
. -' .. ~ .
,~~"': i ~ ._ ~~ : ' .. ,~~ ..

SYSTEM< ·ERVI"C 5 ', UIDE
. "Ol~lrME 1 OF 2

.10; .. . ,

TM

Order Code: 6AN901D-1XAOO-OBA2

LIMITED DISTRIBUTION MANUAL
This manual Is for customers who receive preliminary ver
sions of this product. It may contain material subject to
change.

BliNn ..
2111 NE 25th Ave.

Hillsboro, OR 97124

© 1988, BiiN
nl

I'K~L1MINAK Y

REV. REVISION HISTORY DATE

-001 Preliminary Edition .. 7J88
",.:,;.;

.;~~;:~~r

BiiNTM MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED W ARRANTIE~ OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. "\ :

BiiNTM assumes no responsibility for any erron that may appear in this documenL BiiN" makes no commitment to update nor to keep current the
infonnation contained in this documenL \')\ '.' ";\', I .y~;; C: v ••

No part of this document may be copied or reproduced in any fonn or by any means without written consent of BiiNN.

BiiNTlI retains the right to make changes to these specifications at any time. without notice.

'The following are trademarks of BiiN
N

: BiiN. BiiN/OS. BiiNlUX. BiiN Series 20. BiiN Series 40. BiiN Series 60. BiiN Series SO.

Apple and MacTenninal are trademarks of Apple Computer,JJ1C;'.'~ is a trademark of AT&T Bell Laboratories. Torx is a trademark of Cam car
Screw and Mfg. Ada is a certification mark of the DepartMent of Defense. Ada Joint Program Office. DEC. VTI02. and V AX are trademarks of
Digital Equipment Corporation. Smartmodem is a trademark of Hayes Corporation. mM is a trademark of International Business Machines. Inc.
MUL TIB US is a registered trademark of Intel Corporation. Macintosh is a trademark of McIntosh Laboratory, Inc. Microsoft is a registered
trademark of Microsoft Corporation. Mirror is a registered trademark of SoftKlone Distributing Corporation. WYSE is a registered trademark of
Wyse Technology. WY -60 and WY -50 are trademarks of Wyse Technology.

Additional copies of this or any other BliNN manuals are available from:

ii

BiiNTM Corporate Literature DepL
2111 NE 25th Ave.
Hillsboro, OR 97124

PRELIMINARY

PREFACE

Purpose
,;' . '. .'~', ~

The BiiNTM/OS Guide shows you how to use the seJVices provided by the BiiNTM operating
system.

Audience
This manual is intended for both applications programmers and systems programmers. Such
programmers use the OS to create: .

• Object-oriented applications that provide data protection, data integrity, program
modularity, and extensibility

• Applications that manage record-structured flIes

• Interactive applications that use windows, menus, commands, messages, and fotnls

• Concurrent applications using multiple processes, including real-time applications

• Distributed applications that provide seJVices at multiple nodes in a network

• New device drivers.

Organization

Preface

The BiiNTM/OS Guide is divided into eleven major parts:

I. Introduction Introduces the OS and how to make system calls.

ll. Support Services
Fundamental seJVices for message handling, text and string handling, using
system objects, and transaction processing.

ID. Directory Services
Hierarchical directories, lists of directories, user IDs, and authority lists.

IV. I/O Services Standard I/O access methods and I/O devices.

V. Human Interface Services
Programming interactions with the user: command input, menus, fotnls,
and reports.

VI. Program Services
Concurrent programming and scheduling.

VII. Type Manager Services
Creating new seJVices using new object types.

VIII. Distribution Services
Creating seJVices that exist at multiple nodes in a network and that com
municate to provide distributed services.

iii

rKELIMINAKl'

IX. Device Services , 'P",':l

Creating device man~~ers and device drivers.
~ ,}l..(I

X. Appendixes Complete listings of examples excerpted in this manual, and a Glossary of
tenns used in this iriatufru.

Index

The chapters in each part describe major programming areas such as "Using Basic 1/0" or
"Building Concurrent Programs." A chapter may contain basic concepts about the program
ming area, specific programming~tecImiques, or both. Many techniques are illustrated with
excerpts from BiiNTM Ada examples}i~~i~Appendix X-A.

Related Publications
This manual does not provide detailed reference infonnation for system calls. For descriptions
of system calls, see the BiiN™IOS Reference Manual. All OS programmers should also see the
"Files, Modules, and Views" appendix in the BiiNTM lOS Reference Manual for important infor
mation regarding finding OS files and compiling and linking programs that use the OS.

The following manuals may be of use to you while programming with the OS:

BiiNTM Systems Overview
High-level description of BiiNTM systems.

Getting Started with BiiNTM Systems
How to log in, basic interactive commands, and how to set up your en
vironment.

BiiNTM Systems Programmer's Guide ,;,'
Languages and tools used to program in the BiiNTM environment, and some
application examples.

BiiNTM Ada User's Guide
User's guide for the BiiNTM Ada programming language.

BiiNTM Ada Language Reference Manual
Language reference for the BiiNTM Ada programming language.

BiiNTM C Programming Manual
Programmer's manual for the BiiNTM C programming language. This
manual includes a chapter on using the OS from C programs.

BiiN™IOS Reference Manual
Package descriptions for using the OS.

Notation

iv

glossary term Tenns being defined or used for the first time are in italic font, and can be
found in the Glossary.

Package_Name BiiNTM Ada reserved words and OS package and call names are in
typewriter font.

The following abbreviations are used throughout this manual:

K 210 = 1,024. For example, lK bytes equals 1,024 bytes.

Preface

Preface

M

G

AD

SRO

TDO

GDP

PRELIMINARY

220 = 1,048,576. For example, 1M bytes equals 1,048,576 bytes.

230 = 1,073,741,8~4'.:;'For example, 1G bytes equals 1,073,741,824 bytes.

Access Descript~~,~~ system object pointer. An AD references a system
object.

Storage Resource Object, which defines memory storage available for a
job or node.

Type Definition Object,. which defines an object's type. Each object
references the TDO,fOltits type.

General Data Processor, ia central processing unit in a BiiNTM node.

In examples of BiiNTM commands, the user's input is I boxed I and the system's prompts and

responses are not. For example:

clex-> ICg hello.cl

clex-> Ilink hello.ob] :output=hellol

clex-> I hello I
Hello, world!
clex->

'This manual uses the following notation to describe syntax:

name ::= syntax-exp
A syntactic equation, indicating that the word on the left side symbolizes
the expression on the right side.

name Words in italic font are names for other expressions. A name containing
hyphens, such as basic-type-specijier, should be considered a single word.

name Words and symbols in typewriter font are literal characters and
character strings.

a-z Specifies any single character >= a and <= z in the ASCII collating se
quence.

AlB

[A]

A ...

(A)

OR: Specifies a string that matches A or a string that matches B.

Brackets surround an optional syntactic element.

Ellipses indicate that one or more elements can be used.

Parentheses group items to specify an order of evaluation.

An example of syntax notation:

appetizer .':=
[soup-type 1 soup /
vegetable almondine /
chips [& salsa 1

soup-type ::=
meat noodle /
cream of vegetable

meat ::=
chicken/beef

vegetable: :=
potato/cauliflower/broccoli

".::':> -, ,

v

vi

PKKLIMlNAKY

The following strings are valid appetizers" according to the above syntax:
chicken noodle soup
cream of broccoli soup
broccoli almondine
chips

Preface

PRELIMINARY

CONTENTS

Part I. Introduction.

Chapter 1. Concepts

1-1.1 BiiN™OS Functionality .. 1-1-2
I -1.2 Transparent Multiprocessing with Multiple Processors 1-1-2
1-1.3 Fault-Tolerant Computing .. 1-1-5
1-1.4 Transaction Processing and DBMS Support 1-1-7
I -1.5 Computing in a Distributed Environment 1-1-8
1-1.6 Support for UNIX and ISO Standards '....................... 1-1-8
1-1.7 SelVices for High-Function Applications. 1-1-9
1-1. 8 Transparent Resource Management for Easy Programming 1-1-10
1-1.9 Getting Real Time Data .. 1-1-10
1-1.10 System Administration and the Clearinghouse 1-1-11
1-1.11 BiiNTM OS Architecture. .. 1-1-12
1-1.12 Some Basics .. 1-1-13

1-1.12.0.1 What Is A System Object? 1-1-14
1-1.12.0.2 How Are System Objects Protected? 1-1-15

Chapter 2. Service Areas and Services

1-2.1 SelVice Areas .. 1-2-3
1-2.2 Support SelVices .. 1-2-3

1-2.2.1 Utility SelVice .. 1-2-3
1-2.2.2 Object SelVice .. 1-2-4
1-2.2.3 Transaction SelVice .. 1-2-4
1-2.2.4 Message SelVice .. 1-2-4

1-2.3 Directory SelVices .. 1-2-5
1-2.3.1 Naming SelVice ... 1-2-5
1-2.3.2 Protection SelVice ... 1-2-5

1-2.4 I/O SelVices ... 1-2-5
1-2.4.1 Basic I/O SelVice ... 1-2-6
1-2.4.2 Character Tenninal SelVice 1-2-6
1-2.4.3 Print SelVice ... 1-2-6
1-2.4.4 S{X)ol SelVice .. 1-2-6
1-2.4.5 Filing SelVice .. 1-2-6
1-2.4.6 Database Support SelVice 1-2-7
1-2.4.7 Data Deftnition SelVice ... 1-2-7
1-2.4.8 Volume Set SelVice .. 1-2-7
1-2.4.9 Basic Disk SelVice .. ' 1-2-7
1-2.4.10 Basic Streamer SelVice .. 1-2-8
1-2.4.11 Null Device SelVice 1-2-8

Contents vii

1-2.5 Human Interface SeIVices
1-2.5.1 Command SeIVice .. .
1-2.5.2 Fonn SeIVice .. .
1-2.5.3 Report SeIVice

1-2.6 PrograIll SeIVices .. .
1-2.6.1 Concurrent PrograIllming SeIVice
1-2.6.2 Scheduling SeIVice
1-2.6.3 Timing SeIVice .. .
1-2.6.4 Resource SeIVice
1-2.6.5 Program Building SeIVice
1-2.6.6 Monitor SeIVice .. .

1-2.7 Type Manager SeIVices
1-2.7.1 TM Object SeIVice
1-2.7.2 TM Transaction SeIVice
1-2.7.3 TM Concurrent PrograIllming SeIVice- ..
1-2.7.4 Configuration SeIVice
1-2.7.5 Custom NaIlling SeIVice
1-2.7.6 Backup SeIVice .. .
1-2.7.7 Distribution SeIVices .. .
1-2.7.8 Clearinghouse SeIVice
1-2.7.9 RPC SeIVice .. .
1-2.7.10 Transport SeIVice

1-2.8 Device SeIVices
1-2.8.1 Device Driver SeIVice
1-2.8.2 Shared Queue SeIVice
1-2.8.3 Asynchronous Communication SeIVice
1-2.8.4 Mass Storage SeIVice
1-2.8.5 SCSI SeIVice .. .
1-2.8.6 Subnet SeIVice
1-2.-8.7 HDLC SeIVice
1-2.8.8 LAN SeIVice .. .

Chapter 3. Ada Programming Techniques
1-3.1 Concepts

1-3.1.1 Working with Pointers .. .
1-3.1.2 Common Types in the System and System_Defs Packages
1-3.1.3 Standard System Exceptions
1-3.1.4 Package-level and SubprograIll-level Variables

1-3.2 Techniques
1-3.2.1 Using Unchecked Type Conversion
1-3.2.2 Using Overlays as an Alternative to Unchecked Type Conversion
1-3.2.3 Importing Operators .. .
1-3.2.4 Allocating a Buffer
1-3.2.5 Recovering from Record Overflow
1-3.2.6 Handling Recoverable Exceptions
1-3.2.7 Using Paired Calls .. .

1-3.3 Summary .. .

viii

1-2-8
1-2-8
1-2-8
1-2-8
1-2-9
1-2-9
1-2-9

1-2-10
1-2-10
1-2-10
1-2-11
1-2-11
1-2-11
1-2-11
1-2-12
1-2-12
1-2-12
1-2-12
1-2-13
1-2-13
1-2-13
1-2-13
1-2-14
1-2-14
1-2-15
1-2-15
1-2-15
1-2-15
1-2-15
1-2-16
1-2-16

1-3-2
1-3-2
1-3-2
1-3-3
1-3-3
1-3-3
1-3-3
1-3-5
1-3-5
1-3-6
1-3-7
1-3-8
1-3-9

1-3-10

Contents

PRELIMINARY

Part II. Support Services.

Chapter 1. Using Utility Packages

11-1.1 Concepts ... 11-1-2
11-1.1.1 String Lists .. 11-1-2
11-1.1.2 Texts .. 11-1-3
11-1.1.3 Long Integers .. ll-l-4

11-1.2 Techniques ... 11-1-4
11-1.2.1 Using a Literal Text ... 11-1-4
11-1.2.2 Declaring a Constant Text 11-1-4
11-1.2.3 Calling a Procedure with a Text Result 11-1-5
II -1.2.4 Creating a String List ... II -1-6
11-1.2.5 Reading Elements from a String List. 11-1-6
11-1.2.6 Using a Literal Long Integer 11-1-7
11-1.2.7 Computing with Long Integers 11-1-7
11-1.2.8 Converting Between Strings and Long Integers 11-1-8
11-1.2.9 Summary ... 11-1-8

Chapter 2. Using Objects and ADs

11-2.1 Concepts ... 11-2-2
11-2.1.1 What is an Object? .. 11-2-2
11-2.1.2 What is an Access Descriptor? 11-2-3
11-2.1.3 Rep Rights Control Access to an Object's Representation 11-2-4
11-2.1.4 Type Rights Control What Type-Specific Operations are Allowed 11-2-4
11-2.1.5 Generic Objects .. 11-2-4
11-2.1.6 Building Type Managers That Define New Object Types 11-2-4

11-2.2 Techniques ... 11-2-5
11-2.2.1 Checking an Object's Type 11-2-5
11-2.2.2 Checking Rights on an AD 11-2-5
11-2.2.3 Removing Rights From an AD 11-2-5
11-2.2.4 Creating a Generic Object 11-2-5
11-2.2.5 Resizing an Object .. 11-2-6
11-2.2.6 Deallocating an Object .. 11-2-6

11-2.3 Summary ... 11-2-6

Chapter 3. Storing Objects

11-3.1 Concepts ... 11-3-3
11-3.1.1 Comparing Passive Store, Files, and Directories 11-3-3
11-3.1.2 Using Passive Store at Different Levels 11-3-3
11-3.1.3 Object Versions .. 11-3-3
11-3.1.4 Object Activation ... 11-3-4
11-3.1.5 Activation as Reincarnation 11-3-5

Contents ix

PRELIMINARY

11-3.1.6 AD Activation .. .
11-3.1.7 Object Passivation
11-3.1.8 Passivation Dependencies
11-3.1.9 Active-Only Objects
11-3.1.10 Passive Store Behavior of OS Object Types
11-3.1.11 Passive ADs

11-3.1.11.1 Referencing Between Active Memory and Passive Store
11-3.1.11.2 Master ADs .. .
11-3.1.11.3 Alias ADs
11-3.1.11.4 Restrictions on Storing Master ADs
11-3.1.11.5 Master ADs and Passive Object Lifetimes
11-3.1.11.6 Transferring Mastership
11-3.1.11.7 Object Trees
11-3.1.11.8 Passive ADs as Universal Identifiers

11-3.1.12 Passive Store Behavior of Generic Objects
11-3.1.13 Passive Object Characteristics
II -3.1.14 The Life History of a Passivated Object
11-3.1.15 Activation Models .. .

11-3.1.15.1 Multiple Activation
11-3.1.15.2 Single Activation
11-3.1.15.3 Choosing an Activation Model

11-3.1.16 Transaction Support
11-3.1.17 The Passive Store Attribute
II -3.1.18 Default Passive Store Behavior
11-3.1.19 Type Manager Support

11-3.2 Techniques .. .
11-3.2.1 Creating a Passive Object
11-3.2.2 Updating a Passive Object . 0 ••••••••••••••••••••••••••••••••••••

11-3.2.3 Requesting an Update 0 ••••••••••••••••••••••••••••••••••••

11-3.2.4 Destroying a Stored Object
11-3.2.5 Copying a Passive Object Tree
11-3.2.6 Getting Passive Object Infonnation

11-3.3 Summary .. .

Chapter 4. Starting and Resolving Transactions
11-4.1 Concepts .. .

II -4.1.1 What Transactions Provide
11-4.1.2 Transaction Calls .. .
11-4.1.3 Transaction Stack .. .
11-4.1.4 The Default Transaction
11-4.1.5 Participating in Transactions
11-4.1.6 The Transaction Service as a Coordinator
11-4.1.7 Subtransactions
11-4.1.8 Avoiding Subtransactions
11-4.1.9 Rules for Using Transactions
11-4.1.10 Transaction Locking .. .
11-4.1.11 Transaction Timeouts
11-4.1.12 Transactions and Job Tennination
11-4.1.13 Avoiding Deadlock with Timestamp Conflicts

x

11-3-5
11-3-5
11-3-6
11-3-6
11-3-6
11-3-7
11-3-7
11-3-7
11-3-8
11-3-8
11-3-9
11-3-9
11-3-9

11-3-10
11-3-10
11-3-10
11-3-11
11-3-12
11-3-12
11-3-14
11-3-14
11-3-14
11-3-15
11-3-15
11-3-15
11-3-16
11-3-16
11-3-18
11-3-18
11-3-19
11-3-20
11-3-22
11-3-23

11-4-2
11-4-2
11-4-3
11-4-3
11-4-3
11-4-3
11-4-4
11-4-4
11-4-4
11-4-4
11-4-5
11-4-5
11-4-6
11-4-6

Contents

PRELlMINARY

11-4.1.14 Independent Transactions 11-4-6
11-4.2 Techniques ... '.......... 11-4-6

11-4.2.1 Using a Transaction ... 11-4-6
11-4.2.2 Avoiding Unnecessary Subtransactions II-4-7
II-4.2.3 Using a Transaction and Recovering from Timestamp Conflicts II-4-S

11-4.3 Summary ... 11-4-9

Chapter 5. Writing Messages
II -S.l Concepts .. .

II-S.1.1 Messages .. .
II -S .1.2 Message Files
II-S.1.3 Incident Codes .. .
II-S.1.4 Message Blocks
II-S.1.S Message Stacks
II-S.1.6 Messages and Exceptions
II-S.1.7 CL Variables That Affect Messages
II-S.1.S How CLEX Handles Messages From Terminated Jobs
II-S.1.9 Message Utilities .. .
II-S.1.10 History Files

II-S.2 System Error Log
II-S.3 Techniques .. .

II-S.3.1 Defining Application Messages
II-S.3.1.1 In the Source File .. .
II-S.3.1.2 In a Command File
II-S.3.1.3 Using manage .messages

II-S.3.2 Writing a Message
II-S.3.3 Associating an Incident Code With an Exception
II-S.3.4 Replacing an OS Exception With an Application Message
II-S.3.S Taking Advantage of Predefined OS Messages
II-S.3.6 Pushing a Message When Raising an Exception
II-S.3.7 Clearing the Message Stack When Handling an Exception
I1-S.3.S Writing a Message With Acknowledgement
I1-S.3.9 Recording History Entries
Il-S.3.10 Summary

Contents

II-S-3
II-S-3
II-S-4
II-S-4
II-S-S
II-S-S
II-S-6
II-S-6
II-S-7
II-S-7
II-S-7
II-S-7
I1-S-7
II-S-S
II-S-9
II-S-9
II-S-9

II-S-I0
II-S-I0
II-S-ll
II-S-ll
II-S-ll
II-S-12
II-S-13
II-S-13
II-S-14

xi

rK~LllVll.NAK r

Part III. Directory Services.

Chapter 1. Understanding Directories
III-1.1 Directory Structure .. 1II-I-2

111-1.1.1 Pathname Syntax .. HI-I-3
111-1.1.2 Alias Entries and Master Entries 111-1-3
111-1.1.3 Symbolic Links .. 111-1-4
ill -1.1.4 Protecting Directories and their Contents III -1-5

ill-l.2 The Clearinghouse: Naming in a Distributed System 111-1-5
111-1.2.1 A Node's, Default Directories 111-1-8

III -1.3 Directory Operations ... HI -1-8
111-1.3.1 Retrieving Entries. 111-1-8
111-1.3.2 Listing a Directory ... HI-I-9
111-1.3.3 Process Globals and Directories 111-1-9
ill-1.3.4 Directory Operations and Transactions HI-I-10
111-1.3.5 Standalone Directories .. 111-1-10

111-1.4 Summary .. HI-I-II

Chapter 2. Using Directories
111-2.1 Creating a Directory ... 111-2-2
III-2.2 Storing an AD in a Directory. ill-2-3
111-2.3 Retrieving a Directory Entry 111-2-4
111-2.4 Deleting a Directory Entry ... 111-2-4
1II-2.5 Listing a Directory ... 111-2-5
111-2.6 Using a Pattern to Filter a Directory Listing 111-2-7
111-2.7 Retrieving a Directory from Process Globals 111-2-7

Chapter 3. Protecting Stored Objects
111-3.1 Concepts .. 111-3-3

1II-3.1.1 Why Objects Need Authority-Based Protection 111-3-3
1II-3.1.2 IDs Identify the Caller .. 111-3-3

111-3.1.2.1 What's In an ID? ... 111-3-4
111-3.1.3 A Process's ID List. .. 111-3-4
111-3.1.4 Type Rights on an ID ... 111-3-5
1II-3.1.5 Authority Lists Specify Who Can Access Objects 111-3-5
III-3.1.6 How a Caller's Access Rights to an Object Are Evaluated 111-3-6

111-3.1.6.1 Evaluating Access During a Retrieve 111-3-6
1II-3.1.6.2 Evaluating Access Rights During Activation 111-3-8

111-3.2 Techniques ... 111-3-8
111-3.2.1 Getting Infonnation about an Object's Protection 111-3-9
1II-3.2.2 Using Default Protection. III-3-9
111-3.2.3 Creating an Authority List 111-3-9

xu Contents

PK~LIM1NAK y

111-3.2.4 Changing a Directory's Default Authority List 111-3-10
111-3.2.S Changing an Object's Owner and Authority List 111-3-10

111-3.3 Summary .. 111-3-11

Chapter 4. Using Name Spaces
111-4.1 Concepts .. ill-4-2

111-4.1.1 A Name Space is a List of Directories 111-4-2
111-4.1.2 How a Name Space References Directories 111-4-3

111-4.2 Techniques ... 111-4-3
111-4.2.1 Creating a Name Space 111-4-3

111-4.3 Changing a User's Command Name Space 111-4-4
111-4.4 Changing the Command Name Space within a Job or Process 111-4-4
111-4.S Summary .. 11I-4-S

Chapter 5. Creating Symbolic Links

Ill-S.1 Concepts .. III-S-2
IIl-S.1.1 Suppressing Link Evaluation III-S-2
III-S.1.2 How Symbolic Links Compare with Aliases ill-S-3
III-S.1.3 Symbolic Links and Links in General III-S-3

111-S.2 Techniques ... 111-S-3
1I1-S.2.1 Creating a Symbolic Link .. III-S-3

111-S.3 Summary .. 111-S-4

Contents xiii

c n..cL.I.1V.Lll"an. I

Part IV. I/O Services.

Chapter 1. Understanding I/O Access Methods
IV-l.l Devices ... IV-1-2
IV-1.2 Opened Devices ... IV-I-2
IV-1.3 Concurrent Access to Opened Devices IV-I-3
IV -1.4 Device Independence ... IV -1-4
IV -1.5 How Access Method Implementations Can Vary. .. IV -1-6
IV-l.6 BiiNTM Operating System I/O Access Methods IV-1-6

IV-1.6.l Byte Stream I/O ... IV-1-7
IV-l.7 Record I/O ... IV-I-7
IV -1.8 Character Display I/O .. IV -1-8
IV -1.9 Standard I/O Connections ... IV -1-9
IV-l.IO Summary ... IV-I-9

Chapter 2. Using Basic I/O
IV-2.l Opening and Closing an I/O Device IV-2-2
IV-2.2 Reading and Writing Bytes .. IV-2-3
IV-2.3 Handling End-of-File ... IV-2-3
IV-2.4 Using Default I/O Connections IV-2-4
IV -2.5 Positioning Within a Byte Stream IV -2-5
IV -2.6 Reading and Inserting Records Sequentially IV -2-6

Chapter 3. Managing Stream Files
IV-3.l Concepts .. IV-3-2

IV-3.1.l What Is a Stream File? .. IV-3-2
IV-3.1.2 Using Access Methods with Stream Files IV-3-3

IV-3.1.2.l Byte Stream I/O ... IV-3-3
IV-3.1.2.2 Record I/O .. IV-3-3

IV -3.1.3 Temporary Files ... IV -3-4
IV-3.2 Techniques ... IV-3-5

IV-3.2.1 Creating a Stream File .. IV-3-5
IV-3.2.2 Copying a Stream File .. IV-3-6
IV-3.2.3 Emptying a Stream File IV-3-6
IV-3.2.4 Deleting a Stream File .. IV-3-6
IV -3.2.5 Creating Temporary Files IV -3-7

IV-3.3 Summary .. IV-3-8

xiv Contents

PRELIMINARY

Chapter 4. Using Windows
IV -4.1 Concepts .. IV -4-2

IV-4.1.1 Terminals and Windows IV-4-3
IV -4.1.2 Accessing Windows .. IV-4-4
IV -4.1.3 Window Coordinates ... IV-4-4
IV -4.1.4 Terminal Attributes .. IV -4-S
IV -4.1.S The Input Model ... IV -4-6
IV -4.1.6 The Output Model ... IV -4-7
IV-4.1.7 Overlapped Windows. IV-4-7
IV-4.1.8 Some Key Points .. IV-4-9
IV-4.1.9 Resizing a Window .. IV-4-10
IV-4.1.10 Basic Window Operations IV-4-12
IV -4.1.11 Window Style .. IV -4-12
IV-4.1.12 Menus and Windows .. IV-4-13

IV-4.1.12.1 Menu Hierarchy .. IV-4-13
IV-4.1.12.2 Building and Installing a Menu IV-4-14

IV-4.1.13 User Agents ... IV-4-1S
IV-4.1.14 Character Tenninal Manager IV-4-1S
IV -4.1.1S Character Tenninal Manager Support for Input Operations IV -4-1S
IV-4.1.16 Character Tenninal Manager Support for Output Operations IV-4-16
IV -4.1.17 Character Tenninal Manager Support for Access Method Operations .. IV -4-16

IV -4.1.17.1 Character Terminal Manager Support for Byte_Stream _AM ... IV -4-16
IV-4.1.17.2 Character Terminal Manager Support for Record AM IV-4-17
IV-4.1.17.3 Character Terminal Manager Support for -
Character Display AM .. IV-4-18

IV -4.2 Techniques-........ ~ . IV -4-18
IV-4.2.1 Obtaining an AD for the Underlying Tenninal IV-4-18
IV-4.2.2 Creating a Window .. IV-4-19
IV-4.2.3 Setting a Window's Attributes IV-4-19
IV-4.2.4 Setting a Window's Style IV-4-19

IV-4.3 Summary ... IV-4-20

Chapter 5. Using Character Display 1/0
IV -S.l Concepts .. IV -S-2

IV -S.1.1 Character Display Devices IV -S-2
IV-S.1.2 The Frame Buffer. .. IV-S-2
IV-S.1.3 The Output Model ... IV-S-4
IV -S.1.4 The Input Model ... IV -S-4
IV-S.1.S Window Attributes ... IV-S-6
IV -S.1.6 Operations ... IV -S-6

IV -S.2 Techniques ... IV -S-8
IV-S.2.1 Opening a Window .. IV-S-8
IV-S.2.2 Clearing the Frame Buffer IV-S-9
IV -S.2.3 Writing to the Frame Buffer IV -S-9
IV -S.2.4 Moving the Cursor to an Absolute Position IV -S-9

Contents xv

rK~Ll1Vll.NAK r

IV-S.2.S Moving the Cursor Relative to its Current Position IV-S-I0
IV-S.2.6 Reading Input Events ... IV-S-I0
IV-S.2.7 Inserting Characters .. IV-S-ll
IV-S.2.S Deleting Characters .. IV-S-l1
IV -S.2.9 Identifying the Underlying Device IV -S-11

IV-S.3 Summary .. IV-S-l1

Chapter 6. Printing
IV-6.1 Concepts .. IV-6-2

IV -6.1.1 Spool Queue .. IV -6-3
IV -6.1.2 Print Device .. IV -6-3
IV -6.1.3 Spooled Printing ... IV -6-3
IV-6.1.4 Direct Printing ~ IV-6-3
IV -6.1.S Spool File .. IV -6-3
IV -6.1.6 Printer Lists .. IV -6-3
IV -6.1.7 Print Area and Print Position IV -6-4
IV -6.1.S Requesting Fonn Type and Sheet Size IV -6-4
IV -6.1.9 Printinfo ... IV -6-S
IV -6.1.10 Print Properties ... IV -6-S
IV -6.1.11 Implementation of Spool Device Attributes IV -6-S
IV-6.1.12 Delayed Printing. IV-6-7
IV -6.1.13 Banner Page and Print Tennination Message IV -6-7
IV -6.1.14 Default Properties ... IV -6-7

IV -6.2 Techniques ... IV -6-S
IV -6.2.1 Printing to a Spool File IV -6-8
IV -6.2.2 Printing Directly to a Printer IV -6-9
IV -6.2.3 Controlling Print Properties IV -6-10
IV -6.2.4 Administering Spool Devices IV -6-11
IV-6.2.S Adding a New Printer ... IV-6-12

IV-6.3 Summary 0 ••• IV-6-12

Chapter 7. Understanding Structured Files
IV -7.1 Stream Files and Structured Files IV -7-2

IV-7.1.1 Data Areas ... IV-7-3
IV-7.2 Records ... IV-7-3
IV-7.3 Buckets ... IV-7-4
IV-7.4 Indexes...... IV-7-4
IV -7.S Structured File Organizations IV -7-4

IV-7.S.1 Sequential Files ... IV-7-S
IV-7.5.2 Relative Files ... IV-7-S
IV -7.5.3 Unordered Files ... IV -7-6
IV -7.5.4 Clustered Files .. IV -7-7
IV-7.5.5 Hashed Files .. IV-7-8
IV-7.5.6 File Descriptors ... IV-7-8

IV-7.6 Using Byte Stream and Record I/O with Files IV-7-9
IV -7.7 Structured Files and Transactions IV -7 -10

xvi Contents

PRELIMINARY

IV-7.8 Summary .. IV-7-10

Chapter 8. Managing Files and Indexes

IV-8.1 Concepts .. IV-S-2
IV-S.1.1 Index Keys ... IV-S-2
IV-S.1.2 Index Structures ... IV-S-3

IV-S.1.2.1 B-Tree Alternate Index IV-S-3
IV -S.1.2.2 B-Tree Organization Index IV -S-4
IV -S.1.2.3 Hashed Organization Index IV -S-S

IV-S.1.3 Choosing Indexes .. IV-S-S
IV -S.1.4 Record DDefs ... IV -S-6
IV-8.1.S Index Key DDefs .. IV-S-7
IV-S.l.6 Null Values. .. IV-S-9

IV-S.2 Techniques ... IV-S-10
IV-S.2.1 Defining Record DDefs IV-S-IO
IV -S.2.2 Defining Index Key DDefs IV -S-12
IV-8.2.3 Creating Files ... IV-S-12
IV-S.2.4 Building Organization Indexes IV-S-14
IV -S.2.S Building Alternate Indexes IV -S-lS

