WINDOWS AP

VOLUME |

REFERENCE GUIDE

BORLAND

Windows APl Guide

Reference

Volume 1

Version 3.0
for the MS-DOS and PC-DOS

Operating Systems

BORLAND INTERNATIONAL, INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001, SCOTTS VALLEY, CA 95067-0001

Copyright 1991, Borland International. All rights reserved.

R1

Copyright © 1991 by Borland International. All rights reserved. All
Borland products are trademarks or registered trademarks of

Borland International, Inc. Other brand and product names are
trademarks or registered trademarks of their respective holders.

PRINTED IN THE USA.
1090876543

Introduction 1
Windows features 1
Window manager interface 2
Window manager interface function
GIOUPS ittt 3
Graphics device interface 3
Graphics device interface function
28 1 0] b o 3
System services interface 4
System services interface function
GIOUPS i, 4
Naming conventions 4
Parameter names 5
Windows calling convention 5
Manual overview 6
Volumel 6
Volume2 ...l 7
Document conventions 8
Other recommended reading 10
Windows functions 10

Part 1 Windows functions

Chapter 1 Window manager interface

functions 13

Message functions 14
Generating and processing messages . 15
Translating messages 16
Examining messages 17
Sending messages 17
Avoiding message deadlocks 18
Window-creation functions 19
Window classes 20
System global classes 20
Application global classes 21

Application local classes 21

How Windows locatesaclass 21
How Windows determines the owner of a
class ... 22
Registering a Window class 22
Shared Window classes 22
Predefined Window classes 22
Elements of a Window class 23
Classnameccoevvnenen.. 24
Window-function address 24
Instancehandle 24
Classcursoroovvieennen... 25
Classiconcoviiivnann.. 25
Class background brush 25
Classmenuc.ccoouuun.. 26
Classstyles 27
Internal data structures 28
Window subclassing 28
Redrawing the clientarea 29
Class and private display contexts 29
Window function 30
Window messages 32
Default window function 33
Window styles 34
Overlapped windows 34
Owned windows 35
Pop-up windows 35
Child windows 35
Multiple document interface windows . 37
Titlebar 38
Systemmenu 38
Scrollbars i, 38
MenusS ..ot ee et e 38
Windowstate 40
Life cycle ofa window 40
Display and movement functions 42

......................

Input functions
Hardware functions
Painting functions
How Windows manages the display ..
Display context types
Common display context
Class display context
Private display context
Window display context
Display-context cache
Painting sequence
WM_PAINT message
Update region
Window background
Brush alignment
Painting rectangular areas
Drawing icons
Drawing formatted text
Drawing gray text
Nonclient-area painting
Dialog box functions
Uses for dialog boxes
Modeless dialog box
Modal dialog box
System-modal dialog box
Creating a dialog box
Dialog box template
Dialog box measurements
Return values from a dialog box
Controls in a dialogbox
Control identifiers
General control styles
Buttons
Edit controls
List boxes and directory listings
Combo boxes
Owner-draw dialog box controls ...
Messages for dialog box controls . ..
Dialog box keyboard interface
Scrolling in dialog boxes
Scrolling functions
Standard scroll bars and scroll-bar
controls i

...............

.............

..........

..................

.....................

...................

.........

...............

.......

...................

Scroll-bar thumb 69
Scrolling requests 70
Processing scroll messages 70
Scrolling the clientarea 71
Hiding a standard scroll bar 71
Menu functionsooo.ln 72
Information functions 73
System functions 73
Clipboard functions 74
Error functions 74
Caret functions 75
Creating and displaying a caret 75
Sharing thecaret 76
Cursor functions 76
Pointing devices and the cursor 77
Displaying and hiding the cursor 77
Positioning the cursor 78
The cursor hotspot and confining the
Lol | 5T 6) S 78
Creating a custom cursor 78
Hook functions 79
Filter-function chain 79
Installing a filter function 80
Property functions 80
Using property lists 81
Rectangle functions 82
Using rectangles in a Windows
application oL 83
Rectangle coordinates 83

Creating and manipulating rectangles . 84

Chapter 2 Graphics device interface

functions 87
Device-context functions 88
Device-context attributes 88
Saving a device context 90
Deleting a device context 90
Compatible device contexts 90
Information contexts 90
Drawing-tool functions 91
Drawing-tooluses 92
Brushes 92
Pensccoviiiiiiii... 93

Colorooovvviiiii 93
Color-palette functions 95
How color paletteswork 96
Using a color palette 98
Drawing-attribute functions 99
Background mode and color 99
Stretchmode 100
Textcolor ...t 100
Mapping functions 100
Constrained mapping modes 102

Partially constrained and unconstrained

mapping modes 102
Partially constrained mapping
modeooiiii, 103
Unconstrained mapping mode 103
Transformation equations 103
Example: MM_TEXT 104
Example: MM_LOENGLISH 105
Coordinate functions 105
Region functions 106
Clipping functions 106
Line-output functions 107
Function coordinates 108
Pen styles, colors, widths 108
Ellipse and polygon functions 109
Function coordinates 109
Bounding rectangles 110
Bitmap functions 110
Bitmaps and devices 111
Device-independent bitmap
functionsl 111
Text functions 112
Font functions 112
Fontfamily 114
Charactercells 115
Altering characters 116
Italic ... 116
Bold ... 116
Underline 116
Strikeoutl 116
Leading 116
Internalleading 117
External leading 117

ifi

Characterset 117
ANSI characterset 118
OEM characterset 118
Symbol characterset 118
Vendor-specific character sets 118

Pitchot 118
Average character width 119
Maximum character width 119
Digitized aspect 119
Overhang 119

Selecting fonts with GDI 120
Font-mapping scheme 120
Example of font selection 123

Font files and font resources 124

Metafile functions 124

Creating a metafile 125

Storing a metafile in memory or on

disk oo 126

Deleting a metafile 127

Changing how Windows plays a

metafile............. ... 127

Printer-control functions 127
Printer-escape function 128

Creating output ona printer 128

Banding output 129

Starting and ending a printjob 130

Terminating a printjob 130

Information escapes 130

Additional escapecalls 131

Environment functions 131

Chapter 3 System services interface

functions 133
Module-management functions 134
Memory-management functions 134
Segment functions 136
Operating-system interrupt functions .. 137
Task functions 138
Resource-management functions 138
String-manipulation functions 139
Atom-management functions 140
Initialization-file functions 141
Communication functions 142

Sound functions 142 CheckRadioButton 170

Utility macros and functions 143 ChildWindowFromPoint 171
FileI/Ofunctions 144 Chordooiiiiiiiiii 171
Debugging functions 144 4ClearCommBreak 172
Optimization-tool functions 145 ClientToScreen 172
Application-execution functions 145 ClipCursorc.ccvvviiiveennnnn, 173
. . 1 lipboard
Chapter 4 Functions directory 147y (glgzzg;ﬁl;ard };2
AccessResource 147 ‘CloseMetaFlle 174
AddAtOmM ..o 148 CloseSound 174
AddFontResource 148 CloseWindow 175
AdjustWindowRect 149 CombineRgn - v+ vvvovnoneni 175
AdjustWindowRectEx 150 CopyMetaFile 176
AllocDStoCSAliasooovvvvt s 150 CopyRect 176
ﬁﬁocRelsource """"""""""" 151 CountClipboardFormats 177
che OCLOT .o 152 CountVoiceNotes e 177
AnimatePalette 152 CreateBitmap 177
ﬁns%liowerB. ' f'f """"""""""" 153 CreateBitmaplndirect 178
Ans?Nower U 153 CreateBrushIndirect 179
AHS}P BXE L }54 CreateCaret0 179
Anshrrecx)/ """""""""""""" 1‘;2 CreateCompatibleBitmap 180
TSLIOMEIN - - v CreateCompatibleDC 181
AnsiToOemBuff 155 CreateCUursor 182
Ans%Up PEL +o o veveeeeeeeeeeeeeeee 155 CreateDC ..., 182
AnsiUpperBuff 156 CreateDialogout 183
QnyPogK}) """"""""""""" 156 Callback function 184
APP en dMenu """"""""""" 156 CreateDialogIndirect 185
Appen B v i57 Callback function 186
TC o ST 59 CreateDialogIndirectParam 187
ArrangelconicWindows 160 CreateDialogParam 188
BeginDeferWindowPos 160 CreateDIBitmap . T 189
geggln Paint ... %61 CreateDIBPatternBrush 190
Blt. tW ‘ d ' T T """""""""" 122 CreateDiscardableBitmap 191
p _Brl.rllg C mn OB’ COB OP +oormenenneenn 4 CreateEllipticRgn 192
ADULALOMMLD oo 164 CreateEllipticRgnIndirect 192
CallMsgFilter, 165 CreateFont 193
gzilcV}\l/mdowProc """""""""" 122 CreateFontIndirect 195
------------------------------ t H t hB h e 196
ChangeClipboardChain 167 enterlatehBrush L6
ChangeMenu 167 Createlcon oonoo 197
ChangeSelector 168 CreateMenu. oo+ oo 198
CheckDlgButtonoonvnn 168 CreateMetaFile 198
CheckMenultem 169 CreatePalette 199

CreatePatternBrush 199

CreatePen.......................... 200
CreatePenIndirect 200
CreatePolygonRgn 201
CreatePolyPolygonRgn 201
CreatePopupMenu 202
CreateRectRgn...................... 203
CreateRectRgnIndirect 203
CreateRoundRectRgn 204
CreateSolidBrush 204
CreateWindow 205
CreateWindowEx 218
DebugBreak 219
DefDlgProcccovviiiiiii, 220
DeferWindowPos 221
DefFrameProc 222
DefHookProc....................... 224
DefineHandleTable 224
DefMDIChildProc................... 225
DefWindowProc 226
DeleteAtomcoeviina... 227
DeleteDCl 227
DeleteMenuvoiuuee... 228
DeleteMetaFile 229
DeleteObject, 229
DestroyCaret 230
DestroyCursorc.ooovvviennn, 230
Destroylcon 230
DestroyMenu....................... 231
DestroyWindow 231
DeviceCapabilities 232
DeviceMode 235
DialogBox oL 235

Callback Function 236
DialogBoxIndirect 237

Callback Function 238
DialogBoxIndirectParam 239
DialogBoxParam 239
DispatchMessage 240
DlgDirListt 241
DlgDirListComboBox 242
DlgDirSelect 244

DlgDirSelectComboBox 244

DOS3Callcoiiiiiii 245
DPtoLP ..o 246
DrawFocusRect 247
Drawlcon 247
DrawMenuBar 248
DrawText, 248
Ellipsecoooviiiiiiiiii e 251
EmptyClipboard 252
EnableHardwarelnput 252
EnableMenultem 253
EnableWindow 254
EndDeferWindowPos 254
EndDialog 255
EndPaint 255
EnumChildWindows 256
Callback function 257
EnumClipboardFormats 257
EnumFonts 258
Callback function 258
EnumMetaFile 260
Callback function 260
EnumObjectscoooiunn, 261
Callback function 262
EnumPropsl 262
Fixed data segments 263
Callback function 263
Moveable data segments 264
Callback function 264
EnumTaskWindows 265
Callback function 265
EnumWindows 266
Callback function 266
EqualRectttt 267
EqualRgn 267
Escape...............oo ool 268
AEscapeCommFunction 269
ExcludeClipRect 269
ExcludeUpdateRgn 270
ExitWindows 271
ExtDeviceMode 271
ExtFloodFill 273
ExtTextOut 274
FatalAppExit 276

FatalExitt 276
FillRect i, 277
FlIRgnoovviiiiiiiii i, 278
FindAtomt 278
FindResource 278
FindWindow 280
FlashWindow 280
FloodFill, 281
oFlushCommc.oois 282
CFPInit 282
FPTerm ..., 283
FrameRect 283
FrameRgn 284
FreeLibrary 284
FreeModule 285
FreeProclnstance 285
FreeResource 285
FreeSelector, 286
GetActiveWindow 286
GetAspectRatioFilter 287
GetAsyncKeyState 287
GetAtomHandle 287
GetAtomNameccovnn.. 288
GetBitmapBits 288
GetBitmapDimension................ 289
GetBkColoro, 289
GetBkMode 289
GetBrushOrg 290
GetBValue 290
GetCaptureoi.L. 290
GetCaretBlinkTime 291
GetCaretPosccovveiiiiin.. 291
GetCharWidth 291
GetClassInfo 292
GetClassLong 293
GetClassNameovvvnnn 294
GetClassWord 294
GetClientRectcouu.. 295
GetClipboardData 295
GetClipboardFormatName 296
GetClipboardOwner 297
GetClipboardViewer 297
GetClipBoxcoooiiiiin, 297

vi

GetCodeHandle 298
GetCodeInfocoviii.. 298
L GetCommError 300
+GetCommEventMask 301
7YGetCommStateoovueenn... 301
GetCurrentPDB 302
GetCurrentPosition 302
GetCurrentTask 302
GetCurrentTime 303
GetCursorPoscccocvvv... 303
GetDC ...t 303
GetDCOrg ...t 304
GetDesktopWindow 304
GetDeviceCaps 305
GetDialogBaseUnits 308
GetDIBitscovviiiiiiiii.. 309
GetDIgCtrlIDt 310
GetDlgltem 310
GetDlgltemInt 311
GetDlgltemText 312
GetDOSEnvironment 312
GetDoubleClickTime 313
GetDriveType 313
GetEnvironment 313
GetFocuscoiiiiiiit. 314
GetFreeSpace 315
GetGValuet 316
GetlnputState 316
GetlnstanceData 316
GetKBCodePage 317
GetKeyboardState 317
GetKeyboardType 318
GetKeyNameText 319
GetKeyStatet 320
GetLastActivePopup 320
GetMapMode 321
GetMenuccviiiiiiininiannnn 321
GetMenuCheckMarkDimensions 321
GetMenultemCount 322
GetMenultemID 322
GetMenuState 322
GetMenuString 323
GetMessage 324

GetMessagePos 326
GetMessageTime 326
GetMetaFile 327
GetMetaFileBits 327
GetModuleFileName 327
GetModuleHandle 328
GetModuleUsage 328
GetNearestColor 329
GetNearestPaletteIndex 329
GetNextDlgGroupltem 329
GetNextDlgTabltem 330
GetNextWindow 330
GetNumTasks 331
GetObject ..o, 331
GetPaletteEntries 332
GetParent 333
GetPixelot 333
GetPolyFillMode 334
GetPriorityClipboardFormat 334
GetPrivateProfilelnt 335
GetPrivateProfileString 336
GetProcAddress 337
GetProfileInt 338
GetProfileString 338
GetProp ...l 340
GetRgnBox 340
GetROP2 ...l 341
GetRValue 341
GetScrollPos ...t 341
GetScrollRangeooit 342
GetStockObject 343
GetStretchBltMode 344
GetSubMenu 345
GetSysColorooovviviiine, 345
GetSysModalWindow 345
GetSystemDirectory 346
GetSystemMenu 346
GetSystemMetricsooooeunnn. 347
GetSystemPaletteEntries 349
GetSystemPaletteUse 349
GetTabbedTextExtent 350
GetTempDrivet 351
GetTempFileName 351

Vii

GetTextAlignt 352
GetTextCharacterExtra 354
GetTextColor 354
GetTextExtent 354
GetTextFace 355
GetTextMetricsccovvvin... 355
GetThresholdEvent 356
GetThresholdStatus 356
GetTickCount 356
GetTopWindow 357
GetUpdateRect 357
GetUpdateRgn 358
GetVersioncoovviinin.. 359
GetViewportExt 359
GetViewportOrg 359
GetWindow 360
GetWindowDC 360
GetWindowExt 361
GetWindowLong 361
GetWindowOrg 362
GetWindowRect 362
GetWindowsDirectory 363
GetWindowTask 363
GetWindowText 364
GetWindowTextLength 364
GetWindowWord 365
GetWinFlags 365
GlobalAddAtom 366
GlobalAlloc, 367
GlobalCompact, 368
GlobalDeleteAtom 369
GlobalDiscard 369
GlobalDosAlloc ... oo 370
GlobalDosFree 370
GlobalFindAtom 371
GlobalFix 371
GlobalFlags 372
GlobalFree 372
GlobalGetAtomName 373
GlobalHandle 373
GlobalLockcoiiiin.t. 374
GlobalLRUNewest 374
GlobalLRUOIdest 375

GlobalNotify0. 375

Callback function 376
GlobalPageLock 376
GlobalPageUnlock 377
GlobalReAlloccvvvevvnivn.... 377
GlobalSize 379
GlobalUnfixcccivviiiiann.. 379
GlobalUnlock 380
GlobalUnWire 381
GlobalWire 381
GrayStringol 382

Callback function 383
HIBYTE, 384
HideCaretc...... 385
HiliteMenultem 385
HIWORDoiiiiiieiiiiin 386
InflateRectccovviivin.... 386
InitAtomTable 387
InSendMessage 387
InsertMenu 388
IntersectClipRect 391
IntersectRect 392
InvalidateRect 392
InvalidateRgn 393
InvertRect 394
InvertRgnot 394
IsCharAlpha 395
IsCharAlphaNumeric................ 395
IsCharLower 395
IsCharUpperooue. 396
IsChildciiiiniiinos. 396
IsClipboardFormatAvailable 396
IsDialogMessage 397
IsDlgButtonChecked 398
Islconicoviiiiiiiiiia... 398
IsRectEmpty 398
IsWindowccoou... 399
IsWindowEnabled 399
IsWindowVisible 399
IsZoomed 400
KillTimerccoiiviiininn... 400
Acdose ..o 401
ereat ... 401

viii

LimitEmsPages 402
LineDDA ... 402

Callback function 403
LineTo ..o, 403
llseek .. ovvii 404
LoadAccelerators 404
LoadBitmap 405
LoadCursorccvvviviinennnn. 406
Loadlconcciviiiia.. 407
LoadLibraryoooott. 408
LoadMenucoovvvrvvnnn... 409
LoadMenulndirect 410
LoadModule 410
LoadResourceccovvvvnn.. 412
LoadStringooon i 412
LOBYTEcoviiiiii i 413
LocalAllocoovivinviiiinannn, 413
LocalCompactoovvvinan, 414
LocalDiscardccvvvvon... 415
LocalFlagscooviunii... 415
LocalFreeccoiiiiiiian.n. 416
LocalHandle 416
Locallnitcoiiiiiunn. 416
LocalLockccoviviien... 417
LocalReAlloccovvvnennn, 417
LocalShrink 419
LocalSizeccoviiviiniun... 420
LocalUnlock 420
LockDatacvvviiinennnnnnn., 420
LockResourceccvvuvunnn. 421
LockSegment 421
dopen ... 422
LOWORDooiiiiiiiiinen, 423
LPtoDP ..o 424
dread ... 424
Istrcat ... 425
Istremp ...l 425
Istrempi 426
Istrepy ..o 426
Istrlen ... 427
dwrite oo 427
MAKEINTATOM ..., 428
MAKEINTRESOURCE 429

MAKEPOINTo... 429
MakeProclnstance 429
MapDialogRect 430
MapVirtualKey 431
0T 5 432
MessageBeep 432
MessageBoxXoiiiiiiii 432
min oo oo i 434
ModifyMenu 435
MoveTocoooiiiiiiil 438
MoveWindow 438
MulDiv ... 439
NetBIOSCall 440
OemKeyScan 440
OemToAnsi 441
OemToAnsiBuff 442
OffsetClipRgn 442
OffsetRect.................. ..ot 443
OffsetRgn 443
OffsetViewportOrg 444
OffsetWindowOrg 444
OpenClipboard 445
#OpenCommccovvininn... 445
OpenFile........................... 446
Openlconcoooviiiiiiii... 449
OpenSound 449
OutputDebugString 449
PaintRgn, 450
PALETTEINDEX 450
PALETTERGB 450
PatBltoiiiill 451
PeekMessage 452
Pie ... 454
PlayMetaFile 455
PlayMetaFileRecord 455
Polygonol 456
Polyline 456
PolyPolygon 457
PostAppMessage 458
PostMessagecooil. 458
PostQuitMessage 459
ProfClear, 459

ProfFinish
ProfFlush
ProfInsChk.........
ProfSampRate
ProfSetup
ProfStart
ProfStop
PtInRect
PtInRegion
PtVisible
ReadComm
RealizePalette
Rectangle
RectInRegion
RectVisible
RegisterClass
Callback function .

RegisterClipboardFormat
RegisterWindowMessage

ReleaseCapture
ReleaseDC
RemoveFontResource
RemoveMenu
RemoveProp
ReplyMessage
ResizePalette
RestoreDC

SaveDC............
ScaleViewportExt ...
ScaleWindowExt
ScreenToClient
ScrollDC
ScrollWindow
SelectClipRgn
SelectObject
SelectPalette
SendDlgltemMessage
SendMessage
SetActiveWindow ...
SetBitmapBits
SetBitmapDimension

SetBkColorcovviiiiiii i, 486

SetBkModecoiviiiiis. 487
SetBrushOrg 487
SetCapturel 488
SetCaretBlinkTime 488
SetCaretPoscvvivineninnnn. 488
SetClassLongcooovnnn, 489
SetClassWord 490
SetClipboardData 491
SetClipboardViewer 493
4 SetCommBreak 494
¥SetCommEventMask 494
+SetCommStateccovvvnn... 495
SetCursor ...t 495
SetCursorPoscovvivevnnnn. 496
SetDIBitsoovvii i 496
SetDIBitsToDevice 498
SetDlgltemInt 499
SetDlgltemText 500
SetDoubleClickTime 500
SetEnvironment 501
SetErrorMode 501
SetFocus . ..ot i 502
SetHandleCount 502
SetKeyboardState 503
SetMapMode 503
SetMapperFlags 505
SetMenuc.ooiiiiiiiiiann.n. 505
SetMenultemBitmaps 506
SetMessageQueue 507
SetMetaFileBits 507
SetPaletteEntries 508
SetParent oo, 508
SetPixel ..., 509
SetPolyFillMode 509
SetProp ...l 510
SetRect ..., 511
SetRectEmpty 511
SetRectRgnoooiii 512
SetResourceHandler 512
Callback function 513
SetROP2 ...t 514
SetScrollPosccovviviin... 515

SetScrollRange 516
SetSoundNoiseooieun.. 516
SetStretchBltMode 517
SetSwapAreaSize 518
SetSysColorscovvviviiin 519
SetSysModalWindow 520
SetSystemPaletteUse 520
SetTextAlign 522
SetTextCharacterExtra 523
SetTextColorccoviienvun.. 523
SetTextJustification 524
SetTimercooiiiiinnnn.. 525
Callback function 526
SetViewportExt 526
SetViewportOrg 527
SetVoiceAccent 528
SetVoiceEnvelope 529
SetVoiceNote 530
SetVoiceQueueSize 531
SetVoiceSound 531
SetVoiceThreshold 532
SetWindowExt 532
SetWindowLong 533
SetWindowOrg 534
SetWindowPos 535
SetWindowsHook 536
WH_CALLWNDPROC 538
WH_GETMESSAGE 539
WH_JOURNALPLAYBACK 540
WH_JOURNALRECORD 541
WH_KEYBOARD 542
WH MSGFILTER 543
WH_SYSMSGFILTER 544
SetWindowText 545
SetWindowWord 545
ShowCaretcoovriiiinnennn. 546
ShoWCUISOT oot ve it e ee e i e 546
ShowOwnedPopups 547
ShowScrollBar 547
ShowWindow 548
SizeofResourcec.covuunn. 549
StartSound 549

StopSoundl 550

StretchBlt 550
StretchDIBits 552
SwapMouseButton 554
SwapRecording 554
SwitchStackBack 555
SwitchStackTo 555
SyncAllVoicesc..... 556
TabbedTextOut 556
TextOutt 557
Throw ool 558
ToAsciiooooiiiiiL 559
TrackPopupMenu 560
TranslateAccelerator 560
TranslateMDISysAccel 562
TranslateMessage 562
ransmitCommChar 563
YUngetCommChar 563
UnhookWindowsHook 564
UnionRectooot. 565
UnlockDataccooouunnn.. 565
UnlockResource 565
UnlockSegment 566
UnrealizeObject 566
UnregisterClass 567
UpdateColorscoovuvnunn 568
UpdateWindow 568
ValidateCodeSegments 568
ValidateFreeSpaces 569
ValidateRect 569
ValidateRgn 570
VkKeyScan.......oovvvvviiiiiiiie, 570
WaitMessage 571
WaitSoundState 572
WindowFromPoint 572
WinExec ... 573
WinHelp ..o 574
WriteComm ...l 576
WritePrivateProfileString 577
WriteProfileString 578
wsprintfo ool 579
wysprintf ... o ool 581
Yield ... 583

xi

Part 2 Windows messages

Chapter 5 Messages overview
Window-management messages
Initialization messages
Input messages
System messages
Clipboard messages
System information messages
Control messages
Button-control messages
Edit-control messages
List-box messages
Combo-box messages
Owner draw-control messages
Notification messages
Button notification codes
Edit-control notification codes
List-box notification codes
Combo-box notification codes
Scroll-bar messages
Nonclient-area messages
Multiple document interface messages .

.................

Chapter 6 Messages directory
BM_GETCHECK
BM_GETSTATE

BM_SETCHECK
BM_SETSTATE
BM_SETSTYLE
BN_CLICKED

BN_DOUBLECLICKED..............
CB_ADDSTRING
CB_DELETESTRING
CB_DIR
CB_FINDSTRING
CB_GETCOUNT

CB_GETCURSEL
CB_GETEDITSEL
CB_GETITEMDATA
CB_GETLBTEXT
CB_GETLBTEXTLEN
CB_INSERTSTRING
CB_LIMITTEXT

CB RESETCONTENT 610
CB_SELECTSTRING 611
CB SETCURSELccvvvun... 611
CB_SETEDITSEL 612
CB_SETITEMDATA 612
CB_SHOWDROPDOWN 612
CBN DBLCLKccoviviun... 613
CBN_DROPDOWNc...... 613
CBN _EDITCHANGE 613
CBN _EDITUPDATE 614
CBN_ERRSPACE 614
CBN_KILLFOCUS 614
CBN SELCHANGE 615
CBN_SETFOCUSccvvn... 615
DM_GETDEFID 615
DM SETDEFIDccovv.... 615
EM CANUNDOo..t. 616
EM_EMPTYUNDOBUFFER 616
EM_FMTLINES..................... 616
EM_GETHANDLE 617
EM GETLINE 617
EM_GETLINECOUNT 617
EM_GETMODIFYcc.... 618
EM_GETRECT 618
EM GETSELcoooa... 618
EM_LIMITTEXTcccovvnn. ... 618
EM_LINEFROMCHAR 619
EM_LINEINDEX 619
EM_LINELENGTH 619
EM_LINESCROLL 620
EM REPLACESEL 620
EM_SETHANDLE 620
EM SETMODIFYccouvn.... 621
EM_SETPASSWORDCHAR 621
EM SETRECTccoiiun... 621
EM_SETRECTNPco... 622
EM SETSEL ..., 622
EM_SETTABSTOPS 622
EM_SETWORDBREAK 623

Callback Function 623
EM UNDOcciviiiin. 624
EN CHANGEcccovvv.. 624
EN ERRSPACE............cccut... 625

xii

EN_HSCROLL 625
EN_KILLFOCUS.................... 625
EN_MAXTEXT 0 ..., 626
EN_SETFOCUS..................... 626
EN UPDATE...............ooool L 626
EN_VSCROLL...............oooet 627
LB_ADDSTRINGc.... .. 627
LB_DELETESTRING 627
IBDIR.....covviiiiii 628
LB_FINDSTRINGoonn. 628
LB_GETCARETINDEX 629
LB_GETCOUNTooee 629
LB_GETCURSELccccovvvunn. 629
LB_GETHORIZONTALEXTENT 630
LB_GETITEMDATA 630
LB_GETITEMHEIGHT 630
LB_GETITEMRECT 631
LB GETSELcoooiiiiia.. 631
LB_GETSELCOUNT 631
LB_GETSELITEMS 631
LB_GETTEXTc..e... 632
LB_GETTEXTLEN 632
LB_GETTOPINDEX 632
LB_INSERTSTRING 633
LB_RESETCONTENT 633
LB_SELECTSTRING 633
LB_SELITEMRANGE 634
LB_SETCARETINDEX 634
LB_SETCOLUMNWIDTH 635
LB_SETCURSEL 635
LB_SETHORIZONTALEXTENT 635
LB_SETITEMDATA 636
LB_SETITEMHEIGHT 636
LB_SETSELooooitt. 636
LB_SETTABSTOPS 637
LB_SETTOPINDEX 637
LBN_DBLCLK 638
LBN_ERRSPACE 638
LBN_KILLFOCUS 638
LBN_SELCHANGE 639
LBN_SETFOCUS 639
WM_ACTIVATE 639
WM_ACTIVATEAPP 640

WM_ASKCBFORMATNAME 640
WM_CANCELMODE 641
WM_CHANGECBCHAIN 641
WM_CHAR ... 641
WM_CHARTOITEM 642
WM_CHILDACTIVATE 643
WM _CLEAR ... 643
WM. CLOSEoiiiiiiinnnn 643
WM_COMMAND 644
WM_COMPACTING 644
WM_COMPAREITEM 645
WM _COPY ...t 645
WM_CREATE 646
WM_CTLCOLORooonnnt 646
WM CUT.........o 647
WM _DEADCHAR 647
WM_DELETEITEM 648
WM_DESTROYcooivinnnt 648
WM_DESTROYCLIPBOARD 649
WM_DEVMODECHANGE 649
WM_DRAWCLIPBOARD 649
WM_DRAWITEM 650
WM _ENABLE 650
WM_ENDSESSION 650
WM_ENTERIDLE 651
WM_ERASEBKGND 651
WM_FONTCHANGE 652
WM_GETDLGCODE 652
WM_GETFONT 653
WM_GETMINMAXINFO 653
WM_GETTEXT ...t 654
WM_GETTEXTLENGTH 654
WM_HSCROLL 655
WM_HSCROLLCLIPBOARD 656
WM_ICONERASEBKGND 656
WM_INITDIALOG ...t 657
WM_INITMENU 657
WM_INITMENUPOPUP 658
WM_KEYDOWN 658
WM KEYUPoooiiiiin, 659
WM_KILLFOCUSoovve 660
WM_LBUTTONDBLCLK 660
WM_LBUTTONDOWN 661

Xiil

WM_LBUTTONUP 661
WM_MBUTTONDBLCLK 662
WM_MBUTTONDOWN 662
WM_MBUTTONUP 663
WM_MDIACTIVATE 663
WM_MDICASCADE 664
WM_MDICREATE 664
WM_MDIDESTROY 665
WM_MDIGETACTIVE 665
WM_MDIICONARRANGE 666
WM_MDIMAXIMIZE 666
WM_MDINEXT 666
WM _MDIRESTORE 667
WM_MDISETMENU 667
WM_MDITILE 667
WM_MEASUREITEM 668
WM_MENUCHAR.................. 668
WM_MENUSELECT 669
WM_MOUSEACTIVATE 669
WM_MOUSEMOVE 670
WM MOVE..................ooi 671
WM_NCACTIVATE 671
WM_NCCALCSIZE 671
WM_NCCREATE 672
WM_NCDESTROY 672
WM_NCHITTEST 672
WM_NCLBUTTONDBLCLK 673
WM_NCLBUTTONDOWN 674
WM_NCLBUTTONUP 674
WM_NCMBUTTONDBLCLK 674
WM_NCMBUTTONDOWN 675
WM_NCMBUTTONUP 675
WM_NCMOUSEMOVE 675
WM_NCPAINTooet 676
WM_NCRBUTTONDBLCLK 676
WM_NCRBUTTONDOWN 676
WM_NCRBUTTONUP 677
WM_NEXTDLGCTL 677
WM _PAINT ..., 677
WM_PAINTCLIPBOARD 678
WM_PAINTICONcoo0 678
WM_PALETTECHANGED 679
WM_PARENTNOTIFY 679

WMUPASTE........oooviiit 680
WM_QUERYDRAGICON 680
WM_QUERYENDSESSION 681
WM_QUERYNEWPALETTE 681
WM_QUERYOPEN 681
WM QUIT ... 682
WM_RBUTTONDBLCLK 682
WM_RBUTTONDOWN 682
WM_RBUTTONUP 683
WM_RENDERALLFORMATS 683
WM_RENDERFORMAT 684
WM_SETCURSORcvvt 684
WM_SETFOCUS ... 684
WM SETFONT ...t 685
WM_SETREDRAW 685
WM_SETTEXTcoivinitn 686
WM_SHOWWINDOW 686

xiv

WMSIZE ... i 687
WM_SIZECLIPBOARD 687
WM_SPOOLERSTATUS 688
WM_SYSCHARccoun.n. 688
WM_SYSCOLORCHANGE 689
WM_SYSCOMMAND 690
WM _SYSDEADCHAR 691
WM_SYSKEYDOWN 691
WM_SYSKEYUPccovivvnnn 693
WM_TIMECHANGE 694
WM_TIMERccooiiiinn.. 694
WM. UNDOcciiiiiiiieinnn. 695
WM_VKEYTOITEM 695
WM VSCROLLcoovviivianen 695
WM_VSCROLLCLIPBOARD 696
WM_WININICHANGE 697
Index 699

0.1: Standard prefixes 5
0.2: Document conventions 8
0.3: Windows APl guide 9
1.1: Window class elements 23
1.2: Window class styles 27
1.3: Default actions for messages 33
1.4: Defaults for a display context 46
1.5: Drawing format styles 54
1.6: Control characters and actions 55
1.7: Dialog box controls 65
1.8: Dialog box keyboard interface 67
2.1: Default device-context attributes and
related GDI functions 89
2.2: Font-mapping characteristics 121
4.1: Raster operations 163
4.2: Control classes 207
4.3: Windowstyles 209

XV

4.4: Controlstyles 211
4.5: Extended window styles 219
4.6: DOS file attributes 242
4.7: DrawText formats 250
4.8: Communications error codes 300
4.9: GDI information indexes 305
4.10: System metric indexes 348
4.11: Message box types 433
4.12: Raster operations 452
4.13: Predefined data formats 492
414:Eventvalues 494
415: Mappingmodes 504
416: Drawing modes 514
4.17: System color indexes 519
418: Window states 548
6.1:Buttonstyles 604
6.2: Hit-testcodes 673

1.1: Caretshapes 76
1.2:Property list 81
1.3: Rectangle limits 84
1.4: Intersection of two rectangles 85
1.5: Union of two rectangles 85

2.1: Information flow to an output device .88

2.2: Hatched brush patterns 92
23:Penpatterns 93
2.4: Palette manager color-mapping
algorithm 97
2.5: Mapping with MM_TEXT 104

2.6: Mapping with MM_LOENGLISH . . .105

XVvi

2.7: Arc and its bounding rectangle 108
2.8: Styled-Pen and Solid-Pen

Rectanglescoovvinnnn 109
2.9: Fonts from two typefaces 113
210: Cross-strokeand stem 114
211:Serifs ...l 114
2.12: Character-cell dimensions 115
213: Strikeout characters 116
214: Internalleading 117
2.15: External leading 117
216: AGDIfonttable 120
2.17: Sample font selection ratings 123

This manual describes the application programming interface
(API) of the Microsoft® Windows™ presentation manager. The
API contains the functions, messages, data structures, data types,
statements, and files that application developers use to create
programs that run with Windows.

The API can be thought of as a set of tools which, when properly
used, creates a Windows application that is portable across a
variety of computers.

Windows features

Infroduction

A Windows application can take advantage of a number of
features provided by the API These features include the
following:

o Shared display, memory, keyboard, mouse, and system timer
@ Data interchange with other applications

o Device-independent graphics

o Multitasking

o Dynamic linking

Windows allows applications, running simultaneously on the
system, to share hardware resources; application developers do
not need to write specific code to accomplish this complex task.

The clipboard, another Windows feature, acts as a place for data
interchange between applications. The information sent between
applications can be in the form of text, bitmaps, or graphic
operations. Windows provides a number of functions and
messages that regulate the transmission of information with the
clipboard. These functions and the corresponding messages are
part of the window manager interface, one of several libraries in
the APL

Window manager
interface

Windows contains functions that an application can use for
device-independent graphic operations. These functions create
output that is compatible with raster displays and printers of
varying resolution, as well as with a number of vector devices
(plotters). These functions are part of the graphics device interface
(GDI), the second of the API libraries.

Windows provides multitasking, which means that several
applications can run simultaneously. The functions that affect
multitasking and memory management in general are part of the
system services interface, the third API library.

Because of the memory limitations imposed by DOS, it is
important to keep applications as compact as possible. Windows
accomplishes this compaction through dynamic linking and the
use of discardable code, which allows an application to load and
execute a subset of the library of functions at run time. Only a
single copy of a library is necessary, no matter how many
applications access it.

The window manager interface contains the functions that create,
move, and alter a window, the most basic element in a Windows
application. A window is a rectangular region that contains
graphic representations of user input, input options, and system
output.

Windows is a menu-driven environment; menus are the principal
means of presenting options to a user from within an application.
The functions that create menus, alter their contents, and obtain
the status of menu items are also part of the window manager
interface.

The window manager interface also contains functions that create
system output. An example of this output is the dialog box that
applications use to request user input and to display information.

The window manager interface also contains messages and the
functions that process them. A message is a special data structure
that contains information about changes within an application.
These changes include keyboard, mouse, and timer events, as well
as requests for information or actions that an application should
carry out.

Software development kit

Window manager
interface function

groups

Graphics device

intferface

Graphics device
interface function

Infroduction

groups

The following list describes the function groups found in the
window manager interface:

o Message functions

o Information functions

0 Window-creation functions
o System functjons

o Display and movement functions
o Clipboard functions

a Error functions

o Input functions

o Caret functions

o Hardware functions

o Cursor functions

o Painting functions

o Hook functions

o Dialog functions

o Property functions

o Scrolling functions

o Rectangle functions

o Menu functions

The graphics device interface (GDI) contains the functions that
perform device-independent graphic operations within a
Windows application. These functions create a wide variety of
line, text, and bitmap output on a number of different output
devices. GDI allows an application to create pens, brushes, fonts,
and bitmaps for specific output operations.

The following list describes the function groups found in GDI:

o Device-context functions

o Ellipse and polygon functions
o Drawing-tool functions

o Bitmap functions

o Drawing-attribute functions
o Text functions

o Mapping functions

o Font functions

o Coordinate functions

m Metafile functions

m Region functions

w Printer-escape functions
m Clipping functions

m Environment functions
m Line-output functions

m System functions

System services interface

System services
intferface function
groups

Naming
conventions

The system services interface contains the functions that access
code and data in modules, allocate and manage memory (both
local and global), manage tasks, load program resources, translate
strings from one character set to another, alter the Windows
initialization file, assist in system debugging, carry out
communications through the system’s I/O ports, create and open
files, and create sounds using the system’s sound generator.

The following list describes the function groups found in the
system services interface:

m Module-management functions
m Initialization-file functions

m Memory-management functions
® Communication functions

m Task functions

@ Sound functions

m Resource-management functions
m Utility functions

B String-translation functions

m File I/O functions

m Atom-management functions

a System functions

Many Windows functions have been named with a verb-noun
model to help you remember and become familiar with the
function. The function name indicates both what the function
does (verb) and the target of its action (noun). All function names
begin with an uppercase letter. If the name is composed of several
words, each word begins with an uppercase letter and all words

Software development kit

Parameter names

Table 0.1
Standard prefixes

Windows calling
convention

Introduction

are adjoined (no spaces or underscore characters separate the
words). Some examples of function names are shown below:

o CreateWindow
o RegisterClass
o SetMapMode

Most parameters and local variables have a lowercase prefix that
indicates the general type of the parameter, followed by one or
more words that describe the content of the parameter. The
standard prefixes used in parameter and variable names are
defined below:

Prefix Meaning

b Boolean (a nonzero value means true, zero means false)

c Character (a one-byte value)

dw Long (32-bit) unsigned integer

f Bit flags packed into a 16-bit integer

h 16-bit handle

l Long (32-bit) integer

Ip Long (32-bit) pointer

n Short (16-bit) integer

P Short (16-bit) pointer

pt x- and y-coordinates packed into an unsigned 32-bit
integer

rgb RGB color value packed into a 32-bit integer

w Short (16-bit) unsigned integer

If no lowercase prefix is given, the parameter is a short integer
whose name is descriptive.

Some examples of parameter and variable names are shown as
follows:

blconic IpString
ptXYy X
fAction nBytes
rgbColor Width
hWnd pMsg
Height Y

Windows uses the same calling convention used by Microsoft
Pascal. Throughout this manual, this calling convention will be
referred to as the Pascal calling convention. The Pascal calling
convention entails the following:

Manual overview

Volume 1

m Parameters are pushed onto the stack in the order in which they
appear in the function call.

m The code that restores the stack is part of the called function
(rather than the calling function).

This convention differs from the calling convention used in other
languages, such as C. In C, parameters are pushed onto the stack
in reverse order, and the calling function is responsible for
restoring the stack.

When developing Windows applications in a language that does
not ordinarily use the Pascal calling convention, such as C, you
must ensure that the Pascal calling convention is used for any
function that is called by Windows. In C, this requires the use of
the PASCAL key word when the function is declared.

This manual gives the Windows-application developer general as
well as detailed information about Windows functions, messages,
data types, resource-compiler statements, assembly-language
macros, and file formats. It does not attempt to explain how to
create a Windows application. Rather, this manual provides
detailed descriptions of each component of the Windows API for
readers who already have a basic understanding of Windows
programming.

This manual is divided into two volumes. The following sections
describe the purpose and contents of each volume.

Volume 1 contains reference information describing the Windows
functions and messages. It is made up of six chapters:

Chapter 1, "Window manager interface functions," categorizes
window-manager functions into their related groups and briefly
describes individual functions. This chapter also supplies
additional information about particular function groups,
including definitions of new terms and descriptions of models
that are unique to Windows. This chapter is designed to assist the
application developer who is new to Windows or who has
questions about a particular group of Windows functions.

Chapter 2, "Graphics device interface functions," categorizes the
functions that perform device-independent graphics operations in
the Windows environment, provides brief descriptions of the

Software development kit

Infroduction

Volume 2

functions, and explains the most important features of the
Windows graphics interface.

Chapter 3, "System services interface functions," categorizes the
various utility functions that perform services not directly related
to managing a window or producing graphical output.

Chapter 4, "Functions directory," contains an alphabetical list of
Windows functions. The documentation for each function gives
the syntax, states the function’s purpose, lists its input parameters,
and describes its return value. For some functions, additional
information the developer needs in order to use those functions is
given.

Chapter 5, "Messages overview," categorizes messages into their
related groups and briefly describes individual messages. This
chapter also supplies additional information about particular
message groups, including definitions of new terms and
descriptions of models that are unique to Windows. This chapter
is designed to assist the application developer who is new to
Windows or who has questions about a particular group of
Windows messages.

Chapter 6, "Messages directory," contains an alphabetical list of
Windows messages. The documentation for each message states
the message’s purpose, lists its input parameters, and describes its
return value (if one exists). For some messages, additional
information the developer needs in order to use those messages is
given.

Volume 2 contains reference material for other components of the
Windows APIL. It contains nine chapters and three appendixes:

Chapter 7, "Data types and structures," contains a table of data
types and an alphabetical list of structures found in Windows.

Chapter 8, "Resource script statements," describes the
statements that define resources which the Resource Compiler
adds to an application’s executable file. The statements are
arranged according to functional groups.

Chapter 9, "File formats," describes the formats of five types of
files: bitmap files, icon resource files, cursor resource files,
clipboard files, and metafiles. Each description gives the general
file structure and information about specific parts of the file.

Document conventions

Table 0.2
Document conventions

Chapter 10, "Module-definition statements," describes the
statements contained in the module-definition file that defines the
application’s contents and system requirements for the LINK
program.

Chapter 11, "Binary and ternary raster-operation codes,"
describes the raster operations used for line output and those
used for bitmap output.

Chapter 12, "Printer escapes," lists the printer escapes that are
available in Windows.

Chapter 13, "Windows DDE protocol definition," contains an
alphabetical listing and description of the Windows messages
which comprise the Windows Dynamic Data Exchange protocol.

Appendix A, "Virtual-key codes," lists the symbolic names and
hexadecimal values of Windows virtual-key codes and includes a
brief description of each key.

Appendix B, "RC diagnostic messages," contains a listing of
Resource Compiler error messages and provides a brief
description of each message.

Throughout this manual, the term "DOS" refers to both MS-DOS®
and PC-DOS, except when noting features that are unique to one
or the other.

The following document conventions are used throughout this
manual:

Convention Description of Convention

Bold text Bold letters indicate a specific term or
punctuation mark intended to be used
literally: language key words or functions
(such as EXETYPE or CreateWindow), DOS
commands, and command-line options (such
as /Zi). You must type these terms and
punctuation marks exactly as shown.
However, the use of uppercase or lowercase
letters is not always significant. For instance,
you can invoke the linker by typing either
LINK, link, or Link at the DOS prompt.

O In syntax statements, parentheses enclose one
or more parameters that you pass to a
function.

Italic text Words in italics indicate a placeholder; you are

expected to provide the actual value. For
example, the following syntax for the

Software development kit

Table 0.2: Document conventions (continued)

Monospaced type

(rn

{}

SMALL CAPITAL LETTERS

3.0

SetCursorPos function indicates that you
must substitute values for the X and Y
coordinates, separated by a comma:
SetCursorPos(X, Y)

Code examples are displayed in a
nonproportional typeface.

Vertical ellipses in program examples
indicate that a portion of the program is
omitted.

Ellipses following an item indicate that more
items having the same form may appear. In
the following example, the horizontal ellipses
indicate that you can specify more than one
breakaddress for the g command:

g [[=startaddress]] [[breakaddress]]...

Double brackets enclose optional fields or
parameters in command lines and syntax
statements. In the following example, option
and executable-file are optional parameters of
the RC command:

RC [[option]] filename [[executable-file]]

A vertical bar indicates that you may enter
one of the entries shown on either side of the
bar. The following command-line syntax
illustrates the use of a vertical bar:

DB [laddress | rangell

The bar indicates that following the Dump
Bytes command (DB), you can specify either
an address or a range.

Quotation marks set off terms defined in the
text.

Curly braces indicate that you must specify
one of the enclosed items.

Small capital letters indicate the names of keys
and key sequences, such as:

ALT + SPACEBAR

A Microsoft Windows version number
indicates that a function, message, or data
structure is compatible only with the specified
version and later versions.

Table 0.3 -
Windows APl guide Title

Contents

Reference

Is a comprehensive guide to all the details of the
Microsoft Windows application program
interface (API). The Reference lists in alphabetical
order all the current functions, messages, and
data structures of the API, and provides
extensive overviews on how to use the API

Intfroduction

The Windows API guide will answer many of your programming
questions. This book provides information on each Windows
application programming interface (API) and describes its calls
and services.

Other recommended reading

The following books are recommended for efficient Windows
programming;:

Programming Windows. Charles Petzold. 862 pages, softcover. An
updated second edition will be available in October 1990.

Windows: Programmer’s Problem Solver. Richard Wilton. 400 pages,
softcover. Available November 1990.

Microsoft C Run-Time Library Reference. Covers version 6. Microsoft
Corporation. 852 pages, softcover.

Software development kit

Windows functions

Part 1 describes the functions that are the core of the Windows
application programmer interface (API). You use these functions
as part of a C- or assembly-language program to create an
application that takes advantage of Windows’ user-interface,
graphics and multitasking capabilities.

12

Software development kit

Window manager inferface functions

This chapter describes the Microsoft Windows functions that
process messages, create, move, or alter a window, or create
system output. These functions constitute the window manager
interface. This chapter describes the following topics:

o Message functions

a Window-creation functions
a Display and movement functions
o Input functions

a Hardware functions

o Painting functions

o Dialog box functions

o Scrolling functions

o Menu functions

o Information functions

o System functions

o Clipboard functions

o Error functions

o Caret functions

o Cursor functions

o Hook functions

o Property functions

o Rectangle functions

Chapter 1, Window manager interface functions 13

Message functions

Message functions read and process Windows messages in an
application’s queue. Messages represent a variety of input to a
Windows application. A message is a data structure that contains
a message identifier and message parameters. The content of the
parameters varies with the message type. The following list
briefly describes each function:

Function

Description

CallWindowProc
DispatchMessage
GetMessage
GetMessagePos
GetMessageTime

InSendMessage

PeekMessage
PostAppMessage
PostMessage
PostQuitMessage
ReplyMessage
SendMessage
SetMessageQueue
TranslateAccelerator

TranslateMDISysAccel

TranslateMessage

WaitMessage
WinMain

Passes message information to the specified
function. _

Passes a message to a window function of
the specified window.

Retrieves a message from the specified
range of messages.

Returns the position of the mouse at the
time the last message was retrieved.
Returns the time at which the last message
was retrieved.

Determines whether the current window
function is processing a message passed to
it through a call to the SendMessage
function.

Checks the application queue and places
the message appropriately.

Posts a message to the application.

Places a message in the application queue.
Posts a WM_QUIT message to the
application.

Replies to a message.

Sends a message to a window or windows.
Creates a new message queue of a different
size.

Processes keyboard accelerators for menu
commands.

Processes multiple document interface
(MDI) child window command
accelerators.

Translates virtual key-stroke messages into
character messages.

Yields control to other applications.

Serves as an entry point for execution of a
Windows application.

14

Software development kit

Generating and

processing Windows generates a message at each input event, such as when
messages the user moves the mouse or presses a keyboard key. Windows

collects these input messages in a system-wide queue and then
places these messages, as well as timer and paint messages, in an
application’s queue. The application queues are first-in/first-out
queues that belong to individual applications; however, timer and
paint messages are held in the queue until the application has
processed all other messages. Windows places messages that
belong to a specific application in that application’s queue. The
application then reads the messages by using the GetMessage
function and dispatches them to the appropriate window function
by using the DispatchMessage function.

Windows sends some messages directly to an application’s
window function, without placing them in the application queue.
Such messages are called unqueued messages. In general, an
unqueued message is any message that affects the window only.
The SendMessage function sends messages directly to a window.

For example, the CreateWindow function directs Windows to
send a WM_CREATE message to the window function of the
application and to wait until the message has been processed by
the window function. Windows sends this message directly to the
function and does not place it in the application queue.

Although most messages are generated by Windows, applications
can create their own messages and place them in the application
queues of other applications.

An application can pull messages from its queue by using the
GetMessage function. This function searches the application
queue for messages and, if a message exists, returns the top
message in the application queue. If the application queue is
empty, GetMessage waits for a message to be placed in the queue.
While waiting, GetMessage relinquishes control to Windows,
allowing other applications to take control and process their own
messages.

Once a main function has a message from a queue, it can dispatch
the message to a window function by using the DispatchMessage
function. This function directs Windows to call the window
function of the window associated with the message, and then
passes the content of the message as function arguments. The

Chapter 1, Window manager interface functions 15

Translating
messages

window function can then process the message and carry out any
requested changes to the window. When the window function
returns, Windows returns control to the main function. The main
function can then pull the next message from the queue.

Unless noted otherwise, Windows can send messages in any
sequence. An application should not rely on receiving messages
in a particular order.

Windows generates a virtual-key message each time the user
presses a keyboard key. The virtual-key message contains a
virtual-key code that defines which key was pressed, but does not
define the character value of that key. To retrieve the character
value, the main function must translate the virtual-key message
by using the TranslateMessage function. This function puts
another message with an appropriate character value in the
application queue. The message can then be dispatched to a
window function.

In general, a main function should use the TranslateMessage
function to translate every message, not just virtual-key messages.
Although TranslateMessage has no effect on other types of
messages, it guarantees that any keyboard input is translated
correctly.

The following program fragment illustrates the typical loop that a
main function uses to pull messages from the queues and
dispatch them to window functions:

int PASCAL WinMain(hInstance, hPrevInstance, lpCmdLine, nShowCmd)
HANDLE hInstance;
HANDLE hPrevInstance;
LPSTR lpCmdLine;
int nShowCmd;
{
MSG msg;

while (GetMessage ((LPMSG)é&msg, NULL, 0, 0)
{
TranslateMessage ((LPMSG) &msg) ;
DispatchMessage ({LPMSG) &msg) ;
}

exit (msg.wParam);

Software development kit

Applications that use accelerator keys must load an accelerator
table from the resource file by using the LoadAccelerator
function, and then translate

keyboard messages into accelerator-key messages by using the
Translate-Accelerator function. The main loop for applications
that use accelerator keys should have the following form:

while (GetMessage ((LPMSG)&msg, (HWND)NULL, 0, 0)

{
if (TranslateAccelerator (hWindow, hAccel, ((LPMSG)é&msg) == 0)

{
TranslateMessage ((LPMSG) &msg) ;
DispatchMessage ((LPMSG) &msg) ;
}
}

exit (msg.wParam);

The TranslateAccelerator function must appear before the
standard TranslateMessage and DispatchMessage functions.
Furthermore, since TranslateAccelerator automatically dispatches
the accelerator message to the appropriate window function, the
TranslateMessage and DispatchMessage functions should not be
called if TranslateAccelerator returns a nonzero value.

Examining

MEeSsSAgEes An application can use the PeekMessage function when it checks
the queues for messages but does not want to pull the message
from the queue. The function returns a nonzero value if a message
is in the queue, and lets the application retrieve the message and
process it without going through the application’s main loop.

Typically, an application uses PeekMessage to check periodically
for messages when the application is carrying out a lengthy
operation, such as processing input and output. For example, this
function can be used to check for messages that terminate the
operation. PeekMessage also gives the application a chance to
yield control if no messages are present because PeekMessage
can yield if no messages are in the queue.

Sending

messages The SendMessage and PostMessage functions let applications
pass messages to their windows or to the windows of other
applications.

Chapter 1, Window manager interface functions 17

18

Avoiding
message
deadlocks

The PostMessage function directs Windows to post the message
by placing it in the application queue. Control returns
immediately to the calling application, and any action to be
carried out as a result of the message does not occur until the
message is read from the queue.

The SendMessage function directs Windows to send a message
directly to the given window function, bypassing the application
queue. Windows does not return control to the calling application
until the window function that receives the message processes the
message.

When an application transmits a message, it must send the
message by calling SendMessage if the application relies on the
return value of a message. The return value of SendMessage is
the same as the return value of the function that processed the
message. PostMessage returns immediately after sending the
message, so its return value is only a Boolean value indicating
whether the message was successfully sent and so does not
indicate how the message was processed.

Windows communicates with applications through window
messages. The messages are passed (sent or posted) to an
application’s window function to let the function process the
messages as desired. Although an application’s main function
may read and dispatch window messages, in most cases only the
window function processes them.

An application can create a deadlock condition in Windows if it
yields control while processing a message sent from another
application (or by Windows on behalf of another application) by
means of the SendMessage function. The application does not
have to yield explicitly. Calling any one of the following functions
can result in the application yielding control:

m DialogBox

m DialogBoxIndirect

m DialogBoxIndirectParam
m DialogBoxParam

m GetMessage

m MessageBox

m PeekMessage

m Yield

Software development kit

Normally a task that calls SendMessage to send a message to
another task will not continue executing until the window
procedure that receives the message returns. However, if a task
that receives the message yields control, Windows can be placed
in a deadlock situation where the sending task needs to execute
and process messages but cannot because it is waiting for
SendMessage to return.

A window function can determine whether a message it receives
was sent by SendMessage by calling the InSendMessage
function. Before calling any of the functions listed above while
processing a message, the window function should first call
InSendMessage. If InSendMessage returns TRUE, the window
function must call the ReplyMessage function before calling any
function that yields control.

As an alternative, can use a system modal dialog box or message
box. Because system modal windows prevent other windows
from receiving input focus or messages, an application should use
system modal windows only when necessary.

Window-creation functions

Window-creation functions create, destroy, modify, and obtain
information about windows. The following list briefly describes
each window-creation function:

Function Description

AdjustWindowRect Computes the size of a window to fit a
given client area.

AdjustWindowRectEx Computes the size of a window with
extended style to fit a given client area.

CreateWindow Creates overlapped, pop-up, and child
windows.

CreateWindowEx Creates overlapped, pop-up, and child
windows with extended styles.

DefDIgProc Provides default processing for those

dialog-box messages that an application
does not process.

DefFrameProc Provides default processing for those
multiple document interface (MDI) frame
window messages that an application does
not process.

DefMDIChildProc Provides default processing those for MDI
child window messages an that application
does not process.

Chapter 1, Window manager interface functions 19

20

Window classes

DefWindowProc
DestroyWindow
GetClassinfo
GetClassLong

GetClassName
GetClassWord

GetlLastActivePopup

GetWindowLong
GetWindowWord
RegisterClass
SetClassLong

SetClassWord
SetWindowl.ong

SetWindowWord
UnregisterClass

Provides default processing for those
window messages that an DefWindowProc
function

Destroys a window.

Retrieves information about a specified
class.

Retrieves window-class information from a
WNDCLASS structure.

Retrieves a window-class name.

Retrieves window-class information from a
WNDCLASS structure.

Determines which popup window owned
by another window was most recently
active.

Retrieves information about a window.
Retrieves information about a window.
Registers a window class.

Replaces information in a WNDCLASS
structure.

Replaces information in a WNDCLASS
structure.

Changes a window attribute.

Changes a window attribute.

Removes a window class from the
window-class table.

A window class is a set of attributes that defines how a window
looks and behaves. Before an application can create and use a
window, it must define and register a window class for that
window. An application registers a class by passing values for
each element of the class to the RegisterClass function. Any
number of window classes can be registered. Once a class has
been registered, Windows lets the application create any number
of windows belonging to that class. The registered class remains
available until it is deleted or the application terminates.

Although the complete window class consists of many elements,
Windows requires only that an application supply a class name,
an address to the window procedure that will process all
messages sent to windows belonging to this class, and an instance
handle that identifies the application that registered the class. The
other elements of the window class define default attributes for
windows of the class, such as the shape of the cursor and the
content of the menu for the window.

There are three types of window classes. They differ in scope and
in when they are created and destroyed.

Software development kit

System global classes

Application global
classes

Application local
classes

How Windows
locates a class

Windows creates system global classes when it starts. These
classes are available for use by all applications at all times.
Because Windows creates system global classes on behalf of all
applications, an application cannot create or destroy any of these
classes. Examples of system global classes include edit-control
and list-box control classes.

An application or (more likely) a library creates an application
global class by specifying the C5_GLOBALCLASS style for the
class. Once created, it is globally available to all applications
within the system. Most often, a library creates an application
global class so that applications which call the library can use the
class. Windows destroys an application global class when the
application or library that created it terminates. For this reason, it
is essential that all applications destroy all windows using that
class before the library or application that created the class
terminates.

An application local class is any window class created by an
application for its exclusive use. This is the most common type of
class created by an application.

When an application creates a window with a specified class,
Windows uses the following algorithm to find the class:

1. Windows searches for a local class of the specified name.

2. If Windows does not find a local class with the name, then it
searches the application global class list.

3. If Windows does not find the name in the application global
class list, then it searches the system global class list.

This procedure is used for all windows created by the application,
including windows created on the application’s behalf, such as
dialog controls. It is possible, then, to override system global
classes without affecting other applications.

Chapter 1, Window manager interface functions 21

How Windows
determines the
owner of a class

Registering @
Window class

Shared Window
classes

See "Application global

classes," on page 21 for more

22

information.

Predefined
Window classes

Windows determines class ownership from the hinstance field of
the WNDCLASS structure passed to the RegisterClass function
when the application or library registers the class. For Windows
libraries, this must be the instance handle of the library. When the
application that registered the class terminates or the library that
registered the class is unloaded, the class is destroyed. For this
reason, all windows using the class must be destroyed before the
application or library terminates.

When Windows registers a window class, it copies the attributes
into its own memory area. Windows uses the internally stored
attributes when an application refers to the window class by
name; it is not necessary for the application that originally
registered the class to keep the structure available.

Applications must not share registered classes with other
applications. Some information in a window class, such as the
address of the window function, is specific to a given application
and cannot be used by other applications. However, applications
can share an application global class.

Although applications must not share registered classes, different
instances of the same application can share a registered class.
Once a window class has been registered by an application, it is
available to all subsequent instances of that application. This
means that new instances of an application do not need to, and
should not, register window classes that have been registered by
previous instances.

Windows provides several predefined window classes. These
classes define special control windows that carry out common
input tasks that let the user input text, direct scrolling, and select
from a list of names. The predefined window classes are available
to all applications and can be used any number of times to create
any number of these control windows.

Software development kit

Elements of a

Window Class The elements of the window class define the default behavior of
the windows created from that class. The application that
registers the window class assigns elements to the class by setting
appropriate fields in a WNDCLASS data structure and passing the
structure to the RegisterClass function. An application can
retrieve information about a given window class with the

GetClassInfo function.

Table 1.1 shows the window class elements.

Table 1.1

Window class elements ~ Element

Purpose

Class name

Window-function address

Instance handle
Class cursor

Class icon

Class background brush

Class menu

Class styles

Class extra

Window extra

Distinguishes the class from other
registered classes.

Points to the function that processes all
messages that are sent to windows in the
class, and defines the behavior of the
window.

Identifies the application that registered the
class.

Defines the shape of the cursor when the
cursor is in a window of the class.

Defines the shape of the icon Windows
displays when a window belonging to the
class is closed.

Defines the color and pattern Windows
uses to fill the client area when the window
is opened or painted.

Specifies the default menu used for any
window in the class that does not explicitly
define a menu.

Defines how to update the window after
moving or resizing, how to process
double-clicks of the mouse, how to allocate
space for the display context, and other
aspects of the window.

Specifies the amount of memory (in bytes)
that Windows should reserve at the end of
the class data structure.

Specifies the amount of memory (in bytes)
that Windows should reserve at the end of
any window structure an application
creates with this class.

Chapter 1, Window manager interface functions

23

24

Class name

Window-function
address

See Chapter 10, "Module-
definition statements," in
Reference, Volume 2, for
more information on
exporting functions. For
details about the window
function, see page 30.

Instance handle

The following sections describe the elements of a window class
and explain the default values for these elements if no explicit
value is given when the class is registered.

Every window class needs a class name. The class name
distinguishes one class from another. An application assigns a
class name to the class by setting the IpszClassName field of the
WNDCLASS structure to the address of a null-terminated string
that contains the name.

In the case of an application global class, the class name must be
unique to distinguish it from other application global classes. If an
application registers another application global class with the
name of an existing application global class, the RegisterClass
function returns FALSE, indicating failure. A conventional
method for ensuring this uniqueness is to include the application
name in the name of the application global class.

The class name must be unique among all the classes registered
by an application. An application cannot register an application
local class and an application global class with the same class
name.

Every class needs a window-function address. The address
defines the entry point of the window function that is used to
process all messages for windows in the class. Windows passes
messages to the function when it wants the window to carry out
tasks, such as painting its client area or responding to input from
the user. An application assigns a window function address by
copying the address to the IpfnWndProc field of the WNDCLASS
structure. The window function must be exported in the module-
definition (.DEF) file.

Every window class needs an instance handle to identify the
application that registered the class. As a multitasking system,
Windows lets several applications run at the same time, so it
needs instance handles to keep track of all applications. Windows
assigns a unique handle to each copy of a running application.

Windows passes an instance handle to an application when the
application first begins operation. The application assigns this
instance handle to the class by copying it to the hinstance field of
the WNDCLASS structure.

Software development kit

Class cursor

Class icon

Class background
brush

The class cursor defines the shape of the cursor when the cursor is
in the client area of a window in the class. Windows automatically
sets the cursor to the given shape as soon as the cursor enters the
window’s client area, and ensures that the cursor keeps that shape
while it remains in the client area. To assign a cursor shape to a
window class, an application typically loads the shape from the
application’s resources by using the LoadCursor function, and
then assigns the returned cursor handle to the hCursor field of the
WNDCLASS structure.

Windows does not require a class cursor. If a class cursor is not
defined, Windows assumes that the window will set the cursor
shape each time the cursor moves into the window.

The class icon defines the shape of the icon used when the
window of the given class is minimized. To assign an icon to a
window class, an application typically loads the icon from the
application’s resources by using the Loadlcon function, and then
assigns the returned icon handle to the hicon field of the
WNDCLASS structure.

Windows does not require a class icon. If a class icon is not
defined, Windows assumes the application will draw the icon
whenever the window is minimized. In this case, Windows sends
appropriate messages to the window procedure, requesting that
the icon be painted.

A class background brush is the brush used to prepare the client
area of a window for subsequent drawing by the application.
Windows uses the brush to fill the client area with a solid color or
pattern, thereby removing all previous images from that location
whether they belonged to the window or not.

To assign a background brush to a class, an application typically
creates a brush by using the appropriate functions from GDI, and
then assigns the returned brush handle to the hbrBackground
field of the WNDCLASS structure.

Instead of creating a brush, an application can use a standard
system color by setting the field to one of the following color
values:

o COLOR_ACTIVECAPTION
o COLOR_APPWORKSPACE

Chapter 1, Window manager interface functions 25

26

Class menu

m COLOR_BACKGROUND

s COLOR_BTNFACE

m COLOR_BTNSHADOW

m COLOR_BTNTEXT

1 COLOR_CAPTIONTEXT

s COLOR_GRAYTEXT

m COLOR_HIGHLIGHT

a COLOR_HIGHLIGHTTEXT
a COLOR_INACTIVECAPTION
n COLOR_MENU

8 COLOR_MENUTEXT

m COLOR_SCROLLBAR

m COLOR_WINDOW
COLOR_WINDOWFRAME
m COLOR_WINDOWTEXT

To use a standard system color, the application must increase the
background-color value by one. COLOR_BACKGROUND + 1is
the system background color, for example.

A class menu defines the default menu to be used by the windows
in the class if no explicit menu is given when the windows are
created. A menu is a list of commands that appears at the top of a
window, under the title bar, from which a user can select actions
for the application to carry out. To assign a menu to a class, an
application sets the IpszMenuName field of the WNDCLASS
structure to the address of a null-terminated string that contains
the resource name of the menu. The menu is assumed to be a
resource in the given application. Windows automatically loads
the menu when it is needed. Note that if the menu resource is
identified by an integer and not by a name, the IpszMenuName
field can be set to that integer value by applying the
MAKEINTRESOURCE macro before assigning the value.

Windows does not require a class menu. If a menu is not given,
Windows assumes that the windows in the class have no menu
bars. Even if no class menu is given, an application can still define
a menu bar for a window when it creates the window.

Windows does not allow menu bars with child windows. If a
menu is given and a child window is created using the class, the
menu is ignored.

Software development kit

Class styles

The class styles define additional elements of the window class.
Two or more styles can be combined by using the bitwise OR
operator. Table 1.2 lists the class styles:

Table 1.2

Window class styles ~ Style

Description

CS_BYTEALIGNCLIENT
CS_BYTEALIGNWINDOW
CS_CLASSDC
CS_DBLCLKS
CS_GLOBALCLASS

CS_HREDRAW

CS_NOCLOSE
CS_OWNDC
CS_PARENTDC

CS SAVEBITS

CS_VREDRAW

Aligns the window’s client area on a byte
boundary (in the x direction).

Aligns the window on a byte boundary
(in the x direction).

Allocates one display context to be shared
by all windows in the class.

Sends double-click messages to the
window function.

Specifies that the window class is an
application global class. An application
global class is created by an application or
library and is available to all applications.
The class is destroyed when the
application or library that created the
class terminates; it is essential, therefore,
that all windows created with the
application global class be closed before
this occurs.

Requests that the entire client area be
redrawn if a movement or adjustment to
the size changes the client area.

Inhibits the System menu close option.
Allocates a unique display context for
each window in the class.

Gives the parent window’s display
context to the window class.

Saves the portion of the screen image that
is obscured by a window; Windows uses
the saved bitmap to re-create the screen
image when the window is removed.
Windows displays the bitmap at its
original location and does not send
WM_PAINT messages to windows which
had been obscured by the window if the
memory used by the bitmap has not been
discarded and if other screen actions have
not invalidated the stored image.
Requests that the entire client area be
redrawn if a movement or adjustment to
the size changes the height of the client
area.

Chapter 1, Window manager interface functions

27

28

Internal data
structures

Window
subclassing

To assign a style to a window class, an application assigns the
style value to the style field of the WNDCLASS structure.

Windows maintains internal data structures for each window
class and window. These structures are not directly accessible to
applications but can be examined and modified by using the
following functions:

GetClassinfo

m GetClassLong

m GetClassName

o GetClassWord

8 GetWindowLong
m GetWindowWord
m SetClasslLong

m SetClassWord

m SetWindowlLong
o SetWindowWord

The following section describes some ways in which a window
class or window can be modified.

A subclass is a window or set of windows that belong to the same
window class, and whose messages are intercepted and processed
by another window function (or functions) before being passed to
the class window function.

To create the subclass, the SetWindowl.ong function is used to
change the window function associated with a particular window,
causing Windows to call the new window function instead of the
previous one. Any messages not processed by the new window
function must be passed to the previous window function by
calling the CallWindowProc function. This allows Windows to
create a chain of window functions. The address of the previous
window function can be retrieved by using the GetWindowLong
function before using SetWindowLong.

Similarly, the SetClassLong function changes the window
function associated with a window class. Any window that is
subsequently created with that class will be associated with the
replacement window function for that class, as will the window
whose handle is passed to SetClassLong. Other existing windows

Software development kit

that were previously created with the class are not affected,
however.

When you subclass a window or class of windows, you must
export the replacement window procedure in your application’s
definition file, and you must create the address of the procedure
which you pass to SetWindowLong or SetClassLong by calling
the MakeProclnstance function.

&> Anapplication should not attempt to create a window subclass
for standard Windows controls such as combo boxes and buttons.

Redrawing the

client ared When a window is moved, Windows automatically copies the
contents of the client area to the new location. This saves time
because a window does not have to recalculate and redraw the
contents of the client area as part of the move. If the window
moves and changes size, Windows copies only as much of the
previous client area as is needed to fill the new location. If the
window increases in size, Windows copies the entire client area
and sends a WM_PAINT message to the window to fill in the
newly exposed areas. When a window is moved, Windows
assumes the contents of the client area remain valid and can be
copied without modification to the new location.

For some windows, however, the contents of the client area are
not valid after a move, especially if the move includes a change in
size. For example, a clock application whose window must always
contain the complete image of the clock has to redraw the
window anytime the window changes size, and has to update the
time after the move. To prevent the windows from copying the
previous contents of the client area, a window should specify the
CS_VREDRAW and CS_HREDRAW styles in the window class.

Class and private

display contexts A display context is a special set of values that applications use
for drawing in the client area of their windows. Windows requires
a display context for each window on the system display, but
allows some flexibility in how that display context is stored and
treated by the system.

If no explicit display-context style is given, Windows assumes
that each window will use a display context retrieved from a pool
of contexts maintained by Windows. In such cases, each window

Chapter 1, Window manager interface functions 29

Window function

30

must retrieve and initialize the display context before painting,
and then free it after painting.

In order not to retrieve a display context each time it wants to
paint in a window, an application can specify the CS_ OWNDC
style for the window class. This class style directs Windows to
create a private display context, that is, to allocate a unique
display context for each window in the class. The application
need only retrieve the context once, and then use it for all
subsequent painting. Although the CS_OWNDC style is
convenient, it must be used carefully because each display context
occupies approximately 800 bytes of memory in the GDI heap.

By specifying the CS_CLASSDC style, an application can have
some of the convenience of a private display context without
allocating a separate display context for each window. The
CS_CLASSDC style directs Windows to create a single class
display context, that is, one display context to be shared by all
windows in the class. An application need only retrieve the
display context for a window; then as long as no other window in
the class retrieves that display context, the window can continue
to use the context.

Similarly, by specifying the CS_PARENTDC style, an application
can create child windows that inherit the device context of their
parent.

A window function processes all messages sent to a window in a
given class. Windows sends messages to a window function when
it receives input from the user that is intended for the given
window, or when it needs information or the procedure to carry
out some action on its window, such as painting in the client area.

A window function receives input messages from the keyboard,
mouse, and timer. It receives requests for information, such as a
request for the window title. It receives reports of changes made
to the system by other windows, such as a change to the WIN.INI
file. It receives messages that give it an opportunity to modify the
standard system response to certain actions, such as an
opportunity to adjust a menu before it is displayed. It receives
requests to carry out some action on its window or client area,
such as a request to update the client area. And a window
function receives information about its status in relation to other

Software development kit

windows, such as losing access to the keyboard or becoming the
active window.

Most of the messages a window function receives are from
Windows, but it can also receive messages from other windows,
including windows it owns. These messages can be requests for
information or notification that a given event has occurred within
another window.

A window function continues to receive messages from the
system and possibly other windows in the system until it, or the
window function of a parent window, or the system destroys the
window. Even in the process of being destroyed, the window
function receives additional messages that give it the opportunity
to carry out any clean-up tasks before terminating. But once the
window is destroyed, no more messages are passed to the
function for that particular window. If there is more than one
window of the class, however, the window function continues to
receive messages for the other windows until they, too, are
destroyed.

A window function defines how a given window actually
behaves; that is, it defines what response the window makes to
commands from the user or system. The messages the window
function receives from the system contain information that the
function knows; for example, the user clicked the scroll bar or
selected the Open command in the File menu, or double-clicked
in the client area. The window function must examine these
messages and determine what action, if any, to take. For example,
if the user clicks the scroll bar, the window function may scroll the
contents of the client area. Windows provides detailed
information about what happens and provides some tools to carry
out tasks, such as drawing and scrolling, but the window function
must carry out the actual task.

A window function can also choose not to respond to a given
message. If it does not respond, the function must give the system
the opportunity to respond by passing the message to the
DefWindowProc function. This function carries out default actions
based on the given message and its parameters. Many messages,
especially nonclient-area messages, must be processed, so the
DefWindowProc function is required in all window functions.

A window function also receives messages that are really
intended to be processed by the system. These messages, called
nonclient-area messages, inform the function either that the user

Chapter 1, Window manager interface functions 31

32

Window messages

has carried out some action in a nonclient area of the window,
such as clicking the title bar, or that some information about the
window is required by the system to carry out an action, such as
for moving or adjusting the size of the window. Although
Windows passes these messages to the window function, the
function should pass them to the DefWindowProc¢ function and
not attempt to process them. In any case, the window procedure
must not ignore the message or return without passing it to
DefWindowProc.

A window message is a set of values that Windows sends to a
window function when it requests some action or informs the
window of input. Every message consists of four values: a handle
that identifies the window, a message identifier, a 16-bit message-
specific value, and a 32-bit message-specific value. These values
are passed as individual parameters to the window function. The
window function then examines the message identifier to
determine what response to make and how to interpret the 16-
and 32-bit values.

Windows has a wide variety of messages that it or applications
can send to a window function. Most messages are sent to a
window as a result of a given function being executed or as input
from the user.

To send a message to a window procedure, Windows expects the
window function to have four parameters and use the Pascal
calling convention. The following illustrates the window
procedure syntax:

LONG FAR PASCAL WndProc(hWnd, wMsg, wParam, IParam)
HWND hWnd;

WORD whMsg;

WORD wParam;

DWORD [Param;

The hWnd parameter identifies the window receiving the
message; the wMsg parameter is the message identifier; the
wParam parameter is 16 bits of additional message-specific
information; and IParam is 32 bits of additional information. The
window procedure must return a 32-bit value that indicates the
result of message processing. The possible return values depend
on the actual message sent.

Windows expects to make an intersegment call to the window
function, so the function must be declared with the FAR attribute.

Software development kit

The window-function name must be exported by including it in
an EXPORTS statement in the application’s module-definition file.

Default window The DefWindowProc function is the default message processor for
function window functions that do not or cannot process some of the

messages sent to them. For most window functions, the
DefWindowProc function carries out most, if not all, processing of
nonclient-area messages. Those are the messages that signify
actions to be carried out on parts of the window other than the
client area. Table 1.3 lists the messages DefWindowProc processes
and the default actions for each:

Table 1.3

Default actions for messages ~ Message

Default Action

WM_ACTIVATE
WM_CANCELMODE

WM_CLOSE
WM_CTLCOLOR

WM_ERASEBKGND

WM_GETTEXT
WM_GETTEXTLENGTH
WM_ICONERASEBKGND
WM_NCACTIVATE
WM_NCCALCSIZE
WM_NCCREATE
WM_NCDESTROY
WM_NCHITTEST
WM_NCLBUTTONDBLCLK

WM_NCLBUTTONDOWN

Chapter 1, Window manager interface functions

Sets or kills the input focus.

Terminates internal processing of
standard scroll bar input, terminates
internal menu processing, and releases
mouse capture.

Calls the DestroyWindow function.

Sets the background and text color and
returns a handle to the brush used to fill
the control background.

Fills the client area with the color and
pattern specified by the class brush, if
any.

Co}};ies the window title into a specified
buffer.

Returns the length (in characters) of the
window title.

Fills the icon client area with the
background brush of the parent window.
Activates or deactivates the window and
draws the icon or title bar to show the
new state.

Computes the size of the client area.
Initializes standard scroll bars, if any, and
sets the default title for the window.
Frees any space internally allocated for
the window title.

Determines what part of the window the
mouse is in.

Tests the given point to determine the
location of the mouse and, if necessary,
generates additional messages.
Determines whether the left mouse
button was pressed while the mouse was
in the nonclient area of a window.

33

Window styles

Overlapped windows

34

Table 1.3: Default actions for messages (continued)

WM_NCLBUTTONUP
WM_NCMOUSEMOVE
WM_NCPAINT
WM_PAINT
WM_PAINTICON
WM_QUERYENDSESSION

WM_QUERYOPEN
WM_SETREDRAW

WM_SETTEXT
WM_SHOWWINDOW
WM_SYSCHAR
WM_SYSCOMMAND

WM_SYSKEYDOWN

Tests the given point to determine the
location of the mouse and, if necessary,
generates additional messages.

