRgn
CreateEllipticRgnIndirect
CreateFont
CreateFontIndirect
CreateHatchBrush
CreateIC
Createlcon
CreateMenu , " ..
CreateMetaFile
CreatePalette

iv

170
171
171
172
172
173
173
174
174
174
175
175
176
176
177
177
177
178
179
179
180
181
182
182
183
184
185
186
187
188
189
190
191
192
192
193
195
196
196
197
198
198
199

CreatePatternBrush 199
CreatePen 200
CreatePenlndirect " 200
CreatePolygonRgn " 201
CreatePolyPolygonRgn 201
CreatePopupMenu , .. " " 202
CreateRectRgn " 203
CreateRectRgnlndirect 203
CreateRoundRectRgn " " 204
CreateSolidBrush 204
CreateVVindovv 205
CreateVVindovvEx 218
DebugBreak " 219
DefDlgProc 220
DeferVVindovvPos 221
DefFrameProc 222
DefHookProc " 224
DefineHandleTable 224
DefMDIChildProc 225
DefVVindovvProc 226
DeleteAtom " 227
DeleteDC 227
DeleteMenu .. 228
DeleteMetaFile 229
DeleteObject 229
DestroyCaret " 230
DestroyCursor " 230
Destroylcon 230
DestroyMenu , 231
DestroyVVindovv 231
DeviceCa pabilities 232
DeviceMode 235
DialogBox 235

Callback Function " 236
DialogBoxlndirect " 237

Callback Function 238
DialogBoxlndirectParam " 239
DialogBoxParam " 239
DispatchMessage 240
DlgDirList 241
DlgDirListComboBox 242
DlgDirSelect 244
DlgDirSelectComboBox " 244

v

DOS3Call 245
DPtoLP 246
DravvFocusRect , 247
DravvIcon .. 247
DravvMenuBar 248
DravvText .. 248
Ellipse. .. 251
EmptyClipboard 252
EnableHardvvarelnput 252
EnableMenuItem 253
EnableVVindovv 254
EndDeferVVindovvPos 254
End Dialog 255
EndPaint 255
EnumChildVVindovvs 256

Callback function 257
EnumClipboardFormats 257
EnumFonts 258

Callback function 258
EnumMetaFile .. 260

Callback function 260
EnumObjects , 261

Callback function 262
EnumProps 262

Fixed data segments. 263
Callback function 263
Moveable data segments 264
Callback function 264

EnumTaskVVindovvs 265
Callback function 265

Enum VVindovvs .. 266
Callback function 266

EqualRect .. 267
EqualRgn 267
Escape 268

A(EscapeCommFunction , 269
ExcludeClipRect 269
ExcludeUpdateRgn 270
ExitVVindovvs .. 271
ExtDeviceMode .. 271
ExtFloodFill .. 273
ExtTextOut 274
FatalAppExit .. 276

FatalExit 276
FillRect 277
FillRgn 278
FindAtom .. 278
FindResource .. 278
FindWindow .. 280
Flash Window 280
FloodFill 281

\?<,FlushComm .. 282
_FPlnit 282
_FPTerm 283
FrameRect 283
FrameRgn 284
FreeLibrary 284
FreeModule 285
FreeProcInstance 285
FreeResource .. 285
FreeSelector .. 286
GetActiveWindow 286
GetAspectRatioFilter 287
GetAsyncKeyState 287
GetAtomHandle 287
GetAtomName 288
GetBitmapBits .. 288
GetBitmapDimension 289
GetBkColor 289
GetBkMode 289
GetBrush()rg .. 290
GetBValue 290
GetCapture 290
GetCaretBlinkTime 291
GetCaretPos .. 291
GetCharWidth .. 291
GetClasslnfo 292
GetClassLong 293
GetClassN ame .. 294
GetClassWord 294
GetClientRect 295
GetClipboardData 295
GetClipboardFormatName 296
GetClipboard()wner 297
GetClipboardViewer 297
GetClipBox 297

vi

GetCodeHandle 298
GetCodelnfo 298

I GetCommError .. 300
-fGetCommEventMask 301
7GetCommState 301

GetCurrentPDB .. 302
GetCurrentPosition 302
GetCurrentTask 302
GetCurrentTime 303
GetCursorPos 303
GetDC 303
GetDC()rg 304
GetDesktopWindow 304
GetDeviceCaps 305
GetDialogBaseUnits 308
GetDIBits 309
GetDIgCtrlID .. 310
GetDIgItem 310
GetDIgItemlnt .. 311
GetDIgItemText 312
GetD()SEnvironment 312
GetDoubleClickTime 313
GetDriveType 313
GetEnvironment 313
GetFocus 314
GetFreeSpace 315
GetGValue 316
GetInputState 316
GetInstanceData 316
GetKBCodePage 317
GetKeyboardState 317
GetKeyboardType 318
GetKeyNameText 319
GetKeyState .. 320
GetLastActivePopup 320
GetMapMode 321
GetMenu 321
GetMenuCheckMarkDimensions 321
GetMenuItemCount 322
GetMenuItemID 322
GetMenuState 322
GetMenuString 323
GetMessage , 324

Get~essagePos 326
Get~essageTime 326
Get~etaFile .. 327
Get~etaFileBits , 327
Get~oduleFileName 327
Get~oduleHandle 328
Get~oduleUsage 328
GetNearestColor 329
GetN earestPaletteIndex , 329
GetNextDlgGroupltem 329
GetNextDlgTabltem 330
GetN extWindow 330
GetNumTasks 331
GetObject .. 331
GetPaletteEntries 332
GetParent 333
GetPixel 333
GetPolyFill~ode 334
GetPriorityClipboardFormat 334
GetPrivateProfileInt 335
GetPrivateProfileString 336
GetProcAddress 337
GetProfileInt 338
GetProfileString 338
GetProp 340
GetRgnBox .. 340
GetROP2 341
GetRValue 341
GetScrollPos 341
GetScrollRange 342
GetStockObject 343
GetStretchBlt~ode 344
GetSub~enu 345
GetSysColor .. 345
GetSys~odalWindow 345
GetSystemDirectory 346
GetSystem~enu 346
GetSystem~etrics 347
GetSystemPaletteEntries 349
GetSystemPaletteUse 349
GetTabbedTextExtent 350
GetTempDrive 351
GetTempFileName 351

GetTextAlign " 352
GetTextCharacterExtra 354
GetTextColor " 354
GetTextExtent ., " 354
GetTextFace " 355
GetText~etrics 355
GetThresholdEvent 356
GetThresholdStatus 356
GetTickCount 356
GetTopWindow 357
GetUpdateRect 357
GetUpdateRgn 358
GetVersion " 359
GetViewportExt 359
GetViewportOrg " 359
GetWindow " 360
GetWindowDC " 360
GetWindowExt " " 361
GetWindowLong 361
GetWindowOrg 362
GetWindowRect 362
GetWindowsDirectory " 363
GetWindowTask 363
GetWindowText " 364
GetWindowTextLength " 364
GetWindowWord " 365
GetWinFlags 365
GlobalAddAtom " 366
GlobalAlloc 367
GlobalCompact .. 368
GlobalDeleteAtom 369
GlobalDiscard 369
GlobalDosAlloc .. 370
GlobalDosFree 370
GlobalFindAtom " 371
GlobalFix 371
GlobalFlags 372
GlobalFree 372
GlobalGetAtomName 373
GlobalHandle 373
GlobalLock 374
GlobalLRUN ewest 374
GlobalLRUOldest " 375

vii

GlobalNotify 375
Callback function 376

GlobalPageLock 376
GlobalPageUnlock 377
GlobalReAlloc .. 377
GlobalSize 379
GlobalUnfix 379
GlobalUnlock 380
GlobalUn Wire .. 381
GlobalWire 381
GrayString 382

Callback function 383
HI BYTE 384
HideCaret 385
HiliteMenuItem 385
HIWORD 386
InflateRect 386
InitAtomTable 387
InSendMessage 387
InsertMenu 388
IntersectClipRect 391
IntersectRect 392
InvalidateRect .. 392
InvalidateRgn 393
InvertRect 394
InvertRgn .. 394
IsCharAlpha 395
IsCharAlphaNumeric 395
IsCharLo~er 395
IsCharUpper 396
IsChild 396
IsClipboardFormatAvailable 396
IsDialogMessage 397
IsDIgButtonChecked 398
IsIconic .. 398
IsRectEmpty 398
Is Windo~ 399
IsWindo~Enabled 399
IsWindo~Visible 399
IsZoomed .. 400
KillTimer 400
_lclose .. 401
_lcreat .. 401

viii

LimitEmsPages 402
LineDDA 402

Callback function 403
LineTo 403
_llseek .. 404
LoadAccelerators 404
LoadBitmap .. 405
LoadCursor 406
LoadIcon 407
LoadLibrary .. 408
LoadMenu .. 409
LoadMenuIndirect 410
LoadModule 410
LoadResource 412
LoadString .. 412
LOBYTE 413
LocalAlloc 413
LocalCompact 414
LocalD~card 415
LocalFlags 415
LocalFree 416
LocalHandle 416
Locallnit .. 416
LocaILock 417
LocalReAlloc .. 417
LocalShrink 419
LocalSize 420
LocalUnlock 420
LockData 420
LockResource 421
LockSegment 421
_lopen 422
LOWORD 423
LPtoDP 424
_lread 424
lstrcat 425
lstrcmp 425
lstrcmpi 426
lstrcpy .. 426
lstrlen 427
_l~rite 427
MAKEINTATOM 428
MAKEINTRESOURCE 429

MAKELONG .. 429
MAKE POINT 429
MakeProcInstance 429
MapDialogRect 430
MapVirtualKey 431
max 432
MessageBeep .. 432
MessageBox .. 432
min 434
ModifyMenu 435
MoveTo 438
MoveVVindovv 438
MulDiv 439
NetBIOSCall 440
OemKeyScan 440
Oem ToAnsi 441
OemToAnsiBuff 442
OffsetClipRgn 442
OffsetRect .. 443
OffsetRgn .. 443
OffsetVievvportOrg 444
OffsetVVindovvOrg 444
OpenClipboard 445

f OpenComm .. 445
OpenFile .. 446
OpenIcon .. 449
OpenSound 449
OutputDebugString 449
PaintRgn 450
P ALETTEINDEX 450
P ALETTERGB .. 450
PatBlt 451
PeekMessage 452
Pie 454
PlayMetaFile 455
PlayMetaFileRecord 455
Polygon 456
Polyline 456
PolyPolygon 457
PostAppMessage 458
PostMessage 458
PostQuitMessage 459
Prof Clear 459

ix

ProfFinish 460
ProfFlush 460
ProfInsChk .. 460
ProfSampRate 461
Prof Setup 462
Prof Start 462
Prof Stop .. 462
PtInRect 463
PtInRegion .. 463
PtVisible .. 463

(<ReadComm 464
RealizePalette 465
Rectangle 465
RectInRegion .. 466
RectVisible .. 466
RegisterClass 467

Callback function 467
RegisterClipboardFormat 468
RegisterVVindovvMessage 468
ReleaseCapture 469
ReleaseDC 469
RemoveFontResource 470
RemoveMenu 470
RemoveProp 471
ReplyMessage 472
ResizePalette 473
RestoreDC 473
RGB 474
RoundRect .. 474
SaveDC 476
ScaleVievvportExt 476
ScaleVVindovvExt 477
ScreenToClient 477
ScrollDC .. 478
ScrollVVindovv .. 479
SelectClipRgn 480
SelectObject 481
SelectPalette 483
SendDlgItemMessage 483
SendMessage 484
SetActiveVVindovv 485
SetBitmapBits 485
SetBitmapDimension 486

SetBkColor .. 486
SetBkMode .. 487
SetBrushOrg 487
SetCa pture .. 488
SetCaretBlinkTime 488
SetCaretPos 488
SetClassLong 489
SetClass Word 490
SetClipboardData 491
SetClipboardViewer 493

1 SetCornmBreak 494
t SetCornmEventMask 494
"f-.SetCornmState 495

SetCursor .. 495
SetCursorPos 496
SetDIBits .. 496
SetDIBitsToDevice 498
SetDlgItemlnt 499
SetDlgItemText .. 500
SetDoubleClickTime 500
SetEnvironment 501
SetErrorMode 501
SetFocus 502
SetHandleCount 502
SetKeyboardState 503
Set~ap~ode 503
Set~apperFlags 505
Set~enu .. 505
Set~enuItemBitmaps 506
Set~essageQueue 507
Set~etaFileBits 507
SetPaletteEntries 508
SetParent 508
SetPixel .. 509
SetPolyFill~ode 509
SetProp .. 510
SetRect 511
SetRectEmpty 511
SetRectRgn .. 512
SetResourceHandler 512

Callback function 513
SetROP2 514
SetScrollPos .. 515

x

SetScrollRange 516
SetSoundNoise 516
SetStretchBlt~ode 517
SetSwapAreaSize 518
SetSysColors 519
SetSys~odalWindow 520
SetSystemPaletteUse 520
SetTextAlign 522
SetTextCharacterExtra 523
SetTextColor 523
SetTextJustification 524
SetTimer 525

Callback function 526
SetViewportExt 526
SetViewportOrg 527
SetVoiceAccent 528
SetVoiceEnvelope 529
Set V oiceN ote .. 530
SetVoiceQueueSize 531
Set V oiceSound 531
SetVoiceThreshold 532
SetWindowExt 532
SetWindowLong 533
SetWindowOrg .. 534
SetWindowPos 535
SetWindowsHook 536

WH_CALLWNDPROC 538
WH_GET~ESSAGE 539
WH-10URNALPLAYBACK 540
WH-10URNALRECORD 541
WH_KEYBOARD 542
WH_~SGFILTER 543
WH_SYS~SGFILTER 544

SetWindowText 545
SetWindowWord 545
ShowCaret .. 546
ShowCursor 546
ShowOwnedPopups 547
ShowScrollBar .. 547
ShowWindow 548
SizeofResource 549
StartSound .. 549
Stop Sound 550

StretchBlt
StretchDIBits
SwapMouseButton
SwapRecording
SwitchStackBack
SwitchStackTo
SyncAllV oices
TabbedTextOut
TextOut
Throw
ToAscii
TrackPopupMenu
TranslateAccelerator
TranslateMDISysAccel
TranslateMessage

"J4rransmitCommChar
)!UngetCommChar

UnhookWindowsHook
UnionRect
UnlockData
U nlockResource
UnlockSegment
UnrealizeObject
UnregisterClass
UpdateColors
UpdateWindow
ValidateCodeSegments
ValidateFreeSpaces
ValidateRect
Valida teRgn
VkKeyScan
WaitMessage
WaitSoundState
WindowFromPoint
WinExec
WinHelp

-+WriteComm
WritePrivateProfileString
WriteProfileString
wsprintf
wvsprintf
Yield

550
552
554
554
555
555
556
556
557
558
559
560
560
562
562
563
563
564
565
565
565
566
566
567
568
568
568
569
569
570
570
571
572
572
573
574
576
577
578
579
581
583

xi

Part 2 Windows messages

Chapter 5 Messages overview 587
Window-management messages 587
Initialization messages 589
Inputmessages 589
System messages 590
Clipboard messages 591
System information messages 592
Control messages 592

Button-control messages 593
Edit-control messages 593
List-box messages. 594
Combo-box messages. 595
Owner draw-control messages 596

Notification messages 597
Button notification codes 597
Edit-control notification codes 597
List-box notification codes 598
Combo-box notification codes 598

Scroll-bar messages 598
Nonclient-area messages 598
Multiple document interface messages. 600

Chapter 6 Messages directory 601
BM_GETCHECK 603
BM_ GETSTATE 603
BM_SETCHECK 603
BM_SETSTATE 604
BM_SETSTYLE 604
BN_CLICKED 605
BN_DOUBLECLICKED 606
CB_ADDSTRING 606
CB_DELETESTRING 606
CB_DIR 607
CB _FIND STRING 607
CB_GETCOUNT 608
CB _ GETCURSEL 608
CB _ GETEDITSEL 608
CB_GETITEMDATA 609
CB_ GETLBTEXT 609
CB _ GETLBTEXTLEN 609
CB_INSERTSTRING 610
CB _LIMITTEXT 610

CB_RESETCONTENT 610
CB_SELECTSTRING 611
CB_SETCURSEL 611
CB_SETEDITSEL 612
CB_SETITEMDATA 612
CB_SHOWDROPDOWN 612
CBN_DBLCLK 613
CBN_DROPDOWN 613
CBN_EDITCHANGE 613
CBN_EDITUPDATE 614
CBN_ERRSPACE 614
CBN_KILLFOCUS 614
CBN_SELCHANGE 615
CBN_SETFOCUS 615
DM_GETDEFID 615
DM_SETDEFID 615
EM_CANUNDO 616
EM_EMPTYUNDOBUFFER 616
EM_FMTLINES 616
EM_GETHANDLE 617
EM_GETLINE 617
EM_GETLINECOUNT 617
EM_GETMODIFY. 618
EM_GETRECT 618
EM_GETSEL 618
EM_LIMITTEXT " 618
EM_LINEFROMCHAR 619
EM_LINE INDEX 619
EM_LINELENGTH 619
EM_LINESCROLL 620
EM_REPLACESEL 620
EM_SETHANDLE 620
EM_SETMODIFY " 621
EM_SETPASSWORDCHAR 621
EM_SETRECT " 621
EM_SETRECTNP 622
EM_SETSEL .. 622
EM_SETTABSTOPS ; ... 622
EM_SETWORDBREAK 623

Callback Function 623
EM_UNDO 624
EN_CHANGE 624
EN_ERRSP ACE. 625

EN_HSCROLL 625
EN_KILLFOCUS 625
EN_MAXTEXT 626
EN_SETFOCUS 626
EN_UPDATE 626
EN_ VSCROLL .. 627
LB_ADDSTRING 627
LB_DELETESTRING 627
LB_DIR 628
LB_FINDSTRING 628
LB_GETCARETINDEX 629
LB_GETCOUNT 629
LB_GETCURSEL 629
LB_GETHORIZONTALEXTENT 630
LB_GETITEMDATA 630
LB_GETITEMHEIGHT 630
LB_GETITEMRECT 631
LB_GETSEL .. 631
LB_ GETSELCOUNT 631
LB_GETSELITEMS 631
LB_ GETTEXT 632
LB_ GETTEXTLEN 632
LB_GETTOPINDEX 632
LB_INSERTSTRING 633
LB_RESETCONTENT 633
LB_SELECTSTRING 633
LB_SELITEMRANGE 634
LB_SETCARETINDEX 634
LB_SETCOLUMNWIDTH 635
LB_SETCURSEL 635
LB_SETHORIZONTALEXTENT 635
LB_SETITEMDATA " 636
LB_SETITEMHEIGHT 636
LB_SETSEL 636
LB_SETTABSTOPS 637
LB_SETTOPINDEX 637
LBN_DBLCLK 638
LBN_ERRSP ACE 638
LBN_KILLFOCUS 638
LBN_SELCHANGE 639
LBN_SETFOCUS 639
WM_ACTIVATE 639
WM_ACTIVATEAPP 640

xii

WM_ASKCBFORMATNAME 640
WM_CANCELMODE 641
WM_CHANGECBCHAIN 641
WM_CHAR 641
WM_CHARTOITEM 642
WM_CHILDACTIVATE 643
WM_CLEAR 643
WM_CLOSE 643
WM_COMMAND 644
WM_COMPACTING 644
WM_COMPAREITEM 645
WM_COPY 645
WM_CREATE 646
WM_CTLCOLOR 646
WM_CUT 647
WM_DEADCHAR 647
WM_DELETEITEM 648
WM_DESTROY .. 648
WM_DESTROYCLIPBOARD 649
WM_DEVMODECHANGE 649
WM_DRAWCLIPBOARD 649
WM_DRAWITEM 650
WM_ENABLE 650
WM_ENDSESSION 650
WM_ENTERIDLE 651
WM_ERASEBKGND 651
WM_FONTCHANGE 652
WM_GETDLGCODE ., 652
WM_GETFONT 653
WM_GETMINMAXINFO 653
WM_GETTEXT 654
WM_GETTEXTLENGTH 654
WM_HSCROLL 655
WM_HSCROLLCLIPBOARD 656
WM_ICONERASEBKGND 656
WM_INITDIALOG 657
WM_INITMENU 657
WM_INITMENUPOPUP 658
WM_KEYDOWN 658
WM_KEYUP 659
WM_KILLFOCUS 660
WM_LBUTTONDBLCLK 660
WM_LBUTTONDOWN 661

xiii

WM_LBUTTONUP 661
WM_MBUTTONDBLCLK 662
WM_MBUTTONDOWN 662
WM_MBUTTONUP 663
WM_MDIACTIVATE 663
WM_MDICASCADE 664
WM_MDICREATE 664
WM_MDIDESTROY 665
WM_MDIGETACTIVE 665
WM_MDIICONARRANGE 666
WM_MDIMAXIMIZE 666
WM_MDINEXT 666
WM_MDIRESTORE 667
WM_MDISETMENU 667
WM_MDITILE 667
WM_MEASUREITEM 668
WM_MENUCHAR 668
WM_MENUSELECT 669
WM_MOUSEACTIVATE 669
WM_MOUSEMOVE 670
WM_MOVE 671
WM_NCACTIVATE 671
WM_NCCALCSIZE 671
WM_NCCREATE 672
WM_NCDESTROY 672
WM_NCHITTEST 672
WM_NCLBUTTONDBLCLK 673
WM_NCLBUTTONDOWN 674
WM_NCLBUTTONUP 674
WM_NCMBUTTONDBLCLK 674
WM_NCMBUTTONDOWN 675
WM_NCMBUTTONUP 675
WM_NCMOUSEMOVE 675
WM_NCPAINT 676
WM_NCRBUTTONDBLCLK 676
WM_NCRBUTTONDOWN 676
WM_NCRBUTTONUP 677
WM_NEXTDLGCTL 677
WM_P AINT 677
WM_PAINTCLIPBOARD 678
WM_PAINTICON 678
WM_PALETTECHANGED 679
WM_PARENTNOTIFY 679

WM_P ASTE .. 680
WM_QUERYDRAGICON 680
WM_QUERYENDSESSION 681
WM_QUERYNEWPALETTE 681
WM_QUERYOPEN 681
WM_QUIT 682
WM_RBUTTONDBLCLK 682
WM_RBUTTONDOWN 682
WM_RBUTTONUP 683
WM_RENDERALLFORMATS 683
WM_RENDERFORMAT 684
WM_SETCURSOR 684
WM_SETFOCUS 684
WM_SETFONT .. 685
WM_SETREDRAW 685
WM_SETTEXT 686
WM_SHOWWINDOW 686

xiv

WM_SIZE 687
WM_SIZECLIPBOARD 687
WM_SPOOLERSTATUS 688
WM_SYSCHAR 688
WM_SYSCOLORCHANGE 689
WM_SYSCOMMAND 690
WM_SYSDEADCHAR 691
WM_SYSKEYDOWN 691
WM_SYSKEYUP 693
WM_TIMECHANGE 694
WM_TIMER 694
WM_UNDO 695
WM_ VKEYTOITEM 695
WM_ VSCROLL .. 695
WM_ VSCROLLCLIPBOARD 696
WM_WININICHANGE 697

Index 699

T A B L E s

0.1: Standard prefixes 5 4.4: Control styles 211
0.2: Document conventions 8 4.5: Extended window styles 219
0.3: Windows API guide 9 4.6: DOS file attributes 242
1.1: Window class elements 23 4.7: DrawText formats 250
1.2: Window class styles 27 4.8: Communications error codes 300
1.3: Default actions for messages 33 4.9: CDI information indexes 305
1.4: Defaults for a display context 46 4.1 0: System metric indexes 348
1.5: Drawing format styles 54 4.11: Message box types 433
1.6: Control characters and actions 55 4.12: Raster operations 452
1.7: Dialog box controls 65 4.13: Predefined data formats 492
1.8: Dialog box keyboard interface 67 4.14: Event values 494
2.1: Default device-context attributes and 4.15: Mapping modes 504

related CDI functions 89 4.16: Drawing modes 514
2.2: Font-mapping characteristics 121 4.17: System color indexes 519
4.1: Raster operations 163 4.18: Window states 548
4.2: Control classes 207 6.1: Button styles 604
4.3: Window styles 209 6.2: Hit-test codes 673

xv

F G u

1.1: Caret shapes 76
1.2: Property list 81
1.3: Rectangle limits 84
1.4: Intersection of two rectangles 85
1.5: Union of two rectangles 85
2.1: Information flow to an output device .88
2.2: Hatched brush patterns 92
2.3: Pen patterns 93
2.4: Palette manager color-mapping

algorithm 97
2.5: Mapping with MM_TEXT 104
2.6: Mapping with MM_LOENGLISH ... 105

xvi

R E s

2.7: Arc and its bounding rectangle 108
2.8: Styled-Pen and Solid-Pen

Rectangles 109
2.9: Fonts from two typefaces 113
2.1 0: Cross-stroke and stem 114
2.11: Serifs 114
2.12: Character-cell dimensions 115
2.13: Strikeout characters 116
2.14: Internal leading 117
2.15: External leading 117
2.16: A GDI font table 120
2.17: Sample font selection ratings 123

N T R o D u c T o N

This manual describes the application programming interface
(API) of the Microsoft® Windows™ presentation manager. The
API contains the functions, messages, data structures, data types,
statements, and files that application developers use to create
programs that run with Windows.

The API can be thought of as a set of tools which, when properly
used, creates a Windows application that is portable across a
variety of computers.

Windows features

Introduction

A Windows application can take advantage of a number of
features provided by the API. These features include the
following:

Il Shared display, memory, keyboard, mouse, and system timer
III Data interchange with other applications
1:1 Device-independent graphics
c Multitasking
c Dynamic linking

Windows allows applications, running simultaneously on the
system, to share hardware resources; application developers do
not need to write specific code to accomplish this complex task.

The clipboard, another Windows feature, acts as a place for data
interchange between applications. The information sent between
applications can be in the form of text, bitmaps, or graphic
operations. Windows provides a number of functions and
messages that regulate the transmission of information with the
clipboard. These functions and the corresponding messages are
part of the window manager interface, one of several libraries in
the API.

2

Window manager
interface

Windows contains functions that an application can use for
device-independent graphic operations. These functions create
output that is compatible with raster displays and printers of
varying resolution, as well as with a number of vector devices
(plotters). These functions are part of the graphics device interface
(GDI), the second of the API libraries.

Windows provides multitasking, which means that several
applications can run simultaneously. The functions that affect
multitasking and memory management in general are part of the
system services interface, the third API library.

Because of the memory limitations imposed by DOS, it is
important to keep applications as compact as possible. Windows
accomplishes this compaction through dynamic linking and the
use of discardable code, which allows an application to load and
execute a subset of the library of functions at run time. Only a
single copy of a library is necessary, no matter how many
applications access it.

The window manager interface contains the functions that create,
move, and alter a window, the most basic element in a Windows
application. A window is a rectangular region that contains
graphic representations of user input, input options, and system
output.

Windows is a menu-driven environment; menus are the principal
means of presenting options to a user from within an application.
The functions that create menus, alter their contents, and obtain
the status of menu items are also part of the window manager
interface.

The window manager interface also contains functions that create
system output. An example of this output is the dialog box that
applications use to request user input and to display information.

The window manager interface also contains messages and the
functions that process them. A message is a special data structure
that contains information about changes within an application.
These changes include keyboard, mouse, and timer events, as well
as requests for information or actions that an application should
carry out.

Software development kit

Window manager
interface function

groups

Graphics device
interface

Graphics device
interface function

groups

Introduction

The following list describes the function groups found in the
window manager interface:

[J Message functions
[J Information functions
[J Window-creation functions
[J System functions
[J Display and movement functions
[J Clipboard functions
[J Error functions
J:I Input functions
[J Caret functions
[J Hardware functions
[J Cursor functions
[J Painting functions
[J Hook functions
[J Dialog functions
[J Property functions
[J Scrolling functions
[J Rectangle functions
[J Menu functions

The graphics device interface (CD!) contains the functions that
perform device-independent graphic operations within a
Windows application. These functions create a wide variety of
line, text, and bitmap output on a number of different output
devices. CDI allows an application to create pens, brushes, fonts,
and bitmaps for specific output operations.

The following list describes the function groups found in CDI:

[J Device-context functions
[J Ellipse and polygon functions
[J Drawing-tool functions
[J Bitmap functions
[J Drawing-attribute functions
[J Text functions
[J Mapping functions
c Font functions
[J Coordinate functions

3

• Metafile functions
.. Region functions
• Printer-escape functions
• Clipping functions
• Environment functions
• Line-output functions
• System functions

System services interface

4

System seNices
interface function

groups

Naming
conventions

The system services interface contains the functions that access
code and data in modules, allocate and manage memory (both
local and global), manage tasks, load program resources, translate
strings from one character set to another, alter the Windows
initialization file, assist in system debugging, carry out
communications through the system's I/O ports, create and open
files, and create sounds using the system's sound generator.

The following list describes the function groups found in the
system services interface:

.. Module-management functions
• Initialization-file functions
• Memory-management functions
• Communication functions
• Task functions
1:1 Sound functions
• Resource-management functions
.. Utility functions
.. String-translation functions
• File I/O functions
.. Atom-management functions
.. System functions

Many Windows functions have been named with a verb-noun
model to help you remember and become familiar with the
function. The function name indicates both what the function
does (verb) and the target of its action (noun). All function names
begin with an uppercase letter. If the name is composed of several
words, each word begins with an uppercase letter and all words

Software development kit

are adjoined (no spaces or underscore characters separate the
words). Some examples of function names are shown below:

Il CreateWindow
Il RegisterClass
1:1 SetMapMode

Parameter names Most parameters and local variables have a lowercase prefix that
indicates the general type of the parameter, followed by one or
more words that describe the content of the parameter. The
standard prefixes used in parameter and variable names are
defined below:

Table 0.1
Standard prefixes Prefix Meaning

b
c
dw

Boolean (a nonzero value means true, zero means false)
Character (a one-byte value)

Windows calling
convention

Introduction

f
h
1
lp
n
P
pt

rgb
w

Long (32-bit) unsigned integer
Bit flags packed into a 16-bit integer
16-bit handle
Long (32-bit) integer
Long (32-bit) pointer
Short (16-bit) integer
Short (16-bit) pointer
x- and y-coordinates packed into an unsigned 32-bit
integer
RGB color value packed into a 32-bit integer
Short (16-bit) unsigned integer

If no lowercase prefix is given, the parameter is a short integer
whose name is descriptive.

Some examples of parameter and variable names are shown as
follows:

blconic
ptXY
fAction
rgbColor
hWnd
Height

IpString
X
nBytes
Width
pMsg
Y

Windows uses the same calling convention used by Microsoft
Pascal. Throughout this manual, this calling convention will be
referred to as the Pascal calling convention. The Pascal calling
convention entails the following:

5

6

Manual overview

• Parameters are pushed onto the stack in the order in which they
appear in the function call.

• The code that restores the stack is part of the called function
(rather than the calling function).

This convention differs from the calling convention used in other
languages, such as C. In C, parameters are pushed onto the stack
in reverse order, and the calling function is responsible for
restoring the stack.

When developing Windows applications in a language that does
not ordinarily use the Pascal calling convention, such as C, you
must ensure that the Pascal calling convention is used for any
function that is called by Windows. In C, this requires the use of
the PASCAL key word when the function is declared.

This manual gives the Windows-application developer general as
well as detailed information about Windows functions, messages,
data types, resource-compiler statements, assembly-language
macros, and file formats. It does not attempt to explain how to
create a Windows application. Rather, this manual provides
detailed descriptions of each component of the Windows API for
readers who already have a basic understanding of Windows
programming.

This manual is divided into two volumes. The following sections
describe the purpose and contents of each volume.

Volume 1 Volume 1 contains reference information describing the Windows
functions and messages. It is made up of six chapters:

Chapter 1, "Window manager interface functions, II categorizes
window-manager functions into their related groups and briefly
describes individual functions. This chapter also supplies
additional information about particular function groups,
including definitions of new terms and descriptions of models
that are unique to Windows. This chapter is designed to assist the
application developer who is new to Windows or who has
questions about a particular group of Windows functions.

Chapter 2, "Graphics device interface functions, II categorizes the
functions that perform device-independent graphics operations in
the Windows environment, provides brief descriptions of the

Software development kit

Introduction

functions, and explains the most important features of the
Windows graphics interface.

Chapter 3, "System services interface functions, II categorizes the
various utility functions that perform services not directly related
to managing a window or producing graphical output.

Chapter 4, "Functions directory," contains an alphabetical list of
Windows functions. The documentation for each function gives
the syntax, states the function's purpose, lists its input parameters,
and describes its return value. For some functions, additional
information the developer needs in order to use those functions is
given.

Chapter 5, "Messages overview," categorizes messages into their
related groups and briefly describes individual messages. This
chapter also supplies additional information about particular
message groups, including definitions of new terms and
descriptions of models that are unique to Windows. This chapter
is designed to assist the application developer who is new to
Windows or who has questions about a particular group of
Windows messages.

Chapter 6, "Messages directory," contains an alphabetical list of
Windows messages. The documentation for each message states
the message's purpose, lists its input parameters, and describes its
return value (if one exists). For some messages, additional
information the developer needs in order to use those messages is
given.

Volume 2 Volume 2 contains reference material for other components of the
Windows APLIt contains nine chapters and three appendixes:

Chapter 7, II Data types and structures," contains a table of data
types and an alphabetical list of structures found in Windows.

Chapter 8, "Resource script statements, II describes the
statements that define resources which the Resource Compiler
adds to an application's executable file. The statements are
arranged according to functional groups.

Chapter 9, II File formats," describes the formats of five types of
files: bitmap files, icon resource files, cursor resource files,
clipboard files, and metafiles. Each description gives the general
file structure and information about specific parts of the file.

7

Chapter 10, "Module-definition statements," describes the
statements contained in the module-definition file that defines the
application's contents and system requirements for the LINK
program.

Chapter 11, "Binary and ternary raster-operation codes, II
describes the raster operations used for line output and those
used for bitmap output.

Chapter 12, "Printer escapes," lists the printer escapes that are
available in Windows.

Chapter 13, "Windows DDE protocol definition," contains an
alphabetical listing and description of the Windows messages
which comprise the Windows Dynamic Data Exchange protocol.

Appendix A, "Virtual-key codes, II lists the symbolic names and
hexadecimal values of Windows virtual-key codes and includes a
brief description of each key.

Appendix B, II RC diagnostic messages, II contains a listing of
Resource Compiler error messages and provides a brief
description of each message.

Document conventions Throughout this manual, the term "DOS" refers to both MS-DOS®
and PC-DOS, except when noting features that are unique to one
or the other.

8

Table 0.2
Document conventions

The following document conventions are used throughout this
manual:

Convention

Bold text

()

Italic text

Description of Convention

Bold letters indicate a specific term or
punctuation mark intended to be used
literally: language key words or functions
(such as EXETYPE or CreateWindow), DOS
commands, and command-line options (such
as /Zi). You must type these terms and
punctuation marks exactly as shown.
However, the use of uppercase or lowercase
letters is not always significant. For instance,
you can invoke the linker by typing either
LINK, link, or Link at the DOS prompt.
In syntax statements, parentheses enclose one
or more parameters that you pass to a
function.
Words in italics indicate a placeholder; you are
expected to provide the actual value. For
example, the following syntax for the

Software development kit

Table 0.3
Windows API guide

Introduction

Table 0.2: Document conventions (continued)

Monospaced type

[[]]

{ }

SMALL CAPITAL LETTERS

3.0

Title

Reference

SetCursorPos function indicates that you
must substitute values for the X and Y
coordinates, separated by a comma:
SetCursorPos(X, Y)
Code examples are displayed in a
nonproportional typeface.
Vertical ellipses in program examples
indicate that a portion of the program is
omitted.
Ellipses following an item indicate that more
items having the same form may appear. In
the following example, the horizontal ellipses
indicate that you can specify more than one
breakaddress for the 9 command:
9 [[=startaddress]] [[breakaddress]] ...
Double brackets enclose optional fields or
parameters in command lines and syntax
statements. In the following example, option
and executable-file are optional parameters of
the RC command:
RC [[option]] filename [[executable-file]]
A vertical bar indicates that you may enter
one of the entries shown on either side of the
bar. The following command-line syntax
illustrates the use of a vertical bar:
DB [[address I range]]
The bar indicates that following the Dump
Bytes command (DB), you can specify either
an address or a range.
Quotation marks set off terms defined in the
text.
Curly braces indicate that you must specify
one of the enclosed items.
Small capital letters indicate the names of keys
and key sequences, such as:
ALT + SPACEBAR
A Microsoft Windows version number
indicates that a function, message, or data
structure is compatible only with the specified
version and later versions.

Contents

Is a comprehensive guide to all the details of the
Microsoft Windows application program
interface (API). The Reference lists in alphabetical
order all the current functions, messages, and
data structures of the API, and provides
extensive overviews on how to use the API.

9

The Windows API guide will answer many of your programming
questions. This book provides information on each Windows
application programming interface (API) and describes its calls
and services.

Other recommended reading

10

The following books are recommended for efficient Windows
programming:

Programming Windows. Charles Petzold. 862 pages, softcover. An
updated second edition will be available in October 1990.

Windows: Programmer's Problem Solver. Richard Wilton. 400 pages,
softcover. Available November 1990.

Microsoft C Run-Time Library Reference. Covers version 6. Microsoft
Corporation. 852 pages, softcover.

Software development kit

p A R T

1

Windows functions

Part 1 describes the functions that are the core of the Windows
application programmer interface (API). You use these functions
as part of a c- or assembly-language program to create an
application that takes advantage of Windows' user-interface,
graphics and multitasking capabilities.

11

12 Software development kit

c H A p T E R

1

Window manager interface functions

This chapter describes the Microsoft Windows functions that
process messages, create, move, or alter a window, or create
system output. These functions constitute the window manager
interface. This chapter describes the following topics:

[J Message functions
13 Window-creation functions
iii Display and movement functions
[J Input functions
E:I Hardware functions
C1 Painting functions
[J Dialog box functions
[J Scrolling functions
[J Menu functions
[J Information functions
[J System functions
[J Clipboard functions
[J Error functions
1:1 Caret functions
[J Cursor functions
I'l Hook functions
[J Property functions
IJ Rectangle functions

Chapter 1, Window manager interface functions 13

Message functions

14

Message functions read and process Windows messages in an
application's queue. Messages represent a variety of input to a
Windows application. A message is a data structure that contains
a message identifier and message parameters. The content of the
parameters varies with the message type. The following list
briefly describes each function:

Function

CallWindowProc

DispatchMessage

GetMessage

GetMessagePos

GetMessageTime

InSendMessage

PeekMessage

PostAppMessage
PostMessage
PostQuitMessage

ReplyMessage
Send Message
SetMessageQueue

TranslateAccelerator

TranslateMDISysAccel

TranslateMessage

WaitMessage
WinMain

Description

Passes message information to the specified
function.
Passes a message to a window function of
the specified window.
Retrieves a message from the specified
range of messages.
Returns the position of the mouse at the
time the last message was retrieved.
Returns the time at which the last message
was retrieved.
Determines whether the current window
function is processing a message passed to
it through a call to the Send Message
function.
Checks the application queue and places
the message appropriately.
Posts a message to the application.
Places a message in the application queue.
Posts a WM_ QUIT message to the
application.
Replies to a message.
Sends a message to a window or windows.
Creates a new message queue of a different
size.
Processes keyboard accelerators for menu
commands.
Processes multiple document interface
(MDI) child window command
accelera tors.
Translates virtual key-stroke messages into
character messages.
Yields control to other applications.
Serves as an entry point for execution of a
Windows application.

Software development kit

Generating and
processing
messages

Windows generates a message at each input event, such as when
the user moves the mouse or presses a keyboard key. Windows
collects these input messages in a system-wide queue and then
places these messages, as well as timer and paint messages, in an
application's queue. The application queues are first-in/ first-out
queues that belong to individual applications; however, timer and
paint messages are held in the queue until the application has
processed all other messages. Windows places messages that
belong to a specific application in that application's queue. The
application then reads the messages by using the GetMessage
function and dispatches them to the appropriate window function
by using the DispatchMessage function.

Windows sends some messages directly to an application's
window function, without placing them in the application queue.
Such messages are called unqueued messages. In general, an
unqueued message is any message that affects the window only.
The SendMessage function sends messages directly to a window.

For example, the CreateWindow function directs Windows to
send a WM_CREATE message to the window function of the
application and to wait until the message has been processed by
the window function. Windows sends this message directly to the
function and does not place it in the application queue.

Although most messages are generated by Windows, applications
can create their own messages and place them in the application
queues of other applications.

An application can pull messages from its queue by using the
GetMessage function. This function searches the application
queue for messages and, if a message exists, returns the top
message in the application queue. If the application queue is
empty, GetMessage waits for a message to be placed in the queue.
While waiting, GetMessage relinquishes control to Windows,
allowing other applications to take control and process their own
messages.

Once a main function has a message from a queue, it can dispatch
the message to a window function by using the DispatchMessage
function. This function directs Windows to call the window
function of the window associated with the message, and then
passes the content of the message as function arguments. The

Chapter 7, Window manager interface functions 15

16

window function can then process the message and carry out any
requested changes to the window. When the window function
returns, Windows returns control to the main function. The main
function can then pull the next message from the queue.

_ Unless noted otherwise, Windows can send messages in any
sequence. An application should not rely on receiving messages
in a particular order.

Translating

Windows generates a virtual-key message each time the user
presses a keyboard key. The virtual-key message contains a
virtual-key code that defines which key was pressed, but does not
define the character value of that key. To retrieve the character
value, the main function must translate the virtual-key message
by using the TranslateMessage function. This function puts
another message with an appropriate character value in the
application queue. The message can then be dispatched to a
window function.

messages In general, a main function should use the TranslateMessage
function to translate every message, not just virtual-key messages.
Although TranslateMessage has no effect on other types of
messages, it guarantees that any keyboard input is translated
correctly.

The following program fragment illustrates the typical loop that a
main function uses to pull messages from the queues and
dispatch them to window functions:

int PASCAL WinMain(hlnstance, hPrevlnstance, lpCmdLine, nShowCmd)
HANDLE hlnstance;
HANDLE hPrevlnstance;
LPSTR lpCmdLine;
int nShowCmd;

MSG msg;

while (GetMessage((LPMSG)&msg, NULL, 0, 0))
{

TranslateMessage((LPMSG)&msg);
DispatchMessage((LPMSG)&msg);

exit(msg.wParam);

Software development kit

Examining

Applications that use accelerator keys must load an accelerator
table from the resource file by using the LoadAccelerator
function, and then translate

keyboard messages into accelerator-key messages by using the
Translate-Accelerator function. The main loop for applications
that use accelerator keys should have the following form:

while (GetMessage ((LPMSG) &msg, (HWND) NULL, 0, 0))
{

if (TranslateAccelerator(hWindow, hAccel, ((LPMSG)&msg) == 0)
{

}

}

TranslateMessage((LPMSG)&msg);
DispatchMessage((LPMSG)&msg);

exit(msg.wParam);

The TranslateAccelerator function must appear before the
standard TranslateMessage and DispatchMessage functions.
Furthermore, since TranslateAccelerator automatically dispatches
the accelerator message to the appropriate window function, the
TranslateMessage and DispatchMessage functions should not be
called if TranslateAccelerator returns a nonzero value.

messages An application can use the PeekMessage function when it checks
the queues for messages but does not want to pull the message
from the queue. The function returns a nonzero value if a message
is in the queue, and lets the application retrieve the message and
process it without going through the application's main loop.

Sending

Typically, an application uses PeekMessage to check periodically
for messages when the application is carrying out a lengthy
operation, such as processing input and output. For example, this
function can be used to check for messages that terminate the
operation. PeekMessage also gives the application a chance to
yield control if no messages are present because PeekMessage
can yield if no messages are in the queue.

messages The Send Message and PostMessage functions let applications
pass messages to their windows or to the windows of other
applications.

Chapter 7, Window manager interface functions 17

18

Avoiding
message

deadlocks

The PostMessage function directs Windows to post the message
by placing it in the application queue. Control returns
immediately to the calling application, and any action to be
carried out as a result of the message does not occur until the
message is read from the queue.

The SendMessage function directs Windows to send a message
directly to the given window function, bypassing the application
queue. Windows does not return control to the calling application
until the window function that receives the message processes the
message.

When an application transmits a message, it must send the
message by calling Send Message if the application relies on the
return value of a message. The return value of SendMessage is
the same as the return value of the function that processed the
message. PostMessage returns immediately after sending the
message, so its return value is only a Boolean value indicating
whether the message was successfully sent and so does not
indicate how the message was processed.

Windows communicates with applications through window
messages. The messages are passed (sent or posted) to an
application's window function to let the function process the
messages as desired. Although an application's main function
may read and dispatch window messages, in most cases only the
window function processes them.

An application can create a deadlock condition in Windows if it
yields control while processing a message sent from another
application (or by Windows on behalf of another application) by
means of the Send Message function. The application does not
have to yield explicitly. Calling anyone of the following functions
can result in the application yielding control:

II DialogBox
II DialogBoxlndirect
• DialogBoxlndirectParam
• DialogBoxParam
• GetMessage
• MessageBox
• PeekMessage
a Yield

Software development kit

Normally a task that calls Send Message to send a message to
another task will not continue executing until the window
procedure that receives the message returns. However, if a task
that receives the message yields control, Windows can be placed
in a deadlock situation where the sending task needs to execute
and process messages but cannot because it is waiting for
Send Message to return.

A window function can determine whether a message it receives
was sent by Send Message by calling the InsendMessage
function. Before calling any of the functions listed above while
processing a message, the window function should first call
InsendMessage. If InsendMessage returns TRUE, the window
function must call the ReplyMessage function before calling any
function that yields control.

As an alternative, can use a system modal dialog box or message
box. Because system modal windows prevent other windows
from receiving input focus or messages, an application should use
system modal windows only when necessary.

Window-creation functions

Window-creation functions create, destroy, modify, and obtain
information about windows. The following list briefly describes
each window-creation function:

Function

AdjustWindowRect

AdjustWindowRectEx

CreateWindow

CreateWindowEx

DefDlgProc

DefFrameProc

DefMDIChildProc

Chapter 7, Window manager interface functions

Description

Computes the size of a window to fit a
given client area.
Computes the size of a window with
extended style to fit a given client area.
Creates overlapped, pop-up, and child
windows.
Creates overlapped, pop-up, and child
windows with extended styles.
Provides default processing for those
dialog-box messages that an application
does not process.
Provides default processing for those
multiple document interface (MDI) frame
window messages that an application does
not process.
Provides default processing those for MDI
child window messages an that application
does not process.

19

Window classes

20

DefWindowProc

DestroyWindow
GetClasslnfo

GetClassLong

GetClassName
GetClassWord

GetLastActivePopup

GetWindowLong
GetWindowWord
RegisterClass
SetClassLong

SetClassWord

SetWindowLong
SetWindowWord
UnregisterClass

Provides default processing for those
window messages that an DefWindowProc
function
Destroys a window.
Retrieves information about a specified
class.
Retrieves window-class information from a
WNDCLASS structure.
Retrieves a window-class name.
Retrieves window-class information from a
WNDCLASS structure.
Determines which popup window owned
by another window was most recently
active.
Retrieves information about a window.
Retrieves information about a window.
Registers a window class.
Replaces information in a WNDCLASS
structure.
Replaces information in a WNDCLASS
structure.
Changes a window attribute.
Changes a window attribute.
Removes a window class from the
window-class table.

A window class is a set of attributes that defines how a window
looks and behaves. Before an application can create and use a
window, it must define and register a window class for that
window. An application registers a class by passing values for
each element of the class to the RegisterClass function. Any
number of window classes can be registered. Once a class has
been registered, Windows lets the application create any number
of windows belonging to that class. The registered class remains
available until it is deleted or the application terminates.

Although the complete window class consists of many elements,
Windows requires only that an application supply a class name,
an address to the window procedure that will process all
messages sent to windows belonging to this class, and an instance
handle that identifies the application that registered the class. The
other elements of the window class define default attributes for
windows of the class, such as the shape of the cursor and the
content of the menu for the window.

There are three types of window classes. They differ in scope and
in when they are created and destroyed.

Software development kit

System global classes

Application global
classes

Application local
classes

How Windows

Windows creates system global classes when it starts. These
classes are available for use by all applications at all times.
Because Windows creates system global classes on behalf of all
applications, an application cannot create or destroy any of these
classes. Examples of system global classes include edit-control
and list-box control classes.

An application or (more likely) a library creates an application
global class by specifying the CS_GLOBALCLASS style for the
class. Once created, it is globally available to all applications
within the system. Most often, a library creates an application
global class so that applications which call the library can use the
class. Windows destroys an application global class when the
application or library that created it terminates. For this reason, it
is essential that all applications destroy all windows using that
class before the library or application that created the class
terminates.

An application local class is any window class created by an
application for its exclusive use. This is the most common type of
class created by an application.

locates a class When an application creates a window with a specified class,
Windows uses the following algorithm to find the class:

1. Windows searches for a local class of the specified name.

2. If Windows does not find a local class with the name, then it
searches the application global class list.

3. If Windows does not find the name in the application global
class list, then it searches the system global class list.

This procedure is used for all windows created by the application,
including windows created on the application's behalf, such as
dialog controls. It is possible, then, to override system global
classes without affecting other applications.

Chapter 1, Window manager interface functions 21

How Windows
determines the

owner of a class

Registering a
Window class

Shared Window
classes

See "Application global
classes, " on page 21 for more

information.

Predefined

Windows determines class ownership from the hlnstance field of
the WNDCLASS structure passed to the RegisterClass function
when the application or library registers the class. For Windows
libraries, this must be the instance handle of the library. When the
application that registered the class terminates or the library that
registered the class is unloaded, the class is destroyed. For this
reason, all windows using the class must be destroyed before the
application or library terminates.

When Windows registers a window class, it copies the attributes
into its own memory area. Windows uses the internally stored
attributes when an application refers to the window class by
name; it is not necessary for the application that originally
registered the class to keep the structure available.

Applications must not share registered classes with other
applications. Some information in a window class, such as the
address of the window function, is specific to a given application
and cannot be used by other applications. However, applications
can share an application global class.

Although applications must not share registered classes, different
instances of the same application can share a registered class.
Once a window class has been registered by an application, it is
available to all subsequent instances of that application. This
means that new instances of an application do not need to, and
should not, register window classes that have been registered by
previous instances.

Window classes Windows provides several predefined window classes. These
classes define special control windows that carry out common
input tasks that let the user input text, direct scrolling, and select
from a list of names. The predefined window classes are available
to all applications and can be used any number of times to create
any number of these control windows.

22 Software development kit

Elements of a
Window class The elements of the window class define the default behavior of

the windows created from that class. The application that
registers the window class assigns elements to the class by setting
appropriate fields in a WNDCLASS data structure and passing the
structure to the RegisterClass function. An application can
retrieve information about a given window class with the
GetClasslnfo function.

Table 1.1 shows the window class elements.

Table 1.1
Window class elements Element

Class name

Window-function address

Instance handle

Class cursor

Class icon

Class background brush

Class menu

Class styles

Class extra

Window extra

Chapter 7 I Window manager interface functions

Purpose

Distinguishes the class from other
registered classes.
Points to the function that processes all
messages that are sent to windows in the
class, and defines the behavior of the
window.
Identifies the application that registered the
class.
Defines the shape of the cursor when the
cursor is in a window of the class.
Defines the shape of the icon Windows
displays when a window belonging to the
class is closed.
Defines the color and pattern Windows
uses to fill the client area when the window
is opened or painted.
Specifies the default menu used for any
window in the class that does not explicitly
define a menu.
Defines how to update the window after
moving or resizing, how to process
double-clicks of the mouse, how to allocate
space for the display context, and other
aspects of the window.
Specifies the amount of memory (in bytes)
that Windows should reserve at the end of
the class data structure.
Specifies the amount of memory (in bytes)
that Windows should reserve at the end of
any window structure an application
creates with this class.

23

24

The following sections describe the elements of a window class
and explain the default values for these elements if no explicit
value is given when the class is registered.

Class name Every window class needs a class name. The class name
distinguishes one class from another. An application assigns a
class name to the class by setting the IpszClassName field of the
WNDCLASS structure to the address of a null-terminated string
that contains the name.

Window-function
address

See Chapter 70, "Module­
definition statements," in

Reference, Volume 2, for
more information on

exporting functions. For
details about the window

function, see page 30.

Instance handle

In the case of an application global class, the class name must be
unique to distinguish it from other application global classes. If an
application registers another application global class with the
name of an existing application global class, the RegisterClass
function returns FALSE, indicating failure. A conventional
method for ensuring this uniqueness is to include the application
name in the name of the application global class.

The class name must be unique among all the classes registered
by an application. An application cannot register an application
local class and an application global class with the same class
name.

Every class needs a window-function address. The address
defines the entry point of the window function that is used to
process all messages for windows in the class. Windows passes
messages to the function when it wants the window to carry out
tasks, such as painting its client area or responding to input from
the user. An application assigns a window function address by
copying the address to the IpfnWndProc field of the WNDCLASS
structure. The window function must be exported in the module­
definition (.DEF) file.

Every window class needs an instance handle to identify the
application that registered the class. As a multitasking system,
Windows lets several applications run at the same time, so it
needs instance handles to keep track of all applications. Windows
assigns a unique handle to each copy of a running application.

Windows passes an instance handle to an application when the
application first begins operation. The application assigns this
instance handle to the class by copying it to the hlnstance field of
the WNDCLASS structure.

Software development kit

Class cursor The class cursor defines the shape of the cursor when the cursor is
in the client area of a window in the class. Windows automatically
sets the cursor to the given shape as soon as the cursor enters the
window's client area, and ensures that the cursor keeps that shape
while it remains in the client area. To assign a cursor shape to a
window class, an application typically loads the shape from the
application's resources by using the LoadCursor function, and
then assigns the returned cursor handle to the hCursor field of the
WNDCLASS structure.

Windows does not require a class cursor. If a class cursor is not
defined, Windows assumes that the window will set the cursor
shape each time the cursor moves into the window.

Class icon The class icon defines the shape of the icon used when the
window of the given class is minimized. To assign an icon to a
window class, an application typically loads the icon from the
application's resources by using the Loadleon function, and then
assigns the returned icon handle to the hleon field of the
WNDCLASS structure.

Class background
brush

Windows does not require a class icon. If a class icon is not
defined, Windows assumes the application will draw the icon
whenever the window is minimized. In this case, Windows sends
appropriate messages to the window procedure, requesting that
the icon be painted.

A class background brush is the brush used to prepare the client
area of a window for subsequent drawing by the application.
Windows uses the brush to fill the client area with a solid color or
pattern, thereby removing all previous images from that location
whether they belonged to the window or not.

To assign a background brush to a class, an application typically
creates a brush by using the appropriate functions from GOI, and
then assigns the returned brush handle to the hbrBaekground
field of the WNDCLASS structure.

Instead of creating a brush, an application can use a standard
system color by setting the field to one of the following color
values:

[J COLOR_ACTIVE CAPTION
[J COLOR_APPWORKSPACE

Chapter 1, Window manager interface functions 25

26

• COLOR_BACKGROUND
• COLOR_BTNFACE
• COLOR_BTNSHADOW
• COLOR_BTNTEXT
• COLOR_CAPTIONTEXT
• COLOR_GRAYTEXT
• COLOR_HIGHLIGHT
• COLOR_HIGHLIGHTTEXT
.. COLOR_INACTIVECAPTION
m COLOR_MENU
II COLOR_MENUTEXT
II COLOR_SCROLLBAR
II COLOR_WINDOW
II COLOR_ WINDOWFRAME
• COLOR_ WINDOWTEXT

To use a standard system color, the application must increase the
background-color value by one. COLOR_BACKGROUND + 1 is
the system background color, for example.

Class menu A class menu defines the default menu to be used by the windows
in the class if no explicit menu is given when the windows are
created. A menu is a list of commands that appears at the top of a
window, under the title bar, from which a user can select actions
for the application to carry out. To assign a menu to a class, an
application sets the IpszMenuName field of the WNDCLASS
structure to the address of a null-terminated string that contains
the resource name of the menu. The menu is assumed to be a
resource in the given application. Windows automatically loads
the menu when it is needed. Note that if the menu resource is
identified by an integer and not by a name, the IpszMenuName
field can be set to that integer value by applying the
MAKEINTRESOURCE macro before assigning the value.

Windows does not require a class menu. If a menu is not given,
Windows assumes that the windows in the class have no menu
bars. Even if no class menu is given, an application can still define
a menu bar for a window when it creates the window.

Windows does not allow menu bars with child windows. If a
menu is given and a child window is created using the class, the
menu is ignored.

Software development kit

Class styles

Table 1.2
Window class styles

The class styles define additional elements of the window class.
Two or more styles can be combined by using the bitwise OR
operator. Table 1.2 lists the class styles:

Style

CS _BYTEALIGNCLIENT

CS_BYTEALIGNWINDOW

CS_CLASSDC

CS_DBLCLKS

CS_GLOBALCLASS

CS_NOCLOSE
CS_OWNDC

CS_PARENTDC

CS_SAVEBITS

CS_VREDRAW

Description

Aligns the window's client area on a byte
boundary (in the x direction).
Aligns the window on a byte boundary
(in the x direction).
Allocates one display context to be shared
by all windows in the class.
Sends double-click messages to the
window function.
Specifies that the window class is an
application global class. An application
global class is created by an application or
library and is available to all applications.
The class is destroyed when the
application or library that created the
class terminates; it is essential, therefore,
that all windows created with the
application global class be closed before
this occurs.
Requests that the entire client area be
redrawn if a movement or adjustment to
the size changes the client area.
Inhibits the System menu close option.
Allocates a unique display context for
each window in the class.
Gives the parent window's display
context to the window class.
Saves the portion of the screen image that
is obscured by a window; Windows uses
the saved bitmap to re-create the screen
image when the window is removed.
Windows displays the bitmap at its
original location and does not send
WM_PAINT messages to windows which
had been obscured by the window if the
memory used by the bitmap has not been
discarded and if other screen actions have
not invalidated the stored image.
Requests that the entire client area be
redrawn if a movement or adjustment to
the size changes the height of the client
area.

Chapter 7, Window manager interface functions 27

28

Internal data

To assign a style to a window class, an application assigns the
style value to the style field of the WNDCLASS structure.

structures Windows maintains internal data structures for each window
class and window. These structures are not directly accessible to
applications but can be examined and modified by using the
following functions:

Window

II GetClasslnfo
II GetClassLong
II GetClassName
iii GetClassWord
II GetWindowLong
• GetWindowWord
• SetClassLong
II SetClassWord
• SetWindowLong
m SetWindowWord

The following section describes some ways in which a window
class or window can be modified.

subclassing A subclass is a window or set of windows that belong to the same
window class, and whose messages are intercepted and processed
by another window function (or functions) before being passed to
the class window function.

To create the subclass, the SetWindowLong function is used to
change the window function associated with a particular window,
causing Windows to call the new window function instead of the
previous one. Any messages not processed by the new window
function must be passed to the previous window function by
calling the CallWindowProc function. This allows Windows to
create a chain of window functions. The address of the previous
window function can be retrieved by using the GetWindowLong
function before using SetWindowLong.

Similarly, the SetClassLong function changes the window
function associated with a window class. Any window that is
subsequently created with that class will be associated with the
replacement window function for that class, as will the window
whose handle is passed to SetClassLong. Other existing windows

Software development kit

Redrawing the
client area

Class and private
display contexts

that were previously created with the class are not affected,
however.

When you subclass a window or class of windows, you must
export the replacement window procedure in your application's
definition file, and you must create the address of the procedure
which you pass to SetWindowLong or SetClassLong by calling
the MakeProclnstance function.

An application should not attempt to create a window subclass
for standard Windows controls such as combo boxes and buttons.

When a window is moved, Windows automatically copies the
contents of the client area to the new location. This saves time
because a window does not have to recalculate and redraw the
contents of the client area as part of the move. If the window
moves and changes size, Windows copies only as much of the
previous client area as is needed to fill the new location. If the
window increases in size, Windows copies the entire client area
and sends a WM_P AINT message to the window to fill in the
newly exposed areas. When a window is moved, Windows
assumes the contents of the client area remain valid and can be
copied without ri,.odification to the new location.

For some windows, however, the contents of the client area are
not valid after a move, especially if the move includes a change in
size. For example, a clock application whose window must always
contain the complete image of the clock has to redraw the
window anytime the window changes size, and has to update the
time after the move. To prevent the windows from copying the
previous contents of the client area, a window should specify the
CS_ VREDRAW and CS_HREDRAW styles in the window class.

A display context is a special set of values that applications use
for drawing in the client area of their windows. Windows requires
a display context for each window on the system display, but
allows some flexibility in how that display context is stored and
treated by the system.

If no explicit display-context style is given, Windows assumes
that each window will use a display context retrieved from a pool
of contexts maintained by Windows. In such cases, each window

Chapter 1, Window manager interface functions 29

Window function

30

must retrieve and initialize the display context before painting,
and then free it after painting.

In order not to retrieve a display context each time it wants to
paint in a window, an application can specify the CS_OWNDC
style for the window class. This class style directs Windows to
create a private display context, that is, to allocate a unique
display context for each window in the class. The application
need only retrieve the context once, and then use it for all
subsequent painting. Although the CS_OWNDC style is
convenient, it must be used carefully because each display context
occupies approximately 800 bytes of memory in the GDI heap.

By specifying the CS_CLASSDC style, an application can have
some of the convenience of a private display context without
allocating a separate display context for each window. The
CS_CLASSDC style directs Windows to create a single class
display context, that is, one display context to be shared by all
windows in the class. An application need only retrieve the
display context for a window; then as long as no other window in
the class retrieves that display context, the window can continue
to use the context.

Similarly, by specifying the CS_PARENTDC style, an application
can create child windows that inherit the device context of their
parent.

A window function processes all messages sent to a window in a
given class. Windows sends messages to a window function when
it receives input from the user that is intended for the given
window, or when it needs information or the procedure to carry
out some action on its window, such as painting in the client area.

A window function receives input messages from the keyboard,
mouse, and timer. It receives requests for information, such as a
request for the window title. It receives reports of changes made
to the system by other windows, such as a change to the WIN.lNI
file. It receives messages that give it an opportunity to modify the
standard system response to certain actions, such as an
opportunity to adjust a menu before it is displayed. It receives
requests to carry out some action on its window or client area,
such as a request to update the client area. And a window
function receives information about its status in relation to other

Software development kit

windows, such as losing access to the keyboard or becoming the
active window.

Most of the messages a window function receives are from
Windows, but it can also receive messages from other windows,
including windows it owns. These messages can be requests for
information or notification that a given event has occurred within
another window.

A window function continues to receive messages from the
system and possibly other windows in the system until it, or the
window function of a parent window, or the system destroys the
window. Even in the process of being destroyed, the window
function receives additional messages that give it the opportunity
to carry out any clean-up tasks before terminating. But once the
window is destroyed, no more messages are passed to the
function for that particular window. If there is more than one
window of the class, however, the window function continues to
receive messages for the other windows until they, too, are
destroyed.

A window function defines how a given window actually
behaves; that is, it defines what response the window makes to
commands from the user or system. The messages the window
function receives from the system contain information that the
function knows; for example, the user clicked the scroll bar or
selected the Open command in the File menu, or double-clicked
in the client area. The window function must examine these
messages and determine what action, if any, to take. For example,
if the user clicks the scroll bar, the window function may scroll the
contents of the client area. Windows provides detailed
information about what happens and provides some tools to carry
out tasks, such as drawing and scrolling, but the window function
must carry out the actual task.

A window function can also choose not to respond to a given
message. If it does not respond, the function must give the system
the opportunity to respond by passing the message to the
DefWindowProc function. This function carries out default actions
based on the given message and its parameters. Many messages,
especially nonclient-area messages, must be processed, so the
DefWindowProc function is required in all window functions.

A window function also receives messages that are really
intended to be processed by the system. These messages, called
nonclient-area messages, inform the function either that the user

Chapter 1, Window manager interface functions 31

32

has carried out some action in a non client area of the window,
such as clicking the title bar, or that some information about the
window is required by the system to carry out an action, such as
for moving or adjusting the size of the window. Although
Windows passes these messages to the window function, the
function should pass them to the DefWindowProc function and
not attempt to process them. In any case, the window procedure
must not ignore the message or return without passing it to
DefWindowProc.

Window messages A window message is a set of values that Windows sends to a
window function when it requests some action or informs the
window of input. Every message consists of four values: a handle
that identifies the window, a message identifier, a 16-bit message­
specific value, and a 32-bit message-specific value. These values
are passed as individual parameters to the window function. The
window function then examines the message identifier to
determine what response to make and how to interpret the 16-
and 32-bit values.

Windows has a wide variety of messages that it or applications
can send to a window function. Most messages are sent to a
window as a result of a given function being executed or as input
from the user.

To send a message to a window procedure, Windows expects the
window function to have four parameters and use the Pascal
calling convention. The following illustrates the window
procedure syntax:

LONG FAR PASCAL WndProc(hWnd, wMsg, wParam,lParam)
HWNDhWnd;
WORDwMsg;
WORD wParam;
DWORD IParam;

The h Wnd parameter identifies the window receiving the
message; the wMsg parameter is the message identifier; the
wParam parameter is 16 bits of additional message-specific
information; and IParam is 32 bits of additional information. The
window procedure must return a 32-bit value that indicates the
result of message processing. The possible return values depend
on the actual message sent.

Windows expects to make an intersegment call to the window
function, so the function must be declared with the FAR attribute.

Software development kit

Default window
function

Table 1.3
Default actions for messages

The window-function name must be exported by including it in
an EXPORTS statement in the application's module-definition file.

The DefWindowProc function is the default message processor for
window functions that do not or cannot process some of the
messages sent to them. For most window functions, the
DefWindowProc function carries out most, if not all, processing of
nonclient-area messages. Those are the messages that signify
actions to be carried out on parts of the window other than the
client area. Table 1.3 lists the messages DefWindowProc processes
and the default actions for each:

Message

WM_ACTIV ATE
WM_ CANCELMODE

WM_CLOSE
WM_CTLCOLOR

WM_ERASEBKGND

WM_GETTEXT

WM_ GETTEXTLENGTH

WM_ICONERASEBKGND

WM_NCACTIV ATE

WM_NCCALCSIZE
WM_NCCREATE

WM_NCDESTROY

WM_NCHITTEST

WM_NCLBUTTONDBLCLK

WM_NCLBUTTONDOWN

Default Action

Sets or kills the input focus.
Terminates internal processing of
standard scroll bar input, terminates
internal menu processing, and releases
mouse capture.
Calls the DestroyWindow function.
Sets the background and text color and
returns a handle to the brush used to fill
the control background.
Fills the client area with the color and
pattern specified by the class brush, if
any.
Copies the window title into a specified
buffer.
Returns the length (in characters) of the
window title.
Fills the icon client area with the
background brush of the parent window.
Activates or deactivates the window and
draws the icon or title bar to show the
new state.
Computes the size of the client area.
Initializes standard scroll bars, if any, and
sets the default title for the window.
Frees any space internally allocated for
the window title.
Determines what part of the window the
mouse is in.
Tests the given point to determine the
location of the mouse and, if necessary,
generates additional messages.
Determines whether the left mouse
button was pressed while the mouse was
in the nonclient area of a window.

Chapter 7, Window manager interface functions 33

Window styles

Table 1.3: Default actions for messages (continued)

WM_NCLBUTTONUP

WM_NCMOUSEMOVE

WM_NCPAINT
WM_PAINT

WM_PAINTICON

WM_ QUERYENDSESSION
WM_QUERYOPEN
WM_SETREDRAW

WM_SETTEXT
WM_SHOWWINDOW
WM_SYSCHAR

WM_SYSCOMMAND

WM_SYSKEYDOWN

Tests the given point to determine the
location of the mouse and, if necessary,
generates additional messages.
Tests the given point to determine the
location of the mouse and, if necessary,
generates additional messages.
Paints the nonclient parts of the window.
Validates the current update region, but
does not paint the region.
Draws the window class icon when a
window is minimized.
Returns TRUE.
Returns TRUE.
Forces an immediate update of
information about the clipping area of the
complete window.
Sets and displays the window title.
Opens or closes a window.
Generates a WM_SYSCOMMAND
message for menu input.
Carries out the requested system
command.
Examines the given key and generates a
WM_SYSCOMMAND message if the key
is either TAB or ENTER.

Windows provides several different window styles that can be
combined to form different kinds of windows. The styles are used
in the CreateWindow function when the window is created.

Overlapped windows An overlapped window is always a top-level window. In other
words, an overlapped window never has a parent window. It has
a client area, a border, and a title bar. It can also have a System
menu, minimize/maximize boxes, scroll bars, and a menu, if
these items are specified when the window is created. For
windows used as a main interface, the System menu and
minimize/maximize boxes are strongly recommended.

34

Every overlapped window can have a corresponding icon that
Windows displays when the window is minimized. A minimized
window is not destroyed. It can be opened again by restoring the
icon. An application minimizes a window to save screen space
when several windows are open at the same time.

Software development kit

You create an overlapped window by using the
WS_OVERLAPPED or WS_OVERLAPPEDWINDOW style with
the CreateWindow function. An overlapped window created with
the WS_OVERLAPPED style always has a caption and a border.
The WS_OVERLAPPEDWINDOW style creates an overlapped
window with a caption, a thick-frame border, a system menu, and
minimize and maximize boxes.

Owned windows An owned window is a special type of overlapped window. Every
owned window has an owner. This owner must also be an
overlapped window. Being owned forces several constraints on a
window:

IJ An owned window will always be "above" its owner when the
windows are ordered. Attempting to move the owner above the
owned window will cause the owned window to also change
position to ensure that it will always be above its owner.

IJ Windows automatically destroys an owned window when it
destroys the window's owner.

IJ An owned window is hidden when its owner is minimized.

An application creates an owned window by specifying the
owner's window handle as the h WndParent parameter of the
CreateWindow function when creating a window that has the
WS_OVERLAPPED style.

Dialog boxes are owned windows by default. The function that
creates the dialog box receives the handle of the owner window as
its h WndParent parameter.

Pop-up windows Pop-up windows are another special type of overlapped window.
The main difference between a pop-up window and an
overlapped window is that an overlapped window always has a
caption, while the caption bar is optional for a pop-up window.
Like overlapped windows, pop-up windows can be owned.

You create a pop-up window by using the WS_POPUP window
style with the CreateWindow function. A pop-up window can be
opened and closed by using the ShowWindow function.

Child windows A child window is the window style used for windows that are
confined to the client area of a parent window. Child windows
are typically used to divide the client area of a parent window
into different functional areas.

Chapter 1, Window manager interface functions 35

36

For information about
mapping, see "Mapping
functions" on page 700.

You create a child window by using the WS_CHILD window
style with the CreateWindow function. A child window can be
shown and hidden by using the ShowWindow function.

Every child window must have a parent window. The parent
window can be an overlapped window, a pop-up window, or
even another child window. The parent window relinquishes a
portion of its client area to the child window, and the child
window receives all input from this area. The window class does
not have to be the same for each of the child windows in the
parent window. This means an application can fill a parent
window with child windows that look different and carry out
different tasks.

A child window has a client area, but it does not have any other
features unless these are explicitly requested. An application can
request a border, title bar, minimize/maximize boxes, and scroll
bars for a child window. In most cases, the application designs its
own features for the child window.

Although not required, every child window should have a unique
integer identifier. The identifier, given in the menu parameter of
the CreateWindow function in place of a menu, helps identify the
child window when its parent window has many other child
windows. The child window should use this identifier in any
messages it sends to the parent window. This is the way a parent
window with several child windows can identify which child
window is sending the message.

Windows always positions the child window relative to the
upper left corner of the parent window's client area. The
coordinates are always client coordinates. If all or part of a child
window is moved outside the visible portion of the parent
window's client area, the child window is clipped; that is, the
portion outside the parent window's client area is not displayed.

A child window is an independent window that receives its own
input and other messages. Input intended for a child window
goes directly to the child window and is not passed through the
parent window. The only exception is if input to the child
window has been disabled by the EnableWindow function. In this
case, Windows passes any input that would have gone to the
child window to the parent window instead. This gives the parent
window an opportunity to examine the input and enable the child
window, if necessary.

Software development kit

Multiple
document

interface
windows

Actions that affect the parent window can also affect the child
window. The following is a list of actions affecting parent
windows that can affect child windows:

Parent Window

Shown
Hidden

Destroyed

Moved

Increased in size or
maximized

Child Window

Shown after the parent window.
Hidden prior to the parent window being
closed. A child window can be visible only
when the parent window is visible.
Destroyed prior to the parent window
being destroyed.
Moved with the parent window's client
area. The child window is responsible for
painting after the move.
Paints any portions of the parent window
that have been exposed as a result of the
increased size of the client area.

Windows does not automatically clip a child window from the
parent window's client area. This means the parent window will
draw over the child window if it carries out any drawing in the
same location as the child window. Windows does clip the child
window from the parent window's client area if the parent
window has a WS_CLIPCHILDREN style. If the child window is
clipped, the parent window cannot draw over it.

A child window can overlap other child windows in the same
client area. Two child windows of the same parent window may
draw in each other's client area unless one child window has a
WS_CLIPSIBLINGS style. Sibling windows are child windows
that share the same parent window. If the application specifies
this style for a child window, any portion of that child's sibling
window that lies within this window will be clipped.

If a window has either the WS_CLIPCHILDREN or
WS_CLIPSIBLINGS style, a slight loss in performance occurs.

Windows multiple document interface (MDI) provides
applications with a standard interface for displaying multiple
documents within the same instance of an application. An MDI
application creates a frame window which contains a client
window in place of its client area. An application creates an MDI
client window by calling CreateWindow with the class
MDICLIENT and passing a CLiENTCREATESTRUCT data
structure as the function's IpParam parameter. This client window

Chapter 1, Window manager interface functions 37

Title bar

System menu

Scroll bars

Menus

38

in turn can own multiple child windows, each of which displays a
separate document. An MDI application controls these child
windows by sending messages to its client window.

The title bar, a rectangle at the top of the window, provides space
for the window title or name. An application defines the window
title when it creates the window. It can also change this name
anytime by using the SetWindowText function. If a window has a
title bar, Windows lets the user use the mouse to move the
window.

The System menu, identified by an icon at the left end of the title
bar, is a pop-up menu that contains the system commands. The
system commands are commands selected by the user to direct
Windows to carry out actions on the window, such as moving and
closing it.

If a System menu or close box is desired for a window, the
WS_SYSMENU and WS_CAPTION window styles must be
specified when the window is created.

The horizontal and vertical scroll bars, bars on the right and lower
sides of a window, let a user scroll the contents of the client area.
Windows sends scroll requests to a window as WM_HSCROLL
and WM_ VSCROLL messages. If the window permits scrolling,
the window function must process these messages.

A window can have one or both scroll bars. To create a window
with a scroll bar, the application must specify the WS_HSCROLL
or WS_ VSCROLL window style when the window is created.

A menu is a list of commands from which the user can select
using the mouse or the keyboard. When the user selects an item,
Windows sends a corresponding message to the window function

Software development kit

to indicate which command was selected. Windows provides two
types of menus: menu bars (sometimes called static menus) and
pop-up menus.

A menu bar is a horizontal menu that appears at the top of a
window and below the title bar, if one exists. Any window except
a child window can have a menu bar. If an application does not
specify a menu when it creates a window, the window receives
the default menu bar (if any) defined by the window class.

Pop-up menus contain a vertical list of items and are often
displayed when a user selects a menu-bar item. In turn, a pop-up
menu item can display another pop-up menu. Also, a pop-up
menu can be "floating." A floating pop-up menu can appear
anywhere on the screen designated by the application. An
application creates an empty pop-up menu by calling the
CreatePopupMenu function, and then fills in the menu using the
AppendMenu and InsertMenu functions. It displays the pop-up
menu by calling TrackPopupMenu.

Individual menu items can be created or modified with the
MF _ OWNERDRA W style, indicating that the item is an owner­
draw item. In this case, the owner of the menu is responsible for
drawing all visual aspects of the menu item, including checked,
grayed, and highlighted states. When the menu is displayed for
the first time, the window that owns the menu receives a
WM_MEASUREITEM message. The IParam parameter of this
message points to a MEASUREITEMSTRUCT data structure. The
owner then fills in this data structure with the dimensions of the
item and returns. Windows uses the information in the data
structure to determine the size of the item so that Windows can
appropriately detect the user's interaction with the item.

Windows sends the WM_DRAWITEM message whenever the
owner of the menu must update the visual appearance of the
item. Unlike other owner-draw controls, however, the owner of
the menu item does not receive the WM_DELETEITEM message
when the menu item is removed from the menu. A top-level
menu item cannot be an owner-draw item.

When the application calls AppendMenu, InsertMenu, or
ModifyMenu to add an owner-draw menu item to a menu or to
change an existing menu item to be an owner-draw menu item,
the application can supply a 32-bit value as the IpNewItem
parameter to the function. The application can use this value to
maintain additional data associated with the item. This value is

Chapter 7, Window manager interface functions 39

40

Window state

Life cycle of a
window

available to the application as the item Data field of the structures
pointed to by the IParam parameter of the WM_MEASUREITEM
and WM_DRA WITEM messages. For example, if an application
were to draw the text in a menu item using a specific color, the
32-bit value could contain a pointer to a string. The application
could then set the text color before drawing the item when it
received the WM_DRA WITEM message.

The window state can be opened or closed (iconic), hidden or
visible, and enabled or disabled. The initial state of a window can
be set by using the following window styles:

cWS_DISABLED
c WS_MINIMIZE
c WS_MAXIMIZE
c WS _ VISIBLE

Windows creates windows that are initially enabled for input,
that is, windows that can start receiving input messages
immediately. In some cases, an application may need to disable
input to a new window. It can disable input by specifying the
WS_DISABLED window style.

A new window is not displayed until an application opens it by
using the ShowWindow function or specifies the WS_ VISIBLE
window style when it creates the window. For overlapped
windows, the WS_ICONIC window style creates a window that is
minimized initially.

Because the purpose of any window is to let the user enter data or
to let the application display information, a window starts its life
cycle when the application has a need for input or output. A
window continues its life cycle until there is no longer a need for
it, or the application is terminated. Some windows, such as the
window used for the application's main user interface, last the life
of the application. Other windows, such as a window used as a
dialog box, may last only a few seconds.

The first step in a window's life cycle is creation. Given a
registered window class with a corresponding window function,
the application uses the CreateWindow function to create the
window. This function directs Windows to prepare internal data

Software development kit

structures for the window and to return a unique integer value,
called a window handle, that the application can use to identify
the window in subsequent function calls.

The first message most windows process is WM_ CREATE, the
window-creation message. Again, the CreateWindow function
sends this message to inform the window function that it can now
perform any initialization, such as allocating memory and
preparing data files. The wParam parameter is not used, but the
IParam parameter contains a long pointer to a CREATESTRUCT
data structure, whose fields correspond to the parameters passed
to CreateWindow.

Both the WM_CREATE and WM_NCCREATE messages are sent
directly to the window function, bypassing the application queue.
This means an application will create a window and process the
WM_CREATE message before it enters the main program loop.

After a window has been created, it must be opened (displayed)
before it can be used. An application can open the window in one
of two ways: it can specify the WS_ VISIBLE window style in the
CreateWindow function to open the window immediately after
creation, or it can wait until later and call the ShowWindow
function to open the window. When creating a main window, an
application should not specify WS_ VISIBLE, but should call
ShowWindow from the WinMain function with the nCmdShow
parameter set to the desired value.

When the window is no longer needed or the application is
terminated, the window must be destroyed. This is done by using
the DestroyWindow function. DestroyWindow removes the
window from the system display and invalidates the window
handle. It also sends WM_DESTROY and WM_NCDESTROY
messages to the window function.

The WM_DESTROY message is usually the last message a
window function processes. This occurs when the
DestroyWindow function is called or when a WM_CLOSE
message is processed by the DefWindowProc function. When a
window function receives a WM_DESTROY message, it should
free any allocated memory and close any open data files.

The window used as the application's main user interface should
always be the last window destroyed and should always cause
the application to terminate. When this window receives a
WM_DESTROY message, it should call the PostQuitMessage
function. This function copies a WM_ QUIT message to the

Chapter 7, Window manager interface functions 41

application's message queue as a signal for the application to
terminate when the message is read from the queue.

Display and movement functions

42

Display and movement functions show, hide, move, and obtain
information about the number and position of windows on the
screen. The following list briefly describes each display and
movement function:

Function

ArrangelconicWindows

BeginDeferWindowPos

BringWindowToTop

CloseWindow

DeferWindowPos

EndDeferWindowPos

GetClientRect

GetWindowRect

GetWindowText
GetWindowTextLength

Islconic

IsWindowVisible

IsZoomed

MoveWindow
Openlcon
SetWindowPos

SetWindowText
ShowOwnedPopups
ShowWindow

Description

Arranges minimized (iconic) child
windows.
Initializes memory used by the
DeferWindowPos function.
Brings a window to the top of a stack of
overlapped windows.
Hides the specified window or minimizes
it.
Records positioning information for a
window to be moved or resized by the
EndDeferWindowPos function.
Positions or sizes several windows
simultaneously based on information
recorded by the DeferWindowPos function.
Copies the coordinates of a window's client
area.
Copies the dimensions of an entire
window.
Copies a window caption into a buffer.
Returns the length (in characters) of the
given window's caption or text.
Specifies whether a window is open or
closed (iconic).
Determines whether the given window is
visible.
Determines whether a window is
maximized.
Changes the size and position of a window.
Opens the specified window.
Changes the size, position, and ordering of
child or pop-up windows.
Sets the window caption or text.
Shows or hides all pop-up windows.
Displays or removes the given window.

Software development kit

Input functions

Input functions disable input from system devices, take control of
the system devices, or define special actions that Windows takes
when an application receives input from a system device. (The
system devices are the mouse, the keyboard, and the timer.) The
following list briefly describes each input function:

Function

EnableWindow

GetActiveWindow
GetCapture

GetCurrentTime
GetDoubleClickTime

GetFocus

GetTickCount

IsWindowEnabled

KiliTimer
ReleaseCapture

SetActiveWindow
SetCapture

SetDoubleClickTime
SetFocus

SetSysModalWindow

SetTimer
SwapMouseBuUon

Description

Enables and disables mouse and keyboard
input throughout the application.
Returns a handle to the active window.
Returns a handle to the window with the
mouse capture.
Retrieves the current Windows time.
Retrieves the current double-click time for
the mouse.
Retrieves the handle of the window that
currently owns the input focus.
Returns the number of timer ticks recorded
since the system was booted.
Determines whether the specified window
is enabled for mouse and keyboard input.
Kills the specified timer event.
Releases mouse input and restores normal
input processing.
Makes a window the active window.
Causes mouse input to be sent to a
specified window.
Sets the double-click time for the mouse.
Assigns the input focus to a specified
window.
Makes the specified window a system
modal window.
Creates a system-timer event.
Reverses the meaning of left and right
mouse buttons.

Hardware functions

Hardware functions alter the state of input devices and obtain
state information. Windows uses the mouse and the keyboard as
input devices. The following list briefly describes each hardware
function:

Chapter 7, Window manager interface functions 43

Function

EnableHardwarelnput

GetAsyncKeyState

GetlnputState

GetKBCodePage

GetKeyboardState

GetKeyNameText

GetKeyState
MapVirtualKey

OemKeyScan

SetKeyboardState

VkKeyScan

Description

Enables or disables mouse and keyboard
input throughout the application.
Returns interrupt-level information about
the key state.
Returns TRUE if there is mouse or
keyboard input.
Determines which OEM/ ANSI.tables are
loaded.
Copies an array that contains the state of
keyboard keys.
Retrieves a string containing the name of a
key from a list maintained by the keyboard
driver.
Retrieves the state of a virtual key.
Accepts a virtual-key code or scan code for
a key and returns the corresponding scan
code, virtual-key code, or ASCII value.
Maps OEM ASCII codes 0 through OxOFF
into the OEM scan codes and shift states.
Sets the state of keyboard keys by altering
values in an array.
Translates an ANSI character to the
corresponding virtual-key code and shift
state for the current keyboard.

Painting functions

44

Painting functions prepare a window for painting and carry out
some useful general-purpose graphics operations. Although all
the paint functions are specifically intended for the system
display, some can be used for other output devices. The following
list briefly describes each painting function:

Function

BeginPaint
DrawFocusRect

Drawlcon
DrawText
EndPaint
ExcludeUpdateRgn

Fill Rect

FrameRect

Description

Prepares a window for painting.
Draws a rectangle in the style used to
indicate focus.
Draws an icon.
Draws characters of a specified string.
Marks the end of window repainting.
Prevents drawing within invalid areas of a
window.
Fills a given rectangle by using the
specified brush.
Draws a border for the given rectangle.

Software development kit

How Windows
manages the

display

GetDC

GetUpdateRect

GetUpdateRgn
GetWindowDC

GrayString

InvalidateRect
InvalidateRgn
InvertRect

ReleaseDC
UpdateWindow

ValidateRect

ValidateRgn

Retrieves the display context for the client
area.
Copies the dimensions of a window
region's bounding rectangle.
Copies a window's update region.
Retrieves the display context for an entire
window.
Writes the characters of a string using gray
text.
Marks a rectangle for repainting.
Marks a region for repainting.
Inverts the display bits of the specified
rectangle.
Releases a display context.
Notifies the application when parts of a
window need redrawing.
Releases the specified rectangle from
repainting.
Releases the specified region from
repainting.

The system display is the principal display device for all
applications running with Windows. All applications are free to
display some form of output on the system display, but since
many applications can run at one time, applications are not
entitled to the entire system display. The complete system display
must be shared. Windows shares the system display by carefully
managing the access that applications have to it. Windows
ensures that applications have space to display output but do not
draw in the space reserved for other applications.

Windows manages the system display by using the display
context type. The display context is a special device context that
treats each window as a separate display surface. An application
that retrieves a display context for a specific window has
complete control of the system display within that window, but
cannot access or paint over any part of the display outside the
window. With a display context, an application can use CDI
painting functions, as well as the output functions described in
this section, to draw in the given window.

Chapter 1, Window manager interface functions 45

Display context
types

Common display
context

Table 1.4
Defaults for a display context

46

There are four types of display contexts: common, class, private,
and window. The common, class, and private display contexts
permit drawing in the client area of a given window. The window
display context permits drawing anywhere in the window. When
a window is created, Windows assigns a common, class, or
private display context to it, based on the type of display context
specified in that window's class style.

A common display context is the default context for all windows.
Windows assigns a common display context to the window if a
display-context type is not explicitly specified in the window's
class style.

A common display context permits drawing in a window's client
area, but it is not immediately available for use by a window. A
common display context must be retrieved from a cache of
display contexts before a window can carry out any drawing in its
client area. The GetDC or BeginPaint function retrieves the
display context and returns a handle to the context. The handle
can be used with GDI functions to draw in the client area of the
given window. After drawing is complete, the context must be
returned to the cache by using the ReleaseDC or EndPaint
function. After the context is released, drawing cannot occur until
another display context is retrieved.

When a common display context is retrieved, Windows gives it
default selections for pen, brush, font, clipping area, and other
attributes. These attributes define the tools currently available to
carry out the actual drawing. Table 1.4 lists the default selections
for a common display context:

Attribute

Background color
Background mode
Bitmap
Brush
Brush origin
Clipping region

Color palette
Current pen position

Default

White
OPAQUE
No default.
WHITE_BRUSH
(0,0)
Entire client area with the update region
clipped as appropriate. Child and pop-up
windows in the client area may also be
clipped.
DEFAULT_PALETTE
(0,0)

Software development kit

Table 1.4: Defaults for a display context (continued)

Device origin
Drawing mode
Font

Intercharacter spacing
Mapping mode
Pen
Polygon-filling mode
Relative-absolute flag
Stretching mode
Text color
Viewport extent
Viewport origin
Window extents
Window origin

Upper-left corner of client area.
R2_COPYPEN
SYSTEM_FONT (SYSTEM_FIXED _FONT
for applications written to run with
Windows versions prior to 3.0)

° MM_TEXT
BLACK_PEN
ALTERNATE
ABSOLUTE
BLACKONWHITE
Black
(1,1)
(0,0)
(1,1)
(0,0)

An application can modify the attributes of the display context by
using the selection functions and display-context attribute
functions. For example, applications typically change the selected
pen, brush, and font.

When a common display context is released, the current
selections, such as mapping mode and clipping area, are lost.
Windows does not preserve the previous selections of a common
display context since these contexts are shared and Windows has
no way to guarantee that the next window to use a given common
display context will be the last window to use that context.
Applications that modify the attributes of a common display
context must do so each time another context is retrieved.

Class display context A window has a class display context if the window class specifies
the CS_CLASSDC style. A class display context is shared by all
windows in a given class. A class display context is not part of the
display context cache. Instead, Windows specifically allocates a
class context for sole use by the window class.

A class display context must be retrieved before it can be used,
but it does not have to be released after use. As long as only one
window from the class uses the context, the class display context
can be kept and reused. If another window in the class needs to
use the context, that window must retrieve it before any drawing
occurs. Retrieving the context sets the correct origin and clipping
for the new window and ensures that the context will be applied
to the correct window. A handle to the class display context can
be retrieved by using the GetDC or BeginPaint function. The

Chapter 7, Window manager interface functions 47

ReleaseDC and EndPaint functions have no effect on the class
display context.

A class display context is given the same default selections as a
common display context when the first window of the class is
created (see Table 1.4, on page 46). These selections can be
modified at any time. Windows preserves all new selections made
for the class display context, except for the clipping region and
device origin, which are adjusted for the current window when
the context is retrieved. Otherwise, all other attributes remain
unchanged. This means a change made by one window applies to
all windows that subsequently use the context.

t::> Changing the mapping mode of a class display context may have
an undesirable effect on how a window's background is erased.
For more information, see "Window background," page 52, and
"Mapping functions," page 100.

Private display context A window has a private display context if the window class
specifies the CS_OWNDC style. A private display context is used
exclusively by a given window. A private display context is not
part of the display context cache. Instead, Windows specifically
allocates the context for sole use by the window.

A private display context needs to be retrieved only once.
Thereafter, it can be kept and used any number of times by the
window. Windows automatically updates the context to reflect
changes to the window, such as moving or sizing. A handle to a
private display context can be retrieved by using the GetDC or
BeginPaint function. The ReleaseDC and EndPaint functions have
no effect on the private display context.

A private display context is given the same default selections as a
common display context when the window is created (see Table
1.4, page 46). These selections can be modified at any time.
Windows preserves any new selections made for the context.
New selections, such as clipping region and brush, remain
selected until the window specifically makes a change.

.. Changing the mapping mode of a private display context may
have an undesirable effect on how the window's background is
erased. For more information, see "Window background," on page
52, and "Mapping functions," on page 100.

48 Software development kit

Window display
context

Display-context
cache

A window display context permits painting anywhere in a
window, including the caption bar, menus, and scroll bars. Its
origin is the upper-left corner of the window, instead of the
upper-left corner of the client area.

The GetWindowDC function retrieves a window display context
from the same cache as it does common display contexts.
Therefore, a window that uses a window display context must
release it with the ReleaseDC function immediately after
drawing.

Windows always sets the current selections of a window display
context to the same default selections as a common display
context and does not preserve any change the window may have
made to these selections (see Table 1.4, on page 46). Windows
does not allow private or class window display contexts, so
CS_OWNDC and CS_CLASSDC class styles have no effect on the
window display context.

A window display context is intended to be used for special
painting within a window's nonclient area. Since painting in
nonclient areas of overlapped windows is not recommended,
most applications reserve a display context for designing custom
child windows. For example, an application may use the display
context to draw a custom border around the window. In such
cases, the window usually processes the WM_NCP AINT message
instead of passing it on to the DefWindowProc function. For
applications that do not process WM_NCP AINT messages but
still wish to paint in the nonclient area, the GetSystemMetrics
function can be used to retrieve the dimensions of various parts of
the nonclient area, such as the caption bar, menu bar, and scroll
bars.

Windows maintains a cache of display contexts that it uses for
common and window display contexts. This cache contains five
display contexts, which means only five common display contexts
can be active at anyone time. To prevent more than five from
being retrieved, a window that uses a common or window
display context must release that context immediately after
drawing.

Chapter 1, Window manager interface functions 49

Painting

If a window fails to release a common display context, all five
display contexts may eventually be active and unavailable for any
other window. In such a case, Windows ignores all subsequent
requests for a common display context. In the retail version of
Windows, the system will appear to be deadlocked, while the
debugging version of Windows will undergo a fatal exit, alerting
the developer of a problem.

The ReleaseDC function releases a display context and returns it
to the cache. Class and private display contexts are individually
allocated for each class or window; they do not belong to the
cache so they do not need to be released after use.

sequence Windows carries out many operations to manage the system
display that affect the content of the client area. If Windows
moves, sizes, or alters the appearance of the display, the change
may affect a given window. If so, Windows marks the area
changed by the operation as ready for updating and, at the next
opportunity, sends a WM_P AINT message to the window so that
it can update the window in the update region. If a window
paints in its client area, it must call the BeginPaint function to
retrieve a handle to a display context, must update the changed
area as defined by the update region, and finally, must call the
EndPaint function to complete the operation.

WM PAINT

A window is free to paint in its client area at any time, that is, at
times other than in response to a WM_P AINT message. The only
requirement is that it retrieve a display context for the client area
before carrying out any operations.

message The WM_PAINT message is a request from Windows to a given
window to update its display. Windows sends a WM_PAINT
message to a window whenever it is necessary to repaint a
portion of an application's window. When a window receives a
WM_P AINT message, it should retrieve the update region by
using the BeginPaint function, and it should carry out whatever
operations are necessary to update that part of the client area.

The InvalidateRect and InvalidateRgn functions do not actually
generate WM_P AINT messages. Instead, Windows accumulates
the changes made by these functions and its own changes while a

50 Software development kit

For more information about
the clipping region, see

"Clipping functions," on page
706.

Update region

window processes other messages in its application queue.
Postponing the WM_P AINT message lets a window process all
changes at once instead of updating bits and pieces in time­
consuming individual steps.

A window can require Windows to send a WM_P AINT message
by using the UpdateWindow function. The UpdateWindow
function sends the message directly to the window, regardless of
the number of other messages in the application queue.
UpdateWindow is typically used when a window wants to update
its client area immediately, such as just after the window is
created.

Once a window receives a WM_P AINT message, it must call the
BeginPaint function to retrieve the display context for the client
area and to retrieve other information such as the update region
and whether the background has been erased.

Windows automatically selects the update region as the clipping
region of the display context. Since GDI discards (clips) drawing
that extends outside the clipping region, only drawing that is in
the update region is actually visible.

The BeginPaint function empties the update region to prevent the
same region from generating subsequent WM_P AINT messages.

After completing the painting operation, the window must call
the EndPaint function to release the display context.

An update region defines the part of the client area that is marked
for painting on the next WM_P AINT message. The purpose of the
update region is to save some applications the time it takes to
paint the entire contents of the client area. If only the part that
needs painting is added to the update region, only that part is
painted. For example, if a word changes in the client area of a
word-processing application, only the word needs to be painted,
not the entire line of text. This saves the time it takes the
application to draw the text, especially if there are many different
sizes and typefaces.

The InvalidateRect and InvalidateRgn functions add a given
rectangle or region to the update region. The rectangle or region
must be given in client coordinates. The update region itself is
defined in client coordinates. Windows adds its own rectangles

Chapter 7, Window manager interface functions 51

52

Window
background

Brush alignment

and regions to a window's update region after operations such as
moving, sizing, and scrolling the window.

The ValidateRect and ValidateRgn functions remove a given
rectangle or region from the update region. These functions are
typically used when the window has updated a specific part of
the display in the update region before receiving the WM_PAINT
message.

The GetUpdateRect and GetUpdateRgn functions retrieve the
smallest rectangle that encloses the entire update region. These
functions can be used to compute the current size of the update
region to determine if painting is required.

The window background is the color or pattern the client area is
filled with before a window begins painting in the client area.
Windows paints the background for a window or gives the
window the opportunity to do so by sending a
WM_ERASEBKCND message to the window when the
application calls the BeginPaint function.

The background is important since if not erased, the client area
will contain whatever was originally on the system display before
the window was moved there. Windows erases the background
by filling it with the background brush specified by the window's
class.

Windows applications that use class or private display contexts
should be careful about erasing the background. Windows
assumes the background is to be computed by using the
MM_TEXT mapping mode. If the display context has any other
mapping mode, the area erased may not be within the visible part
of the client area.

Brush alignment is particularly important on the system display
where scrolling and moving are commonplace. A brush is a
pattern of bits with a minimum size of 8-by-8 bits. CDI paints
with a brush by repeating the pattern again and again within a
given rectangle or region. If the region is moved by an arbitrary
amount-for example, if the window is scrolled-and the brush is
used again to filled empty areas around the original area, there is
no guarantee that the original pattern and the new pattern will be

Software development kit

Painting
rectangular areas

Drawing icons

aligned. For example, if the scroll moves the original filled area up
one pixel, the intersection of the original area and any new
painting will be out of alignment by one pixel, or bit. Depending
on the pattern, this may have a undesirable visual effect.

To ensure that a brush is aligned after a window is moved, an
application must take the following steps:

1. Call the SelectObject function to select a different brush.

2. Call the SetBrushOrg function to realign the current brush.

3. Call the UnrealizeObject function to realign the origin of the
original brush when it is selected next.

4. Call the SelectObject function to select the original brush.

The FiIIRect, FrameRect, and InvertRect functions provide an
easy way to carry out painting operations on rectangles in the
client area.

The FiIIRect function fills a rectangle with the color and pattern of
a given brush. This function fills all parts of the rectangle,
including the edges or borders.

The FrameRect function uses a brush to draw a border around a
rectangle. The border width and height is one unit.

The InvertRect function inverts the contents of the given
rectangle. On monochrome displays, white pixels become black,
and vice versa. On color displays, the results depend on the
method used by the display to generate color. In either case,
calling InvertRect twice with the same rectangle restores the
display to its original colors.

The Drawlcon function draws an icon at a given location in the
client area. An icon is a bitmap that a window uses as a symbol to
represent an item or concept, such as an application or a warning.

An icon can be created by using the SDKPaint program, added to
an application's resources by using the Resource Compiler, and
loaded into memory by using the Loadlcon function. Applications
can also call the Createlcon function to create an icon and can
modify a previously loaded or created icon at any time. An icon
resource is in global memory and its handle is the handle to that

Chapter 7, Window manager interface functions 53

54

Drawing
formatted text

Table 1.5
Drawing format styles

memory. An application can free memory used to store an icon
created by Createlcon by calling Deletelcon.

The DrawText function formats and draws text within a given
rectangle in the client area. This function provides simple text
processing that most applications, other than word processors,
can use to display text. DrawText output is similar to the output
generated by a terminal, except it uses the selected font and can
clip the text if it extends outside a given rectangle. DrawText
provides many different formatting styles. Table 1.5 lists the
available styles:

Value

DT_BOTTOM
DT_CENTER
DT_EXPANDTABS

DT_EXTERNALLEADING

DT_LEFT
DT_NOCLIP

DT_RIGHT
DT _SINGLELINE

Description

Bottom-justified (single line only).
Centered.
Expands tab characters into spaces.
Otherwise, tabs are treated as single
characters. The number of spaces
depends on the tab stop size specified
by DT_TABSTOP. If DT_TABSTOP is
not given, the default is eight spaces.
Includes the font external leading in line
height. External leading is not included
in the height of a line of text. (Leading is
the space between lines of text.) If
DT_EXTERNALLEADING is not given,
there is no spacing between lines of text.
Depending on the selected font, this
means that characters in different lines
may touch or overlap.
Left-justified. Default.
Draws text without clipping. All text
will be drawn even if it extends outside
the specified rectangle. The DrawText
function is somewhat faster when
DT_NOCLIP is used.
Right-justified.
Single line only. Carriage returns and
linefeeds do not break the line. Default
is multiple-line formatting.
Sets tab stops. The high-order byte of
the wFormat parameter is the number of
characters for each tab. If DT_TABSTOP
is not given, the default tab size is eight
spaces.
Top-justified (single line only). Default.

Software development kit

Table 1.6
Control characters and

actions

Table 1.5: Drawing format styles (continued)

DT_VCENTER
DT _ WORD BREAK

Vertically centered (single line only).
Sets word breaks. Lines are
automatically broken between words if
a word would extend past the edge of
the rectangle specified by the IpRect
parameter. Carriage-return / linefeed
sequence also causes a line break.
Word-break characters are space, tab,
carriage return, linefeed, and carriage­
return/linefeed combinations. Applies
to multiple-line formatting only.

The DrawText function uses the selected font, so applications can
draw formatted text in other than the system font.

DrawText does not hyphenate, and although it can justify text to
the left, right, or center, it cannot combine justification styles. In
other words, it cannot justify both left and right.

DrawText recognizes a number of control characters and carries
out special actions when it encounters them. Table 1.6 lists the
control characters and the respective action:

Character (ANSI value)

Carriage return(13)

Linefeed(10)

Space(32)

Tab(9)

Action

Interpreted as a line-break character. The
text is immediately broken and started on
the next line down in the rectangle.
Interpreted as a line-break character. The
text is immediately broken and started on
the next line down in the rectangle. A
carriage-return/linefeed character
combination is interpreted as a single line­
break character.
Interpreted as a word-break character if the
DT_WORDBREAK style is given. If the text
is too long to fit on the current line in the
formatting rectangle, the line is broken at
the closest word-break character to the end
of the line.
Expanded into a given number of spaces if
the DT_EXPANDTABS style is given. The
number of spaces depends on what tab­
stop value is given with the DT _ TABSTOP
style. The default is eight.

Chapter 1, Window manager interface functions 55

Drawing gray text

56

An application can draw gray text by calling the SetTextColor
function to set the current text color to the COLOR_GRAYTEXT,
the solid gray system color used to draw disabled text. However,
if the curent display driver does not support a solid gray color,
this value is set to zero.

The GrayString function is a multiple-purpose function that gives
applications another way to gray text or carry out other
customized operations on text or bitmaps before drawing the
result in a client area. To gray text, the function creates a memory
bitmap, draws the string in the bitmap, and then grays the string
by combining it with a gray brush. The GrayString function
finally copies the gray text to the display. An application can
intercept or modify each step of this process, however, to carry
out custom effects, such as changing the gray brush to a patterned
brush or drawing an icon instead of a string.

If GrayString is used to draw gray text only, GrayString uses the
selected font of the given display context. GrayString sets text
color to black. It creates a bitmap, and then uses the TextOut
function to write a given string to the bitmap. It then uses the
PatBlt function and a gray brush to gray the text, and uses the
BitBlt function to copy the bitmap to the client area.

GrayString assumes that the display context for the client area has
MM_TEXT mapping mode. Other mapping modes cause
undesirable results.

GrayString lets an application modify this graying procedure in
three ways: by defining an additional brush to be combined with
the text before being displayed, by replacing the call to the
TextOut function with a call to an application-supplied function,
and by disabling the call to the PatBlt function.

The additional brush is defined as a parameter. This brush is
combined with the text as the text is being copied to the client
area by the BitBlt function. The additional brush is intended to be
used to give the text a desired color, since the bitmap used to
draw the text is a monochrome bitmap.

The application-supplied function is also defined as a parameter.
If a non-NULL value is given for the function, GrayString
automatically calls the application-supplied function instead of
the TextOut function and passes it a handle to the display context

Software development kit

Nonclient-oreo
painting

for the memory bitmap as well as the long pointer and count
passed to GrayString. The function can carry out any operation
and interpret the long pointer and count in any way. For example,
a negative count could be used to indicate that the long pointer
points to an icon handle that signals the application-supplied
function to draw the icon and let GrayString gray and display it.
No matter what type of drawing the function carries out,
GrayString assumes it is successful if the application-supplied
function returns TRUE.

GrayString suppresses graying if it receives an ncount parameter
equal to -1 and the application-supplied function returns FALSE.
This is a way to combine custom patterns with the text without
interference from the gray brush.

Windows sends a WM_NCP AINT message to the window
whenever the non-client area of the window, such as the title bar,
menu bar, and window frame, needs painting. Processing this
message is not recommended since a window that does so must
be able to paint all the required parts of the nonclient area for the
window. In other words, a window should pass this message on
to the DefWindowProc function for default processing unless the
Windows application is creating a custom nonclient area for a
child window.

Dialog box functions

Dialog-box functions create, alter, test, and destroy dialog boxes
and controls within dialog boxes. A dialog box is a temporary
window that Windows creates for special-purpose input, and
then destroys immediately after use. An application typically uses
a dialog box to prompt the user for additional information about a
current command selection. The following list briefly describes
each dialog function:

Function

CheckDlgButton

CheckRadioButton

CreateDialog

Chapter 1, Window manager interface functions

Description

Places/ removes a check, or changes the
state of the three-state button.
Checks a specified button and removes
checks from all others.
Creates a modeless dialog box.

57

58

CreateDialoglndirect

CreateDialoglndirectParam

CreateDialogParam

DefDlgProc

DialogBox
DialogBoxlndirect

DialogBoxlndirectParam

DialogBoxParam

DlgDirList

DlgDirListComboBox

DlgDirSelect

DlgDirSelectComboBox

EndDialog

GetDialogBaseUnits

GetDlgCtrllD

GetDlgltem

GetDlgltemlnt

GetDlgltemText

GetNextDlgGroupltem

GetNextDlgTabltem

IsDialogMessage

IsDlgButtonChecked
MapDialogRect

SendDlgltemMessage

SetDlgltemlnt

Creates a modeless dialog box from a
template.
Creates a modeless dialog box from a
template and passes data to it when it is
created.
Creates a modeless dialog box and
passes data to it when it is created.
Provides default processing for any
Windows messages that a dialog box
with a private window class does not
process.
Creates a modal dialog box.
Creates a modal dialog box from a
template.
Creates a modal dialog box from a
template and passes data to it when it is
created.
Creates a modal dialog box and passes
data to it when it is created.
Fills the list box with names of files
matching a path.
Fills a combo box with names of files
matching a path.
Copies the current selection from a list
box to a string.
Copies the current selection from a
combo box to a string.
Frees resources and destroys windows
associated with a modal dialog box.
Retrieves the base dialog units used by
Windows when creating a dialog box.
Returns the ID value of a control
window.
Retrieves the handle of a dialog item
from the given dialog box.
Translates the control text of an item
into an integer value.
Copies an item's control text into a
string.
Returns the window handle of the next
item in a group.
Returns the window handle of the next
or previous item.
Determines whether a message is
intended for the given dialog box.
Tests whether a button is checked.
Converts the dialog-box coordinates to
client coordinates.
Sends a message to an item within a
dialog box.
Sets the caption or text of an item to a
string that represents an integer.

Software development kit

Uses for dialog
boxes

Modeless dialog box

SetDlgltemText Sets the caption or text of an item to a
string.

For convenience and to keep from introducing device-dependent
values into the application code, applications use dialog boxes
instead of creating their own windows. This device independence
is maintained by using logical coordinates in the dialog-box
template. Dialog boxes are convenient to use because all aspects
of the dialog box, except how to carry out its tasks, are
predefined. Dialog boxes supply a window class and procedure,
and create the window for the dialog box automatically. The
application supplies a dialog function to carry out tasks and a
dialog-box template that describes the dialog style and content.

A modeless dialog box allows the user to supply information to
the dialog box and return to the previous task without canceling
or removing the dialog box. Modeless dialog boxes are typically
used as a way to let the user continually supply information about
the current task without having to select a command from a menu
each time. For example, modeless dialog boxes are often used
with a text-search command in word-processing applications. The
dialog box remains displayed while the search is carried out. The
user can then return to the dialog box and search for the same
word again, or change the entry in the dialog box and search for a
new word.

An application with a modeless dialog box processes messages for
that box by using the IsDialogMessage function inside the main
message loop.

The dialog function of a modeless dialog box must send a
message to the parent window when it has input for the parent
window. It must also destroy the dialog box when it is no longer
needed. A modeless dialog box can be destroyed by using the
DestroyWindow function. An application must not call the
End Dialog function to destroy a modeless dialog box.

Modal dialog box A modal dialog box requires the user to respond to a request
before the application continues. Typically, a modal dialog box is
used when a chosen command needs additional information
before it can proceed. The user should not be able to continue

Chapter 1, Window manager interface functions 59

System-modal dialog
box

Creating a dialog
box

some other operation unless the command is canceled or
additional information is provided.

A modal dialog box disables its parent window, and it creates its
own message loop, temporarily taking control of the application
queue from the main loop of the program. A modal dialog box is
displayed when the application calls the DialogBox function.

By default, a modal dialog box cannot be moved by the user. An
application can create a moveable dialog box by specifying the
WS_ CAPTION and, optionally, the WS_SYSMENU window
styles.

The dialog box is displayed until the dialog function calls the
End Dialog function, or until Windows is terminated. The parent
window remains disabled unless the dialog box enables it. Note
that enabling the parent window is not recommended since it
defeats the purpose of the modal dialog box.

A system-modal dialog box is identical to a modal dialog box
except that all windows, not just the parent window, are disabled.
System-modal dialog boxes must be used with care since they
effectively shut down the system until the user supplies the
required information.

A dialog box is created by using either the CreateDialog or
DialogBox function. These functions load a dialog-box template
from the application's executable file, and then create a pop-up
window that matches the template's specifications. The dialog box
belongs to the predefined dialog-box class unless another class is
explicitly defined. The DialogBox function creates a modal dialog
box; the CreateDialog function creates a modeless dialog box.

Use the WS_ VISIBLE style for the dialog-box template if you want
the dialog box to appear upon creation.

Dialog box template The dialog-box template is a description of the dialog box: its
height and width, the controls it contains, its style, the type of
border it uses, and so on. A template is an application's resource
and must be added to the application's executable file by using the
Resource Compiler.

60 Software development kit

Dialog box
measurements

Return values
from a dialog box

Dialog boxes can be easily modified and are system independent,
enabling an application developer to change the template without
changing the source code.

The CreateDialog and DialogBox functions load the resource into
memory when they create the dialog box, and then use the
information in the dialog template to create the dialog box,
position it, and create and position the controls for the dialog box.

The Resource Compiler takes a text description of the template
and converts it to the required binary form. This binary form is
added to the application's executable file.

Dialog box and control dimensions and coordinates are device
independent. Since a dialog box may be displayed on system
displays that have widely varying pixel resolutions, dialog-box
dimensions are specified in system character widths and heights
instead of pixels. Characters are guaranteed to give the best
possible appearance for a given display. One unit in the x
direction is equal to 1/4 of the dialog base width unit. One unit in
the y direction is equal to 1/8 of the dialog base height unit. The
dialog base units are computed from the height and width of the
system font; the GetDialogBaseUnits function returns the dialog
base units for the current display. Applications can convert these
measurements to pixels by using the MapDialogRect function.

Windows does not allow the height of a dialog box to exceed the
height of a full-screen window. The width of a dialog box is not
allowed to be greater than the width of the screen.

The DialogBox function that creates a modal dialog box does not
return until the dialog function has called the End Dialog function
to signal the end of the dialog box. When control finally returns
from the DialogBox function, the return value is equal to the
value specified in the End Dialog function. This means a modal
dialog box can return a value through the EndDialog function.

Modeless dialog boxes cannot return values in this way since they
do not use the End Dialog function to terminate execution and do
not return control in the same way a modal dialog box does.
Instead, modeless dialog boxes return values to their parent
windows by using the SendMessage function to send a
notification message to the parent window. Although Windows

Chapter " Window manager interface functions 61

Controls in a
dialog box

Control identifiers

does not explicitly define the content of a notification message,
most applications use a WM_ COMMAND message with an
integer value that identifies the dialog box in the wParam
parameter and the return value in the IParam parameter. Modal
dialog boxes may also use this technique to return values to their
parent windows before terminating.

A dialog box can contain any number and any type of controls. A
control is a child window that belongs to a predefined or
application-defined window class and that gives the user a
method of supplying input to the application. Examples of
controls are push buttons and edit controls. Most dialog boxes
contain one or more controls of the predefined class. The number
of controls, the order in which they should be created, and the
location of each in the dialog box are defined by the control
statements given in the dialog-box template.

Every control in a dialog box needs a unique control identifier, or
1D, to distinguish it from other controls. Since all controls send
information to the dialog function through WM_ COMMAND
messages, the control identifiers are essential for the dialog box to
determine which control sent a given message.

All identifiers for all controls in the dialog box must be unique. If
a dialog box has a menu bar, there must be no conflict between
menu-item identifiers and control identifiers. Since Windows
sends menu input to a dialog function as WM_ COMMAND
messages, conflicts with menu and control identifiers can cause
errors. Menus in dialog boxes are not recommended.

The dialog function usually identifies the dialog-box controls by
using their control identifier. Occasionally the dialog function
requires the window handle that was given to the control when it
was created. The dialog function can retrieve this window handle
by using the GetDlgltem function.

General control styles The WS_TABSTOP style specifies that the user can move the
input focus to the given control by pressing the TAB or SHIFT+TAB

keys. Typically, every control in the dialog box has this style, so
the user can move the input focus from one control to the other. If
two or more controls are in the dialog box, the TAB key moves the
input focus to the controls in the order in which they have been

62 Software development kit

created. The SHIFT+TAB keys move the input focus in reverse
order. For modal dialog boxes, the TAB and SHIFT+TAB keys are
automatically enabled for moving the input focus. For modeless
dialog boxes, the IsDialogMessage function must be used to filter
messages for the dialog box and to process these key strokes.
Otherwise, the keys have no special meaning and the
WS_TABSTOP style is ignored.

The WS_GROUP style specifies that the user can move the input
focus to the given control by using a DIRECTION key. Typically, the
first and last controls in a group of consecutive controls in the
dialog box have this style, so the user can move the input focus
from one control to the other. The DOWN and RIGHT keys move the
input focus to controls in the order in which they have been
created. The UP and LEFT keys move the input focus in reverse
order. For modal dialog boxes, the DIRECTION keys are
automatically enabled for moving the input focus. For modeless
dialog boxes, the IsDialogMessage function must be used to filter
messages for the dialog box and to process these key strokes.
Otherwise, the keys have no special meaning and the
WS_GROUP style is ignored.

Buttons Button controls are the principal interface of a dialog box. Almost
all dialog boxes have at least one push-button control and most
have one default push button and one or more other push
buttons. Many dialog boxes have collections of radio buttons
enclosed in group boxes, or lists of check boxes.

Most modal or modeless dialog boxes that use the special
keyboard interface have a default push button whose control
identifier is set to 1 so that the action the dialog function takes
when the button is clicked is identical to the action taken when
the ENTER key is pressed. There can be only one button with the
default style; however, an application can assign the default style
to any button at any time. These dialog boxes may also set the
control identifier of another push button to 2 so that the action of
the ESCAPE key is duplicated by clicking that button.

When a dialog box first starts, the dialog function can set the
initial state of the button controls by using the CheckDlgButton
function, which sets or clears the button state. This function is
most useful when used to set the state of radio buttons or check
boxes. If the dialog box contains a group of radio buttons in which
only one button should be set at any given time, the dialog

Chapter 1, Window manager interface functions 63

function can use the CheckRadioButton function to set the button
and automatically clear any other radio button.

Before a dialog box terminates, the dialog function can check the
state of each button control by using the IsDlgButtonChecked
function, which returns the current state of the button. A dialog
box typically saves this information to initialize the buttons the
next time the dialog box is created.

Edit controls Many dialog boxes have edit controls that let the user supply text
as input. Most dialog functions initialize an edit control when the
dialog box first starts. For example, the function may place a
proposed filename in the control that the user can adapt or
modify. The dialog function can set the text in an edit control by
using the SetDlgltemText function, which copies text in a given
buffer to the edit control. When the edit control receives the input
focus, the complete text will automatically be selected for editing.

Since edit controls do not automatically return their text to the
dialog box, the dialog function must retrieve the text before
terminating. It can retrieve the text by using the GetDlgltemText
function, which copies the edit-control text to a buffer. The dialog
function typically saves this text to initialize the edit control later,
or passes it on to the parent window for processing.

Some dialog boxes use edit controls that let the user enter
numbers. The dialog function can retrieve a number from an edit
control by using the GetDlgltemlnt function, which retrieves the
text of the control and converts the text to a decimal value. The
user enters the number in decimal digits. It can be either signed or
unsigned. The dialog function can display an integer by using the
SetDlgltemlnt function. It converts a signed or unsigned integer to
a string of decimal digits.

List boxes and directory
listings

Some dialog boxes display lists, such as filenames, from which the
user can select one or more names. Dialog boxes that display a list
typically use list-box controls. Dialog boxes that display a list of
filenames typically use a list-box

64

control and the DlgDirList and DlgDirSelect functions. The
DlgDirList function automatically fills a list box with the filenames
in the current directory. The DlgDirSelect function retrieves the
selected filename from the list box. Together they provide a
convenient way for a dialog box to display a directory listing, and

Software development kit

Combo boxes

Owner-draw dialog
box controls

let the user select a file without having to type in the name of the
directory and file.

Another method for providing a list of items to a user is by means
of a combo box. A combo box consists of either a static text field
or edit field combined with a list box. The list box can be
displayed at all times or pulled down by the user. If the combo
box contains a static text field, the text field always displays the
current selection (if any) in the list-box portion of the combo box.
If it uses an edit field, the user can type in the desired selection;
the list box highlights the first item (if any) which matches what
the user has entered in the edit field. The user can then select the
item highlighted in the list box to complete the choice.

List boxes, combo boxes, and buttons can be designated as
owner-draw controls by creating them with the appropriate style:

Table 1.7
Dialog box controls Style Meaning

LBS_OWNERDRAWFIXED Creates an owner-draw list box

LBS_OWNERDRAWVARIABLE

CBS_ OWNERDRAWFIXED

CBS_ OWNERDRA WV ARIABLE

BS_OWNERDRAW

with items that have the same,
fixed height.
Creates an owner-draw list box
with items that have different
heights.
Creates an owner-draw combo
box with items that have the
same, fixed height.
Creates an owner-draw combo
box with items that have different
heights.
Creates an owner-draw button.

When a control has the owner-draw style, Windows handles the
user's interaction with the control as usual, such as detecting
when a user has clicked a button and notifying the button's owner
of the event. However, because it is an owner-draw control, the
owner of the control is completely responsible for the visual
appearance of the control.

When Windows first creates a dialog box containing owner-draw
controls, it sends the owner a WM_MEASUREITEM message for
each owner-draw control. The IParam parameter of this message
contains a pointer to a MEASUREITEMSTRUCT data structure.
When the owner receives the message for a control, the owner fills
in the appropriate fields of the structure and returns. This informs
Windows of the dimensions of the control or of its items so that

Chapter 1, Window manager interface functions 65

66

Messages for dialog
box controls

Dialog box
keyboard
interface

Windows can appropriately detect the user's interaction with the
control. If a list box or combo box is created with the
LBS_ OWNERDRA WV ARIABLE or
CBS_OWNERDRAWVARIABLE style, this message is sent to the
owner for each item in the control, since each item can differ in
height. Otherwise, this message is sent once for the entire owner­
draw control.

Whenever an owner-draw control needs to be redrawn, Windows
sends the WM_DRA WITEM message to the owner of the control.
The IParam parameter of this message contains a pointer to a
DRAWITEMSTRUCT data structure that contains information
about the drawing required for the control. Similarly, if an item is
deleted from a list box or combo box, Windows sends the
WM_DELETEITEM message containing a pointer to a
DELETEITEMSTRUCT data structure that describes the deleted
item.

Many controls recognize predefined messages that, when sent to
the control, cause it to carry out some action. A dialog function
can send a message to a control by supplying the control identifier
and using the SendDlgltemMessage function, which is identical
to the Send Message function except that it uses a control
identifier instead of a window handle to identify the control that
is to receive the message.

Windows provides a special keyboard interface for modal dialog
boxes and modeless dialog boxes that use the IsDialogMessage
function to filter messages. This keyboard interface carries out
special processing for several keys and generates messages that
correspond to certain buttons in the dialog box or changes the
input focus from one control to another. Table 1.8 lists the keys
used in this interface and the respective action:

Software development kit

Table 1.8
Dialog box keyboard

interface

Key

DOWN

ENTER

ESCAPE

LEFf
RIGHT
SHIFf+TAB

TAB

UP

Action

Moves the input focus to the next control that has the
WS_GROUP style.
Sends a WM_ COMMAND message to the dialog
function. The wParam parameter is set to 1 or the
default button.
Sends a WM_ COMMAND message to the dialog
function. The wParam parameter is set to 2.
Same as UP.
Same as DOWN.
Moves the input focus to the previous control that has
the WS_TABSTOP style.
Moves the input focus to the next control that has the
WS_TABSTOP style.
Moves the input focus to the previous control that has
the WS_GROUP style.

The TAB and DIRECTION keys have no effect if the controls in the
dialog box do not have the WS_TABSTOP or WS_GROUP style.
The keys have no effect in a modeless dialog box if the
Is Dialog Message function is not used to filter messages for the
dialog box.

t:> For applications that use accelerators and have modeless dialog
boxes, the IsDialogMessage function must be called before the
TranslateAccelerator function. Otherwise, the keyboard interface
for the dialog box may not be processed correctly.

Applications that have modeless dialog boxes and want those
boxes to have the special keyboard interface must filter all
messages retrieved from the application queue through the
Is Dialog Message function before carrying out any other
processing. This means that the application must pass the
message to the function immediately after retrieving the message
by using the GetMessage or PeekMessage function. Most
applications that have modeless dialog boxes incorporate the
IsDialogMessage function as part of the main message loop in the
WinMain function. The IsDialogMessage function automatically
processes any messages for the dialog box. This means that if the
function returns a nonzero value, the message does not require
additional processing and must not be passed to the
TranslateMessage or DispatchMessage function.

The IsDialogMessage function also processes the ALT+mnemonic

sequence.

Chapter 1, Window manager interface functions 67

Scrolling in dialog
boxes

In modal dialog boxes, the arrow keys have specific functions that
depend on the controls in the box. For example, the keys move the
input focus from control to control in group boxes, move the
cursor in edit controls, and scroll the contents of list boxes. The
arrow keys cannot be used to scroll the contents of any dialog box
that has its own scroll bars. If a dialog box has scroll bars, the
application must provide an appropriate keyboard interface for
the scroll bars. Note that the mouse interface for scrolling is
available if the system has a mouse.

Scrolling functions

68

Standard scroll
bars and scroll­

bar controls

Scrolling functions control the scrolling of a window's contents
and control the window's scroll bars. Scrolling is the movement of
data in and out of the client area at the request of the user. It is a
way for the user to see a document or graphic in parts if Windows
cannot fit the entire document or graphic inside the client area. A
scroll bar allows the user to control scrolling. The following list
briefly describes each scrolling function:

Function

GetscroliPos

Getscroll Range

Scroll DC

scroliWindow
setscroliPos
setscroliRange

showscroliBar

Description

Retrieves the current position of the scroll­
bar thumb.
Copies the minimum and maximum
scroll-bar positions for given scroll-bar
positions for a specified scroll.
Scrolls a rectangle of bits horizontally and
vertically.
Moves the contents of the client area.
Sets the scroll-bar thumb.
Sets the minimum and maximum scroll-bar
positions.
Displays or hides a scroll bar and its
controls.

A standard scroll bar is a part of the nonclient area of a window.
It is created with the window and displayed when the window is
displayed. The sole purpose of a standard scroll bar is to let users
generate scrolling requests for the window's client area. A

Software development kit

(For more information, see
the GetSystemMetrics
function in Chapter 4,
"Functions directory. ")

Scroll-bar thumb

window has standard scroll bars if it is created with the
WS_ VSCROLL or WS_HSCROLL style. A standard scroll bar is
either vertical or horizontal. A vertical bar always appears at the
right of the client area; a horizontal bar always appears at the
bottom. A standard scroll bar always has the standard scroll-bar
height and width as defined by the SM_ CXVSCROLL and
SM_ CYHSCROLL system metric values.

A scroll-bar control is a control window that looks and acts like a
standard scroll bar. But unlike a standard scroll bar, a scroll-bar
control is not part of any window. As a separate window, a
scroll-bar control can receive the input focus, and indicates this by
displaying a flashing caret in the thumb. When a scroll-bar control
has the input focus, the user can use the keyboard to direct the
scrolling. Unlike standard scroll bars, a scroll-bar control provides
a built-in keyboard interface. Scroll-bar controls also can be used
for other purposes. For example, a scroll-bar control can be used
to select values from a range of values, such as a color from a
rainbow of colors.

The scroll-bar thumb is the small rectangle in a scroll bar. It shows
the approximate location within the current document or file of
the data currently displayed in the client area. For example, the
thumb is in the middle of the scroll bar when page three of a five­
page document is in the client area.

The SetScroliPos function sets the thumb position in a scroll bar.
Since Windows does not automatically update the thumb position
when an application scrolls, SetScroliPos must be used to update
the thumb position. The GetScroliPos function retrieves the
current position.

A thumb position is an integer. The position is relative to the left
or upper end of the scroll bar, depending on whether the scroll
bar is horizontal or vertical. The position must be within the
scroll-bar range, which is defined by minimum and maximum
values. The positions are distributed equally along the scroll bar.
For example, if the range is a to lOa, there are 100 positions along
the scroll bar, each equally spaced so that position 50 is in the
middle of the scroll bar. The initial range depends on the scroll
bar. Standard scroll bars have an initial range of a to 100; scroll­
bar controls have an empty range (both minimum and maximum

Chapter 7, Window manager interface functions 69

Scrolling requests

Processing scroll

values are zero) if no explicit range is given when the control is
created. The SetScrollRange function sets new minimum and
maximum values so that applications can change the range at any
time. The GetScrollRange function retrieves the current minimum
and maximum values. The minimum and maximum values can
be any integers. For example, a spreadsheet program with 255
rows can set the vertical scroll range to 1 to 255.

If SetScrollPos specifies a position value that is less than the
minimum or more than the maximum, the minimum or
maximum value is used instead. SetScrollPos moves the thumb
along the thumb positions.

A user makes a scrolling request by clicking in a scroll bar.
Windows sends the request to the given window in the form of
WM_HSCROLL and WM_ VSCROLL messages. The IParam
parameter contains a position value and the handle of the scroll­
bar control that generated the message (lParam is zero if a
standard scroll bar generated the message). The wParam
parameter specifies the type of scroll, such as scroll up one line,
scroll down a page, or scroll to the bottom. The type of scroll is
determined by which area of the scroll bar the user clicks.

The user can also make a scrolling request by using the scroll-bar
thumb, the small rectangle inside the scroll bar. The user moves
the thumb by moving the mouse while holding the left mouse
button down when the cursor is in the thumb. The scroll bar
sends SB_THUMBTRACK and SB_THUMBPOSITION flags with
a WM_HSCROLL or WM_ VSCROLL message to an application as
the user moves the thumb. Each message specifies the current
position of the thumb.

messages A window that permits scrolling needs a standard scroll bar or a
scroll-bar control to let the user generate scrolling requests, and a
window function to process the WM_HSCROLL and
WM_ VSCROLL messages that represent the scrolling requests.
Although the result of a scrolling request is entirely up to the
window, a window typically carries out a scroll by moving in
some direction from the current location or to a known beginning
or end, and by displaying the data at the new location. For

70 Software development kit

Scrolling the
client area

Hiding a standard
scroll bar

example, a word-processing application can scroll to the next line,
the next page, or to the end of the document.

The simplest way to scroll is to erase the current contents of the
client area, and then paint the new information. This is the
method an application is likely to use with SB_PAGEUP,
SB_PAGEDOWN, SB_TOP, and SB_END requests where
completely new contents are required.

For some requests, such as SB_LINEUP and SB_LINEDOWN, not
all the contents need to be erased, since some will still be visible
after the scroll. The ScroliWindow function preserves a portion of
the client area's contents, moves the preserved portion the
specified amount, and prepares the rest of the client area for
painting new information. ScroliWindow uses the BitBlt function
to move a specific part of the client area to a new location within
the client area. Any part of the client area that is uncovered (not in
the part to be preserved) is invalidated and will be erased and
painted over at the next WM_P AINT message.

ScroliWindow also lets an application clip a part of the client area
from the scroll. This is to keep items that have fixed positions in
the client area, such as child windows, from moving. This action
automatically invalidates the part of the client area that is to
receive the new information so that the application does not have
to compute its own clipping regions.

For standard scroll bars, if the minimum and maximum values
are equal, the scroll bar is considered disabled and is hidden. This
is the way to temporarily hide a scroll bar when it is not needed
for the current contents of the client area.

The SetScroliRange function hides and disables a standard scroll
bar when it sets the minimum and maximum values to equal
values. No scrolling requests can be made through the scroll bar
when it is hidden. SetScroliRange enables the scroll bar and
shows it again when it sets the minimum and maximum values to
unequal values. The ShowScroliBar function can also be used to
hide or show a scroll bar. It does not affect the scroll bar's range or
thumb position.

Chapter 1, Window manager interface functions 71

Menu functions

72

Menu functions create, modify, and destroy menus. A menu is an
input tool in a Windows application that offers users one or more
choices, which they can select with the mouse or keyboard. An
item in a menu bar can display a pop-up menu, and any item in a
pop-up menu can display another pop-up menu. In addition, a
pop-up menu can appear anywhere on the screen. The following
list briefly describes each menu function:

Function

AppendMenu
CheckMenultem

CreateMenu
CreatePopupMenu
DeleteMenu

DestroyMenu
DrawMenuBar
EnableMenultem
GetMenu

Description

Appends a menu item to a menu.
Places or removes checkmarks next to
pop-up menu items.
Creates an empty menu.
Creates an empty pop-up menu.
Removes a menu item and destroys any
associated pop-up menus.
Destroys the specified menu.
Redraws a menu bar.
Enables, disables, or grays a menu item.
Retrieves a handle to the menu of a
specified window.

GetMenuCheckMarkDimensions

GetMenultemCount
GetMenultemlD
GetMenuState
GetMenuString
GetSubMenu

GetSystemMenu

HiliteMenultem

InsertMenu
LoadMenulndirect
ModifyMenu
RemoveMenu

SetMenu
SetMenultemBitmaps

TrackPopupMenu

Retrieves the dimensions of the default
menu checkmark bitmap.
Returns the count of items in a menu.
Returns the item's identification.
Obtains the status of a menu item.
Copies a menu label into a string.
Retrieves the menu handle of a pop-up
menu.
Accesses the System menu for copying and
modification.
Highlights or removes the highlighting
from a top-level (menu-bar) menu item.
Inserts a menu item in a menu.
Loads a menu resource.
Changes a menu item.
Removes an item from a menu but does not
destroy it.
Specifies a new menu for a window.
Associates bitmaps with a menu item for
display when an item is and is not checked.
Displays a pop-up menu at a specified
screen location and tracks user interaction
with the menu.

Software development kit

Information functions

Information functions obtain information about the number and
position of windows on the screen. The following list briefly
describes each information function:

Function

AnyPopup

ChildWindowFromPoint

EnumChiidWindows

EnumTaskWindows

EnumWindows
FindWindow

GetNextWindow

GetParent

GetTopWindow

GetWindow

GetWindowTask

IsChiid

IsWindow

SetParent

WindowFromPoint

System functions

Description

Indicates whether any pop-up window
exists.
Determines which child window contains a
specific point.
Enumerates the child windows that belong
to a specific parent window.
Enumerates all windows associated with a
given task.
Enumerates windows on the display.
Returns the handle of a window with the
given class and caption.
Returns a handle to the next or previous
window.
Retrieves the handle of the specified
window's parent window.
Returns a handle to the top-level child
window.
Returns a handle from the window
manager's list.
Returns the handle of a task associated
with a window.
Determines whether a window is the
descendent of a specified window.
Determines whether a window is a valid,
existing window.
Changes the parent window of a child
window.
Identifies the window containing a
specified point.

System functions return information about the system metrics,
color, and time. The following list briefly describes each system
function:

Chapter 1, Window manager interface functions 73

Function

GetCurrentTime

GetSysColor
GetSystemMetrics

SetSysColors

Description

Returns the time elapsed since the system
was booted.
Retrieves the system color.
Retrieves information about the system
metrics.
Changes one or more system colors.

Clipboard functions

Error functions

74

Clipboard functions carry out data interchange between Windows
applications. The clipboard is the place for this interchange; it
provides a place from which applications can pass data handles to
other applications. The following list briefly describes each
clipboard function:

Function

ChangeClipboardChain

CloseClipboard
EmptyClipboard

EnumClipboardFormats

GetClipboardData
GetClipboardFormatName
GetClipboardOwner

GetClipboardViewer

GetPriorityClipboardFormat

IsClipboardFormatAvailable

OpenClipboard
RegisterClipboardFormat
SetClipboardData
SetClipboardViewer

Description

Removes a window from the chain of
clipboard viewers.
Closes the clipboard.
Empties the clipboard and reassigns
clipboard ownership.
Enumerates the available clipboard
formats.
Retrieves data from the clipboard.
Retrieves the clipboard format.
Retrieves the window handle associated
with the current clipboard owner.
Retrieves the handle of the first window in
the clipboard viewer chain.
Retrieves data from the clipboard in the
first format in a prioritized format list.
Returns TRUE if the data in the given
format is available.
Opens the clipboard.
Registers a new clipboard format.
Copies a handle for data.
Adds a handle to the clipboard viewer
chain.

Error functions display errors and prompt the user for a response.
The following list briefly describes each error function:

Software development kit

Caret functions

Creating and
displaying a caret

Function

FlashWindow

MessageBeep
MessageBox

Description

Flashes the window by inverting its
active/ inactive state.
Generates a beep on the system speaker.
Creates a window with the given text and
caption.

Caret functions affect the Windows caret, which is a flashing line,
block, or bitmap that marks a location in a window's client area.
The caret is especially useful in word-processing applications to
mark a location in text for keyboard editing. These functions
create, destroy, display, hide, and alter the blink time of the caret.
The following list briefly describes each caret function:

Function

CreateCaret
DestroyCaret
GetCaretBlinkTime
GetCaretPos
HideCaret
SetCaretBlinkTime
SetCaretPos
ShowCaret

Description

Creates a caret.
Destroys the current caret.
Returns the caret flash rate.
Returns the current caret position.
Removes a caret from a given window.
Establishes the caret flash rate.
Moves a caret to the specified position.
Displays the newly created caret or
red is plays a hidden caret.

Windows forms a caret by inverting the pixel color within the
rectangle given by the caret's position and its width and height.
Windows flashes the caret by alternately inverting the display,
and then restoring it to its previous appearance. The caret blink
time (in milliseconds) defines the elapsed time between inverting
and restoring the display. A complete flash (on-off-on) takes twice
the blink time.

The CreateCaret function creates the caret shape and assigns
ownership of the caret to the given window. The caret can be
solid or gray, or, for bitmap carets, any desired pattern. The caret
can have any shape, but typical shapes are a line, a solid block, a
gray block, and a pattern, as shown in Figure 1.1:

Chapter 7, Window manager interface functions 75

Figure 1.1 U d I'
Caret shapes n er Ine

Sharing the caret

Cursor functions

76

Vertical Iinel

Solid bloc[9

G ray bloc[~':

Bitmap~

Windows displays a solid caret by inverting everything in the
rectangle defined by the caret's width and height. For a gray caret,
Windows inverts every other pixel. For a pattern, Windows
inverts only the white bits of the bitmap that defines the pattern.
The width and height of a caret are given in logical units, which
means they are subject to the window's mapping mode.

There is only one caret, so only one caret shape can be active at a
time. Applications must cooperatively share the caret to prevent
undesired effects. Windows does not inform an application when
a caret is created or destroyed, so to be cooperative a window
should create, move, show, and hide a caret only when it has the
input focus or is active. A window should destroy the caret before
losing the input focus or becoming inactive.

Bitmaps for the caret can be created by using the CreateBitmap
function, or loaded from the application's resources by using the
LoadBitmap function. Bitmaps loaded from resources can be
created by using the SDKPaint program and added to an
application's resources by using the Resource Compiler. (For more
information about the Resource Compiler, see Tools.)

Cursor functions set, move, show, hide, and confine the cursor.
The cursor is a bitmap, displayed on the display screen, that
shows a current location. The following list briefly describes each
cursor function:

Software development kit

Pointing devices
and the cursor

Displaying and
hiding the cursor

Function

ClipCursor
CreateCursor
DestroyCursor

GetCursorPos

LoadCursor
SetCursor
SetCursorPos
ShowCursor

Description

Restricts the cursor to a given rectangle.
Creates a cursor from two bit masks.
Destroys a cursor created by the
CreateCursor function.
Stores the cursor position (in screen
coordinates).
Loads a cursor from the resource file.
Sets the cursor shape.
Sets the position of the cursor.
Increases or decreases the cursor display
count.

When a system has a mouse (or any other type of pointing
device), the cursor shows the current location of the mouse.
Windows automatically displays and moves the cursor when the
mouse is moved. If a system does not have a mouse, Windows
does not automatically display or move the cursor. Applications
can use the cursor functions to display or move the cursor when a
system does not have a mouse.

In a system without a mouse, Windows does not display or move
the cursor unless the user chooses certain system commands, such
as commands for sizing and moving. This means that after a call
to SetCursor, the cursor remains on the screen until a subsequent
call to SetCursor with a NULL parameter removes the cursor, or
until a system command is carried out. Applications that wish to
use the cursor without a mouse usually simulate mouse input by
using keyboard keys, such as the DIRECTION keys, and display and
move the cursor by using the cursor functions.

The ShowCursor function shows or hides the cursor. It is used to
temporarily hide the cursor, and then restore it without changing
the current cursor shape. This function actually sets an internal
counter that determines whether the cursor should be drawn.
Hiding and showing are accumulative, so hiding the cursor five
times requires that it be shown five times before the cursor will be
drawn.

Chapter 1, Window manager interface functions 77

78

Positioning the
cursor The SetCursorPos and GetCursorPos functions set and retrieve

the current screen coordinates of the cursor. Although the cursor
can be set at a location other than the current mouse location, if
the system has a mouse, the next mouse movement will redraw
the cursor at the mouse location. The SetCursorPos and
GetCursorPos functions are most often used in applications that
use the keyboard and specified key strokes to move the cursor.
Notice that screen coordinates are not affected by the mapping
mode in a window's client area.

The cursor
hotspot and

confining the
cursor

Creating a
custom cursor

A cursor has a hotspot. When Windows draws the cursor, it
always places the hotspot over the point on the display screen
that represents the current position of the mouse or keyboard
DIRECTION key. For example, the hotspot on the pointer is the
point at the tip of the arrow.

The ClipCursor function confines the cursor to a given rectangle
on the display screen. The cursor can move to the edge of the
rectangle but cannot move out of it. ClipCursor is typically used
to restrict the cursor to a given window such as a dialog box that
contains a warning about a serious error. The rectangle is always
given in screen coordinates and does not have to be within the
window of the currently running application.

The SetCursor function sets the cursor shape and draws the
cursor. When a system has a mouse, Windows automatically
changes the shape of the cursor when it crosses a window border
or enters a different part of a window, such as a title or menu bar.
It uses standard cursor shapes for the different parts of the screen,
such as a pointer in a title bar. The SetCursor function lets an
application delete the standard cursor and draw its own custom
cursor. The cursor keeps its new shape until the mouse moves or a
system command is carried out.

Software development kit

Hook functions

Filter-function

Hook functions manage system hooks, which are shared
resources that install a specific type of filter function. A filter
function is an application-supplied callback function, specified by
the SetWindowsHook function, that processes events before they
reach any application's message loop. Windows sends messages
generated by a specific type of event to filter functions installed
by the same type of hook. The following list briefly describes each
hook function:

Function

CallMsgFilter

DefHookProc

SetWindowsHook

UnhookWindowsHook

Description

Passes a message and other data to the
current message-filter function.
Calls the next filter function in a filter­
function chain.
Installs a system and/or application filter
function.
Removes a Windows filter function from a
filter-function chain.

chain A filter-function chain is a series of connected filter functions for a
particular system hook. For example, all keyboard filter functions
are installed by WH_KEYBOARD and all journaling-record filter
functions are installed by WHj"OURNALRECORD. Applications
pass these filter functions to the system hooks with calls to the
SetWindowsHook function. Each call adds a new filter function to
the beginning of the chain. Whenever an application passes a
filter function to a system hook, it must reserve space for the
address of the next filter function in the chain. SetWindowsHook
returns this address.