IV-S.3 Summary .. IV-S-16

Chapter 9. Using Record 1/0 with Structured Files

IV -9.1 Concepts .. IV -9-2
IV-9.1.1 Current Record Pointer IV-9-2
IV-9.1.2 Access Modes. .. IV-9-3

IV -9.1.2.1 Physical-Sequential Access IV -9-3
IV -9.1.2.2 Physical-Random Access IV -9-4
IV-9.1.2.3 Indexed-Sequential Access IV-9-S
IV -9.1.2.4 Indexed-Random Access IV -9-7

IV -9.1.3 Record I/O and Structured Files IV -9-S
IV -9.1.3.1 Sequential Files .. IV -9-S
IV -9.1.3.2 Relative Files ... IV -9-S
IV-9.1.3.3 Hashed Files .. IV-9-9

IV-9.1.4 End of File ... IV-9-9
IV-9.1.4.1 End of File for Indexed Access. .. IV-9-9

IV -9 .1.S Record I/O and Transactions IV -9-11
IV-9.1.6 Files and Disk Flushes .. IV-9-11
IV -9.1. 7 Record I/O Operation Status IV -9-11

IV-9.2 Techniques ... IV-9-12
IV-9.2.1 Opening and Closing Structured Files IV-9-12
IV-9.2.2 Setting Open Mode .. IV-9-13
IV-9.2.3 Inserting Records .. IV-9-13
IV-9.2.4 Accessing Fields in Record Buffers IV-9-14
IV -9.2.S Deleting Records .. IV -9-14
IV -9.2.6 Reading and Updating Records IV -9-1S
IV-9.2.7 Using Physical-Random Access IV-9-17

Contents xvii

rK.r..LllVlll"'1AK I

IV-9.2.8 Using Physical-Sequential Access IV-9-18
IV-9.2.9 Using Indexed-Random Access IV-9-19
IV -9.2.10 Using Indexed-Sequential Access IV -9-20
IV-9.2.ll Reading Key Values Sequentially IV-9-22
IV-9.2.l2 Reading and Updating Records by Key IV-9-23

IV-9.3 Summary .. IV-9-23

Chapter 10. Locking Files and Records

IV-lO.l Concepts ... IV-lO-2
IV-IO.1.1 Concurrency Control and Recovery IV-IO-3
IV -10.1.2 Transaction Locking IV-I 0-4

IV-IO.1.2.1 LockModes ... IV-IO-S
IV -10.1.2.2 Lock Mode Compatibility IV -10-6

IV -10.1.3 Acquiring Locks .. IV -10-6
IV-IO.I.4 Lock Escalation .. IV-IO-7
IV -10.1.5 Releasing Locks .. IV -10-7
IV -10.1.6 Consistency Levels .. IV -10-7
IV-IO.1.7 Reading Key Range Values IV-tO-8
IV-IO.1.8 Locking and Nested Subtransactions IV-10-8
IV-10.1.9 Lock Contention .. IV-10-10
IV-IO.I.10 Logging ... IV-tO-tl
IV -to.1.11 Transactions and Opened Device Objects IV -to-II
IV-tO.1.t2 File-Level Locks Associated with Opened Devices IV-10-12
IV-10.1.13 File Administration Operations and Locking IV-10-12

IV-10.2 Techniques .. IV-IO-12
IV-10.2.1 Using Level 3 Consistency IV-IO-12

IV-10.3 Summary ... IV-lO-14

Chapter 11. Processing Collections of Records

IV -11.1 Concepts ... IV -11-3
IV-1t.I.1 Reading Records ... IV-11-3

IV-Il.l.1.l Record Streams ... IV-11-4
IV -11.1.1.2 DDefs and Record Processing Support IV -11-S

IV -11.1.2 Updating Records ... IV -11-5
IV -11.1.3 Database Operations ... IV -11-5
IV -11.1.4 Selection .. IV -11-6

IV -11.1.4.1 Customizing a Selection IV -11-7
IV -11.1.4.2 Using the Associate_index_selection_function Call IV -11-7
IV -It.1.4.3 Using the Associate_read_procedure Call IV -11-7

IV-11.1.5 Projection ... IV-11-7
IV-11.1.S.1 Using the Associate_primary_datayrojection Call .. IV-11-8
IV-11.1.S.2 Using the Associate_indexyrojection Call IV-11-9

IV -11.1.6 Difference, Intersection, and Union IV -11-9
IV -tl.1. 7 Interaction Between Record Processing Calls IV -11-9
IV-1t.l.8 Joins ... IV-II-10
IV -11.1.9 Sorting and Merging .. IV-II-II

xviii Contents

PKt;LIMJNAK Y

IV-ll.l.9.1 Sorting Records ... IV-II-12
IV -11.1.9.2 Sort Ordering .. IV -11-13
IV-l1.1.9.3 Stable Sorts .. IV-11-13

IV-ll.2 Techniques .. IV-II-13
IV -11.2.1 Selecting a Set of Records IV -11-14
IV -11.2.2 Using Projection on an Index IV-II-IS
IV -11.2.3 Joining Records from Two Devices IV -11-16
IV -11.2.4 Sorting Records in a File IV -11-16
IV -11.2.5 Sorting and Merging Records from Two Files IV -11-17

IV-II.3 Summary ... IV-II-I8

Contents xix

YKELIMlNAKY

Part V. Human Interface Services.

Chapter 1. Understanding Human Interface Services
V-I.I Concepts ... V-I-3

V -1.1.1 Why Use Human Interface SelVices? V -1-4
V-I.I.2 Utilities .. V-I-4
V-l.l.3 Command SelVice .. V-1-6

V-I.I.3.1 Command Concepts V-I-7
V-1.1.3.2 Command Summary. V-1-8

V -1.1.4 Environment Service .. V -1-8
V-1.1.4.1 Environment Variable Concepts V-I-9
V -1.1.4.2 Environment Variable Summary V -I-II

V-I.I.S Menu SelVice .. V-I-II
V-I.I.S.I Menu Concepts ... V-1-12
V-I.I.S.2 Menu Summary .. V-I-12

V-I.I.6 FOI1Il Service 0 V-I-12
V-I.I.6.1 FOInl Summary 0.0 0 . 0 0 V-I-I4

V-I.1.7 Report SelVice 0 ... 0 V-I-IS
V-I.I.7.1 Report Concepts 0 V-I-IS
V-I.I.7.2 Report Summary 0 V-I-17

V-I.2 Summary ... 0 V-I-17

Chapter 2. Creating a BiiNTM Application Program

V -2.1 Concepts 0 0 V -2-4
V-201.1 Designing a BiiNTM Program 0....................... V-2-4
V-2.1.2 DefIning the Application's Data Structure V-2-S
V-2.1.3 Example Program OvelView V-2-S

V-2.2 Techniques 0 V-2-10
V-2.2.1 Creating and Processing the Invocation Command 0 ... V-2-10
V-2.2.2 Using Windows in a Program 0 0 V-2-11
V-2.2.3 Processing a Menu Selection V-2-12
V -2.2.4 Displaying a Message ... V -2-1S
V-2.2.S Getting Data from a FOI1Il 0 V-2-17
V-2.2.6 Displaying Data Using a FOInl 0 0 0 V-2-19
V-2.2.7 Updating a File .. V-2-20
V-2.2.8 Printing a Report from a File V-2-21
V-2.2.9 Printing a Report from a Sorted File V-2-24

V-2.3 Summary ... V-2-28

Chapter 3. Building New Commands

V-3.1 Concepts ... 0........... V-3-2
V-3.1.1 Developing Command-Driven Programs 0 V-3-4

xx Contents

PRELIMINARY

V-3.1.2 Types of Commands
V-3.1.2.1 Built-in Commands
V -3.1.2.2 CLEX Commands
V -3.1.2.3 Program-Defined Commands

V -3.1.3 Review of Command Syntax
V-3.1.3.1 Command Name
V-3.1.3.2 Argument Types and Values
V -3.1.3.3 Control Options

V -3.1.4 Review of Command Definitions
V -3.1.S Types of Command Input
V-3.1.6 Alternatives to Command Input
V-3.1.7 Entering Commands to Programs

V-3.2 Techniques .. .
V-3.2.1 DefIning an Invocation Command
V -3.2.2 DefIning a Runtime Command Set
V -3.2.3 Reading the Invocation Command
V-3.2.4 Processing Command Arguments
V -3.2.S Processing Runtime Commands
V-3.2.6 Reading a Command Input Line as Text
V-3.2.7 Executing Commands from a Program

V-3.3 Summary .. .

V-3-4
V-3-S
V-3-6
V-3-6
V-3-7
V-3-7
V-3-8
V-3-9

V-3-10
V-3-1l
V-3-12
V-3-l2
V-3-l3
V-3-l3
V-3-l4
V-3-l4
V-3-l4
V-3-l6
V-3-l6
V-3-16
V-3-l7

Chapter 4. Programming with Command Language Variables

V -4.1 Concepts ... V -4-3
V-4.l.l System Variables ... V-4-4

V -4.2 . Techniques ... V -4-S
V-4.2.l Read and Set an Environment Variable's Value V-4-S
V-4.2.2 Display all Environment Variable Names V-4-6
V-4.2.3 Get and Set Environment Variable Values in ASCII V-4-7
V-4.2.4 Create and Remove an Environment Variable V-4-8

V-4.3 Summary ... V-4-9

Chapter 5. Programming with Menus

V-S.l Concepts ... V-S-3
V-S.1.l Why Use Menus? .. V-S-3

V-S.2 Techniques ... V-S-3
V-S.2.1 Defme a Menu Group ... V-5-4
V-S.2.2 Install a Menu Group in a Window V-5-5
V-5.2.3 Enable an Installed Menu Group V-S-6
V-5.2.4 Get a Menu Selection ... V-S-6
V-S.2.5 Display a Checkmark for a Menu Item V-S-7
V-5.2.6 Change a Window's Enabled Menu Group. V-5-7
V-5.2.7 Remove an Installed Menu Group from a Window V-S-7

V-S.3 Summary ... V-S-8

Contents xxi

I'KELIM1NAK r

Chapter 6. Understanding Forms
V -6.1 Creating a Fonn Description
V -6.2 Record I/O
V-6.3 Fonn Elements
V-6.4 Texts
V -6.5 Screen Fields

V -6.5.1 Olaracter Fields
V-6.S.2 Option Fields

V-6.6 Enumeration
V-6.6.1 Null Enumeration Element

V -6. 7 Protecting Fields .. .
V-6.8 Data Fields .. .
V-6.9 Subfonns .. .
V-6.10 Groups
V -6.11 Piles '
V -6.12 Expansion and Contraction of Fonns
V -6.13 Subroutines and the Subroutine Interface
V -6.14 Processing Routines .. .
V -6.15 Key Catchers .. .
V -6.16 Symbolic Keys .. .
V-6.17 Key Lists
V-6.18 Fonn Name Environments
V -6.19 Execution Paths .. .

V -6.19.1 Explicit Modification of the Path Registers
V -6.19.2 Implicit Modification of the Path Registers

V -6.20 Messages and Help Infonnation
V -6.21 Window Management
V -6.22 Summary

Chapter 7. Programming with Forms
V -7.1 Creating Executable Forms .. .
V -7.2 Command Language Variables
V-7.3 Fonn Utilities ~
V -7.4 Editing Translation Tables .. .
V -7.5 Techniques .. .

V-7.S.1 Opening and Closing Forms
V-7.S.2 Executing Fonns .. .
V -7.5.3 Setting and Resetting the Initial State of a Form
V -7.5.4 Inserting, Storing, and Deleting the Contents of Screen and Data Fields ..
V -7.5.5 Controlling the Execution Path
V-7.S.6 Processing Routines and Key Catchers
V -7.5.7 Deftning a Processing Routine
V-7.S.8 Deftning a Key Catcher
V -7.5.9 Interrupting Execution .. .
V -7.5.10 Adding and Removing Group Instances

xxii

V-6-4
V-6-4
V-6-4
V-6-S
V-6-S
V-6-S
V-6-7
V-6-7
V-6-9
V-6-9
V-6-9
V-6-9
V-6-9

V-6-10
V-6-12
V-6-13
V-6-14
V-6-1S
V-6-16
V-6-19
V-6-19
V-6-20
V-6-21
V-6-21
V-6-21
V-6-22
V-6-22

V-7-2
V-7-3
V-7-S
V-7-6
V-7-6
V-7-6
V-7-7
V-7-8
V-7-8
V-7-9

V-7-10
V-7-10
V-7-11
V-7-11
V-7-11

Contents

PK~LIMlNAKY

V-7.S.11 Modifying the Appearance of a Form V-7-12
V-7.5.12 Inquiring About an Element, Form Sheet, and Form Status V-7-13
V-7.5.13 Inquiring About the Last Edited Sheet Element and Input Event V-7-14

V-7.6 Summary ... V-7-14

Chapter 8. Generating Reports
V-S.l Concepts .. .

V -S.I.1 Report Characteristics .. .
V-S.l.2 Control Groups
V -S.1.3 Representation of Report Descriptions
V-S.IA Creating and Modifying a Report Description
V-S.l.S Report CL Variables
V -S.1.6 Printing a Report From the Command Line

V-S.2 Techniques .. .
V -S.2.1 Printing a Report From Your Program
V -S.2.2 Setting Global Assignments

V-S.3 Summary .. .

Contents

V-S-2
V-S-2
V-S-S
V-S-6
V-S-7
V-S-9

V-S-ll
V-S-ll
V-S-ll
V-S-13
V-S-14

xxiii

PK~L1MlNAKY

Part VI. Program Services.

Chapter 1. Understanding Program Execution
VI-1.l Definition of a Program ... VI-1-2
VI-l.2 Program Structure 0......... VI-1-2

VI-1.2.l The Program Object .. VI-1-3
VI-1.2.2 The Domain Object .. VI-l-4
VI -1.2.3 The Static Data Object .. VI -l-S
VI -1.2.4 The Instruction Object .. VI -1-6
VI-l.2.S The Stack Object .. VI-1-6
VI-1.2.6 The Public Data Object VI-1-6
VI-1.2.7 The Debug Object ... VI-1-7
VI-1.2.S The Handler Object .. VI-l-S

VI-l.3 Invoking a Program .. VI-l-S
VI-1.4 Program Execution .. VI-1-9

VI-1.4.l Sessions, Jobs, and Processes VI-1-9
VI-1.4.2 Process Globals ... VI-l-IO

VI-1.5 Interprocess Communication VI-1-12
VI-I.S.l Events ... VI-I-12
VI-I.S.2 Pipes .. VI-I-14
VI-1.S.3 Pipes vs. Events ... VI-I-IS

VI-I.6 Process Control ... VI-I-IS
VI-1.6.I Process States ... VI-I-IS
VI-1.6.2 Local Event Cluster .. VI-I-I6

VI-I.? Semaphores .. VI-I-I7
VI-1.8 Use of Multiple Processes ... VI-1-19
VI-l.9 Summary .. VI-I-2l

Chapter 2. Building Concurrent Programs

VI-2.I Getting a Process Globals Entry VI-2-4
VI-2.2 Setting a Process Globals Entry VI-2-4
VI-2.3 Creating a Process ... VI-2-S
VI-2.4 Getting Process Infonnation VI-2-7
VI-2.S Suspending and Resuming a Process VI-2-7
VI-2.6 Tenninating a Process .. VI-2-S
VI-2.7 Signaling an Event. VI-2-9
VI-2.S Establishing an Event Handler VI-2-10
VI-2.9 Waiting for Events ... VI-2-l1
VI-2.10 Connecting Processes with a Pipe VI-2-l2
VI-2.1I Locking Shared Data Structures VI-2-13

XXIV Contents

PRELIMINARY

Chapter 3. Scheduling
VI-301 What the Scheduler Is 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 VI-3-2
VI-302 The Scheduler's Objectives 0 0 0 . 0 . 0 0 . 0 0 0 .. 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 . o. VI-3-2
VI-303 The Scheduler's Task 0 0 0 0 0 0 0 0 0 . 0 0 . 0 . 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 0 0 0 0 0 0 0 o. VI-3-2
VI-3.4 CPU Scheduling 0.00000000000.0 0000.0.000000000000000000000000.. VI-3-3

VI-3.401 CPU Scheduling Model 0000000000 000000000 0 0 . 00 0 000000.00 VI-3-3
VI-3.401.1 High Level Scheduling 0 0 0 00 0 0 . 0 . 0 0 0 0 0 000 000 .• 0 0 0 000000 0 . 0 0 VI-3-3
VI-3.401.2 Low Level Scheduling o. 0 0 0 0 0 . 0 . 0 0 0 0 0 0 . 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 VI-3-4
VI-3.401.3 Processor Preemption 0 0 . 0 0 . 0 .. 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 . 0 0 VI-3-4
VI-3.401.4 Classes and Priorities 0 0 0 0 0 0 0 0 . 0 . 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 .. o. VI-3-4
VI-3.401.S Processor Claim and Job Time Limit .. 000.00000000.000000000. VI-3-S
VI-3.401.6 Medium Level Scheduling 0 0 0 .. 0 . 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 0 0 0 0 0 0 0 0 0 o. VI-3-S

VI-3.402 Scheduling Service Objects (SSOs) o. 0 . 0 . 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 . 0 o. VI-3-6
VI-3.402o1 Service Classes 0 0 0 0 0 . 0 . 0 0 . 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 .• o. VI-3-6
VI-3.402o2 SSO Priority 0 0 0 . 0 0 .. 0 0 0 0 0 0 •. 0 .. 0 0 0 0 0 . 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 . 0 0 VI-3-6
VI-3.402o3 Time Slice 0 0 0 0 0 . 0 0 .. 0 . 0 0 0 0 0 . 0 . 0 . 0 0 0 0 . 0 0 . 0 0 0 . 0 0 0 0 . 0 0 0 0 . o. VI-3-7
VI-304o2o4 Memory Type 0 0 0 0 0 •. 0 0 0 0 0 0 0 • 0 . 0 . 0 0 0 0 0 0 0 0 0 0 . 0 .• 0 0 . 0 0 0 0 . 0 0 VI-3-7
VI-304o2.S Initial Age 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 .. 0 0 . 0 0 0 0 0 0 . 0 0 VI-3-7
VI-304o2.6 Age Factor 0 0 0 0 . 0 0 0 0 0 0 0 000 0 0 0 .. 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 000 0 0 0 . o. VI-3-7

VI-3.4.3 Resource-Driven Priorities 0 0 • 0 0 . 0 . 0 .. 0 . 0 0 0 0 . 0 0 0 0 0 . 0 .. 0 0 .0 0 0 .. o. VI-3-7
VI-3.403.1 Priorities Used 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 . 0 0 . 0 0 0 0 0 0 0 0 0 0 • 0 0 0 .. VI-3-8
VI-3.4.3.2 An Example 0., 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 . 0 . 0 0 0 0 0 0 0 0 0 0 0 0 o. VI-3-8

VI-3oS Memory Scheduling o. 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 .. 0 0 0 0 . 0 0 0 . 0 0 0 0 . 0 . 0 .. VI-3-9
VI-3.6 I/O Scheduling 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 .. 0 0 0 . 0 0 0 0 0 0 . 0 0 . 0 . 0 0 0 0 0 0 . 0 . 0 VI-3-9
VI-3o 7 Summary 0 0 0 0 0 . 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 .. 0 0 0 0 0 .. 0 0 0 0 . 0 0 0 0 0 0 0 . 0 0 .. 0 0 VI-3-9

Contents xxv

PRELIMINARY

Part VII. Type Manager Services.

Chapter 1. Understanding Objects
VII-I.l Why Use Objects? ..•... VII-1-2

VII -1.1.1 Data Abstraction .•.................................•..•.•..• VII -1-2
VII -1.1.2 Memory Protection 0 . 0 0 .. 0 0 .. 0 .. 0 . o. VII -1-3
VII-I.I.3 Secure and Dynamic Memory Management .000 ... 0 .. 0 ...• o• VII-l-4
VII-1.1.4 Support for Complex and Extensible Applications .0 .. 0.000 .. 0 . 0 ..• VII-l-4
VII -1.1.5 Unifonn Storage Model for Petmanent and Volatile Memory 0........ VII -1-4
VII-1.I.6 Distributed Storage Model 0 0•........... 0 .• 0 .•.•.......... VII-1-5

VII-I.2 How Objects Work .. 0 0 0 0 . 0 0 VII-1-5
VII-l.2.t Object Sizes 0 ..•••............. 0 ...•............•..... VII-1-5
VII-1.2.2 Types 0 0 0 0 .• 0 •..•..• 0 . 0 0 .. 0 0 0 0 0 0 .. 0 .. 0 0 . 0 . 0 0 0 0 0 0 ... 0 0• VII-1-5
VII-102.3 Object Protection . 0 0 . 0 0 .•... 0 . 0 0 . 0 0 . 00 • 0 • 0 0•.. VII-1-6
VII-l.2.4 Attributes 0 0 . 0 •.. 0 . 0 0 •. 0 0 0 0 ... 0 .. 0 . 0 ... 0 . 0 . 0 0 0 ... 0 0 0 0 0 . 0 0 o. VII-1-6
VII -1.2.5 The Inside View of an Object .. 0 .. 0 0 0 0 0 0 0 0 0 0 . 0 0 •.. 0 0 0 .. 0 . 0• VII -l-S

VII-1.3 Address Space Protection 0 ... 0 0 . 0 0 0 0 . 0 0 0 0 .. 0 .0 .. 0 .. VII-1-10
VII-1.301 Access Descriptors 000 •... 0.0. 00' .. 0 . 0 . 0 . 0 . 0 00.0 ... 0 0 000.0. 0 . VII-1-l2
VII-1.302 Type Managers 0 .. 0 0 0 0 . 0 0 0 . 0 0 0 .. 0 ... 0 . 0 .. 0.0.000.00. 0 . 0 • 0 ... VII-1-13
VII-lo303 Domains 0 0 000. 0 ... 0 0 0 0 . 0 . 0 0 0 ... 0 0 0 0 .. 0 0 .. 0.0 .. 0 0 0 . VII-1-l4

VII-t.4 Passive Objects 0 0 .•... 0 0 0 000 . 0 . 0 .. 0 .. 00.0 0 0 0 . 0 . 0 . 0 . 0 . 0 VII-1-15
VII-l.4.l Active Memory ..•. 0 00000000000 .. 0.0 0 .. 0 0 0 . 0 ... VII-1-l6
VII-1.402 Passive Store .000. 0 ...• 0 ... 0 0 ... 0 0 . 0 .. 0 0.0 0 0 0 VII-1-16
VII-I.4.3 Passive ADs .000000 ..• 0 0 .. 0 .. 0 . 0 000 ...••.•..... 0 0. VII-l .. 17
VII-I.4.4 Passive Store Protection -- Authority Lists 000 ...• 0 o •.. 0 •... 0 .. 0 ... VII-I-IS
VII-l.4.5 IDs . 0 0 0 0 0 .. 00. 0 0 0 0 .. 0 . 000 000 0 0 . 0 . 0 . 0 ... 0 . 0 0 VII-1-19
VII-I.4.6 Updating Stored Objects . 00' 0 . 0 0 0 0 . 0 00 0 . 0 VII-1-20

VII -1.5 Summary 0 0 0 . 0 ... 0 0 0 0 . 0 0 .. 0 0 0 ... 0 0 0 . 0 . 0 .. 0 0 0 0 . 0 0 . VII-1-20

Chapter 2. Understanding Memory Management

xxvi

VII-201 Physical Memory Organization 0.00 .. 0 . 0 0 0 . 00.0 .. 000000.00. o 0 o. VU-2-2
VII-202 Virtual Memory Organization 0 .. 000000. 0 0 . 000 .. 0 0 0 0 . 0 0 0 0 0 0 o. VII-2-5

VII-2.2.1 The Object Table 00000 •. 0 0 0 0 . 0 0 .. 0 .. 0 . 0 0 . 0 .• 0 . 0 . 0 00' 0 0 .. 0 . o. VII-2-5
VII-202.2 Object-Based Address Translation 0000. 0 .. 0 0 .. 0 0 0 0 0 0 0 0 ... 0 o. VII-2-7
VII-202o3 Storage Resource Object 0000.00 .. 00.0.00.0000. 0 0 0 0 . 0 0 00000.00 VII-2-7
VII-2.2.4 Object Representations .. 0 .. 0 0 0 . 0 0 .. 0 . 0 0 00' 0 0 0 . 0 0 00 0 ... 0 0 VII-2-S
VII-202o5 Frozen and Notmal Memory Types 0 0 0 . 0 . 0 0 . 0 0 0 0 . 0 0 0 0 0 0 0 0 0 .. 0 0 . 0 VII-2-9

VII-2.3 Different Allocation Policies .. 0 0 . 0 . 0 .. 0. 0 . 0 0 0 000 0 0 0 . 0 0 . 0 0 .. 0 0 . 0 0 . 0 VII-2-9
VII-2.4 Object Lifetimes . 000 0 0 0 0 . 0 . 0 . 0 ... 0 0 . 0 0 0 0 . 0 0 00 . 0 0 0 0 . 0 0 . 0 VII-2-9
VII-205 Object Deallocation Strategies 0 . 0 0 0 ... 0 .. 0 0 0 0 VII-2-l0
VII-2.6 Controlling and Accounting for Memory Resources o. 0 0 0 0 00 ... 0 .. VII-2-12
VII-2.7 User-Transparent Memory Management Functions 0 0 0 . 0 .. 0 ... 0 0 0 VII-2-l2

VII-2.7.1 Object Activation 00.0.0 0 .. 00' 0 .. 0 0 . 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 VII-2-l2
VII-207.2 Virtual Memory Paging . 0 . 0 000. 0 ... 0 0 0 0 . 00' . 0 0 .. 0 . 0 .. 0 0 0 . 0 0 0 0 VII-2-l2
VII-2.7.3 Global Garbage Collection . 0 . 0 . 0 .. 0 . 0 . 000 0 . 0 0 0 .. 0 . 0 0 0 VII-2-l3

Contents

PRELIMINARY

VII-2.7.4 Compaction .. 00000 0 0 0 VII-2-13
VII-2.7.S Optimized Handling of Instruction Objects 0 0 0 . 0 . 0 0 . 0 0 .. 0 .. 0 .. 0 0 0 0 VII-2-13

VII-2oS Summary . 0 0 0 . 0000.000 0 00' .000 0 VII-2-13

Chapter 3. Building a Type Manager

VII-3.1 Concepts 0 0 VII-3-2
VII-3.1.1 The Type Manager Defines All Calls for a Type of Object 0 ... VII-3-2
VII -3.1.2 Type Managers Hide Data Representation 0 VII -3-3
VII-3.1.3 Only the Type Manager Has the Key to Access the Type's Objects VII-3-3
VII-3.1.4 One Module Can Manage Multiple Types ... 0 VII-3-3

VII-3.2 Techniques 0 VII-3-3
VII-3.2.1 Defining the Public Type VII-3-4
VII-3.2.2 Defining Type Rights 0 VII-3-S
VII -3.2.3 Defining Exceptions 0 VII -3-6
VII-3.2.4 Defining the Type's Calls VII-3-6
VII-3.2.S Defining the Private Types VII-3-7
VII-3.2.6 Defining Needed BiiNTM Ada Type Overlays VII-3-7
VII-3.2.7 Creating the TOO .. 0 0 VII-3-S
VII-3.2.S Binding to a Stored TDO VII-3-S
VII-3.2.9 Implementing the I s account Call 0 0 VII-3-S
VII-3.2.10 Implementing the C;eate account Call VII-3-9
VII-3.2.11 Implementing the Create-stored account Call VII-3-9
VII-3.2.12 Implementing Calls that Require TypeRights VII-3-10
VII-3.2.13 Implementing Calls that Do not Require Type Rights VII-3-11
VII-3.2.14 Implementing the Destroy Call VII-3-11
VII-302.1S Making Operations Atomic 0 VII-3-12
VII-3.2.16 Initializing the Type Manager .. 0 0 VII-3-13
VII-3.2017 Protecting the Type Manager from Other Services 0 VII-3-14

VII-3.3 Summary 0 VII-3-1S

Chapter 4. Using Attributes
VII -4.1 Concepts 0 .. VII -4-3
VII-4.2 Techniques 0 VII-4-S

VII-4.2.1 Defining a New Attribute VII-4-S
VII-4.2.2 Defining an Attribute Instance VII-4-6
VII-4.2.3 Initializing the Type's TDO VII-4-7
VII-4.2.4 Initializing an Objects Attribute List VII-4-8

VII-4.3 Summary ... VII-4-8

Chapter 5. Managing Active Memory
VII -S.l A Brief Overview of How Memory Is Allocated VII -S-2
VII-S.2 Collecting Garbage Objects -- GCOL VII-S-3

VII-S.2.1 Local GCOL ... VII-S-3

Contents xxvii

PRELIMINARY

VII-5.2.2 Global GCOL .. VII-5-4
VII-5.3 Techniques .. VII-5-5

VII-5.3.1 Trimming the Caller's Stack VII-5-5
VII-5.3.2 Starting Local Garbage Collection VII-S-5
VII-5.3.3 Setting/Changing Local GCOL Parameters VII-S-S
VII -5.3.4 Stopping Local Garbage Collection VII -5-6
VII-5.3.5 Getting Infonnation About a Job's Local Memory VII-5-6

VII-5.4 Summary ... VII-5-6

Chapter 6. Building Type Managers for Stored Objects

VII-6.1 Concepts .. VII-6-2
VII-6.1.1 Storing and Retrieving Objects in Passive Store VII-6-2

VII-6.1.1.1 Lifetime Requirements VII-6-3
VII-6.1.1.2 Storing Objects Requires Three Steps VII-6-3
VII-6.1.1.3 Object Trees in Passive Store VII-6-3

VII-6.1.2 The Type Manager Can Customize Passive Store Operations VII-6-3
VII -6.1.3 Synchronizing Access to Objects -- Transactions and Semaphores VII -6-4

VII-6.2 Techniques .. VII-6-4
VII-6.2.1 Defining the Type's Calls VII-6-5
VII-6.2.2 Implementing the Create account call VII-6-6
VII-6.2.3 Implementing the Create=stored_account Call VII-6-7

VII-6.2.3.1 Starting, Commiting, and Aborting a Transaction VII-6-S
VII-6.2.3.2 Storing the Master AD VII-6-9
\111-6.2.3.3 Updating the Object VII-6-9

VII-6.2.4 Implementing the Change balance Call VII-6-9
VII-6.2.5 Implementing the Transfer Call VII-6-11
VII-6.2.6 Implementing the Destroy account Call VII-6-12
VII-6.2.7 Initializing the Type Manager VII-6-13
VII-6.2.S Protecting the Type Manager VII-6-16

VII-6.3 Summary ... VII-6-1S

Chapter 7. Understanding System Configuration

VII -7.1 Creating a Node's Configuration VII -7-3
VII-7.2 Defming a Node's Configuration VII-7-4
VII-7.3 Configuration Attribute Calls VII-7-4
VII -7.4 Creating Configurable Objects VII -7-5
VII -7.5 Attaching Objects to Configurable Objects VII -7-6
VII -7.6 Configuring Software Services VII -7-6
VII -7.7 Starting Configurable Objects VII -7-7
VII-7.S System SCOs and User SCOs VII-7-S
VII-7.9 The configure Utility ... VII-7-9
VII-7.10 Summary .. VII-7-9

xxviii Contents

PRELIMINARY

Part VIII. Distribution Services.