Tests the given point to determine the
location of the mouse and, if necessary,
generates additional messages.

Paints the nonclient parts of the window.
Validates the current update region, but
does not paint the region.

Draws the window class icon when a
window is minimized.

Returns TRUE.

Returns TRUE.

Forces an immediate update of
information about the clipping area of the
complete window.

Sets and displays the window title.
Opens or closes a window.

Generates a WM_SYSCOMMAND
message for menu input.

Carries out the requested system
command.

Examines the given key and generates a
WM_SYSCOMMAND message if the key
is either TAB or ENTER.

Windows provides several different window styles that can be
combined to form different kinds of windows. The styles are used
in the CreateWindow function when the window is created.

An overlapped window is always a top-level window. In other
words, an overlapped window never has a parent window. It has
a client area, a border, and a title bar. It can also have a System
menu, minimize/maximize boxes, scroll bars, and a menu, if
these items are specified when the window is created. For
windows used as a main interface, the System menu and
minimize/maximize boxes are strongly recommended.

Every overlapped window can have a corresponding icon that
Windows displays when the window is minimized. A minimized
window is not destroyed. It can be opened again by restoring the
icon. An application minimizes a window to save screen space

when several windows are open at the same time.

Software development kit

You create an overlapped window by using the
WS_OVERLAPPED or WS_OVERLAPPEDWINDOW style with
the CreateWindow function. An overlapped window created with
the WS_OVERLAPPED style always has a caption and a border.
The WS_OVERLAPPEDWINDOW style creates an overlapped
window with a caption, a thick-frame border, a system menu, and
minimize and maximize boxes.

Owned windows ~ An owned window is a special type of overlapped window. Every
owned window has an owner. This owner must also be an
overlapped window. Being owned forces several constraints on a
window:

o An owned window will always be "above" its owner when the
windows are ordered. Attempting to move the owner above the
owned window will cause the owned window to also change
position to ensure that it will always be above its owner.

o Windows automatically destroys an owned window when it
destroys the window’s owner.

o An owned window is hidden when its owner is minimized.

An application creates an owned window by specifying the
owner’s window handle as the hWndParent parameter of the
CreateWindow function when creating a window that has the
WS_OVERLAPPED style.

Dialog boxes are owned windows by default. The function that
creates the dialog box receives the handle of the owner window as
its hWndParent parameter.

Pop-up windows Pop-up windows are another special type of overlapped window.
The main difference between a pop-up window and an
overlapped window is that an overlapped window always has a
caption, while the caption bar is optional for a pop-up window.
Like overlapped windows, pop-up windows can be owned.

You create a pop-up window by using the WS_POPUP window
style with the CreateWindow function. A pop-up window can be
opened and closed by using the ShowWindow function.

Child windows A child window is the window style used for windows that are
confined to the client area of a parent window. Child windows
are typically used to divide the client area of a parent window
into different functional areas.

Chapter 1, Window manager interface functions 35

36

For information about
mapping. see "Mapping
functions" on page 100.

You create a child window by using the WS_CHILD window
style with the CreateWindow function. A child window can be
shown and hidden by using the ShowWindow function.

Every child window must have a parent window. The parent
window can be an overlapped window, a pop-up window, or
even another child window. The parent window relinquishes a
portion of its client area to the child window, and the child
window receives all input from this area. The window class does
not have to be the same for each of the child windows in the
parent window. This means an application can fill a parent
window with child windows that look different and carry out
different tasks.

A child window has a client area, but it does not have any other
features unless these are explicitly requested. An application can
request a border, title bar, minimize/maximize boxes, and scroll
bars for a child window. In most cases, the application designs its
own features for the child window.

Although not required, every child window should have a unique
integer identifier. The identifier, given in the menu parameter of
the CreateWindow function in place of a menu, helps identify the
child window when its parent window has many other child
windows. The child window should use this identifier in any
messages it sends to the parent window. This is the way a parent
window with several child windows can identify which child
window is sending the message.

Windows always positions the child window relative to the
upper left corner of the parent window’s client area. The
coordinates are always client coordinates. If all or part of a child
window is moved outside the visible portion of the parent
window’s client area, the child window is clipped; that is, the
portion outside the parent window’s client area is not displayed.

A child window is an independent window that receives its own
input and other messages. Input intended for a child window
goes directly to the child window and is not passed through the
parent window. The only exception is if input to the child
window has been disabled by the EnableWindow function. In this
case, Windows passes any input that would have gone to the
child window to the parent window instead. This gives the parent
window an opportunity to examine the input and enable the child
window, if necessary.

Software development kit

Multiple
document
intferface
windows

Actions that affect the parent window can also affect the child
window. The following is a list of actions affecting parent
windows that can affect child windows:

Parent Window Child Window
Shown Shown after the parent window.
Hidden Hidden prior to the parent window being

closed. A child window can be visible only
when the parent window is visible.

Destroyed Destroyed prior to the parent window
being destroyed.
Moved Moved with the parent window’s client

area. The child window is responsible for
painting after the move.
Increased in size or Paints any portions of the parent window
maximized that have been exposed as a result of the
increased size of the client area.

Windows does not automatically clip a child window from the
parent window’s client area. This means the parent window will
draw over the child window if it carries out any drawing in the
same location as the child window. Windows does clip the child
window from the parent window’s client area if the parent
window has a WS_CLIPCHILDREN style. If the child window is
clipped, the parent window cannot draw over it.

A child window can overlap other child windows in the same
client area. Two child windows of the same parent window may
draw in each other’s client area unless one child window has a
WS_CLIPSIBLINGS style. Sibling windows are child windows
that share the same parent window. If the application specifies
this style for a child window, any portion of that child’s sibling
window that lies within this window will be clipped.

If a window has either the WS_CLIPCHILDREN or
WS_CLIPSIBLINGS style, a slight loss in performance occurs.

Windows multiple document interface (MDI) provides
applications with a standard interface for displaying multiple
documents within the same instance of an application. An MDI
application creates a frame window which contains a client
window in place of its client area. An application creates an MDI
client window by calling CreateWindow with the class
MDICLIENT and passing a CLIENTCREATESTRUCT data
structure as the function’s IpParam parameter. This client window

Chapter 1, Window manager interface functions 37

38

Title bar

System menu

Scroll bars

Menus

in turn can own multiple child windows, each of which displays a
separate document. An MDI application controls these child
windows by sending messages to its client window.

The title bar, a rectangle at the top of the window, provides space
for the window title or name. An application defines the window
title when it creates the window. It can also change this name
anytime by using the SetWindowText function. If a window has a
title bar, Windows lets the user use the mouse to move the

- window.

The System menu, identified by an icon at the left end of the title
bar, is a pop-up menu that contains the system commands. The
system commands are commands selected by the user to direct
Windows to carry out actions on the window, such as moving and
closing it.

If a System menu or close box is desired for a window, the
WS_SYSMENU and WS_CAPTION window styles must be
specified when the window is created.

The horizontal and vertical scroll bars, bars on the right and lower
sides of a window, let a user scroll the contents of the client area.
Windows sends scroll requests to a window as WM_HSCROLL
and WM_VSCROLL messages. If the window permits scrolling,
the window function must process these messages.

A window can have one or both scroll bars. To create a window
with a scroll bar, the application must specify the WS_HSCROLL
or WS_VSCROLL window style when the window is created.

A menu is a list of commands from which the user can select
using the mouse or the keyboard. When the user selects an item,
Windows sends a corresponding message to the window function

Software development kit

to indicate which command was selected. Windows provides two
types of menus: menu bars (sometimes called static menus) and
pop-up menus.

A menu bar is a horizontal menu that appears at the top of a
window and below the title bar, if one exists. Any window except
a child window can have a menu bar. If an application does not
specify a menu when it creates a window, the window receives
the default menu bar (if any) defined by the window class.

Pop-up menus contain a vertical list of items and are often
displayed when a user selects a menu-bar item. In turn, a pop-up
menu item can display another pop-up menu. Also, a pop-up
menu can be "floating.” A floating pop-up menu can appear
anywhere on the screen designated by the application. An
application creates an empty pop-up menu by calling the
CreatePopupMenu function, and then fills in the menu using the
AppendMenu and InsertMenu functions. It displays the pop-up
menu by calling TrackPopupMenu.

Individual menu items can be created or modified with the
MF_OWNERDRAW style, indicating that the item is an owner-
draw item. In this case, the owner of the menu is responsible for
drawing all visual aspects of the menu item, including checked,
grayed, and highlighted states. When the menu is displayed for
the first time, the window that owns the menu receives a
WM_MEASUREITEM message. The [Param parameter of this
message points to a MEASUREITEMSTRUCT data structure. The
owner then fills in this data structure with the dimensions of the
item and returns. Windows uses the information in the data
structure to determine the size of the item so that Windows can
appropriately detect the user’s interaction with the item.

Windows sends the WM_DRAWITEM message whenever the
owner of the menu must update the visual appearance of the
item. Unlike other owner-draw controls, however, the owner of
the menu item does not receive the WM_DELETEITEM message
when the menu item is removed from the menu. A top-level
menu item cannot be an owner-draw item.

When the application calls AppendMenu, InsertMenu, or
ModifyMenu to add an owner-draw menu item to a menu or to
change an existing menu item to be an owner-draw menu item,
the application can supply a 32-bit value as the IpNewlItem
parameter to the function. The application can use this value to
maintain additional data associated with the item. This value is

Chapter 1, Window manager inferface functions 39

40

Window state

Life cycle of a
window

available to the application as the itemData field of the structures
pointed to by the [Param parameter of the WM_MEASUREITEM
and WM_DRAWITEM messages. For example, if an application
were to draw the text in a menu item using a specific color, the
32-bit value could contain a pointer to a string. The application
could then set the text color before drawing the item when it
received the WM_DRAWITEM message.

The window state can be opened or closed (iconic), hidden or
visible, and enabled or disabled. The initial state of a window can
be set by using the following window styles:

o WS_DISABLED
o WS_MINIMIZE
o WS_MAXIMIZE
o WS_VISIBLE

Windows creates windows that are initially enabled for input,
that is, windows that can start receiving input messages
immediately. In some cases, an application may need to disable
input to a new window. It can disable input by specifying the
WS_DISABLED window style.

A new window is not displayed until an application opens it by
using the ShowWindow function or specifies the WS_VISIBLE
window style when it creates the window. For overlapped
windows, the WS_ICONIC window style creates a window that is
minimized initially.

Because the purpose of any window is to let the user enter data or
to let the application display information, a window starts its life
cycle when the application has a need for input or output. A
window continues its life cycle until there is no longer a need for
it, or the application is terminated. Some windows, such as the
window used for the application’s main user interface, last the life
of the application. Other windows, such as a window used as a
dialog box, may last only a few seconds.

The first step in a window’s life cycle is creation. Given a
registered window class with a corresponding window function,
the application uses the CreateWindow function to create the
window. This function directs Windows to prepare internal data

Software development kit

structures for the window and to return a unique integer value,
called a window handle, that the application can use to identify
the window in subsequent function calls.

The first message most windows process is WM_CREATE, the
window-creation message. Again, the CreateWindow function
sends this message to inform the window function that it can now
perform any initialization, such as allocating memory and
preparing data files. The wParam parameter is not used, but the
[Param parameter contains a long pointer to a CREATESTRUCT
data structure, whose fields correspond to the parameters passed
to CreateWindow.

Both the WM_CREATE and WM_NCCREATE messages are sent
directly to the window function, bypassing the application queue.
This means an application will create a window and process the
WM_CREATE message before it enters the main program loop.

After a window has been created, it must be opened (displayed)
before it can be used. An application can open the window in one
of two ways: it can specify the WS_VISIBLE window style in the
CreateWindow function to open the window immediately after
creation, or it can wait until later and call the ShowWindow
function to open the window. When creating a main window, an
application should not specify WS_VISIBLE, but should call
ShowWindow from the WinMain function with the nCmdShow
parameter set to the desired value.

When the window is no longer needed or the application is
terminated, the window must be destroyed. This is done by using
the DestroyWindow function. DestroyWindow removes the
window from the system display and invalidates the window
handle. It also sends WM_DESTROY and WM_NCDESTROY
messages to the window function.

The WM_DESTROY message is usually the last message a
window function processes. This occurs when the
DestroyWindow function is called or when a WM_CLOSE
message is processed by the DefWindowProc function. When a
window function receives a WM_DESTROY message, it should
free any allocated memory and close any open data files.

The window used as the application’s main user interface should
always be the last window destroyed and should always cause
the application to terminate. When this window receives a
WM_DESTROY message, it should call the PostQuitMessage
function. This function copies a WM_QUIT message to the

Chapter 1, Window manager interface functions 41

application’s message queue as a signal for the application to
terminate when the message is read from the queue.

Display and movement functions

42

Display and movement functions show, hide, move, and obtain
information about the number and position of windows on the
screen. The following list briefly describes each display and

movement function:

Function

Description

ArrangelconicWindows
BeginDeferWindowPos
BringWindowToTop
CloseWindow

DeferWindowPos

EndDeferWindowPos

GetClientRect
GetWindowRect

GetWindowText
GetWindowTextLength

Islconic
IsWindowVisible
IsZoomed
MoveWindow
Openlcon
SetWindowPos
SetWindowText

ShowOwnedPopups
ShowWindow

Arranges minimized (iconic) child
windows.

Initializes memory used by the
DeferWindowPos function.

Brings a window to the top of a stack of
overlapped windows.

Hides the specified window or minimizes
it.

Records positioning information for a
window to be moved or resized by the
EndDeferWindowPos function.

Positions or sizes several windows
simultaneously based on information
recorded by the DeferWindowPos function.
Copies the coordinates of a window’s client
area.

Copies the dimensions of an entire
window.

Copies a window caption into a buffer.
Returns the length (in characters) of the
given window’s caption or text.

Specifies whether a window is open or
closed (iconic).

Determines whether the given window is
visible.

Determines whether a window is
maximized.

Changes the size and position of a window.
Opens the specified window.

Changes the size, position, and ordering of
child or pop-up windows.

Sets the window caption or text.

Shows or hides all pop-up windows.
Displays or removes the given window.

Software development kit

Input functions

Input functions disable input from system devices, take control of
the system devices, or define special actions that Windows takes
when an application receives input from a system device. (The
system devices are the mouse, the keyboard, and the timer.) The
following list briefly describes each input function:

Function

Description

EnableWindow

GetActiveWindow
GetCapture

GetCurrentTime
GetDoubleClickTime

GetFocus
GetTickCount
IsWindowEnabled

KillTimer
ReleaseCapture

SetActiveWindow
SetCapture

SetDoubleClickTime
SetFocus

SetSysModalWindow

SetTimer
SwapMouseButton

Enables and disables mouse and keyboard
input throughout the application.

Returns a handle to the active window.
Returns a handle to the window with the
mouse capture.

Retrieves the current Windows time.
Retrieves the current double-click time for
the mouse.

Retrieves the handle of the window that
currently owns the input focus.

Returns the number of timer ticks recorded
since the system was booted.

Determines whether the specified window
is enabled for mouse and keyboard input.
Kills the specified timer event.

Releases mouse input and restores normal
input processing.

Makes a window the active window.
Causes mouse input to be sent to a
specified window.

Sets the double-click time for the mouse.
Assigns the input focus to a specified
window.

Makes the specified window a system
modal window.

Creates a system-timer event.

Reverses the meaning of left and right
mouse buttons.

Hardware functions

Chapter 1, Window manager interface functions

Hardware functions alter the state of input devices and obtain
state information. Windows uses the mouse and the keyboard as
input devices. The following list briefly describes each hardware

function:

43

Function

Description

EnableHardwarelnput
GetAsyncKeyState
GetlnputState
GetKBCodePage
GetKeyboardState
GetKeyNameText
GetKeyState
MapVirtualKey
OemKeyScan
SetKeyboardState

VkKeyScan

Enables or disables mouse and keyboard
input throughout the application.

Returns interrupt-level information about
the key state.

Returns TRUE if there is mouse or
keyboard input.

Determines which OEM/ANSI tables are
loaded.

Copies an array that contains the state of
keyboard keys.

Retrieves a string containing the name of a
key from a list maintained by the keyboard
driver.

Retrieves the state of a virtual key.
Accepts a virtual-key code or scan code for
a key and returns the corresponding scan
code, virtual-key code, or ASCII value.
Maps OEM ASCII codes 0 through 0xOFF
into the OEM scan codes and shift states.
Sets the state of keyboard keys by altering
values in an array.

Translates an ANSI character to the
corresponding virtual-key code and shift
state for the current keyboard.

Painting functions

44

Painting functions prepare a window for painting and carry out
some useful general-purpose graphics operations. Although all
the paint functions are specifically intended for the system
display, some can be used for other output devices. The following
list briefly describes each painting function:

Function Description

BeginPaint Prepares a window for painting.

DrawFocusRect Draws a rectangle in the style used to
indicate focus.

Drawlicon Draws an icon.

DrawText Draws characters of a specified string.

EndPaint Marks the end of window repainting.

ExcludeUpdateRgn Prevents drawing within invalid areas of a
window.

FillRect Fills a given rectangle by using the
specified brush.

FrameRect Draws a border for the given rectangle.

Software development kit

How Windows
manages the
display

GetDC
GetUpdateRect

GetUpdateRgn
GetWindowDC

GrayString
InvalidateRect
InvalidateRgn
InvertRect

ReleaseDC
UpdateWindow

ValidateRect

ValidateRgn

Retrieves the display context for the client
area.

Copies the dimensions of a window
region’s bounding rectangle.

Copies a window’s update region.
Retrieves the display context for an entire
window.

Writes the characters of a string using gray
text.

Marks a rectangle for repainting.

Marks a region for repainting.

Inverts the display bits of the specified
rectangle.

Releases a display context.

Notifies the application when parts of a
window need redrawing.

Releases the specified rectangle from
repainting.

Releases the specified region from
repainting.

The system display is the principal display device for all
applications running with Windows. All applications are free to
display some form of output on the system display, but since
many applications can run at one time, applications are not

entitled to the entire system display. The complete system display
must be shared. Windows shares the system display by carefully
managing the access that applications have to it. Windows
ensures that applications have space to display output but do not
draw in the space reserved for other applications.

Windows manages the system display by using the display
context type. The display context is a special device context that
treats each window as a separate display surface. An application
that retrieves a display context for a specific window has
complete control of the system display within that window, but
cannot access or paint over any part of the display outside the
window. With a display context, an application can use GDI
painting functions, as well as the output functions described in
this section, to draw in the given window.

Chapter 1, Window manager interface functions 45

Display context
types

Common display
context

Table 1.4
Defaults for a display context

46

There are four types of display contexts: common, class, private,
and window. The common, class, and private display contexts
permit drawing in the client area of a given window. The window
display context permits drawing anywhere in the window. When
a window is created, Windows assigns a common, class, or
private display context to it, based on the type of display context
specified in that window’s class style.

A common display context is the default context for all windows.
Windows assigns a common display context to the window if a
display-context type is not explicitly specified in the window’s
class style.

A common display context permits drawing in a window’s client
area, but it is not immediately available for use by a window. A
common display context must be retrieved from a cache of
display contexts before a window can carry out any drawing in its
client area. The GetDC or BeginPaint function retrieves the
display context and returns a handle to the context. The handle
can be used with GDI functions to draw in the client area of the
given window. After drawing is complete, the context must be
returned to the cache by using the ReleaseDC or EndPaint
function. After the context is released, drawing cannot occur until
another display context is retrieved.

When a common display context is retrieved, Windows gives it
default selections for pen, brush, font, clipping area, and other
attributes. These attributes define the tools currently available to
carry out the actual drawing. Table 1.4 lists the default selections
for a common display context:

Attribute Default

Background color White

Background mode OPAQUE

Bitmap No default.

Brush WHITE_BRUSH

Brush origin 0,00

Clipping region Entire client area with the update region

clipped as appropriate. Child and pop-up
windows in the client area may also be

clipped.
Color palette DEFAULT_PALETTE
Current pen position 0,0

Software development kit

Table 1.4: Defaults for a display context (continued)

Device origin Upper-left corner of client area.
Drawing mode R2_COPYPEN
Font SYSTEM_FONT (SYSTEM_FIXED_FONT

for applications written to run with
Windows versions prior to 3.0)

Intercharacter spacing 0

Mapping mode MM_TEXT
Pen BLACK_PEN
Polygon-filling mode ALTERNATE
Relative-absolute flag ABSOLUTE
Stretching mode BLACKONWHITE
Text color Black
Viewport extent 1,1)
Viewport origin 0,0)

Window extents (1,1)

Window origin (0,0)

An application can modify the attributes of the display context by
using the selection functions and display-context attribute
functions. For example, applications typically change the selected
pen, brush, and font.

When a common display context is released, the current
selections, such as mapping mode and clipping area, are lost.
Windows does not preserve the previous selections of a common
display context since these contexts are shared and Windows has
no way to guarantee that the next window to use a given common
display context will be the last window to use that context.
Applications that modify the attributes of a common display
context must do so each time another context is retrieved.

Class display context A window has a class display context if the window class specifies
the CS_CLASSDC style. A class display context is shared by all
windows in a given class. A class display context is not part of the
display context cache. Instead, Windows specifically allocates a
class context for sole use by the window class.

A class display context must be retrieved before it can be used,
but it does not have to be released after use. As long as only one
window from the class uses the context, the class display context
can be kept and reused. If another window in the class needs to
use the context, that window must retrieve it before any drawing
occurs. Retrieving the context sets the correct origin and clipping
for the new window and ensures that the context will be applied
to the correct window. A handle to the class display context can
be retrieved by using the GetDC or BeginPaint function. The

Chapter 1, Window manager interface functions 47

Private display context

48

ReleaseDC and EndPaint functions have no effect on the class
display context.

A class display context is given the same default selections as a
common display context when the first window of the class is
created (see Table 1.4, on page 46). These selections can be
modified at any time. Windows preserves all new selections made
for the class display context, except for the clipping region and
device origin, which are adjusted for the current window when
the context is retrieved. Otherwise, all other attributes remain
unchanged. This means a change made by one window applies to
all windows that subsequently use the context.

Changing the mapping mode of a class display context may have
an undesirable effect on how a window’s background is erased.
For more information, see "Window background," page 52, and
"Mapping functions," page 100.

A window has a private display context if the window class
specifies the C5_OWNDC style. A private display context is used
exclusively by a given window. A private display context is not
part of the display context cache. Instead, Windows specifically
allocates the context for sole use by the window.

A private display context needs to be retrieved only once.
Thereafter, it can be kept and used any number of times by the
window. Windows automatically updates the context to reflect
changes to the window, such as moving or sizing. A handle to a
private display context can be retrieved by using the GetDC or
BeginPaint function. The ReleaseDC and EndPaint functions have
no effect on the private display context.

A private display context is given the same default selections as a
common display context when the window is created (see Table
1.4, page 46). These selections can be modified at any time.
Windows preserves any new selections made for the context.
New selections, such as clipping region and brush, remain
selected until the window specifically makes a change.

Changing the mapping mode of a private display context may
have an undesirable effect on how the window’s background is
erased. For more information, see "Window background," on page
52, and "Mapping functions," on page 100.

Software development kit

Window display
context

Display-context
cache

A window display context permits painting anywhere in a
window, including the caption bar, menus, and scroll bars. Its
origin is the upper-left corner of the window, instead of the
upper-left corner of the client area.

The GetWindowDC function retrieves a window display context
from the same cache as it does common display contexts.
Therefore, a window that uses a window display context must
release it with the ReleaseDC function immediately after
drawing,.

Windows always sets the current selections of a window display
context to the same default selections as a common display
context and does not preserve any change the window may have
made to these selections (see Table 1.4, on page 46). Windows
does not allow private or class window display contexts, so
CS_OWNDC and CS_CLASSDC class styles have no effect on the
window display context.

A window display context is intended to be used for special
painting within a window’s nonclient area. Since painting in
nonclient areas of overlapped windows is not recommended,
most applications reserve a display context for designing custom
child windows. For example, an application may use the display
context to draw a custom border around the window. In such
cases, the window usually processes the WM_NCPAINT message
instead of passing it on to the DefWindowProc function. For
applications that do not process WM_NCPAINT messages but
still wish to paint in the nonclient area, the GetSystemMetrics
function can be used to retrieve the dimensions of various parts of
the nonclient area, such as the caption bar, menu bar, and scroll
bars.

Windows maintains a cache of display contexts that it uses for
common and window display contexts. This cache contains five
display contexts, which means only five common display contexts
can be active at any one time. To prevent more than five from
being retrieved, a window that uses a common or window
display context must release that context immediately after
drawing.

Chapter 1, Window manager interface functions 49

50

Painting
seguence

WM_PAINT
message

If a window fails to release a common display context, all five
display contexts may eventually be active and unavailable for any
other window. In such a case, Windows ignores all subsequent
requests for a common display context. In the retail version of
Windows, the system will appear to be deadlocked, while the
debugging version of Windows will undergo a fatal exit, alerting
the developer of a problem.

The ReleaseDC function releases a display context and returns it
to the cache. Class and private display contexts are individually
allocated for each class or window; they do not belong to the
cache so they do not need to be released after use.

Windows carries out many operations to manage the system
display that affect the content of the client area. If Windows
moves, sizes, or alters the appearance of the display, the change
may affect a given window. If so, Windows marks the area
changed by the operation as ready for updating and, at the next
opportunity, sends a WM_PAINT message to the window so that
it can update the window in the update region. If a window
paints in its client area, it must call the BeginPaint function to
retrieve a handle to a display context, must update the changed
area as defined by the update region, and finally, must call the
EndPaint function to complete the operation.

A window is free to paint in its client area at any time, that is, at
times other than in response to a WM_PAINT message. The only
requirement is that it retrieve a display context for the client area
before carrying out any operations.

The WM_PAINT message is a request from Windows to a given
window to update its display. Windows sends a WM_PAINT
message to a window whenever it is necessary to repaint a
portion of an application’s window. When a window receives a
WM_PAINT message, it should retrieve the update region by
using the BeginPaint function, and it should carry out whatever
operations are necessary to update that part of the client area.

The InvalidateRect and InvalidateRgn functions do not actually
generate WM_PAINT messages. Instead, Windows accumulates
the changes made by these functions and its own changes while a

Software development kit

window processes other messages in its application queue.
Postponing the WM_PAINT message lets a window process all
changes at once instead of updating bits and pieces in time-
consuming individual steps.

A window can require Windows to send a WM_PAINT message
by using the UpdateWindow function. The UpdateWindow
function sends the message directly to the window, regardless of
the number of other messages in the application queue.
UpdateWindow is typically used when a window wants to update
its client area immediately, such as just after the window is
created.

Once a window receives a WM_PAINT message, it must call the
BeginPaint function to retrieve the display context for the client
area and to retrieve other information such as the update region
and whether the background has been erased.

For more information about ' Windows automatically selects the update region as the clipping
. _ihe clipping region, s6€ reoion of the display context. Since GDI discards (clips) drawing
Clipping functions," on page
106. that extends outside the clipping region, only drawing that is in

the update region is actually visible.

The BeginPaint function empties the update region to prevent the
same region from generating subsequent WM_PAINT messages.

After completing the painting operation, the window must call
the EndPaint function to release the display context.

Update region

An update region defines the part of the client area that is marked
for painting on the next WM_PAINT message. The purpose of the
update region is to save some applications the time it takes to
paint the entire contents of the client area. If only the part that
needs painting is added to the update region, only that part is
painted. For example, if a word changes in the client area of a
word-processing application, only the word needs to be painted,
not the entire line of text. This saves the time it takes the
application to draw the text, especially if there are many different
sizes and typefaces.

The InvalidateRect and InvalidateRgn functions add a given
rectangle or region to the update region. The rectangle or region
must be given in client coordinates. The update region itself is
defined in client coordinates. Windows adds its own rectangles

Chapter 1, Window manager interface functions 51

52

Window
background

Brush alignment

and regions to a window’s update region after operations such as
moving, sizing, and scrolling the window.

The ValidateRect and ValidateRgn functions remove a given
rectangle or region from the update region. These functions are
typically used when the window has updated a specific part of
the display in the update region before receiving the WM_PAINT
message.

The GetUpdateRect and GetUpdateRgn functions retrieve the
smallest rectangle that encloses the entire update region. These
functions can be used to compute the current size of the update
region to determine if painting is required.

The window background is the color or pattern the client area is
filled with before a window begins painting in the client area.
Windows paints the background for a window or gives the
window the opportunity to do so by sending a
WM_ERASEBKGND message to the window when the
application calls the BeginPaint function.

The background is important since if not erased, the client area
will contain whatever was originally on the system display before
the window was moved there. Windows erases the background
by filling it with the background brush specified by the window’s
class.

Windows applications that use class or private display contexts
should be careful about erasing the background. Windows
assumes the background is to be computed by using the
MM_TEXT mapping mode. If the display context has any other
mapping mode, the area erased may not be within the visible part
of the client area.

Brush alignment is particularly important on the system display
where scrolling and moving are commonplace. A brush is a
pattern of bits with a minimum size of 8-by-8 bits. GDI paints
with a brush by repeating the pattern again and again within a
given rectangle or region. If the region is moved by an arbitrary
amount—for example, if the window is scrolled—and the brush is
used again to filled empty areas around the original area, there is
no guarantee that the original pattern and the new pattern will be

Software development kit

aligned. For example, if the scroll moves the original filled area up
one pixel, the intersection of the original area and any new
painting will be out of alignment by one pixel, or bit. Depending
on the pattern, this may have a undesirable visual effect.

To ensure that a brush is aligned after a window is moved, an
application must take the following steps:

1. Call the SelectObject function to select a different brush.
2. Call the SetBrushQrg function to realign the current brush.

3. Call the UnrealizeObject function to realign the origin of the
original brush when it is selected next.

4. Call the SelectObject function to select the original brush.

Painting
rectangular areas The FillRect, FrameRect, and InvertRect functions provide an

easy way to carry out painting operations on rectangles in the
client area.

The FillRect function fills a rectangle with the color and pattern of
a given brush. This function fills all parts of the rectangle,
including the edges or borders.

The FrameRect function uses a brush to draw a border around a
rectangle. The border width and height is one unit.

The InvertRect function inverts the contents of the given
rectangle. On monochrome displays, white pixels become black,
and vice versa. On color displays, the results depend on the
method used by the display to generate color. In either case,
calling InvertRect twice with the same rectangle restores the
display to its original colors.

Drawing icons

The Drawlcon function draws an icon at a given location in the
client area. An icon is a bitmap that a window uses as a symbol to
represent an item or concept, such as an application or a warning.

An icon can be created by using the SDKPaint program, added to
an application’s resources by using the Resource Compiler, and
loaded into memory by using the Loadlcon function. Applications
can also call the Createlcon function to create an icon and can
modify a previously loaded or created icon at any time. An icon
resource is in global memory and its handle is the handle to that

Chapter 1, Window manager interface functions 53

54

Drawing
formatted text

Table 1.5
Drawing format styles

memory. An application can free memory used to store an icon
created by Createlcon by calling Deletelcon.

The DrawText function formats and draws text within a given
rectangle in the client area. This function provides simple text
processing that most applications, other than word processors,
can use to display text. DrawText output is similar to the output
generated by a terminal, except it uses the selected font and can
clip the text if it extends outside a given rectangle. DrawText
provides many different formatting styles. Table 1.5 lists the

available styles:

Value Description
DT_BOTTOM Bottom-justified (single line only).
DT _CENTER Centered.

DT_EXPANDTABS

DT_EXTERNALLEADING

DT_LEFT

DT_NOCLIP

DT_RIGHT
DT_SINGLELINE

DT_TABSTOP

DT_TOP

Expands tab characters into spaces.
Otherwise, tabs are treated as single
characters. The number of spaces
depends on the tab stop size specified
by DT_TABSTOP. If DT_TABSTOP is
not given, the default is eight spaces.
Includes the font external leading in line
height. External leading is not included
in the height of a line of text. (Leading is
the space between lines of text.) If
DT_EXTERNALLEADING is not given,
there is no spacing between lines of text.
Depending on the selected font, this
means that characters in different lines
may touch or overlap.

Left-justified. Default.

Draws text without clipping. All text
will be drawn even if it extends outside
the specified rectangle. The DrawText
function is somewhat faster when

DT _NOCLIP is used.

Right-justified.

Single line only. Carriage returns and
linefeeds do not break the line. Default
is multiple-line formatting.

Sets tab stops. The high-order byte of
the wFormat parameter is the number of
characters for each tab. If DT_TABSTOP
is not given, the default tab size is eight
spaces.

Top-justified (single line only). Default.

Software development kit

Table 1.5: Drawing format styles (continued)

DT_VCENTER
DT_WORDBREAK

Vertically centered (single line only).
Sets word breaks. Lines are
automatically broken between words if
a word would extend past the edge of
the rectangle specified by the IpRect
parameter. Carriage-return/linefeed
sequence also causes a line break.
Word-break characters are space, tab,
carriage return, linefeed, and carriage-
return/linefeed combinations. Applies
to multiple-line formatting only.

The DrawText function uses the selected font, so applications can
draw formatted text in other than the system font.

DrawText does not hyphenate, and although it can justify text to
the left, right, or center, it cannot combine justification styles. In
other words, it cannot justify both left and right.

DrawText recognizes a number of control characters and carries
out special actions when it encounters them. Table 1.6 lists the
control characters and the respective action:

Table 1.6

Control charactersand ~ ©haracter (ANSI value)

Action

actions Carriage return(13)

Linefeed(10)

Space(32)

Tab(9)

Interpreted as a line-break character. The
text is immedjiately broken and started on
the next line down in the rectangle.
Interpreted as a line-break character. The
text is immediately broken and started on
the next line down in the rectangle. A
carriage-return/linefeed character
combination is interpreted as a single line-
break character.

Interpreted as a word-break character if the
DT_WORDBREAK style is given. If the text
is too long to fit on the current line in the
formatting rectangle, the line is broken at
the closest word-break character to the end
of the line.

Expanded into a given number of spaces if
the DT_EXPANDTABS style is given. The
number of spaces depends on what tab-
stop value is given with the DT_TABSTOP
style. The default is eight.

Chapter 1, Window manager interface functions

55

Drawing gray text

56

An application can draw gray text by calling the SetTextColor
function to set the current text color to the COLOR_GRAYTEXT,
the solid gray system color used to draw disabled text. However,
if the curent display driver does not support a solid gray color,
this value is set to zero.

The GrayString function is a multiple-purpose function that gives
applications another way to gray text or carry out other
customized operations on text or bitmaps before drawing the
result in a client area. To gray text, the function creates a memory
bitmap, draws the string in the bitmap, and then grays the string
by combining it with a gray brush. The GrayString function
finally copies the gray text to the display. An application can
intercept or modify each step of this process, however, to carry
out custom effects, such as changing the gray brush to a patterned
brush or drawing an icon instead of a string.

If GrayString is used to draw gray text only, GrayString uses the
selected font of the given display context. GrayString sets text
color to black. It creates a bitmap, and then uses the TextOut
function to write a given string to the bitmap. It then uses the
PatBlt function and a gray brush to gray the text, and uses the
BitBIt function to copy the bitmap to the client area.

GrayString assumes that the display context for the client area has
MM_TEXT mapping mode. Other mapping modes cause
undesirable results.

GrayString lets an application modify this graying procedure in
three ways: by defining an additional brush to be combined with
the text before being displayed, by replacing the call to the
TextOut function with a call to an application-supplied function,
and by disabling the call to the PatBIt function.

The additional brush is defined as a parameter. This brush is
combined with the text as the text is being copied to the client
area by the BitBIt function. The additional brush is intended to be
used to give the text a desired color, since the bitmap used to
draw the text is a monochrome bitmap.

The application-supplied function is also defined as a parameter.
If a non-NULL value is given for the function, GrayString
automatically calls the application-supplied function instead of
the TextOut function and passes it a handle to the display context

Software development kit

for the memory bitmap as well as the long pointer and count
passed to GrayString. The function can carry out any operation
and interpret the long pointer and count in any way. For example,
a negative count could be used to indicate that the long pointer
points to an icon handle that signals the application-supplied
function to draw the icon and let GrayString gray and display it.
No matter what type of drawing the function carries out,
GrayString assumes it is successful if the application-supplied
function returns TRUE.

GrayString suppresses graying if it receives an ncount parameter
equal to -1 and the application-supplied function returns FALSE.
This is a way to combine custom patterns with the text without
interference from the gray brush.

Nonclient-area

pc:in’ring Windows sends a WM_NCPAINT message to the window
whenever the non-client area of the window, such as the title bar,
menu bar, and window frame, needs painting. Processing this
message is not recommended since a window that does so must
be able to paint all the required parts of the nonclient area for the
window. In other words, a window should pass this message on
to the DefWindowProc function for default processing unless the
Windows application is creating a custom nonclient area for a
child window.

Dialog box functions

Dialog-box functions create, alter, test, and destroy dialog boxes
and controls within dialog boxes. A dialog box is a temporary
window that Windows creates for special-purpose input, and
then destroys immediately after use. An application typically uses
a dialog box to prompt the user for additional information about a
current command selection. The following list briefly describes
each dialog function:

Function Description

CheckDIgButton Places/removes a check, or changes the
state of the three-state button.

CheckRadioButton Checks a specified button and removes
checks from all others.

CreateDialog Creates a modeless dialog box.

Chapter 1, Window manager interface functions 57

58

CreateDialogindirect

CreateDialogindirectParam

CreateDialogParam

DefDIgProc

DialogBox
DialogBoxindirect

DialogBoxIndirectParam

DialogBoxParam
DigDirList
DigDirListComboBox
DigDirSelect
DlgDirSelectComboBox
EndDialog
GetDialogBaseUnits
GetDIgCtrlID
GetDlgitem
GetDlgltemint
GetDlgitemText
GetNextDIgGroupltem
GetNextDIgTabltem
IsDialogMessage

IsDIigButtonChecked
MapDialogRect

SendDlgltemMessage

SetDlgltemint

Creates a modeless dialog box from a
template.

Creates a modeless dialog box from a
template and passes data to it when it is
created.

Creates a modeless dialog box and
passes data to it when it is created.
Provides default processing for any
Windows messages that a dialog box
with a private window class does not
process.

Creates a modal dialog box.

Creates a modal dialog box from a
template. -

Creates a modal dialog box from a
template and passes data to it when it is
created.

Creates a modal dialog box and passes
data to it when it is created.

Fills the list box with names of files
matching a path.

Fills a combo box with names of files
matching a path.

Copies the current selection from a list
box to a string.

Copies the current selection from a
combo box to a string.

Frees resources and destroys windows
associated with a modal dialog box.
Retrieves the base dialog units used by
Windows when creating a dialog box.
Returns the ID value of a control
window.

Retrieves the handle of a dialog item
from the given dialog box.

Translates the control text of an item
into an integer value.

Copies an item’s control text into a
string.

Returns the window handle of the next
item in a group.

Returns the window handle of the next
or previous item.

Determines whether a message is
intended for the given dialog box.
Tests whether a button is checked.
Converts the dialog-box coordinates to
client coordinates.

Sends a message to an item within a
dialog box.

Sets the caption or text of an item to a
string that represents an integer.

Software development kit

SetDIgitemText Sets the caption or text of an item to a
string.

Uses for dialog

fooxes For convenience and to keep from introducing device-dependent
values into the application code, applications use dialog boxes
instead of creating their own windows. This device independence
is maintained by using logical coordinates in the dialog-box
template. Dialog boxes are convenient to use because all aspects
of the dialog box, except how to carry out its tasks, are
predefined. Dialog boxes supply a window class and procedure,
and create the window for the dialog box automatically. The
application supplies a dialog function to carry out tasks and a
dialog-box template that describes the dialog style and content.

Modeless dialog box A modeless dialog box allows the user to supply information to
the dialog box and return to the previous task without canceling
or removing the dialog box. Modeless dialog boxes are typically
used as a way to let the user continually supply information about
the current task without having to select a command from a menu
each time. For example, modeless dialog boxes are often used
with a text-search command in word-processing applications. The
dialog box remains displayed while the search is carried out. The
user can then return to the dialog box and search for the same
word again, or change the entry in the dialog box and search for a
new word.

An application with a modeless dialog box processes messages for
that box by using the IsDialogMessage function inside the main
message loop.

The dialog function of a modeless dialog box must send a
message to the parent window when it has input for the parent
window. It must also destroy the dialog box when it is no longer
needed. A modeless dialog box can be destroyed by using the
DestroyWindow function. An application must not call the
EndDialog function to destroy a modeless dialog box.

Modal dialog box A modal dialog box requires the user to respond to a request
before the application continues. Typically, a modal dialog box is
used when a chosen command needs additional information
before it can proceed. The user should not be able to continue

Chapter 1, Window manager interface functions 59

System-modal dialog
box

Creating a dialog

60

box

Diadlog box template

some other operation unless the command is canceled or
additional information is provided.

A modal dialog box disables its parent window, and it creates its
own message loop, temporarily taking control of the application
queue from the main loop of the program. A modal dialog box is
displayed when the application calls the DialogBox function.

By default, a modal dialog box cannot be moved by the user. An
application can create a moveable dialog box by specifying the
WS_CAPTION and, optionally, the WS_SYSMENU window
styles.

The dialog box is displayed until the dialog function calls the
EndDialog function, or until Windows is terminated. The parent
window remains disabled unless the dialog box enables it. Note
that enabling the parent window is not recommended since it
defeats the purpose of the modal dialog box.

A system-modal dialog box is identical to a modal dialog box
except that all windows, not just the parent window, are disabled.
System-modal dialog boxes must be used with care since they
effectively shut down the system until the user supplies the
required information.

A dialog box is created by using either the CreateDialog or
DialogBox function. These functions load a dialog-box template
from the application’s executable file, and then create a pop-up
window that matches the template’s specifications. The dialog box
belongs to the predefined dialog-box class unless another class is
explicitly defined. The DialogBox function creates a modal dialog
box; the CreateDialog function creates a modeless dialog box.

Use the WS_VISIBLE style for the dialog-box template if you want
the dialog box to appear upon creation.

The dialog-box template is a description of the dialog box: its
height and width, the controls it contains, its style, the type of
border it uses, and so on. A template is an application’s resource
and must be added to the application’s executable file by using the
Resource Compiler.

Software development kit

Dialog boxes can be easily modified and are system independent,
enabling an application developer to change the template without
changing the source code.

The CreateDialog and DialogBox functions load the resource into
memory when they create the dialog box, and then use the
information in the dialog template to create the dialog box,
position it, and create and position the controls for the dialog box.

The Resource Compiler takes a text description of the template
and converts it to the required binary form. This binary form is
added to the application’s executable file.

Dialog box Dialog box and control dimensions and coordinates are device
measurements independent. Since a dialog box may be displayed on system

displays that have widely varying pixel resolutions, dialog-box
dimensions are specified in system character widths and heights
instead of pixels. Characters are guaranteed to give the best
possible appearance for a given display. One unit in the x
direction is equal to 1/4 of the dialog base width unit. One unit in
the y direction is equal to 1/8 of the dialog base height unit. The
dialog base units are computed from the height and width of the
system font; the GetDialogBaseUnits function returns the dialog
base units for the current display. Applications can convert these
measurements to pixels by using the MapDialogRect function.

Windows does not allow the height of a dialog box to exceed the
height of a full-screen window. The width of a dialog box is not
allowed to be greater than the width of the screen.

Return values

from a dialog bOX The DialogBox function that creates a modal dialog box does not
return until the dialog function has called the EndDialog function
to signal the end of the dialog box. When control finally returns
from the DialogBox function, the return value is equal to the
value specified in the EndDialog function. This means a modal
dialog box can return a value through the EndDialog function.

Modeless dialog boxes cannot return values in this way since they
do not use the EndDialog function to terminate execution and do
not return control in the same way a modal dialog box does.
Instead, modeless dialog boxes return values to their parent
windows by using the SendMessage function to send a
notification message to the parent window. Although Windows

Chapter 1, Window manager interface functions 61

62

Conftrols in a
dialog box

Control identifiers

General control styles

does not explicitly define the content of a notification message,
most applications use a WM_COMMAND message with an
integer value that identifies the dialog box in the wParam
parameter and the return value in the /Param parameter. Modal
dialog boxes may also use this technique to return values to their
parent windows before terminating.

A dialog box can contain any number and any type of controls. A
control is a child window that belongs to a predefined or
application-defined window class and that gives the user a
method of supplying input to the application. Examples of
controls are push buttons and edit controls. Most dialog boxes
contain one or more controls of the predefined class. The number
of controls, the order in which they should be created, and the
location of each in the dialog box are defined by the control
statements given in the dialog-box template.

Every control in a dialog box needs a unique control identifier, or
ID, to distinguish it from other controls. Since all controls send
information to the dialog function through WM_COMMAND
messages, the control identifiers are essential for the dialog box to
determine which control sent a given message.

All identifiers for all controls in the dialog box must be unique. If
a dialog box has a menu bar, there must be no conflict between
menu-item identifiers and control identifiers. Since Windows
sends menu input to a dialog function as WM_COMMAND
messages, conflicts with menu and control identifiers can cause
errors. Menus in dialog boxes are not recommended.

The dialog function usually identifies the dialog-box controls by
using their control identifier. Occasionally the dialog function
requires the window handle that was given to the control when it
was created. The dialog function can retrieve this window handle
by using the GetDlgltem function.

The WS_TABSTOP style specifies that the user can move the
input focus to the given control by pressing the TAB or SHIFT+TAB
keys. Typically, every control in the dialog box has this style, so
the user can move the input focus from one control to the other. If
two or more controls are in the dialog box, the TAB key moves the
input focus to the controls in the order in which they have been

Software development kit

created. The SHIFT+TAB keys move the input focus in reverse
order. For modal dialog boxes, the TAB and SHIFT+TAB keys are
automatically enabled for moving the input focus. For modeless
dialog boxes, the IsDialogMessage function must be used to filter
messages for the dialog box and to process these key strokes.
Otherwise, the keys have no special meaning and the
WS_TABSTOP style is ignored.

The WS_GROUP style specifies that the user can move the input
focus to the given control by using a DIRECTION key. Typically, the
first and last controls in a group of consecutive controls in the
dialog box have this style, so the user can move the input focus
from one control to the other. The DOWN and RIGHT keys move the
input focus to controls in the order in which they have been
created. The UP and LEFT keys move the input focus in reverse
order. For modal dialog boxes, the DIRECTION keys are
automatically enabled for moving the input focus. For modeless
dialog boxes, the IsDialogMessage function must be used to filter
messages for the dialog box and to process these key strokes.
Otherwise, the keys have no special meaning and the
WS_GROUP style is ignored.

Buttons Button controls are the principal interface of a dialog box. Almost
all dialog boxes have at least one push-button control and most
have one default push button and one or more other push
buttons. Many dialog boxes have collections of radio buttons
enclosed in group boxes, or lists of check boxes.

Most modal or modeless dialog boxes that use the special
keyboard interface have a default push button whose control
identifier is set to 1 so that the action the dialog function takes
when the button is clicked is identical to the action taken when
the ENTER key is pressed. There can be only one button with the
default style; however, an application can assign the default style
to any button at any time. These dialog boxes may also set the
control identifier of another push button to 2 so that the action of
the ESCAPE key is duplicated by clicking that button.

When a dialog box first starts, the dialog function can set the
initial state of the button controls by using the CheckDIgButton
function, which sets or clears the button state. This function is
most useful when used to set the state of radio buttons or check
boxes. If the dialog box contains a group of radio buttons in which
only one button should be set at any given time, the dialog

Chapter 1, Window manager interface functions 63

Edit controls

List boxes and directory

64

listings

function can use the CheckRadioButton function to set the button
and automatically clear any other radio button.

Before a dialog box terminates, the dialog function can check the
state of each button control by using the IsDIgButtonChecked
function, which returns the current state of the button. A dialog
box typically saves this information to initialize the buttons the
next time the dialog box is created.

Many dialog boxes have edit controls that let the user supply text
as input. Most dialog functions initialize an edit control when the
dialog box first starts. For example, the function may place a
proposed filename in the control that the user can adapt or
modify. The dialog function can set the text in an edit control by
using the SetDIgltemText function, which copies text in a given
buffer to the edit control. When the edit control receives the input
focus, the complete text will automatically be selected for editing.

Since edit controls do not automatically return their text to the
dialog box, the dialog function must retrieve the text before
terminating. It can retrieve the text by using the GetDIgltemText
function, which copies the edit-control text to a buffer. The dialog
function typically saves this text to initialize the edit control later,
or passes it on to the parent window for processing.

Some dialog boxes use edit controls that let the user enter
numbers. The dialog function can retrieve a number from an edit
control by using the GetDIgltemInt function, which retrieves the
text of the control and converts the text to a decimal value. The
user enters the number in decimal digits. It can be either signed or
unsigned. The dialog function can display an integer by using the
SetDlgltemint function. It converts a signed or unsigned integer to
a string of decimal digits.

Some dialog boxes display lists, such as filenames, from which the
user can select one or more names. Dialog boxes that display a list
typically use list-box controls. Dialog boxes that display a list of
filenames typically use a list-box

control and the DlgDirList and DlgDirSelect functions. The
DigDirList function automatically fills a list box with the filenames
in the current directory. The DIgDirSelect function retrieves the
selected filename from the list box. Together they provide a
convenient way for a dialog box to display a directory listing, and

Software development kit

let the user select a file without having to type in the name of the
directory and file.

Combo boxes Another method for providing a list of items to a user is by means
of a combo box. A combo box consists of either a static text field
or edit field combined with a list box. The list box can be
displayed at all times or pulled down by the user. If the combo
box contains a static text field, the text field always displays the
current selection (if any) in the list-box portion of the combo box.
If it uses an edit field, the user can type in the desired selection;
the list box highlights the first item (if any) which matches what
the user has entered in the edit field. The user can then select the
item highlighted in the list box to complete the choice.

Owner-draw dialog List boxes, combo boxes, and buttons can be designated as
box confrols owner-draw controls by creating them with the appropriate style:

Table 1.7

Dialog box controls ~ Style Meaning
LBS_OWNERDRAWEFIXED Creates an owner-draw list box
with items that have the same,
fixed height.

LBS_OWNERDRAWVARIABLE Creates an owner-draw list box
with items that have different
heights.

CBS_OWNERDRAWFIXED Creates an owner-draw combo
box with items that have the
same, fixed height.

CBS_OWNERDRAWVARIABLE Creates an owner-draw combo
box with items that have different
heights.

BS_OWNERDRAW Creates an owner-draw button.

When a control has the owner-draw style, Windows handles the
user’s interaction with the control as usual, such as detecting
when a user has clicked a button and notifying the button’s owner
of the event. However, because it is an owner-draw control, the
owner of the control is completely responsible for the visual
appearance of the control.

When Windows first creates a dialog box containing owner-draw
controls, it sends the owner a WM_MEASUREITEM message for
each owner-draw control. The [Param parameter of this message
contains a pointer to a MEASUREITEMSTRUCT data structure.
When the owner receives the message for a control, the owner fills
in the appropriate fields of the structure and returns. This informs
Windows of the dimensions of the control or of its items so that

Chapter 1, Window manager interface functions 65

Messages for dialog
box controls

Dialog box
keyboard
intferface

Windows can appropriately detect the user’s interaction with the
control. If a list box or combo box is created with the
LBS_OWNERDRAWVARIABLE or
CBS_OWNERDRAWYVARIABLE style, this message is sent to the
owner for each item in the control, since each item can differ in
height. Otherwise, this message is sent once for the entire owner-
draw control.

Whenever an owner-draw control needs to be redrawn, Windows
sends the WM_DRAWITEM message to the owner of the control.
The IParam parameter of this message contains a pointer to a
DRAWITEMSTRUCT data structure that contains information
about the drawing required for the control. Similarly, if an item is
deleted from a list box or combo box, Windows sends the
WM_DELETEITEM message containing a pointer to a
DELETEITEMSTRUCT data structure that describes the deleted
item.

Many controls recognize predefined messages that, when sent to
the control, cause it to carry out some action. A dialog function
can send a message to a control by supplying the control identifier
and using the SendDlgltemMessage function, which is identical
to the SendMessage function except that it uses a control
identifier instead of a window handle to identify the control that
is to receive the message.

Windows provides a special keyboard interface for modal dialog
boxes and modeless dialog boxes that use the IsDialogMessage
function to filter messages. This keyboard interface carries out
special processing for several keys and generates messages that
correspond to certain buttons in the dialog box or changes the
input focus from one control to another. Table 1.8 lists the keys
used in this interface and the respective action:

Software development kit

Table 1.8
Dialog box keyboard
interface

Key Action

DOWN Moves the input focus to the next control that has the
WS_GROUP style.

ENTER Sends a WM_COMMAND message to the dialog
function. The wParam parameter is set to 1 or the
default button.

ESCAPE Sends a WM_COMMAND message to the dialog
function. The wParam parameter is set to 2.

LEFT Same as UP.

RIGHT Same as DOWN.

SHIFT+TAB Moves the input focus to the previous control that has
the WS_TABSTOP style.

TAB Moves the input focus to the next control that has the
WS_TABSTOP style.

ur Moves the input focus to the previous control that has

the WS_GROUP style.

The TAB and DIRECTION keys have no effect if the controls in the
dialog box do not have the WS_TABSTOP or WS_GROUP style.
The keys have no effect in a modeless dialog box if the
IsDialogMessage function is not used to filter messages for the
dialog box.

For applications that use accelerators and have modeless dialog
boxes, the IsDialogMessage function must be called before the
TranslateAccelerator function. Otherwise, the keyboard interface
for the dialog box may not be processed correctly.

Applications that have modeless dialog boxes and want those
boxes to have the special keyboard interface must filter all
messages retrieved from the application queue through the
IsDialogMessage function before carrying out any other
processing. This means that the application must pass the
message to the function immediately after retrieving the message
by using the GetMessage or PeekMessage function. Most
applications that have modeless dialog boxes incorporate the
IsDialogMessage function as part of the main message loop in the
WinMain function. The IsDialogMessage function automatically
processes any messages for the dialog box. This means that if the
function returns a nonzero value, the message does not require
additional processing and must not be passed to the
TranslateMessage or DispatchMessage function.

The IsDialogMessage function also processes the ALT+mnenonic
sequence.

Chapter 1, Window manager inferface functions 67

Scrolling in dialog
boxes

In modal dialog boxes, the arrow keys have specific functions that
depend on the controls in the box. For example, the keys move the
input focus from control to control in group boxes, move the
cursor in edit controls, and scroll the contents of list boxes. The
arrow keys cannot be used to scroll the contents of any dialog box
that has its own scroll bars. If a dialog box has scroll bars, the
application must provide an appropriate keyboard interface for
the scroll bars. Note that the mouse interface for scrolling is
available if the system has a mouse.

Scrolling functions

68

Standard scroll
bars and scroll-
bar conftrols

Scrolling functions control the scrolling of a window’s contents
and control the window’s scroll bars. Scrolling is the movement of
data in and out of the client area at the request of the user. Itis a
way for the user to see a document or graphic in parts if Windows
cannot fit the entire document or graphic inside the client area. A
scroll bar allows the user to control scrolling. The following list
briefly describes each scrolling function:

Function Description

GetScrollPos Retrieves the current position of the scroll-
bar thumb.

GetScrollRange Copies the minimum and maximum

scroll-bar positions for given scroll-bar
positions for a specified scroll.

ScrollDC Scrolls a rectangle of bits horizontally and
vertically.

ScrollWindow Moves the contents of the client area.

SetScrollPos Sets the scroll-bar thumb.

SetScrollRange Sets the minimum and maximum scroll-bar
positions.

ShowScrollBar Displays or hides a scroll bar and its
controls.

A standard scroll bar is a part of the nonclient area of a window.
It is created with the window and displayed when the window is
displayed. The sole purpose of a standard scroll bar is to let users
generate scrolling requests for the window’s client area. A

Software development kit

window has standard scroll bars if it is created with the
WS_VSCROLL or WS_HSCROLL style. A standard scroll bar is
either vertical or horizontal. A vertical bar always appears at the
(For more information, see right of the client area; a horizontal bar always appears at the
;Zﬁ;gﬁﬁ’g}"c%‘?gﬁs bottom. A standard scroll bar always has the standard scroll-bar
*Functions directory.y height and width as defined by the SM_CXVSCROLL and

SM_CYHSCROLL system metric values.

A scroll-bar control is a control window that looks and acts like a
standard scroll bar. But unlike a standard scroll bar, a scroll-bar
control is not part of any window. As a separate window, a
scroll-bar control can receive the input focus, and indicates this by
displaying a flashing caret in the thumb. When a scroll-bar control
has the input focus, the user can use the keyboard to direct the
scrolling. Unlike standard scroll bars, a scroll-bar control provides
a built-in keyboard interface. Scroll-bar controls also can be used
for other purposes. For example, a scroll-bar control can be used
to select values from a range of values, such as a color from a
rainbow of colors.

Scroll-bar thumb

The scroll-bar thumb is the small rectangle in a scroll bar. It shows
the approximate location within the current document or file of
the data currently displayed in the client area. For example, the
thumb is in the middle of the scroll bar when page three of a five-
page document is in the client area.

The SetScrollPos function sets the thumb position in a scroll bar.
Since Windows does not automatically update the thumb position
when an application scrolls, SetScrollPos must be used to update
the thumb position. The GetScrollPos function retrieves the
current position.

A thumb position is an integer. The position is relative to the left

or upper end of the scroll bar, depending on whether the scroll

bar is horizontal or vertical. The position must be within the

scroll-bar range, which is defined by minimum and maximum

values. The positions are distributed equally along the scroll bar.

For example, if the range is 0 to 100, there are 100 positions along

the scroll bar, each equally spaced so that position 50 is in the
middle of the scroll bar. The initial range depends on the scroll

bar. Standard scroll bars have an initial range of 0 to 100; scroll-

bar controls have an empty range (both minimum and maximum

Chapter 1, Window manager intferface functions 69

Scrolling requests

70

Processing scroll
messages

values are zero) if no explicit range is given when the control is
created. The SetScrollRange function sets new minimum and
maximum values so that applications can change the range at any
time. The GetScrollRange function retrieves the current minimum
and maximum values. The minimum and maximum values can
be any integers. For example, a spreadsheet program with 255
rows can set the vertical scroll range to 1 to 255.

If SetScrollPos specifies a position value that is less than the
minimum or more than the maximum, the minimum or
maximum value is used instead. SetScrollPos moves the thumb
along the thumb positions.

A user makes a scrolling request by clicking in a scroll bar.
Windows sends the request to the given window in the form of
WM_HSCROLL and WM_VSCROLL messages. The [Param
parameter contains a position value and the handle of the scroll-
bar control that generated the message (IParam is zero if a
standard scroll bar generated the message). The wParam
parameter specifies the type of scroll, such as scroll up one line,
scroll down a page, or scroll to the bottom. The type of scroll is
determined by which area of the scroll bar the user clicks.

The user can also make a scrolling request by using the scroll-bar
thumb, the small rectangle inside the scroll bar. The user moves
the thumb by moving the mouse while holding the left mouse
button down when the cursor is in the thumb. The scroll bar
sends SB_ THUMBTRACK and SB_THUMBPOSITION flags with
a WM_HSCROLL or WM_VSCROLL message to an application as
the user moves the thumb. Each message specifies the current
position of the thumb.

A window that permits scrolling needs a standard scroll bar or a
scroll-bar control to let the user generate scrolling requests, and a
window function to process the WM_HSCROLL and
WM_VSCROLL messages that represent the scrolling requests.
Although the result of a scrolling request is entirely up to the
window, a window typically carries out a scroll by moving in
some direction from the current location or to a known beginning
or end, and by displaying the data at the new location. For

Software development kit

example, a word-processing application can scroll to the next line,
the next page, or to the end of the document.

Scrolling the

clientf area The simplest way to scroll is to erase the current contents of the
client area, and then paint the new information. This is the
method an application is likely to use with SB_PAGEUP,
SB_PAGEDOWN, SB_TOP, and SB_END requests where
completely new contents are required.

For some requests, such as SB_LINEUP and SB_LINEDOWN, not
all the contents need to be erased, since some will still be visible
after the scroll. The ScrollWindow function preserves a portion of
the client area’s contents, moves the preserved portion the
specified amount, and prepares the rest of the client area for
painting new information. ScrollWindow uses the BitBIt function
to move a specific part of the client area to a new location within
the client area. Any part of the client area that is uncovered (not in
the part to be preserved) is invalidated and will be erased and
painted over at the next WM_PAINT message.

ScrollWindow also lets an application clip a part of the client area
from the scroll. This is to keep items that have fixed positions in
the client area, such as child windows, from moving. This action
automatically invalidates the part of the client area that is to
receive the new information so that the application does not have
to compute its own clipping regions.

Hiding a standard

scroll bar For standard scroll bars, if the minimum and maximum values
are equal, the scroll bar is considered disabled and is hidden. This
is the way to temporarily hide a scroll bar when it is not needed
for the current contents of the client area.

The SetScrollRange function hides and disables a standard scroll
bar when it sets the minimum and maximum values to equal
values. No scrolling requests can be made through the scroll bar
when it is hidden. SetScrollRange enables the scroll bar and
shows it again when it sets the minimum and maximum values to
unequal values. The ShowScrollBar function can also be used to
hide or show a scroll bar. It does not affect the scroll bar’s range or
thumb position.

Chapter 1, Window manager interface functions 71

Menu functions

72

Menu functions create, modify, and destroy menus. A menu is an
input tool in a Windows application that offers users one or more
choices, which they can select with the mouse or keyboard. An
item in a menu bar can display a pop-up menu, and any item in a
pop-up menu can display another pop-up menu. In addition, a
pop-up menu can appear anywhere on the screen. The following
list briefly describes each menu function:

Function Description

AppendMenu Appends a menu item to a menu.

CheckMenultem Places or removes checkmarks next to
pop-up menu items.

CreateMenu Creates an empty menu.

CreatePopupMenu Creates an empty pop-up menu.

DeleteMenu Removes a menu item and destroys any
associated pop-up menus.

DestroyMenu Destroys the specified menu.

DrawMenuBar Redraws a menu bar.

EnableMenultem Enables, disables, or grays a menu item.

GetMenu Retrieves a handle to the menu of a

specified window.

GetMenuCheckMarkDimensions

GetMenultemCount
GetMenultem!D
GetMenuState
GetMenuString
GetSubMenu

GetSystemMenu
HiliteMenultem
InsertMenu
LoadMenulndirect
ModifyMenu
RemoveMenu

SetMenu
SetMenultemBitmaps

TrackPopupMenu

Retrieves the dimensions of the default
menu checkmark bitmap.

Returns the count of items in a menu.
Returns the item’s identification.

Obtains the status of a menu item.

Copies a menu label into a string,.
Retrieves the menu handle of a pop-up
menu.

Accesses the System menu for copying and
modification.

Highlights or removes the highlighting
from a top-level (menu-bar) menu item.
Inserts a menu item in a menu.

Loads a menu resource.

Changes a menu item.

Removes an item from a menu but does not
destroy it.

Specifies a new menu for a window.
Associates bitmaps with a menu item for
display when an item is and is not checked.
Displays a pop-up menu at a specified
screen location and tracks user interaction
with the menu.

Software development kit

Information functions

Information functions obtain information about the number and
position of windows on the screen. The following list briefly
describes each information function:

Function

Description

AnyPopup

ChildWindowFromPoint

EnumChildWindows
EnumTaskWindows

EnumWindows
FindWindow

GetNextWindow
GetParent
GetTopWindow
GetWindow
GetWindowTask
IsChild
IsWindow
SetParent

WindowFromPoint

Indicates whether any pop-up window
exists.

Determines which child window contains a

specific point.

Enumerates the child windows that belong

to a specific parent window.

Enumerates all windows associated with
given task.

Enumerates windows on the display.
Returns the handle of a window with the
given class and caption.

Returns a handle to the next or previous
window.

Retrieves the handle of the specified
window’s parent window.

Returns a handle to the top-level child
window.

Returns a handle from the window
manager’s list.

Returns the handle of a task associated
with a window.

Determines whether a window is the
descendent of a specified window.
Determines whether a window is a valid,
existing window.

Changes the parent window of a child
window.

Identifies the window containing a
specified point.

a

System functions

System functions return information about the system metrics,
color, and time. The following list briefly describes each system

function:

Chapter 1, Window manager interface functions

73

Function

Description

GetCurrentTime

GetSysColor
GetSystemMetrics

SetSysColors

Returns the time elapsed since the system
was booted.

Retrieves the system color.

Retrieves information about the system
metrics.

Changes one or more system colors.

Clipboard functions

Error functions

Clipboard functions carry out data interchange between Windows
applications. The clipboard is the place for this interchange; it
provides a place from which applications can pass data handles to
other applications. The following list briefly describes each

clipboard function:

Function

Description

ChangeClipboardChain

CloseClipboard
EmptyClipboard

EnumClipboardFormats
GetClipboardData
GetClipboardFormatName
GetClipboardOwner
GetClipboardViewer
GetPriorityClipboardFormat
IsClipboardFormatAvailable
OpenClipboard
RegisterClipboardFormat

SetClipboardData
SetClipboardViewer

Removes a window from the chain of
clipboard viewers.

Closes the clipboard.

Empties the clipboard and reassigns
clipboard ownership.

Enumerates the available clipboard
formats.

Retrieves data from the clipboard.
Retrieves the clipboard format.
Retrieves the window handle associated
with the current clipboard owner.
Retrieves the handle of the first window in
the clipboard viewer chain.

Retrieves data from the clipboard in the
first format in a prioritized format list.
Returns TRUE if the data in the given
format is available.

Opens the clipboard.

Registers a new clipboard format.
Copies a handle for data.

Adds a handle to the clipboard viewer
chain.

74

Error functions display errors and prompt the user for a response.
The following list briefly describes each error function:

Software development kit

Caret functions

Function Description

FlashWindow Flashes the window by inverting its
active/inactive state.

MessageBeep Generates a beep on the system speaker.

MessageBox Creates a window with the given text and
caption.

Creating and
displaying a caret

Caret functions affect the Windows caret, which is a flashing line,
block, or bitmap that marks a location in a window’s client area.
The caret is especially useful in word-processing applications to
mark a location in text for keyboard editing. These functions
create, destroy, display, hide, and alter the blink time of the caret.
The following list briefly describes each caret function:

Function Description

CreateCaret Creates a caret.

DestroyCaret Destroys the current caret.
GetCaretBlinkTime Returns the caret flash rate.
GetCaretPos Returns the current caret position.
HideCaret Removes a caret from a given window.
SetCaretBlinkTime Establishes the caret flash rate.
SetCaretPos Moves a caret to the specified position.
ShowCaret Displays the newly created caret or

redisplays a hidden caret.

Windows forms a caret by inverting the pixel color within the
rectangle given by the caret’s position and its width and height.
Windows flashes the caret by alternately inverting the display,
and then restoring it to its previous appearance. The caret blink
time (in milliseconds) defines the elapsed time between inverting
and restoring the display. A complete flash (on-off-on) takes twice
the blink time.

The CreateCaret function creates the caret shape and assigns
ownership of the caret to the given window. The caret can be
solid or gray, or, for bitmap carets, any desired pattern. The caret
can have any shape, but typical shapes are a line, a solid block, a
gray block, and a pattern, as shown in Figure 1.1:

Chapter 1, Window manager interface functions 75

Figure 1.1
Caret shapes

Sharing the caret

Cursor functions

Underline

Vertical linel
Solid blocR

]

Gray blocl:
Bitmap @

Windows displays a solid caret by inverting everything in the
rectangle defined by the caret’s width and height. For a gray caret,
Windows inverts every other pixel. For a pattern, Windows
inverts only the white bits of the bitmap that defines the pattern.
The width and height of a caret are given in logical units, which
means they are subject to the window’s mapping mode.

There is only one caret, so only one caret shape can be active at a
time. Applications must cooperatively share the caret to prevent
undesired effects. Windows does not inform an application when
a caret is created or destroyed, so to be cooperative a window
should create, move, show, and hide a caret only when it has the
input focus or is active. A window should destroy the caret before
losing the input focus or becoming inactive.

Bitmaps for the caret can be created by using the CreateBitmap
function, or loaded from the application’s resources by using the
LoadBitmap function. Bitmaps loaded from resources can be
created by using the SDKPaint program and added to an
application’s resources by using the Resource Compiler. (For more
information about the Resource Compiler, see Tools.)

76

Cursor functions set, move, show, hide, and confine the cursor.
The cursor is a bitmap, displayed on the display screen, that
shows a current location. The following list briefly describes each
cursor function:

Software development kit

Function Description

ClipCursor Restricts the cursor to a given rectangle.

CreateCursor Creates a cursor from two bit masks.

DestroyCursor Destroys a cursor created by the
CreateCursor function.

GetCursorPos Stores the cursor position (in screen
coordinates).

LoadCursor Loads a cursor from the resource file.

SetCursor Sets the cursor shape.

SetCursorPos Sets the position of the cursor.

ShowCursor Increases or decreases the cursor display
count.

Poinfing devices

and the Cursor When a system has a mouse (or any other type of pointing
device), the cursor shows the current location of the mouse.
Windows automatically displays and moves the cursor when the
mouse is moved. If a system does not have a mouse, Windows
does not automatically display or move the cursor. Applications
can use the cursor functions to display or move the cursor when a
system does not have a mouse.

Displaying and

hiding the cursor In a system without a mouse, Windows does not display or move
the cursor unless the user chooses certain system commands, such
as commands for sizing and moving. This means that after a call
to SetCursor, the cursor remains on the screen until a subsequent
call to SetCursor with a NULL parameter removes the cursor, or
until a system command is carried out. Applications that wish to
use the cursor without a mouse usually simulate mouse input by
using keyboard keys, such as the DIRECTION keys, and display and
move the cursor by using the cursor functions.

The ShowCursor function shows or hides the cursor. It is used to
temporarily hide the cursor, and then restore it without changing
the current cursor shape. This function actually sets an internal
counter that determines whether the cursor should be drawn.
Hiding and showing are accumulative, so hiding the cursor five
times requires that it be shown five times before the cursor will be
drawn.

Chapter 1, Window manager interface functions 77

78

Positioning the

CUrSOr' The SetCursorPos and GetCursorPos functions set and retrieve

The cursor
hotfspot and
confining the
cursor

Creatfing a
custom cursor

the current screen coordinates of the cursor. Although the cursor
can be set at a location other than the current mouse location, if
the system has a mouse, the next mouse movement will redraw
the cursor at the mouse location. The SetCursorPos and
GetCursorPos functions are most often used in applications that
use the keyboard and specified key strokes to move the cursor.
Notice that screen coordinates are not affected by the mapping
mode in a window’s client area.

A cursor has a hotspot. When Windows draws the cursor, it
always places the hotspot over the point on the display screen

that represents the current position of the mouse or keyboard
DIRECTION key. For example, the hotspot on the pointer is the

point at the tip of the arrow.

The ClipCursor function confines the cursor to a given rectangle
on the display screen. The cursor can move to the edge of the
rectangle but cannot move out of it. ClipCursor is typically used
to restrict the cursor to a given window such as a dialog box that
contains a warning about a serious error. The rectangle is always
given in screen coordinates and does not have to be within the
window of the currently running application.

The SetCursor function sets the cursor shape and draws the
cursor. When a system has a mouse, Windows automatically
changes the shape of the cursor when it crosses a window border
or enters a different part of a window, such as a title or menu bar.
It uses standard cursor shapes for the different parts of the screen,
such as a pointer in a title bar. The SetCursor function lets an
application delete the standard cursor and draw its own custom
cursor. The cursor keeps its new shape until the mouse moves or a
system command is carried out.

Software development kit

Hook functions

Filter-function
chain

Hook functions manage system hooks, which are shared
resources that install a specific type of filter function. A filter
function is an application-supplied callback function, specified by
the SetWindowsHook function, that processes events before they
reach any application’s message loop. Windows sends messages
generated by a specific type of event to filter functions installed
by the same type of hook. The following list briefly describes each
hook function:

Function Description

CallMsgFilter Passes a message and other data to the
current message-filter function.

DefHookProc Calls the next filter function in a filter-
function chain.

SetWindowsHook Installs a system and /or application filter
function.

UnhookWindowsHook Removes a Windows filter function from a

filter-function chain.

A filter-function chain is a series of connected filter functions for a
particular system hook. For example, all keyboard filter functions
are installed by WH_KEYBOARD and all journaling-record filter
functions are installed by WH_JOURNALRECORD. Applications
pass these filter functions to the system hooks with calls to the
SetWindowsHook function. Each call adds a new filter function to
the beginning of the chain. Whenever an application passes a
filter function to a system hook, it must reserve space for the
address of the next filter function in the chain. SetWindowsHook
returns this address.

Once each filter function completes its task, it must call the
DefHookProc function. DefHookProc uses the address stored in
the location reserved by the application to access the next filter
function in the chain.

To remove a filter function from a filter chain, an application must
call the UnhookWindowsHook function with the type of hook and
a pointer to the function.

Chapter 1, Window manager interface functions 79

Installing a filter
function

There are five types of standard window hooks and two types of
debugging hooks. The following table lists each type and
describes its purpose:

Type Purpose
WH_CALLWNDPROC Installs a window function filter.
WH_GETMESSAGE Installs a message filter (on debugging

versions only).
WH_JOURNALPLAYBACK Installs a journaling playback filter.
WH_JOURNALRECORD Installs a journaling record filter.

WH_KEYBOARD Installs a keyboard filter.
WH_MSGFILTER Installs a message filter.
WH_SYSMSGFILTER Installs a system-wide message filter.

The WH_CALLWNDPROC and WH_GETMESSAGE hooks will
affect system performance. They are supplied for debugging
purposes only.

To install a filter function, an application must do the following:
Export the function in its module definition file.

Obtain the function’s address by using the MakeProclInstance
function.

Call the SetWindowsHook function, specifying the type of hook
function and the address of the function (returned by
MakeProcinstance).

Store the return value from SetWindowsHook in a reserved
location. This value is the address of the previous filter function.

Filter functions and the return value from SetWindowsHook must
reside in fixed library code and data. This allows these hooks to
operate in a large-frame EMS environment.

Property functions

80

Property functions create and access a window’s property list. A
property list is a storage area that contains handles for data that
the application wishes to associate with a window. The following
list briefly describes each property function:

Software development kit

Function Description

EnumProps Passes the properties of a window to an
enumeration function.

GetProp Retrieves a handle associated with a string
from the window property list.

RemoveProp Removes a string from the property list.

SetProp Copies a string and a data handle to a

window’s property list.

Using property lists Once a data handle is in a window’s property list, any application
can access the handle if it can also access the window. This makes
the property list a convenient way to make data (for example,
alternate captions or menus for the window) available to the
application when it wishes to modify the window.

Every window has its own property list. When the window is
created, the list is empty. The SetProp function adds entries to the
list. Each entry contains a unique ANSI string and a data handle.
The ANSI string identifies the handle; the handle identifies the
data associated with the window, as illustrated in Figure 1.2:

Figure 1.2 ANSI String Handle
Property list
"binary data" hMemory
"icon" hicon
"screen text" hText

The data handle can identify any object or memory block that the
application wishes to associate with the window. The GetProp
function retrieves the data handle of an entry from the list
without removing the entry. The handle can then be used to
retrieve or use the data. The RemoveProp function removes an
entry from the list when it is no longer needed.

Although the purpose of the property list is to associate data with
a window for use by the application that owns the window, the
handles in a property list are actually accessible to any application
that has access to the window. This means an application can
retrieve and use a data handle from the property list of a window
created by another application. But using another application’s
data handles must be done with care. Only shared, global

For more information, séé memory objects, such as GDI drawing objects, can be used by

Clipboard funchc;nsé’ o4 other applications. If a property list contains local or global
page 72 memory handles or resource handles, only the application that

Chapter 1, Window manager interface functions 81

has created the window may use them. Global memory handles
can be shared with other applications by using the Windows
clipboard. Local memory handles cannot be shared.

The contents of a property list can be enumerated by using the
EnumProps function. The function passes the string and data
handle of each entry in the list to an application-supplied
function. The application-supplied function can carry out any
task.

The data handles in a property list always belong to the
application that created them. The property list itself, like other
window-related data, belongs to Windows. A window’s property
list is actually allocated in the the USER heap, the local heap of
the USER library. Although there is no defined limit to the
number of entries in a property list, the actual number of entries
depends on how much room is available in the USER heap. This
depends on how many windows, window classes, and other
window-related objects have been created.

The application creates the entries in a property list. Before a
window is destroyed or the application that owns the window
terminates, all entries in the property list must be removed by
using the RemoveProp function. Failure to remove the entries
leaves the property list in the USER heap and makes the space it
occupies unusable for subsequent applications. This can
ultimately cause an overflow of the USER heap. Entries in the
property list can be removed at any time by using the
RemoveProp function. If there are entries in the property list
when the WM_DESTROY message is received for the window,
the entries must be removed at that time. To ensure that all entries
are removed, use the EnumProps function to enumerate all
entries in the property list. An application should remove only
those properties that it added to the property list. Windows adds
properties for its own use and disposes of them automatically. An
application must not remove properties which Windows has
added to the list.

Rectangle functions

82

Rectangle functions alter and obtain information about rectangles
in a window’s client area. In Windows, a rectangle is defined by a
RECT data structure. The structure contains two points: the

upper-left and lower-right corners of the rectangle. The sides of a

Software development kit

Using rectangles
in a Windows
application

Rectangle
coordinates

rectangle extend from these two points and are parallel to the x-
and y-axes. The following list briefly describes each rectangle
function:

Function Description

CopyRect Makes a copy of an existing rectangle.

EqualRect Determines whether two rectangles are
equal.

InflateRect E?(pands or shrinks the specified rectangle.

IntersectRect Finds the intersection of two rectangles.

OffsetRect Moves a given rectangle.

PtinRect Indicates whether a specified point lies
within a given rectangle.