Once each filter function completes its task, it must call the
DefHookProc function. DefHookProc uses the address stored in
the location reserved by the application to access the next filter
function in the chain.

To remove a filter function from a filter chain, an application must
call the UnhookWindowsHook function with the type of hook and
a pointer to the function.

Chapter 7, Window manager interface functions 79

There are five types of standard window hooks and two types of
debugging hooks. The following table lists each type and
describes its purpose:

Type

WH_ CALL WNDPROC
WH_ GETMESSAGE

WH-10URNALPLAYBACK
WH-10URNALRECORD
WH_KEYBOARD
WH_MSGFILTER
WH_SYSMSGFIL TER

Purpose

Installs a window function filter.
Installs a message filter (on debugging
versions only).
Installs a journaling playback filter.
Installs a journaling record filter.
Installs a keyboard filter.
Installs a message filter.
Installs a system-wide message filter.

.. The WH_CALLWNDPROC and WH_GETMESSAGE hooks will
affect system performance. They are supplied for debugging
purposes only.

Installing a filter
function To install a filter function, an application must do the following:

Export the function in its module definition file.

Obtain the function's address by using the MakeProclnstance
function.

Call the SetWindowsHook function, specifying the type of hook
function and the address of the function (returned by
MakeProclnstance).

Store the return value from SetWindowsHook in a reserved
location. This value is the address of the previous filter function.

-. Filter functions and the return value from SetWindowsHook must
reside in fixed library code and data. This allows these hooks to
operate in a large-frame EMS environment.

Property functions

80

Property functions create and access a window's property list. A
property list is a storage area that contains handles for data that
the application wishes to associate with a window. The following
list briefly describes each property function:

Software development kit

Function

EnumProps

GetProp

RemoveProp
Set Prop

Description

Passes the properties of a window to an
enumeration function.
Retrieves a handle associated with a string
from the window property list.
Removes a string from the property list.
Copies a string and a data handle to a
window's property list.

Using property lists Once a data handle is in a window's property list, any application
can access the handle if it can also access the window. This makes
the property list a convenient way to make data (for example,
alternate captions or menus for the window) available to the
application when it wishes to modify the window.

Figure 1.2
Property list

For more information, see
"Clipboard functions, " on

page 74.

Every window has its own property list. When the window is
created, the list is empty. The SetProp function adds entries to the
list. Each entry contains a unique ANSI string and a data handle.
The ANSI string identifies the handle; the handle identifies the
data associated with the window, as illustrated in Figure 1.2:

ANSI String Handle

"binary data" hMemory

"icon" hicon

"screen text" hText

The data handle can identify any object or memory block that the
application wishes to associate with the window. The GetProp
function retrieves the data handle of an entry from the list
without removing the entry. The handle can then be used to
retrieve or use the data. The RemoveProp function removes an
entry from the list when it is no longer needed.

Although the purpose of the property list is to associate data with
a window for use by the application that owns the window, the
handles in a property list are actually accessible to any application
that has access to the window. This means an application can
retrieve and use a data handle from the property list of a window
created by another application. But using another application's
data handles must be done with care. Only shared, global
memory objects, such as GDI drawing objects, can be used by
other applications. If a property list contains local or global
memory handles or resource handles, only the application that

Chapter 1, Window manager interface functions 81

has created the window may use them. Global memory handles
can be shared with other applications by using the Windows
clipboard. Local memory handles cannot be shared.

The contents of a property list can be enumerated by using the
EnumProps function. The function passes the string and data
handle of each entry in the list to an application-supplied
function. The application-supplied function can carry out any
task.

The data handles in a property list always belong to the
application that created them. The property list itself, like other
window-related data, belongs to Windows. A window's property
list is actually allocated in the the USER heap, the local heap of
the USER library. Although there is no defined limit to the
number of entries in a property list, the actual number of entries
depends on how much room is available in the USER heap. This
depends on how many windows, window classes, and other
window-related objects have been created.

The application creates the entries in a property list. Before a
window is destroyed or the application that owns the window
terminates, all entries in the property list must be removed by
using the RemoveProp function. Failure to remove the entries
leaves the property list in the USER heap and makes the space it
occupies unusable for subsequent applications. This can
ultimately cause an overflow of the USER heap. Entries in the
property list can be removed at any time by using the
RemoveProp function. If there are entries in the property list
when the WM_DESTROY message is received for the window,
the entries must be removed at that time. To ensure that all entries
are removed, use the EnumProps function to enumerate all
entries in the property list. An application should remove only
those properties that it added to the property list. Windows adds
properties for its own use and disposes of them automatically. An
application must not remove properties which Windows has
added to the list.

Rectangle functions

82

Rectangle functions alter and obtain information about rectangles
in a window's client area. In Windows, a rectangle is defined by a
REeT data structure. The structure contains two points: the
upper-left and lower-right corners of the rectangle. The sides of a

Software development kit

Using rectangles
in a Windows

application

Rectangle
coordinates

rectangle extend from these two points and are parallel to the x­
and y-axes. The following list briefly describes each rectangle
function:

Function

CopyRect
EqualRect

InflateRect
I ntersectRect
OffsetRect
PtinRect

SetRectEmpty
UnionRect

Description

Makes a copy of an existing rectangle.
Determines whether two rectangles are
equal.
Expands or shrinks the specified rectangle.
Finds the intersection of two rectangles.
Moves a given rectangle.
Indicates whether a specified point lies
within a given rectangle.
Sets a rectangle to an empty rectangle.
Stores the union of two rectangles.

Rectangles are used to specify rectangular areas on the display or
in a window, such as the cursor clipping area, the client repaint
area, a formatting area for formatted text, and the scroll area.
Rectangles are also used to fill, frame, or invert an area in the
client area with a given brush, and to retrieve the coordinates of a
window or a window's client area.

Since rectangles are used for many different purposes, the
rectangle functions do not use an explicit unit of measure. Instead,
all rectangle coordinates and dimensions are given in signed,
logical values. The actual units are determined by the function in
which the rectangle is used.

Coordinate values for a rectangle can be within the range -32,768
to 32,767. Widths and heights, which must be positive, are within
the range 0 to 32,767. This means that a rectangle whose left and
right sides or whose top and bottom are further apart than 32,768
units is not valid. Figure 1.3 shows a rectangle whose upper-left
corner is left of the origin, but whose width is less than 32,767:

Chapter 1, Window manager interface functions 83

84

Figure 1.3
Rectangle limits

Creating and
manipulating

rectangles

y~~
(160002000) ,

~ ,
x

(-16 000-2000
,,.

~~--------------~v~--------------~/

Width = 76000 - (-76000) = 32000 <= 32767

The SetRect function creates a rectangle, the CopyRect function
makes a copy of a given rectangle, and the SetRectEmpty
function creates an empty rectangle. An empty rectangle is any
rectangle that has zero width, zero height, or both.

The InflateRect function increases or decreases the width and
height of a rectangle. It adds or removes width from both ends of
the rectangle, or adds or removes height from both the top and
bottom of the rectangle.

The OffsetRect function moves the rectangle by a given amount.
It moves the corners of the rectangle by adding the given x and y
amounts to the corner coordinates.

The PtlnRect function determines whether a given point lies
within a given rectangle. The point is in the rectangle if it lies on
the left or top side or is completely within the rectangle.

The IsRectEmpty function determines whether the given
rectangle is empty.

The IntersectRect function creates a new rectangle that is the
intersection of two existing rectangles. The intersection is the
largest rectangle contained in both existing rectangles. The
intersection of two rectangles is shown in Figure 1.4:

Software development kit

Figure 1.4
Intersection of two

rectangles

Figure 1.5
Union of two rectangles

I Rectangle 1

V

't"",.. "',

""Intersection

t
Rectangle 2 J

The UnionRect function creates a new rectangle that is the union
of two existing rectangles. The union is the smallest rectangle that
contains both existing rectangles. The union of two rectangles is
shown in Figure 1.5:

Union
r-----------------A~----------------,

Rectangle 1

Union

Rectangle 2

For information about functions that draw ellipses and polygons,
see "Ellipse and polygon functions," on page 109. For more
information on topics related to window manager interface
functions, see the following:

Topic Reference

Function descriptions Reference, Volume 1: Chapter 4,
"Functions directory"

Windows messages Reference, Volume 1: Chapter 5,
"Messages overview," and Chapter 6,
"Messages directory"

Windows data types and structures Reference, Volume 2: Chapter 7, "Data
types and structures"

Using the Resource Compiler Reference, Volume 2: Chapter 8,
"Resource script statements"

Chapter 1, Window manager interface functions 85

86 Software development kit

c H A p T E R

2

Graphics device interface functions

This chapter describes the functions that perform device­
independent graphics operations within a Windows application,
including creating a wide variety of line, text, and bitmap output
on many output devices. These functions constitute the Windows
graphics device interface (GDI). The chapter covers the following
function categories:

• Device-context functions
• Drawing-tool functions
&I Color-palette functions
.. Drawing-attribute functions
III Mapping functions
III Coordinate functions
rl Region functions
II Clipping functions
.. Line-output functions
13 Ellipse and polygon functions
m Bitmap functions
m Text functions
m Font functions
Ell Metafile functions
II Printer-control functions
.. Printer-escape function
I!I Environment functions

Chapter 2, Graphics device interface functions 87

Device-context functions

Figure 2.1
Information flow to an output

device

88

Device-context
attributes

Device-context functions create, delete, and restore device
contexts (DC). A device context is a link between a Windows
application, a device driver, and an output device, such as a
printer or plotter.

Figure 2.1 shows the flow of information from a Windows
application through a device context and a device driver to an
output device:

GOI
Device f--+

Output
driver device Application --+ Device -.

context

~()

Any Windows application can use CDI functions to access an
output device. CDI passes calls (which are device independent)
from the application to the device driver. The device driver then
translates the calls into device-dependent operations.

The following list briefly describes each device-context function:

Function

CreateCompatibleDC
CreateDC
CreatelC
DeleteDC
GetDCOrg

RestoreDC
SaveDC

Description

Creates a memory device context.
Creates a device context.
Creates an information context.
Deletes a device context.
Retrieves the origin of a specified device
context.
Restores a device context.
Saves the current state of the device
context.

'~.

Device-context attributes describe selected drawing objects (pens
and brushes), the selected font and its color, the way in which
objects are drawn (or mapped) to the device, the area on the
device available for output (clipping region), and other important
information. The data structure that contains these attributes is
called the DC data block.

Software development kit

Table 2.1
Default device-context

attributes and related GDI
functions

Table 2.1 lists the default device-context attributes and the CDI
functions that affect or use these attributes:

Attribute

Background color
Background mode
Bitmap

Default

White
OPAQUE
No default

GDI Functions

SetBkColor
SetBkMode
CreateBitmap
CreateBitmaplndirect
CreateCompatibleBitmap

Brush

Brush origin (0,0)

Clipping region Display surface

SelectObject
CreateBrushlndirect
CreateDI B Pattern Brush
CreateHatchBrush
CreatePatternBrush
CreateSolidBrush
SelectObject
SetBrushOrg
UnrealizeObject
ExcludeClipRect
IntersectClipRect
OffsetClipRgn
SelectClipRgn

Color palette DEFAULT_PALETTE CreatePalette

Current pen position
Drawing mode
Font

(0,0)
R2_COPYPEN
SYSTEM_FONT

Intercharacter spacing °
Mapping mode MM_TEXT
Pen BLACK_PEN

Polygon-filling mode
Stretching mode
Text color
Viewport extent
Viewport origin
Window extent
Window origin

Chapter 2, Graphics device interface functions

ALTERNATE
BLACKONWHITE
Black
(1,1)
(0,0)
(1,1)
(0,0)

Real izePalette
SelectPalette
MoveTo
SetROP2
CreateFont
CreateFontlndirect
SelectObject
SetTextCharacterExtra
SetMapMode
CreatePen
CreatePenlndirect
SelectObject
SetPolyFiIIMode
SetStretchBltMode
SetTextColor
SetViewportExt
SetViewportOrg
SetWindowExt
SetWindowOrg

89

Saving a device
context

Deleting a device
context

Compatible
device contexts

Information

Occasionally, it is necessary to save a device context so that the
original attributes will be available at a later time. For example, a
Windows application may need to save its original clipping
region so that it can restore the client area's original state after a
series of alterations occur. The SaveDC and RestoreDC functions
make this possible.

The DeleteDC function deletes a device context and ensures that
shared resources are not removed until the last context is deleted.
The device driver is a shared resource.

The CreateCompatibleDC function causes Windows to treat a
portion of memory as a virtual device. This means that Windows
prepares a device context that has the same attributes as the
device for which it was created, but the device context has no
connected output device. To use the compatible device context,
the application creates a compatible bitmap and selects it into the
device context. Any output it sends to the device is drawn in the
selected bitmap. Since the device context is compatible with some
actual device, the context of the bitmap can be copied directly to
the actual device, or vice versa. This also means that the
application can send output to memory (prior to sending it to the
device). Note that the CreateCompatibleDC function works only
for devices that have BitBlt capabilities.

contexts The CreatelC function creates an information context for a device.

90

An information context is a device context with limited
capabilities; it cannot be used to write to the device. An
application uses an information context to gather information
about the selected device. Information contexts are useful in large
applications that require memory conservation.

By using an information context and the GetDeviceCaps function,
you can obtain the following device information:

Software development kit

IJ Device technology
E:I Physical display size
IJ Color capabilities of the device
IJ Color-palette capabilities of the device
IJ Drawing objects available on the device
IJ Clipping capabilities of the device
1:'1 Raster capabilities of the device
IJ Curve-drawing capabilities of the device
iii Line-drawing capabilities of the device
IJ Polygon-drawing capabilities of the device
El Text capabilities of the device

Drawing-tool functions

Drawing-tool functions create and delete the drawing tools that
CDI uses when it creates output on a device or display surface.
The following list briefly describes each drawing-tool function:

Function

CreateBrushlndirect
CreateDi B Pattern Brush

CreateHatchBrush

CreatePatternBrush

CreatePen
CreatePenlndirect
CreateSolidBrush
DeleteObject

EnumObjects
GetBrushOrg

GetObject

GetStockObject

SelectObject
SetBrushOrg

UnrealizeObject

Chapter 2, Graphics device interface functions

Description

Crea tes a logical brush.
Creates a logical brush that has a pattern
defined by a device-independent bitmap
(DIB).
Creates a logical brush that has a hatched
pattern.
Creates a logical brush that has a pattern
defined by a memory bitmap.
Creates a logical pen.
Creates a logical pen.
Creates a logical brush.
Deletes a logical pen, brush, font, bitmap,
or region.
Enumerates the available pens or brushes.
Retrieves the current brush origin for a
device context.
Copies the bytes of logical data that define
an object.
Retrieves a handle to one of the predefined
stock pens, brushes, fonts, or color palettes.
Selects an object as the current object.
Sets the origin of all brushes selected into a
given device context.
Directs CDI to reset the origin of the given
brush.

91

Drawing-tool uses

92

A Windows application can use any of three tools when it creates
output: a bitmap, a brush, or a pen. An application can use the
pen and brush together, outlining a region or object with the pen
and filling the region's or object's interior with the brush. GDI
allows the application to create pens with solid colors, bitmaps
with solid or combination colors, and brushes with solid or
combination colors. (The available colors and color combinations
depend on the capabilities of the intended output device.)

Brushes There are seven predefined brushes available in GDI; an
application selects anyone of them by using the GetStockObject
function. The following list describes these brushes:

Figure 2.2
Hatched brush patterns

_ Black _ Light-Gray

_ Dark-Gray _ Null

• Gray II White

• Hollow

There are six hatched brush patterns; an application can select any
one of these patterns by using the CreateHatchBrush function. (A
hatch line is a thin line that appears at regular intervals on a solid
background.) The following list describes these hatch patterns:

_ Backward Diagonal _ Forward Diagonal
_ Cross _ Horizontal

_ Diagonal Cross _ Vertical

Figure 2.2 shows each hatched brush pattern. A simple Windows
application created this figure:

HS_HORIZONTAL HS_BDIAGONAL HS_FDIAGONAL

Software development kit

Pens There are three predefined pens available in CDI; an application
selects anyone of them by using the GetStockObject function.
The following list describes these pens:

Figure 2.3
Pen patterns

Color

c Black
c Null
cWhite

In addition to selecting a stock pen, an application creates an
original pen by using the CDI CreatePen function. This function
allows the application to select one of six pen styles, a pen width,
and a pen color (if the device has color capabilities). The pen style
can be solid, dashed, dotted, a combination of dots and dashes, or
null. The pen width is the number of logical units CDI maps to a
certain number of pixels (this number is dependent on the current
mapping mode if the pen is selected into a device context). The
pen color is an RCB color value.

Figure 2.3 shows a variety of pen patterns obtained from calls to
the CreatePen function. A simple Windows application created
this figure:

Solid Line width of 1

Dash Line width of 4

Dot Line width of 7

Dash and dot Line width of 10

Dash and two dots Line width of 13

Many of the CDI functions that create pens and brushes require
that the calling application specify a color in the form of a
COLORREF value. A COLORREF value specifies color in one of
three ways:

c As an explicit RCB value
c As an index to a logical-palette entry
c As a palette-relative RCB value

Chapter 2, Graphics device interface functions 93

"Color palette functions," on
page 95 describes Windows

color palettes and the
functions used by an

application to exploit their
capabilities.

94

The second and third methods require the application to create a
logical palette.

An explicit RGB COLORREF value is a long integer that contains
a red, a green, and a blue color field. The first (low-order) byte
contains the red field, the second byte contains the green field,
and the third byte contains the blue field; the fourth (high-order)
byte must be zero. Each field specifies the intensity of the color;
zero indicates the lowest intensity and 255 indicates the highest.
For example, OxOOFFOOOO specifies pure blue, and OxOOOOFFOO
specifies pure green. The RGB macro accepts values for the
relative intensities of the three colors and returns an explicit RGB
COLORREF value. When GDI receives the RGB value as a
function parameter, it passes the RGB color value directly to the
output device driver, which selects the closest available color on
the device. The GetNearestColor function returns the closest
logical color to a specified logical color that a given device can
represent.

If the device is a plotter, the driver converts the RGB value to a
single color that matches one of the pens on the device.

If the device uses color raster technology and the RGB value
specifies a color for a pen, the driver will select a solid color. If the
device uses color raster technology and the RGB value specifies a
color for a brush, the driver will select from a variety of available
color combinations. Since many color devices can display only a
few colors, the actual color is simulated by "dithering," that is,
mixing pixels of the colors which the display can actually render.

If the device is monochrome (black-and-white), the driver will
select black, white, or a shade of gray, depending on the RGB
value. If the sum of the RGB values is zero, the driver selects a
black brush. If the sum of the RGB values is 765, the driver selects
a white brush. If the sum of the RGB values is between zero and
765, the driver selects one of the gray patterns available.

The GetRValue, GetGValue, and GetBValue functions extract the
values for red, green, and blue from an explicit RGB COLORREF
value.

Software development kit

Color-palette functions

Many color graphic displays are capable of displaying a wide
range of colors. In most cases, however, the actual number of
colors which the display can render at any given time is more
limited. For example, a display that is potentially able to produce
over 262,000 different colors may be able to show only 256 of
those colors at a time because of hardware limitations. In such
cases, the display device often maintains a palette of colors; when
an application requests a color that is not currently displayed, the
display device adds the requested color to the palette. However,
when the number of requested colors exceeds the maximum
number for the device, it must replace an existing color with the
requested color. As a result, if the total number of colors
requested by one or more windows exceeds the number available
on the display, many of the actual colors displayed will be
incorrect.

Windows color palettes act as a buffer between color-intensive
applications and the system, allowing an application to use as
many colors as needed without interfering with its own color
display or colors displayed by other windows. When a window
has input focus, Windows ensures that the window will display
all the colors it requests, up to the maximum number
simultaneously available on the display, and displays additional
colors by matching them to available colors. In addition,
Windows matches the colors requested by inactive windows as
closely as possible to the available colors. This significantly
reduces undesirable changes in the colors displayed in inactive
windows.

The following list briefly describes the functions an application
calls to use color palettes:

Function

AnimatePalette

Create Palette
GetNearestPalettelndex

Description

Replaces entries in a logical palette;
Windows maps the new entries into the
system palette immediately.
Creates a logical palette.
Retrieves the index of a logical palette
entry most nearly matching a specified
RGB value.

GetPaletteEntries
GetSystemPaletteEntries

Retrieves entries from a logical palette.
Retrieves a range of palette entries from the
system palette.

Chapter 2, Graphics device interface functions 95

96

How color
palettes work

Getsystem PaletteUse

RealizePalette

Select Palette

setPaletteEntries

setsystemPaletteUse

UpdateColors

Determines whether an application has
access to the full system palette.
Maps entries in a logical palette to the
system palette.
Selects a logical palette into a device
context.
Sets new palette entries in a logical palette;
Windows does not map the new entries to
the system palette until the application
realizes the logical palette.
Allows an application to use the full
system palette.
Performs a pixel-by-pixel translation of
each pixel's current color to the system
palette. This allows an inactive window to
correct its colors without redrawing its
client area.

Color palettes provide a device-independent method for accessing
the color capabilities of a display device by managing the device's
physical (or system) palette, if one is available. Typically, devices
that can display at least 256 colors use a physical palette.

An application employs the system palette by creating and using
one or more logical palettes. Each entry in the palette contains a
specific color. Then, instead of specifying an explicit value for a
color when performing graphics operations, the application
indicates which color is to be displayed by supplying an index
into its logical palette.

Since more than one application can use logical palettes, it is
possible that the total number of colors requested for display can
exceed the capacity of the display device. Windows acts as a
mediator among these applications.

When a window requests that its logical palette be given its
requested colors (a process known as realizing its palette),
Windows first exactly matches entries in the logical palette to
current entries in the system palette.

If an exact match for a given logical-palette entry is not possible,
Windows sets the entry in the logical palette into an unused entry
in the system palette.

Finally, when all entries in the system palette have been used,
Windows takes these logical palette entries that do not exactly
match and matches them as closely as possible to entries already

Software development kit

Figure 2.4
Palette manager color-

mapping algorithm

in the system palette. To further aid this color matching, Windows
sets aside 20 static colors (called the "default palette") in the
system palette to which it can match entries in a background
palette.

Windows always satisfies the color requests of the foreground
window first; this ensures that the active window will have the
best color display possible. For the remaining windows, Windows
satisfies the color requests of the window which most recently
received input focus, the window which was active before that
one, and so on.

System Palette Logical Palette 1
(Active Window)

a a
1
2

2 _ .. -----_._---..... 3
4

3 5

4 6
7

5

6 Logical Palette 2

a
7 1

2 8 3
9 4

5
A 6

B
7
8

Figure 2.4 illustrates this process. In this figure, a hypothetical
display has a system palette capable of containing 12 colors. The
application that created Logical Palette 1 owns the active window
and was the first to realize its logical palette, which consists of 8
colors. Logical Palette 2 is owned by a window which realized its
logical palette while it was inactive.

Because the active window was active when it realized its palette,
Windows mapped all of the colors in Logical Palette 1 directly to
the system palette.

Three of the colors (1,3, and 5) in Logical Palette 2 are identical to
colors in the system palette; to save space in the palette, then,
Windows simply matched those colors to the existing system
colors when the second application realized its palette. Colors 0,2,

Chapter 2, Graphics device interface functions 97

98

Using a color
palette

4, and 6 were not already in the system palette, however, and so
Windows mapped those colors into the system palette.

Because the system palette is now full, Windows was not able to
map the remaining two colors (which do not exactly match
existing colors in the system palette) into the system palette.
Instead, it matched them to the closest colors in the system
palette.

Before drawing to the display device using a color palette, an
application must first create a logical palette by calling the
Create Palette function and then call SelectPalette to select the
palette for the device context (DC) for the output device for which
it will be used. An application cannot select a palette into a device
context using the SelectObject function.

All functions which accept a color parameter accept an index to
an entry in the logical palette. The palette-index specifier is a long
integer value with the first bit in its high-order byte set to 1 and
the palette index in the two low-order bytes. For example,
Ox01000005 would specify the palette entry with an index of 5.
The PALETTEINDEX macro accepts an integer value representing
the index of a logical-palette entry and returns a palette-index
COLORREF value which an application can use as a parameter for
GOI functions that require a color.

An application can also specify a palette index indirectly by using
a palette-relative RGB COLORREF value. If the target display
device supports logical palettes, Windows matches the palette­
relative RGB COLORREF value to the closest palette entry; if the
target device does not support palettes, then the RGB value is
used as though it were an explicit RGB COLORREF value. The
palette-relative RGB COLORREF value is identical to an explicit
RGB COLOR REF value except that the second bit of the high­
order byte is set to 1. For example, Ox02FFOOOO would specify a
palette-relative RGB COLOR REF value for pure blue. The
PALETTERGB macro accepts values for red, green and blue, and
returns a palette-relative RGB COLORREF value which an
application can use as a parameter for GOI functions that require
a color.

If an application does specify an RGB value instead of a palette
entry, Windows will use the closest matching color in the default
palette of 20 static colors.

Software development kit

~ If the source and destination device contexts have selected and
realized different palettes, the BitBlt function does not properly
move bitmap bits to or from a memory device context. In this
case, you must call the GetDIBits with the wUsage parameter set to
DIB_RGB_COLORS to retrieve the bitmap bits from the source
bitmap in a device-independent format. You then use the
SetDIBits function to set the retrieved bits in the destination
bitmap. This ensures that Windows will properly match colors
between the two device contexts.

BitBlt can successfully move bitmap bits between two screen
display contexts, even if they have selected and realized different
palettes. The StretchBlt function properly moves bitmap bits
between device contexts whether or not they use different
palettes.

Drawing-attribute functions

Background
mode and color

Drawing-attribute functions affect the appearance of Windows
output, which has four forms: line, brush, bitmap, and text. The
following list describes each drawing-attribute function:

Function

GetBkColor
GetBkMode
GetPolyFillMode
GetROP2
GetStretchBltMode
GetTextColor
SetBkColor
SetBkMode
SetPolyFiIIMode
SetROP2
SetStretchBItMode
SetTextColor

Description

Returns the current background color.
Returns the current background mode.
Retrieves the current polygon-filling mode.
Retrieves the current drawing mode.
Retrieves the current stretching mode.
Retrieves the current text color.
Sets the background color.
Sets the background mode.
Sets the polygon-filling mode.
Sets the current drawing mode.
Sets the stretching mode.
Sets the text color.

Line output can be solid or broken (dashed, dotted, or a
combination of the two). If it is broken, the space between the
breaks can be filled by setting the background mode to or AQUE
and selecting a color. By setting the background mode to
TRANSr ARENT, the space between breaks is left in its original

Chapter 2, Graphics device interface functions 99

Stretch mode

Text color

state. The SetBkMode and SetBkColor functions accomplish this
task.

Brush output is solid, patterned, or hatched. The space between
hatch marks can be filled by setting the background mode to
OPAQUE and selecting a color. When Windows creates brush
output on a display, it combines the existing color on the display
surface with the brush color to yield a new and final color; this is
a binary raster operation. If the default raster operation is not
appropriate, a new one is chosen by using the SetROP2 function.

If an application copies a bitmap to a device and it is necessary to
shrink or expand the bitmap before drawing, the effects of the
StretchBlt and StretchDIBits functions can be controlled by
calling SetStretchBltMode to set the current stretch mode for a
device context. The stretch mode determines how lines eliminated
from the bitmap are combined.

The appearance of text output is limited only by the number of
available fonts and the color capabilities of the output device. The
SetBkColor function sets the color of the text background (the
unused portion of each character's cell) and the SetTextColor
function sets the color of the character itself.

Mapping functions

100

Mapping functions alter and retrieve information about the CDI
mapping modes. In order to maintain device independence, CDI
creates output in a logical space and maps it to the display. The
mapping mode defines the relationship between units in the
logical space and pixels on a device. The following list briefly
describes each mapping function:

Function

GetMapMode
GetViewportExt

GetViewportOrg

Description

Retrieves the current mapping mode.
Retrieves a device context's viewport
extents.
Retrieves a device context's viewport
origin.

Software development kit

GO! mopping modes

GetWindowExt

GetWindowOrg
OffsetViewportOrg
OffsetWindowOrg
ScaleViewportExt
ScaleWindowExt
SetMapMode

SetViewportExt
SetViewportOrg
SetWindowExt
SetWindowOrg

Retrieves a device context's window
extents.
Retrieves a device context's window origin.
Modifies a viewport origin.
Modifies a window origin.
Modifies the viewport extents.
Modifies the window extents.
Sets the mapping mode of a specified
device context.
Sets a device context's viewport extents.
Sets a device context's viewport origin.
Sets a device context's window extents.
Sets a device context's window origin.

There are eight different mapping modes: MM_ANISOTROPIC,
MM_HIENGLISH, MM_HIMETRIC, MM_ISOTROPIC,
MM_LOENGLISH, MM_LOMETRIC, MM_TEXT, and
MM_ TWIPS. Each mode has a specific use in a Windows
application. Table 2.1 summarizes the eight GDI mapping modes:

Mapping Mode

MM_ANISOTROPIC

MM_HIMETRIC

MM_LOENGLISH

MM_LOMETRIC

MM_TWIPS

Intended Use

Used in applications that map one logical
unit to an arbitrary physical unit. The x- and
y-axes are arbitrarily scaled.
Used in applications that map one logical
unit to 0.001 inch. Positive y extends
upward.
Used in applications that map one logical
unit to 0.01 millimeter. Positive y extends
upward.
Used in applications that map one logical
unit to an arbitrary physical unit. One unit
along the x-axis is always equal to one unit
along the y-axis.
Used in applications that map one logical
unit to 0.01 inch. Positive y extends upward.
Used in applications that map one logical
unit to 0.1 millimeter. Positive y extends
upward.
Used in applications that map one logical
unit to one pixel. Positive y extends
downward.
Used in applications that map one logical
unit to 1/1440 inch 0/20 of a printer's
point). Positive y extends upward.

Chapter 2, Graphics device interface functions 101

Constrained
mapping modes GDI classifies six of the mapping modes as constrained mapping

modes: MM_HIENGLISH, MM_HIMETRIC, MM_LOENGLISH,
MM_LOMETRIC, MM_TEXT, and MM_TWIPS. In each of these
modes, one logical unit is mapped to a predefined physical unit.
For instance, the MM_ TEXT mode maps one logical unit to one
device pixel, and the MM_LOENGLISH mode maps one logical
unit to 0.01 inch on the device. These mapping modes are
constrained because the scaling factor is fixed, so an application
cannot change the number of logical units that Windows maps to
a physical unit. Table 2.1 shows the number of logical units in
various mapping modes that result in a certain physical unit:

Logical/physical conversion
table Mapping Mode Logical Units Physical Unit

Partially
constrained and

unconstrained
mapping modes

102

MM_HIENGLISH
MM_HIMETRIC
MM_LOENGLISH
MM_LOMETRIC
MM_TEXT
MM_TWIPS

1000
100
100
10
1
1440

linch
1 millimeter
1 inch
1 millimeter
Device pixel
1 inch

The unconstrained mapping modes, MM_ISOTROPIC and
MM_ANISOTROPIC, use two rectangular regions to derive a
scaling factor and an orientation: the window and the viewport.
The window lies within the logical-coordinate space and the
viewport lies within the physical-coordinate space. Both possess
an origin, an x-extent, and a y-extent. The origin may be anyone
of the four corners. The x-extent is the horizontal distance from
the origin to its opposing corner. The y-extent is the vertical
distance from the origin to its opposing corner. Windows creates a
horizontal scaling factor by dividing the viewport's x-extent by
the window's x-extent and creates a vertical scaling factor by
dividing the viewport's y-extent by the window's y-extent. These
scaling factors determine the number of logical units that
Windows maps to a number of pixels. In addition to determining
scaling factors, the window and viewport determine the
orientation of an object. Windows always maps the window
origin to the viewport origin, the window x-extent to the viewport
x-extent, and the window y-extent to the viewport y-extent.

Software development kit

Partially constrained
mapping mode

Unconstrained
mapping mode

Transformation
equations

An application creates output with equally scaled axes by using
the MM_ISOTROPIC mapping mode. This means that Windows
will map a symmetrical object (for example, a square or a circle) in
the logical space as a symmetrical object in the physical space. In
order to maintain this symmetry, CDI shrinks one of the viewport
extents. The amount of shrinkage depends on the requested
extents and the aspect ratio of the device. This mapping mode is
called partially constrained because the application does not have
complete control in altering the scaling factor.

An application can completely alter the horizontal and vertical
scaling factors by using the MM_ANISOTROPIC mapping mode
and setting the window and viewport extents to any value after
selecting this mapping mode. Windows will not alter either
scaling factor in this mode.

CDI uses the following equations to transform logical points to
device points, and device points to logical points:

1:1 Transforming logical points to device points:

Dx = (Lx - xWO) * xVE/xWE + xVO

Dy = (Ly-yWO) * yVE/yWE + yVO

iii Transforming device points to logical points:

Lx = (Dx - xVO) * xWE/xVE + xWO

Ly = (Dy - yVO) * yWE/yVE + yWO

The following list describes the variables used in these
transformation equations:

Variable

xWO
yWO
xWE
yWE
xVO
yVO
xVE
yVE
Lx

Description

Window origin x-coordinate
Window origin y-coordinate
Window extent x-coordinate
Windowextenty-coordinate
Viewport origin x-coordinate
Viewport origin y-coordinate
Viewport extent x-coordinate
Viewport extent y-coordinate
Logical-coordinate system x-coordinate

Chapter 2, Graphics device interface functions 103

104

Example:
MM_TEXT

Figure 2.5
Mapping with MM_TEXT

Ly
Dx
Dy

Logical-coordinate system y-coordinate
Device x-coordinate
Device y-coordinate

The following four ratios are scaling factors:

xVE/xWE
yVE/yWE
xWE/xVE
yWE/yVE

They are used to determine the necessary stretching or
compressing of logical units. The subtraction and addition of
viewport and window origins is referred to as the translational
component of the equation.

The default mapping mode is MM_TEXT. In this mapping mode,
one logical unit is mapped to one pixel on the device or display.

A simple Windows application created three rectangles as they
appear in the logical and physical coordinate spaces when
MM_TEXTis the mapping mode, as shown in Figure 2.5. The
drawing on the left illustrates the logical space; the drawing on
the right illustrates the device, or physical, space. The rectangles
appear vertically elongated in the physical space because pixels
on the chosen display are longer than they are wide. The
rectangles appear to be upside-down because positive y extends
downward in the physical-coordinate system.

Logical Coordinate System

y-axis

• (+),

..,---- ... ---
(-) 'Origin

(-) ,
t

- - - .. x-axis
(+)

Physical Coordinate System

Origin

(+r'
y-axis

- - - - - - - - - - - .. x-axis
(+)

Software development kit

Example:
MM_LOENGLISH

Figure 2.6
Mapping with

MM_LOENGLISH

A Windows application created three rectangles and mapped
them from the logical space to the physical space by using the
MM_LOENGLISH mapping mode, as shown in Figure 2.6. The
drawing on the left illustrates how the rectangles appear in
relation to the x- and y-axes in the logical coordinate system. The
drawing on the right illustrates how the rectangles appear in
relation to the x- and y-axes in the physical coordinate system.

Logical Coordinate System

y-axis

• (+). .

.----_._--
(-) • Origin

(-) : ,
- - - -~ x-axis

(+)

Physical Coordinate System

y-axis

• (-) . .

.. ----"ikJJ --------~ x-axis
(-) • Of/gm (+)

(+): ,

Coordinate functions

Coordinate functions convert client coordinates to screen
coordinates (or vice versa), and determine the location of a
specific point. These functions are useful in graphics-intensive
applications. The following list briefly describes each coordinate
function:

Function

ChildWindowFromPoint

ClientToScreen

DPtoLP

LPtoDP

Chapter 2, Graphics device interface functions

Description

Determines which child window contains a
specified point.
Converts client coordinates into screen
coordinates.
Converts device points (that is, points
relative to the window origin) into logical
points.
Converts logical points into device points.

105

ScreenToClient

WindowFromPoint

Converts screen coordinates into client
coordinates.
Determines which window contains a
specified point.

Region functions

For more information about
clipping functions, see

"Clipping functions" on page
106.

Region functions create, alter, and retrieve information about
regions. A region is an elliptical or polygonal area within a
window that can be filled with graphical output. An application
uses these functions in conjunction with the clipping functions to
create clipping regions. The following list briefly describes each
region function:

Function

CombineRgn

CreateEllipticRgn
CreateEllipticRgnlndirect
CreatePolygon Rgn
CreatePolyPolygon Rgn

CreateRectRgn
CreateRectRgnlndirect
CreateRoundRectRgn
EqualRgn

FiliRgn
FrameRgn
GetRgnBox

InvertRgn
OffsetRgn
PaintRgn

PtinRegion
RectinRegion

SetRectRgn

Description

Combines two existing regions into a new
region.
Creates an elliptical region.
Creates an elliptical region.
Creates a polygonal region.
Creates a region consisting of a series of
closed polygons that are filled as though
they were a single polygon.
Creates a rectangular region.
Creates a rectangular region.
Creates a rounded rectangular region.
Determines whether two regions are
identical.
Fills the given region with a brush pattern.
Draws a border for a given region.
Retrieves the coordinates of the bounding
rectangle of a region.
Inverts the colors in a region.
Moves the given region.
Fills the region with the selected brush
pattern.
Tests whether a point is within a region.
Tests whether any part of a rectangle is
within a region.
Creates a rectangular region.

Clipping functions

106

Clipping functions create, test, and alter clipping regions. A
clipping region is the portion of a window's client area where GOI

Software development kit

creates output; any output sent to that portion of the client area
which is outside the clipping region will not be visible. Clipping
regions are useful in any Windows application that needs to save
one part of the client area and simultaneously send output to
another. The following list briefly describes each clipping
function:

Function

ExcludeClipRect

GetClipBox

IntersectClipRect

OffsetClipRgn
PtVisible
RectVisible

SelectClipRgn

Line-output functions

Description

Excludes a rectangle from the clipping
region.
Copies the dimensions of a bounding
rectangle.
Forms the intersection of a clipping region
and a rectangle.
Moves a clipping region.
Tests whether a point lies in a region.
Determines whether part of a rectangle lies
in a region.
Selects a clipping region.

Line-output functions create simple and complex line output with
the selected pen. The following list briefly describes each line­
output function:

Function

Arc
LineDDA
LineTo
MoveTo

Polyline

Description

Draws an arc.
Computes successive points on a line.
Draws a line with the selected pen.
Moves the current position to the specified
point.
Draws a set of line segments.

Figure 2.7 shows an arc created by using the Arc function. The
upper portion of the illustration shows the arc as it would appear
on a display; the lower portion shows the arc suspended in its
bounding rectangle, which GDI uses to determine the size and
shape of the arc:

Chapter 2, Graphics device interface functions 107

Figure 2.7
Arc and its bounding

rectangle

Function
coordinates

Pen styles, colors,
widths

108

.............. --:-.""'. ___,....-c

Line-output functions require coordinates in logical units, which
CDI uses to draw a line in logical space. The use of logical units
ensures device independence in Windows. CDI maps this line
from the logical space to the physical space on the device. The
number of logical units that CDI maps to a pixel depends on the
current mapping mode. When CDI draws a line, it excludes the
last specified point. For example, if the LineTo function is given
the arguments (Xl, Yl) and (X2, Y2), the line will be drawn from
(Xl, Yl) to (X2 -1, Y2 -1).

If an application draws lines and does not create a new pen, CDI
uses the default pen. This pen is black and is one pixel wide when
the mapping mode is MM_TEXT. An application can create a new
pen of a different width, style, and color by using the CreatePen
function. The new color is dependent on the color capabilities of
the output device. The new style can be solid, dotted, dashed, or a
combination of dotted and dashed. Once an application creates a
new pen, it can select it into a display context by using the
SelectObject function.

Figure 2.8 shows simple line output created by the LineTo and
MoveTo functions. The application created the rectangle on the
left by using a styled pen and the rectangle on the right by using a
solid pen:

Software development kit

Figure 2.8

Styled-Pen and Solid-Pen _ .ls.ty_'ed. _pe.n.
Rectangles •

rSOlid pen

L..-._._._

Ellipse and polygon functions

Function

Ellipse and polygon functions draw ellipses and polygons. CDI
draws the perimeter of each object with the selected pen and fills
the interior by using the selected brush. These functions are
particularly useful in drawing and charting applications. The
following list briefly describes each ellipse and polygon function:

Function

Chord
DrawFocusRect

Ellipse
Pie
Polygon
Poly Polygon

Rectangle
RoundRect

Description

Draws a chord.
Draws a rectangle in the style used to
indicate focus.
Draws an ellipse.
Draws a pie.
Draws a polygon.
Draws a series of closed polygons that are
filled as though they were a single polygon.
Draws a rectangle.
Draws a rounded rectangle.

coordinates Ellipse and polygon functions require coordinates in logical units,
which CDI uses to determine the location and size of an object in
logical space. The use of logical units ensures device
independence in Windows. CDI uses a mapping function to map
logical units to pixels on the device. The number of logical units
that Windows maps to a pixel depends on the current mapping
mode. The default mapping mode, MM_TEXT, maps one logical
unit to one pixel.

When CDI draws a rectangle, it uses four arguments. The first
two arguments specify the rectangle's upper-left corner. The last
two arguments do not actually specify part of the rectangle; they
specify the point adjacent to the lower-right corner. For example,
if the first point is specified by (Xl, Yl) and the second point is

Chapter 2, Graphics device interface functions 109

Bounding
rectangles

specified by (X2, Y2), the rectangle's upper-left corner will be (Xl,
Y1) and the lower-right corner will be (X2 -I, Y2 -1).

Instead of requiring a radius or circumference measurement, the
Chord, Ellipse, and Pie functions use a bounding rectangle to
define the size of the object they create. The bounding rectangle is
hidden; GDI uses it only to describe the object's location and size.

For information about functions that alter or obtain information
about rectangles in a window's client area, see "Rectangle
functions," on page 82.

Bitmap functions

110

Bitmap functions display bitmaps. A bitmap is a matrix of
memory bits that, when copied to a device, defines the color and
pattern of a corresponding matrix of pixels on the device's display
surface. Bitmaps are useful in drawing, charting, and word­
processing applications because they let you prepare images in
memory and then quickly copy them to the display. The
following list briefly describes each bitmap function:

Function

BitBlt

CreateBitmap
CreateBitmaplndirect

CreateCompatibleBitmap

CreateDiscardableBitmap

ExtFloodFili

FloodFili

GetBitmapBits

GetBitmapDimension
GetPixel
LoadBitmap
PatBlt
SetBitmapBits

Description

Copies a bitmap from a source to a
destination device.
Creates a bitmap.
Creates a bitmap described in a data
structure.
Creates a bitmap that is compatible
with a specified device.
Creates a discard able bitmap that is
compatible with a specified device.
Fills the display surface within a
border or over an area of a given
color.
Fills the display surface within a
border.
Retrieves the bits in memory for a
specific bitmap.
Retrieves the dimensions of a bitmap.
Retrieves the RGB value for a pixel.
Loads a bitmap from a resource file.
Creates a bit pattern.
Sets the bits of a bitmap.

Software development kit

Bitmaps and
devices

Device­
independent

bitmap functions

SetBitmapDimension
SetPixel
Stretch Bit

Sets the height and width of a bitmap.
Sets the RGB value for a pixel.
Copies a bitmap from a source to a
destination device (compresses or stretches,
if necessary).

The relationship between bitmap bits in memory and pixels on a
device is device-dependent. On a monochrome device, the
correspondence is usually one-to-one, where one bit in memory
corresponds to one pixel on the device.

Microsoft Windows version 3.0 provides a set of functions that
define and manipulate color bitmaps which can be appropriately
displayed on any device with a given resolution, regardless of the
method by which the display represents color in memory. These
functions translate a device-independent bitmap specification into
the device-specific format used by the current display. The
following is a list of these functions:

Function

CreateDIBitmap

GetDIBits

SetDIBits

SetDlBitsToDevice

StretchDIBits

Description

Creates a device-specific memory bitmap
from a device-independent bitmap (DIB)
specification and optionally initializes bits
in the bitmap. This function is similar to
CreateBitmap.
Retrieves the bits in memory for a specific
bitmap in device-independent form. This
function is similar to GetBitmapBits.
Sets a memory bitmap's bits from a DIB.
This function is similar to SetBitmapBits.
Sets bits on a device surface directly from a
DIB.
Moves a device-independent bitmap (DIB)
from a source rectangle into a destination
rectangle, stretching or compressing the
bitmap as required.

A device-independent bitmap specification consists of two parts:

1. A BITMAPINFO data structure that defines the format of the
bitmap and optionally supplies a table of colors used by the
bitmap

Chapter 2, Graphics device interface functions 111

Text functions

Font functions

112

2. An array of bytes that contain the bitmap bit values

Depending on the values contained in the bitmap information
data structure, the bitmap bit values can specify explicit color
(RGB) values or indexes into the color table. In addition, the color
table can consist of indexes into the currently realized logical
palette instead of explicit RGB color values. It is important to note
that the coordinate-system origin for DIBs is the lower-left corner,
not the Windows default upper-left corner.

Text functions retrieve text information, alter text alignment, alter
text justification, and write text on a device or display surface.
GDI uses the current font for text output. The following list briefly
describes each text function:

Function

ExtTextOut

GetTabbedTextExtent

GetTextAlign
GetTextExtent

GetTextFace
GetTextMetrics

SetTextAlign

SetTextJustification
TabbedTextOut

TextOut

Description

Writes a character string, within a
rectangular region, using the currently
selected font. The rectangular region can be
opaque (filled with the current background
color) and it can be a clipping region.
Computes the width and height of a line of
text containing tab characters.
Returns a mask of the text alignment flags.
Uses the current font to compute the width
and height of text.
Copies the current font name to a buffer.
Fills the buffer with metrics for the selected
font.
Positions a string of text on a display or
device.
Justifies a text line.
Writes a character string with expanded
tabs, using the current font.
Writes a character string using the current
font.

Font functions select, create, remove, and retrieve information
about fonts. A font is a subset of a particular typeface, which is a
set of characters that share a similar fundamental design.

Software development kit

The following list briefly describes each font function:

Function Description

AddFontResource Adds a font resource in the specified file to
the system font table.

Create Font Creates a logical font that has the specified
characteristics.

CreateFontlndirect Creates a logical font that has the specified
characteristics.

EnumFonts Enumerates the fonts available on a given
device.

GetCharWidth

RemoveFontResource

Retrieves the widths of individual
characters.
Removes a font resource from the font
table.

SetMapperFlags Alters the algorithm the font mapper uses.

A font family is a group of typefaces that have similar stroke­
width and serif characteristics. A typeface is a set of characters
(letters, numerals, punctuation marks, symbols) that share a
common design. Font characters share very specific
characteristics, such as point size and weight.

Note that the terms GO! uses to describe fonts, typefaces, and
families of fonts do not necessarily correspond to traditional
typographic terms.

The Helvetica typeface is an example of a familiar typeface. It
belongs to the Swiss font family. Available fonts within this
typeface include 8-point Helvetica bold and lO-point Helvetica
italic.

Figure 2.9 shows several fonts from the Helvetica and Courier
typefaces:

Fonts from two t~i~~;~~~~ This is a line of 12 point Helvetica.

This is a line of 12 point Helvetica bold.

This is a line of 12 point Helvetica italic.

This is a line of 12 point Courier.

This is a line of 12 point Courier bold.

This is a line of 12 point Courier
italic.

Chapter 2, Graphics device interface functions 113

114

Font family

Figure 2.10
Cross-stroke and stem

Figure 2.11
Serifs

Font families

GOI organizes fonts by family; each family consists of typefaces
and fonts that share a common design. The families are divided
by stroke width and serif characteristics. The term stroke, which
means a horizontal or vertical line, comes from handwritten
characters composed of one or more pen strokes. The horizontal
stroke is called a cross-stroke. The main vertical line is called a
stem.

Figure 2.10 shows a lowercase f composed of a cross-stroke and a
stem with a loop at the top:

rS:Tke f Stem

Serifs are short cross-lines drawn at the ends of the main strokes
of a letter. If a typeface does not have serifs, it is generally called a
sans-serif (without serif) typeface. Figure 2.11 shows serifs:

~serif

~serif

GOI uses five distinct family names to categorize typefaces and
fonts. A sixth name is used for generic cases. Note that GOI's
family names do not correspond to traditional typographic
categories. Table 2.1 lists the font-family names and briefly
describes each family:

Name

Dontcare

Decorative
Modern

Roman

Description

Generic family name. Used when information about a
font does not exist or does not matter.
Novelty fonts. Old English, for example.
Constant stroke width (fixed-pitch), with or without
serifs. Fixed-pitch fonts are usually modern. Pica, Elite,
and Courier, for example.
Variable stroke width (proportionally spaced), with
serifs. Times Roman, Palatino, and Century
Schoolbook, for example.

Software development kit

Character cells

Figure 2.12
Character-cell dimensions

Script

Swiss

Designed to look like handwriting. Script and Cursive,
for example.
Variable stroke width (proportionally spaced), without
serifs. Helvetica and Swiss, for example.

A character is the basic element in a font. In CDI, each character is
contained within a rectangular region known as a character cell.
This rectangular region consists of a specific number of rows and
columns, and possesses six points of measurement: ascent,
baseline, descent, height, origin, and width. The following list
describes these measurements:

Measurement

Ascent

Baseline

Descent

Height
Origin

Width

Description

Specifies the distance in character-cell rows from
the character-cell baseline to the top of the
character cell.
Serves as the base on which all characters stand
(some lowercase letters have descenders, such as
the tail of the g or y, that descend below the
baseline).
Specifies the distance in character-cell rows from
the character-cell baseline to the bottom of the
character cell.
Specifies the height of a character-cell row.
Used as a point of reference when the character is
written on a device or a display surface. The
origin is the upper-left corner of the character
cell.
Specifies the width of a character-cell column.

Figure 2.12 shows a character cell that contains an uppercase A.
The baseline appears at the top of the second row. Note that the
uppercase A uses the baseline as its starting point. Also note that
the width and height values refer to the character-cell width and
height, not the width and height of the individual character:

mrigin -A-_t _--,-t_
Ascent Height

• +
j.-Width ... j t Descent

Chapter 2, Graphics device interface functions 115

116

Altering
characters

Italic

Bold

Underline

Characters exist in many sizes and shapes. The following sections
describe how characters are altered in GOI to produce a particular
font.

For an italic font, GOI skews the characters so that they appear
slanted. When italicized, the base of the character remains intact
while the upper portion shifts to the right. The greatest amount of
shifting occurs at the top of the character, the least amount at the
base.

A font is made bold by increasing its weight, which refers to the
thickness of the lines or strokes that compose a character. Fonts
with a heavy weight are referred to as bold.

An underline font has a line under each character. When a
character is underlined, a solid line appears directly below the
baseline of the character cell.

Strikeout A strikeout font has a solid horizontal line drawn through each
character. The position of this line within each character cell is
constant for a given font. Figure 2.13 shows characters that are
struck out:

Figure 2.13 I A I ~
Strikeout characters t§!J

Leading

This string of text
illustrates the effect
of implementing the
strilmel:Jt attribl:Jtc.

Leading is the distance from baseline to baseline of two adjacent
rows of text. When font designers develop a font, they specify that
a given amount of space should appear between rows. The
addition of this space ensures that a character is not obscured by
part of another character in an adjacent row. There are two ways
of adding this additional space: by inserting it within the
character cells of a font (internal leading) or by inserting it

Software development kit

between rows of text as they are printed on a device (external
leading).

Internal leading Internal leading refers to the space inserted within character cells
of a particular font. Only marks such as accents, umlauts, and
tildes in foreign character sets appear within the space allocated
for internal leading. Figure 2.14 shows two ro,,\,s of text that use
internal leading:

Figure 2.14
Internal leading eternal leading

Bottom of
character cell

Top of character cell

Character-cell baseline

t
Leading

,}
Character-cell baseline

Externalleading External leading is space inserted between the top and bottom of
character cells in adjacent rows of text. The font designer must
specify the amount of external leading necessary to produce easily
readable text from a particular font. External leading is not built
into a font; you must add it before you print text on a device.
Figure 2.15 shows external leading:

Figure 2.15
External leading

Character set

A B
A b

C
C

1

T

+-- External
leading

All fonts use a character set. A character set contains punctuation
marks, numerals, uppercase and lowercase letters, and all other
printable characters. The designer of a character set assigns a
numeric value to each element in the set. You use this number to
access an element within the set.

Chapter 2, Graphics device interface functions 117

Most character sets used in Windows are supersets of the U.S.
ASCII character set, which defines characters for the 96 numeric
values from 32 to 127. There are four major groups of character
sets:

• ANSI

II OEM

• Symbol

• Vendor specific

ANSI character set The ANSI character set is the most commonly used character set.

OEM character set

Symbol character set

118

Vendor-specific
character sets

The blank character is the first character in the ANSI character set.
It has a hexadecimal value of Ox20, which is equivalent to the
decimal value 32. The last character in the ANSI character set has
a hexadecimal value of OxFF, which is equivalent to the decimal
value 255.

Many fonts specify a default character. Whenever a request is
made for a character not in the set, this default character is given.
Most fonts using the ANSI character set specify the period (.) as
the default character. The hexadecimal value for the period is
Ox2E, or decimal 46 in the ANSI character set.

Fonts use a break character to separate words and justify text.
Most fonts using the ANSI character set specify the blank
character, whose hexadecimal value is Ox20, decimal 32.

Windows supports a second character set, referred to as the OEM
character set. This is generally the character set used internally by
DOS for screen display. Characters 32 to 127 of the OEM set are
usually identical to the same characters in the U.s. ASCII set,
which are also in the ANSI set. The remaining characters in the
OEM set (0 to 31, and 128 to 255) correspond to the characters
which may be shown on the computer's DOS display, and
generally differ from ANSI characters.

The symbol character set contains special characters typically
used to represent mathematical and scientific formulas.

Many printers and other output devices contain fonts based on
character sets which differ from the ANSI and OEM sets, such as
the EBCDIC character set. In such cases, the printer driver must
translate from the ANSI character set to one or more of the sets
provided by the printer or other device.

Software development kit

Pitch

Average character
width

Maximum character
width

Digitized aspect

Overhang

The term pitch traditionally refers to the number of characters
from a particular font that will fit in a single inch. CDI, however,
uses this term differently. The term fixed-pitch refers to a font
whose character-cell size is constant for each character. The term
variable-pitch refers to a font whose character cells vary in size,
depending on the actual width of the characters.

Variable-pitch fonts use the average character width to specify the
average width of character cells in the font. Since there is no
variance in character-cell width for fixed-pitch fonts, the average
character width specifies the character width of any character in
the fixed-pitch font.

Variable-pitch fonts use the maximum character width to specify
the maximum width of any character cell in the font. Since there is
no variance in character width for fixed-pitch fonts, the maximum
character width is equivalent to the average character width in the
fixed-pitch font.

When raster fonts are created, they are designed with one
particular aspect ratio in mind. The aspect ratio is the ratio of the
width and height of a device's pixel. CDI maintains a record of the
ideal x-aspect and y-aspect for individual fonts. The ideal x-aspect
is the width value from the aspect ratio of the device. The ideal y­
aspect is the height value from the aspect ratio of the device.
These values are called the digitized aspects for x and y. The
GetAspectRatioFilter function retrieves the setting for the current
aspect-ratio filter. Windows provides a special filter, the aspect­
ratio filter, to select fonts designed for a particular aspect ratio
from all of the available fonts. The filter uses the aspect ratio
specified by the SetMapperFlags function.

When a particular font is not available on a device, CDI
sometimes synthesizes that font. The process of synthesizing may
add width or height to an existing font.

Whenever CDI synthesizes an italic or bold font from a normal
font, extra columns are added to individual character cells in that
font. The difference in width (the extra columns) between a string
created with the normal font and a string created with the
synthesized font is called the overhang.

Chapter 2, Graphics device interface functions 119

Selecting fonts
with GDI

Figure 2.16
A GDI font table

GDI maintains a collection of fonts from different typefaces. In
addition to this collection, some devices maintain a collection of
hardware fonts in their ROM. GDI lets you describe a font and
then selects the closest matching available font from your
description.

GDI requires you to describe the font you want to use to create
text. The font you describe is a logical font (it mayor may not
actually exist). GDI compares this logical font to the available
physical fonts and selects the closest match.

The process of selecting the physical font that bears the closest
resemblance to the specified logical font is known as font
mapping. GDI also maintains a font table. Each entry in the font
table describes a physical font and its attributes. Included in each
entry is a pointer to a corresponding font resource. Figure 2.16
shows a font table that contains fonts X, Y, and Z:

Font Table

Font X information

leading I italic I underline I weight

char set I width I height I first char

pitch and family J last char I . .. l --Pointer to
font X resource

Font Y information

leading I italic I underline I weight

char set I width I height I first char

pitch and family J last char I ... l -f-- Pointer to
font Y resource

Font Z information

leading I italic I underline I weight

char set I width I height I first char

pitch and family J last char I ... l -f-- Pointer to
font Z resource

Font-mapping scheme GDI cannot guarantee that a physical font exists that exactly
matches a requested logical font, so GDI attempts to pick a font
that has the fewest differences from the requested logical font.
Since fonts have many different attributes, the GDI font mapper
assigns penalties to physical fonts whose characteristics do not
match the characteristics of the specified logical font. The physical
font with the fewest penalties assigned is the one that GDI selects.

120 Software development kit

Table 2.2
Font-mapping characteristics

To begin the mapping, CD! transforms the requested height and
width of the logical font to device units. This transformation
depends on the current mapping mode and window and
viewport extents. CD! then asks the device to realize the physical
font. A device can realize a font if it can create it or a font very
close to it.

If the device can realized a physical font, CDI compares this font
with its own set of fonts. If CDI has a font that more closely
matches the logical font, CD! uses it. But if the device signals that
it can take device-realized fonts only, CDI uses the realized font.

If the device cannot realize a font, CDI searches its own fonts for a
match.

To determine how good a match a given physical font is to the
requested logical font, the mapper takes the logical font and
compares it one attribute at a time with each physical font in the
system.

Table 2.2 lists the characteristics that are penalized by CDI's font
mapper. The characteristics are grouped according to penalty
weights, with the heaviest penalty assigned to the CharSet
characteristic and the lightest penalty assigned to the Weight,
Slant, Underline, and StrikeOut characteristics.

Characteristic Penalty weight

CharSet 4

Pitch 3

Family 3

FaceName 3

Penalty scheme

If the character set does not match, the
candidate font is penalized heavily.
Fonts with the wrong character set are
very rarely selected as the physical
font. There is no default character set.
This means a logical font must alway
specify the desired set.
The wrong pitch is penalized heavily.
If the requested pitch is fixed, a wrong
pitch is assessed a greater penalty
since an application that handles fixed
pitches may not be able to handle
variable-pitch fonts.
If the font families do not match, the
candidate font is penalized heavily. If
a default font family is requested, no
penalties are assessed.
If the font typeface names do not
match, the candidate font is penalized
heavily. If a default font facename is
requested, no penalties are assessed.

Chapter 2, Graphics device interface functions 121

122

Table 2.2: Font-mapping characteristics (continued)

Height 2 The wrong height is penalized. GDI
always chooses or synthesizes a
shorter font if the exact height is not
available. GDI can synthesize a font by
expanding a font's character bitmaps
by an integer multiple. GDI will
expand a font up to eight times. If a
default height is requested, GDI
arbitrarily searches for a twelve-point
font.

Width 2 The wrong width is penalized. GDI
always chooses or synthesizes a
narrower font if the exact width is not
available. If a default width is
requested, GDI assesses a penalty for
any difference between the aspect ratio
of the device and the aspect ratio of the
font. The mapper can give unexpected
results if there are no fonts for the
given aspect ratio.

Weight 1 Although GDI can synthesize bold, an
actual bold font is preferred. The
mapper penalizes for synthesizing.

Slant 1 Although GDI can synthesize italics,
an actual italic font is preferred. The
mapper penalizes for synthesizing.

Underline 1 Although GDI can synthesize
underlining, an actual underline font is
preferred. The mapper penalizes for
synthesizing.

StrikeOut 1 Although GDI can synthesize
strikeouts, an actual strikeout font is
preferred. The mapper penalizes for
synthesizing.

If GDI synthesizes a font, the mapper assesses a penalty that
depends on the number of times the font was replicated.
Furthermore, a penalty is added if the font was synthesized in
both directions and the synthesizing was uneven, that is, if the
font was stretched more in one direction than the other.

When the mapper has compared all the fonts in the system, it
picks the one with the smallest penalty. The application should
retrieve the metrics of the font to find out the characteristics of the
font it received.

The penalty weights listed in Table 2.2 are the default penalties
used byGDI.

Software development kit

Example of font
selection

Figure 2.17
Sample font selection ratings

For the purpose of this example, assume that the system font table
lists only the three fonts shown in Figure 2.16, "A CDI Font Table,"
fonts X, Y, and Z. Suppose you need to use a specific font, font Q,
to create text on an output device. You will need to describe font
Q so that CDI can choose the physical font (X, Y, or Z) that bears
the closest resemblance to Q.

To describe font Q, you use the CreateFont or CreateFontindirect
CDI function. These functions create a logical font which is a
description of the desired physical font.

Use the SelectObject function to select the physical font that most
closely matches logical font Q. (The SelectObject function
requires that you pass a handle to font Q.) Once a call to the
SelectObject function occurs, CDI will initiate the selection
process.

Table 2.2 shows the physical fonts in the font table and the
penalties that CDI assigns to each as it tries to find a font that will
match font Q. The left column shows the font attributes that CDI
compares; the second column gives the attributes of font Q, the
desired font. The attributes of fonts X, Y, and Z-the fonts that are
actually in the system font table-are followed by the penalty
values that CDI gives to each one. The bottom row of the table
gives the penalty totals for each font:

Desired Available Fonts'Penalty Score
Attributes Q X Y Z

CharSet ANSI OEM 4 OEM 4 ANSI
Pitch Fixed Variable 3 Fixed a Variable
Family Roman Modern 3 Roman a Modern
FaceName TmsRmn Pica 3 TmsRmn a Elite
Height 8 10 2 10 2 8
Width 4 6 2 6 2 4
Slant None None a None a None
Underline None None a None a None
StrikeOut None None a None a None

Penalty Total 17 8

The penalty totals show that font Y has the lowest penalty score
and therefore resembles font Q most closely. In this example, CDI
would select font Y as the physical font on the output device.

Chapter 2, Graphics device interface functions 123

0
3
3
3
a
0
0
a
a
9

Font files and font
resources GDI stores information about the physical font in font files. The

font file consists of a header and a bitmap. The font-file header
contains a detailed description of the font. If the font file is a raster
file, the font-file bitmap contains actual representations of the font
characters. If the font file is a vector file, the font-file bitmap
contains character strokes for the font characters. A font resource
is a collection of one or more of these physical-font files.

Metafile functions

124

Metafile functions close, copy, create, delete, retrieve, play, and
return information about metafiles. A metafile is a collection of
GDI commands that creates desired text or images.
Metafiles provide a convenient method of storing graphics
commands that create text or images. Metafiles are especially
useful in applications that use specific text or a particular image
repeatedly. They are also device-independent; by creating text or
images with GDI commands and then placing the commands in a
metafile, an application can re-create the text or images repeatedly
on a variety of devices. Metafiles are also useful in applications
that need to pass graphics information to other applications.

The following list briefly describes each metafile function:

Function

CloseMetaFile

CopyMetaFile
CreateMetaFile
DeleteMetaFile
EnumMetaFile
GetMetaFile
GetMetaFileBits

PlayMetaFile
PlayMetaFileRecord
SetMetaFileBits

Description

Closes a metafile and creates a metafile
handle.
Copies a source metafile to a file.
Creates a metafile display context.
Deletes a metafile from memory.
Enumerates the GDI calls within a metafile.
Creates a handle to a metafile.
Stores a metafile as a collection of bits in a
global memory block.
Plays the contents of a specified metafile.
Plays a metafile record.
Creates a memory metafile.

Software development kit

Creating a
metafile A Windows application must create a metafile in a special device

context. It cannot use the device contexts that the CreateDC or
GetDC functions return; instead, it must use the device context
that the CreateMetaFile function returns.

Windows allows an application to use a subset of the CDI
functions to create a metafile. This subset is the set of all CDI
functions that create output (it is not necessary to use those
functions that provide state information, such as the
GetDeviceCaps or GetEnvironment functions). The following is a
list of CDI functions an application can use in a metafile:

AnimatePalette OffsetViewportOrg SetDIBitsToDevice
Arc OffsetWindowOrg SetMapMode
BitBlt PatBlt SetMapperFlags
Chord Pie SetPixel
CreateBrushlndirect Polygon SetPolyFiliMode
CreateDIBPatternBrush Polyline SetROP2
CreateFontindirect PolyPolygon SetStretchBltMode
Create Pattern Brush RealizePalette SetTextAlign
CreatePenlndirect Rectangle SetTextCharExtra
CreateRegion ResizePalette SetTextColor
DrawText RestoreDC SetTextJustification
Ellipse RoundRect SetViewportExt
Escape SaveDC SetViewportOrg
ExcludeClipRect ScaleViewportExt SetWindowExt
ExtTextOut ScaleWindowExt SetWindowOrg
FloodFili SelectClipRegion StretchBlt
IntersectClipRect SelectObject StretchDIBits
LineTo SelectPalette TextOut
MoveTo SetBkColor
OffsetClipRgn SetBkMode

To create output with a metafile, an application must follow four
steps:

1. Create a special device context by using the CreateMetaFile
function.

2. Send CDI commands to the metafile by using the special
device context.

3. Close the metafile by calling the CloseMetaFile function. This
function returns a metafile handle.

Chapter 2, Graphics device interface functions 125

Storing a metafile
in memory or on

disk

126

4. Display the image or text on a device by using the
PlayMetaFile function, passing to the function the metafile
handle obtained from CloseMetaFile and a device-context
handle for the device to which the metafile is to be played.

The device context which CreateMetaFile creates does not have
default attributes of its own. Whatever device-context attributes
are in effect for the output device when an application plays a
metafile will be the defaults for the metafile. The metafile can
change these attributes while it is playing. If the application needs
to retain the same device-context attributes after the metafile has
finished playing, it should save the output device context by
calling the SaveDC function before calling PlayMetaFile. Then,
when PlayMetaFile returns, the application can call the
RestoreDC function (with -1 as the nSavedDC parameter) to
restore the original device-context attributes.

Although the maximum size of a metafile is 232 bytes or records,
the actual size of a metafile is limited by the amount of memory or
disk space available.

An application can store a metafile in system memory or in a disk
file.

To store the metafile in memory, an application calls
CreateMetafile and passes NULL as the function parameter.
There are two ways of storing a metafile in a disk file:

a When the application calls CreateMetaFile to open a metafile, it
passes a filename as the function parameter; the metafile will
then be recorded in a disk file.

1:1 After the application has created a metafile in memory, it calls
the CopyMetaFile function. This function accepts the handle of
a memory metafile and the filename of the disk file which is to
save the metafile.

The GetMetaFile function opens a metafile stored in a disk file and
makes it available for replay or modification. This function
accepts the filename of a metafile stored on disk and returns a
metafile handle.

Software development kit

Deleting a
metafile

Changing how
Windows plays a

metafile

Chapter 9, "File formats," in
Reference, Volume 2, shows

the formats of the various
metafile records and

describes their contents.

See the description of the
HANDLETABLE data structure

in Chapter 7, "Data types
and structures," in Reference,

Volume 2, for info on the
handle table format.

An application frees the memory which Windows uses to store
the metafile by calling the DeleteMetafile function. This function
removes a metafile from memory and invalidates its handle. It has
no effect on disk files.

A metafile does not have to be played back in its entirety or
exactly in the form in which it was recorded. An application can
use the EnumMetaFile function to locate a specific metafile record.
EnumMetaFile calls an application-supplied callback function and
passes it the following:

IJ The metafile device context
IJ A pointer to the metafile handle table
IJ A pointer to a metafile record
IJ The number of associated objects with handles in the handle

table
IJ A pointer to application-supplied data

The callback function can then use this information to playa
single record, to query it, copy it, or modify it. The
PlayMetaFileRecord function plays a single metafile record.

When Windows plays or enumerates the records in a metafile, it
identifies each object with an index into a handle table. Functions
that select objects (such as SelectObject and SelectPalette)
identify the object by means of the object handle which the
application passes to the function.

Objects are added to the table in the order in which they are
created. For example, if a brush is the first object created in a
metafile, the brush is given index zero. If the second object is a
pen, it is given index 1, and so on.

Printer-control functions

Printer-control functions retrieve information about a printer and
modify its initialization state. The printer driver, rather than GDI
itself, provides these functions. The following list briefly describes
each printer-control function:

Chapter 2, Graphics device interface functions 127

Function

DeviceCapabilities

DeviceMode

ExtDeviceMode

Description

Retrieves capabilities of a printer device
driver.
Sets the current printing modes for a
device by prompting the user with a dialog
box.
Retrieves or modifies device initialization
information for a given printer driver or
displays a driver-supplied dialog box for
configuring the driver.

Printer-escape function

Creating output
on a printer

128

The Escape function allows an application to access facilities of a
particular device that are not directly available through GOL The
nEscape parameter of this function specifies the escape function to
be performed. When an application calls Escape for a printer
device context, the escape functions regulate the flow of printer
output from Windows applications, retrieve information about a
printer, and alter the settings of a printer.

Windows applications use only the standard Windows functions
to access system memory, the output device, the keyboard, and
the mouse. Each application interacts with the user through one
or more windows that are created and maintained by the user.
GOl assists an application in creating output by passing device­
independent function calls from the application to the device
driver. The device driver first translates these device-independent
function calls into device-dependent operations that create images
on a device's display surface, and then sends them to Print
Manager (the spooler). Print Manager serves two purposes: It
collects translated commands from one application and stores
them in a corresponding job, and it passes a complete job to the
device for output.

If only one Windows application were allowed to run at any
given time, Print Manager and many of the escape functions
would be unnecessary. However, Windows allows several
applications to run at once. If two or more of these applications
send output simultaneously, each application's output must be
separated and remain separated during printing or plotting. Print

Software development kit

Banding output

Manager maintains this separation. The printer-escape functions
affect the way Print Manager handles this separation task.

The model used by CDI states that any point on an output device
can be written to at any time. This model is easily implemented
on vector devices but poses a problem on many dot-matrix
devices that cannot scroll backward. Banding provides a solution
to this problem.

Banding involves several steps:

1. The application creates a metafile and uses it as an
intermediate storage device for the output.

2. Beginning at the top of the metafile, CDI translates a
rectangular region (band) of output into device-specific
commands, and then sends it to a corresponding job.

3. The application repeats this process until the entire metafile
has been converted to bands and the output from these bands
has been translated into device-specific commands and stored
in a job.

4. The application sends the job to the output device.

When creating a device context, CDI verifies whether the device
has banding capabilities. If it does, CDI creates the metafile that
will be used during the banding process. To implement banding,
you call the necessary output functions and the NEXTBAND
escape. The NEXTBAND escape requires a long pointer to a RECT
data structure as its output parameter. The device driver copies
the coordinates of the next band into this structure. When the
entire metafile has been converted into device-specific commands,
the driver returns four zeros (0,0,0,0) in the RECT structure.

CDI does the banding for you if your output device has banding
capabilities and you call the NEWFRAME escape. Although
NEWFRAME requires more memory and is slower, it does
simplify the output process. After the application creates each
page of output, it calls the NEWFRAME escape. 1£ the device is
capable of banding, CDI copies output to a metafile and calls the
NEXTBAND escape for you. As discussed earlier, the NEXTBAND
escape causes the contents of the metafile to be converted into
device-specific commands and to be copied to a corresponding
job. If a memory problem occurs or the user terminates a job, the

Chapter 2, Graphics device interface functions 129

Starting and
ending a print job

Terminating a
print job

Information

NEWFRAME escape returns a message that defines the error or
abort message.

The STARTDOC escape informs the device driver that an
application is beginning a new print job. After the STARTDOC call
is issued, Print Manager queues all output from a particular
application in a corresponding job until an ENDDOC escape is
issued. (Note that you cannot use the ENDDOC escape to
terminate a job.)

If you send output to a device with the NEWFRAME escape, you
are required to write a termination procedure and supply it with
the application. The SETABORTPROC escape sets a pointer to this
procedure; it should be called prior to the STARTDOC escape. The
ABORTDOC escape terminates print jobs if it is called before the
first call to NEWFRAME. It should also be used to terminate jobs
that use the NEXTBAND escape.

escapes Four of the escape functions are used to retrieve information
about the selected device and its settings. The
GETPHYSPAGESIZE escape retrieves the physical page size of the
output device (in device units), the smallest addressable units on
the device. For example, one-fortieth of a millimeter is the
smallest addressable unit on some vector devices. A pixel is the
smallest addressable unit on a dot-matrix device. The
GETPRINTINGOFFSET escape retrieves the distance (in device
units) from the upper-left corner of the page to the point at which
printing begins. The GETSCALlNGFACTOR escape retrieves the
scaling factors for the x- and y-axes of a device. The scaling factor
expresses the number of logical units that are mapped to a device
unit. The QUERYESCSUPPORT escape determines whether a
particular escape function is implemented on a device driver. If
the escape in question is implemented, QUERYESCSUPPORT
returns a nonzero value. If the escape is not implemented,
QUERYESCSUPPORT returns zero.

130 Software development kit

Additional
escape calls

For a detailed description of
the functions that alter

interword and intercharacter
spacing, see Sections "Text

functions, " and "Font
functions. "

There are two additional escapes that alter the state of the device:
the FLUSHOUTPUT and DRAFTMODE escapes. The
FLUSHOUTPUT escape flushes the output in the device's buffer
(the device stores device operations in the buffer before sending
them to Print Manager). The DRAFTMODE escape turns on the
device's draft mode. This means that the device will use one of its
own fonts instead of using a CDI font. It also means that calls to
the text-justification functions that alter interword and
intercharacter spacing are ignored.

Environment functions

Environment functions alter and retrieve information about the
environment associated with an output device. The following list
briefly describes the two enviornment functions:

Function

GetEnvironment

SetEnvironment

Description

Copies environment information into a
buffer.
Copies data to the environment associated
with an attached device.

For more information on topics related to CDI functions, see the
following:

Topic

Function descriptions

Windows data types and structures

Metafile formats

Raster operations

Printer escapes

Chapter 2, Graphics device interface functions

Reference

Reference, Volume 1: Chapter 4,
"Functions directory"
Reference, Volume 2: Chapter 7,
"Data types and structures"
Reference, Volume 2: Chapter 9,
"File format"
Reference, Volume 2: Chapter 11,
"Binary and ternary raster­
operation codes"
Reference, Volume 2: Chapter 12,
"Printer escapes"

131

132 Software development kit

c H A p T E R

3

System services interface functions

This chapter describes the system services interface functions.
These functions access code and data in modules, allocate and
manage both local and global memory, manage tasks, load
program resources, translate strings from one character set to
another, alter the Microsoft Windows initialization file, assist in
system debugging, carry out communications through the
system's I/O ports, create and open files, and create sounds using
the system's sound generator.

This chapter lists the following categories of functions:

iii Module-management functions
El Memory-management functions
EI Segment functions
El Operating-system interrupt functions
iii Task functions
El Resource-management functions
Il String-manipulation functions
CI Atom-management functions
E:I Initialization-file functions
Il Communication functions
J:I Sound functions
m Utility macros and functions
m File I/O functions
Il Debugging functions
El Optimization-tool functions
a Application-execution functions

Chapter 3, System seNices interface functions 133

Module-management functions

Module-management functions alter and retrieve information
about Windows modules, which are loadable, executable units of
code and data. The following list briefly describes each module­
management function:

Function

FreeLibrary

FreeModule

FreeProclnstance

GetCodeHandle

GetlnstanceData

GetModuleFileName
GetModuleHandle
GetModuleUsage
GetProcAddress

GetVersion

LoadLibrary
MakeProclnstance

Description

Decreases the reference count of a library
by one and removes it from memory if the
reference count is zero.
Decreases the reference count of a module
by one and removes it from memory if the
reference count is zero.
Removes a function instance entry at an
address.
Determines which code segment contains a
specified function.
Copies data from an offset in one instance
to an offset in another instance.
Copies a module filename.
Returns the module handle of a module.
Returns the reference count of a module.
Returns the address of a function in a
module.
Returns the current version number of
Windows.
Loads a library module.
Returns a function-instance address.

Memory-management functions

134

Memory-management functions manage system memory. There
are two categories of functions: those that manage global memory
and those that manage local memory. Global memory is all
memory in the system that has not been allocated by an
application or reserved by the system. Local memory is the
memory within a Windows application's data segment. The
following list briefly describes each memory-management
function:

Function

DefineHandleTable

Description

Creates a private handle table in an
application's default data segment.

Software development kit

GetFreeSpace

GetWinFlags

GlobalAI/oc
GlobalCompact

GlobalDiscard

GlobalDosAI/oc

GlobalDosFree

GlobalFlags

GlobalFree

GlobalHandle

GlobalLock

GlobalLRUNewest

GlobalLRUOldest

GlobalNotify

GlobalReAI/oc
GlobalSize

GlobalUnlock

GlobalUnwire

GlobalWire

LimitEMSPages

LocalAI/oc
LocalCompact

Chapter 3, System seNices interface functions

Retrieves the number of bytes available in
the global heap.
Retrieves information about the system
memory configuration.
Allocates memory from the global heap.
Compacts global memory to generate free
bytes.
Discards a global memory block if the lock
count is zero, but does not invalidate the
handle of the memory block.
Allocates global memory that can be
accessed by DOS running in real or
protected mode.
Frees global memory previously allocated
by the GlobalDesAI/ec function.
Returns the flags and lock count of a global
memory block.
Removes a global memory block and
invalidates the handle of the memory
block.
Retrieves the handle of a global memory
object.
Retrieves a pointer to a global memory
block specified by a handle. Except for
nondiscardable objects in protected
(standard or 386 enhanced) mode, the
block is locked into memory at the given
address and its lock count is increased by
one.
Moves a global memory object to the
newest least-recently-used (LRU) position.
Moves a global memory object to the oldest
least-recently-used (LRU) position.
Installs a notification procedure for the
current task.
Reallocates a global memory block.
Returns the size (in bytes) of a global
memory block.
Invalidates the pointer to a global memory
block previously retrieved by the
GlobalLeck function. In real mode, or if the
block is discardable, GlobalUnlock
decreases the block's lock count by one.
Decreases the lock count set by the
GlebalWire function, and unlocks the
memory block if the count is zero.
Moves an object to low memory and
increases the lock count.
Limits the amount of expanded memory
that Windows will assign to an application.
Allocates memory from the local heap.
Compacts local memory.

135

LocalDiscard

LocalFlags

LocalFree

LocalHandle

Locallnit

LocalLock

LocalReAlloc
LocalShrink
LocalSize

LocalUnlock
LockData
LockSegment
SetSwapAreaSize

SwitchStackBack

SwitchStackTo

UnlockData
UnLockSegment

Discards a local memory block if the lock
count is zero, but does not invalidate the
handle of the memory block.
Returns the memory type of a local
memory block.
Frees a local memory block from memory if
the lock count is zero and invalidates the
handle of the memory block.
Retrieves the handle of a local memory
object.
Initializes a local heap in the specified
segment.
Locks a block of local memory by
increasing its lock count.
Reallocates a local memory block.
Shrinks the local heap.
Returns the size (in bytes) of a local
memory block.
Unlocks a local memory block.
Locks the current data segment in memory.
Locks a specified data segment in memory.
Increases the amount of memory that an
application reserves for code segments.
Returns the stack of the current task to the
task's data segment after it had been
previously redirected by the
SwitchTasksBack function.
Changes the stack of the current task to the
specified data segment, such as the data
segment of a dynamic-link library (DLL).
Unlocks the current data segment.
Unlocks a specified data segment.

Segment functions

136

Segment functions allocate, free, and convert selectors; lock and
unlock memory blocks referenced by selectors; and retrieve
information about segments. The following list briefly describes
each selector function:

Function

AJlocDStoCSAlias

AJlocSelector
ChangeSelector

Description

Accepts a data-segment selector and
returns a code-segment selector that can be
used to execute code in a data segment.
Allocates a new selector.
Generates a temporary code selector that
corresponds to a given data selector, or a

Software development kit

DefineHandleTable

FreeSelector

GetCodelnfo

GlobalFix

Global Page Lock

GlobalPageUnlock

GlobalUnfix

LockSegment
UnlockSegment

temporary data selector that corresponds to
a given code selector.
Creates a private handle table which
Windows updates automatically.
Frees a selector originally allocated by the
AllocSelector or AllocDStoCSAlias
functions.
Retrieves information about a code
segment.
Prevents a global memory block from
moving in linear memory.
Page-locks the memory associated with the
specified global selector and increments its
page-lock count. Memory that is page­
locked cannot be moved or paged out to
disk.
Decrements the page-lock count for a block
of memory. If the page-lock count reaches
zero, the memory can be moved and paged
out to disk.
Unlocks a global memory block previously
fixed by the GlobalFix function.
Locks a segment in memory.
Unlocks a segment previously locked by
the LockSegment function.

.. An application should not use these functions unless it is
absolutely necessary. Use of these functions violates preferred
Windows programming practices.

Operating-system interrupt functions

Operating-system interrupt functions allow an assembly­
language application to perform certain DOS and NETBIOS
interrupts without directly coding the interrupt. This ensures
compatibility with future Microsoft products.

The following list briefly describes these functions:

Function

DOS3Cail

NetBIOSCal1

Chapter 3, System services interface functions

Description

Issues a DOS 21H (function-request)
interrupt.
Issues a NET BIOS 5CH interrupt.

137

Task functions

Task functions alter the execution status of tasks, return
information associated with a task, and retrieve information about
the environment in which the task is executing. A task is a single
Windows application call. The following list briefly describes each
task function:

Function

Catch

ExitWindows

GetCurrentPDB

GetCurrentTask
GetDOSEnvironment

GetNumTasks

SetErrorMode

Throw

Yield

Description

Copies the current execution environment
to a buffer.
Initiates the standard Windows shutdown
procedure.
Returns the current DOS Program Data
Base (PDB), also known as the Program
Segment Prefix (PSP).
Returns the task handle of the current task.
Retrieves the environment string of the
currently running task.
Returns the number of tasks currently
executing in the system.
Controls whether Windows handles DOS
Function 24H errors or allows the calling
application to handle them.
Restores the execution environment to the
specified values.
Halts the current task and starts any
waiting task.

Resource-management functions

138

Resource-management functions find and load application
resources from a Windows executable file. A resource can be a
cursor, icon, bitmap, string, or font. The following list briefly
describes each resource-management function:

Function

AccessResource
AliocResource

FindResource
FreeResource
LoadAccelerators
LoadBitmap
LoadCursor

Description

Opens the specified resource.
Allocates uninitialized memory for a
resource.
Determines the location of a resource.
Removes a loaded resource from memory.
Loads an accelerator table.
Loads a bitmap resource.
Loads a cursor resource.

Software development kit

Loadlcon
LoadMenu
LoadResource
LoadString
LockResource

SetResourceHandler
SizeofResource
UnlockResource

String-manipulation functions

Loads an icon resource.
Loads a menu resource.
Loads a resource.
Loads a string resource.
Retrieves the absolute memory address of a
resource.
Sets up a function to load resources.
Supplies the size (in bytes) of a resource.
Unlocks a resource.

String-manipulation functions translate strings from one character
set to another, determine and convert the case of strings,
determine whether a character is alphabetic or alphanumeric, find
adjacent characters in a string, and perform other string
manipulation. The following list briefly describes each string­
translation function:

Function

AnsiLower
Ansi LowerBuff

AnsiNext

AnsiPrev

AnsiToOem

AnsiToOemBuff

AnsiUpper
AnsiUpperBuff

IsCharAlpha

IsCharAlphaNumeric

IsCharLower

IsCharUpper

Istrcat

Istrcmp

Istrcmpi

Chapter 3, System seNices interface functions

Description

Converts a character string to lowercase.
Converts a character string in a buffer to
lowercase.
Returns a long pointer to the next character
in a string.
Returns a long pointer to the previous
character in a string.
Converts an ANSI string to an OEM
character string.
Converts an ANSI string in a buffer to an
OEM character string.
Converts a character string to uppercase.
Converts a character string in a buffer to
uppercase.
Determines whether a character is
alphabetical.
Determines whether a character is
alphanumeric.
Determines whether a character is
lowercase.
Determines whether a character is
uppercase.
Concatenates two strings identified by long
pointers.
Performs a case-sensitive comparison of
two strings identified by long pointers.
Performs a case-insensitive comparison of
two strings identified by long pointers.

139

Istrcpy

Istrlen

OemToAnsi

OemToAnsiBuff

ToAscii

wsprintf

wvsprintf

Copies one string to another; both strings
are identified by long pointers.
Determines the length of a string identified
by a long pointer.
Converts an OEM character string to an
ANSI string.
Converts an OEM character string in a
buffer to an ANSI string.
Translates a virtual-key code to the
corresponding ANSI character or
characters.
Formats and stores a series of characters
and values in a buffer. Format arguments
are passed separately.
Formats and stores a series of characters
and values in a buffer. Format arguments
are passed through an array.

Atom-management functions

140

Atom-management functions create and manipulate atoms.
Atoms are integers that uniquely identify character strings. They
are useful in applications that use many character strings and in
applications that need to conserve memory. Windows stores
atoms in atom tables. A local atom table is allocated in an
application's data segment; it cannot be accessed by other
applications. The global atom table can be shared, and is useful in
applications that use dynamic data exchange (DOE). The
following list briefly describes each atom-management function:

Function

AddAtom
DeleteAtom

FindAtom

GetAtomHandle

GetAtomName

GlobalAddAtom
GlobalDeleteAtom

GlobalFindAtom

Description

Creates an atom for a character string.
Deletes an atom if the reference count is
zero.
Retrieves an atom associated with a
character string.
Retrieves a handle (relative to the local
heap) of the string that corresponds to a
specified atom.
Copies the character string associated with
an atom.
Creates a global atom for a character string.
Deletes a global atom if the reference count
is zero.
Retrieves a global atom associated with a
character string.

Software development kit

GlobalGetAtomName Copies the character string associated with
a global atom.

InitAtomTable
MAKEINTATOM

Initialization-file functions

Initializes an atom hash table.
Casts an integer for use as a function
argument.

Initialization-file functions obtain information from and copy
information to the Windows initialization file WIN.INI and
private initialization files. A Windows initialization file is a
special ASCII file that contains key-name-value pairs that
represent run-time options for applications. The following list
briefly describes each initialization-file function:

Function Description

GetPrivateProfilelnt Returns an integer value in a section from a
private initialization file.

GetPrivateProfileString

GetProfilelnt

GetProfileString

WritePrivateProfileString

WriteProfileString

Returns a character string in a section from
a private initialization file.
Returns an integer value in a section from
the WIN.INI file.
Returns a character string in a section from
the WIN .INI file.
Copies a character string to a private
initialization file, or deletes one or more
lines in a private initialization file.
Copies a character string to the WIN .INI
file, or deletes one or more lines from
WIN.INI.

An application should use a private (application-specific)
initialization file to record information which affects only that
application. This improves both the performance of the
application and Windows itself by reducing the amount of
information that Windows must read when it accesses the
initialization file. An application should record information in
WIN.INI only if it affects the Windows environment or other
applications; in such cases, the application should send the
WM_ WININICHANGE message to all top-level windows.
The files WININI.TXT and SYSINI.TXT supplied with the retail
version of Windows describe the contents of WIN.INI and
SYSTEM.INI, respectively.

Chapter 3, System services interface functions 141

Communication functions

Sound functions

142

Communication functions carry out communications through the
system's serial and parallel I/O ports. The following list briefly
describes each communication function:

Function

BuildCommDCB

ClearCommBreak

CloseComm

EscapeCommFunction

FlushComm

GetCommError

GetCommEventMask
GetCommState
OpenComm
ReadComm

SetCommBreak

SetComm EventMask

SetCommState

TransmitCommChar

UngetCommChar

WriteComm

Description

Fills a device control block with control
codes.
Clears the communication break state from
a communication device.
Closes a communication device after
transmitting the current buffer.
Directs a device to carry out an extended
function.
Flushes characters from a communication
device.
Fills a buffer with the communication
status.
Retrieves, then clears, an event mask.
Fills a buffer with a device control block.
Opens a communication device.
Reads the bytes from a communication
device into a buffer.
Sets a break state on the communication
device.
Retrieves and then sets an event mask on
the communication device.
Sets a communication device to the state
specified by the device control block.
Places a character at the head of the
transmit queue.
Specifies which character will be the next
character to be read.
Writes the bytes from a buffer to a
communication device.

Sound functions create sound and music for the system's sound
generator. The following list briefly describes each sound
function:

Function

CloseSound

Description

Closes the play device after flushing the
voice queues and freeing the buffers.

Software development kit

CountVoiceNotes

GetThresholdEvent
GetThresholdStatus

OpenSound
SetSoundNoise

SetVoiceAccent
SetVoiceEnvelope

SetVoiceNote
SetVoiceQueueSize

SetVoiceSound

SetVoiceThreshold
StartSound
StopSound

SyncAIiVoices
WaitSoundState

Utility macros and functions

Returns the number of notes in the
specified queue.
Returns a long pointer to a threshold flag.
Returns the threshold-event status for each
voice.
Opens the play device for exclusive use.
Sets the source and duration of a noise
from the play device.
Places an accent in the voice queue.
Places the voice envelope in the voice
queue.
Places a note in the specified voice queue.
Allocates a specified number of bytes for
the voice queue.
Places the specified sound frequency and
durations in a voice queue.
Sets the threshold level for a given voice.
Starts playing each voice queue.
Stops playing all voice queues and flushes
their contents.
Places a sync mark in each voice queue.
Waits until the play driver enters the
specified state.

Utility macros and functions return contents of words and bytes,
create unsigned long integers and data structures, and perform
specialized arithmetic. The following list briefly describes each
utility macro or function:

Function

HIBYTE
HIWORD

LOBYTE
LOWORD

MAKEINTATOM

MAKEINTRESOURCE

MAKELONG
MAKEPOINT

Chapter 3, System seNices interface functions

Description

Returns the high-order byte of an integer.
Returns the high-order word of a long
integer.
Returns the low-order byte of an integer.
Returns the low-order word of a long
integer.
Casts an integer for use as a function
argument.
Converts an integer value into a long
pointer to a string, with the high-order
word of the long pointer set to zero.
Creates an unsigned long integer.
Converts a long value that contains the x­
and y-coordinates of a point into a POINT
data structure.

143

MulDiv

PALETTEINDEX

PALETTERGB

RGB

Multiplies two word-length values and
then divides the result by a third word­
length value, returning the result rounded
to the nearest integer.
Converts an integer into a palette-index
COLORREF value.
Converts three values for red, green, and
blue into a palette-relative RCB
COLORREF value.
Converts three values for red, green, and
blue into an explicit RCB COLORREF
value.

File I/O functions

File I/O functions create, open, read from, write to, and close
files. The following list briefly describes each file I/O function:

Function

GetDriveType

GetSystem Di rectory

GetTempDrive

GetTempFileName
GetWindowsDirectory

Iclose
Icreat

_II seek
_Iopen
_Iread
_Iwrite
Open File

SetHandleCount

Description

Determines whether a disk drive is
removeable, fixed, or remote.
Retrieves the pathname of the Windows
system subdirectory.
Returns the letter of the optimal drive for
temporary file storage.
Creates a temporary filename.
Retrieves the pathname of the Windows
directory.
Closes a file.
Creates a new file or opens and truncates
an existing file.
Positions the pointer to a file.
Opens an existing file.
Reads data from a file.
Writes data in a file.
Creates, opens, reopens, or deletes the
specified file.
Changes the number of file handles
available to a task.

Debugging functions

144

Debugging functions help locate programming errors in an
application or library. The following briefly describes these
functions:

Software development kit

Function

DebugBreak
FatalAppExit

FatalExit

OutputDebugString

ValidateCodeSegments

ValidateFreeSpaces

Optimization-tool functions

Description

Forces a break to the debugger.
Displays a message box and then
terminates the application.
Displays the current state of Windows and
prompts for instructions on how to
proceed.
Sends a debugging message to the
debugger if present, or to the AUX device if
the debugger is not present.
Determines whether any code segments
have been altered by random memory
overwrites.
Checks free segments in memory for valid
contents.

Optimization-tool functions control how the Windows Profiler
and Swap software development tools interact with an
application being developed. The following list briefly describes
these functions:

Function

Prof Clear

Prof Finish

Prof Flush

ProflnsChk
Prof Sam pRate
Prof Setup

Prof Start
Prof Stop
SwapRecording

Description

Discards all samples in the Profiler
sampling buffer.
Stops sampling by Profiler and flushes the
buffer to disk.
Flushes the Profiler sampling buffer to
disk.
Determines if Profiler is installed.
Sets the rate of code sampling by Profiler.
Sets up the Profiler sampling buffer and
recording rate.
Starts sampling by Pro filer.
Stops sampling by Profiler.
Begins or ends analyzing by Swap of the
application's swapping behavior.

Application-execution functions

Application-execution tasks permit one application to execute
another program. The following list briefly describe these
functions:

Chapter 3, System seNices interface functions 145

146

Function

LoadModule
WinExec
WinHelp

Description

Executes a separate application.
Executes a separate application.
Runs the Windows Help application and
passes context or topic information to Help.

The WinExec function provides a high-level method for executing
any Windows or standard DOS application. The calling
application supplies a string containing the name of the
executable file to be run and any command parameters, and
specifies the initial state of the application's window.

The LoadModule function is similar, but provides more control
over the environment in which the application is executed. The
calling application supplies the name of the executable file and a
DOS Function 4BH, Code OOH, parameter block.

The WinHelp function executes the Windows Help application
and optionally passes data to it indicating the nature of the help
requested by the application. This data is either an integer which
specifies a context identifier in the help file or a string containing
a key word in the help file.

Topic

Function descriptions

Windows data types
and structures
Initialization-file formats
Diagnostic messages for
debugging

Reference

Reference, Volume 1: Chapter 4, "Functions
directory"
Reference, Volume 2: Chapter 7, "Data types
and structures"
Reference, Volume 2: Chapter 9, "File formats"
Reference, Volume 2: Appendix C, "Windows
debugging messages"

Software development kit

c H A p T E R

4

Functions directory

This chapter contains an alphabetical list of functions from the Microsoft
Windows application programming interface (API). The documentation
for each function contains a line illustrating correct syntax, a statement
about the function's purpose, a description of its input parameters, and a
description of its return value. The documentation for some functions
contains additional, important information that an application developer
needs in order to use the function.

AccessResource

Syntax int AccessResource(hInstance, hResInfo)
function AccessResource(Instance, ResInfo: THandle): Integer;

This function opens the specified resource file and moves the file pointer
to the beginning of the specified resource, letting an application read the
resource from the file. The AccessResource function supplies a DOS file
handle that can be used in subsequent file-read calls to load the resource.
The file is opened for reading only.

Applications that use this function must close the resource file by calling
the _Iclose function after reading the resource.

Parameters hlnstance HANDLE Identifies the instance of the module whose
executable file contains the resource.

hReslnfo

Chapter 4, Functions directory

HANDLE Identifies the desired resource. This handle
should be created by using the FindResource function.

147

AccessResource

Return value The return value specifies a DOS file handle to the designated resource
file. It is -1 if the resource cannot be found.

Comments AccessResource can exhaust available DOS file handles and cause errors
if the opened file is not closed after the resource is accessed.

AddAtom

Syntax ATOM AddAtom(lpString)
function AddAtom(Str: PChar): TAtom;

This function adds the character string pointed to by the IpString
parameter to the atom table and creates a new atom that uniquely
identifies the string. The atom can be used in a subsequent GetAtomName
function to retrieve the string from the atom table.

The AddAtom function stores no more than one copy of a given string in
the atom table. If the string is already in the table, the function returns the
existing atom value and increases the string's reference count by one.

Parameters IpString LPSTR Points to the character string to be added to the
table. The string must be a null-terminated character
string.

Return value The return value specifies the newly created atom if the function is
successful. Otherwise, it is NULL.

Comments . The atom values returned by AddAtom range from OxCOOO to OxFFFF.
Atoms are case insensitive.

AddFontResource

148

Syntax int AddFontResource(lpFilename)
function AddFontResource(FileName: PChar): Integer;

This function adds the font resource from the file named by the IpFilename
parameter to the Windows font table. The font can subsequently be used
by any application.

Parameters IpFilename LPSTR Points to a character string that names the font­
resource file or contains a handle to a loaded module. If
IpFilename points to the font-resource filename, the string
must be null-terminated, have the DOS filename format,
and include the extension. If IpFilename contains a handle,

Software development kit

AddFontResource Gl.. .."

l!:J
the handle is in the low-order word and the high-order
word is zero.

Return value The return value specifies the number of fonts added. The return value is
zero if no fonts are loaded.

Comments Any application that adds or removes fonts from the Windows font table
should notify other windows of the change by using the Send Message
function with the h Wnd parameter set to -1 to send a
WM_FONTCHANGE message to all top-level windows in the system.
It is good practice to remove any font resource an application has added
once the application is through with the resource.

For a description of font resources, see the Guide to Programming.

AdjustWindowRect

Syntax void AdjustWindowRect(lpRect, dwStyle, bMenu)
procedure AdjustWindowRect(var Rect: TRect; Style: Longint; Menu:
Bool);

This function computes the required size of the window rectangle based
on the desired client-rectangle size. The window rectangle can then be
passed to the CreateWindow function to create a window whose client
area is the desired size. A client rectangle is the smallest rectangle that
completely encloses a client area. A window rectangle is the smallest
rectangle that completely encloses the window. The dimensions of the
resulting window rectangle depend on the window styles and on whether
the window has a menu.

Parameters IpRect

dwStyle

bMenu

Return value None.

lPRECT Points to a RECT data structure that contains the
coordinates of the client rectangle.

DWORD Specifies the window styles of the window
whose client rectangle is to be converted.

BOOl Specifies whether the window has a menu.

Comments This function assumes a single menu row. If the menu bar wraps to two or
more rows, the coordinates are incorrect.

Chapter 4, Functions directory 149

AdjustWindowRectEx

AdjustWindowRectEx 3.0

Syntax void AdjustWindowRectExOpRect, dwStyle, bMenu, dwExStyle)
procedure AdjustWindowRectEx(var Rect: TRect; Style: Longint; Menu:
Bool; ExStyle: Longint);

This function computes the required size of the rectangle of a window
with extended style based on the desired client-rectangle size. The
window rectangle can then be passed to the CreateWindowEx function to
create a window whose client area is the desired size.

A client rectangle is the smallest rectangle that completely encloses a
client area. A window rectangle is the smallest rectangle that completely
encloses the window. The dimensions of the resulting window rectangle
depends on the window styles and on whether the window has a menu.

Parameters IpRect lPRECT Points to a RECT data structure that contains the
coordinates of the client rectangle.

dwStyle

bMenu

dwExStyle

Return value None.

DWORD Specifies the window styles of the window
whose client rectangle is to be converted.

BOOl Specifies whether the window has a menu.

DWORD Specifies the extended style of the window being
created.

Comments This function assumes a single menu row. If the menu bar wraps to two or
more rows, the coordinates are incorrect.

AllocDStoCSAlias 3.0

150

Syntax WORD AllocDStoCSAlias(wSelector)
function AllocDStoCSAlias(Selector: Word): Word;

This function accepts a data-segment selector and returns a code-segment
selector that can be used to execute code in the data segment. When in
protected mode, attempting to execute code directly in a data segment
will cause a general protection violation. AllocDStoCSAlias allows an
application to execute code which the application had created in its own
stack segment.

The application must free the new selector by calling the FreeSelector
function.

Software development kit

AllocDStoCSAlias

Parameters wSelector WORD Specifies the data-segment selector.

Return value The return value is the code-segment selector corresponding to the data­
segment selector. If the function cannot allocate a new selector, the return
value is zero.

Comments Windows does not track segment movements. Consequently, the data
segment must be fixed and nondiscardable; otherwise, the data segment
might move, invalidating the code-segment selector.

The ChangeSelector function provides another method of obtaining a
code selector corresponding to a data selector.

An application should not use this function unless it is absolutely
necessary. Use of this function violates preferred Windows programming
practices.

AliocResource

Syntax HANDLE AllocResource(hInstance, hResInfo, dwSize)
function AllocResource(Instance, ResInfo: THandle; Size: Longint):
THandle;

This function allocates uninitialized memory for the passed resource. All
resources must be initially allocated by using the AliocResource function.
The LoadResource function calls this function before loading the
resource.

Parameters hlnstance

hReslnfo

dwSize

HANDLE Identifies the instance of the module whose
executable file contains the resource.

HANDLE Identifies the desired resource. It is assumed
that this handle was created by using the FindResource
function.

DWORD Specifies an override size in bytes to allocate for
the resource. The override is ignored if the size is zero.

Return value The return value identifies the global memory block allocated for the
resource.

Chapter 4, Functions directory 151

AllocSelector

AllocSelector 3.0

Syntax WORD AllocSelector(wSelector)
function AllocSelector(Selector: Word): Word;

This function allocates a new selector. If the wSelector parameter is a valid
selector, AllocSelector returns a new selector which is an exact copy of the
one specified by wSelector. If wSelector is NULL, AllocSelector returns a
new, uninitialized selector.

The application must free the new selector by calling the FreeSelector
function.

Parameters wSelector WORD Specifies the selector to be copied, or NULL if
AllocSelector is to allocate a new, uninitialized selector.

Return value The return value is either a selector that is a copy of an existing selector, or
a new, uninitialized selector. If the function could not allocate a new
selector, the return value is zero.

Comments An application can call AllocSelector to allocate a selector that it can pass
to the ChangeSelector function.

An application should not use this function unless it is absolutely
necessary. Use of this function violates preferred Windows programming
practices.

AnimatePalette

Syntax void AnimatePalette(hPalette, wStartIndex, wNumEntries,
IpPaletteColors)
procedure AnimatePalette(Palette: HPalette; StartIndex: Word;
NumEntries: Word; var PaletteColors);

3.0

This function replaces entries in the logical palette identified by the
hPalette parameter. When an application calls AnimatePalette, it does not
have to update its client area because Windows maps the new entries into
the system palette immediately.

Parameters hPalette HPALETTE Identifies the logical palette.

wStartIndex WORD Specifies the first entry in the palette to be
animated.

wNumEntries WORD Specifies the number of entries in the palette to be
animated.

152 Software development kit

AnimatePalette

IpPaletteColors LPPALETTEENTRY Points to the first member of an array
of PALETTEENTRY data structures to replace the palette
entries identified by wStartIndex and wNumEntries.

Return value None.

Comments AnimatePalette will only change entries with the PC_RESERVED flag set
in the corresponding palPaletteEntry field of the LOGPALETTE data
structure that defines the current logical palette. The CreatePalette
function creates a logical palette.

AnsiLower

Syntax LPSTR AnsiLower(lpString)
function AnsiLower(Str: PChar): PChar;

This function converts the given character string to lowercase. The.
conversion is made by the language driver based on the criteria of the
current language selected by the user at setup or with the Control Panel.

Parameters IpString LPSTR Points to a null-terminated character string or
specifies single character. If IpString specifies single
character, that character is in the low-order byte of the
low-order word, and the high-order word is zero.

Return value The return value points to a converted character string if the function
parameter is a character string. Otherwise, it is a 32-bit value that contains
the converted character in the low-order byte of the low-order word.

AnsiLowerBuff 3.0

Syntax WORD AnsiLowerBuff(lpString, nLength)
function AnsiLowerBuff(Str: PChar; Length: Word): Word;

This function converts character string in a buffer to lowercase. The
conversion is made by the language driver based on the criteria of the
current language selected by the user at setup or with the Control Panel.

Parameters IpString

nLength

Chapter 4, Functions directory

LPSTR Points to a buffer containing one or more
characters.

WORD Specifies the number of characters in the buffer
identified by the IpString parameter. If l1Length is zero, the
length is 64K (65,536).

153

1,'",_,,'

.. ~ .• ~

AnsiLowerBuff

Return value The return value specifies the length of the converted string.

AnsiNext

Syntax LPSTR AnsiN ext(l pCurrentChar)
function AnsiNext(CurrentChar: PChar): PChar;

This function moves to the next character in a string.

Parameters IpCurrentChar LPSTR Points to a character in a null-terminated string.

Return value The return value points to the next character in the string, or, if there is no
next character, to the null character at the end of the string.

Comments The AnsiNext function is used to move through strings whose characters
are two or more bytes each (for example, strings that contain characters
from a Japanese character set).

AnsiPrev

Syntax LPSTR AnsiPrev(lpStart, lpCurrentChar)
function AnsiPrev(Start, CurrentChar: PChar): PChar;

This function moves to the previous character in a string.

Parameters IpStart LPSTR Points to the beginning of the string.

IpCurrentChar LPSTR Points to a character in a null-terminated string.

Return value The return value points to the previous character in the string, or to the
first character in the string if the IpCurrentChar parameter is equal to the
IpStart parameter.

Comments The AnsiPrev function is used to move through strings whose characters
are two or more bytes each (for example, strings that contain characters
from a Japanese character set).

AnsiToOem

Syntax int AnsiToOem(lpAnsiStr, lpOemStr)
function AnsiToOem(AnsiStr, OemStr: PChar): Integer;

154 Software development kit

AnsiToOem

This function translates the string pointed to by the IpAnsiStr parameter
from the ANSI character set into the OEM-defined character set. The
string can be greater than 64K in length.

Parameters IpAnsiStr LPSTR Points to a null-terminated string of characters
from the ANSI character set.

IpOemStr LPSTR Points to the location where the translated string
is to be copied. The IpOemStr parameter can be the same
as IpAnsiStr to translate the string in place.

Return value The return value is always -1.

AnsiToOemBuff 3.0

Syntax void AnsiToOemBuff(lpAnsiStr, IpOemStr, nLength)
procedure AnsiToOemBuff(AnsiStr, OemStr: PChar; Length: Integer);

This function translates the string in the buffer pointed to by the IpAnsiStr
parameter from the ANSI character set into the OEM-defined character
set.

Parameters IpAnsiStr LPSTR Points to a buffer containing one or more
characters from the ANSI character set.

IpOemStr

nLength

LPSTR Points to the location where the translated string
is to be copied. The IpOemStr parameter can be the same
as IpAnsiStr to translate the string in place.

WORD Specifies the number of characters in the buffer
identified by the IpAnsiStr parameter. If nLength is zero,
the length is 64K (65,536).

Return value None.

AnsiUpper

Syntax LPSTRAnsiU pper(l pString)
function AnsiUpper(Str: PChar): PChar;

This function converts the given character string to uppercase. The
conversion is made by the language driver based on the criteria of the
current language selected by the user at setup or with the Control Panel.

Parameters IpString LPSTR Points to a null-terminated character string or
specifies single character. If IpString specifies a single

Chapter 4, Functions directory 155

AnsiUpper

character, that character is in the low-order byte of the
low-order word, and the high-order word is zero.

Return value The return value points to a converted character string if the function
parameter is a character string; otherwise, it is a 32-bit value that contains
the converted character in the low-order byte of the low-order word.

AnsiUpperBuff 3.0

Syntax WORD AnsiUpperBuff(lpString, nLength)
function AnsiUpperBuff(Str:Pchar;Length:Word):Word;

This function converts a character string in a buffer to uppercase. The
conversion is made by the language driver based on the criteria of the
current language selected by the user at setup or with the Control Panel.

Parameters IpString

nLength

LPSTR Points to a buffer containing one or more
characters.

WORD Specifies the number of characters in the buffer
identified by the IpString parameter. If nLength is zero, the
length is 64K (65,536).

Return value The return value specifies the length of the converted string.

AnyPopup

Syntax BaaL AnyPopup()
function AnyPopup: Bool;

AppendMenu

156

This function indicates whether a pop-up window exists on the screen. It
searches the entire Windows screen, not just the caller's client area. The
AnyPopup function returns nonzero even if a pop-up window is
completely covered by another window.

Parameters None.

Return value The return value is nonzero if a pop-up window exists. Otherwise, it is
zero.

Software development kit

AppendMenu cru"""",.".,' .. ","" &
';11'<'1'

AppendMenu 3.0

Syntax BOOL AppendMenu(hMenu, wFlags, wIDNewItem, IpNewItem)
function AppendMenu(Menu: HMenu; Flags, IDNewItem: Word;
NewItem: PChar): Bool;

This function appends a new item to the end of a menu. The application
can specify the state of the menu item by setting values in the wFlags
parameter.

Parameters hMenu

wFlags

HMENU Identifies the menu to be changed.

WORD Specifies information about the state of the new
menu item when it is added to the menu. It consists of
one or more values listed in the following "Comments"
section.

wIDNewItem WORD Specifies either the command ID of the new menu
item or, if wFlags is set to MF _POPUP, the menu handle of
the pop-up menu.

IpNewItem LPSTR Specifies the content of the new menu item. The
interpretation of the IpNewItem parameter depends upon
the setting of the wFlags parameter.

Chapter 4, Functions directory

If wFlags is IpNewltem

Contains a long pointer to a null­
terminated character string.

Contains a bitmap handle HBITMAP
in its low-order word.

MF _ OWNERDRA W Contains an application-supplied
32-bit value which the application
can use to maintain additional data
associated with the menu item. This
32-bit value is available to the
application in the item Data field of
the structure pointed to by the
IParam parameter of the
WM_MEASUREITEM and
WM_DRA WITEM messages sent
when the menu item is initially
displayed or is changed.

157

AppendMenu

158

Return value The return value specifies the outcome of the function. It is TRUE if the
function is successful. Otherwise, it is FALSE.

Comments Whenever a menu changes (whether or not the menu resides in a window
that is displayed), the application should call DrawMenuBar.

Each of the following groups lists flags that are mutually exclusive and
should not be used together:

11 MF _BYCOMMAND and MF _BYPOSITION

• MF _DISABLED, MF _ENABLED, and MF _GRAYED

m MF_BITMAP, MF_STRING, and MF _OWNERDRAW

II MF _MENUBARBREAK and MF _MENUBREAK

• MF _CHECKED and MF _UNCHECKED

The following list describes the flags that can be set in the wFlags
parameter:

Value

MF_CHECKED

MF _DISABLED

MF_ENABLED

MF_GRAYED

MF _MENUBARBREAK

MF_OWNERDRAW

Meaning

Uses a bitmap as the item. The low-order word of
the IpNewItem parameter contains the handle of the
bitmap.
Places a checkmark next to the item. If the
application has supplied checkmark bitmaps (see
SetMenultemBitmaps), setting this flag displays the
"checkmark on" bitmap next to the menu item.
Disables the menu item so that it cannot be selected,
but does not gray it.
Enables the menu item so that it can be selected and
restores it from its grayed state.
Disables the menu item so that it cannot be selected
and grays it.
Same as MF _MENUBREAK except that for pop-up
menus, separates the new column from the old
column with a vertical line.
Places the item on a new line for static menu-bar
items. For pop-up menus, places the item in a new
column, with no dividing line between the columns.
Specifies that the item is an owner-draw item. The
window that owns the menu receives a
WM_MEASUREITEM message when the menu is
displayed for the first time to retrieve the height and
width of the menu item. The WM_DRA WITEM
message is then sent whenever the owner must
update the visual appearance of the menu item. This
option is not valid for a top-level menu item.
Specifies that the menu item has a pop-up menu
associated with it. The wIDNewItem parameter

Software development kit

Arc

MF_UNCHECKED

AppendMenu

specifies a handle to a pop-up menu to be associated
with the item. This is used for adding either a top­
level pop-up menu or adding a hierarchical pop-up
menu to a pop-up menu item.
Draws a horizontal dividing line. Can only be used
in a pop-up menu. This line cannot be grayed,
disabled, or highlighted. The IpNewItem and
wIDNewItem parameters are ignored.
Specifies that the menu item is a character string; the
IpNewItem parameter points to the string for the
menu item.
Does not place a checkmark next to the item
(default). If the application has supplied checkmark
bitmaps (see SetMenultemBitmaps), setting this flag
displays the "checkmark off" bitmap next to the
menu item.

Syntax BOOL Arc(hDC, Xl, Yl, X2, Y2, X3, Y3, X4, Y4)

Parameters

function Arc(DC: HDC; Xl, Yl, X2, Y2, X3, Y3, X4, Y4: Integer): Bool;

This function draws an elliptical arc. The center of the arc is the center of
the bounding rectangle specified by the points (Xl, Yl) and (X2, Y2). The
arc starts at the point (X3, Y3) and ends at the point (X4, Y4). The arc is
drawn using the selected pen and moving in a counterclockwise direction.
Since an arc does not define a closed area, it is not filled.

hDC

Xl

Yl

X2

Y2

X3

Y3

HOC Identifies the device context.

int Specifies the logical x-coordinate of the upper-left
corner of the bounding rectangle.

int Specifies the logical y-coordinate of the upper-left
corner of the bounding rectangle.

int Specifies the logical x-coordinate of the lower-right
corner of the bounding rectangle.

int Specifies the logical y-coordinate of the lower-right
corner of the bounding rectangle.

int Specifies the logical x-coordinate of the arc's starting
point. This point does not have to lie exactly on the arc.

int Specifies the logical y-coordinate of the arc's starting
point. This point does not have to lie exactly on the arc.

Chapter 4, Functions directory 159

Arc

X4

Y4

int Specifies the logical x-coordinate of the arc's endpoint.
This point does not have to lie exactly on the arc.

int Specifies the logical y-coordinate of the arc's endpoint.
This point does not have to lie exactly on the arc.

Return value The return value specifies whether the arc is drawn. It is nonzero if the arc
is drawn; otherwise, it is zero.

Comments The width of the rectangle specified by the absolute value of X2 - Xl must
not exceed 32,767 units. This limit applies to the height of the rectangle as
well.

ArrangelconicWindows 3.0

Syntax WORD ArrangeIconicWindows(h Wnd)
function ArrangeIconicWindows(Wnd: HWnd): Word;

This function arranges all the minimized (iconic) child windows of the
window specified by the h Wnd parameter.

Parameters hWnd HWND Identifies the window.

Return value The return value is the height of one row of icons, or zero if there were no
icons.

Comments Applications that maintain their own iconic child windows call this
function to arrange icons in a client window. This function also arranges
icons on the desktop window, which covers the entire screen. The
GetDesktopWindow function retrieves the window handle of the desktop
window.

To arrange iconic MDI child windows in an MDI client window, an
application sends the WM_MDIICONARRANGE message to the MDI
client window.

BeginDeferWindowPos 3.0

160

Syntax HANDLE BeginDeferWindowPos(nNum Windows)
function BeginDeferWindowPos(Num Windows: Integer): THandle;

This function allocates memory to contain a multiple window-position
data structure and returns a handle to the structure. The DeferWindowPos
function fills this data structure with information about the target position
for a window that is about to be moved. The EndDeferWindowPos

Software development kit

BeginDeferWindowPos

function accepts this data structure and instantaneously repositions the
windows using the information stored in the structure.

Parameters nNum Windows int Specifies the initial number of windows for which
position information is to be stored in the data structure.
The Defer-WindowPos function increases the size of the
structure if needed.

Return value The return value identifies the multiple window-position data structure.

BeginPaint

The return value is NULL if system resources are not available to allocate
the structure.

Syntax HDC BeginPaint(h Wnd, IpPaint)
function BeginPaint(Wnd: HWnd; var Paint: TPaintStruct): HDC;

This function prepares the given window for painting and fills the paint
structure pointed to by the IpPaint parameter with information about the
painting.

The paint structure contains a handle to the device context for the
window, a RECT data structure that contains the smallest rectangle that
completely encloses the update region, and a flag that specifies whether or
not the background has been erased.

The BeginPaint function automatically sets the clipping region of the
device context to exclude any area outside the update region. The update
region is set by the InvalidateRect or InvalidateRgn functions and by the
system after sizing, moving, creating, scrolling, or any other operation
that affects the client area. If the update region is marked for erasing,
BeginPaint sends a WM_ERASEBKGND message to the window.

An application should not call the BeginPaint function except in response
to a WM_P AINT message. Each BeginPaint call must have a matching call
to the EndPaint function.

Parameters h Wnd

IpPaint

HWND Identifies the window to be repainted.

LPPAINTSTRUCT Points to the PAINTSTRUCT data
structure that is to receive painting information, such as
the device context for the window and the update
rectangle.

Return value The return value identifies the device context for the specified window.

Chapter 4, Functions directory 161

BeginPaint

BitBlt

162

Comments If the caret is in the area to be painted, the BeginPaint function
automatically hides the caret to prevent it from being erased.

Syntax BOOL BitBlt(hDestDC, X, Y, n Width, nHeight, hSrcDC, XSrc, YSrc,
dwRop)
function BitBlt(DestDC: HDC; X, Y, Width, Height: Integer; SrcDC: HDC;
XSrc, YSrc: Integer; Rop: Longint): Bool;

This function moves a bitmap from the source device given by the
hSrcDCd parameter to the destination device given by the hDestDC
parameter. The XSrc and YSrc parameters specify the origin on the source
device of the bitmap that is to be moved. The X, Y, n Width, and nHeight
parameters specify the origin, width, and height of the rectangle on the
destination device that is to be filled by the bitmap. The dwRop parameter
(raster operation) defines how the bits of the source and destination are
combined.

Parameters hDestDC

X

Y

nWidth

nHeight

hSrcDC

XSrc

YSrc

dwRop

HOC Identifies the device context that is to receive the
bitmap.

int Specifies the logical x-coordinate of the upper-left
corner of the destination rectangle.

int Specifies the logical y-coordinate of the upper-left
corner of the destination rectangle.

int Specifies the width (in logical units) of the destination
rectangle and source bitmap.

int Specifies the height (in logical units) of the destination
rectangle and source bitmap.

HOC Identifies the device context from which the bitmap
will be copied. It must be NULL if the dwRop parameter
specifies a raster operation that does not include a source.

int Specifies the logical x-coordinate of the upper-left
corner of the source bitmap.

int Specifies the logical y-coordinate of the upper-left
corner of the source bitmap.

OWORO Specifies the raster operation to be performed.
Raster-operation codes define how the graphics device

Software development kit

BitBlt

interface (GOl) combines colors in output operations that
involve a current brush, a possible source bitmap, and a
destination bitmap. For a list of raster-operation codes,
see Table 4.1, "Raster operations."

Return value The return value specifies whether the bitmap is drawn. It is nonzero if
the bitmap is drawn. Otherwise, it is zero.

Comments GOI transforms the n Width and nHeight parameters, once by using the
destination display context, and once by using the source display context.
If the resulting extents do not match, GOI uses the StretchBlt function to
compress or stretch the source bitmap as necessary. If destination, source,
and pattern bitmaps do not have the same color format, the BitBlt
function converts the source and pattern bitmaps to match the
destination. The foreground and background colors of the destination are
used in the conversion.

Table 4.1
Raster operations

If BitBlt converts monochrome bitmaps to color, it sets white bits (1) to the
background color and black bits (0) to the foreground color. The
foreground and background colors of the destination device context are
used. To convert color to monochrome, BitBlt sets pixels that match the
background color to white (1), and sets all other pixels to black (0). The
foreground and background colors of the color-source device context are
used.

The foreground color is the current text color for the specified device
context, and the background color is the current background color for the
specified device context.

Not all devices support the BitBlt function. For more information, see the
RC_BITBL T raster capability in the GetDeviceCaps function, later in this
chapter.

Table 4.1 lists the various raster-operation codes for the dwRop parameter:

Code

BLACKNESS
DSTINVERT
MERGECOPY

MERGEPAINT

NOTSRCCOPY

NOTSRCERASE

PATCOPY

Description

Turns all output black.
Inverts the destination bitmap.
Combines the pattern and the source bitmap using
the Boolean AND operator.
Combines the inverted source bitmap with the
destination bitmap using the Boolean OR operator.
Copies the inverted source bitmap to the
destination.
Inverts the result of combining the destination and
source bitmaps using the Boolean OR operator.
Copies the pattern to the destination bitmap.

Chapter 4, Functions directory 163

II

BitBlt

Table 4.1: Raster operations (continued)

PATINVERT

PATPAINT

SRCAND

Combines the destination bitmap with the pattern
using the Boolean XOR operator.
Combines the inverted source bitmap with the
pattern using the Boolean OR operator. Combines
the result of this operation with the destination
bitmap using the Boolean OR operator.
Combines pixels of the destination and source
bitmaps using the Boolean AND operator.

For a complete list SRCCOPY
of the raster- SRCERASE

operation codes,

Copies the source bitmap to the destination bitmap.
Inverts the destination bitmap and combines the
result with the source bitmap using the Boolean
AND operator. see Chapter 7 7,

"Binary and ternary SRCINVERT
raster-operation

Combines pixels of the destination and source
bitmaps using the Boolean XOR operator.
Combines pixels of the destination and source
bitmaps using the Boolean OR operator.
Turns all output white.

codes," in SRCP AINT
Reference, Volume

2. WHITENESS

BringWindowT 0 T Op

Syntax void BringWindowToTop(h Wnd)
procedure BringWindowToTop(Wnd: HWnd);

This function brings a pop-up or child window to the top of a stack of
overlapping windows. In addition, it activates pop-up and top-level
windows. The BringWindowToTop function should be used to uncover
any window that is partially or completely obscured by any overlapping
windows.

Parameters h Wnd

Return value None.

HWND Identifies the pop-up or child window that is to be
brought to the top.

BuildCommDCB ~~

164

Syntax int BuildCommDCB(lpDef, lpDCB)
function BuildCommDCB(Def: PChar; var DCB: TDCB): Integer;

This function translates the definition string specified by the lpDef
parameter into appropriate device-control block codes and places these
codes into the block pointed to by the lpDCB parameter.

Parameters [pDet LPSTR Points to a null-terminated character string that
specifies the device-control information for a device. The

Software development kit

IpDCB

BuildCommDCB

string must have the same form as the DOS MODE
command-line parameter.

DCB FAR *Points to the DCB data structure that is to
receive the translated string. The structure defines the
control setting for the serial-communication device.

Return value The return value specifies the result of the function. It is zero if the string
is translated. It is negative if an error occurs.

Comments The BuildCommDCB function only fills the buffer. An application should
call SetCommState to apply these settings to the port. Also, by default,
BuildCommDCB specifies Xon/Xoff and hardware flow control as
disabled. An application should set the appropriate fields in the DCB data
structure to enable flow control.

CallMsgFilter

Syntax BOOL CallMsgFilterOpMsg, nCode)
function CallMsgFilterevar Msg: TMsg; Code: Integer): Bool;

This function passes the given message and code to the current message
filter function. The message filter function is an application-specified
function that examines and modifies all messages. An application
specifies the function by using the SetWindowsHook function.

Parameters IpMsg LPMSG Points to an MSG data structure that contains the
message to be filtered.

nCode int Specifies a code used by the filter function to
determine how to process the message.

Return value The return value specifies the state of message processing. It is FALSE if
the message should be processed. It is TRUE if the message should not be
processed further.

Comments The CallMsgFilter function is usually called by Windows to let
applications examine and control the flow of messages during internal
processing in menus and scroll bars or when moving or sizing a window.

Values given for the nCode parameter must not conflict with any of the
MSGF _ and HC_ values passed by Windows to the message filter
function.

Chapter 4, Functions directory 165

CaliWindowProc

CaliWindowProc

Syntax LONG CallWindowProc(lpPrevWndFunc, h Wnd, wMsg, wParam,
lParam)
function CallWindowProc(PrevWndFunc: TFarProc; Wnd: HWnd; Msg,
wParam: Word; lParam: Longint): Longint;

This function passes message information to the function specified by the
IpPrev WndFunc parameter. The CallWindowProc function is used for
window subclassing. Normally, all windows with the same class share the
same window function. A subclass is a window or set of windows
belonging to the same window class whose messages are intercepted and
processed by another function (or functions) before being passed to the
window function of that class.

The SetWindowLong function creates the subclass by changing the
window function associated with a particular window, causing Windows
to call the new window function instead of the previous one. Any
messages not processed by the new window function must be passed to
the previous window function by calling CaliWindowProc. This allows a
chain of window functions to be created.

Parameters IpPrevWndFunc FARPROC Is the procedure-instance address of the
previous window function.

hWnd

wMsg

wParam

IParam

HWND Identifies the window that receives the message.

WORD Specifies the message number.

WORD Specifies additional message-dependent
information.

DWORD Specifies additional message-dependent
informa tion.

Return value The return value specifies the result of the message processing. The
possible return values depend on the message sent.

Catch

166

Syntax int Catch(lpCatchBuf)
function Catch(var CatchBuf: TCatchBuf): Integer;

This function catches the current execution environment and copies it to
the buffer pointed to by the IpCatchBuf parameter. The execution
environment is the state of all system registers and the instruction counter.

Software development kit

Catch

Parameters IpCatchBuf LPCATCHBUF Points to the CATCHBUF structure that
will receive the execution environment.

Return value The return value specifies whether the execution environment is copied to
the buffer. It is zero if the environment is copied to the buffer.

Comments The Throw function uses the buffer to restore the execution environment
to its previous values.

The Catch function is similar to the C run-time setjmp function (which is
incompatible with the Windows environment).

ChangeClipboardChain

Syntax BaaL ChangeClipboardChain(h Wnd, h WndNext)
function ChangeClipboardChain(Wnd, WndNext: HWnd): Bool;

This function removes the window specified by the h Wnd parameter from
the chain of clipboard viewers and makes the window specified by the
h WndNext parameter the descendant of the h Wnd parameter's ancestor in
the chain.

Parameters h Wnd HWND Identifies the window that is to be removed from
the chain. The handle must previously have been passed
to the SetClipboardViewer function.

hWndNext HWND Identifies the window that follows hWnd in the
clipboard-viewer chain (this is the handle returned by the
SetClipboardViewer function, unless the sequence was
changed in response to a WM_ CHANGECBCHAIN
message).

Return value The return value specifies the status of the h Wnd window. It is nonzero if
the window is found and removed. Otherwise, it is zero.

ChangeMenu

The Microsoft Windows version 3.0 SDK has replaced this function with
five specialized functions. These new functions are:

Function

AppendMenu
DeleteMenu

InsertMenu

Description

Appends a menu item to the end of a menu
Deletes a menu item from a menu, destroying the menu
item
Inserts a menu item into a menu

Chapter 4, Functions directory 167

ChangeMenu

ModifyMenu
RemoveMenu

Modifies a menu item in a menu
Removes a menu item from a menu but does not destroy
the menu item

Applications written for SDK versions 2.1 and earlier may continue to call
ChangeMenu as previously documented. New applications should call
the new functions listed here.

ChangeSelector 3.0

Syntax WORD ChangeSelector(wDestSelector, wSourceSelector)
function ChangeSelector(DestSelector, SourceSelector:Word):Word;

This function generates a code selector that corresponds to a given data
selector, or a data selector that corresponds to a given code selector.

The wSourceSelector parameter specifies the selector to be copied and
converted; the wDestSelector parameter is a selector previously allocated
by a call to the AllocSelector function. ChangeSelector modifies the
destination selector to have the same properties as the source selector, but
with the opposite code or data attribute. This function changes only the
attributes of the selector, not the value of the selector.

Parameters wDestSelector WORD Specifies a selector previously allocated by
AllocSelector that receives the converted selector.

wSourceSelector WORD Specifies the selector to be converted.

Return value The return value is the copied and converted selector. It is zero if the
function failed.

Comments Windows does not attempt to track changes to the source selector.
Consequently, the application should use the converted destination
selector immediately after it is returned by this function before any
movement of memory can occur.

An application should not use this function unless it is absolutely
necessary. Use of this function violates preferred Windows programming
practices.

CheckDlgButton

Syntax void CheckDlgButton(hDlg, nIDButton, wCheck)
procedure CheckDlgButton(Dlg: HWnd; IDButton: Integer; Check: Word);

168 Software development kit

CheckDlgButton

This function places a checkmark next to or removes a checkmark from a
button control, or changes the state of a three-state button. The
CheckDlgButton function sends a BM_SETCHECK message to the button
control that has the specified 10 in the given dialog box.

Parameters hDlg

nIDButton

wCheck

Return value None.

CheckMenultem

HWND Identifies the dialog box that contains the button.

int Specifies the button control to be modified.

WORD Specifies the action to take. If the wCheck
parameter is nonzero, the CheckDlgButton function
places a checkmark next to the button; if zero, the
checkmark is removed. For three-state buttons, if wCheck
is 2, the button is grayed; if wCheck is I, it is checked; if
wCheck is 0, the checkmark is removed.

Syntax BOOL CheckMenuItem(hMenu, wIDCheckItem, wCheck)
function CheckMenuItem(Menu: HMenu; IDCheckItem, Check: Word):
Bool;

This function places checkmarks next to or removes checkmarks from
menu items in the pop-up menu specified by the hMenu parameter. The
wIDCheckItem parameter specifies the item to be modified.

Parameters hMenu HMENU Identifies the menu.

wIDCheckItem WORD Specifies the menu item to be checked.

wCheck WORD Specifies how to check the menu item and how to
determine the item's position in the menu. The wCheck
parameter can be a combination of the MF _CHECKED or
MF _UNCHECKED with MF _BYPOSITION or

Chapter 4, Functions directory

MF _BY COMMAND flags. These flags can be combined
by using the bitwise OR operator. They have the
following meanings:

Value
MF _BYCOMMAND

MF _BYPOSITION

Meaning
Specifies that the wIDCheckItem
parameter gives the menu-item 10
(MF _BYCOMMAND is the default).
Specifies that the wIDCheckItem
parameter gives the position of the

169

CheckMenultem

menu item (the first item is at
position zero).

MF _CHECKED Adds checkmark.
MF _UNCHECKED Removes checkmark.

Return value The return value specifies the previous state of the item. It is either
MF _CHECKED or MF _UNCHECKED. The return value is -1 if the menu
item does not exist.

Comments The wIDCheckItem parameter may identify a pop-up menu item as well as
a menu item. No special steps are required to check a pop-up menu item.

Top-level menu items cannot be checked.

A pop-up menu item should be checked by position since it does not have
a menu-item identifier associated with it.

CheckRadioButton

Syntax void CheckRadioButton(hDlg, nIDFirstButton, nIDLastButton,
nIDCheckButton)
procedure CheckRadioButton(Dlg: HWnd; IDFirstButton, IDLastButton,
IDCheckButton: Integer);

This function checks the radio button specified by the nIDCheckButton
parameter and removes the checkmark from all other radio buttons in the
group of buttons specified by the nIDFirstButton and nIDLastButton
parameters. The CheckRadioButton function sends a BM_SETCHECK
message to the radio-button control that has the specified ID in the given
dialog box.

Parameters hDlg HWND Identifies the dialog box.

nIDFirstButton int Specifies the integer identifier of the first radio button
in the group.

nIDLastButton int Specifies the integer identifier of the last radio button
in the group.

nIDCheckButton int Specifies the integer identifier of the radio button to be
checked.

Return value None.

170 Software development kit

ChiidWindowFrom Point

ChildWindowFromPoint

Syntax HWNDChildWindowFromPoint(hWndParent, Point)
function ChildWindowFromPoint(Wnd HWnd; APoint: TPoint): HWnd;

This function determines which, if any, of the child windows belonging to
the given parent window contains the specified point.

Parameters h WndParent

Point

HWNO Identifies the parent window.

POINT Specifies the client coordinates of the point to be
tested.

Return value The return value identifies the child window that contains the point. It is
NULL if the given point lies outside the parent window. If the point is
within the parent window but is not contained within any child window,
the handle of the parent window is returned.

Chord

Syntax BOOL Chord(hDC, Xl, Yl, X2, Y2, X3, Y3, X4, Y4)
function Chord(DC: HDC; Xl, Yl, X2, Y2, X3, Y3, X4, Y4: Integer): Bool;

This function draws a chord (a region bounded by the intersection of an
ellipse and a line segment). The (Xl, Yl) and (X2, Y2) parameters specify
the upper-left and lower-right corners, respectively, of a rectangle
bounding the ellipse that is part of the chord. The (X3, Y3) and (X4, Y4)
parameters specify the endpoints of a line that intersects the ellipse. The
chord is drawn by using the selected pen and filled by using the selected
brush.

Parameters hDC HOC Identifies the device context in which the chord will
appear.

Xl

Yl

X2

Y2

Chapter 4, Functions directory

int Specifies the x-coordinate of the bounding rectangle's
upper-left corner.

int Specifies the y-coordinate of the bounding rectangle's
upper-left corner.

int Specifies the x-coordinate of the bounding rectangle's
lower-right corner.

int Specifies the y-coordinate of the bounding rectangle's
lower-right corner.

171

Chord

X3

Y3

X4

Y4

int Specifies the x-coordinate of one end of the line
segment.

int Specifies the y-coordinate of one end of the line
segment.

int Specifies the x-coordinate of one end of the line
segment.

int Specifies the y-coordinate of one end of the line
segment.

Return value The return value specifies whether or not the arc is drawn. It is nonzero if
the arc is drawn. Otherwise, it is zero.

ClearCommBreak

Syntax intClearCommBreak(nCid)
function ClearCommBreak(Cid: Integer): Integer;

This function restores character transmission and places the transmission
line in a nonbreak state.

Parameters nCid int Specifies the communication device to be restored. The
OpenComm function returns this value.

Return value The return value specifies the result of the function. It is zero if the
function is successful. It is negative if the nCid parameter is not a valid
device.

ClientToScreen

172

Syntax void ClientToScreen(hWnd,lpPoint)
procedure ClientToScreen(Wnd: HWnd; var Point: TPoint);

This function converts the client coordinates of a given point on the
display to screen coordinates. The ClientToScreen function uses the client
coordinates in the POINT data structure, pointed to by the IpPoint
parameter, to compute new screen coordinates; it then replaces the
coordinates in the structure with the new coordinates. The new screen
coordinates are relative to the upper-left corner of the system display.

Parameters hWnd HWND Identifies the window whose client area will be
used for the conversion.

Software development kit

IpPoint

ClientToScreen

LPPOINT Points to a POINT data structure that contains
the client coordinates to be converted.

Return value None.

Comments The ClientToScreen function assumes that the given point is in client
coordinates and is relative to the given window.

ClipCursor

Syntax void ClipCursor(lpRect)
procedure ClipCursor(Rect: PRect);

This function confines the cursor to the rectangle on the display screen
given by the IpRect parameter. If a subsequent cursor position, given with
the SetCursorPos function or the mouse, lies outside the rectangle,
Windows automatically adjusts the position to keep the cursor inside. If
IpRect is NULL, the cursor is free to move anywhere on the display screen.

Parameters IpRect LPRECT Points to a RECT data structure that contains the
screen coordinates of the upper-left and lower-right
corners of the confining rectangle.

Return value None.

Comments The cursor is a shared resource. An application that has confined the
cursor to a given rectangle must free it before relinquishing control to
another application.

CloseClipboard

Syntax BOOL CloseClipboard()
function CloseClipboard: Bool;

This function closes the clipboard. The CloseClipboard function should be
called when a window has finished examining or changing the clipboard.
It lets other applications access the clipboard.

Parameters None.

Return value The return value specifies whether the clipboard is closed. It is nonzero if
the clipboard is closed. Otherwise, it is zero.

Chapter 4, Functions directory 173

CloseComm

CloseComm

Syntax int CloseComm(nCid)
function CloseComm(Cid: Integer): Integer;

This function closes the communication device specified by the nCid
parameter and frees any memory allocated for the device's transmit and
receive queues. All characters in the output queue are sent before the
communication device is closed.

Parameters nCid int Specifies the device to be closed. The OpenComm
function returns this value.

Return value The return value specifies the result of the function. It is zero if the device
is closed. It is negative if an error occurred.

CloseMetaFile

Syntax HANDLE CloseMetaFile(hDC)
function CloseMetaFile(DC: THandle): THandle;

This function closes the metafile device context and creates a metafile
handle that can be used to play the metafile by using the PlayMetaFile
function.

Parameters hDC HANDLE Identifies the metafile device context to be
closed.

Return value The return value identifies the metafile if the function is successful.
Otherwise, it is NULL.

CloseSound

Syntax void CloseSound()
procedure CloseSound;

This function closes access to the play device and frees the device for
opening by other applications. The CloseSound function flushes all voice
queues and frees any buffers allocated for these queues.

Parameters None.

Return value None.

174 Software development kit

CloseWindow

Syntax

CloseWindow

void CloseWindow(h Wnd)
procedure CloseWindow(Wnd: HWnd);

This function minimizes the specified window. If the window is an
overlapped window, it is minimized by removing the client area and
caption of the open window from the display screen and moving the
window's icon into the icon area of the screen.

Parameters h Wnd

Return value None.

HWND Identifies the window to be minimized.

Comments This function has no effect if the hWnd parameter is a handle to a pop-up
or child window.

CombineRgn

Syntax int CombineRgn(hDestRgn, hSrcRgnl, hSrcRgn2, nCombineMode)
function CombineRgn(DestRgn, SrcRgnl, SrcRgn2: HRgn; CombineMode:
Integer): Integer;

This function creates a new region by combining two existing regions. The
method used to combine the regions is specified by the nCombineMode
parameter.

Parameters hDestRgn HRGN Identifies an existing region that will be replaced
by the new region.

hSrcRgnl HRGN Identifies an existing region.

hSrcRgn2 HRGN Identifies an existing region.

nCombineMode int Specifies the operation to be performed on the two
existing regions. It can be anyone of the following values:

Value Meaning
RGN_AND Uses overlapping areas of both

regions (intersection).
RGN_ COPY Creates a copy of region 1

(identified by hSrcRgnl).
RGN_DIFF Saves the areas of region 1

(identified by the hSrcRgnl
parameter) that are not part of

Chapter 4, Functions directory 175

CombineRgn

region 2 (identified by the
hSrcRgn2 parameter).
Combines all of both regions
(union).
Combines both regions but
removes overlapping areas.

Return value The return value specifies the type of the resulting region. It can be any
one of the following values:

Value
COMPLEXREGION

ERROR
NULLREGION
SIMPLE REGION

Meaning
New region has overlapping
borders.
No new region created.
New region is empty.
New region has no overlapping
borders.

Comments If the hDestRgn parameter does not identify an existing region, the
application must pass a far pointer to a previously allocated HRGN as the
hDestRgn parameter.

CopyMetoFile

Syntax HANDLE CopyMetaFile(hSrcMetaFile, IpFilename)
function CopyMetaFile(SrcMetaFile: THandle; FileName: PChar):
THandle;

This function copies the source metafile to the file pointed to by the
IpFilename parameter and returns a handle to the new metafile. If
IpFilename is NULL, the source is copied to a memory metafile.

Parameters hSrcMetaFile HANDLE Identifies the source metafile.

IpFilename LPSTR Points to a null-terminated character string that
specifies the file that is to receive the metafile.

Return value The return value identifies the new metafile.

CopyRect

Syntax int CopyRect(lpDestRect, IpSourceRect)
procedure CopyRect(var DestRect, SourceRect: TRect);

176 Software development kit

CopyRect

This function copies the rectangle pointed to by the IpSourceRect
parameter to the RECT data structure pointed to by the IpDestRect
parameter.

Parameters IpDestRect

IpSourceRect

LPRECT Points to a RECT data structure.

LPRECT Points to a RECT data structure.

Return value Although the CopyRect function return type is an integer, the return
value is not used and has no meaning.

CountClipboardFormats

Syntax int CountClipboardFormats()
function CountClipboardFormats: Integer;

This function retrieves a count of the number of formats the clipboard can
render.

Parameters None.

Return value The return value specifies the number of data formats in the clipboard.

CountVoiceNotes

Syntax int CountVoiceNotes(nVoice)
function CountVoiceNotes(Voice: Integer): Integer;

This function retrieves a count of the number of notes in the specified
queue. Only those queue entries that result from calls to the SetVoiceNote
function are counted.

Parameters n Voice int Specifies the voice queue to be counted. The first voice
queue is numbered 1.

Return value The return value specifies the number of notes in the given queue.

CreateBitmap

Syntax HBITMAP CreateBitmap(nWidth, nHeight, nPlanes, nBitCount, lpBits)
function CreateBitmap(Width, Height: Integer; Planes, BitCount: Byte;
Bits: Pointer): HBitmap;

Chapter 4, Functions directory 177

CreateBitmap

This function creates a device-dependent memory bitmap that has the
specified width, height, and bit pattern. The bitmap can subsequently be
selected as the current bitmap for a memory display by using the
SelectObject function.