Chapter 1. Understanding Distribution
VIII -1.1 Introduction 0 0 ... 0 .. 0 .. 0 0 0 . 0 0 . 0 0 0 0 0 .. 0 0 . VIII -1-2
VIII -1.2 What a Distributed System Can Do o. 0 0 0 0 .. 0 0 0 0 0 . 0 . 0 0 0 0 0 VIII -1-4
VIII-l.3 Naming .. 0 0 00. 0 0 0 ..•......... 0 0•.......•.. 0 0 VIII-l-S

VIII-1.3ol The Clearinghouse .. 0 ...• 0 0 0•........... VIII-1-6
VIII-l.4 Communications 0 0 ..•..•.... 0 .. 0 ... 0 0 0 VIII-l-S
VIII-1.S Review of the Computational Model .. 000 0 .. 0.00000000000 VIII-l-IO

VIII-1.Sol Processes, Jobs and Sessions 00000000000 0 .. 0 0 0 0 0 0 0 0 0 0 0 000000000 VIII-l-IO
VIII-1.So2 Active and Passive ADs 0 0 0 0 . 0 0 0 0 0 000 0 0 0 0 o .. 0 0 0 ... 0 0 0 0 . 0 VIII-l-IO
VIII-1.So3 Single and Multiple Activation Model 00. 0 0 . 0 . 0 0 . 0 . 0 VIII-I-II

VIII-1.6 Single Activation Distributed Services . 0 0 o. 0 .0 ... 0 . 0 0 0 0 .. VIII-1-13
VIII-1.7 Protection in a Distributed System . 0 . 0 .. 0 0 0 .. 0 .. 0 00. 00 .. 0 .. VIII-1-13
VIII-1.S Transparently Distributed Services ..•... 0 0 0 0 0 . 0 0 0 0 .. 0 0 0 VIII-1-14

VIII-1.S.l Passive Store 00 0 0 0 ... 0 .. 0 . 0 . 0 0 0 . 0 0 .. 0. 0 0 .. 0 . VIII-1-14
VIII-1.So2 Directories . 0 0 0•...•.•.. 0 o. 0 VIII-1-14
VIII-l.S.3 IDs 0•.•..•..•.... 0 o 0 .. 0 VIII-I-IS
VIII-I.So4 Files 0 0 0 0 0 0 0 . 0 VIII-1-16
VIII-1.SoS Data Integrity, Synchronization, and Transactions . 0 .. 0 0 0 0 0 0 00. 0 .. 0 VIII-1-16

VIII-Io9 Summary 000000000.00. 0 0 0 0 0 0 0000 .. 0 0 0 0 . 0 . 0 0 0 0 0 0000000000000000 VIII-I-16

Chapter 2. Building a Distributed Type Manager

Contents

VIII-2.1 Concepts 0 0 0 0 . 0 0 00. 0 0 0 0 000 0 0 0 0 0 0 0 0 0 00 0 0 0 0 .0 0 . 0 0 0 0 0 . 0 0 00. 0 0 0 0 0 0 VIII-2-2
VIII-2.1.1 Homomorphs and Active Versions 00000000000000000000000000000 VIII-2-3
VIII-2.1.2 The Remote Call 000 .• 0 0 0 0 000 ... 0 00000000.0 .. 00000000000. 0 0 0 VIII-2-3
VIII-201.3 Synchronizing Access 0 0 0 0 0 0 ... 0 0 0 0 ... 0 .. 0 0 0 0 0 0 0 .0 .. 0 0 0 0 0 VIII-2-4

VIII-2.2 Techniques . 0 • 0 0 0 0 .. 0 ... 0 0 .. 0 0 0 0 . 0 VIII-2-4
VIII-2.2.1 Defining The Representation of The Object 00000000. 0 0 0 0 0 0 00000 .. VIII-2-S
VIII-2.202 Defining the Homomorph Template 00000. 0 0 0000000.00000.00000. VIII-2-6
VIII-2.203 Setting the Passive Store Attribute 0 0 00 0 0 0 0 000 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 . VIII-2-6
VIII-2.2.4 Defining Buffers for Remote Procedure Calls 000 0 0 0 0 0 0 0 0 0 . 000 0 0 . 0 VIII-2-7
VIII-2.2oS The Is Call 000 0 0 . 0 0 0 0 .. 00 0 0 0 0 00' 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 VIII-2-7
VIII-2.2.6 The The Crea te Calls 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 VIII-2-S
VIII-202o7 Implementing calfs that Require Remote Calls 000000000000000000. VIII-2-9

VIII-202.7ol Recognizing the Home Job 0 0 0 0 00 VIII-2-10
VIII-2.207o2 Making the Remote Procedure Call 0000000000000000000000000 VIII-2-10
VIII-202o7.3 The Server Stub 0 0 0 0 . 0 00 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 00 0 0 0 0 0 0 VIII-2-11

VIII-202oS Synchronizing with Transactions and Semaphores 00000000000000000 VIII-2-12
VIII-2.209 Initialization 0 . 0 VIII-2-12

VIII-202o9ol Private ADs are Hidden in the Static Data Object. 000 0 0 0 000 0 0 0 0 VIII-2-13
VIII-202.9o2 Creating the Server 000 0 0 0 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 VIII-2-13
VIII-2.2.903 Creating and Registering the Service 0 VIII-2-14
VIII-202.9.4 Setting Up the Home Job 0000000000.000000000000.000000000 VIII-2-14

VIII-203 Summary 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 VIII-2-lS

xxix

PRELIMINARY

Part IX. Device Services.

Chapter 1. Understanding Device Managers and Device
Drivers

IX -1.1 Concepts 0 •••• 0 •••••••.•••••••••••••••••••• 0 • • .• IX -1-3
IX-I.2 I/O Model . 0 •••• 0 0 0 ••• 0 •••• 0 • 0 • 0 •• 0 .• 0 0 •••••••• 0 ••••• 0 0 • 0 •• 0 0 0 0 IX-1-3

IX-l.2.l Access Methods 0 ••• 0 • 0 • 0 0 0 0 000 0 0 •. 0 •••• 0 0 •• 0 • 0 • 0 0 ••.••• 0. • •• IX-l-4
IX-1.2.2 Device Managers ... 0. 0 0 0 0 • 0 • 0.0.000.00. 0 .0000.00000 .• 0.00. 0 0 IX-l-4
IX-Io2.3 Device Drivers 0 ••• 0 0 0 0 0 • 0 • 0 0 •• 0 • 0 0 0 • 0 0 • 0 0 0 0 0 0 • 0 0 0 .•.•••.• 0 . 0 IX-l-4
IX-I.2.4 Device Classes .. 0 ••• 0 0 •• 0 ...••••••.•• 0 •••••••• 0 0 . 0 0 0 0 0 • 0 0 • 0 0 IX-l-4
IX-1.2oS I/O Mechanisms 0000 0 00. 0 0 0 000000000000000. . • • • . • • • •• • . .. IX-l-4
IX-1.206 The I/O Messages Mechanism .. 0. 0 0 0 0 • 0 ••• 0 0 • 0 .00.000 •.• 0 .0.0.0 IX-I-S

IX -1.3 Data Transfer Via the I/O Messages Mechanism o. 0 • 0 • 0 0 • 0 0 0 0 • 0 • 0 •• 0 0 0 0 IX -1-6
IX-1.3.l I/O Recovery Agent .0.0 ••• 00 •••••• 000. 0 ••• 0 • 0 • 0 0 0 • 0 0 0 0 0 • 0 0 • o. IX-1-8

IX-l.4 Data Transfer Via the Shared Queues Mechanism . 0 ••• 000000 •• 0 • 0 • 0000. IX-1-8
IX-loS Clusters and Cluster Servers o. 0 0 0 0 0 0 •••••.•••••••••. 0 • 0 0 0 • o. 0 ••••. 0 IX-I-9

IX-I.S.l Administrative Interface 0 •••• 0 ••••••••• 0 ••• 0 • • • • .• IX-1-9
IX-1.S.2 Device Driver Example 0 •• 0 0 0 .0 •.•••.•• 0 •• 0 o. • • .. IX-1-9
IX-1.S.3 I/O Shared Queues Data Transfer Mechanism 0 .•.••••••.. 0.0.000.00 IX-I-IO

IX-Io6 Summary 0., 0 • 0 0 0 • 0 00 •.•. 00 •• 0 000.0 ••. 0 0 0 0 .•. 0 0 0 . 0 •• 0 • 0 • 0 •• 0 00. IX-1-13

xxx Contents

PKELIMlNAKY

Part X. Appendixes.

Appendix A. Ada Examples
X-A.1 Introduction' .. X-A-4
X-A.2 Support Services .. X-A-4

X-A.2.1 Example Messages Package Specification X-A-S
X-A.2.2 Long Integer Ex Package Specification X-A-7
X-A.2.3 Long -Integer -Ex Package Body X-A-8
X-A.2.4 Make-menu group DDef ex Procedure X-A-12
X-A.2.5 Manage applicatIon environment ex Procedure X-A-20
X-A.2.6 String-list ex Procedure ~ X-A-23

X-A.3 Directory SerVIces :: ... X-A-23
X-A.3.1 Create directory cmd ex Procedure X-A-24
X-A.3.2 Create-name space cmd ex Procedure X-A-26
X-A.3.3 List current directory cmd ex Procedure X-A-31
X-A.3.4 Make=objectj)ublic_ex Procedure X-A-33
X-A.3.S Show current directory cmd ex Procedure X-A-3S

X-AA I/O Services -: -: -: X-A-36
X-AA.1 DBMS Support Ex Package Specification X-A-37
X-AA.2 DBMS-Support -Ex Package Body X-A-38
X-AA.3 Employee_FiIIng_Ex Package Specification X-A-42
X-AA.4 Employee_Filing_Ex Package Body X-A-46
X-AA.S Hello ada ex Procedure X-A-S4
X-AA.6 Hello-OS ex Procedure X-A-SS
X-AA.7 Join_File_Ex Package Specification X-A-S6
X-AA.8 Join_File_Ex Package Body X-A-S7
X-AA.9 Record Locking Ex Package Specification X-A-61
X-AA.10 Record Locking Ex Package Body X-A-62
X-AA.11 Output-bytes ex Procedure X-A-64
X-AA.12 Output-records ex Procedure X-A-6S
X-AA.13 Print cmd ex Procedure X-A-67
X-AA.14 Print -Cmd-Messages Package X-A-70
X-AA.1S Record_AM=Ex Package Specification X-A-71
X-AA.16 Record AM Ex Package Body X-A-7S
X-AA.17 Simple-edItor cmd ex Procedure X-A-84
X-AA.18 Simple -Editor -Ex Package Specification X-A-8S
X-AA.19 Simple - Edi tor-Ex Package Body X-A-89
X-AA.20 Stream-file exProcedure X-A-103

X-A.S Human Interface ServICes ... X-A-104
X-A.S.I Inventory main Procedure X-A-I05
X-A.S.2 Inventory=Files Package Specification X-A-108
X-A.S.3 Inventory Files Package Body X-A-llS
X-A.S.4 Inventory-Forms Package Specification X-A-121
X-A.S.S Inventory-Forms Package Body X-A-126
X-A.S.6 Inventory-Menus Package Specification X-A-137
X-A.S.7 Inventory-Menus Package Body X-A-140
X-A.S.8 Inventory-Report s Package Specification X-A-144
X-A.S.9 Inventory=Reports Package Body X-A-146

Contents xxxi

PRELIMINARY

X-A.S.IO Inventory Windows Package Specification 00.0 ... 0 .X-A-IS2
X-A.S.II Inventory-Windows Package Body 0 0 X-A-IS4
X-A.S.12 Inventory-Messages Package Specification 0 .. 0 X-A-IS6

X-Ao6 Program Services -:-0.00.0.0.00 .. 0.0 0 0 oX-A-IS6
X-A.6.1 At cmd ex Procedure 0 0 0 .. 0 .. X-A-IS7
X-A.6.2 At-Support Ex Package Specification 0 X-A-160
X-Ao6.3 At -Support -Ex Package Body 0 X-A-162
X-A.6.4 Compiler Ex Package Specification .. 0 0 X-A-168
X-A.6.S Compiler-Ex Package Body 0 0 0 X-A-169
X-A.6.6 Conversion Support Ex Package Specification X-A-172
X-A.6.7 Memory ex Procedure .-: .. 0 0.0 0 X-A-176
X-A.608 Process Globals Support Ex Package Specification X-A-177
X-A.6.9 Proces s - Globals -Support - Ex Package Body 0 0 X-A-182
X-A.6.10 Symbol-Table ExPackage SPecification 0 X-A-191
X-A.6.11 Symbol-Table -Ex Package Body 0 X-A-193
X-A.6.12 Word Processor Ex Package Specification o X-A-197
X-A.6.13 Word-Processor -Ex Package Body 0 0 0 ... 0 X-A-198
X-A.6.14 View-device maIn Procedure X-A-203
X-A.6.1S VD_Defs Package Specification 0 0 X-A-206
X-A.6.16 VD Commands Package Specification . 0 X-A-208
X-A.6.17 VD -Commands Package Body 0 X-A-209
X-A.6.18 VD -Devices Package Specification 0 X-A-213
X-A.6.19 VD-Devices Package Body X-A-2IS

X-A.7 Type Manager Services 0 0 X -A-218
X-A.7.1 Acct main ex Procedure 0. 0 0 0 .X-A-219
X-A.7.2 Acct -Visual Package Specification 0 0 X-A-236
X-A.7.3 Acct -Visual Package Body . 0 0 X-A.;238
X-A.7.4 Account Manager Command File 0 . 0 .. 0 0 ... X-A-244
X-A.7.S Account Type s Ex Package Specification 0 . 0 X-A-2S0
X-A.7.6 Account-Mgt Ex Package Specification 0 . X-A-2S1
X-A.7.7 Account -Mgt - Ex (Active Only) Package Body 0 X-A-2S6
X-A.708 Account -Mgt -Ex (Stored, Non-transaction-oriented) Package Body . X-A-261
X-A.7.9 Account -Mgt - Ex (Stored, Transaction-oriented) Package Body X-A-267
X-A.7.10 Stored-Account TDO Init Ex Procedure X-A-276
X-A.7.11 Account Type Name Ex Package Specification 0 X-A-279
X-Ao7.12 Account -Type -Name -Ex Package Body X-A-280
X-A.7.13 Type_Name_Attr_Ex Package Specification X-A-281
X-A.7.14 Type_Name_Attr_Ex Package Body X-A-282
X-A.701S Type Name Attribute Init Ex Procedure 0 ... X-A-283
X-A.7.16 Refuse Reset Active-VersIon Ex Package Specification ... X-A-284
X-A.7.17 Refuse -Reset -Active -Version -Ex Package Body ... 0 X-A-28S
X-A.7.18 Account Mgt Ex (Distributed) Package Body X-A-286
X-A.7.19 Distr Acct Call Stub Ex Package Specification X-A-298
X-A.7.20 Distr - Acct - Call-Stub - Ex Package Body 0 X-A-300
X-A.7.21 Distr -Acct -Server Stub Ex Package Specification X-A-304
X-A.7.22 Distr - Acct -Server - St ub -Ex Package Body X-A-306
X-A.7.23 Distr - Acct - Ini t Procedure - 0 X-A-308
X-A.7.24 Distr -Acct -Home Job Ex Procedure X-A-312
X-A.7.2S MakefIle . ~ ~ ... ~ 0 X-A-313
X-A.7.26 Named copy ex Procedure 0 X-A-31S
X-A.7.27 Older -than-ex Function X-A-317

xxxii Contents

PRELIMINARY

Appendix B. Glossary

Contents xxxiii

PRELIMINARY

List of Figures

xxxiv

1-1-1. Networked, Distributed, Multiprocessing Nodes
1-1-2. How the Dispatcher Handles Multiprocessing
1-1-3. How the BiiNTM OS Aids Fault Tolerance
1-1-4. The OS Interface is Made up of Services, Packages, and Calls
I-l-S. ADs Provide Access and Protection to Services
1-1-6. An AD Showing Type Rights
II-I-I. Data Structures for String List, Text, and Long Integer
11-2-1. AD and Object
ll-2-2. A Valid Access Descriptor
11-3-1. Passive Store is a Distributed Object Filing Service that Unifies all Nodes in a

1-1-3
1-1-4
1-1-6

1-1-12
1-1-14
1-1-16
ll-I-2
ll-2-2
ll-2-3

BiiNTM System. .. 11-3-2
11-3-2. A Single Object can have Passive and Active Versions. ll-3-4
11-3-3. A Stored Object ... 11-3-10
ll-3-4. Life History of a Stored Object Part 1 11-3-11
11-3-S. Life History of a Stored Object Part II 11-3-12
11-3-6. A Single Object can have Multiple Active Versions. 11-3-13
11-3-7. Copying an Object Tree. 11-3-21
II-S-1. Incidents Associate Errors with Messages ll-S-3
III-I-I. Directories Contain <Name, AD> Pairs lll-I-2
llI-I-2. A Directory Structure with Aliases Ill-I-3
111-1-3. A Directory is Protected with an Authority List lll-I-S
lll-I-4. Directory Mgt uses the Clearinghouse to Resolve Network Names. 111-1-6
111-2-1. Directories Contain <Name, AD> Pairs. 111-2-2
111-3-1. A Caller Accesses a Protected Object 111-3-2
111-3-2. Parts of an ID .. 111-3-4
111-3-3. A Process's ID List. .. Ill-3-S
111-3-4. Multiple Objects Sharing an Authority List III-3-6
III-3-S. Evaluating Access During a Retrieve 1II-3-7
III-3-6. Example: Evaluating Access During a Retrieve 1II-3-8
1II-4-1. A Name Space Lists Directories to be Searched III-4-2
III-S-I. A Symbolic Link ... III-S-2
IV-I-I. Opened Devices are I/O Channels to Devices IV-I-3
IV -1-2. Concurrent I/O ... IV -1-4
IV-I-3. Access Methods are Supported by Multiple Devices IV-l-S
IV-I-4. Byte Stream 1/0 .. IV-I-7
IV-l-S. Record I/O .. IV-I-7
IV -1-6. Character Display 1/0 ... IV -1-8
IV=3=1. Stream File Being Opened for Access IV-3-2
IV-3-2. Line Fonnats for Stream Files IV-3-4
IV-4-1. Windows Displayed on a Physical Tenninal IV-4-3
IV-4-2. Window Services Coordinate Systems IV-4-S
IV-4-3. RelationShip Between Window and View IV-4-S
IV -4-4. Example of Overlapped Windows IV -4-9
IV-4-S. Example Showing Two Possible Resize Rules IV-4-10
IV -4-6. Left Top Resize Rule .. IV -4-11
IV -4-7. Contents Resize Rule Example IV -4-12
IV-4-S. Menu Bar and Pull-down Menu .. ' IV-4-14

Contents

PRELIMINARY

IV -S-1. Views, Windows, and Frame Buffers IV -S-3
IV -S-2. The Frame Buffer Coordinate System IV -S-4
IV-6-1. Spooled Printing .. IV-6-2
IV-6-2. Print Area ... IV-6-4
IV-7-1. File Objects and Data Areas. IV-7-3
IV-7-2. Sequential File ... IV-7-S
IV-7-3. Relative File .. IV-7-6
IV-7-4. Unordered File ... IV-7-6
IV-7-S. Clustered File .. IV-7-7
IV -7-6. Hashed File .. IV -7-8
IV-8-1. An Indexed File .. IV-8-2
IV-8-2. Index Key Values that Point to Records IV-8-3
IV-8-3. B-Tree Alternate Index .. IV-8-4
IV -8-4. Clustering B-Tree Organization Index IV -8-4
IV -8-S. Hashed Organization Index IV -8-S
IV -8-6. A Simple Record DDef .. IV -8-6
IV -8-7. A Simple Derived Index Key DDef IV -8-8
IV -8-8. Layout of a Derived Index Key DDef IV -8-9
IV -9-1. A Record I/O Read Operation IV -9-2
IV-9-2. Physical-Sequential Access IV-9-4
IV-9-3. Physical-Random Access ... IV-9-S
IV -9-4. Indexed-Sequential Access IV -9-6
IV-9-S. Indexed-Random Access ... IV-9-7
IV-9-6. EOF Detection During Indexed-Sequential Access IV-9-10
IV-I0-1. Lost Update Problem ... IV-I0-2
IV-I0-2. Locking Hierarchy ... IV-I0-4
IV-I0-3. An Update with an X-lock IV-I0-S
IV-I0-4. Locks Inherited by Subtransactions IV-I0-I0
IV-II-I. Customizing a Read Call .. IV -11-2
IV -11-2. ASSOCiating a Record ID Stream with a File IV -11-4
IV-II-3. DBMS Operations ... IV-11-6
IV -11-4. A Primary Data Projection IV -11-8
IV-ll-S. A Join Operation .. IV-II-I0
IV -11-6. Sorting and Merging Records IV -11-12
V-I-I. Human Interface Services and a BiiNTM Program V-I-2
V-I-2. Utility, Data Definition, and Service V-l-S
V-I-3. BiiNTM Application Program and the Command Service. V-I-6
V-I-4. Command Language Variables V-I-9
V -1-S. BiiNTM Application Program and Menus V-I-II
V-I-6. Example FOl1l1 ".. V-I-13
V -1-7. Annotated Executable FOl1l1 V -1-14
V-I-8. Example Report ... V-I-IS
V -1-9. Layout of a Standard Report Page V -1-16
V -2-1. Typical BiiNTM Application Program V -2-3
V -2-2. File Data Definition and Associated FOl1l1s and Reports V -2-S
V -2-3. Example Program Menus ... V -2-6
V-2-4. Example Program Source Files V-2-9
V-2-S. File and an Associated Report V-2-22
V-4-1. Command Language Variables V-4-2
V -S-1. BiiNTM Application Program and Menus V -S-2
V-6-1. Sample Paper FOl1l1 .. V-6-2
V-6-2. Annotated Executable FOl1l1 V-6-3

Contents xxxv

PKJ£LIM1NAK Y

V-6-3. OlaracterField ... V-6-5
V-6-4. Option Field. V-6-7
V -6-5. Overlaid Enumeration: Initial Value V -6-S
V -6-6. Overlaid Enumeration: Subsequent Value 0 • • • • V -6-S
V -6-7. Scattered Enumeration .. V -6-S
V-6-S. Group Instances ... V-6-l0

. V -6-9. Group Instances in a Horizontal Deployment 0 • • • • • • • • •• V -6-10
V-6-l0. Group Instances with Multiple Sheet Elements V-6-l0
V-6-11. FOI1Il with a Pile 0 •••••••••••••••••• 0 • • •• V-6-11
V -6-12. First Pile Usage .. V -6-11
V-6-13. Second Pile Usage .. V-6-12
V-6-14. Third Pile Usage ... V-6-12
V-6-15. Effect of the Expansion of a Group Instance: Before Expansion V-6-13
V -6-16. Effect of the Expansion of a Group Instance: After Expansion V -6-13
V -S-I. Sample Report .. V -S-2
V-S-2. Page Series ofa Report ... V-S-3
V -S-3. Parts of a Report Page .. V -S-4
V-S-4. Report With Nested Control Groups 0.... V-S-5
V -S-5. Report With Control Breaks V -S-6
V -S-6. Report Parts of a Report Description V -S-7
V -S-7. Layout of a Standard Report Page V -S-S
VI-I-I. Static Structure of a Program VI-I-3
VI-I-2. Program Object .. VI-I-4
VI-I-3. Domain Object ... VI-I-S
VI-I-4. Static Data, Instruction, and Stack Objects VI-1-6
VI-I-S. Public Data Object .. VI-I-7
VI-I-6. Debug Object .. VI-I-S
VI-I-7. Job and Processes ... VI-I-IO
VI-l-S. Events can be Handled, Queued, or Discarded VI-I-14
VI-I-9. Pipe I/O 0 •••••••••••••••••••••••• VI-1-14
VI-I-lO. Major Process States ... VI-1-16
VI-I-II. Binary Semaphores .. VI-I-IS
VI-I-12. Processes Connected by a Pipe Speed Up a Compiler. VI-I-19
VI-I-13. Multiple Processes Speed Up a Large Array Calculation VI-I-20
VI -1-14. A Separate Spelling Checker Process Preserves Word Processor
Responsiveness. . .. VI-I-20
VI-2-I. Job and Processes ... VI-2-2
VI-3-I. High-level Scheduling ... VI-3-3
VI-3-2. Low-level Scheduling ... VI-3-4
VII-I-I. An Object as a Black Box .. VII-I-3
VII-I-2. An Object Can be Resized VII-l-S
VII-I-3. Object and Access Descriptor VII-I-6
VII-I-4. How Attributes Work ... VII-I-7
VII-I-S. Objects Are Typed and Protected VII-I-9
VII-I-6. Threefold object protection VII-I-II
VII-I-7. An Access Descriptor ... VII-I-12
VII-l-S. A Type Manager Makes the Object Appear as a Black Box VII-1-13
VII-I-9. Linear Address Space and Domain VII-I-IS
VII-I-IO. An Object's Active and Passive Version VII-1-16
VII-I-II. Passive Store Unifies All Nodes in a BiiNTM System VII-I-17
VII-I-I2. A Stored Object .. VII-I-19
VII-2-1. The Organization of Memory in a BiiNn~ sytem VII-2-3

xxxvi Contents

rl'U~ .. L.uYlll~8.K I

VII-2-2. Passive Store .. VII-2-4
VII-2-3. Physical Memory is Divided into Pages VII-2-4
VII-2-4. Active Memory Uses Both RAM and Disk. VII-2-5
VII-2-5. The Object Table and Object Based Adress Translation VII-2-6
VII-2-6. A Valid Virtual Address ... VII-2-7
VII-2-7. Active Virtual Memory, Jobs, Nodes and SROs VII-2-8
VII-2-8. Garbage Collector 0 . 0 ... 0 0 .. 0 ... 0 .. 0 . 0 . 0 0 0 VII-2-11
VII-4-I. Attribute Structure 0 .. 0 0 VII-4-2
VII-4-2. An OS Attribute o .. 0 .0 .. 0 .. 0 . 0 0 VII-4-4
VII-5-I. Algorithm That Controls Garbage Collection 0 . 0 . 0 0 VII-5-4
VII-7-I. System Configuration ... VII-7-3
VII-7-2. Booting a Node .. 0 .. 0 0 .. 0 .. 0 . 0 . 0 00 ... VII-7-4
VII-7-3. Creating Configurable Objects 0 VII-7-5
VII-7-4. Simple Attach 0 0 . 0 VII-7-7
VII-7-5. Attaching to a Dependent Software SeIVice 0. 0 ... 0.00. o. VII-7-7
VII-7 -6. Back Attachment of a Dependent Software Service 0 0 VII-7-8
VII-7-7. Compound Attachment o. 0 VII-7-8
VII-7-8. System Configuration Objects 0 0 . 0 0 ... 0 . 0 0 0 0 . 0 0 . 0 0 0 0 0 000 0 0 0 0 0 0 VII-7-9
VIII-I-I. A Network of BiiNTM Nodes 0.000.000.0. 0 . 0 0 .. o 0 0 . 0 0 o ... VIII-I-3
VIII-I-2. The Hierarchical Structure of the Oearinghouse VIII-I-7
VIII-I-3o Three Different Communication Methods 0 0 0 .. 0 . 0 0 0 . 0 . 0 0 VIII-I-9
VIII-I-4o Single and Multiple Activation Model 0 0 . 0 ... 0 ... 0 .. VIII-I-12
VIII-I-50 Partial View of a Node's Directory Structure .. 0 . 0 0 . 0 .. 0 0 0 0 VIII-I-I5
VIII-2-I. General Model of Communication Using RPCs 000 .. 0 . 00' .. 0 0 ... VIII-2-3
IX-I-I. Device Environment 0 . 0 .. 0 . 0 0 0 0 0 0 0 0 . 0 0 0 . 0 .. 0 0 IX-I-3
IX-I-2. Device Driver using the I/O messages Mechanism ... 0 0 0 .. 000 .. 0 IX-I-6
IX-I-3. Cluster SeIVer, Clusters and shared queues 0 .. 0 0 ... 0 0 0 .. 0 IX-I-9
IX-I-4. Device Driver with the Shared Queues Mechanism .. 0 0.0.0. IX-I-IO
IX-I-5. I/O shared queues Data Transfer Mechanism .0 0.0.00 000.0 .. 0 IX-I-II

Contents xxxvii

PRELIMINARY

List of Tables
IV -I-I. Devices and Supported Access Methods IV -I-S
IV-I-2. Common I/O Operations ... IV-I-6
IV-I-3. Selected Byte Stream Access Method Calls IV-I-7
IV-I-4. Selected Record Access Method Calls IV-I-8
IV-I-S. Selected Character Display Access Method Calls IV-1-9
IV -4-1. Terminal Attributes ... IV -4-S
IV -S-1. Window Attributes .. IV -S-6
IV -6-1. Implementation of Spool Device Attributes IV -6-6
IV-6-2. Getting and Setting Print Properties IV-6-10
IV-6-3. Executing Print and Spool Tasks IV-6-11
IV -7-1. Accessing Stream and Structured Files IV -7-9
IV-7-2. File Access Modes IV-7-9
IV -8-1. Index Perfonnance Considerations IV -8-S
IV -9-1. Operation Status Record ... IV -9-11
IV-10-1. Compatibility of Locks ... IV-10-6
IV-IO-2. Lock Modes for Opened Device Locking IV-IO-12
IV -II-I. Interaction of DBMS Calls IV -11-10
V-3-1. Built-in Control Commands V-3-S
V -3-2. Built-in Runtime Commands V -3-6
V-3-3. Argument Types .. V-3-8
V-3-4. Control Options for Runtime Commands V-3-IO
V -6-1. Examples of Numeric Fonnatting V -6-6
V-6-2. Examples of Date Fonnatting V-6-7
V-6-3. Default Screen Field Fonnats V-6-7
V-6-4. Control Keys ... V-6-16
V-6-S. Application Keys .. V-6-18
V -6-6. Infonnation Keys .. V -6-19
V -8-1. Standard Report Default Fonnats V -8-8
VI-I-I. Process Globals Entries .. VI-I-II
VI-I-2. Local Event Values ... VI-I-16
VII-S-1. Key GCOL Parameters .. VII-S-3
VII-S-2. GCOL Parameters to Start and Stop Special GCOL VII-5-4
VIII-I-1. Distribution vs. Multiprocessing vs. Networking VIII-I-4

xxxviii Contents

I"K):4.;LIMlNAK Y

Part I
Introduction

This part of the BiiNTU/OS Guide provides important concepts and basic programming tech
niques that are used throughout the system and throughout this manual. You should read these
chapters before reading any subsequent chapters in this guide.

The chapters in this part are:

Concepts Provides an overview of the as.
Services Areas and Services

Describes the organization of as packages into seIVice areas and services.

Ada Programming Techniques

Part I Overview

Contains common Ada programming techniques used with system calls.
(A future release will add a chapter to describe C programming techniques
used with system calls.)

I"KELIMlNAKY

Part I Overview

I'K~LIMlNAK Y

CONCEPTS 1
Contents

BiiNTM os Functionality .. 1-1-2
Transparent Multiprocessing with Multiple Processors 1-1-2
Fault-Tolerant Computing .. 1-1-5
Transaction Processing and DBMS Support 1-1-7
Computing in a Distributed Environment 1-1-8
Support for UNIX and ISO Standards ... 1-1-8
Services for High-Function Applications 1-1-9
Transparent Resource Management for Easy Programming 1-1-10
Getting Real Time Data ... 1-1-10
System Administration and the Oearinghouse 1-1-11
BiiNTM OS Architecture ... 1-1-12
Some Basics .. 1-1-13

Concepts 1-1-1

t"K~LIM1l"1AK r

This chapter provides an overview of the BiiNTM operating system (OS) for BiiNTM computers.
It discusses:

• The functionality of the BiiNTM as relative to other well-known operating systems such as
V AXNMS and UNIX systems

• The object-oriented architecture of the BiiNTM as.
The BiiNTM as is accessed using System Services. These services provide a variety of opera
tions.