SetRectEmpty Sets a rectangle to an empty rectangle.

UnionRect Stores the union of two rectangles.

Rectangles are used to specify rectangular areas on the display or
in a window, such as the cursor clipping area, the client repaint
area, a formatting area for formatted text, and the scroll area.
Rectangles are also used to fill, frame, or invert an area in the
client area with a given brush, and to retrieve the coordinates of a
window or a window’s client area.

Since rectangles are used for many different purposes, the
rectangle functions do not use an explicit unit of measure. Instead,
all rectangle coordinates and dimensions are given in signed,
logical values. The actual units are determined by the function in
which the rectangle is used.

Coordinate values for a rectangle can be within the range -32,768
to 32,767. Widths and heights, which must be positive, are within
the range 0 to 32,767. This means that a rectangle whose left and
right sides or whose top and bottom are further apart than 32,768
units is not valid. Figure 1.3 shows a rectangle whose upper-left
corner is left of the origin, but whose width is less than 32,767:

Chapter 1, Window manager interface functions 83

84

Figure 1.3
Rectangle limits

Creating and
manipulating
rectangles

VA (16000,2000)
@
(-16000,-2000) A\
\\ ~ _/

Width = 16000 - (-16000) = 32000 <= 32767

The SetRect function creates a rectangle, the CopyRect function
makes a copy of a given rectangle, and the SetRectEmpty
function creates an empty rectangle. An empty rectangle is any
rectangle that has zero width, zero height, or both.

The InflateRect function increases or decreases the width and
height of a rectangle. It adds or removes width from both ends of
the rectangle, or adds or removes height from both the top and
bottom of the rectangle.

The OffsetRect function moves the rectangle by a given amount.
It moves the corners of the rectangle by adding the given x and y
amounts to the corner coordinates.

The PtinRect function determines whether a given point lies
within a given rectangle. The point is in the rectangle if it lies on
the left or top side or is completely within the rectangle.

The IsRectEmpty function determines whether the given
rectangle is empty.

The IntersectRect function creates a new rectangle that is the
intersection of two existing rectangles. The intersection is the
largest rectangle contained in both existing rectangles. The
intersection of two rectangles is shown in Figure 1.4

Software development kit

Figure 1.4
Intersection of two

rectangles |_ Rectangle 1
Intersection
Rectangle 2 J
The UnionRect function creates a new rectangle that is the union
of two existing rectangles. The union is the smallest rectangle that
contains both existing rectangles. The union of two rectangles is
shown in Figure 1.5:
Figure 1.5 Union
Union of two rectangles /- ~
(3
~Rectangle 1
Union J
Rectangle 2
\

For information about functions that draw ellipses and polygons,
see "Ellipse and polygon functions,” on page 109. For more
information on topics related to window manager interface
functions, see the following;:

Topic Reference

Function descriptions Reference, Volume 1: Chapter 4,
"Functions directory”

Windows messages Reference, Volume 1: Chapter 5,

"Messages overview," and Chapter 6,
"Messages directory"

Windows data types and structures Reference, Volume 2: Chapter 7, "Data
types and structures”

Using the Resource Compiler Reference, Volume 2: Chapter 8,
"Resource script statements”

Chapter 1, Window manager interface functions 85

86

Software development kit

Graphics device interface functions

This chapter describes the functions that perform device-
independent graphics operations within a Windows application,
including creating a wide variety of line, text, and bitmap output
on many output devices. These functions constitute the Windows
graphics device interface (GDI). The chapter covers the following
function categories:

m Device-context functions

@ Drawing-tool functions

@ Color-palette functions

m Drawing-attribute functions
& Mapping functions

m Coordinate functions

B Region functions

m Clipping functions

m Line-output functions

n Ellipse and polygon functions
o Bitmap functions

m Text functions

o Font functions

o Metafile functions

& Printer-contro] functions

m Printer-escape function
Environment functions

Chapter 2, Graphics device interface functions 87

Device-context functions

Information flow to an output

88

Figure 2.1

device

Device-context
attributes

Device-context functions create, delete, and restore device
contexts (DC). A device context is a link between a Windows
application, a device driver, and an output device, such as a
printer or plotter.

Figure 2.1 shows the flow of information from a Windows
application through a device context and a device driver to an
output device:

| mam——— i
GDI Output
" put
Application [pevice ¥ Dcﬁi\cgre device
context

Any Windows application can use GDI functions to access an
output device. GDI passes calls (which are device independent)
from the application to the device driver. The device driver then
translates the calls into device-dependent operations.

The following list briefly describes each device-context function:

Function Description

CreateCompatibleDC Creates a memory device context.

CreateDC Creates a device context.

CreatelC Creates an information context.

DeleteDC Deletes a device context.

GetDCOrg Retrieves the origin of a specified device
context.

RestoreDC Restores a device context.

SaveDC Saves the current state of the device
context.

Device-context attributes describe selected drawing objects (pens
and brushes), the selected font and its color, the way in which
objects are drawn (or mapped) to the device, the area on the
device available for output (clipping region), and other important
information. The data structure that contains these attributes is
called the DC data block.

Software development kit

Table 2.1

Default device-context
attributes and related GDI
functions

Table 2.1 lists the default device-context attributes and the GDI
functions that affect or use these attributes:

Attribute Default GDI Functions
Background color White SetBkColor
Background mode OPAQUE SetBkMode
Bitmap No default CreateBitmap

Brush

Brush origin

Clipping region

Color palette

Current pen position

Drawing mode
Font

Intercharacter spacing

Mapping mode
Pen

Polygon-filling mode

Stretching mode
Text color
Viewport extent
Viewport origin
Window extent
Window origin

WHITE_BRUSH

0,0)

Display surface

CreateBitmaplindirect
CreateCompatibleBitmap
SelectObject
CreateBrushindirect
CreateDIBPatternBrush
CreateHatchBrush
CreatePatternBrush
CreateSolidBrush
SelectObject
SetBrushOrg
UnrealizeObject
ExcludeClipRect
IntersectClipRect
OffsetClipRgn
SelectClipRgn

DEFAULT_PALETTE CreatePalette

0,0)
R2_COPYPEN
SYSTEM_FONT

0
MM_TEXT
BLACK_PEN

ALTERNATE
BLACKONWHITE
Black

(1,1

0,0

(1,1)

0,0

RealizePalette
SelectPalette
MoveTo

SetROP2
CreateFont
CreateFontindirect
SelectObject
SetTextCharacterExtra
SetMapMode
CreatePen
CreatePenlindirect
SelectObject
SetPolyFillMode
SetStretchBltMode
SetTextColor
SetViewportExt
SetViewportOrg
SetWindowExt
SetWindowOrg

Chapter 2, Graphics device interface functions

89

Saving a device
context

Deleting a device
context

Compatible
device confexts

Information
contexts

90

Occasionally, it is necessary to save a device context so that the
original attributes will be available at a later time. For example, a
Windows application may need to save its original clipping
region so that it can restore the client area’s original state after a
series of alterations occur. The SaveDC and RestoreDC functions
make this possible.

The DeleteDC function deletes a device context and ensures that
shared resources are not removed until the last context is deleted.
The device driver is a shared resource.

The CreateCompatibleDC function causes Windows to treat a
portion of memory as a virtual device. This means that Windows
prepares a device context that has the same attributes as the
device for which it was created, but the device context has no
connected output device. To use the compatible device context,
the application creates a compatible bitmap and selects it into the
device context. Any output it sends to the device is drawn in the
selected bitmap. Since the device context is compatible with some
actual device, the context of the bitmap can be copied directly to
the actual device, or vice versa. This also means that the
application can send output to memory (prior to sending it to the
device). Note that the CreateCompatibleDC function works only
for devices that have BitBlt capabilities.

The CreatelC function creates an information context for a device.
An information context is a device context with limited
capabilities; it cannot be used to write to the device. An
application uses an information context to gather information
about the selected device. Information contexts are useful in large
applications that require memory conservation.

By using an information context and the GetDeviceCaps function,
you can obtain the following device information:

Software development kit

r Device technology

@ Physical display size

o Color capabilities of the device

o Color-palette capabilities of the device

o Drawing objects available on the device
o Clipping capabilities of the device

o Raster capabilities of the device

o Curve-drawing capabilities of the device
m Line-drawing capabilities of the device
o Polygon-drawing capabilities of the device
o Text capabilities of the device

Drawing-tool functions

Drawing-tool functions create and delete the drawing tools that
GDI uses when it creates output on a device or display surface.
The following list briefly describes each drawing-tool function:

Function Description

CreateBrushindirect Creates a logical brush.

CreateDIBPatternBrush Creates a logical brush that has a pattern
defined by a device-independent bitmap
(DIB).

CreateHatchBrush Creates a logical brush that has a hatched
pattern.

CreatePatternBrush Creates a logical brush that has a pattern
defined by a memory bitmap.

CreatePen Creates a logical pen.

CreatePenindirect Creates a logical pen.

CreateSolidBrush Creates a logical brush.

DeleteObject Deletes a logical pen, brush, font, bitmap,
or region.

EnumObjects Enumerates the available pens or brushes.

GetBrushOrg Retrieves the current brush origin for a
device context.

GetObject Copies the bytes of logical data that define
an object.

GetStockObject Retrieves a handle to one of the predefined
stock pens, brushes, fonts, or color palettes.

SelectObject Selects an object as the current object.

SetBrushOrg Sets the origin of all brushes selected into a
given device context.

UnrealizeObject Directs GDI to reset the origin of the given
brush.

Chapter 2, Graphics device interface functions 1

Drawing-tool uses

Brushes

Figure 2.2
Hatched brush patterns

92

A Windows application can use any of three tools when it creates
output: a bitmap, a brush, or a pen. An application can use the
pen and brush together, outlining a region or object with the pen
and filling the region’s or object’s interior with the brush. GDI
allows the application to create pens with solid colors, bitmaps
with solid or combination colors, and brushes with solid or
combination colors. (The available colors and color combinations
depend on the capabilities of the intended output device.)

There are seven predefined brushes available in GDI; an
application selects any one of them by using the GetStockObject
function. The following list describes these brushes:

m Black m Light-Gray
m Dark-Gray m Null

u Gray White

m Hollow

There are six hatched brush patterns; an application can select any
one of these patterns by using the CreateHatchBrush function. (A
hatch line is a thin line that appears at regular intervals on a solid

background.) The following list describes these hatch patterns:

m Backward Diagonal m Forward Diagonal
m Cross m Horizontal
m Diagonal Cross m Vertical

Figure 2.2 shows each hatched brush pattern. A simple Windows
application created this figure:

HS_HORIZONTAL HS_BDIAGONAL HS_FDIAGONAL

HS_VERTICAL HS_CROSS HS_DIAGCROSS

Software development kit

Pens

Figure 2.3
Pen patterns

Color

Chapter 2, Graphics device interface functions

There are three predefined pens available in GDI; an application
selects any one of them by using the GetStockObject function.
The following list describes these pens:

o Black
o Null
o White

In addition to selecting a stock pen, an application creates an
original pen by using the GDI CreatePen function. This function
allows the application to select one of six pen styles, a pen width,
and a pen color (if the device has color capabilities). The pen style
can be solid, dashed, dotted, a combination of dots and dashes, or
null. The pen width is the number of logical units GDI maps to a
certain number of pixels (this number is dependent on the current
mapping mode if the pen is selected into a device context). The
pen color is an RGB color value.

Figure 2.3 shows a variety of pen patterns obtained from calls to
the CreatePen function. A simple Windows application created
this figure:

Solid Line width of 1
Dash Line width of 4
Dot Line width of 7

Line width of 10

n |

Dash and two dots Line width of 13

Many of the GDI functions that create pens and brushes require
that the calling application specify a color in the form of a
COLORREF value. A COLORREF value specifies color in one of
three ways:

o As an explicit RGB value
o As an index to a logical-palette entry
o As a palette-relative RGB value

93

"Color palette functions," on
page 95 describes Windows

94

color paletftes and the
functions used by an
application to exploit their
capabilities.

The second and third methods require the application to create a
logical palette.

An explicit RGB COLORREF value is a long integer that contains
ared, a green, and a blue color field. The first (low-order) byte
contains the red field, the second byte contains the green field,
and the third byte contains the blue field; the fourth (high-order)
byte must be zero. Each field specifies the intensity of the color;
zero indicates the lowest intensity and 255 indicates the highest.
For example, 0x00FF0000 specifies pure blue, and 0x0000FF00
specifies pure green. The RGB macro accepts values for the
relative intensities of the three colors and returns an explicit RGB
COLORREF value. When GDI receives the RGB value as a
function parameter, it passes the RGB color value directly to the
output device driver, which selects the closest available color on
the device. The GetNearestColor function returns the closest
logical color to a specified logical color that a given device can
represent.

If the device is a plotter, the driver converts the RGB value to a
single color that matches one of the pens on the device.

If the device uses color raster technology and the RGB value
specifies a color for a pen, the driver will select a solid color. If the
device uses color raster technology and the RGB value specifies a
color for a brush, the driver will select from a variety of available
color combinations. Since many color devices can display only a
few colors, the actual color is simulated by "dithering,” that is,
mixing pixels of the colors which the display can actually render.

If the device is monochrome (black-and-white), the driver will
select black, white, or a shade of gray, depending on the RGB
value. If the sum of the RGB values is zero, the driver selects a
black brush. If the sum of the RGB values is 765, the driver selects
a white brush. If the sum of the RGB values is between zero and
765, the driver selects one of the gray patterns available.

The GetRValue, GetGValue, and GetBValue functions extract the
values for red, green, and blue from an explicit RGB COLORREF
value.

Software development kit

Color-palette functions

Many color graphic displays are capable of displaying a wide
range of colors. In most cases, however, the actual number of
colors which the display can render at any given time is more
limited. For example, a display that is potentially able to produce
over 262,000 different colors may be able to show only 256 of
those colors at a time because of hardware limitations. In such
cases, the display device often maintains a palette of colors; when
an application requests a color that is not currently displayed, the
display device adds the requested color to the palette. However,
when the number of requested colors exceeds the maximum
number for the device, it must replace an existing color with the
requested color. As a result, if the total number of colors
requested by one or more windows exceeds the number available
on the display, many of the actual colors displayed will be
incorrect.

Windows color palettes act as a buffer between color-intensive
applications and the system, allowing an application to use as
many colors as needed without interfering with its own color
display or colors displayed by other windows. When a window
has input focus, Windows ensures that the window will display
all the colors it requests, up to the maximum number
simultaneously available on the display, and displays additional
colors by matching them to available colors. In addition,
Windows matches the colors requested by inactive windows as
closely as possible to the available colors. This significantly
reduces undesirable changes in the colors displayed in inactive
windows.

The following list briefly describes the functions an application
calls to use color palettes:

Function Description

AnimatePalette Replaces entries in a logical palette;
Windows maps the new entries into the
system palette immediately.

CreatePalette Creates a logical palette.

GetNearestPaletteindex Retrieves the index of a logical palette
entry most nearly matching a specified
RGB value.

GetPaletteEntries Retrieves entries from a logical palette.

GetSystemPaletteEntries Retrieves a range of palette entries from the
system palette.

Chapter 2, Graphics device inferface functions 95

96

How color
palettes work

GetSystemPaletteUse Determines whether an application has
access to the full system palette.

RealizePalette Maps entries in a logical palette to the
system palette.

SelectPalette Selects a logical palette into a device
context.

SetPaletteEntries Sets new palette entries in a logical palette;

Windows does not map the new entries to
the system palette until the application
realizes the logical palette.

SetSystemPaletteUse Allows an application to use the full
system palette.
UpdateColors Performs a pixel-by-pixel translation of

each pixel’s current color to the system
palette. This allows an inactive window to
correct its colors without redrawing its
client area.

Color palettes provide a device-independent method for accessing
the color capabilities of a display device by managing the device’s
physical (or system) palette, if one is available. Typically, devices
that can display at least 256 colors use a physical palette.

An application employs the system palette by creating and using
one or more logical palettes. Each entry in the palette contains a
specific color. Then, instead of specifying an explicit value for a
color when performing graphics operations, the application
indicates which color is to be displayed by supplying an index
into its logical palette.

Since more than one application can use logical palettes, it is
possible that the total number of colors requested for display can
exceed the capacity of the display device. Windows acts as a
mediator among these applications.

When a window requests that its logical palette be given its
requested colors (a process known as realizing its palette),
Windows first exactly matches entries in the logical palette to
current entries in the system palette.

If an exact match for a given logical-palette entry is not possible,
Windows sets the entry in the logical palette into an unused entry
in the system palette.

Finally, when all entries in the system palette have been used,
Windows takes these logical palette entries that do not exactly
match and matches them as closely as possible to entries already

Software development kit

Figure 2.4
Palette manager color-
mapping algorithm

in the system palette. To further aid this color matching, Windows
sets aside 20 static colors (called the "default palette”) in the
system palette to which it can match entries in a background
palette.

Windows always satisfies the color requests of the foreground
window first; this ensures that the active window will have the
best color display possible. For the remaining windows, Windows
satisfies the color requests of the window which most recently
received input focus, the window which was active before that
one, and so on.

Logical Palette 1

System Palette
- . - (Active Window)

NOORARWNH—O

Logical Palette 2

5 SN N i

T
[AREAAIREAARIA NS

W > 0w ® Ny O O A N 2 O

ONOGARWN—O

Figure 2.4 illustrates this process. In this figure, a hypothetical
display has a system palette capable of containing 12 colors. The
application that created Logical Palette 1 owns the active window
and was the first to realize its logical palette, which consists of 8
colors. Logical Palette 2 is owned by a window which realized its
logical palette while it was inactive.

Because the active window was active when it realized its palette,
Windows mapped all of the colors in Logical Palette 1 directly to
the system palette.

Three of the colors (1, 3, and 5) in Logical Palette 2 are identical to
colors in the system palette; to save space in the palette, then,
Windows simply matched those colors to the existing system
colors when the second application realized its palette. Colors 0, 2,

Chapter 2, Graphics device interface functions 97

98

Using a color
palette

4, and 6 were not already in the system palette, however, and so
Windows mapped those colors into the system palette.

Because the system palette is now full, Windows was not able to
map the remaining two colors (which do not exactly match
existing colors in the system palette) into the system palette.
Instead, it matched them to the closest colors in the system
palette.

Before drawing to the display device using a color palette, an
application must first create a logical palette by calling the
CreatePalette function and then call SelectPalette to select the
palette for the device context (DC) for the output device for which
it will be used. An application cannot select a palette into a device
context using the SelectObject function.

All functions which accept a color parameter accept an index to
an entry in the logical palette. The palette-index specifier is a long
integer value with the first bit in its high-order byte set to 1 and
the palette index in the two low-order bytes. For example,
0x01000005 would specify the palette entry with an index of 5.
The PALETTEINDEX macro accepts an integer value representing
the index of a logical-palette entry and returns a palette-index
COLORREF value which an application can use as a parameter for
GDI functions that require a color.

An application can also specify a palette index indirectly by using
a palette-relative RGB COLORREF value. If the target display
device supports logical palettes, Windows matches the palette-
relative RGB COLORREF value to the closest palette entry; if the
target device does not support palettes, then the RGB value is
used as though it were an explicit RGB COLORREF value. The
palette-relative RGB COLORREF value is identical to an explicit
RGB COLORREF value except that the second bit of the high-
order byte is set to 1. For example, 0x02FF0000 would specify a
palette-relative RGB COLORREF value for pure blue. The
PALETTERGB macro accepts values for red, green and blue, and
returns a palette-relative RGB COLORREF value which an
application can use as a parameter for GDI functions that require
a color.

If an application does specify an RGB value instead of a palette
entry, Windows will use the closest matching color in the default
palette of 20 static colors.

Software development kit

If the source and destination device contexts have selected and
realized different palettes, the BitBIt function does not properly
move bitmap bits to or from a memory device context. In this
case, you must call the GetDIBits with the wllsage parameter set to
DIB_RGB_COLORS to retrieve the bitmap bits from the source
bitmap in a device-independent format. You then use the
SetDIBits function to set the retrieved bits in the destination
bitmap. This ensures that Windows will properly match colors
between the two device contexts.

BitBIt can successfully move bitmap bits between two screen
display contexts, even if they have selected and realized different
palettes. The StretchBIt function properly moves bitmap bits
between device contexts whether or not they use different
palettes.

Drawing-atfribute functions

Background
mode and color

Drawing-attribute functions affect the appearance of Windows
output, which has four forms: line, brush, bitmap, and text. The
following list describes each drawing-attribute function:

Function Description

GetBkColor Returns the current background color.
GetBkMode Returns the current background mode.
GetPolyFillMode Retrieves the current polygon-filling mode.
GetROP2 Retrieves the current drawing mode.
GetStretchBItMode Retrieves the current stretching mode.
GetTextColor Retrieves the current text color.
SetBkColor Sets the background color.

SetBkMode Sets the background mode.
SetPolyFillMode Sets the polygon-filling mode.
SetROP2 Sets the current drawing mode.
SetStretchBltMode Sets the stretching mode.
SetTextColor Sets the text color.

Line output can be solid or broken (dashed, dotted, or a
combination of the two). If it is broken, the space between the
breaks can be filled by setting the background mode to OPAQUE
and selecting a color. By setting the background mode to
TRANSPARENT, the space between breaks is left in its original

Chapter 2, Graphics device interface functions 99

Stretch mode

Text color

state. The SetBkMode and SetBkColor functions accomplish this
task.

Brush output is solid, patterned, or hatched. The space between
hatch marks can be filled by setting the background mode to
OPAQUE and selecting a color. When Windows creates brush
output on a display, it combines the existing color on the display
surface with the brush color to yield a new and final color; this is
a binary raster operation. If the default raster operation is not
appropriate, a new one is chosen by using the SetROP2 function.

If an application copies a bitmap to a device and it is necessary to
shrink or expand the bitmap before drawing, the effects of the
StretchBIt and StretchDIBits functions can be controlled by
calling SetStretchBltMode to set the current stretch mode for a
device context. The stretch mode determines how lines eliminated
from the bitmap are combined.

The appearance of text output is limited only by the number of
available fonts and the color capabilities of the output device. The
SetBkColor function sets the color of the text background (the
unused portion of each character’s cell) and the SetTextColor
function sets the color of the character itself.

Mapping functions

100

Mapping functions alter and retrieve information about the GDI
mapping modes. In order to maintain device independence, GDI
creates output in a logical space and maps it to the display. The
mapping mode defines the relationship between units in the
logical space and pixels on a device. The following list briefly
describes each mapping function:

Function Description

GetMapMode Retrieves the current mapping mode.

GetViewportExt Retrieves a device context’s viewport
extents.

GetViewportOrg Retrieves a device context’s viewport
origin.

Software development kit

GDI mapping modes

GetWindowExt

GetWindowOrg
OffsetViewportOrg
OffsetWindowOrg
ScaleViewportExt
ScaleWindowExt
SetMapMode

SetViewportExt
SetViewportOrg
SetWindowExt
SetWindowOrg

Retrieves a device context’s window
extents.

Retrieves a device context’s window origin.
Modifies a viewport origin.

Modifies a window origin.

Modifies the viewport extents.

Modifies the window extents.

Sets the mapping mode of a specified
device context.

Sets a device context’s viewport extents.
Sets a device context’s viewport origin.
Sets a device context’s window extents.
Sets a device context’s window origin.

There are eight different mapping modes: MM_ANISOTROPIC,
MM_HIENGLISH, MM_HIMETRIC, MM_ISOTROPIC,
MM_LOENGLISH, MM_LOMETRIC, MM_TEXT, and
MM_TWIPS. Each mode has a specific use in a Windows
application. Table 2.1 summarizes the eight GDI mapping modes:

Mapping Mode

Intended Use

MM_ANISOTROPIC

MM_HIENGLISH

MM_HIMETRIC

MM_ISOTROPIC

MM_LOENGLISH

MM_LOMETRIC

MM_TEXT

MM_TWIPS

Used in applications that map one logical
unit to an arbitrary physical unit. The x- and
y-axes are arbitrarily scaled.

Used in applications that map one logical
unit to 0.001 inch. Positive y extends
upward.

Used in applications that map one logical
unit to 0.01 millimeter. Positive i extends
upward.

Used in applications that map one logical
unit to an arbitrary physical unit. One unit
along the x-axis is always equal to one unit
along the y-axis.

Used in applications that map one logical
unit to 0.01 inch. Positive y extends upward.
Used in applications that map one logical
unit to 0.1 millimeter. Positive y extends
upward. :
Used in applications that map one logica
unit to one pixel. Positive y extends
downward.

Used in applications that map one logical
unit to 1/1440 inch (1/20 of a printer’s
point). Positive y extends upward.

Chapter 2, Graphics device interface functions

101

Constrained
mMmapping modes

Logical/physical conversion
table

Partially
constrained and
unconstrained
mMapping modes

102

GDI classifies six of the mapping modes as constrained mapping
modes: MM_HIENGLISH, MM_HIMETRIC, MM_LOENGLISH,
MM_LOMETRIC, MM_TEXT, and MM_TWIPS. In each of these
modes, one logical unit is mapped to a predefined physical unit.
For instance, the MM_TEXT mode maps one logical unit to one
device pixel, and the MM_LOENGLISH mode maps one logical
unit to 0.01 inch on the device. These mapping modes are
constrained because the scaling factor is fixed, so an application
cannot change the number of logical units that Windows maps to
a physical unit. Table 2.1 shows the number of logical units in
various mapping modes that result in a certain physical unit:

Mapping Mode Logical Units Physical Unit
MM_HIENGLISH 1000 1 inch
MM_HIMETRIC 100 1 millimeter
MM_LOENGLISH 100 1inch
MM_LOMETRIC 10 1 millimeter
MM_TEXT 1 Device pixel
MM_TWIPS 1440 1 inch

The unconstrained mapping modes, MM_ISOTROPIC and
MM_ANISOTROPIC, use two rectangular regions to derive a
scaling factor and an orientation: the window and the viewport.
The window lies within the logical-coordinate space and the
viewport lies within the physical-coordinate space. Both possess
an origin, an x-extent, and a y-extent. The origin may be any one
of the four corners. The x-extent is the horizontal distance from
the origin to its opposing corner. The y-extent is the vertical
distance from the origin to its opposing corner. Windows creates a
horizontal scaling factor by dividing the viewport’s x-extent by
the window’s x-extent and creates a vertical scaling factor by
dividing the viewport’s y-extent by the window’s y-extent. These
scaling factors determine the number of logical units that
Windows maps to a number of pixels. In addition to determining
scaling factors, the window and viewport determine the
orientation of an object. Windows always maps the window
origin to the viewport origin, the window x-extent to the viewport
x-extent, and the window y-extent to the viewport y-extent.

Software development kit

Partially constrained An application creates output with equally scaled axes by using

mapping mode the MM_ISOTROPIC mapping mode. This means that Windows
will map a symmetrical object (for example, a square or a circle) in
the logical space as a symmetrical object in the physical space. In
order to maintain this symmetry, GDI shrinks one of the viewport
extents. The amount of shrinkage depends on the requested
extents and the aspect ratio of the device. This mapping mode is
called partially constrained because the application does not have
complete control in altering the scaling factor.

Unconstrained An application can completely alter the horizontal and vertical
mapping mode scaling factors by using the MM_ANISOTROPIC mapping mode
and setting the window and viewport extents to any value after
selecting this mapping mode. Windows will not alter either
scaling factor in this mode.

Transformation
equations GDI uses the following equations to transform logical points to
device points, and device points to logical points:
o Transforming logical points to device points:
Dx = (Lx - xWO) * xVE/XxWE + xVO
Dy = (Ly - yWO) * yVE/yWE + yVO
Transforming device points to logical points:
Lx = (Dx —xVO) * xWE/XVE + xWO
Ly = (Dy - yVO) * yWE/yVE + yWO
The following list describes the variables used in these
transformation equations:

Variable Description

xWO Window origin x-coordinate

ywoO Window origin y-coordinate

xWE Window extent x-coordinate

yWE Window extent y-coordinate

xVO Viewport origin x-coordinate

yvO Viewport origin y-coordinate

XVE Viewport extent x-coordinate

yVE Viewport extent y-coordinate

Lx Logical-coordinate system x-coordinate

Chapter 2, Graphics device interface functions 103

104

Example:
MM_TEXT

Figure 2.5
Mapping with MM_TEXT

Ly Logical-coordinate system y-coordinate
Dx Device x-coordinate
Dy _ Device y-coordinate

The following four ratios are scaling factors:

xVE/xWE
yVE/yWE
xWE/xVE
yWE/yVE

They are used to determine the necessary stretching or
compressing of logical units. The subtraction and addition of
viewport and window origins is referred to as the translational
component of the equation.

The default mapping mode is MM_TEXT. In this mapping mode,
one logical unit is mapped to one pixel on the device or display.

A simple Windows application created three rectangles as they
appear in the logical and physical coordinate spaces when
MM_TEXT is the mapping mode, as shown in Figure 2.5. The
drawing on the left illustrates the logical space; the drawing on
the right illustrates the device, or physical, space. The rectangles
appear vertically elongated in the physical space because pixels
on the chosen display are longer than they are wide. The
rectangles appear to be upside-down because positive y extends
downward in the physical-coordinate system.

Logical Coordinate System Physical Coordinate System
y-axis Origin
4 Feeprr == ---- > x-axis
))

- > x-axis X
+) OM
y-axis

Software development kit

Example:
MM_LOENGLISH

Figure 2.6
Mapping with
MM_LOENGLISH

A Windows application created three rectangles and mapped
them from the logical space to the physical space by using the
MM_LOENGLISH mapping mode, as shown in Figure 2.6. The
drawing on the left illustrates how the rectangles appear in
relation to the x- and y-axes in the logical coordinate system. The
drawing on the right illustrates how the rectangles appear in
relation to the x- and y-axes in the physical coordinate system.

Logical Coordinate System Physical Coordinate System

y-axis

“0 + Origin — Ay x-axis 5

(') ' (+) +

> X-axis
+

Coordinate functions

Coordinate functions convert client coordinates to screen
coordinates (or vice versa), and determine the location of a
specific point. These functions are useful in graphics-intensive
applications. The following list briefly describes each coordinate
function:

Function Description

ChildWindowFromPoint Determines which child window contains a
specified point.

ClientToScreen Converts client coordinates into screen
coordinates.

DPtoLP Converts device points (that is, points
relative to the window origin) into logical
points.

LPtoDP Converts logical points into device points.

Chapter 2, Graphics device interface functions 105

ScreenToClient Converts screen coordinates into client
coordinates.

WindowFromPoint Determines which window contains a
specified point.

Region functions

For more information about Region functions create, alter, and retrieve information about
, .. Clipping functions, see regions. A region is an elliptical or polygonal area within a
Clipping functions" on page-

106, 'window that can be filled with graphical output. An application
uses these functions in conjunction with the clipping functions to
create clipping regions. The following list briefly describes each

region function:

Function Description

CombineRgn Combines two existing regions into a new
region.

CreateEllipticRgn Creates an elliptical region.

CreateEllipticRgnindirect Creates an elliptical region.

CreatePolygonRgn Creates a polygonal region.

CreatePolyPolygonRgn Creates a region consisting of a series of

closed polygons that are filled as though
they were a single polygon.

CreateRectRgn Creates a rectangular region.

CreateRectRgnindirect Creates a rectangular region.

CreateRoundRectRgn Creates a rounded rectangular region.

EqualRgn Determines whether two regions are
identical.

FillRgn Fills the given region with a brush pattern.

FrameRgn Draws a border for a given region.

GetRgnBox Retrieves the coordinates of the bounding
rectangle of a region.

InvertRgn Inverts the colors in a region.

OffsetRgn Moves the given region.

PaintRgn Fills the region with the selected brush
pattern.

PtinRegion Tests whether a point is within a region.

RectinRegion Tests whether any part of a rectangle is
within a region.

SetRectRgn Creates a rectangular region.

Clipping functions

Clipping functions create, test, and alter clipping regions. A
clipping region is the portion of a window’s client area where GDI

106 Software development kit

creates output; any output sent to that portion of the client area
which is outside the clipping region will not be visible. Clipping
regions are useful in any Windows application that needs to save
one part of the client area and simultaneously send output to
another. The following list briefly describes each clipping

function:

Function Description

ExcludeClipRect Excludes a rectangle from the clipping
region.

GetClipBox Copies the dimensions of a bounding
rectangle.

IntersectClipRect Forms the intersection of a clipping region
and a rectangle.

OffsetClipRgn Moves a clipping region.

PtVisible Tests whether a point lies in a region.

RectVisible Determines whether part of a rectangle lies
in a region.

SelectClipRgn Selects a clipping region.

Line-output functions

Line-output functions create simple and complex line output with
the selected pen. The following list briefly describes each line-
output function:

Function Description

Arc Draws an arc.

LineDDA Computes successive points on a line.

LineTo Draws a line with the selected pen.

MoveTo Moves the current position to the specified
point.

Polyline Draws a set of line segments.

Figure 2.7 shows an arc created by using the Arc function. The
upper portion of the illustration shows the arc as it would appear
on a display; the lower portion shows the arc suspended in its
bounding rectangle, which GDI uses to determine the size and
shape of the arc:

Chapter 2, Graphics device interface functions 107

Figure 2.7
Arc and its bounding
rectangle

Function
coordinates

Pen styles, colors,

108

widths

Line-output functions require coordinates in logical units, which
GDI uses to draw a line in logical space. The use of logical units
ensures device independence in Windows. GDI maps this line
from the logical space to the physical space on the device. The
number of logical units that GDI maps to a pixel depends on the
current mapping mode. When GDI draws a line, it excludes the
last specified point. For example, if the LineTo function is given
the arguments (X1, Y1) and (X2, Y2), the line will be drawn from
(X1, YD to (X2-1,Y2-1).

If an application draws lines and does not create a new pen, GDI
uses the default pen. This pen is black and is one pixel wide when
the mapping mode is MM_TEXT. An application can create a new
pen of a different width, style, and color by using the CreatePen
function. The new color is dependent on the color capabilities of
the output device. The new style can be solid, dotted, dashed, or a
combination of dotted and dashed. Once an application creates a
new pen, it can select it into a display context by using the
SelectObject function.

Figure 2.8 shows simple line output created by the LineTo and
MoveTo functions. The application created the rectangle on the
left by using a styled pen and the rectangle on the right by using a
solid pen:

Software development kit

Figure 2.8
Styled-Pen and Solid-Pen Styled pen Solid pen
Rectangles I

Ellipse and polygon functions

Ellipse and polygon functions draw ellipses and polygons. GDI
draws the perimeter of each object with the selected pen and fills
the interior by using the selected brush. These functions are
particularly useful in drawing and charting applications. The
following list briefly describes each ellipse and polygon function:

Function Description

Chord Draws a chord.

DrawFocusRect Draws a rectangle in the style used to
indicate focus.

Ellipse Draws an ellipse.

Pie Draws a pie.

Polygon Draws a polygon.

PolyPolygon Draws a series of closed polygons that are
filled as though they were a single polygon.

Rectangle Draws a rectangle.

RoundRect Draws a rounded rectangle.

Function

coordinates Ellipse and polygon functions require coordinates in logical units,
which GDI uses to determine the location and size of an object in
logical space. The use of logical units ensures device
independence in Windows. GDI uses a mapping function to map
logical units to pixels on the device. The number of logical units
that Windows maps to a pixel depends on the current mapping
mode. The default mapping mode, MM_TEXT, maps one logical
unit to one pixel.

When GDI draws a rectangle, it uses four arguments. The first
two arguments specify the rectangle’s upper-left corner. The last
two arguments do not actually specify part of the rectangle; they
specify the point adjacent to the lower-right corner. For example,
if the first point is specified by (X1, Y1) and the second point is

Chapter 2, Graphics device interface functions 109

Bounding
rectangles

specified by (X2, Y2), the rectangle’s upper-left corner will be (X1,
Y1) and the lower-right corner will be (X2 -1, Y2 - 1).

Instead of requiring a radius or circumference measurement, the
Chord, Ellipse, and Pie functions use a bounding rectangle to
define the size of the object they create. The bounding rectangle is
hidden; GDI uses it only to describe the object’s location and size.

For information about functions that alter or obtain information
about rectangles in a window’s client area, see "Rectangle
functions," on page 82.

Bitmap functions

110

Bitmap functions display bitmaps. A bitmap is a matrix of
memory bits that, when copied to a device, defines the color and
pattern of a corresponding matrix of pixels on the device’s display
surface. Bitmaps are useful in drawing, charting, and word-
processing applications because they let you prepare images in
memory and then quickly copy them to the display. The
following list briefly describes each bitmap function:

Function

Description

BitBIt

CreateBitmap
CreateBitmapindirect

CreateCompatibleBitmap
CreateDiscardableBitmap

ExtFloodFill

FloodFill
GetBitmapBits

GetBitmapDimension
GetPixel

LoadBitmap

PatBIt

SetBitmapBits

Copies a bitmap from a source to a
destination device.

Creates a bitmap.

Creates a bitmap described in a data
structure.

Creates a bitmap that is compatible
with a specified device.

Creates a discardable bitmap that is
compatible with a specified device.
Fills the display surface within a
border or over an area of a given
color.

Fills the display surface within a
border.

Retrieves the bits in memory for a
specific bitmap.

Retrieves the dimensions of a bitmap.
Retrieves the RGB value for a pixel.
Loads a bitmap from a resource file.
Creates a bit pattern.

Sets the bits of a bitmap.

Software development kit

SetBitmapDimension Sets the height and width of a bitmap.

SetPixel Sets the RGB value for a pixel.

StretchBit Copies a bitmap from a source to a
destination device (compresses or stretches,
if necessary).

Bitrnaps and

devices The relationship between bitmap bits in memory and pixels on a
device is device-dependent. On a monochrome device, the
correspondence is usually one-to-one, where one bit in memory
corresponds to one pixel on the device.

Device-

independent Microsoft Windows version 3.0 provides a set of functions that
bitmap functions define and manipulate color bitmaps which can be appropriately
displayed on any device with a given resolution, regardless of the
method by which the display represents color in memory. These
functions translate a device-independent bitmap specification into
the device-specific format used by the current display. The
following is a list of these functions:

Function Description

CreateDIBitmap Creates a device-specific memory bitmap
from a device-independent bitmap (DIB)
specification and optionally initializes bits
in the bitmap. This function is similar to
CreateBitmap.

GetDIBits Retrieves the bits in memory for a specific
bitmap in device-independent form. This
function is similar to GetBitmapBits.

SetDIBits Sets a memory bitmap’s bits from a DIB.
This function is similar to SetBitmapBits.

SetDIBitsToDevice Sets bits on a device surface directly from a
DIB.

StretchDIBits Moves a device-independent bitmap (DIB)

from a source rectangle into a destination
rectangle, stretching or compressing the
bitmap as required.

A device-independent bitmap specification consists of two parts:

1. A BITMAPINFO data structure that defines the format of the
bitmap and optionally supplies a table of colors used by the
bitmap

Chapter 2, Graphics device interface functions 111

Text functions

2. An array of bytes that contain the bitmap bit values

Depending on the values contained in the bitmap information
data structure, the bitmap bit values can specify explicit color
(RGB) values or indexes into the color table. In addition, the color
table can consist of indexes into the currently realized logical
palette instead of explicit RGB color values. It is important to note
that the coordinate-system origin for DIBs is the lower-left corner,
not the Windows default upper-left corner.

Font functions

Text functions retrieve text information, alter text alignment, alter
text justification, and write text on a device or display surface.
GDI uses the current font for text output. The following list briefly
describes each text function:

Function Description

ExtTextOut Writes a character string, within a
rectangular region, using the currently
selected font. The rectangular region can be
opaque (filled with the current background
color) and it can be a clipping region.

GetTabbedTextExtent Computes the width and height of a line of
text containing tab characters.

GetTextAlign Returns a mask of the text alignment flags.

GetTextExtent Uses the current font to compute the width
and height of text.

GetTextFace Copies the current font name to a buffer.

GetTextMetrics Fills the buffer with metrics for the selected
font.

SetTextAlign Positions a string of text on a display or
device.

SetTextJustification Justifies a text line.

TabbedTextOut Writes a character string with expanded
tabs, using the current font.

TextOut Writes a character string using the current
font.

112

Font functions select, create, remove, and retrieve information
about fonts. A font is a subset of a particular typeface, which is a
set of characters that share a similar fundamental design.

Software development kit

Figure 2.9
Fonts from two typefaces

The following list briefly describes each font function:

Function Description

AddFontResource Adds a font resource in the specified file to
the system font table.

CreateFont Creates a logical font that has the specified
characteristics.

CreateFontindirect Creates a logical font that has the specified
characteristics.

EnumFonts Enumerates the fonts available on a given
device.

GetCharWidth Retrieves the widths of individual
characters.

RemoveFontResource Removes a font resource from the font
table.

SetMapperFlags Alters the algorithm the font mapper uses.

A font family is a group of typefaces that have similar stroke-
width and serif characteristics. A typeface is a set of characters
(letters, numerals, punctuation marks, symbols) that share a
common design. Font characters share very specific
characteristics, such as point size and weight.

Note that the terms GDI uses to describe fonts, typefaces, and
families of fonts do not necessarily correspond to traditional
typographic terms.

The Helvetica typeface is an example of a familiar typeface. It
belongs to the Swiss font family. Available fonts within this
typeface include 8-point Helvetica bold and 10-point Helvetica
italic.

Figure 2.9 shows several fonts from the Helvetica and Courier
typefaces:

This is a line of 12 point Helvetica.
This is a line of 12 point Helvetica bold.

This is a line of 12 point Helvetica italic.

This is a line of 12 point Courier.
This is a line of 12 point Courier bold.

This is a line of 12 point Courier
italic.

Chapter 2, Graphics device interface functions 113

114

Font family

Figure 2.10
Cross-stroke and stem

Figure 2.11
Serifs

Font families

GDI organizes fonts by family; each family consists of typefaces
and fonts that share a common design. The families are divided
by stroke width and serif characteristics. The term stroke, which
means a horizontal or vertical line, comes from handwritten
characters composed of one or more pen strokes. The horizontal
stroke is called a cross-stroke. The main vertical line is called a
stem.

Figure 2.10 shows a lowercase f composed of a cross-stroke and a
stem with a loop at the top:

ECross-stroke

NA
fd—— Stem

Serifs are short cross-lines drawn at the ends of the main strokes
of a letter. If a typeface does not have serifs, it is generally called a
sans-serif (without serif) typeface. Figure 2.11 shows serifs:

— Serif
<4—— Serif
4/ & L(— Serif

GDI uses five distinct family names to categorize typefaces and
fonts. A sixth name is used for generic cases. Note that GDI's
family names do not correspond to traditional typographic
categories. Table 2.1 lists the font-family names and briefly
describes each family:

Name Description

Dontcare Generic family name. Used when information about a
font does not exist or does not matter.

Decorative Novelty fonts. Old English, for example.

Modern Constant stroke width (fixed-pitch), with or without

serifs. Fixed-pitch fonts are usually modern. Pica, Elite,
and Courier, for example.

Roman Variable stroke width (proportionally spaced), with
serifs. Times Roman, Palatino, and Century
Schoolbook, for example.

Software development kit

Script Designed to look like handwriting. Script and Cursive,
for example.

Swiss Variable stroke width (proportionally spaced), without
serifs. Helvetica and Swiss, for example.

Character cells

A character is the basic element in a font. In GDI, each character is
contained within a rectangular region known as a character cell.
This rectangular region consists of a specific number of rows and
columns, and possesses six points of measurement: ascent,
baseline, descent, height, origin, and width. The following list
describes these measurements:

Measurement Description

Ascent Specifies the distance in character-cell rows from
the character-cell baseline to the top of the
character cell.

Baseline Serves as the base on which all characters stand
(some lowercase letters have descenders, such as
the tail of the g or y, that descend below the
baseline).

Descent Specifies the distance in character-cell rows from
the character-cell baseline to the bottom of the
character cell.

Height Specifies the height of a character-cell row.

Origin Used as a point of reference when the character is
written on a device or a display surface. The
origin is the upper-left corner of the character
cell.

Width Specifies the width of a character-cell column.

Figure 2.12 shows a character cell that contains an uppercase A.
The baseline appears at the top of the second row. Note that the
uppercase A uses the baseline as its starting point. Also note that
the width and height values refer to the character-cell width and
height, not the width and height of the individual character:

Figure 2,12

Character-cell dimensions Origin

)
A Ascent HeLht
|

<-Width-» LDescent

Chapter 2, Graphics device interface functions 115

116

Altering
characters

[talic

Bold

Underline

Strikeout

Figure 2.13
Strikeout characters

Leading

Characters exist in many sizes and shapes. The following sections
describe how characters are altered in GDI to produce a particular
font.

For an italic font, GDI skews the characters so that they appear
slanted. When italicized, the base of the character remains intact
while the upper portion shifts to the right. The greatest amount of
shifting occurs at the top of the character, the least amount at the
base.

A font is made bold by increasing its weight, which refers to the
thickness of the lines or strokes that compose a character. Fonts
with a heavy weight are referred to as bold.

An underline font has a line under each character. When a
character is underlined, a solid line appears directly below the
baseline of the character cell.

A strikeout font has a solid horizontal line drawn through each
character. The position of this line within each character cell is
constant for a given font. Figure 2.13 shows characters that are
struck out:

Ala

This string of text
illustrates the—effeet

Leading is the distance from baseline to baseline of two adjacent
rows of text. When font designers develop a font, they specify that
a given amount of space should appear between rows. The
addition of this space ensures that a character is not obscured by
part of another character in an adjacent row. There are two ways
of adding this additional space: by inserting it within the
character cells of a font (internal leading) or by inserting it

Software development kit

between rows of text as they are printed on a device (external
leading).

Internal leading Internal leading refers to the space inserted within character cells
of a particular font. Only marks such as accents, umlauts, and
tildes in foreign character sets appear within the space allocated
for internal leading. Figure 2.14 shows two rows of text that use
internal leading:

Figure 2.14 Internal leading Top of character cell
Internal leading L

T
e .{f gKCharac!er—cel/ baseline

T

ABClT

Character-cell baseline

—

—

Bottom of
character cell

Externalleading External leading is space inserted between the top and bottom of
character cells in adjacent rows of text. The font designer must
specify the amount of external leading necessary to produce easily
readable text from a particular font. External leading is not built
into a font; you must add it before you print text on a device.
Figure 2.15 shows external leading;:

Figure 2,15

External leading A [S) C
Alblc

External
leading

L
T

Character set

All fonts use a character set. A character set contains punctuation
marks, numerals, uppercase and lowercase letters, and all other
printable characters. The designer of a character set assigns a
numeric value to each element in the set. You use this number to
access an element within the set. ’

Chapter 2, Graphics device inferface functions 117

ANS| character set

OEM character set

Symbol character set

118

Vendor-specific
character sets

Most character sets used in Windows are supersets of the U.S.
ASCII character set, which defines characters for the 96 numeric
values from 32 to 127. There are four major groups of character
sets:

m ANSI m Symbol
s OEM m Vendor specific

The ANSI character set is the most commonly used character set.
The blank character is the first character in the ANSI character set.
It has a hexadecimal value of 0x20, which is equivalent to the
decimal value 32. The last character in the ANSI character set has
a hexadecimal value of OxFF, which is equivalent to the decimal
value 255.

Many fonts specify a default character. Whenever a request is
made for a character not in the set, this default character is given.
Most fonts using the ANSI character set specify the period (.) as
the default character. The hexadecimal value for the period is
0x2E, or decimal 46 in the ANSI character set.

Fonts use a break character to separate words and justify text.
Most fonts using the ANSI character set specify the blank
character, whose hexadecimal value is 0x20, decimal 32.

Windows supports a second character set, referred to as the OEM
character set. This is generally the character set used internally by
DOS for screen display. Characters 32 to 127 of the OEM set are
usually identical to the same characters in the U.S. ASCII set,
which are also in the ANSI set. The remaining characters in the
OEM set (0 to 31, and 128 to 255) correspond to the characters
which may be shown on the computer’s DOS display, and
generally differ from ANSI characters.

The symbol character set contains special characters typically
used to represent mathematical and scientific formulas.

Many printers and other output devices contain fonts based on
character sets which differ from the ANSI and OEM sets, such as
the EBCDIC character set. In such cases, the printer driver must
translate from the ANSI character set to one or more of the sets
provided by the printer or other device.

Software development kit

Pitch

The term pitch traditionally refers to the number of characters
from a particular font that will fit in a single inch. GDI, however,
uses this term differently. The term fixed-pitch refers to a font
whose character-cell size is constant for each character. The term
variable-pitch refers to a font whose character cells vary in size,
depending on the actual width of the characters.

Average character Variable-pitch fonts use the average character width to specify the
width average width of character cells in the font. Since there is no
variance in character-cell width for fixed-pitch fonts, the average
character width specifies the character width of any character in
the fixed-pitch font.

Maximum character Variable-pitch fonts use the maximum character width to specify
width the maximum width of any character cell in the font. Since there is
no variance in character width for fixed-pitch fonts, the maximum
character width is equivalent to the average character width in the
fixed-pitch font.

Digitized aspect When raster fonts are created, they are designed with one
particular aspect ratio in mind. The aspect ratio is the ratio of the
width and height of a device’s pixel. GDI maintains a record of the
ideal x-aspect and y-aspect for individual fonts. The ideal x-aspect
is the width value from the aspect ratio of the device. The ideal y-
aspect is the height value from the aspect ratio of the device.
These values are called the digitized aspects for x and y. The
GetAspectRatioFilter function retrieves the setting for the current
aspect-ratio filter. Windows provides a special filter, the aspect-
ratio filter, to select fonts designed for a particular aspect ratio
from all of the available fonts. The filter uses the aspect ratio
specified by the SetMapperFlags function.

Overhang When a particular font is not available on a device, GDI
sometimes synthesizes that font. The process of synthesizing may
add width or height to an existing font.

Whenever GDI synthesizes an italic or bold font from a normal
font, extra columns are added to individual character cells in that
font. The difference in width (the extra columns) between a string
created with the normal font and a string created with the
synthesized font is called the overhang.

Chapter 2, Graphics device interface functions 119

Selecting fonts

with GDI GDI maintains a collection of fonts from different typefaces. In
addition to this collection, some devices maintain a collection of
hardware fonts in their ROM. GDI lets you describe a font and
then selects the closest matching available font from your
description.

GDI requires you to describe the font you want to use to create
text. The font you describe is a logical font (it may or may not
actually exist). GDI compares this logical font to the available
physical fonts and selects the closest match.

The process of selecting the physical font that bears the closest
resemblance to the specified logical font is known as font
mapping. GDI also maintains a font table. Each entry in the font
table describes a physical font and its attributes. Included in each
entry is a pointer to a corresponding font resource. Figure 2.16
shows a font table that contains fonts X, Y, and Z:

Figure 2.16 Font Table
A GDI font table

Font X information

leading l italic l underline l weight
char set | width | height | first char
pitch and family | last char I c I +— Pointer to

font X resource
Font Y information

Ieading—l italic | underline I weight

char set | width ‘ height | first char
I 1 __Pointer to
- font Y resource

pitch and family l last char |
Font Z information

leading —| italic | underline | weight
char set | width | height | first char
- - Pointer to
tch and famil last ch L
pren and amty I asonar I | font Z resource

Font-mapping scheme GDI cannot guarantee that a physical font exists that exactly
matches a requested logical font, so GDI attempts to pick a font
that has the fewest differences from the requested logical font.
Since fonts have many different attributes, the GDI font mapper
assigns penalties to physical fonts whose characteristics do not
match the characteristics of the specified logical font. The physical
font with the fewest penalties assigned is the one that GDI selects.

120 Software development kit

Table 2.2
Font-mapping characteristics

To begin the mapping, GDI transforms the requested height and
width of the logical font to device units. This transformation
depends on the current mapping mode and window and
viewport extents. GDI then asks the device to realize the physical
font. A device can realize a font if it can create it or a font very
close to it.

If the device can realized a physical font, GDI compares this font
with its own set of fonts. If GDI has a font that more closely
matches the logical font, GDI uses it. But if the device signals that
it can take device-realized fonts only, GDI uses the realized font.

If the device cannot realize a font, GDI searches its own fonts for a
match.

To determine how good a match a given physical font is to the
requested logical font, the mapper takes the logical font and
compares it one attribute at a time with each physical font in the
system.

Table 2.2 lists the characteristics that are penalized by GDI’s font
mapper. The characteristics are grouped according to penalty
weights, with the heaviest penalty assigned to the CharSet
characteristic and the lightest penalty assigned to the Weight,
Slant, Underline, and StrikeOut characteristics.

Characteristic Penalty weight Penalty scheme

CharSet 4 If the character set does not match, the
candidate font is penalized heavily.
Fonts with the wrong character set are
very rarely selected as the physical
font. There is no default character set.
This means a logical font must alway
specify the desired set.

Pitch 3 The wrong pitch is penalized heavily.
If the requested pitch is fixed, a wrong
pitch is assessed a greater penalty
since an application that handles fixed
pitches may not be able to handle
variable-pitch fonts.

Family 3 If the font families do not match, the
candidate font is penalized heavily. If
a default font family is requested, no
penalties are assessed.

FaceName 3 If the font typeface names do not
match, the candidate font is penalized
heavily. If a default font facename is
requested, no penalties are assessed.

Chapter 2, Graphics device interface functions 121

122

Table 2.2: Font-mapping characteristics (continued)

Height 2 The wrong height is penalized. GDI
always chooses or synthesizes a
shorter font if the exact height is not
available. GDI can synthesize a font by
expanding a font’s character bitmaps
by an integer multiple. GDI will
expand a font up to eight times. If a
default height is requested, GDI
arbitrarily searches for a twelve-point
font.

Width 2 The wrong width is penalized. GDI
always chooses or synthesizes a
narrower font if the exact width is not
available. If a default width is
requested, GDI assesses a penalty for
any difference between the aspect ratio
of the device and the aspect ratio of the
font. The mapper can give unexpected
results if there are no fonts for the
given aspect ratio.

Weight 1 Although GDI can synthesize bold, an
actual bold font is preferred. The
mapper penalizes for synthesizing.

Slant 1 Although GDI can synthesize italics,
an actual italic font is preferred. The
mapper penalizes for synthesizing.

Underline 1 Although GDI can synthesize
underlining, an actual underline font is
preferred. The mapper penalizes for
synthesizing.

StrikeOut 1 Although GDI can synthesize
strikeouts, an actual strikeout font is
preferred. The mapper penalizes for
synthesizing.

If GDI synthesizes a font, the mapper assesses a penalty that
depends on the number of times the font was replicated.
Furthermore, a penalty is added if the font was synthesized in
both directions and the synthesizing was uneven, that is, if the
font was stretched more in one direction than the other.

When the mapper has compared all the fonts in the system, it
picks the one with the smallest penalty. The application should
retrieve the metrics of the font to find out the characteristics of the
font it received.

The penalty weights listed in Table 2.2 are the default penalties
used by GDL

Software development kit

Example of font
selection

Figure 2.17
Sample font selection ratings

For the purpose of this example, assume that the system font table
lists only the three fonts shown in Figure 2.16, "A GDI Font Table,"
fonts X, Y, and Z. Suppose you need to use a specific font, font Q,
to create text on an output device. You will need to describe font
Q so that GDI can choose the physical font (X, Y, or Z} that bears
the closest resemblance to Q.

To describe font Q, you use the CreateFont or CreateFontindirect
GDI function. These functions create a logical font which is a
description of the desired physical font.

Use the SelectObject function to select the physical font that most
closely matches logical font Q. (The SelectObject function
requires that you pass a handle to font Q.) Once a call to the
SelectObject function occurs, GDI will initiate the selection
process.

Table 2.2 shows the physical fonts in the font table and the
penalties that GDI assigns to each as it tries to find a font that will
match font Q. The left column shows the font attributes that GDI
compares; the second column gives the attributes of font Q, the
desired font. The attributes of fonts X, Y, and Z—the fonts that are
actually in the system font table—are followed by the penalty
values that GDI gives to each one. The bottom row of the table
gives the penalty totals for each font:

Desired Available Fonts/Penalty Score

Attributes Q X Y z

CharSet ANSI OEM 4 OEM 4 ANSI 0
Pitch Fixed Variable 3 Fixed 0 Variable 3
Family Roman Modern 3 Roman 0 Modern 3
FaceName TmsRmn Pica 3 Tms Rmn 0 Elite 3
Height 8 10 2 10 2 8 0
Width 4 6 2 6 2 4 0
Slant None None 0 None 0 None 0
Underline None None 0 None 0 None 0
StrikeOut None None 0 None 0 None 0
Penalty Total 17 8 9

The penalty totals show that font Y has the lowest penalty score
and therefore resembles font Q most closely. In this example, GDI
would select font Y as the physical font on the output device.

Chapter 2, Graphics device interface functions 123

Font files and font

reSOUrCes GbDI stores information about the physical font in font files. The
font file consists of a header and a bitmap. The font-file header
contains a detailed description of the font. If the font file is a raster
file, the font-file bitmap contains actual representations of the font
characters. If the font file is a vector file, the font-file bitmap
contains character strokes for the font characters. A font resource
is a collection of one or more of these physical-font files.

Metafile functions

Metafile functions close, copy, create, delete, retrieve, play, and
return information about metafiles. A metafile is a collection of
GDI commands that creates desired text or images.

Metafiles provide a convenient method of storing graphics
commands that create text or images. Metafiles are especially
useful in applications that use specific text or a particular image
repeatedly. They are also device-independent; by creating text or
images with GDI commands and then placing the commands in a
metafile, an application can re-create the text or images repeatedly

124

on a variety of devices. Metafiles are also useful in applications
that need to pass graphics information to other applications.

The following list briefly describes each metafile function:

Function

Description

CloseMetaFile

CopyMetaFile
CreateMetaFile
DeleteMetaFile
EnumMetaFile
GetMetaFile
GetMetaFileBits

PlayMetaFile
PlayMetaFileRecord
SetMetaFileBits

Closes a metafile and creates a metafile
handle.

Copies a source metafile to a file.

Creates a metafile display context.
Deletes a metafile from memory.
Enumerates the GDI calls within a metafile.
Creates a handle to a metafile.

Stores a metafile as a collection of bits in a
global memory block.

Plays the contents of a specified metafile.
Plays a metafile record.

Creates a memory metafile.

Software development kit

Creating a

metafile A Windows application must create a metafile in a special device
context. It cannot use the device contexts that the CreateDC or
GetDC functions return; instead, it must use the device context
that the CreateMetaFile function returns.

Windows allows an application to use a subset of the GDI
functions to create a metafile. This subset is the set of all GDI
functions that create output (it is not necessary to use those
functions that provide state information, such as the
GetDeviceCaps or GetEnvironment functions). The following is a
list of GDI functions an application can use in a metafile:

AnimatePalette OffsetViewportOrg SetDIBitsToDevice
Arc OffsetWindowOrg SetMapMode
BitBIt PatBlt SetMapperFlags
Chord Pie SetPixel
CreateBrushindirect Polygon SetPolyFillMode
CreateDIBPatternBrush Polyline SetROP2
CreateFontindirect PolyPolygon SetStretchBltMode
CreatePatternBrush RealizePalette SetTextAlign
CreatePenindirect Rectangle SetTextCharExtra
CreateRegion ResizePalette SetTextColor
DrawText RestoreDC SetTextJustification
Ellipse RoundRect SetViewportExt
Escape SaveDC SetViewportOrg
ExcludeClipRect ScaleViewportExt SetWindowExt
ExtTextOut ScaleWindowExt SetWindowOrg
FloodFill SelectClipRegion StretchBIt
IntersectClipRect SelectObject StretchDIBits
LineTo SelectPalette TextOut

MoveTo SetBkColor

OffsetClipRgn SetBkMode

To create output with a metafile, an application must follow four
steps:

1. Create a special device context by using the CreateMetaFile
function.

2. Send GDI commands to the metafile by using the special
device context.

3. Close the metafile by calling the CloseMetaFile function. This
function returns a metafile handle.

Chapter 2, Graphics device interface functions 125

Storing a metafile
iN memory or on

126

disk

4. Display the image or text on a device by using the
PlayMetaFile function, passing to the function the metafile
handle obtained from CloseMetaFile and a device-context
handle for the device to which the metafile is to be played.

The device context which CreateMetaFile creates does not have
default attributes of its own. Whatever device-context attributes
are in effect for the output device when an application plays a
metafile will be the defaults for the metafile. The metafile can
change these attributes while it is playing. If the application needs
to retain the same device-context attributes after the metafile has
finished playing, it should save the output device context by
calling the SaveDC function before calling PlayMetaFile. Then,
when PlayMetaFile returns, the application can call the
RestoreDC function (with -1 as the nSavedDC parameter) to
restore the original device-context attributes.

Although the maximum size of a metafile is 232 bytes or records,
the actual size of a metafile is limited by the amount of memory or
disk space available.

An application can store a metafile in system memory or in a disk
file.

To store the metafile in memory, an application calls
CreateMetafile and passes NULL as the function parameter.
There are two ways of storing a metafile in a disk file:

o When the application calls CreateMetaFile to open a metafile, it
passes a filename as the function parameter; the metafile will
then be recorded in a disk file.

After the application has created a metafile in memory, it calls
the CopyMetaFile function. This function accepts the handle of
a memory metafile and the filename of the disk file which is to
save the metafile.

The GetMetaFile function opens a metafile stored in a disk file and
makes it available for replay or modification. This function
accepts the filename of a metafile stored on disk and returns a
metafile handle.

Software development kit

Deleting @
metdfile

Changing how
Windows plays a
metafile

Chapter 9, 'File formats," in
Reference, Volume 2, shows
the formats of the various
metdfile records and
describes their contents.

See the description of the
HANDLETABLE data structure
in Chapter 7, 'Data types
and sfructures,” in Reference,
Volume 2, for info on the
handle table format.

An application frees the memory which Windows uses to store
the metalfile by calling the DeleteMetafile function. This function
removes a metafile from memory and invalidates its handle. It has
no effect on disk files.

A metafile does not have to be played back in its entirety or
exactly in the form in which it was recorded. An application can
use the EnumMetaFile function to locate a specific metafile record.
EnumMetaFile calls an application-supplied callback function and
passes it the following:

a The metafile device context

o A pointer to the metafile handle table

o A pointer to a metafile record

o The number of associated objects with handles in the handle
table

o A pointer to application-supplied data

The callback function can then use this information to play a
single record, to query it, copy it, or modify it. The
PlayMetaFileRecord function plays a single metafile record.

When Windows plays or enumerates the records in a metafile, it
identifies each object with an index into a handle table. Functions
that select objects (such as SelectObject and SelectPalette)
identify the object by means of the object handle which the
application passes to the function.

Objects are added to the table in the order in which they are
created. For example, if a brush is the first object created in a
metafile, the brush is given index zero. If the second object is a
pen, it is given index 1, and so on.

Printer-control functions

Chapter 2, Graphics device interface functions

Printer-control functions retrieve information about a printer and
modify its initialization state. The printer driver, rather than GDI
itself, provides these functions. The following list briefly describes
each printer-control function:

127

Function Description

DeviceCapabilities Retrieves capabilities of a printer device
driver.

DeviceMode Sets the current printing modes for a
device by prompting the user with a dialog
box.

ExtDeviceMode Retrieves or modifies device initialization

information for a given printer driver or
displays a driver-supplied dialog box for
configuring the driver.

Prinfer-escape function

Creating output

128

on a printer

The Escape function allows an application to access facilities of a
particular device that are not directly available through GDI. The
nEscape parameter of this function specifies the escape function to
be performed. When an application calls Escape for a printer
device context, the escape functions regulate the flow of printer
output from Windows applications, retrieve information about a
printer, and alter the settings of a printer.

Windows applications use only the standard Windows functions
to access system memory, the output device, the keyboard, and
the mouse. Each application interacts with the user through one
or more windows that are created and maintained by the user.
GDI assists an application in creating output by passing device-
independent function calls from the application to the device
driver. The device driver first translates these device-independent
function calls into device-dependent operations that create images
on a device’s display surface, and then sends them to Print
Manager (the spooler). Print Manager serves two purposes: It
collects translated commands from one application and stores
them in a corresponding job, and it passes a complete job to the
device for output.

If only one Windows application were allowed to run at any
given time, Print Manager and many of the escape functions
would be unnecessary. However, Windows allows several
applications to run at once. If two or more of these applications
send output simultaneously, each application’s output must be
separated and remain separated during printing or plotting. Print

Software development kit

Manager maintains this separation. The printer-escape functions
affect the way Print Manager handles this separation task.

Banding output

The model used by GDI states that any point on an output device
can be written to at any time. This model is easily implemented
on vector devices but poses a problem on many dot-matrix
devices that cannot scroll backward. Banding provides a solution
to this problem.

Banding involves several steps:

1. The application creates a metafile and uses itas an
intermediate storage device for the output.

2. Beginning at the top of the metafile, GDI translates a
rectangular region (band) of output into device-specific
commands, and then sends it to a corresponding job.

3. The application repeats this process until the entire metafile
has been converted to bands and the output from these bands
has been translated into device-specific commands and stored
in a job.

4. The application sends the job to the output device.

When creating a device context, GDI verifies whether the device
has banding capabilities. If it does, GDI creates the metafile that
will be used during the banding process. To implement banding,
you call the necessary output functions and the NEXTBAND
escape. The NEXTBAND escape requires a long pointer to a RECT
data structure as its output parameter. The device driver copies
the coordinates of the next band into this structure. When the
entire metafile has been converted into device-specific commands,
the driver returns four zeros (0,0,0,0) in the RECT structure.

GDI does the banding for you if your output device has banding
capabilities and you call the NEWFRAME escape. Although
NEWFRAME requires more memory and is slower, it does
simplify the output process. After the application creates each
page of output, it calls the NEWFRAME escape. If the device is
capable of banding, GDI copies output to a metafile and calls the
NEXTBAND escape for you. As discussed earlier, the NEXTBAND
escape causes the contents of the metafile to be converted into
device-specific commands and to be copied to a corresponding
job. If a memory problem occurs or the user terminates a job, the

Chapter 2, Graphics device interface functions 129

Starting and

ending a print job

130

Terminating a
print job

Information
escapes

NEWFRAME escape returns a message that defines the error or
abort message.

The STARTDOC escape informs the device driver that an
application is beginning a new print job. After the STARTDOC call
is issued, Print Manager queues all output from a particular
application in a corresponding job until an ENDDOC escape is
issued. (Note that you cannot use the ENDDOC escape to
terminate a job.)

If you send output to a device with the NEWFRAME escape, you
are required to write a termination procedure and supply it with
the application. The SETABORTPROC escape sets a pointer to this
procedure; it should be called prior to the STARTDOC escape. The
ABORTDOC escape terminates print jobs if it is called before the
first call to NEWFRAME. It should also be used to terminate jobs
that use the NEXTBAND escape.

Four of the escape functions are used to retrieve information
about the selected device and its settings. The
GETPHYSPAGESIZE escape retrieves the physical page size of the
output device (in device units), the smallest addressable units on
the device. For example, one-fortieth of a millimeter is the
smallest addressable unit on some vector devices. A pixel is the
smallest addressable unit on a dot-matrix device. The
GETPRINTINGOFFSET escape retrieves the distance (in device
units) from the upper-left corner of the page to the point at which
printing begins. The GETSCALINGFACTOR escape retrieves the
scaling factors for the x- and y-axes of a device. The scaling factor
expresses the number of logical units that are mapped to a device
unit. The QUERYESCSUPPORT escape determines whether a
particular escape function is implemented on a device driver. If
the escape in question is implemented, QUERYESCSUPPORT
returns a nonzero value. If the escape is not implemented,
QUERYESCSUPPORT returns zero.

Software development kit

Additional

escape calls There are two additional escapes that alter the state of the device:
the FLUSHOUTPUT and DRAFTMODE escapes. The
For a detailed description of FLUSHOUTPUT escape flushes the output in the device’s buffer
. the functions that alfter (1he Jevice stores device operations in the buffer before sending
interword and intercharacter .
spacing, see Sections 'Text them to Print Manager). The DRAFTMODE escape turns on the
functions,” and 'Font ~ device’s draft mode. This means that the device will use one of its
functions." own fonts instead of using a GDI font. It also means that calls to
the text-justification functions that alter interword and

intercharacter spacing are ignored.

Environment functions

Environment functions alter and retrieve information about the
environment associated with an output device. The following list
briefly describes the two enviornment functions:

Function Description

GetEnvironment Copies environment information into a
buffer.

SetEnvironment Copies data to the environment associated

with an attached device.

For more information on topics related to GDI functions, see the

following:

Topic Reference

Function descriptions Reference, Volume 1: Chapter 4,
"Functions directory”

Windows data types and structures Reference, Volume 2: Chapter 7,
"Data types and structures”

Metafile formats Reference, Volume 2: Chapter 9,
"File format"

Raster operations Reference, Volume 2: Chapter 11,

"Binary and ternary raster-
operation codes”

Printer escapes Reference, Volume 2: Chapter 12,
"Printer escapes”

Chapter 2, Graphics device interface functions 131

132 Software development kit

System services interface functions

This chapter describes the system services interface functions.
These functions access code and data in modules, allocate and
manage both local and global memory, manage tasks, load
program resources, translate strings from one character set to
another, alter the Microsoft Windows initialization file, assist in
system debugging, carry out communications through the
system’s I/O ports, create and open files, and create sounds using
the system’s sound generator.

This chapter lists the following categories of functions:

@ Module-management functions
o Memory-management functions
@ Segment functions

o Operating-system interrupt functions
m Task functions

o Resource-management functions
o String-manipulation functions

@ Atom-management functions

o Initialization-file functions

o Communication functions

m Sound functions

o Utility macros and functions

File I/O functions

u Debugging functions

o Optimization-tool functions

B Application-execution functions

Chapter 3, System services interface functions 133

Module-management functions

Module-management functions alter and retrieve information
about Windows modules, which are loadable, executable units of
code and data. The following list briefly describes each module-

management function:

Function Description

FreeLibrary Decreases the reference count of a library
by one and removes it from memory if the
reference count is zero.

FreeModule Decreases the reference count of a module

FreeProclnstance
GetCodeHandle
GetlnstanceData
GetModuleFileName
GetModuleHandle
GetModuleUsage
GetProcAddress

GetVersion

LoadLibrary
MakeProcinstance

by one and removes it from memory if the
reference count is zero.

Removes a function instance entry at an
address.

Determines which code segment contains a
specified function.

Copies data from an offset in one instance
to an offset in another instance.

Copies a module filename.

Returns the module handle of a module.
Returns the reference count of a module.
Returns the address of a function in a
module.

Returns the current version number of
Windows.

Loads a library module.

Returns a function-instance address.

Memory-management functions

134

Memory-management functions manage system memory. There
are two categories of functions: those that manage global memory
and those that manage local memory. Global memory is all
memory in the system that has not been allocated by an
application or reserved by the system. Local memory is the
memory within a Windows application’s data segment. The
following list briefly describes each memory-management

function:
Function Description
DefineHandleTable Creates a private handle table in an

application’s default data segment.

Software development kit

GetFreeSpace
GetWinFlags

GlobalAlloc
GlobalCompact

GlobalDiscard

GlobalDosAlloc

GlobalDosFree
GlobalFlags

GlobalFree

GlobalHandle

GlobalLock

GlobalLRUNewest
Globall.LRUOIdest
GlobalNotify

GlobalReAlloc
GlobalSize

GlobalUnlock

GlobalUnwire

GlobaiWire
LimitEMSPages

LocalAlloc
LocalCompact

Chapter 3, Systemn services interface functions

Retrieves the number of bytes available in
the global heap.

Retrieves information about the system
memory configuration.

Allocates memory from the global heap.
Compacts global memory to generate free
bytes.

Discards a global memory block if the lock
count is zero, but does not invalidate the
handle of the memory block.

Allocates global memory that can be
accessed by DOS running in real or
protected mode.

Frees global memory previously allocated
by the GlobalDosAlloc function.

Returns the flags and lock count of a global
memory block.

Removes a global memory block and
invalidates the handle of the memory
block.

Retrieves the handle of a global memory
object.

Retrieves a pointer to a global memory
block specified by a handle. Except for
nondiscardable objects in protected
(standard or 386 enhanced) mode, the
block is locked into memory at the given
address and its lock count is increased by
one.

Moves a global memory object to the
newest least-recently-used (LRU) position.
Moves a global memory object to the oldest
least-recently-used (LRU) position.

Installs a notification procedure for the
current task.

Reallocates a global memory block.
Returns the size (in bytes) of a global
memory block.

Invalidates the pointer to a global memory
block previously retrieved by the
GlobalLock function. In real mode, or if the
block is discardable, GlobalUnlock
decreases the block’s lock count by one.
Decreases the lock count set by the
GlobalWire function, and unlocks the
memory block if the count is zero.

Moves an object to low memory and
increases the lock count.

Limits the amount of expanded memory
that Windows will assign to an application.
Allocates memory from the local heap.
Compacts local memory.

135

LocalDiscard

LocalFlags

LocalFree

LocalHandle
Locallnit
LocalLock
LocalReAlloc
LocalShrink
LocalSize
LocalUnlock
LockData
LockSegment
SetSwapAreaSize

SwitchStackBack

SwitchStackTo

UnlockData
UnLockSegment

Discards a local memory block if the lock
count is zero, but does not invalidate the
handle of the memory block.

Returns the memory type of a local
memory block.

Frees a local memory block from memory if
the lock count is zero and invalidates the
handle of the memory block.

Retrieves the handle of a local memory
object.

Initializes a local heap in the specified
segment.

Locks a block of local memory by
increasing its lock count.

Reallocates a local memory block.

Shrinks the local heap.

Returns the size (in bytes) of a local
memory block.

Unlocks a local memory block.

Locks the current data segment in memory.
Locks a specified data segment in memory.
Increases the amount of memory that an
application reserves for code segments.
Returns the stack of the current task to the
task’s data segment after it had been
previously redirected by the
SwitchTasksBack function.

Changes the stack of the current task to the
specified data segment, such as the data
segment of a dynamic-link library (DLL).
Unlocks the current data segment.

Unlocks a specified data segment.

Segment functions

136

Segment functions allocate, free, and convert selectors; lock and
unlock memory blocks referenced by selectors; and retrieve
information about segments. The following list briefly describes

each selector function:

Function

Description

AllocDStoCSAlias

AllocSelector
ChangeSelector

Accepts a data-segment selector and
returns a code-segment selector that can be
used to execute code in a data segment.
Allocates a new selector.

Generates a temporary code selector that
corresponds to a given data selector, or a

Software development kit

DefineHandleTable

FreeSelector

GetCodelnfo
GlobalFix

GlobalPageLock

GlobalPageUnlock

GlobalUnfix

LockSegment
UnlockSegment

temporary data selector that corresponds to
a given code selector.

Creates a private handle table which
Windows updates automatically.

Frees a selector originally allocated by the
AllocSelector or AllocDStoCSAlias
functions.

Retrieves information about a code
segment.

Prevents a global memory block from
moving in linear memory.

Page-locks the memory associated with the
specified global selector and increments its
page-lock count. Memory that is page-
locked cannot be moved or paged out to
disk.

Decrements the page-lock count for a block
of memory. If the page-lock count reaches
zero, the memory can be moved and paged
out to disk.

Unlocks a global memory block previously
fixed by the GlobalFix function.

Locks a segment in memory.

Unlocks a segment previously locked by
the LockSegment function.

W An application should not use these functions unless it is
absolutely necessary. Use of these functions violates preferred
Windows programming practices.

Operating-system interrupt functions

Operating-system interrupt functions allow an assembly-
language application to perform certain DOS and NETBIOS
interrupts without directly coding the interrupt. This ensures
compatibility with future Microsoft products.

The following list briefly describes these functions:

Function

Description

DOSs3Call

NetBIOSCall

Issues a DOS 21H (function-request)
interrupt.
Issues a NETBIOS 5CH interrupt.

Chapter 3, System services interface functions

137

Task functions

Task functions alter the execution status of tasks, return
information associated with a task, and retrieve information about
the environment in which the task is executing. A task is a single
Windows application call. The following list briefly describes each

task function:

Function Description

Catch Copies the current execution environment
to a buffer.

ExitWindows Initiates the standard Windows shutdown
procedure.

GetCurrentPDB Returns the current DOS Program Data
Base (PDB), also known as the Program
Segment Prefix (PSP).

GetCurrentTask Returns the task handle of the current task.

GetDOSEnvironment Retrieves the environment string of the
currently running task.

GetNumTasks Returns the number of tasks currently
executing in the system.

SetErrorMode Controls whether Windows handles DOS
Function 24H errors or allows the calling
application to handle them.

Throw Restores the execution environment to the
specified values.

Yield Halts the current task and starts any

waiting task.

Resource-management functions

138

Resource-management functions find and load application
resources from a Windows executable file. A resource can be a
cursor, icon, bitmap, string, or font. The following list briefly
describes each resource-management function:

Function

Description

AccessResource
AllocResource

FindResource
FreeResource
LoadAccelerators
LoadBitmap
LoadCursor

Opens the specified resource.

Allocates uninitialized memory for a
resource.

Determines the location of a resource.
Removes a loaded resource from memory.
Loads an accelerator table.

Loads a bitmap resource.

Loads a cursor resource.

Software development kit

Loadlicon
LoadMenu
LoadResource
LoadString
LockResource

SetResourceHandler
SizeofResource
UnlockResource

Loads an icon resource.

Loads a menu resource.

Loads a resource.

Loads a string resource.

Retrieves the absolute memory address of a
resource.

Sets up a function to load resources.
Supplies the size (in bytes) of a resource.
Unlocks a resource.