Although a bitmap cannot be copied directly to a display device, the
BitBlt function can copy it from a memory display context (in which it is
the current bitmap) to any compatible device.

Parameters n Width int Specifies the width (in pixels) of the bitmap.

nHeight

nPlanes

nBitCount

IpBits

int Specifies the height (in pixels) of the bitmap.

BYTE Specifies the number of color planes in the bitmap.
Each plane has n Width x nHeight x nBitCount bits.

BYTE Specifies the number of color bits per display pixel.

LPSTR Points to a short-integer array that contains the
initial bitmap bit values. If it is NULL, the new bitmap is
left uninitialized. For more information, see the
description of the bmBits field in the BITMAP data
structure in Chapter 7, "Data types and structures," in
Reference, Volume 2.

Return value The return value identifies a bitmap if the function is successful.
Otherwise, it is NULL.

CreateBitmaplndirect

Syntax HBITMAP CreateBitmaplndirect(lpBitmap)
function CreateBitmaplndirect(var Bitmap: TBitmap): HBitmap;

This function creates a bitmap that has the width, height, and bit pattern
given in the data structure pointed to by the IpBitmap parameter. Although
a bitmap cannot be directly selected for a display device, it can be selected
as the current bitmap for a memory display and copied to any compatible
display device by using the BitBlt function.

Parameters IpBitmap BITMAP FAR * Points to a BITMAP data structure that
contains information about the bitmap.

Return value The return value identifies a bitmap if the function is successful.
Otherwise, it is NULL.

178 Software development kit

CreateBrushlndirect

CreateBrushlndirect

Syntax HBRUSH CreateBrushIndirect(lpLogBrush)
function CreateBrushIndirect(var LogBrush: TLogBrush): HBrush;

This function creates a logical brush that has the style, color, and pattern
given in the data structure pointed to by the IpLogBrush parameter. The
brush can subsequently be selected as the current brush for any device.

Parameters IpLogBrush LOGBRUSH FAR * Points to a LOGBRUSH data structure
that contains information about the brush.

Return value The return value identifies a logical brush if the function is successful.
Otherwise, it is NULL.

Comments A brush created using a monochrome (one plane, one bit per pixel)
bitmap is drawn using the current text and background colors. Pixels
represented by a bit set to 0 will be drawn with the current text color, and
pixels represented by a bit set to 1 will be drawn with the current
background color.

CreateCaret

Syntax void CreateCaret(hWnd, hBitmap, nWidth, nHeight)
procedure CreateCaret(Wnd: HWnd; Bitmap: HBitmap; Width, Height:
Integer);

This function creates a new shape for the system caret and assigns
ownership of the caret to the given window. The caret shape can be a line,
block, or bitmap as defined by the hBitmap parameter. If hBitmap is a
bitmap handle, the n Width and nHeight parameters are ignored; the
bitmap defines its own width and height. (The bitmap handle must have
been previously created by using the CreateBitmap, CreateDIBitmap, or
LoadBitmap function.) If hBitmap is NULL or 1, n Width and nHeight give
the caret's width and height (in logical units); the exact width and height
(in pixels) depend on the window's mapping mode.

If n Width or nHeight is zero, the caret width or height is set to the system's
window-border width or height. Using the window-border width or
height guarantees that the caret will be visible on a high-resolution
display.

Chapter 4, Functions directory 179

CreateCaret

The CreateCaret function automatically destroys the previous caret shape,
if any, regardless of which window owns the caret. Once created, the caret
is initially hidden. To show the caret, the ShowCaret function must be
called.

Parameters h Wnd

hBitmap

nWidth

nHeight

Return value None.

HWND Identifies the window that owns the new caret.

HBITMAP Identifies the bitmap that defines the caret
shape. If hBitmap is NULL, the caret is solid; if hBitmap is
1, the caret is gray.

int Specifies the width of the caret (in logical units).

int Specifies the height of the caret (in logical units).

Comments The system caret is a shared resource. A window should create a caret
only when it has the input focus or is active. It should destroy the caret
before losing the input focus or becoming inactive.

The system's window-border width or height can be retrieved by using
the GetSystemMetrics function with the SM_CXBOROER and
SM_ CYBORDER indexes.

CreateCompatibleBitmap

180

Syntax HBITMAP CreateCompatibleBitmap(hOC, n Width, nHeight)
function CreateCompatibleBitmap(DC: HOC; Width, Height: Integer):
HBitmap;

This function creates a bitmap that is compatible with the device specified
by the hDC parameter. The bitmap has the same number of color planes or
the same bits-per-pixel format as the specified device. It can be selected as
the current bitmap for any memory device that is compatible with the one
specified by hDC.

If hDC is a memory device context, the bitmap returned has the same
format as the currently selected bitmap in that device context. A memory
device context is a block of memory that represents a display surface. It
can be used to prepare images in memory before copying them to the
actual display surface of the compatible device.

When a memory device context is created, GOI automatically selects a
monochrome stock bitmap for it.

Software development kit

CreoteCompotibleBitmop

Since a color memory device context can have either color or monochrome •
bitmaps selected, the format of the bitmap returned by the
CreateCompatibleBitmap function is not always the same; however, the
format of a compatible bitmap for a nonmemory device context is always
in the format of the device.

Parameters hOC

nWidth

nHeight

HOC Identifies the device context.

int Specifies the width (in bits) of the bitmap.

int Specifies the height (in bits) of the bitmap.

Return value The return value identifies a bitmap if the function is successful.
Otherwise, it is NULL.

CreateCompatibleDC

Syntax HDCCreateCompatibleDC(hDC)
function CreateCompatibleDC(DC: HDC): HDC;

This function creates a memory device context that is compatible with the
device specified by the hOC parameter. A memory device context is a
block of memory that represents a display surface. It can be used to
prepare images in memory before copying them to the actual device
surface of the compatible device.

When a memory device context is created, GDI automatically selects a 1-
by-l monochrome stock bitmap for it.

Parameters hOC HOC Identifies the device context. If hOC is NULL, the
function creates a memory device context that is
compatible with the system display.

Return value The return value identifies the new memory device context if the function
is successful. Otherwise, it is NULL.

Comments This function can only be used to create compatible device contexts for
devices that support raster operations. For more information, see the
RC_BITBL T raster capability in the GetOeviceCaps function, later in this
chapter.

GDI output functions can be used with a memory device context only if a
bitmap has been created and selected into that context.

When the application no longer requires the device context, it should free
it by calling the OeleteOC function.

Chapter 4, Functions directory 181

CreateCursor

CreateCursor 3.0

Syntax HCURSOR CreateCursor(hInstance, nXhotspot, n Yhotspot, n Width,
nHeight, IpANDbitPlane, IpXORbitPlane)
function CreateCursor(Instance: THandle; Xhotspot, Yhotspot, Width,
Height: Integer; ANDBitPlane, XORBitPlane: Pointer): HCursor;

This function creates a cursor that has specified width, height, and bit
patterns.

Parameters hlnstance

nXhotspot

nYhotspot

nWidth

HANDLE Identifies an instance of the module creating the
cursor.

int Specifies the horizontal position of the cursor hotspot.

int Specifies the vertical position of the cursor hotspot.

int Specifies the width in pixels of the cursor.

nHeight int Specifies the height in pixels of the cursor.

IpANDbitPlane LPSTR Points to an array of bytes containing the bit
values for the AND mask of the cursor. This can be the
bits of a device-dependent monochrome bitmap.

IpXORbitPlane LPSTR Points to an array of bytes containing the bit
values for the XOR mask of the cursor. This can be the bits
of a device-dependent monochrome bitmap.

Return value The return value identifies the cursor if the function was successful.
Otherwise, it is NULL.

CreateDC

182

Syntax HDC CreateDC(lpDriverName, IpDeviceName, IpOutput, IpInitData)
function CreateDC(DriverName, DeviceName, Output: PChar; InitData:
Pointer): HDC;

This function creates a device context for the specified device. The
IpDriverName, IpDeviceName, and IpOutput parameters specify the device
driver, device name, and physical output medium (file or port),
respectively.

Parameters IpDriverName LPSTR Points to a null-terminated character string that
specifies the DOS filename (without extension) of the
device driver (for example, Epson ©).

Software development kit

CreateDC

IpDeviceName LPSTR Points to a null-terminated character string that
specifies the name of the specific device to be supported
(for example, Epson FX-80). The IpDeviceName parameter
is used if the module supports more than one device.

IpOutput LPSTR Points to a null-terminated character string that
specifies the DOS file or device name for the physical
output medium (file or output port).

IplnitData LPDEVMODE Points to a DEVMODE data structure
containing device-specific initialization data for the
device driver. The ExtDeviceMode retrieves this structure
filled in for a given device. The IplnitData parameter must
be NULL if the device driver is to use the default .
initialization (if any) specified by the user through the
Control Panel.

Return value The return value identifies a device context for the specified device if the
function is successful. Otherwise, it is NULL.

Comments DOS device names follow DOS conventions; an ending colon (:) is
recommended, but optional. Windows strips the terminating colon so that
a device name ending with a colon is mapped to the same port as the
same name without a colon. The driver and port names must not contain
leading or trailing spaces.

CreateDialog

Syntax HWND CreateDialog(hlnstance,lpTemplateName, hWndParent,
lp DialogFunc)
function (Instance: THandle; TemplateName: PChar; WndParent: HWnd;
DialogFunc: TFarProc): HWnd;

This function creates a modeless dialog box that has the size, style, and
controls defined by the dialog-box template given by the IpTemplateName
parameter. The hWndParent parameter identifies the application window
that owns the dialog box. The dialog function pointed to by the
IpDialogFunc parameter processes any messages received by the dialog
box.

The CreateDialog function sends a WM_INITDIALOG message to the
dialog function before displaying the dialog box. This message allows the
dialog function to initialize the dialog-box controls.

Chapter 4, Functions directory 183

CreateDialog

184

CreateDialog returns immediately after creating the dialog box. It does
not wait for the dialog box to begin processing input.

Parameters hlnstance HANDLE Identifies an instance of the module whose
executable file contains the dialog-box template.

IpTemplateName LPSTR Points to a character string that names the dialog­
box template. The string must be a null-terminated
character string.

h WndParent HWND Identifies the window that owns the dialog box.

IpDialogFunc FARPROC Is the procedure-instance address for the
dialog function. See the following "Comments" section for
details.

Return value The return value is the window handle of the dialog box. It is NULL if the
function cannot create the dialog box.

Comments Use the WS_ VISIBLE style for the dialog-box template if the dialog box
should appear in the parent window upon creation.

Callback

Use the DestroyWindow function to destroy a dialog box created by the
CreateDialog function.

A dialog box can contain up to 255 controls.
The callback function must use the Pascal calling convention and must be
declared FAR.

function BaaL FAR PASCAL DialogFunc(hDlg, wMsg, wParam,lParam)

HWNDhDlg;

WORDwMsg;

WORD wParam;

DWORD IParam;

DialogFunc is a placeholder for the application-supplied function name.
The actual name must be exported by including it in an EXPORTS
statement in the application's module-definition file.

Parameters hDlg

wMsg

Identifies the dialog box that receives the message.

Specifies the message number.

Software development kit

CreateDialog

wParam

IParam

Specifies 16 bits of additional message-dependent
informa tion.

Specifies 32 bits of additional message-dependent
informa tion.

Return value Except in response to the WM_INITDIALOG message, the dialog function
should return nonzero if the function processes the message, and zero if it
does not. In response to a WM_INITDIALOG message, the dialog
function should return zero if it calls the SetFocus function to set the
focus to one of the controls in the dialog box. Otherwise, it should return
nonzero, in which case Windows will set the focus to the first control in
the dialog box that can be given the focus.

Comments The dialog function is used only if the dialog class is used for the dialog
box. This is the default class and is used if no explicit class is given in the
dialog-box template. Although the dialog function is similar to a window
function, it must not call the DefWindowProc function to process
unwanted messages. Unwanted messages are processed internally by the
dialog-class window function.

The dialog-function address, passed as the IpDialogFunc parameter, must
be created by using the MakeProclnstance function.

CreoteDiologlndirect

Syntax HWND CreateDialogIndirect(hInstance, lpDialogTemplate, hWndParent,
1 p DialogFunc)
function CreateDialogIndirect(Instance: THandle; DialogTemplate:
Pointer; WndParent: HWnd; DialogFunc: TFarProc): HWnd;

This function creates a modeless dialog box that has the size, style, and
controls defined by the dialog-box template given by the IpDialogTemplate
parameter. The h WndParent parameter identifies the application window
that owns the dialog box. The dialog function pointed to by the
IpDialogFunc parameter processes any messages received by the dialog
box.

The CreateDialoglndirect function sends a WM_INITDIALOG message to
the dialog function before displaying the dialog box. This message allows
the dialog function to initialize the dialog-box controls.

CreateDialoglndirect returns immediately after creating the dialog box. It
does not wait for the dialog box to begin processing input.

Chapter 4, Functions directory 185

CreateDialoglndirect

Parameters hInstance HANDLE Identifies an instance of the module whose

IpDialogTemplate

executable file contains the dialog-box template.

LPSTR Points to a block of memory that contains a
DLGTEMPLATE data structure.

hWndParent HWND Identifies the window that owns the dialog box.

IpDialogFunc FARPROC Is the procedure-instance address of the dialog
function. See the following "Comments" section for
details.

Return value The return value is the window handle of the dialog box. It is NULL if the
function cannot create either the dialog box or any controls in the dialog
box.

Comments Use the WS_ VISIBLE style in the dialog-box template if the dialog box
should appear in the parent window upon creation.

Callback

A dialog box can contain up to 255 controls.
The callback function must use the Pascal calling convention and must be
declared FAR.

function BaaL FAR PASCAL DialogFunc(hDlg, wMsg, wParam, IParam)
HWNDhDlg;
WORDwMsg;
WORD wParam;
DWORD IParam;

DialogFunc is a placeholder for the application-supplied function name.
The actual name must be exported by including it in an EXPORTS
statement in the application's module-definition file.

Parameters hDlg

wMsg

wParam

IParam

Identifies the dialog box that receives the message.

Specifies the message number.

Specifies 16 bits of additional message-dependent
inform a tion.

Specifies 32 bits of additional message-dependent
information.

Return value Except in response to the WM_INITDIALOG message, the dialog function
should return nonzero if the function processes the message, and zero if it

186 Software development kit

CreateDialoglndirect

does not. In response to a WM_INITDIALOG message, the dialog
function should return zero if it calls the SetFocus function to set the
focus to one of the controls in the dialog box. Otherwise, it should return
nonzero, in which case Windows will set the focus to the first control in
the dialog box that can be given the focus.

Comments The dialog function is used only if the dialog class is used for the dialog
box. This is the default class and is used if no explicit class is given in the
dialog-box template. Although the dialog function is similar to a window
function, it must not call the DefWindowProc function to process
unwanted messages. Unwanted messages are processed internally by the
dialog-class window function.

The dialog-function address, passed as the IpDialogFunc parameter, must
be created by using the MakeProclnstance function.

CreateDialoglndirectParam

Syntax HWND CreateDialogIndirectParam(hInstance, lpDialogTemplate,
hWndParent, lpDialogFunc, dwInitParam)

3.0

function CreateDialogIndirectParam (Instance: Thandle; DialogTemplate;
WndParent: HWnd; DialogFunc: TFarProc; InitParam: Longint): HWnd;

This function creates a modeless dialog box, sends a WM_INITDIALOG
message to the dialog function before displaying the dialog box, and
passes dwlnitParam as the message IParam. This message allows the dialog
function to initialize the dialog-box controls. Otherwise, this function is
identical to the CreateDialoglndirect function.

For more information on creating a modeless dialog box, see the
description of the CreateDialoglndirect function.

Parameters hlnstance

IpDialogTemplate

HANDLE Identifies an instance of the module whose
executable file contains the dialog-box template.

LPSTR Points to a block of memory that contains a
DLGTEMPLATE data structure.

hWndParent HWND Identifies the window that owns the dialog box.

IpDialogFunc FARPROC Is the procedure-instance address of the dialog
function. For details, see the "Comments" section in the
description of the CreateDialoglndirect function.

Chapter 4, Functions directory 187

CreateDialoglndirectParam

dwlnitParam DWORD Is a 32-bit value which
CreateDialoglndirectParam passes to the dialog function
when it creates the dialog box.

Return value The return value is the window handle of the dialog box. It is NULL if the
function cannot create either the dialog box or any controls in the dialog
box.

CreateDialogParam 3.0

Syntax HWND CreateDialogParam(hInstance, lpTemplateName, h WndParent,
lpDialogFunc, dwInitParam)
function CreateDialogParam(lnstance: THandle; TemplateName: PChar;
WndParent: HWnd; DialogFunc: TFarProc; InitParam: Longint): HWnd;

This function creates a modeless dialog box, sends a WM_INITDIALOG
message to the dialog function before displaying the dialog box, and
passes dwlnitParam as the message [Paramo This message allows the dialog
function to initialize the dialog-box controls. Otherwise, this function is
identical to the CreateDialog function.

For more information on creating a modeless dialog box, see the
description of the CreateDialog function.

Parameters hlnstance HANDLE Identifies an instance of the module whose
executable file contains the dialog-box template.

IpTemplateName LPSTR Points to a character string that names the dialog­
box template. The string must be a null-terminated
character string.

h WndParent HWND Identifies the window that owns the dialog box.

IpDialogFunc FARPROC Is the procedure-instance address for the
dialog function. For details, see the "Comments" section
of the CreateDialog function.

dwlnitParam DWORD Is a 32-bit value which CreateDialogParam
passes to the dialog function when it creates the dialog
box.

Return value The return value is the window handle of the dialog box. It is -1 if the
function cannot create the dialog box.

188 Software development kit

CreateDIBitmap

CreateDIBitmap 3.0

Syntax HBITMAP CreateDIBitmap(hDC, IplnfoHeader, dwUsage, IplnitBits,
IplnitInfo, wUsage)
function CreateDIBitmap(DC: HDC; var InfoHeader: TBitmaplnfoHeader;
dwUsage: Longint; InitBits: PChar; var InitInfo: TBitmaplnfo; wUsage:
Word): HBitmap;

This function creates a device-specific memory bitmap from a device­
independent bitmap (DIB) specification and optionally sets bits in the
bitmap.

Parameters hDC

IplnfoHeader

dwUsage

IplnitBits

IplnitInfo

wUsage

Chapter 4, Functions directory

HOC Identifies the device context.

LPBITMAPINFOHEADER Points to a
BITMAPINFOHEADER structure that describes the size
and format of the device-independent bitmap.

DWORD Indicates whether the memory bitmap is to be
initialized. If dwUsage is set to CBM_INIT,
CreateDIBitmap will initialize the bitmap with the bits
specified by IplnitBits and IplnitInfo

LPSTR Points to a byte array that contains the initial
bitmap values. The format of the bitmap values depends
on the biBitCount field of the BITMAPINFO structure
identified by IplnitInfo. See the description of the
BITMAPINFO data structure in Chapter 7, "Data Types
and Structures," in Reference, Volume 2, for more
informa tion.

LPBITMAPINFO Points to a BITMAPINFO data structure
that describes the dimensions and color format of
IplnitBits.

WORD Specifies whether the bmiColors[] fields of the
IplnitInfo data structure contain explicit RGB values or
indexes into the currently realized logical palette. The
wUsage parameter must be one of the following values:

Value Meaning
DIB _P AL_ COLORS The color table consists of an

array of 16-bit indexes into the
currently realized logical palette.

189

•

CreateD I Bitmap

DIB _RGB _COLORS The color table contains literal
RGB values.

Return value The return value identifies a bitmap if the function is successful.
Otherwise, it is NULL.

Comments This function also accepts a device-independent bitmap specification
formatted for Microsoft OS/2 Presentation Manager versions 1.1 and 1.2 if
the IplnfoHeader points to a BITMAPCOREHEADER data structure and the
IplnitInfo parameter points to a BITMAPCOREINFO data structure.

CreateDI BPattern Brush 3.0

190

Syntax HBRUSH CreateDIBPatternBrush(hPackedDIB, wUsage)
function CreateDIBPatternBrush(PackedDIB: THandle; Usage: Word):
HBrush;

This function creates a logical brush that has the pattern specified by the
device-independent bitmap (DIB) defined by the the hPackedDIB
parameter. The brush can subsequently be selected for any device that
supports raster operations. For more information, see the RC_BITBL T
raster capability in the GetDeviceCaps function, later in this chapter.

Parameters hPackedDIB

wUsage

GLOBALHANDLE Identifies a global memory object
containing a packed device-independent bitmap. To
obtain this handle, an application calls the GlobalAlioc
function to allocate a block of global memory and then
fills the memory with the packed DIB. A packed DIB
consists of a BITMAPINFO data structure immediately
followed by the array of bytes which define the pixels of
the bitmap

WORD Specifies whether the bmiColors[] fields of the
BITMAPINFO data structure contain explicit RGB values
or indexes into the currently realized logical palette. The
wUsage parameter must be one of the following values:

Value
DIB_PAL_COLORS

DIB _RGB _COLORS

Meaning
The color table contains literal
RGB values. into the currently
realized logical palette.
The color table consists of an
array of 16-bit indexes.

Software development kit

CreateD I BPattern Brush

The return value identifies a logical brush if the function is successful.
Return value Otherwise, it is NULL.

Comments When an application selects a two-color DIB pattern brush into a
monochrome device context, Windows ignores the colors specified in the
DIB and instead displays the pattern brush using the current background
and foreground colors of the device context. Pixels mapped to the first
color (at offset 0 in the DIB color table) of the DIB are displayed using the
foreground color, and pixels mapped to the second color (at offset 1 in the
color table) are displayed using the background color. The SetTextColor
and SetBkColor functions change the foreground and background colors,
respectively, for a device context.

CreateDiscardableBitmap

Syntax HBITMAP CreateDiscardableBitmap(hDC, n Width, nHeight)
function CreateDiscardableBitmap(DC: HDC; Width, Height: Integer):
HBitmap;

This function creates a discardable bitmap that is compatible with the
device identified by the hDC parameter. The bitmap has the same number
of color planes or the same bits-per-pixel format as the specified device.
An application can select this bitmap as the current bitmap for a memory
device that is compatible with the one specified by the hDC parameter.

Parameters hDC

nWidth

nHeight

HOC Identifies a device context.

int Specifies the width (in bits) of the bitmap.

int Specifies the height (in bits) of the bitmap.

Return value The return value identifies a bitmap if the function is successful.
Otherwise, it is NULL.

Comments Windows can discard a bitmap created by this function only if an
application has not selected it into a display context. If Windows discards
the bitmap when it is not selected and the application later attempts to
select it, the SelectObject function will return zero. When this occurs, the
application should remove the handle to the bitmap by using
OeleteObject.

Chapter 4, Functions directory 191

CreateEllipticRgn

CreateEllipticRgn

Syntax HRGN CreateEllipticRgn(Xl, Yl, X2, Y2)
function CreateEllipticRgn(Xl, Yl, X2, Y2: Integer): HRgn;

This function creates an elliptical region.

Parameters Xl int Specifies the x-coordinate of the upper-left corner of
the bounding rectangle of the ellipse.

Yl

X2

Y2

int Specifies the y-coordinate of the upper-left corner of
the bounding rectangle of the ellipse.

int Specifies the x-coordinate of the lower-right corner of
the bounding rectangle of the ellipse.

int Specifies the y-coordinate of the lower-right corner of
the bounding rectangle of the ellipse.

Return value The return value identifies a new region if the function is successful.
Otherwise, it is NULL.

Comments The width of the rectangle, specified by the absolute value of X2 - Xl,
must not exceed 32,767 units. This limit also applies to the height of the
rectangle.

CreateEllipticRgnlndirect

Syntax HRGN CreateEllipticRgnIndirect{lpRect)
function CreateEllipticRgnIndirect(var Rect: TRect): HRgn;

This function creates an elliptical region.

Parameters IpRect LPRECT Points to a RECT data structure that contains the
coordinates of the upper-left and lower-right corners of
the bounding rectangle of the ellipse.

Return value The return value identifies a new region if the function is successful.
Otherwise, it is NULL.

Comments The width of the rectangle must not exceed 32,767 units. This limit applies
to the height of the rectangle as well.

192 Software development kit

CreateFont

Syntax

Create Font

HFONT CreateFont(nHeight, n Width, nEscapement, nOrientation,
n Weight, cItalic, cUnderline, cStrikeOut, cCharSet, cOutputPrecision,
cClipPrecision, cQuality, cPitchAndFamily, IpFacename)

function CreateFont(Height, Width, Escapement, Orientation, Weight:
Integer; Italic, Underline, StrikeOut, CharSet, OutputPrecision,
ClipPrecision, Quality, PitchAndFamily: Byte; FaceName: PChar): HFont;

This function creates a logical font that has the specified characteristics.
The logical font can subsequently be selected as the font for any device.

Parameters nHeight int Specifies the desired height (in logical units) of the
font. The font height can be specified in three ways: If
nHeight is greater than zero, it is transformed into
device units and matched against the cell height of the
available fonts. If it is zero, a reasonable default size is
used. If it is less than zero, it is transformed into device
units and the absolute value is matched against the
character height of the available fonts. For all height
comparisons, the font mapper looks for the largest font
that does not exceed the requested size, and, if there is
no such font, looks for the smallest font available.

nWidth

nEscapement

nOrientation

nWeight

cItalic

Chapter 4, Functions directory

int Specifies the average width (in logical units) of
characters in the font. If n Width is zero, the aspect ratio
of the device will be matched against the digitization
aspect ratio of the available fonts to find the closest
match, determined by the absolute value of the
difference.

int Specifies the angle (in tenths of degrees) of each line
of text written in the font (relative to the bottom of the
page).

int Specifies the angle (in tenths of degrees) of each
character's baseline (relative to the bottom of the page).

int Specifies the desired weight of the font in the range
o to 1000 (for example, 400 is normal, 700 is bold). If
n Weight is zero, a default weight is used.

BYTE Specifies whether the font is italic.

193

Create Font

eUnderline

eStrikeOut

eCharSet

BYTE Specifies whether the font is underlined.

BYTE Specifies whether characters in the font are
struck out.

BYTE Specifies the desired character set. The following
values are predefined:

• ANSI CHARSET
.OEM-CHARSET
• SYMBOL CHARSET
• The OEM-character set is system-dependent.

Fonts with other character sets may exist in the system.
If an application uses a font with an unknown
character set, it should not attempt to translate or
interpret strings that are to be rendered with that font.
Instead, the strings should be passed directly to the
output device driver.

eOutputPrecision BYTE Specifies the desired output precision. The
output precision defines how closely the output must
match the requested font's height, width, character
orientation, escapement, and pitch. It can be anyone of
the following values:

• OUT CHARACTER PRECIS
• OUT-DEFAULT PRECIS
• OUT-STRING PRECIS
.OUT=STROKE-='PRECIS

eClipPrecision BYTE Specifies the desired clipping precision. The
clipping precision defines how to clip characters that
are partially outside the clipping region. It can be any
one of the following values:

• CLIP CHARACTER PRECIS
• CLIP-DEFAULT PRECIS
• CLIP =STROKE_PRECIS

eQuality BYTE Specifies the desired output quality. The output
quality defines how carefully GDI must attempt to
match the logical-font attributes to those of an actual
physical font. It can be anyone of the following values:

• DEFAULT_QUALITY
• DRAFT_QUALITY
• PROOF_QUALITY

194 Software development kit

CreateFont

cPitchAndFamily BYTE Specifies the pitch and family of the font. The •
two low-order bits specify the pitch of the font and can ..
be anyone of the following values:

c DEFAULT_PITCH
13 FIXED PITCH
Il VARIABLE_PITCH

The four high-order bits of the field specify the font
family and can be anyone of the following values:

c FF DECORATIVE
m FF-DONTCARE
cFF-MODERN
cFF-ROMAN
cFF-SCRIPT
cFF=SWISS

IpFacename LPSTR Points to a null-terminated character string that
specifies the typeface name of the font. The length of
this string must not exceed 30 characters. The
EnumFonts function can be used to enumerate the
typeface names of all currently available fonts.

Return value The return value identifies a logical font if the function is successful.
Otherwise, it is NULL.

Comments The CreateFont function does not create a new font. It merely selects the
closest match from the fonts available in GDI's pool of physical fonts.

CreateFontlndirect

Syntax HFONTCreateFontIndirect(lpLogFont)
function CreateFontIndirect(var LogFont: TLogFont): HFont;

This function creates a logical font that has the characteristics given in the
data structure pointed to by the IpLogFont parameter. The font can
subsequently be selected as the current font for any device.

Parameters IpLogFont LOGFONT FAR * Points to a LOGFONT data structure that
defines the characteristics of the logical font.

Return value The return value identifies a logical font if the function is successful.
Otherwise, it is NULL.

Comments The CreateFontlndirect function creates a logical font that has all the
specified characteristics. When the font is selected by using the
SelectObject function, GDI's font mapper attempts to match the logical

Chapter 4, Functions directory 195

CreateFontl ndirect

font with an existing physical font. If it fails to find an exact font, it
provides an alternate whose characteristics match as many of the
requested characteristics as possible. For a description of the font mapper,
see Chapter 2, "Graphics device interface functions."

CreateHatchBrush

Syntax HBRUSHCreateHatchBrush(nIndex, crColor)
function CreateHatchBrush(Index: Integer; Color: TColorRef): HBrush;

This function creates a logical brush that has the specified hatched pattern
and color. The brush can subsequently be selected as the current brush for
any device.

Parameters nlndex

creolor

int Specifies the hatch style of the brush. It can be anyone
of the following values:

Value
HS_BDIAGONAL

HS_DIAGCROSS
HS_FDIAGONAL

HS_HORIZONTAL
HS_ VERTICAL

Meaning
45-degree upward hatch (left to
right)
Horizontal and vertical
crosshatch
45-degree crosshatch
45-degree downward hatch (left
to right)
Horizontal hatch
Vertical hatch

COLOR REF Specifies the foreground color of the brush
(the color of the hatches).

Return value The return value identifies a logical brush if the function is successful.
Otherwise, it is NULL.

CreatelC

196

Syntax HDC CreateIC(lpDriverName, IpDeviceName, IpOutput, IpInitData)
function CreateIC(DriverName, DeviceName, Output: PChar; InitDate:
Pointer): HDC;

This function creates an information context for the specified device. The
information context provides a fast way to get information about the
device without creating a device context.

Software development kit

CreatelC

Parameters IpDriverName LPSTR Points to a null-terminated character string that
specifies the DOS filename (without extension) of the
device driver (for example, EPSON).

IpDeviceName LPSTR Points to a null-terminated character string that
specifies the name of the specific device to be supported
(for example, EPSON FX-80). The IpDeviceName parameter
is used if the module supports more than one device.

IpOutput LPSTR Points to a null-terminated character string that
specifies the DOS file or device name for the physical
output medium (file or port).

IplnitData LPSTR Points to device-specific initialization data for the
device driver. The IplnitData parameter must be NULL if
the device driver is to use the default initialization (if any)
specified by the user through the Control Panel.

Return value The return value identifies an information context for the specified device
if the function is successful. Otherwise, it is NULL.

Comments DOS device names follow DOS conventions; an ending colon (:) is
recommended, but optional. Windows strips the terminating colon so that
a device name ending with a colon is mapped to the same port as the
same name without a colon.

The driver and port names must not contain leading or trailing spaces.

GDI output functions cannot be used with information contexts.

Createlcon 3.0

Syntax HICON CreateIcon(hInstance, n Width, nHeight, nPlanes, nBitsPixel,
lpANDbits, lpXORbits)
function CreateIcon(Instance: THandle; Width, Height: Integer; Planes,
BitsPixel: Byte; ANDbits, XORbits: Pointer): HIcon;

This function creates an icon that has specified width, height, colors, and
bit patterns.

Parameters hlnstance

nWidth

nHeight

Chapter 4, Functions directory

HANDLE Identifies an instance of the module creating the
icon.

int Specifies the width in pixels of the icon.

int Specifies the height in pixels of the icon.

197

Createlcon

nPlanes

nBitsPixel

IpANDbits

IpXORbits

BYTE Specifies the number of planes in the XOR mask of
the icon.

BYTE Specifies the number of bits per pixel in the XOR
mask of the icon.

LPSTR Points to an array of bytes that contains the bit
values for the AND mask of the icon. This array must
specify a monochrome mask.

LPSTR Points to an array of bytes that contains the bit
values for the XOR mask of the icon. This can be the bits
of a monochrome or device-dependent color bitmap.

Return value The return value identifies an icon if the function is successful. Otherwise,
it is NULL.

CreateMenu

Syntax HMENU CreateMenu()
function CreateMenu: HMenu;

This function creates a menu. The menu is initially empty, but can be filled
with menu items by using the AppendMenu or InsertMenu function.

Parameters None.

Return value The return value identifies the newly created menu. It is NULL if the
menu cannot be created.

CreateMetaFile

198

Syntax HANDLE CreateMetaFile(lpFilename)
function CreateMetaFile(FileName: PChar): THan dIe;

This function creates a metafile device context.

Parameters IpFilename LPSTR Points to a null-terminated character string that
specifies the name of the metafile. If the IpFilename
parameter is NULL, a device context for a memory
metafile is returned.

Return value The return value identifies a metafile device context if the function is
successful. Otherwise, it is NULL.

Software development kit

Create Palette

CreatePalette 3.0

Syntax HP ALETTE CreatePalette(lpLogPalette)
function CreatePalette(var LogPalette: TLogPalette): HPalette;

This function creates a logical color palette.

Parameters IpLogPalette LPLOGPALETIE Points to a LOGPALETIE data structure
that contains information about the colors in the logical
palette.

Return value The return value identifies a logical palette if the function was successful.
Otherwise, it is NULL.

Create Pattern Brush

Syntax HBRUSH CreatePatternBrush(hBitmap)
function CreatePatternBrush(Bitmap: HBitmap): HBrush;

This function creates a logical brush that has the pattern specified by the
hBitmap parameter. The brush can subsequently be selected for any device
that supports raster operations. For more information, see the RC_BITBLT
raster capability in the GetDeviceCaps function, later in this chapter.

Parameters hBitmap HBITMAP Identifies the bitmap. It is assumed to have
been created by using the CreateBitmap,
CreateBitmaplndirect, LoadBitmap, or
CreateCompatibleBitmap function. The minimum size for
a bitmap to be used in a fill pattern is 8-by-8.

Return value The return value identifies a logical brush if the function is successful.
Otherwise, it is NULL.

Comments A pattern brush can be deleted without affecting the associated bitmap by
using the DeleteObject function. This means the bitmap can be used to
create any number of pattern brushes.

A brush created using a monochrome (one plane, one bit per pixel)
bitmap is drawn using the current text and background colors. Pixels
represented by a bit set to a will be drawn with the current text color, and
pixels represented by a bit set to 1 will be drawn with the current
background color.

Chapter 4, Functions directory 199

CreatePen

CreatePen

Syntax HPEN CreatePen(nPenStyle, nWidth, crColor)
function CreatePen(PenStyle, Width: Integer; Color: TColorRef): HPen;

This function creates a logical pen having the specified style, width, and
color. The pen can be subsequently selected as the current pen for any
device.

Parameters nPenStyle

nWidth

crColor

int Specifies the pen style. It can be anyone of the
following values:

Pen Style
PS_SOLID
PS_DASH
PS_DOT
PS_DASHDOT
PS_DASHDOTDOT
PS_NULL
PS_INSIDEFRAME

Value
o
1
2
3
4
5
6

If the width of the pen is greater than 1 and the pen style
is PS_INSIDEFRAME, the line is drawn inside the frame
of all primitives except polygons and polylines; the pen is
drawn with a logical (dithered) color if the pen color does
not match an available RGB value. The
PS_INSIDEFRAME style is identical to PS_SOLID if the
pen width is less than or equal to 1

int Specifies the width of the pen (in logical units).

COLORREF Specifies the color of the pen.

Return value The return value identifies a logical pen if the function is successful.
Otherwise, it is NULL.

Comments Pens with a physical width greater than one pixel will always have either
null or solid style or will be dithered if the pen style is
PS_INSIDEFRAME.

CreatePenlndirect

Syntax HPEN CreatePenIndirect(lpLogPen)
function CreatePenIndirect(var LogPen: TLogPen): HPen;

200 Software development kit

CreatePenlndirect

This function creates a logical pen that has the style, width, and color •
given in the data structure pointed to by the IpLogPen parameter.

Parameters IpLogPen LOGPEN FAR * Points to the LOGPEN data structure that
contains information about the logical pen.

Return value The return value identifies a logical pen object if the function is successful.
Otherwise, it is NULL.

Comments Pens with a physical width greater than one pixel will always have either
null or solid style or will be dithered if the pen style is
PS_INSIDEFRAME.

CreatePolygonRgn

Syntax HRGN CreatePolygonRgnOpPoints, nCount, nPolyFillMode)
function CreatePolygonRgn(var Points; Count, PolyFillMode: Integer):
HRgn;

This function creates a polygonal region.

Parameters IpPoints LPPOINT Points to an array of POINT data structures.
Each point specifies the x- and y-coordinates of one vertex
of the polygon.

nCount int Specifies the number of points in the array.

nPolyFillMode int Specifies the polygon-filling mode to be used for filling
the region. It can be ALTERNATE or WINDING (for an
explanation of these modes, see the SetPolyFiIIMode
function, later in this chapter).

Return value The return value identifies a new region if the function is successful.
Otherwise, it is NULL.

CreatePolyPolygonRgn 3.0

Syntax HRGN CreatePolyPolygonRgnOpPoints,lpPolyCounts, nCount,
nPolyFillMode)
function CreatePolyPolygonRgn(var Points; var PolyCounts; Count,
PolyFillMode: Integer): HRgn;

This function creates a region consisting of a series of closed polygons.
The region is filled using the mode specified by the nPolyFillMode
parameter. The polygons may overlap, but they do not have to overlap.

Chapter 4, Functions directory 201

CreotePolyPolygonRgn

Parameters IpPoints LPPOINT Points to an array of POINT data structures that
define the vertices of the polygons. Each polygon must be
a closed polygon. The polygons are not automatically
closed. The polygons are specified consecutively.

IpPolyCounts LPINT Points to an array of integers, each of which
specifies the number of points in one of the polygons in
the IpPoints array.

nCount int Specifies the total number of integers in the
IpPolyCounts array.

nPolyFillMode int Specifies the filling mode for the region. The
nPolyFillMode parameter may be either of the following
values:

Value
ALTERNATE
WINDING

Meaning
Selects alternate mode.
Selects winding number mode.

Return value The return value identifies the region if the function was successfull.
Otherwise, it is NULL.

Comments In general, the polygon fill modes differ only in cases where a complex,
overlapping polygon must be filled (for example, a five-sided polygon
that forms a five-pointed star with a pentagon in the center). In such cases,
ALTERNATE mode fills every other enclosed region within the polygon
(that is, the points of the star), but WINDING mode fills all regions (that
is, the points and the pentagon).

When the filling mode is ALTERNATE, GDI fills the area between odd­
numbered and even-numbered polygon sides on each scan line. That is,
GDI fills the area between the first and second side, between the third and
fourth side, and so on.

To fill all parts of the region, WINDING mode causes GDI to compute and
draw a border that encloses the region but does not overlap. For example,
in WINDING mode, the five-sided polygon that forms the star is
computed as a ten-sided polygon with no overlapping sides; the resulting
star is filled.

CreatePopupMenu

Syntax HMENU CreatePopupMenu()
function CreatePopupMenu: HMenu;

3.0

202 Software development kit

CreafePopupMenu

This function creates and returns a handle to an empty pop-up menu.
An application adds items to the pop-up menu by calling InsertMenu and
AppendMenu. The application can add the pop-up menu to an existing
menu or pop-up menu, or it may display and track selections on the pop­
up menu by calling TrackPopupMenu.

Parameters None.

Return value The return value identifies the newly created menu. It is NULL if the
menu cannot be created.

CreateRectRgn

Syntax HRGNCreateRectRgn(Xl, Yl, X2, Y2)
function CreateRectRgn(Xl, Yl, X2, Y2: Integer): HRgn;

This function creates a rectangular region.

Parameters Xl int Specifies the x-coordinate of the upper-left corner of
the region.

Yl int Specifies the y-coordinate of the upper-left corner of
the region.

X2 int Specifies the x-coordinate of the lower-right corner of
the region.

Y2 int Specifies the y-coordinate of the lower-right corner of
the region.

Return value The return value identifies a new region if the function is successful.
Otherwise, it is NULL.

Comments The width of the rectangle, specified by the absolute value of X2 - Xl,
must not exceed 32,767 units. This limit applies to the height of the
rectangle as well.

CreateRectRgnlndirect

Syntax HRGN Crea teRectRgnIndirectO pRect)
function CreateRectRgnIndirect(var Rect: TRect): HRgn;

This function creates a rectangular region.

Chapter 4, Functions directory 203

CreateRectRgnlndirect

Parameters IpRect LPRECl Points to a RECl data structure that contains the
coordinates of the upper-left and lower-right corners of
the region.

Return value The return value identifies a new region if the function is successful.
Otherwise, it is NULL.

Comments The width of the rectangle must not exceed 32,767 units. This limit applies
to the height of the rectangle as well.

CreateRoundRectRgn 3.0

Syntax HRGN CreateRoundRectRgn(Xl, Yl, X2, Y2, X3, Y3)
function CreateRoundRectRgn(Xl, Yl, X2, Y2, X3, Y3: Integer): HRgn;

This function creates a rectangular region with rounded corners.

Parameters Xl int Specifies the x-coordinate of the upper-left corner of
the region.

Yl

X2

Y2

X3

Y3

int Specifies the y-coordinate of the upper-left corner of
the region.

int Specifies the x-coordinate of the lower-right corner of
the region.

int Specifies the y-coordinate of the lower-right corner of
the region.

int Specifies the width of the ellipse used to create the
rounded corners.

int Specifies the height of the ellipse used to create the
rounded corners.

Return value The return value identifies a new region if the function was successful.
Otherwise, it is NULL.

Comments The width of the rectangle, specified by the absolute value of X2 - Xl,
must not exceed 32,767 units. This limit applies to the height of the
rectangle as well.

CreateSolidBrush

Syntax HBRUSH CreateSolidBrush(crColor)
function CreateSolidBrush(Color: TColorRef): HBrush;

204 Software development kit

CreateSolidBrush

This function creates a logical brush that has the specified solid color. The •
brush can subsequently be selected as the current brush for any device.

Parameters crColor COLORREF Specifies the color of the brush

Return value The return value identifies a logical brush if the function is successful.
Otherwise, it is NULL.

CreateWindow

Syntax HWND CreateWindow(lpClassName, lpWindowName, dwStyle, X, Y,
n Width, nHeight, h WndParent, hMenu, hInstance, lpParam)
function CreateWindow(ClassName, WindowName: PChar; Style:
Longint; X, Y, Width, Height: Integer; WndParent: HWnd; Menu: HMenu;
Instance: THandle; Param: Pointer): HWnd;

This function creates an overlapped, pop-up, or child window. The
CreateWindow function specifies the window class, window title, window
style, and (optionally) initial position and size of the window. The
CreateWindow function also specifies the window's parent (if any) and
menu.

For overlapped, pop-up, and child windows, the CreateWindow function
sends WM_CREATE, WM_GETMINMAXINFO, and WM_NCCREATE
messages to the window. The IParam parameter of the WM_CREATE
message contains a pointer to a CREATESTRUCT data structure. If
WS_ VISIBLE style is given, CreateWindow sends the window all the
messages required to activate and show the window.

If the window style specifies a title bar, the window title pointed to by the
Ip WindowName parameter is displayed in the title bar. When using
CreateWindow to create controls such as buttons, check boxes, and text
controls, the Ip WindowName parameter specifies the text of the control.

Parameters IpClassName LPSTR Points to a null-terminated character string that
names the window class. The class name can be any name
registered with the RegisterClass function or any of the
predefined control-class names specified in Table 4.2,
"Control classes.".

Ip WindowName LPSTR Points to a null-terminated character string that
represents the window name.

dwStyle

Chapter 4, Functions directory

DWORD Specifies the style of window being created. It
can be any combination of the styles given in Table 4.3,
"Window styles," the control styles given in Table 4.4,

205

CreateWindow

x

y

nWidth

nHeight

hWndParent

206

"Control styles," or a combination of styles created by
using the bitwise OR operator.

int Specifies the initial x-position of the window. For an
overlapped or pop-up window, the X parameter is the
initial x-coordinate of the window's upper-left corner (in
screen coordinates). If this value is CW _USEDEFAULT,
Windows selects the default position for the window's
upper-left corner. For a child window, X is the x­
coordinate of the upper-left corner of the window in the
client area of its parent window.

int Specifies the initial y-position of the window. For an
overlapped window, the Y parameter is the initial y­
coordinate of the window's upper-left corner. For a pop­
up window, Y is the y-coordinate (in screen coordinates)
of the upper-left corner of the pop-up window. For list­
box controls, Y is the y-coordinate of the upper-left corner
of the control's client area. For a child window, Y is the y­
coordinate of the upper-left corner of the child window.
All of these coordinates are for the window, not the
window's client area.

int Specifies the width (in device units) of the window.
For overlapped windows, the n Width parameter is either
the window's width (in screen coordinates) or
CW _USEDEFAULT. If nWidth is CW _USEDEFAULT,
Windows selects a default width and height for the
window (the default width extends from the initial x­
position to the right edge of the screen, and the default
height extends from the initial y-position to the top of the
icon area).

int Specifies the height (in device units) of the window.
For overlapped windows, the nHeight parameter is the
window's height in screen coordinates. If the n Width
parameter is CW_USEDEFAULT, Windows ignores
nHeight.

HWND Identifies the parent or owner window of the
window being created. A valid window handle must be
supplied when creating a child window or an owned
window. An owned window is an overlapped window
that is destroyed when its owner window is destroyed,
hidden when its owner is made iconic, and which is
always displayed on top of its owner window. For pop-

Software development kit

hMenu

hlnstance

IpParam

CreateWindow

up windows, a handle can be supplied, but is not
required. If the window does not have a parent or is not
owned by another window, the hWndParent parameter
must be set to NULL.

HMENU Identifies a menu or a child-window identifier.
The meaning depends on the window style. For
overlapped or pop-up windows, the hMenu parameter
identifies the menu to be used with the window. It can be
NULL, if the class menu is to be used. For child windows,
hMenu specifies the child-window identifier, an integer
value that is used by a dialog-box control to notify its
parent of events (such as the EN_HSCROLL message).
The child-window identifier is determined by the
application and should be unique for all child windows
with the same parent window.

HANDLE Identifies the instance of the module to be
associated with the window.

LPSTR Points to a value that is passed to the window
through the CREATESTRUCT data structure referenced
by the IParam parameter of the WM_CREATE message. If
an application is calling CreateWindow to create a
multiple document interface (MDI) client window,
IpParam must point to a CLiENTCREATESTRUCT data
structure.

Return value The return value identifies the new window. It is NULL if the window is
not created.

Comments For overlapped windows where the X parameter is CW_USEDEFAULT,
the Y parameter can be one of the show-style parameters described with
the ShowWindow function, or, for the first overlapped window to be
created by the application, it can be the nCmdShow parameter passed to
the WinMain function.

Table 4.2
Control classes

Table 4.2 lists the window control classes; Table 4.3 lists the window
styles; Table 4.4 lists the control styles:

Class

BUTTON

Meaning

Designates a small rectangular child window that
represents a button the user can turn on or off by
clicking it. Button controls can be used alone or in
groups, and can either be labeled or appear without
text. Button controls typically change appearance when
the user clicks them.

Chapter 4, Functions directory 207

CreateWindow

208

Table 4.2: Control classes (continued)

COMBOBOX

EDIT

LISTBOX

MDICLIENT

Designates a control consisting of a selection field
similar to an edit control plus a list box. The list box
may be displayed at all times or may be dropped down
when the user selects a "pop box" next to the selection
field.
Depending on the style of the combo box, the user can
or cannot edit the contents of the selection field. If the
list box is visible, typing characters into the selection
box will cause the first list box entry that matches the
characters typed to be highlighted. Conversely,
selecting an item in the list box displays the selected
text in the selection field.
Designates a rectangular child window in which the
user can enter text from the keyboard. The user selects
the control, and gives it the input focus by clicking it or
moving to it by using the TAB key. The user can enter
text when the control displays a flashing caret. The
mouse can be used to move the cursor and select
characters to be replaced, or to position the cursor for
inserting characters. The BACKSPACE key can be used to
delete characters.
Edit controls use the variable-pitch system font and
display ANSI characters. Applications compiled to run
with previous versions of Windows display text with a
fixed-pitch system font unless they have been marked
by the Windows 3.0 MARK utility with the MEMORY
FONT option. An application can also send the
WM_SETFONT message to the edit control to change
the default font.
Edit controls expand tab characters into as many space
characters as are required to move the cursor to the
next tab stop. Tab stops are assumed to be at every
eighth character position.
Designates a list of character strings. This control is
used whenever an application needs to present a list of
names, such as filenames, that the user can view and
select. The user can select a string by pointing to it and
clicking. When a string is selected, it is highlighted and
a notification message is passed to the parent window.
A vertical or horizontal scroll bar can be used with a
list-box control to scroll lists that are too long for the
control window. The list box automatically hides or
shows the scroll bar as needed.
Designates an MDI client window. The MDI client
window receives messages which control the MDI
application's child windows. The recommended style
bits are WS_CLIPCHILDREN and WS_CHILD. To
create a scrollable MDI client window which allows the
user to scroll MDI child windows into view, an
application can also use the WS_HSCROLL and
WS_ VSCROLL styles.

Software development kit

CreafeWindow

Table 4.2: Control classes (continued)

Table 4.3
Window styles

SCROLLBAR

STATIC

Class

DS_MODALFRAME

DS_SYSMODAL
WS_BORDER
WS_CAPTION

WS_CHILD

WS_CHILDWINDOW

Chapter 4, Functions directory

Designates a rectangle that contains a thumb and has
direction arrows at both ends. The scroll bar sends a
notification message to its parent window whenever
the user clicks the control. The parent window is
responsible for updating the thumb position, if
necessary. Scroll-bar controls have the same
appearance and function as scroll bars used in ordinary
windows. Unlike scroll bars, scroll-bar controls can be
positioned anywhere in a window and used whenever
needed to provide scrolling input for a window.
The scroll-bar class also includes size-box controls. A
size-box control is a small rectangle that the user can
expand to change the size of the window.
Designates a simple text field, box, or rectangle that can
be used to label, box, or separate other controls. Static
controls take no input and provide no output.

Meaning

Specifies that edit controls in the dialog box
will use memory in the application's data
segment. By default, all edit controls in dialog
boxes use memory outside the application's
data segment. This feature may be suppressed
by adding the DS_LOCALEDIT flag to the
STYLE command for the dialog box. If this
flag is not used, EM_ GETHANDLE and
EM_SETHANDLE messages must not be used
since the storage for the control is not in the
application's data segment. This feature does
not affect edit controls created outside of
dialog boxes.
Creates a dialog box with a modal dialog-box
frame that can be combined with a title bar
and System menu by specifying the
WS_CAPTION and WS_SYSMENU styles.
Suppresses WM_ENTERIDLE messages that
Windows would otherwise send to the owner
of the dialog box while the dialog box is
displayed.
Creates a system-modal dialog box.
Creates a window that has a border.
Creates a window that has a title bar (implies
the WS_BORDER style). This style cannot be
used with the WS_DLGFRAME style.
Creates a child window. Cannot be used with
the WS_POPUP style.
Creates a child window that has the
WS_CHILD style.

209

CreateWindow

210

Table 4.3: Window styles (continued)

WS_ CLIPCHILDREN

WS_DISABLED
WS_DLGFRAME

WS_GROUP

WS_HSCROLL

WS_ICONIC

WS_MAXIMIZE
WS_MAXIMIZEBOX
WS_MINIMIZE
WS_MINIMIZEBOX
WS_OVERLAPPED

WS_OVERLAPPEDWINDOW

WS_POPUP

WS_POPUPWINDOW

Excludes the area occupied by child windows
when drawing within the parent window.
Used when creating the parent window.
Clips child windows relative to each other;
that is, when a particular child window
receives a paint message, the
WS_CLIPSIBLINGS style clips all other
overlapped child windows out of the region of
the child window to be updated. (If
WS_CLIPSIBLINGS is not given and child
windows overlap, it is possible, when
drawing within the client area of a child
window, to draw within the client area of a
neighboring child window.) For use with the
WS_CHILD style only.
Creates a window that is initially disabled.
Creates a window with a double border but
no title.
Specifies the first control of a group of controls
in which the user can move from one control
to the next by using the DIRECTION keys. All
controls defined with the WS_GROUP style
after the first control belong to the same
group. The next control with the WS_GROUP
style ends the style group and starts the next
group (that is, one group ends where the next
begins). Only dialog boxes use this style.
Creates a window that has a horizontal scroll
bar.
Creates a window that is initially iconic. For
use with the WS_OVERLAPPED style only.
Creates a window of maximum size.
Creates a window that has a maximize box.
Creates a window of minimum size.
Creates a window that has a minimize box.
Creates an overlapped window. An
overlapped window has a caption and a
border.
Creates an overlapped window having the
WS_OVERLAPPED, WS_CAPTION,
WS_SYSMENU, WS_THICKFRAME,
WS_MINIMIZEBOX, and
WS_MAXIMIZEBOX styles.
Creates a pop-up window. Cannot be used
with the WS_CHILD style.
Creates a pop-up window that has the
WS_BORDER, WS_POPUP, and
WS_SYSMENU styles. The WS_CAPTION
style must be combined with the
WS_POPUPWINDOW style to make the
system menu visible.

Software development kit

CreateWindow

Table 4.3: Window styles (continued)

WS_SYSMENU

WS_THICKFRAME

WS_VISIBLE

Table 4.4
Control styles Style

Creates a window that has a System-menu
box in its title bar. Used only for windows
with title bars.
Specifies one of any number of controls
through which the user can move by using the
TAB key. The TAB key moves the user to the
next control specified by the WS_TABSTOP
style. Only dialog boxes use this style.
Creates a window with a thick frame that can
be used to size the window.
Creates a window that is initially visible. This
applies to overlapped and pop-up windows.
For overlapped windows, the Yparameter is
used as a ShowWindow function parameter.
Creates a window that has a vertical scroll bar.

Meaning

BUTTON class

BS_AUTOCHECKBOX

BS_AUTORADIOBUTTON

BS_AUT03STATE

BS_DEFPUSHBUTTON

BS_LEFTTEXT

Chapter 4, Functions directory

Identical to BS_CHECKBOX, except that the
button automatically toggles its state
whenever the user clicks it.
Identical to BS_RADIOBUTTON, except that
the button is checked, the application is
notified by BN_CLICKED, and the
checkmarks are removed from all other radio
buttons in the group.
Identical to BS_3STATE, except that the
button automatically toggles its state when the
user clicks it.
Designates a small rectangular button that
may be checked; its border is bold when the
user clicks the button. Any text appears to the
right of the button.
Designates a button with a bold border. This
button represents the default user response.
Any text is displayed within the button.
Windows sends a message to the parent
window when the user clicks the button.
Designates a rectangle into which other
buttons are grouped. Any text is displayed in
the rectangle's upper-left corner.
Causes text to appear on the left side of the
radio button or check-box button. Use this
style with the BS_CHECKBOX,
BS_RADIOBUTTON, or BS_3STATE styles.
Designates an owner-draw button. The parent
window is notified when the button is clicked.

211

•

CreateWindow

212

Table 4.4: Control styles (continued)

BS_PUSHBUTTON

BS_RADIOBUTTON

COMBO BOX class

CBS_AUTOHSCROLL

CBS_DROPDOWNLIST

CBS_HASSTRINGS

CBS_OEMCONVERT

Notification includes a request to paint, invert,
and disable the button.
Designates a button that contains the given
text. The control sends a message to its parent
window whenever the user clicks the button.
Designates a small circular button that can be
checked; its border is bold when the user
clicks the button. Any text appears to the right
of the button. Typically, two or more radio
buttons are grouped together to represent
mutually exclusive choices, so no more than
one button in the group is checked at any
time.
Identical to BS_CHECKBOX, except that a
button can be grayed as well as checked. The
grayed state typically is used to show that a
check box has been disabled.

Automatically scrolls the text in the edit
control to the right when the user types a
character at the end of the line. If this style is
not set, only text which fits within the
rectangular boundary is allowed.
Similar to CBS_SIMPLE, except that the list
box is not displayed unless the user selects an
icon next to the selection field.
Similar to CBS_DROPDOWN, except that the
edit control is replaced by a static text item
which displays the current selection in the list
box.
An owner-draw combo box contains items
consisting of strings. The combo box
maintains the memory and pointers for the
strings so the application can use the
LB_GETTEXT message to retrieve the text for
a particular item.
Text entered in the combo box edit control is
converted from the ANSI character set to the
OEM character set and then back to ANSI.
This ensures proper character conversion
when the application calls the AnsiToOem
function to convert an ANSI string in the
combo box to OEM characters. This style is
most useful for combo boxes that contain
filenames and applies only to combo boxes
created with the CBS_SIMPLE or
CBS_DROPDOWN styles.

Software development kit

CreateWindow

Table 4.4: Control styles (continued)

CBS_OWNERDRAWFIXED The owner of the list box is responsible for
drawing its contents; the items in the list box
are all the same height.

CBS _ OWNERDRA WV ARIABLE The owner of the list box is responsible for
drawing its contents; the items in the list box
are variable in height.

CBS_SIMPLE The list box is displayed at all times. The
current selection in the list box is displayed in
the edit control.

CBS_SORT Automatically sorts strings entered into the
list box.

EDIT class

ES_AUTOHSCROLL

ES_AUTOVSCROLL

ES_CENTER
ES_LEFf
ES_LOWERCASE

ES_MULTILINE

Chapter 4, Functions directory

Automatically scrolls text to the right by 10
characters when the user types a character at
the end of the line. When the user presses the
ENTER key, the control scrolls all text back to
position zero.
Automatically scrolls text up one page when
the user presses ENTER on the last line.
Centers text in a multiline edit control.
Aligns text flush-left.
Converts all characters to lowercase as they
are typed into the edit control.
Designates multiple-line edit control. (The
default is single-line.) If the
ES_AUTOVSCROLL style is specified, the edit
control shows as many lines as possible and
scrolls vertically when the user presses the
ENTER key. If ES_AUTOVSCROLL is not
given, the edit control shows as many lines as
possible and beeps if ENTER is pressed when
no more lines can be displayed.
If the ES_AUTOHSCROLL style is specified,
the multiple-line edit control automatically
scrolls horizontally when the caret goes past
the right edge of the control. To start a new
line, the user must press ENTER. If
ES_AUTOHSCROLL is not given, the control
automatically wraps words to the beginning
of the next line when necessary; a new line is
also started if ENTER is pressed. The position
of the wordwrap is determined by the
window size. If the window size changes, the
wordwrap position changes, and the text is
redisplayed.
Multiple-line edit controls can have scroll
bars. An edit control with scroll bars processes
its own scroll-bar messages. Edit controls
without scroll bars scroll as described above,

213

I

CreateWindow

214

Table 4.4: Control styles (continued)

ES_OEMCONVERT

ES_UPPERCASE

LlSTBOX class

LBS_EXTENDEDSEL

LBS_HASSTRINGS

LBS_MULTICOLUMN

LBS_MULTIPLESEL

LBS_NOINTEGRALHEIGHT

LBS_NOREDRA W

and process any scroll messages sent by the
parent window.
Normally, an edit control hides the selection
when the control loses the input focus, and
inverts the selection when the control receives
the input focus. Specifying ES_NOHIDESEL
deletes this default action.
Text entered in the edit control is converted
from the ANSI character set to the OEM
character set and then back to ANSI. This
ensures proper character conversion when the
application calls the AnsiToOem function to
convert an ANSI string in the edit control to
OEM characters. This style is most useful for
edit controls that contain filenames.
Displays all characters as an asterisk (*) as
they are typed into the edit control. An
application can use the
EM_SETP ASSWORDCHAR message to
change the character that is displayed.
Aligns text flush-right in a multiline edit
control.
Converts all characters to uppercase as they
are typed into the edit control.

The user can select multiple items using the
SHIFf key and the mouse or special key
combinations.
Specifies an owner-draw list box which
contains items consisting of strings. The list
box maintains the memory and pointers for
the strings so the application can use the
LB_GETTEXT message to retrieve the text for
a particular item.
Specifies a multicolumn list box that is
scrolled horizontally. The
LB_SETCOLUMNWIDTH message sets the
width of the columns.
String selection is toggled each time the user
clicks or double-clicks the string. Any number
of strings can be selected.
The size of the list box is exactly the size
specified by the application when it created
the list box. Normally, Windows sizes a list
box so that the list box does not display partial
items.
List-box display is not updated when changes
are made. This style can be changed at any

Software development kit

CreateWindow

Table 4.4: Control styles (continued)

LBS_OWNERDRA WFIXED

time by sending a WM_SETREDRA W
message.
Parent window receives an input message
whenever the user clicks or double-clicks a
string.
The owner of the list box is responsible for
drawing its contents; the items in the list box
are the same height.

LBS _ OWNERDRA WV ARIABLE The owner of the list box is responsible for

LBS_SORT
LBS_STANDARD

LBS_ USETABSTOPS

drawing its contents; the items in the list box
are variable in height.
Strings in the list box are sorted alphabetically.
Strings in the list box are sorted alphabetically
and the parent window receives an input
message whenever the user clicks or double­
clicks a string. The list box contains borders on
all sides.
Allows a list box to recognize and expand tab
characters when drawing its strings. The
default tab positions are 32 dialog units. (A
dialog unit is a horizontal or vertical distance.
One horizontal dialog unit is equal to 1/4 of
the current dialog base width unit. The dialog
base units are computed based on the height
and width of the current system font. The
GetDialogBaseUnits function returns the
current dialog base units in pixels.)

LBS_WANTKEYBOARDINPUT The owner of the list box receives

SCROLLBAR class

SBS_BOTTOMALIGN

Chapter 4, Functions directory

WM_ VKEYTOITEM or WM_CHARTOITEM
messages whenever the user presses a key
when the list box has input focus. This allows
an application to perform special processing
on the keyboard input.

Used with the SBS_HORZ style. The bottom
edge of the scroll bar is aligned with the
bottom edge of the rectangle specified by the
X, Y, nWidth, and nHeight parameters given in
the CreateWindow function. The scroll bar has
the default height for system scroll bars.
Designates a horizontal scroll bar. If neither
the SBS_BOTTOMALIGN nor
SBS_TOPALIGN style is specified, the scroll
bar has the height, width, and position given
in the CreateWindow function.
Used with the SBS_ VERT style. The left edge
of the scroll bar is aligned with the left edge of
the rectangle specified by the X, Y, n Width,
and nHeight parameters given in the

215

CreoteWindow

216

Table 4.4: Control styles (continued)

CreateWindow function. The scroll bar has the
default width for system scroll bars.

SBS_RIGHTALIGN Used with the SBS_ VERT style. The right edge
of the scroll bar is aligned with the right edge
of the rectangle specified by the X, Y, n Width,
and nHeight parameters given in the
CreateWindow function. The scroll bar has the
default width for system scroll bars.

SBS_SIZEBOX Designates a size box. If neither the
SBS_SIZEBOXBOTTOMRIGHTALIGN nor
SBS_SIZEBOXTOPLEFTALIGN style is
specified, the size box has the height, width,
and position given in the CreateWindow
function.

SBS_SIZEBOXBOTTOMRIGHTALIGN
Used with the SBS_SIZEBOX style. The
lower-right corner of the size box is aligned
with the lower-right corner of the rectangle
specified by the X, Y, n Width, and nHeight
parameters given in the CreateWindow
function. The size box has the default size for
system size boxes.

SBS_SIZEBOXTOPLEFTALIGN Used with the SBS_SIZEBOX style. The
upper-left corner of the size box is aligned
with the upper-left corner of the rect.angle
specified by the X, Y, nWidth, and nHeight
parameters given in the CreateWindow
function. The size box has the default size for
system size boxes.

SBS_TOPALIGN Used with the SBS_HORZ style. The top edge
of the scroll bar is aligned with the top edge of
the rectangle specified by the X, Y, n Width,
and nHeight parameters given in the
CreateWindow function. The scroll bar has the
default height for system scroll bars.

SBS_ VERT Designates a vertical scroll bar. If neither the
SBS_RIGHTALIGN nor SBS_LEFTALIGN
style is specified, the scroll bar has the height,
width, and position given in the
CreateWindow function.

STATIC class

Specifies a box with a frame drawn with the
same color as window frames. This color is
black in the default Windows color scheme.
Specifies a rectangle filled with the color used
to draw window frames. This color is black in
the default Windows color scheme.
Designates a simple rectangle and displays the
given text centered in the rectangle. The text is

Software development kit

CreateWindow

Table 4.4: Control styles (continued)

SS_LEFTNOWORDWRAP

Chapter 4, Functions directory

formatted before it is displayed. Words that
would extend past the end of a line are
automatically wrapped to the beginning of the
next centered line.
Specifies a box with a frame drawn with the
same color as the screen background
(desktop). This color is gray in the default
Windows color scheme.
Specifies a rectangle filled with the color used
to fill the screen background. This color is
gray in the default Windows color scheme.
Designates an icon displayed in the dialog
box. The given text is the name of an icon (not
a filename) defined elsewhere in the resource
file. The n Width and nHeight parameters are
ignored; the icon automatically sizes itself.
Designates a simple rectangle and displays the
given text flush-left in the rectangle. The text
is formatted before it is displayed. Words that
would extend past the end of a line are
automatically wrapped to the beginning of the
next flush-left line.
Designates a simple rectangle and displays the
given text flush-left in the rectangle. Tabs are
expanded, but words are not wrapped. Text
that extends past the end of a line is clipped.
Unless this style is specified, windows will
interpret any "&" characters in the control's
text to be accelerator prefix characters. In this
case, the "&" is removed and the next
character in the string is underlined. If a static
control is to contain text where this feature is
not wanted, SS_NOPREFIX may be added.
This static-control style may be included with
any of the defined static controls.
You can combine SS_NOPREFIX with other
styles by using the bitwise OR operator. This is
most often used when filenames or other
strings that may contain an "&" need to be
displayed in a static control in a dialog box.
Designates a simple rectangle and displays the
given text flush-right in the rectangle. The text
is formatted before it is displayed. Words that
would extend past the end of a line are
automatically wrapped to the beginning of the
next flush-right line.
Designates a simple rectangle and displays a
single line of text flush-left in the rectangle.
The line of text cannot be shortened or altered
in any way. (The control's parent window or

217

CreateWindow

Table 4.4: Control styles (continued)

SS_VSERITEM
SS_ WHITEFRAME

SS_ WHITERECT

dialog box must not process the
WM_ CTLCOLOR message.}
Specifies a user-defined item.
Specifies a box with a frame drawn with the
same color as window backgrounds. This
color is white in the default Windows color
scheme.
Specifies a rectangle filled with the color used
to fill window backgrounds. This color is
white in the default Windows color scheme.

CreateWindowEx 3.0

218

Syntax HWND CreateWindowEx(dwExStyle, lpClassName, lpWindowName,
dwStyle, X, Y, n Width, nHeight, h WndParent, hMenu, hInstance,
lpParam)
function CreateWindowEx(ExStyle: Longint; ClassName, WindowName:
PChar; Style: Longint; X, Y, Width, Height: Integer; WndParent: HWnd;
Menu: HMenu; Instance: THandle; Param: Pointer): HWnd;

This function creates an overlapped, pop-up, or child window with an
extended style specified in the dwExStyle parameter. Otherwise, this
function is identical to the CreateWindow function. See the description of
the CreateWindow function for more information on creating a window
and for a full descriptions of the other parameters of CreateWindowEx.

Parameters dwExStyle DWORD Specifies the extended style of the window being
created. Table 4.5, "Extended window styles," lists the
extended window styles.

IpClassName LPSTR Points to a null-terminated character string that
names the window class.

Ip WindowName LPSTR Points to a null-terminated character string that
represents the window name.

dwStyle

X

Y

nWidth

nHeight

DWORD Specifies the style of window being created.

int Specifies the initial x-position of the window.

int Specifies the initial y-position of the window.

int Specifies the width (in device units) of the window.

int Specifies the height (in device units) of the window.

Software development kit

hWndParent

hMenu

hlnstance

IpParam

CreoteWindowEx

HWND Identifies the parent or owner window of the
window being created.

HMENU Identifies a menu or a child-window identifier.
The meaning depends on the window style.

HANDLE Identifies the instance of the module to be
associated with the window.

LPSTR Points to a value that is passed to the window
through the CREATESTRUCT data structure referenced
by the IParam parameter of the WM_ CREATE message.

Return value The return value identifies the new window. It is NULL if the window is
not created.

Comments Table 4.5 lists the extended window styles.

Table 4.5
Extended window

styles

Style

WS_EX_DLGMODALFRAME

function

Meaning

Designates a window with a double border
that may optionally be created with a title bar
by specifying the WS_CAPTION style flag in
the dwStyle parameter.
Specifies that a child window created with this
style will not send the WM_P ARENTNOTIFY
message to its parent window when the child
window is created or destroyed.
Specifies that the window is a topmost
window. A topmost window is always
ordered above windows without this style,
even when the topmost inactive. The
SetWindowPos function enables and disables
this feature.
Used to control topmost window style.

Table 4.2, "Control classes," lists the window control classes. Table 4.3,
"Window styles," lists the window styles. Table 4.4, "Control styles," lists
the control styles. See the description of the CreateWindow function for
these tables.

DebugBreak 3.0

Syntax void DebugBreak()
procedure DebugBreak;

This function forces a break to the debugger.

Parameters None.

Chapter 4, Functions directory 219

•

DebugBreok

Return value None.

DefDlgProc 3.0

220

Syntax LONG DefDlgProc(hDlg, wMsg, wParam, lParam)
function DefDlgProc(Dlg: HWnd; Msg, wParam: Word; lParam: Longint):
Longint;

This function provides default processing for any Windows messages that
a dialog box with a private window class does not process.
All window messages that are not explicitly processed by the window
function must be passed to the DefDlgProc function, not the
DefWindowProc function. This ensures that all messages not handled by
their private window procedure will be handled properly.

Parameters hDlg HWND Identifies the dialog box.

wMsg

wParam

WORD Specifies the message number.

WORD Specifies 16 bits of additional message-dependent
information.

IParam DWORD Specifies 32 bits of additional message­
dependent information.

Return value The return value specifies the result of the message processing and
depends on the actual message sent.

Comments The source code for the DefDlgProc function is provided on the SDK
disks.

An application creates a dialog box by calling one of the following
functions:

Function

CreateDialog
CreateDialoglndirect
CreateDialoglndirectParam

CreateDialogParam

DialogBox
DialogBoxlndirect
DialogBoxlndirectParam

DialogBoxParam

Description

Creates a modeless dialog box.
Creates a modeless dialog box.
Creates a modeless dialog box and passes data
to it when it is created.
Creates a modeless dialog box and passes data
to it when it is created.
Creates a modal dialog box.
Creates a modal dialog box.
Creates a modal dialog box and passes data to
it when it is created.
Creates a modal dialog box and passes data to
it when it is created.

Software development kit

DeferWindowPos

DeferWindowPos 3.0

Syntax HANDLE DeferWindowPosChWinPosInfo, hWnd, hWndInsertAfter, x, y, II_
cx, cy, wFlags)
function DeferWindowPosCWinPosInfo: THandle; Wnd, WndInsertAfter:
HWnd; X, Y, cX, cY: Integer; Flags: Word): THandle;

This function updates the multiple window-position data structure
identified by the h WinPoslnfo parameter for the window identified by
h Wnd parameter and returns the handle of the updated structure. The
EndDeferWindowPos function uses the information in this structure to
change the position and size of a number of windows simultaneously. The
BeginDeferWindowPos function creates the multiple window-position
data structure used by this function.

The x and y parameters specify the new position of the window, and the
ex and ey parameters specify the new size of the window.

Parameters h WinPoslnfo HANDLE Identifies a multiple window-position data
structure that contains size and position information for
one or more windows. This structure is returned by the
BeginDeferWindowPos function or the most recent call to
the DeferWindowPos function.

hWnd HWND Identifies the window for which update
information is to be stored in the data structure.

h WndlnsertAfter HWND Identifies the window following which the
window identified by the h Wnd parameter is to be
updated.

x

y

ex

ey

wFlags

Chapter 4, Functions directory

int Specifies the x-coordinate of the window's upper-left
corner.

int Specifies the y-coordinate of the window's upper-left
corner.

int Specifies the window's new width.

int Specifies the window's new height.

WORD Specifies one of eight possible 16-bit values that
affect the size and position of the window. It must be one
of the following values:

221

DeferWindowPos

Value
SWP _DRA WFRAME

SWP _HIDEWINDOW
SWP _NOACTIV ATE
SWP_NOMOVE

SWP _NOREDRA W
SWP_NOSIZE

SWP _NOZORDER

Meaning
Draws a frame (defined in the
window's class description)
around the window.
Hides the window.
Does not activate the window.
Retains current position (ignores
the x and y parameters).
Does not redraw changes.
Retains current size (ignores the
ex and ey parameters).
Retains current ordering (ignores
the hWndlnsertAfter parameter).

SWP _SHOWWINDOW Displays the window.

Return value The return value identifies the updated multiple window-position data
structure. The handle returned by this function may differ from the
handle passed to the function as the h WinPoslnfo parameter. The new
handle returned by this function should be passed to the next call to
DeferWindowPos or the EndDeferWindowPos function.

The return value is NULL if insufficient system resources are available for
the function to complete successfully.

Comments If the SWP _NOZORDER flag is not specified, Windows places the
window identified by the h Wnd parameter in the position following the
window identified by the h WndlnsertAfter parameter. If h WndlnsertAfter is
NULL, Windows places the window identified by hWnd at the top of the
list. If h WndlnsertAfter is set to 1, Windows places the window identified
by h Wnd at the bottom of the list.

If the SWP _SHOWWINDOW or the SWP _HIDEWINDOW flags are set,
scrolling and moving cannot be done simultaneously.

All coordinates for child windows are relative to the upper-left corner of
the parent window's client area.

DefFrameProc 3.0

222

Syntax LONG DefFrameProc(h Wnd, h WndMDIClient, wMsg, wParam, IParam)
function DefFrameProdWnd, MDIClient: HWnd; Msg, wParam: Word;
IParam: Longint): Longint;

This function provides default processing for any Windows messages that
the window function of a multiple document interface (MDI) frame

Software development kit

Parameters

DefFrameProc

window does not process. All window messages that are not explicitly
processed by the window function must be passed to the DefFrameProc
function, not the DefWindowProc function.

hWnd HWND Identifies the MDI frame window.

h WndMDIClient HWND Identifies the MDI client window.

wMsg

wParam

WORD Specifies the message number.

WORD Specifies 16 bits of additional message-dependent
information.

IParam DWORD Specifies 32 bits of additional message­
dependent information.

Return value The return value specifies the result of the message processing and
depends on the actual message sent. If the hWndMDIClient parameter is
NULL, the return value is the same as for the DefWindowProc function.

Comments Normally, when an application's window procedure does not handle a
message, it passes the message to the DefWindowProc function, which
processes the message. MDI applications use the DefFrameProc and
DefMDIChildProc functions instead of DefWindowProc to provide default
message processing. All messages that an application would normally
pass to DefWindowProc (such as nonclient messages and WM_SETTEXT)
should be passed to DefFrameProc instead. In addition to these,
DefFrameProc also handles the following messages:

Message

WM_MENUCHAR

WM_SETFOCUS

WM_SIZE

Chapter 4, Functions directory

Default Processing by DefFrameProc

The frame window of an MDI application receives the
WM_ COMMAND message to activate a particular MDI
child window. The window ID accompanying this
message will be the ID of the MDI child window assigned
by Windows, starting with the first ID specified by the
application when it created the MDI client window. This
value of the first ID must not conflict with menu-item IDs.
When the ALT+HYPHEN key is pressed, the control menu of
the active MDI child window will be selected.
DefFrameProc passes focus on to the MDI client, which in
turn passes the focus on to the active MDI child window.
If the frame window procedure passes this message to
DefFrameProc, the MDI client window will be resized to
fit in the new client area. If the frame window procedure
sizes the MDI client to a different size, it should not pass
the message to DefWindowProc.

223

II
I

DefHookProc

DefHookProc

Syntax DWORDDefHookProcCcode, wParam,IParam,lplpfnNextHook)
function DefHookProcCCode: Integer; wParam: Word; IParam: Longint;
NextHook: TFarProc): Longint;

This function calls the next function in a chain of hook functions. A hook
function is a function that processes events before they are sent to an
application's message-processing loop in the WinMain function. When an
application defines more than one hook function by using the
SetWindowsHook function, Windows forms a linked list or hook chain.
Windows places functions of the same type in a chain.

Parameters code int Specifies a code used by the Windows hook function
Calso called the message filter function) to determine how
to process the message.

wParam WORD Specifies the word parameter of the message that
the hook function is processing.

IParam DWORD Specifies the long parameter of the message that
the hook function is processing.

IplpfnNextHook FARPROC FAR * Points to a memory location that
contains the FARPROC structure returned by the
SetWindowsHook function. Windows changes the value
at this location after an application calls the
UnhookWindowsHook function.

Return value The return value specifies a value that is directly related to the code
parameter.

DefineHandleTable 3.0

224

Syntax BOOL DefineHandleTableCwOffset)

function DefineHandleTableCOffset: Word): Bool;

This function creates a private handle table in an application's default data
segment. The application stores in the table the segment addresses of
global memory objects returned by the GlobalLock function. In real mode,
Windows updates the corresponding address in the private handle table
when it moves a global memory object. When Windows discards an object
with a corresponding table entry, Windows replaces the address of the
object in the table with the object's handle. Windows does not update

Software development kit

DefineHandleTable

addresses in the private handle table in protected (standard or 386
enhanced) mode.

Parameters wOffset WORD Specifies the offset from the beginning of the data
segment to the beginning of the private handle table. If
wOffset is zero, Windows no longer updates the private
handle table.

Return value The return value is nonzero if the function was successful. Otherwise, it is
zero.

Comments The private handle table has the following format:

Count

Clear Number

Entry[O]

Entry[Count-l]

The first WORD (Count) in the table specifies the number of entries in the
table. The second WORD (Clear _Number) specifies the number of entries
(from the beginning of the table) which Windows will set to zero when
Windows updates its least-recently-used (LRU) memory list. The
remainder of the table consists of an array of addresses returned by
GlobalLock.

The application must initialize the Count field in the table before calling
DefineHandleTable. The application can change either the Count or
Clearn_Number fields at any time.

DefMDIChildProc 3.0

Syntax LONG DefMDIChildProc(h Wnd, wMsg, wParam, IParam)
function DefMDIChildProc(Wnd: HWnd; Msg, wParam: Word; IParam:
Longint): Longint;

This function provides default processing for any Windows messages that
the window function of a multiple document interface (MDI) child
window does not process. All window messages that are not explicitly
processed by the window function must be passed to the
DefMDIChiidProc function, not the DefWindowProc function.

Parameters h Wnd

wMsg

Chapter 4, Functions directory

HWND Identifies the MDI child window.

WORD Specifies the message number.

225

DefMDIChiidProc

wParam WORD Specifies 16 bits of additional message-dependent
informa tion.

IParam DWORD Specifies 32 bits of additional message­
dependent information.

Return value The return value specifies the result of the message processing and
depends on the actual message sent.

Comments This function assumes that the parent of the window identified by the
h Wnd parameter was created with the MDICLIENT class.

Normally, when an application's window procedure does not handle a
message, it passes the message to the DefWindowProc function, which
processes the message. MDI applications use the DefFrameProc and
DefMDIChiidProc functions instead of DefWindowProc to provide default
message processing. All messages that an application would normally
pass to DefWindowProc (such as non client messages and WM_SETTEXT)
should be passed to DefMDIChiidProc instead. In addition to these,
DefMDIChiidProc also handles the following messages:

Message

WM_CHILDACTIVATE

WM_GETMINMAXINFO

WM_MENUCHAR
WM_MOVE

WM_SETFOCUS

WM_SIZE

WM_SYSCOMMAND

DefWindowProc

Default Processing by DefMDlChiidProc

Performs activation processing when child windows
are sized, moved, or shown. This message must be
passed.
Calculates the size of a maximized MDI child
window based on the current size of the MDI client
window.
Sends the key to the frame window.
Recalculates MDI client scroll bars, if they are
present.
Activates the child window if it is not the active
MDI child.
Performs necessary operations when changing the
size of a window, especially when maximizing or
restoring an MDI child window. Failing to pass this
message to DefMDIChiidProc will produce highly
undesirable results.
Also handles the "next window" command.

Syntax LONGDefWindowProdh Wnd, wMsg, wParam, lParam)
function DefWindowProc(Wnd: HWnd; Msg, wParam: Word; lParam:
Longint): Longint;

226 Software development kit

Parameters

DefWindowProc

This function provides default processing for any Windows messages that
a given application does not process. All window messages that are not
explicitly processed by the class window function must be passed to the
DefWindowProc function.

hWnd

wMsg

wParam

HWND Identifies the window that passes the message.

WORD Specifies the message number.

WORD Specifies 16 bits of additional message-dependent
information.

IParam DWORD Specifies 32 bits of additional message­
dependent information.

Return value The return value specifies the result of the message processing and
depends on the actual message sent.

Comments The source code for the DefWindowProc function is provided on the SDK
disks.

DeleteAtom

Syntax ATOM DeleteAtom(nAtom)
function DeleteAtom(AnAtom: TAtom): TAtom;

This function deletes an atom and, if the atom's reference count is zero,
removes the associated string from the atom table.

An atom's reference count specifies the number of times the atom has been
added to the atom table. The AddAtom function increases the count on
each call; the DeleteAtom function decreases the count on each call.
DeleteAtom removes the string only if the atom's reference count is zero.

Parameters nAtom ATOM Identifies the atom and character string to be
deleted.

Return value The return value specifies the outcome of the function. It is NULL if the
function is successful. It is equal to the nAtom parameter if the function
failed and the atom has not been deleted.

DeleteDC

Syntax BOOL DeleteDC(hDC)
function DeleteDC(DC: HDC): Bool;

Chapter 4, Functions directory 227

I

•

DeleteDC

This function deletes the specified device context. If the hDC parameter is
the last device context for a given device, the device is notified and all
storage and system resources used by the device are released.

Parameters hDC HOC Identifies the device context.

Return value The return value specifies whether the device context is deleted. It is
nonzero if the device context is successfully deleted (regardless of
whether the deleted device context is the last context for the device). If an
error occurs, the return value is zero.

Comments An application must not delete a device context whose handle was
obtained by calling the GetDC function. Instead, it must call the
ReleaseDC function to free the device context.

DeleteMenu 3.0

Syntax BOOL DeleteMenu{hMenu, nPosition, wFlags)
function DeleteMenu{Menu: HMenu; Position, Flags: Word): Bool;

This function deletes an item from the menu identified by the hMenu
parameter; if the menu item has an associated pop-up menu, OeleteMenu
destroys the handle by the pop-up menu and frees the memory used by
the pop-up menu.

Parameters hMenu HMENU Identifies the menu to be changed.

nPosition

wFlags

WORD Specifies the menu item which is to be deleted. If
wFlags is set to MF _BYPOSITION, nPosition specifies the
position of the menu item; the first item in the menu is at
position O. If wFlags is set to MF _BYCOMMAND, then
nPosition specifies the command ID of the existing menu
item.

WORD Specifies how the nPosition parameter is
interpreted. It may be set to either MF _BYCOMMAND
(the default) or MF _BYPOSITION.

Return value The return value specifies the outcome of the function. It is TRUE if the
function is successful. Otherwise, it is FALSE.

Comments Whenever a menu changes (whether or not the menu resides in a window
that is displayed), the application should call OrawMenuBar.

228 Software development kit

OeleteMetoFile

DeleteMetaFile

Syntax BOOL DeleteMetaFile(hMF)
function DeleteMetaFile(MF: THandle): Bool;

This function deletes access to a metafile by freeing the system resources
associated with that metafile. It does not destroy the metafile itself, but it
invalidates the metafile handle, hMF. Access to the metafile can be
reestablished by retrieving a new handle by using the GetMetaFile
function.

Parameters hMF HANDLE Identifies the metafile to be deleted.

Return value The return value specifies whether the metafile handle is invalidated. It is
nonzero if the metafile's system resources are deleted. It is zero if the hMF
parameter is not a valid handle.

DeleteObject

Syntax BOOL DeleteObject(hObject)
function DeleteObject(Handle: THandle): Bool;
This function deletes a logical pen, brush, font, bitmap, region, or palette
from memory by freeing all system storage associated with the object.
After the object is deleted, the hObject handle is no longer valid.

Parameters hObject HANDLE Identifies a handle to a logical pen, brush, font,
bitmap, region, or palette.

Return value The return value specifies whether the specified object is deleted. It is
nonzero if the object is deleted. It is zero if the hObject parameter is not a
valid handle or is currently selected into a device context.

Comments The object to be deleted should not be currently selected into a device
context.

When a pattern brush is deleted, the bitmap associated with the brush is
not deleted. The bitmap must be deleted independently.

An application must not delete a stock object.

Chapter 4, Functions directory 229

•

DestroyCaret

DestroyCaret

Syntax void DestroyCaret()
procedure DestroyCaret;

This function destroys the current caret shape, frees the caret from the
window that currently owns it, and removes the caret from the screen if it
is visible. The DestroyCaret function checks the ownership of the caret
and destroys the caret only if a window in the current task owns it.

If the caret shape was previously a bitmap, DestroyCaret does not free the
bitmap.

Parameters None.

Return value None.

Comments The caret is a shared resource. If a window has created a caret shape, it
destroys that shape before it loses the input focus or becomes inactive.

DestroyCursor 3.0

Syntax BaaL DestroyCursor(hCursor)
function DestroyCursor(Cursor: HCursor): Bool;

This function destroys a cursor that was previously created by the
CreateCursor function and frees any memory that the cursor occupied. It
should not be used to destroy any cursor that was not created with the
CreateCursor function.

Parameters hCursor HCURSOR Identifies the cursor to be destroyed. The
cursor must not be in current use.

Return value The return value is nonzero if the function was successful. It is zero if the
function failed.

Destroylcon 3.0

230

Syntax BaaL DestroyIcon(hIcon)
function DestroyIcon(Icon: HIcon): Bool;

This function destroys an icon that was previously created by the
Createlcon function and frees any memory that the icon occupied. It

Software development kit

Oestroylcon

should not be used to destroy any icon that was not created with the
Createlcon function.

Parameters hlcon HICON Identifies the icon to be destroyed. The icon must
not be in current use.

Return value The return value is nonzero if the function was successful. It is zero if the
function failed.

DestroyMenu

Syntax BOOL DestroyMenu(hMenu)
function DestroyMenu(Menu: HMenu): Bool;

This function destroys the menu specified by the hMenu parameter and
frees any memory that the menu occupied.

Parameters hMenu HMENU Identifies the menu to be destroyed.

Return value The return value specifies whether or not the specified menu is destroyed.
It is nonzero if the menu is destroyed. Otherwise, it is zero.

DestroyWindow

Syntax BOOL DestroyWindow(h Wnd)
function DestroyWindow(Wnd: HWnd): Bool;

This function destroys the specified window. The DestroyWindow
function hides or permanently closes the window, sending the
appropriate messages to the window to deactivate it and remove the
input focus. It also destroys the window menu, flushes the application
queue, destroys outstanding timers, removes clipboard ownership, and
breaks the clipboard-viewer chain, if the window is at the top of the
viewer chain. It sends WM_DESTROY and WM_NCDESTROY messages
to the window.

If the given window is the parent of any windows, these child windows
are automatically destroyed when the parent window is destroyed.
DestroyWindow destroys child windows first, and then the window itself.

DestroyWindow also destroys modeless dialog boxes created by the
CreateDialog function.

Parameters h Wnd HWND Identifies the window to be destroyed.

Chapter 4, Functions directory 231

DestroyWindow

Return value The return value specifies whether or not the specified window is
destroyed. It is nonzero if the window is destroyed. Otherwise, it is zero.

DeviceCapabilities 3.0

232

Syntax DWORD DeviceCapabilities(lpDeviceName,lpPort, nlndex,lpOutput,
IpDevMode)

type TDeviceCapabilities = function(DeviceName, Port:PChar;
Index:Word, Output:PChar; var DevMode:TDevMode): Longint;

This function retrieves the capabilities of the printer device driver.

Parameters lpDeviceName LPSTR Points to a null-terminated character string that
contains the name of the printer device, such as "PCL/HP
LaserJet."

lpPart

nlndex

LPSTR Points to a null-terminated character string that
contains the name of the port to which the device is
connected, such as LPT1:.

WORD Specifies the capabilities to query. It can be any
one of the following values:

Value Meaning
DC_BINNAMES Copies a structure identical to

that returned by the
ENUMPAPERBINS escape. A
printer driver does not need to
support this index if it has only
bins corresponding to predefined
indexes, in which case no data is
copied and the return value is O.
If the index is supported, the
return value is the number of
bins copied. If lpOutput is NULL,
the return value is the number of
bin entries required.
Retrieves a list of available bins.
The function copies the list to
lpOutput as a WORD array. If
IpOutput is NULL, the function
returns the number of supported
bins to allow the application the

Software development kit

DC_EXTRA

DC_MAXEXTENT

DC_MINEXTENT

Chapter 4, Functions directory

OeviceCapabilities

opportunity to allocate a buffer
with the correct size. See the
description of the
dmDefaultSource field of the
DEVMODE data structure for
information on these values. An
application can determine the
name of device-specific bins by
using the ENUMPAPERBINS
escape.
Returns the printer driver
version number.
Returns the level of duplex
support. The function returns 1 if
the printer is capable of duplex
printing. Otherwise, the return
value is zero.
Returns the number of bytes
required for the device-specific
portion of the DEVMODE data
structure for the printer driver.
Returns the dmFields field of the
printer driver's DEVMODE data
structure. The dmFields bitfield
indicates which fields in the
device-independent portion of
the structure are supported by
the printer driver.
Returns a POINT data structure
containing the maximum paper
size that the dmPaperLength and
dmPaperWidth fields of the
printer driver's DEVMODE data
structure can specify.
Returns a POINT data structure
containing the minimum paper
size that the dmPaperLength and
dmPaperWidth fields of the
printer driver's DEVMODE data
structure can specify.
Retrieves a list of supported
paper sizes. The function copies
the list to IpOutput as a WORD

233

DeviceCapabilifies

IpOutput

IpDevMode

DC_P APERSIZE

array and returns the number of
entries in the array. If IpOutput is
NULL, the function returns the
number of supported paper sizes
to allow the application the
opportunity to allocate a buffer
with the correct size. See the
description of the dmPaperSize
field of the DEVMODE data
structure for information on
these values.
Copies the dimensions of
supported paper sizes in tenths
of a millimeter to an array of
POINT structures in IpOutput.
This allows an application to
obtain information about
nonstandard paper sizes.
Returns the dmSize field of the
printer driver's DEVMODE data
structure.
Returns the specification version
to which the printer driver
conforms.

LPSTR Points to an array of bytes. The actual format of
the array depends on the setting of nlndex. If set to zero,
DeviceCapabilities returns the number of bytes required
for the output data.
DEVMODE FAR * Points to a DEVMODE data structure. If
IpDevMode is NULL, this function retrieves the current
default initialization values for the specified printer
driver. Otherwise, the function retrieves the values
contained in the structure to which IpDevMode points.

Return value The return value depends on the setting of the nlndex parameter; see the
description of that parameter for details.

Comments This function is supplied by the printer driver. An application must
include the DRIVINIT.H file and call the LoadLibrary and
GetProcAddress functions to call the DeviceCapabilities function.

234 Software development kit

OeviceMode

DeviceMode

Syntax void DeviceMode(h Wnd, hModule, lpDeviceName, lpOutput)
type TDeviceMode = procedure(Wnd:HWnd; Module:THandle;
DeviceName,Output:PChar);

This function sets the current printing modes for the device identified by
the IpDestDevType by prompting for those modes using a dialog box. An
application calls the DeviceMode function to allow the user to change the
printing modes of the corresponding device. The function copies the
mode information to the environment block associated with the device
and maintained by GDI.

Parameters h Wnd HWND Identifies the window that will own the dialog
box.

hModule HANDLE Identifies the printer-driver module. The
application should retrieve this handle by calling either
the GetModuleHandle or LoadLibrary function.

IpDeviceName LPSTR Points to a null-terminated character string that
specifies the name of the specific device to be supported
(for example, Epson FX-80). The device name is the same
as the name passed to the CreateDC function.

IpOutput LPSTR Points to a null-terminated character string that
specifies the DOS file or device name for the physical
output medium (file or output port). The output name is
the same as the name passed to the CreateDC function.

Return value None.

Comments The DeviceMode function is actually part of the printer's device driver,
and not part of GDI. To call this function, the application must load the
printer device driver by calling LoadLibrary and retrieve the address of
the function by using the GetProcAddress function. The application can
then use the address to set up the printer.

DialogBox

Syntax int DialogBox(hInstance, lpTemplateName, hWndParent, lpDialogFunc)
function DialogBox(Instance: THandle; TemplateName: PChar;
WndParent: HWnd; DialogFunc: TFarProc): Integer;

Chapter 4, Functions directory 235

DialogBox

236

This function creates a modal dialog box that has the size, style, and
controls specified by the dialog-box template given by the IpTemplateName
parameter. The h WndParent parameter identifies the application window
that owns the dialog box. The callback function pointed to by the
IpDialogFunc parameter processes any messages received by the dialog
box.

The DialogBox function does not return control until the callback function
terminates the modal dialog box by calling the End Dialog function.

Parameters hlnstance HANDLE Identifies an instance of the module whose
executable file contains the dialog-box template.

IpTemplateName LPSTR Points to a character string that names the dialog-
box template. The string must be a null-terminated
character string.

hWndParent HWND Identifies the window that owns the dialog box.

IpDialogFunc FARPROC Is the procedure-instance address of the dialog
function. See the following "Comments" section for
details.

Return value The return value specifies the value of the nResult parameter in the
EndDialog function that is used to terminate the dialog box. Values
returned by the application's dialog box are processed by Windows and
are not returned to the application. The return value is -1 if the function
could not create the dialog box.

Comments The DialogBox function calls the GetDC function in order to obtain a
display-context. Problems will result if all the display contexts in the
Windows display-context cache have been retrieved by GetDC and
DialogBox attempts to access another display context.

Callback

A dialog box can contain up to 255 controls. The callback function must
use the Pascal calling convention and must be declared FAR.

Function int FAR PASCAL DialogFunc(hDlg, wMsg, wParam, IParam)
HWNDhDlg;
WORDwMsg;
WORD wParam;
DWORD IParam;

DialogFunc is a placeholder for the application-supplied function name.
The actual name must be exported by including it in an EXPORTS
statement in the application's module-definition file.

Software development kit

DialogBox

Parameters hDIg

wMsg

wParam

IParam

Identifies the dialog box that receives the message.

Specifies the message number.

Specifies 16 bits of additional message-dependent
information.

Specifies 32 bits of additional message-dependent
informa tion.

Return value The callback function should return nonzero if the function processes the
message and zero if it does not.

Comments Although the callback function is similar to a window function, it must
not call the DefWindowProc function to process unwanted messages.
Unwanted messages are processed internally by the dialog-class window
function.

The callback-function address, passed as the IpDialogFunc parameter, must
be created by using the MakeProclnstance function.

Dialog8oxlndirect

Syntax intDialogBoxIndirect(hInstance, hDialogTemplate, hWndParent,
lpDialogFunc)
function DialogBoxIndirect(lnstance, DialogTemplate: THandle;
WndParent: HWnd; DialogFunc: TFarProc): Integer;

This function creates an application's modal dialog box that has the size,
style, and controls specified by the dialog-box template associated with
the hDialogTemplate parameter. The h WndParent parameter identifies the
application window that owns the dialog box. The callback function
pointed to by IpDialogFunc processes any messages received by the dialog
box.
The DialogBoxlndirect function does not return control until the callback
function terminates the modal dialog box by calling the End Dialog
function.

Parameters hlnstance HANDLE Identifies an instance of the module whose
executable file contains the dialog-box template.

hDialogTemplate HANDLE Identifies a block of global memory that
contains a DLGTEMPLATE data structure.

hWndParent HWND Identifies the window that owns the dialog box.

Chapter 4, Functions directory 237

DialogBoxlndirect

238

IpDialogFunc FARPROC Is the procedure-instance address of the dialog
function. See the following "Comments" section for
details.

Return value The return value specifies the value of the wResult parameter specified in
the End Dialog function that is used to terminate the dialog box. Values
returned by the application's dialog box are processed by Windows and
are not returned to the application. The return value is -1 if the function
could not create the dialog box.

Comments A dialog box can contain up to 255 controls.

Callback

The callback function must use the Pascal calling convention and be
declared FAR.

Function BaaL FAR PASCAL DialogFunc(hDlg, wMsg, wParam, IParam)
HWNDhDlg;
WORDwMsg;
WORD wParam;
DWORD IParam;

DialogFunc is a placeholder for the application-supplied function name.
The actual name must be exported by including it in an EXPORTS
statement in the application's module-definition file.

Parameters hDlg Identifies the dialog box that receives the message.

wMsg

wParam

IParam

Specifies the message number.

Specifies 16 bits of additional message-dependent
information.

Specifies 32 bits of additional message-dependent
information.

Return value The callback function should return nonzero if the function processes the
message and zero if it does not.

Comments Although the callback function is similar to a window function, it must
not call the DefWindowProc function to process unwanted messages.
Unwanted messages are processed internally by the dialog-class window
function.

The callback-function address, passed as the IpDialogFunc parameter, must
be created by using the MakeProclnstance function.

Software development kit

Dialog Boxl ndirectParam

DialogBoxlndirectParam 3.0

Syntax int DialogBoxIndirectParam(hInstance, hDialogTemplate, hWndParent,
IpDialogFunc, dwInitParam)
function DialogBoxIndirectParam(Instance, DialogTemplate: THandle;
WndParent: HWnd; DialogFunc: TFarProc; InitParam: Longint): Integer;

This function creates an application's modal dialog box, sends a
WM_INITDIALOG message to the dialog function before displaying the
dialog box and passes dwlnitParam as the message lParam. This message
allows the dialog function to initialize the dialog-box controls.

For more information on creating an application modal dialog box, see the
description of the DialogBoxlndirect function.

Parameters hlnstance HANDLE Identifies an instance of the module whose
executable file contains the dialog-box template.

hDialogTemplate HANDLE Identifies a block of global memory that
contains a DLGTEMPLATE data structure.

h WndParent HWND Identifies the window that owns the dialog box.

lpDialogFunc FARPROC Is the procedure-instance address of the dialog
function. For details, see the "Comments" section in the
description of the DialogBoxlndirect function.

dwlnitParam DWORD Is a 32-bit value which DialogBoxlndirectParam
passes to the dialog function when it creates the dialog
box.

Return value The return value specifies the value of the wResult parameter specified in
the EndDialog function that is used to terminate the dialog box. Values
returned by the application's dialog box are processed by Windows and
are not returned to the application. The return value is -1 if the function
could not create the dialog box.

DialogBoxParam

Syntax int DialogBoxParam(hInstance, IpTemplateName, hWndParent,
IpDialogFunc, dwInitParam)

3.0

function DialogBoxParam(Instance: THandle; TemplateName: PChar;
Wnd Parent: HWnd; DialogFunc: TFarProc; InitParam: Longint): Integer;

This function creates a modal dialog box, sends a WM_INITDIALOG
message to the dialog function before displaying the dialog box, and

Chapter 4, Functions directory 239

DialogBoxParam

passes dwlnitParam as the message lParam. This message allows the dialog
function to initialize the dialog-box controls.

For more information on creating a modal dialog box, see the description
of the DialogBox function.

Parameters hlnstance HANDLE Identifies an instance of the module whose
executable file contains the dialog-box template.

lpTemplateName LPSTR Points to a character string that names the dialog-
box template. The string must be a null-terminated
character string.

hWndParent HWND Identifies the window that owns the dialog box.

IpDialogFunc FARPROC Is the procedure-instance address of the dialog
function. For details, see the "Comments" section of the
description of the DialogBox function.

dwlnitParam DWORD Is a 32-bit value which DialogBoxParam passes
to the dialog function when it creates the dialog box.

Return value The return value specifies the value of the nResult parameter in the
End Dialog function that is used to terminate the dialog box. Values
returned by the application's dialog box are processed by Windows and
are not returned to the application. The return value is -1 if the function
could not create the dialog box.

DispatchMessage

240

Syntax LONG DispatchMessageOpMsg)
function DispatchMessage(var Msg: TMsg): Longint;

This function passes the message in the MSG structure pointed to by the
IpMsg parameter to the window function of the specified window.

Parameters IpMsg LPMSG Points to an MSG data structure that contains
message information from the Windows application
queue.

The structure must contain valid message values. If IpMsg
points to a WM_TIMER message and the IParam
parameter of the WM_TIMER message is not NULL, then
the IParam parameter is the address of a function that is
called instead of the window function.

Software development kit

DispatchMessage

Return value The return value specifies the value returned by the window function. Its
meaning depends on the message being dispatched, but generally the
return value is ignored.

DlgDirList

Syntax int DlgDirList(hDlg, lpPathSpec, nIDListBox, nIDStaticPath, wFiletype)
function DlgDirList(Dlg: HWnd; PathSpec: PChar; IDListBox,
IDStaticPath: Integer; Filetype: Word): Integer;

This function fills a list-box control with a file or directory listing. It fills
the list box specified by the nIDListBox parameter with the names of all
files matching the pathname given by the IpPathSpec parameter.

The DlgDirList function shows subdirectories enclosed in square brackets
([]), and shows drives in the form [-x-], where x is the drive letter.

The IpPathSpec parameter has the following form:

[[drive:]] [[[[\]] directory[[\directory]] ... \]] [[filename]]

In this example, drive is a drive letter, directory is a valid directory name,
and filename is a valid filename that must contain at least one wildcard
character. The wildcard characters are a question mark (?), meaning
"match any character," and an asterisk (*), meaning "match any number of
characters."

If the IpPathSpec parameter includes a drive and/or directory name, the
current drive and directory are changed to the designated drive and
directory before the list box is filled. The text control identified by the
nIDStaticPath parameter is also updated with the new drive and/or
directory name.

After the list box is filled, IpPathSpec is updated by removing the drive
and/or directory portion of the pathname.

DlgDirList sends LB_RESETCONTENT and LB_DIR messages to the list
box.

Parameters hDlg

IpPathSpec

nIDListBox

Chapter 4, Functions directory

HWND Identifies the dialog box that contains the list box.

LPSTR Points to a pathname string. The string must be a
null-terminated character string.

int Specifies the identifier of a list-box control. If
nIDListBox is zero, DlgDirList assumes that no list box
exists and does not attempt to fill it.

241

DlgDirList

nIDStaticPath int Specifies the identifier of the static-text control used
for displaying the current drive and directory. If
nIDStaticPath is zero, DlgDirList assumes that no such text
control is present.

wFiletype WORD Specifies DOS file attributes of the files to be
displayed. It can be any combination of the values given
in Table 4.6, "DOS file attributes." Values can be combined
by using the bitwise OR operator.

Return value The return value specifies the outcome of the function. It is nonzero if a
listing was made, even an empty listing. A zero return value implies that
the input string did not contain a valid search path.

The wFiletype parameter specifies the DOS attributes of the files to be
listed. Table 4.6 describes these attributes.

Table 4.6
DOS file attributes Attribute Value Meaning

OxOOOO Read/write data files with no additional attributes
OxOOOl Read-only files
Ox0002 Hidden files
Ox0004 System files
OxOOlO Subdirectories
Ox0020 Archives
Ox2000 LB_DIR flag1

Ox4000 Drives
Ox8000 Exclusive bit2

lIf the LB_DIR flag is set, Windows places the messages generated by DlgDirList in the
application's queue; otherwise they are sent directly to the dialog function.

2If the exclusive bit is set, only files of the specified type are listed. Otherwise, files of the
specified type are listed in addition to normal files.

DlgDirListComboBox 3.0

242

Syntax int DlgDirListComboBox(hDlg,lpPathSpec, nIDComboBox,
nIDStaticPath, wFiletype)
function DlgDirListComboBox(Dlg: HWnd; PathSpec: PChar;
IDComboBox, IDStaticPath: Integer; Filetype: Word): Integer;

This function fills the list box of a combo-box control with a file or
directory listing. It fills the list box of the combo box specified by the
nIDComboBox parameter with the names of all files matching the
pathname given by the IpPathSpec parameter.

Software development kit

DlgDirListComboBox

The DlgDirListComboBox function shows subdirectories enclosed in
square brackets

([]), and shows drives in the form [-x-], where x is the drive letter.

The IpPathSpec parameter has the following form:

[[drive:)) [[[[\))directory[[\directory)) ... \)) [[filename))

In this example, drive is a drive letter, directory is a valid directory name,
and filename is a valid filename that must contain at least one wildcard
character. The wildcard characters are a question mark (?), meaning
"match any character," and an asterisk (*), meaning "match any number of
characters. "

If the IpPathSpec parameter includes a drive and/or directory name, the
current drive and directory are changed to the designated drive and
directory before the list box is filled. The text control identified by the
nIDStaticPath parameter is also updated with the new drive and/or
directory name.

After the combo-box list box is filled, IpPathSpec is updated by removing
the drive and/or directory portion of the pathname.

DlgDirListComboBox sends CB_RESETCONTENT and CB_DIR messages
to the combo box.

Parameters hDIg HWND Identifies the dialog box that contains the combo
box.

IpPathSpec LPSTR Points to a pathname string. The string must be a
null-terminated character string.

nIDComboBox int Specifies the identifier of a combo-box control in a
dialog box. If nIDComboBox is zero, DlgDirListComboBox
assumes that no combo box exists and does not attempt to
fill it.

nIDStaticPath int Specifies the identifier of the static-text control used
for displaying the current drive and directory. If
nIDStaticPath is zero, DlgDirListComboBox assumes that
no such text control is present.

wFiletype WORD Specifies DOS file attributes of the files to be
displayed. It can be any combination of the values given
in Table 4.6, "DOS File Attributes." Refer to the
description of the DlgDirList function for this table.
Values can be combined by using the bitwise OR
operator.

Chapter 4, Functions directory 243

•

DlgDirLisfComboBox

Return value The return value specifies the outcome of the function. It is nonzero if a
listing was made, even an empty listing. A zero return value implies that
the input string did not contain a valid search path.

DlgDirSelect

Syntax BaaL DlgDirSelect(hDlg, lpString, nIDListBox)
function DlgDirSelect(Dlg: HWnd; Str: PChar; IDListBox: Integer): Bool;

This function retrieves the current selection from a list box. It assumes that
the list box has been filled by the DlgDirList function and that the selection
is a drive letter, a file, or a directory name.

The DlgDirSelect function copies the selection to the buffer given by the
IpString parameter. If the current selection is a directory name or drive
letter, DlgDirSelect removes the enclosing square brackets (and hyphens,
for drive letters) so that the name or letter is ready to be inserted into a
new pathname. If there is no selection, IpString does not change.

DlgDirSelect sends LB_GETCURSEL and LB_GETTEXT messages to the
list box.

Parameters hDlg

IpString

nIDListBox

HWND Identifies the dialog box that contains the list box.

LPSTR Points to a buffer that is to receive the selected
pathname.

int Specifies the integer ID of a list-box control in the
dialog box.

Return value The return value specifies the status of the current list-box selection. It is
nonzero if the current selection is a directory name. Otherwise, it is zero.

Comments The DlgDirSelect function does not allow more than one filename to be
returned from a list box.

The list box must not be a multiple-selection list box. If it is, this function
will not return a zero value and IpString will remain unchanged.

DlgDirSelectComboBox 3.0

Syntax BaaL DlgDirSelectComboBox(hDlg, lpString, nIDComboBox)
function DlgDirSelectComboBox(Dlg: HWnd; Str: PChar; IDComboBox:
Integer): Bool;

244 Software development kit

DlgDirSelecfComboBox

This function retrieves the current selection from the list box of a combo
box created with the CBS_SIMPLE style. It cannot be used with combo
boxes created with either the CBS _DROPDOWN or
CBS_DROPDOWNLIST style. It assumes that the list box has been filled
by the DlgDirListComboBox function and that the selection is a drive
letter, a file, or a directory name.

The DlgDirSelectComboBox function copies the selection to the buffer
given by the IpString parameter. If the current selection is a directory name
or drive letter, DlgDirSelectComboBox removes the enclosing square
brackets (and hyphens, for drive letters) so that the name or letter is ready
to be inserted into a new pathname. If there is no selection, IpString does
not change.

DlgDirSelectComboBox sends CB_GETCURSEL and CB_GETLBTEXT
messages to the combo box.

Parameters hDlg HWND Identifies the dialog box that contains the combo
box.

IpString LPSTR Points to a buffer that is to receive the selected
pathname.

nIDComboBox int Specifies the integer ID of the combo-box control in the
dialog box.

Return value The return value specifies the status of the current combo-box selection. It
is nonzero if the current selection is a directory name. Otherwise, it is
zero.

Comments The DlgDirSelectComboBox function does not allow more than one
filename to be returned from a combo box.

DOS3Caii 3.0

proced ure DOS3Call;

This function allows an application to issue a DOS function-request
interrupt 21H. An application can use this function instead of a directly
coded DOS 21H interrupt. The DOS3Call function executes somewhat
faster than the equivalent DOS 21H software interrupt under Windows.

This function does not work properly when called from a discardable
code segment while Windows is running in real mode. It does work
properly in standard and 386 enhanced modes, and when called from a
fixed code segment in real mode. An application can call the GetWinFlags

Chapter 4, Functions directory 245

•

DOS3Cail

function to determine the mode in which Windows is running. An
application must call INT 21H instead of OOS3Cali if it is running in real
mode from a discardable code segment. Otherwise the application must
call OOS3Cali.

An application can call this function only from an assembly-language
routine. It is exported from KERNEL.EXE and is not defined in any
Windows include files.

To use this function call, an application should declare it in an assembly­
language program as shown:

extrn DOS3Call :far

If the application includes CMACROS.INC, the application declares it as
shown:

extrnFP Dos3Call

Before calling OOS3Call, all registers must be set as for an actual INT 21H.
All registers at the function's exit are the same as for the corresponding
INT 21 H function.

Parameters None.

Return value The registers of the DOS function.

The following is an example of using OOS3Call:

extrn DOS3Call : far

; set registers
mov ah, DOSFUNC
cCall DOS3Call

DPtoLP

246

Syntax BOOL DPtoLP(hDC, IpPoints, nCount)
function DPtoLP(DC: HDC; var Points; Count: Integer): Bool;

This function converts device points into logical points. The function
maps the coordinates of each point specified by the lpPoints parameter
from the device coordinate system into GDI's logical coordinate system.
The conversion depends on the current mapping mode and the settings of
the origins and extents for the device's window and viewport.

Parameters hDC HOC Identifies the device context.

Software development kit

IpPoints

nCount

DPtoLP

LPPOINT Points to an array of points. Each point must be
a POINT data structure.

int Specifies the number of points in the array.

Return value The return value specifies whether the conversion has taken place. It is
nonzero if all points are converted. Otherwise, it is zero.

DrawFocusRect 3.0

Syntax void DrawFocusRect(hDC, lpRect)
procedure DrawFocusRect(DC: HDC; var Rect: TRect);

This function draws a rectangle in the style used to indicate focus.

Parameters hDC HOC Identifies the device context.

IpRect LPRECT Points to a RECT data structure that specifies the
coordinates of the rectangle to be drawn.

Return value None.

Comments Since this is an XOR function, calling this function a second time with the
same rectangle removes the rectangle from the display.

Drawlcon

The rectangle drawn by this function cannot be scrolled. To scroll an area
containing a rectangle drawn by this function, call OrawFocusRect to
remove the rectangle from the display, scroll the area, and then call
OrawFocusRect to draw the rectangle in the new position.

Syntax BOOL DrawIcon(hDC, X, Y, hIcon)
function DrawIcon(DC: HDC; X, Y: Integer; Icon: HIcon): Bool;

This function draws an icon on the specified device. The Orawlcon
function places the icon's upper-left corner at the location specified by the
X and Y parameters. The location is subject to the current mapping mode
of the device context.

Parameters hDC

X

Y

Chapter 4, Functions directory

HOC Identifies the device context for a window.

int Specifies the logical x-coordinate of the upper-left
corner of the icon.

int Specifies the logical y-coordinate of the upper-left
corner of the icon.

247

Drawlcon

hlcon HICON Identifies the icon to be drawn.

Return value The return value specifies the outcome of the function. It is nonzero if the
function is successful. Otherwise, it is zero.

Comments The icon resource must have been previously loaded by using the
Loadlcon function. The MM_TEXT mapping mode must be selected prior
to using this function.

DrawMenuBar

Syntax void DrawMenuBarCh Wnd)
procedure DrawMenuBarCWnd: HWnd);

This function redraws the menu bar. If a menu bar is changed after
Windows has created the window, this function should be called to draw
the changed menu bar.

Parameters h Wnd

Return value None.

HWNO Identifies the window whose menu needs
redrawing.

DrawText

248

Syntax int DrawTextChDC,lpString, nCount,lpRect, wFormat)
function DrawTextCDC: HDC; Str: PChar; Count: Integer; var Rect: TRect;
Format: Word): Integer;

This function draws formatted text in the rectangle specified by the IpRect
parameter. It formats text by expanding tabs into appropriate spaces,
justifying text to the left, right, or center of the given rectangle, and
breaking text into lines that fit within the given rectangle. The type of
formatting is specified by the wFormat parameter.

The OrawText function uses the device context's selected font, text color,
and background color to draw the text. Unless the DT_NOCLIP format is
used, OrawText clips the text so that the text does not appear outside the
given rectangle. All formatting is assumed to have multiple lines unless
the DT _SINGLELINE format is given.

Parameters hDC HOC Identifies the device context.

IpString LPSTR Points to the string to be drawn. If the nCount
parameter is -I, the string must be null-terminated.

Software development kit

nCount

IpRect

wFormat

DrawText

int Specifies the number of bytes in the string. If nCount is
-I, then IpString is assumed to be a long pointer to a null­
terminated string and DrawText computes the character
count automatically.

LPRECT Points to a RECT data structure that contains the
rectangle (in logical coordinates) in which the text is to be
formatted.

WORD Specifies the method of formatting the text. It can
be a combination of the values given in Table 4.7,
"DrawText formats."

Return value The return value specifies the height of the text.

Comments If the selected font is too large for the specified rectangle, the DrawText
function does not attempt to substitute a smaller font.

Table 4.7
DrawText formats

Table 4.7 lists the values for the wFormat parameter. These values can be
combined by using the bitwise OR operator. Note that the
DT_CALCRECT, DT_EXTERNALLEADING, DT_INTERNAL,
DT_NOCLIP, and DT_NOPREFIX values cannot be used with the
DT_TABSTOP value:

Value

DT_BOTTOM

DT_ CALCRECT

DT_CENTER
DT_EXPANDTABS

DT_EXTERNALLEADING

DT_LEFT
DT_NOCLIP

DT _NOPREFIX

Meaning

Specifies bottom-justified text. This value must be
combined with DT_SINGLELINE.
Determines the width and height of the rectangle. If
there are multiple lines of text, DrawText will use
the width of the rectangle pointed to by the IpRect
parameter and extend the base of the rectangle to
bound the last line of text. If there is only one line of
text, DrawText will modify the right side of the
rectangle so that it bounds the last character in the
line. In either case, DrawText returns the height of
the formatted text but does not draw the text.
Centers text horizontally.
Expands tab characters. The default number of
characters per tab is eight.
Includes the font external leading in line height.
Normally, external leading is not included in the
height of a line of text.
Aligns text flush-left.
Draws without clipping. DrawText is somewhat
faster when DT_NOCLIP is used.
Turns off processing of prefix characters. Normally,
DrawText interprets the mnemonic-prefix character
"&" as a directive to underscore the character that
follows, and the mnemonic-prefix characters "&&"

Chapter 4, Functions directory 249

DrawText

250

Table 4.7: DrawText formats (continued)

DT_RIGHT
DT _SINGLE LINE

DT_TABSTOP

DT_TOP
DT_VCENTER
DT_WORDBREAK

as a directive to print a single "&". By specifying
DT _NOPREFIX, this processing is turned off.
Aligns text flush-right.
Specifies single line only. Carriage returns and
linefeeds do not break the line.
Sets tab stops. The high-order byte of the wFormat
parameter is the number of characters for each tab.
The default number of characters per tab is eight.
Specifies top-justified text (single line only).
Specifies vertically centered text (single line only).
Specifies word breaking. Lines are automatically
broken between words if a word would extend past
the edge of the rectangle specified by the lpRect
parameter. A carriage return/line sequence will also
break the line.

Software development kit

Ellipse

Ellipse

Syntax BOOL Ellipse(hDC, Xl, YI, X2, Y2)
function Ellipse(DC: HDC; Xl, YI, X2, Y2: Integer): Bool;

This function draws an ellipse. The center of the ellipse is the center of the
bounding rectangle specified by the Xl, Yl, X2, and Y2 parameters. The
ellipse border is drawn with the current pen, and the interior is filled with
the current brush.

If the bounding rectangle is empty, nothing is drawn.

Parameters hDC HOC Identifies the device context.

Xl

Yl

X2

Y2

int Specifies the logical x-coordinate of the upper-left
corner of the bounding rectangle.

int Specifies the logical y-coordinate of the upper-left
corner of the bounding rectangle.

int Specifies the logical x-coordinate of the lower-right
corner of the bounding rectangle.

int Specifies the logical y-coordinate of the lower-right
corner of the bounding rectangle.

Return value The return value specifies whether the ellipse is drawn. It is nonzero if the
ellipse is drawn. Otherwise, it is zero.

Comments The width of the rectangle, specified by the absolute value of X2 - Xl,
must not exceed 32,767 units. This limit applies to the height of the
rectangle as well.

The current position is neither used nor updated by this function.

Chapter 4, Functions directory 251

II

EmptyC/ipboord

EmptyC/ipboard

Syntax BaaL EmptyClipboard()
function EmptyClipboard: Bool;

This function empties the clipboard and frees handles to data in the
clipboard. It then assigns ownership of the clipboard to the window that
currently has the clipboard open.

Parameters None.

Return value The return value specifies the status of the clipboard. It is nonzero if the
clipboard is emptied. It is zero if an error occurs.

Comments The clipboard must be open when the EmptyClipboard function is called.

EnableHardwarelnput

Syntax BaaL EnableHardwareInput(bEnableInput)
function EnableHardwareInput(EnableInput: Bool): Bool;

This function disables mouse and keyboard input. The input is saved if
the bEnablelnput parameter is TRUE and discarded if it is FALSE.

Parameters bEnablelnput BOOl Specifies that the function should save input if the
bEnablelnput parameter is set to a nonzero value; specifies
that the function should discard input if the bEnablelnput
parameter is set to zero.

Return value The return value specifies whether mouse and keyboard input is disabled.

It is nonzero if input was previously enabled. Otherwise, it is zero. The
default return value is nonzero (TRUE).

Comments None.

252 Software development kit

EnableMenultem

EnableMenultem

Syntax BOOL EnableMenultem(hMenu, wIDEnableltem, wEnable) II
function EnableMenultem(Menu: HMenu; IDEnableItem, Enable: Word):
Baal;

This function enables, disables, or grays a menu item.

Parameters hMenu HMENU Specifies the menu.

wIDEnableItem WORD Specifies the menu item to be checked. The
wIDEnableItem parameter can specify pop-up menu items
as well as menu items.

wEnable WORD Specifies the action to take. It can be a combination
of MF _DISABLED, MF _ENABLED, or MF _GRAYED,
with MF _BYCOMMAND or MF _BYPOSITION. These
values can be combined by using the bitwise OR operator.
These values have the following meanings:

Value Meaning
MF _BYCOMMAND Specifies that the wIDEnableltem

parameter gives the menu item ID
(MF _BYCOMMAND is the default

MF _BYPOSITION

MF _DISABLED
MF_ENABLED
MF_GRAYED

ID).
Specifies that the wIDEnableItem
parameter gives the position of the
menu item (the first item is at
position zero).
Menu item is disabled.
Menu item is enabled.
Menu item is grayed.

Return value The return value specifies the previous state of the menu item. The return
value is -1 if the menu item does not exist.

Comments To disable or enable input to a menu bar, see the WM_SYSCOMMAND
message.

Chapter 4, Functions directory 253

EnableWindow

EnableWindow

Syntax BOOL EnableWindow(h Wnd, bEnable)
function EnableWindow(Wnd: HWnd; Enable: Bool): Bool;

This function enables or disables mouse and keyboard input to the
specified window or control. When input is disabled, input such as mouse
clicks and key presses are ignored by the window. When input is enabled,
all input is processed.

The EnableWindow function enables mouse and keyboard input to a
window if the bEnable parameter is nonzero, and disables it if bEnable is
zero.

Parameters h Wnd

bEnable

HWND Identifies the window to be enabled or disabled.

BOOl Specifies whether the given window is to be
enabled or disabled.

Return value The return value specifies the outcome of the function. It is nonzero if the
window is enabled or disabled as specified. It is zero if an error occurs.

Comments A window must be enabled before it can be activated. For example, if an
application is displaying a modeless dialog box and has disabled its main
window, the main window must be enabled before the dialog box is
destroyed. Otherwise, another window will get the input focus and be
activated. If a child window is disabled, it is ignored when Windows tries
to determine which window should get mouse messages.

Initially, all windows are enabled by default. EnableWindow must be used
to disable a window explicitly.

EndDeferWindowPos 3.0

254

Syntax void EndDeferWindowPos(h WinPosInfo)
procedure EndDeferWindowPos(WinPosInfo: THandle);

This function simultaneously updates the position and size of one or more
windows in a single screen-refresh cycle. The h WinPoslnfo parameter
identifies a multiple window-position data structure that contains the
update information for the windows. The Defer-WindowPos function
stores the update information in the data structure; the BeginDefer­
WindowPos function creates the initial data structure used by these
functions.

Software development kit

EndDeferWindowPos

Parameters h WinPoslnfo HANDLE Identifies a multiple window-position data
structure that contains size and position information for
one or more windows. This structure is returned by the
BeginDeferWindowPos function or the most recent call to
the DeferWindowPos function.

Return value None.

EndDiolog

Syntax void EndDialog(hDlg, nResult)
procedure EndDialog(Dlg: HWnd; Result: Integer);

This function terminates a modal dialog box and returns the given result
to the DialogBox function that created the dialog box. The End Dialog
function is required to complete processing whenever the DialogBox
function is used to create a modal dialog box. The function must be used
in the dialog function of the modal dialog box and should not be used for
any other purpose.

The dialog function can call End Dialog at any time, even during the
processing of the WM_INITDIALOG message. If called during the
WM_INITDIALOG message, the dialog box is terminated before it is
shown or before the input focus is set.

End Dialog does not terminate the dialog box immediately. Instead, it sets
a flag that directs the dialog box to terminate as soon as the dialog
function ends. The EndDialog function returns to the dialog function, so
the dialog function must return control to Windows.

Parameters hDlg HWND Identifies the dialog box to be destroyed.

nResult int Specifies the value to be returned from the dialog box
to the DialogBox function that created it.

Return value None.

EndPoint

Syntax void EndPaint(h Wnd, lpPaint)
procedure EndPaint(Wnd: HWnd; var Paint: TPaintStruct);

This function marks the end of painting in the given window. The
EndPaint function is required for each call to the BeginPaint function, but
only after painting is complete.

Chapter 4, Functions directory 255

II

EndPoint

Parameters h Wnd

IpPaint

Return value None.

HWND Identifies the window that is repainted.

LPPAINTSTRUCT Points to a PAINTSTRUCT data
structure that contains the painting information retrieved
by the BeginPaint function.

Comments If the caret was hidden by the BeginPaint function, EndPaint restores the
caret to the screen.

EnumChildWindows

256

Syntax BaaL EnumChildWindows(h WndParent, IpEnumFunc, IParam)
function EnumChildWindows(WndParent: HWnd; EnumFunc: TFarProc;
IParam: Longint): Bool;

This function enumerates the child windows that belong to the specified
parent window by passing the handle of each child window, in turn, to
the application-supplied callback function pointed to by the IpEnumFunc
parameter.

The EnumChiidWindows function continues to enumerate windows until
the called function returns zero or until the last child window has been
enumerated.

Parameters h WndParent

IpEnumFunc

IParam

HWND Identifies the parent window whose child
windows are to be enumerated.

FARPROC Is the procedure-instance address of the
callback function.

DWORD Specifies the value to be passed to the callback
function for the application's use.

Return value The return value specifies nonzero if all child windows have been
enumerated. Otherwise, it is zero.

Comments This function does not enumerate pop-up windows that belong to the
h WndParent parameter.

The address passed as the IpEnumFunc parameter must be created by
using the MakeProclnstance function.

The callback function must use the Pascal calling convention and must be
declared FAR.

Software development kit

EnumChildWindows

Callback
function BaaL FAR PASCAL EnumFunc(hWnd, IParam)

HWNDhWnd;
DWORD IParam;

EnumFunc is a placeholder for the application-supplied function name.
The actual name must be exported by including it in an EXPORTS
statement in the application's module-definition file.

Parameters h Wnd

lParam

Identifies the window handle.

Specifies the long parameter argument of the
EnumChildWindows function.

Return value The callback function should return a nonzero value to continue
enumeration; it should return zero to stop enumeration.

EnumClipboardFormats

Syntax WORD EnumClipboardFormats(wFormat)
function EnumClipboardFormats(Format: Word): Word;

This function enumerates the formats found in a list of available formats
that belong to the clipboard. On each call to this function, the wFormat
parameter specifies a known available format, and the function returns
the format that appears next in the list. The first format in the list can be
retrieved by setting wFormat to zero.

Parameters wFormat WORD Specifies a known format.

Return value The return value specifies the next known clipboard data format. It is zero
if wFormat specifies the last format in the list of available formats. It is zero
if the clipboard is not open.

Comments Before it enumerates the formats by using the EnumClipboardFormats
function, an application must open the clipboard by using the
OpenClipboard function.

The order that an application uses for putting alternative formats for the
same data into the clipboard is the same order that the enumerator uses
when returning them to the pasting application. The pasting application
should use the first format enumerated that it can handle. This gives the
donor a chance to recommend formats that involve the least loss of data.

Chapter 4, Functions directory 257

EnumFonts

EnumFonts

Syntax int EnumFonts{hDC, lpFacename, lpFontFunc, lpData)
function EnumFonts{DC: HDC; FaceName: PChar; FontFunc: TFarProc;
Data: Pointer): Integer;

This function enumerates the fonts available on a given device. For each
font having the typeface name specified by the IpFacename parameter, the
EnumFonts function retrieves information about that font and passes it to
the function pointed to by the IpFontFunc parameter. The application­
supplied callback function can process the font information as desired.
Enumeration continues until there are no more fonts or the callback
function returns zero.

Parameters hDC HOC Identifies the device context.

IpFacename

IpFontFunc

IpData

LPSTR Points to a null-terminated character string that
specifies the typeface name of the desired fonts. If
IpFacename is NULL, EnumFonts randomly selects and
enumerates one font of each available typeface.

FARPROC Is the procedure-instance address of the
callback function. See the following "Comments" section
for details.

LPSTR Points to the application-supplied data. The data
is passed to the callback function along with the font
information.

Return value The return value specifies the last value returned by the callback function.
Its meaning is user-defined.

Comments The address passed as the IpFontFunc parameter must be created by using
the MakeProclnstance function.

Callback

The callback function must use the Pascal calling convention and must be
declared FAR.

function int FAR PASCAL FontFunc(lpLogFont, IpTextMetrics, nFontType, IpData)
LPLOGFONT IpLogFont;
LPTEXTMETRICS IpTextMetrics;
short nFontType;
LPSTR IpData;

258 Software development kit

EnumFonts

FontFunc is a placeholder for the application-supplied function name. The
actual name must be exported by including it in an EXPORTS statement
in the application's module-definition file.

Parameters IpLogFont

IpTextMetrics

nFontType

IpData

Points to a LOG FONT data structure that contains
information about the logical attributes of the font.

Points to a TEXTMETRIC data structure that contains
information about the physical attributes of the font.

Specifies the type of the font.

Points to the application-supplied data passed by
EnumFonts.

Return value The return value can be any integer.

Comments The AND (&) operator can be used with the RASTER_FONTTYPE and
DEVICE_FONTTYPE constants to determine the font type. The
RASTER_FONTTYPE bit of the FontType parameter specifies whether the
font is a raster or vector font. If the bit is one, the font is a raster font; if
zero, it is a vector font. The DEVICE_FONTTYPE bit of FontType specifies
whether the font is a device- or GDI-based font. If the bit is one, the font is
a device-based font; if zero, it is a GDI-based font.

If the device is capable of text transformations (scaling, italicizing, and so
on) only the base font will be enumerated. The user must inquire into the
device's text-transformation abilities to determine which additional fonts
are available directly from the device. GDI can simulate the bold, italic,
underlined, and strikeout attributes for any GDI-based font.

EnumFonts only enumerates fonts from the GDI internal table. This does
not include fonts that are generated by a device, such as fonts that are
transformations of fonts from the internal table. The GetDeviceCaps
function can be used to determine which transformations a device can
perform. This information is available by using the TEXTCAPS index.

GDI can scale GDI-based raster fonts by one to five horizontally and one
to eight vertically, unless PROOF_QUALITY is being used.

Chapter 4, Functions directory 259

EnumMetaFile

EnumMetaFile

260

Syntax BOOL EnumMetaFile(hOC, hMF, IpCallbackFunc, IpClientOata)
function EnumMetaFile(OC: HOC; MF: THandle; CallbackFunc: TFarProc;
ClientOata: Pointer): Bool;

This function enumerates the GOI calls within the metafile identified by
the hMF parameter. The EnumMetaFile function retrieves each GOI call
within the metafile and passes it to the function pointed to by the
IpCallbackFunc parameter. This callback function, an application-supplied
function, can process each GOI call as desired. Enumeration continues
until there are no more GOI calls or the callback function returns zero.

Parameters hDC HOC Identifies the device context associated with the
metafile.

hMF LOCALHANOLE Identifies the metafile.

IpCallbackFunc FARPROC Is the procedure-instance callback function.
See the following "Comments" section for details.

IpClientData BYTE FAR * Points to the callback-function data.

Return value The return value specifies the outcome of the function. It is nonzero if the
callback function enumerates all the GOI calls in a metafile; otherwise, it
returns zero.

Comments The callback function must use the Pascal calling convention and must be
declared FAR.

Callback
function int FAR PASCAL EnumFunc(hDC, IpHTable, IpMFR, nObj, IpClientData)

HOChDC;
LPHANOLETABLE IpHTable;
LPMETARECORO IpMFR;
int nObj;
BYTE FAR * IpClientData;

EnumFunc is a placeholder for the application-supplied function name.
The actual name must be exported by including it in an EXPORTS
statement in the application's module-definition file.

Parameters hDC

IpHTable

Identifies the special device context that contains the
metafile.

Points to a table of handles associated with the objects
(pens, brushes, and so on) in the metafile.

Software development kit

Return value

EnumObjects

IpMFR

nObj

IpClientData

EnumMetoFile

Points to a metafile record contained in the metafile.

Specifies the number of objects with associated handles in
the handle table.

Points to the application-supplied data.

The function can carry out any desired task. It must return a nonzero
value to continue enumeration, or a zero value to stop it.

Syntax int EnumObjects(hDC, nObjectType, lpObjectFunc, lpData)
function EnumObjects(DC: HDC; ObjectType: Integer; ObjectFunc:
TFarProc; Data: Pointer): Integer;

This function enumerates the pens and brushes available on a device. For
each object that belongs to the given style, the callback function is called
with the information for that object. The callback function is called until
there are no more objects or the callback function returns zero.

Parameters hDC HOC Identifies the device context.

nObjectType int Specifies the object type. It can be one of the following
values:

.OBJ_BRUSH

.OBJ_PEN

IpObjectFunc FARPROC Is the procedure-instance address of the
application-supplied callback function. See the following
"Comments" section for details.

IpData LPSTR Points to the application-supplied data. The data
is passed to the callback function along with the object
information.

Return value The return value specifies the last value returned by the callback function.
Its meaning is user-defined.

Comments The address passed as the IpObjectFunc parameter must be created by
using the MakeProclnstance function.

The callback function must use the Pascal calling convention and must be
declared FAR.

Chapter 4, Functions directory 261

I
I

EnumObjects

Callback
function int FAR PASCAL ObjectFunc(lpLogObject, IpData)

char FAR * IpLogObject;
char FAR * IpData;

ObjectFunc is a placeholder for the application-supplied function name.
The actual name must be exported by including it in an EXPORTS
statement in the application's module-definition file.

Parameters IpLogObject Points to a LOG PEN or LOGBRUSH data structure that
contains information about the logical attributes of the
object.

IpData Points to the application-supplied data passed to the
EnumObjects function.

EnumProps

262

Syntax int EnumProps(h Wnd, IpEnumFunc)
function EnumProps(Wnd: HWnd; EnumFunc: TFarProc): Integer;

This function enumerates all entries in the property list of the specified
window. It enumerates the entries by passing them, one by one, to the
callback function specified by IpEnumFunc. EnumProps continues until
the last entry is enumerated or the callback function returns zero.

Parameters h Wnd HWND Identifies the window whose property list is to be
enumerated.

IpEnumFunc FARPROC Is the procedure-instance address of the
callback function. See the following "Comments" section
for details.

Return value The return value specifies the last value returned by the callback function.
It is -1 if the function did not find a property for enumeration.

Comments An application can remove only those properties which it has added. It
should not remove properties added by other applications or by Windows
itself.

The following restrictions apply to the callback function:

1. The callback function must not yield control or do anything that might
yield control to other tasks.

Software development kit

Fixed data

EnumProps

2. The callback function can call the RemoveProp function. However, the
RemoveProp function can remove only the property passed to the
callback function through the callback function's parameters.

3. A callback function should not attempt to add properties.

The address passed in the IpEnumFunc parameter must be created by
using the MakeProclnstance function.

segments The callback function must use the Pascal calling convention and must be
declared FAR. In applications and dynamic libraries with fixed data
segments and in dynamic libraries with moveable data segments that do
not contain a stack, the callback function must have the form shown
below.

Callback
function int FAR PASCAL EnumFunc(hWnd,lpString, hData)

HWNDhWnd;
LPSTR IpString; .
HANDLE hData;

EnumFunc is a placeholder for the application-supplied function name.
The actual name must be exported by including it in an EXPORTS
statement in the application's module-definition file.

Parameters h Wnd Identifies a handle to the window that contains the
property list.

IpString Points to the null-terminated character string associated
with the data handle when the application called the
SetProp function to set the property. If the application
passed an atom instead of a string to the SetProp
function, the IpString parameter contains the atom in its
low-order word, and the high-order word is zero.

hData Identifies the data handle.

Return value The callback function can carry out any desired task. It must return a
nonzero value to continue enumeration, or a zero value to stop it.

Chapter 4, Functions directory 263

II

EnumProps

Moveable
data

segments

Callback

The callback function must use the Pascal calling convention and must be
declared FAR. In applications with moveable data segments and in
dynamic libraries whose moveable data segments also contain a stack, the
callback function must have the form shown below.

function int FAR PASCAL EnumFunc(hWnd, nDummy, pString, hData)
HWNDhWnd;
WORD nDummy;
PSTR pString;
HANDLE hData;

EnumFunc is a placeholder for the application-supplied function name.
The actual name must be exported by including it in an EXPORTS
statement in the application's module-definition file.

Parameters hWnd Identifies a handle to the window-ihat contains the
property list.

nDummy

pString

hData

Specifies a dummy parameter.

Points to the null-terminated character string associated
with the data handle when the application called the
SetProp function to set the property. If the application
passed an atom instead of a string to the SetProp
function, the pString parameter contains the atom.

Identifies the data handle.

Return value The callback function can carry out any desired task. It should return a
nonzero value to continue enumeration, or a zero value to stop it.

Comments The alternate form above is required since movement of the data will
invalidate any long pointer to a variable on the stack, such as the IpString
parameter. The data segment typically moves if the callback function
allocates more space in the local heap than is currently available.

264 Software development kit

EnumTaskWindows

EnumTaskWindows

Syntax BaaL EnumTaskWindows(hTask, lpEnumFunc, lParam)
function EnumTaskWindows(Task: THandle; EnumFunc: TFarProc;
lParam: Longint): Bool;

This function enumerates all windows associated with the hTask
parameter, which is returned by the GetCurrentTask function. (A task is
any program that executes as an independent unit. All applications are
executed as tasks and each instance of an application is a task.) The
enumeration terminates when the callback function, pointed to by
IpEnumFunc, returns FALSE.

Parameters hTask HANDLE Identifies the specified task. The
GetCurrentTask function returns this handle.

IpEnumFunc FARPROC Is the procedure-instance address of the
window's callback function.

IParam DWORD Specifies the 32-bit value that contains additional
parameters that are sent to the callback function pointed
to by IpEnumFunc.

Return value The return value specifies the outcome of the function. It is nonzero if all
the windows associated with a particular task are enumerated. Otherwise,
it is zero.

Comments The callback function must use the Pascal calling convention and must be
declared FAR. The callback function must have the following form:

Callback
function BaaL FAR PASCAL EnumFunc(hWnd, IParam)

HWNDhWnd;
DWORD IParam;

EnumFunc is a placeholder for the application-supplied function name.
The actual name must be exported by including it in an EXPORTS
statement in the application's module-definition file.

Parameters h Wnd

IParam

Chapter 4, Functions directory

Identifies a window associated with the current task.

Specifies the same argument that was passed to the
EnumTaskWindows function.

265

EnumTaskWindows

Return value The callback function can carry out any desired task. It must return a
nonzero value to continue enumeration, or a zero value to stop it.

EnumWindows

266

Syntax BaaL Enum Windows(lpEnumFunc, IParam)
function Enum Windows(EnumFunc: TFarProc; IParam: Longint): Bool;

This function enumerates all parent windows on the screen by passing the
handle of each window, in turn, to the callback function pointed to by the
IpEnumFunc parameter. Child windows are not enumerated.

The EnumWindows function continues to enumerate windows until the
called function returns zero or until the last window has been
enumerated.

Parameters IpEnumFunc FARPROC Is the procedure-instance address of the
callback function. See the following "Comments" section

IParam

for details.

DWORD Specifies the value to be passed to the callback
function for the application's use.

Return value The return value specifies the outcome of the function. It is nonzero if all
windows have been enumerated. Otherwise, it is zero.

Comments The address passed as the IpEnumFunc parameter must be created by
using the MakeProclnstance function.

Callback

The callback function must use the Pascal calling convention and must be
declared FAR. The callback function must have the following form:

function BaaL FAR PASCAL EnumFunc(hWnd, IParam)
HWNDhWnd;
DWORD IParam;

EnumFunc is a placeholder for the application-supplied function name.
The actual name must be exported by including it in an EXPORTS
statement in the application's module-definition file.

Parameters h Wnd Identifies the window handle.

IParam Specifies the 32-bit argument of the EnumWindows
function.

Software development kit

EnumWindows

Return value The function must return a nonzero value to continue enumeration, or
zero to stop it.

EqualRect

Syntax BaaL EqualRectOpRectl, lpRect2)
function EqualRectCvar RectI, Rect2: TRect): Bool;

This function determines whether two rectangles are equal by comparing
the coordinates of their upper-left and lower-right corners. If the values of
these coordinates are equal, EqualRect returns a nonzero value;
otherwise, it returns zero.

Parameters IpRectl LPRECT Points to a RECT data structure that contains the
upper-left and lower-right corner coordinates of the first
rectangle.

IpRect2 LPRECT Points to a RECT data structure that contains the
upper-left and lower-right corner coordinates of the
second rectangle.

Return value The return value specifies whether the specified rectangles are equal. It is
nonzero if the two rectangles are identical. Otherwise, it is zero.