1-1.1 BiiNTM OS Functionality

The as is made up of logical groups of BiiNTM Ada packages. Each package contains system
calls to the BiiNTM as. These services support and protect applications. These applications
can be:

multiprocessing Providing a common queue of processes for execution by one of many
CPUs

fault tolerant Giving nearly continuous service that protects against accidental or mali
cious destruction of information

transaction processing

distributed

Ensuring the integrity of system and application disk storage

Supporting location-independent processing, local area networks, circuit
switched networks, and public packet switched networks.

In addition, there are several other important features and functions discussed in this chapter.

1-1.2 Transparent Multiprocessing with Multiple Processors

I-1-2

A single BiiNTM node can have multiple processors that share a common addressable memory.
Also, multiple computing nodes can be connected into a single distributed system that shares
data and resources between nodes. See Figure 1-1-1.

Concepts

Concepts

NODE 1

SHARED
MEMORY

PK~LIMlNAK y

SHARED
DEVICES

NODE 2

Figure 1-1-1. Networked, Distributed, Multiprocessing Nodes

With the strategy employed by other systems, it's difficult for different processes to share
memory (in particular, program variables).

• There's no CPU support to efficiently synchronize access to shared data from multiple
processes.

• There aren't primitives to help a scheduler make the right scheduling decisions. The
scheduler doesn't know when processes are working on the same task and should be
scheduled together.

The BiiNTM as supports the CPU with low-level primitives that handle multiprocessing. Un
like most computer systems on the market tOday, BiiNTM systems have been designed-from
the VLSI-component level to the as level-to support multiple processors.

Figure 1-1-2 shows how the dispatcher handles multiprocessing.

I-1-3

1-1-4

rK~LIM1NAKr

DISPATCHING
PORT

C blocks on semaphore releasing CPU.

DISPATCHING
PORT

CPU dequeues A and runs it.

Figure 1-1-2. How the Dispatcher Handles Multiprocessing

• A single processor is self-dispatching at a dispatching port.

• Synchronization and communications use high-level instructions:

semaphore instructions,

communication port instructions, and

a dispatching port instruction.

• The multiprocessing is transparent to users.

• Low-level scheduling (dispatching o/processes) is performed by the CPU, with no direct
OS intervention. All CPUs share a common queue of processes, and the work load is
evenly shared among all CPUs.

• The CPU provides synchronization instructions. A synchronization CPU instruction can
suspend a process while allowing other processes to run. This is done without OS inter
vention. Synchronization instructions such as semaphore locking and unlocking that .
suspend and release a process are much less cycle-intensive than test-and-set instructions
that keep chewing up cycles.

• Computations are done as jobs. Initially, ajob has one process. Your program can create
more processes in the same job. All processes in the same job can share the same address
space (for example, the same global program variables). The OS scheduler schedules jobs
rather than processes; it schedules jobs into and out of the dispatching mix based on exter
nal priorities and resource constraints. It is quite possible for all the processes of a single
job to be simultaneously executing----each on a different processor.

Concepts

PRELIMINARY

1-1.3 Fault-Tolerant Computing

Concepts

In existing computer systems, protection mechanisms are very limited and have changed little
in the last 20 years. If any application or service makes an addressing error, it can overwrite or
otherwise corrupt data (or code) in many other parts of the system. Finding an error is difficult
because almost any application or service could have caused the error, not just the module that
detects the error. Because errors are not confined to one module or data structure, system
reliability is limited, and the system becomes less reliable as its software becomes more com
plex.

The BiiNTM OS detects errors at their source (or, at minimum, nearby) and limits the damage
that anyone program can cause. The hardware and the OS software work together to make
addressing violations impossible; no service can access code or data outside its protected ad
dress space.

The non-stop, fault-tolerant engineering of the BiiNTM OS relies on the concept of a
confinement area within which an error is contained at the time of detection and repair. If a
bug is detected, then the damage is known to be confined to the address space accessible to
that program.

The BiiNTM OS supports hardware fault tolerance. The BiiNTM Series 20140 Hardware System
Description and the BiiNTM Series 60180 Hardware System Description describe hardware fault
tolerance.

OS support for hardware fault tolerance includes:

• You (or your system administrator) can choose a level of hardware fault tolerance for your
particular system configuration.

• You can monitor hardware operations for potential failures.

• You can configure redundant hardware to step in, for example, if a board fails. The
hardware-controlled "stepping in" occurs without interrupting your nonnal servicing.

Your system administrator detennines policy. For example, if a board goes out and the system
recovers, decisions are required:

• Should the system maintain the same level of fault tolerance and run with fewer proces
sors?

• Or, should the level of fault tolerance be set lower so that checking occurs without recovery
and all processors continue functioning?

The BiiNTM OS lets you control the outcome of these decisions. It also supports fault tolerance
by providing built-in redundancy. Figure 1-1-3 shows how the BiiNTM OS aids fault tolerance.

1-1-5

1-1-6

DISK
MIRRORING

PRELIMINARY

+--+- File A
""",--.!:;t:::..,..r:;.- Fi Ie 8

a..-__ ... I Contoller

c=J Con2troller -+----+- Copy of File A
~ ___ ':t.-=---~- Copy of File 8

LOGGING ~

Write-~
[J[]

TRANSACTIONS
Rollback

;) I

l Log file records
what happens to
File A.

The writes that
occurred during the
in terval between
T1 and T2 are
undone.

I

COMMUNICA TIONS D~ Line from A to
C goes down.

Node B Node A

Automati~\
rerouting , ~D J

Node C

Figure 1-1-3. How the BiiNTM OS Aids Fault Tolerance

• Volume sets can be mirrored. If a file exists on a mirrored volume set, the file exists on
two disks.

If one disk or I/O controller goes down, the data on a mirrored volume set remains
accessible.

Mirroring can be re-established (online and transparent to applications using the disk) if
the bad disk comes back up.

• Files and directories can be logged. Everything that happens to the file or directory can be
written to a log. After a disk crash, the file or directory can be restored from a previously
saved back-up copy. Once restored, the file can be rolled forward to a specific date/time
based on log entries.

• Incomplete transactions are undone. If a system crash occurs before a transaction is com
pleted, all effects of the transaction are automatically undone. (See the next section for
more on transactions.)

Concepts

• Communication is automatically rerouted. The nodes in a multi-node system can be con
nected with redundant connections controlled by separate I/O controllers. If a connection is
lost, communication gets rerouted.

1-1.4 Transaction Processing and DBMS Support

Concepts

Transactions are a familiar concept to most mainframe DBMS users. Basically, transactions
group file writes so that either all occur at once, or none occur at all.

Although transactions are primarily used to protect data in files, the BiiN
TU

OS extends the
concept of transactions to include directories and other resources managed by non-filing ser
vices.

Most conventional systems build transactions into a database layer:

• To use transactions, programmers are forced to learn a DBMS. Existing files and programs
must be converted to DBMS formats. This is acceptable for programmers who are familiar
with query languages such as SQL. It's not, however, always the best solution for
programmers who want quick record access using the existing files of their ported applica
tions.

• Because conventional OS filing does not provide the right structures for database systems,
transactions build into a database layer can be hard to implement DBMS software must
build file structures (for example, a file cache on top of virtual memory) using the primi
tives supplied by the OS. This is inefficient.

Transactions and other DBMS filing functions are built into the BiiN
TU

OS. The BiiN
TU

filing
service offers:

• UNIX-style byte stream files and special BiiN
TU

record files

• hashed or b-tree indexes for record files

• sequential, relative, clustered, hashed, and unordered file organizations

• one or more key values (of multiple data types) for an index key

• support for null values

• true variable-length records and true variable-length fields within a record

• integration with the BiiN
TU

Data DefInition Facility (known in other systems as a data
dictionary facility).

• record-level locking integrated with transaction-support

• different levels of consistency including level 3 as defmed by IBM SYSTEM R.

• sorting and merging large collections of records

• database joins, projects, and selects

• logging, integrated with backup/restore, so that a file can be backed up and later rolled
forward from a log.

A major performance advantage of the BiiN
TU

file service is file buffering that uses a file cache
in a special RAM-based stable store. Several configurations are available. For example:

• A configuration that is fully duplicated, ECC protected (with spare-bit), battery-backed-up,
with each component powered by separate power supplies and separate batteries

1-1-7

.t"K~LIMl.NAK Y

• A configuration that is accessible from two busses (in case one bus goes down).

Because of the reliability of the stable store, writes to disks may be delayed indefinitely. Com
pleting a transaction or closing a flie may not cause a disk write.

1-1.5 Computing in a Distributed Environment
When large timesharing machines in the 1970s were shared by many users, data and file shar
ing was easy. However, CPU cycles were hard to come by.

Today anyone can have a PC, workstation, or other node in a small local area network attached
to a mainframe or mini. CPU cycles may be plentiful, but program and data sharing between
nodes is complicated, often requiring communications, flie transfers, and remote file access.
This is tricky to do without a knowledge of flie naming conventions and network protocols.

The BiiNTM OS protects users from the complexity of inter-node communication between ser
vices. For example, you can type a command at your home node and simultaneously run
programs at other machines that are accessing files from still other machines. The combined
file space of all nodes looks like a single file space.

• When a program runs, it sees the same current directory and home directory regardless of
the node it runs on.

• There is no special naming for remote flies. A file stored in your directory with the name
suppliers might be on any node on a distributed system. The program that accesses the
flie (regardless of the node the program executes on) sees the same interface to the OS flie
service.

• You control where your program is run, but your system administrator controls which
nodes you can run on, and the quality-of-service you'll get on each of these nodes.

• You can control the location of your files (and other programming resources) and find out
where files needed by your program are located. For a program with lots of I/O, it is often
more efficient to run the program on the same node as the data, rather than bring the data to
the node running the program.

1-1.6 Support for UNIX and ISO Standards

1-1-8

The BiiNTM os supports many industry standards, including:

e System V Interface Definition for UNIX systems

• Communication Protocols:

- ISO Transport Class 4

- ISOFfAM

- X.25

- HDLC

- LAN802.3

• IEEE Boating Point

Concepts

PRELIMINARY

These standards allow you to easily integrate your existing hardware and software into BiiNTM
systems. Since UNIX System V -compatible calls are supported, you can port your existing
UNIX applications easily.

1-1.7 Services for High-Function Applications

Concepts

Many systems provide two address spaces within a process----one for an application and one for
the OS. Filing, program execution, and other supervisory routines reside in a monolithic ker
nel. This is known as the two-space view.

As applications increase in function, they are becoming more complex. To build these high
function applications, supporting services such as database, fonns, and communications are
required. The dilemma faced by traditional two-space operating systems is how to fit these
supporting services to the OS.

There are three approaches to adding a service to a two-space operating system:

• Put the supporting service in the address space of the OS. The result? The OS increases in
size and complexity. The introduction of a new service (from which the rest of the OS
can't be protected) results in lower OS reliability, and therefore reduced system reliability.
Typically, this is how communications is implemented.

• Put the supporting service in the address space of the application. This is often impossible
because the supporting service needs to access data and operations that the application isn't
allowed to access. It becomes difficult to track down errors: an apparent malfunction in a
supporting service could be caused by a bug in the supporting service or the application
program. The bug might be as simple as using an uninitialized index variable to store into
an array.

• Put the supporting service in its own address space. This is the approach often taken by
mainframe DBMS software-it means putting the DBMS in its own process. The result?

- Invoking the supporting service from application programs can be awkward. Instead of
a simple call/return mechanism, costly inter-process communication must be used.

- Processing bottlenecks occur when different applications make requests at the same
time.

- There are problems in accounting, resource control, and protection. How does the re
questing application get charged for its use of the service? How does the service know
the identity of the requestor? How does the service prevent one application from
swamping it with requests, at the expense of other applications?

In contrast, the BiiNTM solution gives each supporting service its own address space within a
process. This is known as the n-space view. Calls to a service are synchronously executed by
the user process itself. However, the data and operations of the called service are protected
from the caller by using a separate address space for the service.

Today's high-function applications often need to use many supporting services. This demands
more than a simple 2-space view of the world. The BiiNTM OS provides a unifonn call/return
mechanism that can be used by all services in the system-from supervisory routines to ap
plications. Each service can have its own call stack, and can be used by the application the
same way you use an existing service (such as an OS filing service). This increases system
speed, reliability, and ease-of-use. Basically, the key to understanding the n-space view is
protection.

1-1-9

PRELIMINARY

A traditional "onion skin" view of the BiiNTM OS doesn't convey how programs and data are
protected by the system. Each system service can have an invincible boundary of protection
built around the address space it occupies.

Compared to other operating systems:

• The BiiNTM OS is fast. Within a single process, each service can execute in its own address
space. A single call instruction takes care of switching address spaces. This fonn of call is
faster than most supervisor call instructions on other machines.

• The BiiNTM OS is reliable. An invoked service's access to the caller's address space is
limited to just the parameters passed by the caller. A service is protected from an applica
tion, and an application is protected from a service. One service can invoke another service
using the same calling conventions.

• The BiiNTM OS is easy-to-use. A service executes in a user-invoked process. It does not
have to provide its own protection, resource control, and accounting mechanisms. With
less code, and fewer primitives to learn, you can concentrate on the service's operations.

1-1.8 Transparent Resource Management for Easy
Programming

Many operations of the BiiNTM OS are executed transparently using virtual memory and file
buffering (with a little help from hardware):

• You can invoke and run several programs simultaneously. Each program runs as a job and
can appear as a window on your terminal screen.

• Job scheduling, memory space allocation, and file buffer space are handled automatically.

For example, the total of all address spaces for a job might be 2 MB, but your job really only
needs 500 KB of primary memory to run. Here's what happens:

• When a job accesses a page not present in primary memory, a fault (invisible to the job) is
generated and the page gets swapped in.

• When the hardware reports that a page in primary memory has not been recently accessed,
the page is swapped out if changed previously.

1-1.9 Getting Real Time Data

1-1-10

Suppose you need to monitor the movement of robot vehicles on the floor of a factory. You
need a way to sense their movement, perform computations, and tell them what to do next-in
real time. You don't want a lot of memory and I/O overhead to do this; the robots would be
crashing into each other because of the time delays.

The BiiNTM OS stays out of the way and lets the hardware do much of the work:

• As your program executes, application-defined interrupt handlers are invoked without OS
intervention.

• Low-level scheduling and synchronization is handled by the CPU.

• Low-level scheduling is priority-based with preemption.

Concepts

PK.t.;LIMlNAKY

Consider an interrupt procedure that gets invoked due to a signal from a robot vehicle. The
procedure might do some processing and then signal a semaphore to cause a suspended real
time process to run. The as just stays out of the way and lets the hardware do the work.

The BiiNTM as supports real-time programming:

• Your system administrator can define different real-time scheduling levels and grant access
to specific users/programs for a particular level.

- A real-time program can run at a high-priority level.

- The job remains in the dispatching mix (managed by hardware), and bypasses the as
scheduler.

• A real-time program can spawn multiple processes within the same job. Each process can
run at a different priority.

- Processes can communicate infonnation using shared memory and can synchronize
using semaphores.

- The hardware also provides a message-passing mechanism (ports) that uses Send and
Recei ve instructions. Like semaphores, the port mechanism is integrated with
hardware dispatching.

• A real-time job can run with its entire address space in primary memory (that is, in/rozen,
non-relocatable memory). When this occurs, the job will not encounter any virtual memory
faults.

• Real-time data collection programs can quickly stream large amounts of data to and from
disk, with minimal disk head movement.

- The fuing service lays out files contiguously on disk using extents.

- The fue buffer management strategy is read-ahead and write-behind.

- Indexes and fue records can be placed on different physical disks.

1-1.10 System Administration and the Clearinghouse

Concepts

What is a "Clearinghouse?" Basically, it's a location-server database that lets a system ad
ministrator easily control and administer a network of nodes. The Clearinghouse maintains a
record of which objects and IDs are at which nodes.

With most distributed computer systems, it's difficult to administer networks that consist of
more than a handful of nodes:

• To add a new node to a network, the system administrator has to modify configuration data
for all nodes.

• Additional modifications are required if a node is moved from one local network to
another.

• Often, a fue name previously used to access a file on a node must be changed when the
node is relocated.

• If a node goes down with a bad board, there is no way to easily move the node's disk to
another node.

1-1-11

r K.I!.L.11Vlll"'1 AK I

To remedy this situation, the BiiNTM OS maintains a database of infonnation about nodes,
users, volume sets, and distributed services--the Clearinghouse.

• The system administrator adds infonnation using a Clearinghouse utility.

• The infonnation is duplicated on a few key nodes, and is available to all nodes.

• When node 1 needs infonnation about node 2, it asks the Clearinghouse.

• The system administrator can select which nodes have Clearinghouse data, and which por-
tion of the total Clearinghouse database they contain.

Suppose, for example, that node 1 contains a volume set (a logical disk). Your system ad
ministrator can move the volume set from node 1 to node 2 (perhaps on a different local
network) by changing the I/O configurations of nodes 1 and 2. This does not affect users and
programs that previously accessed flIes on the volume set. All file names remain the same, and
appear as if they are on your home node.

1-1.11 BiiNTM OS Architecture

1-1-12

System Services consist of several distinct service areas such as I/O Services. These service
areas consist of one or more system services such as the flling service. Each service controls a
certain part of the system, and all services interact.

Figure 1-1-4 illustrates the relationship between services, packages, and calls.

BiiN/OS

SERVICE
AREA SERVICE PACKAGE

0 {~
0 {1]

EXAMPLE: 6. I/O Services

o filing service

iJ Fil e Adm in
Crea te_ fil e

t
{

CALL

Figure 1-1-4. The OS Interface is Made up of Services, Packages, and Calls

Concepts

PRELlMINARY

1-1.12 Some Basics

Concepts

Each service executes in its own address space. This space is broken up into individual
protected segments of memory called objects. One way to think of this decomposition is to
imagine a box of building blocks. The blocks-triangles, squares, rectangles, and so
forth-can be combined to fonn different structures such as bridges and houses.

One structure (for example, a bridge) is independent from another structure (for example, a
house), yet all structures are composed of the same basic blocks. In this analogy the dif
ferently shaped blocks are objects, and the structures correspond to services. All blocks of the
same shape have the same characteristics. Similarly, every object has a "type", and all objects
of the same type have the same characteristics.

An object is sometimes referred to as a system object to distinguish it from a BiiNTM Ada object.
(A BiiNTM Ada object is a variable or construct-see the BiiNTM Ada Language Reference
Manual.) However, when you see the tenn object used in this manual, it refers to system
object unless otherwise specified.

Think of an object as a resource managed by a service. For example, a file is represented as an
object of type "file" that is managed by the filing service. Each individual service controls
access to its objects.

Existing operating systems provide two mechanisms to name files, I/O channels, users,
processes, and nodes (that is, their "objects"):

names Symbolic names that you assign to objects, and

identifiers Binary digits that provide an efficient means for a program to identify an
object.

Each "object" in existing systems usually can be referenced by an identifier. In general, the
fonnat for identifiers of each object type is different-an I/O channel identifier has a different
fonnat than a user identifier. The mapping of names to identifiers is also different for each
object type.

In contrast, the BiiNTM OS supports one fonn of identifier (actually in hardware) for its objects.
This allows identifiers for different object types to be distinguished. It also pennits universal
name mapping.

BiiNTM OS identifiers serve several functions:

• They contain the addresses of the objects they correspond to (that is, they function as
conventional pointers).

• They specify the rights of the calling program to use the objects managed by a service.

• They can be used to fmd out the type of object they reference.

This manual uses the term access descriptor or AD to refer to the object used by the BiiNTM OS.
Figure 1-1-5 shows how ADs specify the calls you are allowed to make.

1-1-13

.l"'K~LlM1NAKY

A caller with my_AD can Open, Create, Rename, or Delete .

."...--
".

",

/
IOpen, ,...---.... The naming

your _AD

List Rights On

Store Rights On

Control Rights On

directory object

List Rights On

Store Rights Off

Control Rights Off

I Create,

I
Rename,

Delete
\
\
\ ,

" Package ,
...... _--

FILING SERVICES

A caller with your _AD can only Open the directory.

Figure 1-1-5. ADs Provide Access and Protection to Services

service is
the Manager
for the
directory
object.

The caller with my_AD can make the calls Open, Create, Rename, and Delete. The
directory service processes those calls. The identifier my_AD controls the caller's access.
Similarly, the caller with your_AD can only Open the directory (for reading).

1-1.12.0.1 What Is A System Object?

1-1-14

A system object is a protected segment of memory.

A system object is distinct from a BiiN
TU

Ada object (an entity that contains a value of a certain
type). Whenever you see the unqualified use of the tenn object in this manual, it means system
object.

There are many types of objects, including fue, directory, and pipe objects. Each type of
object can have multiple instances (for example, there might be several instances of an object
of type "pipe" in memory at any particular moment).

Concepts

PRELIMINARY

1-1.12.0.2 How Are System Objects Protected?

Concepts

System objects are protected from unauthorized reference. Access to an object is restricted to
software with a "need to know" about the object. Access can be controlled at the level of
individual data structures and procedures through the use of an AD. Each call requires the use
of one or more ADs.

Each memory word has a tag to indicate whether or not it is an AD. ADs can only be manipu
lated in controlled ways and with special instructions, all designed to make accidental or mali
cious violations of the object protection mechanism impossible.

ADs are also protected pointers to data structures and correspond to the pointer values sup
ported by some programming languages. For example, a BiiNTM Ada access value can be
represented as an AD. ADs are also synonymous with the protected pointers called
capabilities provided by some object-oriented computer architectures.

There can be multiple ADs for an object, and different ADs can grant different access rights.
There are two classes of access rights:

type rights

rep rights

There are three type rights. Each right corresponds to a set of operations
that manipulate an object. The type rights used by the operating system
are usually mapped to use, modify, or control. A caller can have any com
bination of the three type rights.

There are two representation ("rep") rights. They are used to control ac
cess to the contents of an object (using CPU instructions directly). These
are only important to you if you're creating your own service. See "Type
Manager Services."

An understanding of type rights is helpful for most OS programming. Figure 1-1-6 shows an
AD with type rights.

1-1-15

1-1-16

YK.r.LINllNAK l'

Access Descriptor

I

Type rights are:

use

modify

control

I

~--- Use

Modify

'------ Control

Ob ject

} Type Rights

Figure 1·1·6. An AD Showing Type Rights

Required to retrieve information from an object, without changing it Cor
respond to a set of operations provided by the selVice that manages the
object.

Required to modify an object, without destroying it or changing its basic
nature. Correspond to a set of operations provided by the selVice that
manages the object. When compared with use rights, modify rights give a
user additional operations to manipulate the object

Required to destroy or restructure an object

Different selVices sometimes map their rights to variant names. For example, use
rights-needed to read a file-in the filing selVice corresponds to the same level of access as
list rights-needed to list the contents of a directory-in the directory selVice.

Two programs can have ADs for a shared object, with one having only use rights and the other
having only modify rights. An AD can also be null, indicating that it references no object For
example, objects can be linked together in a list, with each object containing an AD that
references the next list element. The last object in the list would contain a null AD in the link
field, indicating that there are no more list elements.

ADs can be freely copied. It is normal to pass a copy of an AD to a called subprogram to
specify an object as a parameter. The rights on an AD are often restricted when it is copied:
some rights are removed from the copy, leaving only those rights needed by the subprogram
that receives the copy.

Concepts

Concepts

PRELIMINARY

Adding rights to an AD is called amplifying those rights. Only the service that manages the
object is allowed to amplify its rights. See "Type Manager Services" for details.

1-1-17

rK~L.llVlll"'1AK I

1-1-18 Concepts

PRELIMINARY

SERVICE AREAS AND SERVICES 2
Contents

Service Areas .. 1-2-3
Support Services ... 1-2-3

Utility Service ... 1-2-3
Object Service ... 1-2-4
Transaction Service ... 1-2-4
Message Service ... 1-2-4

Directory Services .. 1-2-5
Naming Service .. 1-2-5
Protection Service .. 1-2-5

I/O Services ... 1-2-5
Basic I/O Service ... 1-2-6
Character Terminal Service ... 1-2-6
Print Service ... 1-2-6
Spool Service .. 1-2-6
Filing Service .. 1-2-6
Database Support Service .. 1-2-7
Data Definition Service .. 1-2-7
Volume Set Service ... 1-2-7
Basic Disk Service .. 1-2-7
Basic Streamer Service .. 1-2-8
Null Device Service ... 1-2-8

Human Interface Services .. 1-2-8
Command Service .. 1-2-8
Form Service .. 1-2-8
Report Service ... 1-2-8

Program Services ... 1-2-9
Concurrent Programming Service .. 1-2-9
Scheduling Service ... 1-2-9
Timing Service .. 1-2-10
Resource Service .. 1-2-10
Program Building Service ... 1-2-10
Monitor Service ... 1-2-11

Type Manager Services ... 1 -2-11
TM Object Service ... 1-2-11
TM Transaction Service ... 1-2-11
TM Concurrent Programming Service 1-2-12
Configuration Service .. 1-2-12
Custom Naming Service .. 1-2-12
Backup Service ... 1-2-12
Distribution Services ... 1-2-13
Clearinghouse Service .. 1 -2-13

Service Areas and Services 1-2-1

YK~LIM1NAKY

RPC Service 0 •••• 0 •••••••••••• 1-2-13
Transport Service 0 •••• 0 ••••••••••••••• 1-2-13

Device Services ... 0 ••••••••••••••• 1-2-14
Device Driver Service .. 1-2-14
Shared Queue Service .. 1-2-15
Asynchronous Communication Service 0 ••••• 0 ••••••••••••• 1-2-15
Mass Storage Service 00 ••••••••• 1-2-15
SCSI Service ... 1-2-15
Subnet Service .. 0 ••• 1-2-15
HDLC Service 0 ••••••••••••••••••••••• 0 • 0 ••• 0 ••• 1-2-16
LAN Service 0 •••••••••••••••••• 0 •••••••••••••••••••••••• 1-2-16

I-2-2 Service Areas and Services

PRELIMINARY

This chapter briefly describes the OS as a collection of services and service areas. A service is
simply a logical collection of packages. A service area is a logical collection of selVices.
SelVices and selVice areas defme a logical organization of the OS, for documentation and
learning purposes.

Often, a service manages one or more closely related object types. For example, the naming
service manages directories, open directories, name spaces, open name spaces, and symbolic
links.

Packages listed in this chapter can be found in the BiiNTM/OS Reference Manual.

1-2.1 Service Areas
There are eight service areas:

Support Services Often-used basic services, including system definitions, utility packages,
object management, transactions, and messages.

Directory Services Manages directories, directory lists (name spaces), symbolic links, and the
authority lists and IDs used to protect directory entries.

I/O SelVices Provides byte-stream, record, and character display I/O. Manages files,
character tenninals, character tenninal windows, printers, spool queues,
and other I/O devices.

Human Interface SelVices
Provides commands, fonns, and reports used to interact with users.

Program Services Provides various program execution selVices including concurrent pro
gramming, scheduling, timing, resource control and accounting, and
program monitoring.

Type Manager Services
Provides special OS interfaces for trusted type managers, including access
to global memory and participation in system configuration.

Distribution Services
Provides selVices used to build distributed applications that execute trans
parently in a distributed BiiNTM system.

Device SelVices Provides selVices used to build new device drivers and device managers.

1-2.2 Support Services
Support SelVices contains:

utility service
object service
transaction service
message selVice.

1-2.2.1 Utility Service

Manages system definitions, text strings, and long integers.

Long Integer Defs
- - Defines types and calls for 64-bit long integers.

Service Areas and Services 1-2-3

rK~LINll.NAKY

Machine Code Insertion
Provides useful operations that map to inline CPU instructions.

String List Mgt
- - Provides operations on string lists.

System Provides implementation-defined (as opposed to Ada-defined) types and
constants.

Syste~Defs Provides common definitions used throughout the as.
System Exceptions

- Defines common exceptions.

Provides operations on text records.

1-2.2.2 Object Service

Manages objects, access to objects, and storage of objects.

Access_Mgt Interface for checking or changing rights in access descriptors.

Attribute Mgt
- Provides a way to define general-putpose operations supported by multiple

object types or objects, with different type-specific or object-specific im
plementations.

Ob j ect _Mgt Provides basic calls for object allocation, typing, and storage management
Defines access rights in ADs.

Passive Store Mgt
- Provides a distributed object filing system.

1-2.2.3 Transaction Service

Manages transactions.

Transaction Mgt
- Provides transactions used to group a series of related changes to objects

so that either all the changes succeed or all are rolled back.

1-2.2.4 Message Service

I-2-4

Manages system and application errors and messages.

History Services
- Contains calls for using ajob's history log files. See also the built-in "

. history log" commands, and the : : history control option, in the
Command lAnguage Executive Guide.

Incident Defs
Defines incident and message types.

Me s s age_Adm Manages message files used by Message Services.

Message Services
- Provides calls to write messages from message files, message stacks, or

message blocks.

Message Stack Mgt
- Manages a process's message stack.

Msg Object Defs
- - Defines the four message objects used by the operating system.

Service Areas and Services

PRELIMINARY

System Error Recording
- - Provides calls to record errors in a system log file.

1-2.3 Directory Services
Directory Services contains:

naming service
protection service.

1-2.3.1 Naming Service

Manages directories, lists of directories, and symbolic links.

Directory Mgt
- Manages directories and directory entries.

Name Space Mgt
- - Provides calls to manage name spaces (lists of directories).

Symbolic Link Mgt
- Provides calls to create, list, and identify symbolic links.

1-2.3.2 Protection Service

Manages authority lists, IDs, and user profIles.

Authority List Mgt
- Provides calls to manage authority lists and to evaluate a caller's access

rights to objects protected by authority lists.

Identification Admin
Provides calls to create and modify IDs, and to modify an ID' s user
profile.

Identification Mgt
Provides operations to manage IDs and 10 lists.

Provides calls to manage a user's protection set and user profIle.

1-2.4 I/O Services
I/O Services contains:

basic I/O service
character tenninal service
print service
spool service
fuing service
database support service
data defmition service
volume set service
basic disk service
basic streamer service
null device service.

Service Areas and Services 1-2-5

1-2.4.1 Basic 1/0 Service

Manages byte stream I/O, common I/O definitions, and byte stream files.

Byte Stream AM
- - Provides device-independent I/O using streams of bytes.

Device Defs Declares common I/O types, constants, and exceptions.

Simple File Admin
- - Manages stream files.

1-2.4.2 Character Terminal Service

Manages character terminals and character terminal windows.

Character Display AM
- Provides device-independent I/O to character display devices such as

printers, plotters, and windows on character and graphics tenninals.

Character Terminal Mgt
- Manages character tenninals.

Terminal Admin
- Provides administrative operations for tenninals.

Terminal Defs
- Defines constants, types, and exceptions used by the terminal selVice

packages.

Terminal Info
Manages terminfo entries.

Window Services
- Provides windows on character and graphics tenninals, including pull

down menus.

1-2.4.3 Print Service

Manages printers.

Printer Admin
Provides administrative operations for printers.

1-2.4.4 Spool Service

Manages spool queues.

Declares types and constants used by spooling packages.

Spool Device Mgt
- - Manages spool devices.

Spool Queue Admin
- - Provides administrative calls for spool queues.

1-2.4.5 Filing Service

Manages files and records.

File Admin Administers files.

1-2-6 Service Areas and Services

File Defs

Record AM

PRELIMINARY

Provides declarations used for filing and indexing.

Provides device-independent record I/O.

1-2.4.6 Database Support Service

Provides advanced or trusted interfaces to support DBMSs (database management systems).

Join Interface
- Provides support for block joins of records from multiple indexed files or

record stream devices.

Record Processing Support
- Provides specialized support for processing collections of records.

Sort Merge Interface
- - Sorts and merges records from one or more input devices into a single

ordered record stream.

Trusted Record Processing Support
- Provides specialized support for processing collections of records using

user-supplied routines.

1-2.4.7 Data Definition Service

Manages data definitions.

Data Definition Mgt
- Manages data definitions (DDefs). This interface is a symbol table for the

development of a DDef compiler.