String-manipulation functions

String-manipulation functions translate strings from one character
set to another, determine and convert the case of strings,
determine whether a character is alphabetic or alphanumeric, find
adjacent characters in a string, and perform other string
manipulation. The following list briefly describes each string-

translation function:

Function

Description

AnsiLower
AnsiLowerBuff

AnsiNext
AnsiPrev
AnsiToOem
AnsiToOemBuff

AnsiUpper
AnsiUpperBuff

IsCharAlpha
IsCharAlphaNumeric
IsCharLower
IsCharUpper

Istrcat

Istrcmp

Istrempi

Chapter 3, System services interface functions

Converts a character string to lowercase.
Converts a character string in a buffer to
lowercase.

Returns a long pointer to the next character
in a string.

Returns a long pointer to the previous
character in a string.

Converts an ANSI string to an OEM
character string.

Converts an ANSI string in a buffer to an
OEM character string.

Converts a character string to uppercase.
Converts a character string in a buffer to
uppercase.

Determines whether a character is
alphabetical.

Determines whether a character is
alphanumeric.

Determines whether a character is
lowercase.

Determines whether a character is
uppercase.

Concatenates two strings identified by long
pointers.

Performs a case-sensitive comparison of
two strings identified by long pointers.
Performs a case-insensitive comparison of
two strings identified by long pointers.

139

Atom-management functions

Istrepy

Istrlen
OemToAnsi
OemToAnsiBuff

ToAscii

wsprintf

wvsprintf

Copies one string to another; both strings
are identified by long pointers.
Determines the length of a string identified
by a long pointer.

Converts an OEM character string to an
ANGSI string.

Converts an OEM character string in a
buffer to an ANSI string. ‘
Translates a virtual-key code to the
corresponding ANSI character or
characters.

Formats and stores a series of characters
and values in a buffer. Format arguments
are passed separately.

Formats and stores a series of characters
and values in a buffer. Format arguments
are passed through an array.

140

Atom-management functions create and manipulate atoms.
Atoms are integers that uniquely identify character strings. They
are useful in applications that use many character strings and in
applications that need to conserve memory. Windows stores
atoms in atom tables. A local atom table is allocated in an
application’s data segment; it cannot be accessed by other
applications. The global atom table can be shared, and is useful in
applications that use dynamic data exchange (DDE). The
following list briefly describes each atom-management function:

Function Description

AddAtom Creates an atom for a character string.

DeleteAtom Deletes an atom if the reference count is
zero.

FindAtom Retrieves an atom associated with a
character string.

GetAtomHandle Retrieves a handle (relative to the local
heap) of the string that corresponds to a
specified atom.

GetAtomName Copies the character string associated with
an atom.

GlobalAddAtom Creates a global atom for a character string,.

GlobalDeleteAtom

GlobalFindAtom

Deletes a global atom if the reference count
1S Zero.

Retrieves a global atom associated with a
character string.

Software development kit

GlobalGetAtomName Copies the character string associated with
a global atom.

InitAtomTable Initializes an atom hash table.
MAKEINTATOM Casts an integer for use as a function
argument.

Initialization-file functions

Initialization-file functions obtain information from and copy
information to the Windows initialization file WIN.INI and
private initialization files. A Windows initialization file is a
special ASCII file that contains key-name-value pairs that
represent run-time options for applications. The following list
briefly describes each initialization-file function:

Function Description

GetPrivateProfilelnt Returns an integer value in a section from a
private initialization file.

GetPrivateProfileString Returns a character string in a section from
a private initialization file.

GetProfilelnt Returns an integer value in a section from
the WINLINI file.

GetProfileString Returns a character string in a section from
the WINLINI file.

WritePrivateProfileString Copies a character string to a private
initialization file, or deletes one or more
lines in a private initialization file.

WriteProfileString Copies a character string to the WIN.INI
file, or deletes one or more lines from
WIN.INL

An application should use a private (application-specific)
injtialization file to record information which affects only that
application. This improves both the performance of the
application and Windows itself by reducing the amount of
information that Windows must read when it accesses the
initialization file. An application should record information in
WINLINI only if it affects the Windows environment or other
applications; in such cases, the application should send the
WM_WININICHANGE message to all top-level windows.
The files WININLTXT and SYSINLTXT supplied with the retail
version of Windows describe the contents of WIN.INI and
SYSTEM.INI, respectively.

Chapter 3, System services interface functions 141

Communication functions

Sound functions

Communication functions carry out communications through the
system'’s serial and parallel I/O ports. The following list briefly
describes each communication function:

Function

Description

BuildCommDCB
ClearCommBreak
CloseComm
EscapeCommFunction
FlushComm
GetCommError
GetCommEventMask
GetCommState
OpenComm
ReadComm
SetCommBreak
SetCommEventMask
SetCommState
TransmitCommChar

UngetCommChar

WriteComm

Fills a device control block with control
codes.

Clears the communication break state from
a communication device.

Closes a communication device after
transmitting the current buffer.

Directs a device to carry out an extended
function.

Flushes characters from a communication
device.

Fills a buffer with the communication
status.

Retrieves, then clears, an event mask.
Fills a buffer with a device control block.
Opens a communication device.

Reads the bytes from a communication
device into a buffer.

Sets a break state on the communication
device.

Retrieves and then sets an event mask on
the communication device.

Sets a communication device to the state
specified by the device control block.
Places a character at the head of the
transmit queue.

Specifies which character will be the next
character to be read.

Writes the bytes from a buffer to a
communication device.

142

Sound functions create sound and music for the system’s sound
generator. The following list briefly describes each sound

function:
Function Description
CloseSound Closes the play device after flushing the

voice queues and freeing the buffers.

Software development kit

CountVoiceNotes

GetThresholdEvent
GetThresholdStatus

OpenSound
SetSoundNoise

SetVoiceAccent
SetVoiceEnvelope

SetVoiceNote
SetVoiceQueueSize

SetVoiceSound
SetVoiceThreshold
StartSound
StopSound

SyncAllVoices
WaitSoundState

Returns the number of notes in the
specified queue.

Returns a long pointer to a threshold flag.
Returns the threshold-event status for each
voice.

Opens the play device for exclusive use.
Sets the source and duration of a noise
from the play device.

Places an accent in the voice queue.
Places the voice envelope in the voice
queue. ’

Places a note in the specified voice queue.
Allocates a specified number of bytes for
the voice queue.

Places the specified sound frequency and
durations in a voice queue.

Sets the threshold level for a given voice.
Starts playing each voice queue.

Stops playing all voice queues and flushes
their contents.

Places a sync mark in each voice queue.
Waits until the play driver enters the
specified state.

Utility macros and functions

Utility macros and functions return contents of words and bytes,
create unsigned long integers and data structures, and perform
specialized arithmetic. The following list briefly describes each

utility macro or function:

Function Description

HIBYTE Returns the high-order byte of an integer.

HIWORD Returns the high-order word of a long
integer.

LOBYTE Returns the low-order byte of an integer.

LOWORD Returns the low-order word of a long
integer.

MAKEINTATOM Casts an integer for use as a function

MAKEINTRESOURCE

MAKELONG
MAKEPOINT

Chapter 3, System services interface functions

argument.

Converts an integer value into a long
pointer to a string, with the high-order
word of the long pointer set to zero.
Creates an unsigned long integer.
Converts a long value that contains the x-
and y-coordinates of a point into a POINT
data structure.

143

MulDiv Multiplies two word-length values and
then divides the result by a third word-
length value, returning the result rounded
to the nearest integer.

PALETTEINDEX . Converts an integer into a palette-index
COLORREF value.

PALETTERGB Converts three values for red, green, and
blue into a palette-relative RGB
COLORREF value.

RGB Converts three values for red, green, and
blue into an explicit RGB COLORREF
value.

File /O functions

File I/O functions create, open, read from, write to, and close
files. The following list briefly describes each file I/O function:

Function Description

GetDriveType Determines whether a disk drive is
removeable, fixed, or remote.

GetSystemDirectory Retrieves the pathname of the Windows
system subdirectory.

GetTempDrive Returns the letter of the optimal drive for
temporary file storage.

GetTempFileName Creates a temporary filename.

GetWindowsDirectory Retrieves the pathname of the Windows
directory.

_Iclose Closes a file.

_lcreat Creates a new file or opens and truncates
an existing file.

_liseek Positions the pointer to a file.

_lopen Opens an existing file.

_lread Reads data from a file.

_lwrite Wrrites data in a file.

OpenFile Creates, opens, reopens, or deletes the
specified file.

SetHandleCount Changes the number of file handles

available to a task.

Debugging functions

Debugging functions help locate programming errors in an
application or library. The following briefly describes these
functions:

144 Software development kit

Function Description

DebugBreak Forces a break to the debugger.

FatalAppExit Displays a message box and then
terminates the application.

FatalExit Displays the current state of Windows and
prompts for instructions on how to
proceed.

OutputDebugString Sends a debugging message to the

debugger if present, or to the AUX device if
the debugger is not present.

ValidateCodeSegments Determines whether any code segments
have been altered by random memory
overwrites.

ValidateFreeSpaces Checks free segments in memory for valid
contents.

Optimization-tool functions

Optimization-tool functions control how the Windows Profiler
and Swap software development tools interact with an
application being developed. The following list briefly describes
these functions:

Function Description

ProfClear Discards all samples in the Profiler
sampling buffer.

ProfFinish Stops sampling by Profiler and flushes the
buffer to disk.

ProfFlush Flushes the Profiler sampling buffer to
disk.

ProflnsChk Determines if Profiler is installed.

ProfSampRate Sets the rate of code sampling by Profiler.

ProfSetup Sets up the Profiler sampling buffer and
recording rate.

ProfStart Starts sampling by Profiler.

ProfStop Stops sampling by Profiler.

SwapRecording Begins or ends analyzing by Swap of the

application’s swapping behavior.

Application-executfion functions

Application-execution tasks permit one application to execute
another program. The following list briefly describe these
functions:

Chapter 3, System services interface functions 145

146

Function Description

LoadModule Executes a separate application.
WinExec Executes a separate application.
WinHelp Runs the Windows Help application and

passes context or topic information to Help.

The WinExec function provides a high-level method for executing
any Windows or standard DOS application. The calling
application supplies a string containing the name of the
executable file to be run and any command parameters, and
specifies the initial state of the application’s window.

The LoadModule function is similar, but provides more control
over the environment in which the application is executed. The
calling application supplies the name of the executable file and a
DOS Function 4BH, Code 00H, parameter block.

The WinHelp function executes the Windows Help application
and optionally passes data to it indicating the nature of the help
requested by the application. This data is either an integer which
specifies a context identifier in the help file or a string containing
a key word in the help file.

Topic Reference

Function descriptions Reference, Volume 1: Chapter 4, "Functions
directory”

Windows data types Reference, Volume 2: Chapter 7, "Data types

and structures and structures”

Initialization-file formats Reference, Volume 2: Chapter 9, "File formats"
Diagnostic messages for Reference, Volume 2: Appendix C, "Windows
debugging debugging messages”

Software development kit

Functions directory

This chapter contains an alphabetical list of functions from the Microsoft
Windows application programming interface (API). The documentation
for each function contains a line illustrating correct syntax, a statement
about the function’s purpose, a description of its input parameters, and a
description of its return value. The documentation for some functions
contains additional, important information that an application developer
needs in order to use the function.

AccessResource

Syntax int AccessResource(hInstance, hResInfo)
function AccessResource(Instance, ResInfo: THandle): Integer;

This function opens the specified resource file and moves the file pointer
to the beginning of the specified resource, letting an application read the
resource from the file. The AccessResource function supplies a DOS file
handle that can be used in subsequent file-read calls to load the resource.
The file is opened for reading only.

Applications that use this function must close the resource file by calling
the _lclose function after reading the resource.

Parameters hlnstance HANDLE Identifies the instance of the module whose
executable file contains the resource.
hResInfo HANDLE Identifies the desired resource. This handle

should be created by using the FindResource function.

Chapter 4, Functions directory 147

AccessResource

Return value

Comments

AddAtom

The return value specifies a DOS file handle to the designated resource
file. It is —1 if the resource cannot be found.

AccessResource can exhaust available DOS file handles and cause errors
if the opened file is not closed after the resource is accessed.

Syntax

Parameters

Return value

Comments

ATOM AddAtom(IpString)
function AddAtom(Str: PChar): TAtom;

This function adds the character string pointed to by the IpString
parameter to the atom table and creates a new atom that uniquely
identifies the string. The atom can be used in a subsequent GetAtomName
function to retrieve the string from the atom table.

The AddAtom function stores no more than one copy of a given string in
the atom table. If the string is already in the table, the function returns the
existing atom value and increases the string’s reference count by one.

IpString LPSTR Points to the character string to be added to the
table. The string must be a null-terminated character
string,.

The return value specifies the newly created atom if the function is
successful. Otherwise, it is NULL.

_The atom values returned by AddAtom range from 0xC000 to OxFFFF.

Atoms are case insensitive.

AddFontResource

148

Syntax

Parameters

int AddFontResource(lpFilename)
function AddFontResource(FileName: PChar): Integer;

This function adds the font resource from the file named by the IpFilename
parameter to the Windows font table. The font can subsequently be used
by any application.

IpFilename LPSTR Points to a character string that names the font-
resource file or contains a handle to a loaded module. If
IpFilename points to the font-resource filename, the string
must be null-terminated, have the DOS filename format,
and include the extension. If IpFilename contains a handle,

Software development kit

Return value

Comments

AddFontResource

the handle is in the low-order word and the high-order
word is zero.

The return value specifies the number of fonts added. The return value is
zero if no fonts are loaded.

Any application that adds or removes fonts from the Windows font table
should notify other windows of the change by using the SendMessage
function with the hWnd parameter set to -1 to send a
WM_FONTCHANGE message to all top-level windows in the system.

It is good practice to remove any font resource an application has added
once the application is through with the resource.

For a description of font resources, see the Guide to Programming.

AdjustWindowRect

Syntax

Parameters

Return value

Comments

void AdjustWindowRect(IpRect, dwStyle, bMenu)
procedure AdjustWindowRect(var Rect: TRect; Style: Longint; Menu:
Bool);

This function computes the required size of the window rectangle based
on the desired client-rectangle size. The window rectangle can then be
passed to the CreateWindow function to create a window whose client
area is the desired size. A client rectangle is the smallest rectangle that
completely encloses a client area. A window rectangle is the smallest
rectangle that completely encloses the window. The dimensions of the
resulting window rectangle depend on the window styles and on whether
the window has a menu.

IpRect LPRECT Points to a RECT data structure that contains the
coordinates of the client rectangle.

dwStyle DWORD Specifies the window styles of the window
whose client rectangle is to be converted.

bMenu BOOL Specifies whether the window has a menu.
None.

This function assumes a single menu row. If the menu bar wraps to two or
more rows, the coordinates are incorrect.

Chapter 4, Functions directory 149

AdjustWindowRectEx

AdjustWindowRectEx 3.0

Syntax

Parameters

void AdjustWindowRectEx(IpRect, dwStyle, bMenu, dwExStyle)
procedure AdjustWindowRectEx(var Rect: TRect; Style: Longint; Menu:
Bool; ExStyle: Longint);

This function computes the required size of the rectangle of a window
with extended style based on the desired client-rectangle size. The
window rectangle can then be passed to the CreateWindowEx function to
create a window whose client area is the desired size.

A client rectangle is the smallest rectangle that completely encloses a

client area. A window rectangle is the smallest rectangle that completely
encloses the window. The dimensions of the resulting window rectangle
depends on the window styles and on whether the window has a menu.

IpRect LPRECT Points to a RECT data structure that contains the
coordinates of the client rectangle.

dwStyle DWORD Specifies the window styles of the window
whose client rectangle is to be converted.
bMenu BOOL Specifies whether the window has a menu.
dwExStyle DWORD Specifies the extended style of the window being
created.
Return value None.
Comments This function assumes a single menu row. If the menu bar wraps to two or
more rows, the coordinates are incorrect.
AllocDStoCSAlias 3.0
Syntax WORD AllocDStoCSAlias(wSelector)

150

function AllocDStoCSAlias(Selector: Word): Word;

This function accepts a data-segment selector and returns a code-segment
selector that can be used to execute code in the data segment. When in
protected mode, attempting to execute code directly in a data segment
will cause a general protection violation. AllocDStoCSAlias allows an
application to execute code which the application had created in its own
stack segment.

The application must free the new selector by calling the FreeSelector
function.

Software development kit

Parameters

Return value

Comments

AllocDStoCSAlias

wSelector WORD Specifies the data-segment selector.

The return value is the code-segment selector corresponding to the data-
segment selector. If the function cannot allocate a new selector, the return
value is zero.

Windows does not track segment movements. Consequently, the data
segment must be fixed and nondiscardable; otherwise, the data segment
might move, invalidating the code-segment selector.

The ChangeSelector function provides another method of obtaining a
code selector corresponding to a data selector.

An application should not use this function unless it is absolutely
necessary. Use of this function violates preferred Windows programming
practices.

AllocResource

Syntax

Parameters

Return value

HANDLE AllocResource(hInstance, hResInfo, dwSize)
function AllocResource(Instance, ResInfo: THandle; Size: Longint):
THandle;

This function allocates uninitialized memory for the passed resource. All
resources must be initially allocated by using the AllocResource function.
The LoadResource function calls this function before loading the
resource.

hinstance HANDLE Identifies the instance of the module whose
executable file contains the resource.

hResInfo HANDLE Identifies the desired resource. It is assumed
that this handle was created by using the FindResource
function.

dwSize DWORD Specifies an override size in bytes to allocate for

the resource. The override is ignored if the size is zero.

The return value identifies the global memory block allocated for the
resource.

Chapter 4, Functions directory 151

AllocSelector

AllocSelector . 3.0

Syntax WORD AllocSelector(wSelector)
function AllocSelector(Selector: Word): Word;

This function allocates a new selector. If the wSelector parameter is a valid
selector, AllocSelector returns a new selector which is an exact copy of the
one specified by wSelector. If wSelector is NULL, AllocSelector returns a
new, uninitialized selector.

The application must free the new selector by calling the FreeSelector
function.

Parameters wSelector WORD Specifies the selector to be copied, or NULL if
AllocSelector is to allocate a new, uninitialized selector.

Return value The return value is either a selector that is a copy of an existing selector, or
a new, uninitialized selector. If the function could not allocate a new
selector, the return value is zero.

Comments An application can call AllocSelector to allocate a selector that it can pass
to the ChangeSelector function.

An application should not use this function unless it is absolutely
necessary. Use of this function violates preferred Windows programming
practices.

AnimatePalette 3.0

Syntax void AnimatePalette(hPalette, wStartindex, wNumEntries,
IpPaletteColors)
procedure AnimatePalette(Palette: HPalette; StartIndex: Word;
NumEntries: Word; var PaletteColors);

This function replaces entries in the logical palette identified by the
hPalette parameter. When an application calls AnimatePalette, it does not
have to update its client area because Windows maps the new entries into
the system palette immediately.

Parameters i Palette HPALETTE Identifies the logical palette.

wStartindex WORD Specifies the first entry in the palette to be
animated.

wNumEntries ~ WORD Specifies the number of entries in the palette to be
animated.

152 Software development kit

Return value

Comments

AnsiLower

AnimatePalette

IpPaletteColors LPPALETTEENTRY Points to the first member of an array
of PALETTEENTRY data structures to replace the palette
entries identified by wStartIndex and wNumEntries.

None.

AnimatePalette will only change entries with the PC_RESERVED flag set
in the corresponding palPaletteEntry field of the LOGPALETTE data
structure that defines the current logical palette. The CreatePalette
function creates a logical palette.

Syntax

Parameters

Return value

AnsiLowerBuff

LPSTR AnsiLower(IpString)
function Ansil.ower(Str: PChar): PChar;

This function converts the given character string to lowercase. The
conversion is made by the language driver based on the criteria of the
current language selected by the user at setup or with the Control Panel.

IpString LPSTR Points to a null-terminated character string or
specifies single character. If [pString specifies single
character, that character is in the low-order byte of the
low-order word, and the high-order word is zero.

The return value points to a converted character string if the function
parameter is a character string. Otherwise, it is a 32-bit value that contains
the converted character in the low-order byte of the low-order word.

3.0

Syntax

Parameters

WORD AnsiLowerBuff(IpString, nLength)
function AnsiLowerBuff(Str: PChar; Length: Word): Word;

This function converts character string in a buffer to lowercase. The
conversion is made by the language driver based on the criteria of the
current language selected by the user at setup or with the Control Panel.

IpString LPSTR Points to a buffer containing one or more
characters.

nLength WORD Specifies the number of characters in the buffer
identified by the IpString parameter. If nLength is zero, the
length is 64K (65,536).

Chapter 4, Functions directory - 1563

AnsiLowerBuff

Return value

The return value specifies the length of the converted string.

AnsiNext
Syntax LPSTR AnsiNext(IpCurrentChar)
function AnsiNext(CurrentChar: PChar): PChar;
This function moves to the next character in a string.
Parameters [pCurrentChar LPSTR Points to a character in a null-terminated string.

Return value

The return value points to the next character in the string, or, if there is no
next character, to the null character at the end of the string.

Comments The AnsiNext function is used to move through strings whose characters
are two or more bytes each (for example, strings that contain characters
from a Japanese character set).

AnsiPrev
Syntax LPSTR AnsiPrev(IpStart, IpCurrentChar)
function AnsiPrev(Start, CurrentChar: PChar): PChar;
This function moves to the previous character in a string.
Parameters [pStart LPSTR Points to the beginning of the string.

Return value

lpCurreniChur LPSTR Points to a character in a null-terminated string.

The return value points to the previous character in the string, or to the
first character in the string if the IpCurrentChar parameter is equal to the
IpStart parameter.

Comments The AnsiPrev function is used to move through strings whose characters
are two or more bytes each (for example, strings that contain characters
from a Japanese character set).

AnsifToOem
Syntax int AnsiToOem(IpAnsiStr, IpOemStr)

154

function AnsiToOem(AnsiStr, OemStr: PChar): Integer;

Software development kit

AnsiToOem

This function translates the string pointed to by the IpAnsiStr parameter
from the ANSI character set into the OEM-defined character set. The
string can be greater than 64K in length.

Parameters IpAnsiStr

IpOemStr

LPSTR Points to a null-terminated string of characters
from the ANSI character set.

LPSTR Points to the location where the translated string
is to be copied. The IpOemStr parameter can be the same
as IpAnsiStr to translate the string in place.

Return value The return value is always —1.

AnsiToOemBuff

3.0

Syntax void AnsiToOemBuff(IpAnsiStr, [pOemStr, nLength)
procedure AnsiToOemBuff(AnsiStr, OemStr: PChar; Length: Integer);

This function translates the string in the buffer pointed to by the IpAnsiStr
parameter from the ANSI character set into the OEM-defined character

set.

Parameters IpAnsiStr

IpOemStr

nLength

Return value None.

AnsiUpper

LPSTR Points to a buffer containing one or more
characters from the ANSI character set.

LPSTR Points to the location where the translated string
is to be copied. The IpOemStr parameter can be the same
as lpAnsiStr to translate the string in place.

WORD Specifies the number of characters in the buffer
identified by the IpAnsiStr parameter. If nLength is zero,
the length is 64K (65,536).

Syntax LPSTRAnsiUpper(lpString)
function AnsiUpper(Str: PChar): PChar;

This function converts the given character string to uppercase. The
conversion is made by the language driver based on the criteria of the
current language selected by the user at setup or with the Control Panel.

Parameters IpString

Chapter 4, Functions directory

LPSTR Points to a null-terminated character string or
specifies single character. If IpString specifies a single

165

AnsiUpper

character, that character is in the low-order byte of the
low-order word, and the high-order word is zero.

Return value The return value points to a converted character string if the function
parameter is a character string; otherwise, it is a 32-bit value that contains
the converted character in the low-order byte of the low-order word.

AnsiUpperBuff 3.0

Syntax ' WORD AnsiUpperBuff(lpString, nLength)
function AnsiUpperBuff(Str:Pchar;Length:Word):Word;

This function converts a character string in a buffer to uppercase. The
conversion is made by the language driver based on the criteria of the
current language selected by the user at setup or with the Control Panel.

Parameters [pString LPSTR Points to a buffer containing one or more
characters.
nLength WORD Specifies the number of characters in the buffer
identified by the IpString parameter. If nLength is zero, the
length is 64K (65,536).

Return value The return value specifies the length of the converted string.

AnyPopup

Syntax BOOL AnyPopup()
function AnyPopup: Bool;

AppendMenu

This function indicates whether a pop-up window exists on the screen. It
searches the entire Windows screen, not just the caller’s client area. The
AnyPopup function returns nonzero even if a pop-up window is
completely covered by another window.

Parameters None.

Return value The return value is nonzero if a pop-up window exists. Otherwise, it is
zero.

156 Software development kit

AppendMenu

AppendMenu

3.0

Syntax BOOL AppendMenu(hMenu, wFlags, wIDNewltem, IpNewlItem)
function AppendMenu(Menu: HMenu; Flags, IDNewItem: Word;
Newltem: PChar): Bool;

This function appends a new item to the end of a menu. The application
can specify the state of the menu item by setting values in the wFlags

parameter.
Parameters hMenu

wFlags

wIDNewltem

IpNewltem

Chapter 4, Functions directory

HMENU Identifies the menu to be changed.

WORD Specifies information about the state of the new
menu item when it is added to the menu. It consists of
one or more values listed in the following "Comments"
section.

WORD Specifies either the command ID of the new menu
item or, if wFlags is set to MF_POPUP, the menu handle of
the pop-up menu.

LPSTR Specifies the content of the new menu item. The
interpretation of the IpNewltem parameter depends upon
the setting of the wFlags parameter.

If wFlags is IpNewlitem

MF_STRING Contains a long pointer to a null-
terminated character string.

MF_BITMAP Contains a bitmap handle HBITMAP

in its low-order word.

MF_OWNERDRAW Contains an application-supplied
32-bit value which the application
can use to maintain additional data
associated with the menu item. This
32-bit value is available to the
application in the itemData field of
the structure pointed to by the
[Param parameter of the
WM_MEASUREITEM and
WM_DRAWITEM messages sent
when the menu item is initially
displayed or is changed.

157

AppendMenu

158

Return value

Comments

The return value specifies the outcome of the function. It is TRUE if the
function is successful. Otherwise, it is FALSE.

Whenever a menu changes (whether or not the menu resides in a window
that is displayed), the application should call DrawMenuBar.

Each of the following groups lists flags that are mutually exclusive and
should not be used together:

» MF_BYCOMMAND and MF_BYPOSITION

m MF_DISABLED, MF_ENABLED, and MF_GRAYED

MF_BITMAP, MF_STRING, and MF_OWNERDRAW

o MF_MENUBARBREAK and MF_MENUBREAK

g MF_CHECKED and MF_UNCHECKED

The following list describes the flags that can be set in the wFlags
parameter:

Value Meaning

MF_BITMAP Uses a bitmap as the item. The low-order word of
the IpNewltem parameter contains the handle of the
bitmap.

MF_CHECKED Places a checkmark next to the item. If the

application has supplied checkmark bitmaps (see
SetMenultemBitmaps), setting this flag displays the
"checkmark on" bitmap next to the menu item.

MF_DISABLED Disables the menu item so that it cannot be selected,
but does not gray it.

MF_ENABLED Enables the menu item so that it can be selected and
restores it from its grayed state.

MF_GRAYED Disables the menu item so that it cannot be selected
and grays it.

MF_MENUBARBREAK Same as MF_MENUBREAK except that for pop-up
menus, separates the new column from the old
column with a vertical line.

MF_MENUBREAK Places the item on a new line for static menu-bar
items. For pop-up menus, places the item in a new
column, with no dividing line between the columns.

MF_OWNERDRAW Specifies that the item is an owner-draw item. The
window that owns the menu receives a
WM_MEASUREITEM message when the menu is
displayed for the first time to retrieve the height and
width of the menu item. The WM_DRAWITEM
message is then sent whenever the owner must
update the visual appearance of the menu item. This
option is not valid for a top-level menu item.

MEF_POPUP Specifies that the menu item has a pop-up menu
associated with it. The wIDNewlItem parameter

Software development kit

AppendMenu

specifies a handle to a pop-up menu to be associated
with the item. This is used for adding either a top-
level pop-up menu or adding a hierarchical pop-up
menu to a pop-up menu item.

MF_SEPARATOR Draws a horizontal dividing line. Can only be used
in a pop-up menu. This line cannot be grayed,
disabled, or highlighted. The IpNewlItem and
wIDNewltem parameters are ignored.

MF_STRING Specifies that the menu item is a character string; the
IpNewlItem parameter points to the string for the
menu item.

MF_UNCHECKED Does not place a checkmark next to the item

(default). If the application has supplied checkmark
bitmaps (see SetMenultemBitmaps), setting this flag
displays the "checkmark off" bitmap next to the
menu item.

Arc

Syntax BOOL Arc(hDC, X1, Y1, X2, Y2, X3, Y3, X4, Y4)
function Arc(DC: HDC; X1, Y1, X2, Y2, X3, Y3, X4, Y4: Integer): Bool;

This function draws an elliptical arc. The center of the arc is the center of
the bounding rectangle specified by the points (X1, Y1) and (X2, Y2). The
arc starts at the point (X3, Y3) and ends at the point (X4, Y4). The arc is
drawn using the selected pen and moving in a counterclockwise direction.
Since an arc does not define a closed area, it is not filled.

Parameters hDC HDC Identifies the device context.

X1 int Specifies the logical x-coordinate of the upper-left
corner of the bounding rectangle.

Y1 int Specifies the logical y-coordinate of the upper-left
corner of the bounding rectangle.

X2 int Specifies the logical x-coordinate of the lower-right
corner of the bounding rectangle.

Y2 int Specifies the logical y-coordinate of the lower-right
corner of the bounding rectangle.

X3 int Specifies the logical x-coordinate of the arc’s starting
point. This point does not have to lie exactly on the arc.

Y3 int Specifies the logical y-coordinate of the arc’s starting
point. This point does not have to lie exactly on the arc.

Chapter 4, Functions directory 159

Arc

Return value

Comments

X4 int Specifies the logical x-coordinate of the arc’s endpoint.
This point does not have to lie exactly on the arc.

Y4 int Specifies the logical y-coordinate of the arc’s endpoint.
This point does not have to lie exactly on the arc.

The return value specifies whether the arc is drawn. It is nonzero if the arc
is drawn; otherwise, it is zero.

The width of the rectangle specified by the absolute value of X2 - X1 must
not exceed 32,767 units. This limit applies to the height of the rectangle as
well.

ArrangelconicWindows 3.0

Syntax

Parameters

Return value

Comments

WORD ArrangelconicWindows(hWnd)
function ArrangelconicWindows(Wnd: HWnd): Word;

This function arranges all the minimized (iconic) child windows of the
window specified by the hWnd parameter.

hWnd HWND Identifies the window.

The return value is the height of one row of icons, or zero if there were no
icons.

Applications that maintain their own iconic child windows call this
function to arrange icons in a client window. This function also arranges
icons on the desktop window, which covers the entire screen. The
GetDesktopWindow function retrieves the window handle of the desktop
window.

To arrange iconic MDI child windows in an MDI client window, an
application sends the WM_MDIICONARRANGE message to the MDI
client window.

BeginDeferWindowPos 3.0

160

Syntax

HANDLE BeginDeferWindowPos(nNumWindows)
function BeginDeferWindowPos(NumWindows: Integer): THandle;

This function allocates memory to contain a multiple window-position
data structure and returns a handle to the structure. The DeferWindowPos
function fills this data structure with information about the target position
for a window that is about to be moved. The EndDeferWindowPos

Software development kit

BeginDeferWindowPos

function accepts this data structure and instantaneously repositions the
windows using the information stored in the structure.

Parameters nNumWindows int Specifies the initial number of windows for which
position information is to be stored in the data structure.
The Defer-WindowPos function increases the size of the
structure if needed.

Return value The return value identifies the multiple window-position data structure.
The return value is NULL if system resources are not available to allocate
the structure.

BeginPaint

Syntax HDC BeginPaint(thWnd, lpPaint)
function BeginPaint(Wnd: HWnd; var Paint: TPaintStruct): HDC;

This function prepares the given window for painting and fills the paint
structure pointed to by the [pPaint parameter with information about the
painting.

The paint structure contains a handle to the device context for the
window, a RECT data structure that contains the smallest rectangle that
completely encloses the update region, and a flag that specifies whether or
not the background has been erased.

The BeginPaint function automatically sets the clipping region of the
device context to exclude any area outside the update region. The update
region is set by the InvalidateRect or InvalidateRgn functions and by the
system after sizing, moving, creating, scrolling, or any other operation
that affects the client area. If the update region is marked for erasing,
BeginPaint sends a WM_ERASEBKGND message to the window.

An application should not call the BeginPaint function except in response
to a WM_PAINT message. Each BeginPaint call must have a matching call
to the EndPaint function.

Parameters 1 Wnd HWND Identifies the window to be repainted.

IpPaint LPPAINTSTRUCT Points to the PAINTSTRUCT data
structure that is to receive painting information, such as
the device context for the window and the update
rectangle.

Return value The return value identifies the device context for the specified window.

Chapter 4, Functions directory 161

BeginPaint

Comments

If the caret is in the area to be painted, the BeginPaint function
automatically hides the caret to prevent it from being erased.

BitBIt
Syntax BOOL BitBlt(hDestDC, X, Y, nWidth, nHeight, hSrcDC, XSr¢, YSrc,

dwRop)

function BitBlt(DestDC: HDC; X, Y, Width, Height: Integer; SrcDC: HDC;

XSrc, YSrc: Integer; Rop: Longint): Bool;

This function moves a bitmap from the source device given by the

hSrcDCd parameter to the destination device given by the hDestDC

parameter. The XSrc and YSrc parameters specify the origin on the source

device of the bitmap that is to be moved. The X, Y, nWidth, and nHeight

parameters specify the origin, width, and height of the rectangle on the

destination device that is to be filled by the bitmap. The dwRop parameter

(raster operation) defines how the bits of the source and destination are

combined.

Parameters hDestDC HDC Identifies the device context that is to receive the

bitmap.

X int Specifies the logical x-coordinate of the upper-left
corner of the destination rectangle.

Y int Specifies the logical y-coordinate of the upper-left
corner of the destination rectangle.

nWidth int Specifies the width (in logical units) of the destination
rectangle and source bitmap.

nHeight int Specifies the height (in logical units) of the destination
rectangle and source bitmap.

hSrcDC HDC Identifies the device context from which the bitmap
will be copied. It must be NULL if the dwRop parameter
specifies a raster operation that does not include a source.

XSrc int Specifies the logical x-coordinate of the upper-left
corner of the source bitmap.

YSrc int Specifies the logical y-coordinate of the upper-left
corner of the source bitmap.

dwRop DWORD Specifies the raster operation to be performed.
Raster-operation codes define how the graphics device

162 Software development kit

BitBIt

interface (GDI) combines colors in output operations that
involve a current brush, a possible source bitmap, and a
destination bitmap. For a list of raster-operation codes,
see Table 4.1, "Raster operations."

Return value The return value specifies whether the bitmap is drawn. It is nonzero if
the bitmap is drawn. Otherwise, it is zero.

Comments GDI transforms the nWidth and nHeight parameters, once by using the
destination display context, and once by using the source display context.
If the resulting extents do not match, GDI uses the StretchBlt function to
compress or stretch the source bitmap as necessary. If destination, source,
and pattern bitmaps do not have the same color format, the BitBIt
function converts the source and pattern bitmaps to match the
destination. The foreground and background colors of the destination are
used in the conversion.

If BitBIt converts monochrome bitmaps to color, it sets white bits (1) to the
background color and black bits (0) to the foreground color. The
foreground and background colors of the destination device context are
used. To convert color to monochrome, BitBIt sets pixels that match the
background color to white (1), and sets all other pixels to black (0). The
foreground and background colors of the color-source device context are
used.

The foreground color is the current text color for the specified device
context, and the background color is the current background color for the
specified device context.

Not all devices support the BitBIt function. For more information, see the
RC_BITBLT raster capability in the GetDeviceCaps function, later in this
chapter.

Table 4.1 lists the various raster-operation codes for the dwRop parameter:

Table 4.1

Raster operations ~ €ode Description

BLACKNESS Turns all output black.

DSTINVERT Inverts the destination bitmap.

MERGECOPY Combines the pattern and the source bitmap using
the Boolean AND operator.

MERGEPAINT Combines the inverted source bitmap with the
destination bitmap using the Boolean OR operator.

NOTSRCCOPY Copies the inverted source bitmap to the
destination.

NOTSRCERASE Inverts the result of combining the destination and
source bitmaps using the Boolean OR operator.

PATCOPY Copies the pattern to the destination bitmap.

Chapter 4, Functions directory 163

BitBIt

Table 4.1: Raster operations (continued)

PATINVERT Combines the destination bitmap with the pattern
using the Boolean XOR operator.
PATPAINT Combines the inverted source bitmap with the

pattern using the Boolean OR operator. Combines
the result of this operation with the destination
bitmap using the Boolean OR operator.

SRCAND Combines pixels of the destination and source
bitmaps using the Boolean AND operator.
For a complete list SRCCOPY Copies the source bitmap to the destination bitmap.
of the raster- SRCERASE Inverts the destination bitmap and combines the
operation codes, result with the source bitmap using the Boolean
see Chapfter 11, AND operator.
‘Binary and ternary SRCINVERT Combines pixels of the destination and source
raster-operation bitmaps using the Boolean XOR operator.
codes,"in - SRCPAINT Combines pixels of the destination and source
Reference, Volume bitmaps using the Boolean OR operator.
2. WHITENESS Turns all output white.
BringWindowToTop
Syntax void BringWindowToTop(hWnd)
procedure BringWindowToTop(Wnd: HWnd);
This function brings a pop-up or child window to the top of a stack of
overlapping windows. In addition, it activates pop-up and top-level
windows. The BringWindowToTop function should be used to uncover
any window that is partially or completely obscured by any overlapping
windows.
Parameters 1 Wnd HWND Identifies the pop-up or child window that is to be
brought to the top.
Return value None.

BuildCommDCB 3=

Syntax

Parameters

164

int BuildCommDCB(IpDef, 1pDCB)
function BuildCommDCB(Def: PChar; var DCB: TDCB): Integer;

This function translates the definition string specified by the lpDef
parameter into appropriate device-control block codes and places these
codes into the block pointed to by the lpDCB parameter.

IpDef LPSTR Points to a null-terminated character string that
specifies the device-control information for a device. The

Software development kit

Return value

Comments

CallMsgFilter

BuildCommDCB

string must have the same form as the DOS MODE
command-line parameter.

IpDCB DCB FAR *Points to the DCB data structure that is to
receive the translated string. The structure defines the
control setting for the serial-communication device.

The return value specifies the result of the function. It is zero if the string
is translated. It is negative if an error occurs.

The BuildCommDCB function only fills the buffer. An application should
call SetCommsState to apply these settings to the port. Also, by default,
BuildCommDCB specifies Xon/Xoff and hardware flow control as
disabled. An application should set the appropriate fields in the DCB data
structure to enable flow control.

Syntax

Parameters

Return value

Comments

BOOL CallMsgFilter(lpMsg, nCode)
function CallMsgFilter(var Msg: TMsg; Code: Integer): Bool;

This function passes the given message and code to the current message
filter function. The message filter function is an application-specified
function that examines and modifies all messages. An application
specifies the function by using the SetWindowsHook function.

IpMsg LPMSG Points to an MSG data structure that contains the
message to be filtered.

nCode int Specifies a code used by the filter function to
determine how to process the message.

The return value specifies the state of message processing. It is FALSE if
the message should be processed. It is TRUE if the message should not be
processed further.

The CallMsgFilter function is usually called by Windows to let
applications examine and control the flow of messages during internal
processing in menus and scroll bars or when moving or sizing a window.

Values given for the nCode parameter must not conflict with any of the
MSGF_ and HC_ values passed by Windows to the message filter
function.

Chapter 4, Functions directory 165

CallWindowProc

CallWindowProc

Syntax

Parameters

Return value

LONG CallWindowProc(IpPrevWndFunc, hWnd, wMsg, wParam,
IParam)

function CallWindowProc(PrevWndFunc: TFarProc; Wnd: HWnd; Msg,
wParam: Word; IParam: Longint): Longint;

This function passes message information to the function specified by the
IpPrevWndFunc parameter. The CallWindowProc function is used for
window subclassing. Normally, all windows with the same class share the
same window function. A subclass is a window or set of windows
belonging to the same window class whose messages are intercepted and
processed by another function (or functions) before being passed to the
window function of that class.

The SetWindowLong function creates the subclass by changing the
window function associated with a particular window, causing Windows
to call the new window function instead of the previous one. Any
messages not processed by the new window function must be passed to
the previous window function by calling CallWindowProc. This allows a
chain of window functions to be created.

IpPrevWndFunc FARPROC Is the procedure-instance address of the
previous window function.

hWnd HWND Identifies the window that receives the message.

wMsg WORD Specifies the message number.

wParam WORD Specifies additional message-dependent
information.

[Param DWORD Specifies additional message-dependent
information.

The return value specifies the result of the message processing. The
possible return values depend on the message sent.

Catch
Syntax int Catch(lpCatchBuf)
function Catch(var CatchBuf: TCatchBuf): Integer;
This function catches the current execution environment and copies it to
the buffer pointed to by the IpCatchBuf parameter. The execution
environment is the state of all system registers and the instruction counter.
166 Software development kit

Catch

Parameters [pCatchBuf LPCATCHBUF Points to the CATCHBUF structure that
will receive the execution environment.

Return value The return value specifies whether the execution environment is copied to
the bulffer. It is zero if the environment is copied to the buffer.

Comments The Throw function uses the buffer to restore the execution environment
to its previous values.

The Catch function is similar to the C run-time setjmp function (which is
incompatible with the Windows environment).

ChangeClipboardChain

Syntax BOOL ChangeClipboardChain(hWnd, hWndNext)
function ChangeClipboardChain(Wnd, WndNext: HWnd): Bool;

This function removes the window specified by the hWnd parameter from
the chain of clipboard viewers and makes the window specified by the
hWndNext parameter the descendant of the hWnd parameter’s ancestor in
the chain.

Parameters 1Wnd HWND Identifies the window that is to be removed from
the chain. The handle must previously have been passed
to the SetClipboardViewer function.

hWndNext HWND Identifies the window that follows hWnd in the
clipboard-viewer chain (this is the handle returned by the
SetClipboardViewer function, unless the sequence was
changed in response to a WM_CHANGECBCHAIN
message).

Return value The return value specifies the status of the hWnd window. It is nonzero if
the window is found and removed. Otherwise, it is zero.

ChangeMenu

The Microsoft Windows version 3.0 SDK has replaced this function with
five specialized functions. These new functions are:

Function Description

AppendMenu Appends a menu item to the end of a menu

DeleteMenu Deletes a menu item from a menu, destroying the menu
item

InsertMenu Inserts a menu item into a menu

Chapter 4, Functions directory 167

ChangeMenu

ModifyMenu Modifies a menu item in a menu
RemoveMenu Removes a menu item from a menu but does not destroy
the menu item

Applications written for SDK versions 2.1 and earlier may continue to call
ChangeMenu as previously documented. New applications should call
the new functions listed here.

ChangeSelector 3.0

Syntax

Parameters

Return value

Comments

WORD ChangeSelector(wDestSelector, wSourceSelector)
function ChangeSelector(DestSelector, SourceSelector:Word):Word;

This function generates a code selector that corresponds to a given data
selector, or a data selector that corresponds to a given code selector.

The wSourceSelector parameter specifies the selector to be copied and
converted; the wDestSelector parameter is a selector previously allocated
by a call to the AllocSelector function. ChangeSelector modifies the
destination selector to have the same properties as the source selector, but
with the opposite code or data attribute. This function changes only the
attributes of the selector, not the value of the selector.

wDestSelector WORD Specifies a selector previously allocated by
AllocSelector that receives the converted selector.

wSourceSelector WORD Specifies the selector to be converted.

The return value is the copied and converted selector. It is zero if the
function failed.

Windows does not attempt to track changes to the source selector.
Consequently, the application should use the converted destination
selector immediately after it is returned by this function before any
movement of memory can occur.

An application should not use this function unless it is absolutely
necessary. Use of this function violates preferred Windows programming
practices.

CheckDIgButton

168

Syntax

void CheckDlgButton(hDlg, nIDButton, wCheck)
procedure CheckDlgButton(Dlg: HWnd; IDButton: Integer; Check: Word);

Software development kit

CheckDlgButton

This function places a checkmark next to or removes a checkmark from a
button control, or changes the state of a three-state button. The
CheckDIgButton function sends a BM_SETCHECK message to the button
control that has the specified ID in the given dialog box.

Parameters 11Dlg HWND Identifies the dialog box that contains the button.
nIDButton int Specifies the button control to be modified.
wCheck WORD Specifies the action to take. If the wCheck

parameter is nonzero, the CheckDIgButton function
places a checkmark next to the button; if zero, the
checkmark is removed. For three-state buttons, if wCheck
is 2, the button is grayed; if wCheck is 1, it is checked; if
wCheck is 0, the checkmark is removed.

Return value None.

CheckMenultem

Syntax BOOL CheckMenultem(hMenu, wIDCheckItem, wCheck)
function CheckMenultem(Menu: HMenu; IDCheckItem, Check: Word):
Bool;

This function places checkmarks next to or removes checkmarks from
menu items in the pop-up menu specified by the hMenu parameter. The
wIDCheckltem parameter specifies the item to be modified.

Parameters hMenu HMENU Identifies the menu.
wIDCheckItem WORD Specifies the menu item to be checked.

wCheck WORD Specifies how to check the menu item and how to
determine the item’s position in the menu. The wCheck
parameter can be a combination of the MF_CHECKED or
MF_UNCHECKED with MF_BYPOSITION or
MF_BYCOMMAND flags. These flags can be combined
by using the bitwise OR operator. They have the
following meanings:

Value Meaning

MF_BYCOMMAND Specifies that the wIDCheckItem
parameter gives the menu-item ID
(MF_BYCOMMAND is the default).

MF_BYPOSITION Specifies that the wIDCheckItem
parameter gives the position of the

Chapter 4, Functions directory 169

CheckMenultem

Return value

Comments

menu item (the first item is at

position zero).
MF_CHECKED Adds checkmark.
MF_UNCHECKED Removes checkmark.

The return value specifies the previous state of the item. It is either
MF_CHECKED or MF_UNCHECKED. The return value is -1 if the menu
item does not exist.

The wIDCheckltem parameter may identify a pop-up menu item as well as
a menu item. No special steps are required to check a pop-up menu item.

Top-level menu items cannot be checked.

A pop-up menu item should be checked by position since it does not have
a menu-item identifier associated with it.

CheckRadioButfton

170

Syntax

Parameters

Return value

void CheckRadioButton(hDlg, nIDFirstButton, nIDLastButton,
nIDCheckButton)

procedure CheckRadioButton(Dlg: HWnd; IDFirstButton, IDLastButton,
IDCheckButton: Integer);

This function checks the radio button specified by the nIDCheckButton
parameter and removes the checkmark from all other radio buttons in the
group of buttons specified by the nIDFirstButton and nIDLastButton
parameters. The CheckRadioButton function sends a BM_SETCHECK
message to the radio-button control that has the specified ID in the given
dialog box.

hDIg HWND Identifies the dialog box.

nIDFirstButton int Specifies the integer identifier of the first radio button
in the group.

nIDLastButton int Specifies the integer identifier of the last radio button
in the group.

nIDCheckButton int Specifies the integer identifier of the radio button to be
checked.

None.

Software development kit

ChildWindowFromPoint

ChildWindowFromPoint

Syntax HWNDChildWindowFromPoint(thWndParent, Point)
function ChildWindowFromPoint(Wnd HWnd; APoint: TPoint): HWnd;

This function determines which, if any, of the child windows belonging to
the given parent window contains the specified point.

Parameters hWndParent HWND Identifies the parent window.

Point POINT Specifies the client coordinates of the point to be
tested.

Return value The return value identifies the child window that contains the point. It is
NULL if the given point lies outside the parent window. If the point is
within the parent window but is not contained within any child window,
the handle of the parent window is returned.

Chord

Syntax BOOL Chord(hDC, X1, Y1, X2, Y2, X3, Y3, X4, Y4)
function Chord(DC: HDC; X1, Y1, X2, Y2, X3, Y3, X4, Y4: Integer): Bool;

This function draws a chord (a region bounded by the intersection of an
ellipse and a line segment). The (X1, Y1) and (X2, Y2) parameters specify
the upper-left and lower-right corners, respectively, of a rectangle
bounding the ellipse that is part of the chord. The (X3, Y3) and (X4, Y4)
parameters specify the endpoints of a line that intersects the ellipse. The
chord is drawn by using the selected pen and filled by using the selected

brush.
Parameters 1DC HDC Identifies the device context in which the chord will

appear.

X1 int Specifies the x-coordinate of the bounding rectangle’s
upper-left corner.

Y1 int Specifies the y-coordinate of the bounding rectangle’s
upper-left corner.

X2 int Specifies the x-coordinate of the bounding rectangle’s
lower-right corner.

Y2 int Specifies the y-coordinate of the bounding rectangle’s

lower-right corner.

Chapter 4, Functions directory 171

Chord

Return value

X3 int Specifies the x-coordinate of one end of the line
segment.

Y3 int Specifies the y-coordinate of one end of the line
segment.

X4 int Specifies the x-coordinate of one end of the line
segment. :

Y4 int Specifies the y-coordinate of one end of the line
segment.

The return value specifies whether or not the arc is drawn. It is nonzero if
the arc is drawn. Otherwise, it is zero.

ClearCommBreak

Syntax

Parameters

Return value

intClearCommBreak(nCid)
function ClearCommBreak(Cid: Integer): Integer;

This function restores character transmission and places the transmission
line in a nonbreak state.

nCid int Specifies the communication device to be restored. The
OpenComm function returns this value.

The return value specifies the result of the function. It is zero if the
function is successful. It is negative if the nCid parameter is not a valid
device.

ClientToScreen

172

Syntax

Parameters

void ClientToScreen(hWnd, IpPoint)
procedure ClientToScreen(Wnd: HWnd; var Point: TPoint);

This function converts the client coordinates of a given point on the
display to screen coordinates. The ClientToScreen function uses the client
coordinates in the POINT data structure, pointed to by the IpPoint
parameter, to compute new screen coordinates; it then replaces the
coordinates in the structure with the new coordinates. The new screen
coordinates are relative to the upper-left corner of the system display.

hWhnd HWND Identifies the window whose client area will be
used for the conversion.

Software development kit

ClientToScreen

IpPoint LPPOINT Points to a POINT data structure that contains
the client coordinates to be converted.

Return value None.

Comments The ClientToScreen function assumes that the given point is in client
coordinates and is relative to the given window.

ClipCursor

Syntax void ClipCursor(IpRect)
procedure ClipCursor(Rect: PRect);

This function confines the cursor to the rectangle on the display screen
given by the IpRect parameter. If a subsequent cursor position, given with
the SetCursorPos function or the mouse, lies outside the rectangle,
Windows automatically adjusts the position to keep the cursor inside. If
IpRect is NULL, the cursor is free to move anywhere on the display screen.

Parameters [pRect LPRECT Points to a RECT data structure that contains the
screen coordinates of the upper-left and lower-right
corners of the confining rectangle.

Comments The cursor is a shared resource. An application that has confined the
cursor to a given rectangle must free it before relinquishing control to
another application.

Return value None.

CloseClipboard

Syntax BOOL CloseClipboard()
function CloseClipboard: Bool;

This function closes the clipboard. The CloseClipboard function should be
called when a window has finished examining or changing the clipboard.
It lets other applications access the clipboard.

Parameters None.

Return value The return value specifies whether the clipboard is closed. It is nonzero if
' the clipboard is closed. Otherwise, it is zero.

Chapter 4, Functions directory 173

CloseComm

CloseComm

Syntax

Parameters

Return value

CloseMetaFile

int CloseComm(nCid)
function CloseComm(Cid: Integer): Integer;

This function closes the communication device specified by the nCid
parameter and frees any memory allocated for the device’s transmit and
receive queues. All characters in the output queue are sent before the
communication device is closed.

nCid int Specifies the device to be closed. The OpenComm
function returns this value.

The return value specifies the result of the function. It is zero if the device
is closed. It is negative if an error occurred.

Syntax

Parameters

Return value

HANDLE CloseMetaFile(hDC)
function CloseMetaFile(DC: THandIe): THandle;

This function closes the metafile device context and creates a metafile
handle that can be used to play the metafile by using the PlayMetaFile
function.

hDC HANDLE Identifies the metafile device context to be
closed.

The return value identifies the metafile if the function is successful.
Otherwise, it is NULL.

CloseSound
Syntax void CloseSound()
procedure CloseSound;
This function closes access to the play device and frees the device for
opening by other applications. The CloseSound function flushes all voice
queues and frees any buffers allocated for these queues.
Parameters None.
Return value None.

174

Software development kit

CloseWindow

CloseWindow

Syntax

Parameters
Return value

Comments

CombineRgn

void CloseWindow(hWnd)
procedure CloseWindow(Wnd: HWnd);

This function minimizes the specified window. If the window is an
overlapped window, it is minimized by removing the client area and
caption of the open window from the display screen and moving the
window’s icon into the icon area of the screen.

hWhnd HWND Identifies the window to be minimized.
None.

This function has no effect if the hWnd parameter is a handle to a pop-up
or child window.

Syntax

Parameters

int CombineRgn(hDestRgn, hSrcRgn1, hSrcRgn2, nCombineMode)
function CombineRgn(DestRgn, SrcRgn1, SrcRgn2: HRgn; CombineMode:
Integer): Integer;

This function creates a new region by combining two existing regions. The
method used to combine the regions is specified by the nCombineMode
parameter.

hDestRgn HRGN Identifies an existing region that will be replaced
by the new region.

hSrcRgnl HRGN Identifies an existing region.

hSrcRgn2 HRGN Identifies an existing region.

nCombineMode int Specifies the operation to be performed on the two
existing regions. It can be any one of the following values:

Value Meaning

RGN_AND Uses overlapping areas of both
regions (intersection).

RGN_COPrY Creates a copy of region 1
(identified by hSrcRgn1).

RGN_DIFF Saves the areas of region 1

(identified by the hSrcRgnl
parameter) that are not part of

Chapter 4, Functions directory 175

CombineRgn

Return value

Comments

CopyMetaFile

region 2 (identified by the

hSrcRgn2 parameter).
RGN_OR Combines all of both regions
(union).
RGN_XOR Combines both regions but

removes overlapping areas.

The return value specifies the type of the resulting region. It can be any
one of the following values:

Value Meaning

COMPLEXREGION New region has overlapping
borders.

ERROR No new region created.

NULLREGION New region is empty.

SIMPLEREGION New region has no overlapping
borders.

If the hDestRgn parameter does not identify an existing region, the
application must pass a far pointer to a previously allocated HRGN as the
hDestRgn parameter.

Syntax

Parameters

Return value

CopyRect

HANDLE CopyMetaFile(hSrcMetaFile, lpFilename)
function CopyMetaFile(SrcMetaFile: THandle; FileName: PChar):
THandle;

This function copies the source metafile to the file pointed to by the
IpFilename parameter and returns a handle to the new metafile. If
IpFilename is NULL, the source is copied to a memory metafile.

hSrcMetaFile HANDLE Identifies the source metafile.

IpFilename LPSTR Points to a null-terminated character string that
specifies the file that is to receive the metafile.

The return value identifies the new metafile.

Syntax

176

int CopyRect(IpDestRect, IpSourceRect)
procedure CopyRect(var DestRect, SourceRect: TRect);

Software development kit

CopyRect

This function copies the rectangle pointed to by the IpSourceRect
parameter to the RECT data structure pointed to by the IpDestRect
parameter.

Parameters [pDestRect LPRECT Points to a RECT data structure.
IpSourceRect ~ LPRECT Points to a RECT data structure.

Return value Although the CopyRect function return type is an integer, the return
value is not used and has no meaning.

CountClipboardFormats

Syntax int CountClipboardFormats()
function CountClipboardFormats: Integer;

This function retrieves a count of the number of formats the clipboard can
render.

Parameters None.

Return value The return value specifies the number of data formats in the clipboard.

CountVoiceNotes

Syntax int CountVoiceNotes(nVoice)
function CountVoiceNotes(Voice: Integer): Integer;

This function retrieves a count of the number of notes in the specified
queue. Only those queue entries that result from calls to the SetVoiceNote
function are counted.

Parameters 1 Voice int Specifies the voice queue to be counted. The first voice
queue is numbered 1.

Return value The return value specifies the number of notes in the given queue.

CreateBitmap

Syntax HBITMAP CreateBitmap(nWidth, nHeight, nPlanes, nBitCount, lpBits)
function CreateBitmap(Width, Height: Integer; Planes, BitCount: Byte;
Bits: Pointer): HBitmap;

Chapter 4, Functions directory 177

CreateBitmap

Parameters

Return value

This function creates a device-dependent memory bitmap that has the
specified width, height, and bit pattern. The bitmap can subsequently be
selected as the current bitmap for a memory display by using the
SelectObject function.

Although a bitmap cannot be copied directly to a display device, the
BitBIt function can copy it from a memory display context (in which it is
the current bitmap) to any compatible device.

nWidth int Specifies the width (in pixels) of the bitmap.

nHeight int Specifies the height (in pixels) of the bitmap.

nPlanes BYTE Specifies the number of color planes in the bitmap.
Each plane has nWidth x nHeight x nBitCount bits.

nBitCount BYTE Specifies the number of color bits per display pixel.

IpBits LPSTR Points to a short-integer array that contains the

initial bitmap bit values. If it is NULL, the new bitmap is
left uninitialized. For more information, see the
description of the bmBits field in the BITMAP data
structure in Chapter 7, "Data types and structures,” in
Reference, Volume 2.

The return value identifies a bitmap if the function is successful.
Otherwise, it is NULL.

CreateBitmaplndirect

178

Syntax

Parameters

Return value

HBITMAP CreateBitmapIndirect(IpBitmap)
function CreateBitmapIndirect(var Bitmap: TBitmap): HBitmap;

This function creates a bitmap that has the width, height, and bit pattern
given in the data structure pointed to by the IpBitmap parameter. Although
a bitmap cannot be directly selected for a display device, it can be selected
as the current bitmap for a memory display and copied to any compatible
display device by using the BitBIt function.

IpBitmap BITMAP FAR * Points to a BITMAP data structure that
contains information about the bitmap.

The return value identifies a bitmap if the function is successful.
Otherwise, it is NULL.

Software development kit

CreateBrushindirect

CreateBrushindirect

Syntax

Parameters

Return value

HBRUSH CreateBrushIndirect(IpLogBrush)
function CreateBrushIndirect(var LogBrush: TLogBrush): HBrush;

This function creates a logical brush that has the style, color, and pattern
given in the data structure pointed to by the lpLogBrush parameter. The
brush can subsequently be selected as the current brush for any device.

IpLogBrush LLOGBRUSH FAR * Points to a LOGBRUSH data structure
that contains information about the brush.

The return value identifies a logical brush if the function is successful.
Otherwise, it is NULL.

Comments A brush created using a monochrome (one plane, one bit per pixel)
bitmap is drawn using the current text and background colors. Pixels
represented by a bit set to 0 will be drawn with the current text color, and
pixels represented by a bit set to 1 will be drawn with the current
background color.

CreateCaret
Syntax void CreateCaret(hWnd, hBitmap, nWidth, nHeight)

procedure CreateCaret(Wnd: HWnd; Bitmap: HBitmap; Width, Height:
Integer);

This function creates a new shape for the system caret and assigns
ownership of the caret to the given window. The caret shape can be a line,
block, or bitmap as defined by the hBitmap parameter. If hBitmap is a
bitmap handle, the nWidth and nHeight parameters are ignored; the
bitmap defines its own width and height. (The bitmap handle must have
been previously created by using the CreateBitmap, CreateDIBitmap, or
LoadBitmap function.) If hBitmap is NULL or 1, nWidth and nHeight give
the caret’s width and height (in logical units); the exact width and height
(in pixels) depend on the window’s mapping mode.

If nWidth or nHeight is zero, the caret width or height is set to the system’s
window-border width or height. Using the window-border width or
height guarantees that the caret will be visible on a high-resolution
display.

Chapter 4, Functions directory 179

CreateCaret

Parameters

Return value

Comments

The CreateCaret function automatically destroys the previous caret shape,
if any, regardless of which window owns the caret. Once created, the caret
is injtially hidden. To show the caret, the ShowCaret function must be
called.

hWhnd HWND Identifies the window that owns the new caret.

hBitmap HBITMAP Identifies the bitmap that defines the caret
shape. If hBitmap is NULL, the caret is solid; if hBitmap is
1, the caret is gray.

nWidth int Specifies the width of the caret (in logical units).
nHeight int Specifies the height of the caret (in logical units).
None.

The system caret is a shared resource. A window should create a caret
only when it has the input focus or is active. It should destroy the caret
before losing the input focus or becoming inactive.

The system’s window-border width or height can be retrieved by using
the GetSystemMetrics function with the SM_CXBORDER and
SM_CYBORDER indexes.

CreateCompatibleBitmap

180

Syntax

HBITMAP CreateCompatibleBitmap(hDC, nWidth, nHeight)
function CreateCompatibleBitmap(DC: HDC; Width, Height: Integer):
HBitmap;

This function creates a bitmap that is compatible with the device specified
by the hDC parameter. The bitmap has the same number of color planes or
the same bits-per-pixel format as the specified device. It can be selected as
the current bitmap for any memory device that is compatible with the one
specified by hDC.

If hDC is a memory device context, the bitmap returned has the same
format as the currently selected bitmap in that device context. A memory
device context is a block of memory that represents a display surface. It
can be used to prepare images in memory before copying them to the
actual display surface of the compatible device.

When a memory device context is created, GDI automatically selects a
monochrome stock bitmap for it.

Software development kit

CreateCompatibleBitmap

Since a color memory device context can have either color or monochrome
bitmaps selected, the format of the bitmap returned by the
CreateCompatibleBitmap function is not always the same; however, the
format of a compatible bitmap for a nonmemory device context is always
in the format of the device.

Parameters 1 DC HDC Identifies the device context.
nWidth int Specifies the width (in bits) of the bitmap.
nHeight int Specifies the height (in bits) of the bitmap. |
Return value The return value identifies a bitmap if the function is successful.
Otherwise, it is NULL.
CreateCompatibleDC

Syntax HDCCreateCompatibleDC(hDC)
function CreateCompatibleDC(DC: HDC): HDC;

This function creates a memory device context that is compatible with the
device specified by the hDC parameter. A memory device context is a
block of memory that represents a display surface. It can be used to
prepare images in memory before copying them to the actual device
surface of the compatible device.

When a memory device context is created, GDI automatically selects a 1-
by-1 monochrome stock bitmap for it.

Parameters hDC HDC Identifies the device context. If xDC is NULL, the
function creates a memory device context that is
compatible with the system display.

Return value The return value identifies the new memory device context if the function
is successful. Otherwise, it is NULL.

Comments This function can only be used to create compatible device contexts for
devices that support raster operations. For more information, see the
RC_BITBLT raster capability in the GetDeviceCaps function, later in this
chapter.

GDI output functions can be used with a memory device context only if a
bitmap has been created and selected into that context.

When the application no longer requires the device context, it should free
it by calling the DeleteDC function.

Chapter 4, Functions directory 181

CreateCursor

CreateCursor 3.0

Syntax HCURSOR CreateCursor(hInstance, nXhotspot, nYhotspot, nWidth,
nHeight,]pANDDbitPlane, lpXORDbitPlane)
function CreateCursor(Instance: THandle; Xhotspot, Yhotspot, Width,
Height: Integer; ANDBIitPlane, XORBitPlane: Pointer): HCursor;

This function creates a cursor that has specified width, height, and bit

patterns.
Parameters hlnstance HANDLE Identifies an instance of the module creating the
cursor.
nXhotspot int Specifies the horizontal position of the cursor hotspot.
nYhotspot int Specifies the vertical position of the cursor hotspot.
nWidth int Specifies the width in pixels of the cursor.
nHeight int Specifies the height in pixels of the cursor.

IpPANDUbitPlane LPSTR Points to an array of bytes containing the bit
values for the AND mask of the cursor. This can be the
bits of a device-dependent monochrome bitmap.

IpXORbitPlane LPSTR Points to an array of bytes containing the bit
values for the XOR mask of the cursor. This can be the bits
of a device-dependent monochrome bitmap.

Return value The return value identifies the cursor if the function was successful.
Otherwise, it is NULL.

CreateDC

Syntax HDC CreateDC(IpDriverName, IpDeviceName, IpOutput, lpInitData)
function CreateDC(DriverName, DeviceName, Output: PChar; InitData:
Pointer): HDC;

This function creates a device context for the specified device. The
IpDriverName, IpDeviceName, and IpOutput parameters specify the device
driver, device name, and physical output medium (file or port),
respectively.

Parameters [pDriverName LPSTR Points to a null-terminated character string that
specifies the DOS filename (without extension) of the
device driver (for example, Epson ©).

182 Software development kit

CreateDC

IpDeviceName LPSTR Points to a null-terminated character string that
specifies the name of the specific device to be supported
(for example, Epson FX-80). The IpDeviceName parameter
is used if the module supports more than one device.

IpOutput LPSTR Points to a null-terminated character string that
specifies the DOS file or device name for the physical
output medium (file or output port).

IpInitData LPDEVMODE Points to a DEVMODE data structure
containing device-specific initialization data for the
device driver. The ExtDeviceMode retrieves this structure
filled in for a given device. The IpInitData parameter must
be NULL if the device driver is to use the default
initialization (if any) specified by the user through the
Control Panel.

Return value The return value identifies a device context for the specified device if the
function is successful. Otherwise, it is NULL.

Comments DOS device names follow DOS conventions; an ending colon (:) is
recommended, but optional. Windows strips the terminating colon so that
a device name ending with a colon is mapped to the same port as the
same name without a colon. The driver and port names must not contain
leading or trailing spaces.

CreateDialog

Syntax HWND CreateDialog(hlnstance, IpTemplateName, hWndParent,
lpDialogFunc)
function (Instance: THandle; TemplateName: PChar; WndParent: HWnd;
DialogFunc: TFarProc): HWnd;

This function creates a modeless dialog box that has the size, style, and
controls defined by the dialog-box template given by the IpTemplateName
parameter. The hWndParent parameter identifies the application window
that owns the dialog box. The dialog function pointed to by the
IpDialogFunc parameter processes any messages received by the dialog
box.

The CreateDialog function sends a WM_INITDIALOG message to the
dialog function before displaying the dialog box. This message allows the
dialog function to initialize the dialog-box controls.

Chapter 4, Functions directory 183

CreateDialog

184

Parameters

Return value

Comments

Caliback
function

Parameters

CreateDialog returns immediately after creating the dialog box. It does
not wait for the dialog box to begin processing input.

hInstance HANDLE Identifies an instance of the module whose
executable file contains the dialog-box template.

IpTemplateName LPSTR Points to a character string that names the dialog-
box template. The string must be a null-terminated
character string.

hWndParent ~ HWND Identifies the window that owns the dialog box.

IpDialogFunc ~ FARPROC Is the procedure-instance address for the
dialog function. See the following "Comments" section for
details.

The return value is the window handle of the dialog box. It is NULL if the
function cannot create the dialog box.

Use the WS_VISIBLE style for the dialog-box template if the dialog box
should appear in the parent window upon creation.

Use the DestroyWindow function to destroy a dialog box created by the
CreateDialog function.

A dialog box can contain up to 255 controls.
The callback function must use the Pascal calling convention and must be
declared FAR.

BOOL FAR PASCAL DialogFunc(hDIlg, wMsg, wParam, [Param)
HWND hDIg;

WORD wMsg;

WORD wParam,;

DWORD [Param;

DialogFunc is a placeholder for the application-supplied function name.
The actual name must be exported by including it in an EXPORTS
statement in the application’s module-definition file.

hDlg Identifies the dialog box that receives the message.

wMsg Specifies the message number.

Software development kit

CreateDialog

wParam Specifies 16 bits of additional message-dependent
information.

[Param Specifies 32 bits of additional message-dependent
information.

Return value Except in response to the WM_INITDIALOG message, the dialog function
should return nonzero if the function processes the message, and zero if it
does not. In response to a WM_INITDIALOG message, the dialog
function should return zero if it calls the SetFocus function to set the
focus to one of the controls in the dialog box. Otherwise, it should return
nonzero, in which case Windows will set the focus to the first control in
the dialog box that can be given the focus.

Comments The dialog function is used only if the dialog class is used for the dialog
box. This is the default class and is used if no explicit class is given in the
dialog-box template. Although the dialog function is similar to a window
function, it must not call the DefWindowProc function to process
unwanted messages. Unwanted messages are processed internally by the
dialog-class window function.

The dialog-function address, passed as the IpDialogFunc parameter, must
be created by using the MakeProcInstance function.

CreateDialogindirect

Syntax HWND CreateDialogIndirect(hInstance, IpDialogTemplate, hWndParent,
IpDialogFunc)
function CreateDialogIndirect(Instance: THandle; DialogTemplate:
Pointer; WndParent: HWnd; DialogFunc: TFarProc): HWnd;

This function creates a modeless dialog box that has the size, style, and

controls defined by the dialog-box template given by the IpDialogTemplate
parameter. The hWndParent parameter identifies the application window

that owns the dialog box. The dialog function pointed to by the

IpDialogFunc parameter processes any messages received by the dialog \
box.

The CreateDialogindirect function sends a WM_INITDIALOG message to ‘
the dialog function before displaying the dialog box. This message allows
the dialog function to initialize the dialog-box controls.

CreateDialogindirect returns immediately after creating the dialog box. It
does not wait for the dialog box to begin processing input.

Chapter 4, Functions directory 185

CreateDialogindirect

186

Parameters

Return value

Comments

Callback
function

Parameters

Return value

hlnstance HANDLE Identifies an instance of the module whose
executable file contains the dialog-box template.

IpDialogTemplate
LPSTR Points to a block of memory that contains a
DLGTEMPLATE data structure.

hWndParent ~ HWND Identifies the window that owns the dialog box.

IpDialogFunc ~ FARPROC Is the procedure-instance address of the dialog
function. See the following "Comments" section for
details.

The return value is the window handle of the dialog box. It is NULL if the
function cannot create either the dialog box or any controls in the dialog
box.

Use the WS_VISIBLE style in the dialog-box template if the dialog box
should appear in the parent window upon creation.

A dialog box can contain up to 255 controls.
The callback function must use the Pascal calling convention and must be
declared FAR.

BOOL FAR PASCAL DialogFunc(hDlg, wMsg, wParam, IParam)
HWND hDlg;

WORD wMsg;

WORD wParam,;

DWORD [Param;

DialogFunc is a placeholder for the application-supplied function name.
The actual name must be exported by including it in an EXPORTS
statement in the application’s module-definition file.

hDIlg Identifies the dialog box that receives the message.

wMsg Specifies the message number.

wParam Specifies 16 bits of additional message-dependent
information.

[Param Specifies 32 bits of additional message-dependent
information.

Except in response to the WM_INITDIALOG message, the dialog function
should return nonzero if the function processes the message, and zero if it

Software development kit

CreateDialogindirect

does not. In response to a WM_INITDIALOG message, the dialog
function should return zero if it calls the SetFocus function to set the
focus to one of the controls in the dialog box. Otherwise, it should return
nonzero, in which case Windows will set the focus to the first control in
the dialog box that can be given the focus.

Comments The dialog function is used only if the dialog class is used for the dialog
box. This is the default class and is used if no explicit class is given in the
dialog-box template. Although the dialog function is similar to a window
function, it must not call the DefWindowProc function to process
unwanted messages. Unwanted messages are processed internally by the
dialog-class window function.

The dialog-function address, passed as the IpDialogFunc parameter, must
be created by using the MakeProcInstance function.

CreateDialogindirectParam 3.0

Syntax HWND CreateDialogIndirectParam(hInstance, IpDialogTemplate,
hWndParent, lpDialogFunc, dwlnitParam)
function CreateDialogIndirectParam (Instance: Thandle; DialogTemplate;
WndParent: HWnd; DialogFunc: TFarProc; InitParam: Longint): HWnd;

This function creates a modeless dialog box, sends a WM_INITDIALOG
message to the dialog function before displaying the dialog box, and
passes dwlnitParam as the message [Param. This message allows the dialog
function to inijtialize the dialog-box controls. Otherwise, this function is
identical to the CreateDialoglndirect function.

For more information on creatihg a modeless dialog box, see the
description of the CreateDialogindirect function.

Parameters hinstance HANDLE Identifies an instance of the module whose
executable file contains the dialog-box template.

IpDialogTemplate
LPSTR Points to a block of memory that contains a
DLGTEMPLATE data structure.

hWndParent ~ HWND Identifies the window that owns the dialog box.

IpDialogFunc ~ FARPROC Is the procedure-instance address of the dialog
function. For details, see the "Comments" section in the
description of the CreateDialoglndirect function.

Chapter 4, Functions directory 187

CreateDialogindirectParam

Return value

dwlnitParam DWORD Is a 32-bit value which
CreateDialogIndirectParam passes to the dialog function
when it creates the dialog box.

The return value is the window handle of the dialog box. It is NULL if the
function cannot create either the dialog box or any controls in the dialog
box.

CreateDialogParam 3.0

188

Syntax

Parameters

Return value

HWND CreateDialogParam(hInstance, lpTemplateName, hWndParent,

IpDialogFunc, dwlnitParam)

function CreateDialogParam(Instance: THandle; TemplateName: PChar;
WndParent: HWnd; DialogFunc: TFarProc; InitParam: Longint): HWnd;

This function creates a modeless dialog box, sends a WM_INITDIALOG
message to the dialog function before displaying the dialog box, and
passes dwlnitParam as the message [Param. This message allows the dialog
function to initialize the dialog-box controls. Otherwise, this function is
identical to the CreateDialog function.

For more information on creating a modeless dialog box, see the
description of the CreateDialog function.

hInstance HANDLE Identifies an instance of the module whose
executable file contains the dialog-box template.

IpTemplateName LPSTR Points to a character string that names the dialog-
box template. The string must be a null-terminated
character string.

hWndParent ~ HWND Identifies the window that owns the dialog box.

IpDialogFunc ~ FARPROC Is the procedure-instance address for the
dialog function. For details, see the "Comments" section
of the CreateDialog function.

dwlinitParam DWORD Is a 32-bit value which CreateDialogParam
passes to the dialog function when it creates the dialog
box.

The return value is the window handle of the dialog box. It is -1 if the
function cannot create the dialog box.

Software development kit

CreateDIBitmap

CreateDIBitmap 3.0

Syntax HBITMAP CreateDIBitmap(hDC, IpInfoHeader, dwUsage, IpInitBits,
IpInitInfo, wUsage)
function CreateDIBitmap(DC: HDC; var InfoHeader: TBitmapInfoHeader;
dwUsage: Longint; InitBits: PChar; var InitInfo: TBitmapInfo; wUsage:
Word): HBitmap;

This function creates a device-specific memory bitmap from a device-
independent bitmap (DIB) specification and optionally sets bits in the
bitmap.

Parameters 1DC HDC Identifies the device context.

IpInfoHeader ~ LPBITMAPINFOHEADER Points to a
BITMAPINFOHEADER structure that describes the size
and format of the device-independent bitmap.

dwlsage DWORD Indicates whether the memory bitmap is to be
initialized. If dwUsage is set to CBM_INIT,
CreateDIBitmap will initialize the bitmap with the bits
specified by IpInitBits and IpInitInfo

IpInitBits LPSTR Points to a byte array that contains the initial
bitmap values. The format of the bitmap values depends
on the biBitCount field of the BITMAPINFO structure
identified by IpInitInfo. See the description of the
BITMAPINFO data structure in Chapter 7, "Data Types |
and Structures,” in Reference, Volume 2, for more

information.

IpInitInfo LPBITMAPINFO Points to a BITMAPINFO data structure
that describes the dimensions and color format of
IpInitBits.

wllsage WORD Specifies whether the bmiColors|] fields of the

IpInitInfo data structure contain explicit RGB values or
indexes into the currently realized logical palette. The
wllsage parameter must be one of the following values:

Value Meaning

DIB_PAL_COLORS The color table consists of an
array of 16-bit indexes into the
currently realized logical palette.

Chapter 4, Functions directory 189

CreateDIBitmap

Return value

Comments

DIB_RGB_COLORS The color table contains literal
RGB values.

The return value identifies a bitmap if the function is successful.
Otherwise, it is NULL.

This function also accepts a device-independent bitmap specification
formatted for Microsoft OS/2 Presentation Manager versions 1.1 and 1.2 if
the IpInfoHeader points to a BITMAPCOREHEADER data structure and the
IpInitInfo parameter points to a BITMAPCOREINFO data structure.

CreateDIBPatternBrush 3.0

190

Syntax

Parameters

HBRUSH CreateDIBPatternBrush(hPackedDIB, wUsage)
function CreateDIBPatternBrush(PackedDIB: THandle; Usage: Word):
HBrush;

This function creates a logical brush that has the pattern specified by the
device-independent bitmap (DIB) defined by the the hPacked DIB
parameter. The brush can subsequently be selected for any device that
supports raster operations. For more information, see the RC_BITBLT
raster capability in the GetDeviceCaps function, later in this chapter.

hPackedDIB GLOBALHANDLE Identifies a global memory object
containing a packed device-independent bitmap. To
obtain this handle, an application calls the GlobalAlloc
function to allocate a block of global memory and then
fills the memory with the packed DIB. A packed DIB
consists of a BITMAPINFO data structure immediately
followed by the array of bytes which define the pixels of
the bitmap

wlsage WORD Specifies whether the bmiColors]] fields of the
BITMAPINFO data structure contain explicit RGB values
or indexes into the currently realized logical palette. The
wllsage parameter must be one of the following values:

Value Meaning

DIB_PAL_COLORS The color table contains literal
RGB values. into the currently
realized logical palette.