EqualRgn

Syntax BaaL EqualRgnChSrcRgnl, hSrcRgn2)
function EqualRgnCSrcRgnl, SrcRgn2: HRgn): Bool;

This function checks the two given regions to determine whether they are
identical.

Parameters hSrcRgnl

hSrcRgn2

HRGN Identifies a region.

HRGN Identifies a region.

Return value The return value specifies whether the specified regions are equal. It is
nonzero if the two regions are equal. Otherwise, it is zero.

Chapter 4, Functions directory 267

Escape

Escape

268

Syntax int Escape(hDC, nEscape, nCount, lpInData, lpOutData)
function Escape(DC: HDC; Escape, Count: Integer; InData, OutData:
Pointer): Integer;

This function allows applications to access facilities of a particular device
that are not directly available through CD!. Escape calls made by an
application are translated and sent to the device driver.

Parameters hDC

nEscape

nCount

IplnData

IpOutData

HOC Identifies the device context.

int Specifies the escape function to be performed. For a
complete list of escape functions, see Chapter 12, "Printer
escapes," in Reference, Volume 2.

int Specifies the number of bytes of data pointed to by the
IplnData parameter.

LPSTR Points to the input data structure required for this
escape.

LPSTR Points to the data structure to receive output from
this escape. The IpOutData parameter should be NULL if
no data are returned.

Return value The return value specifies the outcome of the function. It is positive if the
function is successful except for the QUERYESCSUPPORT escape, which
only checks for implementation. The return value is zero if the escape is
not implemented. A negative value indicates an error. The following list
shows common error values:

Value

SP_ERROR
SP _ OUTOFDISK

SP _OUTOFMEMORY
SP _USERABORT

Meaning

General error.
Not enough disk space is currently available for spooling,
and no more space will become available.
Not enough memory is available for spooling.
User terminated the job through the Print Manager.

Software development kit

EscapeCommFunction

EscapeCommFunction

Syntax int EscapeCommFunction(nCid, nFunc)
function EscapeCommFunction(Cid, Func: Integer): Integer;

This function directs the communication device specified by the nCid
parameter to carry out the extended function specified by the nFunc
parameter.

Parameters nCid int Specifies the communication device to carry out the
extended function. The OpenComm function returns this
value.

nFunc int Specifies the function code of the extended function. It
can be anyone of the following values:

Value Description
CLRDTR Clears the data-terminal-ready (DTR)

CLRRTS
signal.
Clears the request-to-send (RTS)
signal.
Resets the device if possible. RESETDEV

SETDTR Sends the data-terminal-ready (DTR)
signal.

SETRTS

SETXOFF

SETXON

Sends the request-to-send (RTS)
signal.
Causes transmission to act as if an
XOFF character has been received.
Causes transmission to act as if an
XON character has been received.

Return value The return value specifies the result of the function. It is zero if it is
successful. It is negative if the nFunc parameter does not specify a valid
function code.

ExcludeClipRect

Syntax int ExcludeClipRect(hDC, Xl, Yl, X2, Y2)
function ExcludeClipRect(DC: HDC; Xl, Yl, X2, Y2: Integer): Integer;

This function creates a new clipping region that consists of the existing
clipping region minus the specified rectangle.

Parameters hDC HDC Identifies the device context.

Chapter 4, Functions directory 269

ExcludeClipRect

Xl

Yl

X2

Y2

int Specifies the logical x-coordinate of the upper-left
corner of the rectangle.

int Specifies the logical y-coordinate of the upper-left
corner of the rectangle.

int Specifies the logical x-coordinate of the lower-right
corner of the rectangle.

int Specifies the logical y-coordinate of the lower-right
corner of the rectangle.

Return value The return value specifies the new clipping region's type. It can be anyone
of the following values:

Value

COMPLEXREGION
ERROR
NULLREGION
SIMPLEREGION

Meaning

The region has overlapping borders.
No region was created.
The region is empty.
The region has no overlapping borders.

Comments The width of the rectangle, specified by the absolute value of X2 - Xl,
must not exceed 32,767 units. This limit applies to the height of the
rectangle as well.

ExcludeUpdateRgn

270

Syntax int ExcludeUpdateRgn(hDC, hWnd)
function ExcludeUpdateRgn(DC: HDC; Wnd: HWnd): Integer;

This function prevents drawing within invalid areas of a window by
excluding an updated region in the window from a clipping region.

Parameters hDC HANDLE Identifies the device context associated with the
clipping region.

hWnd HWND Identifies the window being updated.

Return value This value specifies the type of resultant region. It can be anyone of the
following values:

Value

COMPLEXREGION
ERROR
NULLREGION
SIMPLEREGION

Meaning

The region has overlapping borders.
No region was created.
The region is empty.
The region has no overlapping borders.

Software development kit

ExitWindows

ExitWindows 3.0

Syntax BOOL ExitWindowsCdwReserved, wReturnCode)
function ExitWindowsCReserved: Longint; ReturnCode: Word): Bool;

This function initiates the standard Windows shutdown procedure. If all
applications agree to terminate, the Windows session is terminated and
control returns to DOS. Windows sends the WM_QUERYENDSESSION
message to notify all applications that a request has been made to
terminate Windows. If all applications agree to terminate, Windows sends
the WM_ENDSESSION message to all applications before exiting.

Parameters dwReserved DWORD Is reserved and should be set to zero.

wReturnCode WORD Specifies the return value to be passed to DOS
when Windows exits.

Return value The return value is FALSE if one or more applications refused to
terminate. The function does not return if all applications agree to be
terminated.

ExtDeviceMode 3.0

Syntax int ExtDeviceModeCh Wnd, hDriver, IpDevModeOutput, IpDeviceName,
IpPort, IpDevModeInput, IpProfile, wMode)
type TextDeviceMode = functionCWnd: Hwnd; Driver: THandle; var
DevModeOutput: TDevMode; DeviceName, Port: PChar; var
DevModeInput: TDevMode; Profile: PChar; Mode: Word): Integer;

This function retrieves or modifies device initialization information for a
given printer driver, or displays a driver-supplied dialog box for
configuring the printer driver. Printer drivers that support device
initialization by applications export this ExtDeviceMode so that
applications can call it.

Parameters h Wnd HWND Identifies a window. If the application calls
ExtDeviceMode to display a dialog box, the specified
window is the parent of the dialog box.

hDriver HANDLE Identifies the device-driver module. The
GetModuleHandle function or LoadLibrary function
returns a module handle.

IpDevModeOutput DEVMODE FAR * Points to a DEVMODE data structure.
The driver writes the initialization information

Chapter 4, Functions directory 271

ExtOeviceMode

272

supplied in the IpDevModelnput parameter to this
structure.

IpDeviceName LPSTR Points to a null-terminated character string that
contains the name of the printer device, such as
"PCL/HP LaserJet."

IpPort LPSTR Points to a null-terminated character string that
contains the name of the port to which the device is
connected, such as LPTl:.

IpDevModelnput DEVMODE FAR * Points to a DEVMODE data structure
that supplies initialization information to the printer
driver.

IpProfile

wMode

LPSTR Points to a null-terminated string that contains
the name of the initialization file which initialization
information is recorded in and read from. If this
parameter is NULL, WIN.lNI is the default.

WORD Specifies a mask of values which determine the
types of operations the function will perform. If wMode
is zero, ExtDeviceMode returns the number of bytes
required by the printer device driver's DEVMODE
structure. Otherwise, wMode must be one or more of
the following values:

Value Meaning
DM_ COPY Writes the printer driver's current

print settings to the DEVMODE data
structure identified by IpDevMode­
Output. The calling application
must allocate a buffer sufficiently
large to contain the information. If
this bit is clear, IpDevModeOutput
can be NULL.
Changes the printer driver's current
print settings to match the partial
initialization data in the DEVMODE
data structure identified by
IpDevModelnput before prompting,
copying, or updating.
Presents the printer driver's Print
Setup dialog box and then changes
the current print settings to those
the user specifies.

Software development kit

ExtOeviceMode

Writes the printer driver's current
print settings to the printer
environment and the WIN.INI
initialization file.

Return value ~~t~~~~d~!t:r::;::::: ::~~:;; ;::r;t:i~~~:Sp~~t~rZ~~~!~e (~~g:~
initialization data. If the function displays the initialization dialog box, the
return value is either IDOK or IDCANCEL, depending on which button
the user selected. If the function does not display the dialog box and was
successful, the return value is IDOK. The return value is less than zero if
the function failed.

Comments The ExtOeviceMode function is actually part of the printer's device driver,
and not part of CD!. To call this function, the application must include the
DRIVINT.H file, load the printer device driver, and retrieve the address of
the function by using the GetProc-Address function. The application can
then use the address to set up the printer.

An application can set the wMode parameter to DM_COPY to obtain a
OEVMOOE data structure filled in with the printer driver's initialization
data. The application can then pass this data structure to the CreateOC
function to set a private environment for the printer device context.

ExtFloodFili 3.0

Syntax BOOL ExtFloodFill(hDC, X, Y, crColor, wFillType)
function ExtFloodFill(DC: HDC; X, Y: Integer; Color: TColorRef; FillType:
Word): Bool;

This function fills an area of the display surface with the current brush.

If wFillType is set to FLOODFILLBORDER, the area is assumed to be
completely bounded by the color specified by the crColor parameter. The
ExtFloodFiII function begins at the point specified by the X and Y
parameters and fills in all directions to the color boundary.

If wFillType is set to FLOODFILLSURFACE, the ExtFloodFiII function
begins at the point specified by X and Y and continues in all directions,
filling all adjacent areas containing the color specified by crColor.

Parameters hDC

X

Chapter 4, Functions directory

HOC Identifies the device context.

int Specifies the logical x-coordinate of the point where
filling begins.

273

ExtFloodFiII

y

crColor

wFillType

int Specifies the logical y-coordinate of the point where
filling begins.

COLORREF Specifies the color of the boundary or of the
area to be filled. The interpretation of crColor depends on
the value of the wFillType parameter.

WORD Specifies the type of flood fill to be performed. It
must be one of the following values:

Value Meaning
FLOODFILLBORDER The fill area is bounded by the

color specified by crColor. This
style is identical to the filling
performed by the FloodFiII
function.

FLOODFILLSURFACE The fill area is defined by the
color specified by crColor. Filling
continues outward in all
directions as long as the color is
encountered. This is useful for
filling areas with multicolored
boundaries.

Return value The return value specifies the outcome of the function. It is nonzero if the
function is successful. It is zero if:

• The filling could not be completed
• The given point has the boundary color specified by crColor (if

FLOODFILLBORDER was requested)
• The given point does not have the color specified by crColor (if

FLOODFILLSURFACE was requested)
• The point is outside the clipping region

Comments Only memory device contexts and devices that support raster-display
technology support the ExtFloodFiII function. For more information, see
the RC_BITBLT raster capability in the GetDeviceCaps function section.

ExtTextOut

Syntax BOOL ExtTextOut(hDC, X, Y, wOptions, IpRect, IpString, nCount, IpDx)
function ExtTextOut(DC: HDC; X, Y: Integer; Options: Word; Rect: PRect;
Str: PChar; Count: Word; Dx: PInteger): Bool;

274 Software development kit

ExtTextOut

This function writes a character string, within a rectangular region on the
specified display, using the currently selected font. The rectangular region
can be opaque (filled with the current background color) and it can be a
clipping region.

Parameters hDC

x

Y

wOptions

IpRect

IpString

nCount

IpDx

HDC Identifies the device context.

int Specifies the logical x-coordinate of the origin of the
character cell for the first character in the specified string.

int Specifies the logical y-coordinate of the origin of the
character cell for the first character in the specified string.

WORD Specifies the rectangle type. It can be one or both
of the following values, or neither:

ETa_CLIPPED
ETa_oPAQUE

The ETa_CLIPPED value specifies that Windows will clip
text to the rectangle. The ETa_oPAQUE value specifies
that the current background color fills the rectangle.

LPRECT Points to a RECT data structure. The IpRect
parameter can be NULL.

LPSTR Points to the specified character string.

int Specifies the number of characters in the string.

LPINT Points to an array of values that indicate the
distance between origins of adjacent character cells. For
instance, IpDx[i] logical units will separate the origins of
character cell i and character cell i + 1.

Return value The return value specifies whether or not the string is drawn. It is nonzero
if the string is drawn. Otherwise, it is zero.

Comments If IpDx is NULL, the function uses the default spacing between characters.

The character-cell origins and the contents of the array pointed to by the
IpDx parameter are given in logical units. A character-cell origin is defined
as the upper-left corner of the character cell.

By default, the current position is not used or updated by this function.
However, an application can call the SetTextAlign function with the
wFlags parameter set to TA_UPDATECP to permit Windows to use and
update the current position each time the application calls ExtTextOut for
a given device context. When this flag is set, Windows ignores the X and
Yparameters on subsequent ExtTextOut calls.

Chapter 4, Functions directory 275

FatalAppExit

FatalAppExit 3.0

Syntax VOID FataIAppExit(wAction,lpMessageText)
procedure Fatal AppExit(Action: Word; MessageText: PChar);

This function displays a message containing the text specified by the
IpMessageText parameter and terminates the application when the
message box is closed. When called under the debugging version of
Windows, the message box gives the user the opportunity to terminate
the application or to return to the caller.

Parameters wAction WORD Is reserved and must be set to O.

IpMessageText LPSTR Points to a character string that is displayed in the
message box. The message is displayed on a single line.
To accommodate low-resolution displays, the string
should be no more than 35 characters in length.

Return value None.

Comments An application that encounters an unexpected error should terminate by
freeing all its memory and then returning from its main message loop. It
should call FatalAppExit only when it is not capable of terminating any
other way. FatalAppExit may not always free an application's memory or
close its files, and it may cause a general failure of Windows.

FatalExit

Syntax void FataIExit(Code)
procedure FataIExit(Code: Integer);

This function displays the current state of Windows on the debugging
monitor and prompts for instructions on how to proceed. The display
includes an error code, the Code parameter, followed by a symbolic stack
trace, showing the flow of execution up to the point of call.

An application should call this function only for debugging purposes; it
should not call the function in a retail version of the application. Calling
this function in the retail version will terminate the application.

Parameters Code

Return value None.

int Specifies the error code to be displayed.

Comments The FatalExit function prompts the user to respond to an "Abort, Break or
Ignore" message. FatalExit processes the response as follows:

276 Software development kit

FiliRect

Response

A (Abort)
B (Break)

I (Ignore)

FotolExit

Description

Terminates Windows.
Simulates a non-maskable interrupt (NMI) to enter the
debugger.
Returns to the caller.

The FatalExit function is for debugging only.

An application should call this function whenever the application detects
a fatal error. All input and output is received and transmitted through the
computer's auxiliary port (AUX) or through the debugger if a debugger is
installed.

Syntax int FillRect(hDC, lpRect, hBrush)
function FillRect(DC: HDC; var Rect: TRect; Brush: HBrush): Integer;

This function fills a given rectangle by using the specified brush. The
FiIIRect function fills the complete rectangle, including the left and top
borders, but does not fill the right and bottom borders.

Parameters hDC HOC Identifies the device context.

IpRect

hBrush

LPRECl Points to a RECl data structure that contains the
logical coordinates of the rectangle to be filled.

HBRUSH Identifies the brush used to fill the rectangle.

Return value Although the FiIIRect function return type is an integer, the return value
is not used and has no meaning.

Comments The brush must have been created previously by using either the
CreateHatchBrush, CreatePatternBrush, or CreateSolidBrush function, or
retrieved using the GetStockObject function.

When filling the specified rectangle, the FiIIRect function does not include
the rectangle's right and bottom sides. GDI fills a rectangle up to, but does
not include, the right column and bottom row, regardless of the current
mapping mode.

FiIIRect compares the values of the top, bottom, left, and right fields of the
specified rectangle. If bottom is less than or equal to top, or if right is less
than or equal to left, the rectangle is not drawn.

Chapter 4, Functions directory 277

II

FiliRgn

FiliRgn

Syntax BOOL FillRgn(hDC, hRgn, hBrush)
function FillRgn(DC: HDC; Rgn: HRgn; Brush: HBrush): Bool;

This function fills the region specified by the hRgn parameter with the
brush specified by the hBrush parameter.

Parameters hDC

hRgn

hBrush

HDC Identifies the device context.

HRGN Identifies the region to be filled. The coordinates
for the given region are specified in device units.

HBRUSH Identifies the brush to be used to fill the region.

Return value The return value specifies the outcome of the function. It is nonzero if the
function is successful. Otherwise, it is zero.

FindAtom

Syntax ATOM FindAtom(lpString)
function FindAtom(Str: PChar): TAtom;

This function searches the atom table for the character string pointed to by
the IpString parameter and retrieves the atom associated with that string.

Parameters IpString LPSTR Points to the character string to be searched for.
The string must be null-terminated.

Return value The return value identifies the atom associated with the given string. It is
NULL if the string is not in the table.

FindResource

278

Syntax HANDLE FindResource(hInstance, IpName, IpType)
function FindResourceOnstance: THandle; Name, ResType: PChar):
THandle;

This function determines the location of a resource in the specified
resource file. The IpName and IpType parameters define the resource name
and type, respectively.

Parameters hlnstance HANDLE Identifies the instance of the module whose
executable file contains the resource.

Software development kit

FindResource

IpName LPSTR Points to a null-terminated character string that
represents the name of the resource.

IpType LPSTR Points to a null-terminated character string that
represents the type name of the resource. For predefined
resource types, the IpType parameter should be one of the
following values:

Meaning
Accelerator table
Bitmap resource
Oialogbox
Font resource
Font directory resource
Menu resource

Value
RT_ACCELERATOR
RT_BITMAP
RT_OIALOG
RT_FONT
RT_FONTOIR
RT_MENU
RT_RCOATA User-defined resource (raw data)

Return value The return value identifies the named resource. It is NULL if the
requested resource cannot be found.

Comments An application must not call FindResource and the LoadResource
function to load cursor, icon, and string resources. Instead, it must load
these resources by calling the following functions:

I! LoadCursor
• Loadlcon
• LoadString

An application can call FindResource and LoadResource to load other
predefined resource types. However, it is recommended that the
application load the corresponding resources by calling the following
functions:

II LoadAccelerators
• LoadBitmap
III LoadMenu

If the high-order word of the IpName or IpType parameter is zero, the low­
order word specifies the integer 10 of the name or type of the given
resource. Otherwise, the parameters are long pointers to null-terminated
character strings. If the first character of the string is a pound sign (#), the
remaining characters represent a decimal number that specifies the
integer 10 of the resource's name or type. For example, the string #258
represents the integer 10 258.

To reduce the amount of memory required for the resources used by an
application, the application should refer to the resources by integer 10
instead of by name.

Chapter 4, Functions directory 279

FindWindow

FindWindow

Syntax HWND FindWindow(lpClassName, IpWindowName)
function FindWindow(ClassName, WindowName: PChar): HWnd;

This function returns the handle of the window whose class is given by
the IpClassName parameter and whose window name, or caption, is given
by the Ip WindowName parameter. This function does not
search child windows.

Parameters IpClassName lPSTR Points to a null-terminated character string that
specifies the window's class name. If IpClassName is
NULL, all class names match.

Ip WindowName lPSTR Points to a null-terminated character string that
specifies the window name (the window's text caption). If
Ip WindowName is NULL, all window names match.

Return value The return value identifies the window that has the specified class name
and window name. It is NULL if no such window is found.

FlashWindow

280

Syntax BOOL Flash Window(h Wnd, bInvert)
function Flash Window(Wnd: HWnd; Invert: Bool): Bool;

This function "flashes" the given window once. Flashing a window means
changing the appearance of its caption bar as if the window were
changing from inactive to active status, or vice versa. (An inactive caption
bar changes to an active caption bar; an active caption bar changes to an
inactive caption bar.)

Typically, a window is flashed to inform the user that the window
requires attention, but that it does not currently have the input focus.

Parameters h Wnd HWND Identifies the window to be flashed. The window
can be either open or iconic.

blnvert BOOl Specifies whether the window is to be flashed or
returned to its original state. The window is flashed from
one state to the other if the blnvert parameter is nonzero.
If the blnvert parameter is zero, the window is returned to
its original state (either active or inactive).

Software development kit

FlashWindow

The return value specifies the window's state before call to the
Return value FlashWindow function. It is nonzero if the window was active before the

call. Otherwise, it is zero.

Comments The FlashWindow function flashes the window only once; for successive
flashing, the application should create a system timer.

FloodFil1

The blnvert parameter should be zero only when the window is getting
the input focus and will no longer be flashing; it should be nonzero on
successive calls while waiting to get the input focus.

This function always returns a nonzero value for iconic windows. If the
window is iconic, FlashWindow will simply flash the icon; blnvert is
ignored for iconic windows.

Syntax BOOL FloodFill(hDC, X, Y, crColor}
function FloodFill(DC: HDC; X, Y: Integer; Color: TColorRef}: Bool;

This function fills an area of the display surface with the current brush.
The area is assumed to be bounded as specified by the crColor parameter.
The FloodFiII function begins at the point specified by the X and Y
parameters and continues in all directions to the color boundary.

Parameters hDC H DC Identifies the device context.

X

Y

crColor

int Specifies the logical x-coordinate of the point where
filling begins.

int Specifies the logical y-coordinate of the point where
filling begins.
COLORREF Specifies the color of the boundary.

Return value The return value specifies the outcome of the function. It is nonzero if the
function is successful. It is zero if the filling could not be completed, the
given point has the boundary color specified by crColor, or the point is
outside the clipping region.

Comments Only memory device contexts and devices that support raster-display
technology support the FloodFiII function. For more information, see the
RC_BITBL T raster capability in the GetDeviceCaps function, later in this
chapter.

Chapter 4, Functions directory 281

FlushComm

FlushComm

Syntax intFlushComm(nCid, nQueue)
function FlushComm(Cid, Queue: Integer): Integer;

This function flushes all characters from the transmit or receive queue of
the communication device specified by the nCid parameter. The nQueue
parameter specifies which queue is to be flushed.

Parameters nCid int Specifies the communication device to be flushed. The
OpenComm function returns this value.

nQueue int Specifies the queue to be flushed. If nQueue is zero, the
transmit queue is flushed. If it is 1, the receive queue is
flushed.

Return value The return value specifies the result of the function. It is zero if it is
successful. It is negative if nCid is not a valid device, or if nQueue is not a
valid queue.

_FPlnit

Syntax void far * _FPInitO

This function initializes the Windows floating-point emulator library
(WIN87EM.DLL) or floating-point coprocessor and sets up a default
floating-point exception-handler routine. Only DLLs need to call this
function.

Parameters None.

Return value The return value is a pointer to the previous floating-point exception
handler.

Comments A DLL must ensure that the floating-point emulator or coprocessor has
beeninitialized before making any function calls that use floating­
pointarithmetic. If a task that does not initialize the floating­
pointemulator or coprocesoor can call the DLL, or if the task's floating­
point exception handler does not handle floating-point exceptions
appropriately for the DLL, the DLL must call the _FPlnit function to
initialize the emulator or coprocessor. Before returning control to the
calling task, the DLL must call the _FPTerm function to restore the
previous exception handler.

282 Software development kit

_FPTerm

_FPTerm

Syntax void _FPTerm(lpOldFPSigHandler)

This function restores the floating-point exception-handler routine that
was in effect when a DLL called the _FPlnit function to initialize the
floating-point emulator or coprocessor. Only DLLs need to call this
function.

Parameters IpOldFPSigHandler void far * Points to the floating-point exception
handler to be restored.

Return value None.

Comments A DLL must ensure that the floating-point emulator or coprocessor has
been initialized before making any function calls that use floating-point
arithmetic. If a task that does not initialize the floating-point emulator or
coprocessor can call the DLL, or if it is possible that the task's floating­
point exception handler does not handle floating-point exceptions
appropriately for the DLL, the DLL must call the _FPlnit function to
initialize the emulator or coprocessor. Before returning control to the
calling task, the DLL must call the _FPTerm function to restore the
previous exception handler.

FrameRect

Syntax int FrameRect(hDC, IpRect, hBrush)
procedure FrameRect(DC: HDC; var Rect: TRect; Brush: HBrush;

This function draws a border around the rectangle specified by the IpRect
parameter. The FrameRect function uses the given brush to draw the
border. The width and height of the border is always one logical unit.

Parameters hDC

IpRect

HOC Identifies the device context of the window.

LPRECT Points to a RECT data structure that contains the
logical coordinates of the upper-left and lower-right
corners of the rectangle.

hBrush HBRUSH Identifies the brush to be used for framing the
rectangle.

Return value Although the return value type is integer, its contents should be ignored.

Chapter 4, Functions directory 283

FrameRect

Comments The brush identified by the hBrush parameter must have been created
previously by using the CreateHatchBrush, CreatePatternBrush, or
CreateSolidBrush function.

If the bottom field is less than or equal to the top field, or if right is less
than or equal to left, the rectangle is not drawn.

FrameRgn

Syntax BaaL FrameRgn(hDC, hRgn, hBrush, n Width, nHeight)
function FrameRgn(DC: HDC; Rgn: HRgn; Brush: HBrush; Width, Height:
Integer): Bool;

This function draws a border around the region specified by the hRgn
parameter, using the brush specified by the hBrush parameter. The n Width
parameter specifies the width of the border in vertical brush strokes; the
nHeight parameter specifies the height in horizontal brush strokes.

Parameters hDC

hRgn

hBrush

nWidth

nHeight

HDC Identifies the device context.

HANDLE Identifies the region to be enclosed in a border.
The coordinates for the given region are specified in
device units.

HBRUSH Identifies the brush to be used to draw the
border.

int Specifies the width in vertical brush strokes (in logical
units).

int Specifies the height in horizontal brush strokes (in
logical units).

Return value The return value specifies the outcome of the function. It is nonzero if the
function is successful. Otherwise, it is zero.

FreeLibrary

284

Syntax void FreeLibrary(hLibModule)
procedure FreeLibrary(LibModule: THandle);

This function decreases the reference count of the loaded library module
by one. When the reference count reaches zero, the memory occupied by
the module is freed.

Software development kit

FreeLibrary

Parameters hLibModule

Return value None.

HANDLE Identifies the loaded library module.

Comments A DLL must not call the FreeLibrary function within its WEP function.

FreeModule

Syntax void FreeModule(hModule)
function FreeModule(Module: THandle): Bool;

3.0

This function decreases the reference count of the loaded module by one.
When the reference count reaches zero, the memory occupied by the
module is freed.

Parameters hModule

Return value None.

FreeProclnstance

HANDLE Identifies the loaded module.

Syntax void FreeProcInstance(lpProc)
proced ure FreeProcInstance(Proc: TFar Proc);

This function frees the function specified by the lpProc parameter from the
data segment bound to it by the MakeProclnstance function.

Parameters lpProc FARPROC Is the procedure-instance address of the
function to be freed. It must have been created previously
by using the MakeProclnstance function.

Return value None.

Comments After freeing a procedure instance, attempts to call the function using the
freed procedure-instance address will result in an unrecoverable error.

FreeResource

Syntax BOOL FreeResource(hResData)
function FreeResource(ResData: THandle): Bool;

This function removes a loaded resource from memory by freeing the
allocated memory occupied by that resource.

Chapter 4, Functions directory 285

II
I

FreeResource

The FreeResource function does not actually free the resource until the
reference count is zero (that is, the number of calls to the function equals
the number of times the application called the LoadResource function for
this resource). This ensures that the data remain in memory for the
application to use.

Parameters hResData HANDLE Identifies the data associated with the resource.
The handle is assumed to have been created by using the
LoadResource function.

Return value The return value specifies the outcome of the function. The return value is
nonzero if the function has failed and the resource has not been freed. The
return value is zero if the function is successful.

FreeSelector 3.0

Syntax WORD FreeSelector(wSelector)
function FreeSelector(Selector: Word): Word;

This function frees a selector originally allocated by the
AllocSelector or AllocDStoCSAlias functions. After the application calls
this function, the selector is invalid and must not be used.

Parameters wSelector WORD Specifies the selector to be freed.

Return value The return value is NULL if the function was successful. Otherwise, it is
the selector specified by the wSelector parameter.

Comments Applications should not use this function unless it is absolutely necessary.
Use of this function violates preferred Windows programming practices.

GetActiveWindow

Syntax HWND GetActiveWindow()
function GetActiveWindow: HWnd;

This function retrieves the window handle of the active window. The
active window is either the window that has the current input focus, or
the window explicitly made active by the SetActiveWindow function.

Parameters None.

Return value The return value identifies the active window.

286 Software development kit

GetAspectRatioFilter

Get AspectRatioFilter

Syntax DWORD GetAspectRatioFilter(hDC)
function GetAspectRatioFilter(DC: HDC): Longint;

This function retrieves the setting for the current aspect-ratio filter. The
aspect ratio is the ratio formed by a device's pixel width and height.
Information about a device's aspect ratio is used in the creation, selection,
and displaying of fonts. Windows provides a special filter, the aspect-ratio
filter, to select fonts designed for a particular aspect ratio from all of the
available fonts. The filter uses the aspect ratio specified by the
SetMapperFlags function.

Parameters hDC HOC Identifies the device context that contains the specfied
aspect ratio.

Return value The return value specifies the aspect ratio used by the current aspect-ratio
filter. The x-coordinate of the aspect ratio is contained in the high-order
word, and the y-coordinate is contained in the low-order word.

Get AsyncKeyState

Syntax int GetAsyncKeyState(vKey)
function GetAsyncKeyState(Key: Integer): Integer;

This function determines whether a key is up or down at the time the
function is called, and whether the key was pressed after a previous call to
the GetAsyncKeyState function. If the most significant bit of the return
value is set, the key is currently down; if the least significant bit is set, the
key was pressed after a previous call to the function.

Parameters vkey int Specifies one of 256 posible virtual-key code values.

Return value The return value specifies whether the key was pressed since the last call
to GetAsyncKeyState and whether the key is currently up or down. If the
most significant bit is set, the key is down, and if the least significant bit is
set, the key was pressed after a preceding GetAsyncKeyState call.

GetAtomHandle

Syntax HMEM GetAtomHandle(w Atom)
function GetAtomHandle(AnAtom: TAtom): THandle;

Chapter 4, Functions directory 287

I
I

GetAtomHandle

This function retrieves a handle (relative to the local heap) of the string
that corresponds to the atom specified by the wAtom parameter.

Parameters wAtom WORD Specifies an unsigned integer that identifies the atom
whose handle is to be retrieved.

Return value The return value identifies the given atom's string. It is zero if no such
atom exists.

GetAtomName

Syntax WORD GetAtomName(nAtom, IpBuffer, nSize)
function GetAtomName(AnAtom: TAtom; Buffer: PChar; Size: Integer):
Word;

This function retrieves a copy of the character string associated with the
nAtom parameter and places it in the buffer pointed to by the IpBuffer
parameter. The nSize parameter specifies the maximum size of the buffer.

Parameters nAtom ATOM Identifies the character string to be retrieved.

IpBuffer

nSize

LPSTR Points to the buffer that is to receive the character
string.

int Specifies the maximum size (in bytes) of the buffer.

Return value The return value specifies the actual number of bytes copied to the buffer.
It is zero if the specified atom is not valid.

GetBitmapBits

288

Syntax DWORD GetBitmapBits(hBitmap, dwCount, IpBits)
function GetBitmapBits(Bitmap: HBitmap; Count: Longint; Bits: Pointer):
Longint;

This function copies the bits of the specified bitmap into the buffer that is
pointed to by the IpBits parameter. The dwCount parameter specifies the
number of bytes to be copied to the buffer. The GetObject function should
be used to determine the correct dwCount value for the given bitmap.

Parameters hBitmap

dwCount

IpBits

HBITMAP Identifies the bitmap.

DWORD Specifies the number of bytes to be copied.

LPSTR Long pointer to the buffer that is to receive the
bitmap. The bitmap is an array of bytes. The bitmap byte

Software development kit

GetBitmopBits

array conforms to a structure where horizontal scan lines are
multiples of 16 bits.

Return value The return value specifies the actual number of bytes in the bitmap. It is
zero if there is an error.

GetBitmapOimension

Syntax DWORD GetBitmapDimension(hBitmap)
function GetBitmapDimension(Bitmap: HBitmap): Longint;

This function returns the width and height of the bitmap specified by the
hBitmap parameter. The height and width is assumed to have been set
previously by using the SetBitmapOimension function.

Parameters hBitmap HBITiviAP Identifies the bitmap.

Return value The return value specifies the width and height of the bitmap, measured
in tenths of millimeters. The height is in the high-order word, and the
width is in the low-order word. If the bitmap width and height have not
been set by using SetBitmapOimension, the return value is zero.

GetBkC%r

Syntax DWORD GetBkColor(hDC)
function GetBkColor(DC: HDC): Longint;

This function returns the current background color of the specified device.

Parameters hDC HOC Identifies the device context.

Return value The return value specifies an RGB color value that names the current
background color.

GetBkMode

Syntax int GetBkMode(hDC)
function GetBkMode(DC: HDC): Integer;

This function returns the background mode of the specified device. The
background mode is used with text, hatched brushes, and pen style that is
not a solid line.

Parameters hDC HOC Identifies the device context.

Chapter 4, Functions directory 289

I

I

GetBkMode

Return value The return value specifies the current background mode. It can be
OP AQUE or TRANSPARENT.

GetBrushOrg

Syntax DWORD GetBrushOrg(hDC)
function GetBrushOrg(DC: HDC): Longint;

This function retrieves the current brush origin for the given device
context.

Parameters hDC H DC Identifies the device context.

Return value The return value specifies the current origin of the brush. The x­
coordinate is in the low word, and the y-coordinate is in the high word.
The coordinates are assumed to be in device units.

Comments The initial brush origin is at the coordinate (0,0).

GetBValue

Syntax BYTE GetBValue(rgbColor)
function GetBValue(RGBColor: Longint): Byte;

This macro extracts the blue value from an RGB color value.

Parameters rgbColor DWORD Specifies a red, a green, and a blue color field, each
specifying the intensity of the given color.

Return value The return value specifies a byte that contains the blue value of the
rgbColor parameter.

Comments The value OFFH corresponds to the maximum intensity value for a single
byte; OOOH corresponds to the minimum intensity value for a single byte.

GetCapture

290

Syntax HWND GetCapture()
function GetCapture: HWnd;

This function retrieves a handle that identifies the window that has the
mouse capture. Only one window has the mouse capture at any given
time; this window receives mouse input whether or not the cursor is
within its borders.

Software development kit

GetCapture

Parameters None.

Return value The return value identifies the window that has the mouse capture; it is
NULL if no window has the mouse capture.

Comments A window receives the mouse capture when its handle is passed as the
h Wnd parameter of the SetCapture function.

GetCaretBlinkTime

Syntax WORD GetCaretBlinkTime()
function GetCaretBlinkTime: Word;

This function retrieves the caret blink rate. The blink rate is the elapsed
time in milliseconds between flashes of the caret.

Parameters None.

Return value The return value specifies the blink rate (in milliseconds).

GetCaretpos

Syntax void GetCaretPos(lpPoint)
procedure GetCaretPos(var Point: TPoint);

This function retrieves the caret's current position (in screen coordinates),
and copies them to the POINT structure pointed to by the IpPoint
parameter.

Parameters IpPoint

Return value None.

LPPOINT Points to the POINT structure that is to receive the
screen coordinates of the caret.

Comments The caret position is always given in the client coordinates of the window
that contains the caret.

GetCharWidth

Syntax BaaL GetCharWidth(hDC, wFirstChar, wLastChar, IpBuffer)
function GetCharWidth(DC: HDC; FirstChar, LastChar: Word; var Buffer):
Bool;

Chapter 4, Functions directory 291

I
I

GefCharWidfh

This function retrieves the widths of individual characters in a
consecutive group of characters from the current font. For example, if the
wFirstChar parameter identifies the letter a and the wLastChar parameter
identifies the letter 2, the GetCharWidth function retrieves the widths of
all lowercase characters. The function stores the values in the buffer
pointed to by the IpBuffer parameter.

Parameters hDC HOC Identifies the device context.

wFirstChar WORD Specifies the first character in a consecutive group of
characters in the current font.

wLastChar WORD Specifies the last character in a consecutive group of
characters in the current font.

IpBuffer LPINT Points to a buffer that will receive the width values
for a consecutive group of characters in the current font.

Return value The return value specifies the outcome of the function. It is nonzero if the
function is successful. Otherwise, it is zero.

Comments If a character in the consecutive group of characters does not exist in a
particular font, it will be assigned the width value of the default character.

GetClasslnfo 3.0

292

Syntax BaaL GetClassInfo(hInstance, IpClassName, IpWndClass)
function GetClassInfo(lnstance: THandle; ClassInfo: PChar; var
WndClass: TWndClass): Bool;

This function retrieves information about a window class. The hlnstance
parameter identifies the instance of the application that created the class,
and the IpClassName parameter identifies the window class. If the function
locates the specified window class, it copies the WNDCLASS data used to
register the window class to the WNDCLASS data structure pointed to by
Ip WndClass.

Parameters hlnstance HANDLE Identifies the instance of the application that
created the class. To retrieve information on classes defined
by Windows (such as buttons or list boxes), set hlnstance to
NULL.

IpClassName LPSTR Points to a null-terminated string that contains the
name of the class to find. If the high-order word of this
parameter is NULL, the low-order word is assumed to be a

Software development kit

GetClasslnfo

value returned by the MAKEINTRESOURCE macro used
when the class was created.

Ip WndClass LPWNDCLASS Points to the WNDCLASS structure to which
the function will copy the class information.

Return value The return value is TRUE if the function found a matching class and
successfully copied the data; the return value is FALSE if the function did
not find a matching class.

Comments The IpszClassName, IpszMenuName, and hlnstance fields in the I
WNDCLASS data structure are not returned by this function. The menu

GetClassLong

name is not stored internally and cannot be returned. The class name is
already known since it is passed to this function. The GetClasslnfo
function returns all other fields with the values used when the class was
registered.

Syntax LONG GetClassLong(hWnd, nIndex)
function GetClassLong(Wnd: HWnd; Index: Integer): Longint;

This function retrieves the long value specified by the nlndex parameter
from the WNDCLASS structure of the window specified by the hWnd
parameter.

Parameters h Wnd

nlndex

HWND Identifies the window.

int Specifies the byte offset of the value to be retrieved. It can
also be the following value:

Value Meaning
GCL_ WNDPROC Retrieves a long pointer to the window

function.

Return value The return value specifies the value retrieved from the WNDCLASS
structure.

Comments To access any extra four-byte values allocated when the window-class
structure was created, use a positive byte offset as the index specified by
the nlndex parameter. The first four-byte value in the extra space is at
offset zero, the next four-byte value is at offset 4, and so on.

Chapter 4, Functions directory 293

GetClassName

GetClassName

Syntax int GetClassName(hWnd,lpClassName, nMaxCount)
function GetClassName(Wnd: HWnd; ClassName: PChar; MaxCount:
Integer): Integer;

This function retrieves the class name of the window specified by the
h Wnd parameter.

Parameters hWnd HWND Identifies the window whose class name is to be
retrieved.

IpClassName LPSTR Points to the buffer that is to receive the class name.

nMaxCount int Specifies the maximum number of bytes to be stored in
the IpClassName parameter. If the actual name is longer, a
truncated name is copied to the buffer.

Return value The return value specifies the number of characters actually copied to
IpClassName. The return value is zero if the specified class name is not
valid.

GetClassWord

294

Syntax WORD GetClassWord(hWnd, nIndex)
function GetClassWord(Wnd: HWnd, Index: Integer): Word;

This function retrieves the word that is specified by the nlndex parameter
from the WNDCLASS structure of the window specified by the h Wnd
parameter.

Parameters h Wnd

nlndex

HWND Identifies the window.

int Specifies the byte offset of the value to be retrieved. It can
also be one of the following values:

Value Meaning
GCW_CBCLSEXTRA Tells how many bytes of

additional class information
you have. For information on
how to access this memory,
see the following "Comments"
section.
Tells how many bytes of
additional window
information you have. For

Software development kit

GCW_HBRBACKGROUND

GCW _HCURSOR

GCW_HICON
GCW _HMODULE

GCW_STYLE

GetClassWord

information on how to access
this memory, see the
following "Comments"
section.
Retrieves a handle to the
background brush.
Retrieves a handle to the
cursor.
Retrieves a handle to the icon.
Retrieves a handle to the
module.
Retrieves the window-class
style bits.

Return value The return value specifies the value retrieved from the WNDCLASS
structure.

Comments To access any extra two-byte values allocated when the window-class
structure was created, use a positive byte offset as the index specified by
the nlndex parameter, starting at zero for the first two-byte value in the
extra space, 2 for the next two-byte value and so on.

GetClientRect

Syntax void GetClientRect(h Wnd, lpRect)
procedure GetClientRect(Wnd: HWnd; var Rect: TRect);

This function copies the client coordinates of a window's client area into
the data structure pointed to by the IpRect parameter. The client
coordinates specify the upper-left and lower-right corners of the client
area. Since client coordinates are relative to the upper-left corners of a
window's client area, the coordinates of the upper-left corner are (0,0).

Parameters hWnd HWND Identifies the window associated with the client area.

IpRect

Return value None.

GetClipboardData

LPRECl Points to a RECl data structure.

Syntax HANDLE GetClipboardData(wFormat)
function GetClipboardData(Format: Word): THandle;

Chapter 4, Functions directory 295

GetClipboardData

This function retrieves data from the clipboard in the format given by the
wFormat parameter. The clipboard must have been opened previously.

Parameters wFormat WORD Specifies a data format. For a description of the data
formats, see the SetClipboardData function, later in this
chapter.

Return value The return value identifies the memory block that contains the data from
the clipboard. The handle type depends on the type of data specified by
the wFormat parameter. It is NULL if there is an error.

Comments The available formats can be enumerated in advance by using the
EnumClipboardFormats function.

The data handle returned by GetClipboardData is controlled by the
clipboard, not by the application. The application should copy the data
immediately, instead of relying on the data handle for long-term use. The
application should not free the data handle or leave it locked.

Windows supports two formats for text, CF_TEXT and CF_OEMTEXT.
CF _TEXT is the default Windows text clipboard format, while Windows
uses the CF _OEMTEXT format for text in non-Windows applications. If
you call GetClipboardData to retrieve data in one text format and the
other text format is the only available text format, Windows automatically
converts the text to the requested format before supplying it to your
application.

If the clipboard contains data in the CF _P ALETTE (logical color palette)
format, the application should assume that any other data in the clipboard
is realized against that logical palette.

GetClipboardFormatName

296

Syntax int GetClipboardFormatName(wFormat, lpFormatName, nMaxCount)
function GetClipboardFormatName(Format: Word; FormatName: PChar;
MaxCount: Integer): Integer;

This function retrieves from the clipboard the name of the registered
format specified by the wFormat parameter. The name is copied to the
buffer pointed to by the IpFormatName parameter.

Parameters wFormat WORD Specifies the type of format to be retrieved. It must
not specify any of the predefined clipboard formats.

IpFormatName LPSTR Points to the buffer that is to receive the format
name.

Software development kit

GetClipboardFormatName

nMaxCount int Specifies the maximum length (in bytes) of the string
to be copied to the buffer. If the actual name is longer, it is
truncated.

Return value The return value specifies the actual length of the string copied to the
buffer. It is zero if the requested format does not exist or is a predefined
format.

GetClipboardOwner

Syntax HWND GetClipboardOwner()
function GetClipboardOwner: HWnd;

This function retrieves the window handle of the current owner of the
clipboard.

Parameters None.

Return value The return value identifies the window that owns the clipboard. It is
NULL if the clipboard is not owned.

Comments The clipboard can still contain data even if the clipboard is not currently
owned.

GetClipboardViewer

Syntax HWND GetClipboardViewer()
function GetClipboardViewer: HWnd;

This function retrieves the window handle of the first window in the
clipboard-viewer chain.

Parameters None.

Return value The return value identifies the window currently responsible for
displaying the clipboard. It is NULL if there is no viewer.

GetClipBox

Syntax int GetClipBox(hDC, IpRect)
function GetClipBox(DC: HDC; var Rect: TRect): Integer;

Chapter 4, Functions directory 297

I

GefClipBox

This function retrieves the dimensions of the tightest bounding rectangle
around the current clipping boundary. The dimensions are copied to the
buffer pointed to by the IpRect parameter.

Parameters hDC HOC Identifies the device context.

IpRect LPRECl Points to the RECl data structure that is to receive
the rectangle dimensions.

Return value The return value specifies the clipping region's type. It can be anyone of
the following values:

Value

COMPLEXREGION
ERROR
NULLREGION
SIMPLEREGION

Meaning

Clipping region has overlapping borders.
Device context is not valid.
Clipping region is empty.
Clipping region has no overlapping borders.

GetCodeHandle

Syntax HANDLE GetCodeHandle(lpProc)
function GetCodeHandle(Proc: TFarProc): THandle;

This function determines which code segment contains the function
pointed to by the IpProc parameter.

Parameters IpProc FARPROC Is a procedure-instance address.

Return value The return value identifies the code segment that contains the function.

Comments If the code segment that contains the function is already loaded, the
GetCodeHandle function marks the segment as recently used. If the code
segment is not loaded, GetCodeHandle attempts to load it. Thus, an
application can use this function to attempt to preload one or more
segments needed to perform a particular task.

GetCodelnfo 3.0

298

Syntax void GetCodeInfo(lpProc, lpSegInfo)
procedure GetCodeInfo(Proc: TFarProc; SegInfo: Pointer);

This function retrieves a pointer to an array of 16-bit values containing
information about the code segment that contains the function pointed to
by the IpProc parameter.

Software development kit

Parameters IpProc

IpSeglnfo

Return value None.

GetCodelnfo

FARPROC Is the address of the function in the segment for
which information is to be retrieved. Instead of a
segment:offset address, this value can also be in the form of
a module handle and segment number. The
GetModuleHandle function returns the handle of a named
module.

LPVOID Points to an array of four 32-bit values that will be I

filled with information about the code segment. See the •
following "Comments" section for a description of the values'· .
in this array.

I

Comments The IpSeglnfo parameter points to an array of four 32-bit values that
contains such information as the location and size of the segment and its
attributes. The following list describes each of these values:

Offset Description

o Specifies the logical-sector offset (in bytes) to the contents of the
segment data, relative to the beginning of the file. Zero means no file
data is available.

2 Specifies the length of the segment in the file (in bytes). Zero means
64K.

4 Contains flags which specify attributes of the segment. The following
list describes these flags:

Bit Meaning
0-2 Specifies the segment type. If bit 0 is set to 1, the segment

is a data segment. Otherwise, the segment is a code
segment.

3 Specifies whether segment data is iterated. When this bit
set to 1, the segment data is iterated.

4 Specifies whether the segment is moveable or fixed. When
this bit is set to 1, the segment is moveable. Otherwise, it is
fixed.

5 Is not returned.
6 Is not returned.
7 Specifies whether the segment is a read-only data segment

or an execute-only code segment. If this bit is set to 1 and
the segment is a code segment, the segment is an execute­
only segment. If this bit is set to zero and the segment is a
data segment, it is a read-only segment.

8 Specifies whether the segment has associated relocation
information. If this bit is set to 1, the segment has
relocation information. Otherwise, the segment does not
have relocation information.

9 Specifies whether the segment has debugging information.
If this bit is set to 1, the segment has debugging

Chapter 4, Functions directory 299

GetCodelnfo

6

10-11
12-15

information. Otherwise, the segment does not have
debugging information.
Is not returned.
Is not returned.

Specifies the total amount of memory allocated for the segment. This
amount may exceed the actual size of the segment. Zero means 65,536.

GetCommError ~t-

Syntax int GetCommError{nCid, IpStat)
function GetCommError{Cid: Integer; var Stat: TComStat): Integer;

In case of a communications error, Windows locks the communications
port until the error is cleared by using the GetCommError function. This
function fills the status buffer pointed to by the IpStat parameter with the
current status of the communication device specified by the nCid
parameter. It also returns the error codes that have occurred since the last
GetCommError call. If IpStat is NULL, only the error code is returned. For
a list of the error codes, see Table 4.8, "Communications error codes."

Parameters nCid

IpStat

int Specifies the communication device to be examined. The
OpenComm function returns this value.

COMSTAT FAR * Points to the COMSTAT structure that is to
receive the device status. The structure contains information
about a communication device.

Return value The return value specifies the error codes returned by the most recent
communications function. It can be a combination of one or more of the
values given in Table 4.8.

Table 4.8
Communications

error codes

Value

CE_BREAK
CE_CTSTO

Meaning

The hardware detects a break condition.

300

CE_DNS
CE_DSRTO

CE_FRAME
CE_IOE

CE_MODE

CE_OOP
CE_OVERRUN

CE_PTO

Clear-to-send timeout. CTS is low for the duration specified by
CtsTimeout while trying to transmit a character.
The parallel device is not selected.
Data-set-ready timeout. DSR is low for the duration specified
by DsrTimeout while trying to transmit a character.
The hardware detects a framing error.
An I/O error occurs while trying to communicate with a
parallel device.
Requested mode is not supported, or the nCid parameter is
invalid. If set, this is the only valid error.
The parallel device signals that it is out of paper.
A character is not read from the hardware before the next
character arrives. The character is lost.
Timeout occurs when communicating with a parallel device.

Software development kit

GetCommError

Table 4.8: Communications error codes (continued)

CE_RLSDTO Receive-line-signal-detect timeout. RLSD is low for the
duration specified by RlsdTimeout while trying to transmit a
character.

CE_RXOVER

CE_RXPARITY
CE_TXFULL

Receive queue overflow. There is either no room in the input
queue or a character is received after the EofChar character.
The hardware detects a parity error.
The transmit queue is full while trying to queue a character.

GetCommEventMask

Syntax WORD GetCommEventMask(nCid, nEvtMask)
function GetCommEventMask(Cid, EvtMask: Integer): Word;

This function retrieves the value of the current event mask, and then
clears the mask. This function must be used to prevent loss of an event.

Parameters nCid

nEvtMask

int Specifies the communication device to be examined. The
OpenComm function returns this value.

int Specifies which events are to be enabled. For a list of the
event values, see the SetCommEventMask function, later in
this chapter.

Return value The return value specifies the current event-mask value. Each bit in the
event mask specifies whether a given event has occurred. A bit is set to 1
if the event has occurred.

GetCommState '7'k
Syntax int GetCommState(nCid, IpDCB)

function GetCommState(Cid: Integer; var DCB: TDCB): Integer;

This function fills the buffer pointed to by the IpDCB parameter with the
device control block of the communication device specified by the nCid
parameter.

Parameters nCid

IpDCB

Chapter 4, Functions directory

int Specifies the device to be examined. The OpenComm
function returns this value.

DCB FAR *Points to the DCB data structure that is to receive
the current device control block. The structure defines the
control setting for the device.

301

I

I

GetCommState

Return value The return value specifies the outcome of the function. It is zero if the
function was successful. If an error occurred, the return value is negative.

GetCurrentPDB

Syntax WORD GetCurrentPDBO
function GetCurrentPDB: Word;

This function returns the paragraph address or selector of the current
DOS Program Data Base (PDB), also known as the Program Segment
Prefix (PSP).

Parameters None.

3.0

Return value The return value is the paragraph address or selector of the current PDB.

GetCurrentPosition

Syntax DWORD GetCurrentPosition(hDC)
function GetCurrentPosition(DC: HDC): Longint;

This function retrieves the logical coordinates of the current position.

Parameters hDC HOC Identifies a device context.

Return value The return value specifies the current position. The y-coordinate is in the
high-order word; the x-coordinate is in the low-order word.

GetCurrentTask

Syntax HANDLE GetCurrentTask()
function GetCurrentTask :THandle;

This function returns the handle of the currently executing task.

Parameters None.

Return value The return value identifies the task if the function is successful.
Otherwise, it is NULL.

302 Software development kit

GetCurrentTime

GetCurrentTime

Syntax DWORD GetCurrentTime()
function GetCurrentTime: Longint;

This function retrieves the current Windows time. Windows time is the
number of milliseconds that have elapsed since the system was booted.

Parameters None.

Return value The return value specifies the current time (in milliseconds).

Comments The GetCurrentTime and GetMessageTime functions return different
times. GetMessageTime returns the Windows time when the given
message was created, not the current Windows time.

The system timer eventually overflows and resets to zero.

GetCursorPos

Syntax void GetCursorPos(lpPoint)
procedure GetCursorPos(var Point: TPoint);

This function retrieves the cursor's current position (in screen
coordinates), that copies them to the POINT structure pointed to by the
IpPoint parameter.

Parameters IpPoint LPPOINT Points to the POINT structure that is to receive the
screen coordinates of the cursor.

Return value None

Comments The cursor position is always given in screen coordinates and is not
affected by the mapping mode of the window that contains the cursor.

GetDC

Syntax HDC GetDC(h Wnd)
function GetDC(Wnd: HWnd): HDC;

This function retrieves a handle to a display context for the client area of
the given window. The display context can be used in subsequent GDI
functions to draw in the client area.

Chapter 4, Functions directory 303

I
I

GetDe

The GetDC function retrieves a common, class, or private display context
depending on the class style specified for the given window. For common
display contexts, GetDC assigns default attributes to the context each time
it is retrieved. For class and private contexts, GetDC leaves the previously
assigned attributes unchanged.

Parameters h Wnd HWND Identifies the window whose display context is to be
retrieved.

Return value The return value identifies the display context for the given window's
client area if the function is successful. Otherwise, it is NULL.

Comments After painting with a common display context, the ReleaseDC function
must be called to release the context. Class and private display contexts
do not have to be released. Since only five common display contexts are
available at any given time, failure to release a display context can prevent
other applications from accessing a display context.

GetDCOrg

Syntax DWORD GetDCOrg(hDC)
function GetDCOrg(DC: HDC): Longint;

This function obtains the final translation origin for the device context.
The final translation origin specifies the offset used by Windows to
translate device coordinates into client coordinates for points in an
application's window. The final translation origin is relative to the
physical origin of the screen display.

Parameters hDC HDC Identifies the device context whose origin is to be
retrieved.

Return value The return value specifies the final translation origin (in device
coordinates). The y-coordinate is in the high-order word; the x-coordinate
is in the low-order word.

GetOesktopWindow 3.0

304

Syntax HWND GetDesktopWindow()
function GetDesktopWindow: HWnd;

This function returns the window handle to the Windows desktop
window. The desktop window covers the entire screen and is the area on
top of which all icons and other windows are painted.

Software development kit

GefDeskfopWindow

Parameters None.

Return value The return value identifies the Windows desktop window.

GetDeviceCaps

Syntax int GetDeviceCaps(hDC, nIndex)
function GetDeviceCaps(DC: HDC; Index: Integer): Integer;

This function retrieves device-specific information about a given display
device. The nlndex parameter specifies the type of information desired.

Parameters hDC HOC Identifies the device context.

nlndex int Specifies the item to return. It can be anyone of the
values given in Table 4.9, "GDI information indexes."

Return value The return value specifies the value of the desired item.

Comments Table 4.9 lists the values for the nlndex parameter:

Table 4.9
GDI information

indexes

Index

DRIVERVERSION
TECHNOLOGY

HORZSIZE
VERTSIZE
HORZRES
VERTRES
LOGPIXELSX
LOGPIXELSY
BITS PIXEL
PLANES
NUMBRUSHES
NUMPENS
NUMFONTS
NUMCOLORS
ASPECTX
ASPECTY

Chapter 4, Functions directory

Meaning

Version number; for example, OxlOO for 1.0.
Device technology. It can be anyone of these values:

Value
DT_PLOTTER
DT _RASDISPLAY
DT _RASPRINTER
DT_RASCAMERA
DT_ CHARSTREAM
DT_METAFILE
DT_DISPFILE

Meaning
Vector plotter
Raster display
Raster printer
Raster camera
Character stream
Metafile
Display file

Width of the physical display (in millimeters).
Height of the physical display (in millimeters).
Width of the display (in pixels).
Height of the display (in raster lines).
Number of pixels per logical inch along the display width.
Number of pixels per logical inch along the display height.
Number of adjacent color bits for each pixel.
Number of color planes.
N umber of device-specific brushes.
Number of device-specific pens.
Number of device-specific fonts.
Number of entries in the device's color table.
Relative width of a device pixel as used for line drawing.
Relative height of a device pixel as used for line drawing.

305

GetOeviceCaps

306

Table 4.9: GOI information indexes (continued)

ASPECTXY

PDEVICESIZE
CLIPCAPS

SIZEP ALETTE

NUMRESERVED

COLORRES

RASTERCAPS

CURVECAPS

Diagonal width of the device pixel as used for line
drawing.
Size of the PDEVICE internal data structure.
Flag that indicates the clipping capabilities of the device. It
is 1 if the device can clip to a rectangle, 0 if it cannot.
Number of entries in the system palette. This index is
valid only if the device driver sets the RC_P ALETTE bit in
the RASTERCAPS index and is available only if the driver
version is 3.0 or higher.
Number of reserved entries in the system palette. This
index is valid only if the device driver sets the
RC_PALETTE bit in the RASTERCAPS index and is
available only if the driver version is 3.0 or higher.
Actual color resolution of the device in bits per pixel. This
index is valid only if the device driver sets the
RC_PALETTE bit in the RASTERCAPS index and is
available only if the driver version is 3.0 or higher.
Value that indicates the raster capabilities of the device, as
shown in the following list:

Capability Meaning
RC_BANDING Requires banding support.
RC_BITBLT Capable of transferring bitmaps.
RC_BITMAP64 Capable of supporting bitmaps

larger than 64K.
Capable of supporting SetDIBits
and GetDIBits.
Capable of supporting the SetDI­
BitsToDevice function.

RC_FLOODFILL Capable of performing flood fills.
RC_GDI20_0UTPUT Capable of supporting Windows

RC_PALETTE
RC_SCALING
RC_STRETCHBLT

version 2.0 features.
Palette-based device.
Capable of scaling.
Capable of performing the
StretchBlt function.
Capable of performing the
StretchDIBlts function.

A bitmask that indicates the curve capabilities of the
device. The bits have the following meanings:

Bit Meaning
o Device can do circles.
1 Device can do pie wedges.
2 Device can do chord arcs.
3 Device can do ellipses.
4 Device can do wide borders.
5 Device can do styled borders.
6 Device can do borders that are

wide and styled.
7 Device can do interiors.

Software development kit

GetOeviceCaps

Table 4.9: GDI information indexes (continued)

LINECAPS

The high byte is O.

A bitmask that indicates the line capabilities of the device.
The bits have the following meanings:

Bit Meaning
o Reserved.
1 Device can do polyline.
2 Reserved.
3 Reserved.
4 Device can do wide lines.
5 Device can do styled lines.
6 Device can do lines that are wide

and styled.
7 Device can do interiors.
The high byte is O.

POL YGONALCAPS A bitmask that indicates the polygonal capabilities of the
device. The bits have the following meanings:

Bit Meaning
a Device can do alternate fill

polygon.
1 Device can do rectangle.
2 Device can do winding number

fill polygon.
3 Device can do scanline.
4 Device can do wide borders.
5 Device can do styled borders.
6 Device can do borders that are

wide and styled.
7 Device can do interiors.
The high byte is O.

TEXTCAPS A bitmask that indicates the text capabilities of the device.
The bits have the following meanings:

Bit Meaning
o Device can do character output

precision.
1 Device can do stroke output

precision.
2 Device can do stroke clip

precision.
3 Device can do 90-degree character

rotation.
4 Device can do any character

rotation.
5 Device can do scaling

independent of X and Y.
6 Device can do doubled character

for scaling.

Chapter 4, Functions directory 307

I

•

GetOeviceCaps

Table 4.9: GDI information indexes (continued)

7

8

9

10
11
12
13
14
15

Device can do integer multiples
for scaling.
Device can do any multiples for
exact scaling.
Device can do double-weight
characters.
Device can do italicizing.
Device can do underlining.
Device can do strikeouts.
Device can do raster fonts.
Device can do vector fonts.
Reserved. Must be returned zero.

For a list of all the available abilities, see the LOG FONT data structure in
Chapter 7, "Data types and structures," in Reference, Volume 2.

GetDialog8aseUnits 3.0

308

Syntax LONG GetDialogBaseUnits()
function GetDialogBaseUnits: Longint;

This function returns the dialog base units used by Windows when
creating dialog boxes. An application should use these values to calculate
the average width of characters in the system font.

Parameters None.

Return value The return value specifies the dialog base units. The high-order word
contains the height in pixels of the current dialog base height unit derived
from the height of the system font, and the low-order word contains the
width in pixels of the current dialog base width unit derived from the
width of the system font.

Comments The values returned represent dialog base units before being scaled to
actual dialog units. The actual dialog unit in the x direction is 1/4 of the
width returned by GetDialogBaseUnits. The actual dialog unit in the y
direction is 1/8 of the height returned by the function.

To determine the actual height and width in pixels of a control, given the
height (x) and width (y) in dialog units and the return value
ODlgBaseUnits) from calling GetDialogBaseUnits, use the following
formula:

(x * LOWORD(lDlgBaseUnits))/4
(y * HIWORD(lDlgBaseUnits))/8

Software development kit

GetDIBits

GetDIBits

To avoid rounding problems, perform the multiplication before the
division in case the dialog base units are not evenly divisible by four.

3.0

Syntax int GetDIBits(hDC, hBitmap, nStartScan, nNumScans, IpBits, IpBitslnfo,
wUsage)
function GetDIBits(DC: HOC; Bitmap: THandle; StartS can, NumScans:
Word; Bits: Pointer; var BitInfo: TBitmaplnfo; Usage: Word): Integer;

This function retrieves the bits of the specified bitmap and copies them, in
device-independent format, into the buffer that is pointed to by the IpBits
parameter. The IpBitsInfo parameter retrieves the color format for the
device-independent bits.

Parameters hDC HDC Identifies the device context.

hBitmap HBITMAP Identifies the bitmap.

nStartScan WORD Specifies the first scan line in the destination bitmap
to set in IpBits.

nNumScans WORD Specifies the number of lines to be copied.

IpBits

IpBitsInfo

wUsage

LPSTR Points to a buffer that will receive the bitmap bits in
device-independent format.

LPBITMAPINFO Points to a BITMAPINFO data structure that
specifies the color format and dimension for the device­
independent bitmap.

WORD Specifies whether the bmiColors[] fields of the IpBits­
Info parameter are to contain explicit RGB values or indexes
into the currently realized logical palette. The wUsage
parameter must be one of the following values:

Value
DIB_PAL_COLORS

DIB _RGB _COLORS

Meaning
The color table is to consist of an
array of 16-bit indexes into the
currently realized logical palette.
The color table is to contain literal
RGB values.

Return value The return value specifies the number of scan lines copied from the
bitmap. It is zero if there was an error.

Chapter 4, Functions directory 309

•

GetDIBits

Comments If the IpBits parameter is NULL, GetDIBits fills in the BITMAPINFO data
structure to which the IpBitslnfo parameter points, but does not retrieve
bits from the bitmap.
The bitmap identified by the hBitmap parameter must not be selected into
a device context when the application calls this function.

The origin for device-independent bitmaps is the bottom-left corner of the
bitmap, not the top-left corner, which is the origin when the mapping
mode is MM_TEXT.

This function also retrieves a bitmap specification formatted for Microsoft
OS/2 Presentation Manager versions 1.1 and 1.2 if the IpBitslnfo parameter
points to a BITMAPCOREINFO data structure.

GetDlgCtrllD 3.0

Syntax int GetDlgCtrlID(h Wnd)
function GetDlgCtrlID(Wnd: HWnd): Integer;

This function returns the ID value of the child window identified by the
h Wnd parameter.

Parameters hWnd, HWND Identifies the child window.

Return value The return value is the numeric identifier of the child window if the
function is successful. If the function fails, or if h Wnd is not a valid
window handle, the return value is NULL.

Comments Since top-level windows do not have an ID value, the return value of this
function is invalid if the h Wnd parameter identifies a top-level window.

GetDlgltem

Syntax HWND GetDlgltem(hDlg, nIDDlgltem)
function GetDlgltem(Dlg: HWnd; IDDlgltem: Integer): HWnd;

This function retrieves the handle of a control contained in the dialog box
specified by the hDlg parameter.

Parameters hDlg HWND Identifies the dialog box that contains the control.

nIDDlgItem int Specifies the integer ID of the item to be retrieved.

Return value The return value identifies the given control. It is NULL if no control with
the integer ID given by the nIDDlgItem parameter exists.

310 Software development kit

GetDlgltem

Comments The GetDlgltem function can be used with any parent-child window pair,
not just dialog boxes. As long as the hDlg parameter specifies a parent
window and the child window has a unique ID (as specified by the hMenu
parameter in the CreateWindow function that created the child window),
GetDlgltem returns a valid handle to the child window.

GetDlgltemlnt

Syntax WORD GetDlgItemInt(hDlg, nIDDlgItem, IpTranslated, bSigned)
function GetDlgItemInt(Dlg: HWnd; IDDlgItem: Integer; Translate: PBool;
Signed: Bool): Word;

This function translates the text of a control in the given dialog box into an
integer value. The GetDlgltemlnt function retrieves the text of the control
identified by the nIDDlgItem parameter. It translates the text by stripping
any extra spaces at the beginning of the text and converting decimal
digits, stopping the translation when it reaches the end of the text or
encounters any nonnumeric character. If the bSigned parameter is nonzero,
GetDlgltemlnt checks for a minus sign (-) at the beginning of the text and
translates the text into a signed number. Otherwise, it creates an unsigned
value.

GetDlgltemlnt returns zero if the translated number is greater than 32,767
(for signed numbers) or 65,535 (for unsigned). When errors occur, such as
encountering nonnumeric characters and exceeding the given maximum,
GetDlgltemlnt copies zero to the location pointed to by the IpTranslated
parameter. If there are no errors, IpTranslated receives a nonzero value. If
IpTranslated is NULL, GetDlgltemlnt does not warn about errors.
GetDlgltemlnt sends a WM_ GETTEXT message to the control.

Parameters hDlg HWND Identifies the dialog box.

nIDDlgItem int Specifies the integer identifier of the dialog-box item to
be translated.

IpTranslated BOOl FAR * Points to the Boolean variable that is to receive
the translated flag.

bSigned BOOl Specifies whether the value to be retrieved is signed.

Return value The return value specifies the translated value of the dialog-box item text.
Since zero is a valid return value, the IpTranslated parameter must be used
to detect errors. If a signed return value is desired, it should be cast as an
int type.

Chapter 4, Functions directory 311

•

GetDlgltemText

GetDlgltemText

Syntax int GetDlgItemText(hDlg, nIDDlgItem, IpString, nMaxCount)
function GetDlgItemText(Dlg: HWnd; IDDlgItem: Integer; Str: PChar;
MaxCount: Integer): Integer;

This function retrieves the caption or text associated with a control in a
dialog box. The GetDlgltemText function copies the text to the location
pointed to by the lpString parameter and returns a count of the number of
characters it copies.

GetDlgltemText sends a WM_GETTEXT message to the control.

Parameters hDlg HWND Identifies the dialog box that contains the control.

nIDDlgItem int Specifies the integer identifier of the dialog-box item
whose caption or text is to be retrieved.

lpString LPSTR Points to the buffer to receive the text.

nMaxCount int Specifies the maximum length (in bytes) of the string to
be copied to lpString. If the string is longer than nMaxCount,
it is truncated.

Return value The return value specifies the actual number of characters copied to the
buffer. It is zero if no text is copied.

GetDOSEnvironment

Syntax LPSTR GetDOSEnvironmentO
function GetDOSEnvironment: PChar;

3.0

This function returns a far pointer to the environment string of the
currently running task. See a DOS technical reference manual for more
information on the format and contents of the environment string.

Parameters None.

Comments Unlike an application, a dynamic-link library (DLL) does not have a copy
of the environment string. As a result, a library must call this function to
retrieve the environment string.

312 Software development kit

GetDoubleClickTime

GetDoubleClickTime

Syntax WORD GetDoubleClickTime()
function GetDoubleClickTime: Word;

This function retrieves the current double-click time for the mouse. A
double-click is a series of two clicks of the mouse button, the second
occurring within a specified time after the first. The double-click time is
the maximum number of milliseconds that may occur between the first
and second click of a double-click.

Parameters None.

Return value The return value specifies the current double-click time (in milliseconds).

GetDriveType 3.0

Syntax WORD GetDriveType(nDrive)
function GetDriveType(Drive: Integer): Word;

This function determines whether a disk drive is removeable, fixed, or
remote.

Parameters nDrive int Specifies the drive for which the type is to be determined.
Drive A: is 0, drive B: is 1, drive C: is 2, and so on.

Return value The return value specifies the type of drive. It can be one of the following
values:

Value

DRIVE_REMOVEABLE
DRIVE_FIXED
DRIVE_REMOTE

Meaning

Disk can be removed from the drive.
Disk cannot be removed from the drive.
Drive is a remote (network) drive.

The return value is zero if the function cannot determine the drive type, or
1 if the specified drive does not exist.

GetEnvironment

Syntax int GetEnvironment(lpPortName, lpEnviron, nMaxCount)
function GetEnvironment(PortName: PChar; Environ: Pointer; MaxCount:
Word): Integer;

Chapter 4, Functions directory 313

GetEnvironment

This function retrieves the current environment that is associated with the
device attached to the system port specified by the IpPortName parameter,
and copies it into the buffer specified by the IpEnviron parameter. The
environment, maintained by GOI, contains binary data used by GOI
whenever a device context is created for the device on the given port.

The function fails if there is no environment for the given port.

An application can call this function with the IpEnviron parameter set to
NULL to determine the size of the buffer required to hold the
environment. It can then allocate the buffer and call GetEnvironment a
second time to retrieve the environment.

Parameters IpPortName LPSTR Points to the null-terminated character string that
specifies the name of the desired port.

IpEnviron LPSTR Points to the buffer that will receive the
environment.

nMaxCount WORD Specifies the maximum number of bytes to copy to
the buffer.

Return value The return value specifies the number of bytes copied to IpEnviron. If
IpEnviron is NULL, the return value is the size in bytes of the buffer
required to hold the environment. It is zero if the environment cannot be
found.

Comments The first field in the buffer pointed to by IpEnviron must be the same as
that passed in the IpDeviceName parameter of the CreateDC function. If
IpPortName specifies a null port (as defined in the WIN.INI file), the device
name pointed to by IpEnviron is used to locate the desired environment.

GetFocus

Syntax HWNO GetFocus()
function GetFocus: HWnd;

This function retrieves the handle of the window that currently owns the
input focus.

Parameters None.

Return value The return value identifies the window that currently owns the focus if
the function is successful. Otherwise, it is NULL.

314 Software development kit

GetFreeSpace

GetFreeSpace

Syntax DWORD GetFreeSpace(wFlags)
function GetFreeSpace(Flag: Word): Longint;

This function scans the global heap and returns the number of bytes of
memory currently available.

3.0

Parameters wFlags WORD Specifies whether to scan the heap above or below
the EMS bank line in large-frame and small-frame EMS
systems. If it is set to GMEM_NOT_BANKED,
GetFreeSpace returns the amount of memory available
below the line. If wFlags is zero, GetFreeSpace returns the
amount is the memory available above the EMS bank line.
The wFlags parameter is ignored for non-EMS systems.

Return value The return value is the amount of available memory in bytes. This
memory is not necessarily contiguous; the GlobalCompact function
returns the number of bytes in the largest block of free global memory.

Comments In standard mode, the value returned represents the number of bytes in
the global heap that are not used and that are not reserved for code. In 386
enhanced mode, the value returned is calculated using the following
formula:

Free_space = (heap - reserved) + (pageJile + phys_pages) - (totaClinear
- free_linear) - 64K

In this formula:

CI heap is the number of unused bytes in the global heap.
iii reserved is the number of unused bytes in the global heap reserved for

code.
Il'.I page_file is the size of the paging file.
13 phys_page is the total size of physical pages.
III totaClinear is the total linear address space.
J:I free_linear is the total unused linear address space

The return value in 386 enhanced mode is an estimate of the amount of
memory available to an application. It does not account for memory held
in reserve for non-Windows applications.

Chapter 4, Functions directory 315

II
I

GetGValue

GetGValue

Syntax BYTE GetGValueCrgbColor)
function GetGValueCRGBColor: Longint): Byte;

This macro extracts the green value from an RGB color value.

Parameters rgbColor DWORD Specifies a red, a green, and a blue color field, each
specifying the intensity of the given color.

Return value The return value specifies a byte that contains the green value of the
rgbColor parameter.

Comments The value OFFH corresponds to the maximum intensity value for a single
byte; OOOH corresponds to the minimum intensity value for a single byte.

GetlnputState

Syntax BOOL GetInputStateC)
function GetInputState: Bool;

This function determines whether there are mouse, keyboard, or timer
events in the system queue that require processing. An event is a record
that describes interrupt-level input. Mouse events occur when a user
moves the mouse or clicks a mouse button. Keyboard events occur when a
user presses one or more keys. Timer events occur after a specified
number of clock ticks. The system queue is the location in which
Windows stores mouse, keyboard, and timer events.

Parameters None.

Return value The return value specifies whether mouse, keyboard or timer input
occurs. It is nonzero if input is detected. Otherwise, it is zero.

GetlnstanceData

316

Syntax int GetInstanceDataChInstance, pData, nCount)
function GetInstanceData(Instance: THandle; Data: Word; Count: Integer):
Integer;

This function copies data from a previous instance of an application into
the data area of the current instance. The hlnstance parameter specifies
which instance to copy data from, pData specifies where to copy the data,
and nCount specifies the number of bytes to copy.

Software development kit

GetlnstanceData

Parameters hlnstance

pData

nCount

HANDLE Identifies a previous call of the application.

NPSTR Points to a buffer in the current instance.

int Specifies the number of bytes to copy.

Return value The return value specifies the number of bytes actually copied.

GetKBCodePage

Syntax int GetKBCodePageO
function GetKBCodePage: Integer;

This function determines which OEM/ ANSI tables are loaded by
Windows.

Parameters None.

3.0

Return value The return value specifies the code page currently loaded by Windows. It
can be one of the following values:

Value Meaning

437 Default (USA, used by most countries: indicates that there is no
OEMANSI.BIN in the Windows directory)

850 International (OEMANSI.BIN = XLAT850.BIN)
860 Portugal (OEMANSI.BIN = XLAT860.BIN)
861 Iceland (OEMANSLBIN = XLAT861.BIN)
863 French Canadian (OEMANSI.BIN = XLAT863.BIN)
865 Norway/Denmark (OEMANSI.BIN = XLAT865.BIN)

Comments If the file OEMANSI.BIN is in the Windows directory, Windows reads it
and overwrites the OEM/ ANSI translation tables in the keyboard driver.

When the user selects a language within the Setup program and the
language does not use the default code page (437), Setup copies the
appropriate file (such as XLATPO.BIN) to OEMANSI.BIN in the Windows
system directory. If the language uses the default code page, Setup deletes
OEMANSI.BIN, if it exists, from the Windows system directory.

GetKeyboardState

Syntax void GetKeyboardState(lpKeyState)
procedure GetKeyboardState(var KeyState: TKeyboardState);

This function copies the status of the 256 virtual-keyboard keys to the
buffer specified by the IpKeyState parameter. The high bit of each byte is

Chapter 4, Functions directory 317

I

I

GetKeyboardState

set to 1 if the key is down, or it is set to 0 if it is up. The low bit is set tol if
the key was pressed an odd number of times since startup. Otherwise, it is
set to O.

Parameters IpKeyState BYTE FAR * Points to the 256-byte buffer of virtual-key
codes.

Return value None.

Comments An application calls the GetKeyboardState function in response to a
keyboard-input message. This function retrieves the state of the keyboard
when the input message was generated.

To obtain state information for individual keys, follow these steps:

1. Create an array of characters that is 265 bytes long.

2. Copy the contents of the buffer pointed to by the IpKeyState parameter
into the array.

3. Use the virtual-key code from Appendix A, "Virtual-key codes," in
Reference, Volume 2, to obtain an individual key state.

GetKeyboardType

Syntax int GetKeyboardType(nTypeFlag)
function GetKeyboardType(TypeFlag: Integer): Integer;

This function retrieves the system-keyboard type.

3.0

Parameters nTypeFlag, int Determines whether the function returns a value indicating
the type or subtype of the keyboard. It may be one of the following
values:

Value
o
1
2

Meaning
Function returns the keyboard type.
Function returns the keyboard subtype.
Function returns the number of function keys
on the keyboard.

Return value The return value indicates the type or subtype of the system keyboard or
the number of function keys on the keyboard. The subtype is an OEM­
dependent value. The type may be one of the following values:

318 Software development kit

GetKeyboardType

Value Meaning

1 IBM® PC/XT®, or compatible (83-key) keyboard
2 Olivetti® M24 "ICO" (102-key) keyboard
3 IBM AT® (84-key) or similar keyboard
4 IBM Enhanced (101- or 102-key) keyboard
5 Nokia 1050 and similar keyboards
6 Nokia 9140 and similar keyboards

The return value is zero if the nTypeFlag parameter is greater than 2 or if
the function fails.

Comments An application can determine the number of function keys on a keyboard
from the keyboard type. The following shows the number of function
keys for each keyboard type:

Typo

1
2
3
4
5
6

GetKeyNameText

Number of Function Keys

10
12 (sometimes 18)
10
12
10
24

Syntax int GetKeyNameTextOParam, lpBuffer, nSize)

3.0

function GetKeyNameTextOParam: Longint; Buffer: PChar; Size: Integer):
Integer;

This function retrieves a string which contains the name of a key.

The keyboard driver maintains a list of names in the form of character
strings for keys with names longer than a single character. The key name
is translated according to the layout of the currently installed keyboard.
The translation is performed for the principal language supported by the
keyboard driver.

Parameters IParam DWORD Specifies the 32-bit parameter of the keyboard
message (such as WM_KEYDOWN) which the function is
processing. Byte 3 (bits 16-23) of the long parameter is a scan
code. Bit 20 is the extended bit that distinguishes some keys
on an enhanced keyboard. Bit 21 is a "don't care" bit; the
application calling this function sets this bit to indicate that
the function should not distinguish between left and right
control and shift keys, for example.

Chapter 4, Functions directory 319

• I

GetKeyNameText

IpBuffer

nSize

LPSTR Specifies a buffer to receive the key name.

WORD Specifies the maximum length in bytes of the key
name, not including the terminating NULL character.

Return value The return value is the actual length of the string copied to IpBuffer.

GetKeyState

Syntax int GetKeyState(n VirtKey)
function GetKeyState(VirtKey: Integer): Integer;

This function retrieves the state of the virtual key specified by the
n VirtKey parameter. The state specifies whether the key is up, down, or
toggled.

Parameters n VirtKey int Specifies a virtual key. If the desired virtual key is a letter
or digit (A through Z, a through z, or 0 through 9), nVirtKey
must be set to the ASCII value of that character. For other
keys, it must be one of the values listed in Appendix A,
"Virtual-key codes," in Reference, Volume 2.

Return value The return value specifies the state of the given virtual key. If the high­
order bit is 1, the key is down. Otherwise, it is up. If the low-order bit is 1,
the key is toggled. A toggle key, such as the CAPSLOCK key, is toggled if it
has been pressed an odd number of times since the system was started.
The key is untoggled if the low bit is O.

Comments An application calls the GetKeyState function in response to a keyboard­
input message. This function retrieves the state of the key when the input
message was generated.

GetLast ActivePopup 3.0

Syntax HWND GetLastActivePopup(hwndOwner)
function GetLastActivePopup(Owner: HWnd): HWnd;

This function determines which pop-up window owned by the window
identified by the hwndOwner parameter was most recently active.

Parameters hwndOwner HWND Identifies the owner window.

Return value The return value identifies the most-recently active pop-up window. The
return value will be hwndOwner if any of the following conditions are met:

• The window identified by hwndOwner itself was most recently active.

320 Software development kit

GetLostActivePopup

IJ The window identified by hwndOwner does not own any pop-up
windows.

IJ The window identified by hwndOwner is not a top-level window or is
owned by another window.

GetMapMode

Syntax int GetMapMode(hDC)
function GetMapMode(DC: HDC): Integer;

This function retrieves the current mapping mode. See the SetMapMode
function, later in this chapter, for a description of the mapping modes.

Parameters hDC HOC Identifies the device context.

Return value The return value specifies the mapping mode.

GetMenu

Syntax HMENU GetMenu(h Wnd)
function GetMenu(Wnd: HWnd): HMenu;

This function retrieves a handle to the menu of the specified window.

Parameters h Wnd HWND Identifies the window whose menu is to be
examined.

Return value The return value identifies the menu. It is NULL if the given window has
no menu. The return value is undefined if the window is a child window.

GetMenuCheckMarkDimensions

Syntax DWORD GetMenuCheckMarkDimensions()
function GetMenuCheckMarkDimensions: Longint;

3.0

This function returns the dimensions of the default checkmark bitmap.
Windows displays this bitmap next to checked menu items. Before calling
the SetMenultemBitmaps function to replace the default checkmark, an
application should call the GetMenuCheckMarkOimensions function to
determine the correct size for the bitmaps.

Parameters None.

Chapter 4, Functions directory 321

•
I

GetMenuCheckMarkDimensions

Return value The return value specifies the height and width of the default checkmark
bi.t.map. The high-order word contains the height in pixels and the low­
order word contains the width.

GetMenultemCount

Syntax WORD GetMenultemCount{hMenu)
function GetMenultemCount(Menu: HMenu): Word;

This function determines the number of items in the menu identified by
the hMenu parameter. This may be either a pop-up or a top-level menu.

Parameters hMenu HMENU Identifies the handle to the menu to be examined.

Return value The return value specifies the number of items in the menu specified by
the hMenu parameter if the function is successful. Otherwise, it is -1.

GetMenultemlD

Syntax WORD GetMenultemID(hMenu, nPos)
function GetMenultemID(Menu: HMenu; Pos: Integer): Word;

This function obtains the menu-item identifier for a menu item located at
the position defined by the nPos parameter.

Parameters hMenu HMENU Identifies a handle to the pop-up menu that contains
the item whose ID is being retrieved.

nPos int Specifies the position (zero-based) of the menu item
whose ID is being retrieved.

Return value The return value specifies the item ID for the specified item in a pop-up
menu if the function is successful; if hMenu is NULL or if the specified
item is a pop-up menu (as opposed to an item within the pop-up menu),
the return value is -1.

GetMenuState

322

Syntax WORD GetMenuState(hMenu, wId, wFlags)
function GetMenuState(Menu: HMenu; ID, Flags: Word): Word;

This function obtains the number of items in the pop-up menu associated
with the menu item specified by the wId parameter if the hMenu

Software development kit

GetMenuState

parameter identifies a menu with an associated pop-up menu. If hMenu
identifies a pop-up menu, this function obtains the status of the menu
item associated with wId.

Parameters hMenu

wId

HMENU Identifies the menu.

WORD Specifies the menu-item ID.

wFlags WORD Specifies the nature of the wId parameter. If the
wFlags parameter contains MF _BY POSITION, wId specifies a
(zero-based) relative position; if wFlags contains
MF _BYCOMMAND, wId specifies the item ID.

Return value The return value specifies the outcome of the function. It is -1 if the
specified item does not exist. If the menu itself does not exist, a fatal exit
occurs. If wId identifies a pop-up menu, the return value contains the
number of items in the pop-up menu in its high-order byte, and the menu
flags associated with the pop-up menu in its low-order byte; otherwise, it
is a mask (Boolean OR) of the values from the following list (this mask
describes the status of the menu item that wId identifies):

Value

MF_CHECKED
MF _DISABLED
MF_ENABLED
MF_GRAYED
MF _MENUBARBREAK

MF _MENUBREAK

MF _SEPARATOR

MF_UNCHECKED

GetMenuString

Meaning

Checkmark is placed next to item (pop-up menus only).
Item is disabled.
Item is enabled.
Item is disabled and grayed.
Same as MF _MENUBREAK, except for pop-up menus
where the new column is separated from the old
column by a vertical dividing line.
Item is placed on a new line (static menus) or in a new
column (pop-up menus) without separating columns.
Horizontal dividing line is drawn (pop-up menus
only). This line cannot be enabled, checked, grayed, or
highlighted. The lpNewItem and wIDNewItem
parameters are ignored.
Checkmark is not placed next to item (default).

Syntax int GetMenuString(hMenu, wIDItem,lpString, nMaxCount, wFlag)
function GetMenuString(Menu: HMenu; IDItem: Word; Str: PChar;
MaxCount: Integer; Flag: Word): Integer;

This function copies the label of the specified menu item into the IpString
parameter.

Parameters hMenu HMENU Identifies the menu.

Chapter 4, Functions directory 323

GetMenuString

wIDItem

IpString

WORD Specifies the integer identifier of the menu item
(from the resource file) or the offset of the menu item in the
menu, depending on the value of the wFlag parameter.

LPSTR Points to the buffer that is to receive the label.

nMaxCount int Specifies the maximum length of the label to be copied. If
the label is longer than the maximum specified in
nMaxCount, the extra characters are truncated.

wFlag WORD Specifies the nature of the wID parameter. If wFlags
contains MF _BYPOSITION, wId specifies a (zero-based)
relative position; if the wFlags parameter contains
MF _BYCOMMAND, wId specifies the item ID.

Return value The return value specifies the actual number of bytes copied to the buffer.

Comments The nMaxCount parameter should be one larger than the number of
characters in the label to accommodate the null character that terminates a
string.

GetMessage

324

Syntax BOOL GetMessage(lpMsg, h Wnd, wMsgFilterMin, wMsgFilterMax)
function GetMessage(var Msg: TMsg; Wnd: HWnd; MsgFilterMin,
MsgFilterMax: Word): Bool;

This function retrieves a message from the application queue and places
the message in the data structure pointed to by the IpMsg parameter. If no
message is available, the GetMessage function yields control to other
applications until a message becomes available.

Software development kit

GetMessage

GetMessage retrieves only messages associated with the window
specified by the h Wnd parameter and within the range of message values
given by the wMsgFilterMin and wMsgFilterMax parameters. If h Wnd is
NULL, GetMessage retrieves messages for any window that belongs to
the application making the call. (The GetMessage function does not
retrieve messages for windows that belong to other applications.) If
wMsgFilterMin and wMsgFilterMax are both zero, GetMessage returns all
available messages (no filtering is performed).

The constants WM_KEYFIRST and WM_KEYLAST can be used as filter
values to retrieve all messages related to keyboard input; the constants
WM_MOUSEFIRST and WM_MOUSELAST can be used to retrieve all
mouse-related messages.

Parameters IpMsg LPMSG Points to an MSG data structure that contains
message information from the Windows application
queue.

hWnd HWND Identifies the window whose messages are to be
examined. If h Wnd is NULL, GetMessage retrieves
messages for any window that belongs to the
application making the call.

wMsgFilterMin WORD Specifies the integer value of the lowest message
value to be retrieved.

wMsgFilterMax WORD Specifies the integer value of the highest message
value to be retrieved.

Return value The return value specifies the outcome of the function. It is nonzero if a
message other than WM_QUIT is retrieved. It is zero if the WM_QUIT
message is retrieved.

The return value is usually used to decide whether to terminate the
application's main loop and exit the program.

Comments In addition to yielding control to other applications when no messages are
available, the GetMessage and PeekMessage functions also yield control
when WM_PAINTor WM_TIMER messages for other tasks are available.

The GetMessage, PeekMessage, and WaitMessage functions are the only
ways to let other applications run. If your application does not call any of
these functions for long periods of time, other applications cannot run.

When GetMessage, PeekMessage, and WaitMessage yield control to
other applications, the stack and data segments of the application calling
the function may move in memory to accommodate the changing memory
requirements of other applications. If the application has stored long

Chapter 4, Functions directory 325

I

GetMessage

pointers to objects in the data or stack segment (that is, global or local
variables), these pointers can become invalid after a call to GetMessage,
PeekMessage, or WaitMessage. The IpMsg parameter of the called
function remains valid in any case.

GetMessagePos

Syntax DWORD GetMessagePos()
function GetMessagePos: Longint;

This function returns a long value that represents the cursor position (in
screen coordinates) when the last message obtained by the GetMessage
function occurred.

Parameters None.

Return value The return value specifies the x- and y-coordinates of the cursor position.
The x-coordinate is in the low-order word, and the y-coordinate is in the
high-order word. If the return value is assigned to a variable, the
MAKEPOINT macro can be used to obtain a POINT structure from the
return value; the LOWORD or HIWORD macro can be used to extract the x­
or the y-coordinate.

Comments To obtain the current position of the cursor instead of the position when
the last message occurred, use the GetCursorPos function.

GetMessageTime

Syntax DWORD GetMessageTime()
function GetMessageTime: Longint;

This function returns the message time for the last message retrieved by
the GetMessage function. The time is a long integer that specifies the
elapsed time (in milliseconds) from the time the system was booted to the
time the message was created (placed in the application queue).

Parameters None.

Return value The return value specifies the message time.

Comments Do not assume that the return value is always increasing. The return
value will "wrap around" to zero if the timer count exceeds the maximum
value for long integers.

326 Software development kit

GetMetoFile

GetMetaFile

To calculate time delays between messages, subtract the time of the
second message from the time of the first message.

Syntax HANDLE GetMetaFile(lpFilename)
function GetMetaFile(FileName: PChar): THandle;

This function creates a handle for the metafile named by the IpFilename
parameter.

Parameters IpFilename LPSTR Points to the null-terminated character string that
specifies the DOS filename of the metafile. The metafile is
assumed to exist.

Return value The return value identifies a metafile if the function is successful.
Otherwise, it is NULL.

GetMetaFileBits

Syntax HANDLE GetMetaFileBits(hMF)
function GetMetaFileBits(MF: THandle): THandle;

This function returns a handle to a global memory block that contains the
specified metafile as a collection of bits. The memory block can be used to
determine the size of the metafile or to save the metafile as a file. The
memory block should not be modified.

Parameters hMF HANDLE Identifies the memory metafile.

Return value The return value identifies the global memory block that contains the
metafile. If an error occurs, the return value is NULL.

Comments The handle used as the hMF parameter becomes invalid when the
GetMetaFileBits function returns, so the returned global memory handle
must be used to refer to the metafile.

Memory blocks created by this function are unique to the calling
application and are not shared by other applications. These blocks are
automatically deleted when the application terminates.

GetModuleFileName

Syntax int GetModuleFileName(hModule, lpFilename, nSize)

Chapter 4, Functions directory 327

GetModuleFileName

function GetModuleFileName(Module: THandle; FileName: PChar; Size:
Integer): Integer;

This function retrieves the full pathname of the executable file from which
the specified module was loaded. The function copies the null-terminated
filename into the buffer pointed to by the IpFilename parameter.

Parameters hModule HANDLE Identifies the module or the instance of the
module.

IpFilename LPSTR Points to the buffer that is to receive the filename.

nSize int Specifies the maximum number of characters to copy. If
the filename is longer than the maximum number of
characters specified by the nSize parameter, it is truncated.

Return value The return value specifies the actual length of the string copied to the
buffer.

GetModuleHandle

Syntax HANDLE GetModuleHandle(lpModuleName)
function GetModuleHandle(ModuleN arne: PChar): THandle;

This function retrieves the module handle of the specified module.

Parameters IpModuleName LPSTR Points to a null-terminated character string that
specifies the module.

Return value The return value identifies the module if the function is successful.
Otherwise, it is NULL.

GetModuleUsage

Syntax int GetModuleUsage(hModule)
function GetModuleUsage(Module: THandle): Integer;

This function returns the reference count of a specified module.

Parameters hModule HANDLE Identifies the module or an instance of the module.

Return value The return value specifies the reference count of the module.

328 Software development kit

GetNearestColor

GetNearestColor

Syntax DWORD GetNearestColor(hDC, crColor)
function GetNearestColor(DC: HDC; Color: TColorRef): TColorRef;

This function returns the closest logical color to a specified logical color
the given device can represent.

Parameters hDC

crColor

HOC Identifies the device context.

COLORREF Specifies the color to be matched.

Return value The return value specifies an RGB color value that names the solid color
closest to the crColor value that the device can represent.

GetNearestPalettelndex 3.0

Syntax WORD GetNearestPaletteIndex(hPalette, crColor)
function GetNearestPaletteIndex(Palette: HPalette; Color: TColorRef}:
Word;

This function returns the index of the entry in a logical palette which most
closely matches a color value.

Parameters hPalette

crColor

HPALETTE Identifies the logical palette.

COLORREF Specifies the color to be matched.

Return value The return value is the index of an entry in a logical palette. The entry
contains the color which most nearly matches the specified color.

GetNextDlgGroupltem

Syntax HWND GetNextDlgGroupltem(hDlg, hCtl, bPrevious)
function GetNextDlgGroupltem(Dlg, Ctrl: HWnd; Previous: Bool}:
HWnd;

This function searches for the next (or previous) control within a group of
controls in the dialog box identified by the hDlg parameter. A group of
controls consists of one or more controls with WS_GROUP style.

Parameters hDlg HWNO Identifies the dialog box being searched.

Chapter 4, Functions directory 329

GetNextDlgGroupltem

hCtl

bPrevious

HWND Identifies the control in the dialog box where the
search starts.

BOOL Specifies how the function is to search the group of
controls in the dialog box. If the bPrevious parameter is zero,
the function searches for the previous control in the group. If
bPrevious is nonzero, the function searches for the next
control in the group.

Return value The return value identifies the next or previous control in the group.

Comments If the current item is the last item in the group and bPrevious is zero, the
GetNextDlgGroupltem function returns the window handle of the first
item in the group. If the current item is the first item in the group and
bPrevious is nonzero, GetNextDlgGroupltem returns the window handle of
the last item in the group.

GetNextDlgTabltem

Syntax HWND GetNextDlgTabItemChDlg, hCtl, bPrevious)
function GetNextDlgTabItemCDlg, Ctrl: HWnd; Previous: Bool): HWnd;

This function obtains the handle of the first control that has the
WS_TABSTOP style that precedes Cor follows) the control identified by
the hCtl parameter.

Parameters hDlg

hCtl

bPrevious

HWND Identifies the dialog box being searched.

HWND Identifies the control to be used as a starting point for
the search.

BOOL Specifies how the function is to search the dialog box.
If the bPrevious parameter is zero, the function searches for
the previous control in the dialog box. If bPrevious is
nonzero, the function searches for the next control in the
dialog box. Identifies the control to be used as a starting
point for the search.

Return value The return value identifies the previous Cor next) control that has the
WS_TABStOP style set.

GetNextWindow

Syntax HWND GetNextWindowChWnd, wFlag)
function GetNextWindowCWnd: HWnd; Flag: Word): HWnd;

330 Software development kit

GetNextWindow

This function searches for a handle that identifies the next (or previous)
window in the window-manager's list. The window-manager's list
contains entries for all top-level windows, their associated child windows,
and the child windows of any child windows. If the h Wnd parameter is a
handle to a top-level window, the function searches for the next (or
previous) handle to a top-level window; if hWnd is a handle to a child
window, the function searches for a handle to the next (or previous) child
window.

Parameters h Wnd

wFZag

HWND Identifies the current window.

WORD Specifies whether the function returns a handle to the
next window or to the previous window. It can be either of
the following values:

Value
GW _HWNDNEXT

GW _HWNDPREV

Meaning
The function returns a handle to the
next window.
The function returns a handle to the
previous window.

Return value The return value identifies the next (or the previous) window in the
window-manager's list.

GetNumTasks

Syntax int GetNumTasks()
function GetNumTasks: Word;

This function returns the number of tasks currently executing in the
system. A task is a unique instance of a Windows application.

Parameters None.

Return value The return value specifies an integer that represents the number of tasks
currently executing in the system.

GetObject

Syntax int GetObject(hObject, nCount, IpObject)
function GetObject(hObject: THandle; Count: Integer; IpObjectPtr:
Pointer): Integer;

This function fills a buffer with the logical data that defines the logical
object specified by the hObject parameter. The GetObject function copies

Chapter 4, Functions directory 331

GetObject

the number of bytes of data specified by the nCount parameter to the
buffer pointed to by the IpObject parameter. The function retrieves data
structures of the LOG PEN, LOGBRUSH, LOG FONT, or BITMAP type, or an
integer, depending on the logical object. The buffer must be sufficiently
large to receive the data.

If hObject specifies a bitmap, the function returns only the width, height,
and color format information of the bitmap. The actual bits must be
retrieved by using the GetBitmapBits function.

If hObject specifies a logical palette, it retrieves a two-byte"value that
specifies the number of entries in the palette; it does not retrieve the entire
LOGPALETTE data structure that defines the palette. To get information
on palette entries, an application must call the GetPaletteEntries function.

Parameters hObject HANDLE Identifies a logical pen, brush, font, bitmap, or
palette.

nCount

IpObject

int Specifies the number of bytes to be copied to the buffer.

LPSTR Points to the buffer that is to receive the information.

Return value The return value specifies the actual number of bytes retrieved. It is zero if
an error occurs.

GetPaletteEntries 3.0

332

Syntax WORD GetPaletteEntriesChPalette, wStartIndex, wNumEntries,
IpPaletteEntries)
function GetPaletteEntriesCPalette: HPalette; StartIndex, NumEntries:
Word; var PaletteEntries): Word;

This function retrieves a range of palette entries in a logical palette.

Parameters hPalette HPALETTE Identifies the logical palette.

wStartIndex

wNumEntries

IpPaletteEntries

WORD Specifies the first entry in the logical palette to
be retrieved.

WORD Specifies the number of entries in the logical
palette to be retrieved.

LPPALETTEENTRY Points to an array of
PALETTEENTRY data structures to receive the palette
entries. The array must contain at least as many data
structures as specified by the wNumEntries parameter.

Software development kit

GetPaletteEntries

Return value The return value is the number of entries retrieved from the logical
palette. It is zero if the function failed.

GetParent

Syntax HWND GetParent(h Wnd)
function GetParent(Wnd: HWnd): HWnd;

This function retrieves the window handle of the specified window's
parent window (if any).

Parameters h Wnd HWNO Identifies the window whose parent window handle
is to be retrieved.

Return value The return value identifies the parent window. It is NULL if the window
has no parent window.

GetPixel

Syntax DWORD GetPixel(hDC, X, Y)
function GetPixel(DC: HDC; X, Y; Integer): TColorRef;

This function retrieves the RGB color value of the pixel at the point
specified by the X and Y parameters. The point must be in the clipping
region. If the point is not in the clipping region, the function is ignored.

Parameters hDC HOC Identifies the device context.

X

Y

int Specifies the logical x-coordinate of the point to be
examined.

int Specifies the logical y-coordinate of the point to be
examined.

Return value The return value specifies an RGB color value for the color of the given
point. It is -1 if the coordinates do not specify a point in the clipping
region.

Comments Not all devices support the GetPixel function. For more information, see
the RC_BITBLT raster capability in the GetOeviceCaps function, earlier in
this chapter.

Chapter 4, Functions directory 333

•

GetPolyFiIIMode

GetPolyFiliMode

Syntax int GetPolyFillMode(hDC)
function GetPolyFillMode(DC: HDC): Integer;

This function retrieves the current polygon-filling mode.

Parameters hDC HOC Identifies the device context.

Return value The return value specifies the polygon-filling mode. It can be anyone of
the following values:

Value Meaning

ALTERNATE Alternate mode
WINDING Winding-number mode

For a description of these modes, see the SetPolyFiliMode function, later
in this chapter.

GetPriorityClipboardFormat

Syntax int GetPriorityClipboardFormat(lpPriorityList, nCount)
function GetPriorityClipboardFormat(var PriorityList; Count: Integer):
Integer;

This function returns the first clipboard format in a list for which data
exist in the clipboard.

3.0

Parameters IpPriorityList WORD FAR * Points to an integer array that contains a list of
clipboard formats in priority order. For a description of the
data formats, see the SetClipboardOata function later in this
chapter.

nCount int Specifies the number of entries in IpPriorityList. This
value must not be greater than the actual number of entries
in the list.

Return value The return value is the highest priority clipboard format in the list for
which data exist. If no data exist in the clipboard, this function returns
NULL. If data exist in the clipboard which did not match any format in
the list, the return value is -1.

334 Software development kit

GetPrivateProfilelnt

GetPrivateProfilelnt 3.0

Syntax WORD GetPrivateProfileInt(lpApplicationName, IpKeyName, nDefault,
IpFileName)
function GetPrivateProfileInt(ApplicationName, KeyName: PChar;
Default: Integer; FileName: PChar): Integer;

This function retrieves the value of an integer key from the specified
initialization file. The function searches the file for a key that matches the
name specified by the IpKeyName parameter under the application
heading specified by the IpApplicationName parameter. An integer entry in
the initialization file must have the following form:

[application name]

keyname = value

Parameters IpApplicationName
LPSTR Points to the name of a Windows application that
appears in the initialization file.

IpKeyName LPSTR Points to a key name that appears in the initialization
file.

nDefault int Specifies the default value for the given key if the key
cannot be found in the initialization file.

IpFileName LPSTR Points to a string that names the initialization file. If
IpFileName does not contain a path to the file, Windows
searches for the file in the Windows directory.

Return value The return value specifies the result of the function. The return value is
zero if the value that corresponds to the specified key name is not an
integer or if the integer is negative. If the value that corresponds to the
key name consists of digits followed by nonnumeric characters, the
function returns the value of the digits. For example, if the entry
KeyName=102abc is accessed, the function returns 102. If the key is not
found, this function returns the default value, nDefault.

Comments The GetPrivateProfilelnt function is not case dependent, so the strings in
IpApplicationName and IpKeyName may be in any combination of
uppercase and lowercase letters.

Chapter 4, Functions directory 335

GetPrivateProfileString

GetPrivateProfileString 3.0

336

Syntax int GetPrivateProfileString(lpApplicationName, IpKeyName, IpDefault,
IpReturnedString, nSize,lpFileName)
function GetPrivateProfileString(ApplicationName, KeyName, Default,
ReturnedString: PChar; Size: Integer; FileName: PChar): Integer;

This function copies a character string from the specified initialization file
into the buffer pointed to by the IpReturnedString parameter.

The function searches the file for a key that matches the name specified by
the IpKeyName parameter under the application heading specified by the
IpApplicationName parameter. If the key is found, the corresponding string
is copied to the buffer. If the key does not exist, the default character string
specified by the IpDefault parameter is copied. A string entry in the
initialization file must have the following form:

[application name]

keyname = string

If IpKeyName is NULL, the GetPrivateProfileString function enumerates all
key names associated with IpApplicationName by filling the location
pointed to by IpReturnedString with a list of key names (not values). Each
key name in the list is terminated with a null character.

Parameters IpApplicationName LPSTR Points to the name of a Windows application
that appears in the initialization file.

IpKeyName LPSTR Points to a key name that appears in the
initialization file.

IpDefault

IpReturnedString

nSize

IpFileName

LPSTR Specifies the default value for the given key
if the key cannot be found in the initialization file.

LPSTR Points to the buffer that receives the
character string.

int Specifies the maximum number of characters
(including the last null character) to be copied to the
buffer.

LPSTR Points to a string that names the
initialization file. If IpFileName does not contain a
path to the file, Windows searches for the file in the
Windows directory.

Software development kit

GetPrivateProfileString

Return value The return value specifies the number of characters copied to the buffer
identified by the IpReturnedString parameter, not including the
terminating null character. If the buffer is not large enough to contain the
entire string and IpKeyName is not NULL, the return value is equal to the
length specified by the nSize parameter. If the buffer is not large enough to
contain the entire string and IpKeyName is NULL, the return value is equal
to the length specified by the nSize parameter minus 2.

Comments GetPrivateProfileString is not case dependent, so the strings in
IpApplicationName and IpKeyName may be in any combination of
uppercase and lowercase letters.

GetProcAddress

Syntax FARPROC GetProcAddress(hIvIodule, IpProcName)
function GetProcAddress(Module: THandle; ProcName: PChar):
TFarProc;

This function retrieves the memory address of the function whose name is
pointed to by the IpProcName parameter. The GetProcAddress function
searches for the function in the module specified by the hModule
parameter, or in the current module if hModule is NULL. The function
must be an exported function; the module's definition file must contain an
appropriate EXPORTS line for the function.

Parameters hModule HANDLE Identifies the library module that contains the
function.

IpProcName LPSTR Points to the function name, or contains the ordinal
value of the function. If it is an ordinal value, the value must
be in the low-order word and zero must be in the high-order
word. The string must be a null-terminated character string.

Return value The return value points to the function's entry point if the function is
successful. Otherwise, it is NULL.

If the IpProcName parameter is an ordinal value and a function with the
specified ordinal does not exist in the module, GetProcAddress can still
return a non-NULL value. In cases"where the function may not exist,
specify the function by name rather than ordinal value.

Comments Only use GetProcAddress to retrieve addresses of exported functions that
belong to library modules. The MakeProclnstance function can be used to
access functions within different instances of the current module.

Chapter 4, Functions directory 337

~
')" .. (

' ... '• ~.' •... "':./.'.i{ .. :.' .• ' ',~'h

GetProfilelnt

GetProfilelnt

The spelling of the function name (pointed to by IpProcName) must be
identical to the spelling as it appears in the source library's definition
(.DEF) file. The function can be renamed in the definition file.

Syntax WORD GetProfileInt(lpAppName, IpKeyName, nDefault)
function GetProfileInt(AppName, KeyName: PChar; Default: Integer):
Integer;

This function retrieves the value of an integer key from the Windows
initialization file, WIN.lNI. The function searches WIN.lNI for a key that
matches the name specified by the IpKeyName parameter under the
application heading specified by the IpAppName parameter. An integer
entry in WIN.lNI must have the following form:

[application name]

keyname = value

Parameters IpAppName LPSTR Points to the name of a Windows application that
appears in the Windows initialization file.

IpKeyName LPSTR Points to a key name that appears in the Windows
initialization file.

nDefault int Specifies the default value for the given key if the key
cannot be found in the Windows initialization file.

Return value The return value specifies the result of the function. The return value is
zero if the value that corresponds to the specified key name is not an
integer or if the integer is negative. If the value that corresponds to the
key name consists of digits followed by nonnumeric characters, the
function returns the value of the digits. For example, if the entry
KeyName=102abc is accessed, the function returns 102. If the key is not
found, this function returns the default value, nDefault.

GetProfileString

Syntax int GetProfileString(lpAppName, IpKeyName, IpDefault,
IpReturnedString, nSize)
function GetProfileString(AppName, KeyName, Default, ReturnedString:
PChar; Size: Integer): Integer;

338 Software development kit

GetProfileString

This function copies a character string from the Windows initialization
file, WIN.INI, into the buffer pointed to by the IpReturnedString parameter.
The function searches WIN.INI for a key that matches the name specified
by the IpKeyName parameter under the application heading specified by
the IpAppName parameter. If the key is found, the corresponding string is
copied to the buffer. If the key does not exist, the default character string
specified by the IpDefault parameter is copied. A string entry in WIN.INI
must have the following form:

[application name]

keyname = value

If IpKeyName is NULL, the GetProfileString function enumerates all key
names associated with IpAppName by filling the location pointed to by
IpReturnedString with a list of key names (not values). Each key name in
the list is terminated with a null character.

Parameters IpAppName LPSTR Points to a null-terminated character string that
names the application.

IpKeyName LPSTR Points to a null-terminated character string that
names a key.

IpDefault LPSTR Specifies the default value for the given key if
the key cannot be found in the initialization file.

IpReturnedString LPSTR Points to the buffer that receives the character
string.

nSize int Specifies the number of characters (including the
last null character) that will be copied to the buffer.

Return value The return value specifies the number of characters copied to the buffer
identified by the IpReturnedString parameter, not including the
terminating null character. If the buffer is not large enough to contain the
entire string and IpKeyName is not NULL, the return value is equal to the
length specified by the nSize parameter. If the buffer is not large enough to
contain the entire string and IpKeyName is NULL, the return value is equal
to the length specified by the nSize parameter minus 2.

Comments GetProfileString is not case-dependent, so the strings in IpAppName and
IpKeyName may be in any combination of uppercase and lowercase letters.

Chapter 4, Functions directory 339

GetProp

GetProp

Syntax HANDLE GetProp(h Wnd, IpString)
function GetProp(Wnd: HWnd; Str: PChar): THandle;

This function retrieves a data handle from the property list of the specified
window. The character string pointed to by the IpString parameter
identifies the handle to be retrieved. The string and handle are assumed to
have been added to the property list by using the SetProp function.

Parameters h Wnd

IpString

HWND Identifies the window whose property list is to be
searched.

LPSTR Points to a null-terminated character string or an
atom that identifies a string. If an atom is given, it must have
been created previously by using the AddAtom function. The
atom, a 16-bit value, must be placed in the low-order word
of the IpString parameter; the high-order word must be set to
zero.

Return value The return value identifies the associated data handle if the property list
contains the given string. Otherwise, it is NULL.

Comments The value retrieved by the GetProp function can be any 16-bit value
useful to the application.

GetRgnBox 3.0

340

Syntax int GetRgnBox(hRgn,lpRect)
function GetRgnBox(Rgn: HRgn; var Rect: TRect): Integer;

This function retrieves the coordinates of the bounding rectangle of the'
region specified by the hRgn parameter.

Parameters hRgn HRGN Identifies the region.

IpRect LPRECT Points to a RECT data structure to receive the
coordinates of the bounding rectangle.

Return value The return value specifies the region's type. It can be any of the following
values.

Value

COMPLEXREGION
NULLREGION
SIMPLEREGION

Meaning

Region has overlapping borders.
Region is empty.
Region has no overlapping borders.

Software development kit

GetROP2

Syntax

GetROP2

The return value is NULL if the hRgn parameter does not specify a valid
region.

int GetROP2(hDC)
function GetROP2(DC: HDC): Integer;

This function retrieves the current drawing mode. The drawing mode
specifies how the pen or interior color and the color already on the display
surface are combined to yield a new color.

Parameters hDC HOC Identifies the device context for a raster device.

Return value The return value specifies the drawing mode. For a list of the drawing
modes, see the table "Drawing modes," in the SetROP2 function, later in
this chapter.

Comments For more information about the drawing modes, see Chapter 11, "Binary
and ternary raster-operation codes," in Reference, Volume 2.

GetRValue

Syntax BYTE GetRValue(rgbColor)
function GetRValue(RGBColor: Longint): Byte;

This macro extracts the red value from an RGB color value.

Parameters rgbColor OWORO Specifies a red, a green, and a blue color field, each
specifying the intensity of the given color.

Return value The return value specifies a byte that contains the red value of the rgbColor
parameter.

Comments The value OFFH corresponds to the maximum intensity value for a single
byte; OOOH corresponds to the minimum intensity value for a single byte.

GetScroliPos

Syntax int GetScrollPos(h Wnd, nBar)
function GetScrollPos(Wnd: HWnd; Bar: Integer): Integer;

This function retrieves the current position of a scroll-bar thumb. The
current position is a relative value that depends on the current scrolling

Chapter 4, Functions directory 341

I

• I

GetScroliPos

range. For example, if the scrolling range is a to 100 and the thumb is in
the middle of the bar, the current position is 50.

Parameters h Wnd

nBar

HWND Identifies a window that has standard scroll bars or a
scroll-bar control, depending on the value of the nBar
parameter.

int Specifies the scroll bar to examine. It can be one of the
following values:

Value Meaning
SB _ CTL Retrieves the position of a scroll-bar control. In

this case, the h Wnd parameter must be the
window handle of a scroll-bar control.

SB_HORZ Retrieves the position of a window's horizontal
scroll bar.

SB _ VERT Retrieves the position of a window's vertical
scroll bar.

Return value The return value specifies the current position of the scroll-bar thumb.

GetScrollRange

342

Syntax void GetScrollRange(h Wnd, nBar, IpMinPos, IpMaxPos)
procedure GetScrollRange(Wnd: HWnd; Bar: Integer; var MinPos,
MaxPos: Integer);

This function copies the current minimum and maximum scroll-bar
positions for the given scroll bar to the locations specified by the IpMinPos
and IpMaxPos parameters. If the given window does not have standard
scroll bars or is not a scroll-bar control, then the GetScrollRange function
copies zero to IpMinPos and IpMaxPos.

Parameters h Wnd HWND Identifies a window that has standard scroll bars or a
scroll-bar control, depending on nBar's value.

nBar int Specifies an integer value that identifies which scroll bar
to retrieve. It can be one of the following values:

Value Meaning
SB_CTL Retrieves the position of a scroll-bar

control; in this case, the h Wnd parameter
must be the handle of a scroll-bar control.
Retrieves the position of a window's
horizontal scroll bar.

Software development kit

IpMinPos

IpMaxPos

Return value None.

GetScroliRange

Retrieves the position of a window's
vertical scroll bar.

LPINT Points to the integer variable that is to receive the
minimum position.

LPINT Points to the integer variable that is to receive the
maximum position.

Comments The default range for a standard scroll bar is a to 100. The default range
for a scroll-bar control is empty (both values are zero).

GetStockObject

Syntax HANDLE GetStockObject(nIndex)
function GetStockObject(Index: Integer): THandle;

This function retrieves a handle to one of the predefined stock pens,
brushes, or fonts.

Parameters nlndex

Chapter 4, Functions directory

int Specifies the type of stock object desired. It can be any
one of the following values:

Value Meaning
BLACK_BRUSH Black brush
DKGRAY_BRUSH Dark gray brush
GRAY_BRUSH Gray brush
HOLLOW_BRUSH Hollow brush
LTGRAY _BRUSH Light gray brush
NULL_BRUSH Null brush
WHITE_BRUSH White brush
BLACK_PEN Black pen
NULL_PEN Null pen
WHITE_PEN White pen
ANSI_FIXED_FONT ANSI fixed system font
ANSI_ V AR_FONT ANSI variable system font
DEVICE_DEFAULT_FONT Device-dependent font
OEM_FIXED_FONT OEM-dependent fixed font
SYSTEM_FONT The system font. By default,

Windows uses the system font
to draw menus, dialog-box
controls, and other text. In
Windows versions 3.0 and later,

343

• I

GefSfockObjecf

the system font is proportional
width; earlier versions of
Windows use a fixed-width
system font.

SYSTEM_FIXED_FONT The fixed-width system font
used in earlier versions of
Windows. This stock object is
available for compatibility
purposes.

DEFAULT_PALETTE Default color palette. This
palette consists of the 20 static
colors always present in the
system palette for matching
colors in the logical palettes of
background windows.

Return value The return value identifies the desired logical object if the function is
successful. Otherwise, it is NULL.

Comments The DKGRAY_BRUSH, GRAY_BRUSH, and LTGRAY_BRUSH objects
should not be used as background brushes or for any other purpose in a
window whose class does not specify CS_HREDRAW and
CS_ VREDRAW styles. Using a gray stock brush in such windows can lead
to misalignment of brush patterns after a window is moved or sized.
Stock-brush origins cannot be adjusted (for more information, see the
SetBrushOrg function, later in this chapter).

GetStretchBltMode

Syntax int GetStretchBltMode(hDC)
function GetStretchBltMode(DC: HOC): Integer;

This function retrieves the current stretching mode. The stretching mode
defines how information is to be added or removed from bitmaps that are
stretched or compressed by using the Stretch Bit function.

Parameters hDC HOC Identifies the device context.

Return value The return value specifies the current stretching mode. It can be
WHITEONBLACK, BLACKONWHITE, or COLORONCOLOR. For more
information, see the SetStretchBltMode function, later in this chapter.

344 Software development kit

GetSubMenu

GetSubMenu

Syntax HMENU GetSubMenu(hMenu, nPos)

Parameters

function GetSubMenu(Menu: HMenu; Pos: Integer): HMenu;

This function retrieves the menu handle of a pop-up menu.

hMenu HMENU Identifies the menu.

nPos int Specifies the position in the given menu of the pop-up
menu. Position values start at zero for the first menu item.
The pop-up menu's integer ID cannot be used in this
function.

Return value The return value identifies the given pop-up menu. It is NULL if no pop­
up menu exists at the given position.

GetSysColor

Syntax DWORD GetSysColor(nIndex)
function GetSysColorOndex: Integer): TColorRef;

This function retrieves the current color of the display element specified
by the nlndex parameter. Display elements are the various parts of a
window and the Windows display that appear on the system display
screen.

Parameters nlndex int Specifies the display element whose color is to be
retrieved. For a list of the index values, see the SetSysColor
function, later in this chapter.

Return value The return value specifies an RGB color value that names the color of the
given element.

Comments System colors for monochrome displays are usually interpreted as various
shades of gray.

GetSysModalWindow

Syntax HWND GetSysModalWindow()
function GetSysModalWindow: HWnd;

Chapter 4, Functions directory 345

GefSysModalWindow

This function returns the handle of a system-modal window, if one is
present.

Parameters None.

Return value The return value identifies the system-modal window, if one is present. If
no such window is present, the return value is NULL.

GetSystemDirectory 3.0

Syntax WORD GetSystemDirectory(lpBuffer, nSize)
procedure GetSystemDirectory(Buffer: PChar; Size: Word);

This function obtains the pathname of the Windows system subdirectory.
The system subdirectory contains such files as Windows libraries, drivers,
and font files.

Parameters IpBuffer LPSTR Points to the buffer that is to receive the null-
terminated character string containing the pathname.

nSize int Specifies the maximum size (in bytes) of the buffer. This
value should be set to at least 144 to allow sufficient room in
the buffer for the pathname.

Return value The return value is the length of the string copied to IpBuffer, not
including the terminating null character. If the return value is greater than
nSize, the return value is the size of the buffer required to hold the
pathname. The return value is zero if the function failed.

Comments The pathname retrieved by this function does not end with a backslash
(\), unless the system directory is the root directory. For example, if the

system directory is named WINDOWS\SYSTEM on drive C:, the
pathname of the system subdirectory retrieved by this function is C: \
WINDOWS\SYSTEM.

GetSystemMenu

Syntax HMENU GetSystemMenu(h Wnd, bRevert)
function GetSystemMenu(Wnd: HWnd; Revert: Bool): HMenu;

This function allows the application to access the System menu for
copying and modification.

Parameters h Wnd HWND Identifies the window that will own a copy of the
System menu.

346 Software development kit

bRevert

GetSystemMenu

BOOl Specifies the action to be taken.

If bRevert is: Description
zero GetSystemMenu returns a handle to a

copy of the System menu currently in
use. This copy is initially identical to the
System menu, but can be modified.

nonzero GetSystemMenu destroys the possibly
modified copy of the System menu (if
there is one) that belongs to the specified
window and returns a handle to the
original, unmodified version of the
System menu.

Return value The return value identifies the System menu if bRevert is nonzero and the
System menu has been modified. If bRevert is nonzero and the System
menu has not been modified, the return value is NULL. If bRevert is zero,
the return value identifies a copy of the System menu.

Comments Any window that does not use the GetSystemMenu function to make its
own copy of the System menu receives the standard System menu.

The handle returned by the GetSystemMenu function can be used with
the AppendMenu, InsertMenu or ModifyMenu functions to change the
System menu. The System menu initially contains items identified with
various ID values such as SC_ CLOSE, SC_MOVE, and SC_SIZE. Menu
items on the System menu send WM_SYSCOMMAND messages. All
predefined System-menu items have ID numbers greater than OxFOOO. If
an application adds commands to the System menu, it should use ID
numbers less than FOOO.

Windows automatically grays items on the standard System menu,
depending on the situation. The application can carry out its own
checking or graying by responding to the WM_INITMENU message,
which is sent before any menu is displayed.

GetSystemMetrics

Syntax int GetSystemMetrics(nIndex)
function GetSystemMetrics(Index: Integer): Integer;

This function retrieves the system metrics. The system metrics are the
widths and heights of various display elements of the Windows display.
The GetSystemMetrics function can also return flags that indicate

Chapter 4, Functions directory 347

GetSystemMetrics

348

whether the current version is a debugging version, whether a mouse is
present, or whether the meaning of the left and right mouse buttons have
been exchanged.

Parameters nIndex int Specifies the system measurement to be retrieved. All
measurements are given in pixels. The system measurement
must be one of the values listed in Table 4.10, "System Metric
Indexes."

Return value The return value specifies the requested system metric.

Comments System metrics depend on the system display and may vary from display
to display. Table 4.10 lists the system-metric values for the nIndex
parameter:

Table 4.10
System metric

indexes

Index

SM_ CXSCREEN
SM_ CYSCREEN
SM_CXFRAME
SM_CYFRAME
SM_ CXVSCROLL
SM_ CYVSCROLL
SM_ CXHSCROLL
SM_ CYHSCROLL
SM_CYCAPTION
SM_CXBORDER
SM_CYBORDER
SM_ CXDLGFRAME

SM_ CYDLGFRAME

SM_CXHTHUMB
SM_CYVTHUMB
SM_CXICON
SM_CYICON
SM_ CXCURSOR
SM_ CYCURSOR
SM_CYMENU
SM_CXFULLSCREEN
SM_ CYFULLSCREEN

SM_ CYKANJIWINDOW
SM_ CXMINTRACK
SM_ CYMINTRACK
SM_CXMIN
SM_CYMIN
SM_CXSIZE
SM_CYSIZE
SM_MOUSEPRESENT

Meaning

Width of screen.
Height of screen.
Width of window frame that can be sized.
Height of window frame that can be sized.
Width of arrow bitmap on vertical scroll bar.
Height of arrow bitmap on vertical scroll bar.
Width of arrow bitmap on horizontal scroll bar.
Height of arrow bitmap on horizontal scroll bar.
Height of caption.
Width of window frame that cannot be sized.
Height of window frame that cannot be sized.
Width of frame when window has WS_DLGFRAME
style.
Height of frame when window has WS_DLGFRAME
style.
Width of thumb box on horizontal scroll bar.
Height of thumb box on vertical scroll bar.
Width of icon.
Height of icon.
Width of cursor.
Height of cursor.
Height of single-line menu bar.
Width of window client area for full-screen window.
Height of window client area for full-screen window
(equivalent to the height of the screen minus the height
of the window caption).
Height of Kanji window.
Minimum tracking width of window.
Minimum tracking height of window.
Minimum width of window.
Minimum height of window.
Width of bitmaps contained in the title bar.
Height of bitmaps contained in the title bar.
Nonzero if mouse hardware installed.

Software development kit

GetSystemMetrics

Table 4.10: System metric indexes (continued)

SM_DEBUG
SM_SW APBUTTON

GetSystemPaletteEntries

Nonzero if Windows debugging version.
Nonzero if left and right mouse buttons swapped.

Syntax WORD GetSystemPaletteEntries(hDC, wStartIndex, wNumEntries,
IpPaletteEntries)
function GetSystemPaletteEntries(DC: HDC; StartIndex, NumEntries:
Word; var PaletteEntries: TPaletteEntry): Word;

3.0

This function retrieves a range of palette entries from the system palette.

Parameters hDC HOC Identifies the device context.

wStartIndex 'NORD Specifies the first entry in the system palette to be
retrieved.

wNumEntries WORD Specifies the number of entries in the system
palette to be retrieved.

IpPaletteEntries LPPALETTEENTRY Points to an array of PALETTEENTRY
data structures to receive the palette entries. The array
must contain at least as many data structures as specified
by the wNumEntries parameter.

Return value The return value is the number of entries retrieved from the system
palette. It is zero if the function failed.

GetSystemPaletteUse

Syntax WORD GetSystemPaletteUse(hDC)
function GetSystemPaletteUse(DC: HDC): Word;

3.0

This function determines whether an application has access to the full
system palette. By default, the system palette contains 20 static colors
which are not changed when an application realizes its logical palette. An
application can gain access to most of these colors by calling the
SetSystemPaletteUse function.

The device context identified by the hDC parameter must refer to a device
that supports color palettes.

Parameters hDC HOC Identifies the device context.

Chapter 4, Functions directory 349

I

I

GetSystemPaletteUse

Return value The return value specifies the current use of the system palette. It is either
of the following values:

Value Meaning

SYSP AL_NOST A TIC System palette contains no static colors except black and
white.

SYSP AL_ST ATIC System palette contains static colors which will not change
when an application realizes its logical palette.

GetTobbedTextExtent 3.0

Syntax DWORD GetTabbedTextExtent(hDC, lpString, nCount, nTabPositions,
lpnTabStopPositions)
function GetTabbedTextExtent(DC: HDC; Str: PChar; Count,
TabPositions: Integer; var TabStopPositions): Longint;

This function computes the width and height of the line of text pointed to
by the IpString parameter. If the string contains one or more tab characters,
the width of the string is based upon the tab stops specified by the
IpnTabStopPositions parameter. The GetTabbedTextExtent function uses
the currently selected font to compute the dimensions of the string. The
width and height (in logical units) are computed without considering the
current clipping region.

Parameters hDC HOC Identifies the device context.

IpString LPSTR Points to a text string.

nCount int Specifies the number of characters in the text
string.

nTabPositions int Specifies the number of tab-stop positions in the
array to which the IpnTabStopPositions points.

IpnTabStopPositions LPINT Points to an array of integers containing the
tab-stop positions in pixels. The tab stops must be
sorted in increasing order; back tabs are not
allowed.

Return value The return value specifies the dimensions of the string. The height is in
the high-order word; the width is in the low-order word.

Comments Since some devices do not place characters in regular cell arrays (that is,
they carry out kerning), the sum of the extents of the characters in a string
may not be equal to the extent of the string.

350 Software development kit

GetTabbedTextExtent

If the nTabPositions parameter is zero and the IpnTabStopPositions
parameter is NULL, tabs are expanded to eight average character widths.

If nTabPositions is 1, the tab stops will be separated by the distance
specified by the first value in the array to which IpnTabStopPositions
points.

If IpnTabStopPositions points to more than a single value, then a tab stop is
set for each value in the array, up to the number specified by
nTabPositions.

GetTempDrive

Syntax BYTE GetTempDrive(cDriveLetter)
function GetTempDrive(DriveLetter: Char): Char;

This function takes a drive letter or zero and returns a letter that specifies
the optimal drive for a temporary file (the disk drive that can provide the
best access time during disk operations with a temporary file).

The GetTempDrive function returns the drive letter of a hard disk if the
system has one. If the cDriveLetter parameter is zero, the function returns
the drive letter of the current disk; if cDriveLetter is a letter, the function
returns the letter of that drive or the letter of another available drive.

Parameters cDriveLetter BYTE Specifies a disk-drive letter.

Return value The return value specifies the optimal disk drive for temporary files.

GetTempFileName

Syntax int GetTempFileName(cDriveLetter, lpPrefixString, wUnique,
lpTempFileName)
function GetTempFileName(DriveLetter: Char; PrefixString: PChar;
Unique: Word; TempFileName: PChar): Integer;

This function creates a temporary filename of the following form:drive: \
path \prefixuuuu.tmp

In this syntax line, drive is the drive letter specified by the cDriveLetter
parameter; path is the pathname of the temporary file (either the root
directory of the specified drive or the directory specified in the TEMP
environment variable); prefix is all the letters (up to the first three) of the
string pointed to by the IpPrefixString parameter; and uuuu is the
hexadecimal value of the number specified by the wUnique parameter.

Chapter 4, Functions directory 351

GetTempFileName

Parameters cDriveLetter BYTE Specifies the suggested drive for the temporary
filename. If cDriveLetter is zero, the default drive is used.

IpPrefixString LPSTR Points to a null-terminated character string to be
used as the temporary filename prefix. This string must
consist of characters in the OEM-defined character set.

wUnique WORD Specifies an unsigned short integer.

IpTempFileName LPSTR Points to the buffer that is to receive the
temporary filename. This string consists of characters in
the OEM-defined character set. This buffer should be at
least 144 bytes in length to allow sufficient room for the
pathname.

Return value The return value specifies a unique numeric value used in the temporary
filename. If a nonzero value was given for the wUnique parameter, the
return value specifies this same number.

Comments To avoid problems resulting from converting OEM character an string to
an ANSI string, an application should call the _Iopen function to create
the temporary file.

GetTextAlign

The GetTempFileName function uses the suggested drive letter for
creating the temporary filename, except in the following cases:

• If a hard disk is present, GetTempFileName always uses the drive letter
of the first hard disk.

• Otherwise, if a TEMP environment variable is defined and its value
begins with a drive letter, that drive letter is used.

If the TF _FORCEDRIVE bit of the cDriveLetter parameter is set, the above
exceptions do not apply. The temporary filename will always be created
in the current directory of the drive specified by cDriveLetter, regardless of
the presence of a hard disk or the TEMP environment variable.

If the wUnique parameter is zero, GetTempFileName attempts to form a
unique number based on the current system time. If a file with the
resulting filename exists, the number is increased by one and the test for
existence is repeated. This continues until a unique filename is found;
GetTempFileName then creates a file by that name and closes it. No
attempt is made to create and open the file when wUnique is nonzero.

Syntax WORD GetTextAlign(hDC)

352 Software development kit

GetTextAlign

function GetTextAlign(DC: HDC): Word;

This function retrieves the status of the text-alignment flags. The text­
alignment flags determine how the TextOut and ExtTextOut functions
align a string of text in relation to the string's starting point.

Parameters hDC HOC Identifies the device context.

Return value The return value specifies the status of the text-alignment flags. The return
value is a combination of one or more of the following values:

Value Meaning

Specifies alignment of the x-axis and the baseline of the
chosen font within the bounding rectangle.
Specifies alignment of the x-axis and the bottom of the
bounding rectangle.
Specifies alignment of the y-axis and the center of the
bounding rectangle.
Specifies alignment of the y-axis and the left side of the
bounding rectangle.

TA_BASELINE

TA_BOTTOM

TA_CENTER

TA_LEFT

TA_NOUPDATECP
TA_RIGHT

Specifies that the current position is not updated.
Specifies alignment of the y-axis and the right side of the
bounding rectangle.

TA_TOP

TA_UPDATECP

Specifies alignment of the x-axis and the top of the
bounding rectangle.
Specifies that the current position is updated.

Comments The text-alignment flags are not necessarily single-bit flags and may be
equal to zero. To verify that a particular flag is set in the return value of
this function, build an application that will perform the following steps:

1. Apply the bitwise OR operator to the flag and its related flags.

The following list shows the groups of related flags:

eTA_LEFT, TA_CENTER, and TA_RIGHT

eTA_BASELINE, TA_BOTTOM, and TA_TOP

e TA_NOUPDATECP and TA_UPDATECP

2. Apply the bitwise AND operator to the result and the return value.

3. Test for the equality of this result and the flag.

The following example shows a method for determining which
horizontal-alignment flag is set:

switch ((TA_LEFT TA RIGHT TA_CENTER) & GetTextAlign(hDC)) { case TA LEFT

case TA RIGHT

Chapter 4, Functions directory 353

GetTextAlign

case TA CENTER

GetT extCharacterExtra

Syntax int GetTextCharacterExtra(hDC)
function GetTextCharacterExtra(DC: HDC): Integer;

This function retrieves the current intercharacter spacing. The
intercharacter spacing defines the extra space (in logical units) that the
TextOut or ExtTextOut functions add to each character as they write a
line. The spacing is used to expand lines of text.

If the current mapping mode is not MM_TEXT, the
GetTextCharacterExtra function transforms and rounds the result to the
nearest unit.

Parameters hDC HOC Identifies the device context.

Return value The return value specifies the current intercharacter spacing.

GetTextColor

Syntax DWORD GetTextColor(hDC)
function GetTextColor(DC: HDC): TColorRef;

This function retrieves the current text color. The text color defines the
foreground color of characters drawn by using the TextOut or ExtTextOut
functions.

Parameters hDC HOC Identifies the device context.

Return value The return value specifies the current text color as an RGB color value.

GetT extExtent

354

Syntax DWORD GetTextExtent(hDC,lpString, nCount)
function GetTextExtent(DC: HDC; Str: PChar; Count: Integer): Longint;

This function computes the width and height of the line of text pointed to
by the IpString parameter. The GetTextExtent function uses the currently
selected font to compute the dimensions of the string. The width and

Software development kit

GetT extExtent

height (in logical units) are computed without considering the current
clipping region.

Parameters hDC

IpString

nCount

HOC Identifies the device context.

LPSTR Points to a text string.

int Specifies the number of characters in the text string.

Return value The return value specifies the dimensions of the string. The height is in
the high-order word; the width is in the low-order word.

Comments Since some devices do not place characters in regular cell arrays (that is,
they carry out kerning), the sum of the extents of the characters in a string
may not be equal to the extent of the string.

GetTextFoce

Syntax int GetTextFace(hDC, nCount, lpFacename)
function GetTextFace(DC: HDC; Count: Integer; Facename: PChar):
Integer;

This function copies the typeface name of the selected font into a buffer
pointed to by the IpFacename parameter. The typeface name is copied as a
null-terminated character string. The nCount parameter specifies the
maximum number of characters to be copied. If the name is longer than
the number of characters specified by nCount, it is truncated.

Parameters hDC HOC Identifies the device context.

nCount int Specifies the size of the buffer in bytes.

IpFacename LPSTR Points to the buffer that is to receive the typeface
name.

Return value The return value specifies the actual number of bytes copied to the buffer.
It is zero if an error occurs.

GetTextMetrics

Syntax BOOL GetTextMetrics(hDC, lpMetrics)
function GetTextMetrics(DC: HDC; var Metrics: TTextMetric): Bool;

This function fills the buffer pointed to by the IpMetrics parameter with
the metrics for the selected font.

Parameters hDC HOC Identifies the device context.

Chapter 4, Functions directory 355

GetTextMetrics

IpMetrics LPTEXTMETRIC Points to the TEXTMETRIC data structure
that is to receive the metrics.

Return value The return value specifies the outcome of the function. It is nonzero if the
function is successful. Otherwise, it is zero.

GetThresholdEvent

Syntax LPINT GetThresholdEvent()
function GetThresholdEvent: PInteger;

This function retrieves a flag that identifies a recent threshold event. A
threshold event is any transition of a voice queue from n to n - 1 where n
is the threshold level in notes.

Parameters None.

Return value The return value points to a short integer that specifies a threshold event.

GetThresholdStatus

Syntax int GetThresholdStatus()
function GetThresholdStatus: Integer;

This function retrieves the threshold-event status for each voice. Each bit
in the status represents a voice. If a bit is set, the voice-queue level is
currently below threshold.

The GetThresholdStatus function also clears the threshold-event flag.

Parameters None.

Return value The return value specifies the status flags of the current threshold event.

GetTickCount

Syntax DWORD GetTickCount()
function GetTickCount: Longint;

This function obtains the number of milliseconds that have elapsed since
the system was started.

Parameters None.

356 Software development kit

GetTickCount

Return value The return value specifies the number of milliseconds that have elapsed
since the system was started.

Comments The count is accurate within ±55 milliseconds.

GetTopWindow

Syntax HWND GetTopWindow(hWnd)
function GetTopWindow(Wnd: HWnd): HWnd;

This function searches for a handle to the top-level child window that
belongs to the parent window associated with the h Wnd parameter. If the
window has no children, this function returns NULL:

Parameters h Wnd HWND Identifies the parent window.

Return value The return value identifies a handle to the top-level child window in a
parent window's linked list of child windows. If no child windows exist, it
is NULL.

GetUpdateRect

Syntax BOOL GetUpdateRect(h Wnd, IpRect, bErase)
function GetUpdateRect(Wnd: HWnd; var Rect: TRect; Erase: Book): Bool;

This function retrieves the coordinates of the smallest rectangle that
completely encloses the update region of the given window. If the
window was created with the CS_OWNDC style and the mapping mode
is not MM_ TEXT, the GetUpdateRect function gives the rectangle in
logical coordinates. Otherwise, GetUpdateRect gives the rectangle in
client coordinates. If there is no update region, GetUpdateRect makes the
rectangle empty (sets all coordinates to zero).

The bErase parameter specifies whether GetUpdateRect should erase the
background of the update region. If bErase is TRUE and the update region
is not empty, the background is erased. To erase the background,
GetUpdateRect sends a WM_ERASEBKGND message to the given
window.

Parameters h Wnd

IpRect

Chapter 4, Functions directory

HWND Identifies the window whose update region is to be
retrieved.

LPRECT Points to the RECT data structure that is to receive
the client coordinates of the enclosing rectangle.

357

I

GetUpdateRect

bErase BOOl Specifies whether the background in the update
region is to be erased.

Return value The return value specifies the status of the update region of the given
window. It is nonzero if the update region is not empty. Otherwise, it is
zero.

Comments The update rectangle retrieved by the BeginPaint function is identical to
that retrieved by the GetUpdateRect function.

BeginPaint automatically validates the update region, so any call to
GetUpdateRect made immediately after the BeginPaint call retrieves an
empty update region.

GetUpdateRgn

Syntax int GetUpdateRgn(hWnd, hRgn, fErase)
function GetUpdateRgn(Wnd: HWnd; Rgn: HRgn; Erase: Bool): Integer;

This function copies a window's update region into a region identified by
the hRgn parameter. The coordinates of this region are relative to the
upper-left corner of the window (client coordinates).

Parameters h Wnd

hRgn

[Erase

HWND Identifies the window that contains the region to be
updated.

HRGN Identifies the update region.

BOOl Specifies whether or not the window background
should be erased and non client areas of child windows
should be drawn. If it is zero, no drawing is done.

Return value The return value specifies a short-integer flag that indicates the type of
resulting region. It can be anyone of the following values:

Parameters COMPLEXREGION
ERROR
NULLREGION
SIMPLEREGION

The region has overlapping borders.
No region was created.
The region is empty.
The region has no overlapping borders.

Comments BeginPaint automatically validates the update region, so any call to
GetUpdateRgn made immediately after the BeginPaint call retrieves an
empty update region.

358 Software development kit

GetVersion

GetVersion

Syntax WORD GetVersion()
function GetVersion: Longint;

This function returns the current version number of Windows.

Parameters None.

Return value The return value specifies the major and minor version numbers of
Windows. The high-order byte specifies the minor version (revision)
number; the low-order byte specifies the major version number.

GetViewportExt

Syntax DWORD GetViewportExt(hDC)
function GetViewportExt(DC: HDC): Longint;

This function retrieves the x- and y-extents of the device context's
viewport.

Parameters hDC HOC Identifies the device context.

Return value The return value specifies the x- and y-extents (in device units). The y­
extent is in the high-order word; the x-extent is in the low-order word.

GetViewportOrg

Syntax DWORD GetViewportOrg(hDC)
function GetViewportOrg(DC: HDC): Longint;

This function retrieves the x- and y-coordinates of the origin of the
viewport associated with the specified device context.

Parameters hDC HOC Identifies the device context.

Return value The return value specifies the origin of the viewport (in device
coordinates). The y-coordinate is in the high-order word; the x-coordinate
is in the low-order word.

Chapter 4, Functions directory 359

GetWindow

GetWindow

Syntax HWND GetWindow(h Wnd, wCmd)
function GetWindow(Wnd: HWnd; Cmd: Word): HWnd;

This function searches for a handle to a window from the window
manager's list. The window-manager's list contains entries for all top-level
windows, their associated child windows, and the child windows of any
child windows. The wCmd parameter specifies the relationship between
the window identified by the h Wnd parameter and the window whose
handle is returned.

Parameters h Wnd

wCmd

HWND Identifies the original window.

WORD Specifies the relationship between the original
window and the returned window. It may be one of the
following values:

Value
GW_CHILD

GW _HWNDFIRST

GW _HWNDLAST

GW _HWNDNEXT

GW _HWNDPREV

GW_OWNER

Meaning
Identifies the window's first
child window.
Returns the first sibling window
for a child window. Otherwise,
it returns the first top-level
window in the list.
Returns the last sibling window
for a child window. Otherwise,
it returns the last top-level
window in the list.
Returns the window that
follows the given window on
the window manager's list.
Returns the previous· window
on the window manager's list.
Identifies the window's owner.

Return value The return value identifies a window. It is NULL if it reaches the end of
the window manager's list or if the wCmd parameter is invalid.

GetWindowDC

Syntax HDC GetWindowDC(h Wnd)
function GetWindowDC(Wnd: HWnd): HDC;

360 Software development kit

Parameters

Return value

GefWindowDC

This function retrieves the display context for the entire window,
including caption bar, menus, and scroll bars. A window display context
permits painting anywhere in a window, including the caption bar,
menus, and scroll bars, since the origin of the context is the upper-left
corner of the window instead of the client area.

GetWindowDC assigns default attributes to the display context each time
it retrieves the context. Previous attributes are lost.

hWnd HWND Identifies the window whose display context is to be
retrieved.

The return value identifies the display context for the given window if the
function is successful. Otherwise, it is NULL.

Comments The GetWindowDC function is intended to be used for special painting
effects within a window's nonclient area. Painting in nonclient areas of
any window is not recommended.

The GetSystemMetrics function can be used to retrieve the dimensions of
various parts of the nonclient area, such as the caption bar, menu, and
scroll bars.