DDF Utility Support
- - Defines DDef properties used by services other than the data definition

service.

Field Access Provides buffer access to fields in records that reference data definitions
(DDefs).

1-2.4.8 Volume Set Service

Manages volume sets.

Volume Set Admin
- - Manages volume sets.

Volume Set Defs
- Defines types, constants, and type-checking for volume sets and volume

set disks.

VSM Disk Admin - -
Provides administrative and infonnation calls for volume set disks.

VSM Disk Support
- - Provides calls to initialize a volume set disk, verify the allocated space on

a disk, and remove a volume from a volume set disk.

1-2.4.9 Basic Disk Service

Manages basic disks.

Basic Disk Mgt
- - Manages basic disks.

Service Areas and Services 1-2-7

rK~LIM1NAK y

1-2.4.10 Basic Streamer Service

Manages basic streamers, representing streaming tape drives.

Basic Streamer Mgt
- Manages basic streamer devices.

1-2.4.11 Null Device Service

Manages null devices, used as "bit buckets" that discard all output and provide an immediate
end-of-file for input.

Manages null devices. Null devices support byte stream I/O and record
I/O.

1-2.5 Human Interface Services
Human Interface Services contains:

command service
fonn service
report service.

1-2.5.1 Command Service

Supports application-defined commands and command sets, and manipulation of command
language variables and of command help texts.

CL Defs Contains declarations used by the command service, for processing com
mand language (CL) arguments and variables.

Command Execution
- Contains a procedural interface to command execution.

Command Handler
Contains operations for reading and processing program commands and
arguments.

Environment Mgt
- Contains operations to get, set, or remove local and global environment

variables.

Help Text Adm
- - Manages command and fonn help texts.

1-2.5.2 Form Service

Manages fonns.

Form Defs Defines types and constants used by the Form_Handler package.

Form Handler Provides calls to process, control, and change forms.

1-2.5.3 Report Service

Manages reports.

Report Handler
- Provides calls for initializing and printing a report.

I-2-8 Service Areas and Services

rKELINllPIIAK I

1-2.6 Program Services
Program Services contains:

concurrent programming service
scheduling service
timing service
resource service
program building service
monitor service.

1-2.6.1 Concurrent Programming Service

supports concurrent programs, programs with multiple processes or jobs executing together.

Event Admin Provides Establish event handler and Change event
state calls for administrative users, more powerful than-the correspond
ing calls in Event_Mgt.

Even t _Mgt Manages event clusters. Event clusters provide distributed communica-
tions and software interrupts for processes.

Job Admin Provide a more powerful Invoke_job call for administrative users.

Job_Mgt Provides public operations on jobs.

Job_Types Declares types and type rights for jobs.

P ipe _Mgt Manages pipes. A pipe is a one-way interprocess or inteIjob I/O channel.
Pipes support byte stream I/O and record I/O.

Process Admin
- Provides more powerful Spawn process and Set process

globals calls for administrative users. - -

Process_Mgt Provides public operations on processes.

Process Mgt Types
- - Declares types and type rights for processes.

Semaphore_Mgt .
Manages semaphores. Semaphores can be used to synchronize concurrent
access to shared data structures or resources.

Session Admin
- Provides administrative operations on sessions.

Session_Mgt Provides public operations on sessions.

Session Types
- Declares types and type rights for sessions.

1-2.6.2 Scheduling Service

Manages scheduling of jobs and processes.

sse Admin Provides calls to create and modify Scheduling Service Objects (SSOs).

SS~_Types Defines job scheduling classes, Scheduling Service Objects (SSOs), and
SSO messages. Also provides a function to determine whether an AD
references an SSO.

Service Areas and Services 1-2-9

r lU:~.L.llVllI'I AK I

1-2.6.3 Timing Service

Manages system time, timed requests, time computations, and time fonnat conversions.

Manages anode's system clock.

Protection Key Mgt
- Manages protection keys.

Time Zone Map
- - Provides calls to map between time zones and time zone names.

Timed Requests Mgt
- Supports the scheduling of timed requests at a node and provides access to

the node's system clock.

Timing_Admin Provides calls for manipulating timed request queues and setting the local
time zone.

Timing Conversions
- Provides calls for converting between numeric representations of time and

other representations, and for obtaining the local time zone.

Timing String Conversions
- Provides calls for converting between string representations of time and

other representations.

Timing Utilities
- Provides calls to inquire about timed requests.

1-2.6.4 Resource Service

Supports resource control and accounting.

Resource_Mgt Provides distributed resource management.

Resource Mgt AM
- - Provides the type manager's interface to resource management, including

the resource administration attribute.

Resource Types
- Defines constants and types used for resource management.

Resource Utilities
- Implements resource accounting.

1-2.6.5 Program Building Service

1-2-10

Supports programs that build or manipulate programs, such as compilers, linkers, and debug
gers.

Control Types
- Defines a process's arithmetic controls, process controls, and trace con

trols.

Debug Support
- Supports the debugger by providing access to a process's domain object,

static data object, instruction object, control stack, process controls, and
other structures.

Domain_Mgt Provides calls to check whether an AD references a domain object, an
instruction object, a static data object, or a stack object.

Service Areas and Services

rK.r..L11Vlll"1AK I

Execution Support
- Supports the execution of executable objects.

Link_By_Call Supports finding and calling an arbitrary subprogram at runtime. The sub
program must be in an image module or view and be interdomain-callable.

Program_Mgt Supports program invocation and the retrieval of program-related infor
mation.

RT S _Support Supports language-defined runtime systems (RTSs).

1-2.6.6 Monitor Service

Supports monitoring of program execution.

Moni tor Def s Defines types used by Moni tor_Mgt.

Moni tor_Mgt Manages monitors used to record infonnation about program execution.

1-2.7 Type Manager Services
Type Manager Services contains:

TM object service
TM transaction service
TM concurrent programming service
configuration service
custom naming service
backup service.

1-2.7.1 TM Object Service

Provides object and memory operations for building advanced type managers.

Countable Object Mgt
- Supports type managers of countable global objects.

Global SRO Defs
Provides access to the global SROs used to allocate global objects.

Lifetime Control
- Provides a trusted interface for creating and managing lifetime violations.

PSM Trusted Attributes
- - Defines the passive store trusted attribute.

Provides memory management infonnation and control of local garbage
collection for local storage resource objects (SROs).

Unsafe Object Mgt
- Provides special object allocation and de allocation calls.

1-2.7.2 TM Transaction Service

Manages transactions within a type manager.

Local Transaction Defs
Defines the per-object record used by instantiations of the Local_
Transaction_Mgt generic package.

Local Transaction Mgt
- Provides transaction-oriented locking for type managers of local objects.

Service Areas and Services 1-2-11

PKELIMlNAKY

TM Transaction Mgt
- Supports global transaction-oriented type managers that customize their

participation in transactions. See Transaction_Mgt for a general
description of the transaction service.

1-2.7.3 TM Concurrent Programming Service

Provides concurrent programming support for advanced type managers.

Job Resource Reclamation
- - Supports type managers that reclaim resources when a job is tenninating.

Port _Mgt Provides fast interprocess communication within a job.

Typemgr Support
- Supports masked type managers implementing blocking operations.

Unsafe Port Mgt
- - Provides unsafe de allocation for ports.

Unsafe Semaphore Mgt
- ProVIdes unsafe de allocation for semaphores.

1-2.7.4 Configuration Service

Defmes how type managers configure themselves during system initialization, or dynamically
reconfigure themselves at runtime.

Configuration
Provides operations for creating and modifying a system configuration.

1-2.7.5 Custom Naming Service

supports custom directories and custom links.

Customized Name Mgt
- Provides a call to·retrieve the name mapper attribute and an .Ops inter

face package for implementing customized name mappers.

Link_Mgt Provides a call to return the link attribute ID.

Standalone Directory Mgt
- Provides the Create_standalone_directory call.

1-2.7.6 Backup Service

1-2-12

supports type managers that participate in backup, logging, restore, or rollforward operations.

Backup Support
- Defines the backup attribute that trusted type managers can implement to

support backup and recovery. This package is not implemented in this
release. Its specification is included to provide design information about
the backup service.

Trusted Log Mgt
- - Provides trusted type managers with calls for writing to the system logs.

This package is not implemented in this release. Its specification is in
cluded to provide design information about the backup service.

Service Areas and Services

1-2.7.7 Distribution Services

Distribution Services contain:

clearinghouse service
RPC service
transport service.

1-2.7.8 Clearinghouse Service

PRELIMINARY

Manages the Clearinghouse, used to find network addresses, volume sets, and other infor
mation in a distributed system.

CH Admin Manages Clearinghouse administrators, and provides calls for ad
ministrators to add and delete servers, organizations, domains, and en-
vironments.

CH Client Manages Clearinghouse entries and entry properties.

CH_Support Provides calls to find out about the Clearinghouse structure, to modify
client key, and to check access to environments. Also provides calls to
administer an environment.

Node ID Mapping
- - Provides calls for getting node ID and naming infonnation.

1-2.7.9 RPC Service

Provides a remote procedure call (RPC) mechanism for communicating between instances of a
service at different nodes in a distributed system.

RP C Admi n Provides administrative RPC calls.

RPC Call Support
- - Provides functions for remote procedure calling.

Provides a remote procedure call (RPC) facility used to implement dis
tributed services.

1-2.7.10 Transport Service

Provides network-independent communication between nodes.

Corom Defs Contains common addressing and buffer definitions for the communication
services. See also TM Corom Def sand Subnet Def s. - -

Datagram_AM Provides service-independent datagram communications.

DG_Filter_Mgt
Defines datagram 1/0 filter functions. See also vc _ F i Iter _Mgt for vir
tual circuit I/O filter functions.

Distributed Service Admin
Providescalls for building universal distributed services.

Distributed Service Mgt
- Provides features needed by distributed service implementers.

ISO Adr Defs Defines ISO-specific NSAP, TSAP and TCP addresses, and severalfunc
tions for converting between Cornm Def s byte addresses and ISO ad-
dresses. -

Service Areas and Services 1-2-13

I'K~LIMlNAK Y

ISO Config Defs
- - Defines parameter records and incident codes for creating ISO transport

services, including direct and indirect subnetworks, and gateways. See
also the ISO_Adr_Defs package.

ISO TM Admin Provides operations to enable and disable communications tracing, and to
get ISO-specific status information.

TM Comm Def s Contains common definitions for transport services. See also the Conun
Defs and Subnet_Defs packages.

VC Filter Mgt
- - Defines virtual circuit I/O filter functions. See also DG Filter Mgt for

datagram I/O filter functions. --

Virtual Circuit AM
PrOvides service-independent virtual circuit communications.

1-2.8 Device Services
Device Services contains:

device driver service
shared queue service
asynchronous communication service
mass storage service
SCSI service
subnet service
HDLC service
LAN service.

1-2.8.1 Device Driver Service

1-2-14

Provides interfaces used to build device drivers.

CP IO Defs Contains declarations used for communicating with Channel Processors
(CPs).

This package defmes the types used in communicating with a Channel
Processor (CP). This includes the format of various data structures used
by a Channel Processor. Furthermore, the Send_to_CP operation is
defined here. It forwards an I/O message to a Channel Processor for ser
vice.

CP Resources Defines the CP resources attribute.

DD _Support Supports directly-connected device drivers.

Handling Support
- Provides calls to save and restore global registers.

Interrupt Handling Support
- Manages interrupt handlers.

IO Messages Defs
- - Defines the I/O messages mechanism interface.

IO Messages Ops
- - Provides driver-independent I/O message calls for device drivers.

Region 3 Support
- - Provides a call for installing macrocode in Region 3.

Service Areas and Services

PRELIMINARY

1-2.8.2 Shared Queue Service

Supports device drivers using the shared queues mechanism for low-speed I/O.

Cluster Service
- Manages cluster servers.

IO Shared Queues
- - Defines the shared queues I/O mechanism.

1-2.8.3 Asynchronous Communication Service

Defmes the OS asynchronous device driver.

Defines the asynchronous device class.

1-2.8.4 Mass Storage Service

Defmes the OS interface to mass storage drivers (various SCSI devices and future IPI devices).

Bus Independent Disk Defs
- Defines diSk command and reply codes that are independent of any par

ticular I/O bus, such as SCSI or IPI.

Bus Independent Streamer Defs
- Defines command and reply codes for streaming tape drives that are inde

pendent of any particular I/O bus, such as SCSI or IPI.

Bus Independent Tape Defs
- Defines command and reply codes for start/stop tape drives that are inde

pendent of any particular I/O bus, such as SCSI or IPI.

Mass Store Reply Codes
- - Defines I/O message reply classes and reply codes for mass storage

devices.

MS Configuration Defs
- Defines I/O message command codes and reply codes used to configure

mass storage device.

1-2.8.5 SCSI Service

Defmes the bus-specific interface to the SCSI bus.

CP SCSI Defs Defines CP resources and data structures used to communicate with an - -
SCSI mass storage I/O subsystem.

CP _ S CS I_Mgt Defines type-checking calls for SCSI buses, controllers, and devices.

SCSI Bus Dependent Defs
- - Definesbus-specific commands and replies for the SCSI (Small Computer

System Interface) I/O bus.

1-2.8.6 Subnet Service

Supports network-independent communication between nodes within a subnet.

Carr ier _Mgt Defines communication carriers and functions for manipulating carriers.
Communication carriers are used for carrying user data, protocol data, and
local control information.

Service Areas and Services I-2-15

rK~LIM1NAKY

Subnet CL AM Defines connectionless (CL) subnetwork I/O calls. For connection
oriented subnetcalls, see the Subnet_CO_AM package.

Subnet CO AM Common interface to connection-oriented (CO) subnet I/O calls.

Subnet Def s Contains defInitions used by other subnetwork (subnet) communication·
packages. See also the Comm_Defs and TM_Comm_Defs packages.

Trace Defs Contains types and definitions for tracing communications. Each com
munications service provider defmes the procedural interface for tracing its
own communications; for an example, see the ISO _ TM _Admin package.

Trace Support
- Manages tracing of network communications.

1-2.8.7 HOLe Service
Defmes the OS interface to the HDLC protocol.

Manages HDLC subnetworks.

1-2.8.8 LAN Service

1-2-16

Defmes the OS interface to Local Area Network protocols.

CSMA CO Def s Defines parameters and codes for the Intel 82588 Local Area Network
controller.

Ethernet LAN Mgt
- - Manages Ethernet subnetworks.

IEEE8023 LAN Mgt
- - Manages IEEE 802.2/802.3 subnetworks.

Service Areas and Services

PRELIWNARY

ADA PROGRAMMING TECHNIQUES 3
Contents

Concepts 00 00 0 0 0 0 0 0 0 0 0 0 000 000 0 0 0 0 0 0 0 0 0 000 0 0 0 0001-3-2

Working witll Pointers 01-3-2

Common Types in the System and System_Defs Packages 00000000000000001-3-2

Standard System Exceptions 01-3-3

Package-level and Subprogram-level Variables 0 0 0 0 0 0 000 01-3-3

Techniques 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0000 0 0 0 0 0 0 0 0 0 0 0 0 0000 0 0 0 00000000000 0 00 0 0 0 0 0 0 0 0001-3-3

Using Unchecked Type Conversion 01-3-3

Using Overlays as an Alternative to Unchecked Type Conversion 0000 0 000 0 0 0 0 0001-3-5

Importing Operators 01-3-5

Allocating a Buffer 0 0 000 0 0 000 0 0 0 0 000 0 000 00 0 0 0 0 0 0 000 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 01-3-6

Recovering from Record Overflow 0 1-3-7

Handling Recoverable Exceptions 0 1-3-8

Using Paired Calls 0 1-3-9

Summary 01-3-10

Ada Programming Techniques 1-3-1

PK~LIMJNAKY

This chapter shows you common Ada programming techniques used with system calls. (A
future release of this manual will include a chapter on C programming techniques as well.)
You should read this chapter before reading any subsequent chapters in this manual, because
many examples throughout the manual depend on these concepts and techniques. .

1-3.1 Concepts
This section introduces several concepts that are prerequisites to understanding the program
ming techniques presented.

1-3.1.1 Working with Pointers

Many system calls require or return pointers to objects managed by the OS. A pointer to an
object is called an access descriptor (AD) and contains rights bits that control access to the
object. An AD is defined for each OS object type. The AD is actually a BiiNTM Ada access
type. For example, an AD for ajob is defmed in Job_Types:

type job_AD is access job_object;

By convention, access types that consist of ADs to a particular type of system object are named
with the suffix AD.

Only the OS can access the internals, or representation, of objects managed by the OS. Your
application can only perfonn those operations allowed by the system calls defined for a par
ticular object type.

Another type of pointer, besides an AD, is a virtual address. Some system calls require that the
caller supply the virtual address of a buffer or record to be used by the call. Such parameters
may have the type System. address.

A virtual address represents an AD to an object and a 32-bit byte offset within the object. By
convention, access types or parameters that are virtual addresses are named with the suffix
_VA. For example, in the package Record_AM:

type operation status VA is
access operation status record;

-- Virtual address-of an operation status record.
pragma access_kind(operation_status_VA, virtual);

1-3.1.2 Common Types in the System and System_Defs Packages

1-3-2

The built-in BiiNTM Ada System package and the System_Defs support package define
types used for many different system calls. In the System package:

• System. untyped word is the type used to represent any 32-bit quantity. It may be a
data value, or more tYPically an AD to any object.

• System. address is the type used to contain any virtual address.

• System. subprogram type is the type used to contain a pointer to a procedure or
function. -

• System.null word,System.null address,and
System. null-subprogram are the null values for the preceding three types.

• System. ordinal, System. short ordinal, and System.byte ordinal are
32-bit, 16-bit, and 8-bit unsigned integertypes respectively. All integer operators are sup
ported for these types, but without overflow checking.

Ada Programming Techniques

YK~LIMlNAK y

In the System_Defs package:

• S y s t em_De f s . t ext is the type used as a container for strings passed to and from sys
tem calls. System_Defs. null_text is a zero-length text.

• System_Defs. system_time_units is the type used by the OS to measure times and
durations.

1-3.1.3 Standard System Exceptions

The System_Exceptions support package dermes exceptions commonly encountered
when making system calls. You should read and understand the exception descriptions in
System_Exceptions in the BiiNTM/OS Reference Manual.

1-3.1.4 Package-level and Subprogram-level Variables

Variables can be declared as either package-level or subprogram-level variables.

A package-level variable is declared inside a package, but outside any subprogram. A
subprogram-level variable is declared within a procedure or function.

The lifetime of package-level variables is independent of the invocation of any subprogram
inside the package. If the code is shared by multiple processes, these variables are visible to all
processes. On the other hand, subprogram-level variables exist only for the duration of the
particular subprogram call.

It is recommended that you avoid package-level variables for cases where multiple processes
will access the code. Using such variables without careful synchronization between processes
can corrupt the variables.

1-3.2 Techniques
This section shows you how to:

• Use unchecked type conversion

• Use overlays as an alternative to unchecked type conversion

• Import operators

• Allocate a buffer

• Recover from record overflow

• Handle recoverable exceptions

• Use paired calls.

All techniques are illustrated with excerpts from compiled examples. Appendix X-A contains
complete listings for all examples.

1-3.2.1 Using Unchecked Type Conversion

In different contexts, the OS may require different BiiNTM Ada types to be used for the same
value. If these BiiNTM Ada types are not compatible according to BiiNTM Ada's type conversion
rules, then an unchecked conversion between types is required.

Ada Programming Techniques 1-3-3

1-3-4

PRELIMINARY

Declarations Used: Unchecked conversion
BiiN

T
.. Ada generic function that does compile-time conversion between

otherwise incompatible types.
(,-'

For example, the BiiNTM Ada type used to contain any AD is S y stem. untyped wo rd.
Some system calls that can operate on any AD use untyped_word as the BiiNtlr Ada type of
their parameters or their returned value. Unchecked conversion can convert between other AD
types and untyped_word.

To convert between two types with unchecked conversion:

1. The BiiNTM Ada Unchecked_conversion unit must be in your unit's with clause.

2. Your program must instantiate Unchecked_conversion to create a new type conver-
sion function.

3. Your program uses the new type conversion function to do the conversion.

In the following example, which changes the current directory in a caller's process globals, the
value needs to be converted from type directory_AD to type untyped_word. These
steps are shown in the following excerpts from the List_current_directory_cmd_ex
example:

1 with Byte_Stream_AM,

9 Unchecked_Conversion;

37 is

41 function Directory AD from untyped word is
42 new Unchecked conversion(-
43 source =>-System.untyped word,
44 target => Directory_Mgt.directory_AD);

79 begin

92 -- Open directory for reading, filtered by
93 -- ":pattern":
94
95 opened dir := Directory Mgt.Open directory (
96 dir => Directory AD from-untyped word(
97 Process_Mgt.Get-Process_globals_entry(
98 Process Mgt Types.current dir»,
99 pattern => pattern); -

Line 9 includes Unchecked conversion in the unit's with clause.

Lines 44-47 create the Untyped_word_from_directory function. The function created
by specifying Unchecked _ conver sion accepts one parameter, of the source type, and
returns a result of the target type.

Line 96 shows a call to the new function, required because Process_Mgt
. GetFroce ss _g lobals _entry uses the unt yped _word type for the value returned,
while Directory_Mgt . Open_directory requires a value of type directory_AD.
Such calls are evaluated at compile-time and have no run-time cost.

Ada Programming Techniques

I'KELIMlNAK r

1-3.2.2 Using Overlays as an Alternative to Unchecked Type Conversion

BiiNTM Ada provides an overlay feature that allows a programmer to specify the memory ad
dress of a variable, rather than relying on the compiler to allocate storage and detennine the
variable's address. A variable can be given the same address as a previously declared
parameter or variable, providing different BiiNTM Ada types for the same value. The different
names can be used as an alternative to perfonning unchecked type conversions where different
BiiNTM Ada types are needed.

I CAUTION I
Overlays can be dangerous if used in an unstructured manner because this technique
voids all of the strong typing of BiiNTM Ada. Serious programming errors can result.

This excerpt is from the Show_current_directory_cmd_ex example:

10 procedure Show_current_directory_cmd_ex

29 is

37 current dir: Directory Mgt.directory AD :=
38 Directory Mgt.directory AD(-
39 Process Mgt.Get process globals entry (
40 Process Mgt-Types.current dIr»;
41 -- Current directory's AD. -

43 current dir untyped: System. untyped word;
44 FOR current dir untyped USE AT -
45 current-dir'address;
46 Current dIrectory's AD as an untyped word.

51 begin
52
53
54
55
56
57

-- Get current directory's pathnarne:

Directory Mgt.Get name(
obj ~> current dir untyped,
name => dir_name); -

Lines 43-45 show how an overlay with a different type is declared. The local variables
current_dir and current_dir_untypednarne the same word in memory, but with
different types. The name current_dir is used wherever the type
Directory_Mgt. directory_AD is required. The name current_dir_untyped is
used wherever the type System. untyped_word is required.

Line 56 shows dir_untyped used in the call to Directory_Mgt. Get_name.

1-3.2.3 Importing Operators

Some BiiNTM Ada operators (" = ", "+", and so on) are defined for many types declared in
System Services packages or the BiiNTM Ada System package. The following rules indicate
where operators are defined:

1. The package that defines an access type also defines "=" and " / =" for that type.

2. The package that defines an enumeration type also defines all relational operators for that
type. If a sUbtype of the enumeration type is declared in another package, the subtype still

, uses the operators dermed in the first package for the base enumeration type.

Ada Programming Techniques 1-3-5

rK~LlM1NAKY

3. The package that defines a record type also defines n=" and "/=" for that type.

4. The System package defmes for all ordinal types all operators allowed for integers.

5. The Long_Integer_Defs package defines for long integers all operators allowed for, r

integers.

6. The Text_Mgt package defmes the operators n<", n<=n, n>n, and n>=n for the
System_Defs. text record type. The Syste~Defs package implicitly defines "="
and n / = n for texts.

7. Other OS packages may defme additional operators for their types.

Your program can use such operators in two ways:

1. Explicitly qualify each use with the package name.

2. Import the package that defines the operators with a use clause, and then use the operators
nonnally.

In either case, the packages must be listed in your program's with clause.

If A, B, and C are long integer variables, the following code fragments show how to write A
: = B + C; using the two techniques. First, using explicit qualification:

A := Long_Integer_Defs."+"(B, C);

Note that BiiNTM Ada syntax requires that a qualified operator be quoted and does not allow an
operator qualified with a package name to be used as an infix operator. The following code is
WRONG:

A := B Long_Integer_Defs."+" C;

The next code fragment shows importing Long_Integer_Defs with a use clause and then
doing the computation:

use Long_Integer_Defs;

A : = B + C;

Recommended coding practice is to import packages if operators from the package must be
used, with these restrictions:

1. References to any other calls or declarations in the package should still be fully qualified.
For example, write Long_Integer_Defs. zero instead of just zero.

2. If operators from a particular package are used only in a particular call or code block, then
us~ the same scope for the use clause.

use clauses should be used only where necessary. If names of entities declared in other
packages are not fully qualified with their package names, then your program is harder to
understand and harder to maintain.

1=3.2.4 Allocating a Buffer

1-3-6

When you need to set up a buffer to process the results of a system call, there are two main
options:

Allocate a buffer as a local variable.
This is the recommended option, because allocation is fast and the buffer
can be reclaimed as soon as control exits the subprogram or block.

Ada Programming Techniques

PK.t.;LIMlNAK Y

Create an object for the buffer.
This is useful when the buffer may need to be resized, as it might be when
reading variable-length records. A disadvantage is the overhead required
to allocate and deallocate an object.

The following excerpt from the example List_current_directory_cmd_ex shows
how to allocate a buffer as a local variable. In this example, the buffer holds each entry name
between reading it and writing it.

11 procedure List_current_directory_cmd_ex

37 is

70 name buffer: array(l .. 250) of character;
71 -Each entry name is read into this buffer
72 and then written from it.

79 begin

102 -- Get and write each entry name:
103
104 loop
105
106 length := Byte Stream AM.Ops.Read(
107 opened dev-=> opened dir,
lOS buffer-VA => name buffer'address,
109 length- => name:buffer'size/S);
110
111 Byte Stream AM.Ops.Write(
112 opened dev => standard output,
113 buffer-VA => name buffer'address,
114 length- => length);
115
116 end loop;

See Output_records_ex in Appendix X-A for an example of a dynamically sized buffer
contained in a separate object.

1-3.2.5 Recovering from Record Overflow

Some system calls assign array values to fixed-length records supplied by callers as out
parameters. If an array value is too large, these system calls simply assign all the values that
will fit in the record and assign the total array's length to a field in the record.

Checking/or such "record overflows" is the caller's responsibility. Any system call that as
signs a text record behaves in this way; record overflow assigns an invalid text with length>
max_length. "Information" calls that return lists of processes in a job, jobs in a session,
entries in an authority list, or other varying-length arrays can overflow in the same way.

The following excerpt from the Stored_Account_Mgt_ex example package body shows
how an application checks for text record overflow and retries if necessary. The same tech
nique can be used to handle similar overflows for other record types.

The text record is declared and used in a nested block. To retry, the variable controlling the
text's size is increased and control jumps back to the beginning of the block, reentering the
block and reallocating the text with the new size. Because the text record is declared in a
nested block, it can only be used within that block.

Ada Programming Techniques I-3-7

I"K~LIM1NAK Y

552 procedure Destroy_account(

594 is

602 begin
('~. _ F

607 loop

614 path_length: integer:= 60:
615 Initial text length for name assigned
616 by "Directory Mgt.Get name". If
617 insufficient,-then the value is
618 increased and the operation is
619 repeated.

629 loop
630 declare
631 path text: System_Defs.text(path_length):
632 begin -
633 Directory Mgt.Get name(
634 obj ~> account untyped,
635 name => path text): -- out.
636 if path text. length >
637 path-text.max length then
638 -- Text was lost. Retry:
639 path length := path text. length:
640 else - -
641 Directory Mgt.Delete(path text):
642 EXIT: - -
643
644 end if:
645 exception
646 when Directory Mgt.no name =>
647 EXIT: - -
648
649 end;
650 end loop;

668 EXIT:
669 end loop:

671 end Destroy_account;

1-3.2.6 Handling Recoverable Exceptions

I-3-8

Most exceptions raised by system calls cannot be recovered from. When an exception can be
recovered from, this section describes a specific coding technique for recovery.

If an exception occurs, execution of the surrounding block is abandoned and any exception
handler is entered. An exception handler cannot jump back into the abandoned code to retry an
operation. Thus, if an operation needs to be retried in some cases, then the operation should be
placed in a nested block within a loop. The nested block can then handle the possible cases:

• The operation is successful. In this case, a return or exit statement can exit the loop.

• The operation is not successful and a recoverable exception is raised. In this case, the
nested block contains a handler for the exception. After handling the exception, control
loops back and the operation can be retried.

• The operation is not successful and a non-recoverable exception is raised. In this case,
the exception is simply propagated.

Using a nested block to retry an operation and handle a recoverable exception is illustrated by
the following excerpt from the Stored_Account_Mgt example package body:

Ada Programming Techniques

PRELIMINARY

loop 405
406
407
408
409
410
411

if Transaction Mgt.Get default transaction
null then - - -

Transaction_Mgt.Start_transaction;
trans := true;

end if;
begin

419 Passive Store Mgt.Update(account untyped};
420 if trans then- -
421 Transaction Mgt.Commit transaction;
422 end if: - -
423 RETURN account_rep.balance:

426 exception
427 when System Exceptions.
428 transaction timestamp conflict =>
429 if trans then - -
430 Transaction Mgt.Abort transaction;
431 else - -
432 RAISE:
433
434 end if:
435 when others =>
436 if trans then
437 Transaction_Mgt.Abort_transaction:
438 end if:
439 RAISE;
440 end;
441 end loop:

1-3.2.7 Using Paired Calls

Some important system calls must be carefully paired for your application to work properly.
Some common pairings are:

• In Semaphore_Mgt: P (Lock) with V (Unlock).

• In Transaction Mgt: Start transaction with either of
Commit_transaction (if successful) or Abort_transaction (if unsuccessful).

• In each I/O access method package: Open with Close. If Close is omitted, an opened
device is closed when all jobs using it tenninate.

Pairing system calls is complicated by exceptions, which can cause unexpected transfers of
control out of a code block. If a matching system call must be executed before leaving a block,
use a when others exception handler, as in the following excerpt from the
Syrnbol_Table_Ex example:

127 begin
128 Semaphore_Mgt.P(symbol_table.lock}:

151 exception
152 when others =>
153 Semaphore Mgt.V(symbol table.lock}:
154 RAISE: - -
155 -- Reraise exception that entered handler.
156 end:
157
158 Semaphore_Mgt.V(symbol_table.lock):

Ada Programming Techniques I-3-9

I'KELIMlNAK Y

1-3.3 Summary
• Many system calls require or return pointers to objects managed by the OS.

• A pointer to an object is called an access descriptor (AD) and contains rights bits that
control access to the object.

• By convention, access types that consist of ADs to a particular type of object are named
with the suffix AD.

• By convention, access types or parameters that are virtual addresses are named with the
suffix VA.

• The built-in BiiNTM Ada System package and the System Defs support package defme
/ types used for many different system calls. -

• The SysteIILExceptions support package defines exceptions commonly encountered
when making system calls.

, \~. \ '

1-3-10 Ada Programming Techniques

PRELIMINARY

Part II
Support Services

This part of the BiiNTM/OS Guide shows you how to use Support Services, needed throughout
all other service areas for basic tasks. The chapters in this part are:

Using Utility Packages
Gives data structures and examples for common system types and opera
tions.

Using Objects and ADs
Shows basic techniques for using objects and ADs.

Storing Objects Shows how to use the system's distributed storage system to store objects
on disk. .