DIB_RGB_COLORS The color table consists of an
array of 16-bit indexes.

Software development kit

CreateDIBPatternBrush

The return value identifies a logical brush if the function is successful.
Return value Otherwise, it is NULL.

Comments When an application selects a two-color DIB pattern brush into a
monochrome device context, Windows ignores the colors specified in the
DIB and instead displays the pattern brush using the current background
and foreground colors of the device context. Pixels mapped to the first
color (at offset 0 in the DIB color table) of the DIB are displayed using the
foreground color, and pixels mapped to the second color (at offset 1 in the
color table) are displayed using the background color. The SetTextColor
and SetBkColor functions change the foreground and background colors,
respectively, for a device context.

CreateDiscardableBitmap

Syntax HBITMAP CreateDiscardableBitmap(hDC, nWidth, nHeight)
function CreateDiscardableBitmap(DC: HDC; Width, Height: Integer):
HBitmap;

This function creates a discardable bitmap that is compatible with the

device identified by the hDC parameter. The bitmap has the same number

of color planes or the same bits-per-pixel format as the specified device.

An application can select this bitmap as the current bitmap for a memory |
device that is compatible with the one specified by the hDC parameter.

Parameters 1DC HDC Identifies a device context.
nWidth int Specifies the width (in bits) of the bitmap.
nHeight int Specifies the height (in bits) of the bitmap.

Return value The return value identifies a bitmap if the function is successful.
Otherwise, it is NULL.

Comments Windows can discard a bitmap created by this function only if an
application has not selected it into a display context. If Windows discards
the bitmap when it is not selected and the application later attempts to
select it, the SelectObject function will return zero. When this occurs, the
application should remove the handle to the bitmap by using
DeleteObject.

Chapter 4, Functions directory 191

CreatetllipticRgn

CreatetllipticRgn

Syntax HRGN CreateEllipticRgn(X1, Y1, X2, Y2)
function CreateEllipticRgn(X1, Y1, X2, Y2: Integer): HRgn;

This function creates an elliptical region.

Parameters X1 int Specifies the x-coordinate of the upper-left corner of
the bounding rectangle of the ellipse.

Y1 int Specifies the y-coordinate of the upper-left corner of
the bounding rectangle of the ellipse.

X2 int Specifies the x-coordinate of the lower-right corner of
the bounding rectangle of the ellipse.

Y2 int Specifies the y-coordinate of the lower-right corner of
the bounding rectangle of the ellipse.

Return value The return value identifies a new region if the function is successful.
Otherwise, it is NULL.

Comments The width of the rectangle, specified by the absolute value of X2 - X1,
must not exceed 32,767 units. This limit also applies to the height of the
rectangle.

CreatetllipticRgnindirect

Syntax HRGN CreateEllipticRgnIndirect(IpRect)
function CreateEllipticRgnIndirect(var Rect: TRect): HRgn;

This function creates an elliptical region.

Parameters IpRect LPRECT Points to a RECT data structure that contains the
coordinates of the upper-left and lower-right corners of
the bounding rectangle of the ellipse.

Return value The return value identifies a new region if the function is successful.
Otherwise, it is NULL.

Comments The width of the rectangle must not exceed 32,767 units. This limit applies
to the height of the rectangle as well.

192 Software development kit

CreatefFont

CreateFont

Syntax HFONT CreateFont(nHeight, nWidth, nEscapement, nOrientation,
nWeight, cltalic, cUnderline, cStrikeOut, cCharSet, cOutputPrecision,
cClipPrecision, cQuality, cPitchAndFamily, lpFacename)

function CreateFont(Height, Width, Escapement, Orientation, Weight:
Integer; Italic, Underline, StrikeOut, CharSet, OutputPrecision,
ClipPrecision, Quality, PitchAndFamily: Byte; FaceName: PChar): HFont;

This function creates a logical font that has the specified characteristics.
The logical font can subsequently be selected as the font for any device.

Parameters nHeight

nWidth

nEscapement

nQOrientation

nWeight

cltalic

Chapter 4, Functions directory

int Specifies the desired height (in logical units) of the
font. The font height can be specified in three ways: If
nHeight is greater than zero, it is transformed into
device units and matched against the cell height of the
available fonts. If it is zero, a reasonable default size is
used. If it is less than zero, it is transformed into device
units and the absolute value is matched against the
character height of the available fonts. For all height
comparisons, the font mapper looks for the largest font
that does not exceed the requested size, and, if there is
no such font, looks for the smallest font available.

int Specifies the average width (in logical units) of
characters in the font. If nWidth is zero, the aspect ratio
of the device will be matched against the digitization
aspect ratio of the available fonts to find the closest
match, determined by the absolute value of the
difference.

int Specifies the angle (in tenths of degrees) of each line
of text written in the font (relative to the bottom of the

page).
int Specifies the angle (in tenths of degrees) of each
character’s baseline (relative to the bottom of the page).

int Specifies the desired weight of the font in the range
0 to 1000 (for example, 400 is normal, 700 is bold). If
nWeight is zero, a default weight is used.

BYTE Specifies whether the font is italic.

193

CreateFont

194

cUnderline
cStrikeOut

cCharSet

cOutputPrecision

cClipPrecision

cQuality

BYTE Specifies whether the font is underlined.

BYTE Specifies whether characters in the font are
struck out.

BYTE Specifies the desired character set. The following
values are predefined:

m ANSI_CHARSET

m OEM_CHARSET

m SYMBOL_CHARSET
m The OEM character set is system-dependent.

Fonts with other character sets may exist in the system.
If an application uses a font with an unknown
character set, it should not attempt to translate or
interpret strings that are to be rendered with that font.
Instead, the strings should be passed directly to the
output device driver.

BYTE Specifies the desired output precision. The
output precision defines how closely the output must
match the requested font’s height, width, character
orientation, escapement, and pitch. It can be any one of
the following values:

m OUT_CHARACTER_PRECIS

m OUT_DEFAULT_PRECIS

m OUT_STRING_PRECIS
m OUT_STROKE_PRECIS

BYTE Specifies the desired clipping precision. The
clipping precision defines how to clip characters that
are partially outside the clipping region. It can be any
one of the following values:

m CLIP_CHARACTER PRECIS

m CLIP_DEFAULT_PRECIS
m CLIP_STROKE_PRECIS

BYTE Specifies the desired output quality. The output
quality defines how carefully GDI must attempt to
match the logical-font attributes to those of an actual
physical font. It can be any one of the following values:
m DEFAULT QUALITY

m DRAFT _QUALITY
m PROOF_QUALITY

Software development kit

CreateFont

cPitchAndFamily ~BYTE Specifies the pitch and family of the font. The
two low-order bits specify the pitch of the font and can
be any one of the following values:

o DEFAULT_PITCH
m FIXED_PITCH
o VARIABLE_PITCH

The four high-order bits of the field specify the font
family and can be any one of the following values:
o FF_ DECORATIVE

o FF_DONTCARE

o FF_ MODERN

o FF_ROMAN

o FF_SCRIPT
o FF_SWISS

IpFacename LPSTR Points to a null-terminated character string that
specifies the typeface name of the font. The length of
this string must not exceed 30 characters. The
EnumFonts function can be used to enumerate the
typeface names of all currently available fonts.

Return value The return value identifies a logical font if the function is successful.
Otherwise, it is NULL.

Comments The CreateFont function does not create a new font. It merely selects the
closest match from the fonts available in GDI’s pool of physical fonts.

CreateFontindirect

Syntax HFONTCreateFontIndirect(IpLogFont)
function CreateFontIndirect(var LogFont: TLogFont): HFont;

This function creates a logical font that has the characteristics given in the
data structure pointed to by the IpLogFont parameter. The font can
subsequently be selected as the current font for any device.

Parameters IpLogFont LOGFONT FAR * Points to a LOGFONT data structure that
defines the characteristics of the logical font.

Return value The return value identifies a logical font if the function is successful.
Otherwise, it is NULL.

Comments The CreateFontindirect function creates a logical font that has all the
specified characteristics. When the font is selected by using the
SelectObject function, GDI's font mapper attempts to match the logical

Chapter 4, Functions directory 195

CreateFontindirect

font with an existing physical font. If it fails to find an exact font, it
provides an alternate whose characteristics match as many of the
requested characteristics as possible. For a description of the font mapper,
see Chapter 2, "Graphics device interface functions."

CreateHatchBrush

Syntax

Parameters

Return value

CreatelC

HBRUSHCreateHatchBrush(nIndex, crColor)
function CreateHatchBrush(Index: Integer; Color: TColorRef): HBrush;

This function creates a logical brush that has the specified hatched pattern
and color. The brush can subsequently be selected as the current brush for
any device.

nilndex int Specifies the hatch style of the brush. It can be any one
of the following values:
Value Meaning
HS_BDIAGONAL 45-degree upward hatch (left to
right)
HS_CROSS Horizontal and vertical
crosshatch
HS_DIAGCROSS 45-degree crosshatch
HS_FDIAGONAL 45-degree downward hatch (left
to right)
HS_HORIZONTAL Horizontal hatch
HS VERTICAL Vertical hatch
crColor COLORREF Specifies the foreground color of the brush

(the color of the hatches).

The return value identifies a logical brush if the function is successful.
Otherwise, it is NULL.

196

Syntax

HDC CreatelC(lpDriverName, lpDeviceName, lpOutput, IpInitData)
function CreateIC(DriverName, DeviceName, Output: PChar; InitDate:
Pointer): HDC;

This function creates an information context for the specified device. The
information context provides a fast way to get information about the
device without creating a device context.

Software development kit

CreatelC

Parameters [pDriverName LPSTR Points to a null-terminated character string that
specifies the DOS filename (without extension) of the
device driver (for example, EPSON).

IpDeviceName LPSTR Points to a null-terminated character string that
specifies the name of the specific device to be supported
(for example, EPSON FX-80). The IpDeviceName parameter
is used if the module supports more than one device.

IpOutput LPSTR Points to a null-terminated character string that
specifies the DOS file or device name for the physical
output medium (file or port).

IpInitData LPSTR Points to device-specific initialization data for the
device driver. The IpInitData parameter must be NULL if
the device driver is to use the default initialization (if any)
specified by the user through the Control Panel.

Return value The return value identifies an information context for the specified device
if the function is successful. Otherwise, it is NULL.

Comments DOS device names follow DOS conventions; an ending colon (:) is
recommended, but optional. Windows strips the terminating colon so that
a device name ending with a colon is mapped to the same port as the
same name without a colon.

The driver and port names must not contain leading or trailing spaces.

GDI output functions cannot be used with information contexts.

Createlcon 3.0

Syntax HICON Createlcon(hInstance, nWidth, nHeight, nPlanes, nBitsPixel,
IpANDbits, IpXORbits)
function Createlcon(Instance: THandle; Width, Height: Integer; Planes,
BitsPixel: Byte; ANDbits, XORbits: Pointer): Hlcon;

This function creates an icon that has specified width, height, colors, and

bit patterns.
Parameters hinstance HANDLE Identifies an instance of the module creating the
icon.
nWidth int Specifies the width in pixels of the icon.
nHeight int Specifies the height in pixels of the icon.

Chapter 4, Functions directory 197

Createlcon

Return value

nPlanes BYTE Specifies the number of planes in the XOR mask of
the icon.
nBitsPixel BYTE Specifies the number of bits per pixel in the XOR

mask of the icon.

IpANDbits LPSTR Points to an array of bytes that contains the bit
values for the AND mask of the icon. This array must
specify a monochrome mask.

IpXORbits LPSTR Points to an array of bytes that contains the bit
values for the XOR mask of the icon. This can be the bits
of a monochrome or device-dependent color bitmap.

The return value identifies an icon if the function is successful. Otherwise,
it is NULL.

CreateMenu
Syntax HMENU CreateMenu()
function CreateMenu: HMenu;
This function creates a menu. The menu is initially empty, but can be filled
with menu items by using the AppendMenu or InsertMenu function.
Parameters None.

Return value

The return value identifies the newly created menu. It is NULL if the
menu cannot be created.

CreateMetaFile

Syntax

Parameters

Return value

198

HANDLE CreateMetaFile(lpFilename)
function CreateMetaFile(FileName: PChar): THandle;

This function creates a metafile device context.

IpFilename LPSTR Points to a null-terminated character string that
specifies the name of the metafile. If the IpFilename
parameter is NULL, a device context for a memory
metafile is returned.

The return value identifies a metafile device context if the function is
successful. Otherwise, it is NULL.

Software development kit

CreatePaletfte

CreatePalette

Syntax

Parameters

Return value

CreatePattern

HPALETTE CreatePalette(IpLogPalette)
function CreatePalette(var LogPalette: TLogPalette): HPalette;

This function creates a logical color palette.

IpLogPalette LPLOGPALETTE Points to a LOGPALETTE data structure
that contains information about the colors in the logical
palette.

The return value identifies a logical palette if the function was successful.
Otherwise, it is NULL.

Brush

Syntax

Parameters

Return value

Comments

HBRUSH CreatePatternBrush(hBitmap)
function CreatePatternBrush(Bitmap: HBitmap): HBrush;

This function creates a logical brush that has the pattern specified by the
hBitmap parameter. The brush can subsequently be selected for any device
that supports raster operations. For more information, see the RC_BITBLT
raster capability in the GetDeviceCaps function, later in this chapter.

hBitmap HBITMAP Identifies the bitmap. It is assumed to have
been created by using the CreateBitmap,
CreateBitmaplindirect, LoadBitmap, or
CreateCompatibleBitmap function. The minimum size for
a bitmap to be used in a fill pattern is 8-by-8.

The return value identifies a logical brush if the function is successful.
Otherwise, it is NULL.

A pattern brush can be deleted without affecting the associated bitmap by
using the DeleteObject function. This means the bitmap can be used to
create any number of pattern brushes.

A brush created using a monochrome (one plane, one bit per pixel)
bitmap is drawn using the current text and background colors. Pixels
represented by a bit set to 0 will be drawn with the current text color, and
pixels represented by a bit set to 1 will be drawn with the current
background color.

Chapter 4, Functions directory 199

CreatePen

CreatePen

Syntax HPEN CreatePen(nPenStyle, nWidth, crColor)

Parameters

Return value

Comments

function CreatePen(PenStyle, Width: Integer; Color: TColorRef): HPen;

This function creates a logical pen having the specified style, width, and
color. The pen can be subsequently selected as the current pen for any
device.

nPenStyle int Specifies the pen style. It can be any one of the
following values:

Pen Style Value
PS_SOLID 0
PS_DASH 1
PS_DOT 2
PS_DASHDOT 3
PS_DASHDOTDOT 4
PS_NULL 5
PS_INSIDEFRAME 6

If the width of the pen is greater than 1 and the pen style
is PS_INSIDEFRAME, the line is drawn inside the frame
of all primitives except polygons and polylines; the pen is
drawn with a logical (dithered) color if the pen color does
not match an available RGB value. The
PS_INSIDEFRAME style is identical to PS_SOLID if the
pen width is less than or equal to 1

nWidth int Specifies the width of the pen (in logical units).
crColor COLORREF Specifies the color of the pen.

The return value identifies a logical pen if the function is successful.
Otherwise, it is NULL.

Pens with a physical width greater than one pixel will always have either
null or solid style or will be dithered if the pen style is
PS_INSIDEFRAME.

CreatePenIndirect

200

Syntax

HPEN CreatePenIndirect(IpLogPen)
function CreatePenIndirect(var LogPen: TLogPen): HPen;

Software development kit

CreatePenlindirect

This function creates a logical pen that has the style, width, and color
given in the data structure pointed to by the IpLogPen parameter.

Parameters [pLogPen LOGPEN FAR * Points to the LOGPEN data structure that
contains information about the logical pen.

Return value The return value identifies a logical pen object if the function is successful.
Otherwise, it is NULL.

Comments Pens with a physical width greater than one pixel will always have either
null or solid style or will be dithered if the pen style is
PS_INSIDEFRAME.

CreatePolygonRgn

Syntax HRGN CreatePolygonRgn(lpPoints, nCount, nPolyFillMode)
function CreatePolygonRgn(var Points; Count, PolyFillMode: Integer):

HRgn;
This function creates a polygonal region.

Parameters IpPoints LPPOINT Points to an array of POINT data structures.
Each point specifies the x- and y-coordinates of one vertex
of the polygon.

nCount int Specifies the number of points in the array.

nPolyFillMode int Specifies the polygon-filling mode to be used for filling
the region. It can be ALTERNATE or WINDING (for an
explanation of these modes, see the SetPolyFillMode
function, later in this chapter).

Return value The return value identifies a new region if the function is successful.
Otherwise, it is NULL.

CreatePolyPolygonRgn 3.0

Syntax HRGN CreatePolyPolygonRgn(lpPoints, IpPolyCounts, nCount,
nPolyFillMode)
function CreatePolyPolygonRgn(var Points; var PolyCounts; Count,
PolyFillMode: Integer): HRgn;

This function creates a region consisting of a series of closed polygons.
The region is filled using the mode specified by the nPolyFillMode
parameter. The polygons may overlap, but they do not have to overlap.

Chapter 4, Functions directory 201

CreatePolyPolygonRgn

Parameters

Return value

Comments

IpPoints LPPOINT Points to an array of POINT data structures that
define the vertices of the polygons. Each polygon must be
a closed polygon. The polygons are not automatically
closed. The polygons are specified consecutively.

IpPolyCounts LPINT Points to an array of integers, each of which
specifies the number of points in one of the polygons in
the IpPoints array.

nCount int Specifies the total number of integers in the
IpPolyCounts array.

nPolyFillMode int Specifies the filling mode for the region. The
nPolyFillMode parameter may be either of the following

values:

Value Meaning

ALTERNATE Selects alternate mode.
WINDING Selects winding number mode.

The return value identifies the region if the function was successfull.
Otherwise, it is NULL.

In general, the polygon fill modes differ only in cases where a complex,
overlapping polygon must be filled (for example, a five-sided polygon
that forms a five-pointed star with a pentagon in the center). In such cases,
ALTERNATE mode fills every other enclosed region within the polygon
(that is, the points of the star), but WINDING mode fills all regions (that
is, the points and the pentagon).

When the filling mode is ALTERNATE, GDI fills the area between odd-
numbered and even-numbered polygon sides on each scan line. That is,
GDI fills the area between the first and second side, between the third and
fourth side, and so on.

To fill all parts of the region, WINDING mode causes GDI to compute and
draw a border that encloses the region but does not overlap. For example,
in WINDING mode, the five-sided polygon that forms the star is
computed as a ten-sided polygon with no overlapping sides; the resulting
star is filled.

CreatePopupMenu 3.0

Syntax

202

HMENU CreatePopupMenu()
function CreatePopupMenu: HMenu;

Software development kit

Parameters

Return value

CreatePopupMenu

This function creates and returns a handle to an empty pop-up menu.

An application adds items to the pop-up menu by calling InsertMenu and
AppendMenu. The application can add the pop-up menu to an existing
menu or pop-up menu, or it may display and track selections on the pop-
up menu by calling TrackPopupMenu.

None.

The return value identifies the newly created menu. It is NULL if the
menu cannot be created.

CreateRectRgn

Syntax

Parameters

Return value

Comments

HRGNCreateRectRgn(X1, Y1, X2, Y2)
function CreateRectRgn(X1, Y1, X2, Y2: Integer): HRgn;

This function creates a rectangular region.

X1 int Specifies the x-coordinate of the upper-left corner of
the region.

Y1 int Specifies the y-coordinate of the upper-left corner of
the region.

X2 int Specifies the x-coordinate of the lower-right corner of
the region.

Y2 int Specifies the y-coordinate of the lower-right corner of
the region.

The return value identifies a new region if the function is successful.
Otherwise, it is NULL.

The width of the rectangle, specified by the absolute value of X2 — X1,
must not exceed 32,767 units. This limit applies to the height of the
rectangle as well.

CreateRectRgnindirect

Syntax

HRGN CreateRectRgnIndirect(IpRect)
function CreateRectRgnIndirect(var Rect: TRect): HRgn;

This function creates a rectangular region.

Chapter 4, Functions directory 203

CreateRectRgnindirect

Parameters IpRect LPRECT Points to a RECT data structure that contains the
coordinates of the upper-left and lower-right corners of
the region.

Return value The return value identifies a new region if the function is successful.
Otherwise, it is NULL.

Comments The width of the rectangle must not exceed 32,767 units. This limit applies
to the height of the rectangle as well.

CreateRoundRectRgn 3.0

Syntax HRGN CreateRoundRectRgn(X1, Y1, X2, Y2, X3, Y3)
function CreateRoundRectRgn(X1, Y1, X2, Y2, X3, Y3: Integer): HRgn;

This function creates a rectangular region with rounded corners.

Parameters X1 int Specifies the x-coordinate of the upper-left corner of

the region.

Y1 int Specifies the y-coordinate of the upper-left corner of
the region.

X2 int Specifies the x-coordinate of the lower-right corner of
the region.

Y2 int Specifies the y-coordinate of the lower-right corner of
the region.

X3 int Specifies the width of the ellipse used to create the

rounded corners.

Y3 int Specifies the height of the ellipse used to create the
rounded corners.

Return value The return value identifies a new region if the function was successful.
Otherwise, it is NULL.

Comments The width of the rectangle, specified by the absolute value of X2 - X1,
must not exceed 32,767 units. This limit applies to the height of the
rectangle as well.

CreateSolidBrush

Syntax HBRUSH CreateSolidBrush(crColor)
function CreateSolidBrush(Color: TColorRef): HBrush;

204 Soffware development kit

CreateSolidBrush

This function creates a logical brush that has the specified solid color. The
brush can subsequently be selected as the current brush for any device.

Parameters crColor COLORREF Specifies the color of the brush
Return value The return value identifies a logical brush if the function is successful.
Otherwise, it is NULL.
CreateWindow

Syntax HWND CreateWindow(lpClassName, [pWindowName, dwStyle, X, Y,
nWidth, nHeight, hWndParent, hMenu, hInstance, IpParam)
function CreateWindow(ClassName, WindowName: PChar; Style:
Longint; X, Y, Width, Height: Integer; WndParent: HWnd; Menu: HMenu;
Instance: THandle; Param: Pointer): HWnd;

This function creates an overlapped, pop-up, or child window. The
CreateWindow function specifies the window class, window title, window
style, and (optionally) initial position and size of the window. The
CreateWindow function also specifies the window’s parent (if any) and
menu.

For overlapped, pop-up, and child windows, the CreateWindow function
sends WM_CREATE, WM_GETMINMAXINFO, and WM_NCCREATE
messages to the window. The [Param parameter of the WM_CREATE
message contains a pointer to a CREATESTRUCT data structure. If
WS_VISIBLE style is given, CreateWindow sends the window all the
messages required to activate and show the window.

If the window style specifies a title bar, the window title pointed to by the
IpWindowName parameter is displayed in the title bar. When using
CreateWindow to create controls such as buttons, check boxes, and text
controls, the IpWindowName parameter specifies the text of the control.

Parameters [pClassName ~ LPSTR Points to a null-terminated character string that
names the window class. The class name can be any name
registered with the RegisterClass function or any of the
predefined control-class names specified in Table 4.2,
"Control classes.".

IpWindowName LPSTR Points to a null-terminated character string that
represents the window name.

dwStyle DWORD Specifies the style of window being created. It
can be any combination of the styles given in Table 4.3,
"Window styles," the control styles given in Table 4.4,

Chapter 4, Functions directory 205

CreateWindow

206

nWidth

nHeight

hWndParent

"Control styles," or a combination of styles created by
using the bitwise OR operator.

int Specifies the initial x-position of the window. For an
overlapped or pop-up window, the X parameter is the
initial x-coordinate of the window’s upper-left corner (in
screen coordinates). If this value is CW_USEDEFAULT,
Windows selects the default position for the window’s
upper-left corner. For a child window, X is the x-
coordinate of the upper-left corner of the window in the
client area of its parent window.

int Specifies the initial y-position of the window. For an
overlapped window, the Y parameter is the initial y-
coordinate of the window’s upper-left corner. For a pop-
up window, Y is the y-coordinate (in screen coordinates)
of the upper-left corner of the pop-up window. For list-
box controls, Y is the y-coordinate of the upper-left corner
of the control’s client area. For a child window, Y is the y-
coordinate of the upper-left corner of the child window.
All of these coordinates are for the window, not the
window’s client area.

int Specifies the width (in device units) of the window.
For overlapped windows, the nWidth parameter is either
the window’s width (in screen coordinates) or

CW _USEDEFAULT. If nWidth is CW_USEDEFAULT,
Windows selects a default width and height for the
window (the default width extends from the initial x-
position to the right edge of the screen, and the default
height extends from the initial y-position to the top of the
icon area).

int Specifies the height (in device units) of the window.
For overlapped windows, the nHeight parameter is the
window’s height in screen coordinates. If the nWidth
parameter is CW_USEDEFAULT, Windows ignores
nHeight.

HWND Identifies the parent or owner window of the
window being created. A valid window handle must be
supplied when creating a child window or an owned
window. An owned window is an overlapped window
that is destroyed when its owner window is destroyed,
hidden when its owner is made iconic, and which is
always displayed on top of its owner window. For pop-

Software development kit

CreateWindow

up windows, a handle can be supplied, but is not
required. If the window does not have a parent or is not
owned by another window, the hWndParent parameter
must be set to NULL.

hMenu HMENU Identifies a menu or a child-window identifier.
The meaning depends on the window style. For
overlapped or pop-up windows, the IMenu parameter
identifies the menu to be used with the window. It can be
NULL, if the class menu is to be used. For child windows,
hMenu specifies the child-window identifier, an integer
value that is used by a dialog-box control to notify its
parent of events (such as the EN_HSCROLL message).
The child-window identifier is determined by the
application and should be unique for all child windows
with the same parent window.

hlnstance HANDLE Identifies the instance of the module to be
associated with the window.

IpParam LPSTR Points to a value that is passed to the window
through the CREATESTRUCT data structure referenced
by the [Param parameter of the WM_CREATE message. If
an application is calling CreateWindow to create a
multiple document interface (MDI) client window,
IpParam must point to a CLIENTCREATESTRUCT data
structure.

Return value The return value identifies the new window. It is NULL if the window is
not created.

Comments For overlapped windows where the X parameter is CW_USEDEFAULT,
the Y parameter can be one of the show-style parameters described with
the ShowWindow function, or, for the first overlapped window to be
created by the application, it can be the nCmdShow parameter passed to
the WinMain function.

Table 4.2 lists the window control classes; Table 4.3 lists the window
styles; Table 4.4 lists the control styles:

Table 4.2

Control classes ~ Class Meaning

BUTTON Designates a small rectangular child window that
represents a button the user can turn on or off by
clicking it. Button controls can be used alone or in
groups, and can either be labeled or appear without
text. Button controls typically change appearance when
the user clicks them.

Chapter 4, Functions directory 207

CreateWindow

Table 4.2: Control classes (continued)

COMBOBOX

EDIT

LISTBOX

MDICLIENT

208

Designates a control consisting of a selection field
similar to an edit control plus a list box. The list box
may be displayed at all times or may be dropped down
when the user selects a "pop box" next to the selection
field.

Depending on the style of the combo box, the user can
or cannot edit the contents of the selection field. If the
list box is visible, typing characters into the selection
box will cause the first list box entry that matches the
characters typed to be highlighted. Conversely,
selecting an item in the list box displays the selected
text in the selection field.

Designates a rectangular child window in which the
user can enter text from the keyboard. The user selects
the control, and gives it the input focus by clicking it or
moving to it by using the TAB key. The user can enter
text when the control displays a flashing caret. The
mouse can be used to move the cursor and select
characters to be replaced, or to position the cursor for
inserting characters. The BACKSPACE key can be used to
delete characters.

Edit controls use the variable-pitch system font and
display ANSI characters. Applications compiled to run
with previous versions of Windows display text with a
fixed-pitch system font unless they have been marked
by the Windows 3.0 MARK utility with the MEMORY
FONT option. An application can also send the
WM_SETFONT message to the edit control to change
the default font.

Edit controls expand tab characters into as many space
characters as are required to move the cursor to the
next tab stop. Tab stops are assumed to be at every
eighth character position.

Designates a list of character strings. This control is
used whenever an application needs to present a list of
names, such as filenames, that the user can view and
select. The user can select a string by pointing to it and
clicking. When a string is selected, it is highlighted and
a notification message is passed to the parent window.
A vertical or horizontal scroll bar can be used with a
list-box control to scroll lists that are too long for the
control window. The list box automatically hides or
shows the scroll bar as needed.

Designates an MDI client window. The MDI client
window receives messages which control the MDI
application’s child windows. The recommended style
bits are WS_CLIPCHILDREN and WS_CHILD. To
create a scrollable MDI client window which allows the
user to scroll MDI child windows into view, an
application can also use the WS_HSCROLL and
WS_VSCROLL styles.

Software development kit

CreateWindow

Table 4.2: Control classes (continued)

SCROLLBAR Designates a rectangle that contains a thumb and has
direction arrows at both ends. The scroll bar sends a
notification message to its parent window whenever
the user clicks the control. The parent window is
responsible for updating the thumb position, if
necessary. Scroll-bar controls have the same
appearance and function as scroll bars used in ordinary
windows. Unlike scroll bars, scroll-bar controls can be
positioned anywhere in a window and used whenever
needed to provide scrolling input for a window.

The scroll-bar class also includes size-box controls. A
size-box control is a small rectangle that the user can
expand to change the size of the window.

STATIC Designates a simple text field, box, or rectangle that can
be used to label, box, or separate other controls. Static
controls take no input and provide no output.

Table 4.3 -
Window styles ~ Class Meaning

DS_LOCALEDIT Specifies that edit controls in the dialog box
will use memory in the application’s data
segment. By default, all edit controls in dialog
boxes use memory outside the application’s
data segment. This feature may be suppressed
by adding the DS_LOCALEDIT flag to the
STYLE command for the dialog box. If this
flag is not used, EM_GETHANDLE and
EM_SETHANDLE messages must not be used
since the storage for the control is not in the
application’s data segment. This feature does
not affect edit controls created outside of
dialog boxes.

DS_MODALFRAME Creates a dialog box with a modal dialog-box
frame that can be combined with a title bar
and System menu by specifying the
WS_CAPTION and WS_SYSMENU styles.

DS_NOIDLEMSG Suppresses WM_ENTERIDLE messages that
Windows would otherwise send to the owner \
of the dialog box while the dialog box is

displayed.
DS_SYSMODAL Creates a system-modal dialog box.
WS_BORDER Creates a window that has a border.
WS_CAPTION Creates a window that has a title bar (implies

the WS_BORDER style). This style cannot be
used with the WS_DLGFRAME style.

WS_CHILD Creates a child window. Cannot be used with
the WS_POPUP style.
WS_CHILDWINDOW Creates a child window that has the

WS_CHILD style.

Chapter 4, Functions directory 209

CreateWindow

210

Table 4.3: Window styles (continued)

WS_CLIPCHILDREN

WS_CLIPSIBLINGS

WS_DISABLED
WS_DLGFRAME

WS_GROUP

WS_HSCROLL
WS_ICONIC
WS_MAXIMIZE
WS_MAXIMIZEBOX
WS_MINIMIZE

WS_MINIMIZEBOX
WS_OVERLAPPED

WS_OVERLAPPEDWINDOW

WS_POPUP
WS_POPUPWINDOW

Excludes the area occupied by child windows
when drawing within the parent window.
Used when creating the parent window.
Clips child windows relative to each other;
that is, when a particular child window
receives a paint message, the
WS_CLIPSIBLINGS style clips all other
overlapped child windows out of the region of
the child window to be updated. (If
WS_CLIPSIBLINGS is not given and child
windows overlap, it is possible, when
drawing within the client area of a child
window, to draw within the client area of a
neighboring child window.) For use with the
WS_CHILD style only.

Creates a window that is initially disabled.
Creates a window with a double border but
no title.

Specifies the first control of a group of controls
in which the user can move from one control
to the next by using the DIRECTION keys. All
controls defined with the WS_GROUP style
after the first control belong to the same
group. The next control with the WS_GROUP
style ends the style group and starts the next
group (that is, one group ends where the next
begins). Only dialog boxes use this style.
Creates a window that has a horizontal scroll
bar.

Creates a window that is initially iconic. For
use with the WS_OVERLAPPED style only.
Creates a window of maximum size.

Creates a window that has a maximize box.
Creates a window of minimum size.

Creates a window that has a minimize box.
Creates an overlapped window. An
overlapped window has a caption and a
border.

Creates an overlapped window having the
WS_OVERLAPPED, WS_CAPTION,
WS_SYSMENU, WS_THICKFRAME,
WS_MINIMIZEBOX, and
WS_MAXIMIZEBOX styles.

Creates a pop-up window. Cannot be used
with the WS_CHILD style.

Creates a pop-up window that has the
WS_BORDER, WS_POPUP, and
WS_SYSMENU styles. The WS_CAPTION
style must be combined with the
WS_POPUPWINDOW style to make the
system menu visible.

Software development kit

CreateWindow

Table 4.3: Window styles (continued)

WS_SYSMENU

WS_TABSTOP

WS_THICKFRAME

Creates a window that has a System-menu
box in its title bar. Used only for windows
with title bars.

Specifies one of any number of controls
through which the user can move by using the
TAB key. The TAB key moves the user to the
next control specified by the WS_TABSTOP
style. Only dialog boxes use this style.

Creates a window with a thick frame that can
be used to size the window.

WS_VISIBLE Creates a window that is initially visible. This
applies to overlapped and pop-up windows.
For overlapped windows, the Y parameter is
used as a ShowWindow function parameter.

WS_VSCROLL Creates a window that has a vertical scroll bar.

Table 4.4 -
Controlstyles Style Meaning
BUTTON class

BS_AUTOCHECKBOX

BS_AUTORADIOBUTTON

BS_AUTO3STATE

BS_CHECKBOX

BS_DEFPUSHBUTTON

BS_GROUPBOX

BS_LEFTTEXT

BS_OWNERDRAW

Chapter 4, Functions directory

Identical to BS_CHECKBOX, except that the
button automatically toggles its state
whenever the user clicks it.

Identical to BS_RADIOBUTTON, except that
the button is checked, the application is
notified by BN_CLICKED, and the
checkmarks are removed from all other radio
buttons in the group.

Identical to BS_3STATE, except that the
button automatically toggles its state when the
user clicks it.

Designates a small rectangular button that
may be checked; its border is bold when the
user clicks the button. Any text appears to the
right of the button.

Designates a button with a bold border. This
button represents the default user response.
Any text is displayed within the button.
Windows sends a message to the parent
window when the user clicks the button.
Designates a rectangle into which other
buttons are grouped. Any text is displayed in
the rectangle’s upper-left corner.

Causes text to appear on the left side of the
radio button or check-box button. Use this
style with the BS_CHECKBOX,
BS_RADIOBUTTON, or BS_3STATE styles.
Designates an owner-draw button. The parent
window is notified when the button is clicked.

21

CreateWindow

Table 4.4: Control styles (continued)

BS_PUSHBUTTON

BS_RADIOBUTTON

Notification includes a request to paint, invert,
and disable the button.

Designates a button that contains the given
text. The control sends a message to its parent
window whenever the user clicks the button.
Designates a small circular button that can be
checked; its border is bold when the user
clicks the button. Any text appears to the right
of the button. Typically, two or more radio
buttons are grouped together to represent
mutually exclusive choices, so no more than
one button in the group is checked at any
time.

BS 3STATE Identical to BS_CHECKBOX, except that a
button can be grayed as well as checked. The
grayed state typically is used to show that a
check box has been disabled.

COMBOBOX class

CBS_AUTOHSCROLL

CBS_DROPDOWN

CBS_DROPDOWNLIST

CBS_HASSTRINGS

CBS_OEMCONVERT

212

Automatically scrolls the text in the edit
control to the right when the user types a
character at the end of the line. If this style is
not set, only text which fits within the
rectangular boundary is allowed.

Similar to CBS_SIMPLE, except that the list
box is not displayed unless the user selects an
icon next to the selection field.

Similar to CBS_DROPDOWN, except that the
edit control is replaced by a static text item
which displays the current selection in the list
box.

An owner-draw combo box contains items
consisting of strings. The combo box
maintains the memory and pointers for the
strings so the application can use the
LB_GETTEXT message to retrieve the text for
a particular item.

Text entered in the combo box edit control is
converted from the ANSI character set to the
OEM character set and then back to ANSI.
This ensures proper character conversion
when the application calls the AnsiToOem
function to convert an ANSI string in the
combo box to OEM characters. This style is
most useful for combo boxes that contain
filenames and applies only to combo boxes
created with the CBS_SIMPLE or
CBS_DROPDOWN styles.

Software development kit

CreateWindow

Table 4.4: Control styles (continued)

CBS_OWNERDRAWFIXED The owner of the list box is responsible for
drawing its contents; the items in the list box
are all the same height.

CBS_OWNERDRAWVARIABLE The owner of the list box is responsible for
drawing its contents; the items in the list box
are variable in height.

CBS_SIMPLE The list box is displayed at all times. The
current selection in the list box is displayed in
the edit control.

CBS_SORT Automatically sorts strings entered into the
list box.

EDIT class

ES_AUTOHSCROLL Automatically scrolls text to the right by 10

characters when the user types a character at
the end of the line. When the user presses the
ENTER key, the control scrolls all text back to
position zero.

ES_AUTOVSCROLL Automatically scrolls text up one page when
the user presses ENTER on the last line.

ES CENTER Centers text in a multiline edit control.

ES_LEFT Aligns text flush-left.

ES_LOWERCASE Converts all characters to lowercase as they
are typed into the edit control.

ES_MULTILINE Designates multiple-line edit control. (The

default is single-line.) If the
ES_AUTOVSCROLL style is specified, the edit
control shows as many lines as possible and
scrolls vertically when the user presses the
ENTER key. If ES_AUTOVSCROLL is not
given, the edit control shows as many lines as
possible and beeps if ENTER is pressed when
no more lines can be displayed.

If the ES_ AUTOHSCROLL style is specified,
the multiple-line edit control automatically
scrolls horizontally when the caret goes past
the right edge of the control. To start a new
line, the user must press ENTER. If
ES_AUTOHSCROLL is not given, the control
automatically wraps words to the beginning
of the next line when necessary; a new line is
also started if ENTER is pressed. The position
of the wordwrap is determined by the
window size. If the window size changes, the
wordwrap position changes, and the text is
redisplayed.

Multiple-line edit controls can have scroll
bars. An edit control with scroll bars processes
its own scroll-bar messages. Edit controls
without scroll bars scroll as described above,

Chapter 4, Functions directory 213

CreateWindow

214

Table 4.4: Control styles (continued)

ES_NOHIDESEL

ES_ OEMCONVERT

ES PASSWORD

ES_RIGHT
ES_UPPERCASE

and process any scroll messages sent by the
parent window.

Normally, an edit control hides the selection
when the control loses the input focus, and
inverts the selection when the control receives
the input focus. Specifying ES_NOHIDESEL
deletes this default action.

Text entered in the edit control is converted
from the ANSI character set to the OEM
character set and then back to ANSI. This
ensures proper character conversion when the
application calls the AnsiToOem function to
convert an ANSI string in the edit control to
OEM characters. This style is most useful for
edit controls that contain filenames.
Displays all characters as an asterisk (*) as
they are typed into the edit control. An
application can use the
EM_SETPASSWORDCHAR message to
change the character that is displayed.
Aligns text flush-right in a multiline edit
control.

Converts all characters to uppercase as they
are typed into the edit control.

LISTBOX class

LBS_EXTENDEDSEL

LBS_HASSTRINGS

LBS_MULTICOLUMN

LBS_MULTIPLESEL

LBS_NOINTEGRALHEIGHT

LBS_NOREDRAW

The user can select multiple items using the
SHIFT key and the mouse or special key
combinations.

Specifies an owner-draw list box which
contains items consisting of strings. The list
box maintains the memory and pointers for
the strings so the application can use the
LB_GETTEXT message to retrieve the text for
a particular item.

Specifies a multicolumn list box that is
scrolled horizontally. The
LB_SETCOLUMNWIDTH message sets the
width of the columns.

String selection is toggled each time the user
clicks or double-clicks the string. Any number
of strings can be selected.

The size of the list box is exactly the size
specified by the application when it created
the list box. Normally, Windows sizes a list
box so that the list box does not display partial
items.

List-box display is not updated when changes
are made. This style can be changed at any

Software development kit

CreateWindow

Table 4.4: Control styles (continued)

LBS_NOTIFY

LBS_OWNERDRAWFIXED

LBS_OWNERDRAWVARIABLE

LBS_SORT

LBS_STANDARD

LBS_USETABSTOPS

LBS_WANTKEYBOARDINPUT

time by sending a WM_SETREDRAW
message.

Parent window receives an input message
whenever the user clicks or double-clicks a
string.

The owner of the list box is responsible for
drawing its contents; the items in the list box
are the same height.

The owner of the list box is responsible for
drawing its contents; the items in the list box
are variable in height.

Strings in the list box are sorted alphabetically.
Strings in the list box are sorted alphabetically
and the parent window receives an input
message whenever the user clicks or double-
clicks a string. The list box contains borders on
all sides.

Allows a list box to recognize and expand tab
characters when drawing its strings. The
default tab positions are 32 dialog units. (A
dialog unit is a horizontal or vertical distance.
One horizontal dialog unit is equal to 1/4 of
the current dialog base width unit. The dialog
base units are computed based on the height
and width of the current system font. The
GetDialogBaseUnits function returns the
current dialog base units in pixels.)

The owner of the list box receives
WM_VKEYTOITEM or WM_CHARTOITEM
messages whenever the user presses a key
when the list box has input focus. This allows
an application to perform special processing
on the keyboard input.

SCROLLBAR class

SBS_BOTTOMALIGN

SBS_HORZ

SBS_LEFTALIGN

Chapter 4, Functions directory

Used with the SBS_HORZ style. The bottom
edge of the scroll bar is aligned with the
bottom edge of the rectangle specified by the
X, Y, nWidth, and nHeight parameters given in
the CreateWindow function. The scroll bar has
the default height for system scroll bars.
Designates a horizontal scroll bar. If neither
the SBS_ BOTTOMALIGN nor
SBS_TOPALIGN style is specified, the scroll
bar has the height, width, and position given
in the CreateWindow function.

Used with the SBS_VERT style. The left edge
of the scroll bar is aligned with the left edge of
the rectangle specified by the X, Y, nWidth,
and nHeight parameters given in the

2156

CreateWindow

Table 4.4: Control styles (continued)

CreateWindow function. The scroll bar has the
default width for system scroll bars.

SBS_RIGHTALIGN Used with the SBS_VERT style. The right edge
of the scroll bar is aligned with the right edge
of the rectangle specified by the X, Y, nWidth,
and nHeight parameters given in the
CreateWindow function. The scroll bar has the
default width for system scroll bars.

SBS_SIZEBOX Designates a size box. If neither the
SBS_SIZEBOXBOTTOMRIGHTALIGN nor
SBS_SIZEBOXTOPLEFTALIGN style is
specified, the size box has the height, width,
and position given in the CreateWindow
function.

SBS_SIZEBOXBOTTOMRIGHTALIGN
Used with the SBS_SIZEBOX style. The
lower-right corner of the size box is aligned
with the lower-right corner of the rectangle
specified by the X, Y, nWidth, and nHeight
parameters given in the CreateWindow
function. The size box has the default size for
system size boxes.

SBS_SIZEBOXTOPLEFTALIGN Used with the SBS_SIZEBOX style. The
upper-left corner of the size box is aligned
with the upper-left corner of the rectangle
specified by the X, Y, nWidth, and nHeight
parameters given in the CreateWindow
function. The size box has the default size for
system size boxes.

SBS_TOPALIGN Used with the SBS_HORZ style. The top edge
of the scroll bar is aligned with the top edge of
the rectangle specified by the X, Y, nWidth,
and nHeight parameters given in the
CreateWindow function. The scroll bar has the
default height for system scroll bars.

SBS_VERT Designates a vertical scroll bar. If neither the
SBS_RIGHTALIGN nor SBS_LEFTALIGN
style is specified, the scroll bar has the height,
width, and position given in the
CreateWindow function.

STATIC class

SS_BLACKFRAME Specifies a box with a frame drawn with the
same color as window frames. This color is
black in the default Windows color scheme.

SS_BLACKRECT Specifies a rectangle filled with the color used
to draw window frames. This color is black in
the default Windows color scheme.

S5S_CENTER Designates a simple rectangle and displays the
given text centered in the rectangle. The text is

216 Software development kit

Table 4.4: Control styles (continued)

CreateWindow

5S_GRAYFRAME

SS_GRAYRECT

SS_ICON

SS_LEFT

SS_LEFTNOWORDWRAP

SS_NOPREFIX

SS_RIGHT

SS_SIMPLE

Chapter 4, Functions directory

formatted before it is displayed. Words that
would extend past the end of a line are
automatically wrapped to the beginning of the
next centered line.

Specifies a box with a frame drawn with the
same color as the screen background
(desktop). This color is gray in the default
Windows color scheme.

Specifies a rectangle filled with the color used
to fill the screen background. This color is
gray in the default Windows color scheme.
Designates an icon displayed in the dialog
box. The given text is the name of an icon (not
a filename) defined elsewhere in the resource
file. The nWidth and nHeight parameters are
ignored; the icon automatically sizes itself.
Designates a simple rectangle and displays the
given text flush-left in the rectangle. The text
is formatted before it is displayed. Words that
would extend past the end of a line are
automatically wrapped to the beginning of the
next flush-left line.

Designates a simple rectangle and displays the
given text flush-left in the rectangle. Tabs are
expanded, but words are not wrapped. Text
that extends past the end of a line is clipped.
Unless this style is specified, windows will
interpret any "&" characters in the control’s
text to be accelerator prefix characters. In this
case, the "&" is removed and the next
character in the string is underlined. If a static
control is to contain text where this feature is
not wanted, SS_NOPREFIX may be added.
This static-control style may be included with
any of the defined static controls.

You can combine SS_NOPREFIX with other
styles by using the bitwise OR operator. This is
most often used when filenames or other
strings that may contain an "&" need to be
displayed in a static control in a dialog box.
Designates a simple rectangle and displays the
given text flush-right in the rectangle. The text
is formatted before it is displayed. Words that
would extend past the end of a line are
automatically wrapped to the beginning of the
next flush-right line.

Designates a simple rectangle and displays a
single line of text flush-left in the rectangle.
The line of text cannot be shortened or altered
in any way. (The control’s parent window or

217

CreateWindow

Table 4.4: Control styles (continued)

SS_USERITEM

dialog box must not process the
WM_CTLCOLOR message.)
Specifies a user-defined item.

SS_WHITEFRAME Specifies a box with a frame drawn with the

SS_WHITERECT

same color as window backgrounds. This
color is white in the default Windows color
scheme.

Specifies a rectangle filled with the color used
to fill window backgrounds. This color is
white in the default Windows color scheme.

CreateWindowEx

3.0

218

Syntax HWND CreateWindowEx(dwExStyle, IpClassName, lpWindowName,
dwStyle, X, Y, nWidth, nHeight, hWndParent, hMenu, hinstance,

Parameters

IpParam)

function CreateWindowEx(ExStyle: Longint; ClassName, WindowName:
PChar; Style: Longint; X, Y, Width, Height: Integer; WndParent: HWnd;
Menu: HMenu; Instance: THandle; Param: Pointer): HWnd;

This function creates an overlapped, pop-up, or child window with an
extended style specified in the dwExStyle parameter. Otherwise, this
function is identical to the CreateWindow function. See the description of
the CreateWindow function for more information on creating a window
and for a full descriptions of the other parameters of CreateWindowEx.

dwExStyle

IpClassName
IpWindowName

dwStyle
X
Y
nWidth
nHeight

DWORD Specifies the extended style of the window being
created. Table 4.5, "Extended window styles," lists the
extended window styles.

LPSTR Points to a null-terminated character string that
names the window class.

LPSTR Points to a null-terminated character string that
represents the window name.

DWORD Specifies the style of window being created.
int Specifies the initial x-position of the window.

int Specifies the initial y-position of the window.

int Specifies the width (in device units) of the window.

int Specifies the height (in device units) of the window.

Software development kit

CreateWindowEx

hWndParent HWND Identifies the parent or owner window of the
window being created.

hMenu HMENU Identifies a menu or a child-window identifier.
The meaning depends on the window style.
hlnstance HANDLE Identifies the instance of the module to be

associated with the window.

IpParam LPSTR Points to a value that is passed to the window
through the CREATESTRUCT data structure referenced
by the [Param parameter of the WM_CREATE message.

Return value The return value identifies the new window. It is NULL if the window is
not created.

Comments Table 4.5 lists the extended window styles.

Table 4.5 -
Extended window Style Meaning

styles WS_EX_DLGMODALFRAME Designates a window with a double border

that may optionally be created with a title bar
by specifying the WS_CAPTION style flag in
the dwStyle parameter.

WS_EX_NOPARENTNOTIFY Specifies that a child window created with this
style will not send the WM_PARENTNOTIFY
message to its parent window when the child
window is created or destroyed.

WS_EX_TOPMOST Specifies that the window is a topmost
window. A topmost window is always
ordered above windows without this style,
even when the topmost inactive. The
SetWindowPos function enables and disables
this feature.

function Used to control topmost window style.

Table 4.2, "Control classes," lists the window control classes. Table 4.3,
"Window styles," lists the window styles. Table 4.4, "Control styles," lists
the control styles. See the description of the CreateWindow function for
these tables.

DebugBreak 3.0

Syntax void DebugBreak()
procedure DebugBreak;

This function forces a break to the debugger.

Parameters None.

Chapter 4, Functions directory 219

DebugBreak

Return value

DefDIgProc

None.

3.0

220

Syntax

Parameters

Return value

Comments

LONG DefDlgProc(hDlg, wMsg, wParam, IParam)
function DefDlgProc(Dlg: HWnd; Msg, wParam: Word; IParam: Longint):
Longint;

This function provides default processing for any Windows messages that
a dialog box with a private window class does not process.

All window messages that are not explicitly processed by the window
function must be passed to the DefDIgProc function, not the
DefWindowProc function. This ensures that all messages not handled by
their private window procedure will be handled properly.

hDlg HWND Identifies the dialog box.
wMsg WORD Specifies the message number.

wParam WORD Specifies 16 bits of additional message-dependent
information.

[Param DWORD Specifies 32 bits of additional message-
dependent information.

The return value specifies the result of the message processing and
depends on the actual message sent.

The source code for the DefDIgProc function is provided on the SDK
disks.

An application creates a dialog box by calling one of the following
functions:

Function Description

CreateDialog Creates a modeless dialog box.

CreateDialogindirect Creates a modeless dialog box.

CreateDialogindirectParam Creates a modeless dialog box and passes data
to it when it is created.

CreateDialogParam Creates a modeless dialog box and passes data
to it when it is created.

DialogBox Creates a modal dialog box.

DialogBoxIndirect Creates a modal dialog box.

DialogBoxindirectParam Creates a modal dialog box and passes data to
it when it is created.

DialogBoxParam Creates a modal dialog box and passes data to

it when it is created.

Software development kit

DeferWindowPos

DeferWindowPos 3.0

Syntax HANDLE DeferWindowPos(hWinPosInfo, hWnd, hWndInsertAfter, x, y,
cx, cy, wFlags)
function DeferWindowPos(WinPosInfo: THandle; Wnd, WndInsertAfter:
HWnd; X, Y, cX, cY: Integer; Flags: Word): THandle;

This function updates the multiple window-position data structure
identified by the hWinPosInfo parameter for the window identified by
hWnd parameter and returns the handle of the updated structure. The
EndDeferWindowPos function uses the information in this structure to
change the position and size of a number of windows simultaneously. The
BeginDeferWindowPos function creates the multiple window-position
data structure used by this function.

The x and y parameters specify the new position of the window, and the
cx and cy parameters specify the new size of the window.

Parameters 1 WinPosInfo ~ HANDLE Identifies a multiple window-position data
structure that contains size and position information for
one or more windows. This structure is returned by the
BeginDeferWindowPos function or the most recent call to
the DeferWindowPos function.

hWnd HWND Identifies the window for which update
information is to be stored in the data structure.

hWndInsert After HWND Identifies the window following which the
window identified by the hWnd parameter is to be

updated.

x int Specifies the x-coordinate of the window’s upper-left
corner.

y int Specifies the y-coordinate of the window’s upper-left
corner.

cx int Specifies the window’s new width.

cy int Specifies the window’s new height.

wFlags WORD Specifies one of eight possible 16-bit values that

affect the size and position of the window. It must be one
of the following values:

Chapter 4, Functions directory 221

DeferWindowPos

Return value

Comments

Value Meaning
SWP_DRAWFRAME Draws a frame (defined in the
window’s class description)
around the window.
SWP_HIDEWINDOW Hides the window.
SWP_NOACTIVATE Does not activate the window.
SWP_NOMOVE Retains current position (ignores
the x and y parameters).
SWP_NOREDRAW Does not redraw changes.
SWP_NOSIZE Retains current size (ignores the
cx and cy parameters).
SWP_NOZORDER Retains current ordering (ignores
the hWndlInsertAfter parameter).
SWP_SHOWWINDOW Displays the window.

The return value identifies the updated multiple window-position data
structure. The handle returned by this function may differ from the
handle passed to the function as the hWinPosInfo parameter. The new
handle returned by this function should be passed to the next call to
DeferWindowPos or the EndDeferWindowPos function.

The return value is NULL if insufficient system resources are available for
the function to complete successfully.

If the SWP_NOZORDER f{lag is not specified, Windows places the
window identified by the hWnd parameter in the position following the
window identified by the hWndInsertAfter parameter. If hWndlInsertAfter is
NULL, Windows places the window identified by hWnd at the top of the
list. If kWndlInsertAfter is set to 1, Windows places the window identified
by hWnd at the bottom of the list.

If the SWP_SHOWWINDOW or the SWP_HIDEWINDOW flags are set,
scrolling and moving cannot be done simultaneously.

All coordinates for child windows are relative to the upper-left corner of
the parent window’s client area.

DefFrameProc 3.0

222

Syntax

LONG DefFrameProcthWnd, hWndMDIClient, wMsg, wParam, [Param)
function DefFrameProc(Wnd, MDIClient: HWnd; Msg, wParam: Word;
IParam: Longint): Longint;

This function provides default processing for any Windows messages that
the window function of a multiple document interface (MDI) frame

Software development kit

DefFrameProc

window does not process. All window messages that are not explicitly
processed by the window function must be passed to the DefFrameProc
function, not the DefWindowProc function.

Parameters 1 Wnd HWND Identifies the MDI frame window.
hWndMDIClient HWND Identifies the MDI client window.

wMsg WORD Specifies the message number. |

wParam WORD Specifies 16 bits of additional message-dependent
information.

[Param DWORD Specifies 32 bits of additional message-

dependent information.

Return value The return value specifies the result of the message processing and
depends on the actual message sent. If the hWndMDIClient parameter is
NULL, the return value is the same as for the DefWindowProc function.

Comments Normally, when an application’s window procedure does not handle a
message, it passes the message to the DefWindowProc function, which
processes the message. MDI applications use the DefFrameProc and
DefMDIChildProc functions instead of DefWindowProc to provide default
message processing. All messages that an application would normally
pass to DefWindowProc (such as nonclient messages and WM_SETTEXT)
should be passed to DefFrameProc instead. In addition to these,
DefFrameProc also handles the following messages:

Message Default Processing by DefFrameProc

WM_COMMAND The frame window of an MDI application receives the
WM_COMMAND message to activate a particular MDI
child window. The window ID accompanying this
message will be the ID of the MDI child window assigned
by Windows, starting with the first ID specified by the
application when it created the MDI client window. This
value of the first ID must not conflict with menu-item IDs.

WM_MENUCHAR When the ALT+HYPHEN key is pressed, the control menu of
the active MDI child window will be selected.

WM_SETFOCUS DefFrameProc passes focus on to the MDI client, which in
turn passes the focus on to the active MDI child window. \
WM_SIZE If the frame window procedure passes this message to

DefFrameProc, the MDI client window will be resized to
fit in the new client area. If the frame window procedure
sizes the MDI client to a different size, it should not pass
the message to DefWindowProc.

Chapter 4, Functions directory 223

DefHookProc

DefHookProc

Syntax DWORDDefHookProc(code, wParam, IParam, IplpfnNextHook)
function DefHookProc(Code: Integer; wParam: Word; IParam: Longint;
NextHook: TFarProc): Longint;

This function calls the next function in a chain of hook functions. A hook
function is a function that processes events before they are sent to an
application’s message-processing loop in the WinMain function. When an
application defines more than one hook function by using the
SetWindowsHook function, Windows forms a linked list or hook chain.
Windows places functions of the same type in a chain.

Parameters code int Specifies a code used by the Windows hook function
(also called the message filter function) to determine how
to process the message.

wParam WORD Specifies the word parameter of the message that
the hook function is processing.

[Param DWORD Specifies the long parameter of the message that
the hook function is processing.

IplpfnNextHook FARPROC FAR * Points to a memory location that
contains the FARPROC structure returned by the
SetWindowsHook function. Windows changes the value
at this location after an application calls the
UnhookWindowsHook function.

Return value The return value specifies a value that is directly related to the code
parameter.

DefineHandleTable 3.0

Syntax BOOL DefineHandleTable(wOffset)
function DefineHandleTable(Offset: Word): Bool;

This function creates a private handle table in an application’s default data
segment. The application stores in the table the segment addresses of
global memory objects returned by the GlobalLock function. In real mode,
Windows updates the corresponding address in the private handle table
when it moves a global memory object. When Windows discards an object
with a corresponding table entry, Windows replaces the address of the
object in the table with the object’s handle. Windows does not update

224 Software development kit

DefineHandleTable

addresses in the private handle table in protected (standard or 386
enhanced) mode.

Parameters wOffset WORD Specifies the offset from the beginning of the data
segment to the beginning of the private handle table. If
wOffset is zero, Windows no longer updates the private
handle table.

Return value The return value is nonzero if the function was successful. Otherwise, it is ‘
Zero. ‘

Comments The private handle table has the following format:
Count
Clear Number

Entry[0]

Entry[Count-1]

The first WORD (Count) in the table specifies the number of entries in the
table. The second WORD (Clear_Number) specifies the number of entries
(from the beginning of the table) which Windows will set to zero when
Windows updates its least-recently-used (LRU) memory list. The
remainder of the table consists of an array of addresses returned by
GlobalLock.

The application must initialize the Count field in the table before calling
DefineHandleTable. The application can change either the Count or
Clearn_Number fields at any time.

DefMDIChildProc 3.0

Syntax LONG DefMDIChildProc(hWnd, wMsg, wParam, IParam)
function DefMDIChildProc(Wnd: HWnd; Msg, wParam: Word; IParam:
Longint): Longint;
This function provides default processing for any Windows messages that
the window function of a multiple document interface (MDI) child ‘
window does not process. All window messages that are not explicitly

processed by the window function must be passed to the
DefMDIChildProc function, not the DefWindowProc function.

Parameters hWnd HWND Identifies the MDI child window.
wMsg WORD Specifies the message number.

Chapter 4, Functions directory 225

DefMDIChildProc

Return value

wParam WORD Specifies 16 bits of additional message-dependent
information.
[Param DWORD Specifies 32 bits of additional message-

dependent information.

The return value specifies the result of the message processing and
depends on the actual message sent.

Comments This function assumes that the parent of the window identified by the
hWnd parameter was created with the MDICLIENT class.

Normally, when an application’s window procedure does not handle a

message, it passes the message to the DefWindowProc function, which

processes the message. MDI applications use the DefFrameProc and

DefMDIChildProc functions instead of DefWindowProc to provide default

message processing. All messages that an application would normally

pass to DefWindowProc (such as nonclient messages and WM_SETTEXT)
should be passed to DefMDIChildProc instead. In addition to these,

DefMDIChildProc also handles the following messages:

Message Default Processing by DefMDIChildProc

WM_CHILDACTIVATE Performs activation processing when child windows
are siged, moved, or shown. This message must be

assed.

WM_GETMINMAXINFO Calculates the size of a maximized MDI child
window based on the current size of the MDI client
window.

WM_MENUCHAR Sends the key to the frame window.

WM_MOVE Recalculates MDI client scroll bars, if they are
present.

WM_SETFOCUS Activates the child window if it is not the active
MDI child.

WM_SIZE Performs necessary operations when changing the
size of a window, especially when maximizing or
restoring an MDI child window. Failing to pass this
message to DefMDIChildProc will produce highly
undesirable results.

WM_SYSCOMMAND Also handles the "next window" command.

DefWindowProc
Syntax LONGDefWindowProc(hWnd, wMsg, wParam, IParam)

226

function DefWindowProc(Wnd: HWnd; Msg, wParam: Word; 1Param:
Longint): Longint;

Software development kit

DefWindowProc

This function provides default processing for any Windows messages that
a given application does not process. All window messages that are not
explicitly processed by the class window function must be passed to the
DefWindowProc function.

Parameters 1 Wnd HWND Identifies the window that passes the message.
wMsg WORD Specifies the message number.
wParam WORD Specifies 16 bits of additional message-dependent
information.
IParam DWORD Specifies 32 bits of additional message-

dependent information.

Return value The return value specifies the result of the message processing and
depends on the actual message sent.

Comments The source code for the DefWindowProc function is provided on the SDK
disks.

DeleteAtom

Syntax ATOM DeleteAtom(nAtom)
function DeleteAtom(AnAtom: TAtom): TAtom;

This function deletes an atom and, if the atom’s reference count is zero,
removes the associated string from the atom table.

An atom’s reference count specifies the number of times the atom has been
added to the atom table. The AddAtom function increases the count on
each call; the DeleteAtom function decreases the count on each call.
DeleteAtom removes the string only if the atom’s reference count is zero.

Parameters nAtom ATOM Identifies the atom and character string to be
deleted.

Return value The return value specifies the outcome of the function. It is NULL if the
function is successful. It is equal to the nAtom parameter if the function
failed and the atom has not been deleted.

DeleteDC

Syntax BOOL DeleteDC(hDC)
function DeleteDC(DC: HDC): Bool;

Chapter 4, Functions directory 227

DeleteDC

Parameters

Return value

Comments

DeleteMenu

This function deletes the specified device context. If the hDC parameter is
the last device context for a given device, the device is notified and all
storage and system resources used by the device are released.

hDC HDC Identifies the device context.

The return value specifies whether the device context is deleted. It is
nonzero if the device context is successfully deleted (regardless of
whether the deleted device context is the last context for the device). If an
error occurs, the return value is zero.

An application must not delete a device context whose handle was
obtained by calling the GetDC function. Instead, it must call the
ReleaseDC function to free the device context.

3.0

228

Syntax

Parameters

Return value

Comments

BOOL DeleteMenu(hMenu, nPosition, wFlags)
function DeleteMenu(Menu: HMenu; Position, Flags: Word): Bool;

This function deletes an item from the menu identified by the hMenu
parameter; if the menu item has an associated pop-up menu, DeleteMenu
destroys the handle by the pop-up menu and frees the memory used by
the pop-up menu.

hMenu HMENU Identifies the menu to be changed.

nPosition WORD Specifies the menu item which is to be deleted. If
wFlags is set to MF_BYPOSITION, nPosition specifies the
position of the menu item; the first item in the menu is at
position 0. If wFlags is set to MF_BYCOMMAND, then
nPosition specifies the command ID of the existing menu
item.

wFlags WORD Specifies how the nPosition parameter is
interpreted. It may be set to either MF_BYCOMMAND
(the default) or MF_BYPOSITION.

The return value specifies the outcome of the function. It is TRUE if the
function is successful. Otherwise, it is FALSE.

Whenever a menu changes (whether or not the menu resides in a window
that is displayed), the application should call DrawMenuBar.

Software development kit

DeleteMetcafFile

DeleteMetaFile n
BOOL DeleteMetaFile(hMF)

Syntax

Parameters

Return value

DeleteObject

function DeleteMetaFile(MF: THandle): Bool;

This function deletes access to a metafile by freeing the system resources
associated with that metafile. It does not destroy the metafile itself, but it
invalidates the metafile handle, hMF. Access to the metafile can be
reestablished by retrieving a new handle by using the GetMetaFile
function.

hMF HANDLE Identifies the metafile to be deleted.

The return value specifies whether the metafile handle is invalidated. It is
nonzero if the metafile’s system resources are deleted. It is zero if the hMF
parameter is not a valid handle.

Syntax

Parameters

Return value

Comments

BOOL DeleteObject(hObject)

function DeleteObject(Handle: THandle): Bool;

This function deletes a logical pen, brush, font, bitmap, region, or palette
from memory by freeing all system storage associated with the object.
After the object is deleted, the hObject handle is no longer valid.

hObject HANDLE Identifies a handle to a logical pen, brush, font,
bitmap, region, or palette.

The return value specifies whether the specified object is deleted. It is
nonzero if the object is deleted. It is zero if the hObject parameter is not a
valid handle or is currently selected into a device context.

The object to be deleted should not be currently selected into a device
context.

When a pattern brush is deleted, the bitmap associated with the brush is
not deleted. The bitmap must be deleted independently.

An application must not delete a stock object.

Chapter 4, Functions directory 229

DestroyCaret

DestroyCaret

Syntax

Parameters
Return value

Comments

DestroyCursor

void DestroyCaret()
procedure DestroyCaret;

This function destroys the current caret shape, frees the caret from the
window that currently owns it, and removes the caret from the screen if it
is visible. The DestroyCaret function checks the ownership of the caret
and destroys the caret only if a window in the current task owns it.

If the caret shape was previously a bitmap, DestroyCaret does not free the
bitmap.

None.
None.

The caret is a shared resource. If a window has created a caret shape, it
destroys that shape before it loses the input focus or becomes inactive.

3.0

Syntax

Parameters

Return value

BOOL DestroyCursor(hCursor)
function DestroyCursor(Cursor: HCursor): Bool;

This function destroys a cursor that was previously created by the
CreateCursor function and frees any memory that the cursor occupied. It
should not be used to destroy any cursor that was not created with the
CreateCursor function.

hCursor HCURSOR Identifies the cursor to be destroyed. The
cursor must not be in current use.

The return value is nonzero if the function was successful. It is zero if the
function failed.

Destroylcon 3.0
Syntax BOOL DestroyIcon(hlcon)
function Destroylcon(Icon: Hlcon): Bool;
This function destroys an icon that was previously created by the
Createlcon function and frees any memory that the icon occupied. It
230 Software development kit

Destroylcon

should not be used to destroy any icon that was not created with the
Createlcon function.

Parameters hicon HICON Identifies the icon to be destroyed. The icon must
not be in current use.

Return value The return value is nonzero if the function was successful. It is zero if the
function failed.

DestroyMenu

Syntax BOOL DestroyMenu(hMenu)
function DestroyMenu(Menu: HMenu): Bool;

This function destroys the menu specified by the hMenu parameter and
frees any memory that the menu occupied.

Parameters hMenu HMENU Identifies the menu to be destroyed.

Return value The return value specifies whether or not the specified menu is destroyed.
It is nonzero if the menu is destroyed. Otherwise, it is zero.

DestroyWindow

Syntax BOOL DestroyWindow(hWnd)
function DestroyWindow(Wnd: HWnd): Bool;

This function destroys the specified window. The DestroyWindow
function hides or permanently closes the window, sending the
appropriate messages to the window to deactivate it and remove the
input focus. It also destroys the window menu, flushes the application
queue, destroys outstanding timers, removes clipboard ownership, and
breaks the clipboard-viewer chain, if the window is at the top of the
viewer chain. It sends WM_DESTROY and WM_NCDESTROY messages
to the window.

If the given window is the parent of any windows, these child windows
are automatically destroyed when the parent window is destroyed.
DestroyWindow destroys child windows first, and then the window itself.

DestroyWindow also destroys modeless dialog boxes created by the
CreateDialog function.

Parameters hWnd HWND Identifies the window to be destroyed.

Chapter 4, Functions directory 231

DestroyWindow

Return value The return value specifies whether or not the specified window is
destroyed. It is nonzero if the window is destroyed. Otherwise, it is zero.

DeviceCapabilities

3.0

232

Syntax DWORD DeviceCapabilities(lpDeviceName, IpPort, nindex, lpOutput,

Parameters

IpDevMode)

type TDeviceCapabilities = function(DeviceName, Port:PChar;
Index:Word, Output:PChar; var DevMode:TDevMode): Longint;

This function retrieves the capabilities of the printer device driver.

IpDeviceName

IpPort

nlndex

LPSTR Points to a null-terminated character string that
contains the name of the printer device, such as "PCL/HP

LaserJet."

LPSTR Points to a null-terminated character string that
contains the name of the port to which the device is
connected, such as LPT1..

WORD Specifies the capabilities to query. It can be any
one of the following values:

Value
DC_BINNAMES

DC_BINS

Meaning

Copies a structure identical to
that returned by the
ENUMPAPERBINS escape. A
printer driver does not need to
support this index if it has only
bins corresponding to predefined
indexes, in which case no data is
copied and the return value is 0.
If the index is supported, the
return value is the number of
bins copied. If lpOutput is NULL,
the return value is the number of
bin entries required.

Retrieves a list of available bins.
The function copies the list to
IpOutput as a WORD array. If
IpOutput is NULL, the function
returns the number of supported
bins to allow the application the

Software development kit

Chapter 4, Functions directory

DC_DRIVER

DC_DUPLEX

DC_EXTRA

DC_FIELDS

DC_MAXEXTENT

DC_MINEXTENT

DC_PAPERS

DeviceCapabilities

opportunity to allocate a buffer
with the correct size. See the
description of the
dmDefaultSource field of the
DEVMODE data structure for
information on these values. An
application can determine the
name of device-specific bins by
using the ENUMPAPERBINS
escape.

Returns the printer driver
version number.

Returns the level of duplex
support. The function returns 1 if
the printer is capable of duplex
printing. Otherwise, the return
value is zero.

Returns the number of bytes
required for the device-specific
portion of the DEVMODE data
structure for the printer driver.
Returns the dmFields field of the
printer driver's DEVMODE data
structure. The dmFields bitfield
indicates which fields in the
device-independent portion of
the structure are supported by
the printer driver.

Returns a POINT data structure
containing the maximum paper
size that the dmPaperLength and
dmPaperWidth fields of the
printer driver's DEVMODE data
structure can specify.

Returns a POINT data structure
containing the minimum paper
size that the dmPaperLength and
dmPaperWidth fields of the
printer driver's DEVMODE data
structure can specify.

Retrieves a list of supported
paper sizes. The function copies
the list to lpOutput as a WORD

233

DeviceCapabilities

234

Return value

Comments

array and returns the number of
entries in the array. If IpOutput is
NULL, the function returns the
number of supported paper sizes
to allow the application the
opportunity to allocate a buffer
with the correct size. See the
description of the dmPaperSize
field of the DEVMODE data
structure for information on
these values.

DC_PAPERSIZE Copies the dimensions of
supported paper sizes in tenths
of a millimeter to an array of
POINT structures in IpOutput.
This allows an application to
obtain information about
nonstandard paper sizes.

DC_SIZE Returns the dmSize field of the
printer driver's DEVMODE data
structure.

DC_VERSION Returns the specification version
to which the printer driver
conforms.

IpOutput LPSTR Points to an array of bytes. The actual format of
the array depends on the setting of nlndex. If set to zero,
DeviceCapabilities returns the number of bytes required
for the output data.

IpDevMode DEVMODE FAR * Points to a DEVMODE data structure. If
IpDevMode is NULL, this function retrieves the current
default initialization values for the specified printer
driver. Otherwise, the function retrieves the values
contained in the structure to which IpDevMode points.

The return value depends on the setting of the nlndex parameter; see the
description of that parameter for details.

This function is supplied by the printer driver. An application must
include the DRIVINIT.H file and call the LoadLibrary and
GetProcAddress functions to call the DeviceCapabilities function.

Software development kit

DeviceMode

DeviceMode

Syntax void DeviceMode(hWnd, hModule, IpDeviceName, IpOutput)
type TDeviceMode = procedure(Wnd:HWnd; Module:THandle;
DeviceName, Output:PChar);

This function sets the current printing modes for the device identified by
the IpDestDevType by prompting for those modes using a dialog box. An
application calls the DeviceMode function to allow the user to change the
printing modes of the corresponding device. The function copies the
mode information to the environment block associated with the device

and maintained by GDI.
Parameters 1 Wnd HWND Identifies the window that will own the dialog
box.
hModule HANDLE Identifies the printer-driver module. The

application should retrieve this handle by calling either
the GetModuleHandle or LoadLibrary function.

IpDeviceName LPSTR Points to a null-terminated character string that
specifies the name of the specific device to be supported
(for example, Epson FX-80). The device name is the same
as the name passed to the CreateDC function.

IpOutput LPSTR Points to a null-terminated character string that
specifies the DOS file or device name for the physical
output medium (file or output port). The output name is
the same as the name passed to the CreateDC function.

Return value None.

Comments The DeviceMode function is actually part of the printer’s device driver,
and not part of GDI. To call this function, the application must load the
printer device driver by calling LoadLibrary and retrieve the address of
the function by using the GetProcAddress function. The application can
then use the address to set up the printer.

DialogBox

Syntax int DialogBox(hInstance, IpTemplateName, hWndParent, IpDialogFunc)
function DialogBox(Instance: THandle; TemplateName: PChar;
WndParent: HWnd; DialogFunc: TFarProc): Integer;

Chapter 4, Functions directory 235

DialogBox

236

Parameters

Return value

Comments

Callback
Function

This function creates a modal dialog box that has the size, style, and
controls specified by the dialog-box template given by the IlpTemplateName
parameter. The hWndParent parameter identifies the application window
that owns the dialog box. The callback function pointed to by the
IpDialogFunc parameter processes any messages received by the dialog
box.

The DialogBox function does not return control until the callback function
terminates the modal dialog box by calling the EndDialog function.

hInstance HANDLE Identifies an instance of the module whose
executable file contains the dialog-box template.

IpTemplateName LPSTR Points to a character string that names the dialog-
box template. The string must be a null-terminated
character string.

hWndParent ~ HWND Identifies the window that owns the dialog box.

IpDialogFunc ~ FARPROC Is the procedure-instance address of the dialog
function. See the following "Comments" section for
details.

The return value specifies the value of the nResult parameter in the
EndDialog function that is used to terminate the dialog box. Values
returned by the application’s dialog box are processed by Windows and
are not returned to the application. The return value is -1 if the function
could not create the dialog box.

The DialogBox function calls the GetDC function in order to obtain a
display-context. Problems will result if all the display contexts in the
Windows display-context cache have been retrieved by GetDC and
DialogBox attempts to access another display context.

A dialog box can contain up to 255 controls. The callback function must
use the Pascal calling convention and must be declared FAR.

int FAR PASCAL DialogFunc(hDlg, wMsg, wParam, |Param)
HWND &Dlg;

WORD wMsg;

WORD wParam;

DWORD [Param;

DialogFunc is a placeholder for the application-supplied function name.
The actual name must be exported by including it in an EXPORTS
statement in the application’s module-definition file.

Software development kit

DialogBox

Parameters 1Dlg Identifies the dialog box that receives the message.
wMsg Specifies the message number.
wParam Specifies 16 bits of additional message-dependent
information.
[Param Specifies 32 bits of additional message-dependent
information.

Return value The callback function should return nonzero if the function processes the
message and zero if it does not.

Comments Although the callback function is similar to a window function, it must
not call the DefWindowProc function to process unwanted messages.
Unwanted messages are processed internally by the dialog-class window
function.

The callback-function address, passed as the IpDialogFunc parameter, must
be created by using the MakeProcInstance function.

DialogBoxIndirect

Syntax intDialogBoxIndirect(hInstance, hDialogTemplate, hWndParent,
IpDialogFunc)
function DialogBoxIndirect(Instance, DialogTemplate: THandle;
WndParent: HWnd; DialogFunc: TFarProc): Integer;

This function creates an application’s modal dialog box that has the size,
style, and controls specified by the dialog-box template associated with
the hDialogTemplate parameter. The hWndParent parameter identifies the
application window that owns the dialog box. The callback function
pointed to by IlpDialogFunc processes any messages received by the dialog
box.

The DialogBoxIndirect function does not return control until the callback
function terminates the modal dialog box by calling the EndDialog
function.

Parameters hlnstance HANDLE Identifies an instance of the module whose
executable file contains the dialog-box template.

hDialogTemplate HANDLE Identifies a block of global memory that
contains a DLGTEMPLATE data structure.

hWndParent ~ HWND Identifies the window that owns the dialog box.

Chapter 4, Functions directory 237

DialogBoxIndirect

IpDialogFunc ~ FARPROC Is the procedure-instance address of the dialog
function. See the following "Comments" section for
details.

Return value The return value specifies the value of the wResult parameter specified in
the EndDialog function that is used to terminate the dialog box. Values
returned by the application’s dialog box are processed by Windows and
are not returned to the application. The return value is -1 if the function
could not create the dialog box.

Comments A dialog box can contain up to 255 controls.
The callback function must use the Pascal calling convention and be
declared FAR.

Callback

Function BOOL FAR PASCAL DialogFunc(hDlg, wMsg, wParam, IParam)
HWND hDlIg;
WORD wMsg;
WORD wParam;
DWORD [Param;

DialogFunc is a placeholder for the application-supplied function name.
The actual name must be exported by including it in an EXPORTS
statement in the application’s module-definition file.

Parameters hDig Identifies the dialog box that receives the message.
wMsg Specifies the message number.
wParam Specifies 16 bits of additional message-dependent
information.
[Param Specifies 32 bits of additional message-dependent
information.

Return value The callback function should return nonzero if the function processes the
message and zero if it does not.

Comments Although the callback function is similar to a window function, it must
not call the DefWindowProc function to process unwanted messages.
Unwanted messages are processed internally by the dialog-class window
function.