After painting is complete, the ReleaseDC function must be called to
release the display context. Failure to release a window display context
will have serious effects on painting requested by applications.

GetWindowExt

Syntax DWORD GetWindowExt(hDC)
function GetWindowExt(DC: HDC): Longint;

This function retrieves the x- and y-extents of the window associated with
the specified device context.

Parameters hDC HDC Identifies the device context.

Return value The return value specifies the x- and y-extents (in logical units). The y­
extent is in the high-order word; the x-extent is in the low-order word.

GetWindowLong

Syntax LONG GetWindowLong(hWnd, nIndex)
function GetWindowLong(Wnd: HWnd; Index: Integer): Longint;

Chapter 4, Functions directory 361

GefWindowLong

This function retrieves information about the window identified by the
h Wnd parameter.

Parameters h Wnd HWND Identifies the window.

nlndex int Specifies the byte offset of the value to be retrieved. It can
also be one of the following values:

Value Meaning
GWL_EXSTYLE Extended window style.
GWL_STYLE Window style
GWL_ WNDPROC Long pointer to the window

function

Return value The return value specifies information about the given window.

Comments To access any extra four-byte values allocated when the window-class
structure was created, use a positive byte offset as the index specified by
the nlndex parameter, starting at zero for the first four-byte value in the
extra space, 4 for the next four-byte value and so on.

GetWindowOrg

Syntax DWORD GetWindowOrg(hDC)
function GetWindowOrg(DC: HDC): Longint;

This function retrieves the x- and y-coordinates of the origin of the
window associated with the specified device context.

Parameters hDC HOC Identifies the device context.

Return value The return value specifies the origin of the window (in logical
coordinates). The y-coordinate is in the high-order word; the x-coordinate
is in the low-order word.

GetWindowRect

362

Syntax void GetWindowRect(hWnd, lpRect)
procedure GetWindowRect(Wnd: HWnd; var Rect: TRect);

This function copies the dimensions of the bounding rectangle of the
specified window into the structure pointed to by the IpRect parameter.
The dimensions are given in screen coordinates, relative to the upper-left
corner of the display screen, and include the caption, border, and scroll
bars, if present.

Software development kit

GetWindowRect

HWND Identifies the window. Parameters h Wnd

IpRect LPRECT Points to a RECT data structure that contains the
screen coordinates of the upper-left and lower-right corners
of the window.

Return value None.

GetWindowsDirectory

Syntax WORD GetWindowsDirectory(lpBuffer, nSize)
function GetWindowsDirectory (Buffer: PChar; Size: Word): Word;

This function obtains the pathname of the Windows directory. The
Windows directory contains such files as Windows applications,
initialization files, and help files.

Parameters IpBuffer LPSTR Points to the buffer that is to receive the null­
terminated character string containing the pathname.

3.0

nSize int Specifies the maximum size (in bytes) of the buffer. This
value should be set to at least 144 to allow sufficient room in
the buffer for the pathname.

Return value The return value is the length of the string copied to IpBuffer, not
including the terminating null character. If the return value is greater than
nSize, the return value is the size of the buffer required to hold the
pathname. The return value is zero if the function failed.

Comments The pathname retrieved by this function does not end with a backslash (\
), unless the Windows directory is the root directory. For example, if the
Windows directory is named WINDOWS on drive C:, the pathname of the
Windows directory retrieved by this function is C: \ WINDOWS. If
Windows was installed in the root directory of drive C:, the pathname
retrieved by this function is C: \.

GetWindowT ask

Syntax HANDLE GetWindowTask(h Wnd)
function GetWindowTask(Wnd: HWnd): THandle;

This function searches for the handle of a task associated with the h Wnd
parameter. A task is any program that executes as an independent unit.

Chapter 4, Functions directory 363

GetWindowTosk

All applications are executed as tasks. Each instance of an application is a
task.

Parameters h Wnd HWND Identifies the window for which a task handle is
retrieved.

Return value The return value identifies the task associated with a particular window.

GetWindowText

Syntax int GetWindowText(hWnd,lpString, nMaxCount)
function GetWindowText(Wnd: HWnd; Str: PChar; MaxCount: Integer):
Integer;

This function copies the given window's caption title (if it has one) into
the buffer pointed to by the IpString parameter. If the hWnd parameter
identifies a control, the GetWindowText function copies the text within the
control instead of copying the caption.

Parameters h Wnd HWND Identifies the window or control whose caption or
text is to be copied.

IpString LPSTR Points to the buffer that is to receive the copied
string.

nMaxCount int Specifies the maximum number of characters to be copied
to the buffer. If the string is longer than the number of
characters specified in the nMaxCount parameter, it is
truncated.

Return value The return value specifies the length of the copied string. It is zero if the
window has no caption or if the caption is empty.

Comments This function causes a WM_ GETTEXT message to be sent to the given
window or control.

GetWindowTextLength

Syntax int GetWindowTextLength(hWnd)
function GetWindowTextLength(Wnd: HWnd): Integer;

This function returns the length of the given window's caption title. If the
h Wnd parameter identifies a control, the GetWindowTextLength function
returns the length of the text within the control instead of the caption.

Parameters hWnd HWND Identifies the window or control.

364 Software development kit

GetWindowTextLength

Return value The return value specifies the text length. It is zero if no such text exists.

GetWindowWord

Syntax WORD GetWindowWord(hWnd, nIndex)

Parameters

function GetWindowWord(Wnd: HWnd; Index: Integer): Word;

This function retrieves information about the window identified by h Wnd.

hWnd

nlndex

HWND Identifies the window.

int Specifies the byte offset of the value to be retrieved. It can
also be one of the following values:

Value Meaning
GWW _HINSTANCE Instance handle of the module

that owns the window.
GWW _HWNDP ARENT Handle of the parent window, if

any. The SetParent function
changes the parent window of a
child window. An application
should not call the
SetWindowLong function to
change the parent of a child
window.

GWW _ID Control ID of the child window.

Return value The return value specifies information about the given window.

Comments To access any extra two-byte values allocated when the window-class
structure was created, use a positive byte offset as the index specified by
the nlndex parameter, starting at zero for the first two-byte value in the
extra space, 2 for the next two-byte value and so on.

GetWinFlags 3.0

Syntax DWORD GetWinFlags()
function GetWinFlags: Longint;

This function returns a 32-bit value containing flags which specify the
memory configuration under which Windows is running.

Parameters None.

Chapter 4, Functions directory 365

•

GetWinFlags

Return value The return value contains flags specifying the current memory
configuration. These flags may be any of the following values:

WF_80x87
WF_CPU086
WF_CPU186
WF_CPU286
WF_CPU386
WF_CPU486
WF _ENHANCED

WF _SMALLFRAME

System contains an Intel math coprocessor.
System CPU is an 8086.
System CPU is an 80186.
System CPU is an 80286.
System CPU is an 80386.
System CPU is an 80486.
Windows is running in 386 enhanced mode. The
WF _PMODE flag is always set when
WF_ENHANCED is set.
Windows is running in EMS large-frame memory
configuration.
Windows is running in protected mode. This flag
is always set when either WF _ENHANCED or
WF_STANDARD is set.
Windows is running in EMS small-frame memory
configura tion.
Windows is running in standard mode. The
WF _PM ODE flag is always set when
WF _STANDARD is set.

If neither WF _ENHANCED nor WF _STANDARD is set, Windows is
running in real mode.

GlobalAddAtom

366

Syntax ATOM GlobalAddAtom(lpString)
function GlobalAddAtom{Str: PChar): TAtom;

This function adds the character string pointed to by the IpString
parameter to the atom table and creates a new global atom that uniquely
identifies the string. A global atom is an atom that is available to all
applications. The atom can be used in a subsequent GlobalGetAtomName
function to retrieve the string from the atom table.

The GlobalAddAtom function stores no more than one copy of a given
string in the atom table. If the string is already in the table, the function
returns the existing atom value and increases the string's reference count
by one. The string's reference count is a number that specifies the number
of times GlobalAddAtom has been called for a particular string.

Software development kit

GlobalAddAtom

Parameters IpString LPSTR Points to the character string to be added to the table.
The string must be a null-terminated character string.

Return value The return value identifies the newly created atom if the function is
successful. Otherwise, it is NULL.

Comments The atom values returned by GlobalAddAtom are within the range OxCOOO
to OxFFFF.

GlobalAlloc

Syntax HANDLE GlobalAlloc(wFlags, dwBytes)
function GlobaIAlloc(Flags: Word; Bytes: Longint): THandle;

This function allocates the number of bytes of memory specified by the
dwBytes parameter from the global heap. The memory can be fixed or
moveable, depending on the memory type specified by the wFlags
parameter.

Parameters wFlags

Chapter 4, Functions directory

WORD Specifies one or more flags that tell the GlobalAlioc
function how to allocate the memory. It can be one or more
of the following values:

Value
GMEM_DDESHARE

GMEM_DISCARDABLE

GMEM_FIXED
GMEM_MOVEABLE

GMEM_NOCOMP ACT

Meaning
Allocates sharable memory. This
is used for dynamic data
exchange (DDE) only. Note,
however, that Windows
automatically discards memory
allocated with this attribute
when the application that
allocated the memory
terminates.
Allocates discard able memory.
Can only be used with
GMEM_MOVEABLE.
Allocates fixed memory.
Allocates moveable memory.
Cannot be used with
GMEM_FIXED.
Does not compact or discard to
satisfy the allocation request.

367

GlobolAlioc

dwBytes

GMEM_NODISCARD Does not discard to satisfy the
allocation request.

GMEM_NOT_BANKED AllO'cates non-banked memory.
Cannot be used with
GMEM_NOTIFY.

GMEM_NOTIFY Calls the notification routine if
the memory object is ever
discarded.

GMEM_ZEROINIT Initializes memory contents to
zero.

Choose GMEM_FIXED or GMEM_MOVEABLE, and then
combine others as needed by using the bitwise OR operator.

DWORD Specifies the number of bytes to be allocated.

Return value The return value identifies the allocated global memory if the function is
successful. Otherwise, it is NULL.

Comments If this function is successful, it allocates at least the amount requested. The
actual amount allocated may be greater, and the application can use the
entire amount. To determine the actual amount allocated, call the
GlobalSize function.

The largest block of memory that an application can allocate is 1 MB in
standard mode and 64 MB in 386 enhanced mode.

GlobalCompact

Syntax DWORD GlobalCompact(dwMinFree)
function GlobalCompact(MinFree: Longint): Longint;

This function generates the number of free bytes of global memory
specified by the dwMinFree parameter by compacting and, if necessary,
discarding from the system's global heap. The function always compacts
memory before checking for free memory. It then checks the global heap
for the number of contiguous free bytes specified by the dwMinFree
parameter. If the bytes do not exist, the GlobalCompact function discards
unlocked discardable blocks until the requested space is generated,
whenever possible.

Parameters dwMinFree DWORD Specifies the number of free bytes desired.

Return value The return value specifies the number of bytes in the largest block of free
global memory.

368 Software development kit

GlobalCompact

Comments If dwMinFree is zero, the return value specifies the number of bytes in the
largest free segment that Windows can generate if it removes all
discardable segments.

If an application uses the return value as the dwBytes parameter to the
GlobalAlioc function, the GMEM_NOCOMP ACT or
GMEM_NODISCARD flags should not be used.

GlobalDeleteAtom

Syntax ATOM GlobalDeleteAtom(nAtom)
function GlobalDeleteAtom(AnAtom: TAtom): TAtom;

This function decreases the reference count of a global atom by one. If the
atom's reference count becomes zero, this function removes the associated
string from the atom table. (A global atom is an atom that is available to
all Windows applications.)

An atom's reference count specifies the number of times the atom has been
added to the atom table. The GlobalAddAtom function increases the count
on each call; the GlobalDeleteAtom function decreases the count on each
call. GlobalDeleteAtom removes the string only if the atom's reference
count is zero.

Parameters nAtom ATOM Identifies the atom and character string to be deleted.

Return value The return value specifies the outcome of the function. It is NULL if the
function is successful. It is equal to nAtom if the function failed and the
atom has not been deleted.

GlobalDiscard

Syntax HANDLE GlobalDiscard(hMem)
function GlobalDiscard(Mem: THandle): THandle;

This function discards a global memory block specified by the hMem
parameter. The lock count of the memory block must be zero.
The global memory block is removed from memory, but its handle
remains valid. An application can subsequently pass the handle to the
GlobalReAlioc function to allocate another global memory block
identified by the same handle.

Parameters hMem HANDLE Identifies the global memory block to be discarded.

Chapter 4, Functions directory 369

GlobolDiscord

Return value The return value identifies the discarded block if the function is
successful. Otherwise, it is zero.

Comments The GlobalDiscard function discards only global objects that an
application allocated with the GMEM_DISCARDABLE and
GMEM_MOVEABLE flags set. The function fails if an application
attempts to discard a fixed or locked object.

GlobalDosAlioc 3.0

Syntax DWORD GlobaIDosAlloc(dwBytes)
function GlobaIDosAlloc(Bytes: Longint): Longint;

This function allocates global memory which can be accessed by DOS
running in real mode. The memory is guaranteed to exist in the first
megabyte of linear address space.

Parameters dwBytes DWORD Specifies the number of bytes to be allocated.

Return value The return value contains a paragraph-segment value in its high-order
word and a selector in its low-order word. An application can use the
paragraph-segment value to access memory in real mode and the selector
to access memory in protected mode. If Windows is running in real mode,
the high-order and low-order words will be equal. If Windows cannot
allocate a block of memory of the requested size, the return value is
NULL.

Comments An application should not use this function unless it is absolutely
necessary. The memory pool from which the object is allocated is a scarce
system resource.

GlobalDosFree 3.0

370

Syntax WORD GlobaIDosFree(wSelector)
function GlobaIDosFree(Selector: Word): Word;

This function frees a block of global memory previously allocated by a call
to the GlobalDosAlloc function.

Parameters wSelector WORD Specifies the memory to be freed.

Return value The return value identifies the outcome of the function. It is NULL if the
function is successful. Otherwise, it is equal to wSelector.

Software development kit

GlobalFindAtom

GlobalFindAtom

Syntax ATOM GlobalFindAtom(lpString)
function GlobalFindAtom(Str: PChar): TAtom;

This function searches the atom table for the character string pointed to by
the IpString parameter and retrieves the global atom associated with that
string. (A global atom is an atom that is available to all Windows
applications.)

Parameters IpString LPSTR Points to the character string to be searched for. The
string must be a null-terminated character string.

Return value The return value identifies the global atom associated with the given
string. It is NULL if the string is not in the table.

GlobalFix 3.0

Syntax void GlobalFix(hMem)
procedure GlobalFix(Mem: THandle);

This function prevents the global memory block identified by the hMem
parameter from moving in linear memory. The block is locked into linear
memory at its current address and its lock count is increased by one.
Locked memory is not subject to moving or discarding except when the
memory block is being reallocated by the GlobalReAlloc function. The
block remains locked in memory until its lock count is decreased to zero.

Each time an application calls GlobalFix for a memory object, it must
eventually call GlobalUnfix for the object. The GlobalUnfix function
decreases the lock count for the object. Other functions also can affect the
lock count of a memory object. See the description of the GlobalFlags
function for a list of the functions that affect the lock count.

Parameters hMem

Return value None.

HANDLE Identifies the global memory block.

Comments Calling this function interferes with Windows memory management and
results in linear-address fragmentation. Very few applications need to fix
memory in linear address space.

Chapter 4, Functions directory 371

GlobalFlags

GlobalFlags

Syntax WORD GlobaIFlags(hMem)
function GlobaIFlags(Mem: THandle): Word;

This function returns information about the global memory block
specified by the hMem parameter.

Parameters hMem HANDLE Identifies the global memory block.

Return value The return value specifies a memory-allocation flag in the high byte. The
flag will be one of the following values:

Parameters GMEM_DDESHARE The block can be shared. This is used for
dynamic data exchange (DDE) only.

GMEM_DISCARDABLE The block can be discarded.
GMEM_DISCARDED The block has been discarded.
GMEM_NOT_BANKED The block cannot be banked.

The low byte of the return value contains the lock count of the block. Use
the GMEM_LOCKCOUNT mask to retrieve the lock-count value from the
return value.

Comments To test whether or not an object can be discarded, AND the return value
of GlobalFlags with GMEM_DISCARDABLE.

The following functions can affect the lock count of a global memory
block:

Increases Lock Count Decreases Lock Count

GlobalFix
GlobalLock
GlobalWire
LockSegment

GlobalUnfix
GlobalUnlock
GlobalUnWire
UnlockSegment

GlobalFree

372

Syntax HANDLE GlobaIFree(hMem)
function GlobaIFree(Mem: THandle): THandle;

This function frees the global memory block identified by the hMem
parameter and invalidates the handle of the memory block.

Parameters hMem HANDLE Identifies the global memory block to be freed.

Return value The return value identifies the outcome of the function. It is NULL if the
function is successful. Otherwise, it is equal to hMem.

Software development kit

GlobolFree

Comments The GlobalFree function must not be used to free a locked memory block,
that is, a memory block with a lock count greater than zero. See the
description of the GlobalFlags function for a list of the functions that
affect the lock count.

GlobalGetAtomName

Syntax WORD GlobalGetAtomName{nAtom, lpBuffer, nSize)
function GlobalGetAtomName{AnAtom: TAtom; Buffer: PChar; Size:
Integer): Word;

This function retrieves a copy of the character string associated with the
nAtom parameter and places it in the buffer pointed to by the IpBuffer
parameter. The nSize parameter specifies the maximum size of the buffer.
(A global atom is an atom that is available to all Windows applications.)

Parameters nAtom

IpBuffer

nSize

ATOM Identifies the character string to be retrieved.

LPSTR Points to the buffer that is to receive the character
string.

int Specifies the maximum size (in bytes) of the buffer.

Return value The return value specifies the actual number of bytes copied to the buffer.
It is zero if the specified global atom is not valid.

GlobalHandle

Syntax DWORD GlobalHandle{wMem)
function GlobalHandle{Mem: Word): Longint;

This function retrieves the handle of the global memory object whose
segment address or selector is specified by the wMem parameter.

Parameters wMem WORD Specifies an unsigned integer value that gives the
segment address or selector of a global memory object.

Return value The low-order word of the return value specifies the handle of the global
memory object. The high-order word of the return value specifies the
segment address or selector of the memory object. The return value is
NULL if no handle exists for the memory object.

Chapter 4, Functions directory 373

i

•
I

GlobolLock

GlobalLock

Syntax LPSTR GlobalLockChMem)
function GlobalLockCMem: THandle): Pointer;

This function retrieves a pointer to the global memory block specified by
the hMem parameter.
Except for nondiscardable objects in protected Cstandard or 386 enhanced)
mode, the block is locked into memory at the given address and its lock
count is increased by one. Locked memory is not subject to moving or
discarding except when the memory block is being reallocated by the
GlobalReAlioc function. The block remains locked in memory until its
lock count is decreased to zero.

In protected mode, GlobalLock increments the lock count of discardable
objects and automatic data segments only.

Each time an application calls GlobalLock for an object, it must eventually
call GlobalUnlock for the object. The GlobalUnlock function decreases the
lock count for the object if GlobalLock increased the lock count for the
object. Other functions also can affect the lock count of a memory object.
See the description of the GlobalFlags function for a list of the functions
that affect the lock count.

Parameters hMem HANDLE Identifies the global memory block to be locked.

Return value The return value points to the first byte of memory in the global block if
the function is successful. If the object has been discarded or an error
occurs, the return value is NULL.

Comments Discarded objects always have a lock count of zero.

GlobalLRUNewest

Syntax HANDLE GlobalLRUNewestChMem)
function GlobalLRUNewestCMem: THandle): THandle;

This function moves the global memory object identified by hMem to the
newest least-recently-used CLRU) position in memory. This greatly
reduces the likelihood that the object will be discarded soon, but does not
prevent the object from eventually being discarded.

Parameters hMem HANDLE Identifies the global memory object to be moved.

Return value The return value is NULL if the hMem parameter does not specify a valid
handle.

374 Software development kit

GlobalLRUNewesf

Comments This function is useful only if hMem is discardable.

GlobalLRUOldest

Syntax HANDLE GlobaILRUOldest(hMem)
function GlobaILRUOldest(Mem: THandle): THandle;

This routine moves the global memory object identified by hMem to the
oldest least-recently-used (LRU) position in memory and, in so doing,
makes it the next candidate for discarding.

Parameters hMem HANDLE Identifies the global memory object to be moved.

Return value The return value is NULL if the hMem parameter does not specify a valid
handle.

Comments This function is useful only if hMem is discardable.

GlobalNotify

Syntax void GlobalNotify(lpNotifyProc)
procedure GlobalNotify(NotifyProc: TFarProc);

This function installs a notification procedure for the current task.
Windows calls the notification procedure whenever a global memory
block allocated with the GMEM_NOTIFY flag is about to be discarded.

Parameters IpNotifyProc FARPROC Is the procedure instance address of the current
task's notification procedure.

Return value None.

Comments An application must not call GlobalNotify more than once per instance.

Windows does not call the notification procedure when it discards
memory belonging to a DLL.

If the object is discarded, the application must use the GMEM_NOTIFY
flag when it recreates the object by calling the GlobalRealioc function.
Otherwise, the application will not be notified when the object is
discarded again.

If the notification procedure returns a nonzero value, Windows discards
the global memory block. If it returns zero, the block is not discarded.

Chapter 4, Functions directory 375

GlobalNotify

Callback

The callback function must use the Pascal calling convention and must be
declared FAR. The callback function must reside in a fixed code segment
of a DLL.

function Bool FAR PASCAL NotifyProc(hMem)

NotifyProc is a placeholder for the application-supplied function name.
Export the name by including it in an EXPORTS statement in the DLL's
module-definition statement.

Parameters hMem HANDLE Identifies the global memory block being
discarded.

Return value The function returns a nonzero value if Windows is to discard the
memory block, and zero if it should not.

Comments The callback function is not necessarily called in the context of the
application that owns the routine. For this reason, the callback function
should not assume the stack segment of the application. The callback
function should not call any routine that might move memory.

GlobalPageLock 3.0

Syntax WORD GlobalPageLock(wSelector)
function GlobalPageLock(Selector: THandle): Word;

This function increments the page-lock count of the memory associated
with the specified global selector. As long as its page-lock count is
nonzero, the data which the selector references is guaranteed to remain in
memory at the same physical address and to remain paged in.

GlobalPageLock increments the page-lock count for the block of memory,
and the GlobalPageUnlock function decrements the page-lock count.
Page-locking operations can be nested, but each page lock must be
balanced by a corresponding unlock.

Parameters wSelector WORD Specifies the selector of the memory to be page­
locked.

Return value The return value specifies the page-lock count after the function has
incremented it. If the function fails, the return value is zero.

Comments An application should not use this function unless it is absolutely
necessary. Use of this function violates preferred Windows programming
practices. It is intended to be used for dynamically allocated data that

376 Software development kit

GlobalPageUnlock

must be accessed at interrupt time. For this reason, it must only be called
from a DLL.

GlobalPageUnlock 3.0

Syntax WORD GlobaIPageUnlock(wSelector)
function GlobaIPageUnlock(Selector: THandle): Word;

This function decrements the page-lock count for the block of memory
identified by the wSelector parameter and, if the page-lock count reaches
zero, allows the block of memory to move and to be paged to disk.

The GlobalPageLock function increments the page-lock count for the
block of memory, and GlobalPageUnlock decrements the page-lock count.
Page-locking operations can be nested, but each page lock must be
balanced by a corresponding unlock.

Only libraries can call this function.

Parameters wSelector WORD Specifies the selector of the memory to be page­
unlocked.

Return value The return value specifies the page-lock count after the function has
decremented it. If the function fails, the return value is zero.

GlobalReAlioc

Syntax HANDLE GlobaIReAlloc(hMem, dwBytes, wFlags)
function GlobaIReAlloc(Mem: THandle; Bytes: Longint; Flags: Word):
THandle;

This function reallocates the global memory block specified by the hMem
parameter by increasing or decreasing its size to the number of bytes
specified by the dwBytes parameter.

Parameters hMem HANDLE Identifies the global memory block to be
reallocated.

dwBytes

wFlags

Chapter 4, Functions directory

DWORD Specifies the new size of the memory block.

WORD Specifies how to reallocate the global block.
If the existing memory flags can be modified, use either one
or both of the following flags (if both flags are specified, join
them with the bitwise OR operator):

377

GlobolReAlioc

378

Value
GMEM_DISCARDABLE

GMEM_MOVEABLE

GMEM_NOCOMPACT

GMEM_NODISCARD

Meaning
Memory can be discarded. Use
only with GMEM_MODIFY.
Memory flags are modified. The
dwBytes parameter is ignored.
Use only if an application will
modify existing memory flags
and not reallocate the memory
block to a new size.
Memory is movable. If dwBytes
is zero, this flag causes an object
previously allocated as
moveable and discardable to be
discarded if the block's lock
count is zero. If the block is not
moveable and discardable, the
GlobalReAlloc will fail. If
dwBytes is nonzero and the
block specified by hMem is fixed,
this flag allows the reallocated
block to be moved to a new
fixed location. If a moveable
object is locked, this flag allows
the object to be moved. This
may occur even if the object is
currently locked by a previous
call to GlobalLock. (Note that
the handle returned by the
GlobalReAlloc function in this
case may be different from the
handle passed to the function.)
Use this flag with
GMEM_MODIFY to make a
fixed memory block moveable.
Memory will not be compacted
or discarded in order to satisfy
the allocation request. This flag
is ignored if the
GMEM_MODIFY flag is set.
Objects will not be discarded in
order to satisfy the allocation
request. This flag is ignored if
the GMEM_MODIFY flag is set.

Software development kit

GMEM_ZEROINIT

GlobalReAlloc

If the block is growing, the
additional memory contents are
initialized to zero. This flag is
ignored if the GMEM_MODIFY
flag is set.

Return value The return value identifies the reallocated global memory if the function is
successful. The return value is NULL if the block cannot be reallocated.

GlobalSize

If the function is successful, the return value is always identical to the
hMem parameter, unless any of the following conditions is true:

II The GMEM_MOVEABLE flag is used to allow movement of a fixed
block to a new fixed location.

II Windows is running in standard mode and the object is reallocated past
a multiple of 65,519 bytes (16 bytes less than 64K).

II Windows is running in 386 enhanced mode and the object is reallocated
past a multiple of 64K.

Syntax DWORD GlobaISize(hMem)
function GlobaISize(Mem: THandle): Longint;

This function retrieves the current size (in bytes) of the global memory
block specified by the hMem parameter.

Parameters hMem HANDLE Identifies the global memory block.

Return value The return value specifies the actual size (in bytes) of the specified
memory block. It is zero if the given handle is not valid or if the object has
been discarded.

Comments The actual size of a memory block is sometimes larger than the size
requested when the memory was allocated.

An application should call the GlobalFlags function prior to calling the
GlobalSize function in order to verify that the specified memory block
was not discarded. If the memory block were discarded, the return value
for GlobalSize would be meaningless.

GlobalUnfix 3.0

Syntax BaaL GlobaIUnfix(hMem)

Chapter 4, Functions directory 379

I

II
I

GlobolUnfix

function GlobalUnfix(Mem: THandle): Baal;

This function unlocks the global memory block specified by the hMem
parameter.

GlobalUnfix decreases the block's lock count by one. The block is
completely unlocked and subject to moving or discarding if the lock count
is decreased to zero. Other functions also can affect the lock count of a
memory object. See the description of the GlobalFlags function for a list of
the functions that affect the lock count.

Each time an application calls GlobalFix for an object, it must eventually
call GlobalUnfix for the object.

Parameters hMem HANDLE Identifies the global memory block to be unlocked.

Return value The return value specifies the outcome of the function. It is zero if the
block's lock count was decreased to zero. Otherwise, the return value is
nonzero.

GlobalUnlock

Syntax BaaL GlobalUnlock(hMem)
function GlobalUnlock(Mem: THandle): Baal;

This function unlocks the global memory block specified by the hMem
parameter.

In real mode, or if the block is discardable, GlobalUnlock decreases the
block's lock count by one. In protected mode, GlobalUnock decreases the
lock count of discardable objects and automatic data segments only.

The block is completely unlocked and subject to moving or discarding if
the lock count is decreased to zero. Other functions also can affect the lock
count of a memory object. See the description of the GlobalFlags function
for a list of the functions that affect the lock count.

In all cases, each time an application calls GlobalLock for an object, it
must eventually call GlobalUnlock for the object.

Parameters hMem HANDLE Identifies the global memory block to be unlocked.

Return value The return value specifies the outcome of the function. It is zero if the
block's lock count was decreased to zero. Otherwise, the return value is
nonzero. An application shquld not rely on the return value to determine
the number of times it must subsequently call GlobalUnlock for the
memory block.

380 Software development kit

GlobalUnWire

GlobalUnWire

Syntax BOOL GlobalUn Wire(hMem)
function GlobaIUnWire(Mem: THandle): Baal;

This function unlocks a memory segment that was locked by the
GlobalWire function and decreases the lock count by one.

The block is completely unlocked and subject to moving or discarding if
the lock count is decreased to zero. Other functions also can affect the lock
count of a memory object. See the description of the GlobalFlags function
for a list of the functions that affect the lock count.

Each time an application calls GlobalWire for an object, it must eventually
call GlobalUnWire for the object.

Parameter:; lzMe111 HANDLE Identifies the segment that will be unlocked.

Return value The return value specifies the outcome of the function. It is TRUE if the
memory segment was unlocked, that is, its lock count was decreased to
zero. Otherwise, it is FALSE.

GlobalWire

Syntax LPSTR GlobaIWire(hMem)
function GlobaIWire(Mem: THandle): Pointer;

This function moves a segment into low memory and locks it-a
procedure that is extremely useful if an application must lock a segment
for a long period of time. If a segment from the middle portion of memory
is locked for a long period of time, it causes memory-management
problems by reducing the size of the largest, contiguous available block of
memory. The GlobalWire function moves a segment to the lowest possible
address in memory and locks it, thereby freeing the memory area
Windows uses most often.

Each time an application calls GlobalWire for an object, it must eventually
call GlobalUnWire for the object. The GlobalUnWire function decreases the
lock count for the object. Other functions also can affect the lock count of a
memory object. See the description of the GlobalFlags function for a list of
the functions that affect the lock count.

An application must not call the GlobalUnlock function to unlock the
object.

Chapter 4, Functions directory 381

GlobalWire

Parameters hMem HANDLE Identifies the segment that will be moved and
locked.

Return value The return value points to the new segment location. It is NULL if the
function failed.

GrayString

382

Syntax BOOL GrayString(hDC, hBrush, IpOutputFunc, IpData, nCount, X, Y,
nWidth, nHeight)
function GrayString(DC: HDC; Brush: HBrush; OutputFunc: TFarProc;
Data: Longint; Count, X, Y, Width, Height: Integer): Bool;

This function draws gray text at the given location. The GrayString
function draws gray text by writing the text in a memory bitmap, graying
the bitmap, and then copying the bitmap to the display. The function
grays the text regardless of the selected brush and background.
GrayString uses the font currently selected for the device context specified
by the hDC parameter.

If the IpOutputFunc parameter is NULL, CDI uses the TextOut function,
and the lpData parameter is assumed to be a long pointer to the character
string to be output. If the characters to be output cannot be handled by
TextOut (for example, the string is stored as a bitmap), the application
must supply its own output function.

Parameters hDC HDC Identifies the device context.

IzBruslz HBRUSH Identifies the brush to be used for graying.

IpOutputFunc FARPROC Is the procedure-instance address of the
application-supplied function that will draw the string, or, if
the TextOut function is to be used to draw the string, it is a
NULL pointer. See the following "Comments" section for
details.

IpData

llCount

DWORD Specifies a long pointer to data to be passed to the
output function. If the IpOutputFunc parameter is NULL,
IpData must be a long pointer to the string to be output.

int Specifies the number of characters to be output. If the
nCount parameter is zero, GrayString calculates the length of
the string (assuming that IpData is a pointer to the string). If
nCount is -1 and the function pointed to by IpOutputFunc
returns zero, the image is shown but not grayed.

Software development kit

x

y

nWidth

nHeight

GrayString

int Specifies the logical x-coordinate of the starting position
of the rectangle that encloses the string.

int Specifies the logical y-coordinate of the starting position
of the rectangle that encloses the string.

int Specifies the width (in logical units) of the rectangle that
encloses the string. If the n Width parameter is zero,
GrayString calculates the width of the area, assuming IpData
is a pointer to the string.

int Specifies the height (in logical units) of the rectangle that
encloses the string. If the nHeight parameter is zero,
GrayString calculates the height of the area, assuming IpData
is a pointer to the string.

Return value The return value specifies the outcome of the function. It is nonzero if the
string is drawn. A return value of zero means that either the TextOut
function or the application-supplied output function returned zero, or
there was insufficient memory to create a memory bitmap for graying.

Comments An application can draw grayed strings on devices that support a solid
gray color, without calling the GrayString function. The system color
COLOR_ GRAYTEXT is the solid-gray system color used to draw disabled
text. The application can call the GetSysColor function to retrieve the
color value of COLOR_GRAYTEXT. If the color is other than zero (black),
the application can call the SetTextColor to set the text color to the color
value and then draw the string directly. If the retrieved color is black, the
application must call GrayString to gray the text.

Callback

The callback function must use the Pascal calling convention and must be
declared FAR.

function BOOL FAR PASCAL OutputFunc(hDC, IpData, nCount)
HDChDC;
DWORD IpData;
int nCount;

OutputFunc is a placeholder for the application-supplied callback function
name. The actual name must be exported by including it in an EXPORTS
statement in the application's module-definition file.

Parameters hDC

Chapter 4, Functions directory

Identifies a memory device context with a bitmap of at least
the width and height specified by the nWidth and nHeight
parameters, respectively.

383

IpData

nCount

Points to the character string to be drawn.

Specifies the number of characters to be output.

Return value The return value must be nonzero to indicate success. Otherwise, it is
zero.

Comments This output function (OutputFunc) must draw an image relative to the
coordinates (0,0) rather than (X,Y). The address passed as the
IpOutputFunc parameter must be created by using the MakeProclnstance
function, and the output function name must be exported; it must be
explicitly defined in an EXPORTS statement of the application's module­
definition file.

HIBYTE

The MM_TEXT mapping mode must be selected before using this
function.

Syntax BYTE HIBYTE(nlnteger)
function HiByte(A: Word): Byte;

This macro retrieves the high-order byte from the integer value specified
by the nlnteger parameter.

Parameters nlnteger int Specifies the value to be converted.

Return value The return value specifies the high-order byte of the given value.

384 Software development kit

HideCaret

HideCaret

Syntax void HideCaret(h W nd)
procedure HideCaret(Wnd: HWnd);

This function hides the caret by removing it from the display screen.
Although the caret is no longer visible, it can be displayed again by using
the ShowCaret function. Hiding the caret does not destroy its current
shape.

The HideCaret function hides the caret only if the given window owns the
caret. If the hWnd parameter is NULL, the function hides the caret only if a
window in the current task owns the caret.

Hiding is cumulative. If HideCaret has been called five times in a row,
ShowCaret must be called five times before the caret will be shown.

Parameters h Wnd

Return value None.

HiliteMenultem

HWND Identifies the window that owns the caret, or it is
NULL to indirectly specify the window in the current task
tha t owns the caret.

Syntax BaaL HiliteMenuItem(hWnd, hMenu, wIDHiliteItem, wHilite)
function HiliteMenuItem(Wnd: HWnd; Menu: HMenu; IDHilite, Hilite:
Word): Bool;

This function highlights or removes the highlighting from a top-level
(menu-bar) menu item.

Parameters h Wnd HWND Identifies the window that contains the menu.

hMenu HMENU Identifies the top-level menu that contains the
item to be highlighted.

wIDHiliteItem WORD Specifies the integer identifier of the menu item or
the offset of the menu item in the menu, depending on
the value of the wHilite parameter.

wHilite WORD Specifies whether the menu item is highlighted or
the highlight is removed. It can be a combination of

Chapter 4, Functions directory

MF _HILITE or MF _ UNHILITE with MF _BYCOMMAND
or MF _BYPOSITION. The values can be combined using

385

HiliteMenulfem

the bitwise OR operator. These values have the following
meanings:

Value Meaning
MF_BYCOMMAND

Interprets wIDHiliteItem as the menu­
item 10 (the default interpretation).

MF _BYPOSITION Interprets wIDHiliteItem as an offset.
MF _HILITE Highlights the item. If this value is not

given, highlighting is removed from
the item.

MF _ UNHILITE Removes highlighting from the item.

Return value The return value specifies whether or not the menu item is highlighted the
outcome of the function. It is nonzero if the item is highlightedwas set to
the specified highlight state. Otherwise, it is zero FALSE.

Comments The MF _HILITE and MF _ UNHILITE flags can be used only with the
HiliteMenultem function; they cannot be used with the ModifyMenu
function.

HIWORD

Syntax WORD HIWORD(dwInteger)
function HiWord(A: Longint): Word;

This macro retrieves the high-order word from the 32-bit integer value
specified by the dwInteger parameter.

Parameters dwlnteger DWORD Specifies the value to be converted.

Return value The return value specifies the high-order word of the given 32-bit integer
value.

InflateRect

386

Syntax void InflateRect(lpRect, X, Y)
procedure InflateRect(var Rect: TRect; X, Y: Integer);

This function increases or decreases the width and height of the specified
rectangle. The InflateRect function adds X units to the left and right ends
of the rectangle, and adds Y units to the top and bottom. The X and Y
parameters are signed values; positive values increase the width and
height, and negative values decrease them.

Software development kit

InfloteRect

Parameters IpRect LPRECT Points to the RECT data structure to be modified.

X

y

int Specifies the amount to increase or decrease the rectangle
width. It must be negative to decrease the width.

int Specifies the amount to increase or decrease the rectangle
height. It must be negative to decrease the height.

Return value None.

Comments The coordinate values of a rectangle must not be greater than 32,767 units
or less than -32,768 units. The X and Y parameters must be chosen
carefully to prevent invalid rectangles.

InitAtomTable

Syntax BOOL InitAtomTable(nSize)
function InitAtomTable(Size: Integer): Bool;

This function initializes an atom hash table and sets its size to that
specified by the nSize parameter. If this function is not called, the atom
hash table size is set to 37 by default.

If used, this function should be called before any other atom-management
function.

Parameters nSize int Specifies the size (in table entries) of the atom hash table.
This value should be a prime number.

Return value The return value specifies the outcome of the function. It is nonzero if the
function is successful. Otherwise, it is zero.

Comments If an application uses a large number of atoms, it can reduce the time
required to add an atom to the atom table or to find an atom in the table
by increasing the size of the table. However, this increases the amount of
memory required to maintain the table.

The size of the global atom table cannot be changed from its default size
of 37.

InSendMessage

Syntax BOOL InSendMessage()
function InSendMessage: Bool;

Chapter 4, Functions directory 387

InSendMessage

This function specifies whether the current window function is processing
a message that is passed to it through a call to the Send Message function.

Parameters None.

Return value The return value specifies the outcome of the function. It is TRUE if the
window function is processing a message sent to it with Send Message.
Otherwise, it is FALSE.

Comments Applications use the InSendMessage function to determine how to
handle errors that occur when an inactive window processes messages.
For example, if the active window uses Send Message to send a request
for information to another window, the other window cannot become
active until it returns control from the SendMessage call. The only
method an inactive window has to inform the user of an error is to create
a message box.

InsertMenu 3.0

388

Syntax BOOL InsertMenu(hMenu, nPosition, wFlags, wIDNewItem,lpNewItem)
function InsertMenu(Menu:HMenu; Position, Flags, IDNewItem: Word;
NewItem: PChar): Bool;

This function inserts a new menu item at the position specified by the
nPosition parameter, moving other items down the menu. The application
can specify the state of the menu item by setting values in the wFlags
parameter.

Parameters hMenu

nPosition

wFlags

HMENU Identifies the menu to be changed.

WORD Specifies the menu item before which the new menu
item is to be inserted. The interpretation of the nPosition
parameter depends upon the setting of the wFlags parameter.

If wFlags is: nPosition:
MF _BYPOSITION Specifies the position of the existing

menu item. The first item in the
menu is at position zero.
If nPosition is -1, the new menu item
is appended to the end of the menu.
Specifies the command ID of the
existing menu item.

WORD Specifies how the nPosition parameter is interpreted
and information about the state of the new menu item when

Software development kit

InsertMenu

it is added to the menu. It consists of one or more values
listed in the following "Comments" section.

wIDNewItem WORD Specifies either the command ID of the new menu
item or, if wFlags is set to MF _POPUP, the menu handle of
the pop-up menu.

IpNewItem LPSTR Specifies the content of the new menu item. If wFlags
is set to MF _STRING (the default), then IpNewItem is a long
pointer to a null-terminated character string. If wFlags is set
to MF _BITMAP instead, then IpNewItem contains a bitmap
handle (HBITMAP) in its low-order word. If wFlags is set to
MF _ OWNERDRA W, IpNewItem specifies an application­
supplied 32-bit value which the application can use to
maintain additional data associated with the menu item.
This 32-bit value is available to the application in the
itemData field of the data structure pointed to by the IParam
parameter of the following messages:

c WM MEASURE ITEM
aWM=DRAWITEM

These messages are sent when the menu item is initially
displayed, or is changed.

Return value The return value specifies the outcome of the function. It is TRUE if the
function is successful. Otherwise, it is FALSE.

Comments Whenever a menu changes (whether or not the menu resides in a window
that is displayed), the application should call DrawMenuBar.

Each of the following groups lists flags that should not be used together:

IJ MF _BYCOMMAND and MF _BYPOSITION
IJ MF _DISABLED, MF _ENABLED, and MF _GRAYED
1:1 MF _BITMAP, MF _STRING, MF _ OWNERDRA W, and

MF_SEPARATOR
eMF _MENUBARBREAK and MF _MENUBREAK
IJ MF _CHECKED and MF _UNCHECKED

The following list describes the flags which may be set in the wFlags
parameter:

Parameters MF _BITMAP Uses a bitmap as the item. The low-order
word of the IpNewItem parameter contains the
handle of the bitmap.

Chapter 4, Functions directory

Specifies that the nPosition parameter gives
the menu-item control ID number (default).

389

I

•

InsertMenu

MF _BYPOSITION

MF_CHECKED

MF_GRAYED

MF _MENUBARBREAK

MF_OWNERDRAW

390

Specifies that the nPosition parameter gives
the position of the menu item to be changed
rather than an ID number.
Places a checkmark next to the menu item. If
the application has supplied checkmark
bitmaps (see the SetMenultemBitmaps
function), setting this flag displays the
"checkmark on" bitmap next to the menu
item.
Disables the menu item so that it cannot be
selected, but does not gray it.
Enables the menu item so that it can be
selected and restores it from its grayed state.
Disables the menu item so that it cannot be
selected and grays it.
Same as MF _MENUBREAK except that for
pop-up menus, separates the new column
from the old column with a vertical line.
Places the menu item on a new line for static
menu-bar items. For pop-up menus, places
the menu item in a new column, with no
dividing line between the columns.
Specifies that the item is an owner-draw item.
The window that owns the menu receives a
WM_MEASUREITEM message when the
menu is displayed for the first time to retrieve
the height and width of the menu item. The
WM_DRAWITEM message is then sent to the
owner whenever the owner must update the
visual appearance of the menu item. This
option is not valid for a top-level menu item.
Specifies that the menu item has a pop-up
menu associated with it. The wIDNewItem
parameter specifies a handle to a pop-up
menu to be associated with the item. Use the
MF _ OWNERDRA W flag to add either a top­
level pop-up menu or a hierarchical pop-up
menu to a pop-up menu item.
Draws a horizontal dividing line. You can use
this flag in a pop-up menu. This line cannot
be grayed, disabled, or highlighted. Windows
ignores the IpNewItem and wIDNewItem
parameters.

Software development kit

InsertMenu

Specifies that the menu item is a character
string; the IpNewItem parameter points to the
string for the item.

MF _UNCHECKED Does not place a checkmark next to the item
(default). If the application has supplied
checkmark bitmaps (see
SetMenultemBitmaps), setting this flag
displays the "checkmark off" bitmap next to
the menu item.

IntersectClipRect

Syntax int IntersectClipRect(hDC, Xl, Yl, X2, Y2)
function IntersectClipRect(DC: HDC; Xl, Yl, X2, Y2: Integer): Integer;

This function creates a new clipping region by forming the intersection of
the current region and the rectangle specified by Xl, Yl, X2, and Y2. CDI
clips all subsequent output to fit within the new boundary.

Parameters hDC HOC Identifies the device context.

Xl int Specifies the logical x-coordinate of the upper-left corner
of the rectangle.

Yl int Specifies the logical y-coordinate of the upper-left corner
of the rectangle.

X2

Y2

int Specifies the logical x-coordinate of the lower-right
corner of the rectangle.

int Specifies the logical y-coordinate of the lower-right
corner of the rectangle.

Return value The return value specifies the new clipping region's type. It can be anyone
of the following values:

Value

COMPLEXREGION
ERROR
NULLREGION
SIMPLEREGION

Meaning

New clipping region has overlapping borders.
Device context is not valid.
New clipping region is empty.
New clipping region has no overlapping borders.

Comments The width of the rectangle, specified by the absolute value of X2 - Xl,
must not exceed 32,767 units. This limit applies to the height of the
rectangle as well.

Chapter 4, Functions directory 391

I ntersectRect

I ntersectRect

Syntax int IntersectRect(lpDestRect, lpSrc1Rect, lpSrc2Rect)
function IntersectRect{var DestRect, SrclRect, Src2Rect: TRect): Integer;

This function creates the intersection of two existing rectangles. The
intersection is the largest rectangle contained in both rectangles. The
IntersectRect function copies the new rectangle to the RECl data
structure pointed to by the IpDestRect parameter.

Parameters IpDestRect LPRECl Points to the RECl data structure that is to receive
the intersection.

IpSrc1Rect LPRECl Points to a RECl data structure that contains a
source rectangle.

IpSrc2Rect LPRECl Points to a RECl data structure that contains a
source rectangle.

Return value The return value specifies the intersection of two rectangles. It is nonzero
if the intersection of the two rectangles is not empty. It is zero if the
intersection is empty.

InvalidateRect

392

Syntax void InvalidateRect{h Wnd, lpRect, bErase)
procedure InvalidateRect{Wnd: HWnd; Rect: PRect; Erase: Bool);

This function invalidates the client area within the given rectangle by
adding that rectangle to the window's update region. The invalidated
rectangle, along with all other areas in the update region, is marked for
painting when the next WM_P AINT message occurs. The invalidated
areas accumulate in the update region until the region is processed when
the next WM_P AINT message occurs, or the region is validated by using
the ValidateRect or ValidateRgn function.

The bErase parameter specifies whether the background within the update
area is to be erased when the update region is processed. If bErase is
nonzero, the background is erased when the BeginPaint function is called;
if bErase is zero, the background remains unchanged. If bErase is nonzero
for any part of the update region, the background in the entire region is
erased, not just in the given part.

Parameters h Wnd HWND Identifies the window whose update region is to be
modified.

Software development kit

IpRect

bErase

I nvalidateRect

lPRECT Points to a RECT data structure that contains the
rectangle (in client coordinates) to be added to the update
region. If the IpRect parameter is NULL, the entire client area
is added to the region.

BOOl Specifies whether the background within the update
region is to be erased.

Return value None.

Comments Windows sends a WM_P AINT message to a window whenever its update
region is not empty and there are no other messages in the application
queue for that window.

InvalidateRgn

Syntax void InvalidateRgn(h Wnd, hRgn, bErase)
procedure InvalidateRgn(Wnd: HWnd; Rgn: HRgn; Erase: Bool);

This function invalidates the client area within the given region by adding
it to the current update region of the given window. The invalidated
region, along with all other areas in the update region, is marked for
painting when the next WM_P AINT message occurs. The invalidated
areas accumulate in the update region until the region is processed when
the next WM_P AINT message occurs, or the region is validated by using
the ValidateRect or ValidateRgn function.

The bE rase parameter specifies whether the background within the update
area is to be erased when the update region is processed. If bErase is
nonzero, the background is erased when the BeginPaint function is called;
if bE rase is zero, the background remains unchanged. If bErase is nonzero
for any part of the update region, the background in the entire region is
erased, not just in the given part.

Parameters h Wnd HWND Identifies the window whose update region is to be
modified.

hRgn

bErase

Return value None.

Chapter 4, Functions directory

HRGN Identifies the region to be added to the update region.
The region is assumed to have client coordinates.

BOOl Specifies whether the background within the update
region is to be erased.

393

I

I

InvalidateRgn

Comments Windows sends a WM_PAINT message to a window whenever its update
region is not empty and there are no other messages in the application
queue for that window.

The given region must have been previously created by using one of the
region functions (for more information, see Chapter 1, "Window manager
interface functions").

InvertRect

Syntax void InvertRect(hDC, IpRect)
procedure InvertRect(DC: HDC; var Rect: TRect);

This function inverts the contents of the given rectangle. On monochrome
displays, the InvertRect function makes white pixels black, and black
pixels white. On color displays, the inversion depends on how colors are
generated for the display. Calling InvertRect twice with the same
rectangle restores the display to its previous colors.

Parameters hDC

IpRect

Return value None.

HOC Identifies the device context.

LPRECT Points to a RECT data structure that contains the
logical coordinates of the rectangle to be inverted.

Comments The InvertRect function compares the values of the top, bottom, left, and
right fields of the specified rectangle. If bottom is less than or equal to top,
or if right is less than or equal to left, the rectangle is not drawn.

InvertRgn

394

Syntax BOOL InvertRgn(hDC, hRgn)
function InvertRgn(DC: HDC; Rgn: HRgn): Bool;

This function inverts the colors in the region specified by the hRgn
parameter. On monochrome displays, the InvertRgn function makes white
pixels black, and black pixels white. On color displays, the inversion
depends on how the colors are generated for the display.

Parameters hDC

hRgn

HOC Identifies the device context for the region.

HRGN Identifies the region to be filled. The coordinates for
the region are specified in device units.

Software development kit

InvertRgn

Return value The return value specifies the outcome of the function. It is nonzero if the
function is successful. Otherwise, it is zero.

IsCharAlpha 3.0

Syntax BOOL IsCharAlpha(cChar)
function IsCharAlpha(Chr: Char): Bool;

This function determines whether a character is an alphabetical character.
This determination is made by the language driver based on the criteria of
the current language selected by the user at setup or with the Control
Panel.

Parameters cChar char Specifies the character to be tested.

Return value The return value is TRUE if the character is alphabetical. Otherwise, it is
FALSE.

IsCharAlphaNumeric 3.0

Syntax BOOL IsCharAlphaNumeric(cChar)
function IsCharAlphaNumeric(Chr: Char): Bool;

This function determines whether a character is an alphabetical or
numerical character. This determination is made by the language driver
based on the criteria of the current language selected by the user at setup
or with the Control Panel.

Parameters cChar char Specifies the character to be tested.

Return value The return value is TRUE if the character is an alphanumeric character.
Otherwise, it is FALSE.

IsCharLower 3.0

Syntax BOOL IsCharLower(cChar)
function IsCharLower(Chr: Char): Bool;

This function determines whether a character is a lowercase character.
This determination is made by the language driver based on the criteria of
the current language selected by the user at setup or with the Control
Panel.

Parameters cChar char Specifies the character to be tested.

Chapter 4, Functions directory 395

IsCharLower

Return value The return value is TRUE if the character is lowercase. Otherwise, it is
FALSE.

IsCharUpper 3.0

Syntax BOOL IsCharUpper(cChar)
function IsCharUpper(Chr: Char): Bool;

This function determines whether a character is an uppercase character.
This determination is made by the language driver based on the criteria of
the current language selected by the user at setup or with the Control
Panel.

Parameters cChar char Specifies the character to be tested.

Return value The return value is TRUE if the character is uppercase. Otherwise, it is
FALSE.

IsChild

Syntax BOOL IsChild(hWndParent, hWnd)
function IsChild(WndParent, Wnd: HWnd): Bool;

This function indicates whether the window specified by the h Wnd
parameter is a child window or other direct descendant of the window
specified by the h WndParent parameter. A child window is the direct
descendant of a given parent window if that parent window is in the
chain of parent windows that leads from the original pop-up window to
the child window.

Parameters h WndParent HWND Identifies a window.

hWnd HWND Identifies the window to be checked.

Return value The return value specifies the outcome of the function. It is TRUE if the
window identified by the h Wnd parameter is a child window of the
window identified by the h WndParent parameter. Otherwise, it is FALSE.

IsClipboardFormatAvailable

Syntax BOOL IsClipboardFormatAvailable(wFormat)
function IsClipboardFormatAvailable(Format: Word): Bool;

396 Software development kit

IsClipboardFormatAvailable

This function specifies whether data of a certain type exist in the
clipboard.

Parameters wFormat WORD Specifies a registered clipboard format. For
information on clipboard formats, see the description of the
SetClipboardData function, later in this chapter.

Return value The return value specifies the outcome of the function. It is TRUE if data
having the specified format are present. Otherwise, it is FALSE.

Comments This function is typically called during processing of the WM_INITMENU
or WM_INITMENUPOPUP message to determine whether the clipboard
contains data that the application can paste. If such data are present, the
application typically enables the Paste command (in its Edit menu).

IsDialogMessage

Syntax BOOL IsDialogMessage(hDlg, IpMsg)
function IsDialogMessage(Dlg: HWnd; var Msg: TMsg): Bool;

This function determines whether the given message is intended for the
modeless dialog box specified by the hDlg parameter, and automatically
processes the message if it is. When the IsDialogMessage function
processes a message, it checks for keyboard messages and converts them
into selection commands for the corresponding dialog box. For example,
the TAB key selects the next control or group of controls, and the DOWN

key selects the next control in a group.

If a message is processed by IsDialogMessage, it must not be passed to
the Translate-Message or DispatchMessage function. This is because
IsDialogMessage performs all necessary translating and dispatching of
messages.

IsDialogMessage sends WM_ GETDLGCODE messages to the dialog
function to determine which keys should be processed.

Parameters hDlg HWND Identifies the dialog box.

IpMsg LPMSG Points to an MSG data structure that contains the
message to be checked.

Return value The return value specifies whether or not the given message has been
processed. It is nonzero if the message has been processed. Otherwise, it is
zero.

Chapter 4, Functions directory 397

IsDialogMessage

Comments Although IsDialogMessage is intended for modeless dialog boxes, it can
be used with any window that contains controls to provide the same
keyboard selection as in a dialog box.

IsDlgButtonChecked

Syntax WORD IsDlgButtonChecked(hDlg, nIDButton)
function IsDlgButtonChecked(Wnd: HWnd; IDButton: Integer): Word;

This function determines whether a button control has a checkmark next
to it, and whether a three-state button control is grayed, checked, or
neither. The IsDlgButtonChecked function sends a BM_ GETCHECK
message to the button control.

Parameters hDlg HWND Identifies the dialog box that contains the button
control.

nIDButton int Specifies the integer identifier of the button control.

Return value The return value specifies the outcome of the function. It is nonzero if the
given control has a checkmark next to it. Otherwise, it is zero. For three­
state buttons, the return value is 2 if the button is grayed, 1 if the button
has a checkmark next to it, and zero otherwise.

Islconic

Syntax BaaL IsIconic(h Wnd)
function IsIconic(Wnd: HWnd): Bool;

This function specifies whether a window is minimized (iconic).

Parameters h Wnd HWND Identifies the window.

Return value The return value specifies whether the window is minimized. It is
nonzero if the window is minimized. Otherwise, it is zero.

IsRectEmpty

Syntax BaaL IsRectEmpty(lpRect)
function IsRectEmpty(var Rect: TRect): Bool;

398 Software development kit

IsRectEmpty

This function determines whether or not the specified rectangle is empty.
A rectangle is empty if the width and/or height are zero.

Parameters IpRect LPRECT Points to a RECT data structure that contains the
specified rectangle.

Return value The return value specifies whether or not the given rectangle is empty. It
is nonzero if the rectangle is empty. It is zero if the rectangle is not empty.

IsWindow

Syntax BaaL IsWindow(hWnd)
function IsWindow(Wnd: HWnd): Bool;

This function determines whether the window identified by the h Wnd
parameter is a valid, existing window.

Parameters h Wnd HWND Identifies the window.

Return value The return value specifies whether or not the given window is valid. It is
nonzero if hWnd is a valid window. Otherwise, it is zero.

IsWindowEnabled

Syntax BaaL IsWindowEnabled(hWnd)
function IsWindowEnabled(Wnd: HWnd): Bool;

This function specifies whether the specified window is enabled for
mouse and keyboard input.

Parameters h Wnd HWND Identifies the window.

Return value The return value specifies whether or not the given window is enabled. It
is nonzero if the window is enabled. Otherwise, it is zero.

Comments A child window receives input only if it is both enabled and visible.

IsWindowVisible

Syntax BaaL IsWindowVisible(hWnd)
function IsWindowVisible(Wnd: HWnd): Bool;

The IsWindowVisible function returns nonzero anytime an application has
made a window visible by using the ShowWindow function (even if the

Chapter 4, Functions directory 399

IsWindowVisible

specified window is completely covered by another child or pop-up
window, the return value is nonzero).

Parameters h Wnd HWND Identifies the window.

Return value The return value specifies whether or not a given window exists on the
screen. It is nonzero if the given window exists on the screen. Otherwise,
it is zero.

IsZoomed

Syntax BOOL IsZoomed(h Wnd)
function IsZoomed(Wnd: HWnd): Bool;

This function determines whether or not a window has been maximized.

Parameters h Wnd HWND Identifies the window.

Return value The return value specifies whether or not the given window is
maximized. It is nonzero if the window is maximized. Otherwise, it is
zero.

KiliTimer

400

Syntax BOOL KillTimer(h Wnd, nIDEvent)
function KillTimer(Wnd: HWnd; IDEvent: Integer): Bool;

This function kills the timer event identified by the h Wnd and nIDEvent
parameters. Any pending WM_TIMER messages associated with the
timer are removed from the message queue.

Parameters h Wnd

nIDEvent

HWND Identifies the window associated with the given
timer event. This must be the same value passed as the
hWnd parameter to the SetTimer function call that created
the timer event.

int Specifies the timer event to be killed. If the application
called SetTimer with the h Wnd parameter set to NULL, this
must be the event identifier returned by SetTimer. If the
h Wnd parameter of SetTimer was a valid window handle,
nIDEvent must be the value of the nIDEvent parameter
passed to SetTimer.

Software development kit

KillTimer

The return value specifies the outcome of the function. It is nonzero if the
Return value event was killed. It is zero if the KiIITimer function could not find the

specified timer event.

_Iclose

Syntax int _lclose(hFile)
function _lclose(FileHandle: Integer): Integer;

This function closes the file specified by the hFile parameter. As a result,
the file is no longer available for reading or writing.

The hFile argument is returned by the call that created or last opened the
file.

Value
hFile

Meaning
int Specifies the MS-DOS file handle of the file to be closed.

Return value The return value indicates whether the function successfully closed the
file. It is zero if the function closed the file, or -1 if the function failed.

Icreat

Syntax int _1creatOpPathName, iAttribute)
function _1creat(PathName: PChar; Attribute: Integer): Integer;

This function opens a file with the name specified by the IpPathName
parameter. The iAttribute parameter specifies the attributes of the file
when the function opens it. If the file does not exist, the function creates a
new file and opens it for writing. If the file does exist, the function
truncates the file size to zero and opens it for reading and writing. When
the function opens the file, the pointer is set to the beginning of the file.

Parameters IpPathName LPSTR Points to a null-terminated character string that
names the file to be opened. The string must consist of
characters from the ANSI character set.

iAttribute

Chapter 4, Functions directory

int Specifies the file attributes. The parameter must be one of
these values:

Value
o

1

Meaning
Normal; can be read or written without
restriction.
Read-only; cannot be opened for write; a file with
the same name cannot be created.

401

-'creat

2 Hidden; not found by directory search.
3 System; not found by directory search.

Return value The return value specifies an MS-DOS file handle if the function was
successful. Otherwise, the return value is -1.

LimitEmsPages

Syntax void LimitEmsPages (dwKbytes)
procedure LimitEmsPages(Kbytes: Longint);

This function limits the amount of expanded memory that Windows will
assign to an application. It does not limit the amount of expanded
memory that the application can get by directly calling INT 67H.

Parameters dwKbytes DWORD Specifies the number of kilobytes of expanded
memory to which the application is to have access.

Return value None.

Comments LimitEmsPages has an effect only if expanded memory is installed and
being used by Windows. If Windows is not using expanded memory, then
the function has no effect.

LineDDA

402

Syntax void LineDDA(X1, Y1, X2, Y2, IpLineFunc, IpData)
procedure LineDDA(X1, Y1, X2, Y2: Integer; LineFunc: TFarProc; Data:
Pointer);

This function computes all successive points in a line starting at the point
specified by the Xl and Yl parameters and ending at the point specified
by the X2 and Y2 parameters. The endpoint is not included as part of the
line. For each point on the line, the LineDDA function calls the
application-supplied function pointed to by the IpLineFunc parameter,
passing to the function the coordinates of the current point and the IpData
parameter.

Parameters Xl

Yl

X2

Y2

int Specifies the logical x-coordinate of the first point.

int Specifies the logical y-coordinate of the first point.

int Specifies the logical x-coordinate of the endpoint.

int Specifies the logical y-coordinate of the endpoint.

Software development kit

IpLineFunc FARPROC Is the procedure-instance address of the
application-supplied function. See the following
"Comments" section for details.

IpData LPSTR Points to the application-supplied data.

LineDDA

Return value None.

Comments The address passed by the IpLineFunc parameter must be created by using
the MakeProclnstance function.

Callback

The callback function must use the Pascal calling convention and must be
declared FAR.

function void FAR PASCAL LineFunc(X, Y,lpData)
int X;
int Y;
LPSTR IpData;

LineFunc is a placeholder for the application-supplied function name. The
actual name must be exported by including it in an EXPORTS statement
in the application's module-definition file.

Parameters X Specifies the x-coordinate of the current point.

Specifies the y-coordinate of the current point.

Points to the application-supplied data.

Y

IpData

Return value The function can perform any task. It has no return value.

LineTo

Syntax BOOL LineTo(hOC, X, Y)
function LineTo(OC: HOC; X, Y: Integer): Bool;

This function draws a line from the current position up to, but not
including, the point specified by the X and Y parameters. The line is
drawn with the selected pen. If no error occurs, the position is set to (X,Y).

Parameters hDC HOC Identifies the device context.

X

Chapter 4, Functions directory

int Specifies the logical x-coordinate of the endpoint for the
line.

403

LineTo

y int Specifies the logical y-coordinate of the endpoint for the
line.

Return value The return value specifies whether or not the line is drawn. It is nonzero if
the line is drawn. Otherwise, it is zero.

_llseek

Syntax LONG _llseek(hFile, lOffset, iOrigin)
function _llseek(FileHandle: Integer; Offset: Longint; Origin: Integer):
Longint;

This function repositions the pointer in a previously opened file. The
iOrigin parameter specifies the starting position in the file, and lOffset
specifies how far (in bytes) the function is to move the pointer.

Parameters hFile int Specifies the MS-DOS file handle of the file.

lOffset

iOrigin

LONG Specifies the number of bytes the pointer is to be
moved.

int Specifies the starting position and direction of the
pointer. The parameter must be one of the following values:

Value Meaning
o Move the file pointer lOffset bytes from

the beginning of the file.
1 Move the file pointer lOffset bytes from

the current position of the file.
2 Move the file pointer lOffset bytes from

the end of the file.

Return value The return value specifies the new offset of the pointer (in bytes) from the
beginning of the file. The return value is -1 if the function fails.

Comments When a file is initially opened, the file pointer is positioned at the
beginning of the file. The _lIseek function permits random access to a file's
contents by moving the pointer an arbitrary amount without reading data.

LoadAccelerators

Syntax HANDLE LoadAccelerators(hInstance, lpTableName)
function LoadAccelerators(Instance: THandle; TableName: PChar):
THandle;

404 Software development kit

LoadAccelerators

This function loads the accelerator table named by the lpTableName
parameter from the executable file associated with the module specified
by the hlnstance parameter.

The LoadAccelerators function loads the table only if it has not been
previously loaded. Otherwise, it retrieves a handle to the loaded table.

Parameters hlnstance HANDLE Identifies an instance of the module whose
executable file contains the accelerator table.

lpTableName LPSTR Points to a string that names the accelerator table.
The string must be a null-terminated character string.

Return value The return value identifies the loaded accelerator table if the function is
successful. Otherwise, it is NULL.

LoadBitmap

Syntax HBITMAP LoadBitmap(hlnstance, lpBitmapName)
function LoadBitmap(Instance: THandle; BitmapName: PChar): HBitmap;

This function loads the bitmap resource named by the lpBitmapName
parameter from the executable file associated with the module specified
by the hlnstance parameter.

Parameters hlnstance HANDLE Identifies the instance of the module whose
executable file contains the bitmap.

lpBitmapName LPSTR Points to a character string that names the bitmap.
The string must be a null-terminated character string.

Return value The return value identifies the specified bitmap. It is NULL if no such
bitmap exists.

Comments The application must call the DeleteObject function to delete each bitmap
handle returned by the LoadBitmap function. This also applies to the
predefined bitmaps described in the following paragraph.

The LoadBitmap function can also be used to access the predefined
bitmaps used by Windows. The hlnstance parameter must be set to NULL,
and the lpBitmapName parameter must be one of the following values:

IJ OBM_BTNCORNERS
IJ OBM_BTSIZE
IJ OBM_CHECK
c OBM_ CHECKBOXES
I:IOBM_CLOSE
cOBM_COMBO

Chapter 4, Functions directory 405

LoadBitmap

LoadCursor

.OBM_DNARROW

.OBM_DNARROWD

.OBM_LFARROW

.OBM_LFARROWD

.OBM_MNARROW
• OBM_ OLD_CLOSE
.OBM_OLD_DNARROW
.OBM_OLD_LFARROW
• OBM_ OLD_REDUCE
.OBM_OLD_RESTORE
• OBM_OLD _RGARROW
• OBM_OLD _UP ARROW
.OBM_OLD_ZOOM
• OBM_REDUCE
.OBM_REDUCED
• OBM_RESTORE
• OBM_RESTORED
.OBM_RGARROW
.OBM_RGARROWD
.OBM_SIZE
.OBM_UPARROW
.OBM_UPARROWD
.OBM_ZOOM
.OBM_ZOOMD

Bitmap names that begin OBM_ OLD represent bitmaps used by Windows
versions prior to 3.0.

The IpBitmapName parameter can also be a value created by the
MAKEINTRESOURCE macro. If it is, the ID must reside in the low-order
word of IpBitmapName, and the high-order word must contain zeros.

Syntax HCURSOR LoadCursor(hInstance, lpCursorName)

406

function LoadCursorOnstance: THandle; CursorName: PChar): HCursor;

This function loads the cursor resource named by the IpCursorName
parameter from the executable file associated with the module specified
by the hlnstance parameter. The function loads the cursor into memory
only if it has not been previously loaded. Otherwise, it retrieves a handle
to the existing resource.

Software development kit

LoadCursor

Parameters hlnstance HANDLE Identifies an instance of the module whose
executable file contains the cursor.

IpCursorName LPSTR Points to a character string that names the cursor
resource. The string must be a null-terminated character
string.

Return value The return value identifies the newly loaded cursor if the function is
successful. Otherwise, it is NULL.

Comments The LoadCursor function returns a valid cursor handle only if the
IpCursorName parameter identifies a cursor resource. If IpCursorName
identifies any type of resource other than a cursor (such as an icon), the
return value will not be NULL, even though it is not a valid cursor
handle.

Loadlcon

Use the LoadCursor function to access the predefined cursors used by
Windows. To do this, the hlnstance parameter must be set to NULL, and
the IpCursorName parameter must be one of the following values:

Value

IDC_ARROW
IDC_CROSS
IDC_IBEAM
IDC_ICON
IDC_SIZE

IDC_SIZENESW

IDC_SIZENS

IDC_SIZENWSE

IDC_SIZEWE
IDC_UPARROW
IDC_WAIT

Meaning

Standard arrow cursor.
Crosshair cursor.
Text I-beam cursor.
Empty icon.
Loads a square with a smaller square inside its lower-right
corner.
Double-pointed cursor with arrows pointing northeast and
southwest.
Double-pointed cursor with arrows pointing north and
south.
Double-pointed cursor with arrows pointing northwest and
southeast.
Double-pointed cursor with arrows pointing west and east.
Vertical arrow cursor.
Hourglass cursor.

The IpCursorName parameter can contain a value created by the
MAKEINTRESOURCE macro. If it does, the ID must reside in the low­
order word of IpCursorName, and the high-order word must be set to zero.

Syntax HICON LoadIcon(hInstance, lpIconName)
function LoadIcon(Instance: THandle; IconName: PChar): HIcon;

Chapter 4, Functions directory 407

Loadlcon

This function loads the icon resource named by the IplconName parameter
from the executable file associated with the module specified by the
hlnstance parameter. The function loads the icon only if it has not been
previously loaded. Otherwise, it retrieves a handle to the loaded resource.

Parameters hlnstance HANDLE Identifies an instance of the module whose
executable file contains the icon.

IplconName LPSTR Points to a character string that names the icon
resource. The string must be a null-terminated character
string.

Return value The return value identifies an icon resource if the function is successful.
Otherwise, it is NULL.

Comments Use the Loadlcon function to access the predefined icons used by
Windows. To do this, the hlnstance parameter must be set to NULL, and
the IplconName parameter must be one of the following values:

LoadLibrary

Value

IDI_APPLICATION
IDCASTERISK
IDCEXCLAMATION
IDCHAND
IDC QUESTION

Meaning

Default application icon.
Asterisk (used in informative messages).
Exclamation point (used in warning messages).
Hand-shaped icon (used in serious warning messages).
Question mark (used in prompting messages).

The IplconName parameter can also contain a value created by the
MAKEINTRESOURCE macro. If it does, the ID must reside in the low­
order word of IplconName, and the high-order word must be set to zero.

Syntax HANDLE LoadLibrary(lpLibFileN arne)
function LoadLibrary(LibFileName: PChar): THandle;

This function loads the library module contained in the specified file and
retrieves a handle to the loaded module instance.

Parameters IpLibFileName LPSTR Points to a string that names the library file.
The string must be a null-terminated character string.

Return value The return value identifies the instance of the loaded library module.
Otherwise, it is a value less than 32 that specifies the error. The following
list describes the error values returned by this function:

408 Software development kit

LoadMenu

Value

o
2
3
5
6
10
11
12
13
14
15

16

17

18

Meaning

Out of memory.
File not found.
Path not found.
Attempt to dynamically link to a task.
Library requires separate data segments for each task.
Incorrect Windows version.

LoadLibrary

Invalid .EXE file (non-Windows .EXE or error in .EXE image).
OS/2 application.
DOS 4.0 application.
Unknown .EXE type.
Attempt in protected (standard or 386 enhanced) mode to load an
.EXE created for an earlier version of Windows.
Attempt to load a second instance of an .EXE containing multiple,
writeable data segments.
Attempt in large-frame EMS mode to load a second instance of an
application that links to certain nonshareable DLLs already in use.
Attempt in real mode to load an application marked for protected
mode only.

Syntax HMENU LoadMenu(hInstance, IpMenuName)
function LoadMenu(Instance: THandle; MenuName: PChar): HMenu;

This function loads the menu resource named by the IpMenuName
parameter from the executable file associated with the module specified
by the hlnstance parameter.

Parameters hlnstance HANDLE Identifies an instance of the module whose
executable file contains the menu.

IpMenuName LPSTR Points to a character string that names the menu
resource. The string must be a null-terminated character
string.

Return value The return value identifies a menu resource if the function is successful.
Otherwise, it is NULL.

Comments The IpMenuName parameter can contain a value created by the
MAKEINTRESOURCE macro. If it does, the ID must reside in the low­
order word of IpMenuName, and the high-order word must be set to zero.

Chapter 4, Functions directory 409

LoadMenulndirect

LoadMenulndirect

Syntax HMENU LoadMenuIndirectOpMenuTemplate)
function LoadMenuIndirect(MenuTemplate: Pointer): HMenu;

This function loads into memory the menu named by the IpMenuTemplate
parameter. The template specified by IpMenuTemplate is a header followed
by a collection of one or more MENUITEMTEMPLATE structures, each of
which may contain one or more menu items and pop-up menus.

Parameters IpMenuTemplate LPSTR Points to a menu template (which is a collection
of one or more MENUITEMTEMPLATE structures).

Return value The return value identifies the menu if the function is successful.
Otherwise, it is NULL.

LoadModule 3.0

410

Syntax HANDLE LoadModuleOpModuleName,lpParameterBlock)
function LoadModule(ModuleName: PChar; ParameterBlock: Pointer):
THandle;

This function loads and executes a Windows program or creates a new
instance of an existing Windows program.

Parameters IpModuleName LPSTR Points to a null-terminated string that
contains the filename of the application to be run. If
the IpModuleName string does not contain a directory
path, Windows will search for the executable file in
this order:

1. The current directory.
2. The Windows directory (the directory containing

WIN.COM); the GetWindowsDirectory function
obtains the pathname of this directory.

3. The Windows system directory (the directory
containing such system files as KERNEL.EXE); the
GetSystemDirectory function obtains the
pathname of this directory.

4. The directories listed in the PATH environment
variable.

5. The list of directories mapped in a network. If the
application filename does not contain an
extension, then .EXE is assumed.

Software development kit

IpParameterBlock

LoadModule

LPVOID Points to a data structure consisting of four
fields that defines a parameter block. This data
structure consists of the following fields:

Field Type/Description
wEnvSeg WORD Specifies the segment address

of the environment under which the
module is to run; 0 indicates that the
Windows environment is to be copied.

IpCmdLine LPSTR Points to a null-terminated
character string that contains a
correctly formed command line. This
string must not exceed 120 bytes in
length.

IpCmdShow LPVOID Points to a data structure
containing two \,'VORD-length values.
The first value must always be set to
two. The second value specifies how
the application window is to be
shown. See the description of the
nCmdShow paramter of the
ShowWindow function for a list of the
acceptable values.

dwReserved DWORD Is reserved and must be
NULL.

All unused fields should be set to NULL, except for
IpCmdLine, which must point to a null string if it is
not used.

Return value The return value identifies the instance of the loaded module if the
function was successful. Otherwise, it is a value less than 32 that specifies
the error. The following list describes the error values returned by this
function:

Value

o
2
3
5
6
10
11
12
13
14

Chapter 4, Functions directory

Meaning

Out of memory.
File not found.
Path not found.
Attempt to dynamically link to a task.
Library requires separate data segments for each task.
Incorrect Windows version.
Invalid .EXE file (non-Windows .EXE or error in .EXE image).
OS/2 application.
DOS 4.0 application.
Unknown .EXE type.

411

LoadModule

15

16

17

18

Attempt in protected (standard or 386 enhanced) mode to load an
.EXE created for an earlier version of Windows.
Attempt to load a second instance of an .EXE containing multiple,
writeable data segments.
Attempt in large-frame EMS mode to load a second instance of an
application that links to certain nonshareable DLLs already in use.
Attempt in real mode to load an application marked for protected
mode only.

Comments The WinExec function provides an alternative method for executing a
program.

LoadResource

Syntax HANDLE LoadResourceChInstance, hResInfo)
function LoadResourceOnstance, ResInfo: THandle): THandle;

This function loads a resource identified by the hResInfo parameter from
the executable file associated with the module specified by the hInstance
parameter. The function loads the resource into memory only if it has not
been previously loaded. Otherwise, it retrieves a handle to the existing
resource.

Parameters hInstance

hResInfo

HANDLE Identifies an instance of the module whose
executable file contains the resource.

HANDLE Identifies the desired resource. This handle is
assumed to have been created by using the FindResource
function.

Return value The return value identifies the global memory block to receive the data
associated with the resource. It is NULL if no such resource exists.

Comments The resource is not actually loaded until the LockResource function is
called to translate the handle returned by LoadResource into a far pointer
to the resource data.

LoadString

412

Syntax int LoadStringChInstance, wID, lpBuffer, nBufferMax)
function LoadStringOnstance: THandle; 10: Word; Buffer: PChar;
BufferMax: Integer): Integer;

This function loads a string resource identified by the wID parameter from
the executable file associated with the module specified by the hInstance

Software development kit

LoadString

parameter. The function copies the string into the buffer pointed to by the
IpBuffer parameter, and appends a terminating null character.

Parameters hInstance HANDLE Identifies an instance of the module whose
executable file contains the string resource.

wID WORD Specifies the integer identifier of the string to be
loaded.

IpBuffer LPSTR Points to the buffer that receives the string.

nBufferMax int Specifies the maximum number of characters to be copied
to the buffer. The string is truncated if it is longer than the
number of characters specified.

Return value The return value specifies the actual number of characters copied into the
buffer. It is zero if the string resource does not exist.

LOBYTE

Syntax BYTE LOBYTE(nInteger)
function LoByte(A: Word): Byte;

This macro extracts the low-order byte from the short-integer value
specified by the nlnteger parameter.

Parameters nInteger int Specifies the value to be converted.

Return value The return value specifies the low-order byte of the value.

LocalAlioc

Syntax HANDLE LocalAlloc(wFlags, wBytes)
function LocalAlloc(Flags, Bytes: Word): THandle;

This function allocates the number of bytes of memory specified by the
wBytes parameter from the local heap. The memory block can be either
fixed or move"able, as specified by the wFlags parameter.

Parameters wFlags WORD Specifies how to allocate memory. It can be one or
more of the following values:

Value Meaning
LMEM_DISCARDABLE Allocates discardable memory.

Chapter 4, Functions directory

Can only be used with
LMEM_MOVEABLE.

413

LocolAlioc

wBytes

LMEM_FIXED
LMEM_MODIFY

LMEM_MOVEABLE

LMEM_NOCOMP ACT

LMEM_NODISCARD

LMEM_ZEROINIT

Allocates fixed memory.
Modifies the
LMEM_DISCARDABLE flag.
Can only be used with
LMEM_DISCARDABLE.
Allocates moveable memory.
Cannot be used with
LMEM_FIXED.
Does not compact or discard
memory to satisfy the allocation
request.
Does not discard memory to
satisfy the allocation request.
Initializes memory contents to
zero.

Choose LMEM_FIXED or LMEM_MOVEABLE, and then
combine others as needed by using the bitwise OR operator.

WORD Specifies the total number of bytes to be allocated.

Return value The return value identifies the newly allocated local memory block if the
function is successful. Otherwise, it is NULL.

Comments If the data segment that contains the heap is moveable, calling this
function will cause the data segment to move if Windows needs to
increase the size of the heap and cannot increase the size of the heap in its
current location. An application can prevent Windows from moving the
data segment by calling the LockData function to lock the data segment.

If this function is successful, it allocates at least the amount requested. The
actual amount allocated may be greater. To determine the actual amount
allocated, call the LocalSize function.

LocalCompact

414

Syntax WORD LocaICompact(wMinFree)
function LocaICompact(MinFree: Word): Word;

This function generates the number of free bytes of memory specified by
the wMinFree parameter by compacting, if necessary, the module's local
heap. The function checks the local heap for the specified number of
contiguous free bytes. If the bytes do not exist, the LocalCompact function
compacts local memory by first moving all unlocked moveable blocks into
high memory. If this does not generate the requested amount of space, the

Software development kit

LocalCompact

function discards moveable and discardable blocks that are not locked
down, until the requested amount of space is generated, whenever
possible.

Parameters wMinFree WORD Specifies the number of free bytes desired. If
wMinFree is zero, the function returns a value but does not
compact memory.

Return value The return value specifies the number of bytes in the largest block of free
local memory.

LocalDiscard

Syntax HANDLE LocaIDiscard(hMem)
function LocaIDiscard(Mem: THandle): THandle;

This function discards the local memory block specified by the hMem
parameter. The lock count of the memory block must be zero.

The local memory block is removed from memory, but its handle remains
valid. An application can subsequently pass the handle to the
LocalReAlloc function to allocate another local memory block identified
by the same handle.

Parameters hMem HANDLE Identifies the local memory block to be discarded.

Return value The return value specifies the outcome of the function. It is NULL if the
function is successful. Otherwise, it is equal to hMem.

LocalFlags

Syntax WORD LocaIFlags(hMem)
function LocaIFlags(Mem: THandle): Word;

This function returns information about the specified local memory block.

Parameters hMem HANDLE Identifies the local memory block.

Return value The return value contains one of the following memory-allocation flags in
the high byte:

Value

LMEM_DISCARDABLE
LMEM_DISCARDED

Chapter 4, Functions directory

Meaning

Block is marked as discardable.
Block has been discarded.

415

LocolFree

LocalFree

The low byte of the return value contains the reference count of the block.
Use the LMEM_LOCKCOUNT mask to retrieve the lock-count value from
the return value.

Syntax HANDLE LocalFreeChMem)
function LocalFreeCMem: THandle): THandle;

This function frees the local memory block identified by the hMem
parameter and invalidates the handle of the memory block.

Parameters hMem HANDLE Identifies the local memory block to be freed.

Return value The return value specifies the outcome of the function. It is NULL if the
function is successful. Otherwise, it is equal to hMem.

LocalHandle

Syntax HANDLE LocalHandleCwMem)
function LocalHandleCMem: Word): THandle;

This function retrieves the handle of the local memory object whose
address is specified by the wMem parameter.

Parameters wMem WORD Specifies the address of a local memory object.

Return value The return value identifies the local memory object.

Locallnit

Syntax BOOL LocalInitCwSegment, pStart, pEnd)
function LocalInitCSegment, Start, EndPos: Word): Baal;

This function initializes a local heap in the segment specified by the
wSegment parameter.

Parameters wSegment WORD Specifies the segment address of the segment that is
to contain the local heap ..

pStart PSTR Specifies the address of the start of the local heap
within the segment.

pEnd PSTR Specifies the address of the end of the local heap
within the segment.

416 Software development kit

Loccllnit

Return value The return value specifies a Boolean value that is nonzero if the heap is
initialized. Otherwise, it is zero.

Comments If the pStart parameter is zero, the pEnd parameter specifies the offset of
the last byte of the global heap from the end of the segment. For example,
to initialize a 4096-byte heap with the first byte at byte 0, set pStart to 0
and pEnd to 4095. Locallnit calls the GlobalLock function for the data
segment that contains the local heap. This ensures that the data segment
will not be moved in memory. However, the memory will be moved if
both of these conditions are true:

LocalLock

1. The data segment is moveable.

2. The application calls the LocalAlloc or LocalReAlioc function and, as a
result, Windows must increase the size of the heap. If Windows cannot
increase the size of the data segment that contains the local heap
without moving it, Windows will move the data segment.

An application can explicitly prevent Windows from moving the data
segment by calling the LockData function to lock the data segment.

An application can remove this initial lock count by calling the
UnlockData function.

Syntax PSTR LocaILock(hMem)
function LocaILock(Mem: THandle): Pointer;

This function locks the local memory block specified by the hMem
parameter. The block is locked into memory at the given address and its
reference count is increased by one. Locked memory cannot be moved or
discarded. The block remains locked in memory until its reference count
is decreased to zero by using the LocalUnlock function.

Parameters hMem HANDLE Identifies the local memory block to be locked.

Return value The return value points to the first byte of memory in the local block if the
function is successful. Otherwise, it is NULL.

LocalReAlioc

Syntax HANDLE LocalReAlloc(hMem, wBytes, wFlags)

Chapter 4, Functions directory 417

LocolReAlioc

function LocaIReAlloc(Mem: THandle; Bytes, Flags: Word): THandle;

This function changes the size of the local memory block specified by the
hMem parameter by increasing or decreasing its size to the number of
bytes specified by the wBytes parameter, or changes the attributes of the
specified memory block.

Parameters hMem HANDLE Identifies the local memory block to be reallocated.

418

wBytes

wFlags

WORD Specifies the new size of the memory block.

WORD Specifies how to reallocate the local memory block. It
can be one or more of the following values:

Value Meaning
LMEM_DISCARDABLE Memory is discardable. This

LMEM_MODIFY

LMEM_MOVEABLE

LMEM_NOCOMPACT

flag can only be used with
LMEM_MODIFY.
Memory flags are modified.
The wBytes parameter is
ignored. This flag can only be
used with
LMEM_DISCARDABLE.
Memory is moveable. If wBytes
is zero, this flag causes a
previously fixed block to be
freed or a previously
moveable object to be
discarded (if the block's
reference count is zero). If
wBytes is nonzero and the
block specified by hMem is
fixed, this flag allows the
reallocated block to be moved
to a new fixed location. (Note
that the handle returned by
the LocalReAlloc function in
this case may be different from
the handle passed to the
function.) This flag cannot be
used with LMEM_MODIFY.
Memory will not be
compacted or discarded to
satisfy the allocation request.
This flag cannot be used with
LMEM_MODIFY.

Software development kit

LMEM_NODISCARD

LMEM_ZEROINIT

LocolReAlloc

Objects will not be discarded
to satisfy the allocation
request. This flag cannot be
used with LMEM_MODIFY.
If the block is growing, the
additional memory contents
are initialized to zero. This flag
cannot be used with
LMEM_MODIFY.

Return value The return value identifies the reallocated local memory if the function is
successful. It is NULL if the local memory block cannot be reallocated.

The return value is always identical to the hMem parameter, unless the
LMEM_MOVEABLE flag is used to allow movement of a fixed block of
memory to a new fixed location.

Comments If the data segment that contains the heap is moveable, calling this
function will cause the data segment to move if Windows must increase
the size of the heap and cannot increase the size of the heap in its current
location. An application can prevent Windows from moving the data
segment by calling the LockData function to lock the data segment.

LocalShrink

Syntax WORD LocaIShrink(hSeg, wSize)
function LocaIShrink(Seg: THandle; Size: Word): Word;

This function shrinks the specified heap to the size specified by the wSize
parameter. The minimum size for the automatic local heap is defined in
the application's module definition file.

Parameters hSeg

wSize

HANDLE Identifies the segment that contains the local heap.

WORD Specifies the size (in bytes) desired for the local heap
after shrinkage.

Return value The return value specifies the size of the local heap after shrinkage.

Comments If hSeg is zero, the LocalShrink function reduces the local heap in the
current data segment. Windows will not shrink that portion of the data
segment that contains the stack and the static variables.

Use the GlobalSize function to determine the new size of the data
segment.

Chapter 4, Functions directory 419

LocalSize

LocalSize

Syntax WORD LocaISize(hMem)
function LocaISize(Mem: THandle): Word;

This function retrieves the current size (in bytes) of the local memory
block specified by the hMem parameter.

Parameters hMem HANDLE Identifies the local memory block.

Return value The return value specifies the size (in bytes) of the specified memory
block. It is NULL if the given handle is not valid.

Comments The actual size of a memory block sometimes is larger than the size
requested when the memory was allocated.

LocalUnlock

Syntax BaaL LocaIUnlock(hMem)
function LocaIUnlock(Mem: THandle): Bool;

This function unlocks the local memory block specified by the hMem
parameter and decreases the block's reference count by one. The block is
completely unlocked, and subject to moving or discarding, if the reference
count is decreased to zero.

Parameters hMem HANDLE Identifies the local memory block to be unlocked.

Return value The return value is zero if the block's reference count was decreased to
zero. Otherwise, the return value is nonzero.

LockOata

Syntax HANDLE LockDataCDummy)
function LockDataCDummy: Integer): THan die;

This macro locks the current data segment in memory. It is intended to be
used in modules that have moveable data segments.

Parameters Dummy int Is not used. It should be set to zero.

Return value The return value identifies the locked data segment if the function is
successful. Otherwise, it is NULL.

420 Software development kit

LockResource

LockResource

Syntax LPSTR LockResource(hResData)
function LockResource(ResData: THandle): Pointer;

This function retrieves the absolute memory address of the loaded
resource identified by the hResData parameter. The resource is locked in
memory and the given address and its reference count are increased by
one. The locked resource is not subject to moving or discarding.

The resource remains locked in memory until its reference count is
decreased to zero through calls to the FreeResource function.

If the resource identified by hResData has been discarded, the resource­
handler function (if any) associated with the resource is called before the
LockResource function returns. The resource-handler function can
recalculate and reload the resource if desired. After the resource-handler
function returns, LockResource makes another attempt to lock the
resource and returns with the result.

Parameters hResData HANDLE Identifies the desired resource. This handle is
assumed to have been created by using the LoadResource
function.

Return value The return value points to the first byte of the loaded resource if the
resource was locked. Otherwise, it is NULL.

Comments Using the handle returned by the FindResource function for the hResData
parameter causes an error.

LockSegment

Use the UnlockResource macro to unlock a resource that was locked by
using LockResource.

Syntax HANDLE LockSegment(wSegment)
function LockSegment(Segment: Word): THandle;

This function locks the segment whose segment address is specified by the
wSegment parameter. If wSegment is -1, the LockSegment function locks
the current data segment.

Except for nondiscardable segments in protected (standard or 386
enhanced) mode, the segment is locked into memory at the given address

Chapter 4, Functions directory 421

LockSegment

and its lock count is increased by one. Locked memory is not subject to
moving or discarding except when a portion of the segment is being
reallocated by the GlobalReAlioc function. The segment remains locked in
memory until its lock count is decreased to zero.

In protected mode, LockSegment increments the lock count of
discardable and automatic data segments only.

Each time an application calls LockSegment for a segment, it must
eventually call UnlockSegment for the segment. The UnlockSegment
function decreases the lock count for the segment. Other functions also
can affect the lock count of a memory object. See the description of the
GlobalFlags function for a list of the functions that affect the lock count.

Parameters wSegment WORD Specifies the segment address of the segment to be
locked. If wSegment is -1, the LockSegment function locks
the current data segment.

Return value The return value identifies the data segment if the function is successful. If
the object has been discarded or an error occurs, the return value is

_Iopen

NULL.

Syntax int _lopen(lpPathName, iReadWrite)
function _lopen(PathName: PChar; ReadWrite: Integer): Integer;

This function opens the file with the name specified by the
IpPathName parameter. The iReadWrite parameter specifies the
access mode of the file when the function opens it. When the function
opens the file, the pointer is set to the
beginning of the file.

Parameters IpPathName LPSTR Points to a null-terminated character string that
names the file to be opened. The string must consist of
characters from the ANSI character set.

iReadWrite int Specifies whether the function is to open the file with
read access, write access, or both. The parameter must be
one of the following values:

Value Meaning
OF_READ Opens the file for reading only.
OF _READWRITE Opens the file for reading and

writing.

422 Software development kit

Jopen

OF _SHARE_ COMP AT Opens the file with
compatibility mode, allowing
any process on a given machine
to open the file any number of
times. Open File fails if the file
has been opened with any of the
other sharing modes.

OF _SHARE_DENY_NONE Opens the file without denying
other processes read or write
access to the file. Open File fails
if the file has been opened in
compatibility mode by any
other process.

OF _SHARE_DENY _READ Opens the file and denies other
processes read access to the file.
Open File fails if the file has been
opened in compatibility mode
or for read access by any other
process.

OF _SHARE_DENY_WRITEOpens the file and denies other
processes write access to the file.
Open File fails if the file has been
opened in compatibility or for
write access by any other
process.

OF _SHARE_EXCLUSIVE Opens the file with exclusive
mode, denying other processes
both read and write access to
the file. OpenFile fails if the file
has been opened in any other
mode for read or write access,
even by the current process.

OF_WRITE Opens the file for writing only.

Return value The return value specifies an MS-DOS file handle if the function opened
the file. Otherwise, it is -1.

LOWORD

Syntax WORD LOWORD(dwInteger)
function LoWord(A: Longint): Word;

Chapter 4, Functions directory 423

LOWORD

This macro extracts the low-order word from the 32-bit integer value
specified by the dwlnteger parameter.

Parameters dwlnteger DWORD Specifies the value to be converted.

Return value The return value specifies the low-order word of the 32-bit integer value.

LPtoDP

Syntax BOOL LPtoDPChDC, IpPoints, nCount)
function LPtoDPCDC: HDC; var Points; Count: Integer): Bool;

This function converts logical points into device points. The LPtoDP
function maps the coordinates of each point specified by the IpPoints
parameter from CDI's logical coordinate system into a device coordinate
system. The conversion depends on the current mapping mode.

Parameters hDC HANDLE Identifies the device context.

IpPoints

nCount

LPPOINT Points to an array of points. Each point in the array
is a POINT data structure.

int Specifies the number of points in the array.

Return value The return value specifies whether or not all points are converted. It is
nonzero if all points are converted. Otherwise, it is zero.

Syntax int _lreadChFile, IpBuffer, wBytes)
function _lreadCFileHandle: Integer; Buffer: PChar; Bytes: Integer): Word;

This function reads data from the file identified by the hFile parameter.
The wBytes parameter specifies the number of bytes to read. The function
return value indicates the number of bytes actually read. The return value
is zero if the function attempted to read the file at EOF.

Parameters hFile int Specifies the MS-DOS file handle of the file to be read.

IpBuffer

wBytes

LPSTR Points to a buffer that is to receive the data read from
the file.

WORD Specifies the number of bytes to be read from the file.

Return value The return value indicates the number of bytes which the function
actually read from the file, or -1 if the function fails. The return value is

424 Software development kit

Istrcot

less than wBytes if the function encountered the end of the file (EOF)
before reading the specified number of bytes.

Syntax LPSTR lstrcat(lpStringl, lpString2)
function lstrcat(Strl, Str2: PChar): PChar;

Istreot

This function concatenates IpString2 to the string specified by IpStringl,
terminates the resulting string with a null character, and returns a far
pointer to the concatenated string (lpString1).

All strings must be less than 64K in size.

Parameters IpStringl LPSTR Points to byte array containing a null-terminated
string to which the function is to append IpString2. The byte
array containing the string must be large enough to contain
both strings.

IpString2 LPSTR Points to the null-terminated string which the
function is to append to IpStringl.

Return value The return value specifies a pointer to IpStringl. It is zero if the function
fails.

Istrcmp 3.0

Syntax int lstrcmp(lpStringl, lpString2)
function lstrcmp(Strl, Str2: PChar): Integer;

This function compares the two strings identified by IpStringl and
IpString2 lexicographically and returns a value indicating their
relationship. If the strings are otherwise equal, this function uses the case
of characters in the string to determine their relationship.

Uppercase characters evaluate lower than lowercase characters. The
comparison is made based on the current language selected by the user at
setup or with the Control Panel. This function is not equivalent to the
strcmp C run-time library function.

All strings must be less than 64K in size.

Parameters IpStringl LPSTR Points to the first null-terminated string to be
compared.

Chapter 4, Functions directory 425

Istrcmp

IpString2 LPSTR Points to the second null-terminated string to be
compared.

Return value The return value indicates whether IpStringl is less than, equal to, or
greater than IpString2. This relationship is outlined in the following:

Istrcmpi

Value

<0
=0
>0

Meaning

IpStringl is less than IpString2.
IpStringl is identical to IpString2.
IpStringl is greater than IpString2.

Syntax int Istrcmpi(lpStringl, IpString2)
function Istrcmpi(Strl, Str2: PChar): Integer;

3.0

This function compares the two strings identified by IpStringl and
IpString2 lexicographically and returns a value indicating their
relationship. The comparison is not case-sensitive. The comparison is
made based on the current language selected by the user at setup or with
the Control Panel. This function is not equivalent to the strcmpi C run­
time library function.

All strings must be less than 64K in size.

Parameters IpStringl LPSTR Points to the first null-terminated string to be
compared.

IpString2 LPSTR Points to the second null-terminated string to be
compared.

Return value The return value indicates whether IpStringl is less than, equal to, or
greater than IpString2. This relationship is outlined in the following table:

Istrcpy

Value Meaning

< 0 IpStringl is less than IpString2.
= 0 IpStringl is identical to IpString2.
> 0 IpStringl is greater than IpString2.

Syntax LPSTR Istrcpy(lpStringl, IpString2)
function Istrcpy(Strl, Str2: PChar): PChar;

426 Software development kit

Istrcpy

This function copies IpString2, including the terminating null character, to
the location specified by IpStringl, and returns IpStringl. All strings must
be less than 64K in size.

Parameters IpStringl LPSTR Points to a buffer to receive the contents of IpString2.
The buffer must be large enough to contain IpString2.

IpString2 LPSTR Points to the null-terminated string to be copied.

Return value The return value specifies a pointer to IpStringl. It is zero if the function
fails.

Istrlen

Syntax int Istrlen{lpString)
function Istrlen(Str: PChar): Integer;

This function returns the length, in bytes, of IpString, not including the
terminating null character. All strings must be less than 64K in size.

Parameters IpString LPSTR Points to a null-terminated string.

Return value The return value specifies the length of IpString. There is no error return.

_Iwrite

Syntax int _lwrite(hFile, IpBuffer, wBytes)
function _lwrite(FileHandle: Integer; Buffer: PChar; Bytes: Integer): Word;

This function writes data into the file specified by the hFile parameter. The
wBytes parameter specifies the number of bytes to write from the buffer
identified by IpBuffer. The function return value indicates the number of
bytes actually written to the file.

Parameters hFile int Specifies the MS-DOS file handle of the file into which
data is to be written.

IpBuffer

wBytes

LPSTR Points to a buffer that contains the data to be written
to the file.

WORD Specifies the number of bytes to be written to the file.

Return value The return value indicates the number of bytes actually written to the file,
or -1 if the function fails.

Comments The buffer specified by IpBuffer cannot extend past the end of a segment.

Chapter 4, Functions directory 427

MAKEINTATOM

MAKEINTATOM

428

Syntax LPSTR MAKEINTATOM(wInteger)
type MakeIntAtom = Pstr;

This macro creates an integer atom that represents a character string of
decimal digits.

Integer atoms created by this macro can be added to the atom table by
means of the AddAtom function.

Parameters wlnteger WORD Specifies the numeric value of the atom's character
string.

Return value The return value points to the atom created for the given integer.

Comments Although the return value of the MAKEINTATOM macro is cast as an
LPSTR, the return value cannot be used as a string pointer, except when
passing it to atom-management functions that require an LPSTR
parameter.

The return value is actually a 32-bit value. The low-order word of this 32-
bit value contains the value of the integer specified by the wlnteger
parameter.

The DeleteAtom function always succeeds for integer atoms, even though
it does nothing, and the GetAtomName function always returns the string
form of the integer atom.

Software development kit

MAKEINTRESOURCE

MAKEINTRESOURCE

Syntax LPSTR MAKEINTRESOURCE (nInteger)
type MakeIntResource = Pstr;

This macro converts an integer value into a long pointer to a string, with
the high-order word of the long pointer set to zero.

Parameters nlnteger int Specifies the integer value to be c9nverted.

Return value The return value points to a string.

MAKELONG

Syntax DWORD MAKELONG(wLow, wHigh)
function MakeLong(A, B: Word): Longint;

This macro creates an unsigned long integer by concatenating two integer
values, specified by the wLow and wHigh parameters.

Parameters wLow

wHigh

WORD Specifies the low-order word of the new long value.

WORD Specifies the high-order word of the new long value.

Return value The return value specifies an unsigned long-integer value.

MAKEPOINT

Syntax POINT MAKEPOINT(dwInteger)
type MakePoint = TPoint;

This macro converts a long value that contains the x- and y-coordinates of
a point into a POINT data structure.

Parameters dwlnteger DWORD Specifies the x- and y-coordinates of a point.

Return value The return value specifies the POINT data structure.

MakeProclnstance

Syntax FARPROC MakeProcInstance(lpProc, hInstance)
function MakeProcInstance(Proc: TFarProc; Instance: THandle): TFarProc;

Chapter 4, Functions directory 429

MakeProclnstance

This function creates a procedure-instance address. A procedure-instance
address points to prolog code that is executed before the function is
executed. The prolog binds the data segment of the instance specified by
the hlnstance parameter to the function pointed to by the IpProc parameter.
When the function is executed, it has access to variables and data in that
instance's data segment.

The FreeProclnstance function frees the function from the data
segment bound to it by the MakeProclnstance function.

Parameters IpProc FARPROC Is a procedure-instance address.

hlnstance HANDLE Identifies the instance associated with the desired
data segment.

Return value The return value points to the function if the function is successful.
Otherwise, it is NULL.

Comments The MakeProclnstance function must only be used to access functions
from instances of the current module. The function is not required for
library modules.

After MakeProclnstance has been called for a particular function, all calls
to that function should be made through the retrieved address.

MakeProclnstance will create more than one procedure instance. An
application should not call MakeProclnstance more than once using the
same function and instance handle to avoid wasting memory.

To bind a data segment to a function, the function must be exported in the
EXPORTS statement of the module-definition file.

MapDialogRect

430

Syntax void MapDialogRect(hDlg, lpRect)
procedure MapDialogRect(Dlg: HWnd; var Rect: TRect);

This function converts the dialog-box units given in the IpRect parameter
to screen units. Dialog-box units are stated in terms of the current dialog
base unit derived from the average width and height of characters in the
system font. One horizontal unit is one-fourth of the dialog base width
unit, and one vertical unit is one-eighth of the dialog base height unit. The
GetDialogBaseUnits function returns the dialog base units in pixels.

Software development kit

MapDialogRect

The MapDialogRect function replaces the dialog-box units in IpRect with
screen units (pixels), so that the rectangle can be used to create a dialog
box or position a control within a box.

Parameters hDlg
IpRect

Return value None.

HWND Identifies a dialog box.
LPRECT Points to a RECT data structure that contains the
dialog-box coordinates to be converted.

Comments The hDlg parameter must be created by using the CreateDialog or
DialogBox function.

MapVirtualKey 3.0

Syntax WORD MapVirtualKey(wCode, wlvIapType)
function MapVirtualKey(Code, MapType: Word): Word;

This function accepts a virtual-key code or scan code for a key and returns
the corresponding scan code, virtual-key code, or ASCII value. The value
of the wMapType parameter determines the type of mapping which this
function performs.

Parameters wCode WORD Specifies the virtual-key code or scan code for a key.
The interpretation of the wCode parameter depends on the
value of the wMapType parameter.

wMapType WORD Specifies the type of mapping to be performed. The
wMapType parameter can be any of the following values:

Value Meaning
o The wCode parameter specifies a virtual­

key code, and the function returns the
corresponding scan code.

1 The wCode parameter specifies a scan
code, and the function returns the
corresponding virtual-key code.

2 The wCode parameter specifies a virtual­
key code, and the function returns the
corresponding unshifted ASCII value.

Other values are reserved.

Return value The return value depends on the value of the wCode and wMapType
parameters. See the description of the wMapType parameter for more
informa tion.

Chapter 4, Functions directory 431

max

max

Syntax int max(valuel, value2)

This macro returns the greater of the values contained in the valuel and
value2 parameters.

Parameters valuel Specifies the first of two values.

value2 Specifies the second of two values.

Return value The return value specifies valuel or value2, whichever is greater.

Comments The values identified by the valuel and value2 parameters can be any
ordered type.

MessageBeep

Syntax void MessageBeep(wType)
procedure MessageBeep(BeepType: Word);

This function generates a beep at the system speaker.

Parameters wType WORD Is not used. It should be set to zero.

Return value None.

MessageBox

432

Syntax intMessageBox(h WndParent, IpText, IpCaption, wType)
function MessageBox(WndParent: HWnd; Txt, Caption: PChar; TextType:
Word): Integer;

This function creates and displays a window that contains an application­
supplied message and caption, plus any combination of the predefined
icons and push buttons described in the following list.

Parameters h WndParent HWND Identifies the window that owns the message box.

IpText

IpCaption

LPSTR Points to a null-terminated string containing the
message to be displayed.

LPSTR Points to a null-terminated character string to be
used for the dialog-box caption. If the IpCaption parameter is
NULL, the default caption "Error" is used.

Software development kit

wType

MessageBox

WORD Specifies the contents of the dialog box. It can be any
combination of the values shown in Table 4.11, "Message box
types," joined by the bitwise OR operator.

Return value The return value specifies the outcome of the function. It is zero if there is
not enough memory to create the message box. Otherwise, it is one of the
following menu-item values returned by the dialog box:

Parameters IDABORT Abort button pressed.
IDCANCEL Cancel button pressed.
IDIGNORE Ignore button pressed.
IDNO No button pressed.
IDOK OK button pressed.
IDRETRY Retry button pressed.
IDYES Yes button pressed.

If a message box has a Cancel button, the IDCANCEL value will be
returned if either the ESCAPE key or Cancel button is pressed. If the
message box has no Cancel button, pressing the ESCAPE key has no effect.

Comments When a system-modal message box is created to indicate that the system
is low on memory, the strings passed as the IpText and IpCaption
parameters should not be taken from a resource file, since an attempt to
load the resource may fail.

Table 4.11
Message box types

When an application calls the MessageBox function and specifies the
MB_ICONHAND and MB_SYSTEMMODAL flags for the wType
parameter, Windows will display the resulting message box regardless of
available memory. When these flags are specified, Windows limits the
length of the message-box text to one line.

If a message box is created while a dialog box is present, use the handle of
the dialog box as the h WndParent parameter. The h WndParent parameter
should not identify a child window, such as a dialog-box control.

Table 4.11 shows the message box types.

Value

MB_ABORTRETRYIGNORE

MB_APPLMODAL

Meaning

Message box contains three push buttons: Abort,
Retry, and Ignore.
The user must respond to the message box before
continuing work in the window identified by the
h WndParent parameter. However, the user can
move to the windows of other applications and
work in those windows. MB_APPLMODAL is
the default if neither MB_SYSTEMMODAL nor
MB_TASKMODAL are specified.

Chapter 4, Functions directory 433

MessageBox

Table 4.11: Message box types (continued)

min

MB_DEFBUTTONl

MB_DEFBUTTON2
MB_DEFBUTTON3
MB_ICONASTERISK
MB_ICONEXCLAMATION

MB_ICONHAND
MB_ICONINFORMATION

MB_ICONQUESTION

MB_ICONSTOP
MB_OK
MB_OKCANCEL

MB_RETRYCANCEL

MB_SYSTEMMODAL

MB_TASKMODAL

MB_YESNO

MB_ YESNOCANCEL

Syntax int min(valuel, value2)

First button is the default. Note that the first
button is always the default unless
MB_DEFBUTTON2 or MB_DEFBUTTON3 is
specified.
Second button is the default.
Third button is the default.
Same as MB_ICONINFORMATION.
An exclamation-point icon appears in the
message box.
Same as MB_ICONSTOP.
An icon consisting of a lowercase i in a circle
appears in the message box.
A question-mark icon appears in the message
box.
A stop sign icon appears in the message box.
Message box contains one push button: OK.
Message box contains two push buttons: OK and
Cancel.
Message box contains two push buttons: Retry
and Cancel.
All applications are suspended until the user
responds to the message box. Unless the
application specifies MB_ICONHAND, the
message box does not become modal until after it
is created; consequently, the parent window and
other windows continue to receive messages
resulting from its activation. System-modal
message boxes are used to notify the user of
serious, potentially damaging errors that require
immediate attention (for example, running out of
memory).
Same as MB_APPMODAL except that all the
top-level windows belonging to the current task
are disabled if the h WndOwner parameter is
NULL. This flag should be used when the calling
application or library does not have a window
handle available, but still needs to prevent input
to other windows in the current application
without suspending other applications.
Message box contains two push buttons: Yes and
No.
Message box contains three push buttons: Yes,
No, and Cancel.

434 Software development kit

This macro returns the lesser of the values specified by the valuel and
value2 parameters, respectively.

min

Parameters valuel Specifies the first of two values.

value2 Specifies the second of two values.

Return value The return value specifies valuel or value2, whichever is less.

Comments The values identified by the valuel and value2 parameters can be any
ordered type.

ModifyMenu 3.0

Syntax

Parameters

BOOL ModifyMenu(hMenu, nPosition, wFlags, wIDNewItem,
IpNewItem)
function ModifyMenu(Menu: HMenu; Position, Flags, IDNewItem: Word;
NewItem: PChar): Bool;

This function changes an existing menu item at the position specified by
the nPosition parameter. The application specifies the new state of the
menu item by setting values in the wFlags parameter. If this function
replaces a pop-up menu associated with the menu item, it destroys the old
pop-up menu and frees the memory used by the pop-up menu.

hMenu HMENU Identifies the menu to be changed.

nPosition

wFlags

WORD Specifies the menu item to be changed. The
interpretation of the nPosition parameter depends upon the
setting of the wFlags parameter.

IfwFlags is: nPosition
MF _BYPOSITION Specifies the position of the existing

menu item. The first item in the
menu is at position zero.
Specifies the command ID of the
existing menu item.

WORD Specifies how the nPosition parameter is interpreted
and information about the changes to be made to the menu
item. It consists of one or more values listed in the following
"Comments" section.

wIDNewItem WORD Specifies either the command ID of the modified
menu item or, if wFlags is set to MF _POPUP, the menu
handle of the pop-up menu.

Chapter 4, Functions directory 435

ModifyMenu

436

IpNewItem LPSTR Specifies the content of the changed menu item. If
wFlags is set to MF _STRING (the default), then IpNewItem is
a long pointer to a null-terminated character string. If wFlags
is set to MF _BITMAP instead, then IpNewItem contains a
bitmap handle (HBITMAP) in its low-order word. If wFlags is
set to MF _ OWNERDRA W, IpNewItem specifies an
application-supplied 32-bit value which the application can
use to maintain additional data associated with the menu
item. This 32-bit value is available to the application in the
item Data field of the structure, pointed to by the IParam
parameter of the following messages:

WM_MEASUREITEM
WM_DRAWITEM

These messages are sent when the menu item is initially
displayed, or is changed.

Return value The return value specifies the outcome of the function. It is TRUE if the
function is successful. Otherwise, it is FALSE.

Comments Whenever a menu changes (whether or not the menu resides in a window
that is displayed), the application should call DrawMenuBar. In order to
change the attributes of existing menu items, it is much faster to use the
CheckMenultem and EnableMenultem functions.

Each of the following groups lists flags that should not be used together:

• MF _BYCOMMAND and MF _BYPOSITION
• MF _DISABLED, MF _ENABLED, and MF _GRAYED
• MF _BITMAP, MF _STRING, MF _ OWNERDRA W, and

MF_SEPARATOR
• MF _MENUBARBREAK and MF _MENUBREAK
• MF _CHECKED and MF _UNCHECKED

The following list describes the flags which may be set in the wFlags
parameter:

Parameters MF _BITMAP Uses a bitmap as the menu item. The low-order
word of the IpNewItem parameter contains the
handle of the bitmap.
Specifies that the nPosition parameter gives the
menu item control ID number. This is the default
if neither MF _BYCOMMAND nor MF _POSITION
is set.

Software development kit

MF _BYPOSITION

MF_CHECKED'

ModifyMenu

Specifies that the nPosition parameter gives the
position of the menu item to be changed rather
than an ID number.
Places a checkmark next to the menu item. If the
application has supplied checkmark bitmaps (see
SetMenultemBitmaps), setting this flag displays
the "checkmark on" bitmap next to the menu
item.
Disables the menu item so that it cannot be
selected, but does not gray it.
Enables the menu item so that it can be selected
and restores it from its grayed state.

MF _GRAYED Disables the menu item so that it cannot be
selected and grays it.

MF _MENUBARBREAK Same as MF _MENUBREAK except that for pop-

MF_OWNERDRAW

Chapter 4, Functions directory

up menus, separates the new column from the
old column with a vertical line.
Places the menu item on a new line for static
menu-bar items. For pop-up menus, this flag
places the item in a new column, with no
dividing line between the columns.
Specifies that the menu item is an owner-draw
item. The window that owns the menu receives a
WM_MEASUREITEM message when the menu is
displayed for the first time to retrieve the height
and width of the menu item. The
WM_DRAWITEM message is then sent whenever
the owner must update the visual appearance of
the menu item. This option is not valid for a top-
level menu item.
Specifies that the item has a pop-up menu
associated with it. The wIDNewItem parameter
specifies a handle to a pop-up menu to be
associated with the menu item. Use this flag for
adding either a top-level pop-up menu or adding
a hierarchical pop-up menu to a pop-up menu
item.
Draws a horizontal dividing line. You can only
use this flag in a pop-up menu. This line cannot
be grayed, disabled, or highlighted. The
IpNewItem and wIDNewItem parameters are
ignored.

437

[! ®J ..•.. '·~:;:.1'.:
,. '. ' . :", ,:~,

ModifyMenu

MF _UNCHECKED

Specifies that the menu item is a character string;
the IpNewItem parameter points to the string for
the menu item.
Does not place a checkmark next to the menu
item. No checkmark is the default if neither
MF _CHECKED nor MF _UNCHECKED is set. If
the application has supplied checkmark bitmaps
(see SetMenultemBitmaps), setting this flag
displays the "checkmark off" bitmap next to the
menu item.

MoveTo

Syntax DWORD MoveTo(hDC, X, Y)
function MoveTo(DC: HDC; X, Y: Integer): Longint;

This function moves the current position to the point specified by the X
and Y parameters.

Parameters hDC HOC Identifies the device context.

X

Y

int Specifies the logical x-coordinate of the new position.

int Specifies the logical y-coordinate of the new position.

Return value The return value specifies the x- and y-coordinates of the previous
position. The y-coordinate is in the high-order word; the x-coordinate is in
the low-order word.

Comments Although the MoveTo function has no output, it affects other output
functions that use the current position.

MoveWindow

438

Syntax void MoveWindow(h Wnd, X, Y, n Width, nHeight, bRepaint)
procedure MoveWindow(Wnd: HWnd; X, Y, Width, Height: Integer;
Repaint: Bool);

This function causes a WM_SIZE message to be sent to the given window.
The X, Y, n Width, and nHeight parameters give the new size of the
window.

Parameters h Wnd HWNO Identifies a pop-up or child window.

Software development kit

x

y

nWidth

nHeight

bRepaint

Return valu~ None.

MoveWindow

int Specifies the new x-coordinate of the upper-left corner of
the window.

int Specifies the new y-coordinate of the upper-left corner of
the window. For pop-up windows, X and Yare in screen
coordinates (relative to the upper-left corner of the screen).
For child windows, they are in client coordinates (relative to
the upper-left corner of the parent window's client area).

int Specifies the new width of the window.

int Specifies the new height of the window.

BOOl Specifies whether or not the window is repainted
after moving. If bRepaint is zero, the window is not
repainted.

Comments Any child or pop-up window has a minimum width and height. These
minimums depend on the style and content of the window. Any attempt
to make the width and height smaller than the minimum by using the
MoveWindow function will fail. The WM_SIZE message created by this
function gives the new width and height of the client area of the window,
not of the full window.

MulDiv 3.0

Syntax int MuIDiv(nNumber, nNumerator, nDenominator)
function MuIDiv(Number, Numerator, Denominator: Integer): Integer;

This function multiplies two word-length values and then divides the
result by a third word-length value. The return value is the final result,
rounded to the nearest integer.

Parameters nNumber int Specifies the number to be multiplied by nNumerator.

nNumerator int Specifies the number to be multiplied by nNumber.

nDenominator int Specifies the number by which the result of the
multiplication is to be divided.

Return value The return value is the result of the multipliation and division. The return
value is 32,767 or -32,767 if either an overflow occurred or wDenominator
was zero.

Chapter 4, Functions directory 439

NetBIOSCali

NetBIOSCall 3.0

Syntax procedure NetBIOSCall;

This function allows an applications to issue the NETBIOS interrupt 5CH.
An application should call this function instead of directly issuing a
NETBIOS 5CH interrupt to preserve compatibility with future Microsoft
products.

An application can call this function only from an assembly-language
routine. It is exported from KERNEL.EXE and is not defined in any
Windows include files.

To use this function call, an application should declare it in an assembly­
language program as shown:

extrn NETBIOSCALL :far

If the application includes CMACROS.INC, the application declares it as
shown:

externFP NetBIOSCall

Before calling NetBIOSCall, all registers must be set as for an actual INT
5CH. All registers at the function's exit are the same as for the
corresponding INT 5CH function.

Parameters None.

Return value None.

The following is an example of how to use the NetBIOSCall function:

extrn NETBIOSCALL : far

;set registers

cCall NetBIOSCall

OemKeyScan 3.0

Syntax DWORD OemKeyScan(wOemChar)
function OemKeyScan(OemChar: Word): Longint;

This function maps OEM ASCII codes 0 through OxOFF into the OEM scan
codes and shift states. It provides information which allows a program to
send OEM text to another program by simulating keyboard input and is
used specifically for this purpose by Windows in 386 enhanced mode.

440 Software development kit

OemKeyScan

Parameters wOemChar WORD Specifies the ASCII value of the OEM character.

Return value The return value contains in its low-order word the scan code of the OEM
character identified by the wOemChar parameter. The high-order word of
the return value contains flags which indicate the shift state. The
following lists the flag bits and their meanings:

Bit

2
1

Meaning

CTRL key is pressed.
Either SHIFf key is pressed.

If the character is not defined in the OEM character tables, both the low­
order and high-order words of the return value contain -1.

Comments This function does not provide translations for characters which require
CTRL-ALT or dead keys. Characters not translated by this function must be
copied by simulating input using the "ALT + keypad" mechanism. The
NUMLOCK key must be off.

OemToAnsi

This function calls the VkKeyScan function in recent versions of the
keyboard drivers.

Syntax int OemToAnsi(lpOemStr, IpAnsiStr)
function OemToAnsi(OemStr, AnsiStr: PChar): Bool;

This function translates the string pointed to by the IpOemStr parameter
from the OEM-

defined character set into the ANSI character set. The string can be greater
than 64K in length.

Parameters IpOemStr LPSTR Points to a null-terminated string of characters from
the OEM-defined character set.

IpAnsiStr LPSTR Points to the location where the translated string is to
be copied. The IpAnsiStr parameter can be the same as
IpOemStr to translate the string in place.

Return value The return value is always -1.

Chapter 4, Functions directory 441

OemToAnsiBuff

OemToAnsiBuff

Syntax void OemToAnsiBuff(lpOemStr, IpAnsiStr, nLength)
procedure OemToAnsiBuff(OemStr, AnsiStr: PChar; Length: Integer);

This function translates the string in the buffer pointed to by the IpOemStr
parameter from the OEM-defined character set into the ANSI character
set.

Parameters IpOemStr

IpAnsiStr

nLength

Return value None.

LPSTR Points to a buffer containing one or more characters
from the OEM-defined character set.

LPSTR Points to the location where the translated string is to
be copied. The IpAnsiStr parameter can be the same as
IpOemStr to translate the string in place.

WORD Specifies the number of characters in the buffer
identified by the IpOemStr parameter. If nLength is zero, the
length is 64K (65,536).

OffsetClipRgn

442

Syntax int OffsetClipRgn(hDC, X, Y)
function OffsetClipRgn(DC: HDC; X, Y: Integer): Integer;

This function moves the clipping region of the given device by the
specified offsets. The function moves the region X units along the x-axis
and Y units along the y-axis.

Parameters hDC HDC Identifies the device context.

x
Y

int Specifies the number of logical units to move left or right.

int Specifies the number of logical units to move up or
down.

Return value The return value specifies the new region's type. It can be anyone of the
following values:

Value

COMPLEXREGION
ERROR
NULLREGION
SIMPLEREGION

Meaning

Clipping region has overlapping borders.
Device context is not valid.
Clipping region is empty.
Clipping region has no overlapping borders.

Software development kit

OffsetRect

OffsetRect

Syntax void OffsetRect(lpRect, X, Y)
procedure OffsetRect(var Rect: TRect; X, Y: Integer);

This function moves the given rectangle by the specified offsets. The
OffsetRect function moves the rectangle X units along the x-axis and Y
units along the y-axis. The X and Y parameters are signed values, so the
rectangle can be moved left or right, and up or down.

Parameters IpRect LPRECT Points to a RECT data structure that contains the
rectangle to be moved.

X

Y

Return value None.

int Specifies the amount to move left or right. It must be
negative to move left.

int Specifies the amount to move up or down. It must be
negative to move up.

Comments The coordinate values of a rectangle must not be greater than 32,767 or
less than -32,768. The X and Y parameters must be chosen carefully to
prevent invalid rectangles.

OffsetRgn

Syntax int OffsetRgn(hRgn, X, Y)
function OffsetRgn(Rgn: HRgn; X, Y: Integer): Integer;

This function moves the given region by the specified offsets. The function
moves the region X units along the x-axis and Y units along the y-axis.

Parameters hRgn HRGN Identifies the region to be moved.

X int Specifies the number of units to move left or right.

Y int Specifies the number of units to move up or down.

Return value The return value specifies the new region's type. It can be anyone of the
following values:

Value

COMPLEXREGION
ERROR
NULLREGION
SIMPLEREGION

Chapter 4, Functions directory

Meaning

Region has overlapping borders.
Region handle is not valid.
Region is empty.
Region has no overlapping borders.

443

QQ,:@!,.,';,~: ~
I

OffsetRgn

Comments The coordinate values of a region must not be greater than 32,767 or less
than -32,768. The X and Y parameters must be carefully chosen to prevent
invalid regions.

OffsetViewportOrg

Syntax DWORD OffsetViewportOrg(hDC, X, Y)
function OffsetViewportOrg(DC: HDC; X, Y: Integer): Longint;

This function modifies the viewport origin relative to the current values.
The formulas are written as follows:

xNewVO = xOldVO + X
yNewVO = yOldVO + Y

The new origin is the sum of the current origin and the X and Y values.

Parameters hDC HOC Identifies the device context.

X int Specifies the number of device units to add to the current
origin's x-coordinate.

Y int Specifies the number of device units to add to the current
origin's y-coordinate.

Return value The return value specifies the previous viewport origin (in device
coordinates). The previous y-coordinate is in the high-order word; the
previous x-coordinate is in the low-order word.

OffsetWindowOrg

444

Syntax DWORD OffsetWindowOrg(hDC, X, Y)
function OffsetWindowOrg(DC: HDC; X, Y: Integer): Longint;

zThis function modifies the viewport origin relative to the current values.
The formulas are written as follows:

xNewWO = xOldWO + X
yNewWO = yOldWO + Y

The new origin is the sum of the current origin and the X and Y values.

Parameters hDC HOC Identifies the device context.

X int Specifies the number of logical units to add to the current
origin's x-coordinate.

Software development kit

y

OffsefWindowOrg

int Specifies the number of logical units to add to the current
origin's y-coordinate.

Return value The return value specifies the previous window origin (in logical
coordinates). The previous y-coordinate is in the high-order word; the
previous x-coordinate is in the low-order word.

OpenClipboard

Syntax BOOL OpenClipboard(h Wnd)
function OpenClipboard(Wnd: HWnd): Bool;

This function opens the clipboard for examination and prevents other
applications from modifying the clipboard contents.

Param~t~rs hWnd H'v'VND Identifies the window to be associated with the open
clipboard.

Return value The return value specifies the status of the clipboard. It is nonzero if the
clipboard is opened. If the clipboard has already been opened by another
application, the return value is zero.

Comments An application should call the CloseClipboard function for every
successful call to the Open Clipboard function.

OpenComm

Syntax int OpenComm(lpComName, wlnQueue, wOutQueue)
function OpenComm(ComName: PChar; InQueue, OutQueue: Word):
Integer;

This function opens a communication device and assigns an nCid handle
to it. The communication device is initialized to a default configuration.
The SetCommState function should be used to initialize the device to
alternate values. The OpenComm function allocates space for receive and
transmit queues. The queues are used by the interrupt-driven
transmit/ receive software.

Parameters IpComName

wlnQueue

wOutQueue

Chapter 4, Functions directory

LPSTR Points to a string which contains COMn or LPTn,
where n ranges from 1 to the number of communication
devices available for the particular type of I/O port.

WORD Specifies the size of the receive queue.

WORD Specifies the size of the transmit queue.

445

Q, ..•. , ••• ~. ~
I

OpenComm

Return value The return value specifies the open communication device. If an error
occurs, the return value is one of the following negative error values:

Parameters IE_BADID Invalid or unsupported ID.

IE_BAUDRATE Unsupported baud rate.

IE_BYTE SIZE Invalid byte size.

IE_DEFAULT Error in default parameters.

IE_HARDWARE Hardware not present.

IE_MEMORY Unable to allocate queues.

IE_NOPEN Device not open.

IE_OPEN Device already open.

Comments LPT ports are not interrupt driven. For these ports, the nInQueue and
nOutQueue parameters are ignored, and the queue size is set to zero.

OpenFile

446

Syntax int OpenFileOpFileName,lpReOpenBuff, wStyle)
function OpenFileCFileName: PChar; var ReOpenBuff: TOFStruct; Style:
Word): Integer;

This function creates, opens, reopens, or deletes a file.

Parameters IpFileName LPSTR Points to a null-terminated character string that
names the file to be opened. The string must consist of
characters from the ANSI character set.

IpReOpenBuff LPOFSTRUCT Points to the OFSTRUCT data structure
that is to receive information about the file when the file
is first opened. The structure can be used in subsequent
calls to the Open File function to refer to the open file.

w5tyle

The szPathName field of this data structure contains
characters from the OEM character set.

WORD Specifies the action to take. These styles can be
combined by using the bitwise OR operator:
Value Meaning
OF_CANCEL Adds a Cancel button to the

OF_PROMPT dialog box.
Pressing the Cancel button

Software development kit

Chapter 4, Functions directory

OF_DELETE
OF_EXIST

Open File

directs Open File to return a
file-not-found error message.
Directs Open File to create a
new file. If the file already
exists, it is truncated to zero
length.
Deletes the file.
Opens the file, and then
closes it. Used to test for file
existence.
Fills the OFSTRUCT data
structure but carries out no
other action.
Displays a dialog box if the
requested file does not exist.
The dialog box informs the
user that Windows cannot
find the file and prompts the
user to insert the file in drive
A.
Opens the file for reading
only.
Opens the file for reading
and writing.
Opens the file using
information in the re-open
buffer.
Opens the file with
compatibility mode, allowing
any process on a given
machine to open the file any
number of times. Open File
fails if the file has been
opened with any of the other
sharing modes.

OF _SHARE_DENY_NONE Opens the file without
denying other processes read
or write access to the file.
Open File fails if the file has
been opened in compatibility
mode by any other process.

OF _SHARE_DENY _READ Opens the file and denies
other processes read access to

447

Open File

448

the file. Open File fails if the
file has been opened in
compatibility mode or for
read access by any other
process.

OF _SHARE_DENY_WRITE Opens the file and denies
other processes write access
to the file. Open File fails if
the file has been opened in
compatibility or for write
access by any other process.

OF _SHARE_EXCLUSIVE Opens the file with exclusive
mode, denying other
processes both read and
write access to the file.
Open File fails if the file has
been opened in any other
mode for read or write
access, even by the current
process.

Verifies that the date and
time of the file are the same
as when it was previously
opened. Useful as an extra
check for read-only files.
Opens the file for writing
only.

Return value The return value specifies a DOS file handle if the function is successful.
Otherwise, it is

-1.

Comments If the IpFileName parameter specifies a filename and extension only, this
function searches for a matching file in the following directories:

1. The current directory.

2. The Windows directory (the directory containing WIN.COM); the Get­
WindowsDirectory function obtains the pathname of this directory.

3. The Windows system directory (the directory containing such system
files as KERNEL.EXE); the GetSystemDirectory function obtains the
pathname of this directory.

4. Any of the directories listed in the PATH environment variable.

Software development kit

Open File

5. Any directory in the list of directories mapped in a network.

Windows searches the directories in the listed order.

The IpFileName parameter cannot contain wildcard characters.

To close the file after use, the application should call the _Iclose function.

Openlcon

Syntax BOOL OpenIcon(hWnd)
function OpenIcon(Wnd: HWnd): Bool;

This function activates and displays an iconic (minimized) window.
Windows restores it to its original size and position.

Parameters h Wnd HWND Identifies the window.

Return value The return value specifies the outcome of the function. It is nonzero if the
function is successfuL Otherwise, it is zero.

OpenSound

Syntax int OpenSound()
function OpenSound: Integer;

This function accesses the play device and prevents it from being opened
subsequently by other applications.

Parameters None.

Return value The return value specifies the number of voices available. The return
value is S_SERDVNA if the play device is in use, and S_SEROFM if
insufficient memory is available.

OutputDebugString

Syntax void OutputDebugString(lpOutputString)
procedure OutputDebugString(OutputString: PChar);

3.0

This function sends a debugging message to the debugger if present, or to
the auxiliary (AUX) device if the debugger is not present.

Parameters IpOutputString LPSTR Points to a null-terminated string.

Chapter 4, Functions directory 449

outputDebugString

Return value None.

Comments This function preserves all registers. It is available only in the debugging
version of Windows.

PaintRgn

Syntax BOOL PaintRgn(hDC, hRgn)
function PaintRgn(DC: HDC; Rgn: HRgn): Bool;

This function fills the region specified by the hRgn parameter with the
selected brush.

Parameters hDC HOC Identifies the device context that contains the region.

hRgn HRGN Identifies the region to be filled. The coordinates for
the given region are specified in device units.

Return value The return value specifies the outcome of the function. It is nonzero if the
function is successful. Otherwise, it is zero.

PALETIEINDEX 3.0

Syntax COLORREF P ALETTEINDEX(nPaletteIndex)
function PaletteIndex: Integer): TColorRef;

This macro accepts an index to a logical color palette entry and returns a
value consisting of 1 in the high-order byte and the palette entry index in
the low-order bytes. This is called a palette-entry specifier. An application
using a color palette can pass this specifier instead of an explicit RGB
value to functions that expect a color. This allows the function to use the
color in the specified palette entry.

Parameters nPalettelndex int Specifies an index to the palette entry containing the
color to be used for a graphics operation.

Return value The return value is a logical-palette index specifier. When using a logical
palette, an application can use this specifier in place of an explicit RGB
value for GDI functions that require a color.

PALETIERGB 3.0

Syntax COLORREF P ALETTERGB(cRed, cGreen, cBlue)

450 Software development kit

PALETTERGB

function PaletteRGB(R: Byte; G: Byte; B: Byte): Longint;

This macro accepts three values representing relative intensities of red,
green, and blue, and returns a value consisting of 2 in the high-order byte
and an RGB value in the three low-order bytes. This is called a palette­
relative RGB specifier. An application using a color palette can pass this
specifier instead of an explicit RGB value to functions that expect a color.

For output devices that support logical palettes, Windows matches a
palette-relative RGB value to the nearest color in the logical palette of the
device context, as though the application had specified an index to that
palette entry. If an output device does not support a system palette, then
Windows uses the palette-relative RGB as though it were a conventional
RGB OWORO returned by the RGB macro.

Parameters cRed BYTE Specifies the intensity of the red color field.

cGreen

cBlue

BYTE Specifies the intensity of the green color field.

BYTE Specifies the intensity of the blue color field.

Return value The return value specifies a palette-relative RGB value.

PatBlt

Syntax BOOL PatBlt(hDC, X, Y, nWidth, nHeight, dwRop)
function PatBlt(DC: HDC; X, Y, Width, Height: Integer; Rop: Longint):
Bool;

This function creates a bit pattern on the specified device. The pattern is a
combination of the selected brush and the pattern already on the device.
The raster-operation code specified by the dwRop parameter defines how
the patterns are to be combined.

Parameters hDC HOC Identifies the device context.

x

y

nWidth

nHeight

Chapter 4, Functions directory

int Specifies the logical x-coordinate of the upper-left corner
of the rectangle that is to receive the pattern.

int Specifies the logical y-coordinate of the upper-left corner
of the rectangle that is to receive the pattern.

int Specifies the width (in logical units) of the rectangle that
is to receive the pattern.

int Specifies the height (in logical units) of the rectangle that
is to receive the pattern.

451

PatBlt

dwRop DWORD Specifies the raster-operation code. Raster­
operation codes (ROPs) define how GDI combines colors in
output operations that involve a current brush, a possible
source bitmap, and a destination bitmap. For a list of the
raster-operation codes, see Table 4.12, "Raster Operations."

Return value The return value specifies the outcome of the function. It is nonzero if the
bit pattern is drawn. Otherwise, it is zero.

Comments The values of dwRop for this function are a limited subset of the full 256
ternary raster-operation codes; in particular, an operation code that refers
to a source cannot be used.

Not all devices support the PatBlt function. For more information, see the
RC_BITBLT capability in the GetDeviceCaps function, earlier in this
chapter.

Table 4.12 lists the various raster-operation codes for the dwRop
parameter:

Table 4.12
Raster operations Code Description

PATCOPY
PATINVERT

DSTINVERT
BLACKNESS
WHITENESS

Copies pattern to destination bitmap.
Combines destination bitmap with pattern using the
Boolean OR operator.
Inverts the destination bitmap.
Turns all output black.
Turns all output white.

PeekMessage

452

Syntax BOOL PeekMessageOpMsg, h Wnd, wMsgFilterMin, wMsgFilterMax,
wRemoveMsg)
function PeekMessage(var Msg: TMsg; Wnd: HWnd; MsgFilterMin,
MsgFilterMax, RemoveMsg: Word): Bool;

This function checks the application queue for a message and places the
message (if any) in the data structure pointed to by the lpMsg parameter.
Unlike the GetMessage function, the PeekMessage function does not wait
for a message to be placed in the queue before returning. It does, however,
yield control (if the PM_NOYIELD flag isn't set) and does not return
control after the yield until Windows returns control to the application.

PeekMessage retrieves only messages associated with the window
specified by the h Wnd parameter, or any of its children as specified by the
IsChiid function, and within the range of message values given by the

Software development kit

Peek Message

wMsgFilterMin and wMsgFilterMax parameters. If h Wnd is NULL,
PeekMessage retrieves messages for any window that belongs to the
application making the call. (The PeekMessage function does not retrieve
messages for windows that belong to other applications.) If h Wnd is -1,
PeekMessage returns only messages with a h Wnd of NULL as posted by
the PostAppMessage function. If wMsgFilterMin and wMsgFilterMax are
both zero, PeekMessage returns all available messages (no range filtering
is performed).

The WM_KEYFIRST and WM_KEYLAST flags can be used as filter values
to retrieve all key messages; the WM_MOUSEFIRST and
WM_MOUSELAST flags can be used to retrieve all mouse messages.

Parameters IpMsg

hWnd

LPMSG Points to an MSG data structure that contains
message information from the Windows application
queue.

HWND Identifies the window whose messages are to be
examined.

wMsgFilterMin WORD Specifies the value of the lowest message position
to be examined.

wMsgFilterMax WORD Specifies the value of the highest message position
to be examined.

wRemoveMsg WORD Specifies a combination of the flags described in
the following list. PM_NOYIELD can be combined with
either PM_NOREMOVE or PM_REMOVE:

Value
PM_NOREMOVE

Meaning
Messages are not removed from the
queue after processing by
PeekMessage.
Prevents the current task from
halting and yielding system
resources to another task.
Messages are removed from the
queue after processing by
PeekMessage.

Return value The return value specifies whether or not a message is found. It is nonzero
if a message is available. Otherwise, it is zero.

Comments PeekMessage does not remove WM_P AINT messages from the queue.
The messages remain in the queue until processed. The GetMessage,
PeekMessage, and WaitMessage functions yield control to other
applications. These calls are the only way to let other applications run. If

Chapter 4, Functions directory 453

PeekMessage

Pie

454

your application does not call any of these functions for long periods of
time, other applications cannot run.

When GetMessage, PeekMessage, and WaitMessage yield control to
other applications, the stack and data segments of the application calling
the function may move in memory to accommodate the changing memory
requirements of other applications.

If the application has stored long pointers to objects in the data or stack
segment (global or local variables), and if they are unlocked, these
pointers can become invalid after a call to GetMessage, PeekMessage, or
WaitMessage. The IpMsg parameter of the called function remains valid in
any case.

Syntax BOOL Pie (hOC, Xl, Yl, X2, Y2, X3, Y3, X4, Y 4)
function Pie(OC: HOC; Xl, Yl, X2, Y2, X3, Y3, X4, Y4: Integer): Bool;

This function draws a pie-shaped wedge by drawing an elliptical arc
whose center and two endpoints are joined by lines. The center of the arc
is the center of the bounding rectangle specified by the Xl, Yl, X2, and Y2
parameters. The starting and ending points of the arc are specified by the
X3, Y3, X4, and Y4 parameters. The arc is drawn with the selected pen,
moving in a counterclockwise direction. Two additional lines are drawn
from each endpoint to the arc's center. The pie-shaped area is filled with
the selected brush.

If X3 equals X4 and Y3 equals Y4, the result is an ellipse with a single line
from the center of the ellipse to the point (X3, Y3), or (X4, Y4).

Parameters hDC HOC Identifies the device context.

Xl

Yl

X2

Y2

X3

int Specifies the logical x-coordinate of the upper-left corner
of the bounding rectangle.

int Specifies the logical y-coordinate of the upper-left corner
of the bounding rectangle.

int Specifies the logical x-coordinate of the lower-right
corner of the bounding rectangle.

int Specifies the logical y-coordinate of the lower-right
corner of the bounding rectangle.

int Specifies the logical x-coordinate of the starting point of
the arc. This point does not have to lie exactly on the arc.

Software development kit

Y3

X4

Y4

Pie

int Specifies the logical y-coordinate of the starting point of
the arc. This point does not have to lie exactly on the arc.

int Specifies the logical x-coordinate of the endpoint of the
arc. This point does not have to lie exactly on the arc.

int Specifies the logical y-coordinate of the endpoint of the
arc. This point does not have to lie exactly on the arc.

Return value The return value specifies whether or not the pie shape is drawn. It is
nonzero if the pie shape is drawn. Otherwise, it is zero.

Comments The width of the rectangle, specified by the absolute value of X2 - Xl,
must not exceed 32,767 units. This limit applies to the height of the
rectangle as well. The current position is neither used nor updated by this
function.

PlayMetaFile

Syntax BOOL PlayMetaFile(hDC, hMF)
function PlayMetaFile(DC: HDC; MF: THandle): Bool;

This function plays the contents of the specified metafile on the given
device. The metafile can be played any number of times.

Parameters hDC HDC Identifies the device context of the output device.

hMF HANDLE Identifies the metafile.

Return value The return value specifies the outcome of the function. It is nonzero if the
function is successful. Otherwise, it is zero.

PlayMetaFileRecord

Syntax void PlayMetaFileRecord(hDC, IpHandletable, IpMetaRecord, nHandles)
procedure PlayMetaFileRecord(DC: HDC; var HandleTable:
THandleTable; var MetaRecord: TMetaRecord; Handles: Word);

This function plays a metafile record by executing the CDI function call
contained within the metafile record.

Parameters hDC HDC Identifies the device context of the output device.

IpHandletable LPHANDLETABLE Points to the object handle table to be
used for the metafile playback.

IpMetaRecord LPMETARECORD Points to the metafile to be played.

Chapter 4, Functions directory 455

PlayMetaFileRecord

nHandles

Return value None.

WORD Specifies the number of handles in the handle
table.

Comments An application typically uses this function in conjunction with the
EnumMetafile function to modify and then playa metafile.

Polygon

Syntax BaaL Polygon(hOC, IpPoints, nCount)
function Polygon(OC: HOC; var Points; Count: Integer): Bool;

This function draws a polygon consisting of two or more points (vertices)
connected by lines. The polygons are filled using the current polygon­
filling mode. For a description of the polygon-filling mode, see the
SetPolyFiliMode function, later in this chapter. The polygon is
automatically closed, if necessary, by drawing a line from the last vertex
to the first.

Parameters hDC

lpPoints

nCount

HOC Identifies the device context.

LPPOINT Points to an array of points that specify the
vertices of the polygon. Each point in the array is a POINT
data structure.

int Specifies the number of vertices given in the array.

Return value The return value specifies the outcome of the function. It is nonzero if the
function is successful. Otherwise, it is zero.

Comments The current position is neither used nor updated by this function.

The current polygon-filling mode can be retrieved or set by using the
GetPolyFiliMode and SetPolyFiliMode functions.

Polyline

456

Syntax BaaL Polyline(hOC, IpPoints, nCount)
function Polyline(OC: HOC; var Points; Count: Integer): Bool;

This function draws a set of line segments, connecting the points specified
by the lpPoints parameter. The lines are drawn from the first point through
subsequent points with the result as if the MoveTo and LineTo functions
were used to move to each new point and then connect it to the next.

Software development kit

Polyline

However, the current position is neither used nor updated by the Polyline
function.

Parameters hDC

IpPoints

nCount

HOC Identifies the device context.

LPPOINT Points to an array of points to be connected. Each
point in the array is a POINT data structure.

int Specifies the number of points in the array. The nCount
parameter must be at least 2.