Starting and Resolving Transactions
Shows how to use transactions to group operations so that either all opera
tions in the group succeed or all are rolled back.

Writing Messages Shows how to use the system's facilities for writing messages. The mes
sage service allows messages to be expressed in different languages and
edited without access to source code.

Support Services contains the following services and packages:

Part n Overview

utility service:
Long Integer Defs
MachIne Code-Insertion
String List Mgt
System- -
System Defs
system-Exceptions
Text_Mgt

object service:
Access Mgt
Attribute Mgt
Object Mgt
Passive_Store_Mgt

transaction service:
Transaction_Mgt

message service:
History Services
Incident Defs
Message Adm
Message-Services
Message-Stack Mgt
Msg Object Defs
System_Error_Recording

PK.t.;LIMlNAKY

Part II Overview

PREUMINARY

USING UTILITY PACKAGES 1
Contents

Concepts ... II -1-2
Texts .. 11-1-3
String Lists ... II -1-2
Long Integers ... 11-1-4

Techniques ... II -1-4
Using a Literal Text .. 11-1-4
Declaring a Constant Text ... II -1-4
Calling a Procedure with a Text Result 11-1-5
Creating a String List ... II -1-6
Reading Elements from a String List II -1-6
Using a Literal Long Integer ... 11-1-7
Computing with Long Integers ... 11-1-7
Converting Between Strings and Long Integers II -1-8

Summary .. II -1-8

Using Utility Packages II-I-I

YKELIMlNAK I'

Utility packages are used throughout the system by sexvices in all the sexvices areas. Many
system calls require parameters of the types in these packages, such as text, string list,
and long integer. This chapter shows how to perfonn common operations using these
types.

Packages Used:

String List Mgt
- - Provides operations on string lists.

Text _Mgt Provides operations on text records.

Long Integer Defs
- - Defines types and calls for 64-bit long integers.

System_Defs Provides common definitions used throughout the OS.

Figure II -1-1 shows the data structures for the objects discussed in this chapter.

String
List

Text

Long
Integer

byte offset

012345678

I 171 17 1

string 1 string 2

----~~ ~
9 10 1/12 13 14 15 16 17 18 19 20 2?C22 23 24 25 2-6 -27-28-1

2 1 8 lu x _ g r a up 1 5 Iw a r I dl
t)

list = list of strings

'--___________ count = number of strings in "list"

'--_______________ length = number of bytes in "list"

'--___________________ max_length = maximum number

of bytes the string list can hold

o 1 2 3 4 5 6 7 8 9 10 11 12

9 9 I/exe/cl exl

... 1 ____ value = array af characters (1 .. max_length)

'--_________ length = number of characters in text

'--___________ max.-!ength = maximum number of characters
the text can hold

byte
,--____ -, offset

~ word boundary

low word o

high word 4

Figure 11-1-1. Data Structures for String List, Text, and Long Integer

11-1.1 Concepts

11-1.1.1 String Lists

II-1-2

A string list is a standard container for a list of strings. String lists are often used with text
records.

Using Utility Packages

PRELIMINARY

String lists have the System_Defs . string_list type. A particular string list has a fixed
size and can contain any string values that will fit. An individual string in a string list is
preceded by a two-byte length field and can have from 0 to 32,767 characters.

A string list contains these fields:

length

count

list

A discriminant, specifying the maximum number of bytes that the list
field can hold.

The number of bytes used in the Ii st field.

The number of strings in the string list.

An array of max_length characters, indexed from 1 to max_length.

list (1 length) contains the strings in the list. Each string is contained in a record of
type System Defs. var text, a two-byte length followed by the specified number of - -
characters. Successive strings are packed with no unused bytes and no alignment require-
ments.

list (length + 1 .. max_length) is the free space available in the string list.

System calls that retrieve string lists do so via out parameters. If a string list is larger than the
space in a particular string list record, then such calls assign the actual length of the string list
to the length field, the actual number of strings to the count field, and the strings that will
actually fit (without breaking in mid-string) to the list field. This sort of overflowing string
list is an invalid string list. It is the application's responsibility to check for invalid string lists
where they can occur.

11-1.1.2 Texts

A text is the standard container for a string.

Texts have the System_Defs. text type. A particular text can hold a fixed-size string and
contains a value of any length up to that size. Text sizes range from 0 to 32,767 characters.

A text contains these fields:

max_length

length

value

A discriminant, specifying the maximum number of characters that the text
can hold.

Number of characters actually used, or if greater than max length, the
number of characters needed in the text. -

An array of max_length characters, indexed from 1 to max_length.

Many system calls assign strings to text out parameters. If the string is larger than the space
in the text (overflow), such calls assign the actual size of the string to the length field and
assign the first max_length characters of the string to the value field. Such a text value,
with length > max_length, is an invalid text.

See Chapter 1-3 for a technique to recover from such a text overflow.

See also Text_Mgt.

Using Utility Packages JI-1-3

11-1.1.3 Long Integers

A long integer is represented as a record of two ordinals.

Long integers are of type Long_Integer_Defs . long_integer and range from
-(2**63) to (2**63)-1.

The range of long integers in decimal is:
-9,223,372,036,854,775,808 .. 9,223,372,036,854,775,807

Note that the record's representation reverses the order of the h and 1 fields, so that the low
word is first in memory followed by the high word. This representation is consistent with the
representation used for all other multi-byte integer and ordinal types: the least significant byte
is at the lowest memory address, followed by the next most significant byte, etc. The most
significant byte is always at the highest memory address used.

See also Long_Integer_Defs.

11-1.2 Techniques
After reading this section, you will be able to:

Use a literal text

Declare a constant text

Call a procedure with a text result

Create a string list

Read elements from a string list

Use a literal long integer

Compute with long integers

Convert between strings and long integers.

Complete listings of the programs used in the following examples can be found in Appendix
X-A.

11-1.2.1 Using a Literal Text

The following example from the inventory example program (module
Inventory_Messages) shows the use of a literal text:

24 message file: constant System Defs.text AD :=
25 new-System Defs.text' (- -
26 31,31,"/example/inventory/message file");
27 -- AD to message file text name. -

11-1.2.2 Declaring a Constant Text

II-I-4

The following example from the inventory example program (module
Inventory_Reports) shows the declaration of a constant text:

Using Utility Packages

PRELIMINARY

55 report by part DDef str: constant string :=
56 "/example/Inventory/DDefs/report by part";
57 -- String constant for "report by ~art"
58 -- report DDef's pathname.
59
60 report_by-part_DDef-pathname:
61 System Defs.text(
62 report_by-part_DDef_str'length) := (
63 report_by-part_DDef_str'length,
64 report_by-part_DDef_str'length,
65 report_by-part_DDef_str);
66 Text constant from "report by part"
67 DDef's pathname string.

11-1.2.3 Calling a Procedure with a Text Result

After calling a procedure that retrieves a text result, be sure to check for an invalid text (not
enough space to accommodate the desired text). There are many system calls that return a
result of type text; Directory_Mgt. Get_name is just one.

Calls Used:

Directory Mgt.Get name
- Gets tlie full patbname of an object's master AD.

The following example is from the Stored_Account_Mgt_Ex example package body in
Appendix X-A.

629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650

loop
declare

path text: System_Defs.text(path_length};
begin -

Directory Mgt.Get name(
obj ~> account untyped,
name => path text}; -- out.

if path text. length >
path-text.max length then

-- Text was lost. Retry:
path length := path text. length;

else - -
Directory Mgt.Delete(path text);
EXIT; - -

end if;
exception

when Directory Mgt.no name =>
EXIT; - -

end;
end loop;

In the above example, note how the developer enclosed the call within a nested block to check
if all the characters in the desired text actually fit into the destination text.

The parameter to receive the text is called path_text. After the pathname is received from
Directory_Mgt. Get_name, the values path_text . length and
path_text . max_length are compared to see if the number of bytes in the text was
greater than the maximum specified for the text. If so, then the text is resized to the higher size
and Directory_Mgt. Get_name is repeated ..

Using Utility Packages II-I-5

PRELIMINARY

11-1.2.4 Creating a String List

The simplest way to create a string list is to use String_List_Mgt and build the string list
from texts.

Calls Used:

String List Mgt.Set
- - Copies a text to a string list

String List'Mgt.Append
- - Appends a text to a string list.

The following example shows how to create a string list

1
2
3
4
5
6
7
8
9

with String List Mgt,
System:=Oefs;

-- Function:
Create string list with following entries:

1. "ux group"
2. "world"

10 is
11 string list:
12 begin -

System_Defs.string_list(255);

13
14
15
16
17
18
19
20
21
22

-- 1) "ux group"
String List Mgt.Set(string list,

SystemJ5efs.text' (8, 8~ "ux_group"));

-- 2) "world"
String List Mgt.Append{string list,

SystemJ5efs.text' (5, 5, "world"));

11-1.2.5 Reading Elements from a String List

II-1-6

The package String_List_Mgt provides calls to access the strings in a string list.

Get_element retrieves a string from a string list, given its position number.

Get_element_by_index retrieves a string from a string list given an index variable,
which it updates. Both can be used to loop through all strings in a string list. Get_element
is simpler to use. Get_element _by_index executes more quickly, especially for large
string lists.

Loca te fmds a string and returns its position number.

Locate_index fmds a string and returns its index.

Calls Used:

String List Mgt.Get element by index
- - Gets the string with it specified index from a string list, and updates the

index variable to reference the next string.

Using Utility Packages

PRELIMINARY

The following excerpt from the Create_name_space_cmd_ex example shows how
Get_ element_by _index can loop through all strings in a string list:

156 i:= 1;
157
158 loop
159
160 String List Mgt.Get element by index(
161 from - => dIrectory-list,
162 list index => i, -
163 element => directory-path);
164
165 Exit after last string:
166
167 EXIT when i = 0;

203 end loop;

11-1.2.6 Using a Literal Long Integer
The following example from the Long_Integer_Ex example package shows the use of a
literal long integer:

244 -- Declaring a negative long integer constant,
245 -- the easy way and the hard way:
246
247 negative twenty: constant long integer :=
248 - long_integer' (0, 20); -
249
250 another negative twenty: constant long integer :=
251 (161ffff ffff#, 16#ffff ffec#); -
252 Use the-hard way when you want a declaration
253 elaborated at compile-time instead of
254 -- at run-time.

11-1.2.7 Computing with Long Integers
All standard Ada arithmetic and relational operators are defined for long integers. The = and
/ = operators are implemented using Ada record comparison. All other long integer operators
are defined in the package Long_Integer_Defs.

To use long integer operators, a program unit must explicitly use Long_Integer_Defs.

Long integers do not support Ada attributes of integers. A long integer is a record type, hence
the usual Ada attributes defined for integers cannot be applied. The following list gives long
integer alternatives to Ada attributes of integers:

'first

'last

'width

'pos

'val

'suce

'pred

'image

Using Utility Packages

Use Long_Integer_Defs .min_int.

UseLong_Integer_Defs.max_int.

At most 20 characters are required to represent a long integer as a string.
Long Integer Defs uses 31 characters, which allows ample space for
embedded underscores.

Not needed; x' pos

Not needed; x, val

Add one.

Subtract one.

x for integer types.

x for integer types.

Call Long_Integer_Defs.Long_integer_image.

II-1-7

rK~LllYlll"1AK I

'value

11-1.2.8 Converting Between Strings and Long Integers

To convert between a string type and a long integer type, Long_Integer_Defs provides
two straightforward calls:

Calls Used:

Long Integer Defs.Long integer image
- - Converts a long integer to a string image.

Long Integer Defs.Long integer value
- - Converts a string image to a long integer.

See the Long_integer_ value function in the Long_Integer_Ex package in Appendix
X-A for an example of code that converts a string image to a long integer. (The code is too
long to include here.)

11-1.2.9 Summary

II-I-8

• Many system calls require parameters of the types text, string list, and long
integer.

• A text is the standard container for a string.

• A string list is a standard container for a list of strings.

• A long integer is represented'as a record of two ordinals. All standard Ada arithmetic and
relational operators are defined for long integers.

Using Utility Packages

PRELIMINARY

USING OBJECTS AND ADS 2
Contents

Concepts ... 11-2-2
What is an Object? ... 11-2-2
What is an Access Descriptor? ... 11-2-3
Rep Rights Control Access to an Objecfs Representation 11-2-4
Type Rights Control What Type-Specific Operations are Allowed 11-2-4
Generic Objects ... 11-2-4
Building Type Managers That Define New Object Types 11-2-4

Techniques ... 11-2-5
Checking an Object's Type .. 11-2-5
Checking Rights on an AD .. 11-2-5
Removing Rights From an AD ... 11-2-5
Creating a Generic Object ... 11-2-5
Resizing an Object ... 11-2-6
Deallocating an Object .. 11-2-6

Summary .. 11-2-6

Using Objects and ADs II-2-1

11-2.1 Concepts
This chapter presents an overview of objects and access descriptors. Objects are the fun
damental units of object-oriented programming. Access deseriptors are pointers that reference
these objects.

Packages Used:

Access_Mgt

Object_Mgt

Interface for checking or changing rights in access descriptors.

Provides basic calls for object allocation, typing, and storage management.
Defines access rights in ADs.

Access Descrip tor

I Pain ter I Righ ts I

Ob ject

Figure II-2-1. AD and Object

11-2.1.1 What is an Object?

II-2-2

An object is a typed and protected memory segment. An object has the following charac
teristics:

A unique identity that cannot be forged, and is guaranteed to exist
as long as references to the object exist

A type, detennined by a Type Definition Object (TOO)

A representation, an area of active memory or passive store that
holds the object's contents

A Storage Resource Object (SRO) from which the object is
allocated and to which its memory space is returned when deallocated

A lifetime that determines whether an object's existence is
limited to the lifetime of a single job or is
indefInite

A memory type that determines whether the object will reside in
normal (swapp able) memory or frozen (non-swappable) memory.

Using Objects and ADs

PRELIMINARY

The size of an object may be from 0 to 232 bytes, and can be dynamically changed. Up to 226

objects are possible in a node's four gigabytes of active memory.

A type manager is a routine that provides basic operations for all objects of its type. A TDO
defines a type manager's type. Object types are specified when objects are created, and cannot
be changed.

Only a type manager can create objects of its type, or read or write to the object representation.
Other services can reference objects of a type manager's type, but must call the type manager
to read or change the objects. Therefore, the integrity of type-managed objects depends only
on the type manager, and not on other services that use the object.

11-2.1.2 What is an Access Descriptor?

An access descriptor is a protected pointer to an object, with rights describing how Ule object
can be used. Figure 11-2-2 shows an access descriptor layout.

Tag

~

3
1

Db ject Index (26 bits)

Word
Boundary

1
Read Rep Rights

Write Rep Rights
~ __ Use Rights

'--___ Modify Rights

_____ Control Rights
______ Local

} Rep Rights

} Type Rights

Figure 11-2-2. A Valid Access Descriptor

An AD is represented by a memory word with Ada type System. untyped_word. An
untyped_word is a one-word, word-aligned value corresponding to one 33-bit memory
word, 32 bits of infonnation and a tag bit. (The tag bit indicates whether the word is a valid
AD.) An untyped word can be interpreted as either an access descriptor word or as a non-AD
word.

If interpreted as an AD, an untyped_word contains:

• A valid AD that references an object and provides rights to the object when the tag bit is 1

• A null AD when the tag bit is 0, regardless of the value of the first 32 bits.

If interpreted as a non-AD, an unt yped _word contains 32 bits of data and the tag bit is
ignored.

By convention, access descriptor names end with _AD. For example, directory_AD is an
access descriptor that references a directory object.

Using Objects and ADs II-2-3

An AD contains five rights bits: two representation rights and three type rights. These rights
are described in the following sections.

11-2.1.3 Rep Rights Control Access to an Object's Representation

Representation rights are required to read or write the object's representation. These rights
grant access to an object's physical layout in memory. Rep rights are checked by the CPU
whenever a program reads or writes memory. If needed rep rights are not present, then
System_Exceptions. insufficient_rep_rights is raised. If an object has a type
manager, then the type manager nonnally removes rep rights on any AOs it exports for the
object. A type manager can turn on (" amplify") rep rights on AOs for objects that it manages.

11-2.1.4 Type Rights Control What Type-Specific Operations are Allowed

Type rights are specific to the object type and provide access to an object's logical structure by
determining what type manager calls are allowed on that object. The three rights are desig
nated use, modify and control by convention to ensure that they are interpreted consistently
regardless of object type.

Use - To get infonnation about the object

Modify - To change the contents of an object but retain its existence and representation

Control - To destroy the object, or perform other privileged operations.

Use and modify rights correspond to read and write rights for files. Control rights give the
user maximum control over the object. The actual functions of these rights is determined by
the type manager. Usually, these types are renamed to reflect the particular usage of the rights.
For example, the naming service defines list and store rights for directories, which correspond
to use and modify rights.

These rights do not fonn a hierarchy in that a type manager may provide anyone or more of
them. For example, a type manager could interpret modify rights and not interpret use or
control rights. rights.

Checking and enforcing type rights is done by type managers and not by the CPU. A type
manager raises System_Exceptions. insufficient_type_rights if needed type
rights are missing.

11-2.1.5 Generic Objects

When an object is created without specifying a particular TOO, the new object is generic and is
associated with the generic TOO. A generic object is used only as a memory segment. It does
not have a type manager, and has the same TOO as all other generic objects. The generic TDO
is held by the BiiNTM Operating System. Applications can create and manage generic objects.

11-2.1.6 Building Type Managers That Define New Object Types

II-2-4

Type managers can be built to support new object types. A new type is defined by creating a
new TOO. See Chapter VU-3 for instructions for building a type manager for a new type.

Using Objects and ADs

PRELIMINARY

11-2.2 Techniques
After reading this section, you will be able to:

• Check an object's type

• Check rights on an AD

• Remove rights from an AD

• Create a generic object

• Resize an object

• Get an object's size

• Deallocate an object.

11-2.2.1 Checking an Object's Type

An application can check that an object is of a particular type before attempting to perfonn
type-specific operations on it Each BiiNTM Operating System type manager provides an Is
call that checks whether an AD points to an object of the managed type. The following code is
from the Process_Globals_Support_Ex example. After the process global entry for
the home directory is retrieved, the following code checks to verify that it is a directory object.

323 if not Directory Mgt.Is directory(dir untyped) then
324 RAISE System_Exceptions.type_mismatch;

11-2.2.2 Checking Rights on an AD

The access rights of an AD can be examined. The rights to be checked for are set in
Object_Mgt . rights_mask. Then Access_Mgt . Permits is called. True is returned
if the AD has the rights which were set in the mask.

11-2.2.3 Removing Rights From an AD

The access rights of an AD can be removed. The rights to be removed are set in a rights mask.
Then Access_Mgt. Remove is called. An AD to the same object is returned without the
rights set in the mask. The following code is from the Account_Mgt_Ex example. While
creating a new account, all rep rights are removed from the returned AD thus requiring all
reading and writing of the account object to be perfonned via the account type manager.

110 account untyped := Access Mgt.Remove(
111 AD - => account untyped,
112 rights => Object_Mgt.read_write_rights);

11-2.2.4 Creating a Generic Object

A new object can be allocated with Object_Mgt. Allocate. If no TDO is specified in the
call, the new object is generic. Another method for creating objects is to use the Ada new
allocator. The following example allocates a symbol table object with space for
table size entries and no entries in use.

223
224
225
226
227

Using Objects and ADs

symbol table := new symbol table object (
table size); --

symbol table. length = 0;
Symbol table in tially has space for 100

-- entries with a n use.

U-2-5

rKELINllNAK Y

11-2.2.5 Resizing an Object

Object_Mgt .Allocate allocates an object at a specified size. That size can be deter
mined with Object_Mgt. Get_object_size. (Object size is specified in words.) The
size can also be changed with Object_Mgt .Resize as shown in the following example:

98 Object Mgt.Resize(
99 ob] => symbol table untyped,

100 size => 3 + (2-* symbol table.max length * (
101 symbol_entrY'sizeI32»);-
102
103 max_length_access := 2 * symbol_table.max_length;

In this example, a symbol table is expanded so that it will hold twice as many entries and
changes the maximum length of a symbol table entry.

11-2.2.6 Deallocating an Object

Objects can be dynamically deallocated. The following excerpt from Account_Mgt_Ex
shows an account object checked for a zero balance and then destroyed (deallocated).

326 begin
327 account untyped:= Access Mgt. Import (
328 AD => account untyped,
329 rights => destroy-rights,
330 tdo => account=TDO);
331
332 if account rep.balance 1= Long_Integer_Defs.zero then
333 RAISE balance_not_zero:
334
335 else
336 Object_Mgt.Deallocate(account_untyped):
337
338 end if;

11-2.3 Summary

U-2-6

• An object is a typed and protected memory segment.

• An access descriptor is a protected pointer to an object, with rights describing how the
pointer can be used.

• An object's representation is an area of active memory or passive store that holds the
object's contents.

• A type manager is a routine that provides basic operations for all objects of its type.

• A TDO defmes a type manager's type.

• Type rights are specific to the object type and provide access to an object's logical structure
by detennining what type manager calls are allowed on that object.

• Representation rights are required to read or write the object's representation.

• A generic object is used only as a memory segment. It does not have a type manager, and
has the same TDO as all other generic objects.

Using Objects and ADs

PRELIMINARY

STORING OBJECTS 3
Contents

Concepts ... II -3-3
Comparing Passive Store, Files, and Directories II-3-3
Using Passive Store at Different Levels II-3-3
Object Versions ... 11-3-3
Object Activation .. 11-3-4
Activation as Reincarnation .. II-3-5
AD Activation .. 11-3-5
Object Passivation ... 11-3-5
Passivation Dependencies ... II -3-6
Active-Only Objects ... 11-3-6
Passive Store Behavior of OS Object Types II-3-6
Passive Store Behavior of Generic Objects II -3-10
Passive ADs .. 11-3-7
Referencing Between Active Memory and Passive Store 11-3-7

Master ADs ... 11-3-7
Alias ADs .. 11-3-8
Restrictions on Storing Master ADs 11-3-8
Master ADs and Passive Object Lifetimes II -3-9
Transferring Mastership ... 11-3-9
Object Trees .. II -3-9
Passive ADs as Universal Identifiers 11-3-10

Passive Object Characteristics ... 11-3-10
The Life History of a Passivated Object 11-3-11
Activation Models .. 11-3-12

Multiple Activation .. 11-3-12
Single Activation ... 11-3-14
Choosing an Activation Model 11-3-14

Transaction Support ... 11-3-14
The Passive Store Attribute ... 11-3-15
Default Passive Store Behavior .. 11-3-15
Type Manager Support .. 11-3-15

Techniques .. 11-3-16
Creating a Passive Object .. 11-3-16
Updating a Passive Object .. 11-3-18
Requesting an Update ... 11-3-18
Destroying a Passive Object .. 11-3-19
Copying a Passive Object Tree .. 11-3-20
Getting Passive Object Information 11-3-22

Summary ... 11-3-23

Storing Objects II-3-1

II-3-2

l'Kt;LIMlNAK Y

Passive store is the collection of objects stored on disk in a BiiNTM system. This chapter shows
you how to store objects on disk.

Packages Used:

Directory_Mgt Manages directories and directory entries.

Passive Store Mgt
- Provides a distributed object filing system.

Passive store is distribl.!ted--spread over multiple nodes and transparently accessible from any
node (Figure 11-3-1). Of course passive store is equally usable on a single-node system.

Figure II-3-1. Passive Store is a Distributed Object Filing Service that
Unifies all Nodes in a BiiNTM System.

Passive store is reliable--stored objects survive system crashes and changes to stored objects
are transaction-oriented.

In many ways passive store is the "glue" that holds together a distributed BiiNTM system. Many
system objects are stored there, such as files, directories, programs, and TDOs.

The use of passive store is typically hidden by the services that use it. For example, the filing
service and directory service handle all needed passive store operations for files and direc
tories.

Storing Objects

PRELIMINARY

11-3.1 Concepts

11-3.1.1 Comparing Passive Store, Files, and Directories
All objects stored on disk are "in" passive store, including file objects and directory objects.
However, an application that only uses files and directories can ignore most aspects of passive
store and use files and directories in a familiar way. Even for an application that uses other
object types, files and directories can be appropriate containers for much of the application's
stored data. The application designer should consider these points:

• Files support byte stream I/O and record I/O. Several record-structured file organizations
are supported and a rich set of file management, file indexing, and record access operations
is provided.

• Files cannot contain ADs.

• Directories can contain ADs but have a fixed structure: a set of <name, AD> pairs, such
that each name is unique within its directory.

• If the application wants to store its own typed objects on disk, objects that can contain ADs
and have an arbitrary structure, then it must use passive store directly to store those objects.

11-3.1.2 Using Passive Store at Different Levels
Passive store can be used at three different levels:

1. At the conventional application level, an application can use files and directories. Passive
store is transparent, but the application may still benefit from the distributed file system and
the flexible protection model.

2. At the sophisticated application level, an application can:

• Request that system objects, such as TDOs or authority lists, be stored.

• Create its own network of generic objects and store it.

3. At the object-oriented application level, an application can defme new object types and type
manager modules for those types. Each type manager uses the Passive Store Mgt
package to customize the passive store behavior of its object type. - -

Passive_Store_Mgt is directly used by the second- and third-level applications. Two
different groups of calls are provided for the two different levels. The sophisticated applica
tion can use Request_ calls, such as Request_update, which do not require any rights.
However, an object's type manager can specify type-specific handling of such calls or refuse
them by raising System_Exceptions. operation_not_supported. A type
manager in an object-oriented application can use direct calls, such as Update, which require
rep rights. A type manager only uses the direct calls for the objects that it manages. The two
groups of calls appear in the same package because one module will often use both groups of
calls: the direct calls for objects that it manages and the Request_ calls for objects that other
modules manage. Chapter VII-6 shows how to build a type manager for a stored object type.

11-3.1.3 Object Versions

Active memory is the collection of objects in virtual memory on a particular BiiNTM node. An
object can have versions in both active memory and passive store (Figure 11-3-2).

Storing Objects II-3-3

PASSIVE
STORE

ACTIVE
MEMORY

I'K~LIM1NAK Y

Passive Version

Active Version

Figure ll-3-2. A Single Object can have Passive and Active Versions.

An object can have multiple active versions, in use by different jobs or nodes, but can have
only one passive version. Though the tenn "version" is used, passive store is not a "version
control" or "revision control" system and cannot store or reconstruct any but the most current
passive version. The passive store does ensure that out-of-date active versions cannot corrupt
an object's passive version.

11-3.1.4 Object Activation

II-3-4

Only active versions can be directly read or written. Reading or writing a stored object with no
active version causes activation of the object, creation of an active version that is then read or
written.

Objects are activated when needed in the same way that pages of virtual memory are swapped
in when needed. Both operations are invisible to your application.

Changing an object's active version does not change the passive version.

An active version of an object can only be created from the object's passive version. There is
no way to create an active version from another active version.

Local objects are activated on a per-job basis. If jobs A and B both use an object, then they get
separate active versions. Activating a local object consumes storage in the job's local SRO
(storage resource object).

Global objects are activated on a per-node basis. If jobs A and B both use an object and are on
the same node, then they share an active version. If jobs A and B are on different nodes, then
they use different active versions. A global object is activated in either the normal or frozen
global SRO, depending on its memory type.

Storing Objects

PRELIMINARY

11-3.1.5 Activation as Reincarnation

A passive object can "live" multiple times, in the form of successive activations in different
jobs. For example, job A may create and passivate an object, and then terminate. Some time
later, job B references the object and a second active version is created, a second active "life"
for the object. Whether an object remembers its "past lives" depends on whether or not each
job passivates any changes that it makes.

11-3.1.6 AD Activation

Activating an object activates all ADs in the object. However, activating an object does not
activate the objects that it references. For example, a program accesses object A, triggering
A's activation. A contains an AD for object B. The AD for B is activated, but not B itself. B
will subsequently be activated if the program accesses it.

AD activation is the point at which protection of passive objects is implemented. Chapter 111-3
describes how passive objects are protected. When an AD is activated as part of object activa
tion, then a null AD is activated in its place if the owner of the object that contains the AD is
not allowed access to the object referenced by the AD.

ADs are frequently activated by being retrieved from directory entries. Protection of ADs in
directory entries is handled somewhat differently, as described in Chapter 111-3. If the caller is
not allowed access to an AD in a directory entry, then Directory_Mgt. no_access is
raised.

11-3.1.7 Object Passivation

An object's passive version is modified only when a program or type manager explicitly
passivates or updates the object. Passivating an object copies a particular active version to the
passive version.

These Passive_Store_Mgt calls create or update an object's passive version:

Request_update
Update
Update_tree
Update_with_alternate_rep

Update updates a single object, for which the caller has rep rights. Update_tree updates
a tree of objects; the caller must have rep rights for the root object. Request_update is
used to update type-managed objects from outside their type managers; it requests that the
object's type manager update an object. A type manager can refuse an update request by
raising Syste~Exceptions. operation_not_supported.

When an object is passivated from a particular active version, then all other active versions are
marked as being obsolete. Any attempt to update an object from an obsolete version is
rejected, with the Passi ve_Store_Mgt. outdate_object_ version exception.

An object's passive version can have a different size than its active version. For example,
passive versions that contain ADs are larger than the corresponding active versions.

Storing Objects II-3-5

PRELIMINARY

11-3.1.8 Passivation Dependencies

A passive object should nonnally only refer to other passive objects. This rule includes im
plicit references, such as the AD that every object has for its TOO. Thus:

• If an object is passivated, its TOO should be passivated.

• If an object is passivated, then its attribute list should be passivated.

• If a TOO or an attribute list is passivated, then all attribute IDs and attribute value objects
that it references should be passivated.

• If an object is passivated, then any authority list protecting the object should be passivated.

• If an object is passivated, then objects for which it contains ADs are nonnally passivated.

As a general rule, if A depends on (references) B, then B should live as long or longer than A.
Note that this rule should also influence when destroying a passive version is allowed.

If your application attempts to access an object that has no active or passive version, then
System_Exceptions.object_has_no_representationisrrused.

11-3.1.9 Active-Only Objects

Some types of object cannot be passivated; such objects are called active-only. For example,
objects that exist only during program execution are active-only: sessions, jobs, processes,
stacks, and transactions.

Paradoxically, an active-only object type must have the passive store attribute! This is because
the default behavior of objects is to be passivatable. The
Passive_Store_Mgt. Set_refuse_filters call assigns fields within a type's pas
sive store attribute record so that the type's objects are active-only.

11-3.1.10 Passive Store Behavior of OS Object Types

II-3-6

This section summarizes the passive store behavior of some common types of objects. The
lists in this section are selective; see the "OS Object Types" appendix in the BiiNTM/OS Refer
ence Manual for a list of object types.

The following OS object types are kept in passive store by their type managers:

nonnal directories
flIes.

The following as object types can be passivated, but the application must handle creating and
updating passive versions:

Storing Objects

attribute ID
attribute list
authority list
basic disk
basic streamer
data defmition (DDe!) object
domain
event cluster
generic object
instruction object
name space
pipe

PRELIMINARY

static data object
type definition object (TDO).

The following OS object types are active-only and camiot be passivated:

job
all opened device types
certain system directories
process
session
stack
storage resource object (SRO)
transaction
windows (character or graphics).

The following OS object type cannot be passivated but is permanently stored in the Oearing
house instead of in passive store:

ID.

11-3.1.11 Passive ADs

Like any other object, a stored object can be referenced by many ADs, located in active ver
sions or in other stored objects. Before creating an object's passive version, you must store at
least one AD to the object. The first passive AD for an object is the object's master AD. All
other passive ADs for an object are alias ADs. In certain circumstances, described in Section
11-3.1.11.6, an AD is converted from an alias AD to a master AD, but there is never more than
one master AD.