The callback-function address, passed as the IpDialogFunc parameter, must
be created by using the MakeProcInstance function.

238 Software development kit

DialogBoxIndirectParam

DialogBoxIndirectParam 3.0

Syntax int DialogBoxIndirectParam(hInstance, hDialogTemplate, hWndParent,
IpDialogFunc, dwlnitParam)
function DialogBoxIndirectParam(Instance, DialogTemplate: THandle;
WndParent: HWnd; DialogFunc: TFarProc; InitParam: Longint): Integer;

This function creates an application’s modal dialog box, sends a
WM_INITDIALOG message to the dialog function before displaying the
dialog box and passes dwlnitParam as the message [Param. This message
allows the dialog function to initialize the dialog-box controls.

For more information on creating an application modal dialog box, see the
description of the DialogBoxIndirect function.

Parameters hinstance HANDLE Identifies an instance of the module whose
executable file contains the dialog-box template.

hDialogTemplate HANDLE Identifies a block of global memory that
contains a DLGTEMPLATE data structure.

hWndParent ~ HWND Identifies the window that owns the dialog box.

IpDialogFunc ~ FARPROC Is the procedure-instance address of the dialog
function. For details, see the "Comments" section in the
description of the DialogBoxIndirect function.

dwlnitParam DWORD Is a 32-bit value which DialogBoxIndirectParam
passes to the dialog function when it creates the dialog
box.

Return value The return value specifies the value of the wResult parameter specified in
the EndDialog function that is used to terminate the dialog box. Values
returned by the application’s dialog box are processed by Windows and
are not returned to the application. The return value is -1 if the function
could not create the dialog box.

DialogBoxParam 3.0

Syntax int DialogBoxParam(hInstance, lpTemplateName, hWndParent,
IpDialogFunc, dwlnitParam)
function DialogBoxParam(Instance: THandle; TemplateName: PChar;
Wnd Parent: HWnd; DialogFunc: TFarProc; InitParam: Longint): Integer;

This function creates a modal dialog box, sends a WM_INITDIALOG
message to the dialog function before displaying the dialog box, and

Chapter 4, Functions directory 239

DialogBoxParam

Parameters

Return value

passes dwlnitParam as the message [Param. This message allows the dialog
function to initialize the dialog-box controls.

For more information on creating a modal dialog box, see the description
of the DialogBox function.

hInstance HANDLE Identifies an instance of the module whose
executable file contains the dialog-box template.

IpTemplateName LPSTR Points to a character string that names the dialog-
box template. The string must be a null-terminated
character string.

hWndParent ~ HWND Identifies the window that owns the dialog box.

IpDialogFunc ~ FARPROC Is the procedure-instance address of the dialog
function. For details, see the "Comments" section of the
description of the DialogBox function.

dwInitParam DWORD Is a 32-bit value which DialogBoxParam passes
to the dialog function when it creates the dialog box.

The return value specifies the value of the nResult parameter in the
EndDialog function that is used to terminate the dialog box. Values
returned by the application’s dialog box are processed by Windows and
are not returned to the application. The return value is -1 if the function
could not create the dialog box.

DispatchMessage

240

Syntax

Parameters

LONG DispatchMessage(lpMsg)
function DispatchMessage(var Msg: TMsg): Longint;

This function passes the message in the MSG structure pointed to by the
IpMsg parameter to the window function of the specified window.

IpMsg LPMSG Points to an MSG data structure that contains
message information from the Windows application
queue.

The structure must contain valid message values. If IpMsg
points to a WM_TIMER message and the [Param
parameter of the WM_TIMER message is not NULL, then
the IParam parameter is the address of a function that is
called instead of the window function.

Software development kit

Return value

DIgDirList

DispatchMessage

The return value specifies the value returned by the window function. Its
meaning depends on the message being dispatched, but generally the
return value is ignored.

Syntax

Parameters

int DlgDirList(hDlg, lpPathSpec, nIDListBox, nIDStaticPath, wFiletype)
function DIgDirList(Dlg: HWnd; PathSpec: PChar; IDListBox,
IDStaticPath: Integer; Filetype: Word): Integer;

This function fills a list-box control with a file or directory listing. It fills
the list box specified by the nIDListBox parameter with the names of all
files matching the pathname given by the IpPathSpec parameter.

The DIgDirList function shows subdirectories enclosed in square brackets
([D), and shows drives in the form [-x-], where x is the drive letter.

The IpPathSpec parameter has the following form:
[{drive:]]) [[[[\]]directory[[\directory]]...\]] [[filename]]

In this example, drive is a drive letter, directory is a valid directory name,
and filename is a valid filename that must contain at least one wildcard
character. The wildcard characters are a question mark (?), meaning
"match any character,” and an asterisk (*), meaning "match any number of
characters."

If the IpPathSpec parameter includes a drive and/or directory name, the
current drive and directory are changed to the designated drive and
directory before the list box is filled. The text control identified by the
nIDStaticPath parameter is also updated with the new drive and/or
directory name.

After the list box is filled, IpPathSpec is updated by removing the drive
and /or directory portion of the pathname.

DigDirList sends LB_RESETCONTENT and LB_DIR messages to the list
box.

hDlg HWND Identifies the dialog box that contains the list box.

IpPathSpec LPSTR Points to a pathname string. The string must be a
null-terminated character string.

nIDListBox int Specifies the identifier of a list-box control. If
nIDListBox is zero, DIgDirList assumes that no list box
exists and does not attempt to fill it.

Chapter 4, Functions directory 241

DIgDirlList

Return value

Table 4.6

DOS fie attributes

nIDStaticPath int Specifies the identifier of the static-text control used
for displaying the current drive and directory. If
nIDStaticPath is zero, DIgDirList assumes that no such text
control is present.

wkFiletype WORD Specifies DOS file attributes of the files to be
displayed. It can be any combination of the values given
in Table 4.6, "DOS file attributes.” Values can be combined
by using the bitwise OR operator.

The return value specifies the outcome of the function. It is nonzero if a
listing was made, even an empty listing. A zero return value implies that
the input string did not contain a valid search path.

The wFiletype parameter specifies the DOS attributes of the files to be
listed. Table 4.6 describes these attributes.

Attribute Value Meaning

0x0000 Read/write data files with no additional attributes
0x0001 Read-only files

0x0002 Hidden files

0x0004 System files

0x0010 Subdirectories

0x0020 Archives

0x2000 LB_DIR flag!

0x4000 Drives

0x8000 Exclusive bit?

1If the LB_DIR flag is set, Windows places the messages generated by DIgDirList in the
application’s queue; otherwise they are sent directly to the dialog function.

2If the exclusive bit is set, only files of the specified type are listed. Otherwise, files of the
specified type are listed in addition to normal files.

DigDirListComboBox 3.0

242

Syntax

int DIgDirListComboBox(hDlg, IpPathSpec, nIDComboBox,
nIDStaticPath, wFiletype)

function DlgDirListComboBox(Dlg: HWnd; PathSpec: PChar;
IDComboBox, IDStaticPath: Integer; Filetype: Word): Integer;

This function fills the list box of a combo-box control with a file or
directory listing. It fills the list box of the combo box specified by the
nIDComboBox parameter with the names of all files matching the
pathname given by the IpPathSpec parameter.

Software development kit

DigDirListComboBox

The DIgDirListComboBox function shows subdirectories enclosed in
square brackets

([D, and shows drives in the form [-x-], where x is the drive letter.

The IpPathSpec parameter has the following form:

[ldrive:]] [[[[\)ldirectory[[\directory]]...\]] [[filename]]

In this example, drive is a drive letter, directory is a valid directory name,
and filename is a valid filename that must contain at least one wildcard
character. The wildcard characters are a question mark (?), meaning
"match any character,” and an asterisk (*), meaning "match any number of
characters."

If the IpPathSpec parameter includes a drive and /or directory name, the
current drive and directory are changed to the designated drive and
directory before the list box is filled. The text control identified by the
nIDStaticPath parameter is also updated with the new drive and /or
directory name.

After the combo-box list box is filled, IpPathSpec is updated by removing
the drive and /or directory portion of the pathname.

DigDirListComboBox sends CB_RESETCONTENT and CB_DIR messages
to the combo box.

Parameters 1DIg HWND Identifies the dialog box that contains the combo
box.
IpPathSpec LPSTR Points to a pathname string. The string must be a

null-terminated character string.

nIDComboBox int Specifies the identifier of a combo-box control in a
dialog box. If nIDComboBox is zero, DIgDirListComboBox
assumes that no combo box exists and does not attempt to
fill it.

nIDStaticPath int Specifies the identifier of the static-text control used
for displaying the current drive and directory. If
nIDStaticPath is zero, DigDirListComboBox assumes that
no such text control is present.

wFiletype WORD Specifies DOS file attributes of the files to be
displayed. It can be any combination of the values given
in Table 4.6, "DOS File Attributes." Refer to the
description of the DIgDirList function for this table.
Values can be combined by using the bitwise OR
Operator.

Chapter 4, Functions directory 243

DigDirListComboBox

Return value

DigDirSelect

The return value specifies the outcome of the function. It is nonzero if a
listing was made, even an empty listing. A zero return value implies that
the input string did not contain a valid search path.

Syntax

Parameters

Return value

Comments

BOOL DlgDirSelect(hDlg, lpString, nIDListBox)
function DlgDirSelect(Dlg: HWnd; Str: PChar; IDListBox: Integer): Bool;

This function retrieves the current selection from a list box. It assumes that
the list box has been filled by the DIgDirList function and that the selection
is a drive letter, a file, or a directory name.

The DIgDirSelect function copies the selection to the buffer given by the
IpString parameter. If the current selection is a directory name or drive
letter, DigDirSelect removes the enclosing square brackets (and hyphens,
for drive letters) so that the name or letter is ready to be inserted into a
new pathname. If there is no selection, IpString does not change.

DlgDirSelect sends LB_GETCURSEL and LB_GETTEXT messages to the
list box.

hDIg HWND Identifies the dialog box that contains the list box.

IpString LPSTR Points to a buffer that is to receive the selected
pathname.

nIDListBox int Specifies the integer ID of a list-box control in the
dialog box.

The return value specifies the status of the current list-box selection. It is
nonzero if the current selection is a directory name. Otherwise, it is zero.

The DigDirSelect function does not allow more than one filename to be
returned from a list box.

The list box must not be a multiple-selection list box. If it is, this function
will not return a zero value and IpString will remain unchanged.

DigDirSelectComboBox 3.0

Syntax

244

BOOL DlgDirSelectComboBox(hDlg, 1pString, nIDComboBox)
function DlgDirSelectComboBox(Dlg: HWnd; Str: PChar; IDComboBox:
Integer): Bool;

Software development kit

DigDiiSelectComboBox

This function retrieves the current selection from the list box of a combo
box created with the CBS_SIMPLE style. It cannot be used with combo
boxes created with either the CBS_ DROPDOWN or
CBS_DROPDOWNLIST style. It assumes that the list box has been filled
by the DIgDirListComboBox function and that the selection is a drive
letter, a file, or a directory name.

The DIgDirSelectComboBox function copies the selection to the buffer
given by the IpString parameter. If the current selection is a directory name
or drive letter, DigDirSelectComboBox removes the enclosing square
brackets (and hyphens, for drive letters) so that the name or letter is ready
to be inserted into a new pathname. If there is no selection, IpString does
not change.

DigDirSelectComboBox sends CB_GETCURSEL and CB_GETLBTEXT
messages to the combo box.

Parameters 1Dig HWND Identifies the dialog box that contains the combo
box.
IpString LPSTR Points to a buffer that is to receive the selected
pathname.

nIDComboBox int Specifies the integer ID of the combo-box control in the
dialog box.

Return value The return value specifies the status of the current combo-box selection. It
is nonzero if the current selection is a directory name. Otherwise, it is
Zero.

Comments The DigDirSelectComboBox function does not allow more than one
filename to be returned from a combo box.

DOS3Call 3.0

procedure DOS3Call;

This function allows an application to issue a DOS function-request
interrupt 21H. An application can use this function instead of a directly
coded DOS 21H interrupt. The DOS3Call function executes somewhat
faster than the equivalent DOS 21H software interrupt under Windows.

This function does not work properly when called from a discardable
code segment while Windows is running in real mode. It does work
properly in standard and 386 enhanced modes, and when called from a
fixed code segment in real mode. An application can call the GetWinFlags

Chapter 4, Functions direcfory 245

DOS3Call

Parameters

Return value

DPtolLP

function to determine the mode in which Windows is running. An
application must call INT 21H instead of DOS3Call if it is running in real
mode from a discardable code segment. Otherwise the application must
call DOS3Call.

An application can call this function only from an assembly-language
routine. It is exported from KERNEL.EXE and is not defined in any
Windows include files.

To use this function call, an application should declare it in an assembly-
language program as shown:

extrn DOS3Call (far

If the application includes CMACROS.INC, the application declares it as
shown:

extrnFP Dos3Call

Before calling DOS3Call, all registers must be set as for an actual INT 21H.
All registers at the function’s exit are the same as for the corresponding
INT 21H function.

None.
The registers of the DOS function.
The following is an example of using DOS3Call:

extrn DOS3Call : far

; set registers
nov ah, DOSFUNC
cCall DOS3Call

246

Syntax

Parameters

BOOL DPtoLP(hDC, lpPoints, nCount)
function DPtoLP(DC: HDC; var Points; Count: Integer): Bool;

This function converts device points into logical points. The function
maps the coordinates of each point specified by the I[pPoints parameter
from the device coordinate system into GDI's logical coordinate system.
The conversion depends on the current mapping mode and the settings of
the origins and extents for the device’s window and viewport.

hDC HDC Identifies the device context.

Software development kit

DPtoLP

IpPoints LPPOINT Points to an array of points. Each point must be
a POINT data structure.

nCount int Specifies the number of points in the array.

Return value The return value specifies whether the conversion has taken place. It is
nonzero if all points are converted. Otherwise, it is zero.

DrawFocusRect 3.0

Syntax void DrawFocusRect(hDC, IpRect)
procedure DrawFocusRect(DC: HDC; var Rect: TRect);

This function draws a rectangle in the style used to indicate focus.
Parameters h©DC HDC Identifies the device context.

IpRect LPRECT Points to a RECT data structure that specifies the
coordinates of the rectangle to be drawn.

Return value None.

Comments Since this is an XOR function, calling this function a second time with the
same rectangle removes the rectangle from the display.

The rectangle drawn by this function cannot be scrolled. To scroll an area
containing a rectangle drawn by this function, call DrawFocusRect to
remove the rectangle from the display, scroll the area, and then call
DrawFocusRect to draw the rectangle in the new position.

Drawlcon

Syntax BOOL Drawlcon(hDC, X, Y, hicon)
function DrawlIcon(DC: HDC; X, Y: Integer; Icon: Hlcon): Bool;

This function draws an icon on the specified device. The Drawlcon
function places the icon’s upper-left corner at the location specified by the
X and Y parameters. The location is subject to the current mapping mode
of the device context.

Parameters hDC HDC Identifies the device context for a window.
X int Specifies the logical x-coordinate of the upper-left
corner of the icon.
Y int Specifies the logical y-coordinate of the upper-left

corner of the icon.

Chapter 4, Functions directory 247

Drawlcon

Return value

Comments

hlcon HICON Identifies the icon to be drawn.

The return value specifies the outcome of the function. It is nonzero if the
function is successful. Otherwise, it is zero.

The icon resource must have been previously loaded by using the
Loadlcon function. The MM_TEXT mapping mode must be selected prior
to using this function.

DrawMenuBar

Syntax

Parameters

Return value

DrawText

void DrawMenuBar(hWnd)
procedure DrawMenuBar(Wnd: HWnd);

This function redraws the menu bar. If a menu bar is changed after
Windows has created the window, this function should be called to draw
the changed menu bar.

hWhnd HWND Identifies the window whose menu needs
redrawing.

None.

248

Syntax

Parameters

int DrawText(hDC, 1pString, nCount, IpRect, wFormat)
function DrawText(DC: HDC; Str: PChar; Count: Integer; var Rect: TRect;
Format: Word): Integer;

This function draws formatted text in the rectangle specified by the IpRect
parameter. It formats text by expanding tabs into appropriate spaces,
justifying text to the left, right, or center of the given rectangle, and
breaking text into lines that fit within the given rectangle. The type of
formatting is specified by the wFormat parameter.

The DrawText function uses the device context’s selected font, text color,
and background color to draw the text. Unless the DT_NOCLIP format is
used, DrawText clips the text so that the text does not appear outside the
given rectangle. All formatting is assumed to have multiple lines unless
the DT_SINGLELINE format is given.

hDC HDC Identifies the device context.

IpString LPSTR Points to the string to be drawn. If the nCount
parameter is -1, the string must be null-terminated.

Software development kit

DrawText

nCount int Specifies the number of bytes in the string. If nCount is
-1, then IpString is assumed to be a long pointer to a null-
terminated string and DrawText computes the character
count automatically.

IpRect LPRECT Points to a RECT data structure that contains the
rectangle (in logical coordinates) in which the text is to be

formatted.

wFormat WORD Specifies the method of formatting the text. It can
be a combination of the values given in Table 4.7,
"DrawText formats."

Return value The return value specifies the height of the text.

Comments If the selected font is too large for the specified rectangle, the DrawText
function does not attempt to substitute a smaller font.

Table 4.7 lists the values for the wFormat parameter. These values can be
combined by using the bitwise OR operator. Note that the
DT_CALCRECT, DT_EXTERNALLEADING, DT_INTERNAL,

DT _NOCLIP, and DT_NOPREFIX values cannot be used with the

DT _TABSTOP value:

Table 4.7

DrawText formats ~ value

Meaning

DT_BOTTOM
DT_CALCRECT

DT_CENTER
DT_EXPANDTABS

DT_EXTERNALLEADING
DT_LEFT

DT_NOCLIP
DT_NOPREFIX

Chapter 4, Functions directory

Specifies bottom-justified text. This value must be
combined with DT_SINGLELINE.

Determines the width and height of the rectangle. If
there are multiple lines of text, DrawText will use
the width of the rectangle pointed to by the IpRect
parameter and extend the base of the rectangle to
bound the last line of text. If there is only one line of
text, DrawText will modify the right side of the
rectangle so that it bounds the last character in the
line. In either case, DrawText returns the height of
the formatted text but does not draw the text.
Centers text horizontally.

Expands tab characters. The default number of
characters per tab is eight.

Includes the font external leading in line height.
Normally, external leading is not included in the
height of a line of text.

Aligns text flush-left.

Draws without clipping. DrawText is somewhat
faster when DT_NOCLIP is used.

Turns off processing of prefix characters. Normally,
DrawText interprets the mnemonic-prefix character
"&" as a directive to underscore the character that
follows, and the mnemonic-prefix characters "&&"

249

DrawText

250

Table 4.7: DrawText formats (continued)

DT_RIGHT
DT_SINGLELINE

DT_TABSTOP
DT_TOP

DT_VCENTER
DT_WORDBREAK

as a directive to print a single "&". By specifying
DT_NOPREFIX, this processing is turned off.
Aligns text flush-right.

Specifies single line only. Carriage returns and
linefeeds do not break the line.

Sets tab stops. The high-order byte of the wFormat
parameter is the number of characters for each tab.
The default number of characters per tab is eight.
Specifies top-justified text (single line only).
Specifies vertically centered text (single line only).
Specifies word breaking. Lines are automatically
broken between words if a word would extend past
the edge of the rectangle specified by the IpRect
parameter. A carriage return/line sequence will also
break the line.

Software development kit

Ellipse

Ellipse

Syntax BOOL Ellipse(hDC, X1, Y1, X2, Y2)
function Ellipse(DC: HDC; X1, Y1, X2, Y2: Integer): Bool;

This function draws an ellipse. The center of the ellipse is the center of the
bounding rectangle specified by the X1, Y1, X2, and Y2 parameters. The
ellipse border is drawn with the current pen, and the interior is filled with
the current brush.

If the bounding rectangle is empty, nothing is drawn.
Parameters 1DC HDC Identifies the device context.

X1 int Specifies the logical x-coordinate of the upper-left
corner of the bounding rectangle.

Y1 int Specifies the logical y-coordinate of the upper-left
corner of the bounding rectangle.

X2 int Specifies the logical x-coordinate of the lower-right
corner of the bounding rectangle.

Y2 int Specifies the logical y-coordinate of the lower-right
corner of the bounding rectangle.

Return value The return value specifies whether the ellipse is drawn. It is nonzero if the
ellipse is drawn. Otherwise, it is zero.

Comments The width of the rectangle, specified by the absolute value of X2 - X1,
must not exceed 32,767 units. This limit applies to the height of the
rectangle as well.

The current position is neither used nor updated by this function.

Chapter 4, Functions directory 251

EmptyClipboard

EmptyClipboard

Syntax

Parameters

Return value

Comments

BOOL EmptyClipboard()
function EmptyClipboard: Bool;

This function empties the clipboard and frees handles to data in the
clipboard. It then assigns ownership of the clipboard to the window that
currently has the clipboard open.

None.

The return value specifies the status of the clipboard. It is nonzero if the
clipboard is emptied. It is zero if an error occurs.

The clipboard must be open when the EmptyClipboard function is called.

EnableHardwarelnput

Syntax

Parameters

Return value

Comments

252

BOOL EnableHardwareInput(bEnableInput)
function EnableHardwarelnput(EnableInput: Bool): Bool;

This function disables mouse and keyboard input. The input is saved if
the bEnablelnput parameter is TRUE and discarded if it is FALSE.

bEnableInput ~ BOOL Specifies that the function should save input if the
bEnablelnput parameter is set to a nonzero value; specifies
that the function should discard input if the bEnablelnput
parameter is set to zero.

The return value specifies whether mouse and keyboard input is disabled.

It is nonzero if input was previously enabled. Otherwise, it is zero. The
default return value is nonzero (TRUE).

None.

Software development kit

EnableMenultem

EnableMenultem

Syntax BOOL EnableMenultem(hMenu, wIDEnableltem, wEnable)
function EnableMenultem(Menu: HMenu; IDEnableltem, Enable: Word):
Bool;

This function enables, disables, or grays a menu item.

Parameters hMenu HMENU Specifies the menu.

wIDEnableltem WORD Specifies the menu item to be checked. The
wIDEnableltem parameter can specify pop-up menu items
as well as menu items.

wEnable WORD Specifies the action to take. It can be a combination
of MF_DISABLED, MF_ENABLED, or MF_GRAYED,
with MF_BYCOMMAND or MF_BYPOSITION. These
values can be combined by using the bitwise OR operator.
These values have the following meanings:

Value Meaning

MF_BYCOMMAND Specifies that the wIDEnableltem
parameter gives the menu item ID
(MF_BYCOMMAND is the default
ID).

MF_BYPOSITION Specifies that the wIDEnableltem
parameter gives the position of the
menu item (the first item is at
position zero).

MF_DISABLED Menu item is disabled.
MF_ENABLED Menu item is enabled.
MF_GRAYED Menu item is grayed.

Return value The return value specifies the previous state of the menu item. The return
value is -1 if the menu item does not exist.

Comments To disable or enable input to a menu bar, see the WM_SYSCOMMAND
message.

Chapter 4, Functions directory 253

EnableWindow

EnableWindow

Syntax

Parameters

Return value

Comments

BOOL EnableWindow(hWnd, bEnable)
function EnableWindow(Wnd: HWnd; Enable: Bool): Bool;

This function enables or disables mouse and keyboard input to the
specified window or control. When input is disabled, input such as mouse
clicks and key presses are ignored by the window. When input is enabled,
all input is processed.

The EnableWindow function enables mouse and keyboard input to a
window if the bEnable parameter is nonzero, and disables it if bEnable is
zero.

hWnd HWND Identifies the window to be enabled or disabled.
bEnable BOOL Specifies whether the given window is to be
enabled or disabled.

The return value specifies the outcome of the function. It is nonzero if the
window is enabled or disabled as specified. It is zero if an error occurs.

A window must be enabled before it can be activated. For example, if an
application is displaying a modeless dialog box and has disabled its main
window, the main window must be enabled before the dialog box is
destroyed. Otherwise, another window will get the input focus and be
activated. If a child window is disabled, it is ignored when Windows tries
to determine which window should get mouse messages.

Initially, all windows are enabled by default. EnableWindow must be used
to disable a window explicitly.

EndDeferWindowPos 3.0

254

Syntax

void EndDeferWindowPosthWinPosInfo)
procedure EndDeferWindowPos(WinPosInfo: THandle);

This function simultaneously updates the position and size of one or more
windows in a single screen-refresh cycle. The hWinPosInfo parameter
identifies a multiple window-position data structure that contains the
update information for the windows. The Defer-WindowPos function
stores the update information in the data structure; the BeginDefer-
WindowPos function creates the initial data structure used by these
functions.

Software development kit

EndDeferWindowPos

Parameters hWinPosInfo ~ HANDLE Identifies a multiple window-position data
structure that contains size and position information for
one or more windows. This structure is returned by the
BeginDeferWindowPos function or the most recent call to
the DeferWindowPos function.

Return value None.

EndDialog

Syntax void EndDialog(hDlg, nResult)
procedure EndDialog(Dlg: HWnd; Result: Integer);

This function terminates a modal dialog box and returns the given result
to the DialogBox function that created the dialog box. The EndDialog
function is required to complete processing whenever the DialogBox
function is used to create a modal dialog box. The function must be used
in the dialog function of the modal dialog box and should not be used for
any other purpose.

The dialog function can call EndDialog at any time, even during the

processing of the WM_INITDIALOG message. If called during the
WML_INITDIALOG message, the dialog box is terminated before it is ‘
shown or before the input focus is set.

EndDialog does not terminate the dialog box immediately. Instead, it sets
a flag that directs the dialog box to terminate as soon as the dialog
function ends. The EndDialog function returns to the dialog function, so
the dialog function must return control to Windows.

Parameters hDig HWND Identifies the dialog box to be destroyed.

nResult int Specifies the value to be returned from the dialog box
to the DialogBox function that created it.

Return value None.

EndPaint

Syntax void EndPaint(hWnd, IpPaint)
procedure EndPaint(Wnd: HWnd; var Paint: TPaintStruct);

This function marks the end of painting in the given window. The
EndPaint function is required for each call to the BeginPaint function, but
only after painting is complete.

Chapter 4, Functions directory 255

EndPaint

Parameters

Return value

Comments

hWnd HWND Identifies the window that is repainted.

IpPaint LPPAINTSTRUCT Points to a PAINTSTRUCT data
structure that contains the painting information retrieved
by the BeginPaint function.

None.

If the caret was hidden by the BeginPaint function, EndPaint restores the
caret to the screen.

EnumChildWindows

256

Syntax

Parameters

Return value

Comments

BOOL EnumChildWindows(hWndParent, lpEnumFunc, IParam)
function EnumChildWindows(WndParent: HWnd; EnumFunc: TFarProc;
IParam: Longint): Bool;

This function enumerates the child windows that belong to the specified
parent window by passing the handle of each child window, in turn, to
the application-supplied callback function pointed to by the IpEnumFunc
parameter.

The EnumChildWindows function continues to enumerate windows until
the called function returns zero or until the last child window has been
enumerated.

hWndParent ~ HWND Identifies the parent window whose child
windows are to be enumerated.

IpEnumFunc ~ FARPROC Is the procedure-instance address of the
callback function.

[Param DWORD Specifies the value to be passed to the callback
function for the application’s use.

The return value specifies nonzero if all child windows have been
enumerated. Otherwise, it is zero.

This function does not enumerate pop-up windows that belong to the
hWndParent parameter.

The address passed as the IpEnumFunc parameter must be created by
using the MakeProcInstance function.

The callback function must use the Pascal calling convention and must be
declared FAR.

Software development kit

EnumChildWindows

Callback
function BOOL FAR PASCAL EnumFunc(hWnd, IParam)
HWND hWnd;
DWORD [Param;

EnumFunc is a placeholder for the application-supplied function name.
The actual name must be exported by including it in an EXPORTS
statement in the application’s module-definition file.

Parameters hWnd Identifies the window handle.

[Param Specifies the long parameter argument of the
EnumChildWindows function.

Return value The callback function should return a nonzero value to continue
enumeration; it should return zero to stop enumeration.

EnumClipboardFormats

Syntax ' WORD EnumClipboardFormats(wFormat)
function EnumClipboardFormats(Format: Word): Word;

This function enumerates the formats found in a list of available formats
that belong to the clipboard. On each call to this function, the wFormat
parameter specifies a known available format, and the function returns
the format that appears next in the list. The first format in the list can be
retrieved by setting wFormat to zero.

Parameters wFormat WORD Specifies a known format.

Return value The return value specifies the next known clipboard data format. It is zero
if wFormat specifies the last format in the list of available formats. It is zero
if the clipboard is not open.

Comments Before it enumerates the formats by using the EnumClipboardFormats
function, an application must open the clipboard by using the
OpenClipboard function.

The order that an application uses for putting alternative formats for the
same data into the clipboard is the same order that the enumerator uses

when returning them to the pasting application. The pasting application
should use the first format enumerated that it can handle. This gives the
donor a chance to recommend formats that involve the least loss of data.

Chapter 4, Functions directory 257

EnumFonts

EnumFonts

258

Syntax

Parameters

Return value

Comments

Callback
function

int EnumFonts(hDC, IpFacename, IpFontFunc, IpData)
function EnumFonts(DC: HDC; FaceName: PChar; FontFunc: TFarProc;
Data: Pointer): Integer;

This function enumerates the fonts available on a given device. For each
font having the typeface name specified by the IpFacename parameter, the
EnumFonts function retrieves information about that font and passes it to
the function pointed to by the IpFontFunc parameter. The application-
supplied callback function can process the font information as desired.
Enumeration continues until there are no more fonts or the callback
function returns zero.

hDC HDC Identifies the device context.

IpFacename LPSTR Points to a null-terminated character string that
specifies the typeface name of the desired fonts. If
IpFacename is NULL, EnumFonts randomly selects and
enumerates one font of each available typeface.

IpFontFunc FARPROC Is the procedure-instance address of the
callback function. See the following "Comments" section
for details.

IpData LPSTR Points to the application-supplied data. The data
is passed to the callback function along with the font
information.

The return value specifies the last value returned by the callback function.
Its meaning is user-defined.

The address passed as the IpFontFunc parameter must be created by using
the MakeProcInstance function.

The callback function must use the Pascal calling convention and must be
declared FAR.

int FAR PASCAL FontFunc(IpLogFont, IpTextMetrics, nFontType, IpData)
LPLOGFONT IpLogFont;

LPTEXTMETRICS IpTextMetrics;

short nFontType;

LPSTR IpData;

Software development kit

EnumFonts

FontFunc is a placeholder for the application-supplied function name. The
actual name must be exported by including it in an EXPORTS statement
in the application’s module-definition file.

Parameters IpLogFont Points to a LOGFONT data structure that contains
information about the logical attributes of the font.

IpTextMetrics Points to a TEXTMETRIC data structure that contains
information about the physical attributes of the font.

nFontType Specifies the type of the font.

IpData Points to the application-supplied data passed by
EnumFonts.

Return value The return value can be any integer.

Comments The AND (&) operator can be used with the RASTER_ FONTTYPE and
DEVICE _FONTTYPE constants to determine the font type. The
RASTER_FONTTYPE bit of the FontType parameter specifies whether the
font is a raster or vector font. If the bit is one, the font is a raster font; if
zero, it is a vector font. The DEVICE_FONTTYPE bit of FontType specifies
whether the font is a device- or GDI-based font. If the bit is one, the font is
a device-based font; if zero, it is a GDI-based font.

If the device is capable of text transformations (scaling, italicizing, and so
on) only the base font will be enumerated. The user must inquire into the
device’s text-transformation abilities to determine which additional fonts
are available directly from the device. GDI can simulate the bold, italic,
underlined, and strikeout attributes for any GDI-based font.

EnumFonts only enumerates fonts from the GDI internal table. This does
not include fonts that are generated by a device, such as fonts that are
transformations of fonts from the internal table. The GetDeviceCaps
function can be used to determine which transformations a device can
perform. This information is available by using the TEXTCAPS index.

GDI can scale GDI-based raster fonts by one to five horizontally and one
to eight vertically, unless PROOF_QUALITY is being used.

Chapter 4, Functions directory 259

EnumMetaFile

EnumMetaFile

260

Syntax

Parameters

Return value

Comments

Callback
function

Parameters

BOOL EnumMetaFile(hDC, hMF, 1pCallbackFunc, lpClientData)
function EnumMetaFile(DC: HDC; MF: THandle; CallbackFunc: TFarProc;
ClientData: Pointer): Bool;

This function enumerates the GDI calls within the metafile identified by
the hMF parameter. The EnumMetaFile function retrieves each GDI call
within the metafile and passes it to the function pointed to by the
IpCallbackFunc parameter. This callback function, an application-supplied
function, can process each GDI call as desired. Enumeration continues
until there are no more GDI calls or the callback function returns zero.

hDC HDC Identifies the device context associated with the
metafile.
hMF LOCALHANDLE Identifies the metafile.

IpCallbackFunc FARPROC Is the procedure-instance callback function.
See the following "Comments" section for details.

IpClientData BYTE FAR * Points to the callback-function data.

The return value specifies the outcome of the function. It is nonzero if the
callback function enumerates all the GDI calls in a metafile; otherwise, it
returns zero.

The callback function must use the Pascal calling convention and must be
declared FAR.

int FAR PASCAL EnumFunc(hDC, IpHTable, IpMFR, nObj, lpClientData)
HDC hDC;

LPHANDLETABLE IpHTable;

LPMETARECORD IpMFR;

int nObj;

BYTE FAR * IpClientData;

EnumFunc is a placeholder for the application-supplied function name.

The actual name must be exported by including it in an EXPORTS
statement in the application’s module-definition file.

hDC Identifies the special device context that contains the
metafile.
IpHTable Points to a table of handles associated with the objects

(pens, brushes, and so on) in the metafile.

Software development kit

EnumMetaFile

IpMFR Points to a metafile record contained in the metafile.
nObj Specifies the number of objects with associated handles in
the handle table.
IpClientData Points to the application-supplied data. H
Return value The function can carry out any desired task. It must return a nonzero

value to continue enumeration, or a zero value to stop it. ‘

EnumObjects

Syntax int EnumObjects(hDC, nObjectType, IpObjectFunc, lpData)
function EnumObjects(DC: HDC; ObjectType: Integer; ObjectFunc:
TFarProc; Data: Pointer): Integer;

This function enumerates the pens and brushes available on a device. For
each object that belongs to the given style, the callback function is called
with the information for that object. The callback function is called until
there are no more objects or the callback function returns zero.

Parameters 1DC HDC Identifies the device context.
nObjectType int Specifies the object type. It can be one of the following
values:
m OB]_BRUSH
a OBJ_PEN

IpObjectFunc ~ FARPROC Is the procedure-instance address of the
application-supplied callback function. See the following
"Comments" section for details.

IpData LPSTR Points to the application-supplied data. The data
is passed to the callback function along with the object
information.

Return value The return value specifies the last value returned by the callback function.
Its meaning is user-defined.

Comments The address passed as the IpObjectFunc parameter must be created by
using the MakeProcInstance function.

The callback function must use the Pascal calling convention and must be
declared FAR.

Chapter 4, Functions directory 261

EnumObjects

Calloack
function int FAR PASCAL ObjectFunc(ipLogObject, IpData)
char FAR * IpLogObject;
char FAR * IpData;

ObjectFunc is a placeholder for the application-supplied function name.
The actual name must be exported by including it in an EXPORTS
statement in the application’s module-definition file.

Parameters IpLogObject Points to a LOGPEN or LOGBRUSH data structure that
contains information about the logical attributes of the
object.

IpData Points to the application-supplied data passed to the
EnumObjects function.

EnumProps

Syntax int EnumProps(hWnd, lpEnumFunc)
function EnumProps(Wnd: HWnd; EnumFunc: TFarProc): Integer;

This function enumerates all entries in the property list of the specified
window. It enumerates the entries by passing them, one by one, to the
callback function specified by IpEnumFunc. EnumProps continues until
the last entry is enumerated or the callback function returns zero.

Parameters 1 Wnd HWND Identifies the window whose property list is to be
enumerated.

IpEnumFunc ~ FARPROC Is the procedure-instance address of the
callback function. See the following "Comments" section
for details.

Return value The return value specifies the last value returned by the callback function.
It is -1 if the function did not find a property for enumeration.

Comments An application can remove only those properties which it has added. It
should not remove properties added by other applications or by Windows
itself.

The following restrictions apply to the callback function:

1. The callback function must not yield control or do anything that might
yield control to other tasks.

262 Software development kit

EnumProps

2. The callback function can call the RemoveProp function. However, the
RemoveProp function can remove only the property passed to the
callback function through the callback function’s parameters.

3. A callback function should not attempt to add properties.

The address passed in the IpEnumFunc parameter must be created by
using the MakeProclnstance function.

Fixed data

segments The callback function must use the Pascal calling convention and must be
declared FAR. In applications and dynamic libraries with fixed data
segments and in dynamic libraries with moveable data segments that do
not contain a stack, the callback function must have the form shown

below.
Callback
function int FAR PASCAL EnumFunc(hWnd, IpString, hData)
HWND hWnd;
LPSTR IpString; -
HANDLE hData;

EnumFunc is a placeholder for the application-supplied function name.
The actual name must be exported by including it in an EXPORTS
statement in the application’s module-definition file.

Parameters 1 Wnd Identifies a handle to the window that contains the
property list.
IpString Points to the null-terminated character string associated

with the data handle when the application called the
SetProp function to set the property. If the application
passed an atom instead of a string to the SetProp
function, the IpString parameter contains the atom in its
low-order word, and the high-order word is zero.

hData Identifies the data handle.

Return value The callback function can carry out any desired task. It must return a
nonzero value to continue enumeration, or a zero value to stop it.

Chapter 4, Functions directory 263

EnumProps

Moveable

data The callback function must use the Pascal calling convention and must be
segments declared FAR. In applications with moveable data segments and in
dynamic libraries whose moveable data segments also contain a stack, the
callback function must have the form shown below.

Callback

function int FAR PASCAL EnumFunc(hWnd, nDummy, pString, hData)
HWND hWnd;
WORD nDummy;
PSTR pString;
HANDLE hData;

EnumFunc is a placeholder for the application-supplied function name.
The actual name must be exported by including it in an EXPORTS
statement in the application’s module-definition file.

Parameters hWnd Identifies a handle to the window $hat contains the
property list.

nDummy Specifies a dummy parameter.

pString Points to the null-terminated character string associated
with the data handle when the application called the
SetProp function to set the property. If the application
passed an atom instead of a string to the SetProp
function, the pString parameter contains the atom.

hData Identifies the data handle.

Return value The callback function can carry out any desired task. It should return a
nonzero value to continue enumeration, or a zero value to stop it.

Comments The alternate form above is required since movement of the data will
invalidate any long pointer to a variable on the stack, such as the IpString
parameter. The data segment typically moves if the callback function
allocates more space in the local heap than is currently available.

264 Software development kit

EnumTaskWindows

EnumTaskWindows

Syntax BOOL EnumTaskWindows(hTask, IpEnumFunc, IParam)
function EnumTaskWindows(Task: THandle; EnumFunc: TFarProc;
IParam: Longint): Bool;

This function enumerates all windows associated with the hTask
parameter, which is returned by the GetCurrentTask function. (A task is
any program that executes as an independent unit. All applications are
executed as tasks and each instance of an application is a task.) The
enumeration terminates when the callback function, pointed to by
IpEnumFunc, returns FALSE.

Parameters hTask HANDLE Identifies the specified task. The
GetCurrentTask function returns this handle.

IpEnumFunc ~ FARPROC Is the procedure-instance address of the
window’s callback function.

[Param DWORD Specifies the 32-bit value that contains additional
parameters that are sent to the callback function pointed
to by IpEnumFunc.

Return value The return value specifies the outcome of the function. It is nonzero if all
the windows associated with a particular task are enumerated. Otherwise,
it is zero.

Comments The callback function must use the Pascal calling convention and must be
declared FAR. The callback function must have the following form:

Callback

function BOOL FAR PASCAL EnumFunc(hWnd, 1Param)
HWND hWnd;
DWORD [Param;

EnumFunc is a placeholder for the application-supplied function name.
The actual name must be exported by including it in an EXPORTS
statement in the application’s module-definition file.

Parameters L Wnd Identifies a window associated with the current task.

[Param Specifies the same argument that was passed to the
EnumTaskWindows function.

Chapfter 4, Functions directory 265

EnumTaskWindows

Return value

The callback function can carry out any desired task. It must return a
nonzero value to continue enumeration, or a zero value to stop it.

EnumWindows

266

Syntax

Parameters

Return value

Comments

Callback
function

Parameters

BOOL EnumWindows(IpEnumFunc, [Param)
function EnumWindows(EnumFunc: TFarProc; [Param: Longint): Bool;

This function enumerates all parent windows on the screen by passing the
handle of each window, in turn, to the callback function pointed to by the
IpEnumFunc parameter. Child windows are not enumerated.

The EnumWindows function continues to enumerate windows until the
called function returns zero or until the last window has been
enumerated.

IpEnumFunc ~ FARPROC Is the procedure-instance address of the
callback function. See the following "Comments" section
for details.

[Param DWORD Specifies the value to be passed to the callback
function for the application’s use.

The return value specifies the outcome of the function. It is nonzero if all
windows have been enumerated. Otherwise, it is zero.

The address passed as the IpEnumFunc parameter must be created by
using the MakeProcinstance function.

The callback function must use the Pascal calling convention and must be
declared FAR. The callback function must have the following form:

BOOL FAR PASCAL EnumFunc(hWnd, [Param)
HWND hWhnd;
DWORD [Param;

EnumFunc is a placeholder for the application-supplied function name.
The actual name must be exported by including it in an EXPORTS
statement in the application’s module-definition file.

hWnd Identifies the window handle.
[Param Specifies the 32-bit argument of the EnumWindows
function.

Software development kit

EnumWindows

Return value The function must return a nonzero value to continue enumeration, or
zero to stop it.

EqualRect

Syntax BOOL EqualRect(IpRect1, IpRect2)
function EqualRect(var Rectl, Rect2: TRect): Bool;

This function determines whether two rectangles are equal by comparing
the coordinates of their upper-left and lower-right corners. If the values of
these coordinates are equal, EqualRect returns a nonzero value;
otherwise, it returns zero.

Parameters IpRect1 LPRECT Points to a RECT data structure that contains the
upper-left and lower-right corner coordinates of the first
rectangle.

IpRect2 LPRECT Points to a RECT data structure that contains the

upper-left and lower-right corner coordinates of the
second rectangle.

Return value The return value specifies whether the specified rectangles are equal. It is
nonzero if the two rectangles are identical. Otherwise, it is zero.

EqualRgn

Syntax BOOL EqualRgn(hSrcRgn1, hSrcRgn2)
function EqualRgn(SrcRgn1, SrcRgn2: HRgn): Bool;

This function checks the two given regions to determine whether they are

identical.
Parameters 11SrcRgnl HRGN Identifies a region.
hSrcRgn?2 HRGN Identifies a region.

Return value The return value specifies whether the specified regions are equal. It is
nonzero if the two regions are equal. Otherwise, it is zero.

Chapter 4, Functions directory 267

Escape

Escape

268

Syntax

Parameters

Return value

int Escape(hDC, nEscape, nCount, IpInData, IpOutData)
function Escape(DC: HDC; Escape, Count: Integer; InData, OutData:
Pointer): Integer;

This function allows applications to access facilities of a particular device
that are not directly available through GDI. Escape calls made by an
application are translated and sent to the device driver.

hDC HDC Identifies the device context.

nEscape int Specifies the escape function to be performed. For a
complete list of escape functions, see Chapter 12, "Printer
escapes,” in Reference, Volume 2.

nCount int Specifies the number of bytes of data pointed to by the
IpInData parameter.

IpInData LPSTR Points to the input data structure required for this
escape.

IpOutData LPSTR Points to the data structure to receive output from

this escape. The IpOutData parameter should be NULL if
no data are returned.

The return value specifies the outcome of the function. It is positive if the
function is successful except for the QUERYESCSUPPORT escape, which
only checks for implementation. The return value is zero if the escape is
not implemented. A negative value indicates an error. The following list
shows common error values:

Value Meaning
SP_ERROR General error.
SP_OUTOFDISK Not enough disk space is currently available for spooling,

and no more space will become available.
SP_OUTOFMEMORY Not enough memory is available for spooling.
SP_USERABORT User terminated the job through the Print Manager.

Software development kit

EscapeCommFunction

EscapeCommFunction

Syntax int EscapeCommFunction(nCid, nFunc)
function EscapeCommFunction(Cid, Func: Integer): Integer;

This function directs the communication device specified by the nCid
parameter to carry out the extended function specified by the nFunc

parameter.

Parameters nCid int Specifies the communication device to carry out the
extended function. The OpenComm function returns this
value.

nFunc int Specifies the function code of the extended function. It

can be any one of the following values:

Value Description

CLRDTR Clears the data-terminal-ready (DTR)
signal.

CLRRTS Clears the request-to-send (RTS)
signal.

RESETDEV Resets the device if possible.

SETDTR Sends the data-terminal-ready (DTR)
signal.

SETRTS Sends the request-to-send (RTS)
signal.

SETXOFF Causes transmission to act as if an
XOFF character has been received.

SETXON Causes transmission to act as if an

XON character has been received.

Return value The return value specifies the result of the function. It is zero if it is
successful. It is negative if the nFunc parameter does not specify a valid
function code.

ExcludeClipRect

Syntax int ExcludeClipRect(hDC, X1, Y1, X2, Y2)
function ExcludeClipRect(DC: HDC; X1, Y1, X2, Y2: Integer): Integer;

This function creates a new clipping region that consists of the existing
clipping region minus the specified rectangle.

Parameters hDC HDC Identifies the device context.

Chapter 4, Functions directory 269

ExcludeClipRect

X1 int Specifies the logical x-coordinate of the upper-left
corner of the rectangle.

Y1 int Specifies the logical y-coordinate of the upper-left
corner of the rectangle.

X2 int Specifies the logical x-coordinate of the lower-right
corner of the rectangle.

Y2 int Specifies the logical y-coordinate of the lower-right
corner of the rectangle.

Return value The return value specifies the new clipping region’s type. It can be any one
of the following values:

Value Meaning

COMPLEXREGION The region has overlapping borders.
ERROR No region was created.

NULLREGION The region is empty.

SIMPLEREGION The region has no overlapping borders.

Comments The width of the rectangle, specified by the absolute value of X2 - X1,
must not exceed 32,767 units. This limit applies to the height of the
rectangle as well.

ExcludeUpdateRgn

Syntax int ExcludeUpdateRgn(hDC, hWnd)
function ExcludeUpdateRgn(DC: HDC; Wnd: HWnd): Integer;

This function prevents drawing within invalid areas of a window by
excluding an updated region in the window from a clipping region.

Parameters hEDC HANDLE Identifies the device context associated with the
clipping region.
hWnd HWND Identifies the window being updated.

Return value This value specifies the type of resultant region. It can be any one of the
following values:

Value Meaning

COMPLEXREGION The region has overlapping borders.
ERROR No region was created.

NULLREGION The region is empty.

SIMPLEREGION The region has no overlapping borders.

270 Software development kit

ExitWindows

ExitWindows 3.0

Syntax BOOL ExitWindows(dwReserved, wReturnCode)
function ExitWindows(Reserved: Longint; ReturnCode: Word): Bool;

This function initiates the standard Windows shutdown procedure. If all
applications agree to terminate, the Windows session is terminated and
control returns to DOS. Windows sends the WM_QUERYENDSESSION
message to notify all applications that a request has been made to
terminate Windows. If all applications agree to terminate, Windows sends
the WM_ENDSESSION message to all applications before exiting.

Parameters dwReserved DWORD Is reserved and should be set to zero.

wReturnCode ~ WORD Specifies the return value to be passed to DOS
when Windows exits.

Return value The return value is FALSE if one or more applications refused to
terminate. The function does not return if all applications agree to be
terminated.

ExtDeviceMode 3.0

Syntax int ExtDeviceMode(hWnd, hDriver, IlpDevModeOutput, IpDeviceName,
IpPort, lpDevModelnput, IpProfile, wMode)
type TextDeviceMode = function(Wnd: Hwnd; Driver: THandle; var
DevModeOutput: TDevMode; DeviceName, Port: PChar; var
DevModelnput: TDevMode; Profile: PChar; Mode: Word): Integer;

This function retrieves or modifies device initialization information for a
given printer driver, or displays a driver-supplied dialog box for
configuring the printer driver. Printer drivers that support device
initialization by applications export this ExtDeviceMode so that
applications can call it.

Parameters 1 Wnd HWND Identifies a window. If the application calls
ExtDeviceMode to display a dialog box, the specified
window is the parent of the dialog box. ‘

hDriver HANDLE Identifies the device-driver module. The
GetModuleHandle function or LoadLibrary function
returns a module handle.

IpDevModeOutput DEVMODE FAR * Points to a DEVMODE data structure.
The driver writes the initialization information

Chapter 4, Functions directory 271

ExtDeviceMode

272

IpDeviceName

IpPort

IpDevModelnput

IpProfile

wMode

supplied in the IpDevModelnput parameter to this
structure.

LPSTR Points to a null-terminated character string that
contains the name of the printer device, such as
"PCL/HP LaserJet."

LPSTR Points to a null-terminated character string that
contains the name of the port to which the device is
connected, such as LPT1:.

DEVMODE FAR * Points to a DEVMODE data structure
that supplies initialization information to the printer
driver.

LPSTR Points to a null-terminated string that contains
the name of the initialization file which initialization
information is recorded in and read from. If this
parameter is NULL, WIN.INTI is the default.

WORD Specifies a mask of values which determine the
types of operations the function will perform. If wMode
is zero, ExtDeviceMode returns the number of bytes
required by the printer device driver's DEVMODE
structure. Otherwise, wMode must be one or more of
the following values:

Value Meaning

DM_COrY Writes the printer driver’s current
print settings to the DEVMODE data
structure identified by IpDevMode-
Output. The calling application
must allocate a buffer sufficiently
large to contain the information. If
this bit is clear, IpDevModeOutput
can be NULL.

DM_MODIFY Changes the printer driver’s current
print settings to match the partial
initialization data in the DEVMODE
data structure identified by
IpDevModelnput before prompting,
copying, or updating.

DM_PROMPT Presents the printer driver’s Print
Setup dialog box and then changes
the current print settings to those
the user specifies.

Software development kit

Return value

Comments

ExtFloodFill

ExtDeviceMode

DM_UPDATE Writes the printer driver’s current
print settings to the printer
environment and the WIN.INI
initialization file.

If the wMode parameter is zero, the return value is the size of the
DEVMODE data structure required to contain the printer driver
initialization data. If the function displays the initialization dialog box, the
return value is either IDOK or IDCANCEL, depending on which button
the user selected. If the function does not display the dialog box and was
successful, the return value is IDOK. The return value is less than zero if
the function failed.

The ExtDeviceMode function is actually part of the printer’s device driver,
and not part of GDI. To call this function, the application must include the
DRIVINT.H file, load the printer device driver, and retrieve the address of
the function by using the GetProc-Address function. The application can
then use the address to set up the printer.

An application can set the wMode parameter to DM_COPY to obtain a
DEVMODE data structure filled in with the printer driver’s initialization
data. The application can then pass this data structure to the CreateDC
function to set a private environment for the printer device context.

3.0

Syntax

Parameters

BOOL ExtFloodFill(hDC, X, Y, crColor, wFillType)
function ExtFloodHIDC: HDC; X, Y: Integer; Color: TColorRef; FillT ype:
Word): Bool;

This function fills an area of the display surface with the current brush.

If wFillType is set to FLOODFILLBORDER, the area is assumed to be
completely bounded by the color specified by the crColor parameter. The
ExtFloodFill function begins at the point specified by the X and Y
parameters and fills in all directions to the color boundary.

If wFillType is set to FLOODFILLSURFACE, the ExtFloodFill function
begins at the point specified by X and Y and continues in all directions,
filling all adjacent areas containing the color specified by crColor.

hDC HDC Identifies the device context.

X int Specifies the logical x-coordinate of the point where
filling begins.

Chapter 4, Functions directory 273

ExtFloodFill

Y int Specifies the logical y-coordinate of the point where
filling begins.
crColor COLORREF Specifies the color of the boundary or of the

area to be filled. The interpretation of crColor depends on
the value of the wFillType parameter.

wFillType WORD Specifies the type of flood fill to be performed. It
must be one of the following values:

Value Meaning

FLOODFILLBORDER The fill area is bounded by the
color specified by crColor. This
style is identical to the filling
performed by the FloodFill
function.

FLOODFILLSURFACE The fill area is defined by the
color specified by crColor. Filling
continues outward in all
directions as long as the color is
encountered. This is useful for
filling areas with multicolored
boundaries.

Return value The return value specifies the outcome of the function. It is nonzero if the
function is successful. It is zero if:

m The filling could not be completed

m The given point has the boundary color specified by crColor (if
FLOODFILLBORDER was requested)

m The given point does not have the color specified by crColor (if
FLOODFILLSURFACE was requested)

m The point is outside the clipping region

Comments Only memory device contexts and devices that support raster-display
technology support the ExtFloodFill function. For more information, see
the RC_BITBLT raster capability in the GetDeviceCaps function section.

ExiTextOut

Syntax BOOL ExtTextOut(hDC, X, Y, wOptions, lpRect, IpString, nCount, 1pDx)
function ExtTextOut(DC: HDC; X, Y: Integer; Options: Word; Rect: PRect;
Str: PChar; Count: Word; Dx: PInteger): Bool;

274 Software development kit

ExtTextOut

This function writes a character string, within a rectangular region on the
specified display, using the currently selected font. The rectangular region
can be opaque (filled with the current background color) and it can be a

clipping region.
Parameters 1DC HDC Identifies the device context.
X int Specifies the logical x-coordinate of the origin of the

character cell for the first character in the specified string.

Y int Specifies the logical y-coordinate of the origin of the
character cell for the first character in the specified string.

wOptions WORD Specifies the rectangle type. It can be one or both
of the following values, or neither:

ETO_CLIPPED
ETO_OPAQUE

The ETO_CLIPPED value specifies that Windows will clip
text to the rectangle. The ETO_OPAQUE value specifies
that the current background color fills the rectangle.

IpRect LPRECT Points to a RECT data structure. The IpRect
parameter can be NULL.

IpString LPSTR Points to the specified character string.

nCount int Specifies the number of characters in the string.

IpDx LPINT Points to an array of values that indicate the

distance between origins of adjacent character cells. For
instance, IpDx[i] logical units will separate the origins of
character cell i and character cell i + 1.

Return value The return value specifies whether or not the string is drawn. It is nonzero
if the string is drawn. Otherwise, it is zero.

Comments If [pDx is NULL, the function uses the default spacing between characters.

The character-cell origins and the contents of the array pointed to by the
IpDx parameter are given in logical units. A character-cell origin is defined
as the upper-left corner of the character cell.

By default, the current position is not used or updated by this function.
However, an application can call the SetTextAlign function with the
wFlags parameter set to TA_UPDATECP to permit Windows to use and
update the current position each time the application calls ExtTextOut for
a given device context. When this flag is set, Windows ignores the X and
Y parameters on subsequent ExtTextOut calls.

Chapter 4, Functions directory 275

FatalAppExit

FatalAppExit

3.0

Syntax

Parameters

Return value

Comments

FatalExit

VOID Fatal AppExit(wAction,]pMessageText)
procedure Fatal AppExit(Action: Word; MessageText: PChar);

This function displays a message containing the text specified by the
IpMessageText parameter and terminates the application when the
message box is closed. When called under the debugging version of
Windows, the message box gives the user the opportunity to terminate
the application or to return to the caller.

wAction WORD Is reserved and must be set to 0.

IpMessageText LPSTR Points to a character string that is displayed in the
message box. The message is displayed on a single line.
To accommodate low-resolution displays, the string
should be no more than 35 characters in length.

None.

An application that encounters an unexpected error should terminate by
freeing all its memory and then returning from its main message loop. It
should call FatalAppEXxit only when it is not capable of terminating any
other way. FatalAppEXxit may not always free an application’s memory or
close its files, and it may cause a general failure of Windows.

276

Syntax

Parameters
Return value

Comments

void FatalExit(Code)
procedure FatalExit(Code: Integer);

This function displays the current state of Windows on the debugging
monitor and prompts for instructions on how to proceed. The display
includes an error code, the Code parameter, followed by a symbolic stack
trace, showing the flow of execution up to the point of call.

An application should call this function only for debugging purposes; it
should not call the function in a retail version of the application. Calling
this function in the retail version will terminate the application.

Code int Specifies the error code to be displayed.
None.

The FatalExit function prompts the user to respond to an "Abort, Break or
Ignore"” message. FatalExit processes the response as follows:

Software development kit

FillRect

FatalExit

Response Description

A (Abort) Terminates Windows.

B (Break) Simulates a non-maskable interrupt (NMI) to enter the
debugger.

I (Ignore) Returns to the caller.

The FatalExit function is for debugging only.

An application should call this function whenever the application detects
a fatal error. All input and output is received and transmitted through the
computer’s auxiliary port (AUX) or through the debugger if a debugger is
installed.

Syntax

Parameters

Return value

Comments

int FillRect(hDC, 1pRect, hBrush)
function FillRect(DC: HDC; var Rect: TRect; Brush: HBrush): Integer;

This function fills a given rectangle by using the specified brush. The
FillRect function fills the complete rectangle, including the left and top
borders, but does not fill the right and bottom borders.

hDC HDC Identifies the device context.

IpRect LPRECT Points to a RECT data structure that contains the
logical coordinates of the rectangle to be filled.

hBrush HBRUSH Identifies the brush used to fill the rectangle.

Although the FillRect function return type is an integer, the return value
is not used and has no meaning,.

The brush must have been created previously by using either the
CreateHatchBrush, CreatePatternBrush, or CreateSolidBrush function, or
retrieved using the GetStockObject function.

When filling the specified rectangle, the FillRect function does not include
the rectangle’s right and bottom sides. GDI fills a rectangle up to, but does
not include, the right column and bottom row, regardless of the current
mapping mode.

FillRect compares the values of the top, bottom, left, and right fields of the
specified rectangle. If bottom is less than or equal to top, or if right is less
than or equal to left, the rectangle is not drawn.

Chapter 4, Functions directory 277

FillRgn

FillRgn

Syntax

Parameters

Return value

BOOL FillRgn(hDC, hRgn, hBrush)
function FillRgn(DC: HDC; Rgn: HRgn; Brush: HBrush): Bool;

This function fills the region specified by the hRgn parameter with the
brush specified by the hBrush parameter.

hDC HDC Identifies the device context.

hRgn HRGN Identifies the region to be filled. The coordinates
for the given region are specified in device units.

hBrush HBRUSH Identifies the brush to be used to fill the region.

The return value specifies the outcome of the function. It is nonzero if the
function is successful. Otherwise, it is zero.

FindAtom
Syntax ATOM Find Atom(lpString)
function Find Atom(Str: PChar): TAtom;
This function searches the atom table for the character string pointed to by
the IpString parameter and retrieves the atom associated with that string.
Parameters [pString LPSTR Points to the character string to be searched for.

Return value

FindResource

The string must be null-terminated.

The return value identifies the atom associated with the given string. It is
NULL if the string is not in the table.

Syntax

Parameters

278

HANDLE FindResource(hInstance, lpName, IpType)
function FindResource(Instance: THandle; Name, ResType: PChar):
THandle;

This function determines the location of a resource in the specified
resource file. The [pName and IpType parameters define the resource name
and type, respectively.

hInstance HANDLE Identifies the instance of the module whose
executable file contains the resource.

Software development kit

FindResource

IpName LPSTR Points to a null-terminated character string that
represents the name of the resource.

IpType LPSTR Points to a null-terminated character string that
represents the type name of the resource. For predefined
resource types, the IpType parameter should be one of the
following values:

Value Meaning

RT_ACCELERATOR Accelerator table

RT_BITMAP Bitmap resource

RT_DIALOG Dialog box

RT_FONT Font resource

RT_FONTDIR Font directory resource
RT_MENU Menu resource

RT_RCDATA User-defined resource (raw data)

Return value The return value identifies the named resource. It is NULL if the
requested resource cannot be found.

Comments An application must not call FindResource and the LoadResource
function to load cursor, icon, and string resources. Instead, it must load
these resources by calling the following functions:

LoadCursor
m Loadicon
B LoadString

An application can call FindResource and LoadResource to load other
predefined resource types. However, it is recommended that the
application load the corresponding resources by calling the following
functions:

a LoadAccelerators
a LoadBitmap
m LoadMenu

If the high-order word of the IpName or IpType parameter is zero, the low-
order word specifies the integer ID of the name or type of the given
resource. Otherwise, the parameters are long pointers to null-terminated
character strings. If the first character of the string is a pound sign (#), the
remaining characters represent a decimal number that specifies the
integer ID of the resource’s name or type. For example, the string #258
represents the integer ID 258.

To reduce the amount of memory required for the resources used by an
application, the application should refer to the resources by integer ID
instead of by name.

Chapter 4, Functions directory 279

FindWindow

FindWindow
Syntax HWND FindWindow(IpClassName, lpWindowName)

function FindWindow(ClassName, WindowName: PChar): HWnd;
This function returns the handle of the window whose class is given by
the IpClassName parameter and whose window name, or caption, is given
by the IpWindowName parameter. This function does not
search child windows.

Parameters [pClassName LPSTR Points to a null-terminated character string that

FlashWindow

Return value

specifies the window’s class name. If IlpClassName is
NULL, all class names match.

IpWindowName LPSTR Points to a null-terminated character string that
specifies the window name (the window’s text caption). If
IpWindowName is NULL, all window names match.

The return value identifies the window that has the specified class name
and window name. It is NULL if no such window is found.

280

Syntax

Parameters

BOOL FlashWindow(hWnd, bInvert)
function FlashWindow(Wnd: HWnd; Invert: Bool): Bool;

This function "flashes" the given window once. Flashing a window means
changing the appearance of its caption bar as if the window were
changing from inactive to active status, or vice versa. (An inactive caption
bar changes to an active caption bar; an active caption bar changes to an
inactive caption bar.)

Typically, a window is flashed to inform the user that the window
requires attention, but that it does not currently have the input focus.

hWnd HWND Identifies the window to be flashed. The window
can be either open or iconic.

bInvert BOOL Specifies whether the window is to be flashed or
returned to its original state. The window is flashed from
one state to the other if the blnvert parameter is nonzero.
If the bInvert parameter is zero, the window is returned to
its original state (either active or inactive).

Software development kit

Return value

Comments

FlashWindow

The return value specifies the window’s state before call to the
FlashWindow function. It is nonzero if the window was active before the
call. Otherwise, it is zero.

The FlashWindow function flashes the window only once; for successive
flashing, the application should create a system timer.

The bInvert parameter should be zero only when the window is getting
the input focus and will no longer be flashing; it should be nonzero on
successive calls while waiting to get the input focus.

This function always returns a nonzero value for iconic windows. If the
window is iconic, FlashWindow will simply flash the icon; blnvert is
ignored for iconic windows.

FloodFill
Syntax BOOL FloodFill(hDC, X, Y, crColor)

function FloodFill{DC: HDC; X, Y: Integer; Color: TColorRef): Bool;

This function fills an area of the display surface with the current brush.

The area is assumed to be bounded as specified by the crColor parameter.

The FloodFill function begins at the point specified by the X and Y

parameters and continues in all directions to the color boundary.

Parameters 1 DC HDC Identifies the device context.

X int Specifies the logical x-coordinate of the point where
filling begins.

Y int Specifies the logical y-coordinate of the point where
filling begins.

crColor COLORREF Specifies the color of the boundary.

Return value

Comments

The return value specifies the outcome of the function. It is nonzero if the
function is successful. It is zero if the filling could not be completed, the
given point has the boundary color specified by crColor, or the point is
outside the clipping region.

Only memory device contexts and devices that support raster-display
technology support the FloodFill function. For more information, see the
RC_BITBLT raster capability in the GetDeviceCaps function, later in this
chapter.

Chapter 4, Functions directory 281

FlushComm

FlushComm

Syntax intFlushComm(nCid, nQueue)
function FlushComm(Cid, Queue: Integer): Integer;

This function flushes all characters from the transmit or receive queue of
the communication device specified by the nCid parameter. The nQueue
parameter specifies which queue is to be flushed.

Parameters 1Cid int Specifies the communication device to be flushed. The
OpenComm function returns this value.
nQueue int Specifies the queue to be flushed. If nQueue is zero, the
transmit queue is flushed. If it is 1, the receive queue is
flushed.

Return value The return value specifies the result of the function. It is zero if it is
successful. It is negative if nCid is not a valid device, or if nQueue is not a
valid queue.

_FPiInit

Syntax void far * _FPInit()

This function initializes the Windows floating-point emulator library
(WINS7EM.DLL) or floating-point coprocessor and sets up a default
floating-point exception-handler routine. Only DLLs need to call this
function.

Parameters None.

Return value The return value is a pointer to the previous floating-point exception
handler.

Comments A DLL must ensure that the floating-point emulator or coprocessor has
beeninitialized before making any function calls that use floating-
pointarithmetic. If a task that does not initialize the floating-
pointemulator or coprocesoor can call the DLL, or if the task’s floating-
point exception handler does not handle floating-point exceptions
appropriately for the DLL, the DLL must call the _FPInit function to
initialize the emulator or coprocessor. Before returning control to the
calling task, the DLL must call the _FPTerm function to restore the
previous exception handler.

282 Software development kit

_FPTerm

_FPTerm
Syntax void _FPTerm(IpOldFPSigHandler)
This function restores the floating-point exception-handler routine that
was in effect when a DLL called the _FPInit function to initialize the
floating-point emulator or coprocessor. Only DLLs need to call this
function.
Parameters IpOIdFPSigHandler void far * Points to the floating-point exception

Return value

Comments

FrameRect

handler to be restored.
None.

A DLL must ensure that the floating-point emulator or coprocessor has
been initialized before making any function calls that use floating-point
arithmetic. If a task that does not initialize the floating-point emulator or
coprocessor can call the DLL, or if it is possible that the task’s floating-
point exception handler does not handle floating-point exceptions
appropriately for the DLL, the DLL must call the _FPInit function to
initialize the emulator or coprocessor. Before returning control to the
calling task, the DLL must call the _FPTerm function to restore the
previous exception handler.

Syntax

Parameters

Return value

int FrameRect(hDC, IpRect, hBrush)
procedure FrameRect(DC: HDC; var Rect: TRect; Brush: HBrush;

This function draws a border around the rectangle specified by the IpRect
parameter. The FrameRect function uses the given brush to draw the
border. The width and height of the border is always one logical unit.

hDC HDC Identifies the device context of the window.

IpRect LPRECT Points to a RECT data structure that contains the
logical coordinates of the upper-left and lower-right
corners of the rectangle.

hBrush HBRUSH Identifies the brush to be used for framing the
rectangle.

Although the return value type is integer, its contents should be ignored.

Chapter 4, Functions directory 283

FrameRect

Comments

FrameRgn

The brush identified by the hBrush parameter must have been created
previously by using the CreateHatchBrush, CreatePatternBrush, or
CreateSolidBrush function.

If the bottom field is less than or equal to the top field, or if right is less
than or equal to left, the rectangle is not drawn.

Syntax

Parameters

Return value

BOOL FrameRgn(hDC, hRgn, hBrush, nWidth, nHeight)
function FrameRgn(DC: HDC; Rgn: HRgn; Brush: HBrush; Width, Height:
Integer): Bool;

This function draws a border around the region specified by the hRgn
parameter, using the brush specified by the hBrush parameter. The nWidth
parameter specifies the width of the border in vertical brush strokes; the
nHeight parameter specifies the height in horizontal brush strokes.

hDC HDC Identifies the device context.

hRgn HANDLE Identifies the region to be enclosed in a border.
The coordinates for the given region are specified in
device units.

hBrush HBRUSH Identifies the brush to be used to draw the
border.

nWidth int Specifies the width in vertical brush strokes (in logical
units).

nHeight int Specifies the height in horizontal brush strokes (in
logical units).

The return value specifies the outcome of the function. It is nonzero if the
function is successful. Otherwise, it is zero.

Freelibrary
Syntax void FreeLibrary(hLibModule)
procedure FreeLibrary(LibModule: THandle);
This function decreases the reference count of the loaded library module
by one. When the reference count reaches zero, the memory occupied by
the module is freed.
284 Software development kit

Parameters
Return value

Comments

Freelibrary

hLibModule

None.

HANDLE Identifies the loaded library module.

A DLL must not call the FreeLibrary function within its WEP function.

FreeModule 3.0
Syntax void FreeModule(hModule)
function FreeModule(Module: THandle): Bool;
This function decreases the reference count of the loaded module by one.
When the reference count reaches zero, the memory occupied by the
module is freed.
Parameters hModule HANDLE Identifies the loaded module.
Return value None.

FreeProclnstance

Syntax

Parameters

Return value

Comments

FreeResource

void FreeProcInstance(IpProc)
procedure FreeProcInstance(Proc: TFarProc);

This function frees the function specified by the IpProc parameter from the
data segment bound to it by the MakeProcInstance function.

FARPROC Is the procedure-instance address of the
function to be freed. It must have been created previously
by using the MakeProclnstance function.

IpProc

None.

After freeing a procedure instance, attempts to call the function using the
freed procedure-instance address will result in an unrecoverable error.

Syntax BOOL FreeResource(hResData)

Chapter 4, Functions directory

function FreeResource(ResData: THandle): Bool;

This function removes a loaded resource from memory by freeing the
allocated memory occupied by that resource.

285

FreeResource

Parameters

Return value

The FreeResource function does not actually free the resource until the
reference count is zero (that is, the number of calis to the function equals
the number of times the application called the LoadResource function for
this resource). This ensures that the data remain in memory for the
application to use.

hResData HANDLE Identifies the data associated with the resource.
The handle is assumed to have been created by using the
LoadResource function.

The return value specifies the outcome of the function. The return value is
nonzero if the function has failed and the resource has not been freed. The
return value is zero if the function is successful.

FreeSelector 3.0
Syntax ' WORD FreeSelector(wSelector)
function FreeSelector(Selector: Word): Word;
This function frees a selector originally allocated by the
AllocSelector or AllocDStoCSAlias functions. After the application calls
this function, the selector is invalid and must not be used.
Parameters wSelector WORD Specifies the selector to be freed.

Return value

Comments

The return value is NULL if the function was successful. Otherwise, it is
the selector specified by the wSelector parameter.

Applications should not use this function unless it is absolutely necessary.
Use of this function violates preferred Windows programming practices.

GetActiveWindow

Syntax

Parameters

Return value

286

HWND GetActiveWindow()
function GetActiveWindow: HWnd;

This function retrieves the window handle of the active window. The
active window is either the window that has the current input focus, or
the window explicitly made active by the SetActiveWindow function.

None.

The return value identifies the active window.

Software development kit

GetAspectRatioFilter

GetAspectRatioFilter

Syntax DWORD GetAspectRatioFilter(hDC)
function GetAspectRatioFilter(DC: HDC): Longint;

This function retrieves the setting for the current aspect-ratio filter. The
aspect ratio is the ratio formed by a device’s pixel width and height.
Information about a device’s aspect ratio is used in the creation, selection,
and displaying of fonts. Windows provides a special filter, the aspect-ratio
filter, to select fonts designed for a particular aspect ratio from all of the
available fonts. The filter uses the aspect ratio specified by the
SetMapperFlags function.

Parameters hDC HDC Identifies the device context that contains the specfied
aspect ratio.

Return value The return value specifies the aspect ratio used by the current aspect-ratio
filter. The x-coordinate of the aspect ratio is contained in the high-order
word, and the y-coordinate is contained in the low-order word.

GetAsyncKeyState

Syntax int GetAsyncKeyState(vKey)
function GetAsyncKeyState(Key: Integer): Integer;

This function determines whether a key is up or down at the time the
function is called, and whether the key was pressed after a previous call to
the GetAsyncKeyState function. If the most significant bit of the return
value is set, the key is currently down; if the least significant bit is set, the
key was pressed after a previous call to the function.

Parameters vkey int Specifies one of 256 posible virtual-key code values.

Return value The return value specifies whether the key was pressed since the last call
to GetAsyncKeyState and whether the key is currently up or down. If the
most significant bit is set, the key is down, and if the least significant bit is
set, the key was pressed after a preceding GetAsyncKeyState call.

GetAtomHandle

Syntax HMEM GetAtomHandle(wAtom)
function GetAtomHandle(AnAtom: TAtom): THandle;

Chapter 4, Functions directory 287

GetAtomHandie

This function retrieves a handle (relative to the local heap) of the string
that corresponds to the atom specified by the wAtom parameter.

Parameters wAtom WORD Specifies an unsigned integer that identifies the atom
whose handle is to be retrieved.

Return value The return value identifies the given atom’s string. It is zero if no such
atom exists.

GetAtomName

Syntax WORD GetAtomName(nAtom, lpBuffer, nSize)
function GetAtomName(AnAtom: TAtom; Buffer: PChar; Size: Integer):
Word;

This function retrieves a copy of the character string associated with the
nAtom parameter and places it in the buffer pointed to by the IpBuffer
parameter. The nSize parameter specifies the maximum size of the buffer.

Parameters nAtom ATOM Identifies the character string to be retrieved.
IpBuffer LPSTR Points to the buffer that is to receive the character
string,.
nSize int Specifies the maximum size (in bytes) of the buffer.

Return value The return value specifies the actual number of bytes copied to the buffer.
It is zero if the specified atom is not valid.

GetBitmapBits

Syntax DWORD GetBitmapBits(hBitmap, dwCount, IpBits)
function GetBitmapBits(Bitmap: HBitmap; Count: Longint; Bits: Pointer):
Longint;

This function copies the bits of the specified bitmap into the buffer that is
pointed to by the IpBits parameter. The dwCount parameter specifies the
number of bytes to be copied to the buffer. The GetObject function should
be used to determine the correct dwCount value for the given bitmap.

Parameters hBitmap HBITMAP Identifies the bitmap.
dwCount DWORD Specifies the number of bytes to be copied.

IpBits LPSTR Long pointer to the buffer that is to receive the
bitmap. The bitmap is an array of bytes. The bitmap byte

288 Software development kit

GeflBitmapBits

array conforms to a structure where horizontal scan lines are
multiples of 16 bits.

Return value The return value specifies the actual number of bytes in the bitmap. It is
zero if there is an error.

GetBitmapDimension

Syntax DWORD GetBitmapDimension(hBitmap)
function GetBitmapDimension(Bitmap: HBitmap): Longint;

This function returns the width and height of the bitmap specified by the
hBitmap parameter. The height and width is assumed to have been set
previously by using the SetBitmapDimension function.

Parameters hBifmap ABITMAP Identifies the bitmap.

Return value The return value specifies the width and height of the bitmap, measured
in tenths of millimeters. The height is in the high-order word, and the
width is in the low-order word. If the bitmap width and height have not
been set by using SetBitmapDimension, the return value is zero.

GetBkColor

Syntax DWORD GetBkColor(hDC)
function GetBkColor(DC: HDC): Longint;

This function returns the current background color of the specified device.
Parameters 1DC HDC Identifies the device context.

Return value The return value specifies an RGB color value that names the current
background color.

GetBkMode

Syntax int GetBkMode(hDC)
function GetBkMode(DC: HDC): Integer;

This function returns the background mode of the specified device. The
background mode is used with text, hatched brushes, and pen style that is
not a solid line.

Parameters hDC HDC Identifies the device context.

Chapter 4, Functions directory 289

GetBkMode

Return value

GetBrushOrg

The return value specifies the current background mode. It can be
OPAQUE or TRANSPARENT.

Syntax

Parameters

Return value

Comments

DWORD GetBrushOrg(hDC)
function GetBrushOrg(DC: HDC): Longint;

This function retrieves the current brush origin for the given device
context.

hDC

The return value specifies the current origin of the brush. The x-
coordinate is in the low word, and the y-coordinate is in the high word.
The coordinates are assumed to be in device units.

HDC Identifies the device context.

The initial brush origin is at the coordinate (0,0).

GetBValue
Syntax BYTE GetBValue(rgbColor)
function GetBValue(RGBColor: Longint): Byte;
This macro extracts the blue value from an RGB color value.
Parameters rgbColor DWORD Specifies a red, a green, and a blue color field, each

Return value

Comments

GetCapture

specifying the intensity of the given color.

The return value specifies a byte that contains the blue value of the
rgbColor parameter.

The value OFFH corresponds to the maximum intensity value for a single
byte; 000H corresponds to the minimum intensity value for a single byte.

Syntax

290

HWND GetCapture()
function GetCapture: HWnd;

This function retrieves a handle that identifies the window that has the
mouse capture. Only one window has the mouse capture at any given
time; this window receives mouse input whether or not the cursor is
within its borders.

Software development kit

GetCapture

Parameters None.

Return value The return value identifies the window that has the mouse capture; it is
NULL if no window has the mouse capture.

Comments A window receives the mouse capture when its handle is passed as the
hWnd parameter of the SetCapture function.

GetCaretBlinkTime

Syntax WORD GetCaretBlinkTime()
function GetCaretBlinkTime: Word;

This function retrieves the caret blink rate. The blink rate is the elapsed
time in milliseconds between flashes of the caret.

Parameters None.

Return value The return value specifies the blink rate (in milliseconds).

GetCaretPos

Syntax void GetCaretPos(IpPoint)
procedure GetCaretPos(var Point: TPoint);

This function retrieves the caret’s current position (in screen coordinates),
and copies them to the POINT structure pointed to by the IpPoint
parameter.

Parameters IpPoint LPPOINT Points to the POINT structure that is to receive the
screen coordinates of the caret.

Return value None.