Return value The return value specifies whether or not the line segments were drawn. It
is nonzero if the line segments were drawn. Otherwise, it is zero.

Comments This function draws lines with the selected pen.

PolyPolygon 3.0

Syntax BOOL PolyPolygon(hDC, lpPoints, lpPolyCounts, nCount)
function PolyPolygon(DC: HDC; var Points; var PolyCounts; Count:
Integer): Bool;

This function creates a series of closed polygons. The polygons are filled
using the current polygon-filling mode. For a description of the polygon­
filling mode, see the SetPolyFiIIMode function, later in this chapter. The
polygons may overlap, but they do not have to overlap.

Parameters hDC

IpPoints

H DC Identifies the device context.

LPPOINT Points to an array of POINT data structures that
define the vertices of the polygons. Each polygon must be a
closed polygon. Unlike polygons created by the Polygon
function, the polygons created by PolyPolygon are not
automatically closed. The polygons are specified
consecutively.

IpPolyCounts LPINT Points to an array of integers, each of which specifies
the number of points in one of the polygons in the IpPoints
array.

nCount int Specifies the total number of integers in the IpPolyCounts
array.

Return value The return value specifies the outcome of the function. It is nonzero if the
polygons were drawn. Otherwise, it is zero.

Chapter 4, Functions directory 457

PostAppMessage

Post AppMessage

Syntax BOOL PostAppMessage<hTask, wMsg, wParam,lParam)
function PostAppMessage(Task: THandle; Msg, wParam: Word; lParam:
Longint): Bool;

This function posts a message to an application identified by a task
handle, and then returns without waiting for the application to process
the message. The application receiving the message obtains the message
by calling the GetMessage or PeekMessage function. The h Wnd
parameter of the returned MSG structure is NULL.

Parameters hTask HANDLE Identifies the task that is to receive the message.
The GetCurrentTask function returns this handle.

wMsg

wParam

WORD Specifies the type of message posted.

WORD Specifies additional message information.

lParam DWORD Specifies additional message information.

Return value The return value specifies whether or not the message is posted. It is
nonzero if the message is posted. Otherwise, it is zero.

PostMessage

Syntax BOOL PostMessage(hWnd, wMsg, wParam,lParam)
function PostMessage(Wnd: HWnd; Msg, wParam: Word; lParam:
Longint): Bool;

This function places a message in a window's application queue, and then
returns without waiting for the corresponding window to process the
message. The posted message can be retrieved by calls to the GetMessage
or PeekMessage function.

Parameters h Wnd

wMsg

wParam

lParam

HWND Identifies the window to receive the message. If the
h Wnd parameter is OxFFFF, the message is sent to all
overlapped or pop-up windows in the system. The message
is not sent to child windows.

WORD Specifies the type of message posted.

WORD Specifies additional message information.

DWORD Specifies additional message information.

Return value The return value specifies whether or not the message is posted. It is
nonzero if the message is posted. Otherwise, it is zero.

458 Software development kit

PostMessage

Comments An application should never use the PostMessage function to send a
message to a control. If a system running Windows is configured for an
expanded-memory system (EMS) and an application sends a message (by
using the PostMessage function) with related data (that are pointed to by
the IParam parameter) to a second application, the first application must
place the data (that IParam points to) in global memory allocated with the
GlobalAlioc function and the GMEM_LOWER flag. Note that this
allocation of memory is necessary only if IParam contains a pointer.

Unlike other Windows functions, an application may call PostMessage at
the hardwareinterrupt level.

PostQuitMessage

Syntax void PostQuitMessage(nExitCode)
procedure PostQuitMessage(ExitCode: Integer);

This function informs Windows that the application wishes to terminate
execution. It is typically used in response to a WM_DESTROY message.

The PostQuitMessage function posts a WM_QUIT message to the
application and returns immediately; the function merely informs the
system that the application wants to quit sometime in the future.

When the application receives the WM_QUIT message, it should exit the
message loop in the main function and return control to Windows. The
exit code returned to Windows must be the wParam parameter of the
WM_ QUIT message.

Parameters nExitCode

Return value None.

int Specifies an application exit code. It is used as the
wParam parameter of the WM_ QUIT message.

Prof Clear 3.0

Syntax void ProfClear()

When running the Microsoft Windows Profiler, this function discards all
samples currently in the sampling buffer. See Tools for more information
on using the Profiler.

Parameters None.

Return value None.

Chapter 4, Functions directory 459

Prof Finish

Prof Finish 3.0

Syntax void ProfFinish()

When running the Microsoft Windows Profiler, this function stops
sampling and flushes the output buffer to disk.

When running with Windows in 386 enhanced mode, Prof Finish also
frees the buffer for system use. See Tools for more information on using
the Profiler.

Parameters None.

Return value None.

Prof Flush 3.0

Syntax void ProfFlush()

When running the Microsoft Windows Profiler, this function flushes the
sampling buffer to disk, provided that samples do not exceed predefined
limits.

When running with Windows in any mode other than 386 enhanced
mode, you must specify the size of the output buffer and the amount of
samples to be written to disk.

When running with Windows in 386 enhanced mode, an application calls
the Prof Setup function to specify the size of the output buffer and the
amount of samples to be written to disk.

See Tools for more information on using the Profiler.

Parameters None.

Return value None.

Comments Do not call Prof Flush repeatedly because it can seriously impair the
performance of the application. Additionally, do not call the function
when DOS may be unstable, as in interrupt handling.

ProflnsChk 3.0

460

Syntax int ProfinsChk()

This function determines if the Microsoft Windows Profiler is installed.
See Tools for more information on using the Profiler.

Software development kit

ProfinsChk

Parameters None.

Return value The return value specifies whether Profiler is installed and the version
installed. The return value is zero if Profiler is not installed, 1 if the
Windows Profiler is installed for a mode other than 386 enhanced mode,
and 2 if the Windows 386 enhanced mode Profiler is installed.

ProfSampRate 3.0

Syntax void ProfSampRate(nRate286, nRate386)

When running the Microsoft Windows Profiler, this function sets the rate
of code sampling. See Tools for more information on using the Profiler.

Parameters nRate286 int Specifies the sampling rate of Profiler if the application is
running with Windows in any mode other than 386
enhanced mode. The value of nRate286 ranges from 1 to 13,
indicating the following sampling rates:

nRate386

Return value None.

Value Sampling Rate
1 122.070 microseconds
2 244.141 microseconds
3 488.281 microseconds
4 976.562 microseconds
5 1.953125 milliseconds
6 3.90625 milliseconds
7 7.8125 milliseconds
8 15.625 milliseconds
9 31.25 milliseconds
10 62.5 milliseconds
11 125 milliseconds
12 250 milliseconds
13 500 milliseconds

int Specifies the sampling rate of Profiler if the application is
running with Windows in 386 enhanced mode. The value of
nRate386 can range from 1 to 1000, specifying the sampling
rate in milliseconds.

Comments The default rate is 5 (1.953125 milliseconds) for Windows in any mode
other than 386 enhanced mode. The default rate is 2 milliseconds for
Windows in 386 enhanced mode.

Chapter 4, Functions directory 461

Prof Setup

Profiler only selects the parameter appropriate for the version of
Windows being used.

Prof Setup 3.0

Syntax void ProfSetup(nBufferSize, nSamples)

When running the Microsoft Windows Profiler with Windows in 386
enhanced mode, this function specifies the size of the output buffer and
the amount of samples written to disk.

Profiler ignores the Prof Setup function when running with Windows in
any mode other than 386 enhanced mode. See Tools for more information
on using the Profiler.

Parameters nBufferSize int Specifies the size of the output buffer in kilobytes. The
nBufferSize parameter can range from 1 to 1064. The default
is 64.

nSamples int Specifies how much sampling data Profiler writes to disk.
A value of zero specifies unlimited sampling data. The
default is zero.

Prof Start

Syntax void ProfStart()

When running the Microsoft Windows Profiler, this function starts
sampling. See Tools for more information on using the Profiler.

Parameters None.

Return value None.

3.0

Prof Stop 3.0

Syntax void ProfStop()

When running the Microsoft Windows Profiler, this function stops
sampling. See Tools for more information on using the Profiler.

Parameters None.

Return value None.

462 Software development kit

PtlnRect

PtlnRect

Syntax BOOL PtInRect(lpRect, Point)
function PtInRect(var Rect: TRect; Point: TPoint): Bool;

This function specifies whether the specified point lies within a given
rectangle. A point is within a rectangle if it lies on the left or top side, or is
within all four sides. A point on the right or bottom side is outside the
rectangle.

Parameters IpRect LPRECT Points to a RECT data structure that contains the
specified rectangle.

Point POINT Specifies a POINT data structure that contains the
specified point.

Return value The return value specifies whether the specified point lies within the
given rectangle. It is nonzero if the point lies within the given rectangle.
Otherwise, it is zero.

PtlnRegion

Syntax BOOL PtInRegion(hRgn, X, Y)
function PtInRegion(Rgn: HRgn; X, Y: Integer): Bool;

This function specifies whether the point given by the X and Y parameters
is in the given region.

Parameters hRgn HRGN Identifies the region to be examined.

X

Y

int Specifies the logical x-coordinate of the point.

int Specifies the logical y-coordinate of the point.

Return value The return value specifies whether the specified point is in the given
region. It is nonzero if the point is in the region. Otherwise, it is zero.

PtVisible

Syntax BOOL PtVisible(hDC, X, Y)
function PtVisible(DC: HDC; Xl, YI, X2, Y2; Integer): Bool;

This function specifies whether the given point is within the clipping
region of the specified device context.

Chapter 4, Functions directory 463

PtVisible

Parameters hDC

x
y

HOC Identifies the device context.

int Specifies the logical x-coordinate of the point.

int Specifies the logical y-coordinate of the point.

Return value The return value specifies whether the specified point is within the
clipping region of the given display context. It is nonzero if the point is
within the clipping region. Otherwise, it is zero.

ReadComm

464

Syntax int ReadComm(nCid, lpBuf, nSize)
function ReadComm(Cid: Integer; Buf: PChar, Size: Integer): Integer;

This function reads the number of characters specified by the nSize
parameter from the communication device specified by the nCid
parameter and copies the characters into the buffer pointed to by the IpBuf
parameter.

Parameters nCid int Specifies the communication device to be read. The
OpenComm function returns this value.

IpBuf LPSTR Points to the buffer that is to receive the characters
read.

nSize int Specifies the number of characters to be read.

Return value The return value specifies the number of characters actually read. It is less
than the number specified by nSize only if the number of characters in the
receive queue is less than that specified by nSize. If it is equal to nSize,
additional characters may be queued for the device. If the return value is
zero, no characters are present.

When an error occurs, the return value is set to a value less than zero,
with the absolute value being the actual number of characters read. The
cause of the error can be determined by using the GetCommError function
to retrieve the error code and status. Since errors can occur when no bytes
are present, if the return value is zero, the GetCommError function should
be used to ensure that no error occurred.

For parallel I/O ports, the return value will always be zero.

Software development kit

RealizePalette

RealizePalette 3.0

Syntax int RealizePalette(hDC)
function RealizePalette(DC: HDC): Word;

This function maps to the system palette entries in the logical palette
currently selected into a device context.

A logical color palette acts as a buffer between color-intensive
applications and the system, allowing an application to use as many
colors as needed without interfering with its own color display, or with
colors displayed by other windows. When a window has input focus and
calls RealizePalette, Windows ensures that it will display all the colors it
requests, up to the maximum number simultaneously available on the
display, and displays additional colors by matching them to available
colors. In addition, Windows matches the colors requested by inactive
windows that call RealizePalette as closely as possible to the available
colors. This significantly reduces undesirable changes in the colors
displayed in inactive windows.

Parameters hDC HOC Identifies the device context.

Return value The return value specifies how many entries in the logical palette were
mapped to different entries in the system palette. This represents the
number of entries which this function remapped to accommodate changes
in the system palette since the logical palette was last realized.

Rectangle

Syntax BOOL Rectangle(hDC, Xl, Yl, X2, Y2)
function Rectangle(DC: HDC; Xl, Yl, X2, Y2: Integer): Bool;

This function draws a rectangle. The interior of the rectangle is filled by
using the selected brush, and a border is drawn with the selected pen.

Parameters hDC HOC Identifies the device context.

Xl

Yl

Chapter 4, Functions directory

int Specifies the logical x-coordinate of the upper-left corner
of the rectangle.

int Specifies the logical y-coordinate of the upper-left corner
of the rectangle.

465

Rectangle

X2

Y2

int Specifies the logical x-coordinate of the lower-right
corner of the rectangle.

int Specifies the logical y-coordinate of the lower-right
corner of the rectangle.

Return value The return value specifies whether the rectangle is drawn. It is nonzero if
the rectangle is drawn. Otherwise, it is zero.

Comments The width of the rectangle specified by the Xl, Yl, X2, and Y2 parameters
must not exceed 32,767 units. This limit applies to the height of the
rectangle as well.

The current position is neither used nor updated by this function.

RectlnRegion 3.0

Syntax BOOL RectInRegion(hRegion, IpRect)
function RectInRegion(Rgn: HRgn; var Rect: TRect): Bool;

This function determines whether any part of the rectangle specified by
the IpRect parameter is within the boundaries of the region identified by
the hRegion parameter.

Parameters hRegion, HRGN Identifies the region.

IpRect, LPRECT Identifies the rectangle.

Return value The return value is TRUE if any part of the specified rectangle lies within
the boundaries of the region. Otherwise, the return value js FALSE.

RectVisible

Syntax BOOL RectVisibleChDC, IpRect)
function RectVisibleCDC: HDC; var Rect: TRect): Bool;

This function determines whether any part of the given rectangle lies
within the clipping region of the specified display context.

Parameters hDC

IpRect

HOC Identifies the device context.

LPRECT Points to a RECT data structure that contains the
logical coordinates of the specified rectangle.

Return value The return value specifies whether the rectangle is within the clipping
region. It is nonzero if some portion of the given rectangle lies within the
clipping region. Otherwise, it is zero.

466 Software development kit

RegisterClass

RegisterClass

Syntax BOOLRegisterClass(l p W nd Class)
function RegisterClass(var WndClass: TWndClass): Bool;

This function registers a window class for subsequent use in calls to the
CreateWindow function. The window class has the attributes defined by
the contents of the data structure pointed to by the Ip WndClass parameter.
If two classes with the same name are registered, the second attempt fails
and the information for that class is ignored.

Parameters Ip WndClass LPWNDCLASS Points to a WNDCLASS data structure. The
structure must be filled with the appropriate class attributes
before being passed to the function. See the following
"Comments" section for details.

Return value The return value specifies whether the window class is registered. It is
nonzero if the class is registered. Otherwise, it is zero.

Comments The callback function must use the Pascal calling conventions and must be
declared FAR.

Callback
function BOOL FAR PASCAL WndProc(hWnd, wMsg, wParam,lParam)

HWNDhWnd;
WORDwMsg;
WORD wParam;
DWORD IParam;

WndProc is a placeholder for the application-supplied function name. The
actual name must be exported by including it in an EXPORTS statement
in the application's module-definition file.

Parameters h Wnd

wMsg

wParam

Identifies the window that receives the message.

Specifies the message number.

Specifies additional message-dependent information.

IParam Specifies additional message-dependent information.

Return value The window function returns the result of the message processing. The
possible return values depend on the actual message sent.

Chapter 4, Functions directory 467

RegisterClipboardFormat

RegisterClipboardFormat

Syntax WORD RegisterClipboardFormatOpFormatName)
function RegisterClipboardFormat(FormatName: PChar): Word;

This function registers a new clipboard format whose name is pointed to
by the IpFormatName parameter. The registered format can be used in
subsequent clipboard functions as a valid format in which to render data,
and it will appear in the clipboard's list of formats.

Parameters IpFormatName LPSTR Points to a character string that names the new
format. The string must be a null-terminated character
string.

Return value The return value specifies the newly registered format. If the identical
format name has been registered before, even by a different application,
the format's reference count is increased and the same value is returned as
when the format was originally registered. The return value is zero if the
format cannot be registered.

Comments The format value returned by the RegisterClipboardFormat function is
within the range of OxCOOO to OxFFFF.

RegisterWindowMessage

Syntax WORD RegisterWindowMessageOpString)
function RegisterWindowMessage(Str: PChar): Word;

This function defines a new window message that is guaranteed to be
unique throughout the system. The returned message value can be used
when calling the Send Message or Post Message function.

RegisterWindowMessage is typically used for communication between
two cooperating applications.

If the same message string is registered by two different applications, the
same message value is returned. The message remains registered until the
user ends the Windows session.

Parameters IpString LPSTR Points to the message string to be registered.

Return value The return value specifies the outcome of the function. It is an unsigned
short integer within the range OxCOOO to OxFFFF if the message is
successfully registered. Otherwise, it is zero.

468 Software development kit

RegisterWindowMessage

Comments Use the RegisterWindowMessage function only when the same message
must be understood by more than one application. For sending private
messages within an application, an application can use any integer within
the range WM_ USER to OxBFFF.

ReleaseCapture

Syntax void ReleaseCapture()
procedure ReleaseCa pture;

This function releases the mouse capture and restores normal input
processing. A window with the mouse capture receives all mouse input
regardless of the position of the cursor.

Parameters None.

Return value None.

Comments An application calls this function after calling the SetCapture function.

ReleaseDC

Syntax int ReleaseDC(h Wnd, hDC)
function ReleaseDC(Wnd: HWnd; DC: HDC): Integer;

This function releases a device context, freeing it for use by other
applications. The effect of the ReleaseDC function depends on the
device-context type. It only frees common and window device contexts. It
has no effect on class or private device contexts.

Parameters h Wnd HWND Identifies the window whose device context is to be
released.

hDC HOC Identifies the device context to be released.

Return value The return value specifies whether the device context is released. It is 1 if
the device context is released. Otherwise, it is zero.

Comments The application must call the ReleaseDC function for each call to the
GetWindowDC function and for each call to the GetDC function that
retrieves a common device context.

Chapter 4, Functions directory 469

RemoveFontResource

RemoveFontResource

Syntax BOOL RemoveFontResource(lpFilename)
function RemoveFontResourc{FileName: PChar): Bool;

This function removes an added font resource from the file named by the
IpFilename parameter or from the Windows font table.

Parameters IpFilename LPSTR Points to a string that names the font-resource file or
contains a handle to a loaded module. If IpFilename points to
the font-resource filename, the string must be null­
terminated and have the DOS filename format. If IpFilename
contains a handle, the handle must be in the low-order
word; the high-order word must be zero.

Return value The return value specifies the outcome of the function. It is nonzero if the
function is successful. Otherwise, it is zero.

Comments Any application that adds or removes fonts from the Windows font table
should notify other windows of the change by using the Send Message
function with the h Wnd parameter set to -1 to send a
WM_FONTCHANGE message to all top-level windows in the system.
The RemoveFontResource function may not actually remove the font
resource. If there are outstanding references to the resource, the font
resource remains loaded until the last referencing logical font has been
deleted by using the DeleteObject function.

RemoveMenu 3.0

470

Syntax BOOL RemoveMenu(hMenu, nPosition, wFlags)
function RemoveMenu{Menu: HMenu; Position, Flags: Word): Bool;

This function deletes an menu item with an associated pop-up menu from
the menu identified by the hMenu parameter but does not destroy the
handle for the pop-up menu, allowing the menu to be reused. Before
calling this function, the application should call GetSubMenu to retrieve
the pop-up menu handle.

Parameters hMenu

nPosition

HMENU Identifies the menu to be changed.

WORD Specifies the menu item to be removed. The
interpretation of the nPosition parameter depends upon the
setting of the wFlags parameter.

Software development kit

wFlags

If wFlags is:
MF _BYCOMMAND

MF _BYPOSITION

RemoveMenu

nPosition
Specifies the command ID of the
existing menu item.
Specifies the position of the menu
item. The first item in the menu is at
position zero.

WORD Specifies how the nPosition parameter is interpreted.
It must be either MF _BYCOMMAND or MF _BYPOSITION.

Return value The return value specifies the outcome of the function. It is TRUE if the
function is successful. Otherwise, it is FALSE.

Comments Whenever a menu changes (whether or not the menu resides in a window
that is displayed), the application should call DrawMenuBar.

RemoveProp

Syntax HANDLE RemoveProp(h Wnd, lpString)
function RemoveProp(Wnd: HWnd; Str: PChar): THandle;

This function removes an entry from the property list of the specified
window. The character string specified by the IpString parameter
identifies the entry to be removed.

The RemoveProp function returns the data handle associated with the
string so that the application can free the data associated with the handle.

Parameters h Wnd

IpString

HWND Identifies the window whose property list is to be
changed.

LPSTR Points to a null-terminated character string or to an
atom that identifies a string. If an atom is given, it must have
been previously created by means of the AddAtom function.
The atom, a 16-bit value, must be placed in the low-order
word of IpString; the high-order word must be zero.

Return value The return value identifies the given string. It is NULL if the string cannot
be found in the given property list.

Comments An application must free the data handles associated with entries
removed from a property list. The application should only remove those
properties which it added to the property list.

Chapter 4, Functions directory 471

ReplyMessage

ReplyMessage

Syntax void ReplyMessageOReply)
procedure ReplyMessage(Reply: Longint);

This function is used to reply to a message sent through the Send Message
function without returning control to the function that called
Send Message.

By calling this function, the window function that receives the message
allows the task that called SendMessage to continue to execute as though
the task that received the message had returned control. The task that calls
ReplyMessage also continues to execute.

Normally a task that calls Send Message to send a message to another task
will not continue executing until the window procedure that Windows
calls to receive the message returns.

However, if a task that is called to receive a message needs to perform
some type of operation that might yield control (such as calling the
MessageBox or DialogBox functions), Windows could be placed in a
deadlock situation where the sending task needs to execute and process
messages but cannot because it is waiting for Send Message to return.

An application can avoid this problem if the task receiving the message
calls ReplyMessage before performing any operation that could cause the
task to yield.

The ReplyMessage function has no effect if the message was not sent
through the Send Message function or if the message was sent by the
same task.

Parameters IReply

Return value None.

LONG Specifies the result of the message processing. The
possible values depend on the actual message sent.

472 Software development kit

ResizePalette

ResizePalette 3.0

Syntax BaaL ResizePalette(hPalette, nNumEntries)
function ResizePalette(Palette: HPalette; NumEntries: Word): Bool;

This function changes the size of the logical palette specified by the
hPalette parameter to the number of entries specified by the nNumEntries
parameter. If an application calls ResizePalette to reduce the size of the
palette, the entries remaining in the resized palette are unchanged.

If the application calls ResizePalette to enlarge the palette, the additional
palette entries are set to black (the red, green, and blue values are all 0)
and the flags for all additional entries are set to o.

Parameters hPalette HPALETTE Identifies the palette to be changed.

nNumEntries int Specifies the number of entries in the palette after it has
been resized.

Return value The return value specifies the outcome of the function. It is TRUE if the
palette was successfully resized. Otherwise, it is FALSE.

RestoreDC

Syntax BOOLRestoreDC(hDC, nSavedDC)
function RestoreDC(DC: HDC; SavedDC: Integer): Bool;

This function restores the device context specified by the hDC parameter
to the previous state identified by the nSavedDC parameter.

The RestoreDC function restores the device context by copying state
information saved on the context stack by earlier calls to the Save DC
function.

The context stack can contain the state information for several device
contexts. If the context specified by nSavedDC is not at the top of the stack,
RestoreDC deletes any state information between the device context
specified by the nSavedDC parameter and the top of the stack. The deleted
information is lost.

Chapter 4, Functions directory 473

RestoreDC

Parameters hDC HOC Identifies the device context.

nSavedDC int Specifies the device context to be restored. It can be a
value returned by a previous SaveOC function call. If
nSavedDC is -I, the most recent device context saved is
restored.

Return value The return value specifies the outcome of the function. It is TRUE if the
specified context was restored. Otherwise, it is FALSE.

RGB

Syntax COLORREF RGB(cRed, cGreen, cBlue)
function RGB(R: Byte; G: Byte; B: Byte): Longint;

This macro selects an RGB color based on the parameters supplied and
the color capabilities of the output device.

Parameters cRed BYTE Specifies the intensity of the red color field.

cGreen

cBlue

BYTE Specifies the intensity of the green color field.

BYTE Specifies the intensity of the blue color field.

Return value The return value specifies the resultant RGB color.

Comments The intensity for each argument can range from 0 to 255. If all three
intensities are specified as 0, the result is black. If all three intensities are
specified as 255, the result is white.

For more information on using color values in a color palette, see the
descriptions of the PALETTEINOEX and PALETTERGB macros, earlier in
this chapter.

RoundRect

474

Syntax BOOL RoundRect(hOC, Xl, YI, X2, Y2, X3, Y3)
function RoundRect(OC: HOC; Xl, YI, X2, Y2, X3, Y3: Integer): Baal;

This function draws a rectangle with rounded corners. The interior of the
rectangle is filled by using the selected brush, and a border is drawn with
the selected pen.

Software development kit

Parameters hDC

Xl

Yl

X2

Y2

X3

Y3

RoundRect

HOC Identifies the device context.

int Specifies the logical x-coordinate of the upper-left corner
of the rectangle.

int Specifies the logical y-coordinate of the upper-left corner
of the rectangle.

int Specifies the logical x-coordinate of the lower-right
corner of the rectangle.

int Specifies the logical y-coordinate of the lower-right
corner of the rectangle.

int Specifies the width of the ellipse used to draw the
rounded corners.

int Specifies the height of the ellipse used to draw the
rounded corners.

Return value The return value specifies whether the rectangle is drawn. It is nonzero if
the rectangle is drawn. Otherwise, it is zero.

Comments The width of the rectangle specified by the Xl, Yl, X2, and Y2 parameters
must not exceed 32,767 units. This limit applies to the height of the
rectangle as well. The current position is neither used nor updated by this
function.

Chapter 4, Functions directory 475

SaveDC

SaveDC

Syntax int SaveDC(hDC)
function SaveDC(DC: HDC): Integer;

This function saves the current state of the device context specified by the
hDC parameter by copying state information (such as clipping region,
selected objects, and mapping mode) to a context stack. The saved device
context can later be restored by using the RestoreDC function.

Parameters hDC HOC Identifies the device context to be saved.

Return value The return value specifies the saved device context. It is zero if an error
occurs.

Comments The SaveOC function can be used any number of times to save any
number of device-context states.

ScaleViewportExt

476

Syntax DWORD ScaleViewportExt(hDC, Xnum, Xdenom, Ynum, Ydenom)
function ScaleViewportExt(DC: HDC; Xnum, Xdenom, Ynum, Ydenom:
Integer): Longint;

This function modifies the viewport extents relative to the current values.
The formulas are written as follows:

xNewVE = (xOldVE x Xnum)/ X denom
yNewVE = (yOldVE x Ynum) / Ydenom

The new extent is calculated by multiplying the current extents by the
given numerator and then dividing by the given denominator.

Parameters hDC HOC Identifies the device context.

Xnum

Xdenom

Ynum

Ydenom

int Specifies the amount by which to multiply the current x­
extent.

int Specifies the amount by which to divide the current x­
extent.

int Specifies the amount by which to multiply the current y­
extent.

int Specifies the amount by which to divide the current y­
extent.

Software development kit

ScaleViewportExt

Return value The return value specifies the previous viewport extents (in device units).
The previous y-extent is in the high-order word; the previous x-extent is
in the low-order word.

ScoleWindowExt

Syntax OWORO ScaleWindowExt(hOC, Xnum, Xdenom, Ynum, Ydenom)
function ScaleWindowExt(OC: HOC; Xnum, Xdenom, Ynum, Ydenom:
Integer): Longint;

This function modifies the window extents relative to the current values.
The formulas are written as follows:

xNewWE = (xOldWE x Xnum) / Xdenom
yNewWE = (yOldWE x Ynum) / Y denom

The new extent is calculated by multiplying the current extents by the
given numerator and then dividing by the given denominator.

Parameters hDC HOC Identifies the device context.

Xnum int Specifies the amount by which to multiply the current x­
extent.

Xdenom

Ynum

Ydenom

int Specifies the amount by which to divide the current x­
extent.

int Specifies the amount by which to multiply the current y­
extent.

int Specifies the amount by which to divide the current y­
extent.

Return value The return value specifies the previous window extents (in logical units).
The previous y-extent is in the high-order word; the previous x-extent is
in the low-order word.

Screen T oClient

Syntax void ScreenToClient(hWnd, IpPoint)
procedure ScreenToClient(Wnd: HWnd; var Point: TPoint);

This function converts the screen coordinates of a given point on the
display to client coordinates. The ScreenToClient function uses the
window given by the h Wnd parameter and the screen coordinates given in
the POINT data structure pointed to by the IpPoint parameter to compute

Chapter 4, Functions directory 477

ScreenToClient

client coordinates, and then replaces the screen coordinates with the client
coordinates. The new coordinates are relative to the upper-left corner of
the given window's client area.

Parameters h Wnd HWND Identifies the window whose client area will be used
for the conversion.

IpPoint LPPOINT Points to a POINT data structure that contains the
screen coordinates to be converted.

Return value None.

Comments The ScreenToClient formula assumes the given point is in screen
coordinates.

ScroilDC

Syntax BaaL ScrollDC(hDC, dx, dy, IprcScroll, IprcClip, hrgnUpdate,
IprcUpdate)
function ScrollDC(DC: HDC; dx, dy: Integer; var Scroll, Clip: TRect;
UpdateRgn: HRgn; UpdateRect: PRect): Bool;

This function scrolls a rectangle of bits horizontally and vertically. The
IprcScroll parameter points to the rectangle to be scrolled, the dx parameter
specifies the number of units to be scrolled horizontally, and the dy
parameter specifies the number of units to be scrolled vertically.

Parameters hDC HOC Identifies the device context that contains the bits to be
scrolled.

dx int Specifies the number of horizontal scroll units.

dy int Specifies the number of vertical scroll units.

IprcScroll LPRECT Points to the RECT data structure that contains the
coordinates of the scrolling rectangle.

IprcClip LPRECT Points to the RECT data structure that contains the
coordinates of the clipping rectangle. When this rectangle is
smaller than the original pointed to by IprcScroll, scrolling
occurs only in the smaller rectangle.

hrgnUpdate HRGN Identifies the region uncovered by the scrolling
process. The ScroliOC function defines this region; it is not
necessarily a rectangle.

IprcUpdate LPRECT Points to the RECT data structure that, upon return,
contains the coordinates of the rectangle that bounds the

478 Software development kit

ScrollDC

scrolling update region. This is the largest rectangular area
that requires repainting.

Return value This value specifies the outcome of the function. It is nonzero if scrolling
is executed. Otherwise, it is zero.

Comments If the IprcUpdate parameter is NULL, Windows does not compute the
update rectangle. If both the hrgnUpdate and IprcUpdate parameters are
NULL, Windows does not compute the update region. If hrgnUpdate is not
NULL, Windows assumes that it contains a valid region handle to the
region uncovered by the scrolling process (defined by the ScroliDC
function).

ScroliWindow

An application should use the ScroliWindow function when it is necessary
to scroll the entire client area of a window. Otherwise, it should use
Scroll DC.

Syntax void ScrollWindow(hWnd, XAmount, YAmount, IpRect, IpClipRect)
procedure ScrollWindow(Wnd: HWnd; XAmount, YAmount: Integer;
Rect, ClipRect: PRect);

This function scrolls a window by moving the contents of the window's
client area the number of units specified by the XAmount parameter along
the screen's x-axis and the number of units specified by the Y Amount
parameter along the y-axis. The scroll moves right if XAmount is positive
and left if it is negative. The scroll moves down if Y Amount is positive and
up if it is negative.

Parameters h Wnd

XAmount

YAmount

IpRect

IpClipRect

Chapter 4, Functions directory

HWND Identifies the window whose client area is to be
scrolled.

int Specifies the amount (in device units) to scroll in the x
direction.

int Specifies the amount (in device units) to scroll in the y
direction.

LPRECT Points to a RECT data structure that specifies the
portion of the client area to be scrolled. If IpRect is NULL, the
entire client area is scrolled.

LPRECT Points to a RECT data structure that specifies the
clipping rectangle to be scrolled. Only bits inside this

479

ScrollWindow

rectangle are scrolled. If IpClipRect is NULL, the entire
window is scrolled.

Return value None.

Comments If the caret is in the window being scrolled, ScrollWindow automatically
hides the caret to prevent it from being erased, then restores the caret after
the scroll is finished. The caret position is adjusted accordingly.

SelectClipRgn

The area uncovered by the ScrollWindow function is not repainted, but is
combined into the window's update region. The application will
eventually receive a WM_PAINT message notifying it that the region
needs repainting. To repaint the uncovered area at the same time the
scrolling is done, call the UpdateWindow function immediately after
calling ScrollWindow.

If the IpRect parameter is NULL, the positions of any child windows in the
window are offset by the amount specified by XAmount and YAmount,
and any invalid (unpainted) areas in the window are also offset.
ScrollWindow is faster when IpRect is NULL.

If the IpRect parameter is not NULL, the positions of child windows are
not changed, and invalid areas in the window are not offset. To prevent
updating problems when IpRect is not NULL, call the UpdateWindow
function to repaint the window before calling ScrollWindow.

Syntax int SelectClipRgn(hDC, hRgn)
function SelectClipRgn(DC: HDC; Rgn: HRgn): Integer;

This function selects the given region as the current clipping region for the
specified device context. Only a copy of the selected region is used. The
region itself can be selected for any number of other device contexts, or it
can be deleted.

Parameters hDC H DC Identifies the device context.

hRgn HRGN Identifies the region to be selected.

Return value The return value specifies the region's type. It can be anyone of the
following values:

480 Software development kit

Value

COMPLEXREGION
ERROR
NULLREGION
SIMPLEREGION

SelectClipRgn

Meaning

New clipping region has overlapping borders.
Device context or region handle is not valid.
New clipping region is empty.
New clipping region has no overlapping borders.

Comments The SelectClipRgn function assumes that the coordinates for the given
region are specified in device units.

SelectObject

Some printer devices support graphics at lower resolutions than text
output to increase speed, but at the expense of quality. These devices scale
coordinates for graphics so that one graphics device point corresponds to
two or four true device points. This scaling factor affects clipping. If a
region will be used to clip graphics, its coordinates must be divided down
by the scaling factor. If the region will be used to clip text, no scaling
adjustment is needed. The scaling factor is determined by using the
GETSCALlNGFACTOR printer escape.

Syntax HANDLE SelectObject(hDC, hObject)
function SelectObject(DC: HDC; hObject: THandle): THandle;

This function selects the logical object specified by the hObject parameter
as the selected object of the specified device context. The new object
replaces the previous object of the same type. For example, if hObject is the
handle to a logical pen, the SelectObject function replaces the selected
pen with the pen specified by hObject.

Selected objects are the default objects used by the CDI output functions
to draw lines, fill interiors, write text, and clip output to specific areas of
the device surface. Although a device context can have six selected objects
(pen, brush, font, bitmap, region, and logical palette), no more than one
object of any given type can be selected at one time. SelectObject does not
select a logical palette; to select a logical palette, the application must use
SelectPalette.

Parameters hDC

hObject

Chapter 4, Functions directory

HDC Identifies the device context.

HANDLE Identifies the object to be selected. It may be any
one of the following, and must have been created by using
one of the following functions:

481

SelectObject

482

Object
Bitmapl

Brush

Function
CreateBitmap
CreateBitmaplndirect
CreateCompatibleBitmap
CreateDIBitmap
CreateBrushlndirect
CreateHatchBrush
Create Pattern Brush
CreateSolidBrush

Font CreateFont
CreateFontindirect

Pen CreatePen
CreatePenlndirect

Region CombineRgn
CreateEllipticRgn
CreateEllipticRgnlndirect
CreatePolygonRgn
CreateRectRgn
CreateRectRgnlndirect

1 (Bitmaps can be selected for memory device contexts only, and for only one device context
at a time.)

Return value The return value identifies the object being replaced by the object
specified by the hObject parameter. It is NULL if there is an error.

If the hDC parameter specifies a metafile, the return value is nonzero if the
function is successful. Otherwise, it is zero.

If a region is being selected, the return is the same as for SelectClipRgn.

Comments When you select a font, pen, or brush by using the SelectObject function,
CDI allocates space for that object in its data segment. Because data­
segment space is limited, you should use the DeleteObject function to
delete each drawing object that you no longer need.

Before deleting the last of the unneeded drawing objects, an application
should select the original (default) object back into the device context,
unless the device context is a metafile. The SelectObject function does not
return the previously selected object when the hDC parameter identifies a
metafile device context. Calling SelectObject with the hObject parameter
set to a value returned by a previous call to SelectObject can cause
unpredictable results. Metafiles perform their own object cleanup. As a
result, an application does not have to res elect default objects when
recording a metafile.

Software development kit

SelectPalette

An application cannot select a bitmap into more than one device context
at any time.

SelectPalette 3.0

Syntax HP ALETTE SelectPalette(hDC, hPalette, bForceBackground)
function SelectPalette(DC: HDC; Palette: HPalette; ForceBackground:
Bool): HPalette;

This function selects the logical palette specified by the hPalette parameter
as the selected palette object of the device context identified by the hDC
parameter. The new palette becomes the palette object used by GDI to
control colors displayed in the device context and replaces the previous
palette.

Parameters hDC HOC Identifies the device context.

hPalette HPAlETTE Identifies the logical palette to be selected.
CreatePalette creates a logical palette.

bForceBackground BOOl Specifies whether the logical palette is forced to
be a background palette. If bForceBackground is
nonzero, the selected palette is always a background
palette, regardless of whether the window has input
focus. If bForceBackground is zero, the logical palette is a
foreground palette when the window has input focus.

Return value The return value identifies the logical palette being replaced by the palette
specified by the hPalette parameter. It is NULL if there is an error.

Comments An application can select a logical palette into more than one device
context. However, changes to a logical palette will affect all device
contexts for which it is selected. If an application selects a palette object
into more than one device context, the device contexts must all belong to
the same physical device (such as a display or printer).

SendDlgltemMessage

Syntax DWORD SendDlgItemMessage(hDlg, nIDDlgItem, wMsg, wParam,
IParam)
function SendDlgItemMessage(Dlg: HWnd; IDDIgItem: Integer; Msg,
wParam: Word; IParam: Longint): Longint;

This function sends a message to the control specified by the nIDDlgItem
parameter within the dialog box specified by the hDlg parameter. The

Chapter 4, Functions directory 483

SendDlgltemMessage

SendDlgltemMessage function does not return until the message has been
processed.

Parameters hDlg HWND Identifies the dialog box that contains the control.

nIDDlgItem int Specifies the integer identifier of the dialog item that is to
receive the message.

wMsg

wParam

lParam

WORD Specifies the message value.

WORD Specifies additional message information.

DWORD Specifies additional message information.

Return value The return value specifies the outcome of the function. It is the value
returned by the control's window function, or zero if the control identifier
is not valid.

Comments Using SendDlgltemMessage is identical to obtaining a handle to the given
control and calling the Send Message function.

SendMessage

484

Syntax DWORD SendMessage(hWnd, wMsg, wParam,IParam)
function SendMessage(Wnd: HWnd; Msg, wParam: Word; IParam:
Longint): Longint;

This function sends a message to a window or windows. The
Send Message function does not return until the message has been
processed. If the window that receives the message is part of the same
application, the window function is called immediately as a subroutine. If
the window is part of another task, Windows switches to the appropriate
task and calls the appropriate window function, and then passes the
message to the window function. The message is not placed in the
destination application's queue.

Parameters h Wnd

wMsg

wParam

lParam

HWND Identifies the window that is to receive the message.
If the h Wnd parameter is OxFFFF, the message is sent to all
pop-up windows in the system. The message is not sent to
child windows.

WORD Specifies the message to be sent.

WORD Specifies additional message information.

DWORD Specifies additional message information.

Software development kit

Send Message

Return value The return value specifies the outcome of the function. It is the value
returned by the window function that received the message; its value
depends on the message being sent.

Comments If a system running Windows is configured for expanded memory (EMS)
and an application sends a message (by using the Send Message function)
with related data (that is pointed to by the IParam parameter) to a second
application, the first application must place the data (that IParam points
to) in global memory allocated by the GlobalAlioc function and the
GMEM_LOWER flag. Note that this allocation of memory is only
necessary if IParam contains a pointer.

SetActiveWindow

Syntax HWND SetActiveWindow(h Wnd)
function SetActiveWindow(Wnd: HWnd): HWnd;

This function makes a top-level window the active window.
Parameters hWnd HWND Identifies the top-level window to be activated.

Return value The return value identifies the window that was previously active. The
SetActiveWindow function should be used with care since it allows an
application to arbitrarily take over the active window and input focus.
Normally, Windows takes care of all activation.

SetBitmapBits I(~'~;l
Syntax LONG SetBitmapBits(hBitmap, dwCount, lpBits)

function SetBitmapBits(Bitmap: HBitmap; Count: Longint; Bits: Pointer):
Longint;

This function sets the bits of a bitmap to the bit values given by the IpBits
parameter.

Parameters hBitmap

dwCount

IpBits

HBITMAP Identifies the bitmap to be set.

DWORD Specifies the number of bytes pointed to by IpBits.

LPSTR Points to the bitmap bits that are stored as a long
pointer to a byte array.

Return value The return value specifies the number of bytes used in setting the bitmap
bits. It is zero if the function fails.

Chapter 4, Functions directory 485

SetBitmapDimension

SetBitmapDimension

Syntax DWORD SetBitmapDimension(hBitmap, X, Y)
function SetBitmapDimension(Bitmap: HBitmap; X, Y: Integer): Longint;

This function assigns a width and height to a bitmap in O.l-millimeter
units. These values are not used internally by CDI; the
GetBitmapOimension function can be used to retrieve them.

Parameters hBitmap

X

y

HANDLE Identifies the bitmap.

int Specifies the width of the bitmap (in O.l-millimeter units).

int Specifies the height of the bitmap (in O.1-millimeter
units).

Return value The return value specifies the previous bitmap dimensions. Height is in
the high-order word, and width is in the low-order word.

SetBkColor

Syntax DWORD SetBkColor(hDC, crColor)
function SetBkColor(DC: HDC; Color: TColorRef): Longint;

This function sets the current background color to the color specified by
the creolor parameter, or to the nearest physical color if the device cannot
represent an RCB color value specified by creolor.

If the background mode is OPAQUE, CDI uses the background color to
fill the gaps between styled lines, gaps between hatched lines in brushes,
and character cells. CDI also uses the background color when converting
bitmaps from color to monochrome and vice versa.

The background mode is set by the SetBkMode function. See the BitBlt
and StretchBlt functions, in this chapter, for color-bitmap conversions.

Parameters hDe HOC Identifies the device context.

creolor COLORREF Specifies the new background color.

Return value The return value specifies the previous background color as an RCB color
value. If an error occurs, the return value is Ox80000000.

486 Software development kit

SetBkMode

SetBkMode

Syntax int SetBkMode(hDC, nBkMode)
function SetBkMode(DC: HDC; BkMode: Integer): Integer;

This function sets the background mode used with text and line styles.
The background mode defines whether or not GDI should remove
existing background colors on the device surface before drawing text,
hatched brushes, or any pen style that is not a solid line.

Parameters hDC H DC Identifies the device context.

nBkMode int Specifies the background mode. It can be either one of the
following modes:

Value Meaning
OPAQUE Background is filled with the current

background color before the text, hatched
brush, or pen is drawn.

TRANSP ARENT Background remains untouched.

Return value The return value specifies the previous background mode. It can be either
OP AQUE or TRANSPARENT.

SetBrushOrg

Syntax DWORD SetBrushOrg(hDC, X, Y)
function SetBrushOrg(DC: HDC; X, Y: Integer): Longint;

This function sets the origin of the brush currently selected into the given
device context.

Parameters hDC

x

y

HDC Identifies the device context.

int Specifies the x-coordinate (in device units) of the new
origin. This value must be in the range 0-7.

int Specifies the y-coordinate (in device units) of the new
origin. This value must be in the range 0-7.

Return value The return value specifies the origin of the brush. The previous x­
coordinate is in the low-order word, and the previous y-coordinate is in
the high-order word.

Comments The original brush origin is at the coordinate (0,0).

Chapter 4, Functions directory 487

SetCapture

The SetBrushOrg function should not be used with stock objects.

SetCapture

Syntax HWND SetCapture(h Wnd)
function SetCapture(Wnd: HWnd): HWnd;

This function causes all subsequent mouse input to be sent to the window
specified by the h Wnd parameter, regardless of the position of the cursor.

Parameters h Wnd HWND Identifies the window that is to receive the mouse
input.

Return value The return value identifies the window that previously received all mouse
input. It is NULL if there is no such window.

Comments When the window no longer requires all mouse input, the application
should call the ReleaseCapture function so that other windows can
receive mouse input.

SetCaretBlinkTime

Syntax void SetCaretBlinkTime(wMSeconds)
procedure SetCaretBlinkTime(MSeconds: Word);

This function sets the caret blink rate (elapsed time between caret flashes)
to the number of milliseconds specified by the wMSeconds parameter. The
caret flashes on or off each wMSeconds milliseconds. This means one
complete flash (on-off-on) takes 2 x wMSeconds milliseconds.

Parameters wMSeconds WORD Specifies the new blink rate (in milliseconds).

Return value None.

Comments The caret is a shared resource. A window should set the caret blink rate
only if it owns the caret. It should restore the previous rate before it loses
the input focus or becomes inactive.

SetCaretPos

Syntax void SetCaretPos(X, Y)
procedure SetCaretPos(X, Y: Integer);

488 Software development kit

SetCaretPos

This function moves the caret to the position given by logical coordinates
specified by the X and Y parameters. Logical coordinates are relative to
the client area of the window that owns them and are affected by the
window's mapping mode, so the exact position in pixels depends on this
mapping mode.

The SetCaretPos function moves the caret only if it is owned by a
window in the current task. SetCaretPos moves the caret whether or not
the caret is hidden.

Parameters X int Specifies the new x-coordinate (in logical coordinates) of
the caret.

Y int Specifies the new y-coordinate (in logical coordinates) of
the caret.

Return value None.

Comments The caret is a shared resource. A window should not move the caret if it
does not own the caret.

SetClassLong

Syntax LONG SetClassLong(hWnd, nIndex, dwNewLong)
function SetClassLong(Wnd: HWnd; Index: Integer; NewLong: Longint):
Longint;

This function replaces the long value specified by the nlndex parameter in
the WNDCLASS data structure of the window specified by the hWnd
parameter.

Parameters h Wnd

nlndex

HWND Identifies the window.

int Specifies the byte offset of the word to be changed. It can
also be one of the following values:

Value Meaning
GCL_MENUNAME Sets a new long pointer to the menu

GCL_WNDPROC
name.
Sets a new long pointer to the
window function.

dwNewLong DWORD Specifies the replacement value.

Return value The return value specifies the previous value of the specified long integer.

Comments If the SetClassLong function and GCL_ WNDPROC index are used to set
a window function, the given function must have the window-function

Chapter 4, Functions directory 489

SetClassLong

SetClassWord

form and be exported in the module-definition file. See the RegisterClass
function earlier in this chapter for details.

Calling SetClassLong with the GCL_ WNDPROC index creates a subclass
of the window class that affects all windows subsequently created with
the class. See Chapter 1, "Window manager interface functions," for more
information on window subclassing. An application should not attempt to
create a window subclass for standard Windows controls such as combo
boxes and buttons.

To access any extra two-byte values allocated when the window-class
structure was created, use a positive byte offset as the index specified by
the nlndex parameter, starting at zero for the first two-byte value in the
extra space, 2 for the next two-byte value and so on.

Syntax WORD SetClassWord(hWnd, nIndex, wNewWord)
function SetClassWord(Wnd: HWnd; Index: Integer; NewWord: Word):
Word;

This function replaces the word specified by the nlndex parameter in the
WNDCLASS structure of the window specified by the hWnd parameter.

Parameters h Wnd

nlndex

HWND Identifies the window.

int Specifies the byte offset of the word to be changed. It can
also be one of the following values:

Value Meaning
GCW _ CBCLSEXTRA Sets two new bytes of

additional window-class data.
GCW _CBWNDEXTRA Sets two new bytes of

additional window-class data.
GCW _HBRBACKGROUND Sets a new handle to a

background brush.
GCW_HCURSOR Sets a new handle to a cursor.
GC'V _HI CON Sets a nevv handle to an icon.
GCW _STYLE Sets a new style bit for the

window class.
wNew Word WORD Specifies the replacement value.

Return value The return value specifies the previous value of the specified word.

490 Software development kit

SefClassWord

Comments The SetClassWord function should be used with care. For example, it is
possible to change the background color for a class by using
SetClassWord, but this change does not cause all windows belonging to
the class to be repainted immediately.

To access any extra four-byte values allocated when the window-class
structure was created, use a positive byte offset as the index specified by
the nlndex parameter, starting at zero for the first four-byte value in the
extra space, 4 for the next four-byte value and so on.

SetClipboardData

Syntax HANDLE SetClipboardData(wFormat, hMem)
function SetClipboardData(Format: Word; Mem: THandle): THandle;

This function sets a data handle to the clipboard for the data specified by
the hMem parameter. The data are assumed to have the format specified
by the wFormat parameter. After setting a clipboard data handle, the
SetClipboardData function frees the block of memory identified by hMem.

Parameters wFormat

hMem

WORD Specifies a data format. It can be anyone of the
predefined formats given in Table 4.13, "Predefined data
formats."

In addition to the predefined formats, any format value
registered through the RegisterClipboardFormat function
can be used as the wFormat parameter.

HANDLE Identifies the global memory block that contains
the data in the specified format. The hMem parameter can be
NULL. When hMem is NULL the application does not have
to format the data and provide a handle to it until requested
to do so through a WM_RENDERFORMAT message.

Return value The return value identifies the data and is assigned by the clipboard.

Comments Once the hMem parameter has been passed to SetClipboardData, the block
of data becomes the property of the clipboard. The application may read
the data, but should not free the block or leave it locked.

Table 4.13 shows the various predefined data-format values for the
wFormat parameter:

Chapter 4, Functions directory 491

SetClipboardData

Table 4.13
Predefined data

formats

492

Value

CF_BITMAP
CF_DIB

CF_DIF
CF _DSPBITMAP

CF _DSPMETAFILEPICT

CF _METAFILEPICT

CF _OWNERDISPLAY

CF _PRIV ATE FIRST
to CF _PRIV ATELAST

Meaning

A handle to a bitmap (HBITMAP).
A memory block containing a BITMAPINFO data
structure followed by the bitmap bits.
Software Arts' Data Interchange Format.
Bitmap display format associated with private format.
The hMem parameter must be a handle to data that can
be displayed in bitmap format in lieu of the privately
formatted data.
Metafile-picture display format associated with private
format. The hMem parameter must be a handle to data
that can be displayed in metafile-picture format in lieu
of the privately formatted data.
Text display format associated with private format. The
hMem parameter must be a handle to data that can be
displayed in text format in lieu of the privately
formatted data.
Handle to a metafile picture format as defined by the
METAFILEPICT data structure. When passing a
CF _METAFILEPICT handle via DDE, the application
responsib1e for deleting hData should also free the
metafile referred to by the CF _MET AFILEPICT handle.
Text format contining characters in the OEM character
set. Each line ends with a carriage return/linefeed
(CR-LF) combination. A null character signals the end
of the data.
Owner display format. The clipboard owner must
display and update the clipboard application window,
and will receive WM_ASKCBFORMATNAME,
WM_HSCROLLCLIPBOARD,
WM_PAINTCLIPBOARD, WM_SIZECLIPBOARD, and
WM_ VSCROLLCLIPBOARD messages. The hMem
parameter must be NULL.
Handle to a color palette. Whenever an application
places data in the clipboard that depends on or
assumes a color palette, it should also place the palette
in the clipboard as well.
If the clipboard contains data in the CF _PALETTE
(logical color palette) format, the application should
assume that any other data in the clipboard is realized
against that logical palette.
The clipboard-viewer application (CLIPBRD.EXE)
always uses as its current palette any object in
CF _PALETTE format that is in the clipboard when it
displays the other formats in the clipboard.
Range of integer values used for private formats.
Data handles associated with formats in this range will
not be freed automatically; any data handles must be
freed by the application before the application

Software development kit

SetClipboardData

Table 4.13: Predefined data formats (continued)

terminates or when a WM_DESTROYCLIPBOARD
message is received.
Microsoft Symbolic Link (SYLK) format.
Text format. Each line ends with a carriage
return/linefeed (CR-LF) combination. A null character
signals the end of the data.
Tag Image File Format.

Windows supports two formats for text, CF_TEXT and CF_OEMTEXT.
CF _TEXT is the default Windows text clipboard format, while Windows
uses the CF _OEMTEXT format for text in non-Windows applications. If
you call GetClipboardData to retrieve data in one text format and the
other text format is the only available text format, Windows automatically
converts the text to the requested format before supplying it to your
application.

An application registers other standard formats, such as Rich Text Format
(RTF), by name using the RegisterClipboardFormat function rather than
by a symbolic constant. For information on these external formats, see the
README. TXT file.

SetClipboardViewer

Syntax HWND SetClipboardViewer(h Wnd)
function SetClipboardViewer(Wnd: HWnd): HWnd;

This function adds the window specified by the h Wnd parameter to the
chain of windows that are notified (via the WM_DRAWCLIPBOARD
message) whenever the contents of the clipboard are changed.

Parameters h Wnd HWND Identifies the window to receive clipboard-viewer
chain messages.

Return value The return value identifies the next window in the clipboard-viewer
chain. This handle should be saved in static memory and used in
responding to clipboard-viewer chain messages.

Comments Windows that are part of the clipboard-viewer chain must respond to
WM_CHANGECBCHAIN, WM_DRAWCLIPBOARD, and
WM_DESTROY messages.

If an application wishes to remove itself from the clipboard-viewer chain,
it must call the ChangeClipboardChain function.

Chapter 4, Functions directory 493

SetCommBreak

SetCommBreak~

Syntax int SetCommBreak(nCid)
function SetCommBreak(Cid: Integer): Integer;

This function suspends character transmission and places the
transmission line in a break state until the ClearCommBreak function is
called.

Parameters nCid int Specifies the communication device to be suspended. The
OpenComm function returns this value.

Return value The return value specifies the result of the function. It is zero if the
function is successful. It is negative if nCid does not specify a valid device.

SetCommEventMask ~~

494

Syntax WORD FAR * SetCommEventMask(nCid, nEvtMask)
function SetCommEventMask(Cid: Integer; EvtMask: Word): PWord;

This function enables and retrieves the event mask of the communication
device specified by the nCid parameter. The bits of the nEvtMask
parameter define which events are to be enabled. The return value points
to the current state of the event mask.

Parameters nCid int Specifies the communication device to be enabled. The
OpenComm function returns this value.

nEvtMask int Specifies which events are to be enabled. It can be any
combination of the values shown in Table 4.14, "Event
values."

Return value The return value points to an integer event mask. Each bit in the event
mask specifies whether or not a given event has occurred. A bit is 1 if the
event has occurred.

Comments Table 4.14 lists the event values for the nEvtMask parameter:

Table 4.14
Event values Parameter

EV_BREAK
EV_CTS
EV_DSR
EV_ERR

EV_PERR

EV_RING

Type/Description

Sets when a break is detected on input.
Sets when the clear-to-send (CTS) signal changes state.
Sets when the data-set-ready (DSR) signal changes state.
Sets when a line-status error occurs. Line-status errors are
CE_FRAME, CE_OVERRUN, and CE_RXPARITY.
Sets when a printer error is detected on a parallel device.
Errors are CE_DNS, CE_IOE, CE_LOOP, and CE_PTO.
Sets when a ring indicator is detected.

Software development kit

SetCommEventMask

Table 4.14: Event values (continued)

EV_RLSD

EV_RXCHAR

EV_RXFLAG

EV_TXEMPTY

Sets when the receive-line-signal-detect (RLSD) signal
changes state.
Sets when any character is received and placed in the receive
queue.
Sets when the event character is received and placed in the
receive queue. The event character is specified in the device's
control block.
Sets when the last character in the transmit queue is sent.

,\I
SetCommState if"

Syntax int SetCommState(lpDCB)
function SetCommState(var DeB: TDCB): Integer;

This function sets a communication device to the state specified by the
device control block pointed to by the IpDCB parameter. The device to be
set must be identified by the Id field of the control block.

This function reinitializes all hardware and controls as defined by IpDCB,
but does not empty transmit or receive queues.

Parameters IpDCB DCB FAR * Points to a DCB data structure that contains the
desired communications setting for the device.

Return value The return value specifies the outcome of the function. It is zero if the
function is successful. It is negative if an error occurs.

SetCursor

Syntax HCURSOR SetCursor(hCursor)
function SetCursor(Cursor: HCursor): HCursor;

This function sets the cursor shape to the shape specified by the hCursor
parameter. The cursor is set only if the new shape is different from the
current shape. Otherwise, the function returns immediately. The
SetCursor function is quite fast if the cursor identified by the hCursor
parameter is the same as the current cursor.

If hCursor is NULL, the cursor is removed from the screen.

Parameters hCursor

Chapter 4, Functions directory

HCURSOR Identifies the cursor resource. The resource must
have been loaded previously by using the LoadCursor
function.

495

SetCursor

Return value The return value identifies the cursor resource that defines the previous
cursor shape. It is NULL if there is no previous shape.

Comments The cursor is a shared resource. A window that uses the cursor should set
the shape only when the cursor is in its client area or when it is capturing
all mouse input. In systems without a mouse, the window should restore
the previous cursor shape before the cursor leaves the client area or before
the window relinquishes control to another window.

SetCursorPos

Any application that needs to change the shape of the cursor while it is in
a window must make sure the class cursor for the given window's class is
set to NULL. If the class cursor is not NULL, Windows restores the
previous shape each time the mouse is moved.

The cursor is not shown on the screen if the cursor display count is less
than zero. This results from the HideCursor function being called more
times than the ShowCursor function.

Syntax void SetCursorPos(X, Y)
procedure SetCursorPos(X, Y: Integer);

This function moves the cursor to the screen coordinates given by the X
and Y parameters. If the new coordinates are not within the screen
rectangle set by the most recent ClipCursor function, Windows
automatically adjusts the coordinates so that the cursor stays within the
rectangle.

Parameters X

Y

Return value None.

int Specifies the new x-coordinate (in screen coordinates) of
the cursor.

int Specifies the new y-coordinate (in screen coordinates) of
the cursor.

Comments The cursor is a shared resource. A window should move the cursor only
when the cursor is in its client area.

SetDIBits 3.0

Syntax int SetDIBits(hDC, hBitmap, nStartScan, nNumScans, IpBits, IpBitsInfo,
wUsage)

496 Software development kit

SetDIBits

function SetDIBits(DC: HDC; Bitmap: THandle; StartScan, NumScans:
Word; Bits: Pointer; var BitsInfo: TBitmapInfo; Usage: Word): Integer;

This function sets the bits of a bitmap to the values given in a device­
independent bitmap (DIB) specification.

Parameters hDC HDC Identifies the device context.

hBitmap HBITMAP Identifies the bitmap.

nStartScan WORD Specifies the scan number of the first scan line in the
IpBits buffer.

nNumScans WORD Specifies the number of scan lines in the IpBits buffer
and the number of lines to set in the bitmap identified by the
hBitmap parameter.

IpBits LPSTR Points to the device-independent bitmap bits that are
stored as an array of bytes. The format of the bitmap values
depends on the biBitCount field of the BITMAPINFO
structure identified by IpBitslnfo. See the description of the
BITMAPINFO data structure in Chapter 7, "Data types and
structures/' in Reference, Volume 2, for more information.

IpBitslnfo LPBITMAPINFO Points to a BITMAPINFO data structure that
contains information about the device-independent bitmap.

wUsage WORD Specifies whether the bmiColors[] fields of the
IpBitslnfo parameter contain explicit RGB values or indexes
into the currently realized logical palette. The wUsage
parameter must be one of the following values:

Value Meaning
DIB_PAL_COLORS The color table consists of an array

of 16-bit indexes into the currently
realized logical palette.

DIB_RGB_COLORS The color table contains literal RGB
values.

Return value The return value specifies the number of scan lines successfully copied. It
is zero if the function fails.

Comments The bitmap identified by the hBitmap parameter must not be selected into
a device context when the application calls this function.

The origin for device-independent bitmaps is the bottom-left corner of the
bitmap, not the top-left corner, which is the origin when the mapping
mode is MM_TEXT.

Chapter 4, Functions directory 497

SetDIBitsToDevice

This function also accepts a bitmap specification formatted for Microsoft
OS/2 Presentation Manager versions 1.1 and 1.2 if the IpBitslnfo parameter
points to a BITMAPCOREINFO data structure.

SetDIBitsToDevice 3.0

498

Syntax WORD SetDIBitsToDevice(hDC, DestX, DestY, nWidth, nHeight, SrcX,
SrcY, nStartScan, nNumScans, IpBits, IpBitsInfo, wUsage)
function SetDIBitsToDevice(DC: HDC; DestX, DestY, Width, Height, SrcX,
SrcY, rStartScan, NumScans: Word; Bits: Pointer; var BitsInfo:
TBitmapInfo; Usage: Word): Integer;

This function sets bits from a device-independent bitmap (DIB) directly on
a device surface. The SrcX, Src Y, n Width, and nHeight parameters define a
rectangle within the total DIB. SetOIBitsToOevice sets the bits in this
rectangle directly on the display surface of the output device identified by
the hDC parameter, at the location described by the DestX and DestY
parameters.

To reduce the amount of memory required to set bits from a large DIB on
a device surface, an application can band the output by repeatedly calling
SetDIBitsToOevice, placing a different portion of the entire DIB into the
IpBits buffer each time. The values of the nStartScan and nNumScans
parameters identify the portion of the entire DIB which is contained in the
IpBits buffer.

Parameters hDC HOC Identifies the device context.

DestX WORD Specifies the x-coordinate of the origin of the
destination rectangle.

DestY WORD Specifies the y-coordinate of the origin of the
destination rectangle.

n Width WORD Specifies the x-extent of the rectangle in the DIB.

nHeight WORD Specifies the y-extent of the rectangle in the DIB.

SrcX WORD Specifies the x-coordinate of the source in the DIB.

SrcY WORD Specifies the y-coordinate of the source in the DIB.

nStartScan WORD Specifies the scan-line number of the DIB which is
contained in the first scan line of the IpBits buffer.

nNumScans WORD Specifies the number of scan lines of the DIB which
are contained in the IpBits buffer.

Software development kit

IpBits

IpBitslnfo

wUsage

SetDIBitsToDevice

LPSTR Points to the DIB bits that are stored as an array of
bytes.

LPBITMAPINFO Points to a BITMAPINFO data structure that
contains information about the DIB.

WORD Specifies whether the bmiColors[] fields of the
IpBitslnfo parameter contain explicit RGB values or indexes
into the currently realized logical palette. The wUsage
parameter must be one of the following values:

Value Meaning
DIB_PAL_COLORS The color table consists of an

DIB_RGB_COLORS

array of 16-bit indexes into the
currently realized logical palette.
The color table contains literal
RGB values.

Return value The return value is the number of scan lines set.

Comments All coordinates are device coordinates (that is, the coordinates of the DIB)
except destX and destY, which are logical coordinates.

SetDlgltemlnt

The origin for device-independent bitmaps is the bottom-left corner of the
DIB, not the top-left corner, which is the origin when the mapping mode
is MM_TEXT. This function also accepts a device-independent bitmap
specification formatted for Microsoft OS/2 Presentation Manager versions
1.1 and 1.2 if the IpBitslnfo parameter points to a BITMAPCOREINFO data
structure.

Syntax void SetDlgItemInt(hDlg, nIDDlgItem, wValue, bSigned)
procedure SetDlgItemInt(Dlg: HWnd; IDDlgItem: Integer; Value: Word;
Signed: Bool);

This function sets the text of a control in the given dialog box to the string
that represents the integer value given by the wValue parameter. The
SetDlgltemlnt function converts wValue to a string that consists of decimal
digits, and then copies the string to the control. If the bSigned parameter is
nonzero, wValue is assumed to be signed. If wValue is signed and less than
zero, the function places a minus sign before the first digit in the string.

SetDlgltemlnt sends a WM_SETTEXT message to the given control.

Parameters hDlg HWND Identifies the dialog box that contains the control.

Chapter 4, Functions directory 499

SetDlgltemlnt

nIDDlgItem int Specifies the control to be modified.

wValue WORD Specifies the value to be set.

bSigned

Return value None.

BOOl Specifies whether or not the integer value is signed.

SetDlgltemText

Syntax void SetDlgItemText(hDlg, nIDDlgItem, lpString)
procedure SetDlgItemText(Dlg: HWnd; IDDlgItem: Integer; Str: PChar);

This function sets the caption or text of a control in the dialog box
specified by the hDlg parameter. The SetDlgltemText function sends a
WM_SETTEXT message to the given control.

Parameters hDlg HWND Identifies the dialog box that contains the control.

nIDDlgItem int Specifies the control whose text is to be set.

IpString lPSTR Points to the null-terminated character string that is
to be copied to the control.

Return value None.

SetDoubleClickTime

500

Syntax void SetDoubleClickTime(wCount)
procedure SetDoubleClickTime(Count: Word);

This function sets the double-click time for the mouse. A double-click is a
series of two clicks of the mouse button, the second occurring within a
specified time after the first. The double-click time is the maximum
number of milliseconds that may occur between the first and second clicks
of a double-click.

Parameters wCount

Return value None.

WORD Specifies the number of milliseconds that can occur
between double-clicks.

Comments If the wCount parameter is set to zero, Windows will use the default
double-click time of 500 milliseconds.

The SetDoubleClickTime function alters the double-click time for all
windows in the system.

Software development kit

SetEnvironment

SetEnvironment

Syntax int SetEnvironment(lpPortName, IpEnviron, nCount)
function SetEnvironmentCPortName: PChar; Environ: Pointer; Count:
Word): Integer;

This function copies the contents of the buffer specified by the IpEnviron
parameter into the environment associated with the device attached to the
system port specified by the IpPortName parameter. The SetEnvironment
function deletes any existing environment. If there is no environment for
the given port, SetEnvironment creates one. If the nCount parameter is
zero, the existing environment is deleted and not replaced.

Parameters IpPortName LPSTR Points to a null-terminated character string that
specifies the name of the desired port.

IpEnviron LPSTR Points to the buffer that contains the new
environment.

nCount WORD Specifies the number of bytes to be copied.

Return value The return value specifies the actual number of bytes copied to the
environment. It is zero if there is an error. It is -1 if the environment is
deleted.

Comments The first field in the buffer pointed to by the IpEnviron parameter must be
the same as that passed in the IpDeviceName parameter of the CreateDC
function. If IpPortName specifies a null port Cas defined in the WIN.lNI
file), the device name pointed to by IpEnviron is used to locate the desired
environment.

SetErrorMode

Syntax WORD SetErrorMode CwMode)
function SetErrorModeCMode: Word): Word;

This function controls whether Windows handles DOS Function 24H
errors or allows the calling application to handle them.

Windows intercepts all INT 24H errors. If the application calls
SetErrorMode with the wMode parameter set to zero and an INT 24H error
subsequently occurs, Windows displays an error message box. If the
application calls SetErrorMode with wMode set to 1 and an INT 24H
occurs, Windows does not display the standard INT 24H error message
box, but rather fails the original INT 21H call back to the application. This

Chapter 4, Functions directory 501

SetErrorMode

allows the application to handle disk errors using INT 21H, AH=59H (Get
Extended Error) as appropriate.

Parameters wMode WORD Specifies the error mode flag. If bit 0 is set to zero,
Windows displays an error message box when an INT 24H
error occurs. If bit 0 is set to 1, Windows fails the INT 21H
call to the calling application and does not display a message
box.

Return value The return value specifies the previous value of the error mode flag.

SetFocus

Syntax HWND SetFocus(h Wnd)
function SetFocus(Wnd: HWnd): HWnd;

This function assigns the input focus to the window specified by the h Wnd
parameter. The input focus directs all subsequent keyboard input to the
given window. The window, if any, that previously had the input focus
loses it. If h Wnd is NULL, key strokes are ignored.

The SetFocus function sends a WM_KILLFOCUS message to the window
that loses the input focus and a WM_SETFOCUS message to the window
that receives the input focus. It also activates either the window that
receives the focus or the parent of the window that receives the focus.

Parameters h Wnd HWND Identifies the window to receive the keyboard input.

Return value The return value identifies the window that previously had the input
focus. It is NULL if there is no such window.

Comments If a window is active but doesn't have the focus (that is, no window has
the focus), any key pressed will produce the WM_SYSCHAR,
WM_SYSKEYDOWN, or WM_SYSKEYUP message. If the VK_MENU key
is also pressed, the IParam parameter of the message will have bit 30 set.
Otherwise, the messages that are produced do not have this bit set.

SetHondleCount 3.0

502

Syntax WORD SetHandleCount(wNumber)
function SetHandleCount(Number: Word): Word;

This function changes the number of file handles available to a task. By
default, the maximum number of file handles available to a task is 20.

Software development kit

SetHondleCount

Parameters wNumber WORD Specifies the number of file handles needed by the
application. The maximum is 255.

Return value The return value specifies the number of file handles actually available to
the application. It may be less than the number specified by the wNumber
parameter.

SetKeyboardState

Syntax void SetKeyboardState{lpKeyState)
procedure SetKeyboardState(var KeyState: TKeyboardState);

This function copies the 256 bytes pointed to by the IpKeyState parameter
into the Windows keyboard-state table.

Parameters IpKeyState BYTE FAR * Points to an array of 256 bytes that contains
keyboard key states.

Return value None.

Comments In many cases, an application should call the GetKeyboardState function
first to initialize the 256-byte array. The application should then change
the desired bytes.

SetMapMode

SetKeyboardState sets the LEOs and BIOS flags for the NUMLOCK,

CAPSLOCK, and SCROLL LOCK keys according to the toggle state of the
VK_NUMLOCK, VK_CAPITAL, and VK_OEM_SCROLL entries of the
array.

For more information, see the description of GetKeyboardState, earlier in
this chapter.

Syntax int SetMapMode(hOC, nMapMode)
function SetMapMode(OC: HOC; MapMode: Integer): Integer;

This function sets the mapping mode of the specified device context. The
mapping mode defines the unit of measure used to transform logical units
into device units, and also defines the orientation of the device's x- and y­
axes. GOI uses the mapping mode to convert logical coordinates into the
appropriate device coordinates.

Parameters hDC HOC Identifies the device context.

Chapter 4, Functions directory 503

SetMapMode

nMapMode int Specifies the new mapping mode. It can be anyone of the
values shown in Table 4.15, "Mapping modes."

Return value The return value specifies the previous mapping mode.

Comments The MM_TEXT mode allows applications to work in device pixels, whose
size varies from device to device.

Table 4.15
Mapping modes

The MM_HIENGLISH, MM_HIMETRIC, MM_LOENGLISH,
MM_LOMETRIC, and MM_TWIPS modes are useful for applications that
need to draw in physically meaningful units (such as inches or
millimeters) .

The MM_ISOTROPIC mode ensures a 1:1 aspect ratio, which is useful
when preserving the exact shape of an image is important.

The MM_ANISOTROPIC mode allows the x- and y-coordinates to be
adjusted independently.

Table 4.15 shows the value and meaning of the various mapping modes:

Value Meaning

MM_ANISOTROPIC Logical units are mapped to arbitrary units with
arbitrarily scaled axes. The SetWindowExt and
SetViewportExt functions must be used to specify the
desired units, orientation, and scaling.

MM_HIENGLISH Each logical unit is mapped to 0.001 inch. Positive x is to
the right; positive y is up.

MM_HIMETRIC Each logical unit is mapped to 0.01 millimeter. Positive x is
to the right; positive y is up.

MM_ISOTROPIC Logical units are mapped to arbitrary units with equally
scaled axes; that is, one unit along the x-axis is equal to
one unit along the y-axis. The SetWindowExt and
SetViewportExt functions must be used to specify the
desired units and the orientation of the axes. GDI makes
adjustments as necessary to ensure that the x and y units
remain the same size.

MM_LOENGLISH Each logical unit is mapped to 0.01 inch. Positive x is to
the right; positive y is up.

MM_LOMETRIC Each logical unit is mapped to 0.1 millimeter. Positive x is
to the right; positive y is up.

MM_TEXT Each logical unit is mapped to one device pixel. Positive x
is to the right; positive y is down.

MM_TWIPS Each logical unit is mapped to one twentieth of a printer's
point (1/1440 inch). Positive x is to the right; positive y is
up.

504 Software development kit

SetMapperFlags

SetMapperFlags

Syntax DWORD SetMapperFlags(hDC, dwFlag)
function SetMapperFlags(DC: HDC; Flag: Longint): Longint;

This function alters the algorithm that the font mapper uses when it maps
logical fonts to physical fonts. When the first bit of the wFlag parameter is
set to 1, the mapper will only select fonts whose x-aspect and y-aspect
exactly match those of the specified device. If no fonts exist with a
matching aspect height and width, GDI chooses an aspect height and
width and selects fonts with aspect heights and widths that match the one
chosen by GD!.

Parameters hDC

dwFlag

HDC Identifies the device context that contains the font­
mapper flag.

DWORD Specifies whether the font mapper attempts to
match a font's aspect height and width to the device. When
the first bit is set to 1, the mapper will only select fonts
whose x-aspect and y-aspect exactly match those of the
specified device.

Return value The return value specifies the previous value of the font-mapper flag.

Comments The remaining bits of the dwFlag parameter must be zero.

SetMenu

Syntax BOOL SetMenu(h Wnd, hMenu)
function SetMenu(Wnd: HWnd; Menu: HMenu): Bool;

This function sets the given window's menu to the menu specified by the
hMenu parameter. If hMenu is NULL, the window's current menu is
removed. The SetMenu function causes the window to be redrawn to
reflect the menu change.

Parameters h Wnd

hMenu

HWND Identifies the window whose menu is to be changed.

HMENU Identifies the new menu.

Return value The return value specifies whether the menu is changed. It is nonzero if
the menu is changed. Otherwise, it is zero.

Comments SetMenu will not destroy a previous menu. An application should call the
DestroyMenu function to accomplish this task.

Chapter 4, Functions directory 505

SetMenultemBitmaps

SetMenultemBitmaps 3.0

506

Syntax BOOL SetMenuItemBitmaps(hMenu, nPosition, wFlags,
hBitmapUnchecked, hBitmapChecked)
function SetMenuItemBitmaps(Menu: HMenu; Position, Flags: Word;
BitmapUnchecked, BitmapChecked: HBitmap): Bool;

This function associates the specified bitmaps with a menu item. Whether
the menu item is checked or unchecked, Windows displays the
appropriate bitmap next to the menu item.

Parameters hMenu HMENU Identifies the menu to be changed.

nPosition

wFlags

hBitmapUnchecked

hBitmapChecked

WORD Specifies the menu item to be changed. If
wFlags is set to MF _BYPOSITION, nPosition specifies
the position of the menu item; the first item in the
menu is at position O. If wFlags is set to
MF _BY COMMAND, then nPosition specifies the
command ID of the menu item.

WORD Specifies how the nPosition parameter is
interpreted. It may be set to MF _BYCOMMAND
(the default) or MF _BYPOSITION.

HBITMAP Identifies the bitmap to be displayed
when the menu item is not checked.

HBITMAP Identifies the bitmap to be displayed
when the menu item is checked.

Return value The return value specifies the outcome of the function. It is TRUE if the
function is successful. Otherwise, it is FALSE.

Comments If either the hBitmapUnchecked or the hBitmapChecked parameters is NULL,
then Windows displays nothing next to the menu item for the
corresponding attribute. If both parameters are NULL, Windows uses the
default checkmark when the item is checked and removes the checkmark
when the item is unchecked.

When the menu is destroyed, these bitmaps are not destroyed; it is the
responsibility of the application to destroy them.

The GetMenuCheckMarkDimensions function retrieves the dimensions of
the default checkmark used for menu items. The application should use
these values to determine the appropriate size for the bitmaps supplied
with this function.

Software development kit

SetMessageQueue

SetMessageQueue

Syntax BaaL SetMessageQueue(cMsg)
function SetMessageQueue(Msg: Integer): Bool;

This function creates a new message queue. It is particularly useful in
applications that require a queue that contains more than eight messages
(the maximum size of the default queue). The cMsg parameter specifies
the size of the new queue; the function must be called from an
application's WinMain function before any windows are created and
before any messages are sent. The SetMessageQueue function destroys
the old queue, along with messages it might contain.

Parameters cMsg int Specifies the maximum number of messages that the new
queue may contain.

Return value The return value specifies whether a new message queue is created. It is
nonzero if the function creates a new queue. Otherwise, it is zero.

Comments If the return value is zero, the application has no queue because the
SetMessageQueue function deletes the original queue before attempting
to create a new one. The application must continue calling
SetMessageQueue with a smaller queue size until the function returns a
nonzero value.

SetMetaFileBits

Syntax HANDLE SetMetaFileBits(hMem)
function SetMetaFileBits(Mem: THandle): THandle;

This function creates a memory metafile from the data in the global
memory block specified by the hMem parameter.

Parameters hMem HANDLE Identifies the global memory block that contains
the metafile data. It is assumed that the data were
previously created by using the GetMetaFileBits function.

Return value The return value identifies a memory metafile if the function is successful.
Otherwise, the return value is NULL.

Comments After the SetMetaFileBits function returns, the metafile handle returned
by the function should be used instead of the handle identified by the
hMem parameter to refer to the metafile.

Chapter 4, Functions directory 507

SetPaletteEntries

SetPaletteEntries

Syntax WORD SetPaletteEntries(hPalette, wStartIndex, wNumEntries,
1 p PaletteEntries)
function SetPaletteEntries(Palette: HPalette; StartIndex, NumEntries:
Word; var PaletteEntries): Word;

This function sets RGB color values and flags in a range of entries in a
logical palette.

Parameters hPalette HPALETTE Identifies the logical palette.

3.0

wStartIndex WORD Specifies the first entry in the logical palette to be
set.

wNumEntries WORD Specifies the number of entries in the logical
palette to be set.

IpPaletteEntries LPPALETTEENTRY Points to the first member of an
array of PALETTEENTRY data structures containing the
RGB values and flags.

Return value The return value is the number of entries set in the logical palette. It is
zero if the function failed.

Comments If the logical palette is selected into a device context when the application
calls SetPalette-

SetParent

Entries, the changes will not take effect until the application calls
RealizePalette.

Syntax HWND SetParent(hWndChild, hWndNewParent)
function SetParent(WndChild, WndNewParent: HWnd): HWnd;

This function changes the parent window of a child window. If the
window identified by the h WndChild parameter is visible, Windows
performs the appropriate redrawing and repainting.

Parameters h WndChild HWND Identifies the child window.

h WndNewParent HWND Identifies the new parent window.

Return value The return value identifies the previous parent window.

508 Software development kit

SetPixel

SetPixel

Syntax DWORD SetPixel(hDC, X, Y, crColor)
function SetPixel(DC: HDC; X, Y: Integer; Color: TColorRef): Longint;

This function sets the pixel at the point specified by the X and Y
parameters to the closest approximation of the color specified by the
crColor parameter. The point must be in the clipping region. If the point is
not in the clipping region, the function is ignored.

Parameters hDC HOC Identifies the device context.

X

Y

crColor

int Specifies the logical x-coordinate of the point to be set.

int Specifies the logical y-coordinate of the point to be set.

COLORREF Specifies the color used to paint the point.

Return value The return value specifies an RGB color value for the color that the point
is actually painted. This value can be different than that specified by the
crColor parameter if an approximation of that color is used. If the function
fails (if the point is outside the clipping region) the return value is-l.

Comments Not all devices support the SetPixel function. For more information, see
the RC_BITBLT capability in the GetOeviceCaps function, earlier in this
chapter.

SetPolyFiliMode

Syntax int SetPolyFillMode(hDC, nPolyFillMode)
function SetPolyFillMode(DC: HDC; PolyFillMode: Integer): Integer;

This function sets the polygon-filling mode for the GDI functions that use
the polygon algorithm to compute interior points.

Parameters hDC HOC Identifies the device context.

nPolyFillMode

Chapter 4, Functions directory

int Specifies the new filling mode. The nPolyFillMode
parameter may be either of the following values:

Value Meaning
ALTERNATE Selects alternate mode.
WINDING Selects winding number mode.

509

SetPolyFiIIMode

Return value The return value specifies the previous filling mode. It is zero if there is an
error.

Comments In general, the modes differ only in cases where a complex, overlapping
polygon must be filled (for example, a five-sided polygon that forms a
five-pointed star with a pentagon in the center). In such cases,
ALTERNATE mode fills every other enclosed region within the polygon
(that is, the points of the star), but WINDING mode fills all regions (that
is, the points and the pentagon).

When the filling mode is ALTERNATE, GDI fills the area between odd­
numbered and even-numbered polygon sides on each scan line. That is,
CDI fills the area between the first and second side, between the third and
fourth side, and so on.

To fill all regions, WINDING mode causes GDI to compute and draw a
border that encloses the polygon but does not overlap. For example, in
WINDING mode, the five-sided polygon that forms the star is drawn as a
ten-sided polygon with no overlapping sides; the resulting star is filled.

SetProp

510

Syntax BaaL SetProp(hWnd, IpString, hData)
function SetProp(Wnd: HWnd; Str: PChar; Data: THandle): Bool;

This function adds a new entry or changes an existing entry in the
property list of the specified window. The SetProp function adds a new
entry to the list if the character string specified by the IpString parameter
does not already exist in the list. The new entry contains the string and the
handle. Otherwise, the function replaces the string's current handle with
the one specified by the hData parameter.

The hData parameter can contain any 16-bit value useful to the
application.

Parameters h Wnd

IpString

HWND Identifies the window whose property list is to
receive the new entry.

LPSTR Points to a null-terminated character string or an
atom that identifies a string. If an atom is given, it must have
been previously created by using the AddAtom function. The
atom, a 16-bit value, must be placed in the low-order word
of IpString; the high-order word must be zero.

Software development kit

SetProp

hData HANDLE Identifies a data handle to be copied to the
property list.

Return value The return value specifies the outcome of the function. It is nonzero if the
data handle and string are added to the property list. Otherwise, it is zero.

Comments The application is responsible for removing all entries it has added to the
property list before destroying the window (that is, before the application
processes the WM_DESTROY message). The RemoveProp function must
be used to remove entries from a property list.

SetRect

Syntax void SetRectOpRect, Xl, Yl, X2, Y2)
procedure SetRect(var Rect: TRect; Xl, Yl, X2, Y2: Integer);

This function creates a new rectangle by filling the RECT data structure
pointed to by the IpRect parameter with the coordinates given by the Xl,
Yl, X2, and Y2 parameters.

Parameters IpRect LPRECT Points to the RECT data structure that is to receive
the new rectangle coordinates.

Xl

Yl

X2

Y2

int Specifies the x-coordinate of the upper-left corner.

int Specifies the y-coordinate of the upper-left corner.

int Specifies the x-coordinate of the lower-right corner.

int Specifies the y-coordinate of the lower-right corner.

Return value None.

Comments The width of the rectangle, specified by the absolute value of X2 - Xl,
must not exceed 32,767 units. This limit applies to the height of the
rectangle as well.

SetRectE m pty

Syntax void SetRectEmptyOpRect)
procedure SetRectEmpty(var Rect: TRect);

This function creates an empty rectangle (all coordinates equal to zero).

Parameters IpRect LPRECT Points to the RECT data structure that is to receive
the empty rectangle.

Chapter 4, Functions directory 511

SetRectEmpty

Return value None.

SetRectRgn

Syntax void SetRectRgn(hRgn, Xl, YI, X2, Y2)
procedure SetRectRgn(Rgn: HRgn; Xl, YI, X2, Y2: Integer);

This function creates a rectangular region. Unlike CreateRectRegion,
however, it does not call the local memory manager; instead, it uses the
space allocated for the region associated with the hRgn parameter. The
points given by the Xl, Yl, X2, and Y2 parameters specify the minimum
size of the allocated space.

Parameters hRgn HANDLE Identifies the region.

Xl int Specifies the x-coordinate of the upper-left corner of the
rectangular region.

Yl int Specifies the y-coordinate of the upper-left corner of the
rectangular region.

X2 int Specifies the x-coordinate of the lower-right corner of the
rectangular region.

Y2 int Specifies the y-coordinate of the lower-right corner of the
rectangular region.

Return value None.

Comments Use this function instead of the CreateRectRgn function to avoid calls to
the local memory manager.

SetResourceHandler

512

Syntax FARPROC SetResourceHandler(hInstance, IpType, IpLoadFunc)
function SetResourceHandler(Instance: THandle; ResType: Pointer;
LoadFunc: TFarProc): TFarProc;

This function sets up a function to load resources. It is used internally by
Windows to implement calculated resources. Applications may find this
function useful for handling their own resource types, but its use is not
required. The IpLoadFunc parameter points to an application-supplied
callback function. The function pointed to by the IpLoadFunc parameter
receives information about the resource to be locked and can process that

Software development kit

SetResourceHandler

information as desired. After the function pointed to by IpLoadFunc
returns, LockResource attempts to lock the resource once more.

Parameters hlnstance HANDLE Identifies the instance of the module whose
executable file contains the resource.

IpType LPSTR Points to a short integer that specifies a resource
type.

IpLoadFunc FARPROC Is the procedure-instance address of the
application-supplied callback function. See the following
"Comments" section for details.

Return value The return value points to the application-supplied function.

Comments The callback function must use the Pascal calling convention and must be
declared FAR.

Callback
function FARPROC FAR PASCAL LoadFunc(hMem, hlnstance, hReslnfo)

HANDLE hMem;

Parameters

HANDLE hlnstance;
HANDLE hReslnfo;

LoadFunc is a placeholder for the application-supplied function name. The
actual name must be exported by including it in an EXPORTS statement
in the application's module-definition file.

hMem

hlnstance

hReslnfo

Identifies a stored resource.

Identifies the instance of the module whose executable file
contains the resource.

Identifies the resource. It is assumed that the resource was
created previously by using the FindResource function.

Comments The hMem parameter is NULL if the resource has not yet been loaded. If
an attempt to lock a block specified by hMem fails, this means the resource
has been discarded and must be reloaded.

The dialog-function address, passed as the IpLoadFunc parameter, must be
created by using the MakeProclnstance function.

Chapter 4, Functions directory 513

SetROP2

SetROP2

514

Syntax int SetROP2(hDC, nDrawMode)
function SetROP2(DC: HDC; DrawMode: Integer): Integer;

This function sets the current drawing mode. GDI uses the drawing mode
to combine pens and interiors of filled objects with the colors already on
the display surface. The mode specifies how the color of the pen or
interior and the color already on the display surface yield a new color.

Parameters hDC HOC Identifies the device context.

nDrawMode int Specifies the new drawing mode. It can be anyone of the
values given in Table 4.16, "Drawing modes."

Return value The return value specifies the previous drawing mode. It can be anyone
of the values given in Chapter II, "Binary and ternary raster-operation
codes," in Reference, Volume 2.

Comments Drawing modes define how GDI combines source and destination colors
when drawing with the current pen. The drawing modes are actually
binary raster-operation codes, representing all possible Boolean functions
of two variables, using the binary operations AND, OR, and XOR
(exclusive OR), and the unary operation NOT. The drawing mode is for
raster devices only; it is not available on vector devices. For more
information, see the RC_BITBLT capability in the GetOeviceCaps
function, earlier in this chapter. Table 4.16 shows the value of various
drawing modes for the nDrawMode parameter:

Table 4.16
Drawing modes Value

R2_BLACK
R2_WHITE
R2_NOP
R2_NOT
R2_COPYPEN
R2_NOTCOPYPEN
R2_MERGEPENNOT

R2_MASKPENNOT

R2_MERGENOTPEN

R2_MASKNOTPEN

R2_MERGEPEN

R2_NOTMERGEPEN

Meaning

Pixel is always black.
Pixel is always white.
Pixel remains unchanged.
Pixel is the inverse of the display color.
Pixel is the pen color.
Pixel is the inverse of the pen color.
Pixel is a combination of the pen color and the inverse of
the display color.
Pixel is a combination of the colors common to both the
pen and the inverse of the display.
Pixel is a combination of the display color and the inverse
of the pen color.
Pixel is a combination of the colors common to both the
display and the inverse of the pen.
Pixel is a combination of the pen color and the display
color.
Pixel is the inverse of the R2_MERGEPEN color.

Software development kit

SetScrollPos

SetROP2

Table 4.16: Drawing modes (continued)

R2_MASKPEN

R2_NOTMASKPEN
R2_XORPEN

R2_NOTXORPEN

Pixel is a combination of the colors common to both the
pen and the display.
Pixel is the inverse of the R2_MASKPEN color.
Pixel is a combination of the colors in the pen and in the
display, but not in both.
Pixel is the inverse of the R2_XORPEN color.

For more information about the drawing modes, see Chapter 11, "Binary
and ternary raster-operation codes," in Reference, Volume 2.

Syntax int SetScrollPos(hWnd, nBar, nPos, bRedraw)
function SetScrollPos(Wnd: HWnd; Bar, Pos: Integer; Redraw: Bool):
Integer;

This function sets the current position of a scroll-bar thumb to that
specified by the nPos parameter and, if specified, redraws the scroll bar to
reflect the new position.

Parameters h Wnd HWND Identifies the window whose scroll bar is to be set.

nBar int Specifies the scroll bar to be set. It can be one of the
following values:

Value Meaning
SB _ CTL Sets the position of a scroll-bar control. In this

case, the h Wnd parameter must be the handle
of a scroll-bar control.

SB_HORZ Sets a window's horizontal scroll-bar position.
SB_ VERT Sets a window's vertical scroll-bar position.

nPos int Specifies the new position. It must be within the scrolling
range.

bRedraw BOOl Specifies whether the scroll bar should be redrawn to
reflect the new position. If the bRedraw parameter is nonzero,
the scroll bar is redrawn. If it is zero, it is not redrawn.

Return value The return value specifies the previous position of the scroll-bar thumb.

Comments Setting the bRedraw parameter to zero is useful whenever the scroll bar
will be redrawn by a subsequent call to another function.

Chapter 4, Functions directory 515

SetScroliRange

SetScroliRange

Syntax void SetScrollRange(hWnd, nBar, nMinPos, nMaxPos, bRedraw)
procedure SetScrollRange(Wnd: HWnd; Bar, MinPos, MaxPos: Integer;
Redraw: Bool);

This function sets minimum and maximum position values for the given
scroll bar. It can also be used to hide or show standard scroll bars by
setting the nMinPos and nMaxPos parameters to zero.

Parameters h Wnd

nBar

nMinPos

nMaxPos

bRedraw

Return value None.

HWND Identifies a window or a scroll-bar control,
depending on the value of the nBar parameter.

int Specifies the scroll bar to be set. It can be one of the
following values:

Value Meaning
SB _ CTL Sets the range of a scroll-bar control. In this

case, the h Wnd parameter must be the handle
of a scroll-bar control.

SB_HORZ Sets a window's horizontal scroll-bar range.
SB _ VERT Sets a window's vertical scroll-bar range.

int Specifies the minimum scrolling position.

int Specifies the maximum scrolling position.

BOOl Specifies whether or not the scroll bar should be
redrawn to reflect the change. If the bRedraw parameter is
nonzero, the scroll bar is redrawn. If it is zero, it is not
redrawn.

Comments An application should not call this function to hide a scroll bar while
processing a scroll-bar notification message.

If SetScrollRange immediately follows the SetScrollPos function, the
bRedraw parameter in SetScrollPos should be set to zero to prevent the
scroll bar from being drawn twice. The difference between the values
specified by the nMinPos and nMaxPos parameters must not be greater
than 32,767.

SetSoundNoise

Syntax int SetSoundNoise(nSource, nDuration)
function SetSoundNoise(Source, Duration: Integer): Integer;

516 Software development kit

SetSoundNoise

This function sets the source and duration of a noise in the noise
hardware of the play device.

Parameters nSource

nDuration

int Specifies the noise source. It can be anyone of the
following values, where N is a value used to derive a target
frequency:

Value
S_PERIOD512

S_PERIOD1024
S_PERIOD2048

Meaning
Source frequency is N /512 (high pitch);
hiss is less coarse.
Source frequency is N /1024.
Source frequency is N /2048 (low pitch);
hiss is coarser.

S_PERIODVOICE Source frequency from voice channel 3.
S_ WHITE512 Source frequency is N /512 (high pitch);

S_ WHITE1024
S_ WHITE2048

hiss is less coarse.
Source frequency is N /1024.
Source frequency is N /2048 (low pitch);
hiss is coarser.

S_ WHITEVOICE Source frequency from voice channel 3.
int Specifies the duration of the noise (in clock ticks).

Return value The return value specifies the result of the function. It is zero if the
function is successful. If the source is invalid, the return value is
S_SERDSR.

SetStretchBltMode

Syntax int SetStretchBltMode(hDC, nStretchMode)
function SetStretchBltMode(DC: HDC; StretchMode: Integer): Integer;

This function sets the stretching mode for the StretchBlt function. The
stretching mode defines which scan lines and/or columns StretchBlt
eliminates when contracting a bitmap.

Parameters hDC HOC Identifies the device context.

nStretchMode int Specifies the new stretching mode. It can be one of the
following values:

Meaning Value
BLACKONWHITE AND in the eliminated lines. This mode

preserves black pixels at the expense of
white pixels by using the AND

Chapter 4, Functions directory 517

SetStretch BltMode

operator on the eliminated lines and
those remaining.

COLORONCOLOR Deletes the eliminated lines. This mode
deletes all eliminated lines without
trying to preserve their information.

WHITEONBLACK OR in the eliminated lines. This mode
preserves white pixels at the expense
of black pixels by using the OR
operator on the lines to be eliminated
and the remaining lines.

The BLACKONWHITE and WHITEONBLACK modes are
typically used to preserve foreground pixels in monochrome
bitmaps. The COLORONCOLOR mode is typically used to
preserve color in color bitmaps.

Return value The return value specifies the previous stretching mode. It can be
BLACKONWHITE, COLORONCOLOR, or WHITEONBLACK.

SetSwapAreaSize

518

Syntax LONG SetSwapAreaSize(rsSize)
function SetSwapAreaSize(Size: Word): Longint;

This function increases the amount of memory that an application uses for
its code segments. The maximum amount of memory available is one-half
of the space remaining after Windows is loaded.

Parameters rsSize WORD Specifies the number of 16-byte paragraphs
requested by the application for use as a code segment.

Return value The low-order word of the return value specifies the number of
paragraphs obtained for use as a code segment space (or the current size if
rsSize is zero); the high-order word specifies the maximum size available.

Comments If rsSize specifies a size larger than is available, this function sets the size
to the available amount.

Once memory has been dedicated for use as code segment space, an
application cannot use it as a data segment by calling the GlobalAlloc
function.

Calling this function improves an application's performance by helping
prevent thrashing. However, it reduces the amount of memory available
for data objects and can reduce the performance of other applications.

Software development kit

SetSysColors

SetSysColors

Before calling SetSwapAreaSize, an application should call GetNumTasks
to determine how many other tasks are running.

Syntax void SetSysColors(nChanges, IpSysColor, IpColorValues)
procedure SetSysColors(Changes: Integer; var SysColor; var ColorValues);

This function sets the system colors for one or more display elements.
Display elements are the various parts of a window and the Windows
display that appear on the system display screen. The SetSysColors
function changes the number of elements specified by the nChanges
parameter, using the color and system-color index contained in the arrays
pointed to by the IpSysColor and IpColor Values parameters.

SetSysColors sends a WM_SYSCOLORCHANGE message to all
windows to inform them of the change in color. It also directs Windows to
repaint the affected portions of all currently visible windows.

Parameters nChanges int Specifies the number of system colors to be changed.

IpSysColor LPINT Points to an array of integer indexes that specify the
elements to be changed. The index values that can be used
are listed in Table 4.17, "System color indexes."

IpColorValues DWORD FAR * Points to an array of unsigned long integers
that contains the new RGB color values for each element.

Return value None.

Comments SetSysColors changes the internal system list only. It does not change the
[COLORS] section of the Windows initialization file, WIN.lNI. Changes
apply to the current Windows session only. System colors are a shared
resource. An application should not change a color if it does not wish to
change colors for all windows in all currently running applications.
System colors for monochrome displays are usually interpreted as various
shades of gray. Table 4.17 lists the values for the IpSysColor parameter:

Table 4.17
System color

indexes

Value

COLOR_ACTIVE BORDER
COLOR_ACTIVECAPTION
COLOR_APPWORKSPACE

COLOR_BACKGROUND
COLOR_BTNFACE
COLOR_BTNSHADOW

Chapter 4, Functions directory

Meaning

Active window border.
Active window caption.
Background color of multiple document
interface (MDI) applications.
Desktop.
Face shading on push buttons.
Edge shading on push buttons.

519

SetSysColors

Table 4.17: System color indexes (continued)

COLOR_BTNTEXT
COLOR_ CAPTIONTEXT
COLOR_GRAYTEXT

COLOR_HIGHLIGHT
COLOR_HIGHLIGHTTEXT
COLOR_INACTIVEBORDER
COLOR_INACTIVECAPTION
COLOR_MENU
COLOR_MENUTEXT
COLOR_SCROLLBAR
COLOR_WINDOW
COLOR_ WINDOW FRAME
COLOR_ WINDOWTEXT

Text on push buttons.
Text in caption, size box, scroll-bar arrow box.
Grayed (disabled) text. This color is set to a if
the current display driver does not support a
solid gray color.
Items selected item in a control.
Text of item selected in a control.
Inactive window border.
Inactive window caption.
Menu background.
Text in menus.
Scroll-bar gray area.
Window background.
Window frame.
Text in windows.

SetSysModalWindow

Syntax HWND SetSysModalWindow(h Wnd)
function SetSysModalWindow(Wnd: HWnd): HWnd;

This function makes the specified window a system-modal window.

Parameters hWnd HWND Identifies the window to be made system modal.

Return value The return value identifies the window that was previously the system­
modal window.

Comments If another window is made the active window (for example, the system­
modal window creates a dialog box that becomes the active window), the
active window becomes the system-modal window. When the original
window becomes active again, it is system modal. To end the system­
modal state, destroy the system-modal window.

SetSystemPaletteUse 3.0

520

Syntax WORD SetSystemPaletteUse(hDC, wUsage)
function SetSystemPaletteUse(DC: HDC; Usage: Word): Word;

This function allows an application to use the full system palette. By
default, the system palette contains 20 static colors which are not changed
when an application realizes its logical palette. The device context
identified by the hDC parameter must refer to a device that supports color
palettes.

Software development kit

Parameters hDC

wUsage

SetSystemPaletteUse

HDC Identifies the device context.

WORD Specifies the new use of the system palette. It can be
either of these values:

Value
SYSP AL_NOSTATIC

SYSPAL_STATIC

Meaning
System palette contains no static
colors except black and white.
System palette contains static colors
which will not change when an
application realizes its logical
palette.

Return value The return value specifies the previous usage of the system palette. It is
either SYSP AL_NOST ATIC or SYSP AL_STATIC.

Comments An application must call this function only when its window has input
focus.

If an application calls SetSystemPaletteUse with wUsage set to
SYSP AL_NOSTATIC, Windows continues to set aside two entries in the
system palette for pure white and pure black, respectively.

After calling this function with wUsage set to SYSP AL_NOST ATIC, an
application must follow these steps:

1. Call UnrealizeObject to force GOI to remap the logical palette
completely when it is realized.

2. Realize the logical palette.

3. Call GetSysColors to save the current system-color settings.

4. Call SetSysColors to set the system colors to reasonable values using
black and white. For example, adjacent or overlapping items (such as
window frames and borders) should be set to black and white,
respectively.

5. Broadcast the WM_SYSCOLORCHANGE message to allow other
windows to be redrawn with the new system colors.

When the application's window loses focus or closes, the application must
perform the following steps:

1. Call SetSystemPaletteUse with the wUsage parameter set to
SYSPAL_STATIC.

2. Call UnrealizeObject to force GOI to remap the logical palette
completely when it is realized.

Chapter 4, Functions directory 521

SetSystemPaletteUse

3. Realize the logical palette.

4. Restore the system colors to their previous values.

5. Broadcast the WM_SYSCOLORCHANGE message.

SetTextAlign

522

Syntax WORD SetTextAlign(hDC, wFlags)
function SetTextAlign(DC: HDC; Flags: Word): Word;

This function sets the text-alignment flags for the given device context.
The TextOut and ExtTextOut functions use these flags when positioning a
string of text on a display or device. The flags specify the relationship
between a specific point and a rectangle that bounds the text. The
coordinates of this point are passed as parameters to the TextOut function.
The rectangle that bounds the text is formed by the adjacent character
cells in the text string.

Parameters hDC

wFlags

HOC Identifies the device or display selected for text output.

WORD Specifies a mask of the values in the following list.
Only one flag may be chosen from those that affect
horizontal and vertical alignment. In addition, only one of
the two flags that alter the current position can be chosen:

Value Meaning
TA_BASELINE Specifies alignment of the point and

the baseline of the chosen font.

TA_CENTER

TA_NOUPDATECP

Specifies alignment of the point and
the bottom of the bounding
rectangle.
Specifies alignment of the point and
the horizontal center of the
bounding rectangle.
Specifies alignment of the point and
the left side of the bounding
rectangle.
Specifies that the current position is
not updated after each TextOut or
ExtTextOut function call.
Specifies alignment of the point and
the right side of the bounding
rectangle.

Software development kit

SetTextAlign

TA_ TOP Specifies alignment of the point and
the top of the bounding rectangle.

TA_UPDATECP Specifies that the current position is
updated after each TextOut or
ExtTextOut function call.

The defaults are TA_LEFT, TA_TOP, and
TA_NOUPDATECP.

Return value The return value specifies the previous text alignment setting; the low­
order word contains the horizontal alignment, and the high-order word
contains the vertical alignment.

SetTextCharacterExtra

Syntax int SetTextCharacterExtra(hDC, nCharExtra)
function SetTextCharacterExtra(DC: HOC; CharExtra: Integer): Integer;

This function sets the amount of intercharacter spacing. GDI adds this
spacing to each character, including break characters, when it writes a line
of text to the device context.

Parameters hDC HOC Identifies the device context.

nCharExtra int Specifies the amount of extra space (in logical units) to be
added to each character. If the current mapping mode is not
MM_TEXT, the nCharExtra parameter is transformed and
rounded to the nearest pixel.

Return value The return value specifies the amount of the previous intercharacter
spacing.

SetTextColor

Syntax DWORD SetTextColor(hDC, crColor)
function SetTextColor(DC: HOC; Color: TColorRef): Longint;

This function sets the text color to the color specified by the crColor
parameter, or to the nearest physical color if the device cannot represent
the color specified by crColor. GDI uses the text color to draw the face of
each character written by the TextOut and ExtTextOut functions. GDI also
uses the text color when converting bitmaps from color to monochrome
and vice versa.

Chapter 4, Functions directory 523

SetTextColor

The background color for a character is specified by the SetBkColor and
SetBkMode functions. For color-bitmap conversions, see the BitBlt and
StretchBlt functions, earlier in this chapter.

Parameters hDC HOC Identifies the device context.

crColor COLORREF Specifies the color of the text.

Return value The return value specifies an RCB color value for the previous text color.

SetText Justification

524

Syntax int SetTextJustification(hDC, nBreakExtra, nBreakCount)
function SetTextJustification(DC: HDC; BreakExtra, BreakCount: Integer):
Integer;

This function prepares CDI to justify a line of text using the justification
parameters specified by the nBreakExtra and nBreakCount parameters. To
justify text, CDI distributes extra pixels among break characters in a text
line written by the TextOut function. The break character, used to delimit
words, is usually the space character (ASCII 32), but may be defined by a
font as some other character. The GetTextMetrics function can be used to
retrieve a font's break character.

The SetTextJustification function prepares the justification by defining
the amount of space to be added. The nBreakExtra parameter specifies the
total amount of space (in logical units) to be added to the line. The
nBreakCount parameter specifies how many break characters are in the
line. The subsequent TextOut function distributes the extra space evenly
between each break character in the line.

GetTextExtent is always used with the SetTextJustification function. The
GetTextExtent function computes the width of a given line before
justification. This width must be known before an appropriate nBreakExtra
value can be computed.

SetTextJustification can be used to justify a line that contains multiple
runs in different fonts. In this case, the line must be created piecemeal by
justifying and writing each run separately.

Because rounding errors can occur during justification, CDI keeps a
running error term that defines the current error. When justifying a line
that contains multiple runs, GetTextExtent automatically uses this error
term when it computes the extent of the next run, allowing TextOut to
blend the error into the new run. After each line has been justified, this
error term must be cleared to prevent it from being incorporated into the

Software development kit

Sen extJustificction

next line. The term can be cleared by calling SetTextJustification with
nBreakExtra set to zero.

Parameters hDC HDC Identifies the device context.

nBreakExtra int Specifies the total extra space (in logical units) to be
added to the line of text. If the current mapping mode is not
MM_TEXT, the value identified by the nBreakExtra
parameter is transformed and rounded to the nearest pixel.

nBreakCount int Specifies the number of break characters in the line.

Return value The return value specifies the outcome of the function. It is 1 if the
function is successful. Otherwise, it is zero.

SetTimer

Syntax WORD SetTimer(h Wnd, nIDEvent, wElapse, IpTimerFunc)
function SetTimer(Wnd: HWnd; IDEvent: Integer; Elapse: Word;
TimerFunc: TFarProc): Word;

Parameters

This function creates a system timer event. When a timer event occurs,
Windows passes a WM_TIMER message to the application-supplied
function specified by the lpTimerFunc parameter. The function can then
process the event. A NULL value for lpTimerFunc causes WM_TIMER
messages to be placed in the application queue.

h Wnd HWND Identifies the window to be associated with the timer.

nIDEvent

If hWnd is NULL, no window is associated with the timer.

int Specifies a nonzero timer-event identifier if the h Wnd
parameter is not NULL.

wElapse WORD Specifies the elapsed time (in milliseconds) between
timer events.

lpTimerFunc FARPROC Is the procedure-instance address of the function
to be notified when the timer event takes place. If
lpTimerFunc is NULL, the WM_TIMER message is placed in
the application queue, and the hwnd member of the MSG
structure contains the h Wnd parameter given in the SetTimer
function call. See the following "Comments" section for
details.

Return value The return value specifies the integer identifier for the new timer event. If
the h Wnd parameter is NULL, an application passes this value to the

Chapter 4, Functions directory 525

~
""!

."("",,;)','·,::,',,,:,;;:,1,'­~,:!

I

SetTimer

KiliTimer function to kill the timer event. The return value is zero if the
timer was not created.

Comments Timers are a limited global resource; therefore, it is important that an
application check the value returned by the SetTimer function to verify
that a timer is actually available.

Callback

To install a timer function, SetTimer must receive a procedure-instance
address of the function, and the function must be exported in the
application's module-definition file. A procedure-instance address can be
created using the MakeProclnstance function.

The callback function must use the Pascal calling convention and must be
declared FAR.

function WORD FAR PASCAL TimerFunc(hWnd, wMsg, nIDEvent, dwTime)
HWNDhWnd;
WORDwMsg;
int nIDEvent;
DWORD dwTime;

TimerFunc is a placeholder for the application-supplied function name.
The actual name must be exported by including it in an EXPORTS
statement in the application's module-definition file.

Parameters h Wnd

wMsg

nIDEvent

dwTime

Identifies the window associated with the timer event.

Specifies the WM_TIMER message.

Specifies the timer's 10.

Specifies the current system time.

SetViewportExt

526

Syntax DWORD SetViewportExt(hDC, X, Y)
function SetViewportExt(DC: HOC; X, Y: Integer): Longint;

This function sets the x- and y-extents of the viewport of the specified
device context. The viewport, along with the device-context window,
defines how GDI maps points in the logical coordinate system to points in
the coordinate system of the actual device. In other words, they define
how GDI converts logical coordinates into device coordinates.

Software development kit

SetViewportExt

The x- and y-extents of the viewport define how much GDI must stretch
or compress units in the logical coordinate system to fit units in the device
coordinate system. For example, if the x-extent of the window is 2 and the
x-extent of the viewport is 4, GDI maps two logical units (measured from
the x-axis) into four device units. Similarly, if the y-extent of the window
is 2 and the y-extent of the viewport is -1, GDI maps two logical units
(measured from the y-axis) into one device unit.

The extents also define the relative orientation of the x- and y-axes in both
coordinate systems. If the signs of matching window and viewport extents
are the same, the axes have the same orientation. If the signs are different,
the orientation is reversed. For example, if the y-extent of the window is 2
and the y-extent of the viewport is -1, GDI maps the positive y-axis in the
logical coordinate system to the negative y-axis in the device coordinate
system. If the x-extents are 2 and 4, GDI maps the positive x-axis in the
logical coordinate system to the positive x-axis in the device-coordinate
system.

Parameters hDC

x
y

HOC Identifies the device context.

int Specifies the x-extent of the viewport (in device units).

int Specifies the y-extent of the viewport (in device units).

Return value The return value specifies the previous extents of the viewport. The
previous y-extent is in the high-order word; the previous x-extent is in the
low-order word. When an error occurs, the return value is zero.

Comments When the following mapping modes are set, calls to the SetWindowExt
and SetViewportExt functions are ignored:

c MM_HIENGLISH
c MM_HIMETRIC
c MM_LOENGLISH
c MM_LOMETRIC
cMM_TEXT
cMM_TWIPS

When MM_ISOTROPIC mode is set, an application must call the
SetWindowExt function before it calls SetViewportExt.

SetViewportOrg

Syntax DWORD SetViewportOrg(hDC, X, Y)
function SetViewportOrg(DC: HDC; X, Y: Integer): Longint;

Chapter 4, Functions directory 527

SefViewporfOrg

This function sets the viewport origin of the specified device context. The
viewport, along with the device-context window, defines how GDI maps
points in the logical coordinate system to points in the coordinate system
of the actual device. In other words, they define how GOI converts logical
coordinates into device coordinates.

The viewport origin marks the point in the device coordinate system to
which GOI maps the window origin, a point in the logical coordinate
system specified by the SetWindowOrg function. GOI maps all other
points by following the same process required to map the window origin
to the viewport origin. For example, all points in a circle around the point
at the window origin will be in a circle around the point at the viewport
origin. Similarly, all points in a line that passes through the window origin
will be in a line that passes through the viewport origin.

Parameters hDC HOC Identifies the device context.

x int Specifies the x-coordinate (in device units) of the origin of
the viewport. The value must be within the range of the
device coordinate system.

Y int Specifies the y-coordinate (in device units) of the origin of
the viewport. The value must be within the range of the
device coordinate system.

Return value The return value specifies the previous origin of the viewport (in device
coordinates). The y-coordinate is in the high-order word; the x-coordinate
is in the low-order word.

SetVoiceAccent

528

Syntax int SetVoiceAccent(nVoice, nTempo, nVolume, nMode, nPitch)
function SetVoiceAccent(Voice, Tempo, Volume, Mode, Pitch: Integer):
Integer;

This function places an accent (tempo, volume, mode, and pitch) in the
voice queue specified by the n Voice parameter. The new accent replaces
the previous accent and remains in effect until another accent is queued.
An accent is not counted as a note.

An error occurs if there is insufficient room in the queue; the
SetVoiceAccent function always leaves space for a single sync mark in the
queue. If nVoice is out of range, the SetVoiceAccent function is ignored.

Parameters n Voice int Specifies a voice queue. The first voice queue is
numbered 1.

Software development kit

nTempo

nVolume

nMode

nPitch

SetVoiceAccent

int Specifies the number of quarter notes played per minute.
It can be any value from 32 to 255. The default is 120.

int Specifies the volume level. It can be any value from 0
(lowest volume) to 255 (highest).

int Specifies how the notes are to be played. It can be any
one of the following values:

Value
S_LEGATO

Meaning
Note is held for the full duration and
blended with the beginning of the next
note.

S_NORMAL Note is held for the full duration, coming
to a full stop before the next note starts.

S_STACCATO Note is held for only part of the duration,
creating a pronounced stop between it
and the next note.

int Specifies the pitch of the notes to be played. It can be any
value from 0 to 83. The pitch value is added to the note
value, using modulo 84 arithmetic.

Return value The return value specifies the result of the function. It is zero if the
function is successful. If an error occurs, the return value is one of the
following values:

Parameters S_SERDMD Invalid mode
S_SERDTP Invalid tempo
S_SERDVL Invalid volume
S_SERQFUL Queue full

SetVoiceEnvelope

Syntax int SetVoiceEnvelope(n Voice, nShape, nRepeat)
function SetVoiceEnvelope(Voice, Shape, RepeatCount: Integer): Integer;

This function queues the envelope (wave shape and repeat count) in the
voice queue specified by the n Voice parameter. The new envelope replaces
the previous one and remains in effect until the next SetVoiceEnvelope
function call. An envelope is not counted as a note.

An error occurs if there is insufficient room in the queue; the
SetVoiceEnvelope function always leaves space for a single sync mark in
the queue. If nVoice is out of range, SetVoiceEnvelope is ignored.

Parameters nVoice int Specifies the voice queue to receive the envelope.

Chapter 4, Functions directory 529

SetVoiceEnvelope

nShape

nRepeat

int Specifies an index to an OEM wave-shape table.

int Specifies the number of repetitions of the wave shape
during the duration of one note.

Return value The return value specifies the result of the function. It is zero if the
function is successful. If an error occurs, the return value is one of the
following values:

Value

S_SERDRC
S_SERDSH
S_SERQFUL

Meaning

Invalid repeat count
Invalid shape
Queue full

SetVoiceNote

530

Syntax int SetVoiceNote(nVoice, nValue, nLength, nCdots)
function SetVoiceNote(Voice, Value, Length, Cdots: Integer): Integer;

This function queues a note that has the qualities given by the nValue,
nLength, and nCdots parameters in the voice queue specified by the n Voice
parameter. An error occurs if there is insufficient room in the queue. The
function always leaves space in the queue for a single sync mark.

Parameters nVoice int Specifies the voice queue to receive the note. If nVoice is
out of range, the SetVoiceNote function is ignored.

nValue int Specifies 1 of 84 possible notes (seven octaves). If nValue
is zero, a rest is assumed.

nLength

nCdots

int Specifies the reciprocal of the duration of the note. For
example, 1 specifies a whole note, 2 a half note, 4 a quarter
note, and so on.

int Specifies the duration of the note in dots. The duration is
equal to nLength x (nCdots x 3/2).

Return value The return value specifies the result of the function. It is zero if the
function is successful. If an error occurs, the return value is one of the
following values:

Value

S_SERDCC
S_SERDLN
S_SERDNT
S_SERQFUL

Meaning

Invalid dot count
Invalid note length
Invalid note
Queue full

Software development kit

SetVoiceQueueSize

SetVoiceQueueSize

Syntax int SetVoiceQueueSize(n Voice, nBytes)
function SetVoiceQueueSize(Voice, Bytes: Integer): Integer;

This function allocates the number of bytes specified by the nBytes
parameter for the voice queue specified by the n Voice parameter. If the
queue size is not set, the default is 192 bytes, which is room for about 32
notes. All voice queues are locked in memory. The queues cannot be set
while music is playing.

Parameters n Voice int Specifies a voice queue.

nBytes int Specifies the number of bytes in the voice queue.

Return value The return value specifies the result of the function. It is zero if the
function is successful. If an error occurs, the return value is one of the
following values:

Value

S_SERMACT
S_SEROFM

SetVoiceSound

Meaning

Music active
Out of memory

Syntax int SetVoiceSound(n Voice, IFrequency, nDuration)
function SetVoiceSound(Voice: Longint; Frequency: Longint; Duration:
Integer): Integer;

This function queues the sound frequency and duration in the voice
queue specified by the n Voice parameter.

Parameters n Voice int Specifies a voice queue. The first voice queue is
numbered 1.

lFrequency long Specifies the frequency. The high-order word contains
the frequency in hertz, and the low-order word contains the
fractional frequency.

nDuration int Specifies the duration of the sound (in clock ticks).

Return value The return value specifies the result of the function. It is zero if the
function is successful. If an error occurs, the return value is one of the
following values:

Chapter 4, Functions directory 531

SetVoiceSound

Value

S_SERDDR
S_SERDFQ
S_SERDVL
S_SERQFUL

Meaning

Invalid duration
Invalid frequency
Invalid volume
Queue full

SetVoice Threshold

Syntax int SetVoiceThreshold(nVoice, nNotes)
function SetVoiceThreshold(Voice, Notes: Integer): Integer;

This function sets the threshold level for the given voice. When the
number of notes remaining in the voice queue goes below that specified in
the nNotes parameter, the threshold flag is set. If the queue level is below
that specified in nNotes when the SetVoiceThreshold function is called,
the flag is not set. The GetThresholdStatus function should be called to
verify the current threshold status.

Parameters n Voice

nNotes

int Specifies the voice queue to be set.

int Specifies the number of notes in the threshold level.

Return value The return value specifies the result of the function. It is zero if the
function is successful. It is 1 if the number of notes specified in nNotes is
out of range.

SetWindowExt

532

Syntax DWORD SetWindowExt(hDC, X, Y)
function SetWindowExt(DC: HDC; X, Y: Integer): Longint;

This function sets the x- and y-extents of the window associated with the
specified device context. The window, along with the device-context
viewport, defines how GDI maps points in the logical coordinate system
to points in the device coordinate system.

The x- and y-extents of the window define how much GDI must stretch or
compress units in the logical coordinate system to fit units in the device
coordinate system. For example, if the x-extent of the window is 2 and the
x-extent of the viewport is 4, GDI maps two logical units (measured from
the x-axis) into four device units. Similarly, if the y-extent of the window
is 2 and the y-extent of the viewport is -1, CDI maps two logical units
(measured from the y-axis) into one device unit.

Software development kit

SetWindowExt

The extents also define the relative orientation of the x- and y-axes in both
coordinate systems. If the signs of matching window and viewport extents
are the same, the axes have the same orientation. If the signs are different,
the orientation is reversed. For example, if the y-extent of the window is 2
and the y-extent of the viewport is -1, GDI maps the positive y-axis in the
logical coordinate system to the negative y-axis in the device coordinate
system. If the x-extents are 2 and 4, GDI maps the positive x-axis in the
logical coordinate system to the positive x-axis in the device coordinate
system.

Parameters hDC

x
y

HDC Identifies the device context.

int Specifies the x-extent (in logical units) of the window.

int Specifies the y-extent (in logical units) of the window.

Return value The return value specifies the previous extents of the window (in logical
units). The y-extent is in the high-order word; the x-extent is in the low­
order word. If an error occurs, the return value is zero.

Comments When the following mapping modes are set, calls to the SetWindowExt
and SetViewportExt functions are ignored:

c MM_HIENGLISH
c MM_HIMETRIC
c MM_LOENGLISH
c MM_LOMETRIC
cMM_TEXT
cMM_TWIPS

When MM_ISOTROPIC mode is set, an application must call the
SetWindowExt function before calling SetViewportExt.

SetWindowLong

Syntax LONG SetWindowLong(hWnd, nIndex, dwNewLong)
function SetWindowLong(Wnd: HWnd; Index: Integer; NewLong:
Longint): Longint;

This function changes an attribute of the window specified by the hWnd
parameter.

Parameters h Wnd

nlndex

Chapter 4, Functions directory

HWN D Identifies the window.

int Specifies the byte offset of the attribute to be changed. It
may also be one of the following values:

533

SefWindowLong

Value
GWL_EXSTYLE
GWL_STYLE
GWL_ WNDPROC

Meaning
Sets a new extended window style.
Sets a new window style.
Sets a new long pointer to the window
procedure.

dwNewLong DWORD Specifies the replacement value.

Return value The return value specifies the previous value of the specified long integer.

Comments If the SetWindowLong function and the GWL_ WNDPROC index are used
to set a new window function, that function must have the window­
function form and be exported in the module-definition file of the
application. For more information, see the RegisterClass function, earlier
in this chapter.

Calling SetWindowLong with the GCL_ WNDPROC index creates a
subclass of the window class used to create the window. See Chapter 1,
"Window manager interface functions," for more information on window
subclassing. An application should not attempt to create a window
subclass for standard Windows controls such as combo boxes and
buttons.

To access any extra four-byte values allocated when the window-class
structure was created, use a positive byte offset as the index specified by
the nlndex parameter, starting at zero for the first four-byte value in the
extra space, 4 for the next four-byte value and so on.

SetWindowOrg

534

Syntax DWORD SetWindowOrg(hDC, X, Y)
function SetWindowOrg(DC: HDC; X, Y: Integer): Longint;

This function sets the window origin of the specified device context. The
window, along with the device-context viewport, defines how GDI maps
points in the logical coordinate system to points in the device coordinate
system.

The window origin marks the point in the logical coordinate system from
which GDI maps the viewport origin, a point in the device coordinate
system specified by the SetWindowOrg function. GDI maps all other
points by following the same process required to map the window origin
to the viewport origin. For example, all points in a circle around the point
at the window origin will be in a circle around the point at the viewport

Software development kit

SetWindowOrg

origin. Similarly, all points in a line that passes through the window origin
will be in a line that passes through the viewport origin.

Parameters hDC HOC Identifies the device context.

x

y

int Specifies the logical x-coordinate of the new origin of the
window.

int Specifies the logical y-coordinate of the new origin of the
window.

Return value The return value specifies the previous origin of the window. The
previous y-coordinate is in the high-order word; the previous
x-coordinate is in the low-order word.

SetWindowPos

Syntax void SetWindowPos(hWnd, hWndInsertAfter, X, Y, cx, cy, wFlags)
procedure SetWindowPos(Wnd, WndInsertAfter: HWnd; X, Y, cx, cy:
Integer; Flags: Word)

This function changes the size, position, and ordering of child, pop-up,
and top-level windows. Child, pop-up, and top-level windows are
ordered according to their appearance on the screen; the window above
all other windows receives the highest rank, and it is the first window in
the list. This ordering is recorded in a window list.

Parameters h Wnd HWNO Identifies the window that will be positioned.

hWndlnsertAfter HWNO Identifies a window in the window-manager's
list that will precede the window identified by the

x

y

Chapter 4, Functions directory

h Wnd parameter. If the window identified by the h Wnd
parameter has the WS_ES_TOPMOST style and
h WndlnsertAfter is -1, the window is placed at the top
of the hierarchy of topmost windows and remains
above all non-topmost windows, even when inactive. If
the window has the WS_ES_TOPMOSTstyle and
hWndlnsertAfter is 1, the window is no longer treated as
a topmost window and is placed below all other
windows.

int Specifies the x-coordinate of the window's upper­
left corner.

int Specifies the y-coordinate of the window's upper­
left corner.

535

SetWindowPos

ex

ey

wFlags

int Specifies the new window's width.

int Specifies the new window's height.

WORD Specifies one of eight possible 16-bit values that
affect the sizing and positioning of the window. It must
be one of the following values:

Value Meaning
SWP _DRAWFRAME Draws a frame (defined in the

window's class description)
around the window.

SWP _HIDEWINDOW Hides the window.
SWP _NOACTIVATE Does not activate the window.
SWP_NOMOVE

SWP_NOSIZE

SWP _NOREDRA W
SWP _NOZORDER

Retains current position
(ignores the x and y
parameters) .
Retains current size (ignores
the ex and ey parameters).
Does not redraw changes.
Retains current ordering
(ignores the h WndlnsertAfter
parameter) .

SWP _SHOWWINDOW Displays the window.

Return value None.

Comments If the SWP _NOZORDER flag is not specified, Windows places the
window identified by the h Wnd parameter in the position following the
window identified by the h WndlnsertAfter parameter. If h WndlnsertAfter is
NULL, Windows places the window identified by h Wnd at the top of the
list. If h WndlnsertAfter is set to 1, Windows places the window identified
by h Wnd at the bottom of the list.

If the SWP _SHOWWINDOW or the SWP _HIDEWINDOW flags are set,
scrolling and moving cannot be done simultaneously.

All coordinates for child windows are relative to the upper-left corner of
the parent window's client area.

SetWindowsHook

Syntax FARPROC SetWindowsHook(nFilterType, IpFilter Func)
function SetWindowsHook(FilterType: Integer; FilterFunc: TFarProc):
TFarProc;

536 Software development kit

SefWindowsHook

This function installs a filter function in a chain. A filter function processes
events before they are sent to an application's message loop in the
WinMain function. A chain is a linked list of filter functions of the same
type.

Parameters nFilterType int Specifies the system hook to be installed. It can be any
one of the following values:

Meaning Value
WH_CALLWNDPROC Installs a window-function

filter.
WH_ GETMESSAGE
WH-10URNALPLAYBACK

Installs a message filter.
Installs a journaling
playback filter.

WH-10URNALRECORD Installs a journaling record
filter.

WH_KEYBOARD Installs a keyboard filter.
WH_MSGFILTER Installs a message filter.
WH_SYSMSGFIL TER Installs a system-wide

message filter.
IpFilterFunc FARPROC Is the procedure-instance address of the filter

function to be installed. See the following "Comments"
section for details.

Return value The return value points to the procedure-instance address of the
previously installed filter (if any). It is NULL if there is no previous filter.
The application or library that calls the SetWindowsHook function should
save this return value in the library's data segment. The fourth argument
of the DefHookProc function points to the location in memory where the
library saves this return value.

The return value is -1 if the function fails.

Comments The WH_ CALLWNDPROC hook will affect system performance. It is
supplied for debugging purposes only.

The system hooks are a shared resource. Installing a hook affects all
applications. Most hook functions must be in libraries. The only exception
is WH_MSGFILTER, which is task-specific. System hooks should be
restricted to special-purpose applications or as a development aid during
debugging of an application. Libraries that no longer need the hook
should remove the filter function.

To install a filter function, the SetWindowsHook function must receive a
procedure-instance address of the function, and the function must be
exported in the library's module-definition file. Libraries can pass the
procedure address directly. Tasks must use MakeProclnstance to get a

Chapter 4, Functions directory 537

SefWindowsHook

538

procedure-instance address. Dynamic-link libraries must use
GetProcAddress to get a procedure-instance address.

The following section describes how to support the individual hook
functions.

Windows calls the WH_CALLWNDPROC filter function whenever the
Send Message function is called. Windows does not call the filter function
when the PostMessage function is called.

The filter function must use the Pascal calling convention and must be
declared FAR. The filter function must have the following form:

Filter Function DWORD FAR PASCAL FilterFunc(nCode, wParam, IParam)
int nCode;
WORD wParam;
DWORD IParam;

FilterFunc is a placeholder for the application- or library-supplied function
name. The actual name must be exported by including it in an EXPORTS
statement in the library's module-definition file.

Parameters nCode Specifies whether the filter function should process the
message or call the DefHookProc function. If the nCode
parameter is less than zero, the filter function must pass the
message to DefHookProc without further processing and
return the value returned by DefHookProc.

wParam

IParam

Specifies whether the message is sent by the current task. It
is nonzero if the message is sent; otherwise, it is NULL.

Points to a data structure that contains details about the
message intercepted by the filter. The following shows the
order, type, and description of each field of the data
structure:

Field
hlParam

IIParam

Type/Description
WORD Contains the high­
order word of the IParam
parameter of the message
received by the filter.
WORD Contains the low­
order word of the IParam

Software development kit

wParam

wMsg

hWnd

SetWindowsHook

parameter of the message
received by the filter.
WORD Contains the
wParam parameter of the
message received by the
filter.
WORD Contains the
message received by the
filter.
WORD Contains the
window handle of the
window that is to receive
the message.

Comments The WH_ CALLWNDPROC filter function can examine or modify the
message as desired. Once it returns control to Windows, the message,
with any modifications, is passed on to the window function. The filter
function does not require a return value.

WH_GETMESSAGE

Windows calls the WH_GETMESSAGE filter function whenever the
GetMessage function is called. Windows calls the filter function
immediately after GetMessage has retrieved a message from an
application queue. The filter function must use the Pascal calling
convention and must be declared FAR. The filter function must have the
following form:

Filter Function DWORD FAR PASCAL FilterFunc(nCode, wParam, IParam)
int nCode;
WORD wParam;
DWORD IParam;

FilterFunc is a placeholder for the library-supplied function name. The
actual name must be exported by including it in an EXPORTS statement
in the library's module-definition file.

Parameters nCode Specifies whether the filter function should process the
message or call the DefHookProc function. If the nCode
parameter is less than zero, the filter function must pass the
message to DefHookProc without further processing and
return the value returned by DefHookProc.

Chapter 4, Functions directory 539

SefWindowsHook

wParam

IParam

Specifies a NULL value.

Points to a message structure.

Comments The WH_ GETMESSAGE filter function can examine or modify the
message as desired. Once it returns control to Windows, the GetMessage
function returns the message, with any modifications, to the application
that originally called it. The filter function does not require a return value.

WH_JOURNALPLAYBACK

Windows calls the WH-10URNALPLAYBACK filter function whenever a
request for an event message is made. The function is intended to be used
to supply a previously recorded event message.

The filter function must use the Pascal calling convention and must be
declared FAR. The filter function must have the following form:

Filter Function DWORD FAR PASCAL FilterFunc(nCode, wParam, IParam);
int nCode;
WORD wParam;
DWORD IParam;

FilterFunc is a placeholder for the library-supplied function name. The
actual name must be exported by including it in an EXPORTS statement
in the library's module-definition file.

Parameters nCode Specifies whether the filter function should process the
message or call the DefHookProc function. If the nCode
parameter is less than zero, the filter function must pass the
message to DefHookProc without further processing and
return the value returned by DefHookProc.

wParam Specifies a NULL value.

IParam Points to the message being processed by the filter function.

Comments The WH-10URNALPLAYBACK function should copy an event message
to the IParam parameter. The message must have been previously
recorded by using the WH-10URNALRECORD filter. It should not
modify the message. The return value should be the amount of time (in
clock ticks) Windows should wait before processing the message. This
time can be computed by calculating the difference between the time
fields in the current and previous event messages. If the function returns

540 Software development kit

SetWindowsHook

zero, the message is processed immediately. Once it returns control to
Windows, the message continues to be processed. If the nCode parameter
is HC_SKIP, the filter function should prepare to return the next recorded
event message on its next call.

While the WH---10URNALPLAYBACK function is in effect, Windows
ignores all mouse and keyboard input.

WH_JOURNALRECORD

Windows calls the WH---10URNALRECORD filter function whenever it
processes a message from the event queue. The filter can be used to record
the event for later playback.

The filter function must use the Pascal calling convention and must be
declared FAR. The filter function must have the following form:

Filter Function DWORD FAR PASCAL FilterFunc(nCode, wParam,IParam);
int nCode;
WORD wParam;
DWORD IParam;

FilterFunc is a placeholder for the library-supplied function name. The
actual name must be exported by including it in an EXPORTS statement
in the library'S module-definition file.

Parameters nCode Specifies whether the filter function should process the
message or call the DefHookProc function. If the nCode
parameter is less than zero, the filter function must pass the
message to DefHookProc without further processing and
return the value returned by DefHookProc.

wParam Specifies a NULL value.

IParam Points to a message structure.

Comments The WH---10URNALRECORD function should save a copy of the event
message for later playback. It should not modify the message. Once it
returns control to Windows, the message continues to be processed. The
filter function does not require a return value.

Chapter 4, Functions directory 541

SetWindowsHook

542

Windows calls the WH_KEYBOARD filter function whenever the
application calls the GetMessage or PeekMessage function and there is a
keyboard event (WM_KEYUP or WM_KEYDOWN) to process.

The filter function must use the Pascal calling convention and must be
declared FAR. The filter function must have the following form:

Filter Function DWORD FAR PASCAL FilterFunc(nCode, wParam, IParam)
int nCode;
WORD wParam;
DWORD IParam;

FilterFunc is a placeholder for the library-supplied function name. The
actual name must be exported by including it in an EXPORTS statement
in the library'S module-definition file.

Parameters nCode Specifies whether the filter function should process the
message or call the DefHookProc function. If this value is
HC_NOREMOVE, the application is using the PeekMessage
function with the PM_NOREMOVE option and the message
will not be removed from the system queue. If the nCode
parameter is less than zero, the filter function must pass the
message to DefHookProc without further processing and
return the value returned by DefHookProc.

wParam

IParam

Specifies the virtual-key code of the given key.

Specifies the repeat count, scan code, key-transition code,
previous key state, and context code, as shown in the
following list. Bit 1 is the low-order bit:

Bit Value
0-15 (low-order word) Repeat count (the number of times

the keystroke is repeated as a result

16-23 (low byte of
high-order word)
241

25-26
27-28
30

of the user holding down the key).
Scan code (OEM-dependent value).

Extended key (1 if it is an extended
key).
Not used.
Used internally by Windows.
Previous key state (1 if the key was
held down before the message was
sent, 0 if the key was up).

Software development kit

SefWindowsHook

31 Transition state (1 if the key is being
released, 0 if the key is being
pressed).

1 (Context code (1 if the ALT key was held down while the key was pressed, 0 otherwise)

Return value The return value specifies what should happen to the message. It is zero if
the message should be processed by Windows; it is 1 if the message
should be discarded.

Windows calls the WH_MSGFILTER filter function whenever a dialog
box, message box, or menu has retrieved a message, and before it has
processed that message. The filter allows an application to process or
modify the messages.

bD> This is the only task-specific filter. A task may install this filter.

The WH_MSGFILTER filter function must use the Pascal calling
convention and must be declared FAR. The filter function must have the
following form:

Filter Function DWORD FAR PASCAL FilterFunc(nCode, wParam, IParam)
int nCode;
WORD wParam;
DWORD IParam;

FilterFunc is a placeholder for the library- or application-supplied function
name. The actual name must be exported by including it in an EXPORTS
statement in the application's module-definition file.

Parameters nCode Specifies the type of message being processed. It must be
one of the following values:

wParam

Chapter 4, Functions directory

Value Meaning
MSGF _DIALOG BOX Processing messages inside a

dialog-box or message-box function.
MSGF _MENU Processing keyboard and mouse

messages in a menu.
If the nCode parameter is less than zero, the filter function
must pass the message to DefHookProc without further
processing and return the value returned by DefHookProc.

Specifies a NULL value.

543

SefWindowsHook

IParam Points to the message structure.

Return value The return value specifies the outcome of the function. It is nonzero if the
hook function processes the message. Otherwise, it is zero.

WH_SYSMSGFILTER

Windows calls the WH_SYSMSGFILTER filter function whenever a dialog
box, message box, or menu has retrieved a message and before it has
processed that message. The filter allows an application to process or
modify messages for any application in the system.

The filter function must use the Pascal calling convention and must be
declared FAR. The filter function must have the following form:

Filter Function DWORD FAR PASCAL FilterFunc(nCode, wParam, IParam)
int nCode;
WORD wParam;
DWORD IParam;

FilterFunc is a placeholder for the library-supplied function name. The
actual name must be exported by including it in an EXPORTS statement
in the library'S module-definition file.

Parameters nCode Specifies the type of message being processed. It must be
one of the following values:

wParam

IParam

Value Meaning
MSGF _DIALOGBOX Processing messages inside the

DialogBox function.
MSGF _MENU Processing keyboard and mouse

messages in menu.
MSGF _MESSAGEBOX Processing messages inside the

MessageBox function.
If the nCode parameter is less than zero, the filter function
must pass the message to DefHookProc without further
processing and return the value returned by DefHookProc.

Specifies a NULL value.

Points to the message structure.

Return value The return value specifies the outcome of the function. It is nonzero if the
hook function processes the message. Otherwise, it is zero.

544 Software development kit

SetWindowText

SetWindowT ext

Syntax void SetWindowText(hWnd, IpString)
procedure SetWindowText(Wnd: HWnd; Str: PChar);

This function sets the given window's caption title (if one exists) to the
string pointed to by the IpString parameter. If the h Wnd parameter is a
handle to a control, the SetWindowText function sets the text within the
control instead of within the caption.

Parameters hWnd HWND Identifies the window or control whose text is to be
changed.

IpString

Return value None.

SetWindowWord

LPSTR Points to a null-terminated character string.

Syntax WORD SetWindowWord(hWnd, nIndex, wNewWord)
function SetWindowWord(Wnd: HWnd; Index: Integer; NewWord:
Word): Word;

This function changes an attribute of the window specified by the h Wnd
parameter.

Parameters h Wnd

nlndex

HWND Identifies the window to be modified.

int Specifies the byte offset of the word to be changed. It can
also be one of the following values:

Value Meaning
GWW _HINSTANCE Instance handle of the module that

owns the window.
Control ID of the child window.

wNewWord WORD Specifies the replacement value.

Return value The return value specifies the previous value of the specified word.

Comments To access any extra two-byte values allocated when the window-class
structure was created, use a positive byte offset as the index specified by
the nlndex parameter, starting at zero for the first two-byte value in the
extra space, 2 for the next two-byte value and so on.

Chapter 4, Functions directory 545

ShowCaret

ShowCaret

Syntax void ShowCaret(h Wnd)
procedure ShowCaret(Wnd: HWnd);

This function shows the caret on the display at the caret's current position.
Once shown, the caret begins flashing automatically.

The ShowCaret function shows the caret only if it has a current shape and
has not been hidden two or more times in a row. If the caret is not owned
by the given window, the caret is not shown. If the h Wnd parameter is
NULL, the SetCaret function shows the caret only if it is owned by a
window in the current task.

Hiding the caret is accumulative. If the HideCaret function has been called
five times in a row, ShowCaret must be called five times to show the caret.

Parameters h Wnd HWND Identifies the window that owns the caret, or is
NULL to specify indirectly the owner window in the current
task.

Return value None.

Comments The caret is a shared resource. A window should show the caret only
when it has the input focus or is active.

ShowCursor

Syntax int ShowCursor(bShow)
function ShowCursor(Show: Bool): Integer;

This function shows or hides the cursor. The ShowCursor function
actually sets an internal display counter that determines whether the
cursor should be displayed. If the bShow parameter is nonzero,
ShowCursor adds one to the display count. If bShow is zero, the display
count is decreased by one. The cursor is displayed only if the display
count is greater than or equal to zero. Initially, the display count is zero if
a mouse is installed. Otherwise, it is -1.

Parameteis bShow BOOl Specifies whether the display count is to be increased
or decreased. The display count is increased if bShow is
nonzero. Otherwise, it is decreased.

Return value The return value specifies the new display count.

546 Software development kit

ShowCursor

Comments The cursor is a shared resource. A window that hides the cursor should
show the cursor before the cursor leaves its client area, or before the
window relinquishes control to another window.

ShowOwnedPopups

Syntax void ShowOwnedPopups(h Wnd, fShow)
procedure ShowOwnedPopups(Wnd: HWnd; Show: Bool);

This function shows or hides all pop-up windows that are associated with
the h Wnd parameter. If the fShow parameter is nonzero, all hidden pop-up
windows are shown; if fShow is zero, all visible pop-up windows are
hidden.

Parameters h Wnd HWND Identifies the window that owns the pop-up
windows that are to be shown or hidden.

fShow Baal Specifies whether or not pop-up windows are hidden.
It is nonzero if all hidden pop-up windows should be
shown; it is zero if all visible pop-up windows should be
hidden.

Return value None.

ShowScroliBar

Syntax void ShowScrollBar(hWnd, wBar, bShow)
procedure ShowScrollBar(Wnd: HWnd; Bar: Word; Show: Bool);

This function displays or hides a scroll bar, depending on the value of the
bShow parameter. If bShow is nonzero, the scroll bar is displayed; if bShow
is zero, the scroll bar is hidden.

Parameters h Wnd

wBar

Chapter 4, Functions directory

HWND Identifies a window that contains a scroll bar in its
nonclient area if the wBar parameter is SB_HORZ, SB_ VERT,
or SB_BOTH. If wBar is SB_CTL, hWnd identifies a scroll-bar
control.

WORD Specifies whether the scroll bar is a control or part of
a window's nonclient area. If it is part of the nonclient area,
wBar also indicates whether the scroll bar is positioned
horizontally, vertically, or both. It must be one of the
following values:

547

ShowScroliBar

bShow

Return value None.

Meaning
Specifies the window's horizontal and
vertical scroll bars.

SB_CTL Specifies that the scroll bar is a control.
SB_HORZ Specifies the window's horizontal scroll bar.
SB _ VERT Specifies the window's vertical scroll bar.

BOOl Specifies whether or not Windows hides the scroll
bar. If bShow is zero, the scroll bar is hidden. Otherwise, the
scroll bar is displayed.