11-3.1.11.1 Referencing Between Active Memory and Passive Store

ADs can freely cross the boundary between active memory and passive store. A passive
version can contain an AD for an active-only object. An active-only object can contain an AD
for a passivated object.

11-3.1.11.2 Master ADs

The master AD determines the stored object's:

• volume set

• owner

• authority list (if any).

Storing Objects 11-3-7

PRELIMINARY

Master ADs can be stored in directories or any other passive objects.

A stored object is always on the same volume set as the object containing its master AD.
Because master ADs cannot reference across volume sets, any passive object can be reached
by a chain of master ADs from its volume set's root directory. The volume set containing an
object's passive version cannot be changed; however the volume set may be moved to another
node or even another BiiNTM system. Also the backup service provides techniques to archive
volume sets or collections of objects within volume sets and then restore them on other volume
sets (but with new object identities).

A stored object's initial owner is the user ID for the process that stores the master AD.

A stored object's initial authority list is determined as described in Chapter 111-3.

Authority list evaluation uses whatever rights are on the master AD, even when evaluating
rights for an alias AD. Normally a master AD should have all type rights and no rep rights, as
rep rights should only be granted within the type manager. For a passivated generic object, the
master AD should nonnally have rep rights as well.

11-3.1.11.3 Alias ADs

All passive ADs besides the master AD are aliases or alias ADs. Aliases can be freely created
and deleted without restriction. Aliases can reference objects on other volume sets or other
nodes. An alias may even reference an object on a volume set that is not mounted in the
system.

Alias ADs can be used for any object operations. While some operations require that an object
have a master AD, no operation distinguishes between a master AD and alias when specifying
an object to operate on

11-3.1.11.4 Restrictions on Storing Master ADs

II-3-8

There are these restrictions on storing master ADs:

1. If the object will use authority list protection, then its authority list must be set before the
master AD is stored.

2. A master AD cannot be stored after an AD for the object is stored in an active-only direc
tory.

3. A master AD cannot be stored after an AD for the object is transmitted to another job via
any of these techniques:

• Job invocation parameter buffer

• Event cluster signal

• Remote procedure call

• Datagram

• Virtual circuit.

4. A master AD cannot be stored after an application tries to store a master AD within a
transaction, and then aborts the transaction.

These restrictions will cause no problem if you create a passive object as follows:

Storing Objects

PRELIMINARY

1. Allocate the object's initial active version.

2. If needed, explicitly set the object's authority list.

3. Store the master AD.

4. Passivate the object.

S. If done within a transaction and the transaction aborts, recover all the way to the first step,
allocating a new object if the code retries. This avoids the problem of being unable to store
a master AD for the previously allocated object.

II-3.1.II.S Master ADs and Passive Object Lifetimes

In active memory there is no concept of a "master" AD, so why is one AD for each object
singled out in passive store? There are several reasons, and one of the best reasons is that this
solves the problem of knowing when to delete passive versions. Active objects are reclaimed
either by job tennination (for local objects) or by garbage collection. Garbage collection can
reclaim objects with indefinite lifetimes by detecting when those objects can never again be
accessed by any chain of ADs. However garbage collection is impractical in passive store,
because ADs can reference between nodes in a network and even reference between mounted
and dismounted volume sets! An exhaustive scan of all filing volume sets at all nodes would
consume too much network and disk bandwidth, but a scan that includes dismounted volume
sets is completely impractical. Instead the master AD is singled out, and constrained to be on
the same volume set as the object it references. If the master AD is deleted, then the object is
deleted and reclaimed. The object can also be explicitly destroyed while the master AD still
exists, but no further passive version of the object can be created.

A passive object exists until its master AD is deleted, or until the object's passive version is
explicitly destroyed.

II-3.1.11.6 Transferring Mastership

In two cases, deleting a master AD does not destroy a passive object 0, but instead converts an
alias AD to become the new master AD:

• If the master AD is stored in a directory entry and other directory entries on the same
volume set reference 0, then "mastership" is transferred to one of the other entries.

• If the master AD is stored in a non-directory object and other ADs in that object reference
0, then mastership is transferred to one of those other ADs.

Note that the master AD always remains on the same volume set as the object it references.
Note also that mastership is never transferred from a directory entry to a non-directory object.

II-3.1.11.7 Object Trees

An object tree is defined by a stored root object and all objects reached from it via a chain of
master ADs. For example, if A contains a master AD for B which contains a master AD for C,
then the object tree rooted in A contains C.

All objects in an object tree have the same volume set.

Several passive store calls operate on object trees: Copy, Destroy, Request_update (in
its default version), and Update_tree.

Storing Objects 11-3-9

PRELIMINARY

II-3.1.11.8 Passive ADs as Universal Identifiers

A passive AD contains enough infonnation to uniquely identify a passive object among all the
passive objects ever created on any BiiNTM system anywhere at any time. Passive objects
created on different volume sets, nodes, or systems can never be confused. A passive AD
references one object in a universal address space, an address space that spans all objects ever
created on any BiiNTM system.anywhere.

11-3.1.12 Passive Store Behavior of Generic Objects
Generic objects support all passive store calls. All Reque st _ passive store calls on generic
objects require read rep rights.

11-3.1.13 Passive Object Characteristics
Figure 11-3-3 shows a passive object and some of its associated characteristics.

Directory

Entry IMoster
Nome AD

.. Passive Object Descriptor

I I

Owner

Passive Version
,

TDO
Optional

Authority
... List

Type

101
Rights
Type

I 10 i
Riqhts

I
I

Figure II-3-3. A Stored Object

A passive object infonnation record is also maintained for every passive object:

II-3-10 Storing Objects

length
create time
read time
write time
change_status_time
owner
auth list
volume set
node

PRELIMINARY

11-3.1.14 The Life History of a Passivated Object

Figure 11-3-4 shows ajob creating and using a stored object:

1. Creating the active version

2. Storing the master AD

3. Storing the passive version

4. Changing the active version

5. Updating the passive version.

When the job terminates, the object's active version is deallocated but the passive version still
exists.

ACTIVE ACTIVE PASSIVE
OPERATION AD VERSION NAME/MASTER AD VERSION

1. Create active account

H 100 I ob ject with in itial
balance 100

2. Store AD under H 100 I !;acct/023 ~ name /acct/023

3. Update account

H 100 I !;acct/023 H 1001

4. Add 200 to balance

H 300 I l/acct/023 H 100 1

5. Update account H 300 I l/acct/023 H 300 1

6. Job A terminates j!acct/023 H 300 1

Figure 11·3·4. Life History of a Stored Object Part I

Figure II-3-5 shows another job using and then destroying the same stored object:

1. Retrieving an AD from the directory entry

2. Accessing the object (transparently creates an active version)

3. Destroying the passive version, the directory entry, and the active version.

Storing Objects II-3-11

J'K L1NllNAK J:

ACllVE ACTIVE PASSIVE
OPERATION AD VERSION NAME/MASTER AD VERSION

7. Job B retrieves
~ l/acct/023 H 3001 AD from directory

8. Read balance H 3001 l/acct/02.3 H 3001 (activates object)

9. Destroy passive H 3001 ~ version l/acct/023

10. Delete directory

H 3001 entry

11. Deallocate active
~ version

Figure 11-3-5. Life History of a Stored Object Part II

11-3.1.15 Activation Models
Passive store supports two models of object activation: the multiple activation model and the
single activation model. The choice of an activation model can be concealed within an
object's type manager, and only the type manager implementer needs to be concerned with the
choice.

11-3.1.15.1 Multiple Activation

II-3-12

In the multiple activation model, a single stored object can have multiple active versions in
different jobs (Figure 11-3-6).

Storing Objects

PASSIVE
STORE

ACTIVE
STORE

PRELIMINARY

PASSIVE VERSION

Figure ll-3-6. A Single Object can have Multiple Active Versions.

In Figure II-3-6, if Job A updates the object, then Job B's active version is obsolete. Passive
store keeps track of object versions and refuses updates from obsolete active versions, raising
the outdated_object _ ver sion exception in Pas si ve _Store_Mgt.

An application can handle the outdated_active_ version exception by:

1. Calling Reset_acti ve_ version to make its active version current

2. Redoing whatever changes it made to the active version

3. Attempting the update again.

A type manager can also define a version-out-of-date flag in the type's objects. Passive store
then sets the flag in any obsolete active versions of the type. An application can check the flag
before using an active version, resetting the active version if needed. Note that using the flag
does not eliminate the outdated_object_ version exception; there can be communica
tion delays in setting the version-out-of-date flags.

A job using a transaction can avoid any problems with an obsolete object version by reserving
the object for the transaction. The object is reselVed until the transaction is resolved. While a
stored object is reselVed, only updates associated with the reselVing transaction are allowed.
Passive_Store_Mgt. Reserve resets the caller's active version ifit is obsolete, ensuring
that subsequent code begins with the current version.

ReselVing frequently accessed objects for long periods can cause performance problems by
delaying other jobs.

Storing Objects II-3-13

PKJ£LIMlNAK Y

For global objects, there is one active version of the object per node where the object is ac
cessed rather than per job.

ll-3.1.1S.2 Single Activation

In the single activation model, an object is only activated in one home job. Other jobs that
activate the object receive a token active version called a homomorph in place of the object.
Those other jobs communicate with the object's home job to request operations on the real
object.

The type manager conceals the use of homomorphs. When an application requests an opera
tion on a homomorph, the type manager handles all the communication needed to perfonn the
operation and return results.

A type manager can distinguish between homomorph and real active versions by defining an
is_hornornorph boolean that is true in the homomorph template and that is false in all real
passive and active versions.

ll-3.1.1S.3 Choosing an Activation Model

In the single activation model, operations come to the object. In the multiple activation model,
the object goes to the operations. In either case, the type manager's public interface should be
the same. The choice of an activation model is an implementation decision, important only to
designers of type managers, not to outside users.

The multiple activation model:

• Is often easier to implement

• Brings the object to the operation (good for repeated operations on smaller objects)

• Often requires code to handle clashes between concurrent and incompatible versions of the
same object.

The single activation model:

• Is often more difficult to implement

• Brings the operation to the object (good for larger objects such as files)

• Does not cause clashes between multiple active versions of the same object.

11-3.1.16 Transaction Support

II-3-14

Most passive store calls that change passive versions are transaction-oriented. A transaction
oriented call participates in any default transaction. If there is no default transaction, then a
transaction is created for the duration of the call.

Object activation and Reset_active_ version calls nonnally can do dirty reads, reading
a passive version written by another transaction before that transaction commits. An applica
tion can ensure that a committed version of an object is used by calling Re serve on the
object.

An o!?ject can reserve an object using either a write lock or a read lock. Write locks are
exclusive and are not released until the enclosing root transaction is resolved. Read locks can
be shared with other read lockers, and can be released early with explicit Release calls.
Update and destroy calls assert write locks if the affected objects are not already write-locked
by the calling transaction.

Storing Objects

PRELIMINARY

Applications that use passive store may choose to maintain its transaction orientation. To do
this, applications should group any sequence of logically dependent passive store/file/directory
calls within a transaction. Chapter 11-4 shows you how to use transactions.

Stored objects can be concurrently accessed by multiple jobs using multiple transactions. A
passive store call on an object can be refused because it is being used by a transaction with a
more recent timestamp than the transaction enclosing the refused operation. Chapter 11-4
shows you how to handle timestamp conflicts.

11-3.1.17 The Passive Store Attribute

The behavior of passive store is customized for a particular object type by supplying a passive
store attribute for the type. Each instance of this attribute is an object with the
Passive_Store_Mgt. PSM_attributes_object Ada type.

11-3.1.18 Default Passive Store Behavior

If an object type does not have the passive store attribute, then by default it supports all passive
store calls. The default allows copying of passive objects of the type and maps all Request_
calls to the corresponding direct calls, regardless of what rights are on the AD supplied.

11-3.1.19 Type Manager Support

All the features described in this section are controlled by fields in a type's passive store
attributes object.

A type manager can supply type-specific subprograms to be called in response to any or all of
the following Passive_Store_Mgt calls:

Request-Fassive_object_info
Request_release
Request_reserve
Request reset active version
Reque st=set_tIme stamps
Request_update

A type-specific· subprogram that refuses a request should raise
System_Exceptions.operation_not_supported.

A type-specific subprogram that makes multiple updates to passive objects, files, or directories
can enclose its updates in a transaction, so that the type-specific subprogram is transaction
oriented.

A type manager can refuse to allow copying of the type's stored objects by setting the
copy -Fermi t ted boolean to false in the PSM attributes object. For example, if an account
balance represents an amount of money, then it may be wise to prohibit copying of account
objects!

A type manager can defme a locking area in its type's objects, using fields in the passive store
attribute object. When an object is activated, a semaphore is created and an AD for the
semaphore is placed in the first word of the locking area. Other words of the locking area are
initially zero. When an active version is reset, the locking area is preserved and copied over
from the preceding active version.

Storing Objects II-3-1S

I'KELIMl.NAK Y

A locking area is needed when multiple processes in a job share an active version. The active
version must contain a semaphore and possibly other infonnation to synchronize access to the
active version. Without a locking area, resetting the active version would lose the reference to
needed synchronization infonnation, such as a semaphore with a blocked process waiting to
use the active version.

11-3.2 Techniques
After reading this section, you will be able to:

• Create a passive object

• Update a passive object

• Request an update

• Destroy a passive object

• Copy a stored object tree

• Get passive object infonnation.

Many of the examples are excerpted from the non-trans action-oriented body of the
Stored_Account_Mgt_Ex example. This package extends the type manager for accounts,
developed in Chapter VII-3, to use passive store. Appendix X-A contains complete listings for
Stored_Account_Mgt_Ex and other units excerpted in this chapter.

11-3.2.1 Creating a Passive Object

II-3-16

Calls Used:

Directory Mgt.Store
- Stores a new directory entry.

Passive Store Mgt.Update
- Updates an object's passive version.

To create a stored object:

1. Create and initialize the active object (as described in Chapter VII-3).

2. Store a master AD for the object.

3. Update the object, creating the passive version.

The following excerpt from the Stored_Account_Mgt_Ex package body (non
transaction-oriented) shows how to create a stored object:

Storing Objects

Storing Objects

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

PRELIMINARY

function Create stored account(
starting balance: -

Long-Integer Defs.long integer :=
Long-Integer-Defs.zero;

is

master: - System Defs.text:
authority: -

Authority List Mgt.authority list AD := null)
return account AD - --

Logic:
1. Check the initial balance.

2. Allocate and initialize the account object.

3. Remove rep rights for the exported and master
AD.

4. Store the master AD.
Use "authority" as authority list to store the
account. If "authority" is null, the default
authority list of the target directory is used.
If there is none the caller's authority list in
the process globals is used.

5. Passivate the account object itself.

6. Return the AD without rep rights.

account: account AD;
account untyped: System. untyped word;
FOR account untyped USE AT account' address;

Account with no rep rights, viewed with
-- either of two types.

account rep: account rep AD;
account-rep untyped: System. untyped word;
FOR account-rep untyped USE AT -

account-rep'address;
Account with rep rights, viewed with

-- either of two types.

11-3-17

I'KELIMlNAK Y

173 begin
174 -- 1. Check the initial balance:
175
176 if starting balance < Long Integer Defs.zero then
177 RAISE insufficient_balance; -
178
179 else
180 2. Allocate and initialize the account object:
181
182 account rep untyped := Object Mgt.Allocate(
183 size =>-(account rep object'size + 31)/32,
184 tdo => account TDO);
185 account rep.all := account rep object' (
186 balance => starting_balance);
187
188 -- 3. Remove rep rights for the exported and
189 master AD:
190
191 account untyped := Access Mgt.Remove(
192 AD - => account rep-untyped,
193 rights => Object_Mgt.read_write_rights);
194
195 4. Store the master AD:
196
197 Directory_Mgt.Store(
198 name => master,
199 object => account untyped,
200 aut => authority);
201
202 5. Passivate the account object itself:
203
204 Passive_Store_Mgt.Update(account_rep_untyped);
205
206 -- 6. Return the account AD with no rep rights:
207
208 RETURN account;
209
210 end if;
211 end Create_stored account;

11-3.2.2 Updating a Passive Object

Calls Used:

Passive Store Mgt.Update
- Updates an object's passive version.

Any operation that changes a stored object nonnally updates it. For example, the
Change_balance call in Stored_Account_Mgt_Ex updates the affected account.

267
268
269

account rep.balance :=
account rep.balance + amount;

Passive_Store_Mgt.Update(account_untyped);

11-3.2.3 Requesting an Update

Calls Used:

Passive Store Mgt.Request update
- Requests a type-specific update. Defaults to Update_tree.

II-3-18 Storing Objects

PRELIMINARY

The following excerpt from the Make_object_public_ex example shows storing a
master AD and then requesting an update for an authority list object:

58 aut list: constant
59 -Authority List Mgt.authority list AD :=
60 Authority=List=Mgt.Create_authority(entries);

67 Directory Mgt.Store(aut list path, aut untyped);
68 Passive_Store_Mgt.Request_update(aut_untyped);

The excerpt uses Request_update instead of Update because the caller is not the type
manager for authority lists and does not have rep rights.

11-3.2.4 Destroying a Stored Object

Calls Used:

Directory Mgt.Get name
- Gets an object's full pathname (if any).

Directory Mgt.Delete
- Deletes a directory entry.

Passive Store Mgt.Destroy
- Destroys a stored object tree.

The Destroy_account call in the Stored_Account_Mgt_Ex example destroys an
account's passive version, deletes one directory entry for the account, and deallocates the
account's active version. If additional directory entries reference the account, then those
entries become dangling references. (Any attempt to access the object via such a dangling
reference raises System_Exceptions. object_has_no_representation. Here is
the code:

Storing Objects II-3-19

PKELIMlNAK Y

361 path length: integer:= 60;
362 -Initial text length for name assigned
363 by "Directory Mgt.Get name". If
364 insufficient,-then the value is
365 increased and the operation is
366 repeated.
367 begin
368 account untyped := Access Mgt.Import(
369 AD - => account untyped,
370 rights => destroy-rights,
371 tdo => account=TDO);
372
373 if account rep. balance /=
374 Long Integer Defs.zero then
375 RAISE balance_not_zero;
376
377 else
378 Passive_Store_Mgt.Destroy(account_untyped);
379
380 loop
381 declare
382 path text: System_Defs.text(path_length);
383 begin -
384 Directory Mgt.Get name (
385 obj ~> account untyped,
386 name => path text); -- out.
387 if path text. length >
388 path-text.max length then
389 -- Text was lost. Retry:
390 path length := path text. length;
391 else - -
392 Directory Mgt.Delete(path text);
393 EXIT; - -
394
395 end if;
396 exception
397 when Directory Mgt.no name =>
398 EXIT; - -
399
400 end;
401 end loop;
402
403 Object Mgt.Deallocate(account untyped);
404 end if; - -
405 end Destroy_account;

NOTE: If an application knows that an object has only a single directory entry on its home
volume set, and that the directory entry contains the object's master AD, then destroying the
object is simpler: Just delete the directory entry containing the master AD and the passive
version is also destroyed.

11-3.2.5 Copying a Passive Object Tree

Calls Used:

Directory Mgt.Store
- Stores an AD in a new directory entry.

Passive Store Mgt.Create copy stub
- Creates a copy stub, used as the target of a subsequent Copy call.

Passive Store Mgt.Copy
- Copies a tree of stored objects.

II-3-20 Storing Objects

PRELIMINARY

Suppose that passive store contains a tree of objects that you want to copy, such as a program
containing many modules; perhaps you want a copy to create a variation of the program.
Objects in the tree, all connected to the root by master ADs, are all the parts of the program.
The program also contains alias ADs that reference system services or shared library routines.

When you make a copy of the program, you want to preserve the program's structure in your
copy. For example, if object A in the program has a master AD for object B, then you want
your copy of object A to contain a master AD for your copy of object B. Thus, copying must
not just copy stored objects but sometimes remap ADs in the objects. On the other hand, if
object B contains an alias AD for an object D that is not in the tree, then the copy of object B
should contain an identical AD. This is the case when the program and the copy reference
shared services or libraries that are not also copied. Figure 11-3-7 shows how master ADs (A
to B which maps into E to F) are remapped and alias ADs to objects outside the tree (B and F
to D) are unchanged when a tree is copied. Any AD from an object in the tree that references
another object in the tree is remapped, even if it is an alias (C to B which maps into G to F).

A COPY

/\
B 001II(- - - - C F ~- - - - G

\ ",,-'
\ """
'1 D ¥"'

----:J.. MASTER AD

----~ ALIAS AD

Figure ll-3-7. Copying an Object Tree

The passive store copy calls should not be used for backing up or restoring stored objects. See
the BiiNTM Systems Administrator's Guide for infonnation about backing up or restoring stored
objects.

Some object types cannot be copied. For example, TDOs and attribute IDs cannot be copied.
Objects that correspond to physical devices cannot be copied. (What would it mean to "copy"
a printer?) The copy_permitted boolean in a type's PSM attributes object detennines
whether objects of the type can be copied. The Set_refuse_filters call assigns
copy yermi t ted false. If any objects in a tree cannot be copied, then Copy raises
System_Exceptions.operation_not_supported.

Copying an object tree copies passive versions and does not create active versions of any of the
copied objects.

When you make a copy, you create a new stored root object and possibly other new objects
below it in a tree. But before this root object that does not yet exist can be stored, a master AD

Storing Objects II-3-21

must be stored for it! The master AD must be stored to detennine the new object tree ~ s
volume set, owner, and authority lists. So that a destination master AD can be stored before
copying an object tree, Passive_Store_Mgt provides the Create_copy_stub call,
which creates a new "stub" object that is only used to:

1. Store a master AD.

2. Be the destination of a Copy operation.

Copying a tree of stored objects thus has three steps:

1. Create a copy stub, used as the target of the Copy call.

2. Store a master AD for the stub.

3. Copy the object tree to the stub.

The Named_copy_ex example procedure copies a source object tree to a destination object
tree, given source and dest pathnames. This excerpt shows the three-step operation:

62
63
64
65
66
67

source AD := Directory Mgt.Retrieve(source);
dest AD := Passive Store Mgt.

- Create copy stub(source AD);
Directory Mgt.Store(name- => dest, -

- object => dest AD);
Passive_Store_Mgt.Copy(source_AD, dest_AD);

11-3.2.6 Getting Passive Object Information

II-3-22

Calls Used:

Passive_Store_Mgt.Request-passive_object_info
Requests information about an object's passive version.

The OS keeps much more information for passive versions than active versions: owner, au
thority list, volume set, node, size, and time created, last read, last written, and last modified in
any way.

The Older_than_ex example function compares two stored objects to detennine if the first
was last written before the second. For example, Older_than _ ex can be used to determine
if a machine instruction object is older than the associated source code object, requiring a
recompile.

The function uses Requestyassive_object_info rather than
Get_passive_object_info because it may not have rep rights on the objects being
checked:

Storing Objects

21
22
23

PRELIMINARY

use Long Integer Defs;
-- Import "<" for long integers.

24 a info: Passive Store Mgt.passive object info;
Passive=Store=Mgt.passive=object=info; 25 b-info:

26 begIn
27 a info := Passive Store Mgt.

Request-passive object info(a); 28
29
30
31
32
33
34
35
36
37
38
39

b info := Passive-Store Mgt. -
Request=rassive_object_info(b);

if not a info.valid or else not b info.valid then
RAISE System_Exceptions.bad-parameter;

else
RETURN a_info.write_time < b info.write_time;

end if;
end Older_than_ex;

The valid field of the passi ve_object_info record is false if the object does not have
a passive version.

11-3.3 Summary
• Passive store is a distributed, reliable object filing service.

• Use files instead of passive store if you do not need to store ADs and object types. Use
fIles to port programs that use conventional file systems. Use files if you need fast random
access to record-structured data.

• An object can have zero or one passive versions and zero, one, or multiple active versions.
These are all versions of a single object.

• Active versions are created automatically when you try to access an object's representation
within a job without an active version of the object

• Passive versions are created and changed by explicit update calls.

• The first AD stored for an object is its master AD, and must be stored before the object is
stored.

• An object tree is a root object and all objects reached from it via a chain of master ADs.
Some passive store calls operate on object trees.

• The passive store service detects conflicts between multiple object versions and raises ex
ceptions that can be handled by the callers.

• Passive store calls are normally handled within type managers.

• Type managers can customize the passive store service for their type's objects by defining
an instance of the passive store attribute.

Storing Objects II-3-23

l'K~LINllNAK :r

II-3-24 Storing Objects

Contents

PRELIMINARY

STARTING AND RESOLVING 4
TRANSACTIONS

Concepts ... II -4-2
What Transactions Provide .. 11-4-2
Transaction Calls .. II -4-3
Transaction Stacks ... II -4-3
The Default Transaction .. II -4-3
Participating in Transactions ... 11-4-3
The Transaction Service as a Coordinator IT-4-4
Subtransactions ... 11-4-4
Avoiding Subtransactions ... 11-4-4
Rules for Using Transactions ... 11-4-4
Transaction Locking ... II -4-5
Transaction Timeouts .. II -4-5
Transactions and Job Tennination 11-4-6
Avoiding Deadlocks with Timestamp Conflicts II -4-6
Independent Transactions ... II -4-6

Techniques ... II -4-6
U sing a Transaction .. II -4-6
Avoiding Unnecessary Subtransactions II -4-7
Using a Transaction and Recovering from Timestamp Conflicts 11-4-8

Summary .. II -4-9

Starting and Resolving Transactions II-4-1

PRELIMINARY

A transaction groups related operations so that either all the operations succeed or all are
rolled back.

Packages Used:

Transaction Mgt
- Provides transactions used to group a series of related changes to objects

so that either all the changes succeed or all are rolled back.

This chapter introduces transactions and basic techniques for using transactions. Chapter
IV -10 describes transaction locking of files, opened files, key ranges, and records.

Transactions are typically used to group changes to files or other objects stored on disk. For
example, transferring $100 from one bank account to another could be enclosed in a trans
action. If the change to either account failed or if the system crashed before all changes were
made, then all changes would be undone.

Transactions are also useful in less obvious ways. Even when a single record is inserted into a
file, several disk writes may be needed to update indexes as well as the flie' s primary data area.
The filing service uses a transaction to ensure that a failure within such a group of writes
doesn't make the file and its indexes inconsistent.

11-4.1 Concepts

11-4.1.1 What Transactions Provide

II-4-2

Transactions provide several services simultaneously to the developer:

Atomicity Transactions are atomic or indivisible, either completely succeeding or
making no changes at all. (Though atomicity only applies to those opera
tions that participate in the transaction, as described below.)

Consistency Inconsistent and transitory states that your data passes through within a
transaction are not visible from outside the transaction. For example, the
state when one account has changed but not the other, or the state when
one index has changed but not another, are not visible outside the enclos
ing transactions. (Consistency is enforced by type managers.)

Crash Recovery Transactions work correctly even if the system hardware or operating sys
tem crashes. Transactions in progress when a crash occurs are aborted as
part of crash recovery.

Synchronization Transactions synchronize with each other so that one transaction cannot
access data being actively used by another transaction.

Deadlock avoidance
Transaction synchronization is designed so that deadlocks are not possible.
An example of a deadlock would be if two transactions each blocked wait
ing for locks held by the other transaction. However, because each is
blocked, the locks would never be released. The transaction service
defines an ordering scheme that determines whether a particular trans
action is allowed to block for another particular transaction. If blocking is
not allowed, an exception is raised.

Starting and Resolving Transactions

PRELIMINARY

Time limits When an application creates a transaction, it can specify a timeout that
limits (aproximately) the total time taken by the transaction.

Distributed service The transaction service is distributed. One transaction can include changes
to objects at multiple nodes.

Extensible service By default the transaction service can be used with any new type of local
passivatable object. A type manager can also customize the transaction
service for its object type.

11-4.1.2 Transaction Calls
Transaction_Mgt defines three basic calls for transactions:

Start transaction
- Creates a transaction.

Commit transaction
All changes within a transaction are done successfully. Terminate the
transaction.

Abort transaction
Something went wrong. Undo changes made within the transaction and
tenninate the transaction.

Transaction_Mgt includes several other calls, used for special purposes. The three basic
calls are all that many applications need.

11-4.1.3 Transaction Stack
Transactions can be nested, and several transactions may be active at once. Each process has
an associated transaction stack in its process globals. A process's transaction stack is initially
empty. Creating a transaction pushes the new transaction onto the caller's transaction stack.

11-4.1.4 The Default Transaction
The transaction on top of a process's transaction stack is its defaUlt transaction. Many
Transaction_Mgt calls have a transaction parameter that can be defaulted, indicating that
the caller's default transaction should be used. Start_transaction pushes the new trans
action onto the caller's transaction stack. By default, Commit_transaction and
Abort_transaction operate on the default transaction and pop it from the stack.

11-4.1.5 Participating in Transactions
A transaction only affects those calls that participate in the transaction. A participating call
must be implemented in such a way that it can be aborted up to the time it is committed. Some
calls only participate in a transaction if the caller has a default transaction. Other calls par
ticipate in a transaction even if the caller has none, by creating a transaction for t,he duration of
the call. If a System Services call participates in transactions, then its call description in the
BiiNTM/OS Reference Manual will state that it participates. Calls that affect structured
transaction-oriented files, directories, and other passive objects often participate in trans
actions.

It is important to ryalize that aborting a transaction does not roll back non-transaction-oriented
actions! For example, screen I/O, printing a check, or assigning a program variable are not
rolled back.

Starting and Resolving Transactions 11-4-3

rK~LllVll~AK I

11-4.1.6 The Transaction Service as a Coordinator

The transaction service acts as a coordinator for whatever type managers participate in a par
ticular transaction. Different transaction-oriented type managers may implement transaction
locking, commital, and abortion differently.

11-4.1.7 Subtransactions

If Start transaction is called when there is already a default transaction, then the new
transaction is a subtransaction or child transaction of that default transaction. A top-level
transaction is a root transaction. Subtransactions and root transactions behave somewhat dif
ferently:

• Committing a subtransaction does not make changes permanent but simply passes respon
sibility for the changes up to its parent transaction.

• Committing a root transaction makes permanent any changes made within the root trans
action and within any committed subtransactions.

• A transaction cannot be committed until all of its subtransactions are committed or aborted.

• Aborting a subtransaction only aborts changes within the subtransaction and does not abort
the parent transaction.

• Aborting a transaction also aborts its subtransactions.

Why use subtransactions? As far as atomicity and rollback, there seems to be no advantage to
having transactions within transactions. There are two good reasons that subtransactions are
used:

1. To allow transaction-oriented functions to be combined in straightforward ways. A can call
B which can call C, each procedure can enclose its code in a transaction, and they will all
work.

2. To provide synchronization between concurrent processes within the same transaction. The
transaction service uses transactions as the units being synchronized. Any concurrency
within an overall transaction must be split into different subtransactions or the needed lock
ing won't happen. (To be precise, subtransactions for synchronization of concurrent
processes in a transaction are only needed if there is data that may be used and locked by
more than one of the processes.)

11-4.1.8 Avoiding Subtransactions

There is some overhead in creating subtransactions when they are not required. A transaction
oriented module may choose to check whether there is already a default transaction and only
start a new transaction if there is not already one on the stack.

11-4.1.9 Rules for Using Transactions

II-4-4

These rules can help you in designing code that uses transactions:

1. Normally the section of code that starts a transaction should also commit it if successful
and abort it if any exceptions occur.

2. If possible, code between matching Start_transaction and
Conunit_transaction calls should not include operations that don't participate in the
transaction.

Starting and Resolving Transactions

PRELIMINARY

3. If possible, code between matching Start_transaction and
Commi t transaction calls should not include transfers of control out of that code
block, such as RETURN, EXIT, or GOTO. If there are such transfers, then the transaction
should be either committed or aborted on every possible path out of the block.