Comments The caret position is always given in the client coordinates of the window
that contains the caret.

GetCharWidth

Syntax BOOL GetCharWidth(hDC, wFirstChar, wLastChar, lpBuffer)
function GetCharWidth(DC: HDC; FirstChar, LastChar: Word; var Buffer):
Bool;

Chapfer 4, Functions directory 291

GetCharWidth

GetClassinfo

Parameters

Return value

Comments

This function retrieves the widths of individual characters in a
consecutive group of characters from the current font. For example, if the
wFirstChar parameter identifies the letter a and the wLastChar parameter
identifies the letter z, the GetCharWidth function retrieves the widths of
all lowercase characters. The function stores the values in the buffer
pointed to by the IpBuffer parameter.

hDC HDC Identifies the device context.

wFirstChar WORD Specifies the first character in a consecutive group of
characters in the current font.

wLastChar ~ WORD Specifies the last character in a consecutive group of
characters in the current font.

IpBuffer LPINT Points to a buffer that will receive the width values
for a consecutive group of characters in the current font.

The return value specifies the outcome of the function. It is nonzero if the
function is successful. Otherwise, it is zero.

If a character in the consecutive group of characters does not exist in a
particular font, it will be assigned the width value of the default character.

3.0

292

Syntax

Parameters

BOOL GetClassInfo(hInstance, lpClassName, lpWndClass)
function GetClassInfo(Instance: THandle; ClassInfo: PChar; var
WndClass: TWndClass): Bool;

This function retrieves information about a window class. The hinstance
parameter identifies the instance of the application that created the class,
and the IpClassName parameter identifies the window class. If the function
locates the specified window class, it copies the WNDCLASS data used to
register the window class to the WNDCLASS data structure pointed to by
IpWndClass.

hlnstance HANDLE Identifies the instance of the application that
created the class. To retrieve information on classes defined

by Windows (such as buttons or list boxes), set hlnstance to
NULL.

IpClassName LPSTR Points to a null-terminated string that contains the
name of the class to find. If the high-order word of this
parameter is NULL, the low-order word is assumed to be a

Software development kit

GetClassinfo

value returned by the MAKEINTRESOURCE macro used
when the class was created.

IpWndClass LPWNDCLASS Points to the WNDCLASS structure to which
the function will copy the class information.

Return value The return value is TRUE if the function found a matching class and
successfully copied the data; the return value is FALSE if the function did
not find a matching class.

Comments The IpszClassName, IpszMenuName, and hlnstance fields in the
WNDCLASS data structure are not returned by this function. The menu
name is not stored internally and cannot be returned. The class name is
already known since it is passed to this function. The GetClassInfo
function returns all other fields with the values used when the class was
registered.

GetClassLong

Syntax LONG GetClassLong(hWnd, nIndex)
function GetClassLong(Wnd: HWnd; Index: Integer): Longint;

This function retrieves the long value specified by the nlndex parameter
from the WNDCLASS structure of the window specified by the hWnd

parameter.
Parameters 1 Wnd HWND Identifies the window.
nindex int Specifies the byte offset of the value to be retrieved. It can
also be the following value:
Value Meaning
GCL_WNDPROC Retrieves a long pointer to the window
function.

Return value The return value specifies the value retrieved from the WNDCLASS
structure.

Comments To access any extra four-byte values allocated when the window-class
structure was created, use a positive byte offset as the index specified by
the nindex parameter. The first four-byte value in the extra space is at
offset zero, the next four-byte value is at offset 4, and so on.

Chapter 4, Functions directory 293

GetClassName

GetClassName

GetClassWord

Syntax

Parameters

Return value

int GetClassName(hWnd, IpClassName, nMaxCount)
function GetClassName(Wnd: HWnd; ClassName: PChar; MaxCount:
Integer): Integer;

This function retrieves the class name of the window specified by the
hWnd parameter.

hWnd HWND Identifies the window whose class name is to be
retrieved.

IpClassName LPSTR Points to the buffer that is to receive the class name.

nMaxCount int Specifies the maximum number of bytes to be stored in
the IpClassName parameter. If the actual name is longer, a
truncated name is copied to the buffer.

The return value specifies the number of characters actually copied to
IpClassName. The return value is zero if the specified class name is not
valid.

294

Syntax

Parameters

WORD GetClassWord(hWnd, nindex)
function GetClassWord(Wnd: HWnd, Index: Integer): Word;

This function retrieves the word that is specified by the nlndex parameter
from the WNDCLASS structure of the window specified by the hWnd
parameter.

hWnd HWND Identifies the window.

nindex int Specifies the byte offset of the value to be retrieved. It can
also be one of the following values:
Value Meaning
GCW_CBCLSEXTRA Tells how many bytes of

additional class information
you have. For information on
how to access this memory,
see the following "Comments"
section.
GCW_CBWNDEXTRA Tells how many bytes of
additional window
information you have. For

Software development kit

GetClassWord

information on how to access
this memory, see the
following "Comments"

section.

GCW_HBRBACKGROUND Retrieves a handle to the
background brush.

GCW_HCURSOR Retrieves a handle to the
cursor.

GCW_HICON Retrieves a handle to the icon.

GCW_HMODULE Retrieves a handle to the
module.

GCW _STYLE Retrieves the window-class
style bits.

Return value The return value specifies the value retrieved from the WNDCLASS

structure.

Comments To access any extra two-byte values allocated when the window-class
structure was created, use a positive byte offset as the index specified by
the nlndex parameter, starting at zero for the first two-byte value in the
extra space, 2 for the next two-byte value and so on.

GetClientRect

Syntax void GetClientRect(hWnd, IpRect)
procedure GetClientRect(Wnd: HWnd; var Rect: TRect);

This function copies the client coordinates of a window’s client area into
the data structure pointed to by the IpRect parameter. The client
coordinates specify the upper-left and lower-right corners of the client
area. Since client coordinates are relative to the upper-left corners of a
window’s client area, the coordinates of the upper-left corner are (0,0).

Parameters 1 Wnd HWND Identifies the window associated with the client area.
IpRect LPRECT Points to a RECT data structure.

Return value None.

GetClipboardData

Syntax HANDLE GetClipboardData(wFormat)
function GetClipboardData(Format: Word): THandle;

Chapter 4, Functions directory 295

GetClipboardData

This function retrieves data from the clipboard in the format given by the
wFormat parameter. The clipboard must have been opened previously.

Parameters wFormat WORD Specifies a data format. For a description of the data
formats, see the SetClipboardData function, later in this
chapter.

Return value The return value identifies the memory block that contains the data from
the clipboard. The handle type depends on the type of data specified by
the wFormat parameter. It is NULL if there is an error.

Comments The available formats can be enumerated in advance by using the
EnumClipboardFormats function.

The data handle returned by GetClipboardData is controlled by the
clipboard, not by the application. The application should copy the data
immediately, instead of relying on the data handle for long-term use. The
application should not free the data handle or leave it locked.

Windows supports two formats for text, CF_TEXT and CF_OEMTEXT.
CE_TEXT is the default Windows text clipboard format, while Windows
uses the CF_OEMTEXT format for text in non-Windows applications. If
you call GetClipboardData to retrieve data in one text format and the
other text format is the only available text format, Windows automatically
converts the text to the requested format before supplying it to your
application.

If the clipboard contains data in the CF_PALETTE (logical color palette)
format, the application should assume that any other data in the clipboard
is realized against that logical palette.

GetClipboardFormatName

Syntax int GetClipboardFormatName(wFormat, IpFormatName, nMaxCount)
function GetClipboardFormatName(Format: Word; FormatName: PChar;
MaxCount: Integer): Integer;

This function retrieves from the clipboard the name of the registered
format specified by the wFormat parameter. The name is copied to the
buffer pointed to by the IpFormatName parameter.

Parameters wFormat WORD Specifies the type of format to be retrieved. It must
not specify any of the predefined clipboard formats.

IpFormatName LPSTR Points to the buffer that is to receive the format
name.

296 Software development kit

GetClipboardFormatName

nMaxCount int Specifies the maximum length (in bytes) of the string
to be copied to the buffer. If the actual name is longer, it is
truncated.

Return value The return value specifies the actual length of the string copied to the
buffer. It is zero if the requested format does not exist or is a predefined
format.

GetClipboardOwner

Syntax HWND GetClipboardOwner()
function GetClipboardOwner: HWnd;

This function retrieves the window handle of the current owner of the
clipboard.

Parameters None.

Return value The return value identifies the window that owns the clipboard. It is
NULL if the clipboard is not owned.

Comments The clipboard can still contain data even if the clipboard is not currently
owned.

GetClipboardViewer

Syntax HWND GetClipboard Viewer()
function GetClipboardViewer: HWnd;

This function retrieves the window handle of the first window in the
clipboard-viewer chain.

Parameters None.

Return value The return value identifies the window currently responsible for
displaying the clipboard. It is NULL if there is no viewer.

GetClipBox

Syntax int GetClipBox(hDC, IpRect)
function GetClipBox(DC: HDC; var Rect: TRect): Integer;

Chapter 4. Functions directory 297

GetClipBox

Parameters

Return value

This function retrieves the dimensions of the tightest bounding rectangle
around the current clipping boundary. The dimensions are copied to the
buffer pointed to by the IpRect parameter.

hDC HDC Identifies the device context.

IpRect LPRECT Points to the RECT data structure that is to receive
the rectangle dimensions.

The return value specifies the clipping region’s type. It can be any one of
the following values:

Value Meaning

COMPLEXREGION Clipping region has overlapping borders.
ERROR Device context is not valid.

NULLREGION Clipping region is empty.

SIMPLEREGION Clipping region has no overlapping borders.

GetCodeHandle

Syntax

Parameters

Return value

HANDLE GetCodeHandle(IpProc)
function GetCodeHandle(Proc: TFarProc): THandle;

This function determines which code segment contains the function
pointed to by the IpProc parameter.

IpProc FARPROC Is a procedure-instance address.

The return value identifies the code segment that contains the function.

Comments If the code segment that contains the function is already loaded, the
GetCodeHandle function marks the segment as recently used. If the code
segment is not loaded, GetCodeHandle attempts to load it. Thus, an
application can use this function to attempt to preload one or more
segments needed to perform a particular task.

GetCodelnfo 3.0
Syntax void GetCodelnfo(lpProc, IpSeglnfo)

298

procedure GetCodelnfo(Proc: TFarProc; SegInfo: Pointer);

This function retrieves a pointer to an array of 16-bit values containing
information about the code segment that contains the function pointed to
by the IpProc parameter.

Software development kit

GetCodelnfo

Parameters IpProc FARPROC Is the address of the function in the segment for
which information is to be retrieved. Instead of a
segment:offset address, this value can also be in the form of
a module handle and segment number. The
GetModuleHandle function returns the handle of a named
module.

IpSegInfo LPVOID Points to an array of four 32-bit values that will be
filled with information about the code segment. See the
following "Comments" section for a description of the values
in this array.

Return value None.

Comments The IpSeglnfo parameter points to an array of four 32-bit values that
contains such information as the location and size of the segment and its
attributes. The following list describes each of these values:

Offset Description

0 Specifies the logical-sector offset (in bytes) to the contents of the
segment data, relative to the beginning of the file. Zero means no file
data is available.

2 Specifies the length of the segment in the file (in bytes). Zero means
64K.

4 Contains flags which specify attributes of the segment. The following
list describes these flags:

Bit Meaning

0-2 Specifies the segment type. If bit 0 is set to 1, the segment
is a data segment. Otherwise, the segment is a code
segment.

3 Specifies whether segment data is iterated. When this bit
set to 1, the segment data is iterated.

4 Specifies whether the segment is moveable or fixed. When
this bit is set to 1, the segment is moveable. Otherwise, it is
fixed.

5 Is not returned.

6 Is not returned.

7 Specifies whether the segment is a read-only data segment

or an execute-only code segment. If this bit is set to 1 and

the segment is a code segment, the segment is an execute-
only segment. If this bit is set to zero and the segment is a
data segment, it is a read-only segment.

8 Specifies whether the segment has associated relocation
information. If this bit is set to 1, the segment has
relocation information. Otherwise, the segment does not
have relocation information.

9 Specifies whether the segment has debugging information.
If this bit is set to 1, the segment has debugging

Chapter 4, Functions directory 209

GetCodelnfo

GetCommeError »¢&

information. Otherwise, the segment does not have
debugging information.

10-11 Is not returned.
12-15 Is not returned.
6 Specifies the total amount of memory allocated for the segment. This

amount may exceed the actual size of the segment. Zero means 65,536.

1%

Syntax

Parameters

Return value

Table 4.8
Communications
error codes

300

int GetCommError(nCid, IpStat)
function GetCommError(Cid: Integer; var Stat: TComStat): Integer;

In case of a communications error, Windows locks the communications
port until the error is cleared by using the GetCommError function. This
function fills the status buffer pointed to by the IpStat parameter with the
current status of the communication device specified by the nCid
parameter. It also returns the error codes that have occurred since the last
GetCommeError call. If IpStat is NULL, only the error code is returned. For
a list of the error codes, see Table 4.8, "Communications error codes."

nCid int Specifies the communication device to be examined. The
OpenComm function returns this value.
IpStat COMSTAT FAR * Points to the COMSTAT structure that is to

receive the device status. The structure contains information
about a communication device. :

The return value specifies the error codes returned by the most recent
communications function. It can be a combination of one or more of the
values given in Table 4.8.

Value Meaning

CE_BREAK The hardware detects a break condition.

CE_CTSTO Clear-to-send timeout. CTS is low for the duration specified by
CtsTimeout while trying to transmit a character.

CE_DNS The parallel device is not selected.

CE_DSRTO Data-set-ready timeout. DSR is low for the duration specified
by DsrTimeout while trying to transmit a character.

CE_FRAME The hardware detects a framing error.

CE_IOE An1/0 error occurs while trying to communicate with a
parallel device.

CE_MODE Requested mode is not supported, or the nCid parameter is
invalid. If set, this is the only valid error.

CE_OOP The parallel device signals that it is out of paper.

CE_OVERRUN A character is not read from the hardware before the next
character arrives. The character is lost.
CE_PTO Timeout occurs when communicating with a parallel device.

Software development kit

GetCommeError

Table 4.8: Communications error codes (continued)

CE_RLSDTO Receive-line-signal-detect timeout. RLSD is low for the
duration specified by RlsdTimeout while trying to transmit a
character.

CE_RXOVER Receive queue overflow. There is either no room in the input

queue or a character is received after the EofChar character.
CE_RXPARITY The hardware detects a parity error.
CE_TXFULL The transmit queue is full while trying to queue a character.

GetCommEventMask &

Syntax WORD GetCommEventMask(nCid, nEvtMask)
function GetCommEventMask(Cid, EvtMask: Integer): Word;

This function retrieves the value of the current event mask, and then
clears the mask. This function must be used to prevent loss of an event.

Parameters nCid int Specifies the communication device to be examined. The
OpenComm function returns this value.

nEvtMask int Specifies which events are to be enabled. For a list of the
event values, see the SetCommEventMask function, later in
this chapter.

Return value The return value specifies the current event-mask value. Each bit in the
event mask specifies whether a given event has occurred. A bit is set to 1
if the event has occurred.

GetCommState S<

Syntax int GetCommState(nCid, lpDCB)
function GetCommState(Cid: Integer; var DCB: TDCB): Integer;

This function fills the buffer pointed to by the [pDCB parameter with the
device control block of the communication device specified by the nCid

parameter.
!
Parameters nCid int Specifies the device to be examined. The OpenComm
function returns this value.
IpDCB DCB FAR *Points to the DCB data structure that is to receive

the current device control block. The structure defines the
control setting for the device.

Chapter 4, Functions directory 301

GetCommState

Return value The return value specifies the outcome of the function. It is zero if the
function was successful. If an error occurred, the return value is negative.

GetCurrentPDB 3.0

Syntax WORD GetCurrentPDB()
function GetCurrentPDB: Word;

This function returns the paragraph address or selector of the current
DOS Program Data Base (PDB), also known as the Program Segment
Prefix (PSP).

Parameters None.

Return value The return value is the paragraph address or selector of the current PDB.

GetCurrentPosition

Syntax DWORD GetCurrentPosition(hDC)
function GetCurrentPosition(DC: HDC): Longint;

This function retrieves the logical coordinates of the current position.
Parameters 1©DC HDC Identifies a device context.

Return value The return value specifies the current position. The y-coordinate is in the
high-order word; the x-coordinate is in the low-order word.

GetCurrentTask

Syntax HANDLE GetCurrentTask()
function GetCurrentTask :THandle;

This function returns the handle of the currently executing task.

Parameters None.

Return value The return value identifies the task if the function is successful.
Otherwise, it is NULL.

302 Software development kit

GetCurrentTime

GetCurrentTime

Syntax DWORD GetCurrentTime()
function GetCurrentTime: Longint;

This function retrieves the current Windows time. Windows time is the
number of milliseconds that have elapsed since the system was booted.

Parameters None.

Return value The return value specifies the current time (in milliseconds).

Comments The GetCurrentTime and GetMessageTime functions return different
times. GetMessageTime returns the Windows time when the given
message was created, not the current Windows time.

The system timer eventually overflows and resets to zero.

GetCursorPos

Syntax void GetCursorPos(lpPoint)
procedure GetCursorPos(var Point: TPoint);

This function retrieves the cursor’s current position (in screen
coordinates), that copies them to the POINT structure pointed to by the
IpPoint parameter.

Parameters IpPoint LPPOINT Points to the POINT structure that is to receive the
screen coordinates of the cursor.

Return value None

Comments The cursor position is always given in screen coordinates and is not
affected by the mapping mode of the window that contains the cursor.

GetDC

Syntax HDC GetDC(hWnd)
function GetDC(Wnd: HWnd): HDC;

This function retrieves a handle to a display context for the client area of
the given window. The display context can be used in subsequent GDI
functions to draw in the client area.

Chapter 4, Functions directory 303

GetDC

Parameters

Return value

Comments

GetDCOrg

The GetDC function retrieves a common, class, or private display context
depending on the class style specified for the given window. For common
display contexts, GetDC assigns default attributes to the context each time
it is retrieved. For class and private contexts, GetDC leaves the previously
assigned attributes unchanged.

hWnd HWND Identifies the window whose display context is to be
retrieved.

The return value identifies the display context for the given window’s
client area if the function is successful. Otherwise, it is NULL.

After painting with a common display context, the ReleaseDC function
must be called to release the context. Class and private display contexts
do not have to be released. Since only five common display contexts are
available at any given time, failure to release a display context can prevent
other applications from accessing a display context.

Syntax

Parameters

Return value

DWORD GetDCOrg(hDC)
function GetDCOrg(DC: HDC): Longint;

This function obtains the final translation origin for the device context.
The final translation origin specifies the offset used by Windows to
translate device coordinates into client coordinates for points in an
application’s window. The final translation origin is relative to the
physical origin of the screen display.

hDC HDC Identifies the device context whose origin is to be
retrieved.

The return value specifies the final translation origin (in device
coordinates). The y-coordinate is in the high-order word; the x-coordinate
is in the Jow-order word.

GetDesktopWindow 3.0

304

Syntax

HWND GetDesktopWindow()
function GetDesktopWindow: HWnd;

This function returns the window handle to the Windows desktop
window. The desktop window covers the entire screen and is the area on
top of which all icons and other windows are painted.

Software development kit

GetDesktopWindow

Parameters None.

Return value The return value identifies the Windows desktop window.

GetDeviceCaps

Syntax int GetDeviceCaps(hDC, nIndex)
function GetDeviceCaps(DC: HDC; Index: Integer): Integer;

This function retrieves device-specific information about a given display
device. The nindex parameter specifies the type of information desired.

Parameters hDC HDC Identifies the device context.

nlndex int Specifies the item to return. It can be any one of the
values given in Table 4.9, "GDI information indexes."

Return value The return value specifies the value of the desired item.

Comments Table 4.9 lists the values for the nlndex parameter:

Table 4.9
GDI information

indexes DRIVERVERSION Version number; for example, 0x100 for 1.0.

Index Meaning

TECHNOLOGY Device technology. It can be any one of these values:
Value Meaning
DT _PLOTTER Vector plotter

DT_RASDISPLAY Raster display
DT _RASPRINTER Raster printer
DT_RASCAMERA Raster camera
DT_CHARSTREAM Character stream

DT_METAFILE Metafile
DT_DISPFILE Display file
HORZSIZE Width of the physical display (in millimeters).
VERTSIZE Height of the physical display (in millimeters).
HORZRES Width of the display (in pixels).
VERTRES Height of the display (in raster lines).
LOGPIXELSX Number of pixels per logical inch along the display width.
LOGPIXELSY Number of pixels per logical inch along the display height.
BITSPIXEL Number of adjacent color bits for each pixel.
PLANES Number of color planes.
NUMBRUSHES Number of device-specific brushes.
NUMPENS Number of device-specific pens.
NUMFONTS Number of device-specific fonts.
NUMCOLORS Number of entries in the device’s color table.
ASPECTX Relative width of a device pixel as used for line drawing.
ASPECTY Relative height of a device pixel as used for line drawing.

Chapter 4, Functions directory 305

GetDeviceCaps

306

Table 4.9: GDI information indexes (continued)

ASPECTXY

PDEVICESIZE
CLIPCAPS

SIZEPALETTE

NUMRESERVED

COLORRES

RASTERCAPS

CURVECAPS

Diagonal width of the device pixel as used for line
drawing.

Size of the PDEVICE internal data structure.

Flag that indicates the clipping capabilities of the device. It
is 1 if the device can clip to a rectangle, 0 if it cannot.
Number of entries in the system palette. This index is
valid only if the device driver sets the RC_PALETTE bit in
the RASTERCAPS index and is available only if the driver
version is 3.0 or higher.

Number of reserved entries in the system palette. This
index is valid only if the device driver sets the
RC_PALETTE bit in the RASTERCAPS index and is
available only if the driver version is 3.0 or higher.

Actual color resolution of the device in bits per pixel. This
index is valid only if the device driver sets the
RC_PALETTE bit in the RASTERCAPS index and is
available only if the driver version is 3.0 or higher.

Value that indicates the raster capabilities of the device, as
shown in the following list:

Capability Meaning

RC_BANDING Requires banding support.

RC_BITBLT Capable of transferring bitmaps.

RC_BITMAP64 Capable of supporting bitmaps
larger than 64K.

RC_DI_BITMAP Capable of supporting SetDIBits
and GetDIBits.

RC_DIBTODEV Capable of supporting the SetDI-
BitsToDevice function.

RC_FLOODFILL Capable of performing flood fills.

RC_GDI20_OUTPUT Capable of supporting Windows
version 2.0 features.

RC_PALETTE Palette-based device.

RC_SCALING Capable of scaling.

RC_STRETCHBLT Capable of performing the
StretchBIt function.

RC_STRETCHDIB Capable of performing the
StretchDIBIts function.

A bitmask that indicates the curve capabilities of the
device. The bits have the following meanings:

Bit Meaning

0 Device can do circles.

Device can do pie wedges.
Device can do chord arcs.
Device can do ellipses.

Device can do wide borders.
Device can do styled borders.
Device can do borders that are
wide and styled.

Device can do interiors.

ANOTR W=

~

Software development kit

GetDeviceCaps

Table 4.9: GDIl information indexes (continued)

The high byte is 0.
LINECAPS A bitmask that indicates the line capabilities of the device.
The bits have the following meanings:
Bit Meaning
0 Reserved.
1 Device can do polyline.
2 Reserved.
3 Reserved.
4 Device can do wide lines.
5 Device can do styled lines.
6 Device can do lines that are wide
and styled.
7 Device can do interiors.

The high byte is 0.

POLYGONALCAPS A bitmask that indicates the polygonal capabilities of the
device. The bits have the following meanings:

Bit Meaning

0 Device can do alternate fill
polygon.

1 Device can do rectangle.

2 Device can do winding number

fill polygon.

3 Device can do scanline.

4 Device can do wide borders.

5 Device can do styled borders.

6 Device can do borders that are
wide and styled.

7 Device can do interiors.

The high byte is 0.

TEXTCAPS A bitmask that indicates the text capabilities of the device.

The bits have the following meanings:

Bit Meaning

0 Device can do character output
precision.

1 Device can do stroke output
precision.

2 Device can do stroke clip
precision.

3 Device can do 90-degree character
rotation.

4 Device can do any character
rotation.

5 Device can do scaling
independent of X and Y.

6 Device can do doubled character

for scaling.

Chapter 4, Functions directory 307

GetDeviceCaps

Table 4.9: GDI information indexes (continued)

7 Device can do integer multiples
for scaling.

8 Device can do any multiples for
exact scaling.

9 Device can do double-weight
characters.

10 Device can do italicizing.

11 Device can do underlining.

12 Device can do strikeouts.

13 Device can do raster fonts.

14 Device can do vector fonts.

15 Reserved. Must be returned zero.

For a list of all the available abilities, see the LOGFONT data structure in
Chapter 7, "Data types and structures," in Reference, Volume 2.

GetDialogBaseUnits 3.0

308

Syntax

Parameters

Return value

Comments

LONG GetDialogBaseUnits()
function GetDialogBaseUnits: Longint;

This function returns the dialog base units used by Windows when
creating dialog boxes. An application should use these values to calculate
the average width of characters in the system font.

None.

The return value specifies the dialog base units. The high-order word
contains the height in pixels of the current dialog base height unit derived
from the height of the system font, and the low-order word contains the
width in pixels of the current dialog base width unit derived from the
width of the system font.

The values returned represent dialog base units before being scaled to
actual dialog units. The actual dialog unit in the x direction is 1/4 of the
width returned by GetDialogBaseUnits. The actual dialog unit in the y
direction is 1/8 of the height returned by the function.

To determine the actual height and width in pixels of a control, given the
height (x) and width (y) in dialog units and the return value
(IDIgBaseUnits) from calling GetDialogBaseUnits, use the following
formula:

(x * LOWORD(1DlgBaseUnits))/4
(y * HIWORD(1DlgBaseUnits))/8

Software development kit

GetDIBits

To avoid rounding problems, perform the multiplication before the
division in case the dialog base units are not evenly divisible by four.

GetDIBits 3.0

Syntax int GetDIBits(hDC, hBitmap, nStartScan, nNumScans, 1pBits, IpBitsInfo,
wUsage)
function GetDIBits(DC: HDC; Bitmap: THandle; StartScan, NumScans:
Word; Bits: Pointer; var BitInfo: TBitmapInfo; Usage: Word): Integer;

This function retrieves the bits of the specified bitmap and copies them, in
device-independent format, into the buffer that is pointed to by the IpBits
parameter. The IpBitsInfo parameter retrieves the color format for the
device-independent bits.

Parameters 1DC HDC Identifies the device context.
hBitmap HBITMAP Identifies the bitmap.

nStartScan WORD Specifies the first scan line in the destination bitmap
to set in IpBits.

nNumScans WORD Specifies the number of lines to be copied.

IpBits LPSTR Points to a buffer that will receive the bitmap bits in
device-independent format.

IpBitsInfo LPBITMAPINFO Points to a BITMAPINFO data structure that
specifies the color format and dimension for the device-
independent bitmap.

wlsage WORD Specifies whether the bmiColors[] fields of the IpBits-
Info parameter are to contain explicit RGB values or indexes
into the currently realized logical palette. The wlsage
parameter must be one of the following values:

Value Meaning

DIB_PAL_COLORS The color table is to consist of an
array of 16-bit indexes into the
currently realized logical palette.

DIB_RGB_COLORS The color table is to contain literal
RGB values.

Return value The return value specifies the number of scan lines copied from the
bitmap. It is zero if there was an error.

Chapter 4, Functions directory 309

GetDIBits

Comments

If the IpBits parameter is NULL, GetDIBits fills in the BITMAPINFO data
structure to which the IpBitsInfo parameter points, but does not retrieve
bits from the bitmap.

The bitmap identified by the hBitmap parameter must not be selected into
a device context when the application calls this function.

The origin for device-independent bitmaps is the bottom-left corner of the
bitmap, not the top-left corner, which is the origin when the mapping
mode is MM_TEXT.

This function also retrieves a bitmap specification formatted for Microsoft
OS/2 Presentation Manager versions 1.1 and 1.2 if the IpBitsInfo parameter
points to a BITMAPCOREINFO data structure.

GetDIgCHlID 3.0
Syntax int GetDIgCtrlID(hWnd)
function GetDlgCtrlID(Wnd: HWnd): Integer;
This function returns the ID value of the child window identified by the
hWnd parameter.
Parameters 1 Wnd, HWND Identifies the child window.

Return value

Comments

The return value is the numeric identifier of the child window if the
function is successful. If the function fails, or if #Wnd is not a valid
window handle, the return value is NULL.

Since top-level windows do not have an ID value, the return value of this
function is invalid if the hWnd parameter identifies a top-level window.

GetDIgitem
Syntax HWND GetDlgltem(hDlg, nIDDlgltem)
function GetDlgltem(Dlg: HWnd; IDDlgltem: Integer): HWnd;
This function retrieves the handle of a control contained in the dialog box
specified by the hDlg parameter.
Parameters hDig HWND Identifies the dialog box that contains the control.

310

Return value

nIDDIgltem int Specifies the integer ID of the item to be retrieved.

The return value identifies the given control. It is NULL if no control with
the integer ID given by the nIDDIgltem parameter exists.

Software development kit

GelDlgltem

Comments The GetDlgltem function can be used with any parent-child window pair,
not just dialog boxes. As long as the hDIg parameter specifies a parent
window and the child window has a unique ID (as specified by the hMenu
parameter in the CreateWindow function that created the child window),
GetDlIgltem returns a valid handle to the child window.

GetDigltemint

Syntax WORD GetDlgltemInt(hDlg, nIDDIgltem, lpTranslated, bSigned)
function GetDlgltemInt(Dlg: HWnd; IDDIgltem: Integer; Translate: PBool;
Signed: Bool): Word;

This function translates the text of a control in the given dialog box into an
integer value. The GetDIgltemint function retrieves the text of the control
identified by the nIDDIgltem parameter. It translates the text by stripping
any extra spaces at the beginning of the text and converting decimal
digits, stopping the translation when it reaches the end of the text or
encounters any nonnumeric character. If the bSigned parameter is nonzero,
GetDlgltemint checks for a minus sign (-) at the beginning of the text and
translates the text into a signed number. Otherwise, it creates an unsigned
value.

GetDlgitemint returns zero if the translated number is greater than 32,767
(for signed numbers) or 65,535 (for unsigned). When errors occur, such as
encountering nonnumeric characters and exceeding the given maximum,
GetDlgltemint copies zero to the location pointed to by the IpTranslated
parameter. If there are no errors, [pTranslated receives a nonzero value. If
IpTranslated is NULL, GetDlgltemint does not warn about errors.
GetDlgitemint sends a WM_GETTEXT message to the control.

Parameters hDIg HWND Identifies the dialog box.

nIDDIgltem int Specifies the integer identifier of the dialog-box item to
be translated.

IpTranslated BOOL FAR * Points to the Boolean variable that is to receive
the translated flag.

bSigned BOOL Specifies whether the value to be retrieved is signed.

Return value The return value specifies the translated value of the dialog-box item text.
Since zero is a valid return value, the IpTranslated parameter must be used
to detect errors. If a signed return value is desired, it should be cast as an

int type.

Chapfter 4, Functions directory 311

GetDigltemText

GetDigitemText

Syntax

Parameters

Return value

int GetDlgltemText(hDlg, nIDDIgltem, IpString, nMaxCount)
function GetDlgltemText(Dlg: HWnd; IDDIgltem: Integer; Str: PChar;
MaxCount: Integer): Integer;

This function retrieves the caption or text associated with a control in a
dialog box. The GetDIgltemText function copies the text to the location
pointed to by the IpString parameter and returns a count of the number of
characters it copies.

GetDlgltemText sends a WM_GETTEXT message to the control.
hDIg HWND Identifies the dialog box that contains the control.

nIDDIgltem int Specifies the integer identifier of the dialog-box item
whose caption or text is to be retrieved.

IpString LPSTR Points to the buffer to receive the text.

nMaxCount int Specifies the maximum length (in bytes) of the string to
be copied to IpString. If the string is longer than nMaxCount,
it is truncated.

The return value specifies the actual number of characters copied to the
buffer. It is zero if no text is copied.

GetDOSEnvironment 3.0

Syntax

Parameters

Comments

312

LPSTR GetDOSEnvironment()
function GetDOSEnvironment: PChar;

This function returns a far pointer to the environment string of the
currently running task. See a DOS technical reference manual for more
information on the format and contents of the environment string.

None.

Unlike an application, a dynamic-link library (DLL) does not have a copy
of the environment string. As a result, a library must call this function to
retrieve the environment string.

Soffware development kit

GetDoubleClickTime

GetDoubleClickTime

Syntax ' WORD GetDoubleClickTime()
function GetDoubleClickTime: Word;

This function retrieves the current double-click time for the mouse. A
double-click is a series of two clicks of the mouse button, the second
occurring within a specified time after the first. The double-click time is
the maximum number of milliseconds that may occur between the first
and second click of a double-click.

Parameters None.

Return value The return value specifies the current double-click time (in milliseconds).

GetDriveType 3.0

Syntax ' WORD GetDriveType(nDrive)
function GetDriveType(Drive: Integer): Word;

This function determines whether a disk drive is removeable, fixed, or
remote.

Parameters nDrive int Specifies the drive for which the type is to be determined.
Drive A:is 0, drive B: is 1, drive C: is 2, and so on.

Return value The return value specifies the type of drive. It can be one of the following

values:

Value Meaning

DRIVE_REMOVEABLE Disk can be removed from the drive.
DRIVE_FIXED Disk cannot be removed from the drive.
DRIVE_REMOTE Drive is a remote (network) drive.

The return value is zero if the function cannot determine the drive type, or
1 if the specified drive does not exist.

GetEnvironment

Syntax int GetEnvironment(IpPortName, lpEnviron, nMaxCount)
function GetEnvironment(PortName: PChar; Environ: Pointer; MaxCount:
Word): Integer;

Chapter 4, Functions directory 313

GetEnvironment

Parameters

Return value

Comments

This function retrieves the current environment that is associated with the
device attached to the system port specified by the IpPortName parameter,
and copies it into the buffer specified by the IpEnviron parameter. The
environment, maintained by GDI, contains binary data used by GDI
whenever a device context is created for the device on the given port.

The function fails if there is no environment for the given port.

An application can call this function with the IpEnviron parameter set to
NULL to determine the size of the buffer required to hold the
environment. It can then allocate the buffer and call GetEnvironment a
second time to retrieve the environment.

IpPortName LPSTR Points to the null-terminated character string that
specifies the name of the desired port.

IpEnviron ~ LPSTR Points to the buffer that will receive the
environment.

nMaxCount WORD Specifies the maximum number of bytes to copy to
the buffer.

The return value specifies the number of bytes copied to IpEnviron. If
IpEnviron is NULL, the return value is the size in bytes of the buffer
required to hold the environment. It is zero if the environment cannot be
found.

The first field in the buffer pointed to by IpEnviron must be the same as
that passed in the IpDeviceName parameter of the CreateDC function. If
IpPortName specifies a null port (as defined in the WIN.INI file), the device
name pointed to by IpEnviron is used to locate the desired environment.

GetFocus
Syntax HWND GetFocus()
function GetFocus: HWnd;
This function retrieves the handle of the window that currently owns the
input focus.
Parameters None.

314

Return value

The return value identifies the window that currently owns the focus if
the function is successful. Otherwise, it is NULL.

Software development kit

GetFreeSpace

GetfFreeSpace 3.0

Syntax DWORD GetFreeSpace(wFlags)
function GetFreeSpace(Flag: Word): Longint;

This function scans the global heap and returns the number of bytes of
memory currently available.

Parameters wFlags WORD Specifies whether to scan the heap above or below
the EMS bank line in large-frame and small-frame EMS
systems. If it is set to GMEM_NOT_BANKED,
GetFreeSpace returns the amount of memory available
below the line. If wFlags is zero, GetFreeSpace returns the
amount is the memory available above the EMS bank line.
The wFlags parameter is ignored for non-EMS systems.

Return value The return value is the amount of available memory in bytes. This
memory is not necessarily contiguous; the GlobalCompact function
returns the number of bytes in the largest block of free global memory.

Comments In standard mode, the value returned represents the number of bytes in
the global heap that are not used and that are not reserved for code. In 386
enhanced mode, the value returned is calculated using the following
formula:

Free_space = (heap — reserved) + (page_file + phys_pages) — (total_linear
— free_linear) - 64K

In this formula:

o heap is the number of unused bytes in the global heap.

m reserved is the number of unused bytes in the global heap reserved for
code.

m page_file is the size of the paging file.

@ phys_page is the total size of physical pages.

B total_linear is the total linear address space.

@ free_linear is the total unused linear address space

The return value in 386 enhanced mode is an estimate of the amount of
memory available to an application. It does not account for memory held
in reserve for non-Windows applications.

Chapter 4, Functions directory 315

GetGValue

GetGValue

Syntax BYTE GetGValue(rgbColor)
function GetGValue(RGBColor: Longint): Byte;

This macro extracts the green value from an RGB color value.

Parameters rgbColor DWORD Specifies a red, a green, and a blue color field, each
specifying the intensity of the given color.

Return value The return value specifies a byte that contains the green value of the
rgbColor parameter.

Comments The value OFFH corresponds to the maximum intensity value for a single
byte; 000H corresponds to the minimum intensity value for a single byte.

GetlnputState

Syntax BOOL GetInputState()
function GetInputState: Bool;

This function determines whether there are mouse, keyboard, or timer
events in the system queue that require processing. An event is a record
that describes interrupt-level input. Mouse events occur when a user
moves the mouse or clicks a mouse button. Keyboard events occur when a
user presses one or more keys. Timer events occur after a specified
number of clock ticks. The system queue is the location in which
Windows stores mouse, keyboard, and timer events.

Parameters None.

Return value The return value specifies whether mouse, keyboard or timer input
occurs. It is nonzero if input is detected. Otherwise, it is zero.

GetinstanceData

Syntax int GetInstanceData(hInstance, pData, nCount)
function GetInstanceData(Instance: THandle; Data: Word; Count: Integer):
Integer;

This function copies data from a previous instance of an application into
the data area of the current instance. The hlnstance parameter specifies
which instance to copy data from, pData specifies where to copy the data,
and nCount specifies the number of bytes to copy.

316 Software development kit

GetinstanceData

Parameters hinstance HANDLE Identifies a previous call of the application.
pData NPSTR Points to a buffer in the current instance.
nCount int Specifies the number of bytes to copy.

Return value The return value specifies the number of bytes actually copied.

GetKBCodePage 3.0

Syntax int GetKBCodePage()
function GetKBCodePage: Integer;

This function determines which OEM/ANSI tables are loaded by
Windows.

Parameters None.

Return value The return value specifies the code page currently loaded by Windows. It
can be one of the following values:

Value Meaning

437 Default (USA, used by most countries: indicates that there is no
OEMANSIBIN in the Windows directory)

850 International (OEMANSILBIN = XLAT850.BIN)

860 Portugal (OEMANSI.BIN = XLAT860.BIN)

861 Iceland (OEMANSI.BIN = XLAT861.BIN)

863 French Canadian (OEMANSLBIN = XLAT863.BIN)

865 Norway/Denmark (OEMANSIBIN = XLAT865.BIN)

Comments If the file OEMANSLBIN is in the Windows directory, Windows reads it
and overwrites the OEM/ANSI translation tables in the keyboard driver.

When the user selects a language within the Setup program and the
language does not use the default code page (437), Setup copies the
appropriate file (such as XLATPO.BIN) to OEMANSLBIN in the Windows
system directory. If the language uses the default code page, Setup deletes
OEMANSILBIN, if it exists, from the Windows system directory.

GetKeyboardState

Syntax void GetKeyboardState(IpKeyState)
procedure GetKeyboardState(var KeyState: TKeyboardState);

This function copies the status of the 256 virtual-keyboard keys to the
buffer specified by the IpKeyState parameter. The high bit of each byte is

Chapter 4, Functions directory 317

GetKeyboardState

Parameters

Return value

Comments

set to 1 if the key is down, or it is set to 0 if it is up. The low bit is set to 1 if
the key was pressed an odd number of times since startup. Otherwise, it is
set to 0.

IpKeyState BYTE FAR * Points to the 256-byte buffer of virtual-key
codes.

None.

An application calls the GetKeyboardState function in response to a
keyboard-input message. This function retrieves the state of the keyboard
when the input message was generated.

To obtain state information for individual keys, follow these steps:

1. Create an array of characters that is 265 bytes long.

2. Copy the contents of the buffer pointed to by the IpKeyState parameter
into the array.

3. Use the virtual-key code from Appendix A, "Virtual-key codes," in
Reference, Volume 2, to obtain an individual key state.

GetKeyboardType 3.0

318

Syntax

Parameters

Return value

int GetKeyboardType(nTypeFlag)
function GetKeyboardType(TypeFlag: Integer): Integer;

This function retrieves the system-keyboard type.

nTypeFlag, int Determines whether the function returns a value indicating
the type or subtype of the keyboard. It may be one of the following
values:

Value Meaning

0 Function returns the keyboard type.

1 Function returns the keyboard subtype.

2 Function returns the number of function keys
on the keyboard.

The return value indicates the type or subtype of the system keyboard or
the number of function keys on the keyboard. The subtype is an OEM-
dependent value. The type may be one of the following values:

Software development kit

GetKeyboardType

Value Meaning

IBM® PC/XT®, or compatible (83-key) keyboard
Olivetti® M24 "ICO" (102-key) keyboard

IBM AT® (84-key) or similar keyboard

IBM Enhanced (101- or 102-key) keyboard

Nokia 1050 and similar keyboards

Nokia 9140 and similar keyboards

U W=

The return value is zero if the nTypeFlag parameter is greater than 2 or if
the function fails.

Comments An application can determine the number of function keys on a keyboard
from the keyboard type. The following shows the number of function
keys for each keyboard type:

Type Number of Function Keys
1 10

2 12 (sometimes 18)

3 10

4 12

5 10

6 24

GetkeyNameText 3.0

Syntax int GetKeyNameText(IParam, IpBuffer, nSize)
function GetKeyNameText(IParam: Longint; Buffer: PChar; Size: Integer):
Integer;

This function retrieves a string which contains the name of a key.

The keyboard driver maintains a list of names in the form of character
strings for keys with names longer than a single character. The key name
is translated according to the layout of the currently installed keyboard.
The translation is performed for the principal language supported by the
keyboard driver.

Parameters [Param DWORD Specifies the 32-bit parameter of the keyboard
message (such as WM_KEYDOWN) which the function is
processing. Byte 3 (bits 16-23) of the long parameter is a scan
code. Bit 20 is the extended bit that distinguishes some keys
on an enhanced keyboard. Bit 21 is a "don’t care" bit; the
application calling this function sets this bit to indicate that
the function should not distinguish between left and right
control and shift keys, for example.

Chapter 4, Functions directory 319

GetKeyNameText

IpBuffer LPSTR Specifies a buffer to receive the key name.

nSize WORD Specifies the maximum length in bytes of the key
name, not including the terminating NULL character.

Return value The return value is the actual length of the string copied to IpBuffer.

GetKeyState

Synfax int GetKeyState(nVirtKey)
function GetKeyState(VirtKey: Integer): Integer;

This function retrieves the state of the virtual key specified by the
nVirtKey parameter. The state specifies whether the key is up, down, or
toggled.

Parameters nVirtKey int Specifies a virtual key. If the desired virtual key is a letter
or digit (A through Z, a through z, or 0 through 9), nVirtKey
must be set to the ASCII value of that character. For other
keys, it must be one of the values listed in Appendix A,
"Virtual-key codes," in Reference, Volume 2.

Return value The return value specifies the state of the given virtual key. If the high-
order bit is 1, the key is down. Otherwise, it is up. If the low-order bit is 1,
the key is toggled. A toggle key, such as the CAPSLOCK key, is toggled if it
has been pressed an odd number of times since the system was started.
The key is untoggled if the low bit is 0.

Comments An application calls the GetKeyState function in response to a keyboard-
input message. This function retrieves the state of the key when the input
message was generated.

GetlLastActivePopup 3.0

Syntax HWND GetLastActivePopup(hwndOwner)
function GetLastActivePopup(Owner: HWnd): HWnd;

This function determines which pop-up window owned by the window
identified by the hwndOwner parameter was most recently active.

Parameters hwndOwner HWND Identifies the owner window.

Return value The return value identifies the most-recently active pop-up window. The
return value will be hwndOwner if any of the following conditions are met:

m The window identified by hwndOwner itself was most recently active.

320 Software development kit

GetlLastActivePopup

o The window identified by hwndOwner does not own any pop-up
windows.

a The window identified by hwndOwner is not a top-level window or is
owned by another window.

GetMapMode

Syntax int GetMapMode(hDC)
function GetMapMode(DC: HDC): Integer;

This function retrieves the current mapping mode. See the SetMapMode
function, later in this chapter, for a description of the mapping modes.

Parameters /hDC HDC Identifies the device context.

Return value The return value specifies the mapping mode.

GetMenu

Syntax HMENU GetMenu(hWnd)
function GetMenu(Wnd: HWnd): HMenu;

This function retrieves a handle to the menu of the specified window.

Parameters hWnd HWND Identifies the window whose menu is to be
examined.

Return value The return value identifies the menu. It is NULL if the given window has
no menu. The return value is undefined if the window is a child window.

GetMenuCheckMarkDimensions 3.0

Syntax DWORD GetMenuCheckMarkDimensions()
function GetMenuCheckMarkDimensions: Longint;

This function returns the dimensions of the default checkmark bitmap.
Windows displays this bitmap next to checked menu items. Before calling
the SetMenultemBitmaps function to replace the default checkmark, an
application should call the GetMenuCheckMarkDimensions function to
determine the correct size for the bitmaps.

Parameters None.

Chapter 4, Functions directory 321

GetMenuCheckMarkDimensions

Return value The return value specifies the height and width of the default checkmark
bitmap. The high-order word contains the height in pixels and the low-
order word contains the width.

GetMenultfemCount

Syntax WORD GetMenultemCount(hMenu)
function GetMenultemCount(Menu: HMenu): Word;

This function determines the number of items in the menu identified by
the hMenu parameter. This may be either a pop-up or a top-level menu.

Parameters hMenu HMENU Identifies the handle to the menu to be examined.

Return value The return value specifies the number of items in the menu specified by
the hMenu parameter if the function is successful. Otherwise, it is -1.

GetMenultemID

Syntax WORD GetMenultemID(hMenu, nPos)
function GetMenultemID(Menu: HMenu; Pos: Integer): Word;

This function obtains the menu-item identifier for a menu item located at
the position defined by the nPos parameter.

Parameters hMenu HMENU Identifies a handle to the pop-up menu that contains
the item whose ID is being retrieved.

nPos int Specifies the position (zero-based) of the menu item
whose ID is being retrieved.

Return value The return value specifies the item ID for the specified item in a pop-up
menu if the function is successful; if *Menu is NULL or if the specified
item is a pop-up menu (as opposed to an item within the pop-up menu),
the return value is 1.

GetMenuState

Syntax WORD GetMenuState(hMenu, wid, wFlags)
function GetMenuState(Menu: HMenu; ID, Flags: Word): Word;

This function obtains the number of items in the pop-up menu associated
with the menu item specified by the wld parameter if the hMenu

322 Software development kit

GetMenuState

parameter identifies a menu with an associated pop-up menu. If htMenu
identifies a pop-up menu, this function obtains the status of the menu
item associated with wld.

Parameters hMenu HMENU Identifies the menu.
wld WORD Specifies the menu-item ID.
wFlags WORD Specifies the nature of the wld parameter. If the

wFlags parameter contains MF_BYPOSITION, wld specifies a
(zero-based) relative position; if wFlags contains
MF_BYCOMMAND, wld specifies the item ID.

Return value The return value specifies the outcome of the function. It is -1 if the
specified item does not exist. If the menu itself does not exist, a fatal exit
occurs. If wld identifies a pop-up menu, the return value contains the
number of items in the pop-up menu in its high-order byte, and the menu
flags associated with the pop-up menu in its low-order byte; otherwise, it
is a mask (Boolean OR) of the values from the following list (this mask
describes the status of the menu item that wid identifies):

Value Meaning

MF_CHECKED Checkmark is placed next to item (pop-up menus only).
MF_DISABLED Item is disabled.

MF _ENABLED Item is enabled.

MF_GRAYED Item is disabled and grayed.

MF_MENUBARBREAK Same as MF_MENUBREAK, except for pop-up menus
where the new column is separated from the old
column by a vertical dividing line.

MF_MENUBREAK Item is placed on a new line (static menus) or in a new
column (pop-up menus) without separating columns.
MF_SEPARATOR Horizontal dividing line is drawn (pop-up menus

only). This line cannot be enabled, checked, grayed, or
highlighted. The IpNewlItem and wIDNewltem
parameters are ignored.

MF_UNCHECKED Checkmark is not placed next to item (default).

GetMenuString

Syntax int GetMenuString(hMenu, wiDItem, lpString, nMaxCount, wFlag)
function GetMenuString(Menu: HMenu; IDItem: Word; Str: PChar;
MaxCount: Integer; Flag: Word): Integer;

This function copies the label of the specified menu item into the IpString
parameter.

Parameters L Menu HMENU Identifies the menu.

Chapter 4, Functions directory 323

GetMenuString

Return value

wiDltem WORD Specifies the integer identifier of the menu item
(from the resource file) or the offset of the menu item in the
menu, depending on the value of the wFlag parameter.

IpString LPSTR Points to the buffer that is to receive the label.

nMaxCount int Specifies the maximum length of the label to be copied. If
the label is longer than the maximum specified in
nMaxCount, the extra characters are truncated.

wFlag WORD Specifies the nature of the wID parameter. If wFlags
contains MF_BYPOSITION, wld specifies a (zero-based)
relative position; if the wFlags parameter contains
MF_BYCOMMAND, wld specifies the item ID.

The return value specifies the actual number of bytes copied to the buffer.

Comments The nMaxCount parameter should be one larger than the number of
characters in the label to accommodate the null character that terminates a
string.

GetMessage
Syntax BOOL GetMessage(lpMsg, hWnd, wMsgFilterMin, wMsgFilterMax)

324

function GetMessage(var Msg: TMsg; Wnd: HWnd; MsgFilterMin,
MsgFilterMax: Word): Bool;

This function retrieves a message from the application queue and places
the message in the data structure pointed to by the [pMsg parameter. If no
message is available, the GetMessage function yields control to other
applications until a message becomes available.

Software development kit

GetMessage

GetMessage retrieves only messages associated with the window
specified by the hWnd parameter and within the range of message values
given by the wMsgFilterMin and wMsgFilterMax parameters. If hWnd is
NULL, GetMessage retrieves messages for any window that belongs to
the application making the call. (The GetMessage function does not
retrieve messages for windows that belong to other applications.) If
wMsgFilterMin and wMsgFilterMax are both zero, GetMessage returns all
available messages (no filtering is performed).

The constants WM_KEYFIRST and WM_KEYLAST can be used as filter
values to retrieve all messages related to keyboard input; the constants
WM_MOUSEFIRST and WM_MOUSELAST can be used to retrieve all
mouse-related messages.

Parameters IpMsg LPMSG Points to an MSG data structure that contains
message information from the Windows application
queue.

hWnd HWND Identifies the window whose messages are to be

examined. If hWnd is NULL, GetMessage retrieves
messages for any window that belongs to the
application making the call.

wMsgFilterMin ~ WORD Specifies the integer value of the lowest message
value to be retrieved.

wMsgFilterMax WORD Specifies the integer value of the highest message
value to be retrieved.

Return value The return value specifies the outcome of the function. It is nonzero if a
message other than WM_QUIT is retrieved. It is zero if the WM_QUIT
message is retrieved.

The return value is usually used to decide whether to terminate the
application’s main loop and exit the program.

Comments In addition to yielding control to other applications when no messages are
available, the GetMessage and PeekMessage functions also yield control
when WM_PAINT or WM_TIMER messages for other tasks are available.

The GetMessage, PeekMessage, and WaitMessage functions are the only
ways to let other applications run. If your application does not call any of
these functions for long periods of time, other applications cannot run.

When GetMessage, PeekMessage, and WaitMessage yield control to
other applications, the stack and data segments of the application calling
the function may move in memory to accommodate the changing memory
requirements of other applications. If the application has stored long

Chapter 4, Functions directory 325

GetMessage

pointers to objects in the data or stack segment (that is, global or local
variables), these pointers can become invalid after a call to GetMessage,
PeekMessage, or WaitMessage. The [pMsg parameter of the called
function remains valid in any case.

GetMessagePos

Syntax

Parameters

Return value

Comments

DWORD GetMessagePos()
function GetMessagePos: Longint;

This function returns a long value that represents the cursor position (in
screen coordinates) when the last message obtained by the GetMessage
function occurred.

None.

The return value specifies the x- and y-coordinates of the cursor position.
The x-coordinate is in the low-order word, and the y-coordinate is in the
high-order word. If the return value is assigned to a variable, the
MAKEPOINT macro can be used to obtain a POINT structure from the
return value; the LOWORD or HIWORD macro can be used to extract the x-
or the y-coordinate.

To obtain the current position of the cursor instead of the position when
the last message occurred, use the GetCursorPos function.

GetMessageTime

326

Syntax

Parameters
Return value

Comments

DWORD GetMessageTime()
function GetMessageTime: Longint;

This function returns the message time for the last message retrieved by
the GetMessage function. The time is a long integer that specifies the
elapsed time (in milliseconds) from the time the system was booted to the
time the message was created (placed in the application queue).

None.
The return value specifies the message time.

Do not assume that the return value is always increasing. The return
value will "wrap around" to zero if the timer count exceeds the maximum
value for long integers.

Software development kit

GetMetaFile

To calculate time delays between messages, subtract the time of the
second message from the time of the first message.

GetMetaFile

Syntax HANDLE GetMetaFile(IpFilename)
function GetMetaFile(FileName: PChar): THandle;

This function creates a handle for the metafile named by the IpFilename
parameter.

Parameters [pFilename LPSTR Points to the null-terminated character string that
specifies the DOS filename of the metafile. The metafile is
assumed to exist.

Return value The return value identifies a metafile if the function is successful.
Otherwise, it is NULL.

GetMetaFileBits

Syntax HANDLE GetMetaFileBits(hMF)
function GetMetaFileBits(MF: THandle): THandle;

This function returns a handle to a global memory block that contains the
specified metafile as a collection of bits. The memory block can be used to
determine the size of the metafile or to save the metafile as a file. The
memory block should not be modified.

Parameters hMF HANDLE Identifies the memory metafile.

Return value The return value identifies the global memory block that contains the
metafile. If an error occurs, the return value is NULL.

Comments The handle used as the hMF parameter becomes invalid when the
GetMetaFileBits function returns, so the returned global memory handle
must be used to refer to the metafile.

Memory blocks created by this function are unique to the calling
application and are not shared by other applications. These blocks are
automatically deleted when the application terminates.

GetModuleFileName

Syntax int GetModuleFileName(hModule, IpFilename, nSize)

Chapter 4, Functions directory 327

GetModuleFileName

function GetModuleFileName(Module: THandle; FileName: PChar; Size:
Integer): Integer;

This function retrieves the full pathname of the executable file from which
the specified module was loaded. The function copies the null-terminated
filename into the buffer pointed to by the IpFilename parameter.

Parameters hModule HANDLE Identifies the module or the instance of the
module.
IpFilename LPSTR Points to the buffer that is to receive the filename.
nSize int Specifies the maximum number of characters to copy. If
the filename is longer than the maximum number of
characters specified by the nSize parameter, it is truncated.
Return value The return value specifies the actual length of the string copied to the
buffer.
GetModuleHandle
Syntax HANDLE GetModuleHandle(IpModuleName)
function GetModuleHandle(ModuleName: PChar): THandle;
This function retrieves the module handle of the specified module.
Parameters IpModuleName LPSTR Points to a null-terminated character string that

Return value

specifies the module.

The return value identifies the module if the function is successful.
Otherwise, it is NULL.

GetModuleUsage

Syntax

Parameters

Return value

328

int GetModuleUsage(hModule)
function GetModuleUsage(Module: THandle): Integer;

This function returns the reference count of a specified module.
hModule HANDLE Identifies the module or an instance of the module.

The return value specifies the reference count of the module.

Software development kit

GetiNearestColor

GetNearestColor

Syntax DWORD GetNearestColor(hDC, crColor)
function GetNearestColor(DC: HDC; Color: TColorRef): TColorRef;

This function returns the closest logical color to a specified logical color
the given device can represent.

Parameters 1DC HDC Identifies the device context.
crColor COLORREF Specifies the color to be matched.

Return value The return value specifies an RGB color value that names the solid color
closest to the crColor value that the device can represent.

GetNearestPalettelndex 3.0

Syntax WORD GetNearestPaletteIndex(hPalette, crColor)
function GetNearestPaletteIndex(Palette: HPalette; Color: TColorRef):
Word;

This function returns the index of the entry in a logical palette which most
closely matches a color value.

Parameters hPalette HPALETTE Identifies the logical palette.
crColor COLORREF Specifies the color to be matched.

Return value The return value is the index of an entry in a logical palette. The entry
contains the color which most nearly matches the specified color.

GetNextDIgGroupltem

Syntax HWND GetNextDlgGroupltem(hDlg, hCtl, bPrevious)
function GetNextDlgGroupltem(Dlg, Ctrl: HWnd; Previous: Bool):
HWnd;

This function searches for the next (or previous) control within a group of
controls in the dialog box identified by the hDlg parameter. A group of
controls consists of one or more controls with WS_GROUP style.

Parameters 11Dlg HWND Identifies the dialog box being searched.

Chapter 4, Functions directory 329

GetNexiDIgGroupltem

Return value

Comments

hCtl

bPrevious

HWND Identifies the control in the dialog box where the
search starts.

BOOL Specifies how the function is to search the group of
controls in the dialog box. If the bPrevious parameter is zero,
the function searches for the previous control in the group. If
bPrevious is nonzero, the function searches for the next
control in the group.

The return value identifies the next or previous control in the group.

If the current item is the last item in the group and bPrevious is zero, the
GetNextDIgGroupltem function returns the window handle of the first
item in the group. If the current item is the first item in the group and
bPrevious is nonzero, GetNextDIgGroupltem returns the window handle of
the last item in the group.

GetNextDIgTabltem

Syntax HWND GetNextDlgTabltem(hDlg, hCtl, bPrevious)
function GetNextDlgTabltem(Dlg, Ctrl: HWnd; Previous: Bool): HWnd;

This function obtains the handle of the first control that has the
WS_TABSTOP style that precedes (or follows) the control identified by

Parameters

the hCtl parameter.

hDlg HWND Identifies the dialog box being searched.

hCtl HWND Identifies the control to be used as a starting point for
the search.

bPrevious ~ BOOL Specifies how the function is to search the dialog box.

If the bPrevious parameter is zero, the function searches for
the previous control in the dialog box. If bPrevious is
nonzero, the function searches for the next control in the
dialog box. Identifies the control to be used as a starting
point for the search.

Return value The return value identifies the previous (or next) control that has the
WS_TABSTOP style set.

GetNextWindow

Syntax HWND GetNextWindow(hWnd, wFlag)
function GetNextWindow(Wnd: HWnd; Flag: Word): HWnd;

330

Software development kit

GetNexiWindow

This function searches for a handle that identifies the next (or previous)
window in the window-manager’s list. The window-manager’s list
contains entries for all top-level windows, their associated child windows,
and the child windows of any child windows. If the hWnd parameter is a
handle to a top-level window, the function searches for the next (or
previous) handle to a top-level window; if #Whd is a handle to a child
window, the function searches for a handle to the next (or previous) child

window.
Parameters 1 Wnd HWND Identifies the current window.
wFlag WORD Specifies whether the function returns a handle to the

next window or to the previous window. It can be either of
the following values:

Value Meaning

GW_HWNDNEXT The function returns a handle to the
next window.

GW_HWNDPREV The function returns a handle to the
previous window.

Return value The return value identifies the next (or the previous) window in the
window-manager’s list.

GetNumTasks

Syntax int GetNumTasks()
function GetNumTasks: Word;

This function returns the number of tasks currently executing in the
system. A task is a unique instance of a Windows application.

Parameters None.

Return value The return value specifies an integer that represents the number of tasks
currently executing in the system.

GetObject

Syntax int GetObject(hObject, nCount, IpObject)
function GetObject(hObject: THandle; Count: Integer; IpObjectPtr:
Pointer): Integer;

This function fills a buffer with the logical data that defines the logical
object specified by the hObject parameter. The GetObject function copies

Chapter 4, Functions directory 331

GetObject

Parameters

Return value

the number of bytes of data specified by the nCount parameter to the
buffer pointed to by the IpObject parameter. The function retrieves data
structures of the LOGPEN, LOGBRUSH, LOGFONT, or BITMAP type, or an
integer, depending on the logical object. The buffer must be sufficiently
large to receive the data.

If hObject specifies a bitmap, the function returns only the width, height,
and color format information of the bitmap. The actual bits must be
retrieved by using the GetBitmapBits function.

If hObject specifies a logical palette, it retrieves a two-byte value that
specifies the number of entries in the palette; it does not retrieve the entire
LOGPALETTE data structure that defines the palette. To get information
on palette entries, an application must call the GetPaletteEntries function.

hObject HANDLE Identifies a logical pen, brush, font, bitmap, or
palette.

nCount int Specifies the number of bytes to be copied to the buffer.

IpObject LPSTR Points to the buffer that is to receive the information.

The return value specifies the actual number of bytes retrieved. It is zero if
an error occurs.

GetPaletteEntries 3.0

332

Syntax

Parameters

WORD GetPaletteEntries(hPalette, wStartIndex, wNumgEntries,
IpPaletteEntries)

function GetPaletteEntries(Palette: HPalette; StartIndex, NumEntries:
Word; var PaletteEntries): Word;

This function retrieves a range of palette entries in a logical palette.

hPalette HPALETTE Identifies the logical palette.

wStartIndex WORD Specifies the first entry in the logical palette to
be retrieved.

wNumEntries WORD Specifies the number of entries in the logical

palette to be retrieved.

IpPaletteEntries ~ LPPALETTEENTRY Points to an array of
PALETTEENTRY data structures to receive the palette
entries. The array must contain at least as many data
structures as specified by the wNumEntries parameter.

Software development kit

GetPaletteEntries

Return value The return value is the number of entries retrieved from the logical
palette. It is zero if the function failed.

GetParent

Syntax HWND GetParent(thWnd)
function GetParent(Wnd: HWnd): HWnd;

This function retrieves the window handle of the specified window’s
parent window (if any).

Parameters 1 Wnd HWND Identifies the window whose parent window handle
is to be retrieved.

Return value The return value identifies the parent window. It is NULL if the window
has no parent window.

GetPixel

Syntax DWORD GetPixel(hDC, X, Y)
function GetPixel(DC: HDC; X, Y; Integer): TColorRef;

This function retrieves the RGB color value of the pixel at the point
specified by the X and Y parameters. The point must be in the clipping
region. If the point is not in the clipping region, the function is ignored.

Parameters hDC HDC Identifies the device context.
X int Specifies the logical x-coordinate of the point to be
examined.
Y int Specifies the logical y-coordinate of the point to be
examined.

Return value The return value specifies an RGB color value for the color of the given
point. It is -1 if the coordinates do not specify a point in the clipping
region.

Comments Not all devices support the GetPixel function. For more information, see
the RC_BITBLT raster capability in the GetDeviceCaps function, earlier in
this chapter.

Chapter 4, Functions directory 333

GetPolyFillMode

GetPolyFillMode

Syntax

Parameters

Return value

int GetPolyFillMode(hDC)
function GetPolyFillMode(DC: HDC): Integer;

This function retrieves the current polygon-filling mode.
hDC HDC Identifies the device context.

The return value specifies the polygon-filling mode. It can be any one of
the following values:

Value Meaning
ALTERNATE Alternate mode
WINDING Winding-number mode

For a description of these modes, see the SetPolyFillMode function, later
in this chapter.

GetPriorityClipboardFormat 3.0

334

Syntax

Parameters

Return value

int GetPriorityClipboard Format(IpPriorityList, nCount)
function GetPriorityClipboardFormat(var PriorityList; Count: Integer):
Integer;

This function returns the first clipboard format in a list for which data
exist in the clipboard.

IpPriorityList WORD FAR * Points to an integer array that contains a list of
clipboard formats in priority order. For a description of the
data formats, see the SetClipboardData function later in this
chapter.

nCount int Specifies the number of entries in IpPriorityList. This
value must not be greater than the actual number of entries
in the list.

The return value is the highest priority clipboard format in the list for
which data exist. If no data exist in the clipboard, this function returns
NULL. If data exist in the clipboard which did not match any format in
the list, the return value is -1.

Software development kit

GetPrivateProfileint

GetPrivateProfileint 3.0

Syntax WORD GetPrivateProfileInt(lpApplicationName, lpKeyName, nDefault,
IpFileName)
function GetPrivateProfileInt(ApplicationName, KeyName: PChar;
Default: Integer; FileName: PChar): Integer;

This function retrieves the value of an integer key from the specified
initialization file. The function searches the file for a key that matches the
name specified by the [pKeyName parameter under the application
heading specified by the IpApplicationName parameter. An integer entry in
the initialization file must have the following form:

[application name]

keyname = value

Parameters IpApplicationName
LPSTR Points to the name of a Windows application that
appears in the initialization file.

IpKeyName LPSTR Points to a key name that appears in the initialization
file.

nDefault int Specifies the default value for the given key if the key
cannot be found in the initialization file.

IpFileName LPSTR Points to a string that names the initialization file. If
IpFileName does not contain a path to the file, Windows
searches for the file in the Windows directory.

Return value The return value specifies the result of the function. The return value is
zero if the value that corresponds to the specified key name is not an
integer or if the integer is negative. If the value that corresponds to the
key name consists of digits followed by nonnumeric characters, the
function returns the value of the digits. For example, if the entry
KeyName=102abc is accessed, the function returns 102. If the key is not
found, this function returns the default value, nDefault.

Comments The GetPrivateProfilelnt function is not case dependent, so the strings in
IpApplicationName and IpKeyName may be in any combination of
uppercase and lowercase letters.

Chapter 4, Functions directory 335

GetPrivateProfileString

GetPrivateProfileString 3.0

336

Syntax

Parameters

int GetPrivateProfileString(IpApplicationName, lJpKeyName, lpDefault,
IpReturnedString, nSize, IpFileName)

function GetPrivateProfileString(ApplicationName, KeyName, Default,
ReturnedString: PChar; Size: Integer; FileName: PChar): Integer;

This function copies a character string from the specified initialization file
into the buffer pointed to by the IpReturnedString parameter.

The function searches the file for a key that matches the name specified by
the IpKeyName parameter under the application heading specified by the
IpApplicationName parameter. If the key is found, the corresponding string
is copied to the buffer. If the key does not exist, the default character string
specified by the IpDefault parameter is copied. A string entry in the
initialization file must have the following form:

lapplication name]

keyname = string

If IpKeyName is NULL, the GetPrivateProfileString function enumerates all
key names associated with IpApplicationName by filling the location
pointed to by IpReturnedString with a list of key names (not values). Each
key name in the list is terminated with a null character.

IpApplicationName ~ LPSTR Points to the name of a Windows application
that appears in the initialization file.

IpKeyName LPSTR Points to a key name that appears in the
injtialization file.

IpDefault LPSTR Specifies the default value for the given key
if the key cannot be found in the initialization file.

IpReturnedString LPSTR Points to the buffer that receives the
character string.

nSize int Specifies the maximum number of characters
(including the last null character) to be copied to the
buffer.

IpFileName LPSTR Points to a string that names the

initialization file. If IpFileName does not contain a
path to the file, Windows searches for the file in the
Windows directory.

Software development kit

Return value

Comments

GetPrivateProfileString

The return value specifies the number of characters copied to the buffer
identified by the IpReturnedString parameter, not including the
terminating null character. If the buffer is not large enough to contain the
entire string and IpKeyName is not NULL, the return value is equal to the
length specified by the nSize parameter. If the buffer is not large enough to
contain the entire string and IpKeyName is NULL, the return value is equal
to the length specified by the nSize parameter minus 2.

GetPrivateProfileString is not case dependent, so the strings in
IpApplicationName and IpKeyName may be in any combination of
uppercase and lowercase letters.

GetProcAddress

Synicx

Parameters

Return value

Comments

FARPROC GetProcAddress(hModule, IpProcName)
function GetProcAddress(Module: THandle; ProcName: PChar):
TFarProc;

This function retrieves the memory address of the function whose name is
pointed to by the [pProcName parameter. The GetProcAddress function
searches for the function in the module specified by the hModule
parameter, or in the current module if hModule is NULL. The function
must be an exported function; the module’s definition file must contain an
appropriate EXPORTS line for the function.

hModule HANDLE Identifies the library module that contains the
function.

IpProcName LPSTR Points to the function name, or contains the ordinal
value of the function. If it is an ordinal value, the value must
be in the low-order word and zero must be in the high-order
word. The string must be a null-terminated character string.

The return value points to the function’s entry point if the function is
successful. Otherwise, it is NULL.

If the IpProcName parameter is an ordinal value and a function with the
specified ordinal does not exist in the module, GetProcAddress can still
return a non-NULL value. In cases where the function may not exist,
specify the function by name rather than ordinal value.

Only use GetProcAddress to retrieve addresses of exported functions that
belong to library modules. The MakeProclnstance function can be used to
access functions within different instances of the current module.

Chapter 4, Functions directory 337

GetProfileint

The spelling of the function name (pointed to by IpProcName) must be
identical to the spelling as it appears in the source library’s definition
(.DEF) file. The function can be renamed in the definition file.

GetProfilelnt

Syntax WORD GetProfileInt(IpAppName, lpKeyName, nDefault)
function GetProfileInt(AppName, KeyName: PChar; Default: Integer):
Integer;

This function retrieves the value of an integer key from the Windows
initialization file, WIN.INL The function searches WIN.INI for a key that
matches the name specified by the [pKeyName parameter under the
application heading specified by the IpAppName parameter. An integer
entry in WINL.INI must have the following form:

[application name]

keyname = value

Parameters IpAppName LPSTR Points to the name of a Windows application that
appears in the Windows initialization file.

IpKeyName LPSTR Points to a key name that appears in the Windows
initialization file.

nDefault int Specifies the default value for the given key if the key
cannot be found in the Windows initialization file.

Return value The return value specifies the result of the function. The return value is
zero if the value that corresponds to the specified key name is not an
integer or if the integer is negative. If the value that corresponds to the
key name consists of digits followed by nonnumeric characters, the
function returns the value of the digits. For example, if the entry
KeyName=102abc is accessed, the function returns 102. If the key is not
found, this function returns the default value, nDefault.

GetProfileString

Syntax int GetProfileString(lpAppName, I]pKeyName, lpDefault,
IpReturnedString, nSize)
function GetProfileString(AppName, KeyName, Default, ReturnedString:
PChar; Size: Integer): Integer;

338 Software development kit

GetProfileString

This function copies a character string from the Windows initialization
file, WINL.INI, into the buffer pointed to by the IpReturnedString parameter.
The function searches WIN.INI for a key that matches the name specified
by the IpKeyName parameter under the application heading specified by
the IpAppName parameter. If the key is found, the corresponding string is
copied to the buffer. If the key does not exist, the default character string
specified by the IpDefault parameter is copied. A string entry in WIN.INI
must have the following form:

[application name]

keyname = value

If IpKeyName is NULL, the GetProfileString function enumerates all key
names associated with IpAppName by filling the location pointed to by
IpReturnedString with a list of key names (not values). Each key name in
the list is terminated with a null character.

Parameters IpAppName LPSTR Points to a null-terminated character string that
names the application.

IpKeyName LPSTR Points to a null-terminated character string that
names a key.

IpDefault LPSTR Specifies the default value for the given key if
the key cannot be found in the initialization file.

IpReturnedString LPSTR Points to the buffer that receives the character
string.

nSize int Specifies the number of characters (including the
last null character) that will be copied to the buffer.

Return value The return value specifies the number of characters copied to the buffer
identified by the IpReturnedString parameter, not including the
terminating null character. If the buffer is not large enough to contain the
entire string and IpKeyName is not NULL, the return value is equal to the
length specified by the nSize parameter. If the buffer is not large enough to
contain the entire string and IpKeyName is NULL, the return value is equal
to the length specified by the nSize parameter minus 2.

Comments GetProfileString is not case-dependent, so the strings in lpAppName and
IpKeyName may be in any combination of uppercase and lowercase letters.

Chapter 4, Functions directory 339

GetProp

GetProp

Syntax

Parameters

Return value

Comments

HANDLE GetProp(hWnd, 1pString)
function GetProp(Wnd: HWnd; Str: PChar): THandle;

This function retrieves a data handle from the property list of the specified
window. The character string pointed to by the IpString parameter
identifies the handle to be retrieved. The string and handle are assumed to
have been added to the property list by using the SetProp function.

hWnd HWND Identifies the window whose property list is to be
searched.

IpString LPSTR Points to a null-terminated character string or an
atom that identifies a string. If an atom is given, it must have
been created previously by using the AddAtom function. The
atom, a 16-bit value, must be placed in the low-order word
of the IpString parameter; the high-order word must be set to
zero.

The return value identifies the associated data handle if the property list
contains the given string. Otherwise, it is NULL.

The value retrieved by the GetProp function can be any 16-bit value
useful to the application.

GetRgnBox 3.0
Syntax int GetRgnBox(hRgn, IpRect)
function GetRgnBox(Rgn: HRgn; var Rect: TRect): Integer;
This function retrieves the coordinates of the bounding rectangle of the"
region specified by the hRgn parameter.
Parameters 1Rgn HRGN Identifies the region.
IpRect LPRECT Points to a RECT data structure to receive the

340

Return value

coordinates of the bounding rectangle.

The return value specifies the region’s type. It can be any of the following
values.

Value Meaning

COMPLEXREGION Region has overlapping borders.
NULLREGION Region is empty.

SIMPLEREGION Region has no overlapping borders.

Software development kit

GetROP2

The return value is NULL if the hRgn parameter does not specify a valid
region.

GetROP2
Syntax int GetROP2(hDC)
function GetROP2(DC: HDQ): Integer;
This function retrieves the current drawing mode. The drawing mode
specifies how the pen or interior color and the color already on the display
surface are combined to yield a new color.
Parameters hDC HDC Identifies the device context for a raster device.

Return value

Comments

The return value specifies the drawing mode. For a list of the drawing
modes, see the table "Drawing modes," in the SetROP2 function, later in
this chapter.

For more information about the drawing modes, see Chapter 11, "Binary
and ternary raster-operation codes," in Reference, Volume 2.

GetRValue
Syntax BYTE GetRValue(rgbColor)
function GetRValue(RGBColor: Longint): Byte;
This macro extracts the red value from an RGB color value.
Parameters rgbColor DWORD Specifies a red, a green, and a blue color field, each

Return value

Comments

GetScrollPos

specifying the intensity of the given color.

The return value specifies a byte that contains the red value of the rgbColor
parameter.

The value OFFH corresponds to the maximum intensity value for a single
byte; 000H corresponds to the minimum intensity value for a single byte.

Syntax

Chapter 4, Functions directory

int GetScrollPos(thWnd, nBar)
function GetScrollPos(Wnd: HWnd; Bar: Integer): Integer;

This function retrieves the current position of a scroll-bar thumb. The
current position is a relative value that depends on the current scrolling

341

GetScroliPos

Parameters

Return value

range. For example, if the scrolling range is O to 100 and the thumb is in
the middle of the bar, the current position is 50.

hWnd HWND Identifies a window that has standard scroll bars or a
scroll-bar control, depending on the value of the nBar
parameter.

nBar int Specifies the scroll bar to examine. It can be one of the
following values:

Value Meaning

SB_CTL Retrieves the position of a scroll-bar control. In
this case, the hWnd parameter must be the
window handle of a scroll-bar control.

SB_HORZ Retrieves the position of a window’s horizontal
scroll bar.

SB_VERT Retrieves the position of a window’s vertical
scroll bar.

The return value specifies the current position of the scroll-bar thumb.

GetScrollRange

342

Syntax

Parameters

void GetScrollRange(hWnd, nBar, IpMinPos, IpMaxPos)
procedure GetScrollRange(Wnd: HWnd; Bar: Integer; var MinPos,
MaxPos: Integer);

This function copies the current minimum and maximum scroll-bar
positions for the given scroll bar to the locations specified by the lpMinPos
and IpMaxPos parameters. If the given window does not have standard
scroll bars or is not a scroll-bar control, then the GetScrollRange function
copies zero to IpMinPos and IlpMaxPos.

hWnd HWND Identifies a window that has standard scroll bars or a
scroll-bar control, depending on nBar’s value.

nBar int Specifies an integer value that identifies which scroll bar
to retrieve. It can be one of the following values:

Value Meaning

SB_CTL Retrieves the position of a scroll-bar
control; in this case, the hWnd parameter
must be the handle of a scroll-bar control.

SB_ HORZ Retrieves the position of a window’s
horizontal scroll bar.

Software development kit

GetScrollRange

SB_VERT Retrieves the position of a window’s
vertical scroll bar.

IpMinPos LPINT Points to the integer variable that is to receive the
minimum position.
IpMaxPos ~ LPINT Points to the integer variable that is to receive the
maximum position.
Return value None.

Comments The default range for a standard scroll bar is 0 to 100. The default range
for a scroll-bar control is empty (both values are zero).

GetStockObject

Syntax HANDLE GetStockObject(nIndex)
function GetStockObject(Index: Integer): THandle;

This function retrieves a handle to one of the predefined stock pens,
brushes, or fonts.