Comments An application should not call this function to hide a scroll bar while
processing a scroll-bar notification message.

ShowWindow

548

Syntax BOOL ShowWindow(h Wnd, nCmdShow)
function ShowWindowCWnd: HWnd; CmdShow: Integer): Bool;

This function displays or removes the given window, as specified by the
nCmdShow parameter.

Parameters h Wnd HWND Identifies the window.

nCmdShow int Specifies how the window is to be shown. It must be one
of the values shown in Table 4.18, "Window states."

Return value The return value specifies the previous state of the window. It is nonzero
if the window was previously visible. It is zero if the window was
previously hidden.

Comments The ShowWindow function must be called only once per program with
the nCmdShow parameter from the WinMain function. Subsequent calls to
ShowWindow must use one of the values listed above, instead of one
specified by the nCmdShow parameter from the WinMain function. Table
4.18 lists the values for the nCmdShow parameter:

Table 4.18
Window states Value

SW_HIDE

SW _MINIMIZE

Meaning

Hides the window and passes activation to
another window.
Minimizes the specified window and activates
the top-level window in the window-manager's
list.
Same as SW _SHOWNORMAL.

Software development kit

ShowWindow

Table 4.18: Window states (continued)

SW_SHOW

SW _SHOWMAXIMIZED

SW _SHOW MINIMIZED
SW _SHOWMINNOACTIVE

SW_SHOWNA

SW _SHOWNOACTIV ATE

SW _SHOWNORMAL

Activates a window and displays it in its current
size and position.
Activates the window and displays it as a
maximized window.
Activates the window and displays it as iconic.
Displays the window as iconic. The window that
is currently active remains active.
Displays the window in its current state. The
window that is currently active remains active.
Displays a window in its most recent size and
position. The window that is currently active
remains active.
Activates and displays a window. If the window
is minimized or maximized, Windows restores it
to its original size and position.

SizeofResource

Syntax WORD SizeofResource(hInstance, hResInfo)
function SizeofResource(Instance, ResInfo: THandle): Word;

This function supplies the size (in bytes) of the specified resource. It is
typically used with the AccessResource function to prepare memory to
receive a resource from the file.

Parameters hlnstance HANDLE Identifies the instance of the module whose
executable file contains the resource.

hReslnfo HANDLE Identifies the desired resource. This handle is
assumed to have been created by using the FindResource
function.

Return value The return value specifies the number of bytes in the resource. It is zero if
the resource cannot be found.

Comments The value returned may be larger than the actual resource due to
alignment. An application should not rely upon this value for the exact
size of a resource.

StartSound

Syntax intStartSound()
function StartSound: Integer;

Chapter 4, Functions directory 549

StarfSound

This function starts play in each voice queue. It is not destructive, so it
may be called any number of times to replay the current queues.

Parameters None.

Return value Although the return-value type is integer, its contents should be ignored.

StopSound

Syntax int StopSound()
function StopSound: Integer;

This function stops playing all voice queues, then flushes the contents of
the queues. The sound driver for each voice is turned off.

Parameters None.

Return value Although the return-value type is integer, its contents should be ignored.

StretchBlt

Syntax
StretchBlt creates a

mirror image of a
bitmap if the signs

of the nSrcWidth
and nWidth or

nSrcHeight and
nHeight parameters

differ. If nSrcWidth
and nWidth have

different signs, it
creates a mirror

image of the bit-
map along the x­
axis. If nSrcHeight

and nHeight have
different signs, it
creates a mirror

image of the bit­
map along the y­

axis.

BOOLStretchBlt(hDestDC, X, Y, n Width, nHeight, hSrcDC, XSrc, YSrc,
nSrcWidth, nSrcHeight, dwRop)
function StretchBlt(DestDC: HDC; X, Y, Width, Height: Integer; SrcDC:
HDC; XSrc, YSrc, SrcWidth, SrcHeight: Integer; Rop: Longint): Bool;

This function moves a bitmap from a source into a destination rectangle,
stretching or compressing the bitmap if necessary to fit the dimensions of
the destination rectangle. The StretchBlt function uses the stretching
mode of the destination device context (set by the SetStretchBltMode
function) to determine how to stretch or compress the bitmap. StretchBlt
moves the bitmap from the source device given by the hSrcDC parameter
to the destination device given by the hDestDC parameter. The XSrc, YSrc,
nSrc Width, and nSrcHeight parameters define the origin and dimensions of
the source rectangle. The X, Y, n Width, and nHeight parameters give the
origin and dimensions of the destination rectangle. The raster operation
specified by the dwRop parameter defines how the source bitmap and the
bits already on the destination device are combined.

Parameters hDestDC HOC Identifies the device context to receive the bitmap.
X

Y

550

int Specifies the logical x-coordinate of the upper-left corner
of the destination rectangle.
int Specifies the logical y-coordinate of the upper-left corner
of the destination rectangle.

Software development kit

Stretch Bit

n Width int Specifies width (in logical units) of destination rectangle.
nHeight int Specifies height (in logical units) of destination rectangle.
hSrcDC HOC Identifies device context containing source bitmap.
XSrc int Specifies the logical x-coordinate of the upper-left corner

of the source rectangle.
YSrc int Specifies the logical y-coordinate of the upper-left corner

of the source rectangle.
nSrc Width int Specifies width (logical units) of source rectangle.
nSrcHeight int Specifies height (logical units) of source rectangle.
dwRop OWORO Specifies the raster operation to be performed.

Raster operation codes define how CDI combines colors in
output operations that involve a current brush, a possible
source bitmap, and a destination bitmap. For a list of raster­
operation codes, see the BitBlt function.

Return value The return value specifies whether the bitmap is drawn. It is nonzero if
the bitmap is drawn. Otherwise, it is zero.

Comments StretchBlt stretches or compresses the source bitmap in memory, then
copies the result to the destination. If a pattern is to be merged with the
result, it is not merged until the stretched source bitmap is copied to the
destination.

If a brush is used, it is the selected brush in the destination device context.

The destination coordinates are transformed according to the destination
device context; the source coordinates are transformed according to the
source device context.

If destination, source, and pattern bitmaps do not have the same color
format, StretchBlt converts the source and pattern bitmaps to match the
destination bitmaps. The foreground and background colors of the
destination are used in the conversion.

If StretchBlt must convert a monochrome bitmap to color, it sets white
bits 0) to background color and black bits (0) to foreground color. To
convert color to monochrome, it sets pixels that match the background
color to white 0), and sets all other pixels to black (0). The foreground
and background colors of the device context with color are used.

Not all devices support the StretchBlt function. For more information, see
the RC_BITBLT capability in the GetOeviceCaps function, earlier in this
chapter.

Chapter 4, Functions directory 551

StretchDIBits

StretchDIBits 3.0

552

Syntax WORD StretchDIBits(hDC, DestX, DestY, wDestWidth, wDestHeight,
SrcX, SrcY, wSrcWidth, wSrcHeight, lpBits, lpBitsInfo, wUsage, dwRop)
function StretchDIBits(DC: HDC; DestX, DestY, DestWidth, DestHeight,
SrcX, SrcY, SrcWidth, SrcHeight: Word; Bits: Pointer; var BitsInfo:
TBitmapInfo; Usage: Word; Rop: Longint): Integer;

This function moves a device-independent bitmap (DIB) from a source
rectangle into a destination rectangle, stretching or compressing the
bitmap if necessary to fit the dimensions of the destination rectangle. The
StretchDIBits function uses the stretching mode of the destination device
context (set by the SetStretchBltMode function) to determine how to
stretch or compress the bitmap.

StretchDIBits moves the bitmap from the device-independent bitmap
specified by the lpBits, lpBitslnfo, and wUsage parameters to the destination
device specified by the hDC parameter. The XSrc, YSrc, wSrcWidth, and
wSrcHeight parameters define the origin and dimensions of the source
rectangle. The origin of coordinate system of the device-independent
bitmap is the lower-left corner. The DestX, DestY, wDest Width, and
wDestHeight parameters give the origin and dimensions of the destination
rectangle. The origin of the coordinates of the destination depends on the
current mapping mode of the device context. See the SetMapMode
function earlier in this chapter for more information on mapping modes.

The raster operation specified by the dwRop parameter defines how the
source bitmap and the bits already on the destination device are
combined.

StretchDIBits creates a mirror image of a bitmap if the signs of the
wSrcWidth and wDestWidth or wSrcHeight and wDestHeight parameters
differ. If wSrc Width and n Width have different signs, the function creates a
mirror image of the bitmap along the x-axis. If wSrcHeight and nHeight
have different signs, the function creates a mirror image of the bitmap
along the y-axis.

Parameters hDC

DestX

DestY

HDC Identifies the destination device context for a display
surface or memory bitmap.

WORD Specifies the x-coordinate (in logical units) of the
origin of the destination rectangle.

WORD Specifies the y-coordinate (in logical units) of the
origin of the destination rectangle.

Software development kit

StretchDIBits

wDest Width WORD Specifies the x-extent (in logical units) of the
destination rectangle.

wDestHeight WORD Specifies the y-extent (in logical units) of the
destination rectangle.

SrcX WORD Specifies the x-coordinate (in pixels) of the source in
the DIB.

SrcY WORD Specifies the y-coordinate (in pixels) of the source in
the DIB.

wSrc Width WORD Specifies the width (in pixels) of the source rectangle
in the DIB.

wSrcHeight WORD Specifies the height (in pixels) of the source rectangle
in the DIB.

IpBits LPSTR Points to the DIB bits that are stored as an array of
bytes.

IpBitslnfo LPBITMAPINFO Points to a BITMAPINFO data structure that
contains information about the DIB.

wUsage

dwRop

WORD Specifies whether the bmiColors[] fields of the
IpBitslnfo parameter contain explicit RGB values or indexes
into the currently realized logical palette. The wUsage
parameter must be one of the following values:

Value Meaning
DIB_PAL_COLORS The color table consists of an array

of 16-bit indexes into the currently
realized logical palette.

DIB_RGB_COLORS The color table contains literal RGB
values.

DWORD Specifies the raster operation to be performed.
Raster operation codes define how GDI combines colors in
output operations that involve a current brush, a possible
source bitmap, and a destination bitmap. For a list of raster­
operation codes, see the BitBlt function, earlier in this
chapter. For a complete list of the operations, see Chapter II,
"Binary and ternary raster-operation codes," in Reference,
Volume 2.

Return value The return value is the number of scan lines copied.

Chapter 4, Functions directory 553

StretchDIBits

Comments This function also accepts a device-independent bitmap specification
formatted for Microsoft OS/2 Presentation Manager versions 1.1 and 1.2 if
the IpBitslnfo parameter points to a BITMAPCOREINFO data structure.

SwapMouseButton

Syntax BaaL SwapMouseButton(bSwap)
function SwapMouseButton(Swap: Bool): Bool;

This function reverses the meaning of left and right mouse buttons. If the
bSwap parameter is TRUE, the left button generates right-button mouse
messages and the right button generates left-button messages. If bSwap is
FALSE, the buttons are restored to their original meaning.

Parameters bSwap BOOl Specifies whether the button meanings are reversed
or restored.

Return value The return value specifies the outcome of the function. It is TRUE if the
fuction reversed the meaning of the mouse buttons. Otherwise, it is
FALSE.

Comments Button swapping is provided as a convenience to people who use the
mouse with their left hands. The SwapMouseButton function is usually
called by the control panel only. Although applications are free to call the
function, the mouse is a shared resource and reversing the meaning of the
mouse button affects all applications.

SwapRecording 3.0

554

Syntax void SwapRecording(wFlag)
procedure SwapRecording(Flag: Word);

When running Microsoft Windows Swap, this function begins or ends
analyzing swapping behavior. For more information on Swap, see Tools.

Parameters wFlag WORD Specifies whether Swap is to start or stop analyzing
swapping behavior. The following are acceptable values:

Value Meaning
o Specifies that Swap stop analyzing.
1 Record swap calls, discard swap returns.
2 Same as I, plus calls through thunks. This

option records a large amount of data.

Software development kit

SwapRecording

Return value None.

SwitchStackBack 3.0

Syntax void SwitchStackBack()
proced ure SwitchStackBack;

This function returns the stack of the current task to the task's data
segment after it had been previously redirected by the SwitchTasksBack
function.

Parameters None.

Return value None.

Comments This function preserves the contents of the AX:DX register when it
returns.

SwitchStackTo 3.0

Syntax void SwitchStackTo(wStackSegment, wStackPointer, wStackTop)
procedure SwitchStackTo(StackSegment, StackPointer, StackTop: Word);

This function changes the stack of the current task to the segment
identified by the wStackSegment parameter.

Dynamic-link libraries (DLLs) do not have a stack; instead, a DLL uses the
stack of the task which calls the library. As a result, DLL functions that
assume that the contents of the code-segment (CS) and stack-segment (SS)
registers are the same will fail. The SwitchStackTo function redirects the
stack of the task to the data segment of a DLL, permitting the DLL to call
these functions. SwitchStackTo copies the arguments on the stack of the
task to the new stack location.

Parameters wStackSegment

wStackPointer

wStackTop

Return value None.

Chapter 4, Functions directory

WORD Specifies the data segment which is to contain
the stack.

WORD Specifies the offset of the beginning of the stack
in the data segment.

WORD Specifies the offset of the top of the stack from
the beginning of the stack.

555

SwitchStackTo

Comments A task can call SwitchStackTo before calling a function in a DLL that
assumes the CS and DS regis teres are equal. When the DLL function
returns, the task must then call SwitchStackBack to redirect its stack to its
own data segment.

SyncAIiVoices

A DLL can also call SwitchStackTo before calling a routine that assumes
CS and DS are equal and then call SwitchStackBack before returning to
the task that called the DLL function.

Calls to SwitchStackTo and SwitchStackBack cannot be nested. That is,
after calling SwitchStackTo, a program must call SwitchStackBack before
calling SwitchStackTo again.

Syntax int SyncAllVoices()
function SyncAllVoices: Integer;

This function queues a sync mark in each queue. Upon encountering a
sync mark in a voice queue, the voice is turned off until sync marks are
encountered in all other queues. This forces synchronization among all
voices.

Parameters None.

Return value The return value specifies the result of the function. It is zero if the
function is successful. If a voice queue is full, the return value is
S_SERQFUL.

556 Software development kit

TabbedTextOut

TabbedTextOut 3.0

Syntax long TabbedTextOut(hDC, X, Y lpString, nCount, nTabPositions,
lpnTabStopPositions, nTabOrigin)
function TabbedTextOut(DC: HDC; X, Y: Integer; Str: PChar; Count,
TabPositions: Integer; var TabStopPositions; TabOrigin: Integer): Longint;

This function writes a character string on the specified display, using the
currently selected font and expanding tabs to the columns specified in the
IpnTabStopPositions field.

Parameters hDC

x

y

IpString

nCount

HOC Identifies the device context.

int Specifies the logical x-coordinate of the starting point of
the string.

int Specifies the logical y-coordinate of the starting point of
the string.

LPSTR Points to the character string that is to be drawn.

int Specifies the number of characters in the string.

nTabPositions int Specifies the number of tab-stop positions in the array to
which the IpnTabStopPositions points.

IpnTabStopPositions
LPINT Points to an array of integers containing the tab-stop
positions in pixels. The tab stops must be sorted in
increasing order; back tabs are not allowed.

nTabOrigin int Specifies the logical x-coordinate of the starting position
from which tabs are expanded.

Return value The return value specifies the dimensions of the string. The height is in
the high-order word; the width is in the low-order word.

Comments If the nTabPositions parameter is zero the the IpnTabStopPositions
parameter is NULL, tabs are expanded to eight average character widths.

If nTabPositions is I, the tab stops will be separated by the distance
specified by the first value in the array to which IpnTabStopPositions
points.

If IpnTabStopPositions points to more than a single value, then a tab stop is
set for each value in the array, up to the number specified by
nTabPositions.

Chapter 4, Functions directory 557

TabbedTextOut

TextOut

The nTabOrigin parameter allows an application to call the
TabbedTextOut function several times for a single line. If the application
calls TabbedTextOut more than once with the nTabOrigin set to the same
value each time, the function expands all tabs relative to the position
specified by nTabOrigin.

Syntax BaaL TextOut(hDC, X, Y,lpString, nCount)
function TextOut(DC: HDC; X, Y: Integer; Str: PChar; Count: Integer):
Bool;

This function writes a character string on the specified display, using the
currently selected font. The starting position of the string is given by the X
and Y parameters.

Parameters hDC H DC Identifies the device context.

X

Y

IpString

nCount

int Specifies the logical x-coordinate of the starting point of
the string.

int Specifies the logical y-coordinate of the starting point of
the string.

LPSTR Points to the character string that is to be drawn.

int Specifies the number of characters in the string.

Return value The return value specifies whether or not the string is drawn. It is nonzero
if the string is drawn. Otherwise, it is zero.

Comments Character origins are defined to be at the upper-left corner of the character
cell.

Throw

By default, the current position is not used or updated by this function.
However, an application can call the SetTextAlign function with the
wFlags parameter set to TA_UPDATECP to permit Windows to use and
update the current position each time the application calls TextOut for a
given device context. When this flag is set, Windows ignores the X and Y
parameters on subsequent TextOut calls.

Syntax void Throw{lpCatchBuf, nThrowBack)
procedure Throw(var CatchBuf: TCatchBuf; ThrowBack: Integer);

558 Software development kit

Throw

This function restores the execution environment to the values saved in
the buffer pointed to by the IpCatchBuf parameter. The execution
environment is the state of all system registers and the instruction counter.
Execution continues at the Catch function that copied the environment
pointed to by IpCatchBuf. The nThrowBack parameter is passed as the
return value to the Catch function. It can be a nonzero value.

Parameters IpCatchBuf LPCATCHBUF Points to an array that contains the execution
environment.

nThrowBack int Specifies the value to be returned to the Catch function.

Return value None.

Comments The Throw function is similar to the C run-time LongJmp function (which
is incompatible with the Windows environment).

ToAscii 3.0

Syntax int ToAscii(wVirtKey, wScanCode, lpKeyState, lpChar, wFlags)
function ToAscii(VirtKey, ScanCode: Word; KeyState: PChar; Char:
Pointer; Flags: Word): Integer;

This function translates the virtual-key code specified by the wVirtKey
parameter and the current keyboard state specified by the IpKeyState
parameter to the corresponding ANSI character or characters.

Parameters wVirtKey WORD Specifies the virtual-key code to be translated.

wScanCode WORD Specifies the "hardware" raw scan code of the key to
be translated. The high-order bit of this value is set if the key
is up.

IpKeyState LPSTR Points to an array of 256 bytes, each of which
contains the state of one key. If the high-order bit of the byte
is set the key is down.

IpChar LPVOID Points to a 32-bit buffer which receives the
translated ANSI character or characters.

wFlags WORD The bit a flag's menu display.

Return value The return value specifies the number of characters copied to the buffer
identified by the IpChar parameter. The return value is negative if the key
was a dead key. Otherwise, it is one of the following values:

Chapter 4, Functions directory 559

ToAscii

Parameters 2

1

o

Two characters were copied to the buffer. This is usually an
accent and a dead-key character, when the dead key cannot
be translated otherwise.

One ANSI character was copied to the buffer.

The specified virtual key has no translation for the current
state of the keyboard.

Comments The parameters supplied to the ToAscii function might not be sufficient to
translate the virtual-key code because a previous dead key is stored in the
keyboard driver.

Typically, ToAscii performs the translation based on the virtual-key code.
In some cases, however, the wScanCode parameter may be used to
distinguish between a key depression or a key release. The scan code is
used for translating ALT +NUMBER key combinations.

TrackPopupMenu 3.0

560

Syntax BOOL TrackPopupMenu(hMenu, wFlags, x, y, nReserved, h Wnd,
IpReserved)
function TrackPopupMenu(Menu: HMenu; Flags: Word; x, y, Reserved:
Integer; Wnd: HWnd; Rect: PRect): Bool;

This function displays a "floating" pop-up menu at the specified location
and tracks the selection of items on the pop-up menu. A floating pop-up
menu can appear anywhere on the screen. The hMenu parameter specifies
the handle of the menu to be displayed; the application obtains this
handle by calling CreatePopupMenu to create a new pop-up menu or by
calling GetSubMenu to retrieve the handle of a pop-up menu associated
with an existing menu item.

Windows sends messages generated by the menu to the window
identified by the h Wnd parameter.

Parameters hMenu HMENU Identifies the pop-up menu to be displayed.

wFlags

x

WORD Specifies the mouse button that selects items on the
menu. If wFlags is set to TPl\1_RIGHTBUTTON, the right
mouse button selects items on the menu. Otherwise, the left
button selects items on the menu.
int Specifies the horizontal position in screen coordinates of
the left side of the menu on the screen.

Software development kit

TrackPopupMenu

y int Specifies the vertical position in screen coordinates of the
top of the menu on the screen.

nReserved int Is reserved and must be set to zero.

hWnd HWND Identifies the window which owns the pop-up menu.
This window receives all WM_ COMMAND messages from
the menu.

lpReserved LPVOID Is reserved and must be set to NULL.

Return value The return value specifies the outcome of the function. It is TRUE if the
function is successful. Otherwise, it is FALSE.

TranslateAccelerator

Syntax int TranslateAccelerator(h Wnd, hAccTable, lpMsg)
function TranslateAccelerator(Wnd: HWnd; AccTable: THandle; var Msg:
TMsg): Integer;

This function processes keyboard accelerators for menu commands. The
TranslateAccelerator function translates WM_KEYUP and
WM_KEYDOWN messages to WM_COMMAND or
WM_SYSCOMMAND messages, if there is an entry for the key in the
application's accelerator table. The high-order word of the lParam
parameter of the WM_COMMAND or WM_SYSCOMMAND message
contains the value 1 to differentiate the message from messages sent by
menus or controls.

WM_ COMMAND or WM_SYSCOMMAND messages are sent directly to
the window, rather than being posted to the application queue. The
TranslateAccelerator function does not return until the message is
processed.

Accelerator key strokes that are defined to select items from the system
menu are translated into WM_SYSCOMMAND messages; all other
accelerators are translated into WM_COMMAND messages.

Parameters h Wnd

hAccTable

IpMsg

Chapter 4, Functions directory

HWND Identifies the window whose messages are to be
translated.

HANDLE Identifies an accelerator table (loaded by using the
LoadAccelerators function).

LPMSG Points to a message retrieved by using the
GetMessage or PeekMessage function. The message must

561

TranslateAccelerator

be an MSG data structure and contain message information
from the Windows application queue.

Return value The return value specifies the outcome of the function. It is nonzero if
translation occurs. Otherwise, it is zero.

Comments When TranslateAccelerator returns nonzero (meaning that the message is
translated), the application should not process the message again by using
the TranslateMessage function.

Commands in accelerator tables do not have to correspond to menu items.

If the accelerator command does correspond to a menu item, the
application is sent WM_INITMENU and WM_INITMENUPOPUP
messages, just as if the user were trying to display the menu. However,
these messages are not sent if any of the following conditions are present:

• The window is disabled.
• The menu item is disabled.
• The command is not in the System menu and the window is minimized.
• A mouse capture is in effect (for more information, see the SetCapture

function, earlier in this chapter).

If the window is the active window and there is no keyboard focus
(generally true if the window is minimized), then WM_SYSKEYUP and
WM_SYSKEYDOWN messages are translated instead of WM_KEYUP and
WM_KEYDOWN messages.

If an accelerator key stroke that corresponds to a menu item occurs when
the window that owns the menu is iconic, no WM_COMMAND message
is sent. However, if an accelerator key stroke that does not match any of
the items on the window's menu or the System menu occurs, a
WM_ COMMAND message is sent, even if the window is iconic.

TranslateMDISysAccel 3.0

562

Syntax BOOL TranslateMDISysAccel(h WndClient, lpMsg)
function TranslateMDISysAccel(Wnd: HWnd; var Msg: TMsg): Bool;

This function processes keyboard accelerators for multiple document
interface (MDI) child window System-menu commands. The
TranslateMDISysAccel function translates WM_KEYUP and
WM_KEYDOWN messages to WM_SYSCOMMAND messages. The
high-order word of the IParam parameter of the WM_SYSCOMMAND
message contains the value 1 to differentiate the message from messages
sent by menus or controls.

Software development kit

TranslateMDISysAccel

Parameters h WndClient HWND Identifies the parent MDI client window.

IpMsg LPMSG Points to a message retrieved by using the
GetMessage or PeekMessage function. The message must
be an MSG data structure and contain message information
from the Windows application queue.

Return value The return value is TRUE if the function translated a message into a
system command. Otherwise, it is FALSE.

TranslateMessage

Syntax BOOL TranslateMessageOpMsg)
function TranslateMessage(var Msg: TMsg): Bool;

This function translates virtual-key messages into character messages, as
follows:

Il WM_KEYDOWN jWM_KEYUP combinations produce a WM_ CHAR
or a WM_DEADCHAR message.

[J WM_SYSKEYDOWN jWM_SYSKEYUP combinations produce a
WM_SYSCHAR or a WM_SYSDEADCHAR message.

The character messages are posted to the application queue, to be read the
next time the application calls the GetMessage or PeekMessage function.

Parameters IpMsg LPMSG Points to an MSG data structure retrieved through
the GetMessage or PeekMessage function. The structure
contains message information from the Windows
application queue.

Return value The return value specifies the outcome of the function. It is nonzero if the
message is translated (that is, character messages are posted to the
application queue). Otherwise, it is zero.

Comments The TranslateMessage function does not modify the message given by the
IpMsg parameter.

TranslateMessage produces WM_ CHAR messages only for keys which
are mapped to ASCII characters by the keyboard driver.

An application should not call TranslateMessage if the application
processes virtual-key messages for some other purpose. For instance, an
application should not call the TranslateMessage function if the
TranslateAccelerator function returns nonzero.

Chapter 4, Functions directory 563

TransmitCommChar

TransmitCommChar

Syntax int TransmitCommChar(nCid, cChar)
function TransmitCommChar(Cid: Integer; Chr: Char): Integer;

This function marks the character specified by the cChar parameter for
immediate transmission, by placing it at the head of the transmit queue.

Parameters nCid

cChar

int Specifies the communication device to receive the
character. The OpenComm function returns this value.

char Specifies the character to be transmitted.

Return value The return value specifies the result of the function. It is zero if the
function is successful. It is negative if the character cannot be transmitted.
A character cannot be transmitted if the character specified by the
previous TransmitCommChar function has not yet been sent.

UngetCommChar

Syntax int UngetCommChar(nCid, cChar)
function UngetCommChar(Cid: Integer; Chr: Char): Integer;

This function places the character specified by the cChar parameter back
into the receive queue, making this character the first to be read on a
subsequent read from the queue.

Consecutive calls to the UngetCommChar function are not allowed. The
character placed back into the queue must be read before attempting to
place another.

Parameters nCid

cChar

int Specifies the communication device to receive the
character.

char Specifies the character to be placed in the receive
queue.

Return value The return value specifies the outcome of the function. It is zero if the
function is successful. It is negative if an error occurs.

UnhookWindowsHook

Syntax BOOL UnhookWindowsHook(nHook, IpfnHook)
function UnhookWindowsHook(Hook: Integer; HookFunc: TFarProc):
Bool;

564 Software development kit

UnhookWindowsHook

This function removes the Windows hook function pointed to by the
IpfnHook parameter from a chain of hook functions. A Windows hook
function processes events before they are sent to an application's message
loop in the WinMain function.

Parameters nHook int Specifies the type of hook function removed. It may be
one of the following values:

Value Meaning
WH_ CALLWNDPROC Installs a window-function

filter.
WH_ GETMESSAGE Installs a message filter.
WH-.lOURNALPLAYBACK Installs a journaling

playback filter.
WH-.l0URNALRECORD Installs a journaling record

IpfnHook

filter.
WH_KEYBOARD Install a keyboard filter.
WH_MSGFILTER Installs a message filter.

FARPROC Is the procedure-instance address of the hook
function.

Return value The return value specifies the outcome of the function. It is nonzero if the
hook function is successfully removed. Otherwise, it is zero.

UnionRect

Syntax int UnionRect(lpDestRect, IpSrc1Rect, IpSrc2Rect)
function UnionRect(var DestRect, Src1Rect, Src2Rect: LPRect): Integer;

This function creates the union of two rectangles. The union is the
smallest rectangle that contains both source rectangles.

Parameters IpDestRect LPRECT Points to the RECT data structure that is to receive
the new union.

IpSrc1Rect LPRECT Points to a RECT data structure that contains a
source rectangle.

IpSrc2Rect LPRECT Points to a RECT data structure that contains a
source rectangle.

Return value The return value specifies the outcome of the function. It is nonzero if the
union is not empty. It is zero if the union is empty.

Comments Windows ignores the dimensions of an "empty" rectangle, that is, a
rectangle that has no height or has no width.

Chapter 4, Functions directory 565

~nh" ~<!,

UnlockOata

UnlockOata

Syntax HANDLE UnlockData(Dummy)
function UnlockData(Dummy: Integer): THandle;

This macro unlocks the current data segment. It is intended to be used by
modules that have moveable data segments.

Parameters Dummy

Return value None.

int Is not used; can be set to zero.

UnlockResource

Syntax BaaL UnlockResource(hResData)
function UnlockResource(ResData: THandle): Bool;

This macro unlocks the resource specified by the hResData parameter and
decreases the resource's reference count by one.

Parameters hResData HANDLE Identifies the global memory block to be unlocked.

Return value The return value specifies the outcome of the macro. It is zero if the block's
reference count is decreased to zero. Otherwise, it is nonzero.

UnlockSegment

566

Syntax BaaL UnlockSegmenHwSegment)
function UnlockSegment(Segment: Word): THandle;

This function unlocks the segment whose segment address is specified by
the wSegment parameter. If wSegment is -I, the UnlockSegment function
unlocks the current data segment.

In real mode, or if the segment is discard able, UnlockSegment decreases
the segment's lock count by one. In protected mode, UnlockSegment
decreases the lock count of discard able objects and automatic data
segments only. The segment is completely unlocked and subject to
moving or discarding if the lock count is decreased to zero. Other
functions also can affect the lock count of a memory object. See the
description of the GlobalFlags function for a list of the functions that
affect the lock count.

In all cases, each time an application calls LockSegment for a segment, it
must eventually call UnlockSegment for the segment.

Software development kit

UnlockSegment

Parameters wSegment WORD Specifies the segment address of the segment to be
unlocked. If wSegment is -1, the UnlockSegment function
unlocks the current data segment.

Return value The return value specifies the outcome of the function. It is zero if the
segment's lock count was decreased to zero. Otherwise, the return value is
nonzero. An application should not rely on the return value to determine
the number of times it must subsequently call UnlockSegment for the
segment.

UnrealizeObject

Syntax BOOL UnrealizeObject(hObject)
function UnrealizeObject(hObject: HBrush): Bool;

If the hObject parameter specifies a brush, this function directs GDI to
reset the origin of the given brush the next time it is selected.

If hObject specifies a logical palette, this function directs GDI to realize the
palette as though it had not previously been realized. The next time the
application calls the RealizePalette function for the specified palette, GDI
completely remaps the logical palette to the system palette.

Parameters hObject HANDLE Identifies the object to be reset.

Return value The return value specifies the outcome of the function. It is nonzero if the
function is successful. Otherwise, it is zero.

Comments The UnrealizeObject function should not be used with stock objects.

This function must be called whenever a new brush origin is set (by
means of the SetBrushOrigin function).

A brush specified by the hObject parameter must not be the currently
selected brush of any display context. A palette specified by hObject can be
the currently selected palette of a display context.

UnregisterClass 3.0

Syntax BOOL UnregisterClass(lpClassName, hInstance)
function UnregisterClass(ClassName: PChar; Instance: THandle): Bool;

This function removes the window class specified by IpClassName from
the window-class table, freeing the storage required for the class.

Chapter 4, Functions directory 567

UnregisterClass

Parameters IpClassName LPSTR Points to a null-terminated string containing the
class name. This class name must have been previously
registered by calling the RegisterClass function with a valid
hlnstance field in the WNDCLASS structure parameter.
Predefined classes, such as dialog-box controls, may not be
unregistered.

hlnstance HANDLE Identifies the instance of the module that created
the class.

Return value The return value is TRUE if the function successfully removed the
window class from the window-class table. It is FALSE if the class could
not be found or if a window exists that was created with the class.

Comments Before using this function, destroy all windows created with the specified
class.

UpdateColors 3.0

Syntax int UpdateColors(hOC)
function UpdateColors(OC: HOC): Integer;

This function updates the client area of the device context identified by
the hDC parameter by matching the current colors in the client area to the
system palette on a pixel-by-pixel basis. An inactive window with a
realized logical palette may call UpdateColors as an alternative to
redrawing its client area when the system palette changes. For more
information on using color palettes, see Guide to Programming.

Parameters hDC HOC Identifies the device context.

Return value The return value is not used.

Comments UpdateColors typically updates a client area faster than redrawing the
area. However, because UpdateColors performs the color translation
based on the color of each pixel before the system palette changed, each
call to this function results in the loss of some color accuracy.

UpdateWindow

Syntax void UpdateWindow(h Wnd)
procedure UpdateWindow(Wnd: HWnd);

568 Software development kit

UpdafeWindow

This function updates the client area of the given window by sending a
WM_P AINT message to the window if the update region for the window
is not empty. The UpdateWindow function sends a WM_PAINT message
directly to the window function of the given window, bypassing the
application queue. If the update region is empty, no message is sent.

Parameters hWnd HWND Identifies the window to be updated.

Return value None.

ValidateCodeSegments

Syntax void ValidateCodeSegments()
procedure ValidateCodeSegments;

3.0

This function outputs debugging information to a terminal if any code
segments have been altered by random memory overwrites. It is only
available in the debugging version of Windows and is enabled by default.
To disable the function, set the EnableSegmentChecksum flag in the
[kernel] section of WIN.INI to O. Windows does not validate code
segments in protected (standard or 386 enhanced) mode.

Parameters None.

Return value None.

ValidateFreeSpaces

Syntax LPSTR ValidateFreeSpaces()
function ValidateFreeSpaces: Pointer;

This function (available only in the debugging version of Windows)
checks free segments in memory for valid contents. In the debugging
version of Windows, the kernel fills all the bytes in free segments with the
hexadecimal value CC. This function begins checking for valid contents in
the free segment with the lowest address, and continues checking until it
finds an invalid byte or until it has determined that all free space contains
valid contents. Before calling this function, put the following lines in the
WIN.INI file:

[kernel]
EnableFreeChecking=l
EnableHeapChecking=l

Parameters None.

Chapter 4, Functions directory 569

ValidateFreeSpaces

Return value None.

Comments Windows sends debugging information to the debugging terminal if an
invalid byte is encountered and performs a fatal exit.

ValidateRect

The [kernel] entries in WIN.lNI will cause automatic checking of free
memory. Before returning a memory block to the application in response
to a GlobalAlioc call, Windows checks that memory to make sure it is
filled with OCCH. Before a GlobalCompact call, all free memory is
checked. Note that using this function slows Windows down system-wide
by about 20%.

Syntax void ValidateRect(hWnd, IpRect)
procedure ValidateRect(Wnd: HWnd; Rect: PRect);

This function validates the client area within the given rectangle by
removing the rectangle from the update region of the given window. If
the IpRect parameter is NULL, the entire window is validated.

Parameters h Wnd HWND Identifies the window whose update region is to be
modified.

IpRect LPRECT Points to a RECT data structure that contains the
rectangle (in client coordinates) to be removed from the
update region.

Return value None.

Comments The BeginPaint function automatically validates the entire client area.

ValidateRgn

Neither the ValidateRect nor ValidateRgn function should be called if a
portion of the update region needs to be validated before the next
WM_P AINT message is generated.

Windows continues to generate WM_P AINT messages until the current
update region is validated.

Syntax void ValidateRgn(hWnd, hRgn)
procedure ValidateRgn(Wnd: HWnd; Rgn: HRgn);

570 Software development kit

ValidateRgn

This function validates the client area within the given region by
removing the region from the current update region of the given window.
If the hRgn parameter is NULL, the entire window is validated.

Parameters h Wnd HWND Identifies the window whose update region is to be
modified.

hRgn HRGN Identifies a region that defines the area to be removed
from the update region.

Return value None.

Comments The given region must have been created previously by means of a region
function (for more information, see Chapter 1, "Window manager
interface functions"). The region coordinates are client coordinates.

VkKeyScan

Syntax int VkKeyScan (cChar)
function VkKeyScan(Chr: Word): Word;

This function translates an ANSI character to the corresponding virtual­
key code and shift state for the current keyboard. Applications which
send character by means of WM_KEYUP and WM_KEYDOWN messages
use this function.

Parameters cChar char Specifies the character for which the corresponding
virtual-key code is to be found.

Return value The VK_ code is returned in the low-order byte and the shift state in the
high-order byte. The shift states are:

Value Meaning

a No shift.
1 Character is shifted.
2 Character is control character.
6 Charcter is CONTROL+ALT.
7 Character is SHIFf+CONTROL+ALT.
3,4,5 A shift key combination that is not used for characters.

If no key is found that translates to the passed ANSI code, a -1 is returned
in both the low-order and high-order bytes.

Comments Translations for the numeric keypad (VK_NUMP ADO through
VK_DIVIDE) are ignored. This function is intended to force a translation
for the main keyboard only.

Chapter 4, Functions directory 571

WaitMessage

WaitMessage

Syntax void WaitMessage()
procedure WaitMessage;

This function yields control to other applications when an application has
no other tasks to perform. The WaitMessage function suspends the
application and does not return until a new message is placed in the
application's queue.

Parameters None.

Return value None.

Comments The GetMessage, PeekMessage, and WaitMessage functions yield control
to other applications. These calls are the only way to let other applications
run. If your application does not call any of these functions for long
periods of time, other applications cannot run.

When GetMessage, PeekMessage, and WaitMessage yield control to
other applications, the stack and data segments of the application calling
the function may move in memory to accommodate the changing memory
requirements of other applications. If the application has stored long
pointers to objects in the data or stack segment (that is, global or local
variables), these pointers can become invalid after a call to GetMessage,
PeekMessage, or WaitMessage.

WaitSoundState

572

Syntax int WaitSoundState(nState)
function WaitSoundState(State: Integer): Integer;

This function waits until the play driver enters the specified state.

Parameters nState int Specifies the state of the voice queues. It can be anyone of
the following values:

Value Meaning
S_ALLTHRESHOLD All voices have reached threshold.
S_QUEUEEMPTY All voice queues are empty and

sound drivers turned off.
A voice queue has reached
threshold, and returns voice.

Software development kit

WaitSoundState

Return value The return value specifies the result of the function. It is zero if the
function is successful. If the state is not valid, the return value is
S_SERDST.

WindowFromPoint

Syntax HWND WindowFromPoint(Point)
function WindowFromPoint(Point: TPoint): HWnd;

This function identifies the window that contains the given point; Point
must specify the screen coordinates of a point on the screen.

Parameters Point POINT Specifies a POINT data structure that defines the point to
be checked.

Return value The return value identifies the window in which the point lies. It is NULL
if no window exists at the given point.

WinExec 3.0

Syntax WORD WinExec(lpCmdLine, nCmdShow)
function WinExec(CmdLine: PChar; CmdShow: Word): Word;

This function executes the Windows or non-Windows application
identified by the IpCmdLine parameter. The nCmdShow parameter specifies
the initial state of the application's main window when it is created.

Parameters IpCmdLine LPSTR Points to a null-terminated character string that
contains the command line (filename plus optional
parameters) for the application to be executed. If the
IpCmdLine string does not contain a directory path,
Windows will search for the executable file in this order:

Chapter 4, Functions directory

1. The current directory.

2. The Windows directory (the directory containing
WIN.COM); the GetWindowsDirectory function obtains
the pathname of this directory.

3. The Windows system directory (the directory containing
such system files as KERNEL.EXE); the
GetSystemDirectory function obtains the pathname of this
directory.

4. The directories listed in the PATH environment variable.

573

WinExec

5. The list of directories mapped in a network.

If the application filename does not contain an extension,
then .EXE is assumed.

nCmdShow int Specifies how a Windows application window is to be
shown. See the description of the ShowWindow function for
a list of the acceptable values for the nCmdShow parameter.
For a non-Windows application, the PIF file, if any, for the
application determines the window state.

Return value The return value specifies whether the function was successful. If the
function was successful, the return value is greater than 32. Otherwise, it
is a value less than 32 that specifies the error. The following list describes
the error values returned by this function:

Value

o
2
3
5
6
10
11
12
13
14
15

16

17

18

Meaning

Out of memory.
File not found.
Path not found.
Attempt to dynamically link to a task.
Library requires separate data segments for each task.
Incorrect Windows version.
Invalid .EXE file (non-Windows .EXE or error in .EXE image).
OS/2 application.
DOS 4.0 application.
Unknown .EXE type.
Attempt in protected (standard or 386 enhanced) mode to load an
.EXE created for an earlier version of Windows.
Attempt to load a second instance of an .EXE containing multiple,
write able data segments.
Attempt in large-frame EMS mode to load a second instance of an
application that links to certain nonshareable DLLs already in use.
Attempt in real mode to load an application marked for protected
mode only.

Comments The LoadModule function provides an alternative method for executing a
program.

WinHelp 3.0

574

Syntax BaaL WinHelp(h Wnd, IpHelpFile, wCommand, dwData)
function WinHelp(Wnd: HWnd; HelpFile: PChar; Command: Word; Data:
Longint): Bool;

This function invokes the Windows Help application and passes optional
data indicating the nature of the help requested by the application. The

Software development kit

WinHelp

application specifies the name and, where required, the directory path of
the help file which the Help application is to display. See Tools for
information on creating and using help files.

Parameters h Wnd HWND Identifies the window requesting help.

IpHelpFile LPSTR Points to a null-terminated string containing the
directory path, if needed, and the name of the help file
which the Help application is to display.

wCommand WORD Specifies the type of help requested. It may be any
one of the following values:

Chapter 4, Functions directory

Value Meaning
HELP_CONTEXT Displays help for a particular

context identified by a 32-bit
unsigned integer value in
dwData.

HELP _HELPONHELP Displays help for using the help
application itself. If the
wCommand parameter is set to
HELP _HELPONHELP, WinHelp
ignores the IpHelpFile and dwData
parameters.

HELP_INDEX Displays the index of the
specified help file. An application
should use this value only for
help files with a single index. It
should not use this value with

HELP_KEY

HELP _MULTIKEY

HELP_QUIT

HELP _SETINDEX

HELP _SETINDEX.
Displays help for a particular key
word identified by a string
pointed to by dwData.
Displays help for a key word in
an alternate keyword table.
Notifies the help application that
the specified help file is no longer
in use.
Sets the context specified by the
dw Data parameter as the current
index for the help file specified
by the IpHelpFile parameter. This
index remains current until the
user accesses a different help file.
To help ensure that the correct

575

WinHelp

dwData

index remains set, the application
should call WinHelp with
wCommand set to
HELP _SETINDEX (with dwData
specifying the corresponding
context identifier) following each
call to WinHelp with wCommand
set to HELP_CONTEXT. An
application should use this value
only for help files with more than
one index. It should not use this
value with HELP_INDEX.

DWORD Specifies the context or key word of the help
requested. If wCommand is HELP_CONTEXT, dwData is a
32-bit unsigned integer containing a context-identifier
number. If wCommand is HELP_KEY, dwData is a long
pointer to a null-terminated string that contains a key word
identifying the help topic. If wCommand is
HELP _MULTIKEY, dwData is a long pointer to a
MUL TIKEYHELP data structure. Otherwise, dwData is
ignored and should be set to NULL.

Return value The return value specifies the outcome of the function. It is TRUE if the
function was successful. Otherwise it is FALSE.

Comments The application must call Win Help with wCommand set to HELP_QUIT
before closing the window that requested the help. The Help application
will not actually terminate until all applications that have requested help
have called Win Help with wCommand set to HELP_QUIT.

WriteComm

576

Syntax int WriteComm(nCid, IpBuf, nSize)
function WriteComm(Cid: Integer; Buf: PChar; Size: Integer): Integer;

This function writes the number of characters specified by the nSize
parameter to the communication device specified by the nCid parameter
from the buffer pointed to by the IpBuf parameter.

Parameters nCid int Specifies the device to receive the characters. The
OpenComm function returns this value.

IpBuf LPSTR Points to the buffer that contains the characters to be
written.

Software development kit

WriteComm

nSize int Specifies the number of characters to write.

Return value The return value specifies the number of characters actually written.
When an error occurs, the return value is set to a value less than zero,
making the absolute value of the return value the actual number of
characters written. The cause of the error can be determined by using the
GetCommError function to retrieve the error code and status.

Comments The WriteComm function will delete data in the transmit queue if there is
not enough room in the queue for the additional characters. Applications
should check the available space in the transmit queue with the
GetCommError function before calling WriteComm. Also, applications
should use the OpenComm function to set the size of the transmit queue
to an amount no smaller than the size of the largest expected output
string.

WritePrivateProfileString 3.0

Syntax BOOL WritePrivateProfileString(l pA pplicationN arne, IpKeyN arne,
IpString, IpFileName)
function WritePrivateProfileString(ApplicationName, KeyName, Str,
FileName: PChar): Bool;

This function copies the character string pointed to by the IpString
parameter into the specified initialization file. It searches the file for the
key named by the IpKeyName parameter under the application heading
specified by the IpApplicationName parameter. If there is no match, it adds
to the user profile a new string entry containing the key name and the key
value specified by the IpString parameter. If there is a matching key, the
function replaces that key's value with IpString.

Parameters IpApplicationName LPSTR Points to an application heading in the
initialization file.

IpKeyName

IpString

IpFileName

Chapter 4, Functions directory

LPSTR Points to a key name that appears under the
application heading in the initialization file.

LPSTR Points to the string that contains the new key
value.

LPSTR Points to a null-terminated character string
that names the initialization file. If IpFileName does
not contain a fully qualified pathname for the file,
this function searches the Windows directory for the
file. If the file does not exist and IpFileName does not

577

WrifePrivafeProfileSfring

contain a fully qualified pathname, this function
creates the file in the Windows directory. The
WritePrivateProfileString does not create a file if
IpFileName contains the fully qualified pathname of a
file that does not exist.

Return value The return value specifies the result of the function. It is nonzero if the
function is successful. Otherwise, it is zero.

Comments An application should use a private (application-specific) initialization file
to record information which affects only that application. This improves
both the performance of the application and Windows itself by reducing
the amount of information that Windows must read when it accesses the
initialization file.

If there is no application field for IpApplicationName, this function creates a
new application field and places an appropriate key-value line in that
field of the initialization file.

A string entry in the initialization file has the following form:

[application name]
keyname = string

An application can also call WritePrivateProfileString to delete lines from
its private initialization file. If IpString is NULL, the function deletes the
entire line identified by the IpKeyName parameter. If IpString points to a
null string, the function deletes only the value; the key name remains in
the file. If IpKeyName is NULL, the function deletes the entire section
identified by the IpApplicationName parameter; however, the function does
not delete any lines beginning with the semicolon (;) comment character.

WriteProfileString

578

Syntax BaaL WriteProfileStringOpApplicationName, lpKeyName,lpString)
function WriteProfileString(ApplicationName, KeyName, Str: PChar):
Bool;

This function copies the character string pointed to by the IpString
parameter into the Windows initialization file, WIN.INI. It searches
WIN.INI for the key named by the IpKeyName parameter under the
application heading specified by the IpApplicationName parameter. If there
is no match, it adds to the user profile a new string entry containing the
key name and the key value specified by the IpString parameter. If there is
a matching key, the function replaces that key's value with IpString.

Software development kit

Parameters IpApplicationName

IpKeyName

IpString

WriteProfileString

LPSTR Points to an application heading in WIN.INI.

LPSTR Points to a key name that appears under the
application heading WIN.INI.

LPSTR Points to the string that contains the new key
value.

Return value The return value specifies the result of the function. It is nonzero if the
function is successful. Otherwise, it is zero.

Comments If there is no match for IpApplicationName, this function creates a new
application field and adds the string pointed to by IpString.

A string entry in WIN.INI has the following form:

[application name]
keyname = string

An application can also call WriteProfileString to delete lines from
WIN.INI. If IpString is NULL, the function deletes the entire line identified
by the IpKeyName parameter. If IpString points to a null string, the function
deletes only the value; the key name remains in the file. If IpKeyName is
NULL, the function deletes the entire section identified by the
IpApplicationName parameter; however, the function does not delete any
lines beginning with the semicolon (;) comment character.

wsprintf 3.0

Syntax int wsprintf(lpOutput, lpFormat[[, argument]] ...)

This function formats and stores a series of characters and values in a
buffer. Each argument (if any) is converted and output according to the
corresponding format specification in the format string. The function
appends a NULL to the end of the characters written, but the return value
does not include the terminating null character in its character count.

Parameters IpOutput LPSTR Points to a null-terminated character string to receive
the formatted output.

IpFormat LPSTR Points to a null-terminated character string that
contains the format-control string. In addition to ordinary
ASCII characters, a format specification for each argument
appears in this string. See the following "Comments" section
for more information on the format specification.

Chapter 4, Functions directory 579

wsprintf

580

argument Is one or more optional arguments. The number and type of
argument parameters depends on the corresponding format­
control character sequences in IpFormat.

Return value The return value is the number of characters stored in IpOutput, not
counting the terminating NULL. If an error occurs, the function returns a
value less than the length of IpFormat.

Comments The format-control string contains format specifications that determine
the output format for the arguments which follow the IpFormat parameter.
Format specifications, discussed below, always begin with a percent sign
(%). If a percent sign is followed by a character that has no meaning, such
as a format field, the character is output as is. For example, %% produces
a single percent-sign character.

Parameters

The format-control string is read from left to right. When the first format
specification (if any) is encountered, it causes the value of the first
argument after the format-control string to be converted and output
according to the format specification. The second format specification
causes the second argument to be converted and output, and so on. If
there are more arguments than there are format specifications, the extra
arguments are ignored. The results are undefined if there are not enough
arguments for all of the format specifications.

A format specification has the following form:

% [[-]] [[#]] [[all [[width]] [[.precision]] type

Each field of the format specification is a single character or a number
signifying a particular format option. The type characters, which appear
after the last optional format field, determine whether the associated
argument is interpreted as a character, a string, or a number. The simplest
format specification contains only the percent sign and a type character
(for example, %s). The optional fields control other aspects of the
formatting. The following shows the optional and required fields and
their meaning:

o

Pad the output with blanks or zeroes to the right to fill the field
width, justifying the output to the left. If this field is omitted,
the output is padded to the left, justifying the output to the
right.

Prefix hexadecimal values with Ox (lowercase) or OX
(uppercase).

Pad the output value with zeroes to fill the field width. If this
field is omitted, the output value is padded with blank spaces.

Software development kit

wsprintf

width Output the specified minimum number of characters. The width
field is a nonnegative integer. The width specification never
causes a value to be truncated; if the number of characters in
the output value is greater than the specified width, or if the
width field is not present, all characters of the value are printed,
subject to the precision specification.

precision Output the specified minimum number of digits. If the number
of digits in the argument is less than the specified precision, the
output value is padded on the left with zeroes. The value is not
truncated when the number of digits exceeds the specified
precision. If the specified precision is 0, omitted entirely, or if
the period (.) appears without a number following it, the
precision is set to 1.
For strings, output the specified maximum number of
characters.

type Output the corresponding argument as a character, string, or a
number. This field may be any of the following character
sequences:

Sequence
s

c

d, i
ld, li

u
lu
x,X

IX,IX

Meaning
Insert a string argument referenced by a
long pointer. The argument corresponding
to this sequence must be passed as a long
pointer (LPSTR).
Insert a single character argument. The
wsprintf function ignores character
arguments with a numerical value of zero.
Insert a signed decimal integer argument.
Insert a long signed decimal integer
argument.
Insert an unsigned integer argument.
Insert a long unsigned integer argument.
Insert an unsigned hexadecimal integer
argument in lowercase or uppercase.
Insert a long unsigned hexadecimal integer
argument in lowercase or uppercase.

_ Unlike all other Windows functions, wsprintf uses the C calling
convention (cdecl), rather than the Pascal calling convention. As a result,
it is the caller's responsibility to pop arguments off the stack, and
arguments are pushed in reverse order (that is, the IpOutput parameter is
pushed last, to the lowest address). In C-Ianguage modules, the C
compiler performs this task.

Chapter 4, Functions directory 581

wvsprintf

wvsprintf 3.0

Syntax int wvsprintf(lpOutput, IpFormat, IpArglist)
function wvsprintf(DestStr, Format, ArgList: PChar): Integer;

This function formats and stores a series of characters and values in a
buffer. The items pointed to by the argument list are converted and output
according to the corresponding format specification in the format string.

The function appends a NULL to the end of the characters written, but the
return value does not include the terminating null character in its
character count.

Parameters IpOutput LPSTR Points to a null-terminated character string to receive
the formatted output.

IpFormat LPSTR Points to a null-terminated character string that
contains the format-control string. In addition to ordinary
ASCII characters, a format specification for each argument
appears in this string. See the description of the wsprintf
function, earlier in this chapter, for more information on the
format specification.

IpArglist LPSTR Points to an array of words, each of which specifies an
arguement for the format-control string. The number, type and
interpretation of the arguments depend on the corresponding
format-control character sequences in IpFormat. Each character
or word-sized integer (%c, %d, %x, %i) requires one word in
IpArglist. Long integers (%ld, %li, %lx) require two words, the
low-order word of the integer followed by the high-order
word. A string (%s) requires two words, the offset followed by
the segment (which together make up a far pointer).

Return value The return value is the number of characters stored in IpOutput, not
counting the terminating NULL. If an error occurs, the function returns a
value less than the length of IpFormat.

582 Software development kit

Yield

Yield

Syntax void Yield()
function Yield: Bool;

This function halts the current task and starts any waiting task.

Parameters None.

Return value None.

Comments Applications that contain windows should use a DispatchMessage,
PeekMessage, or TranslateMessage loop rather than calling the Yield
function directly. The PeekMessage loop handles message
synchronization properly and yields at the appropriate times .

Chapter 4, Functions directory 583
•

584 Software development kit

p A R T

2

Windows messages

Part 2 provides reference information on Windows messages.
Windows messages allow Windows applications to communicate
with each other and with the Windows system within a
nonpreemptive multitasking environment.

585

586 Software development kit

c H

See Chapter 7,
"Window manager

interface functions,"
for an explanation

of sending and
receiving

messages.

A p T E R

5

Messages overview

This chapter describes groups of related Microsoft Windows messages.
Each section states the purpose of the message group, lists the messages in
the group, and describes each message.

This chapter lists the following categories of Windows messages:

c Window-management messages
c Initialization messages
c Input messages
IJ System messages
IJ Clipboard messages
IJ System-information messages
IJ Control messages
IJ Notification messages
IJ Scroll-bar messages
IJ Nonclient-area messages
IJ Multiple document interface messages

Window-management messages

Window-management messages are sent by Windows to an application
when the state of a window changes. The following list briefly describes
each window-management message:

Chapter 5, Messages oveNiew 587

588

Message

WM_ACTIV ATE
WM_ACTIV ATEAPP

WM_ CANCELMODE

WM_CHILDACTIVATE

WM_CLOSE
WM_CREATE
WM_CTLCOLOR

WM_ENABLE

WM_ENDSESSION

WM_ENTERIDLE

WM_ERASEBKGND

WM_GETDLGCODE

WM_GETMINMAXINFO

WM_GETTEXT
WM_GETTEXTLENGTH

WM_ICONERASEBKGND

WM_KILLFOCUS

WM_MENUCHAR

WM_MENUSELECT

WM_MOVE

Description

Sent when a window becomes active or inactive.
Sent when the window being activated belongs
to a different application than the window that
was previously active.
Cancels any mode the system is in, such as one
that tracks the mouse in a scroll bar or moves a
window. Windows sends the
WM_ CANCELMODE message when an
application displays a message box.
Notifies a child window's parent window when
the SetWindowPos function moves a child
window.
Sent whenever the window is closed.
Sent when the CreateWindow function is called.
Sent to the parent window of a predefined
control or message box when the control or
message box is about to be drawn.
Sent when the DestroyWindow function is called,
after the window has been removed from the
screen.
Sent after a window has been enabled or
disabled.
Tells an application that has responded nonzero
to a WM_QUERYENDSESSION message
whether the session is actually being ended.
Informs a window that a dialog box or menu is
displayed and waiting for user action.
Sent when the window background needs to be
erased.
Sent to an input procedure associated with a
control.
Retrieves the maximized size of the window, the
minimum or maximum tracking size of the
window, and the maximized position of the
window.
Copies the text that corresponds to a window.
Retrieves the length (in bytes) of the text
associated with a window.
Sent to an iconic window with a class icon when
the background of the icon needs to be erased.
Sent immediately before a window loses the
input focus.
Notifies the window that owns the menu when
the user presses a menu mnemonic character that
doesn't match any of the predefined mnemonics
in the current menu.
Notifies a window that the user has selected a
menu item.
Sent when a window is moved.

Software development kit

WM_PARENTNOTIFY

WM_QUERYDRAGICON

WM_ QUERYENDSESSION

WM_ QUERYNEWP ALETTE

WM_QUERYOPEN

WM_QUIT
WM_SETFOCUS
WM_SETFONT

WM_SETREDRAW

WM_SETTEXT
WM_SHOWWINDOW

WM_SIZE

Initialization messages

Sent whenever Windows or an application makes
a request to repaint a portion of an application's
window.
Sent whenever Windows or an application makes
a request to repaint a portion of an application's
minimized (iconic) window. WM_PARENTNOTIFY
Sent to the parent of a child window when the
child window is created or destroyed.
Sent when the user is about to drag a minimized
(iconic) window.
Sent when the user chooses the End Session
command.
Sent when a window is about to receive the input
focus to allow it to realize its logical color palette.
Sent to an icon when the user requests that the
icon be opened into a window.
Indicates a request to terminate an application.
Sent after a window receives the input focus.
Changes the font used by a control for drawing
text.
Sets or clears the redraw flag, which determines
whether or not updates to a control are
displayed.
Sets the text of a window.
Sent whenever a window is to be hidden or
shown.
Sent after the size of a window has been changed.

Initialization messages are sent by Windows when an application creates
a menu or dialog box. The following list briefly describes each
initialization message:

Message

WM_INITDIALOG
WM_INITMENU
WM_INITMENUPOPUP

Input messages

Description

Sent immediately before a dialog box is displayed.
Requests that a menu be initialized.
Sent immediately before a pop-up menu is displayed.

Input messages are sent by Windows when an application receives input
through the mouse, keyboard, scroll bars, or system timer. The following
list briefly describes each input message:

Chapter 5, Messages oveNiew 589

Message

WM_CHAR

WM_CHARTOITEM

WM_DEADCHAR

WM_HSCROLL

WM_KEYDOWN
WM_KEYUP
WM_LBUTTONDBLCLK

WM_LBUTTONDOWN
WM_LBUTTONUP
WM_MBUTTONDBLCLK

WM_MBUTTONDOWN

WM_MBUTTONUP

WM_MOUSEACTIV ATE

WM_MOUSEMOVE
WM_RBUTTONDBLCLK

WM_RBUTTONDOWN
WM_RBUTTONUP
WM_SETCURSOR

WM_TIMER

WM_ VKEYTOITEM

Description

Results when a WM_KEYUP and a
WM_KEYDOWN message are translated.
Sent by a list box with the
LBS_ WANTKEYBOARDINPUT style to its owner in
response to a WM_ CHAR message.
Sent when the user selects an item from a menu,
when a control passes a message to its parent
window, or when an accelerator key stroke is
translated.
Results when a WM_KEYUP and a
WM_KEYDOWN message are translated.
Sent when the user clicks the horizontal scroll bar
with the mouse.
Sent when a nonsystem key is pressed.
Sent when a nonsystem key is released.
Sent when the user double-clicks the left mouse
button.
Sent when the user presses the left mouse button.
Sent when the user releases the left mouse button.
Sent when the user double-clicks the middle mouse
button.
Sent when the user presses the middle mouse
button.
Sent when the user releases the middle mouse
button.
Sent when the cursor is in an inactive window and
any mouse button is pressed.
Sent when the user moves the mouse.
Sent when the user double-clicks the right mouse
button.
Sent when the user presses the right mouse button.
Sent when the user releases the right mouse button.
Sent when mouse input is not captured and the
mouse causes cursor movement within a window.
Sent when the time limit set for a given timer has
elapsed.
Sent by a list box with the
LBS_WANTKEYBOARDINPUT style to its owner in
response to a WM_CHAR message.
Sent when the user clicks the vertical scroll bar with
the mouse.

System messages

590

System messages are sent by Windows to an application when a user
accesses a window's System menu, scroll bars, or size box. Although an

Software development kit

application can process these messages, most applications pass them on to
the DefWindowProc function for default processing. The following list
briefly describes each system message:

Message

WM_SYSCHAR

WM_SYSCOMMAND

WM_SYSDEADCHAR

WM_SYSKEYDOWN

WM_SYSKEYUP

Clipboard messages

Description

Results when a WM_SYSKEYUP and a
WM_SYSKEYDOWN message are translated.
Sent when the user selects a command from the System
menu.
Results when a WM_SYSKEYUP and a
WM_SYSKEYDOWN message are translated.
Sent when the user holds down the ALT key and then
presses another key.
Sent when the user releases a key that was pressed
while the ALT key was held down.

Clipboard messages are sent by Windows to an application when other
applications try to access a window's clipboard. The following list briefly
describes each clipboard message:

Message

WM_ASKCBFORMATNAME

WM_ CHANGECBCHAIN

WM_DESTROYCLIPBOARD

WM_DRA WCLIPBOARD

WM_HSCROLLCLIPBOARD

WM_P AINTCLIPBOARD

WM_RENDERALLFORMATS

WM_RENDERFORMAT

WM_SIZECLIPBOARD

WM_ VSCROLLCLIPBOARD

Chapter 5, Messages overview

Description

Requests the name of the CF _ OWNERDISPLAY
format.
Notifies viewing-chain members of a change in
the chain.
Signals that the contents of the clipboard are
being destroyed.
Signals an application to notify the next
application in the chain of a clipboard change.
Requests horizontal scrolling for the
CF _ OWNERDISPLAY format.
Requests painting of the CF _ OWNERDISPLAY
format.
Notifies the clipboard owner that it must render
the clipboard data in all possible formats.
Notifies the clipboard owner that it must format
the last data copied to the clipboard.
Notifies the clipboard owner that the clipboard
application's window size has changed.
Requests vertical scrolling for the
CF _OWNERDISPLAY format.

591

System information messages

System-information messages are sent by Windows when an application
or a user makes a system-wide change that affects other applications. The
following list briefly describes each system-information message:

Message

WM_DEVMODECHANGE

WM_FONTCHANGE
WM_P ALETTECHANGED

WM_SPOOLERSTATUS

WM_SYSCOLORCHANGE

WM_TIMECHANGE

WM_ WININICHANGE

Description

Sent to all top-level windows when Windows
requires too much system time compacting
memory, indicating that system memory is low.
Sent to all top-level windows when the user
changes device-mode settings.
Sent when the pool of font resources changes.
Notifies all windows that the system color palette
has changed.
Sent from Print Manager whenever a job is added
to or removed from the Print Manager queue.
Sent to all top-level windows when a change is
made in the system color setting.
Sent when an application makes a change or set of
changes to the system time.
Sent when the Windows initialization file,
WIN.lNI, changes.

Control messages

592

Control messages are predefined window messages that direct a control
to carry out a specified task. Applications send control messages to a
control by using the Send Message function. The control carries out the
specified task and returns a value that indicates the result.

The following messages apply to all controls:

Message Description

WM_NEXTDLGCTL Sent to a dialog box's window function, to alter the control
focus.

WM_ GETFONT Retrieves the current font used by a control for drawing
text.

WM_SETFONT Changes the font used by a control for drawing text.

The sections "Button-control messages" through "Owner draw-control
messages" briefly describe the control messages for each control class.

Software development kit

Button­
control

messages

Edit-control

Button-control messages are sent by an application to a button control.
The following list briefly describes each button-control message:

Message

BM_ GETCHECK

BM_GETSTATE

BM_SETCHECK

BM_SETSTATE
BM_SETSTYLE
DM_GETDEFID

DM_SETDEFID

Description

Determines whether a radio button or check box is
checked.
Returns nonzero if the cursor is over the button and the
user presses the mouse button or the SPACEBAR.
Checks or removes the checkmark from a radio button or
check box.
Highlights a button or check box.
Alters the style of a button.
Retrieves the ID of the default pushbutton control for a
dialog box.
Changes the default push-button control ID for a dialog
box.

messages Edit-control messages are sent by an application to an edit control. In
addition to the messages described below, the WM_ENABLE,
WM_GETTEXT, WM_GETTEXTLENGTH, WM_KILLFOCUS,
WM_SETFOCUS, WM_SETREDRA W, and WM_SETTEXT window
messages can be used. The following list briefly describes each edit­
control message:

Message

EM_CANUNDO

EM_EMPTYUNDOBUFFER

EM_FMTLINES

EM_GETHANDLE

EM_GETLINE
EM_GETLINECOUNT

EM_GETMODIFY

EM_GETRECT

EM_GETSEL

Chapter 5, Messages overview

Description

Determines whether or not an edit control can
respond correctly to an EM_UNDO message.
Disables an edit control's ability to undo the last
edit.
Directs the edit control to add or remove the end­
of-line character from word wrapped text lines.
Returns the data handle of the buffer used to hold
the contents of the control window.
Copies a line from the edit control.
Returns the number of lines of text in the edit
control.
Returns the current value of the modify flag for a
given edit control. The flag is set by the control if
the user enters or modifies text within the control.
Returns the formatting rectangle of the edit
control.
Returns the starting and ending character positions
of the current selection.

593

594

List-box

EM_LIMITTEXT

EM_LINEFROMCHAR

EM_LINE INDEX

EM_LINELENGTH

EM_LINESCROLL

EM_REPLACESEL
EM_SETHANDLE

EM_SETMODIFY
EM_SETPASSWORDCHAR

EM_SETRECT
EM_SETRECTNP

EM_SETSEL

EM_SETTABSTOPS
EM_SETWORDBREAK

EM_UNDO
WM_CLEAR
WM_COPY

WM_CUT

Limits the length of the text (in bytes) the user may
enter.
Returns the line number of the line that contains
the character whose position (indexed from the
beginning of the text) is specified by the wParam
parameter.
Returns the number of character positions that
occur before the first character in a given line.
Returns the length of a line (in bytes) in the edit
control's text buffer.
Scrolls the contents of the edit control by the given
number of lines.
Replaces the current selection with new text.
Establishes the text buffer used to hold the

. contents of the edit-control window.
Sets the modify flag for a given edit control.
Changes the password character for an edit control
created with the ES_PASSWORD styles.
Sets the formatting rectangle for an edit control.
Identical to EM_SETRECT, except that the control
is not repainted.
Selects all characters in the current text that are
within the starting and ending character positions
given by the IParam parameter.
Sets tab-stop positions in a multiline edit control.
Informs a multiline edit control that Windows has
replaced the default word-break function with an
application-supplied word-break function.
Undoes the last edit in an edit control.
Deletes the current selection.
Sends the current selection to the clipboard in
CF _TEXT format.
Sends the current selection to the clipboard in
CF _TEXT format, and then deletes the selection
from the control window.
Inserts the data from the clipboard into the control
window at the current cursor position.
Undoes the previous action.

messages List-box messages are sent by an application to a list box. The following
list briefly describes each list-box message:

Message

LB_ADDSTRING
LB_DELETESTRING
LB_DIR

Description

Adds a string to the list box.
Deletes a string from the list box.
Adds a list of the files from the current
directory to the list box.

Software development kit

Combo-box

LB _FIND STRING

LB_GETCOUNT

LB _ GETCURSEL

LB_ GETHORIZONTALEXTENT

LB_GETITEMDATA

LB _ GETITEMRECT

LB_GETSEL
LB_ GETSELCOUNT

LB_ GETSELITEMS

LB_GETTEXT
LB_ GETTEXTLEN
LB _ GETTOPINDEX

LB_INSERTSTRING
LB_RESETCONTENT

LB _SELECTSTRING

LB_SELITEMRANGE

LB_SETCOLUMNWIDTH

LB_SETCURSEL

LB_SETHORIZONTALEXTENT

LB_SETITEMDATA

LB_SETSEL
LB_SETTABSTOPS
LB _SETTOPINDEX

Finds the first string in the list box which
matches prefix text.
Returns a count of the number of items in the
list box.
Returns the index of the currently selected
item, if any.
Retrieves the width by which a list box can be
scrolled horizontally.
Retrieves a 32-bit value associated with an
item in an owner-draw list box.
Retrieves the coordinates of the rectangle that
bounds a list-box item.
Returns the selection state of an item.
Returns the total number of selected items in a
multiselection list box.
Retrieves the indexes of the selected items in a
multiselection list box.
Copies a string from the list box into a buffer.
Returns the length of a string in the list box.
Returns the index of the first visible item in a
list box.
Inserts a string in the list box.
Removes all strings from a list box and frees
any memory allocated for those strings.
Changes the current selection to the first string
that has the specified prefix.
Selects one or more consecutive items in a
multiple-selection list box.
Sets the width in pixels of all columns in a
multicolumn list box.
Selects a string and scrolls it into view, if
necessary.
Sets the width by which a list box can be
scrolled horizontally.
Sets a 32-bit value associated with an item in
an owner-draw list box.
Sets the selection state of a string.
Sets tab-stop positions in a list box.
Sets the first visible item in a list box to the
item identified by an index.

messages Combo-box messages are sent by an application to a combo box. The
following list briefly describes each combo-box message:

Message

CB_ADDSTRING
CB _DELETE STRING

Chapter 5, Messages oveNiew

Description

Adds a string to the list box of a combo box.
Deletes a string from the list box of a combo box.

595

Owner
draw-control

messages

CB_DIR

CB _FINDSTRING

CB_GETCOUNT

CB_GETCURSEL

CB _ GETEDITSEL

CB_GETITEMDATA

CB_GETLBTEXT

CB_GETLBTEXTLEN

CB_INSERTSTRING
CB _LIMITTEXT

CB_RESETCONTENT

CB _SELECTSTRING

CB_SETCURSEL
CB _SETEDITSEL

CB_SETITEMDATA

CB_SHOWDROPDOWN

Adds a list of the files from the current directory to
the combo box.
Finds the first string in the combo-box list box which
matches a prefix.
Returns a count of the number of items in the combo
box.
Returns the index of the currently selected item, if
any.
Returns the starting and ending positions of the
selected text in the edit control of a combo box.
Retrieves a 32-bit value associated with an item in an
owner-draw combo box.
Copies a string from the list box of a combo box into a
buffer.
Returns the length of a string in the list box of a
combo box.
Inserts a string in the combo box.
Limits the length of the text that the user may enter
into the edit control of a combo box.
Removes all strings from a combo box and frees any
memory allocated for those strings.
Changes the current selection to the first string that
has the specified prefix. The text in the edit control is
changed to reflect the new selection.
Selects a string and scrolls it into view, if necessary.
Selects all characters in the edit control that are within
specified starting and ending positions.
Sets a 32-bit value associated with an item in an
owner-draw combo box.
Shows or hides a drop-down list box in a combo box.

Owner draw-control messages notify the owner of a control created with
the OWNERDRA W style that the control needs to be drawn and to
provide information about the drawing required. The following list briefly
describes these messages:

Message Description

WM_ COMPAREITEM Determines which of two items sorts above the other in a
sorted owner-draw list box or combo box.

WM_DELETEITEM Indicates that an item in an O"wner-draw list box or
combo box has been deleted.

WM_DRA WITEM Indicates that an owner-draw control needs to be
redrawn.

WM_MEASUREITEM Requests the dimensions of an owner-draw combo box,
list box, or menu item.

596 Software development kit

Notification messages

Button

Notification messages notify a control's parent window of actions that
occur within a control. The sections "Button notification codes" through
"Combo-box notification codes" briefly describe the notification messages
for each notification class.

Controls use the WM_ COMMAND message to notify the parent window
of actions that occur within the control. The wParam parameter of the
WM_COMMAND message contains the control 1D; the low-order word of
the IParam parameter contains the control-window handle; and the high­
order word of IParam contains the control notification code.

notification The following notification codes apply to buttons:

codes

Edit -control

Message

BN_CLICKED
BN_DOUBLECLICKED

Description

Indicates that the button has been clicked.
Indicates that the user has double-clicked an owner­
draw or radio button.

notification The following notification codes apply to edit controls:

codes
Message

EN_CHANGE

EN_ERRSP ACE
EN_HSCROLL

EN_KILLFOCUS
EN_MAXTEXT

EN_SETFOCUS
EN_UPDATE
EN_VSCROLL

Chapter 5, Messages overview

Description

Indicates that the user has taken some action that may have
changed the content of the text.
Indicates that the edit control is out of space.
Indicates that the user has clicked the edit control's horizontal
scroll bar with the mouse; the parent window is notified
before the screen is updated.
Indicates that the edit control has lost the input focus.
Specifies that the current insertion has exceeded a specified
number of characters for the edit control.
Indicates that the edit control has obtained the input focus.
Specifies that the edit control will display altered text.
Indicates that the user has clicked the edit control's vertical
scroll bar with the mouse; the parent window is notified
before the screen is updated.

597

List-box
notification The following notification codes apply only to list-box controls that have

codes LBS_NOTIFY style:

Combo-box
notification

codes

Message

LBN_DBLCLK
LBN_ERRSPACE
LBN_KILLFOCUS
LBN_SELCHANGE
LBN_SETFOCUS

Description

Sent when the user double-clicks a string with the mouse.
Sent when the system is out of memory.
Indicates that a list box has lost input focus.
Sent when the selection has been changed.
Indicates that the list box has received input focus.

The following notification codes apply to combo boxes:
Message Description

CBN_DBLCLK
CBN_DROPDOWN

CBN_EDITCHANGE
CBN_EDITUPDATE
CBN_ERRSPACE
CBN_KILLFOCUS
CBN_SELCHANGE
CBN_SETFOCUS

Sent when the user double-clicks a string with the mouse.
Informs the owner of the combo box that its list box is
about to be dropped down.
Indicates that the user has altered text in the edit control.
Indicates that the edit control will display altered text.
Sent when the system is out of memory.
Indicates that a combo box has lost input focus.
Sent when the selection has been changed.
Indicates that the combo box has received input focus.

Scroll-bar messages

There are two messages in the scroll-bar group: WM_HSCROLL and
WM_ VSCROLL. Scroll-bar controls send these messages to their parent
windows whenever the user clicks in the control. The wParam parameter
contains the same values as those defined for the scrolling messages of a
standard window. The high-order word of the IParam parameter contains
the window handle of the scroll-bar control.

f\Jonclient-area messages

598

Nonclient-area messages are sent by Windows to create and maintain the
nonclient area of an application's window. Normally, applications do not

Software development kit

process these messages, but send them on to the DefWindowProc function
for processing. The following list briefly describes each nonc1ient-area
message:

Message

WM_NCACTIV ATE

WM_NCCALCSIZE

WM_NCCREATE

WM_NCDESTROY
WM_NCHITTEST

WM_NCLBUTTONDBLCLK

WM_NCLBUTTONDOWN

WM_NCLBUTTONUP

WM_NCMBUTTONDBLCLK

WM_NCMBUTTONDOWN

WM_NCMBUTTONUP

WM_NCMOUSEMOVE

WM_NCPAINT

WM_NCRBUTTONDBLCLK

WM_NCRBUTTONDOWN

WM_NCRBUTTONUP

Chapter 5, Messages overview

Description

Sent to a window when its caption bar or icon
needs to be changed to indicate an active or
inactive state.
Sent when the size of a window's client area
needs to be calculated.
Sent prior to the WM_CREATE message when a
window is first created.
Sent after the WM_DESTROY message.
Sent to the window that contains the cursor
(unless a window has captured the mouse).
Sent to a window when the left mouse button is
double-clicked while the cursor is in a nonclient
area of the window.
Sent to a window when the left mouse button is
pressed while the cursor is in a nonclient area of
the window.
Sent to a window when the left mouse button is
released while the cursor is in a nonclient area of
the window.
Sent to a window when the middle mouse button
is double-clicked while the cursor is in a
nonclient area of the window.
Sent to a window when the middle mouse button
is pressed while the cursor is in a nonclient area
of the window.
Sent to a window when the left mouse button is
released while the cursor is in a non client area of
the window.
Sent to a window when the cursor is moved in a
nonclient area of the window.
Sent to a window when its border needs
painting.
Sent to a window when the right mouse button is
double-clicked while the cursor is in a nonclient
area of the window.
Sent to a window when the right mouse button is
pressed while the cursor is in a nonclient area of
the window.
Sent to a window when the right mouse button is
released while the cursor is in a nonclient area of
the window.

599

Multiple document interface messages

600

Windows multiple document interface (MDI) provides applications with a
standard interface for displaying multiple documents within the same
instance of an application. An MDI application creates a frame window
which contains a client window in place of its client area. The application
creates an MDI client window by calling CreateWindow with the
MDICLIENT class and passing a CLiENTCREATESTRUCT data structure as
the function's IpParam parameter. This client window in turn can own
multiple child windows, each of which displays a separate document. An
MDI application controls these child windows by sending messages to its
client window. The following briefly describes these MDI messages:

Message

WM_MDIACTIVATE
WM_MDICASCADE
WM_MDICREATE
WM_MDIDESTROY
WM_MDIGETACTIVE
WM_MDIICONARRANGE
WM_MDIMAXIMIZE
WM_MDINEXT
WM_MDIRESTORE

WM_MDISETMENU

WM_MDITILE

Topic

Message-processing
functions
Function descriptions
Message descriptions
Windows data types and
structures
Dynamic data exchange

General information on
Windows programming

Description

Activates a child window.
Arranges child windows in a cascade format.
Creates a child window.
Closes a child window.
Returns the current active MDI child window.
Arranges all minimized child windows.
Maximizes an MDI child window.
Activates the next child window.
Restores a child window from a maximized or
minimized state.
Replaces the menu of an MDI frame window, the
Window pop-up menu, or both.
Arranges all child windows in a tiled format.

Reference

Reference, Volume 1: Chapter 1,
"Window manager interface functions"
Reference, Volume 1: Chapter 4, "Functions directory"
Reference, Volume 1: Chapter 6, "Messages directory"
Reference, Volume 2: Chapter 7,
"Data types and structures"
Reference, Volume 2: Chapter 15, "Windows DDE
protocol definition"
Guide to Programming: Chapter 22, "Dynamic data
exchange"
Guide to Programming: Chapter 1,
"An overview of the Windows environment"

Software development kit

c H A p T E R

6

Messages directory

Microsoft Windows communicates with applications through formatted
window messages. These messages are sent to an application's window
function for processing.

Some messages return values that contain information about the success
of the message or other data needed by an application. To obtain the
return value, the application must call Send Message to send the message
to a window. This function does not return until the message has been
processed. If the application does not require the return value of the
message, it may call PostMessage to send the message. This function
places a message in a window's application queue and then returns
immediately. If a message does not have a return value, then the
application may use either function to send the message, unless indicated
otherwise in the message description.

A message consists of three parts: a message number, a word parameter,
and a long parameter. Message numbers are identified by predefined
message names. The message names begin with letters that suggest the
meaning or origin of the message. The word and long parameters, named
wParam and IParam respectively, contain values that depend on the
message number.

The IParam parameter often contains more than one type of information.
For example, the high-order word may contain a handle to a window and
the low-order word may contain an integer value. The HIWORD and
LOWORD utility macros can be used to extract the high- and low-order
words of the IParam parameter. The HIBYTE and LOBYTE utility macros

Chapter 6, Messages directory 601

602

can also be used with HIWORD and LOWORD to access any of the bytes.
Casting can also be used.

There are four ranges of message numbers, as shown in the following list:

Range Meaning

o to WM_USER - 1 Reserved for use by Windows.

WM_USER to Ox7FFF Integer messages for use by applications.

Ox8000 to OxBFFF Reserved for use by Windows.

OxCOOO to OxFFFF String messages for use by applications.

Message numbers in the first range (0 to WM_ USER - 1) are defined by
Windows. Values in this range that are not explicitly defined are reserved
for future use by Windows. This chapter describes messages in this range.

Message numbers in the second range (WM_ USER to 7FFF) can be
defined and used by an application to send messages within the
application. These messages should not be sent to other applications
unless the applications have been designed to exchange messages and to
attach the same meaning to the message numbers.

Message numbers in the third range (8000 to BFFF) are reserved for future
use by Windows.

Message numbers in the fourth range (COOO to FFFF) are defined at run
time when an application calls the RegisterWindowMessage function to
obtain a message number for a string. All applications that register the
identical string can use the associated message number for exchanging
messages with each other. The actual message number, however, is not a
constant and cannot be assumed to be the same in different window
sessions.

This chapter lists messages in alphabetical order. For more information
about messages, see Chapter 5, "Messages overview."

Software development kit

BM_GETCHECK

This message determines whether a radio button or check box is checked.

Parameters wParam Is not used.

IParam Is not used.

Return value The return value is nonzero if the radio button or check box is checked.
Otherwise, it is zero. The BM_ GETCHECK message always returns zero
for a push button.

BM_GETSTATE

This message determines the state of a button control when the user
presses a mouse button or the SPACEBAR.

Parameters wParam Is not used.

IParam Is not used.

Return value The BM_ GETSTATE message returns a nonzero value if one of the
following occurs:

[J A push button is highlighted.
[J The user presses a mouse button or the SPACEBAR when a button has the

input focus.
[J The user presses a mouse button when the cursor is over a button.

Otherwise, BM_ GETSTATE returns zero.

This message checks or removes the checkmark from a radio button or
check box.

Parameters wParam Specifies whether to place or remove a checkmark inside the
button or box. If the wParam parameter is nonzero, a
checkmark is placed; if it is zero, the checkmark (if any) is
removed. For three-state buttons, if wParam is 1, a checkmark is
placed beside the button. If wParam is 2, the button is grayed. If
wParam is zero, the button is returned to its normal state (no
checkmark or graying).

Chapter 6, Messages directory 603

IParam Is not used.

Comments The BM_SETCHECK message has no effect on push buttons.

This message displays a button or check box.

Parameters wParam Specifies the highlighting action to be taken. If the wParam
parameter is nonzero, the button is highlighted (the interior is
drawn using inverse video). If wParam is zero, the button is
drawn in its regular state.

IParam Is not used.

Comments Push buttons cannot be highlighted.

This message alters the style of buttons. If the style contained in the
wParam parameter differs from the existing style, the button is redrawn in
the new style.

Parameters wParam Specifies the style value. For a complete description of possible
button styles, see Table 6.1, "Button styles."

IParam Specifies whether or not the buttons are to be redrawn. If
IParam is zero, the buttons will not be redrawn. If IParam is
nonzero, they will be redrawn.

Comments Table 6.1 describes the available button styles:

Table 6.1
Button styles Value Meaning

BS_AUTOCHECKBOX Identical to BS_CHECKBOX, except that the
button automatically toggles its state whenever the
user clicks it.

BS_AUTORADIOBUTTON Identical to BS_RADIOBUTTON, except that the
button is checked, the application is notified by
BN_CLICKED, and the checkmarks are removed
from all other radio buttons in the group.

BS_AUT03STATE Identical to BS_3STATE, except that the button
automatically toggles its state when the user clicks
it.

BS_CHECKBOX Designates a box that may be checked; its border is
bold when the user clicks the button. Any text
appears to the right of the box.

604 Software development kit

BN_CLlCKED

Table 6.1: Button styles (continued)

BS_DEFPUSHBUTTON

BS_GROUPBOX

Designates a button with a bold border. This
button represents the default user response. Any
text is displayed within the button. Windows
sends a message to the parent window when the
user clicks the button.
Designates a rectangle into which other buttons
are grouped. Any text is displayed in the
rectangle's upper-left corner.
Causes text to appear on the left side of the radio
button or check-box button. Use this style with the
BS_CHECKBOX, BS_RADIOBUTTON, or
BS_3STATE styles.
Designates an owner-draw button. The parent
window is notified when the button is clicked.
Notification includes a request to paint, invert, and
disable the button.
Designates a button that contains the given text.
The control sends a message to its parent window
whenever the user clicks the button.
Designates a small circular button that can be
checked; its border is bold when the user clicks the
button. Any text appears to the right of the button.
Typically, two or more radio buttons are grouped
together to represent mutually exclusive choices,
so no more than one button in the group is
checked at any time.
Identical to BS_CHECKBOX, except that the box
can be grayed as well as checked. The grayed state
typically is used to show that a check box has been
disabled.

This code specifies that the user has clicked a button. The parent window
receives the code through a WM_ COMMAND message from a button
control.

Parameters wParam Specifies the control ID.

IParam Contains a handle that identifies the button control in its low­
order word and the BN_ CLICKED notification code in its
high-order word.

Comments Disabled buttons will not send a BN_ CLICKED notification message to a
parent window.

Chapter 6, Messages directory 605

BN_DOUBLECLICKED

BN_DOUBLECLICKED

This code specifies that the user has double-clicked a button. The control's
parent window receives this code through a WM_ COMMAND message
from a button control.

Parameters wParam Specifies the control ID.

IParam Contains a handle that identifies the button control in its low­
order word and the BN_DOUBLECLICKED notification code
in its high-order word.

Comments This code applies to buttons with the BS_RADIOBUTTON and
BS_OWNERDRAW styles only.

3.0

This message adds a string to the list box of a combo box. If the list box is
not sorted, the string is added to the end of the list. If the list box is sorted,
the string is inserted into the list after sorting.

This message removes any existing list-box selections.

Parameters wParam Is not used.

IParam Points to the null-terminated string that is to be added. If the
combo box was created with an owner-draw style but without
the CBS_HASSTRINGS style, the IParam parameter is an
application-supplied 32-bit value that is stored by the combo
box instead of the pointer to the string.

Return value The return value is the index to the string in the list box. The return value
is CB_ERR if an error occurs; the return value is CB_ERRSPACE if
insufficient space is available to store the new string.

Comments If an owner-draw combo box was created with the CBS_SORT style but
not the CBS_HASSTRINGS style, the WM_COMPAREITEM message is
sent one or more times to the owner of the combo box so that the new
item can be properly placed in the list box.

CB_DELETESTRING 3.0

This message deletes a string from the list box.

Parameters wParam Contains an index to the string that is to be deleted.

606 Software development kit

CB_DELETESTRING

lParam Is not used.

Return value The return value is a count of the strings remaining in the list. The return
value is CB _ERR if wParam does not specify a valid index.

Comments If the combo box was created with an owner-draw style but without the
CBS_HASSTRINGS style, a WM_DELETEITEM message is sent to the
owner of the combo box so the application can free additional data
associated with the item (through the lParam parameter of the
CB_ADDSTRING or CB_INSERTSTRING message).

This message adds a list of the files from the current directory to the list
box. Only files· with the attributes specified by the wParam parameter and
that match the file specification given by the lParam parameter are added.

Parameters wParam Contains a DOS attribute value. For a list of the DOS attributes,
see the DlgDirList function in Chapter 4, "Functions directory."

lParam Points to a file-specification string. The string can contain
wildcard characters (for example, *. *).

Return value The return value is a count of items displayed. The return value is
CB_ERR if an error occurs; the return value is CB_ERRSPACE if
insufficient space is available to store the new strings.

Comments The return value of the CB _DIR message is one less than the return value
of the CB _ GETCOUNT message.

CB_FINDSTRING

This message finds the first string in the list box of a combo box which
matches the given prefix text.

3.0

Parameters wParam Contains the index of the item before the first item to be
searched. When the search reaches the bottom of the list box it
continues from the top of the list box back to the item specified
by wParam. If the wParam parameter is -1, the entire list box is
searched from the beginning.

lParam Points to the prefix string. The string must be null-terminated.

Return value The return value is the index of the matching item or CB _ERR if the
search was unsuccessful.

Chapter 6, Messages directory 607

CB_FINDSTRING

Comments If the combo box was created with an owner-draw style but without the
CBS_HASSTRINGS style, this message returns the index of the item
whose long value (supplied as the IParam parameter of the
CB_ADDSTRING or CB_INSERTSTRING message) matches the value
supplied as the IParam parameter of CB_FINDSTRING.

3.0

This message returns a count of the items in a list box of a combo box.

Parameters wParam Is not used.

IParam Is not used.

Return value The return value is a count of the items in the list box of a combo box.

3.0

This message returns the index of the currently selected item, if any, in the
list box of a combo box.

Parameters wParam Is not used.

IParam Is not used.

Return value The return value is the index of the currently selected item. It is CB _ERR if
no item is selected.

CB_ GETEDITSEL 3.0

This message returns the starting and ending positions of the selected text
in the edit control of a combo box.

Parameters wParam Is not used.

IParam Is not used.

Return value The return value is a long integer containing the starting position in the
low-order word and the ending position in the high-order word. If this
message is sent to a combo box without an edit control, the return value is
CB_ERR.

608 Software development kit

CB_GETITE M DATA

CB_GETITEMDATA 3.0

This message retrieves the application-supplied 32-bit value associated
with the specified combo-box item. If the item is in an owner-draw combo
box created without the CBS_HASSTRINGS style, this 32-bit value was
contained in the IParam parameter of the CB_ADDSTRING or
CB_INSERTSTRING message that added the item to the combo box.
Otherwise, it was the value in the IParam parameter of a
CB _SETITEMDATA message.

Parameters wParam Contains an index to the item.

IParam Is not used.

Return value The return value is the 32-bit value associated with the item, or CB_ERR if
an error occurs.

CB_GETLBTEXT 3.0

This message copies a string from the list box of a combo box into a buffer.

Parameters wParam Contains the index of the string to be copied.

IParam Points to a buffer that is to receive the string. The buffer must
have sufficient space for the string and a terminating null
character.

Return value The return value is the length of the string in bytes, excluding the
terminating null character. If wParam does not specify a valid index, the
return value is CB _ERR.

Comments If the combo box was created with an owner-draw style but without the
CBS_HASSTRINGS style, the buffer pointed to by the IParam parameter of
the message receives the 32-bit value associated with the item through the
IParam parameter of the CB_ADDSTRING or CB_INSERTSTRING
message.

CB_GETLBTEXTLEN 3.0

This message returns the length of a string in the list box of a combo box.

Parameters wParam Contains the index of the string.

Chapter 6, Messages directory 609

CB_ GETLBTEXTLEN

IParam Is not used.

Return value The return value is the length of the string in bytes, excluding the
terminating null character. If wParam does not specify a valid index, the
return value is CB _ERR.

CB_INSERTSTRING 3.0

This message inserts a string into the list box of a combo box. No sorting is
performed.

Parameters wParam Contains an index to the position that will receive the string. If
the wParam parameter is -I, the string is added to the end of
the list.

IParam Points to the null-terminated string that is to be inserted. If the
combo box was created with an owner-draw style but without
the CBS_HASSTRINGS style, the IParam parameter is an ap­
plication-supplied 32-bit value that is stored by the combo box
instead of the pointer to the string.

Return value The return value is the index of the position at which the string was
inserted. The return value is CB_ERR if an error occurs; the return value is
CB_ERRSPACE if insufficient space is available to store the new string.

CB_LlMITIEXT 3.0

This message limits the length (in bytes) of the text that the user may enter
into the edit control of a combo box.

Parameters wParam Specifies the maximum number of bytes which the user can
enter.

IParam Is not used.

Return value The return value is TRUE if the message is successful; otherwise, it is
FALSE. If this message is sent to a combo box without an edit control, the
return value is CB_ERR.

CB_RESETCONTENT 3.0

610

This message removes all strings from the list box of a combo box and
frees any memory allocated for those strings.

Software development kit

CB_RESETCONTENT

Parameters wParam Is not used.

IParam Is not used.

Comments If the combo box was created with an owner-draw style but without the
CBS_HASSTRINGS style, the owner of the combo box receives a
WM_DELETEITEM message for each item in the combo box.

CB_SELECTSTRING 3.0

This message selects the first string in the list box of a combo box that
matches the specified prefix. The text in the edit control of the combo box
is changed to reflect the new selection.

Parameters wParam Contains the index of the item before the first item to be
searched. When the search reaches the bottom of the list box it
continues from the top of the list box back to the item specified
by wParam. If the wParam parameter is -1, the entire list box is
searched from the beginning.

IParam Points to the prefix string. The string must have a null­
terminating character.

Return value The return value is the index of the newly selected item. If the search was
unsuccessful, the return value is CB_ERR and the current selection is not
changed.

Comments A string is selected only if its initial characters (from the starting point)
match the characters in the prefix string.

If the combo box was created with an owner-draw style but without the
CBS_HASSTRINGS style, this message returns the index of the item
whose long value (supplied as the IParam parameter of the
CB_ADDSTRING or CB_INSERTSTRING message) matches the value
supplied as the IParam parameter of CB_FINDSTRING.

3.0

This message selects a string in the list box of a combo box and scrolls it
into view if the list box is visible, and the text in the combo-box edit
control or static-text control is changed to reflect the new selection. When
the new string is selected, the list box removes the highlight from the
previously selected string.

Chapter 6, Messages directory 611

Parameters wParam Contains the index of the string that is to be selected. If wParam
is -I, the list box is set to have no selection.

IParam Is not used.

Return value If the index specified by wParam is not valid, the return value is CB_ERR
and the current selection is not changed.

CB_SETEDITSEL 3.0

This message selects all characters in the edit control of a combo box that
are within the starting and ending character positions specified by the
IParam parameter.

Parameters wParam Is not used.

IParam Specifies the starting position in the low-order word and the
ending position in the high-order word.

Return value The return value is TRUE if the message is successful; otherwise, it is
FALSE. If this message is sent to a combo box without an edit control, the
return value is CB_ERR.

CB_SETITEMDATA 3.0

This message sets the 32-bit value associated with the specified item in a
combo box. If the item is in an owner-draw combo box created without
the CBS_HASSTRINGS style, this message replaces the 32-bit value that
was contained in the IParam parameter of the CB_ADDSTRING or
CB_INSERTSTRING message that added the item to the combo box.

Parameters wParam Contains an index to the item.

IParam Contains the new value to be associated with the item.

Return value The return value is CB _ERR if an error occurs.

CB_SHOWDROPDOWN 3.0

612

This message shows or hides the drop-down list box on a combo box
created with the CBS_DROPDOWN or CBS_DROPDOWNLIST style.

Parameters wParam If TRUE, displays the list box if it is not already visible. If
FALSE, hides the list box if it is visible.

Software development kit

IParam Not used.

3.0

This code specifies that the user has double-clicked a string in the list box
of a combo box. The control's parent window receives this code through a
WM_ COMMAND message from the control.

Parameters wParam Specifies the control ID of the combo box.

IParam Contains the combo-box window handle in its low-order word
and the CBN_DBLCLK code in its high-order word.

Comments This message can only occur for a combo box with a list box that is always
visible. For combo boxes with drop-down list boxes, a single closes the list
box and so a double-click cannot occur.

3.0

This code specifies that the list box of a combo box will be dropped down.
It is sent just before the combo-box list box is made visible. The control's
parent window receives this code through a WM_ COMMAND message
from the control.

Parameters wParam Specifies the control ID of the combo box.

IParam Contains the combo-box window handle in its low-order word
and the CBN_DROPDOWN code in the high-order word.

Comments This message does not occur if the combo box does not contain a drop-
down list box.

CBN_EDITCHANGE 3.0

This code indicates that the user has taken an action that may have altered
the text in the edit control of a combo box. It is sent after Windows
updates the display (unlike the CBN_EDITUPDATE code). The control's
parent window receives this code through a WM_ COMMAND message
from the control.

Parameters wParam Specifies the control ID of the combo box.

IParam Contains the combo-box window handle in its low-order word
and the CBN_EDITCHANGE code in its high-order word.

Chapter 6, Messages directory 613

CBN_EDITCHANGE

Comments This message does not occur if the combo box does not contain an edit
control.

CBN_EDITUPDATE 3.0

This code specifies that a combo box containing an edit control will
display altered text. The control's parent window receives this code
through a WM_ COMMAND message from the control.

Parameters wParam Specifies the control ID of the combo box.

IParam Contains the combo-box window handle in its low-order word
and the CBN_EDITUPDATE code in its high-order word.

Comments This message does not occur if the combo box does not contain an edit
control.

CBN_ERRSPACE 3.0

This code specifies that the combo-box list-box control cannot allocate
enough memory to meet a specific request. The control's parent window
receives this code through a WM_ COMMAND message from the control.

Parameters wParam Specifies the control ID of the combo box.

IParam Contains the combo-box window handle in its low-order word
and the CBN_ERRSP ACE code in its high-order word.

CBN_KI LLFOCUS 3.0

614

This code is sent when a combo box loses input focus. The control's parent
window receives this code through a WM_ COMMAND message from the
control.

Parameters wParam Specifies the control ID of the combo box.

IParam Contains the combo-box window handle in its low-order word
and the CBN_KILLFOCUS code in its high-order word.

Software development kit

CBN_SELCHANGE

This code indicates that the selection in the list box of a combo box has
changed either as a result of the user clicking in the list box or entering
text in the edit control. The control's parent window receives this code
through a WM_ COMMAND message from the control.

3.0

Parameters wParam Specifies the control ID of the combo box.

IParam Contains the combo-box window handle in its low-order word
and the CBN_SELCHANGE code in its high-order word.

3.0

This code is sent when the combo box receives input focus. The control's
parent window receives this code through a WM_ COMMAND message
from the control.

Parameters wParam Specifies the control ID of the combo box.

IParam Contains the combo-box window handle in its low-order word
and the CBN_SETFOCUS code in its high-order word.

DM_GETDEFID

This message retrieves the ID of the default push-button control for a
dialog box.

Parameters wParam Is not used.

IParam Is not used.

Return value The return value is a 32-bit value. The high-order word contains
DC_HASDEFID if the default button exists; otherwise, it is NULL. The
low-order word contains the ID of the default button if the high-order
word contains DC_HASDEFID; otherwise, it is zero.

This message is used by an application to change the default push-button
control ID for a dialog box.

Parameters wParam Contains the ID of the new default push-button control.

Chapter 6, Messages directory 615

EM_CAN UNDO

IParam Is not used.

This message determines whether an edit control can respond correctly to
an EM_UNDO message.

Parameters wParam Is not used.

IParam Is not used.

Return value The return value is nonzero if the edit control can process the EM_UNDO
message correctly. Otherwise, it is zero.

EM_EMPTYUNDOBUFFER 3.0

This message directs an edit control to clear its undo buffer. This disables
the edit control's ability to undo the last edit.

Parameters wParam Is not used.

IParam Is not used.

Comments The undo buffer is automatically emptied whenever the edit control
receives a WM_SETTEXT or EM_SETHANDLE message.

This message directs a multiline edit control to add or remove the end-of­
line character from word wrapped text lines.

Parameters wParam Indicates the disposition of end-of-line characters. If the

IParam

wParam parameter is nonzero, the characters CR CR LF (00 00
OA hexadecimal) are placed at the end of wordwrapped lines. If
wParam is zero, the end-of-line characters are removed from
the text.

Is not used.

Return value The return value is nonzero if any formatting occurs. Otherwise, it is zero.

Comments Lines that end with a hard return (a carriage return entered by the user)
contain the characters CR LF at the end of the line. These lines are not
affected by the EM_FMTLINES message.

616 Software development kit

Notice that the size of the text changes when this message is processed.

EM_GETHANDLE

This message returns the data handle of the buffer that holds the contents
of the control window. The handle is always a local handle to a location in
the application's data segment.

Parameters wParam Is not used.

IParam Is not used.

Return value The return value is a data handle that identifies the buffer that holds the
contents of the edit control.

Comments An application may send this message to a control only if it has created
the dialog box containing the control with the DS_LOCALEDIT style flag
set.

EM_GETLINE

This message copies a line from the edit control.

Parameters wParam Specifies the line number of the line in the control, where the
line number of the first line is zero.

IParam Points to the buffer where the line will be stored. The first word
of the buffer specifies the maximum number of bytes to be
copied to the buffer. The copied line is not null-terminated.

Return value The return value is the number of bytes actually copied. This message is
not processed by single-line edit controls.

EM_GETLINECOUNT

This message returns the number of lines of text in the edit control.

Parameters wParam Is not used.

IParam Is not used.

Return value The return value is the number of lines of text in the control.

Comments This message is not processed by single-line edit controls.

Chapter 6, Messages directory 617

II
I

EM_GETMODIFY

EM_GETMODIFY

This message returns the current value of the modify flag for a given edit
control. The flag is set by the control if the user enters or modifies text
within the control.

Parameters wParam Is not used.

IParam Is not used.

Return value The return value is the value of the current modify flag for a given edit
control.

EM_GETRECT

This message retrieves the formatting rectangle of the control.

Parameters wParam Is not used.

IParam Points to a REeT data structure. The control copies the
dimensions of the structure.

EM_GETSEL

618

This message returns the starting and ending character positions of the
current selection.

Parameters wParam Is not used.

IParam Is not used.

Return value The return value is a long value that contains the starting position in the
low-order word. It contains the position of the first nons elected character
after the end of the selection in the high-order word.

This message limits the length (in bytes) of the text the user may enter.

Parameters wParam Specifies the maximum number of bytes that can be entered. If
the user attempts to enter more characters, the edit control
beeps and does not accept the characters. If the wParam
parameter is zero, no limit is imposed on the size of the text
(until no more memory is available).

Software development kit

IParam Is not used.

Comments The EM_LIMITTEXT message does not affect text set by the
WM_SETTEXT message or the buffer set by the EM_SETHANDLE
message.

EM_L1NEFROMCHAR

This message returns the line number of the line that contains the
character whose position (indexed from the beginning of the text) is
specified by the wParam parameter.

Parameters wParam Contains the index value for the desired character in the text of
the edit control (these index values are zero-based), or contains
-1.

IParam Is not used.

Return value The return value is a line number. If wParam is -I, the number of the line
that contains the first character of the selection is returned; otherwise,
wParam contains the index (or position) of the desired character in the
edit-control text, and the number of the line that contains that character is
returned.

This message returns the number of character positions that occur
preceding the first character in a given line.

Parameters wParam Specifies the desired line number, where the line number of the
first line is zero. If the wParam parameter is -I, the current line
number (the line that contains the caret) is used.

IParam Is not used.

Return value The return value is the number of character positions that precede the first
character in the line.

Comments This message will not be processed by single-line edit controls.

This message returns the length of a line (in bytes) in the edit control's text
buffer.

Chapter 6, Messages directory 619

Parameters wParam Specifies the character index of a character in the specified line,
where the line number of the first line is zero. If the wParam
parameter is -I, the length of the current line (the line that
contains the caret) is returned, not including the length of any
selected text. If the current selection spans more than one line,
the total length of the lines, minus the length of the selected
text, is returned.

IParam Is not used.

Comments Use the EM_LINE INDEX message to retrieve a character index for a given
line number. This index can be used with the EM_LINELENGTH
message.

EM_LlNESCROLL

This message scrolls the content of the control by the given number of
lines.

Parameters wParam Is not used.

IParam Contains the number of lines and character positions to scroll.
The low-order word of the IParam parameter contains the
number of lines to scroll vertically; the high-order word
contains the number of character positions to scroll
horizontally.

Comments This message will not be processed by single-line edit controls.

EM_REPLACESEL

620

This message replaces the current selection with new text.

Parameters wParam Is not used.

IParam Points to a null-terminated string of replacement text.

This message establishes the text buffer used to hold the contents of the
control window.

Software development kit

Parameters wParam Contains a handle to the buffer. The handle must be a local
handle to a location in the application's data segment. The edit
control uses this buffer to store the currently displayed text,
instead of allocating its own buffer. If necessary, the control
reallocates this buffer.

IParam Is not used.

Comments This message will not be processed by single-line edit controls.

If the EM_SETHANDLE message is used to change the text buffer used by
an edit control, the previous text buffer is not destroyed. The application
must retrieve the previous buffer handle before setting the new handle,
and must free the old handle by using the LocalFree function.

An edit control automatically reallocates the given buffer whenever it
needs additional space for text, or it removes enough text so that
additional space is no longer needed. An application may send this
message to a control only if it has created the dialog box containing the
control with the DS_LOCALEDIT style flag set.

This message sets the modify flag for a given edit control.

Parameters wParam Specifies the new value for the modify flag.

IParam Is not used.

EM_SETPASSWORDCHAR 3.0

This message sets the character displayed in an edit control created with
the ES_PASSWORD style. The default display character is an asterisk (*).

Parameters wParam Specifies the character to be displayed in place of the character
typed by the user. If wParam is NULL, the actual characters
typed by the user are displayed.

IParam Is not used.

This message sets the formatting rectangle for a control. The text is
reformatted and redisplayed to reflect the changed rectangle.

Chapter 6, Messages directory 621

622

Parameters wParam Is not used.

IParam Points to a RECl data structure that specifies the new
dimensions of the rectangle.

Comments This message will not be processed by single-line edit controls.

This message sets the formatting rectangle for a control. The text is
reformatted and redisplayed to reflect the changed rectangle. The
EM_SETRECTNP message is the same as the EM_SETRECT message,
except that the control is not repainted. Any subsequent alterations cause
the control to be repainted to reflect the changed formatting rectangle.
This message is used when the field is to be repainted later.

Parameters wParam Is not used.

IParam Points to a RECl data structure that specifies the new
dimensions of the rectangle.

Comments This message will not be processed by single-line edit controls.

This message selects all characters in the current text that are within the
starting and ending character positions given by the IParam parameter.

Parameters wParam Is not used.

IParam Specifies the starting position in the low-order word and the
ending position in the high-order word. The position values 0
to 32,767 select the entire string.

3.0

This message sets the tab-stop positions in a multiline edit control.

Parameters wParam Is an integer that specifies the number of tab stops in the edit
control.

IParam Is a long pointer to the first member of an array of integers
containing the tab stop positions in dialog units. (A dialog unit
is a horizontal or vertical distance. One horizontal dialog unit

Software development kit

Return value

EM_SETTABSTOPS

is equal to 1/4 of the current dialog base width unit. The dialog
base units are computed based on the height and width of the
current system font. The GetDialogBaseUnits function returns
the current dialog base units in pixels.) The tab stops must be
sorted in increasing order; back tabs are not allowed.

The return value is TRUE if all the tabs were set. Otherwise, the return
value is FALSE.

Comments If wParam is zero and lParam is NULL, the default tab stops are set at
every 32 dialog units. If wParam is 1, the edit control will have tab stops
separated by the distance specified by lParam. If lParam points to more
than a single value, then a tab stop will be set for each value in lParam, up
to the number specified by wParam.

EM_SETWORDBREAK

This message is sent to the multiline edit control, informing the edit
control that Windows has replaced the default word-break function with
an application-supplied word-break function. A word-break function
scans a text buffer (which contains text to be sent to the display), looking
for the first word that will not fit on the current display line. The word­
break function places this word at the beginning of the next line on the
display. A word-break function defines at what point Windows should
break a line of text for multiline edit controls, usually at a blank character
that separates two words. The default word-break function breaks a line
of text at a blank character. The application-supplied function may define
a word break to be a hyphen or character other than the blank character.

Parameters wParam Is not used.

lParam Is a procedure-instance address.

Comments The callback-function address, passed as the lParam parameter, must be
created by using the MakeProclnstance function. The callback function
must use the Pascal calling convention and must be declared FAR.

Callback
Function LPSTR FAR PASCAL WordBreakFunc(lpchEditText, ichCurrentWord,

cchEditText)
LPSTR lpchEditText;
short ichCurrent Word;
short cchEditText;

Chapter 6, Messages directory 623

I

II

EM_SETWORDBREAK

WordBreakFunc is a placeholder for the application-supplied function
name. The actual name must be exported by including it in an EXPORTS
statement in the application's module-definition file.

Parameters IpchEditText Points to the text of the edit control.

ichCurrent Word

cchEditText

Specifies an index to a word in the buffer of text that
identifies at what point the function should begin
checking for a word break.

Specifies the number of bytes of edit text.

Return value The return value points to the first byte of the next word in the edit­
control text. If the current word is the last word in the text, the return
value points to the first byte that follows the last word.

EM UNDO

This message undoes the last edit to the edit control. When the user
modifies the edit control, the last change is stored in an undo buffer,
which grows dynamically as required. If insufficient space is available for
the buffer, the undo attempt fails and the edit control is unchanged.

Parameters wParam Is not used.

IParam Is not used.

Return value The return value is nonzero if the undo operation is successful. It is zero if
the undo operation fails.

EN_CHANGE

624

This code specifies that the user has taken an action that may have altered
text. It is sent after Windows updates a display (unlike the EN_UPDATE
code). The control's parent window receives this code through a
WM_ COMMAND message from the control.

Parameters wParam Contains the wParam parameter of the WM_ COMMAND
message, and specifies the control 10.

IParam Contains an edit-control window handle in its low-order word
and the EN_CHANGE code in its high-order word.

Software development kit

This code specifies that the edit control cannot allocate additional memory
space. The control's parent window receives this code through a
WM_ COMMAND message from the control.

Parameters wParam Contains the wParam parameter of the WM_ COMMAND
message, and specifies the control ID.

EN HSCROLL

IParam Contains an edit-control window handle in its low-order word
and the EN_ERRSP ACE code in its high-order word.

This code specifies that the user has clicked the edit control's horizontal
scroll bar. The control's parent window receives this code through a
WM_ COMMAND message from the control. The parent window is
notified before the screen is updated.

Parameters wParam Contains the wParam parameter of the WM_ COMMAND
message, and specifies the control ID.

EN_KI LLFOCUS

IParam Contains an edit-control window handle in its low-order word
and the EN_HSCROLL code in its high-order word.

This code specifies that the edit control has lost the input focus. The
control's parent window receives this code through a WM_ COMMAND
message from the control.

Parameters wParam Contains the wParam parameter of the WM_ COMMAND
message, and specifies the control ID.

IParam Contains an edit-control window handle in its low-order word
and the EN_KILLFOCUS code in its high-order word.

Chapter 6, Messages directory 625

626

3.0

This code specifies that the current insertion has exceeded the specified
number of characters for the edit control. The insertion has been
truncated. This message is also sent when an edit control does not have
the ES_AUTOHSCROLL style and the number of characters to be inserted
would exceed the width of the edit control. The control's parent window
receives this code through a WM_ COMMAND message from the control.

Parameters wParam Contains the wParam parameter of the WM_ COMMAND
message, and specifies the control ID.

IParam Contains an edit-control window handle in its low-order word
and the EN_MAXTEXT code in its high-order word.

This code specifies that the edit control has obtained the input focus. The
control's parent window receives this code through a WM_ COMMAND
message from the control.

Parameters wParam Contains the wParam parameter of the WM_ COMMAND
message, and specifies the control ID.

IParam Contains an edit-control window handle in its low-order word
and the EN_SETFOCUS code in its high-order word.

The code specifies that the edit control will display altered text. The
control's parent window receives this code through a WM_ COMMAND
message from the control; notification occurs after the control has
formatted the text, but before it displays the text. This makes it possible to
alter the window size, if necessary.

Parameters wParam Specifies the control ID.

IParam Contains an edit-control window handle in its low-order word
and the EN_UPDATE code in its high-order word.

Software development kit

EN_VSCROLL

This code specifies that the user has clicked the edit control's vertical scroll
bar. The control's parent window receives this code through a
WM_COMMAND message from the control; notification occurs before
the screen is updated.

Parameters wParam Contains the wParam parameter of the WM_ COMMAND
message, and specifies the control ID.

IParam Contains an edit-control window handle in its low-order word
and the EN_ VSCROLL code in its high-order word.

This message adds a string to the list box. If the list box is not sorted, the
string is added to the end of the list. If the list box is sorted, the string is
inserted into the list after sorting.

This message removes any existing list-box selections.

Parameters wParam Is not used.

IParam Points to the null-terminated string that is to be added. If the
list box was created with an owner-draw style but without the
LBS_HASSTRINGS style, the IParam parameter is an ap­
plication-supplied 32-bit value that is stored by the list box
instead of the pointer to the string.

Return value The return value is the index to the string in the list box. The return value
is LB_ERR if an error occurs; the return value is LB_ERRSPACE if
insufficient space is available to store the new string.

Comments If an owner-draw list box was created with the LBS_SORT style but not
the LBS_HASSTRINGS style, the WM_COMPAREITEM message is sent
one or more times to the owner of the list box so the new item can be
properly placed in the list box.

LB_DELETESTRING

This message deletes a string from the list box.

Parameters wParam Contains an index to the string that is to be deleted.

IParam Is not used.

Chapter 6, Messages directory 627

LB_DELETESTRING

Return value The return value is a count of the strings remaining in the list. The return
value is LB_ERR if an error occurs.

Comments If the list box was created with an owner-draw style but without the
LBS_HASSTRINGS style, a WM_DELETEITEM message is sent to the
owner of the list box so the application can free additional data associated
with the item (through the IParam parameter of the LB_ADDSTRING or
LB_INSERTSTRING message).

This message adds a list of the files from the current directory to the list
box. Only files with the attributes specified by the wParam parameter and
that match the file specification given by the IParam parameter are added.

Parameters wParam Contains a DOS attribute value. For a list of the DOS attributes,
see the DlgDirList function in Chapter 4, "Functions directory."

IParam Points to a file-specification string. The string can contain
wildcard characters (for example, *.*).

Return value The return value is a count of items displayed. The return value is
LB_ERR if an error occurs; the return value is LB_ERRSPACE if
insufficient space is available to store the new strings.

Comments The return value of the LB_DIR message is one less than the return value
of the LB_GETCOUNT message.

LB_FINDSTRING 3.0

This message finds the first string in the list box which matches the given
prefix text.

Parameters wParam Contains the index of the item before the first item to be
searched. When the search reaches the bottom of the list box it
continues from the top of the list box back to the item specified
by wParam. If the wParam parameter is -1, the entire list box is
searched from the beginning.

IParam Points to the prefix string. The string must be null-terminated.

Return value The return value is the index of the matching item or LB_ERR if the search
was unsuccessful.

628 Software development kit

LB_FINDSTRING

Comments If the list box was created with an owner-draw style but without the
LBS_HASSTRINGS style, this message returns the index of the item
whose long value (supplied as the IParam parameter of the
LB_ADDSTRING or LB_INSERTSTRING message) matches the value
supplied as the IParam parameter of LB_FINDSTRING.

LB_GETCARETINDEX 3.1

This message returns the index of the item that has the focus caret in a list
box. If the list box is a single-selection list box, the item will also be
selected. In a multiple-selection list box, the item is not necessarily a
selected item.

Parameters wParam Is not used.

IParam Is not used.

Return value The return value is the list-box item that has the focus caret.
The return value is LB_ERR if an error occurs.

LB_GETCOUNT

This message returns a count of the items in the list box.

Parameters wParam Is not used.

IParam Is not used.

Return value The return value is a count of the items in the list box. The return value is
LB_ERR if an error occurs.

LB_GETCURSEL

This message returns the index of the currently selected item, if any.

Parameters wParam Is not used.

IParam Is not used.

Return value The return value is the index of the currently selected item. It is LB_ERR if
no item is selected or if the list-box type is multiple selection.

Chapter 6, Messages directory 629

LB_GETHORIZONTALEXTENT

LB_ GETHORIZONTALEXTENT 3.0

This message retrieves from a list box the width in pixels by which the list
box can be scrolled horizontally if the list box has horizontal scroll bars.

Parc:imeters wParam Is not used.

IParam Is not used.

Return value The return value is the scrollable width of the list box, in pixels.

Comments To respond to the LB_GETHORIZONTALEXTENT message, the list box
must have been defined with the WS_HSCROLL style.

LB_GETITEMDATA 3.0

This message retrieves the application-supplied 32-bit value associated
with the specified list-box item. If the item is in an owner-draw list box
created without the LBS_HASSTRINGS style, this 32-bit value was
contained in the IParam parameter of the LB _ADDSTRING or
LB _INSERTSTRING message that added the item to the list box.
Otherwise, it was the value in the IParam parameter of a
LB_SETITEMDATA message.

Parameters wParam Contains an index to the item.

IParam Is not used.

Return value The return value is the 32-bit value associated with the item, or LB_ERR if
an error occurs.

LB_GETITEMHEIGHT 3.1

630

This message returns the height of one or all items in the list box. If the list
box is a variable-height owner-draw list box, this message returns the
height of the item specified by the wParam parameter. Otherwise, this
message returns the height of all items in the list box.

Parameters wParam Specifies the index of the item for which the height is to be
obtained.

IParam Is not used.

Return value The return value specifies the height in pixels of the item.

The return value is LB _ERR if there is an error.

Software development kit

LB_GETITEMRECT

LB_GETITEMRECT 3.0

This message retrieves the dimensions of the rectangle that bounds a list­
box item as it is currently displayed in the list-box window.

Parameters wParam Contains an index to the item.

IParam Contains a long pointer to a REeT data structure that receives
the list-box client coordinates of the item.

Return value The return value is LB_ERR if an error occurs.

LB_GETSEL

This message returns the selection state of an item.

Parameters wParam Contains an index to the item.

IParam Is not used.

Return value The return value is a positive number if an item is selected. Otherwise, it
is zero. The return value is LB_ERR if an error occurs.

LB_GETSELCOUNT

This message returns the total number of selected items in a
multiselection list box.

Parameters wParam Not used.

IParam Not used.

3.0

Return value The return value is the count of selected items in a list box. If the list box is
a single-selection list box, the return value is LB _ERR.

LB_GETSELITEMS 3.0

This message fills a buffer with an array of integers specifying the item
numbers of selected items in a multiselection list box.

Parameters wParam Specifies the maximum number of selected items whose item
numbers are to be placed in the buffer.

Chapter 6, Messages directory 631

I

•
I

LB_GETSELITEMS

IParam Contains a long pointer to a buffer large enough for the
number of integers specified by the wParam parameter.

Return value The return value is the actual number of items placed in the buffer. If the
list box is a single-selection list box, the return value is LB_ERR.

LB_GEnEXT

This message copies a string from the list into a buffer.

Parameters wParam Contains the index of the string to be copied.

IParam Points to the buffer that is to receive the string. The buffer must
have both sufficient space for the string and a terminating null
character.

Return value The return value is the length of the string (in bytes), excluding the
terminating null character. The return value is LB_ERR if the wParam
parameter is not a valid index.

Comments If the list box was created with an owner-draw style but without the
LBS_HASSTRINGS style, the buffer pointed to by the IParam parameter of
the message receives the 32-bit value associated with the item through the
IParam parameter of the LB_ADDSTRING or LB_INSERTSTRING
message.

LB_GEnEXTLEN

This message returns the length of a string in the list box.

Parameters wParam Contains an index to the string.

IParam Is not used.

Return value The return value is the length of the string (in bytes), excluding the
terminating null character. The return value is LB_ERR if an error occurs.

LB_GEnOPINDEX 3.0

632

This message returns the index of the first visible item in a list box.
Initially, item 0 is at the top of the list box, but if the list box is scrolled,
another item may be at the top.

Parameters wParam Not used.

Software development kit

LB_GETTOPINDEX

IParam Not used.

Return value The index of the first visible item in a list box.

LB_INSERTSTRING

This message inserts a string into the list box. No sorting is performed.

Parameters wParam Contains an index to the position that will receive the string. If •
the wParam parameter is -I, the string is added to the end of
the list.

IParam Points to the null-terminated string that is to be inserted. If the
list box was created with an owner-draw style but without the
LBS_HASSTRINGS style, the IParam parameter is an appli­
cation-supplied 32-bit value that is stored by the list box
instead of the pointer to the string.

Return value The return value is the index of the position at which the string was
inserted. The return value is LB_ERR if an error occurs; the return value is
LB_ERRSPACE if insufficient space is available to store the new string.

LB_RESETCONTENT

This message removes all strings from a list box and frees any memory
allocated for those strings.

Parameters wParam Is not used.

IParam Is not used.

Comments If the list box was created with an owner-draw style but without the
LBS_HASSTRINGS style, the owner of the list box receives a
WM_DELETEITEM message for each item in the list box.

LB_SELECTSTRING

This message changes the current selection to the first string that has the
specified prefix.

Parameters wParam Contains the index of the item before the first item to be
searched. When the search reaches the bottom of the list box it
continues from the top of the list box back to the item specified

Chapter 6, Messages directory 633

lB_SElECTSTRING

lParam

by wParam. If the wParam parameter is -1, the entire list box is
searched from the beginning.

Points to the prefix string. The string must have a null­
terminating character.

Return value The return value is the index of the selected item. The return value is
LB_ERR if an error occurs.

Comments This message must not be used with list boxes that are multiple-selection
type.

A string is selected only if its initial characters (from the starting point)
match the characters in the prefix string.

If the list box was created with an owner-draw style but without the
LBS_HASSTRINGS style, this message returns the index of the item
whose long value (supplied as the lParam parameter of the
LB_ADDSTRING or LB_INSERTSTRING message) matches the value
supplied as the lParam parameter of LB_FINDSTRING.

LB_SELlTEMRANGE 3.0

This message selects one or more consecutive items in a multiple-selection
list box.

Parameters wParam Specifies how to set the selection. If the wParam parameter is
nonzero, the string is selected and highlighted; if wParam is
zero, the highlight is removed and the string is no longer
selected.

IParam The low-order word of the lParam parameter is an index that
specifies the first item to set, and the high-order word is an
index that specifies the last item to set.

Return value The return value is LB_ERR if an error occurs.

Comments This message should be used only with multiple-selection list boxes.

LB_SETCARETINDEX 3.1

634

This message is sent to a multiple-selection list box to set the focus
caret on an item. If the item is not visible, it is scrolled into view.

Parameters wParam Specifies the index of the item to receive focus.

Software development kit

LB_SETCARETINDEX

IParam Is not used.

Return value The return value is LB_ERR if an error occurs.

Comments This message must be used with list boxes that are multiple-selection type
only.

LB_SETCOLUMNWIDTH 3.0

This message is sent to a multicolumn list box created with the
LBS_MULTICOLUMN style to set the width in pixels of all columns in the
list box.

Parameters wParam Specifies the width in pixels of all columns.

IParam Is not used.

This message selects a string and scrolls it into view, if necessary. When
the new string is selected, the list box removes the highlight from the
previously selected string.

Parameters wParam Contains the index of the string that is selected. If wParam is -1,
the list box is set to have no selection.

IParam Is not used.

Return value The return value is LB _ERR if an error occurs.

Comments This message should be used only with single-selection list boxes. It
cannot be used to set or remove a selection in a multiple-selection list box.

LB_SETHORIZONTALEXTENT 3.0

This message sets the width in pixels by which a list box can be scrolled
horizontally. If the size of the list box is smaller than this value, the
horizontal scroll bar will horizontally scroll items in the list box. If the list
box is as large or larger than this value, the horizontal scroll bar is
disabled.

Parameters wParam Specifies the number of pixels by which the list box can be
scrolled.

IParam Is not used.

Chapter 6, Messages directory 635

LB_SETHORIZONTALEXTENT

Comments To respond to the LB_SETHORIZONT ALEXTENT message, the list box
must have been defined with the WS_HSCROLL style.

LB_SETITEMDATA 3.0

This message sets a 32-bit value associated with the specified item in a list
box. If the item is in an owner-draw list box created without the
LBS_HASSTRINGS style, this message replaces the 32-bit value that was
contained in the IParam parameter of the LB_ADDSTRING or
LB_INSERTSTRING message that added the item to the list box.

Parameters wParam Contains an index to the item.

IParam Contains the new value to be associated with the item.

Return value The return value is LB _ERR if an error occurs.

LB_SETITEMHEIGHT 3.'

636

This message is sent to a list box to set the height of one or all items in the
list box. If the list box is a variable-height owner-draw list box, this
message sets the height of the item specified by the wParam parameter.
Otherwise, this message sets the height of all items in the list box.

Parameters wParam Specifies the index of the item for which the height is to be set.

IParam Specifies the new height in pixels of the item.

Return value The return value is LB _ERR if wParam does not specify a valid item
index or if IParam specifies an invalid height.

This message selects a string in a multiple-selection list box.

Parameters wParam Specifies how to set the selection. If the wParam parameter is
nonzero, the string is selected and highlighted; if wParam is
zero, the highlight is removed and the string is no longer
selected.

IParam The low-order word of the IParam parameter is an index that
specifies which string to set. If IParam is -1, the selection is

Software development kit

added to or removed from all strings, depending on the value
ofwParam.

Return value The return value is LB_ERR if an error occurs.

Comments This message should be used only with multiple-selection list boxes.

3.0

This message sets the tab-stop positions in a list box.

Parameters wParam Is an integer that specifies the number of tab stops in the list
box.

lParam Is a long pointer to the first member of an array of integers
containing the tab stop positions in dialog units. (A dialog unit
is a horizontal or vertical distance. One horizontal dialog unit
is equal to 1/4 of the the current dialog base width unit. The
dialog base units are computed based on the height and width
of the current system font. The GetDialogBaseUnits function
returns the current dialog base units in pixels.) The tab stops
must be sorted in increasing order; back tabs are not allowed.

Return value The return value is TRUE if all the tabs were set. Otherwise, the return
value is FALSE.

Comments If wParam is zero and lParam is NULL, the default tab stop is two dialog
units.

If wParam is 1, the edit control will have tab stops separated by the
distance specified by lParam.

If lParam points to more than a single value, then a tab stop will be set for
each value in lParam, up to the number specified by wParam.
To respond to the LB_SETTABSTOPS message, the list box must have
been created with the LBS_USETABSTOPS style.

3.0

This message sets the first visible item in a list box to the item identified
by the index.

Parameters wParam Specifies the index of the list-box item.

IParam Not used.

Chapter 6, Messages directory 637

•
I

LB_SETIOPINDEX

Return value The return value is LB _ERR if an error occurs.

This code specifies that the user has double-clicked a string. The control's
parent window receives this code through a WM_ COMMAND message
from the control.

Parameters wParam Contains the wParam parameter of the WM_ COMMAND
message, and specifies the control ID.

IParam Contains an edit-control window handle in its low-order word
and the LBN_DBLCLK code in its high-order word.

Comments This code applies only to list-box controls that have LBS_NOTIFY style.

LBN_ERRSPACE

This code specifies that the list-box control cannot allocate enough
memory to meet a specific request. The control's parent window receives
this code through a WM_ COMMAND message from the control.

Parameters wParam Contains the wParam parameter of the WM_ COMMAND
message, and specifies the control ID.

IParam Contains a list-box window handle in its low-order word and
the LBN_ERRSP ACE code in its high-order word.

Comments This code applies only to list-box controls that have LBS_NOTIFY style.

LBN_KI LLFOCUS 3.0

638

This code is sent when a list box loses input focus. The control's parent
window receives this code through a WM_ COMMAND message from the
control.

Parameters wParam Specifies the control ID of the list box.

IParam Contains the list-box window handle in its low-order word and
the LBN_KILLFOCUS code in its high-order word.

Software development kit

LBN_SELCHANGE

This code specifies that the selection in a list box has changed. The
control's parent window receives this code through a WM_ COMMAND
message from the control.

Parameters wParam Contains the wParam parameter of the WM_ COMMAND
message, and specifies the control ID.

IParam Contains a list-box window handle in its low-order word and
the LBN_SELCHANGE code in its high-order word.

Comments This code applies only to list-box controls that have LBS_NOTIFY style.

3.0

This code is sent when the list box receives input focus. The control's
parent window receives this code through a WM_ COMMAND message
from the control.

Parameters wParam Specifies the control ID of the list box.

IParam Contains the list-box window handle in its low-order word and
the LBN_SETFOCUS code in its high-order word.

This message is sent when a window becomes active or inactive.

Parameters wParam Specifies the new state of the window. The wParam parameter
is zero if the window is inactive; it is one of the following
nonzero values if the window is being activated:

Chapter 6, Messages directory

Value
1

2

Meaning
The window is being activated through some method
other than a mouse click (for example, through a call to
the Set-ActiveWindow function or selection of the
window by the user through the keyboard interface).

The window is being activated by a mouse click by the
user. Any mouse button can be clicked: right, left, or
middle.

639

IParam Identifies a window and specifies its state. The high-order
word of the IParam parameter is nonzero if the window is
minimized. Otherwise, it is zero. The value of the low-order
word of IParam depends on the value of the wParam parameter.
If wParam is zero, the low-order word of IParam is a handle to
the window being activated. If wParam is nonzero, the low­
order word of IParam is the handle of the window being
inactivated (this handle may be NULL).

Default action If the window is being activated and is not minimized, the
DefWindowProc function sets the input focus to the window.

WM_ACTIVATEAPP

This message is sent when a window being activated belongs to a
different application than the currently active window. The message is
sent to the application whose window will be activated and the
application whose window will be deactivated.

Parameters wParam Specifies whether a window is being activated or deactivated.

IParam

A nonzero value indicates that Windows will activate a
window; zero indicates that Windows will deactivate a
window.

Contains the task handle of the application. If the wParam
parameter is zero, the low-order word of the IParam parameter
contains the task handle of the application that owns the
window that is being deactivated. If wParam is nonzero, the
low-order word of IParam contains the task handle of the
application that owns the window that is being activated. The
high-order word is not used.

WM_ASKCBFORMATNAME

640

This message is sent when the clipboard contains a data handle for the
CF _OWNERDISPLAY format (that is, the clipboard owner should display
the clipboard contents), and requests a copy of the format name.

Parameters wParam Specifies the maximum number of bytes to copy.

IParam Points to the buffer where the copy of the format name is to be
stored.

Software development kit

WM_ASKCBFORMATNAME

Comments The clipboard owner should copy the name of the CF_OWNERDISPLAY
format into the specified buffer, not exceeding the maximum number of
bytes.

WM_CANCELMODE

This message cancels any mode the system is in, such as one that tracks
the mouse in a scroll bar or moves a window. Windows sends the
WM_ CANCELMODE message when an application displays a message
box.

Parameters wParam Is not used.

IParam Is not used.

WM_CHANGECBCHAIN

This message notifies the first window in the clipboard-viewer chain that
a window is being removed from the chain.

Parameters wParam Contains the handle to the window that is being removed from
the clipboard-viewer chain.

IParam Contains in its low-order word the handle to the window that
follows the window being removed from the clipboard-viewer
chain.

Comments Each window that receives the WM_CHANGECBCHAIN message should
call the SendMessage function to pass on the message to the next window
in the clipboard-viewer chain. If the window being removed is the next
window in the chain, the window specified by the low-order word of the
IParam parameter becomes the next window, and clipboard messages are
passed on to it.

WM_CHAR

This message results when a WM_KEYUP and a WM_KEYDOWN
message are translated. It contains the value of the keyboard key being
pressed or released.

Parameters wParam Contains the value of the key.

Chapter 6, Messages directory 641

I

I

WM_CHAR

IParam Contains the repeat count, scan code, key-transition code,
previous key state, and context code, as shown in the following
list:

Bit Value
0-15 Repeat count (the number of times the
(low-order word) key stroke is repeated as a result of the user

16-23
(low byte of
high-order word)
24

25-26
27-28
29

30

31

holding down the key).
Scan code (OEM-dependent value).

Extended key, such as a function key or a
key on the numeric keypad (1 if it is an
extended key).
Not used.
Used internally by Windows.
Context code (1 if the AL T key is held down
while the key is pressed, 0 otherwise).
Previous key state (1 if the key is down
before the message is sent, 0 if the key is
up).
Transition state (1 if the key is being
released, 0 if the key is being pressed).

Comments Since there is not necessarily a one-to-one correspondence between keys
pressed and character messages generated, the information in the high­
order word of the IParam parameter is generally not useful to applications.
The information in the high-order word applies only to the most recent
WM_KEYUP or WM_KEYDOWN message that precedes the posting of
the character message.

For IBM® Enhanced 101- and 102-key keyboards, enhanced keys are the
right ALT and the right CONTROL keys on the main section of the keyboard;
the INSERT, DELETE, HOME, END, PAGE UP, PAGE DOWN and DIRECTION keys
in the clusters to the left of the numeric key pad; and the divide U) and
ENTER keys in the numeric key pad. Some other keyboards may support
the extended-key bit in the IParam parameter.

WM_CHARTOITEM 3.0

642

This message is sent by a list box with the LBS_WANTKEYBOARDINPUT
style to its owner in response to a WM_ CHAR message.

Parameters wParam Contains the value of the key which the user pressed.

Software development kit

IParam Contains the current caret position in its high-order word and
the window handle of the list box in its low-order word.

Return value The return value specifies the action which the application performed in
response to the message. A return value of -2 indicates that the
application handled all apsects of selecting the item and wants no further
action by the list box. A return value of -1 indicates that the list box
should perform the default action in response to the key stroke. A return
value of zero or greater specifies the index of an item in the list box and
indicates that the list box should perform the default action for the key
stroke on the given item.

WM_CHILDACTIVATE

This message is sent to a child window's parent window when the
SetWindowPos function moves a child window.

Parameters wParam Is not used.

IParam Is not used.

WM_CLEAR

This message deletes the current selection.

Parameters wParam Is not used.

IParam Is not used.

WM_CLOSE

This message occurs when a window is closed.

Parameters wParam Is not used.

IParam Is not used.

Default action The DefWindowProc function calls the DestroyWindow function to
destroy the window.

Comments An application can prompt the user for confirmation, prior to destroying a
window, by processing the WM_CLOSE message and calling the
DestroyWindow function only if the user confirms the choice.

Chapter 6, Messages directory 643

This message occurs when the user selects an item from a menu, when a
control passes a message to its parent window, or when an accelerator key
stroke is translated.

Parameters wParam Contains the menu item, the control ID, or the accelerator ID.

IParam Specifies whether the message is from a menu, an accelerator,
or a control. The low-order word contains zero if the message
is from a menu. The high-order word contains 1 if the message
is an accelerator message. If the message is from a control, the
high-order word of the IParam parameter contains the
notification code. The low-order word is the window handle of
the control sending the message.

Comments Accelerator key strokes that are defined to select items from the System
menu are translated into WM_SYSCOMMAND messages.

If an accelerator key stroke that corresponds to a menu item occurs when
the window that owns the menu is minimized, no WM_ COMMAND
message is sent. However, if an accelerator key stroke that does not match
any of the items on the window's menu or on the System menu occurs, a
WM_ COMMAND message is sent, even if the window is minimized.

WM_COMPACTING 3.0

644

This message is sent to all top-level windows when Windows detects that
more than 12.5 percent of system time over a 30- to 60-second interval is
being spent compacting memory. This indicates that system memory is
low.

When an application receives this message, it should free as much
memory as possible, taking into account the current level of activity of the
application and the total number of applications running in Windows.
The application can call the GetNumTasks function to determine how
many applications are running.

Parameters wParam Specifies the ratio of CPU tinle currently spent by Windows
compacting memory. For example, 8000h represents 50% of
CPU time.

IParam Is not used.

Software development kit

WM_COMPAREITEM

WM_COMPAREITEM 3.0

This message determines the relative position of a new item in a sorted
owner-draw combo or list box.

Whenever the application adds a new item, Windows sends this message
to the owner of a combo or list box created with the CBS_SORT or
LBS_SORT style. The IParam parameter of the message is a long pointer to
a COMPAREITEMSTRUCT data structure that contains the identifiers and
application-supplied data for two items in the combo or list box. When
the owner receives the message, the owner returns a value indicating
which of the items should appear before the other. Typically, Windows
sends this message several times until it determines the exact position for
the new item.

Parameters wParam Is not used.

IParam Contains a long pointer to a COMPAREITEMSTRUCT data
structure that contains the identifiers and application-supplied
data for two items in the combo or list box.

Return value The return value indicates the relative position of the two items. It may be
any of the following values:

WM_COPY

Value Meaning

-1 Item 1 sorts before item 2.
o Item 1 and item 2 sort the same.
1 Item 1 sorts after item 2.

This message sends the current selection to the clipboard in CF _TEXT
format.

Parameters wParam Is not used.

IParam Is not used.

Chapter 6, Messages directory 645

WM_CREATE

WM_CREATE

This message informs the window procedure that it can perform any
initialization. The CreateWindow function sends this message before it
returns and before the window is opened.

Parameters wParam Is not used.

IParam Points to a CREATESTRUCT data structure that contains copies
of parameters passed to the CreateWindow function.

WM_CTLCOLOR

646

This message is sent to the parent window of a predefined control or
message box when the control or message box is about to be drawn. By
responding to this message, the parent window can set the text and
background colors of the child window by using the display-context
handle given in the wParam parameter.

Parameters wParam Contains a handle to the display context for the child window.

IParam The low-order word of the IParam parameter contains the
handle to the child window. The high-order word is one of the
following values, specifying the type of control:

Value Control Type
CTLCOLOR_BTN Button control
CTLCOLOR_DLG Dialog box
CTLCOLOR_EDIT Edit control
CTLCOLOR_LISTBOX List-box control
CTLCOLOR_MSGBOX Message box
CTLCOLOR_SCROLLBAR Scroll-bar control
CTLCOLOR_ST ATIC Static control

Default action The DefWindowProc function selects the default system colors.

Comments When processing the WM_ CTLCOLOR message, the application must
align the origin of the intended brush with the window coordinates by
first calling the UnrealizeObject function for the brush, and then setting
the brush origin to the upper-left corner of the window.

If an application processes the WM_ CTLCOLOR message, it must return a
handle to the brush that is to be used for painting the control background.
Note that failure to return a valid brush handle will place the system in an
unstable state.

Software development kit

This message sends the current selection to the clipboard in CF _TEXT
format, and then deletes the selection from the control window.

Parameters wParam Is not used.

IParam Is not used.

This message results when a WM_KEYUP and a WM_KEYDOWN .'
message are translated. It specifies the character value of a dead key. A
dead key is a key, such as the umlaut (double-dot) character, that is
combined with other characters to form a composite character. For
example, the umlaut-O character consists of the dead key, umlaut, and the
o key.

Parameters wParam Contains the dead-key character value.

IParam

Chapter 6, Messages directory

Contains the repeat count, scan code, key-transition code,
previous key state, and context code, as shown in the following
list:

Bit Value
0-15 Repeat count (the number of times the
(low-order word) key stroke is repeated as a result of the user

holding down the key).
16-23 Scan code (OEM-dependent value).
(low byte of
high-order word)
24

25-26
27-28
29

30

31

Extended key, such as a function key or a
key on the numeric keypad (1 if it is an
extended key, a otherwise).
Not used.
Used internally by Windows.
Context code (1 if the ALT key is held down
while the key is pressed, a otherwise).
Previous key state (1 if the key is down
before the message is sent, a if the key is
up).
Transition state (1 if the key is being
released, a if the key is being pressed).

647

Comments The WM_DEADCHAR message typically is used by applications to give
the user feedback about each key pressed. For example, an application can
display the accent in the current character position without moving the
caret.

Since there is not necessarily a one-to-one correspondence between keys
pressed and character messages generated, the information in the high­
order word of the IParam parameter is generally not useful to applications.
The information in the high-order word applies only to the most recent
WM_KEYUP or WM_KEYDOWN message that precedes the posting of
the character message.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the
right ALT and the right CONTROL keys on the main section of the keyboard;
the INSERT, DELETE, HOME, END, PAGE UP, PAGE DOWN and DIRECTION keys
in the clusters to the left of the numeric key pad; and the divide U) and
ENTER keys in the numeric key pad. Some other keyboards may support
the extended-key bit in the IParam parameter.

WM DELETEITEM 3.0

648

This message informs the owner of an owner-draw list box or combo box
that a list-box item has been removed. This message is sent when the list
box or combo box is destroyed or the item is removed by the
LB _DELETESTRING, LB _RESETCONTENT, CB _DELETESTRING or
CB_RESETCONTENT message.

Parameters wParam Not used.

IParam Contains a long pointer to a DELETEITEMSTRUCT data
structure that contains information about the deleted list-box
item.

This message informs the window that it is being destroyed. The
DestroyWindow function sends the WM_DESTROY message to the
window after removing the window from the screen. The WM_DESTROY
message is sent to a parent window before any of its child windows are
destroyed.

Parameters wParam Is not used.

Software development kit

IParam Is not used.

Comments If the window being destroyed is part of the clipboard-viewer chain (set
by using the SetClipboardViewer function), the window must remove
itself from the clipboard viewer chain by processing the
ChangeClipboardChain function before returning from the
WM_DESTROY message.

WM DESTROYCLIPBOARD

This message is sent to the clipboard owner when the clipboard is
emptied through a call to the EmptyClipboard function.

Parameters wParam Is not used.

IParam Is not used.

WM_DEVMODECHANGE

This message is sent to all top-level windows when the user changes
device-mode settings.

Parameters wParam Is not used.

IParam Points to the device name specified in the Windows
initialization file, WIN.INI.

WM DRAWCLIPBOARD

This message is sent to the first window in the clipboard-viewer chain
when the contents of the clipboard change. Only applications that have
joined the clipboard-viewer chain by calling the SetClipboardViewer
function need to process this message.

Parameters wParam Is not used.

IParam Is not used.

Comments Each window that receives the WM_DRA WCLIPBOARD message sh9uld
call the SendMessage function to pass the message on to the next window
in the clipboard-viewer chain. The handle of the next window is returned
by the SetClipboardViewer function; it may be modified in response to a
WM_CHANGECBCHAIN message.

Chapter 6, Messages directory 649

•

3.0

This message informs the owner-draw button, combo box, list box, or
menu that a visual aspect of the control has changed. The itemAction field
in the ORAWITEMSTRUCT structure defines the drawing operation that is
to be performed. The data in this field allows the control owner to
determine what drawing action is required.

Parameters wParam Is not used.

IParam Contains a long pointer to a ORAWITEMSTRUCT data structure
that contains information about the item to be drawn and the
type of drawing required.

Comments Before returning from processing this message, an application should
restore all objects selected for the display context supplied in the hOC field
of the ORAWITEMSTRUCT data structure.

This message is sent after a window has been enabled or disabled.

Parameters wParam Specifies whether the window has been enabled or disabled.

IParam

WM ENDSESSION

The wParam parameter is nonzero if the window has been
enabled; it is zero if the window has been disabled.

Is not used.

This message is sent to tell an application that has responded nonzero to a
WM_ QUERYENDSESSION message whether the session is actually being
ended.

Parameters wParam Specifies whether or not the session is being ended. It is
nonzero if the session is being ended. Otherwise, it is zero.

IParam Is not used.

Comments If the wParam parameter is nonzero, Windows can terminate any time
after all applications have returned from processing this message.
Consequently, an application should perform all tasks required for
termination before returning from this message.

650 Software development kit

Parameters

The application does not need to call the DestroyWindow or
PostQuitMessage function when the session is being ended.

This message informs an application's main windows procedure that a
modal dialog box or a menu is entering an idle state. A modal dialog box
or menu enters an idle state when no messages are waiting in its queue
after it has processed one or more previous messages.

wParam

IParam

Specifies whether the message is the result of a dialog box or a
menu being displayed. It is one of these values:

Value Meaning
MSGF _DIALOGBOX The system is idle because a dialog box

is being displayed.
MSGF _MENU The system is idle because a menu is

being displayed.

Contains in its low-order word the handle of the dialog box (if
wParam is MSGF _DIALOGBOX) or of the window containing
the displayed menu (if wParam is MSGF _MENU). The high­
order word is not used.

Default action The DefWindowProc function returns zero.

WM_ERASEBKGND

This message is sent when the window background needs erasing (for
example, when a window is resized). It is sent to prepare an invalidated
region for painting.

Parameters wParam Contains the device-context handle.

IParam Is not used.

Return value The return value is nonzero if the background is erased. Otherwise, it is
zero. If the application processes the WM_ERASEBKGND message, it
should return the appropriate value.

Default action The background is erased, using the class background brush specified by
the hbrbackground field in the class structure.

Comments If hbrbackground is NULL, the application should process the
WM_ERASEBKGND message and erase the background color. When

Chapter 6, Messages directory 651

WM_ERASEBKGND

processing the WM_ERASEBKGND message, the application must align
the origin of the intended brush with the window coordinates by first
calling the UnrealizeObject function for the brush, and then selecting the
brush.

Windows assumes the background should be computed by using the
MM_TEXT mapping mode. If the device context is using any other
mapping mode, the area erased may not be within the visible part of the
client area.

WM_FONTCHANGE

This message occurs when the pool of font resources changes. Any
application that adds or removes fonts from the system (for example,
through the AddFontResource or RemoveFontResource function) should
send this message to all top-level windows.

Parameters wParam Is not used.

IParam Is not used.

Comments To send the WM_FONTCHANGE message to all top-level windows, an
application can call the SendMessage function with the h Wnd parameter
set to OxFFFF.

WM_ GETDLGCODE

652

This message is sent by Windows to an input procedure associated with a
control. Normally, Windows handles all DIRECTION-key and TAB-key input
to the control. By responding to the WM_ GETDLGCODE message, an
application can take control of a particular type of input and process the
input itself.

Parameters wParam Is not used.

IParam Is not used.

Return value The return value is one or more of the following values, indicating which
type of input the application processes:

Value

DLGC_DEFPUSHBUTTON
DLGC_HASSETSEL
DLGC_PUSHBUTTON
DLGC_RADIOBUTTON

Meaning

Default push button.
EM_SETSEL messages.
Push button.
Radio button.

Software development kit

DLGC_ WANTALLKEYS
DLGC_ WANTARROWS
DLGC_WANTCHARS
DLGC_ WANTMESSAGE

DLGC_WANTTAB

All keyboard input.
DIRECTION keys.
WM_ CHAR messages.

WM_GETDLGCODE

All keyboard input (the application passes this
message on to control).
TAB key.

Default action The DefWindowProc function returns zero.

Comments Although the DefWindowProc function always returns zero in response to
the WM_ GETDLGCODE message, the window functions for the
predefined control classes return a code appropriate for each class.

The WM_ GETDLGCODE message and the returned values are useful
only with user-defined dialog controls or standard controls modified by
subclassing.

WM_GETFONT 3.0

This message retrieves from a control the font with which the control is
currently drawing its text.

Parameters wParam Not used.

IParam Not used.

Return value The return value is the handle of the font used by the control, or NULL if
it is using the system font.

WM_GETMINMAXINFO

This message is sent to a window whenever Windows needs to know the
maximized size of the window, the minimum or maximum tracking size
of the window, or the maximized position of the window. The maximized
size of a window is the size of a window when its borders are fully
extended. The maximum tracking size of a window is the largest window
size that can be achieved by using the borders to size the window. The
minimum tracking size of a window is the smallest window size that can
be achieved by using the borders to size the window.

Parameters wParam Is not used.

IParam Points to an array of five points that contains the following
informa tion:

Chapter 6, Messages directory 653

WM_GETMINMAXINFO

Point
rgpt[oJ
rgpt[1J

rgpt[2J

rgpt[3J

rgpt[4J

Description
Used internally by Windows.
The maximized size, which is the screen size by
default. The width is (SM_ CXSCREEN + (2 x
SM_CXFRAME». The height is (SM_CYSCREEN +
(2 x SM_CYFRAME».
The maximized position of the upper-left corner of
the window (in screen coordinates). The default x
value is SM_ CXFRAME. The default y value is
SM_CYFRAME.
The minimum tracking size, which is the iconic
size by default. The width is SM_ CXMINTRACK.
The height is SM_ CYMINTRACK.
The maximum tracking size, which is less than the
screen size by default. The width is
(SM_CXSCREEN + (2 x SM_CXFRAME». The
height is (SM_CYSCREEN + (2 x SM_CYFRAME».

Comments The array contains default values for each point before Windows sends
the WM_GETMINMAXINFO message. This message gives the application
the opportunity to alter the default values.

WM_GETTEXT

This message is used to copy the text that corresponds to a window. For
edit controls and combo-box edit controls, the text to be copied is the
content of the edit control. For button controls, the text is the button
name. For lixt boxes, the text is the currently selected item. For other
windows, the text is the window caption.

Parameters wParam Specifies the maximum number of bytes to be copied, including
the null-terminating character.

IParam Points to the buffer that is to receive the text.

Return value The return value is the number of bytes copied. It is LB_ERR if no item is
selected or CB_ERR if the combo box has no edit control.

WM_ GETTEXTLENGTH

654

This message is used to find the length (in bytes) of the text associated
with a window. The length does not include the null-terminating
character. For edit controls and combo-box edit controls, the text is the

Software development kit

WM_ GETTEXTLENGTH

content of the control. For lixt boxes, the text is the currently selected item.
For button controls, the text is the button name. For other windows, the
text is the window caption.

Parameters wParam Is not used.

IParam Is not used.

Comments The return value is the length of the given text.

WM HSCROLL

This message is sent when the user clicks the horizontal scroll bar.

Parameters wParam Contains a scroll-bar code that specifies the user's scrolling
request. It can be anyone of the following values:

IParam

Value Meaning
SB _BOTTOM Scroll to lower right.
SB_ENDSCROLL End scroll.
SB _LINEDOWN Scroll one line down.
SB_LINEUP Scroll one line up.
SB_PAGEDOWN Scroll one page down.
SB_PAGEUP Scroll one page up.
SB_THUMBPOSITION Scroll to absolute position. The

current position is provided in the
low-order word of IParam.

SB _ THUMBTRACK Drag thumb to specified position. The
current position is provided in the
low-order word of IParam.

SB _TOP Scroll to upper left.

Specifies the window handle of the control. If the message is
sent by a scroll-bar control, the high-order word of the IParam
parameter contains the window handle of the control. If the
message is sent as a result of the user clicking a pop-up
window's scroll bar, the high-order word is not used.

Comments The SB_THUMBTRACK message typically is used by applications that
give some feedback while the thumb is being dragged.

If an application scrolls the document in the window, it must also reset
the position of the thumb by using the SetScrollPos function.

Chapter 6, Messages directory 655

WM_HSCROLLCLIPBOARD

WM_HSCROLLCLIPBOARD

This message is sent when the clipboard contains a data handle for the
CF _OWNERDISPLAY format (specifically the clipboard owner should
display the clipboard contents) and an event occurs in the clipboard
application's horizontal scroll bar.

Parameters wParam Contains a handle to the clipboard application window.

IParam Contains one of the following scroll-bar codes in the low-order
word:

Value
SB_BOTTOM
SB_ENDSCROLL
SB_LINEDOWN
SB_LINEUP
SB_PAGEDOWN
SB_PAGEUP
SB_THUMBPOSITION
SB_TOP

Meaning
Scroll to lower right.
End scroll.
Scroll one line down.
Scroll one line up.
Scroll one page down.
Scroll one page up.
Scroll to absolute position.
Scroll to upper left.

The high-order word of the IParam parameter contains the
thumb position if the scroll-bar code is SB_THUMBPOSITION.
Otherwise, the high-order word is not used.

Comments The clipboard owner should use the InvalidateRect function or repaint as
desired. The scroll-bar position should also be reset.

WM_ICONERASEBKGND 3.0

656

This message is sent to a minimized (iconic) window when the
background of the icon must be filled before painting the icon. A window
receives this message only if a class icon is defined for the window.
Otherwise, WM_ERASEBKGND is sent instead. Passing this message to
the DefWindowProc function permits Windows to fill the icon
background with the background brush of the parent window.

Farameiers wParam Contains the device-context handle of the icon.

IParam Is not used.

Software development kit

WM_INITDIALOG

WM INITDIALOG

This message is sent immediately before a dialog box is displayed. By
processing this message, an application can perform any initialization
before the dialog box is made visible.

Parameters wParam Identifies the first control item in the dialog box that can be
given the input focus. Generally, this is the first item in the
dialog box with WS_TABSTOP style.

IParam Is the value passed as the dwlnitParam parameter of the
function if the dialog box was created by any of the following
functions:

IJ CreateDialoglndirectParam

D CreateDialogParam

II DialogBoxlndirectParam

13 DialogBoxParam

Otherwise, IParam is not used.

Comments If the application returns a nonzero value in response to the
WM_INITDIALOG message, Windows sets the input focus to the item
identified by the handle in the wParam parameter. The application can
return FALSE only if it has set the input focus to one of the controls of the
dialog box.

This message is a request to initialize a menu. It occurs when a user
moves the mouse into a menu bar and clicks, or presses a menu key.
Windows sends this message before displaying the menu. This allows the
application to change the state of menu items before the menu is shown.

Parameters wParam Contains the menu handle of the menu that is to be initialized.

IParam Is not used.

Comments A WM_INITMENU message is sent only when a menu is first accessed;
only one WM_INITMENU message is generated for each access. This
means, for example, that moving the mouse across several menu items
while holding down the button does not generate new messages. This
message does not provide information about menu items.

Chapter 6, Messages directory 657

WM_INITMENUPOPUP

WM_INITMENUPOPUP

658

This message is sent immediately before a pop-up menu is displayed.
Processing this message allows an application to change the state of items
on the pop-up menu before the menu is shown, without changing the
state of the entire menu.

Parameters wParam Contains the menu handle of the pop-up menu.

lParam Specifies the index of the pop-up menu. The low-order word
contains the index of the pop-up menu in the main menu. The
high-order word is nonzero if the pop-up menu is the system
menu. Otherwise, it is zero.

This message is sent when a nonsystem key is pressed. A nonsystem key
is a keyboard key that is pressed when the ALT key is not pressed, or a
keyboard key that is pressed when a window has the input focus.

Parameters wParam Specifies the virtual-key code of the given key.

lParam Contains the repeat count, scan code, key-transition code,
previous key state, and context code, as shown in the following
list:

Bit Value
0-15 Repeat count (the number of times
(low-order word) the key stroke is repeated as a result of the

user holding down the key).
16-23 Scan code (OEM-dependent value).
(low byte of
high-order word)
24

25-26
27-28
29

30

Extended key, such as a function key or a
key on the numeric key pad (1 if it is an
extended key).
Not used.
Used internally by Windows.
Context code (1 if the AL T key is held down
while the key is pressed, a otherwise).
Previous key state (1 if the key is down
before the message is sent, a if the key is
up).

Software development kit

31 Transition state (1 if the key is being
released, 0 if the key is being pressed).

For WM_KEYDOWN messages, the key-transition bit (bit 31) is
o and the context-code bit (bit 29) is O.

Comments Because of auto-repeat, more than one WM_KEYDOWN message may
occur before a WM_KEYUP message is sent. The previous key state (bit
30) can be used to determine whether the WM_KEYDOWN message
indicates the first down transition or a repeated down transition.

WM KEYUP

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the
right ALT and the right CONTROL keys on the main section of the keyboard;
the INSERT, DELETE, HOME, END, PAGE UP, PAGE DOWN and DIRECTION keys
in the clusters to the left of the numeric key pad; and the divide U) and
ENTER keys in the numeric key pad. Some other keyboards may support
the extended-key bit in the IParam parameter.

This message is sent when a nonsystem key is released. A nonsystem key
is a keyboard key that is pressed when the ALT key is not pressed, or a
keyboard key that is pressed when a window has the input focus.

Parameters wParam Specifies the virtual-key code of the given key.

IParam

Chapter 6, Messages directory

Contains the repeat count, scan code, key-transition code,
previous key state, and context code, as shown in the following
list:

Bit
0-15
(low-order word)

16-23
(low byte of
high-order word)
24

25-26
27-28
29

Value
Repeat count (the number of times
the key stroke is repeated as a result of the
user holding down the key).

Scan code (OEM-dependent value).

Extended key, such as a function key or a
key on the numeric key pad (1 if it is an
extended key).
Not used.
Used internally by Windows.
Context code (1 if the ALT key is held down
while the key is pressed, 0 otherwise).

659

30

31

Previous key state (1 if the key is down
before the message is sent, 0 if the key is
up).
Transition state (1 if the key is being
released, 0 if the key is being pressed).

For WM_KEYUP messages, the key-transition bit (bit 31) is 1
and the context-code bit (bit 29) is O.

Comments For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the
right ALT and the right CONTROL keys on the main section of the keyboard;
the INSERT, DELETE, HOME, END, PAGE UP, PAGE DOWN and DIRECTION keys
in the clusters to the left of the numeric key pad; and the divide U) and
ENTER keys in the numeric key pad. Some other keyboards may support
the extended-key bit in the IParam parameter.

This message is sent immediately before a window loses the input focus.

Parameters wParam Contains the handle of the window that receives the input
focus (may be NULL).

IParam Is not used.

Comments If an application is displaying a caret, the caret should be destroyed at this
point.

WM_LBunONDBLCLK

660

This message occurs when the user double-clicks the left mouse button.

Parameters wParam Contains a value that indicates whether various virtual keys
are down. It can be any combination of the following values:

IParam

Value Meaning
MK_ CONTROL Set if CONTROL key is down.
MK_LBUTTON Set if left button is down.
MK_MBUTTON Set if middle button is down.
MK_RBUTTON Set if right button is down.
MK_SHIFT Set if SHIFT key is down.

Contains the x- and y-coordinates of the cursor. The x­
coordinate is in the low-order word; the y-coordinate is in the

Software development kit

WM_LBUTTONDBLCLK

high-order word. These coordinates are always relative to the
upper-left corner of the window.

Comments Only windows whose window class has CS_DBLCLKS style can receive
double-click messages. Windows generates a double-click message when
the user presses, releases, and then presses a mouse button again within
the system's double-click time limit. Double-clicking actually generates
four messages: a down-click message, an up-click message, the double­
click message, and another up-click message.

WM_LBunONDOWN

This message occurs when the user presses the left mouse button.

Parameters wParam Contains a value that indicates whether various virtual keys
are down. It can be any combination of the following values:

IParam

Value
MK_CONTROL
MK_MBUTTON
MK_RBUTTON
MK_SHIFT

Meaning
Set if CONTROL key is down.
Set if middle button is down.
Set if right button is down.
Set if SHIFf key is down.

Contains the x- and y-coordinates of the cursor. The x­
coordinate is in the low-order word; the y-coordinate is in the
high-order word. These coordinates are always relative to the
upper-left corner of the window.

This message occurs when the user releases the left mouse button.

Parameters wParam Contains a value that indicates whether various virtual keys
are down. It can be any combination of the following values:

Value Meaning
MK_ CONTROL Set if CONTROL key is down.
MK_MBUTTON Set if middle button is down.
MK_RBUTTON Set if right button is down.
MK_SHIFT Set if SHIFf key is down.

IParam Contains the x- and y-coordinates of the cursor. The x­
coordinate is in the low-order word; the y-coordinate is in the

Chapter 6, Messages directory 661

[!iJ'. \r.tJ.' ",.,',", : ••.. '.:',.,:.~,'.':,." :00':':1,\;
" .'~'

WM_MBUTTONDBLCLK

high-order word. These coordinates are always relative to the
upper-left corner of the window.

WM_MBUTTONDBLCLK

This message occurs when the user double-clicks the middle mouse
button.

Parameters wParam Contains a value that indicates whether various virtual keys
are down. It can be any combination of the following values:

IParam

Value
MK_CONTROL
MK_LBUTTON
MK_MBUTTON
MK_RBUTTON
MK_SHIFT

Meaning
Set if CONTROL key is down.
Set if left button is down.
Set if middle button is down.
Set if right button is down.
Set if SHIFT key is down.

Contains the x- and y-coordinates of the cursor. The x­
coordinate is in the low-order word; the y-coordinate is in the
high-order word. These coordinates are always relative to the
upper-left corner of the window.

Comments Only windows whose window class has CS_DBLCLKS style can receive
double-click messages. Windows generates a double-click message when
the user presses, releases, and then presses a mouse button again within
the system's double-click time limit. Double-clicking actually generates
four messages: a down-click message, an up-click message, the double­
click message, and another up-click message.

WM_MBUTTONDOWN

662

This message occurs when the user presses the middle mouse button.

Parameters wParam Contains a value that indicates whether various virtual keys
are down. It can be any combination of the following values:

Value
MK_CONTROL
MK_LBUTTON
MK_RBUTTON
MK_SHIFT

Meaning
Set if CONTROL key is down.
Set if left button is down.
Set if right button is down.
Set if SHIFT key is down.

Software development kit

IParam

WM_MBUTTONDOWN

Contains the x- and y-coordinates of the cursor. The x­
coordinate is in the low-order word; the y-coordinate is in the
high-order word. These coordinates are always relative to the
upper-left corner of the window.

This message occurs when the user releases the middle mouse button.

Parameters wParam Contains a value that indicates whether various virtual keys
are down. It can be any combination of the following values:

IParam

WM_MDIACTIVATE

Value Meaning
MK_ CONTROL Set if CONTROL key is down.
MK_LBUTTON Set if left button is down.
MK_RBUTTON Set if right button is down.
MK_SHIFT Set if SHIff key is down.

Contains the x- and y-coordinates of the cursor. The x­
coordinate is in the low-order word; the y-coordinate is in the
high-order word. These coordinates are always relative to the
upper-left corner of the window.

3.0

An application sends this message to a multiple document interface (MDI)
client window to instruct the client window to activate a different MDI
child window. As the client window processes this message, it sends
WM_MDIACTIVATE to the child window being deactivated and to the
child window being activated.

Parameters wParam When the application sends the WM_MDIACTIVATE message
to its MDI client window, the wParam parameter contains the
window handle of the MDI child window to be activated.
When the client window sends the message to a child window,
wParam is TRUE if the child is being activated and FALSE if it
is being deactivated.

IParam When received by an MDI child window, the IParam parameter
contains in its high-order word the window handle of the child
window being deactivated and in its low-order word the
window handle of the child window being activated. When

Chapter 6, Messages directory 663

•

WM_MDIACTIVATE

this message is sent to the client window, IParam should be set
to NULL.

Comments MDI child windows are activated independently of the MDI frame
window. When the frame becomes active, the child window that was last
activated with the WM_MDIACTIVE message receives the
WM_NCACTIV ATE message to draw an active window frame and
caption bar, but it does not receive another WM_MDIACTIVATE
message.

WM_MDICASCADE 3.0

664

This message arranges the child windows of a multiple document
interface (MDI) client window in a "cascade" format.

Parameters wParam Not used.

IParam Not used.

3.0

This message causes a multiple document interface (MDI) client window
to create a child window.

Parameters wParam Not used.

IParam Contains a long pointer to an MDICREATESTRUCT data
structure.

Return value The return value contains the identifier of the new window in the low
word and zero in the high word.

Comments The window is created with the style bits WS_CHILD,
WS_CLIPSIBLINGS, WS_CLIPCHILDREN, WS_SYSMENU,
WS_CAPTION, WS_THICKFRAME, WS_MINIMIZEBOX, and
WS_MAXIMIZEBOX, plus additional style bits specified in the
MDICREATESTRUCT data structure to which IParam points. Windows
adds the title of the new child window to the window menu of the frame
window. An application should create all child windows of the client
window with this message.

If a client window receives any message that changes the activation of
child windows and the currently active MDI child window is maximized,
Windows restores the currently active child and maximizes the newly
activated child.

Software development kit

When the MDI child window is created, Windows sends the
WM_CREATE message to the window. The IParam parameter of the
WM_CREATE message contains a pointer to a CREATESTRUCT data
structure. The IpCreateParams field of the CREATESTRUCT structure
contains a pointer to the MDICREATESTRUCT data structure passed with
the WM_MDICREATE message that created the MDI child window.

An application should not send a second WM_MDICREA TE message
while a WM_MDICREATE message is still being processed. For example,
it should not send a WM_MDICREA TE message while an MDI child
window is processing its WM_ CREATE message.

WM MDIDESTROY

When sent to a multiple document interface (MDI) client window, this
message causes a child window to be closed.

Parameters wParam Contains the window handle of the child window.

IParam Not used.

3.0

Comments This message removes the title of the child window from the frame
window and deactivates the child window. An application should close
all MDI child windows with this message.

If a client window receives any message that changes the activation of
child windows and the currently active MDI child window is maximized,
Windows restores the currently active child and maximizes the newly
activated child.

WM_MDIGETACTIVE

This message returns the current active multiple document interface
(MDI) child window, along with a flag indicating whether the child is
maximized or not.

Parameters wParam Not used.

IParam Not used.

3.0

Return value The return value contains the handle of the active MDI child window in
its low word. If the window is maximized, the high word contains 1;
otherwise, the high word is zero.

Chapter 6, Messages directory 665

WM_MDIICONARRANGE

WM MDIICONARRANGE 3.0

This message is sent to a multiple document interface (MOl) client
window to arrange all minimized document child windows. It does not
affect child windows that are not minimized.

Parameters wParam Not used.

IParam Not used.

WM_MDIMAXIMIZE 3.0

This message causes a multiple document interface (MOl) client window
to maximize an MOl child window. When a child window is maximized,
Windows resizes it to make its client area fill the client window. Windows
places the child window's System menu in the frame's menu bar so that
the user can restore or close the child window and adds the title of the
child window to the frame window title.

Parameters wParam Contains the window identifier of the child window.

IParam Not used.

Comments If an MOl client window receives any message that changes the activation
of its child windows, and if the currently active MOl child window is
maximized, Windows restores the currently active child and maximizes
the newly activated child.

WM_MDINEXT 3.0

This message activates the next multiple document interface (MOl) child
window immediately behind the currently active child window and
places the currently active window behind all other child windows.

Parameters wParam Not used.

IParam Not used.

Comments If an MOl client window receives any message that changes the activation
of its child windows, and if the currently active MOl child window is
maximized, Windows restores the currently active child and maximizes
the newly activated child.

666 Software development kit

WM_MDIRESTORE

WM_MDIRESTORE 3.0

This message restores a multiple document interface (MOl) child window
from maximized or minimized size.

Parameters wParam Contains the window identifier of the child window.

IParam Not used.

WM_MDISETMENU 3.0

This message replaces the menu of a multiple document interface (MOl)
frame window, the Window pop-up menu, or both.

Parameters wParam Not used.

IParam Contains in its low-order word the menu handle (HMENU) of
the new frame-window menu, and contains in its high-order
word the menu handle of the new Window pop-up menu. If
either word is zero, the corresponding menu is not changed.

Return value The return value is the handle of the frame-window menu replaced by
this message.

Comments After sending this message, an application must call the DrawMenuBar
function to update the menu bar.

If this message replaces the Window pop-up menu, MDI child-window
menu items are removed from the previous Window menu and added to
the new Window pop-up menu.

If an MOl child window is maximized and this message replaces the MOl
frame-window menu, the System menu and restore controls are removed
from the previous frame-window menu and added to the new menu.

WM_MDITILE 3.0

This message causes a multiple document interface (MDl) client window
to arrange all its child windows in a tiled format.

Parameters wParam Not used.

IParam Not used.

Chapter 6, Messages directory 667

WM_MEASUREITEM

WM_MEASUREITEM 3.0

668

This message is sent to the owner of an owner-draw button, combo box,
list box, or menu item when the control is created. When the owner
receives the message, the owner fills in the MEASUREITEM data structure
pointed to by the lParam message parameter and returns; this informs
Windows of the dimensions of the control.

If a list box or combo box is created with the
LBS _ OWNERDRA WV ARIABLE or CBS _ OWNERDRA WV ARIABLE
style, this message is sent to the owner for each item in the control.
Otherwise, this message is sent once.

Parameters wParam Not used.

lParam Contains a long pointer to a MEASUREITEMSTRUCT data
structure that contains the dimensions of the owner-draw
control.

Comments Windows sends the WM_MEASUREITEM message to the owner of
combo boxes and list boxes created with the OWNERDRA WFIXED style
before sending WM_INITDIALOG.

This message is sent when the user presses a menu mnemonic character
that doesn't match any of the predefined mnemonics in the current menu.
It is sent to the window that owns the menu.

Parameters wParam Contains the ASCII character that the user pressed.

lParam The high-order word contains a handle to the selected menu.
The low-order word contains the MF _POPUP flag if the menu
is a pop-up menu. It contains the MF_SYSMENU flag if the
menu is a System menu.

Return value The high-order word of the return value contains one of the following
command codes:

Code

o

1
2

Meaning

Informs Windows that it should discard the character that the user
pressed, and creates a short beep on the system speaker.
Informs Windows that it should close the current menu.
Informs Windows that the low-order word of the return value
contains the menu item-number for a specific item. This item is
selected by Windows.

Software development kit

WM_MENUSELECT

The low-order word is ignored if the high-order word contains zero or 1.
Applications should process this message when accelerators are used to
select bitmaps placed in a menu.

WM_MENUSELECT

This message occurs when the user selects a menu item.

Parameters wParam Identifies the item selected. If the selected item is a menu item,
wParam contains the menu-item ID. If the selected item
contains a pop-up menu, wParam contains the handle of the
pop-up menu.

IParam The low-order word contains a combination of the following
menu flags:

Value
MF_BITMAP
MF_CHECKED
MF _DISABLED
MF_GRAYED
MF _MOUSESELECT
MF_OWNERDRAW
MF_POPUP
MF_SYSMENU

Meaning
Item is a bitmap.
Item is checked.
Item is disabled.
Item is grayed.
Item was selected with a mouse.
Item is an owner-draw item.
Item contains a pop-up menu.
Item is contained in the System
menu. The high-order word
identifies the menu associated with
the message.

Comments If the low-order word of the IParam parameter contains -1 and the high­
order word contains zero, Windows has closed the menu because the user
pressed ESC or clicked outside the menu. In this case, wParam will also
contain zero.

WM_MOUSEACTIVATE

This message occurs when the cursor is in an inactive window and any
mouse button is pressed. The parent receives this message only if the
child passes it to the DefWindowProc function.

Parameters wParam Contains a handle to the topmost parent window of the
window being activated.

Chapter 6, Messages directory 669

WM_MOUSEACTIVATE

IParam Contains the hit-test area code in the low-order word and the
mouse message number in the high-order word. A hit test is a
test that determines the location of the cursor.

Return value The return value specifies whether the window should be activated and
whether the mouse event should be discarded. It must be one of the
following values:

Value Meaning

MA_ACTIVATE Activate.the window.
MA_NOACTIVATE Do not activate the window.
MA_ACTIV ATEANDEAT Activate the window and discard the mouse event.

Comments If the child window passes the message to the DefWindowProc function,
DefWindowProc passes this message to a window's parent window before
any processing occurs. If the parent window returns TRUE, processing is
halted.

For a description of the individual hit-test area codes, see Table 6.2, "Hit­
test codes."

This message occurs when the user moves the mouse.

Parameters wParam Contains a value that indicates whether various virtual keys
are down. It can be any combination of the following values:

IParam

Value Meaning
MK_ CONTROL Set if CONTROL key is down.
MK_LBUTTON Set if left button is down.
MK_MBUTTON Set if middle button is down.
MK_RBUTTON Set if right button is down.
MK_SHIFT Set if SHIFT key is down.

Contains the x- and y-coordinates of the cursor. The x­
coordinate is in the low-order word; the y-coordinate is in the
high-order word. These coordinates are always relative to the
upper-left corner of the window.

Comments The MAKEPOINT macro can be used to convert the IParam parameter to a
POINT structure.

670 Software development kit

This message is sent after a window has been moved.

Parameters wParam Is not used.

IParam Contains the new location of the upper-left corner of the client
area of the window. This new location is given in screen
coordinates for overlapped and pop-up windows and parent­
client coordinates for child windows. The x-coordinate is in the
low-order word; the y-coordinate is in the high-order word.

WM_NCACTIV ATE

This message is sent to a window when its nonclient area needs to be
changed to indicate an active or inactive state.

Parameters wParam Specifies when a caption bar or icon needs to be changed to
indicate an active or inactive state. The wParam parameter is
nonzero if an active caption or icon is to be drawn. It is zero for
an inactive caption or icon.

IParam Is not used.

Default action The DefWindowProc function draws a gray caption bar for an inactive
window and a black caption bar for an active window.

WM_NCCALCSIZE

This message is sent when the size of a window's client area needs to be
calculated.

Parameters wParam Is not used.

IParam Points to a RECT data structure that contains the screen
coordinates of the window rectangle (including client area,
borders, caption, scroll bars, and so on).

Default action The DefWindowProc function calculates the size of the client area, based
on the window characteristics (presence of scroll bars, menu, and so on),
and places the result in the RECT data structure.

Chapter 6, Messages directory 671

672

This message is sent prior to the WM_ CREA TE message when a window
is first created.

Parameters wParam Contains a handle to the window that is being created.

IParam Points to the CREATESTRUCT data structure for the window.

Return value The return value is nonzero if the nonclient area is created. It is zero if an
error occurs; the CreateWindow function will return NULL in this case.

Default action Scroll bars are initialized (the scroll-bar position and range are set) and the
window text is set. Memory used internally to create and maintain the
window is allocated.

This message informs a window that its nonclient area is being destroyed.
The DestroyWindow function sends the WM_NCDESTROY message to
the window following the WM_DESTROY message. This message is used
to free the allocated memory block associated with the window.

Parameters wParam Is not used.

IParam Is not used.

Default action This message frees any memory internally allocated for the window.

This message is sent to the window that contains the cursor (or the
window that used the GetCapture function to capture the mouse input)
every time the mouse is moved.

Parameters wParam Is not used.

IParam Contains the x- and y-coordinates of the cursor. The x­
coordinate is in the low-order word; the y-coordinate is in the
high-order word. These coordinates are always screen
coordinates.

Return value The return value of the DefWindowProc function is one of the values
given in Table 6.2, indicating the position of the cursor:

Software development kit

Table 6.2
Hit-test codes Code

HTBOTTOM
HTBOTTOMLEFT
HTBOTTOMRIGHT
HTCAPTION
HTCLIENT
HTERROR

HTGROWBOX
HTHSCROLL
HTLEFT
HTMENU
HTNOWHERE

HTREDUCE
HTRIGHT
HTSIZE
HTSYSMENU
HTTOP
HTTOPLEFT
HTTOPRIGHT
HTTRANSPARENT
HTVSCROLL
HTZOOM

Meaning

In the lower horizontal border of window.
In the lower-left corner of window border.
In the lower-right corner of window border.
In a caption area.
In a client area.
Same as HTNOWHERE except that the DefWindowProc
function produces a system beep to indicate an error.
In a size box.
In the horizontal scroll bar.
In the left border of window.
In a menu area.
On the screen background or on a dividing line between
windows.
In a minimize box.
In the right border of window.
Same as HTGROWBOX.
In a control-menu box (close box in child windows).
In the upper horizontal border of window.
In the upper-left corner of window border.
In the upper-right corner of window border.
In a window currently covered by another window.
In the vertical scroll bar.
In a maximize box.

Comments The MAKEPOINT macro can be used to convert the IParam parameter to a
POINT structure.

WM_NCLBunONDBLCLK

This message is sent to a window when the user double-clicks the left
mouse button while the cursor is within a nonclient area of the window.

Parameters wParam Contains the code returned by WM_NCHITTEST (for more
information, see the WM_NCHITTEST message, earlier in this
chapter).

IParam Contains a POINT data structure that contains the x- and y­
screen coordinates of the cursor position. These coordinates are
always relative to the upper-left corner of the screen.

Default action If appropriate, WM_SYSCOMMAND messages are sent.

Chapter 6, Messages directory 673

WM_NCLBUTTONDOWN

WM_NCLBUTTONDOWN

This message is sent to a window when the user presses the left mouse
button while the cursor is within a nonclient area of the window.

Parameters wParam Contains the code returned by WM_NCHITTEST (for more
information, see the WM_NCHITTEST message, earlier in this
chapter).

IParam Contains a POINT data structure that contains the x- and y­
screen coordinates of the cursor position. These coordinates are
always relative to the upper-left corner of the screen.

Default action If appropriate, WM_SYSCOMMAND messages are sent.

WM NCLBUTTONUP

This message is sent to a window when the user releases the left mouse
button while the cursor is within a nonclient area of the window.

Parameters wParam Contains the code returned by WM_NCHITTEST (for more
information, see the WM_NCHITTEST message, earlier in this
chapter).

IParam Contains a POINT data structure that contains the x- and y­
screen coordinates of the cursor position. These coordinates are
always relative to the upper-left corner of the screen.

Default action If appropriate, WM_SYSCOMMAND messages are sent.

WM_NCMBUTTONDBLCLK

674

This message is sent to a window when the user double-clicks the middle
mouse button while the cursor is within a nonclient area of the window.

Parameters wParam Contains the code returned by WM_NCHITTEST (for more
information, see the WM_NCHITTEST message, earlier in this
chapter).

IParam Contains a POINT data structure that contains the x- and y­
screen coordinates of the cursor position. These coordinates are
always relative to the upper-left corner of the screen.

Software development kit

WM_NCMBUTTONDOWN

WM_NCMBunONDOWN

This message is sent to a window when the user presses the middle
mouse button while the cursor is within a nonclient area of the window.

Parameters wParam Contains the code returned by WM_NCHITTEST (for more
information, see the WM_NCHITTEST message, earlier in this
chapter).

IParam

WM_NCMBunONuP

Contains a POINT data structure that contains the x- and y­
screen coordinates of the cursor position. These coordinates are
always relative to the upper-left corner of the screen.

This message is sent to a window when the user releases the left mouse
button while the cursor is within a nonclient area of the window.

Parameters wParam Contains the code returned by WM_NCHITTEST (for more
information, see the WM_NCHITTEST message, earlier in this
chapter).

IParam

WM_NCMOUSEMOVE

Contains a POINT data structure that contains the x- and y­
screen coordinates of the cursor position. These coordinates are
always relative to the upper-left corner of the screen.

This message is sent to a window when the cursor is moved within a
nonclient area of the window.

Parameters wParam C0ntains the code returned by WM_NCHITTEST (for more
information, see the WM_NCHITTEST message, earlier in this
chapter).

IParam Contains a POINT data structure that contains the x- and y­
screen coordinates of the cursor position. These coordinates are
always relative to the upper-left corner of the screen.

Default action If appropriate, WM_SYSCOMMAND messages are sent.

Chapter 6, Messages directory 675

This message is sent to a window when its frame needs painting.

Parameters wParam Is not used.

IParam Is not used.

Default action The DefWindowProc function paints the window frame.

Comments An application can intercept this message and paint its own custom
window frame. Remember that the clipping region for a window is
always rectangular, even if the shape of the frame is altered.

WM_NCRBUTTONDBLCLK

This message is sent to a window when the user double-clicks the right
mouse button while the cursor is within a nonclient area of the window.

Parameters wParam Contains the code returned by WM_NCHITTEST (for more
information, see the WM_NCHITTEST message, earlier in this
chapter).

IParam Contains a POINT data structure that contains the x- and y­
screen coordinates of the cursor position. These coordinates are
always relative to the upper-left corner of the screen.

WM_NCRBUTTONDOWN

676

This message is sent to a window when the user presses the right mouse
button while the cursor is within a nonclient area of the window.

Parameters wParam Contains the code returned by WM_NCHITTEST (for more
information, see the WM_NCHITTEST message, earlier in this
chapter).

IParam Contains a POINT data structure that contains the x- and y­
screen coordinates of the cursor position. These coordinates are
always relative to the upper-left corner of the screen.

Software development kit

WM_NCRBUTTONUP

WM_NCRBunONUP

This message is sent to a window when the user releases the right mouse
button while the cursor is within a non client area of the window.

Parameters wParam Contains the code returned by WM_NCHITTEST (for more
information, see the WM_NCHITTEST message, earlier in this
chapter).

IParam

WM NEXTDLGCTL

Contains a POINT data structure that contains the x- and y­
screen coordinates of the cursor position. These coordinates are
always relative to the upper-left corner of the screen.

This message is sent to a dialog box's window function, to alter the control
focus. The effect of this message is different than that of the SetFocus
function because WM_NEXTDLGCTL modifies the border around the
default button.

Parameters wParam If the IParam parameter is nonzero, the wParam parameter
identifies the control that receives the focus. If IParam is zero,
wParam is a flag that indicates whether the next or previous
control with tab-stop style receives the focus. If wParam is zero,
the next control receives the focus; otherwise, the previous
control with tab-stop style receives the focus.

IParam Contains a flag that indicates how Windows uses the wParam
parameter. If the IParam parameter is nonzero, wParam is a
handle associated with the control that receives the focus;
otherwise, wParam is a flag that indicates whether the next or
previous control with tab-stop style receives the focus.

Comments Do not use the Send Message function to send a WM_NEXTDLGCTL
message if your application will concurrently process other messages that
set the control focus. Use the PostMessage function instead.

This message is sent when Windows or an application makes a request to
repaint a portion of an application's window. The message is sent either
when the UpdateWindow function is called or by the DispatchMessage

Chapter 6, Messages directory 677

function when the application obtains a WM_P AINT message by using
the GetMessage or PeekMessage function.

Parameters wParam Is not used.

IParam Is not used.

WM_PAINTCLIPBOARD

This message is sent when the clipboard contains a data handle for the
CF _OWNERDISPLAY format (specifically the clipboard owner should
display the clipboard contents) and the Clipboard application's client area
needs repainting. The WM_P AINTCLIPBOARD message is sent to the
clipboard owner to request repainting of all or part of the Clipboard
application's client area.

Parameters wParam Contains a handle to the Clipboard-application window.

IParam The low-order word of the IParam parameter identifies a
PAINTSTRUCT data structure that defines what part of the
client area to paint. The high-order word is not used.

Comments To determine whether the entire client area or just a portion of it needs
repainting, the clipboard owner must compare the dimensions of the
drawing area given in the repaint field of the PAINTSTRUCT data
structure to the dimensions given in the most recent
WM_SIZECLIPBOARD message.

An application must use the GlobalLoek function to lock the memory that
contains the PAINTSTRUCT data structure. The application should unlock
that memory by using the GlobalUnloek function before it yields or
returns control.

WM_PAINTICON 3,0

678

This message is sent to a minimized (iconic) window when the icon is to
be painted. A window receives this message only if a class icon is defined
for the window. Otherwise, WM_P AINT is sent instead. Passing this
message to the DefWindowProe function permits Windows to paint the
icon with the class icon.

Parameters wParam Is not used.

IParam Is not used.

Software development kit

WM_PALETTECHANGED

WM_PALETIECHANGED 3.0

This message informs all windows that the window with input focus has
realized its logical palette, thereby changing the system palette. This
message allows windows without input focus that use a color palette to
realize their logical palettes and update their client areas.

Parameters wParam Contains the handle of the window that caused the system
palette to change.

IParam Is not used.

Comments To avoid creating a loop, a window that receives this message should not
realize its palette unless it determines that wParam does not contain its
window handle.

WM_PARENTNOTIFY 3.0

This message is sent to the parent of a child window when the child
window is created or destroyed, or when the user has pressed a mouse
button while the cursor is over the child window. When the child window
is being created, Windows sends WM_P ARENTNOTIFY just before the
CreateWindow or CreateWindowEx function that creates the window
returns. When the child window is being destroyed, Windows sends the
message before any processing to destroy the window takes place.

Parameters wParam, Specifies the event for which the parent is being notified. It can
be any of these values:

IParam

Chapter 6, Messages directory

Meaning Value
WM_CREATE
WM_DESTROY

The child window is being created.
The child window is being
destroyed.

WM_LBUTTONDOWN The user has clicked on a child
WM_MBUTTONDOWN window.
WM_RBUTTONDOWN

Contains the window handle of the child window in its low­
order word and the ID of the child window in its high-order
word if wParam is WM_ CREATE or WM_DESTROY.
Otherwise, IParam contains the x- and y-coordinates of the
cursor. The x-coordinate is in the low-order word and the y­
coordinate is in the high-order word.

679

WM_PARENTNOTIFY

Comments This message is also sent to all ancestor windows of the child window,
including the top-level window.

This message is sent to the parent of all child windows unless the child
has the extended window style WS_EX_NOPARENTNOTIFY;
CreateWindowEx creates a window with extended window styles. By
default, child windows in a dialog box have the
WS_EX_NOPARENTNOTIFY style unless the child window was created
by calling the CreateWindowEx function.

This message inserts the data from the clipboard into the control window
at the current cursor position. Data are inserted only if the clipboard
contains data in CF _TEXT format.

Parameters wParam Is not used.

lParam Is not used.

WM_QUERYDRAGICON 3.0

This message is sent to a minimized (iconic) window which is about to be
dragged by the user but which does not have an icon defined for its class.

When the user drags the icon of a window without a class icon, Windows
replaces the icon with a default icon cursor. If the application needs a
different cursor to be displayed during dragging, it must return the
handle of a monochrome cursor compatible with the display driver's
resolution. The application can call the LoadCursor function to load a
cursor from the resources in its executable file and to obtain this handle.

Parameters wParam Is not used.

lParam Is not used.

Return value The return value contains in its low-order word the handle of the cursor
which Windows is to display while the user drags the icon. The return
value is NULL if Windows is to display the default icon cursor. The
default return value is NULL.

680 Software development kit

WM_QUERVENDSESSION

WM_QUERYENDSESSION

This message is sent when the user chooses the End Session command. If
any application returns zero, the session is not ended. Windows stops
sending WM_QUERYENDSESSION messages as soon as one application
returns zero, and sends WM_ENDSESSION messages, with the wParam
parameter set to zero, to any applications that have already returned
nonzero.

Parameters wParam Is not used.

IParam Is not used.

Return value The return value is nonzero if the application can be conveniently shut
down. Otherwise, it is zero.

Default action The DefWindowProc function returns nonzero.

WM_ QU ERYN EWPALETIE 3.0

This message informs a window that it is about to receive input focus. If
the window realizes its logical palette when it receives input focus, the
window should return TRUE; otherwise, it should return FALSE.

Parameters wParam Is not used.

IParam Is not used.

Return value The return value is TRUE if the window realizes its logical palette.
Otherwise, it is FALSE.

This message is sent to an icon when the user requests that it be opened
into a window.

Parameters wParam Is not used.

IParam Is not used.

Return value The return value is zero when the application prevents the icon from
being opened. It is nonzero when the icon can be opened.

Default action The DefWindowProc function returns nonzero.

Chapter 6, Messages directory 681

WM_QUIT

This message indicates a request to terminate an application and is
generated when the application calls the PostQuitMessage function. It
causes the GetMessage function to return zero.

Parameters wParam Contains the exit code given in the PostQuitMessage call.

IParam Is not used.

WM_RBUTTONDBLCLK

This message occurs when the user double-clicks the right mouse button.

Parameters wParam Contains a value that indicates whether various virtual keys
are down. It can be any combination of the following values:

Value Meaning
MK_ CONTROL Set if CONTROL key is down.
MK_LBUTTON Set if left button is down.
MK_MBUTTON Set if middle button is down.
MK_RBUTTON Set if right button is down.
MK_SHIFf Set if SHIFf key is down.

IParam Contains the x- and y-coordinates of the cursor. The x­
coordinate is in the low-order word; the y-coordinate is in the
high-order word. These coordinates are always relative to the
upper-left corner of the window.

Comments Only windows whose window class has CS_DBLCLKS style can receive
double-click messages. Windows generates a double-click message when
the user presses, releases, and then presses a mouse button again within
the system's double-click time limit. Double-clicking actually generates
four messages: a down-click message, an up-click message, the double­
click message, and another up-click message.

WM_RBUTTONDOWN

682

This message occurs when the user presses the right mouse button.

Parameters wParam Contains a value that indicates whether various virtual keys
are down. It can be any combination of the following values:

Software development kit

IParam

Value
MK_CONTROL
MK_LBUTTON
MK_MBUTTON
MK_SHIFT

WM_RBUTTONDOWN

Meaning
Set if CONTROL key is down.
Set if left button is down.
Set if middle button is down.
Set if SHIFT key is down.

Contains the x- and y-coordinates of the cursor. The x­
coordinate is in the low-order word; the y-coordinate is in the
high-order word. These coordinates are always relative to the
upper-left corner of the window.

This message occurs when the user releases the right mouse button.

Parameters wParam Contains a value that indicates whether various virtual keys
are down. It can be any combination of the following values:

IParam

Value Meaning
MK_ CONTROL Set if CONTROL key is down.
MK_LBUTTON Set if left button is down.
MK_MBUTTON Set if middle button is down.
MK_SHIFT Set if SHIFT key is down.

Contains the x- and y-coordinates of the cursor. The x­
coordinate is in the low-order word; the y-coordinate is in the
high-order word. These coordinates are always relative to the
upper-left corner of the window.

WM_RENDERALLFORMATS

This message is sent to the application that owns the clipboard when that
application is being destroyed.

Parameters wParam Is not used.

IParam Is not used.

Comments The application should render the clipboard data in all the formats it is
capable of generating and pass a handle to each format to the
SetClipboardData function. This ensures that the data in the clipboard can
be rendered even though the application has been destroyed.

Chapter 6, Messages directory 683

WM_RENDERFORMAT

WM_RENDERFORMAT

This message requests that the clipboard owner format the data last
copied to the clipboard in the specified format, and then pass a handle to
the formatted data to the clipboard.

Parameters wParam Specifies the data format. It can be anyone of the formats
described with the SetClipboardData function.

IParam Is not used.

This message occurs if mouse input is not captured and the mouse causes
cursor movement within a window.

Parameters wParam Contains a handle to the window that contains the cursor.

IParam Contains the hit-test area code in the low-order word and the
mouse message number in the high-order word.

Comments The DefWindowProc function passes the WM_SETCURSOR message to a
parent window before processing. If the parent window returns TRUE,
further processing is halted. Passing the message to a window's parent
window gives the parent window control over the cursor's setting in a
child window. The DefWindowProc function also uses this message to set
the cursor to an arrow if it is not in the client area, or to the registered­
class cursor if it is. If the low-order word of the IParam parameter is
HTERROR and the high-order word of IParam is a mouse button-down
message, the Message8eep function is called.

The high-order word of IParam is zero when the window enters menu
mode.

This message is sent after a window gains the input focus.

Parameters wParam Contains the handle of the window that loses the input focus
(may be NULL).

IParam Is not used.

Comments To display a caret, an application should call the appropriate caret
functions at this point.

684 Software development kit

3.0

This message specifies the font that a dialog box control is to use when
drawing text. The best time for the owner of a dialog box control to set the
font of the control is when it receives the WM_INITDIALOG message.
The application should call the DeleteObject function to delete the font
when it is no longer needed, such as after the control is destroyed.

The size of the control is not changed as a result of receiving this message.
To prevent Windows from clipping text that does not fit within the
boundaries of the control, the application should correct the size of the
control window before changing the font.

Parameters wParam Contains the handle of the font. If this parameter is NULL, the
control will draw text using the default system font.

IParam Specifies whether the control should be redrawn immediately
upon setting the font. Setting Iparam to TRUE causes the control
to redraw itself; otherwise, it will not.

Comments Before Windows creates a dialog box with the DS_SETFONT style,
Windows sends the WM_SETFONT message to the dialog-box window
before creating the controls. An application creates a dialog box with the
DS_SETFONT style by calling any of the following functions:

CJ CreateDialoglndirect
EI CreateDialoglndirectParam
IJ DialogBoxlndirect
IJ DialogBoxlndirectParam

The DLGTEMPLATE data structure which the application passes to these
functions must have the DS_SETFONT style set and must contain a
FONTINFO data structure that defines the font with which the dialog box
will draw text.

This message is sent by an application to a window in order to allow
changes in that window to be redrawn, or to prevent changes in that
window from being redrawn.

Parameters wParam Specifies the state of the redraw flag. If the wParam parameter
is nonzero, the redraw flag is set. If wParam is zero, the flag is
cleared.

IParam Is not used.

Chapter 6, Messages directory 685

686

Comments This message sets or clears the redraw flag. However, it does not direct a
list box to update its display. When the redraw flag is set, a control can be
redrawn immediately after each change. When the redraw flag is cleared,
no redrawing is done. Applications that need to add several names to a
list without redrawing until the final name is added should set the redraw
flag before adding the final name to the list.

This message is used to set the text of a window. For edit controls and
combo-box edit controls, the text to be set is the content of the edit control.
For button controls, the text is the button name. For other windows, the
text is the window caption.

Parameters wParam Is not used.

IParam Points to a null-terminated string that is the window text.

Return value The return value is LB _ERRSP ACE (for a list box) or CB _ERRSP ACE (for a
combo box) if insufficient space is available to set the text in the edit
control. It is CB_ERR if this message is sent to a combo box without an
edit control.

Comments This message does not change the current selection in the list box of a
combo box. An application should use the CB_SELECTSTRING message
to select the list-box item which matches the text in the edit control.

This message is sent when a window is to be hidden or shown. A window
is hidden or shown when the ShowWindow function is called; when an
overlapped window is maximized or restored; or when an overlapped or
pop-up window is closed (made iconic) or opened (displayed on the
screen). When an overlapped window is closed, all pop-up windows
associated with that window are hidden.

Parameters wParam Specifies whether a window is being shown. It is nonzero if the
window is being shown. It is zero if the window is being
hidden.

IParam Specifies the status of the window being shown. It is zero if the
message is sent because of a ShowWindow function call.
Otherwise, the IParam parameter is one of the following values:

Software development kit

Value
SW _P ARENTCLOSING

SW _P ARENT OPENING

Meaning
Parent window is closing (being
made iconic) or a pop-up window is
being hidden.
Parent window is opening (being
displayed) or a pop-up window is
being shown.

Default action The DefWindowProc function hides or shows the window as specified by
the message.

This message is sent after the size of a window has changed.

Parameters wParam Contains a value that defines the type of resizing requested. It
can be one of the following values:

IParam

Value Meaning
SIZEFULLSCREEN Window has been maximized.
SIZEICONIC Window has been minimized.
SIZE NORMAL Window has been resized, but

neither SIZE ICONIC nor
SIZEFULLSCREEN applies.

SIZEZOOMHIDE Message is sent to all pop-up
windows when some other window
is maximized.

SIZEZOOMSHOW Message is sent to all pop-up
windows when some other window
has been restored to its former size.

Contains the new width and height of the client area of the
window. The width is in the low-order word; the height is in
the high-order word.

Comments If the SetScrollPos or MoveWindow function is called for a child window
as a result of the WM_SIZE message, the bRedraw parameter should be
nonzero to cause the window to be repainted.

WM_SIZECLIPBOARD

This message is sent when the clipboard contains a data handle for the
CF _ OWNERDISPLAY format (that is, the clipboard owner should display

Chapter 6, Messages directory 687

WM_SIZECLIPBOARD

the clipboard contents) and the clipboard-application window has
changed size.

Parameters wParam Identifies the clipboard-application window.

IParam The low-order word of the IParam parameter identifies a RECT
data structure that specifies the area the clipboard owner
should paint. The high-order word is not used.

Comments A WM_SIZECLIPBOARD message is sent with a null rectangle (0,0,0,0) as
the new size when the clipboard application is about to be destroyed or
minimized. This permits the clipboard owner to free its display resources.

An application must use the GlobalLock function to lock the memory that
contains the PAINTSTRUCT data structure. The application should unlock
that memory by using the GlobalUnlock function before it yields or
returns control.

WM_SPOOLERST ATUS 3.0

688

This message is sent from Print Manager whenever a job is added to or
removed from the Print Manager queue.

Parameters wParam Is set to SP -10BST A TUS.

Iparam Specifies in its low-order word the number of jobs remaining in
the Print Manager queue. The high-order word is not used.

Comments This message is for informational purposes only.

This message results when a WM_SYSKEYUP and WM_SYSKEYDOWN
message are translated. It specifies the virtual-key code of the System­
menu key.

Parameters wParam Contains the ASCII-character key code of a System-menu key.

IParam Contains the repeat count, scan code, key-transition code,
previous key state, and context code, as shown in the following
list:

Bit
0-15
(low-order word)

Value
Repeat count (the number of times
the key stroke is repeated as a result
of the user holding down the key).

Software development kit

Default action None.

16-23
(low byte of
high-order word)
24

25-26
27-28
29

30

31

Scan code (OEM-dependent value).

Extended key, such as a function key
or a key on the numeric key pad (1 if
it is an extended key, 0 otherwise).
Not used.
Used internally by Windows.
Context code (1 if the ALT key is held
down while the key is pressed, 0
otherwise).
Previous key state (1 if the key is
down before the message is sent, 0 if
the key is up).
Transition state (1 if the key is being
released, 0 if the key is being
pressed).

Comments When the context code is zero, the message can be passed to the
TranslateAccelerator function, which will handle it as though it were a
normal key message instead of a system-key message. This allows
accelerator keys to be used with the active window even if the active
window does not have the input focus.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the
right ALT and the right CONTROL keys on the main section of the keyboard;
the INSERT, DELETE, HOME, END, PAGE UP, PAGE DOWN and DIRECTION keys
in the clusters to the left of the numeric key pad; and the divide (f) and
ENTER keys in the numeric key pad. Some other keyboards may support
the extended-key bit in the IParam parameter.

WM_SYSCOLORCHANGE

This message specifies a change in one or more system colors. Windows
sends the message to all top-level windows when a change is made in the
system color setting.

Parameters wParam Is not used.

IParam Is not used.

Default action Windows sends a WM_PAINT message to any window that is affected by
a system color change.

Chapter 6, Messages directory 689

WM_SYSCOLORCHANGE

690

Comments Applications that have brushes that use the existing system colors should
delete those brushes and re-create them by using the new system colors.

This message is sent when the user selects a command from the System
menu or when the user selects the maximize or minimize box.

Parameters wParam Specifies the type of system command requested. It can be any
one of the following values:

IParam

Value Meaning
SC_CLOSE Close the window.
SC_HOTKEY Activate a window in response to the

user pressing a hotkey.
SC_HSCROLL Scroll horizontally.
SC_KEYMENU Retrieve a menu through a key

stroke.
SC_MAXIMIZE
(or SC_ZOOM)
SC_MINIMIZE
(or SC_ICON)
SC_MOUSEMENU

SC_MOVE
SC_NEXTWINDOW
SC_PREVWINDOW
SC_RESTORE

SC_SCREENSA VE

SC_SIZE
SC_ TASKLIST

Maximize the window.

Minimize the window.

Retrieve a menu through a mouse
click.
Move the window.
Move to the next window.
Move to the previous window.
Checkpoint (save the previous
coordinates).
Executes or activates the Windows
Screen Saver application.
Size the window.
Executes or activates the Windows
Task Manager application.
Scroll vertically.

Contains the cursor coordinates if a System-menu command is
chosen with the mouse. The low-order word contains the x­
coordinate, and the high-order word contains the y-coordinate.
If wParam is SC_HOTKEY, the low-order word contains the
handle of the window to be activated. Otherwise, this
parameter is not used.

Software development kit

WM_SYSCOMMAND

Default action The DefWindowProc function carries out the System-menu request for the
predefined actions specified above.

Comments In WM_SYSCOMMAND messages, the four low-order bits of the wParam
parameter are used internally by Windows. When an application tests the
value of wParam, it must combine the value OxFFFO with the wParam value
by using the bitwise AND operator to obtain the correct result.

The menu items in a System menu can be modified by using the
GetSystemMenu, AppendMenu, InsertMenu, and ModifyMenu functions.
Applications that modify the System menu must process
WM_SYSCOMMAND messages. Any WM_SYSCOMMAND messages
not handled by the application must be passed to the DefWindowProc
function. Any command values added by an application must be
processed by the application and cannot be passed to DefWindowProc.

An application can carry out any system command at any time by passing
a WM_SYSCOMMAND message to the DefWindowProc function.

Accelerator key strokes that are defined to select items from the System
menu are translated into WM_SYSCOMMAND messages; all other
accelerator key strokes are translated into WM_COMMAND messages.

WM_SYSDEADCHAR

This message results when a WM_SYSKEYUP and WM_SYSKEYDOWN
message are translated. It specifies the character value of a dead key.

Parameters wParam Contains the dead-key character value.

IParam

WM_SYSKEYDOWN

Contains a repeat count and an auto-repeat count. The low­
order word contains the repeat count; the high-order word
contains the auto-repeat count.

This message is sent when the user holds down the ALT key and then
presses another key. It also occurs when no window currently has the
input focus; in this case, the WM_SYSKEYDOWN message is sent to the
active window. The window that receives the message can distinguish
between these two contexts by checking the context code in the IParam
parameter.

Parameters wParam Contains the virtual-key code of the key being pressed.

Chapter 6, Messages directory 691

WM_SYSKEYDOWN

692

IParam Contains the repeat count, scan code, key-transition code,
previous key state, and context code, as shown in the following
list:

Bit Value
0-15 Repeat count (the number of times
(low-order word) the key stroke is repeated as a result

of the user holding down the key).
16-23 Scan code (OEM-dependent value).
(low byte of
high-order word)
24 Extended key, such as a function key

or a key on the numeric key pad (1 if
it is an extended key).

25-26 Not used.
27-28 Used internally by Windows.
29 Context code (1 if the ALT key is held

down while the key is pressed, 0
otherwise) .

30 Previous key state (1 if the key is
down before the message is sent, 0 if
the key is up).

31 Transition state (1 if the key is being
released, 0 if the key is being
pressed).

For WM_SYSKEYDOWN messages, the key-transition bit (bit
31) is O. The context-code bit (bit 29) is 1 if the ALT key is down
while the key is pressed; it is 0 if the message is sent to the
active window because no window has the input focus.

Comments When the context code is zero, the message can be passed to the
TranslateAccelerator function, which will handle it as though it were a
normal key message instead of a system-key message. This allows
accelerator keys to be used with the active window even if the active
window does not have the input focus.

Because of auto-repeat, more than one WM_SYSKEYDOWN message may
occur before a ''''M_SYSKEYUP message is sent. The previous key state
(bit 30) can be used to determine whether the WM_SYSKEYDOWN
message indicates the first down transition or a repeated down transition.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the
right ALT and the right CONTROL keys on the main section of the keyboard;
the INSERT, DELETE, HOME, END, PAGE UP, PAGE DOWN and DIRECTION keys
in the clusters to the left of the numeric key pad; and the divide U) and

Software development kit

Parameters

ENTER keys in the numeric key pad. Some other keyboards may support
the extended-key bit in the IParam parameter.

This message is sent when the user releases a key that was pressed while
the ALT key was held down. It also occurs when no window currently has
the input focus; in this case, the WM_SYSKEYUP message is sent to the
active window. The window that receives the message can distinguish
between these two contexts by checking the context code in the IParam
parameter.

wParam Contains the virtual-key code of the key being released.

IParam Contains the repeat count, scan code, key-transition code,
previous key state, and context code, as shown in the following
list:

Bit Value
0-15 Repeat count (the number of times
(low-order word) the key stroke is repeated as a result of the

user holding down the key).
16-23 Scan code (OEM-dependent value).
(low byte of
high-order word)
24

25-26
27-28
29

30

31

Extended key, such as a function key or a
key on the numeric key pad (1 if it is an
extended key).
Not used.
Used internally by Windows.
Context code (1 if the AL T key is held down
while the key is pressed, 0 otherwise).
Previous key state (1 if the key is down
before the message is sent, 0 if the key is
up).
Transition state (1 if the key is being
released, 0 if the key is being pressed).

For WM_SYSKEYUP messages, the key-transition bit (bit 31) is
1. The context-code bit (bit 29) is 1 if the ALT key is down while
the key is pressed; it is 0 if the message is sent to the active
window because no window has the input focus.

Chapter 6, Messages directory 693

Comments When the context code is zero, the message can be passed to the
TranslateAccelerator function, which will handle it as though it were a
normal key message instead of a system-key message. This allows
accelerator keys to be used with the active window even if the active
window does not have the input focus.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the
right ALT and the right CONTROL keys on the main section of the keyboard;
the INSERT, DELETE, HOME, END, PAGE UP, PAGE DOWN and DIRECTION keys
in the clusters to the left of the numeric key pad; and the divide U) and
ENTER keys in the numeric key pad. Some other keyboards may support
the extended-key bit in the lParam parameter.

For non-USA Enhanced 102-key keyboards, the right ALT key is handled
as a CONTROL-ALT key. The following shows the sequence of messages
which result when the user presses and releases this key:

Order

1
2
3
4

Message

WM_KEYDOWN
WM_KEYDOWN
WM_KEYUP
WM_SYSKEYUP

Virtual-key code (IParam)

VK_CONTROL
VK_MENU
VK_CONTROL
VK_MENU

WM_TIMECHANGE

694

This message occurs when an application makes a change (or set of
changes) to the system time. Any application that changes the system time
should send this message to all top-level windows.

Parameters wParam Is not used.

lParam Is not used.

Comments To send the WM_ TIMECHANGE message to all top-level windows, an
application can use the Send Message function with the h Wnd parameter
set to OxFFFF.

This message occurs when the time limit set for a given timer has elapsed.

Parameters wParam Contains the timer ID, an integer value that identifies the timer.

Software development kit

IParam Points to a function that was passed to the SetTimer function
when the timer was created. If the IParam parameter is not
NULL, Windows calls the specified function directly, instead of
sending the WM_TIMER message to the window function.

This message undoes the last operation. When sent to an edit control, the
previously deleted text is restored or the previously added text is deleted.

Parameters wParam Is not used.

IParam Is not used.

WM_ VKEYTOITEM

This message is sent by a list box with the LBS_ W ANTKEYBOARDINPUT
style to its owner in response to a WM_KEYDOWN message.

Parameters wParam Contains the virtual-key code of the key which the user
pressed.

IParam Contains the current caret position in its high-order word and
the window handle of the list box in its low-order word.

Return value The return value specifies the action which the application performed in
response to the message. A return value of -2 indicates that the
application handled all aspects of selecting the item and wants no further
action by the list box. A return value of -1 indicates that the list box
should perform the default action in response to the key stroke. A return
value of zero or greater specifies the index of an item in the list box and
indicates that the list box should perform the default action for the key
stroke on the given item.

This message is sent when the user clicks the vertical scroll bar.

Parameters wParam Contains a scroll-bar code that specifies the user's scrolling
request. It can be anyone of the following values:

Chapter 6, Messages directory 695

IParam

Value
SB_BOTTOM
SB_ENDSCROLL
SB_LINEDOWN
SB_LINEUP
SB_PAGEDOWN
SB_PAGEUP
SB _ THUMBPOSITION

SB_THUMBTRACK

Meaning
Scroll to bottom.
End scroll.
Scroll one line down.
Scroll one line up.
Scroll one page down.
Scroll one page up.
Scroll to absolute position. The
current position is provided in the
low-order word of IParam.
Drag thumb to specified position.
The current position is provided
in the low-order word of IParam.
Scroll to top.

If the message is sent by a scroll-bar control, the high-order
word of the IParam parameter identifies the control. If the
message is sent as a result of the user clicking a pop-up
window's scroll bar, the high-order word is not used.

Comments The SB_THUMBTRACK message typically is used by applications that
give some feedback while the thumb is being dragged.

If an application scrolls the document in the window, it must also reset
the position of the thumb by using the SetScroliPos function.

WM_ VSCROLLCLIPBOARD

696

This message is sent when the clipboard contains a data handle for the
CF _ OWNERDISPLAY format (that is, the clipboard owner should display
the clipboard contents) and an event occurs in the clipboard-application's
vertical scroll bar.

Parameters wParam Contains a handle to the clipboard-application window.

IParam Contains one of the following scroll-bar codes in the low-order
word:

Value
SB_BOTTOM
SB_ENDSCROLL
SB_LINEDOWN
SB_LINEUP
SB_PACEDOWN
SB_PAGEUP

Meaning
Scroll to lower right.
End scroll.
Scroll one line down.
Scroll one line up.
Scroll one page down.
Scroll one page up.

Software development kit

WM_ VSCROLLCLIPBOARD

SB _ THUMBPOSITION
SB_TOP

Scroll to absolute position.
Scroll to upper left.

The high-order word of the IParam parameter contains the
thumb position if the scroll-bar code is SB_THUMBPOSITION.
Otherwise, the high-order word is not used.

Comments The clipboard owner should use the InvalidateRect function or repaint as
desired. The scroll bar position should also be reset.

WM_ WININICHANGE

This message is sent when the Windows initialization file, WIN.lNI,
changes. Any application that makes a change to WIN.lNI should send
this message to all top-level windows.

Parameters wParam Is not used.

IParam Points to a string that specifies the name of the section that has
changed (the string does not include the square brackets).

Comments To send the WM_WININICHANGE message to all top-level windows, an
application can use the Send Message function with the h Wnd parameter
set to OxFFFF.

Although it is incorrect to do so, some applications send this message
with IParam set to NULL. If an application receives this message with a
NULL IParam, it should check all sections in WIN.lNI that affect the
application.

Chapter 6, Messages directory 697

698 Software development kit

N

[[]] (double brackets)
[#double brackets] as document convention 9

{ } (curly braces)
[#curly braces]as document convention 9

() (parentheses)
[#parentheses]as document convention 8

'" (ellipses)
[#ellipses]as document convention 9

I (vertical bar)
[#Vertical bar] as document convention 9

\bc169\ec \bc170\ec (quotation marks)
[#quotation marks]as document
convention[(quotation marks), as document
convention] 9

\bcB\ecBold text\bcD\ec
[#bold text]as document convention 8

\ bcFl 05M\ecMonospaced type \ bcF255D \ec
[#monospaced type]as document convention
9

\bcMI\ecItalic text\bcD\ec
[#italic text]as document convention 9

_FPlnit function 282
_FPTerm function 283
_Idose function 401
_lclose function[#ldose function] 144
_lcreat function 401
_lcreat function[#lcreat function] 144
_llseek function 404
_llseek function[#llseek function] 144
_lopen function 422
_lopen function[#lopen function] 144
_lread function 424
_lread function[#lread function] 144
_lwrite function 427
_lwrite function[#lwrite function] 144

A
AccessResource function 138, 147

Index

D E

AddAtom function 140, 148
AddFontResource function 113, 148
AdjustWindowRect function 19, 149
AdjustWindowRectEx function 19, 150
Aligning brushes 53

x

AllocDStoCSAlias function 136, 150
AllocResource function 138, 151
AllocSelector function 136, 152
ALTERNATE filling mode 202,510
ALTERNATE polygon-filling mode 202,334,

509
AnimatePalette function 95, 152
ANSCFIXED _FONT stock object 343
ANSC V AR_FONT stock object 343
AnsiLower function 139, 153
AnsiLowerBuff function 139, 153
AnsiN ext function 139, 154
AnsiPrev function 139, 154
AnsiToOem function 139, 154
AnsiToOemBuff function 139, 155
AnsiUpper function 139, 155
AnsiUpperBuff function 139, 156
AnyPopup function 73, 156
AppendMenu function 39, 72, 157, 198, 203,

347,691
application does not process. 20
Arc function 107, 159
ArrangeIconicWindows function 42, 160
ASPECTX device capability 305
ASPECTXY device capability 306
ASPECTY device capability 305

B
Background:brush@dass 25
BeginDeferWindowPos function 42, 160
BeginPaint function 44, 161
BitBlt function 110, 162
Bitmap functions 110, 111

699

BITMAPINFO data structure 189, 309, 497
BITMAPINFOHEADER data structure 189
BITSPIXEL device capability 305
BLACK_BRUSH stock object 343
BLACK_PEN stock object 343
BLACKNESS raster-operation code 163
BLACKONWHITE stretching mode 518
BM_ GETCHECK message 593, 603
BM_ GETSTATE message 593, 603
BM_SETCHECK message 593, 603
BM_SETSTATE message 593,604
BM_SETSTYLE message 593, 604
BN_CLICKED message 597,605
BN_DOUBLECLICKED message 597, 606
Braces

curly ({ })
as document convention 9

Brackets
double ([[]])

as document convention 9
BringWindowToTop function 42, 164
Brush

origin
default 46

BS_3STATE control style 212,605
BS_AUT03STATE control style 211,604
BS_AUTOCHECKBOX control style 211, 604
BS_AUTORADIOBUTTON control style 604
BS_CHECKBOX control style 211,604
BS_DEFPUSHBUTTON control style 211, 605
BS_GROUPBOX control style 211,605
BS_LEFTTEXT control style 211,605
BS_OWNERDRAW control style 212,605,606
BS_PUSHBUTTON control style 212,605
BS_RADIOBUTTON control style 212,605,606
BuildCommDCB function 142, 164
Button

owner-draw 65
BUTTON control class 207, 211
Button notification codes 597

c
Cache

display-context 50
CallMsgFilter function 79, 165
CallWindowProc function 14,28, 166

700

Capital letters
small

as document convention 9
Catch function 138, 166
CB_ADDSTRING message 595, 606, 607, 608,

609,611
CB_DELETESTRING message 595, 606, 648
CB_DIR message 595,607
CB_FINDSTRING message 607
CB_FINDSTRING message 596
CB _ GETCOUNT message 596, 608
CB _ GETCURSEL message 596, 608
CB_GETEDITSEL message 596, 608
CB_GETITEMDATA message 596, 609
CB_GETLBTEXT message 596,609
CB _ GETLBTEXTLEN message 596, 609
CB_INSERTSTRING message 596, 607, 608,

609,610,611
CB_LIMITTEXT message 596,610
CB_RESETCONTENT message 596, 610, 648
CB_SELECTSTRING message 596, 611
CB_SETCURSEL message 596,611
CB _SETEDITSEL message 596, 612
CB_SETITEMDATA message 596, 609, 612
CB_SHOWDROPDOWN message 596, 612
CBN_DBLCLK message 598,613
CBN_DROPDOWN message 598,613
CBN_EDITCHANGE message 598, 613
CBN_EDITUPDATE message 598, 614
CBN_ERRSPACE message 598, 614
CBN_KILLFOCUS message 598,614
CBN_SELCHANGE message 598, 615
CBN_SETFOCUS message 598, 615
CBS_HASSTRINGS control style 212, 606, 607,

608, 609, 610, 611
CBS_OEMCONVERTcontrol style 212
CBS_OWNERDRAWFIXED control style 213
CBS_OWNERDRAWVARIABLE control style

213
CE_BREAK communication error code 300
CE_CTSTO communication error code 300
CE_DNS communication error code 300
CE_DSRTO communication error code 300
CE_FRAME communication error code 300
CE_IOE communication error code 300
CE_MODE communication error code 300
CE_OOP communication error code 300

Software development kit

CE_OVERRUN communication error code 300
CE_PTO communication error code 300
CE_RLSDTO communication error code 301
CE_RXOVER communication error code 301
CE_RXPARITY communication error code 301
CE_TXFULL communication error code 301
CF _BITMAP clipboard format 492
CF _DIB clipboard format 492
CF _DIF clipboard format 492
CF _DSPBITMAP clipboard format 492
CF _DSPMETAFILEPICT clipboard format 492
CF _DSPTEXT clipboard format 492
CF _MET AFILEPICT clipboard format 492
CF _OEMTEXT clipboard format 492
CF_OWNERDISPLAY clipboard format 492
CF _PALETTE clipboard format 296, 492
CF _SYLK clipboard format 493
CF _TEXT clipboard format 493
CF _TIFF clipboard format 493
ChangeClipboardChain function 74, 167
ChangeMenu function 167
ChangeSelector function 136, 168
Character cell 115
CheckDlgButton function 57, 168
CheckMenuItem function 72, 169, 436
CheckRadioButton function 57, 170
ChildWindowFromPoint function 73, 105, 171
Chord function 109, 110, 171
Class background brush 25
Class icon 25
Class menu 26
ClearCommBreak function 142, 172
CLIENTCREATESTRUCT data structure 38,

600
ClientToScreen function 105, 172
Clipboard

getting prioritized format 334
Clipboard formats 491
CLIPCAPS device capability 306
ClipCursor function 77, 173
Clipping functions 107, 108
Clipping region

default 46
CloseClipboard function 74, 173
CloseComm function 142, 174
CloseMetaFile function 124, 174
CloseSound function 142, 174

Index

CloseWindow function 42, 175
CLRDTR communication function code 269
CLRRTS communication function code 269
COLOR_ACTIVEBORDER system color 519
COLOR_ACTIVECAPTION system color 26,

519
COLOR_APPWORKSP ACE system color 26,

519
COLOR_BACKGROUND system color 26,519
COLOR_BTNFACE system color 26,519
COLOR_BTNSHADOW system color 26, 519
COLOR_BTNTEXT system color 520
COLOR_CAPTIONTEXT system color 26,520
COLOR_GRAYTEXT system color 26,383,520
COLOR_HIGHLIGHT system color 26, 520
COLOR_HIGHLIGHTTEXT system color 26,

520
COLOR_INACTIVE BORDER system color 520
COLOR_INACTIVECAPTION system color 26,

520
COLOR_MENU system color 26, 520
COLOR_MENUTEXT system color 26, 520
Color palette

default 46
COLOR_SCROLLBAR system color 26, 520
COLOR_WINDOW system color 26, 520
COLOR_ WINDOWFRAME system color 26,

520
COLOR_ WINDOWTEXT system color 26, 520
COLORONCOLOR stretching mode 518
COLORREF data type 94, 144
CombineRgn function 106, 175
Combo box 65
COMBOBOX control class 208
COMP AREITEMSTRUCT data structure 645
COMPLEXREGION region type 176, 270, 298,

358, 391, 442, 443, 481
Coordinate functions 105
CopyMetaFile function 124, 176
Copy Rect function 83, 176
CountClipboardFormats function 177
CountVoiceNotes function 142, 177
CreateBitmap function 110, 177
CreateBitmapIndirect function 110, 178
Crea te BrushIndirect function 91, 1 79
CreateCaret function 75, 179
CreateCompatibleBitmap function 110, 180

701

CreateCompatibleDC function 88, 181
CreateCursor function 77, 182
CreateDC function 88, 182
CreateDialog function 57, 60, 183, 188, 220
CreateDialoglndirect function 58, 185,220, 685
CreateDialoglndirectParam function 58, 187,

220,685
CreateDialogParam function 58, 188, 220
CreateDIBitmap function 111, 189
CreateDIBPatternBrush function 91, 190
CreateDiscardableBitmap function 110, 191
CreateEllipticRgn function 106, 192
CreateEllipticRgnlndirect function 106, 192
CreateFont function 113, 193
CreateFontIndirect function 113, 195
CreateHatchBrush function 91, 196
CreateIC function 88, 196
Createlcon function 54, 197
CreateMenu function 72, 198
CreateMetaFile function 124, 198
CreatePalette function 95, 153, 199, 483
CreatePatternBrush function 91, 199
CreatePen function 91,200
CreatePenlndirect function 91,200
CreatePolygonRgn function 106,201
CreatePolyPolygonRgn function 106,201
CreatePopupMenu function 39, 72, 202
CreateRectRgn function 106, 203
CreateRectRgnlndirect function 106, 203
CreateRoundRectRgn function 106, 204
CreateSolidBrush function 91, 204
CreateWindow function 15
CreateWindowEx function 19, 150,218,219
CS_BYTEALIGNCLIENT window class style 27
CS_BYTEALIGNWINDOW window class style

27
CS_CLASSDC window class style 27, 47
CS_DBLCLKS window class style 27
CS_GLOBALCLASS window class style 27
CS_HREDRA W window class style 27
CS_NOCLOSE window class style 27
CS_OWNDC window class style 27, 29, 48
CS_PARENTDC window class style 27
CS_SAVEBITS window class style 27
CS_ VREDRAW window class style 27
CTLCOLOR_BTN control type for setting color

646

702

CTLCOLOR_DLG control type for setting color
646

CTLCOLOR_EDIT control type for setting color
646

CTLCOLOR_LISTBOX control type for setting
color 646

CTLCOLOR_MSGBOX control type for setting
color 646

CTLCOLOR_SCROLLBAR control type for
setting color 646

CTLCOLOR_STATIC control type for setting
color 646

Curly braces ({ })
as document convention 9

CURVECAPS device capability 306

D
DC_BINS device capability 232
DC_DRIVER device capability 233
DC_DUPLEX device capability 233
DC_EXTRA device capability 233
DC_FIELDS device capability 233
DC_MAX EXTENT device capability 233
DC_MINEXTENT device capability 233
DC_PAPERS device capability 233
DC_PAPERSIZE device capability 234
DC_SIZE device capability 234
DC_VERSION device capability 234
DebugBreak function 145,219
DEFAULT_PALETTE stock object 344
DeIDIgProc function 19, 58, 220
DeferWindowPos function 42, 221
DefFrameProc function 19, 222
DefHookProc function 79, 224
DefineHandleTable function 134, 137, 224
DefMDIChildProc function 19, 225
DefWindowProc function 226
DeleteAtom function 140, 227
DeleteDC function 88, 181,227
DeleteMenu function 72, 228
DeleteMetaFile function 124, 229
DeleteObject function 91, 229, 685
DestroyCaret function 75, 230
DestroyCursor function 77, 230
DestroyMenu function 72,231
DestroyWindow function 20

Software development kit

Device context 88
DEVICE_DEFAULT_FONT stock object 343
DeviceCapabilities function 128, 232
DeviceMode function 128, 235
DEVMODE data structure 233, 234, 272
Dialog functions 57
DialogBox function 58, 60, 220, 235
DialogBoxIndirect function 58, 220, 237, 685
DialogBoxIndirectParam function 58, 220, 239,

685
DialogBoxParam function 58, 220, 239
Digitized aspect

fonts 119
DispatchMessage function 14, 240
Display

updating 51
Display context default characteristics 46
DKGRAY_BRUSH stock object 343
DLGC_DEFPUSHBUTTON input type 652
DLGC_HASSETSEL input type 652
DLGC_PUSHBUTTON input type 652
DLGC_RADIOBUTTON input type 652
DLGC_WANTALLKEYS input type 653
DLGC_ W ANTARROWS input type 653
DLGC_ WANTCHARS input type 653
DLGC_ WANTMESSAGE input type 653
DLGC_WANTTAB input type 653
DlgDirList function 58, 241
DlgDirListComboBox function 58, 242
DlgDirSelect function 58, 244
DlgDirSelectComboBox function 58, 244
DLGTEMPLATE data structure 685
DM_ COpy option 272
DM_GETDEFID message 593,615
DM_MODIFY option 272
DM_PROMPT option 272
DM_SETDEFID message 593, 615
DM_ UPDATE option 272
DOS3Call function 137, 245
DOS interrupt function request (21H) 245
Double brackets ([[]])

as document convention 9
DPtoLP function 105, 246
DrawFocusRect function 44, 109, 247
DrawIcon function 44, 247
DrawMenuBar function 72, 158, 228, 248, 389,

436,471

Index

DrawText function 44, 248
DRIVERVERSION device capability 305
DS_LOCALEDIT dialog-box style 209
DS_MODALFRAME dialog-box style 209
DS_NOIDLEMSG dialog-box style 209
DS_SETFONT dialog-box style 685
DS_SYSMODAL dialog-box style 209
DSTINVERT raster operation 163
DT_BOTTOM format for DrawText function

250
DT_CALCRECT format for DrawText function

250
DT_EXPANDTABS format for DrawText

function 250
DT_EXTERNALLEADING format for

DrawText function 250
DT_NOCLIP format for DrawText function 250
DT_NOPREFIX format for DrawText function

250
DT_SINGLELINE format for DrawText

function 250
DT_TABSTOP format for DrawText function

250
DT_TOP format for DrawText function 250
DT_ VCENTER format for DrawText function

250
DT_ WORDBREAK format for DrawText

function 250

E
EDIT control class 208
Edit-control notification codes 597
Ellipse and polygon functions 109
Ellipse function 109, 110,251
EM_CANUNDO message 593, 616
EM_EMPTYUNDOBUFFER message 593, 616
EM_FMTLINES message 593, 616
EM_GETHANDLE message 593, 617
EM_GETLINE message 593, 617
EM_GETLINECOUNT message 593, 617
EM_GETMODIFY message 593, 618
EM_GETRECT message 593, 618
EM_GETSEL message 593,618
EM_LIMITTEXT message 593, 618
EM_LINEFROMCHARmessage 594, 619
EM_LINEINDEX message 594,619

703

EM_LINE LENGTH message 594, 619
EM_LlNESCROLL message 594, 620
EM_REPLACESEL message 594, 620
EM_SETHANDLE message 594, 620
EM_SETMODIFY message 594, 621
EM_SETPASSWORDCHAR message 214, 594,

621
EM_SETRECT message 594, 621
EM_SETRECTNP message 594, 622
EM_SETSEL message 594, 622
EM_SETTABSTOPS message 594, 622
EM_SETWORDBREAK message 594, 623
EM_UNDO message 594, 624
EmptyClipboard function 74,252
EMS memory

determining available 315
EN_CHANGE message 597, 624
EN_ERRSPACE message 597, 625
EN_HSCROLL message 597, 625
EN_KILLFOCUS message 597, 625
EN_MAXTEXT message 597, 626
EN_SETFOCUS message 597, 626
EN_UPDATE message 597,626
EN_ VSCROLL message 597, 627
EnableHardwarelnput function 44,252
EnableMenuItem function 72, 253, 436
EnableWindow function 43, 254
EndDeferWindowPos function 42, 254
EndDialog function 58, 240, 255
EndPaint function 44, 255
EnumChildWindows function 73, 256
EnumClipboardFormats function 74,257
EnumFonts function 113, 258
EnumMetaFile function 124, 260
EnumObjects function 91,261
ENUMPAPERBINS printer escape 233
EnumProps function 81, 262
EnumTaskWindows function 73,265
Enum Windows function 73, 266
EqualRect function 83, 267
EqualRgn function 106,267
ERROR region type 176,270,298,358,391,

442,443,481
ES_AUTOHSCROLL control style 213
ES_AUTOVSCROLL control style 213
ES_CENTER control style 213

704

ES_LEFT control style 213
ES_LOWERCASE control style 213
ES_MULTILINE control style 213
ES_NOHIDESEL control style 214
ES_OEMCONVERT control style 214
ES_PASSWORD control style 214
ES_RIGHT control style 214
ES_UPPERCASE control style 214
Escape function 268
EscapeCommFunction function 142, 269
EV _BREAK event-mask value 494
EV _CTS event-mask value 494
EV _DSR event-mask value 494
EV _ERR event-mask value 494
EV _PERR event-mask value 494
EV _RING event-mask value 494
EV _RLSD event-mask value 495
EV _RXCHAR event-mask value 495
EV _RXFLAG event-mask value 495
EV _TXEMPTY event-mask value 495
ExcludeClipRect function 107, 269
ExcludeUpdateRgn function 44, 270
ExitWindows function 138, 271
ExtDeviceMode function 128, 271
ExtFloodFill function 110, 273
ExtTextOut function 112,274

F
FatalAppExit function 145, 276
FatalExit function 145, 276
FillRect function 44, 277
FillRgn function 106, 278
Filters

installing 80
FindAtom function 140,278
FindResource function 138, 278
FindWindow function 73, 280
Fixed-pitch font attribute 119
Flash Window function 75, 280
FloodFill function 110, 281
FlushComm function 142, 282
Font

family 114
Font functions 113
Font Selection 124
FONTINFO data structure 685

Software development kit

Formats
clipboard 491

Formatted text
styles 55

FrameRect function 44, 283
FrameRgn function 106, 284
FreeLibrary function 134, 284
FreeModule function 134, 285
FreeProcInstance function 134, 285
FreeResource function 138, 285
FreeSelector function 137,286
Functions

clipping 107
coordinates 105
device context attributes 88
device contexts 88
environment 131
font 113
metafile 124
printer control 128
text 112

G
GCL_MENUNAME option 489
GCL_ WNDPROC option 293, 489
GCW CBCLSEXTRA option 294, 490
GCW - CBWNDEXTRA option 295, 490
GCW - HBRBACKGROUND option 295, 490
GCW =HCURSOR option 295, 490
GCW _HICON option 295, 490
GCW _HMODULE option 295
GCW _STYLE option 295, 490
GetActiveWindow function 43,286
GetAspectRatioFilter function 119, 287
GetAsyncKeyState function 44,287
GetAtomHandle function 140,287
GetAtomName function 140,288
GetBitmapBits function 110,288
GetBitmapDimension function 110,289
GetBkColor function 99, 289
GetBkMode function 99, 289
GetBrushOrg function 91, 290
GetBValue function 94,290
GetCapture function 43, 290
GetCaretBlinkTime function 75, 291
GetCaretPos function 75,291

Index

GetCharWidth function 113,291
GetClasslnfo function 20, 292
GetClassLong function 20, 293
GetClassN arne function 20, 294
GetClassWord function 20,294
GetClientRect function 42, 295
GetClipboardData function 74,295
GetClipboardFormatName function 74,296
GetClipboardOwner function 74,297
GetClipboardViewer function 74,297
GetClipBox function 107,297
GetCodeHandle function 134, 298
GetCodelnfo function 137, 298
GetCommError function 142, 300
GetCommEventMask function 142, 301
GetCommState function 142,301
GetCurrentPDB function 138, 302
GetCurrentPosition function 302
GetCurrentTask function 138, 302
GetCurrentTime function 43, 74,303
GetCursorPos function 77, 303
GetDC function 45, 303
GetDCOrg function 88, 304
GetDesktopWindow function 304
GetDeviceCaps function 305
GetDialogBaseUnits function 58, 61,215,308,

430, 623, 637
GetDIBits function 99, 111, 306, 309
GetDIgCtrlID function 58, 310
GetDlgItem function 58, 310
GetDlgItemlnt function 58, 311
GetDlgItemText function 58,312
GetDOSEnvironment function 138, 312
GetDoubleClickTime function 43, 313
GetDriveType function 144, 313
GetEnvironment function 131,313
GetFocus function 43, 314
GetFreeSpace function 135, 315
GetGValue function 94, 316
GetInputState function 44,316
GetInstanceData function 134,316
GetKBCodePage function 44, 317
GetKeyboardState function 44, 317
GetKeyboardType function 318
GetKeyNameText function 44, 319
GetKeyState function 44, 320
GetLastActivePopup function 20, 320

705

GetMapMode function 100,321
GetMenu function 72,321
GetMenuCheckMarkDimensions function 72,

321
GetMenultemCount function 72, 322
GetMenultemID function 72, 322
GetMenuState function 72, 322
GetMenuString function 72, 323
GetMessage function 14, 324
GetMessagePos function 14, 326
GetMessageTime function 14, 326
GetMetaFile function 124, 327
GetMetaFileBits function 124, 327
GetModuleFileName function 134,327
GetModuleHandle function 134, 328
GetModuleUsage function 134,328
GetNearestColor function 94, 329
GetNearestPalettelndex function 95, 329
GetNextDlgGroupltem function 58, 329
GetNextDlgTabItem function 58, 330
GetNextWindow function 73,330
GetNumTasks function 138,331
GetObject function 91, 331
GetPaletteEntries function 95, 332
GetParent function 73, 333
GetPixel function 110, 333
GetPolyFillMode function 99, 334
GetPriorityClipboardFormat function 74,334
GetPrivateProfilelnt function 141, 335
GetPrivateProfileString function 141,336,337
GetProcAddress function 134, 337
GetProfilelnt function 141, 338
GetProfileString function 141, 338
GetProp function 81, 340
GetRgnBox function 106, 340
GetROP2 function 99, 341
GetRValue function 94, 341
GetScrollPos function 68, 341
GetScrollRange function 68, 342
GetStockObject function 91, 343
GetStretchBltMode function 99, 344
GetSubMenu function 72, 345
GetSysColor function 74, 345, 383
GetSysModalWindow function 345
GetSystemDirectory function 144, 346
GetSystemMenu function 72, 346, 691
GetSystemMetrics function 74,347

706

GetSystemPaletteEntries function 95, 349
GetSystemPaletteUse function 96,349
GetTabbedTextExtent function 112,350
GetTempDrive function 144,351
GetTempFileName function 144,351
GetTextAlign function 112, 352
GetTextCharacterExtra function 354
GetTextColor function 99, 354
GetTextExtent function 112, 354
GetTextFace function 112,355
GetTextMetrics function 112,355
GetThresholdEvent function 143, 356
GetThresholdStatus function 143, 356
GetTickCount function 43, 356
GetTopWindow function 73,357
GetUpdateRect function 45, 357
GetUpdateRgn function 45, 358
GetVersion function 134,359
GetViewportExt function 100, 359
GetViewportOrg function 100, 359
GetWindow function 73, 360
GetWindowDC function 45, 360
GetWindowExt function 101,361
GetWindowLong function 20, 28, 361
GetWindowOrg function 101,362
GetWindowRect function 42, 362
GetWindowsDirectory function 144, 363
GetWindowTask function 73, 363
GetWindowText function 42, 364
GetWindowTextLength function 42, 364
GetWindowWord function 20, 365
GetWinFlags function 135, 365
GlobalAddAtom function 140, 366
GlobalAlloc function 135, 367
GlobalCompact function 135, 315, 368
GlobalDeleteAtom function 140, 369
GlobalDiscard function 135, 369
GlobalDosAlloc function 135,370
GlobalDosFree function 135, 370
GlobalFindAtom function 140,371
GlobalFix function 137, 371
GlobalFlags function 135, 372
GlobalFree function 135, 372
GlobalGetAtomName function 140, 373
GlobalHandle function 135, 373
GlobalLock function 135,374
GlobalLRUNewest function 135,374

Software development kit

GlobalLRUOldest function 135, 375
GlobalNotify function 135,375
GlobalPageLock function 137,376
GlobalPageUnlock function 137,377
GlobalReAlloc function 135, 377
GlobalSize function 135, 379
GlobalUnfix function 137, 379
GlobalUnlock function 135, 380
GlobalUn Wire function 381
GlobalUnwire function 135
GlobalWire function 135,381
GMEM_DDESHARE option 367, 372
GMEM_DISCARDABLE option 367, 372, 378
GMEM_DISCARDED option 372
GMEM_FIXED option 367
GMEM_MODIFY option 378
GMEM_MOVEABLE option 367, 378
GMEM_NOCOMPACT option 367, 378
GMEM_NODISCARD option 368, 378
GMEM_NOT_BANKED option 315, 368, 372
GMEM_NOTIFY option 368
GMEM_ZEROINIT option 368, 379
Graphics device interface

defined 3
GRAY_BRUSH stock object 343
GrayString function 45, 382
GW _CHILD option 360
GW _HWNDFIRST option 360
GW _HWNDLAST option 360
GW_HWNDNEXToption 331, 360
GW_HWNDPREVoption 331, 360
GW _OWNER option 360
GWL_EXSTYLE option 362, 534
GWL_STYLE option 362, 534
GWL_ WNDPROC option 362, 534
GWW _HINST ANCE option 365, 545
GWW _HWNDP ARENT option 365
GWW _ID option 365, 545

H
Handles

instance 24
Help application 574
HELP_CONTEXT option 574
HELP _HELPONHELP option 574
HELP_INDEX option 575

Index

HELP_KEY option 575
HELP _MUL TIKEY option 575
HELP_QUIT option 575
HELP _SETINDEX 575
HIBYTE utility macro 143, 384
HideCaret function 75, 385
HiliteMenuItem function 72, 385
HIWORD utility macro 143, 309, 386
HOLLOW_BRUSH stock object 343
Hook chain 224
Hook function 224
HORZRES device capability 305
HORZSIZE device capability 305
HS_BDIAGONAL brush hatch style 196
HS_CROSS brush hatch style 196
HS_DIAGCROSS brush hatch style 196
HS_FDIAGONAL brush hatch style 196
HS_HORIZONTAL brush hatch style 196
HS_ VERTICAL brush hatch style 196
HTBOTTOM mouse-position code 673
HTBOTTOMLEFT mouse-position code 673
HTBOTTOMRIGHT mouse-position code 673
HTCAPTION mouse-position code 673
HTCLIENT mouse-position code 673
HTERROR mouse-position code 673
HTGROWBOX mouse-position code 673
HTHSCROLL mouse-position code 673
HTLEFT mouse-position code 673
HTMENU mouse-position code 673
HTNOWHERE mouse-position code 673
HTREDUCE mouse-position code 673
HTRIGHT mouse-position code 673
HTSIZE mouse-position code 673
HTSYSMENU mouse-position code 673
HTTOP mouse-position code 673
HTTOPLEFT mouse-position code 673
HTTOPRIGHT mouse-position code 673
HTTRANSP ARENT mouse-position code 673
HTVSCROLL mouse-position code 673
HTZOOM mouse-position code 673

IDABORT menu-item value 433
IDC_ARROW cursor type 407
IDC_CROSS cursor type 407
IDC_IBEAM cursor type 407

707

IDC_ICON cursor type 407
IDC_SIZE 407
IDC_SIZENESW cursor type 407
IDC_SIZENS cursor type 407
IDC_SIZENWSE cursor type 407
IDC_SIZEWE cursor type 407
IDC_UPARROW cursor type 407
IDC_WAIT cursor type 407
IDCANCEL menu-item value 273, 433
IDCAPPLICATION icon type 408
IDCASTERISK icon type 408
IDCEXCLAMATION icon type 408
IDCHAND icon type 408
IDC QUESTION icon type 408
IDIGNORE menu-item value 433
IDNO menu-item value 433
IDOK menu-item value 273, 433
IDRETRY menu-item value 433
IDYES menu-item value 433
IE_BADID error return value for OpenComm

function 446
IE_BAUDRATE error return value for

OpenComm function 446
IE_BYTESIZE error return value for

OpenComm function 446
IE_DEFAULT error return value for

OpenComm function 446
IE_HARDWARE error return value for

OpenComm function 446
IE_MEMORY error return value for

OpenComm function 446
IE_NOPEN error return value for OpenComm

function 446
IE_OPEN error return value for OpenComm

function 446
InflateRect function 83, 84, 386
InitAtomTable function 141,387
InSendMessage function 14, 387
InsertMenu function 39, 72, 198,203,347,388,

691
Integer messages 602
Intercharacter spacing

default 47
Internal data structures 28
IntersectClipRect function 107, 391
IntersectRect function 83, 84, 392
InvalidateRect function 45, 392

708

InvalidateRgn function 45, 393
InvertRect function 45, 394
InvertRgn function 106, 394
IsCharAlpha function 139,395
IsCharAlphaNumeric function 139, 395
IsCharLower function 139, 395
IsCharUpper function 139,396
IsChild function 73, 396
IsClipboardFormatAvailable function 74,396
IsDialogMessage function 58,397
IsDlgButtonChecked function 58, 398
IsIconic function 42, 398
IsRectEmpty function 84, 398
Is Window function 73, 399
IsWindowEnabled function 43, 399
IsWindowVisible function 42,399
IsZoomed function 42, 400

K
Keyboard

using with dialog boxes 67
KillTimer function 43, 400

L
LB_ADDSTRING message 594, 627, 628, 629,

632,634
LB_DELETESTRING message 594, 627, 648
LB_DIR message 594, 628
LB_FINDSTRING message 594, 628
LB_ GETCARETINDEX message 629
LB_GETCOUNT message 595, 629
LB _ GETCURSEL message 595, 629
LB _ GETHORIZONTALEXTENT message 595,

630
LB_GETITEMDATA message 595,630
LB _ GETITEMHEIGHT message 630
LB_GETITEMRECT message 595, 631
LB_GETSEL message 595,631
LB_GETSELCOUNT message 595, 631
LB _ GETSELITEMS message 595, 631
LB_GETTEXT message 595, 632
LB_GETTEXTLEN message 595,632
LB _ GETTOPINDEX message 595, 632
LB_INSERTSTRING message 595, 628, 629,

632,633,634
LB_RESETCONTENT message 595, 633, 648

Software development kit

LB _SELECTSTRING message 595, 633
LB _SELITEMRANGE message 595, 634
LB_SETCARETINDEX message 634
LB_SETCOLUMNWIDTH message 214,595,

635
LB_SETCURSEL message 595,635
LB _SETHORIZONTALEXTENT message 595,

635
LB_SETITEMDATA message 595, 630, 636
LB_SETITEMHEIGHT message 636
LB_SETSEL message 595,636
LB_SETTABSTOPS message 595, 637
LB_SETTOPINDEX message 595,637
LBN_DBLCLK message 598, 638
LBN_ERRSP ACE message 598, 638
LBN_KILLFOCUS message 598, 638
LBN_SELCHANGE message 598, 639
LBN_SETFOCUS message 598, 639
LBS_EXTENDEDSEL control style 214
LBS_HASSTRINGS control style 214,627,628,
62~63~632,63~634

LBS_MULTICOLUMN control style 214,635
LBS_MULTIPLESEL control style 214
LBS_NOREDRAW control style 215
LBS_NOTIFY control style 215
LBS_OWNERDRAWFIXED control style 215
LBS_OWNERDRAWVARIABLE control style

215
LBS_SORT control style 215
LBS_STANDARD control style 215
LimitEMSPages function 135
LimitEmsPages function 402
LINECAPS device capability 307
LineDDA function 107, 402
LineTo function 107,403
LISTBOX control class 208
LMEM_DISCARDABLE option 413, 415, 418
LMEM_DISCARDED option 415
LMEM_FIXED option 414
LMEM_MODIFY option 414, 418
LMEM_MOVEABLE option 414, 418
LMEM_NOCOMP ACT option 414, 418
LMEM_NODISCARD option 414, 419
LMEM_ZEROINIT option 414, 419
LoadAccelerators function 138, 404
LoadBitmap function 110, 138, 405
LoadCursor function 77, 138, 406

Index

LoadIcon function 138, 407
LoadLibrary function 134, 408
LoadMenu function 139, 409
LoadMenuIndirect function 72, 410
LoadModule function 146, 410
LoadResource function 139, 412
LoadString function 139, 412
LOBYTE utility macro 143,413
LocalAlloc function 135, 413
LocalCompact function 135, 414
LocalDiscard function 136, 415
LocalFlags function 136, 415
LocalFree function 136, 416
LocalHandle function 136, 416
Locallnit function 136, 416
LocalLock function 136, 417
LocalReAlloc function 136, 417
LocalShrink function 136, 419
LocalSize function 136, 420
LocalUnlock function 136, 420
LockData function 136, 420
LockResource function 139, 421
LockSegment function 136, 137, 421
LOGP ALETTE data structure 199
LOGPIXELSX device capability 305
LOGPIXELSY device capability 305
LOWORD utility macro 143, 309, 423
LPtoDP function 105, 424
lstrcat function 139, 425
lstrcmp function 139, 425
lstrcmpi function 139, 426
lstrcpy function 139, 426
lstrlen function 140, 427
LTGRAY_BRUSH stock object 343

M
MAKEINTATOM utility macro 141, 143,428
MAKEINTRESOURCE utility macro 143, 292,

429
MAKE LONG utility macro 143, 429
MAKE POINT utility macro 143, 429
MakeProcInstance function 134, 429
MapDialogRect function 58, 430
Mapping mode

default 47
MapVirtualKey function 44, 431

709

max macro 432
MB_ABORTRETRYIGNORE option 433
MB_APPLMODAL option 433
MB_DEFBUTTONI option 434
MB_DEFBUTTON2 option 434
MB_DEFBUTTON3 option 434
MB_ICONASTERISK option 434
MB_ICONEXCLAMATION option 434
MB_ICONHAND option 434
MB_ICONINFORMATION option 434
MB_ICONQUESTION option 434
MB_ICONSTOP option 434
MB _ OK option 434
MB _ OKCANCEL option 434
MB _RETRYCANCEL option 434
MB_SYSTEMMODAL option 434
MB_TASKMODAL option 434
MB_YESNO option 434
MB _ YESNOCANCEL option 434
MEASUREITEMSTRUCT data structure 668
Memory

least-recently used 374, 375
Menu

pop-up
described 39

Menu bar
described 39

Menu functions 72
Menu item

removing 470
MERGECOPY raster operation 163
MERGEP AINT raster operation 163
Message functions 14
MessageBeep function 75, 432
MessageBox function 75, 432
Metafile functions 124
Metafiles

changing 127
creating 125
creating and using 125, 126
deleting 127
storing 126

MF _BITMAP menu flag 158, 389, 436, 669
MF _BYCOMMAND menu flag 169, 253, 386,

389,436
MF _BYPOSITION menu flag 170, 253, 386,

389,436

710

MF _CHECKED menu flag 158, 170, 323, 390,
437,669

MF _DISABLED menu flag 158, 253, 323, 390,
437,669

MF _ENABLED menu flag 158,253,323,390,
437

MF _GRAYED menu flag 158, 253, 323, 390,
437,669

MF _HILITE menu flag 386
MF _MENUBARBREAK menu flag 158, 323,

390,437
MF _MENUBREAK menu flag 158, 323, 390,

437
MF _MOUSESELECT menu flag 669
MF_OWNERDRAW menu flag 158,390,437,

669
MF _POPUP menu flag 158,390,437,669
MF_SEPARATOR menu flag 159,323,390,437
MF_STRING menu flag 159,390,437
MF _SYSMENU menu flag 669
MF _UNCHECKED menu flag 159, 170, 323,

391,438
MF _ UNHILITE menu flag 386
min macro 434
MK_CONTROL mouse-key code 660, 661, 662,

663,670,682,683
MK_LBUTTON mouse-key code 660, 662, 663,

670,682,683
MK_MBUTTON mouse-key code 660, 661, 662,

670,682,683
MK_RBUTTON mouse-key code 660, 661, 662,

663,670,682
MK_SHIFT mouse-key code 660, 661, 662, 663,

670,682,683
MM_ANISOTROPIC mapping mode 504
MM_HIENGLISH mapping mode 504
MM_HIMETRIC mapping mode 504
MM_ISOTROPIC mapping mode 504
MM_LOENGLISH

mapping mode 105
MM_LOENGLISH mapping mode 504
MM_LOMETRIC mapping mode 504
MM_TEXT

mapping mode 104
MM_TEXT mapping mode 504
MM_TWIPS mapping mode 504
ModifyMenu function 72,347,435,691

Software development kit

MoveTo function 107,438
MoveWindow function 42, 438
MSGF _DIALOG BOX filter-function message

type 543, 544
MSGF _MENU filter-function message type 543

544 '
MSGF _MESSAGEBOX filter-function message

type 544
MulDiv function 143,439
Multitasking

defined 2

N
nAccelera tors

loading or translating 17
with dialog boxes 67

nBackground
color@default 46
mode@default 46

nBitBlt function
and color palettes 99

nBitmap
device-dependent

getting device-independent bits from 309
device-independent

creating 189
displaying 498
retrieving bits 309
setting on display surface 498

memory
setting bits in 497

nBitmap functions
device independent 111, 112

nBrush
alignment 53
creating 179
default 46

nCaret
creating and displaying 76
functions 75
sharing 76

nChangeMenu See also AppendMenu, See also
DeleteMenu, See also InsertMenu, See also
ModifyMenu, See also RemoveMenu

nCharacter
determining if alphabetic 395

Index

determining if alphanumeric 395
determining if lowercase 395
determining if uppercase 396

nCheckmark
custom 506
getting size of 321

nChild window
described 35

nClass
functions@default messages 33
functions@defining 30, 33
functions@examining 30, 33
functions@receiving 30,33
functions@responding 3D, 33
messages@declaring 33
messages@sending 33
messages@values 33
registering 33
styles@child 35
styles@overlapped 34
styles@owned 35
styles@pop-up 35
window

unregistering 567
nClasses

Application Global 21
Application Local 21
class background brush@assigning 26
class background brush@setting 26
class name@assigning 24
class name@global uniqueness 24
creating 20
Cursor 25
defining and registering 20
determining ownership 22
display contexts 30
elements 23
elements@assigning 23
elements@class names 23
instance handle 24
predefined 22
redrawing client area 29
registering 22
shared 22
styles 27
System Global 21

711

nClient area
child window 35
redrawing 29
update region 52

nClipboard
functions 74

nColor
logical-palette index 450
using color in logical palette 450, 451

nColor palettes
updating client area 568

nCombobox
owner-draw 65
owner-draw@sorting 645

nCOMBOBOX control class
control styles 212

nContexts
class and private 30
classes

displaying 47
displaying 46
displaying cache 50
displaying common defaults 47
painting changes 50
private display 48
window display 49
WM_P AINT message 50

nControl
current font 653
owner-draw

drawing 650, 668
measuring 668

setting current font 685
nControl class

COMBOBOX@control styles 212
COMBOBOX@described 208

nControl styles
COMBOBOX class 212

nCreateWindow function
creating a child window 36
creating an overlapped window 35
described 19, 205

nCursor
class 25
confining 78
creating custom 78
displaying and hiding 77

712

functions 76
positioning 78
with pointing devices 77

nDELETEITEMSTRUCT data structure
as parameter of WM_DELETEITEM message
648

nDestroyWindow function
described 231
destroying modeless dialog boxes 59
effect 41

nDevice context
attributes and functions 88
creating

saving and deleting 90
nDevice driver

device capabilities 232
nDialogbox

accelerators 67
buttons 64
control identifiers 62
control styles 63
controls 62, 66

control messages 66
creating 59, 60
described 57
dimensions 66
edit controls 64
input function 60
keyboard input 67
keyboard interface@actions 66
keyboard interface@filtering

measurements 67
modal@creating 60, 239, 240
modal@moveable 60
modeless@creating 187, 188
modeless@deleting 59
modeless@using 59
private window class default function 220
redrawing 66
return values 61
scrolling 68
template 60
using 59

nDialog boxes
keyboard interface@scrolling 67
owner draw 66

nDIB Bitmap See device-independent

Software development kit

nDIB _P AL_ COLORS
device-independent bitmap color table
option 189, 190,309,497,499,553

nDIB_RGB_COLORS
device-independent bitmap color table
option 189, 190,309,497,499,553

nDocument conventions
\bcB\ecbold text\bcD\ec 8
\ bcF105M \ecmonospaced type \ bcF255D \ec
9
\bcMI\ecitalic text\bcD\ec 9
curly braces ({ }) 9
double brackets ([[]]) 9
horizontal ellipses ... 9
parentheses () 8
quotation marks (\bc169\ec \bc170\
ec)[quotation marks ()] 9
small capital letters 9
vertical bar (I) 9
vertical ellipses 9

nDrawing
formatted text 54
gray text 57
icons 54
mode

default 47
nDRAWITEMSTRUCT

as parameter of WM_DRA WITEM message
650

nEdit control
tab stops in 622

nEllipses
horizontal

as document convention 9
vertical

as document convention 9
NETBIOS interrupt

function request (5CH) 440
NetBIOSCall function 137,440
nExtents

viewport and window default 47
nFile

closing 401
creating 401
help@displaying 574
initialization@application-specific 335, 336,
578

Index

opening 422
positioning the pointer 404
reading 424
writing 427

nFilling mode
ALTERNATE 202, 510
WINDING 202, 510

nFont
average character width 119
control

current 653
default 47
logical

creating 193, 195
maximum character width 119
pitch 119
setting in control 685

nFont mapping
characteristics 121, 122

nFonts
character sets 117

vendor specific 118
character sets@ANSI 118
character sets@OEM 118
character sets@printer 118
digitized aspect 119
leading 117
overhang 119

nFunction
coordinates 108
main loop 16
window 18

nFunctions
additional 83
bitmap 110, 111, 112
bounding rectangles 110
caret 75, 76
clipboard 74
displaying 42
drawing tools 91
error 74
filters 79
hardware 43
hook 79
information 73
input 43
mapping drawing attributes 100

713

menu 72
movement 42
obtaining device information 91
painting 44
property lists 80, 82
rectangle@coordinates 83
rectangle@specifying 83
regions 106
system 73

nGDI Functions
brushes

predefined 92
color palettes 95
drawing-attribute functions 99
drawing attribute functions@background

mode and color 100
drawing attribute functions@mapping

funtions 100
drawing attribute functions@stretch mode

and text color 100
drawing tool functions 91
rna pping functions 101
rna pping modes

constraining 102, 103
transformation equations 103

obtaining device information 91
pens

predefined 93
selecting fonts 120
using drawing tools 92
working with color palettes 96

nHandle
task

obtaining 302
nIcon

class 25
drawing 54

nlnitialization file
application-specific

getting integer from 335
getting string from 336
writing to 578

nlnterrupt
function request (21H) 245
function request (SCH) 440

nKey
getting name 319

714

nLine output functions
pen styles

colors and widths 108
nLine-output functions

coordinates 108
nList box

directory listings 65
horizontal scrolling 630, 635
owner-draw

described 65
owner-draw@deleted item 648
owner-draw@sorting 645
tab stops in 637

nLogical palette
and input focus 681
changed 679
changing entries in 508
creating 199
finding color in 329
index specifier (direct) 450
index specifier (indirect) 451
realizing 465, 679
selecting 483

nMDICREATESTRUCT
as parameter of WM_MDICREATE message
664

nMenu
changing 157, 388, 435
class 26
creating 198
deleting 228
pop-up 202

nMenu checkmark
custom 506
getting size of 321

nMessage
posting to task windows 458

nMessages
application queue 15
bypassing the queue 15
checking the queue 17
clipboard 591
closing 41
contents 601
described 18
destroy message 41
dispatching 15, 16

Software development kit

examining@checking queues
passing

posting 18
examining@formatted and transmitting 18
generated by applications 15
generating or processing@input events and

application queue 16
generating or processing@queuing and

virtual-key 16
input events 15
integer 602
keyboard input 16
peeking 17
posting 18
pulling 15
pushing 16
ranges 602
reading 15
reading@without pulling 17
reserved 602
sending 18
special actions 15
string 602
translating 16
translating@accelerator keys 17
translating@loops 17
virtual keys 16
window

default processing 227
window functions 15

nMessages notification See Notification codes
nMetafile functions

additional escapes 131
environment 131
information escapes 130
printer escapes

banding 129, 130
starting and ending 130
terminating 130

nMouse cursor See Cursor
nMultiple Document Interface (MDI)

child window@activating 663, 666
child window@active 665
child window@cascading 664
child window@closing 665
child window@creating 664
child window@default function 225

Index

child window@maximizing 666
child window@restoring 667
child window@system accelerator 562
child window@tiling 667
client window 663, 664, 665, 666, 667
frame window default function 223
messages 600
system accelerator 562

nNotification codes
button 597
edit control 597

nOrigin
brush

default 46
viewport

default 47
window

default 47
nOwner-draw control

described 65
nPainting

functions 44
inverting

drawing
filling 53

rectangles 53
systems display 44
updating background 52
updating displays 51
updating nonclient area 57
validating rectangle 570
validating region 570

nPalette
system

retrieving entries 349
nPen

creating 200, 201
position

default 46
nPop-up menu

creating 202
described 39

nPrinter
initialization 271

nPrinter functions
banding 129
creating output 129

715

nProperty list functions
adding entries 82
creating 82
dumping contents 82

nQueue
application 15
checking 17

nRaster fonts
digitized aspect 119

nRealize See logical palette
nRectangle functions

additional functions 83
coordinates 83
in Windows 83
InflateRect 84
IntersectRect 84
IsRectEmpty 84
OffsetRect 84
PtInRect 84
SetRect 84
specifying 83
U nionRect 85

nRegion
rounded rectangle

creating 204
validating 570

nResources
managing hooks 79

nScrolling
functions@controlling 69
functions@described 68
functions@processing 71
functions@requests 70
hiding 71
using thumb 70

nSendMessage function
Message deadlock caused by 18

nSetWindowPos 219
nStretchBlt function

and color palettes 99
nStrings

comparing 425, 426
concatenating 425
copying 427
determining length of 427
formatting 579, 581

716

nStyles
dialog box controls 63
formatted text 55

nSystem palette
retrieving entries 349

nTask
handle

obtaining 302
nTask windows

enumerating 265
posting messages to 458

nTasks
yielding control 583

nText
drawing 57
graying 56

NULL_BRUSH stock object 343
NULL_PEN stock object 343
NULLREGION region type 176, 270, 298, 358,

391,442,443,481
NUMBRUSHES device capability 305
NUMCOLORS device capability 305
NUMFONTS device capability 305
NUMPENS device capability 305
nWindow

background 52
background brush 23
brush alignment 53
child@close box 38
child@described 35
child@ID 36
child@input 36
child@messages 36
child@overlapping 37
child@owner window 36
child@showing 36
class@attributes 23
class@background brush 23
class@cursor

icon
attributes 23

class@described 20
class@functions 23
class@instance handle 23
class@menu

styles 23
class@name 23

Software development kit

creating 218
dialog box 57
function role 18
icon 34
main

creating 41
open 34
overlapped 34
overlapping 35
owner

describing 36
painting rectangles 53
pop-up@creating and showing 35
scroll bars 38
state 40
styles 34
styles@child 34, 35
styles@owned 35
styles@pop-up 35
styles@state 40
subclassing 28, 490, 534
System menu box 38
title bar 38

n Window applications
application queue 15
dispatching messages 16
pulling messages 15
pushing messages 16
reading messages 15
yielding control 15

n Window class
background brush 25
unregistering 567

n Window function
address 24
receiving messages 16

nWindows
displaying functions 42
enumerating for a task 265
painting@drawing 53
painting@filling 53
painting@inverting 53
posting messages to a task 458
subclassing 28

n Windows Classes
class menu 26
locating 21

Index

Window-Function address 24
n WM_ COMMAND notification codes See

Notification codes

o
OEM_FIXED_FONT stock object 343
OemKeyScan function 44, 440
OemToAnsifunction 140,441
OemToAnsiBuff function 140,442
OF_CANCEL option 447
OF_CREATE option 447
OF_DELETE option 447
OF_EXIST option 447
OF_PARSE option 447
OF_PROMPT option 447
OF_READ option 422, 447
OF _READWRITE option 422
OF_REOPEN option 447
OF_VERIFY option 448
OF_WRITE option 423, 448
OffsetClipRgn function 107, 442
OffsetRect function 83, 84, 443
OffsetRgn function 106, 443
OffsetViewportOrg function 101,444
OffsetWindowOrg function 101, 444
OPAQUE background mode 487
OpenClipboard function 74,445
OpenComm function 142, 445
OpenFile function 144, 446
OpenIcon function 42, 449
OpenSound function 143, 449
OutputDebugString function 145, 449
Overlapped window 34
Owner-draw dialog box controls 66
OWNERDRA WFIXED resource option 668

p
PaintRgn function 106, 450
P ALETTEINDEX utility macro 144, 450
PALETTERGB 144
P ALETTERGB utility macro 144, 450
palettes

resizing 473
Parentheses ()

as document convention 8
PatBlt function 110,451

717

PATCOPY raster operation 163
PATINVERT raster operation 164
PATPAINT raster operation 164
PC_RESERVED palette-entry option 153
PDEVICESIZE device capability 306
PeekMessage function 14, 452
Pie function 109, 110, 454
PLANES device capability 305
PlayMetaFile function 124,455
PlayMetaFileRecord function 124,455
PM_NOREMOVE option 453
PM_NOYIELD option 453
PM_REMOVE option 453
POINT data structure 234
Polygon-filling mode

default 47
Polygon function 109, 456
POL YGONALCAPS device capability 307
Polyline function 107,456
PolyPolygon function 109, 457
PostAppMessage function 14, 458
PostMessage function 14, 458
PostQuitMessage function 14, 459
Printer-control functions 128
Printer device driver capabilities 232
Prof Clear function 145, 459
ProfFinish function 145, 460
ProfFlush function 145, 460
ProfinsChk function 145, 460
ProfSampRate function 145,461
Prof Setup function 145, 460, 462
Prof Start function 145, 462
Prof Stop function 145, 462
Property list functions 80
PtInRect function 83, 84, 463
PtInRegion function 106, 463
PtVisible function 107, 463

Q
Quotation marks (\bc169\ec \bc170\ec)

R

as document convention[Quotation marks (),
as document convention] 9

R2_MASKNOTPEN raster drawing mode 514
R2_MASKPEN raster drawing mode 515

718

R2_MASKPENNOT raster drawing mode 514
R2_MERGENOTPEN raster drawing mode 514
R2_MERGEPEN raster drawing mode 514
R2_MERGEPENNOT raster drawing mode 514
R2_NOT raster drawing mode 514
R2_NOTCOPYPEN raster drawing mode 514
R2_NOTMASKPEN raster drawing mode 515
R2_NOTMERGEPEN raster drawing mode 514
R2_NOTXORPEN raster drawing mode 515
R2_XORPEN raster drawing mode 515
RASTERCAPS device capability 306
RC_BANDING device capability 306
RC_BITBL T device capability 306
RC_BITMAP64 device capability 306
RC_DCBITMAP device capability 306
RC_DIBTODEV device capability 306
RC_FLOODFILL device capability 306
RC_GDI20_0UTPUT device capability 306
RC_P ALETTE device capability 306
RC_SCALING device capability 306
RC_STRETCHBLT device capability 306
RC_STRETCHDIB defice capability 306
ReadComm function 142, 464
RealizePalette function 96, 465
Rectangle

validating 570
Rectangle function 109, 465
RectInRegion function 106, 466
RectVisible function 107,466
Region functions 106
RegisterClass function 20, 467
RegisterClipboardFormat 74
RegisterClipboardFormat function 468
RegisterWindowMessage function 468
Relative-absolute flag

default setting[Relative absolute flag
default setting] 47

ReleaseCapture function 43,469
ReleaseDC function 45, 469
RemoveFontResource function 113, 470
RemoveMenu function 72,470
RemoveProp function 81, 471
ReplyMessage function 14, 472
Reserved messages 602
RESETDEV communication function code 269
ResizePalette function 473
RestoreDC function 88, 473

Software development kit

RGB utility macro 144,474
RGN_AND region-combining mode 175
RGN_ COPY region-combining mode 175
RGN_DIFF region-combining mode 176
RGN_OR region-combining mode 176
RGN_XOR region-combining mode 176
RoundRect function 109,474
RT ACCELERATOR resource type 279
RT - BITMAP resource type 279
RT - DIALOG resource type 279
RT =FONT resource type 279
RT MENU resource type 279
RT=RCDATA resource type 279

5
S ALL THRESHOLD voice-queue state 572
S - LEGATO voice note style 529
S - NORMAL voice note style 529
S - PERIODI024 voice frequency 517
S - PERIOD2048 voice frequency 517
S - PERIOD512 voice frequency 517
S - PERIODVOICE voice frequency 517
S= QUEUEEMPTY voice-queue state 572
S SERDCC voice error code 530
S - SERDDR voice error code 532
S - SERDFQ voice error code 532
S - SERDLN voice error code 530
S - SERDMD voice error code 529
S - SERDNT voice error code 530
S - SERDRC voice error code 530
S - SERDSH voice error code 530
S - SERDTP voice error code 529
S - SERDVL voice error code 529, 532
S - SERMACT voice error code 531
S - SEROFM voice error code 531
S - SERQFUL voice error code 529, 530, 532
S-STACCATO voice note style 529
S - THRESHOLD voice queue status 572
S - WHITE1024 voice frequency 517
S - WHITE2048 voice frequency 517
S - WHITE512 voice frequency 517
S= WHITEVOICE voice frequency 517
SaveDC function 88, 476
SB_BOTH scroll-bar type 548
SB _BOTTOM scrolling request 655, 656, 696
SB_CTL scroll-bar type 342, 515, 516, 548

Index

SB_ENDSCROLL scrolling request 655,656,
696

SB HORZ scroll-bar type 342, 515, 516, 548
SB -LINEDOWN scrolling request 655, 656, 696
SB - LINEUP scrolling request 655, 656, 696
SB=PAGEDOWN scrolling request 655, 656,

696
SB P AGEUP scrolling request 655, 656, 696
SB=THUMBPOSITION scrolling request 655,

656, 696, 697
SB THUMBTRACK scrolling request 655, 696
SB=TOP scrolling request 655, 656, 696, 697
SB_ VERT scroll-bar type 342, 343, 515, 516,

548
SBS BOTTOMALIGN control style 215
SBS - HORZ control style 215
SBS - LEFTALIGN control style 216
SBS-RIGHTALIGN control style 216
SBS - SIZEBOX control style 216
SBS=SIZEBOXBOTTOMRIGHTALIGN control

style 216
SBS_SIZEBOXTOPLEFTALIGN control style

216
SBS TOP ALIGN control style 216
SBS -VERT control style 216
SCSLOSE system command 690
SC_HOTKEY system command 690
SC_HSCROLL system command 690
SC_KEYMENU system command 690
SC_MAXIMIZE system command 690
SC_MINIMIZE system command 690
SC MOUSEMENU system command 690
SC=MOVE system command 690
SC NEXTWINDOW system command 690
SC - PREVWINDOW system command 690
SC=RESTORE system command 690
SC SCREENSA VE system command 690
SC=SIZE system command 690
SC TASKLIST 690
SC= VSCROLL system command 690
ScaleViewportExt function 101,476
ScaleWindowExt function 101,477
ScreenToClient function 106,477
Scroll bars 38
SCROLLBAR control class 209
ScrollDC function 68, 478
Scrolling 71

719

ScrollWindow function 68, 479
SelectClipRgn function 107, 480
SelectObject function 91, 481
SelectPalette function 96, 483
SendDIgItemMessage function 58, 483
Send Message function 14, 15, 484
SetActiveWindow function 43, 485
SetBitmapBits function 110, 485
SetBitmapDimension function 111, 486
SetBkColor function 99, 486
SetBkMode function 99, 487
SetBrushOrg function 91, 487
SetCapture function 43, 488
SetCaretBlinkTime function 75, 488
SetCaretPos function 75, 488
SetClassLong function 20, 29, 489
SetClass Word function 20, 490
SetClipboardData function 74,491
SetClipboardViewer function 74,493
SetCommBreak function 142, 494
SetCommEventMask function 142, 494
SetCommState function 142, 495
SetCursor function 77, 495
SetCursorPos function 77, 496
SetDIBits function 99, 111, 306, 496, 497
SetDIBitsToDevice function 111, 306, 498, 499
SetDIgItemInt function 58, 499
SetDIgItemText function 59, 500
SetDoubleClickTime function 43, 500
SETDTR communication function code 269
SetEnvironment function 131,501
SetErrorMode function 138, 501
SetFocus function 43, 502
SetHandleCount function 144, 502
SetKeyboardState function 44, 503
SetMapMode function 101,503
SetMapperFlags function 113, 119,505
SetMenu function 72, 505
SetMenuItemBitmaps function 72, 159,321,

506
SetMessageQueue function 14,507
SetMetaFileBits function 124,507
SetPaletteEntries function 96, 508
SetParent function 73, 508
SetPixel function 111, 509
SetPolyFillMode function 99, 456, 457, 509
SetProp function 81, 510

720

SetRect function 84, 511
SetRectEmpty function 83, 511
SetRectRgn function 106, 512
SetResourceHandler function 139, 512
SetROP2 function 99, 514
SETRTS communication function code 269
SetScrollPos function 68, 515
SetScrollRange function 68, 516
SetSoundNoise function 143,516
SetStretchBltMode function 99, 517
SetSwapAreaSize function 136, 518
SetSysColors function 74,519
SetSysModalWindow function 43, 520
SetSystemPaletteUse function 96,99,349,520
SetTextAlign fulnction 522
SetT extAlign function 112
SetTextCharacterExtra function 523
SetTextColor function 99, 383, 523
SetTextJustification function 112,524
SetTimer function 43, 525
SetViewportExt function 101,526
SetViewportOrg function 101,527
SetVoiceAccent function 143,528
SetVoiceEnvelope function 143, 529
SetVoiceNote function 143,530
SetVoiceQueueSize function 143,531
SetVoiceSound function 143,531
SetVoiceThreshold function 143, 532
SetWindowExt function 101,532
SetWindowLong function 20, 28, 533
SetWindowOrg function 101,534
SetWindowPos function 42, 535
SetWindowsHook function 79, 536
SetWindowText function 38, 42, 545
SetWindowWord function 20,545
SETXOFF communication function code 269
SETXON communication function code 269
ShowCaret function 75, 546
ShowCursor function 77, 546
ShowOwnedPopups function 42, 547
ShowScrollBar function 68, 547
ShowWindow function 42, 411, 548, 573
SIMPLEREGION region type 176, 270, 298,

358, 391, 442, 443, 481
SIZEFULLSCREEN window-sizing request 687
SIZEICONIC window-sizing request 687
SIZENORMAL window-sizing request 687

Software development kit

SizeofResource function 139, 549
SIZEZOOMHIDE window-sizing request 687
SIZEZOOMSHOW window-sizing request 687
SM_CXBORDER system-metric value 348
SM_CXDLGFRAME system-metric value 348
SM_ CXFRAME system-metric value 348
SM_CXFULLSCREEN system-metric value 348
SM_CXHSCROLL system-metric value 348
SM_CXHTHUMB system-metric value 348
SM_CXMINTRACK system-metric value 348
SM_CXSIZE system-metric value 348
SM_CXVSCROLL system-metric value 348
SM_CYBORDER system-metric value 348
SM_CYDLGFRAME system-metric value 348
SM_CYFRAME system-metric value 348
SM_CYFULLSCREEN system-metric value 348
SM_ CYHSCROLL system-metric value 348
SM_CYSIZE system-metric value 348
SM_CYVSCROLL system-metric value 348
SM_ CYVTHUMB system-metric value 348
SM_DEBUG system-metric value 349
SM_MOUSEPRESENT system-metric value 348
SM_SW APBUTTON system-metric value 349
Small capital letters

as document convention 9
SP _ERROR escape error code 268
SP _OUTOFDISK escape error code 268
SP _OUTOFMEMORY escape error code 268
SP _USERABORT escape error code 268
SRCAND raster operation 164
SRCCOPY raster operation 163, 164
SRCERASE raster operation 163, 164
SRCINVERT raster operation 164
SRCP AINT raster operation 164
SS_BLACKFRAME control style 216
SS_BLACKRECT control style 216
SS_CENTER control style 217
SS_GRAYFRAME control style 217
SS_GRAYRECT control style 217
SS_ICON control style 217
SS_LEFT control style 217
SS_LEFTNOWORDWRAP control style 217
SS_NOPREFIX control style 217
SS_RIGHT control style 217
SS_SIMPLE control style 218
SS_USERITEM control style 218
SS_WHITEFRAME control style 218

Index

SS_ WHITERECT control style 218
StartSound function 143, 549
STATIC control class 209
StopSound function 143, 550
StretchBlt function 111,550
StretchDIBits function 111, 552
Stretching mode

default 47
String messages 602
Subclassing windows 28, 490, 534
SW _HIDE window state 548
SW _MINIMIZE window state 548
SW _P ARENTCLOSING window state 687
SW_PARENTOPENING window state 687
SW _RESTORE window state 548
SW _SHOW window state 549
SW _SHOWMAXIMIZED window state 549
SW _SHOWMINIMIZED window state 549
SW _SHOWMINNOACTIVE window state 549
SW_SHOWNA window state 549
SW _SHOWNOACTIV ATE window state 549
SW _SHOWNORMAL window state 549
SwapMouseButton function 43, 554
SwapRecording function 145,554
SwitchStackBack function 136, 555
SwitchStackTo function 136, 555
SWP _DRA WFRAME window-position flag

222,536
SWP _HIDEWINDOW window-position flag

222,536
SWP _NOACTIV ATE window-position flag

222,536
SWP _NOMOVE window-position flag 222, 536
SWP _NOREDRA W window-position flag 222,

536
SWP _NOSIZE window-position flag 222, 536
SWP _NOZORDER window-position flag 222,

536
SWP _SHOWWINDOW window-position flag

222,536
SyncAllVoices function 143, 556
System

functions 73
System accelerator (MDl) 562
SYSTEM_FIXED_FONT stock object 344
SYSTEM_FONT stock object 344
System menu box 38

721

System services interface
defined 4

Systems display
painting

functions 44

T
TA_BASELINE text-alignment flag 353, 522
TA_BOTTOM text-alignment flag 353, 522
TA_CENTER text-alignment flag 353, 522
TA_LEFI' text-alignment flag 353, 522
TA_NOUPDATECP text-alignment flag 353,

522
TA_RIGHT text-alignment flag 353, 522
TA_TOP text-alignment flag 353, 523
TA_UPDATECP text-alignment flag 353, 523
TabbedTextOut function 112,556
Tasks

yielding control 15
TECHNOLOGY device capability 305
Text color

default 47
Text functions 112
TEXTCAPS device capability 307
TextOut function 112,557
Throw function 138, 558
Timer

killing 400
Title bar 38
ToAscii function 140,559
TPM_RIGHTBUTTON pop-up menu flag 560
TrackPopupMenu function 39, 72, 203, 560
TranslateAccelerator function 14, 17, 560
TranslateMDISysAccel function 14, 562
TranslateMessage function 14, 16, 562
TransmitCommChar function 142, 563
TRANSPARENT background mode 487

U
UngetCommChar function 142,563
UnhookWindowsHook function 79, 564
UnionRect function 83, 85, 565
UnlockData function 136, 565
U nlockResource function 139, 565
UnLockSegment function 136
UnlockSegment function 137,566

722

UnrealizeObject function 91, 566
UnregisterClass function 20,567
UpdateColors function 96, 568
UpdateWindow function 45, 568
Updating region

client area 52

v
ValidateCodeSegments function 145,568
ValidateFreeSpaces function 145, 569
ValidateRect function 45, 569
ValidateRgn function 45, 570
Variable-pitch font attribute 119
Vertical bar (I)

as document convention 9
VERTRES device capability 305
VERTSIZE device capability 305
Viewport extents

default 47
Viewport origin

default 47
Virtual keys 16
VkKeyScan function 44, 570

w
WaitMessage function 14,571
WaitSoundState function 143, 572
WH_ CALL WNDPROC windows-hook type

537,564
WH_GETMESSAGE windows-hook type 537,

564
WH-10URNALPLAYBACK windows-hook

type 537, 564
WH-10URNALRECORD windows-hook type

537,564
WH_KEYBOARD windows-hook type 80, 537,

564
WH_MSGFILTER windows-hook type 80, 537,

564
WH_SYSMSGFILTER windows-hook type 537
WHITE_BRUSH stock object 343
WHITE_PEN stock object 343
WHITENESS raster-operation code 164
WHITEONBLACK stretching mode 518
WINDING filling mode 202,510
WINDING polygon-filling mode 202, 334, 509

Software development kit

Window bar menu 39
Window extents

default 47
Window manager interface

defined 2
Window origin

default 47
WindowFromPoint function 73, 106, 572
WinExec function 146, 573
WinHelp function 146, 574
WinMain function

main loop 16, 17
WM_ACTIV ATE message 588, 639
WM_ACTIV ATEAPP message 588, 640
WM_ASKCBFORMATNAME message 591,

640
WM_ CANCELMODE message 588, 641
WM_ CHANGECBCHAIN message 591, 641
WM_CHARmessage 590, 641
WM_ CHARTOITEM message 590, 642
WM_ CHILDACTIV ATE message 588, 643
WM_ CLEAR message 594, 643
WM_ CLOSE message 588, 643
WM_ CLOSE message message 41
WM_ COMMAND message 590, 644
WM_ COMPACTING message 592, 644
WM_ COMP ARE ITEM message 596, 645
WM_COPY 594,645
WM_CREATE message 219,588,646
WM_ CTLCOLOR message 588, 646
WM_CUT message 594,647
WM_DEADCHAR message 590, 647
WM_DELETEITEM message 596, 607, 611,

628,633,648
WM_DESTROY message 41, 588, 648
WM_DESTROYCLIPBOARD message 591, 649
WM_DEVMODECHANGE message 592, 649
WM_DRA WCLIPBOARD message 591, 649
WM_DRA WITEM message 596, 650
WM_ENABLE message 588, 650
WM_ENDSESSION message 588, 650
WM_ENTERIDLE message 588, 651
WM_ERASEBKGND message 588, 651
WM_FONTCHANGE message 592, 652
WM_ GETDLGCODE message 588, 652
WM_ GETFONT message 592, 653
WM_ GETMINMAXINFO message 588, 653

Index

WM_GETTEXT message 588, 654
WM_ GETTEXTLENGTH message 588, 654
WM_HSCROLL message 38, 590, 598, 655
WM_HSCROLLCLIPBOARD message 591, 656
WM_ICONERASEBKGND message 588, 656
WM_INITDIALOG message 187, 188, 239, 240,

589,657,668
WM_INITMENU message 589, 657
WM_INITMENUPOPUP message 589, 658
WM_KEYDOWN message 590, 658
WM_KEYUP message 590, 659
WM_KILLFOCUS message 588, 660
WM_LBUTTONDBLCLK message 590, 660
WM_LBUTTONDOWN message 590, 661
WM_LBUTTONUP message 590, 661
WM_MBUTTONDBLCLK message 590, 662
WM_MBUTTONDOWN message 590, 662
WM_MBUTTONUP message 590, 663
WM_MDIACTIV ATE message 600, 663, 664
WM_MDICASCADE message 600, 664
WM_MDICREATE message 600, 664
WM_MDIDESTROY message 600, 665
WM_MDIGETACTIVE message 600, 665
WM_MDIICONARRANGE message 600, 666
WM_MDIMAXIMIZE message 600, 666
WM_MDINEXT message 600, 666
WM_MDIRESTORE message 600, 667
WM_MDISETMENU message 600, 667
WM_MDITILE message 600, 667
WM_MEASUREITEM message 596, 668
WM_MENUCHAR message 588, 668
WM_MENUSELECT message 588, 669
WM_MOUSEACTIVATE message 590, 669
WM_MOUSEMOVE message 590, 670
WM_MOVE message 588, 671
WM_NCACTIVATE message 599,664,671
WM_NCCALCSIZE message 599, 671
WM_NCCREATE message 599, 672
WM_NCDESTROY message 599, 672
WM_NCHITTEST message 599, 672
WM_NCLBUTTONDBLCLK message 599, 673
WM_NCLBUTTONDOWN message 599, 674
WM_NCLBUTTONUP message 599, 674
WM_NCMBUTTONDBLCLK message 599, 674
WM_NCMBUTTONDOWN message 599, 675
WM_NCMBUTTONUP message 599, 675
WM_NCMOUSEMOVE message 599, 675

723

WM_NCP AINT message 599, 676
WM_NCRBUTTONDBLCLK message 599, 676
WM_NCRBUTTONDOWN message 599, 676
WM_NCRBUTTONUP message 599, 677
WM_NEXTDLGCTL message 592, 677
WM_PAINT message 51, 588, 677
WM_P AINTCLIPBOARD message 591, 678
WM_P AINTICON message 589, 678
WM_P ALETTECHANGED message 592, 679
WM_P ARENTNOTIFY message 589, 679
WM_P ASTE message 594, 680
WM_QUERYDRAGICON function 680
WM_QUERYDRAGICON message 589
WM_ QUERYENDSESSION message 589, 681
WM_QUERYNEWPALETTE message 589,681
WM_QUERYOPEN message 589, 681
WM_ QUIT message 42, 589, 682
WM_RBUTTONDBLCLK message 590, 682
WM_RBUTTONDOWN message 590, 682
WM_RBUTTONUP message 590, 683
WM_RENDERALLFORMATS message 591,

683
WM_RENDERFORMAT message 591, 684
WM_SETCURSOR message 590, 684
WM_SETFOCUS message 589, 684
WM_SETFONT message 589, 592, 685
WM_SETREDRA W message 589, 685
WM_SETTEXT message 589, 686
WM_SHOWWINDOW message 589, 686
WM_SIZE message 589, 687
WM_SIZECLIPBOARD message 591, 687
WM_SPOOLERSTATUS message 592, 688
WM_SYSCHAR message 591, 688
WM_SYSCOLORCHANGE message 592, 689
WM_SYSCOMMAND message 591, 690
WM_SYSDEADCHAR message 591, 691
WM_SYSKEYDOWN message 591, 691
WM_SYSKEYUP message 591, 693
WM_TIMECHANGE message 592, 694
WM_ TIMER message 590, 694
WM_ UNDO message 594, 695
WM_ USER message 602
WM_ VKEYTOITEM message 590, 695

724

WM_ VSCROLL message 38, 590, 598, 695
WM_ VSCROLLCLIPBOARD message 591, 696
WM_ WININICHANGE message 592, 697
WNDCLASS data structure 292
WriteComm function 142, 576
WritePrivateProfileString function 141,577
WriteProfileString function 141, 578
WS_BORDER window style 209
WS_CAPTION window style 38, 60,209, 664
WS_CHILD window style 36,209, 664
WS_CHILDWINDOW window style 209
WS_CLIPCHILDREN window style 210,664
WS_CLIPSIBLINGS window style 210,664
WS_DISABLED window style 210
WS_DLGFRAME window style 210
WS_EX_DLGMODALFRAME extended

window style 219
WS_EX_NOPARENTNOTIFY extended

window style 219
WS_EX_TOPMOST extended window style 219
WS_GROUP control style 210
WS_HSCROLL window style 210
WS_ICONIC window style 210
WS_MAXIMIZE window style 210
WS_MAXIMIZEBOX window style 210, 664
WS_MINIMIZE window style 210
WS_MINIMIZEBOX window style 210
WS_OVERLAPPED window style 35, 210
WS_OVERLAPPEDWINDOW window style

35,210
WS_POPUP window style 35, 210
WS_POPUPWINDOW window style 210
WS_SYSMENU window style 38, 60,209,211,

664
WS_TABSTOP window style 211
WS_THICKFRAME window style 211,664
WS_ VISIBLE window style 211
WS_ VSCROLL window style 211
wsprintf function 140, 579
wvsprintf function 140, 581, 582

y
Yield function 138, 583

Software development kit

VAV/: N fjgVAV/~ I;\?_
\Y(QJlllUJ/M\I~: 1:1

BORLAND
CORPORATE HEADQUARTERS: 1800 GREEN HILLS ROAD, P.O. BOX 660001, scons VALLEY, CA 95067-0001, (408) 438-5300. OFFICES IN: AUSTRALIA,
DENMARK, FRANCE, GERMANY, ITALY, JAPAN, NEW ZEALAND, SINGAPORE, SWEDEN AND THE UNITED KINGDOM· PART #14MN-API01-l0· BOR 2978