Parameters nlndex int Specifies the type of stock object desired. It can be any
one of the following values:
Value Meaning
BLACK_BRUSH Black brush
DKGRAY_BRUSH Dark gray brush
GRAY_BRUSH Gray brush
HOLLOW_BRUSH Hollow brush
LTGRAY_BRUSH Light gray brush
NULL_BRUSH Null brush
WHITE_BRUSH White brush
BLACK_PEN Black pen
NULL_PEN Null pen
WHITE_PEN White pen
ANSI_FIXED_FONT ANSI fixed system font
ANSI_VAR_FONT ANSI variable system font
DEVICE_DEFAULT_FONT Device-dependent font
OEM_FIXED_FONT OEM-dependent fixed font
SYSTEM_FONT The system font. By default,

Windows uses the system font
to draw menus, dialog-box
controls, and other text. In
Windows versions 3.0 and later,

Chapter 4, Functions directory 343

GetStockObject

the system font is proportional
width; earlier versions of
Windows use a fixed-width
system font.

SYSTEM_FIXED_FONT The fixed-width system font
used in earlier versions of
Windows. This stock object is
available for compatibility
purposes.

DEFAULT_PALETTE Default color palette. This
palette consists of the 20 static
colors always present in the
system palette for matching
colors in the logical palettes of
background windows.

Return value The return value identifies the desired logical object if the function is
successful. Otherwise, it is NULL.

Comments The DKGRAY_BRUSH, GRAY_BRUSH, and LTGRAY_BRUSH objects
should not be used as background brushes or for any other purpose in a
window whose class does not specify CS_HREDRAW and
CS_VREDRAW styles. Using a gray stock brush in such windows can lead
to misalignment of brush patterns after a window is moved or sized.
Stock-brush origins cannot be adjusted (for more information, see the
SetBrushOrg function, later in this chapter).

GetStretchBlitMode

Syntax int GetStretchBltMode(hDC)
function GetStretchBltMode(DC: HDC): Integer;

This function retrieves the current stretching mode. The stretching mode
defines how information is to be added or removed from bitmaps that are
stretched or compressed by using the StretchBIt function.

Parameters 1LDC HDC Identifies the device context.

Return value The return value specifies the current stretching mode. It can be
WHITEONBLACK, BLACKONWHITE, or COLORONCOLOR. For more
information, see the SetStretchBltMode function, later in this chapter.

344 Software development kit

GetSubMenu

GetSubMenu

Syntax

Parameters

Roturn value

GetSysColor

HMENU GetSubMenu(hMenu, nPPos)
function GetSubMenu(Menu: HMenu; Pos: Integer): HMenu;

This function retrieves the menu handle of a pop-up menu.
hMenu HMENU Identifies the menu.

nPos int Specifies the position in the given menu of the pop-up
menu. Position values start at zero for the first menu item.
The pop-up menu’s integer ID cannot be used in this
function.

The return value identifies the given pop-up menu. It is NULL if no pop-
up menu exists at the given position.

Syntax

Parameters

Return value

Comments

GetSysModalWindow

DWORD GetSysColor(nIndex)
function GetSysColor(Index: Integer): TColorRef;

This function retrieves the current color of the display element specified
by the nlndex parameter. Display elements are the various parts of a
window and the Windows display that appear on the system display
screen.

nindex int Specifies the display element whose color is to be
retrieved. For a list of the index values, see the SetSysColor
function, later in this chapter.

The return value specifies an RGB color value that names the color of the
given element.

System colors for monochrome displays are usually interpreted as various
shades of gray.

Syntax

HWND GetSysModalWindow()
function GetSysModalWindow: HWnd;

Chapter 4, Functions directory 345

GetSysModalWindow

Parameters

Return value

This function returns the handle of a system-modal window, if one is
present.

None.

The return value identifies the system-modal window, if one is present. If
no such window is present, the return value is NULL.

GetSystemDirectory 3.0

Syntax

Parameters

Return value

Comments

WORD GetSystemDirectory(IpBuffer, nSize)
procedure GetSystemDirectory(Buffer: PChar; Size: Word);

This function obtains the pathname of the Windows system subdirectory.
The system subdirectory contains such files as Windows libraries, drivers,
and font files.

IpBuffer LPSTR Points to the buffer that is to receive the null-
terminated character string containing the pathname.

nSize int Specifies the maximum size (in bytes) of the buffer. This
value should be set to at least 144 to allow sufficient room in
the buffer for the pathname.

The return value is the length of the string copied to IpBuffer, not
including the terminating null character. If the return value is greater than
nSize, the return value is the size of the buffer required to hold the
pathname. The return value is zero if the function failed.

The pathname retrieved by this function does not end with a backslash
(\), unless the system directory is the root directory. For example, if the
system directory is named WINDOWS\SYSTEM on drive C:, the
pathname of the system subdirectory retrieved by this functionis C:\
WINDOWS\SYSTEM.

GetSystemMenu

346

Syntax

Parameters

HMENU GetSystemMenu(hWnd, bRevert)
function GetSystemMenu(Wnd: HWnd; Revert: Bool): HMenu;

This function allows the application to access the System menu for
copying and modification.

hWnd HWND Identifies the window that will own a copy of the
System menu.

Software development kit

Return value

Comments

GetSystemMenu

bRevert BOOL Specifies the action to be taken.
If bRevert is: Description
zero GetSystemMenu returns a handle to a

copy of the System menu currently in
use. This copy is initially identical to the
System menu, but can be modified.

nonzero GetSystemMenu destroys the possibly
modified copy of the System menu (if
there is one) that belongs to the specified
window and returns a handle to the
original, unmodified version of the
System menu.

The return value identifies the System menu if bRevert is nonzero and the
System menu has been modified. If bRevert is nonzero and the System
menu has not been modified, the return value is NULL. If bRevert is zero,
the return value identifies a copy of the System menu.

Any window that does not use the GetSystemMenu function to make its
own copy of the System menu receives the standard System menu.

The handle returned by the GetSystemMenu function can be used with
the AppendMenu, InsertMenu or ModifyMenu functions to change the
System menu. The System menu initially contains items identified with
various ID values such as SC_CLOSE, SC_MOVE, and SC_SIZE. Menu
items on the System menu send WM_SYSCOMMAND messages. All
predefined System-menu items have ID numbers greater than 0xF000. If
an application adds commands to the System menu, it should use ID
numbers less than F000.

Windows automatically grays items on the standard System menu,
depending on the situation. The application can carry out its own
checking or graying by responding to the WM_INITMENU message,
which is sent before any menu is displayed.

GetSystemMetrics

Syntax

int GetSystemMetrics(nIndex)
function GetSystemMetrics(Index: Integer): Integer;

This function retrieves the system metrics. The system metrics are the
widths and heights of various display elements of the Windows display.
The GetSystemMetrics function can also return flags that indicate

Chapter 4, Functions directory 347

GetSystemMetrics

whether the current version is a debugging version, whether a mouse is
present, or whether the meaning of the left and right mouse buttons have
been exchanged.

Parameters nlndex int Specifies the system measurement to be retrieved. All
measurements are given in pixels. The system measurement
must be one of the values listed in Table 4.10, "System Metric
Indexes.”

Return value The return value specifies the requested system metric.

Comments System metrics depend on the system display and may vary from display
to display. Table 4.10 lists the system-metric values for the nlndex

parameter:
Table 4.10
System metric Index Meaning

indexes g\ CXSCREEN Width of screen.
SM_CYSCREEN Height of screen.
SM_CXFRAME Width of window frame that can be sized.
SM_CYFRAME Height of window frame that can be sized.
SM_CXVSCROLL Width of arrow bitmap on vertical scroll bar.
SM_CYVSCROLL Height of arrow bitmap on vertical scroll bar.
SM_CXHSCROLL Width of arrow bitmap on horizontal scroll bar.
SM_CYHSCROLL Height of arrow bitmap on horizontal scroll bar.
SM_CYCAPTION Height of caption.
SM_CXBORDER Width of window frame that cannot be sized.
SM_CYBORDER Height of window frame that cannot be sized.
SM_CXDLGFRAME Width of frame when window has WS_DLGFRAME

style.
SM_CYDLGFRAME Height of frame when window has WS_DLGFRAME
style.

SM_CXHTHUMB W}gdth of thumb box on horizontal scroll bar.
SM_CYVTHUMB Height of thumb box on vertical scroll bar.
SM_CXICON Width of icon.
SM_CYICON Height of icon.
SM_CXCURSOR Width of cursor.
SM_CYCURSOR Height of cursor.
SM_CYMENU Height of single-line menu bar.

SM_CXFULLSCREEN Width of window client area for full-screen window.
SM_CYFULLSCREEN Height of window client area for full-screen window
(equivalent to the height of the screen minus the height

of the window caption).
SM_CYKANJIWINDOW Height of Kanji window.

SM_CXMINTRACK Minimum tracking width of window.
SM_CYMINTRACK Minimum tracking height of window.
SM_CXMIN Minimum width of window.

SM_CYMIN Minimum height of window.

SM_CXSIZE Width of bitmaps contained in the title bar.
SM_CYSIZE Height of bitmaps contained in the title bar.

SM:MOUSEPRESENT Nonzero if mouse hardware installed.

348 Software development kit

GetSystemMetrics

Table 4.10: System metric indexes (continued)

SM_DEBUG Nonzero if Windows debugging version.
SM_SWAPBUTTON Nonzero if left and right mouse buttons swapped.
GetSystemPaletteEntries 3.0

Syntax WORD GetSystemPaletteEntries(hDC, wStartIndex, wNumEntries,
IpPaletteEntries)
function GetSystemPaletteEntries(DC: HDC; StartIndex, NumEntries:
Word; var PaletteEntries: TPaletteEntry): Word;

This function retrieves a range of palette entries from the system palette.
Parameters 1DC HDC Identifies the device context.

wStartIndex WORD Specifies the first entry in the system palette to be
retrieved.

wNumEntries ~ WORD Specifies the number of entries in the system
palette to be retrieved.

IpPaletteEntries LPPALETTEENTRY Points to an array of PALETTEENTRY
data structures to receive the palette entries. The array
must contain at least as many data structures as specified
by the wNumEntries parameter.

Return value The return value is the number of entries retrieved from the system
palette. It is zero if the function failed.

GetSystemPaletteUse 3.0

Syntax WORD GetSystemPaletteUse(hDC)
function GetSystemPaletteUse(DC: HDC): Word;

This function determines whether an application has access to the full
system palette. By default, the system palette contains 20 static colors
which are not changed when an application realizes its logical palette. An
application can gain access to most of these colors by calling the
SetSystemPaletteUse function.

The device context identified by the hDC parameter must refer to a device
that supports color palettes.

Parameters hDC HDC Identifies the device context.

Chapter 4, Functions directory 349

GetSystemPaletteUse

Return value

The return value specifies the current use of the system palette. It is either
of the following values:

Value Meaning

SYSPAL_NOSTATIC System palette contains no static colors except black and
white.

SYSPAL_STATIC System palette contains static colors which will not change
when an application realizes its logical palette.

GetTabbedTextExtent 3.0

350

Syntax

Parameters

Return value

Comments

DWORD GetTabbedTextExtent(hDC, 1pString, nCount, nTabPositions,
IpnTabStopPositions)

function GetTabbed TextExtent(DC: HDC; Str: PChar; Count,
TabPositions: Integer; var TabStopPositions): Longint;

This function computes the width and height of the line of text pointed to
by the IpString parameter. If the string contains one or more tab characters,
the width of the string is based upon the tab stops specified by the
IpnTabStopPositions parameter. The GetTabbedTextExtent function uses
the currently selected font to compute the dimensions of the string. The
width and height (in logical units) are computed without considering the
current clipping region.

hDC HDC Identifies the device context.

IpString LPSTR Points to a text string,.

nCount int Specifies the number of characters in the text
string.

nTabPositions int Specifies the number of tab-stop positions in the

array to which the IpnTabStopPositions points.

IpnTabStopPositions LPINT Points to an array of integers containing the
tab-stop positions in pixels. The tab stops must be
sorted in increasing order; back tabs are not
allowed.

The return value specifies the dimensions of the string. The height is in
the high-order word; the width is in the low-order word.

Since some devices do not place characters in regular cell arrays (that is,
they carry out kerning), the sum of the extents of the characters in a string
may not be equal to the extent of the string.

Software development kit

GeiTabbedTextExtent

If the nTabPositions parameter is zero and the IpnTabStopPositions
parameter is NULL, tabs are expanded to eight average character widths.

If nTabPositions is 1, the tab stops will be separated by the distance
specified by the first value in the array to which IpnTabStopPositions
points.

If IpnTabStopPositions points to more than a single value, then a tab stop is
set for each value in the array, up to the number specified by
nTabPositions.

GetTempDrive

Syntax BYTE GetTempDrive(cDriveLetter)
function GetTempDrive(DriveLetter: Char): Char;

This function takes a drive letter or zero and returns a letter that specifies
the optimal drive for a temporary file (the disk drive that can provide the
best access time during disk operations with a temporary file).

The GetTempDrive function returns the drive letter of a hard disk if the
system has one. If the cDriveLetter parameter is zero, the function returns
the drive letter of the current disk; if cDriveLetter is a letter, the function
returns the letter of that drive or the letter of another available drive.

Parameters cDriveLetter BYTE Specifies a disk-drive letter.

Return value The return value specifies the optimal disk drive for temporary files.

GetTempFileName

Syntax int GetTempFileName(cDriveLetter, lpPrefixString, wUnique,
IpTempFileName)
function GetTempFileName(DriveLetter: Char; PrefixString: PChar;
Unique: Word; TempFileName: PChar): Integer;

This function creates a temporary filename of the following form:drive:\
path\prefixuuuu.tmp

In this syntax line, drive is the drive letter specified by the cDriveLetter
parameter; path is the pathname of the temporary file (either the root
directory of the specified drive or the directory specified in the TEMP
environment variable); prefix is all the letters (up to the first three) of the
string pointed to by the IpPrefixString parameter; and uuuu is the
hexadecimal value of the number specified by the wlnigue parameter.

Chapter 4, Functions directory 351

GetTempFileName

Parameters

Return value

Comments

GetTextAlign

cDriveLetter BYTE Specifies the suggested drive for the temporary
filename. If cDriveLetter is zero, the default drive is used.

IpPrefixString ~ LPSTR Points to a null-terminated character string to be
used as the temporary filename prefix. This string must
consist of characters in the OEM-defined character set.

wlnique WORD Specifies an unsigned short integer.

IpTempFileName LPSTR Points to the buffer that is to receive the
temporary filename. This string consists of characters in
the OEM-defined character set. This buffer should be at
least 144 bytes in length to allow sufficient room for the
pathname.

The return value specifies a unique numeric value used in the temporary
filename. If a nonzero value was given for the wlnique parameter, the
return value specifies this same number.

To avoid problems resulting from converting OEM character an string to
an ANSI string, an application should call the _lopen function to create
the temporary file.

The GetTempFileName function uses the suggested drive letter for
creating the temporary filename, except in the following cases:

mIf a hard disk is present, GetTempFileName always uses the drive letter
of the first hard disk.

m Otherwise, if a TEMP environment variable is defined and its value
begins with a drive letter, that drive letter is used.

If the TF_FORCEDRIVE bit of the cDriveLetter parameter is set, the above
exceptions do not apply. The temporary filename will always be created
in the current directory of the drive specified by cDriveLetter, regardless of
the presence of a hard disk or the TEMP environment variable.

If the wlnique parameter is zero, GetTempFileName attempts to form a
unique number based on the current system time. If a file with the
resulting filename exists, the number is increased by one and the test for
existence is repeated. This continues until a unique filename is found;
GetTempFileName then creates a file by that name and closes it. No
attempt is made to create and open the file when wlnigue is nonzero.

Syntax

352

WORD GetTextAlign(hDC)

Software development kit

GetTextAlign

function GetTextAlign(DC: HDC): Word;

This function retrieves the status of the text-alignment flags. The text-
alignment flags determine how the TextOut and ExtTextOut functions
align a string of text in relation to the string’s starting point.

Parameters /L DC HDC Identifies the device context.

Return value The return value specifies the status of the text-alignment flags. The return
value is a combination of one or more of the following values:

Value Meaning

TA_BASELINE Specifies alignment of the x-axis and the baseline of the
chosen font within the bounding rectangle.

TA_BOTTOM Specifies alignment of the x-axis and the bottom of the
bounding rectangle.

TA_CENTER Specifies alignment of the y-axis and the center of the
bounding rectangle.

TA_LEFT Specifies alignment of the y-axis and the left side of the
bounding rectangle.

TA_NOUPDATECP Specifies that the current position is not updated.

TA_RIGHT Specifies alignment of the y-axis and the right side of the
bounding rectangle.

TA_TOP Specifies alignment of the x-axis and the top of the
bounding rectangle.

TA_UPDATECP Specifies that the current position is updated.

Comments The text-alignment flags are not necessarily single-bit flags and may be
equal to zero. To verify that a particular flag is set in the return value of
this function, build an application that will perform the following steps:

1. Apply the bitwise OR operator to the flag and its related flags.
The following list shows the groups of related flags:

oTA_LEFT, TA_CENTER, and TA_RIGHT
oTA_BASELINE, TA_BOTTOM, and TA_TOP
o TA_NOUPDATECP and TA_UPDATECP

2. Apply the bitwise AND operator to the result and the return value.
3. Test for the equality of this result and the flag.

The following example shows a method for determining which
horizontal-alignment flag is set:

switch ((TA_LEFT | TA RIGHT | TA CENTER) & GetTextAlign(hDC)) { case TA_LEFT

case TA RIGHT

Chapter 4, Functions directory 353

GetiTextAlign

case TA CENTER

}

GetfTextCharacterExira

Syntax int GetTextCharacterExtra(hDC)
function GetTextCharacterExtra(DC: HDC): Integer;

This function retrieves the current intercharacter spacing. The
intercharacter spacing defines the extra space (in logical units) that the
TextOut or ExtTextOut functions add to each character as they write a
line. The spacing is used to expand lines of text.

If the current mapping mode is not MM_TEXT, the
GetTextCharacterExtra function transforms and rounds the result to the
nearest unit.

Parameters /1 DC HDC Identifies the device context.

Return value The return value specifies the current intercharacter spacing.

GetTextColor

Syntax DWORD GetTextColor(hDC)
function GetTextColor(DC: HDC): TColorRef;

This function retrieves the current text color. The text color defines the
foreground color of characters drawn by using the TextOut or ExtTextOut
functions.

Parameters /1DC HDC Identifies the device context.

Return value The return value specifies the current text color as an RGB color value.

GetTextExtent

Syntax DWORD GetTextExtent(hDC, lpString, nCount)
function GetTextExtent(DC: HDC; Str: PChar; Count: Integer): Longint;

This function computes the width and height of the line of text pointed to
by the IpString parameter. The GetTextExtent function uses the currently
selected font to compute the dimensions of the string. The width and

354 Software development kit

GetTexiExtent

height (in logical units) are computed without considering the current
clipping region.

Parameters h1DC HDC Identifies the device context.
IpString LPSTR Points to a text string.
nCount int Specifies the number of characters in the text string.

Return value The return value specifies the dimensions of the string. The height is in
the high-order word; the width is in the low-order word.

Comments Since some devices do not place characters in regular cell arrays (that is,
they carry out kerning), the sum of the extents of the characters in a string
may not be equal to the extent of the string.

GetfTextFace

Syntax int GetTextFace(hDC, nCount, IpFacename)
function GetTextFace(DC: HDC; Count: Integer; Facename: PChar):
Integer;

This function copies the typeface name of the selected font into a buffer
pointed to by the IpFacename parameter. The typeface name is copied as a
null-terminated character string. The nCount parameter specifies the
maximum number of characters to be copied. If the name is longer than
the number of characters specified by nCount, it is truncated.

Parameters 1DC HDC Identifies the device context.
nCount int Specifies the size of the buffer in bytes.

IpFacename LPSTR Points to the buffer that is to receive the typeface
name.

Return value The return value specifies the actual number of bytes copied to the buffer.
It is zero if an error occurs.

GetTextMetrics

Syntax BOOL GetTextMetrics(hDC, lpMetrics)
function GetTextMetrics(DC: HDC; var Metrics: TTextMetric): Bool;

This function fills the buffer pointed to by the IpMetrics parameter with
the metrics for the selected font.

Parameters KhDC HDC Identifies the device context.

Chapter 4, Functions directory 355

GetTextMetrics

IpMetrics LPTEXTMETRIC Points to the TEXTMETRIC data structure
that is to receive the metrics.

Return value The return value specifies the outcome of the function. It is nonzero if the
function is successful. Otherwise, it is zero.

GetThresholdEvent

Syntax LPINT GetThresholdEvent()
function GetThresholdEvent: PInteger;

This function retrieves a flag that identifies a recent threshold event. A
threshold event is any transition of a voice queue from 7 to n — 1 where n
is the threshold level in notes.

Parameters None.

Return value The return value points to a short integer that specifies a threshold event.

GetThresholdStatus

Syntax int GetThresholdStatus()
function GetThresholdStatus: Integer;

This function retrieves the threshold-event status for each voice. Each bit
in the status represents a voice. If a bit is set, the voice-queue level is
currently below threshold.

The GetThresholdStatus function also clears the threshold-event flag.

Parameters None.

Return value The return value specifies the status flags of the current threshold event.

GeftTickCount

Syntax DWORD GetTickCount()
function GetTickCount: Longint;

This function obtains the number of milliseconds that have elapsed since
the system was started.

Parameters None.

356 Software development kit

GetTickCount

Return value The return value specifies the number of milliseconds that have elapsed
since the system was started.

Comments The count is accurate within +55 milliseconds.

GetTopWindow
Syntax HWND GetTopWindow(hWnd) |
function GetTopWindow(Wnd: HWnd): HWnd;

This function searches for a handle to the top-level child window that
belongs to the parent window associated with the hWnd parameter. If the
window has no children, this function returns NULL.

Parameters 1 Wnd HWND Identifies the parent window.

Return value The return value identifies a handle to the top-level child window in a
parent window’s linked list of child windows. If no child windows exist, it
is NULL.

GetUpdateRect

Syntax BOOL GetUpdateRect(hWnd, IpRect, bErase)
function GetUpdateRect(Wnd: HWnd; var Rect: TRect; Erase: Book): Bool;

This function retrieves the coordinates of the smallest rectangle that
completely encloses the update region of the given window. If the
window was created with the CS_OWNDC style and the mapping mode
is not MM_TEXT, the GetUpdateRect function gives the rectangle in
logical coordinates. Otherwise, GetUpdateRect gives the rectangle in
client coordinates. If there is no update region, GetUpdateRect makes the
rectangle empty (sets all coordinates to zero).

The bErase parameter specifies whether GetUpdateRect should erase the
background of the update region. If bErase is TRUE and the update region
is not empty, the background is erased. To erase the background,
GetUpdateRect sends a WM_ERASEBKGND message to the given

window.
Parameters hWnd HWND Identifies the window whose update region is to be
retrieved.
IpRect LPRECT Points to the RECT data structure that is to receive

the client coordinates of the enclosing rectangle.

Chapter 4, Functions directory 357

GetUpdateRect

Return value

Comments

bErase BOOL Specifies whether the background in the update
region is to be erased.

The return value specifies the status of the update region of the given
window. It is nonzero if the update region is not empty. Otherwise, it is
Zero.

The update rectangle retrieved by the BeginPaint function is identical to
that retrieved by the GetUpdateRect function.

BeginPaint automatically validates the update region, so any call to
GetUpdateRect made immediately after the BeginPaint call retrieves an
empty update region.

GetUpdateRgn

358

Syntax

Parameters

Return value

Parameters

Comments

int GetUpdateRgn(hWnd, hRgn, fErase)
function GetUpdateRgn(Wnd: HWnd; Rgn: HRgn; Erase: Bool): Integer;

This function copies a window’s update region into a region identified by
the hRgn parameter. The coordinates of this region are relative to the
upper-left corner of the window (client coordinates).

hWnd HWND Identifies the window that contains the region to be
updated.

hRgn HRGN Identifies the update region.

rase ecifies whether or not the window backgroun
BOOL Specifi heth he window backg; d
should be erased and nonclient areas of child windows
should be drawn. If it is zero, no drawing is done.

The return value specifies a short-integer flag that indicates the type of
resulting region. It can be any one of the following values:

COMPLEXREGION The region has overlapping borders.

ERROR No region was created.
NULLREGION The region is empty.
SIMPLEREGION The region has no overlapping borders.

BeginPaint automatically validates the update region, so any call to
GetUpdateRgn made immediately after the BeginPaint cali retrieves an
empty update region.

Software development kit

GetVersion

GetVersion

Syntax WORD GetVersion()
function GetVersion: Longint;

This function returns the current version number of Windows.

Parameters None.

Return value The return value specifies the major and minor version numbers of]
Windows. The high-order byte specifies the minor version (revision) ‘
number; the low-order byte specifies the major version number.

GetViewportext

Syntax DWORD GetViewportExt(hDC)
function GetViewportExt(DC: HDC): Longint;

This function retrieves the x- and y-extents of the device context’s
viewport.

Parameters hDC HDC Identifies the device context. ‘

Return value The return value specifies the x- and y-extents (in device units). The y-
extent is in the high-order word; the x-extent is in the low-order word.

GetViewportOrg

Syntax DWORD GetViewportOrg(hDC)
function GetViewportOrg(DC: HDC): Longint;

This function retrieves the x- and y-coordinates of the origin of the
viewport associated with the specified device context.

Parameters hDC HDC Identifies the device context.

Return value The return value specifies the origin of the viewport (in device
coordinates). The y-coordinate is in the high-order word; the x-coordinate
is in the low-order word.

Chapter 4, Functions directory 359

GetWindow

GetWindow

Syntax HWND GetWindow(hWnd, wCmd)

Parameters

function GetWindow(Wnd: HWnd; Cmd: Word): HWnd;

This function searches for a handle to a window from the window
manager’s list. The window-manager’s list contains entries for all top-level
windows, their associated child windows, and the child windows of any
child windows. The wCmd parameter specifies the relationship between
the window identified by the hWnd parameter and the window whose

handle is returned.
hWnd
wCmd

HWND Identifies the original window.
WORD Specifies the relationship between the original

window and the returned window. It may be one of the

following values:

Value
GW_CHILD

GW_HWNDFIRST

GW_HWNDLAST

GW_HWNDNEXT

GW_HWNDPREV

GW_OWNER

Meaning

Identifies the window’s first
child window.

Returns the first sibling window
for a child window. Otherwise,
it returns the first top-level
window in the list.

Returns the last sibling window
for a child window. Otherwise,
it returns the last top-level
window in the list.

Returns the window that
follows the given window on
the window manager’s list.
Returns the previous window
on the window manager’s list.
Identifies the window’s owner.

Refurn value The return value identifies a window. It is NULL if it reaches the end of

the window manager’s list or if the wCmd parameter is invalid.

GetWindowDC

360

Syntax HDC GetWindowDC(hWnd)
function GetWindowDC(Wnd: HWnd): HDC;

Software development kit

GetWindowDC

This function retrieves the display context for the entire window,
including caption bar, menus, and scroll bars. A window display context
permits painting anywhere in a window, including the caption bar,
menus, and scroll bars, since the origin of the context is the upper-left
corner of the window instead of the client area.

GetWindowDC assigns default attributes to the display context each time
it retrieves the context. Previous attributes are lost.

Parameters 1 Wnd HWND Identifies the window whose display context is to be
retrieved.

Return value The return value identifies the display context for the given window if the
function is successful. Otherwise, it is NULL.

Comments The GetWindowDC function is intended to be used for special painting
effects within a window’s nonclient area. Painting in nonclient areas of
any window is not recommended.

The GetSystemMetrics function can be used to retrieve the dimensions of
various parts of the nonclient area, such as the caption bar, menu, and
scroll bars.

After painting is complete, the ReleaseDC function must be called to
release the display context. Failure to release a window display context
will have serious effects on painting requested by applications.

GetWindowExt

Syntax DWORD GetWindowExt(hDC)
function GetWindowExt(DC: HDC): Longint;

This function retrieves the x- and y-extents of the window associated with
the specified device context.

Parameters 1DC HDC Identifies the device context.

Return value The return value specifies the x- and y-extents (in logical units). The y-
extent is in the high-order word; the x-extent is in the low-order word.

GetWindowlong

Syntax LONG GetWindowLong(hWnd, nIndex)
function GetWindowLong(Wnd: HWnd; Index: Integer): Longint;

Chapter 4, Functions directory 361

GetWindowlLong

This function retrieves information about the window identified by the

hWnd parameter.
Parameters 1 Wnd HWND Identifies the window.

nindex int Specifies the byte offset of the value to be retrieved. It can
also be one of the following values:
Value Meaning
GWL_EXSTYLE Extended window style.
GWL_STYLE Window style
GWL_WNDPROC Long pointer to the window

function

Return value The return value specifies information about the given window.

Comments To access any extra four-byte values allocated when the window-class
structure was created, use a positive byte offset as the index specified by
the nlndex parameter, starting at zero for the first four-byte value in the
extra space, 4 for the next four-byte value and so on.

GetWindowOrg

Syntax DWORD GetWindowOrg(hDC)
function GetWindowOrg(DC: HDC): Longint;

This function retrieves the x- and y-coordinates of the origin of the
window associated with the specified device context.

Parameters /hHDC HDC Identifies the device context.

Return value The return value specifies the origin of the window (in logical
coordinates). The y-coordinate is in the high-order word; the x-coordinate
is in the low-order word.

GetWindowRect

Syntax void GetWindowRect(hWnd, IpRect)
procedure GetWindowRect(Wnd: HWnd; var Rect: TRect);

This function copies the dimensions of the bounding rectangle of the
specified window into the structure pointed to by the IpRect parameter.
The dimensions are given in screen coordinates, relative to the upper-left
corner of the display screen, and include the caption, border, and scroll
bars, if present.

362 Software development kit

GetWindowRect

Parameters L Wnd HWND Identifies the window.

IpRect LPRECT Points to a RECT data structure that contains the
screen coordinates of the upper-left and lower-right corners
of the window.

Return value None.

GetWindowsDirectory

Syntax WORD GetWindowsDirectory(IpBuffer, nSize)
function GetWindowsDirectory (Buffer: PChar; Size: Word): Word;

This function obtains the pathname of the Windows directory. The
Windows directory contains such files as Windows applications,
initialization files, and help files.

Parameters IpBuffer LPSTR Points to the buffer that is to receive the null-
terminated character string containing the pathname.

nSize int Specifies the maximum size (in bytes) of the buffer. This
value should be set to at least 144 to allow sufficient room in
the buffer for the pathname.

Return value The return value is the length of the string copied to IpBuffer, not
including the terminating null character. If the return value is greater than
nSize, the return value is the size of the buffer required to hold the
pathname. The return value is zero if the function failed.

Comments The pathname retrieved by this function does not end with a backslash (\
), unless the Windows directory is the root directory. For example, if the
Windows directory is named WINDOWS on drive C:, the pathname of the
Windows directory retrieved by this function is C:\WINDOWS. If
Windows was installed in the root directory of drive C:, the pathname
retrieved by this function is C:\.

GetWindowTask

Syntax HANDLE GetWindowTask(hWnd)
function GetWindowTask(Wnd: HWnd): THandle;

This function searches for the handle of a task associated with the hWnd
parameter. A task is any program that executes as an independent unit.

Chapter 4, Functions directory 363

GetWindowTask

Parameters

Return value

All applications are executed as tasks. Each instance of an application is a
task.

hWnd HWND Identifies the window for which a task handle is
retrieved.

The return value identifies the task associated with a particular window.

GetWindowText

Syntax

Parameters

Return value

Comments

int GetWindowText(hWnd, 1pString, nMaxCount)
function GetWindowText(Wnd: HWnd; Str: PChar; MaxCount: Integer):
Integer;

This function copies the given window’s caption title (if it has one) into
the buffer pointed to by the IpString parameter. If the hWnd parameter
identifies a control, the GetWindowText function copies the text within the
control instead of copying the caption.

hWnd HWND Identifies the window or control whose caption or
text is to be copied.

IpString LPSTR Points to the buffer that is to receive the copied
string,.

nMaxCount int Specifies the maximum number of characters to be copied
to the buffer. If the string is longer than the number of
characters specified in the nMaxCount parameter, it is
truncated.

The return value specifies the length of the copied string. It is zero if the
window has no caption or if the caption is empty.

This function causes a WM_GETTEXT message to be sent to the given
window or control.

GetWindowTextLength

364

Syntax

Parameters

int GetWindowTextLength(hWnd)
function GetWindowTextLength(Wnd: HWnd): Integer;

This function returns the length of the given window’s caption title. If the
hWnd parameter identifies a control, the GetWindowTextLength function
returns the length of the text within the control instead of the caption.

hWnd HWND Identifies the window or control.

Software development kit

GetWindowTexiLength

Return value The return value specifies the text length. It is zero if no such text exists.

GetWindowWord

Syntax WORD GetWindowWord(hWnd, nIndex)
function GetWindowWord(Wnd: HWnd; Index: Integer): Word;

This function retrieves information about the window identified by hWnd.

Parameters 1 Wnd HWND Identifies the window.
nindex int Specifies the byte offset of the value to be retrieved. It can
also be one of the following values:
Value Meaning
GWW_HINSTANCE Instance handle of the module

that owns the window.

GWW_HWNDPARENT Handle of the parent window, if
any. The SetParent function
changes the parent window of a
child window. An application
should not call the
SetWindowLong function to
change the parent of a child
window.

GWW_ID Control ID of the child window.

Return value The return value specifies information about the given window.

Comments To access any extra two-byte values allocated when the window-class
structure was created, use a positive byte offset as the index specified by
the nlndex parameter, starting at zero for the first two-byte value in the
extra space, 2 for the next two-byte value and so on.

GetWinFlags 3.0

Syntax DWORD GetWinFlags()
function GetWinFlags: Longint;

This function returns a 32-bit value containing flags which specify the
memory configuration under which Windows is running.

Parameters None.

Chapter 4, Functions directory 365

GetWinFlags

Return value The return value contains flags specifying the current memory

configuration. These flags may be any of the following values:

WEF_80x87 System contains an Intel math coprocessor.
WEF_CPU086 System CPU is an 8086.

WEF_CPU186 System CPU is an 80186.

WEF_CPU286 System CPU is an 80286.

WEF_CPU386 System CPU is an 80386.

WE_CPU486 System CPU is an 80486.

WF_ENHANCED Windows is running in 386 enhanced mode. The
WEF_PMODE flag is always set when
WE_ENHANCED is set.

WF_LARGEFRAME Windows is running in EMS large-frame memory
configuration.

WF_PMODE Windows is running in protected mode. This flag
is always set when either WF_ENHANCED or
WF_STANDARD is set.

WF_SMALLFRAME Windows is running in EMS small-frame memory
configuration.

WEF_STANDARD Windows is running in standard mode. The
WF_PMODE flag is always set when
WE_STANDARD is set.

If neither WF_ENHANCED nor WF_STANDARD is set, Windows is
running in real mode.

GlobalAddAtom

Syntax ATOM GlobalAdd Atom(lpString)

366

function GlobalAdd Atom(Str: PChar): TAtom;

This function adds the character string pointed to by the IpString
parameter to the atom table and creates a new global atom that uniquely
identifies the string. A global atom is an atom that is available to all
applications. The atom can be used in a subsequent GlobalGetAtomName
function to retrieve the string from the atom table.

The GlobalAddAtom function stores no more than one copy of a given
string in the atom table. If the string is already in the table, the function
returns the existing atom value and increases the string’s reference count
by one. The string’s reference count is a number that specifies the number
of times GlobalAddAtom has been called for a particular string.

Software development kit

Parameters
Return value

Comments

GlobalAlloc

GlobalAddAtom

IpString LPSTR Points to the character string to be added to the table.
The string must be a null-terminated character string.

The return value identifies the newly created atom if the function is
successful. Otherwise, it is NULL.

The atom values returned by GlobalAddAtom are within the range 0xC000
to OxFFEF.

Syntax

Parameters

HANDLE GlobalAlloc(wFlags, dwBytes)
function GlobalAlloc(Flags: Word; Bytes: Longint): THandle;

This function allocates the number of bytes of memory specified by the
dwBytes parameter from the global heap. The memory can be fixed or
moveable, depending on the memory type specified by the wFlags
parameter.

wFlags WORD Specifies one or more flags that tell the GlobalAlloc
function how to allocate the memory. It can be one or more
of the following values:

Value Meaning

GMEM_DDESHARE Allocates sharable memory. This
is used for dynamic data
exchange (DDE) only. Note,
however, that Windows
automatically discards memory
allocated with this attribute
when the application that
allocated the memory
terminates.

GMEM_DISCARDABLE Allocates discardable memory.
Can only be used with
GMEM_MOVEABLE.

GMEM_FIXED Allocates fixed memory.

GMEM_MOVEABLE Allocates moveable memory.
Cannot be used with
GMEM_FIXED.

GMEM_NOCOMPACT Does not compact or discard to
satisfy the allocation request.

Chapter 4, Functions directory 367

GlobalAlloc

GMEM_NODISCARD Does not discard to satisfy the
allocation request.

GMEM_NOT_BANKED Allocates non-banked memory.
Cannot be used with
GMEM_NOTIFY.

GMEM_NOTIFY Calls the notification routine if
the memory object is ever
discarded.

GMEM_ZEROINIT Initializes memory contents to
zero.

Choose GMEM_FIXED or GMEM_MOVEABLE, and then
combine others as needed by using the bitwise OR operator.

dwBytes DWORD Specifies the number of bytes to be allocated.

Return value The return value identifies the allocated global memory if the function is
successful. Otherwise, it is NULL.

Comments If this function is successful, it allocates at least the amount requested. The
actual amount allocated may be greater, and the application can use the
entire amount. To determine the actual amount allocated, call the
GlobalSize function.

The largest block of memory that an application can allocate is 1 MB in
standard mode and 64 MB in 386 enhanced mode.

GlobalCompact

Syntax DWORD GlobalCompact(dwMinFree)
function GlobalCompact(MinFree: Longint): Longint;

This function generates the number of free bytes of global memory
specified by the dwMinFree parameter by compacting and, if necessary,
discarding from the system’s global heap. The function always compacts
memory before checking for free memory. It then checks the global heap
for the number of contiguous free bytes specified by the dwMinFree
parameter. If the bytes do not exist, the GlobalCompact function discards
unlocked discardable blocks until the requested space is generated,
whenever possible.

Parameters dwMinFree DWORD Specifies the number of free bytes desired.

Return value The return value specifies the number of bytes in the largest block of free
global memory.

368 Software development kit

Comments

GlobalDeleteAtom

GlobalCompact

If dwMinFree is zero, the return value specifies the number of bytes in the
largest free segment that Windows can generate if it removes all
discardable segments.

If an application uses the return value as the dwBytes parameter to the
GlobalAlloc function, the GMEM_NOCOMPACT or
GMEM_NODISCARD flags should not be used.

Syntax

Parameters

Return value

GlobalDiscard

ATOM GlobalDeleteAtom(nAtom)
function GlobalDeleteAtom(AnAtom: TAtom): TAtom;

This function decreases the reference count of a global atom by one. If the
atom’s reference count becomes zero, this function removes the associated
string from the atom table. (A global atom is an atom that is available to
all Windows applications.)

An atom’s reference count specifies the number of times the atom has been
added to the atom table. The GlobalAddAtom function increases the count
on each call; the GlobalDeleteAtom function decreases the count on each
call. GlobalDeleteAtom removes the string only if the atom’s reference
count is zero.

nAtom ATOM Identifies the atom and character string to be deleted.

The return value specifies the outcome of the function. It is NULL if the
function is successful. It is equal to nAtom if the function failed and the
atom has not been deleted.

Syntax

Parameters

HANDLE GlobalDiscard(hMem)
function GlobalDiscard(Mem: THandle): THandle;

This function discards a global memory block specified by the hMem
parameter. The lock count of the memory block must be zero.

The global memory block is removed from memory, but its handle
remains valid. An application can subsequently pass the handle to the
GlobalReAlloc function to allocate another global memory block
identified by the same handle.

hMem HANDLE Identifies the global memory block to be discarded.

Chapter 4, Functions directory 369

GlobalDiscard

Return value

Comments

The return value identifies the discarded block if the function is
successful. Otherwise, it is zero.

The GlobalDiscard function discards only global objects that an
application allocated with the GMEM_DISCARDABLE and
GMEM_MOVEABLE flags set. The function fails if an application
attempts to discard a fixed or locked object.

GlobalDosAlloc 3.0

Syntax

Parameters

Return value

Comments

DWORD GlobalDosAlloc(dwBytes)
function GlobalDosAlloc(Bytes: Longint): Longint;

This function allocates global memory which can be accessed by DOS
running in real mode. The memory is guaranteed to exist in the first
megabyte of linear address space.

dwBytes DWORD Specifies the number of bytes to be allocated.

The return value contains a paragraph-segment value in its high-order
word and a selector in its low-order word. An application can use the
paragraph-segment value to access memory in real mode and the selector
to access memory in protected mode. If Windows is running in real mode,
the high-order and low-order words will be equal. If Windows cannot
allocate a block of memory of the requested size, the return value is
NULL.

An application should not use this function unless it is absolutely
necessary. The memory pool from which the object is allocated is a scarce
system resource.

GlobalDosFree 3.0

370

Syntax

Parameters

Return value

WORD GlobalDosFree(wSelector)
function GlobalDosFree(Selector: Word): Word;

This function frees a block of global memory previously allocated by a call
to the GlobalDosAlloc function.

wSelector WORD Specifies the memory to be freed.

The return value identifies the outcome of the function. It is NULL if the
function is successful. Otherwise, it is equal to wSelector.

Software development kit

GlobalFindAtom

GlobalFindAtom

Syntax

Parameters

Return value

GlobalFix

ATOM GlobalFind Atom(lpString)
function GlobalFind Atom(Str: PChar): TAtom;

This function searches the atom table for the character string pointed to by
the IpString parameter and retrieves the global atom associated with that
string. (A global atom is an atom that is available to all Windows
applications.)

IpString LPSTR Points to the character string to be searched for. The
string must be a null-terminated character string.

The return value identifies the global atom associated with the given
string. It is NULL if the string is not in the table.

3.0

Syntax

Parameters
Return value

Comments

void GlobalFix(hMem)
procedure GlobalFix(Mem: THandle);

This function prevents the global memory block identified by the hMem
parameter from moving in linear memory. The block is locked into linear
memory at its current address and its lock count is increased by one.
Locked memory is not subject to moving or discarding except when the
memory block is being reallocated by the GlobalReAlloc function. The
block remains locked in memory until its lock count is decreased to zero.

Each time an application calls GlobalFix for a memory object, it must
eventually call GlobalUnfix for the object. The GlobalUnfix function
decreases the lock count for the object. Other functions also can affect the
lock count of a memory object. See the description of the GlobalFlags
function for a list of the functions that affect the lock count.

hMem HANDLE Identifies the global memory block.
None.

Calling this function interferes with Windows memory management and
results in linear-address fragmentation. Very few applications need to fix
memory in linear address space.

Chapter 4, Functions directory 371

GlobalFlags

GlobalFlags
Syntax ' WORD GlobalFlags(hMem)
function GlobalFlags(Mem: THandle): Word;
This function returns information about the global memory block
specified by the hMem parameter.
Parameters h1Mem HANDLE Identifies the global memory block.

Return value

Parameters

Comments

GlobalFree

The return value specifies a memory-allocation flag in the high byte. The
flag will be one of the following values:

GMEM_DDESHARE The block can be shared. This is used for
dynamic data exchange (DDE) only.
GMEM_DISCARDABLE The block can be discarded.
GMEM_DISCARDED The block has been discarded.
GMEM_NOT_BANKED The block cannot be banked.

The low byte of the return value contains the lock count of the block. Use
the GMEM_LOCKCOUNT mask to retrieve the lock-count value from the
return value.

To test whether or not an object can be discarded, AND the return value
of GlobalFlags with GMEM_DISCARDABLE.

The following functions can affect the lock count of a global memory
block:

Increases Lock Count Decreases Lock Count

GlobalFix GlobalUnfix
GloballLock GlobalUnlock
GlobalWire GlobalUnWire
LockSegment UnlockSegment

372

Syntax

Parameters

Return value

HANDLE GlobalFree(hMem)
function GlobalFree(Mem: THandle): THandle;

This function frees the global memory block identified by the hMem
parameter and invalidates the handle of the memory block.

hMem HANDLE Identifies the global memory block to be freed.

The return value identifies the outcome of the function. It is NULL if the
function is successful. Otherwise, it is equal to hMem.

Software development kit

GlobalFree

Comments The GlobalFree function must not be used to free a locked memory block,
that is, a memory block with a lock count greater than zero. See the
description of the GlobalFlags function for a list of the functions that
affect the lock count.

GlobalGetAtfomName

Syntax ' WORD GlobalGetAtomName(nAtom, lpBuffer, nSize)
function GlobalGetAtomName(AnAtom: TAtom; Buffer: PChar; Size:
Integer): Word;

This function retrieves a copy of the character string associated with the
nAtom parameter and places it in the buffer pointed to by the IpBuffer
parameter. The nSize parameter specifies the maximum size of the buffer.
(A global atom is an atom that is available to all Windows applications.)

Parameters nAtom ATOM Identifies the character string to be retrieved.
IpBuffer LPSTR Points to the buffer that is to receive the character
string.
nSize int Specifies the maximum size (in bytes) of the buffer.

Return value The return value specifies the actual number of bytes copied to the buffer.
It is zero if the specified global atom is not valid.

GlobalHandle

Syntax DWORD GlobalHandle(wMem)
function GlobalHandle(Mem: Word): Longint;

This function retrieves the handle of the global memory object whose
segment address or selector is specified by the wMem parameter.

Parameters wMem WORD Specifies an unsigned integer value that gives the
segment address or selector of a global memory object.

Return value The low-order word of the return value specifies the handle of the global
memory object. The high-order word of the return value specifies the
segment address or selector of the memory object. The return value is
NULL if no handle exists for the memory object.

Chapter 4, Functions directory 373

Globallock

GlobalLock

Syntax

Parameters

Return value

Comments

LPSTR GlobalLock(hMem)
function GlobalLock(Mem: THandle): Pointer;

This function retrieves a pointer to the global memory block specified by
the hMem parameter.

Except for nondiscardable objects in protected (standard or 386 enhanced)
mode, the block is locked into memory at the given address and its lock
count is increased by one. Locked memory is not subject to moving or
discarding except when the memory block is being reallocated by the
GlobalReAlloc function. The block remains locked in memory until its
lock count is decreased to zero.

In protected mode, GlobalLock increments the lock count of discardable
objects and automatic data segments only.

Each time an application calls GlobalLock for an object, it must eventually
call GlobalUnlock for the object. The GlobalUnlock function decreases the
lock count for the object if GlobalLock increased the lock count for the
object. Other functions also can affect the lock count of a memory object.
See the description of the GlobalFlags function for a list of the functions
that affect the lock count.

hMem HANDLE Identifies the global memory block to be locked.

The return value points to the first byte of memory in the global block if
the function is successful. If the object has been discarded or an error
occurs, the return value is NULL.

Discarded objects always have a lock count of zero.

GlobalLRUNewest

374

Syntax

Parameters

Return value

HANDLE GlobalLRUNewest(hMem)
function GlobalLRUNewest(Mem: THandle): THandle;

This function moves the global memory object identified by hMem to the
newest least-recently-used (LRU) position in memory. This greatly
reduces the likelihood that the object will be discarded soon, but does not
prevent the object from eventually being discarded.

hMem HANDLE Identifies the global memory object to be moved.

The return value is NULL if the hMem parameter does not specify a valid
handle.

Software development kit

GlobalLRUNewest

Comments This function is useful only if hMem is discardable.

GlobalLRUOIdest

Syntax HANDLE GlobalLRUOQOIldest(hMem)
function GlobalLRUOIldest(Mem: THandle): THandle;

This routine moves the global memory object identified by hMem to the
oldest least-recently-used (LRU) position in memory and, in so doing,
makes it the next candidate for discarding.

Parameters hMem HANDLE Identifies the global memory object to be moved.

Return value The return value is NULL if the hMem parameter does not specify a valid
handle.

Comments This function is useful only if hkMem is discardable.

GlobalNotify

Syntax void GlobalNotify(IpNotifyProc)
procedure GlobalNotify(NotifyProc: TFarProc);

This function installs a notification procedure for the current task.
Windows calls the notification procedure whenever a global memory
block allocated with the GMEM_NOTIFY flag is about to be discarded.

Parameters IpNotifyProc FARPROC Is the procedure instance address of the current
task’s notification procedure.

Return value None.
Comments An application must not call GlobalNotify more than once per instance.

Windows does not call the notification procedure when it discards
memory belonging to a DLL.

If the object is discarded, the application must use the GMEM_NOTIFY
flag when it recreates the object by calling the GlobalRealloc function.
Otherwise, the application will not be notified when the object is
discarded again.

If the notification procedure returns a nonzero value, Windows discards
the global memory block. If it returns zero, the block is not discarded.

Chapter 4, Functions directory 375

GlobalNotify

Callback
function

Parameters
Return value

Comments

The callback function must use the Pascal calling convention and must be
declared FAR. The callback function must reside in a fixed code segment
of a DLL.

Bool FAR PASCAL NotifyProc(hMem)

NotifyProc is a placeholder for the application-supplied function name.
Export the name by including it in an EXPORTS statement in the DLL's
module-definition statement.

hMem HANDLE Identifies the global memory block being
discarded.

The function returns a nonzero value if Windows is to discard the
memory block, and zero if it should not.

The callback function is not necessarily called in the context of the
application that owns the routine. For this reason, the callback function
should not assume the stack segment of the application. The callback
function should not call any routine that might move memory.

GlobalPagelock 3.0

376

Syntax

Parameters

Return value

Comments

WORD GlobalPageLock(wSelector)
function GlobalPageLock(Selector: THandle): Word;

This function increments the page-lock count of the memory associated
with the specified global selector. As long as its page-lock count is
nonzero, the data which the selector references is guaranteed to remain in
memory at the same physical address and to remain paged in.

GlobalPageLock increments the page-lock count for the block of memory,
and the GlobalPageUnlock function decrements the page-lock count.
Page-locking operations can be nested, but each page lock must be
balanced by a corresponding unlock.

wSelector WORD Specifies the selector of the memory to be page-
locked.

The return value specifies the page-lock count after the function has
incremented it. If the function fails, the return value is zero.

An application should not use this function unless it is absolutely
necessary. Use of this function violates preferred Windows programming
practices. It is intended to be used for dynamically allocated data that

Software development kit

GlobalPageUnlock

must be accessed at interrupt time. For this reason, it must only be called
from a DLL.

GlobalPageUnlock 3.0

Syntax

Parameters

Return value

WORD GlobalPageUnlock(wSelector)
function GlobalPageUnlock(Selector: THandle): Word;

This function decrements the page-lock count for the block of memory
identified by the wSelector parameter and, if the page-lock count reaches
zero, allows the block of memory to move and to be paged to disk.

The GlobalPageLock function increments the page-lock count for the
block of memory, and GlobalPageUnlock decrements the page-lock count.
Page-locking operations can be nested, but each page lock must be
balanced by a corresponding unlock.

Only libraries can call this function.

wSelector WORD Specifies the selector of the memory to be page-
unlocked.

The return value specifies the page-lock count after the function has
decremented it. If the function fails, the return value is zero.

GlobalReAlloc

Syntax

Parameters

HANDLE GlobalReAlloc(hMem, dwBytes, wFlags)
function GlobalReAlloc(Mem: THandle; Bytes: Longint; Flags: Word):
THandle;

This function reallocates the global memory block specified by the hMem
parameter by increasing or decreasing its size to the number of bytes
specified by the dwBytes parameter.

hMem HANDLE Identifies the global memory block to be
reallocated.

dwBytes DWORD Specifies the new size of the memory block.

wFlags WORD Specifies how to reallocate the global block.
If the existing memory flags can be modified, use either one
or both of the following flags (if both flags are specified, join
them with the bitwise OR operator):

Chapter 4, Functions directory 377

GlobalReAlloc

378

Value
GMEM_DISCARDABLE

GMEM_MODIFY

GMEM_MOVEABLE

GMEM_NOCOMPACT

GMEM_NODISCARD

Meaning

Memory can be discarded. Use
only with GMEM_MODIFY.
Memory flags are modified. The
dwBytes parameter is ignored.
Use only if an application will
modify existing memory flags
and not reallocate the memory
block to a new size.

Memory is movable. If dwBytes
is zero, this flag causes an object
previously allocated as
moveable and discardable to be
discarded if the block’s lock
count is zero. If the block is not
moveable and discardable, the
GlobalReAlloc will fail. If
dwBytes is nonzero and the
block specified by hMem is fixed,
this flag allows the reallocated
block to be moved to a new
fixed location. If a moveable
object is locked, this flag allows
the object to be moved. This
may occur even if the object is
currently locked by a previous
call to GlobalLock. (Note that
the handle returned by the
GlobalReAlloc function in this
case may be different from the
handle passed to the function.)
Use this flag with
GMEM_MODIFY to make a
fixed memory block moveable.
Memory will not be compacted
or discarded in order to satisfy
the allocation request. This flag
is ignored if the
GMEM_MODIFY flag is set.
Objects will not be discarded in
order to satisfy the allocation
request. This flag is ignored if
the GMEM_MODIFY flag is set.

Software development kit

GlobalReAlloc

GMEM_ZEROINIT If the block is growing, the
additional memory contents are
initialized to zero. This flag is
ignored if the GMEM_MODIFY
flag is set.

Return value The return value identifies the reallocated global memory if the function is
successful. The return value is NULL if the block cannot be reallocated.

If the function is successful, the return value is always identical to the
hMem parameter, unless any of the following conditions is true:

m The GMEM_MOVEABLE flag is used to allow movement of a fixed
block to a new fixed location.

m Windows is running in standard mode and the object is reallocated past
a multiple of 65,519 bytes (16 bytes less than 64K).

@ Windows is running in 386 enhanced mode and the object is reallocated
past a multiple of 64K.

GlobalSize

Syntax DWORD GlobalSize(hMem)
function GlobalSize(Mem: THandle): Longint;

This function retrieves the current size (in bytes) of the global memory
block specified by the hMem parameter.

Parameters hMem HANDLE Identifies the global memory block.

Return value The return value specifies the actual size (in bytes) of the specified
memory block. It is zero if the given handle is not valid or if the object has
been discarded.

Comments The actual size of a memory block is sometimes larger than the size
requested when the memory was allocated.

An application should call the GlobalFlags function prior to calling the
GlobalSize function in order to verify that the specified memory block
was not discarded. If the memory block were discarded, the return value
for GlobalSize would be meaningless.

GlobalUnfix 3.0

Syntax BOOL GlobalUnfix(hMem)

Chapter 4, Functions directory 379

GlobalUnfix

Globalunlock

Parameters

Return value

function GlobalUnfix(Mem: THandle): Bool;

This function unlocks the global memory block specified by the hMem
parameter.

GlobalUnfix decreases the block’s lock count by one. The block is
completely unlocked and subject to moving or discarding if the lock count
is decreased to zero. Other functions also can affect the lock count of a
memory object. See the description of the GlobalFlags function for a list of
the functions that affect the lock count.

Each time an application calls GlobalFix for an object, it must eventually
call GlobalUnfix for the object.

hMem HANDLE Identifies the global memory block to be unlocked.

The return value specifies the outcome of the function. It is zero if the
block’s lock count was decreased to zero. Otherwise, the return value is
nonzero.

380

Syntax

Parameters

Return value

BOOL GlobalUnlock(hMem)
function GlobalUnlock(Mem: THandle): Bool;

This function unlocks the global memory block specified by the hMem
parameter.

In real mode, or if the block is discardable, GlobalUnlock decreases the
block’s lock count by one. In protected mode, GlobalUnock decreases the
lock count of discardable objects and automatic data segments only.

The block is completely unlocked and subject to moving or discarding if
the lock count is decreased to zero. Other functions also can affect the lock
count of a memory object. See the description of the GlobalFlags function
for a list of the functions that affect the lock count.

In all cases, each time an application calls GlobalLock for an object, it
must eventually call GlobalUnlock for the object.

hMem HANDLE Identifies the global memory block to be unlocked.

The return value specifies the outcome of the function. It is zero if the
block’s lock count was decreased to zero. Otherwise, the return value is
nonzero. An application shquld not rely on the return value to determine
the number of times it must subsequently call GlobalUnlock for the
memory block.

Software development kit

GlobalUnWire

GlobalUnWire

Syntax

Paramotors

Return value

GlobalWire

BOOL GlobalUnWire(hMem)
function GlobalUnWire(Mem: THandle): Bool;

This function unlocks a memory segment that was locked by the
GlobalWire function and decreases the lock count by one.

The block is completely unlocked and subject to moving or discarding if
the lock count is decreased to zero. Other functions also can affect the lock
count of a memory object. See the description of the GlobalFlags function
for a list of the functions that affect the lock count.

Each time an application calls GlobalWire for an object, it must eventually
call GlobalUnWire for the object.

hiMemn HANDLE Identifies the segment that will be unlocked.

The return value specifies the outcome of the function. It is TRUE if the
memory segment was unlocked, that is, its lock count was decreased to
zero. Otherwise, it is FALSE.

Syntax

LPSTR GlobalWire(hMem)
function GlobalWire(Mem: THandle): Pointer;

This function moves a segment into low memory and locks it—a
procedure that is extremely useful if an application must lock a segment
for a long period of time. If a segment from the middle portion of memory
is locked for a long period of time, it causes memory-management
problems by reducing the size of the largest, contiguous available block of
memory. The GlobalWire function moves a segment to the lowest possible
address in memory and locks it, thereby freeing the memory area
Windows uses most often.

Each time an application calls GlobalWire for an object, it must eventually
call GlobalUnWire for the object. The GlobalUnWire function decreases the
lock count for the object. Other functions also can affect the lock count of a
memory object. See the description of the GlobalFlags function for a list of
the functions that affect the lock count.

An application must not call the GlobalUnlock function to unlock the
object.

Chapter 4, Functions directory 381

GlobalWire

Parameters

Return value

GraysString

hMem HANDLE Identifies the segment that will be moved and
locked.

The return value points to the new segment location. It is NULL if the
function failed.

382

Syntax

Parameters

BOOL GrayString(hDC, hBrush, IpOutputFunc, lpData, nCount, X, Y,
nWidth, nHeight)

function GrayString(DC: HDC; Brush: HBrush; OutputFunc: TFarProc;
Data: Longint; Count, X, Y, Width, Height: Integer): Bool;

This function draws gray text at the given location. The GrayString
function draws gray text by writing the text in a memory bitmap, graying
the bitmap, and then copying the bitmap to the display. The function
grays the text regardless of the selected brush and background.
GrayString uses the font currently selected for the device context specified
by the hDC parameter.

If the IpOutputFunc parameter is NULL, GDI uses the TextOut function,
and the IpData parameter is assumed to be a long pointer to the character
string to be output. If the characters to be output cannot be handled by
TextOut (for example, the string is stored as a bitmap), the application
must supply its own output function.

hDC HDC Identifies the device context.
hBrush HBRUSH Identifies the brush to be used for graying.

IpOutputFuncFARPROC Is the procedure-instance address of the
application-supplied function that will draw the string, or, if
the TextOut function is to be used to draw the string, it is a
NULL pointer. See the following "Comments" section for
details.

IpData DWORD Specifies a long pointer to data to be passed to the
output function. If the IpOutputFunc parameter is NULL,
IpData must be a long pointer to the string to be output.

nCount int Specifies the number of characters to be output. If the
nCount parameter is zero, GrayString calculates the length of
the string (assuming that IpData is a pointer to the string). If
nCount is =1 and the function pointed to by IpOutputFunc
returns zero, the image is shown but not grayed.

Software development kit

GrayString

X int Specifies the logical x-coordinate of the starting position
of the rectangle that encloses the string.

Y int Specifies the logical y-coordinate of the starting position
of the rectangle that encloses the string.

nWidth int Specifies the width (in logical units) of the rectangle that
encloses the string. If the nWidth parameter is zero,
GrayString calculates the width of the area, assuming IpData
is a pointer to the string.

nHeight int Specifies the height (in logical units) of the rectangle that
encloses the string. If the nHeight parameter is zero,
GrayString calculates the height of the area, assuming IpData
is a pointer to the string.

Return value The return value specifies the outcome of the function. It is nonzero if the
string is drawn. A return value of zero means that either the TextOut
function or the application-supplied output function returned zero, or
there was insufficient memory to create a memory bitmap for graying.

Comments An application can draw grayed strings on devices that support a solid
gray color, without calling the GrayString function. The system color
COLOR_GRAYTEXT is the solid-gray system color used to draw disabled
text. The application can call the GetSysColor function to retrieve the
color value of COLOR_GRAYTEXT. If the color is other than zero (black),
the application can call the SetTextColor to set the text color to the color
value and then draw the string directly. If the retrieved color is black, the
application must call GrayString to gray the text.

The callback function must use the Pascal calling convention and must be
declared FAR.

Callback

function BOOL FAR PASCAL OutputFunc(hDC, IpData, nCount)
HDC hDC;
DWORD IpData;
int nCount;

OutputFunc is a placeholder for the application-supplied callback function
name. The actual name must be exported by including it in an EXPORTS
statement in the application’s module-definition file.

Parameters 1DC Identifies a memory device context with a bitmap of at least
the width and height specified by the nWidth and nHeight
parameters, respectively.

Chapter 4, Functions directory A 383 ‘

IpData Points to the character string to be drawn.

nCount Specifies the number of characters to be output.

Return value The return value must be nonzero to indicate success. Otherwise, it is
Zero.

Comments This output function (OutputFunc) must draw an image relative to the
coordinates (0,0) rather than (X,Y). The address passed as the
IpOutputFunc parameter must be created by using the MakeProclnstance
function, and the output function name must be exported; it must be
explicitly defined in an EXPORTS statement of the application’s module-
definition file.

The MM_TEXT mapping mode must be selected before using this
function.

HIBYTE

Syntax BYTE HIBYTE(nInteger)
function HiByte(A: Word): Byte;

This macro retrieves the high-order byte from the integer value specified
by the ninteger parameter.

Parameters ninteger Int Specifies the value to be converted.

Return value The return value specifies the high-order byte of the given value.

384 Software development kit

HideCaret

HideCaret

Syntax void HideCaret(hWnd)
procedure HideCaret(Wnd: HWnd);

This function hides the caret by removing it from the display screen.
Although the caret is no longer visible, it can be displayed again by using
the ShowCaret function. Hiding the caret does not destroy its current
shape.

The HideCaret function hides the caret only if the given window owns the
caret. If the hWnd parameter is NULL, the function hides the caret only if a
window in the current task owns the caret.

Hiding is cumulative. If HideCaret has been called five times in a row,
ShowCaret must be called five times before the caret will be shown.

Parameters 1 Wnd HWND Identifies the window that owns the caret, or it is
NULL to indirectly specify the window in the current task
that owns the caret.

Return value None.

HiliteMenultem

Syntax BOOL HiliteMenultem(hWnd, hMenu, wIDHiliteltem, wHilite)
function HiliteMenultem(Wnd: HWnd; Menu: HMenu; IDHilite, Hilite:
Word): Bool;

This function highlights or removes the highlighting from a top-level
(menu-bar) menu item.

Parameters 1 Wnd HWND Identifies the window that contains the menu.
hMenu HMENU Identifies the top-level menu that contains the
item to be highlighted.

wIDHiliteltem WORD Specifies the integer identifier of the menu item or
the offset of the menu item in the menu, depending on
the value of the wHilite parameter.

wHilite WORD Specifies whether the menu item is highlighted or
the highlight is removed. It can be a combination of
MF_HILITE or MF_UNHILITE with MF_BYCOMMAND
or MF_BYPOSITION. The values can be combined using

Chapter 4, Functions directory 385

HiliteMenultem

Return value

the bitwise OR operator. These values have the following
meanings:

Value Meaning

MF_BYCOMMAND
Interprets wIDHiliteltem as the menu-
item ID (the default interpretation).

MEF_BYPOSITION Interprets wIDHiliteltern as an offset.

MF_HILITE Highlights the item. If this value is not
given, highlighting is removed from
the item.

MF_UNHILITE = Removes highlighting from the item.

The return value specifies whether or not the menu item is highlighted the
outcome of the function. It is nonzero if the item is highlightedwas set to
the specified highlight state. Otherwise, it is zero FALSE.

Comments The MF_HILITE and MF_UNHILITE flags can be used only with the
HiliteMenultem function; they cannot be used with the ModifyMenu
function.

HIWORD
Syntax WORD HIWORD(dwInteger)
function HiWord(A: Longint): Word;
This macro retrieves the high-order word from the 32-bit integer value
specified by the dwinteger parameter.
Parameters dwinteger ~ DWORD Specifies the value to be converted.

Return value

InflateRect

The return value specifies the high-order word of the given 32-bit integer
value.

386

Syntax

void InflateRect(IpRect, X, Y)
procedure InflateRect(var Rect: TRect; X, Y: Integer);

This function increases or decreases the width and height of the specified
rectangle. The InflateRect function adds X units to the left and right ends
of the rectangle, and adds Y units to the top and bottom. The X and Y
parameters are signed values; positive values increase the width and
height, and negative values decrease them.

Software development kit

InflateRect

Parameters IpRect LPRECT Points to the RECT data structure to be modified.

X int Specifies the amount to increase or decrease the rectangle
width. It must be negative to decrease the width.

Y int Specifies the amount to increase or decrease the rectangle
height. It must be negative to decrease the height.

Return value None.

Comments The coordinate values of a rectangle must not be greater than 32,767 units
or less than -32,768 units. The X and Y parameters must be chosen
carefully to prevent invalid rectangles.

InitAtomTable

Syntax BOOL InitAtomTable(nSize)
function InitAtomTable(Size: Integer): Bool;

This function initializes an atom hash table and sets its size to that
specified by the nSize parameter. If this function is not called, the atom
hash table size is set to 37 by default.

If used, this function should be called before any other atom-management
function.

Parameters 1Size int Specifies the size (in table entries) of the atom hash table.
This value should be a prime number.

Return value The return value specifies the outcome of the function. It is nonzero if the
function is successful. Otherwise, it is zero.

Comments If an application uses a large number of atoms, it can reduce the time
required to add an atom to the atom table or to find an atom in the table
by increasing the size of the table. However, this increases the amount of
memory required to maintain the table.

The size of the global atom table cannot be changed from its default size
of 37.

InNSendMessage

Syntax BOOL InSendMessage()
function InSendMessage: Bool;

Chapter 4, Functions directory 387

InSendMessage

Parameters

Return value

Comments

This function specifies whether the current window function is processing
a message that is passed to it through a call to the SendMessage function.

None.

The return value specifies the outcome of the function. It is TRUE if the
window function is processing a message sent to it with SendMessage.
Otherwise, it is FALSE.

Applications use the InNSendMessage function to determine how to
handle errors that occur when an inactive window processes messages.
For example, if the active window uses SendMessage to send a request
for information to another window, the other window cannot become
active until it returns control from the SendMessage call. The only
method an inactive window has to inform the user of an error is to create
a message box.

InsertMenu 3.0
Syntax BOOL InsertMenu(hMenu, nPosition, wFlags, wIDNewItem, IpNewItem)
function InsertMenu(Menu:HMenu; Position, Flags, IDNewItem: Word;
Newltem: PChar): Bool;
This function inserts a new menu item at the position specified by the
nPosition parameter, moving other items down the menu. The application
can specify the state of the menu item by setting values in the wFlags
parameter.
Parameters hMenu HMENU Identifies the menu to be changed.
nPosition WORD Specifies the menu item before which the new menu
item is to be inserted. The interpretation of the nPosition
parameter depends upon the setting of the wFlags parameter.

If wFlags is: nPosition:

MF_BYPOSITION Specifies the position of the existing
menu item. The first item in the
menu is at position zero.

If nPosition is -1, the new menu item
is appended to the end of the menu.

MF_BYCOMMAND Specifies the command ID of the
existing menu item.

wFlags WORD Specifies how the nPosition parameter is interpreted
and information about the state of the new menu item when
388 Software development kit

InsertMenu

it is added to the menu. It consists of one or more values
listed in the following "Comments" section.

wIDNewltemn WORD Specifies either the command ID of the new menu
item or, if wFlags is set to MF_POPUP, the menu handle of
the pop-up menu.

IpNewltem LPSTR Specifies the content of the new menu item. If wFlags
is set to MF_STRING (the default), then [pNewltem is a long
pointer to a null-terminated character string. If wFlags is set
to MF_BITMAP instead, then IpNewlItem contains a bitmap
handle (HBITMAP) in its low-order word. If wFlags is set to
MF_OWNERDRAW, IpNewlItem specifies an application-
supplied 32-bit value which the application can use to
maintain additional data associated with the menu item.
This 32-bit value is available to the application in the
itemData field of the data structure pointed to by the [Param
parameter of the following messages:

o WM_MEASUREITEM
o WM_DRAWITEM

These messages are sent when the menu item is initially
displayed, or is changed.

Return value The return value specifies the outcome of the function. It is TRUE if the ‘
function is successful. Otherwise, it is FALSE.

Comments Whenever a menu changes (whether or not the menu resides in a window
that is displayed), the application should call DrawMenuBar. ‘

Each of the following groups lists flags that should not be used together:

o MF_BYCOMMAND and MF_BYPOSITION

o MF_DISABLED, MF_ENABLED, and MF_GRAYED

o ME_BITMAP, MF_STRING, MF_OWNERDRAW, and
MF_SEPARATOR

o MF_MENUBARBREAK and MF_MENUBREAK

o MF_CHECKED and MF_UNCHECKED

The following list describes the flags which may be set in the wFlags

parameter:

Parameters MF_BITMAP Uses a bitmap as the item. The low-order
word of the I[pNewltem parameter contains the
handle of the bitmap.

ME_BYCOMMAND Specifies that the nPosition parameter gives

the menu-item control ID number (default).

Chapter 4, Functions directory 389

InsertMenu

390

MF_BYPOSITION

MF_CHECKED

MEF_DISABLED
MF_ENABLED
MF_GRAYED

MF_MENUBARBREAK

MF_MENUBREAK

MF_OWNERDRAW

MF_POPUP

MF_SEPARATOR

Specifies that the nPosition parameter gives
the position of the menu item to be changed
rather than an ID number.

Places a checkmark next to the menu item. If
the application has supplied checkmark
bitmaps (see the SetMenultemBitmaps
function), setting this flag displays the
"checkmark on" bitmap next to the menu
item.

Disables the menu item so that it cannot be
selected, but does not gray it.

Enables the menu item so that it can be
selected and restores it from its grayed state.
Disables the menu item so that it cannot be
selected and grays it.

Same as MF_MENUBREAK except that for
pop-up menus, separates the new column
from the old column with a vertical line.
Places the menu item on a new line for static
menu-bar items. For pop-up menus, places
the menu item in a new column, with no
dividing line between the columns.

Specifies that the item is an owner-draw item.
The window that owns the menu receives a
WM_MEASUREITEM message when the
menu is displayed for the first time to retrieve
the height and width of the menu item. The
WM_DRAWITEM message is then sent to the
owner whenever the owner must update the
visual appearance of the menu item. This
option is not valid for a top-level menu item.
Specifies that the menu item has a pop-up
menu associated with it. The wIDNewltem
parameter specifies a handle to a pop-up
menu to be associated with the item. Use the
MF_OWNERDRAW flag to add either a top-
level pop-up menu or a hierarchical pop-up
menu to a pop-up menu item.

Draws a horizontal dividing line. You can use
this flag in a pop-up menu. This line cannot
be grayed, disabled, or highlighted. Windows
ignores the IpNewltem and wIDNewlItem
parameters.

Software development kit

InsertMenu

MF_STRING Specifies that the menu item is a character
string; the [pNewltem parameter points to the
string for the item.

MF_UNCHECKED Does not place a checkmark next to the item
(default). If the application has supplied
checkmark bitmaps (see
SetMenultemBitmaps), setting this flag
displays the "checkmark off" bitmap next to
the menu item.

IntersectClipRect

Syntax int IntersectClipRect(hDC, X1, Y1, X2, Y2)
function IntersectClipRect(DC: HDC; X1, Y1, X2, Y2: Integer): Integer;

This function creates a new clipping region by forming the intersection of
the current region and the rectangle specified by X1, Y1, X2, and Y2. GDI
clips all subsequent output to fit within the new boundary.

Parameters hDC HDC Identifies the device context.

X1 int Specifies the logical x-coordinate of the upper-left corner
of the rectangle.

Y1 int Specifies the logical y-coordinate of the upper-left corner
of the rectangle.

X2 int Specifies the logical x-coordinate of the lower-right
corner of the rectangle.

Y2 int Specifies the logical y-coordinate of the lower-right
corner of the rectangle.

Return value The return value specifies the new clipping region’s type. It can be any one
of the following values:

Value Meaning

COMPLEXREGION New clipping region has overlapping borders.
ERROR Device context is not valid.

NULLREGION New clipping region is empty.

SIMPLEREGION New clipping region has no overlapping borders.

Comments The width of the rectangle, specified by the absolute value of X2 — X1,
must not exceed 32,767 units. This limit applies to the height of the
rectangle as well.

Chapter 4, Functions directory 391

IntersectRect

IntfersectRect

Syntax int IntersectRect(IpDestRect, IpSrc1Rect, IpSrc2Rect)
function IntersectRect(var DestRect, Src1Rect, Src2Rect: TRect): Integer;

This function creates the intersection of two existing rectangles. The
intersection is the largest rectangle contained in both rectangles. The
IntersectRect function copies the new rectangle to the RECT data
structure pointed to by the IpDestRect parameter.

Parameters [pDestRect LPRECT Points to the RECT data structure that is to receive
the intersection.

IpSrcIRect LPRECT Points to a RECT data structure that contains a
source rectangle.

IpSrc2Rect LPRECT Points to a RECT data structure that contains a
source rectangle.

Return value The return value specifies the intersection of two rectangles. It is nonzero
if the intersection of the two rectangles is not empty. It is zero if the
intersection is empty.

InvalidateRect

Syntax void InvalidateRect(hWnd, lpRect, bErase)
procedure InvalidateRect(Wnd: HWnd; Rect: PRect; Erase: Bool);

This function invalidates the client area within the given rectangle by
adding that rectangle to the window’s update region. The invalidated
rectangle, along with all other areas in the update region, is marked for
painting when the next WM_PAINT message occurs. The invalidated
areas accumulate in the update region until the region is processed when
the next WM_PAINT message occurs, or the region is validated by using
the ValidateRect or ValidateRgn function.

The bErase parameter specifies whether the background within the update
area is to be erased when the update region is processed. If bErase is
nonzero, the background is erased when the BeginPaint function is called;
if bErase is zero, the background remains unchanged. If bErase is nonzero
for any part of the update region, the background in the entire region is
erased, not just in the given part.

Parameters 1 Wnd HWND Identifies the window whose update region is to be
modified.

392 Software development kit

Return value

Comments

InvalidateRgn

InvalidateRect

IpRect LPRECT Points to a RECT data structure that contains the
rectangle (in client coordinates) to be added to the update
region. If the IpRect parameter is NULL, the entire client area
is added to the region.

bErase BOOL Specifies whether the background within the update
region is to be erased.

None.

Windows sends a WM_PAINT message to a window whenever its update
region is not empty and there are no other messages in the application
queue for that window.

Syntax

Parameters

Return value

void InvalidateRgn(hWnd, hRgn, bErase)
procedure InvalidateRgn(Wnd: HWnd; Rgn: HRgn; Erase: Bool);

This function invalidates the client area within the given region by adding
it to the current update region of the given window. The invalidated
region, along with all other areas in the update region, is marked for
painting when the next WM_PAINT message occurs. The invalidated
areas accumulate in the update region until the region is processed when
the next WM_PAINT message occurs, or the region is validated by using
the ValidateRect or ValidateRgn function.

The bErase parameter specifies whether the background within the update
area is to be erased when the update region is processed. If bErase is
nonzero, the background is erased when the BeginPaint function is called;
if bErase is zero, the background remains unchanged. If bErase is nonzero
for any part of the update region, the background in the entire region is
erased, not just in the given part.

hWnd HWND Identifies the window whose update region is to be
modified.
hRgn HRGN Identifies the region to be added to the update region.

The region is assumed to have client coordinates.

bErase BOOL Specifies whether the background within the update
region is to be erased.

None.

Chapter 4, Functions directory 393

InvalidateRgn

Comments

InvertRect

Windows sends a WM_PAINT message to a window whenever its update
region is not empty and there are no other messages in the application
queue for that window.

The given region must have been previously created by using one of the
region functions (for more information, see Chapter 1, "Window manager
interface functions").

Syntax

Parameters

Return value

Comments

InvertRgn

void InvertRect(thDC, IpRect)
procedure InvertRect(DC: HDC; var Rect: TRect);

This function inverts the contents of the given rectangle. On monochrome
displays, the InvertRect function makes white pixels black, and black
pixels white. On color displays, the inversion depends on how colors are
generated for the display. Calling InvertRect twice with the same
rectangle restores the display to its previous colors.

hDC HDC Identifies the device context.

IpRect LPRECT Points to a RECT data structure that contains the
logical coordinates of the rectangle to be inverted.

None.

The InvertRect function compares the values of the top, bottom, left, and
right fields of the specified rectangle. If bottom is less than or equal to top,
or if right is less than or equal to left, the rectangle is not drawn.

394

Syntax

Parameters

BOOL InvertRgn(hDC, hRgn)
function InvertRgn(DC: HDC; Rgn: HRgn): Bool;

This function inverts the colors in the region specified by the hRgn
parameter. On monochrome displays, the InvertRgn function makes white
pixels black, and black pixels white. On color displays, the inversion
depends on how the colors are generated for the display.

hDC HDC Identifies the device context for the region.

hRgn HRGN Identifies the region to be filled.