4. Your code should normally not manipulate the transaction stack directly.

5. If you spawn child processes within a transaction T and those processes need to participate
in T, then:

a. T must be passed to each child.

b. Each child must push T on its transaction stack and then start a subtransaction.

c. Each child must resolve its subtransaction before terminating.

d. Each child should signal resolution of the subtransaction to the parent process.

e. The parent process should not attempt to commit T until it is signaled that all the sub
transactions used by the child processes have been resolved.

11-4.1.10 Transaction Locking
Whenever a transaction-oriented operation reads or writes data, it locks the data or some entity
containing the data. Locking prevents concurrent changes and also keeps changes within the
transaction from being visible to other transactions until such changes are committed. There
are two type of locks asserted by a transaction:

read lock Indicates that a transaction is using an entity and that the entity cannot be

write lock

changed until the lock is released.

A read lock allows other read locks but excludes write locks.

A read lock can be explicitly released from within the transaction that as
serted the lock.

Indicates that a transaction is using an entity and may change it. The
entity cannot be read or written from outside the locking transaction until
the locking transaction commits or aborts (except for dirty reads).

A write lock is exclusive and does not allow any other concurrent locks.

A write lock cannot be explicitly released. Only resolving the locking
transaction releases a write lock.

The granularity of locking depends on the application or type manager. Transaction locks can
be aquired on entire files, records within files, entries within directories, or entire passive
objects.

For reading only, an application can choose to bypass locks and dirty read data that may be
involved in an uncommitted transaction.

11-4.1.11 Transaction Timeouts
Whenever a transaction is specified, an advisory timeout duration is specified. By default a
system-supplied value, specified as a node configuration parameter, is used. A transaction that
runs out of time is automatically aborted by the transaction service. A timeout is a lower limit
on the actual time allowed. For example, if a timeout of 30 seconds is requested, then the
actual timeout may occur after one minute. A timeout value is always fmite--there is no
concept of waiting forever--but can be very large. Timeouts help ensure that files, records, or
other data structures don't remain locked indefinitely if a process holding a transaction lock is
killed.

Starting and Resolving Transactions II-4-5

PRELIMINARY

11-4.1.12 Transactions and Job Termination

When a transaction is started, it is associated with the calling job. If that job tenninates and the
transaction is not already committed or aborted, then job tennination aborts the transaction.

11-4.1.13 Avoiding Deadlock with Timestamp Conflicts

To avoid circular waiting, the transaction service defines a precedence scheme for transactions.
Younger transactions will wait for older transactions but not the reverse. If an older trans
action does request a lock held by a younger transaction, then
System_Exceptions. transaction_timestamp_conflict is raised. The rules
are different if the transactions involved are ancestor and descendant; see
Transaction_Mgt. Blockingyermitted for details.

An application can recover from a timestamp conflict by:

• Aborting its transaction

• Resetting any other state infonnation, such as variables

• Looping back in its code to the point where the transaction is started.

The newly started transaction will be younger than the transaction holding the lock and will be
allowed to wait. Multiple loop backs can occur due to (rare) concurrent activity.

11-4.1.14 Independent Transactions

Transaction_Mgt. Start_independent_transaction can be called to create a
new root transaction even if the caller has a default transaction. Consider a system accounting
manager as an example of using independent transactions. Operations that consume or return
system resources would update accounts on disk via the system accounting manager. Such
updates are independent of whatever the application may be doing, and should be independent
of any surrounding transaction. Otherwise, an abort of the surrounding transaction could erase
all charges for resources used during the aborted operation.

A process using an independent transaction should not try to get any lock held by an older
unresolved transaction in the same process. This will cause the process to block until the older
unresolved transaction times out

11-4.2 Techniques
After reading this section, you will be able to:

• Use a transaction

• Avoid unnecessary subtransactions

• Use a transaction and recover from timestamp conflicts.

11-4.2.1 Using a Transaction

II-4-6 Starting and Resolving Transactions

PRELIMINARY

Calls Used:

Transaction Mgt.Start transaction
- Creates a transaction.

Transaction Mgt.Commit transaction
- Indicates thatchanges within a transaction are done. Makes the changes

penn anent if the transaction is a root transaction.

Transaction Mgt.Abort transaction
- Undoes all changes made within a transaction.

The following excerpt from the Make_object_public_ex example shows how to use a
simple transaction:

65 Transaction Mgt.Start transaction;
66 begin - -
67 Directory Mgt.Store(aut list path, aut untyped);
68 Passive Store Mgt.Request update(aut untyped);
69 Transaction Mgt.Commit transaction; -
70 exception - -
71 when others =>
72 Transaction Mgt.Abort transaction;
73 RAISE; - -
74
75 end;

Note that the block containing the exception handler is only entered if the transaction is suc
cessfully started. Any exception causes the transaction to be aborted and the exception to be
reraised.

11-4.2.2 Avoiding Unnecessary Subtransactions

Calls Used:

Transaction Mgt.Start transaction
- Creates a transaction.

Transaction Mgt.Commit transaction
- Indicates thatChanges within a transaction are done. Makes the changes

penn anent if the transaction is a root transaction.

Transaction Mgt.Abort transaction
- Undoes all changes made within a transaction.

The following excerpt from the Stored_Account_Mgt_Ex transaction-oriented body
shows how to start and resolve a local transaction only if the caller does not already have a
default transaction:

Starting and Resolving Transactions 11-4-7

I'K~LIMINAK Y

195 trans: boolean:= false;
196 True if a local transaction is started.

219 4. Start a local transaction if there is not
220 a transaction on the stack:
221
222 if Transaction Mgt.Get default transaction
223 null then - - -
224 Transaction_Mgt.Start_transaction;
225 trans := true;
226 end if;
227 begin

239 -- 7. Commit any local transaction:
240
241 if trans then
242 Transaction Mgt.Commit transaction;
243 end if; - -
244 exception
245 8. If any exception occurs, abort any local
246 transaction, deallocate the account,
247 and reraise the exception:
248
249 when others =>
250 if trans then
251 Transaction Mgt.Abort transaction;
252 end if; - -
253 Object Mgt.Deallocate(accQunt untyped);
254 RAISE; - -
255
256 end;

Note the use of the trans boolean to indicate whether or not a local transaction has been
started.

11-4.2.3 Using a Transaction and Recovering from Timestamp Conflicts

II-4-8

Calls Used:

Transaction Mgt.Start transaction
- Creates a uinsaction.

Transaction Mgt.Commit transaction
- Indicates thatchanges within a transaction are done. Makes the changes

penn anent if the transaction is a root transaction.

Transaction Mgt.Abort transaction
- Undoes all changes made within a transaction.

The System_Exceptions. timestamp_conflict exception is raised to prevent trans
action deadlocks, commonly when an older transaction requests an entity locked by a younger
transaction. An application can recover from a timestamp conflict by aborting its transaction,
resetting any other state infonnation (such as variables), and looping back in its code to where
the transaction is started. The newly started transaction will be younger than the transaction
holding the lock and will be allowed to wait. Note that multiple loop backs can occur due to
(rare) concurrent activity. The following example of using a transaction and handling times
tamp conflicts is excerpted from the Stored_Account _Mgt _Ex example's transaction
oriented body:

Starting and Resolving Transactions

PRELIMINARY

397 trans: boolean:= false;
398 -- True if a local transaction is started.
399 begin
400 account untyped := Access Mgt. Import (
401 -AD => account-untyped,
402 rights => change rights,
403 tdo => account_TOO);
404
405 loop
406 if Transaction Mgt.Get default transaction
407 null then - - -
408 Transaction_Mgt.Start_transaction;
409 trans .= true;
410 end if;
411 begin
412 Passive Store Mgt.Reserve(account untyped);
413 if account rep.balance + amount <-zero then
414 RAISE insufficient_balance;
415
416 else
417 account rep.balance :=
418 account rep.balance + amount;
419 Passive Store Mgt.Update(account untyped);
420 if trans then- -
421 Transaction Mgt.Commit transaction;
422 end if; - -
423 RETURN account_rep.balance;
424
425 end if;
426 exception
427 when System Exceptions.
428 transaction timestamp conflict =>
429 if trans then - -
430 Transaction Mgt.Abort transaction;
431 else - -
432 RAISE;
433
434 end if;
435 when others =>
436 if trans then
437 Transaction Mgt.Abort transaction;
438 end if; - -
439 RAISE;
440 end;
441 end loop;
442 end Change_balance;

11-4.3 Summary
• A transaction groups related operations so that either all succeed or all are rolled back.

• Using a transaction can be done with three simple calls that all use the caller's default
transaction, with no explicit parameters.

• Transactions synchronize with each other using read locks and write locks.

• Younger transactions will wait for older transactions at a lock, but not vice versa.

• Transactions can have timeout values.

Starting and Resolving Transactions II-4-9

rK~LINl1NAK :r

II-4-10 Starting and Resolving Transactions

PRELIMINARY

WRITING MESSAGES 5
Contents

Concepts ... 11-5-3
Messages. II -5-3
Message Files ... 11-5-4
Incident Codes .. 11-5-4
Message Blocks ... 11-5-5
Message Stacks ... 11-5-5
Messages and Exceptions ... 11-5-6
CL Variables That Affect Messages 11-5-6
How CLEX Handles Messages From Terminated Jobs 11-5-7
Message Utilities .. 11-5-7
History Files .. II -5-7
System Error Log .. 11-5-7

Techniques ... 11-5-7
Defining Application Messages ... 11-5-8
Writing a Message .. 11-5-10
Associating an Incident Code With an Exception 11-5-10
Replacing an OS Exception With an Application Message 11-5-11
Taking Advantage of Predefined OS Messages 11-5-11
Pushing a Message When Raising an Exception 11-5-11
Clearing the Message Stack When Handling an Exception 11-5-12
Writing a Message With Acknowledgement 11-5-13
Recording History Entries .. 11-5-13

Summary ... 11-5-14

Writing Messages II-5-1

II-S-2

r K.r.L.llVlll~AK I

Messages, incidents and exceptions are used to pass error messages between applications,
programs, program modules, and users. This chapter discusses messages, incidents and excep
tions from a procedural viewpoint.

Packages Used:

History Services
- Contains calls for using ajob's history log files.

Incident _De£ s Defines incident and message types.

Message Services
- Provides calls to write messages from message files, message stacks, or

message blocks.

Message Stack Mgt
- Manages a process's message stack.

System Error Recording
- -Provides calls to record errors in a system log file.

Traditionally, a program developer defines errors and exceptional situations and handles the
messages that need to be sent when such situations occur. The BiiNTM system offers an ef
ficient and powerful mechanism for reporting errors and sending messages using incidents and
messages . Help messages are similar to error messages but are managed separately. See
Help_Text_Admin the BiiNTM/OS Reference Manual.

An incident can be a nonnal program error, an Ada exception, an OS error, a test point as
defined by a test point monitor, a situation that requires a message to the user or any situation
that is reported outside the program. Each incident is assigned an incident code which iden
tifies a message and a severity level for the incident. Figure 11-5-1 shows how an application
developer can associate an error with an appropriate message using incident codes.

Writing Messages

PRELIMINARY

developer's source code
~ " define error NN

define incident code NN
if error

write message (incident
code NN)

message file ABC
,~

.J " incident msg file ABC .,., ,.
code NN module 3 message English = " not found" I---

number 1 3.1 German = "nicht gefunden"
severity =

error

environment variable ,~

I $ user.language = english I

" not found"

Figure IT-s-t. Incidents Associate Errors with Messages

11-5.1 Concepts
Using incidents greatly eases the development of messages and the handling of errors for large
projects with coherent user interfaces. For example, once an incident has been defined for the
common situation file not found, all developers on a large project can reference that
incident code when the situation comes up and only the definer needs to maintain the actual
message text and severity level for that incident

11-5.1.1 Messages
A message is the human-readable text associated with an incident. The message may contain
text in more than one natural language (German, English, etc.) in a short or long fonn and
contain parameters that can be substituted at the time the message is displayed.

The Message_Services package provides the procedural interface for sending messages.
The developer indicates specific message by passing an incident code, message block or com
plete message stack (see subsequent sections for descriptions of these message constructs).
The human language and the message level are detennined by the user's setting of CL vari
abIes.

From the user's point of view, a message contains a header, generated by the system, and the
message text, derived from the possible texts in the message for that incident code according to
the user's CL variables.

Writing Messages 11-5-3

rK~L.l1"lll"'18.K I

A header is automatically prepended to messages of warning, error and fatal status but
not to messages of inf ormation status. The heading consists of the time of occurrence, the
sender name and a single-letter code for the severity level. The appearance of a header and
message is affected by CL variables (defined in a subsequent section).

In the following message example, the time of the incident is 14 : 30 : 25, the sender is
Inventory_Files and the severity level is E (error). The CL variable msg. time is set to
true, message .long is false and user . language is English.

14:30:25 Inventory_Files - E: Insufficient access rights to read file.

For more infonnation about the contents of a message, see the BiiNTM Command and Message
Guide.

11-5.1.2 Message Files
A message file contains the short and long fonns of messages in one or more language varia
tions. The messages are indexed by a message index comprised of a module number and
sequential number and, optionally, by a message name. A message fue is created for one or
more applications by the manage .messages runtime command of the manage .program
utility. The message_object field in the incident code references the application's mes
sage file.

For more infonnation about creating a message file, see the BiiNTM Command and Message
Guide.

11-5.1.3 Incident Codes

II-5-4

An incident is a BiiNTM construct that assigns a unique identifier, an incident code, to each
error situation. An incident code references a message file, an individual message within that
file and a severity level.

It is recommended that each Ada exception be assigned an incident code. Situations that are
not Ada exceptions may also have incident codes. For example, an incident code can be
assigned when a user presses a special function key. .

An incident code record contains the following fields:

message object
- This field references the message file containing the message texts. The

message fue itself is created with the manage. me s sage s utility. The
software developer decides how to group messages (in a single file or in
multiple files) and how to associate the message file with the software (to
explicitly name the message file or to use a default message file). This
field takes one of three values:

• A valid AD to a message file.

• A null AD indicating that the message file is the default message file.
The default message file is created using manage. me s sage s and is
associated with the program via the OEO (Outside Environment Ob
ject, see the BiiNTM Command Language Executive Guide) using
store. defaul t message file. (See the BiiNTM Command and
Message Guide for more infonnation on these utilities.)

Writing Messages

module

number

severity

11-5.1.4 Message Blocks

PRELIMINARY

• A compiler-generated value (if the programmer did not define an in
cident code). This value may be an AD to some object other than a
message file or a non-AD value. Either shows that a message is not
defmed for the incident code. In a program where the programmer
does not define messages for program exceptions, for example the com
piler generates unique exception values.

A number from 0 to 256K-l, inclusive, assigned to a program or module
within a program. Combined with the incident number to identify an
individual message within a message file. The incident module and in
cident n umbe r provide an index into the message file.

A number from 0 to 4095, inclusive, assigned to the incident within the
module where it is defmed.

A level of seriousness for the incident. Four severity levels are recognized:
information, warning, error and fatal error.

• information
Not related to an error or warning; provides additional or helpful infor
mation.

• warning
Indicates an occurrence which deviates from the expected behavior but
does not impede the expected outcome of an operation.

• error
Indicates that the operation generating the error cannot complete
properly until the condition causing the error is corrected.

• fatal error
Indicates an error of such severity that further processing is not pos
sible.

A message block contains an incident code (which includes the message's module and number)
and any message parameters. Calls that accept separate incident code and message parameters
(see Message_Stack_Mgt) refonnat them into message blocks.

11-5.1.5 Message Stacks

Program errors or incidents are frequently propagated through many layers of operations, espe
cially within a large application. The message stack provides a means of keeping a trace of
any incidents that have occurred within a process along with specific infonnation about each
incident.

The message stack is a fixed-length, open-bottomed stack. Each process has its own message
stack. The message stack is large enough for two messages of maximum size. The message
stack is open-bottomed so that if another message is pushed on a full stack, the bottom mes
sage on the stack is lost.

A message stack contains message block entries. Calls that accept separate incident code and
message parameters (see Mes sage Stack Mgt) reformat them into a message block which - -
is then pushed onto a message stack. Entries are retrieved from the message stack as message
blocks.

Writing Messages II-5-5

PKKLIMlNAKY

A message block is pushed onto a message stack whenever more specific infonnation than that
associated with the exception itself would be useful to someone debugging the program.
(Messages are not automatically pushed on the message stack; they must be explicitly pushed
on the stack by the exception handler.) Large user-written applications may make use of the
message stack in a similar manner.

When a process tenninates due to an unhandled error propagating out of its top level proce
dure, its message stack contains the history of that error's propagation. The first message
block on the message stack is the actual error that caused tennination. The subsequent mes
sage blocks contain infonnation about the various levels of the system through which the error
propagated.

It is good practice, although not required, for a program that catches and handles an incident or
error to clear the message stack. Otherwise, on a later incident or error, the message stack
contains the history of the previous (already-handled) errors as well as the error that caused
tennination. This can be confusing to someone debugging the program.

See the Mes sage_Stack _Mgt package for more infonnation about message stacks.

11-5.1.6 Messages and Exceptions
An exception is the Ada construct that signals the occurrence of errors or other exceptional
situations that arise during program execution. Raising an exception causes nonna! program
execution to be abandoned in order to deal with the error or situation.

Each exception may be, but is not required to be, associated with an incident. When a
programmer wants to define a message for an exception, an incident code is assigned to that
exception.

11-5.1.7 CL Variables That Affect Messages

II-5-6

The following CL variables affect how a message is displayed.

user. verbose Detennines whether in/ormation level messages are displayed. Messages
which report job status, for example, may be displayed only in verbose
mode. The developer can set verbose only to true in order to make
informational messages display when caning
Message Services. Wri te msg or similar calls. When
user. verbose is false, only warning, error and fatal error
messagess are displayed. -

user . language Controls which language variant of a message is displayed. If the message
does not exist in the desired language, the message's default language
variant is displayed (the first variant stored in the message file).

msg . long_text Controls which fonn of the message (short or long) is displayed. Iffalse
(the default), the short fonn is displayed, otherwise the long fonn. If the
selected level does not exist, the other level is displayed.

msg.time Controls whether the time the incident occurred should be displayed as
part of the message header.

The built-in command set. variable sets or changes the values of user CL variables.

Writing Messages

PRELIMINARY

11-5.1.8 How CLEX Handles Messages From Terminated Jobs

An exception for which no exception handler exists will tenninate a job. All messages pushed
on the message stack (up to the maximum it can hold) prior to tennination will be on the stack.
A message, if any, associated with the tenninating exception will not appear on the stack.

11-5.1.9 Message Utilities

A message ftIe can be created and updated with the manage .messages runtime command
of the manage . program utility. The runtime commands of manage .messages include
change, list, remove, set . language and store.

11-5.1.10 History Files

Message_Services automatically records messages in ajob history log if one is installed.
Users can tum off message recording via a boolean parameter in the various Write_msg
calls. The History_Services. Record _ mes sage call takes an incident code and sends
the corresponding message to the job's history_log ftIe. Thus a job can maintain a record
of any messages that were sent during the course of the job.

A user can have a history installed for a logon session if the CL variable
logon. install_history_log is true.

A job can have a history installed if:

• The control option: : history_log was called in the invocation of the job, or

• The built-in command start. history_log was called, or

• The package History_Services was used to create, open and set a history_log
ftIe.

11-5.2 System Error Log
The System_Error_Recording package provides calls for recording system errors on a
system error log. This log is a record-oriented, sequential file. The error infonnation can be
specified as an incident code with from zero to five parameters or as a message block. The
record layout is defined by the type Monitor_Defs .monitor_message.
System_Error_Recording. Get_event_cluster provides access to an event cluster
that gets signalled whenever an error is recorded to the system error log file. The system error
log is only for trusted type managers such as device drivers.

11-5.3 Techniques
After reading this section, you will be able to:

• Define application messages

• Write a message

• Associate an incident code with an exception

• Replace as exceptions with application messages

Writing Messages II-5-7

PKELIMlNAKY

• Use predefined OS messages

• Push a message when raising an exception

• Clear the message stack when handling an exception

• Write a message with acknowledgement

• Record history entries.

Code examples in the following sections are excerpts from the At _ Cmd _Ex,
At_Support_Ex,rnventory_file,Create_Name_Space_Cmd_Ex,
Example_Messages and Inventory_Files example programs that are listed in their
entirety in Appendix X-A.

11-5.3.1 Defining Application Messages

II-5-8

Declarations Used:

Incident Defs.incident code
- A representation for errors, warnings, infonnation, exceptions and system

errors.

The system recognizes four types of messages:

• Those used to identify exceptions

• Those used to identify other messages to be pushed onto a process's message stack

• Those used to identify operating system errors, and

• Those used as test point monitoring codes.

All of these message types may be represented by Incident_Defs. incident_code.
This incident code contains the severity of the incident and a message file reference and
index (module and number) which uniquely identifies message text associated with the in
cident.

To create an incident code, declare a constant of type Incident_Defs . incident_code
with the following fields:

message object

module

number

severity

An AD to the message object.

Number of the module in which this incident is defined.

A number for the specific incident within the module.

A severity level.

When the application developer assigns a module number and a sequential number to an in
cident, these numbers must be unique within the environment in which they are visible.

The following example from At_Support_Ex defines an incident code:

Writing Messages

PRELIMINARY

20 -- Exception Codes:
21 msg obj: constant System.untyped word :=
22 - System.null_word; -use oeo
23
24 time format error code: constant Incident Defs.
25 Incident code-:= (
26 module => 0,
27 number => l,
28 severity => Incident Oefs.error,
29 message_object => msg_obj);

The fields of the time_format_error_code incident code contain the following values:

message object
- Declared as a null AD (uses the default message file specified in the

programs Outside Environment Object).

module

number

severity

The module number of At_Sup port_Ex. The value is O.

The number of this incident in this module. The value is l.

The value error.

The actual text of the message associated with an incident can be stored in a message file by
one of the following three methods.

II-S.3.1.1 In the Source File

Include the actual text of the message in the source file with tagged comment lines which can
be identified and extracted by manage. messages. The tag for the comment line in the
example code is *D * (that is, *D * immediately follows the two dashes of an Ada comment
line. The extract. tagged_commands utility extracts tagged lines and passes them to
manage .messages which creates the message fue. In this method, the text of the message
is physically close to the definition of its associated incident, an advantage for small programs
with few messages.

In the following code example, tagged comment lines are used to include message text in the
program source file:

45 -- Exceptions:
46
47 --*0* manage.messages
48
49 time format error: exception;
50 -- Occurs when the time was not input in a proper
51 -- format
52 --*0* store 0 1 time format error \
53 --*0* :short = "$pl Is an improper time specification
54 --*O*The correct format is hh [: mm [: ss [. dd]]] II

11-5.3.1.2 In a Command File

Include the text of messages in a command file which is passed to manage .messages
which in tum creates the message file. This method allows all messages for a program to be
kept in a single file which can be edited or updated using any text editor.

11-5.3.1.3 Using manage .messages

Invoke manage. program then run manage. messages and use its runtime commands to
create and update the text of messages. This method allows easy listing, searching and updat
ing of individual message texts, an advantage for larger applications where consistency and
coherence among messages is desirable. The following example shows the declaration for the
not_on_file message, the tagged lines used by manage .messages to include the mes
sage in a message file and the declaration of the exception associated with the message.

Writing Messages II-5-9

104
105
106
107
108
109
110
III
112
113
114
115
116
117
118
119
120
121
122
123
124

PRELIMINARY

not on file code: constant
-Incident Oefs.incident code := (

message object => -
Inventory Messages.message object,

--*0*
--*0*
--*0*
--*0*
--*0*
--*0*
--*0*

module - => module, -
number => 5,
severity => Incident_Oefs.error);

store :module = $module \
:number = 5 \
:msg name = not on file \
:short = "There-is-no parts

record for part IO '$p1<part
IO (index value»' does not
exist."

not on file: exception;
pragma exception value(not on file,

- not-on-file code);
-- Raised by "Read parts record" and
-- "Rewriteyarts_record".

For more infonnation on creating message texts, see the BiiNTM Command and Message Guide.

11-5.3.2 Writing a Message

Calls Used:

Message Services.Write msg
- Fonnats and writes a message.

To write a message to the user's message window, specify:

msg_id

param (1 ... 5)

device

Incident code for the message.

Parameter(s) to insert into the message text, if any.
Opened device to which message is sent. The user's opened message win
dow by default.

For example in the At _ Cmd _Ex example program, the message associated with incident code
prior_time_warning_code is written as follows:

168 Message Services.Write msg(
169 msg=id => At_Support_Ex.prior_time_warning_code);

For more infonnation on writing message texts to accept message parameters, see the BiiNTM
Command and Message Guide.

11-5.3.3 ASSOCiating an Incident Code With an Exception

II-5-10

Declarations Used:

pragma exception value
BindS the value of an exception with a named incident code.

It is often useful to associate an Ada exception with an incident so that when the exception is
raised, the incident code is implicitly available. pragma exception_value associates an

Writing Messages

PRELIMINARY

exception with an incident code. This binding is illustrated with the following example from
Inventory_File:

104 not on file code: constant
105 -Incident Defs.incident code := (
106 message object => -
107 Inventory Messages.message object,
108 module - => module, -
109 number => 5,
110 severity => Incident Defs.error);
120 not on file: exception; -
121 pragma exception value(not on file,
122 - not -on-file code);
123 Raised by "Read parts record" and
124 -- "Rewrite_parts_record".

11-5.3.4 Replacing an OS Exception With an Application Message

When the operating system raises one of its exceptions, that exception can be replaced with a
more detailed local message. The following code from the Inventory_Files example
program shows an update operation. When it is unsuccessful,
Record_AM. invalid_record_address is automatically raised. The package raises its
own exception, not_on_file and writes an explanatory message.

230
231 -- Rewrite (update) parts record:
232
233 Record AM.Keyed Ops.Update by key(
234 opened dev ~> parts file,-
235 buffer-VA => parts-record' address,
236 length- => parts-record'size/8,
237 index => part_ID_index_name);
238
239 exception
240
241 when Record AM. invalid record address =>
242 Message Services. Write msg(-
243 msg-id => not on fIle code,
244 param1 => IncIdent_Defs.message-parameter(
245 typ => Incident Defs.txt,
246 len => part ID Index str.length)' (
247 typ -=>-Incident Defs.txt,
248 len => part ID Index str.length,
249 txt val => part-ID-index-name»;
250 RAISE not_on_file; - - -

11-5.3.5 Taking Advantage of Predefined OS Messages

The /msg directory contains predefined message fIles. These messages may be used by ap
plication programs. It is advisable to use the messages in the same context for which they
were originally created. These messages may be reviewed with the list command of the
manage .messages run-time command of the manage. program utility.

11-5.3.6 Pushing a Message When Raising an Exception

Calls Used:

Message_Stack_Mgt.Push_msg_l-param

Writing Messages

Pushes a message block with one parameter onto the caller's message
stack.

II-5-11

PRELIMINARY

The BiiNTM Operating System often pushes a message to the message stack prior to raising an
exception. Applications may also push messages on the stack when raising exceptions in order
to provide more infonnation concerning the reason for abnonnal program tennination.

In the following example from Inventory_Files, the exception handler for the
Readyarts_record procedure catches an attempt to read a part that is not on the file and
writes the message associated with the not_on _file_code. It then pushes the
not_on_file message on the message stack.

126
127
128
129
130
131
132
133
134
135

Message Services. Write msg(
msg-id => not on fIle code,
param1 => IncIdent_Oefs.message-parameter(

typ => Incident Oefs.txt,
len => part IO.length)' (

typ -=> Incident Oefs.txt,
len => part IO.length,
txt val => part-IO»;

Message Stack Mgt.Push msg I param(
not=on_file_code);- --

11-5.3.7 Clearing the Message Stack When Handling an Exception

Calls Used:

Message Stack Mgt.Clear messages
- Discards all messages on the caller's message stack.

It is good practice, although not required, for a program that catches and handles an incident or
error to clear the message stack. Otherwise on a later incident or error, the message stack
contains the history of the previously handled errors as well as the error that caused tennina
tion. This can be confusing to people debugging the program.

In the following example from Inventory_Files, the exception handler for the
Readyarts_record procedure catches an incomplete key value and writes the message
associated with the invalid yart _ ID _code. It then clears the message stack before
pushing the current message.

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

Message Services.Write msg(
msg-id => invalid part IO code,
param1 => Incident_Oefs.message-parameter{

typ => Incident Oefs.txt,
len => part IO.length), (

typ -=> Incident Oefs.txt,
len => part IO.length,
txt val => part-IO»;

Message Stack Mgt.Clear messages;
Message-Stack-Mgt.Push msg 1 param{

message id => invalid part 10 code,
param1 - => Incident Oefs.message parameter (

typ => Incident Oefs.txt, -
len => part IO.length)' (

typ -=> Incident Oefs.txt,
len => part IO.length,
txt_val => part=IO»;

Writing Messages

I"KELIMlNAK Y

11-5.3.8 Writing a Message With Acknowledgement

Calls Used:

Message Services.Acknowledge rnsg
- Writes a message with-no <LF>, then reads and parses the user's response.

To write a message and receive a response from the user, use
Message_Services.Acknowledge_rnsg.

The message should explain to the user the choices on which his response must be made. A
positive acknowledgement currently results from yes, ja, true or +. Any other input, in
cludingjust <CR>, returns false. The words yes, ja and true can be abbreviated to one
letter.

If an opened device is specified, it is used both for writing a message and reading the response.
Otherwise, the device from the caller's user_dialog entry in process globals is used. In
any case, the device must be interactive as defined by
Device_Defs. device_info. common_info. The call does nothing and returns false if
the device is noninteractive.

If writing or reading fails for any reason, false is returned.

The following code is from Example_Messages (the acknowledge message) and
Create_name_space_crnd_ex (code requesting affinnation from the user before storing a
new name space as a directory entry).

63 overwrite query code:
64 constant Incident Defs.incident code :=
65 (0, 4, Incident_Defs.information, msg_obj);
66
67 --*D* store :module=O :number=4 \
68 --*D* :msg name=overwrite query code \
69 --*D* :short = \ --
70 --*D* "$p1<pathname> exists. Overwrite it?"

261 -- Confirm overwrite:
262
263 overwrite :=
264 Message Services.Acknowledge msg(
265 Example Messages. -
266 overwrite query code,
267 Incident DeEs. -
268 message parameter (
269 typ => Incident Defs.txt,
270 len => name.max=length)' (
271 typ =>
272 Incident_Defs.txt,
273 len =>
274 name .max length,
275 txt_val => name»;
276 end if;

11-5.3.9 Recording History Entries

Writing Messages II-5-13

P'K~LIM1NAK Y

Calls Used:

History Services.Record message
- Records a message in an opened history flie, or in the caller's current job

history, returning the record ID.

To record a message in ajob's history_log flie, record an individual message explicitly
via History_Services. Record_message. This call returns a record ID.

11-5.3.10 Summary

U-5-14

• An incident is a BiiNTM construct that assigns a unique identifier, an incident code, to each
error situation.

• An incident code identifies a message and a severity level for an incident.

• An exception is the Ada construct that signals the occurrence of errors or other exceptional
situations that arise during program execution.

• A message is the human~readable text associated with an incident.

• A message file contains the short and long fonns of messages in one or more language
variations. The message_object field in the incident code references the application's
message file.

• A message block contains an incident code (which includes the message's module and
number) and any message parameters.

• A message stack is a fixed-length, open-bottomed stack that provides a means of keeping a
trace of any incidents that have occurred within a process along with specific infonnation
about each incident.

Writing Messages

rK~LI1Vll~AK I

Part III
Directory Services

This part of the BiiNTM/OS Guide gives concepts and techniques for naming objects in direc
tories and for protecting stored objects from unauthorized access.

This part contains these chapters:

Understanding Directories
Explains basic concepts needed to understand the system's directory
mechanism.

Using Directories Provides techniques for using directories.

Protecting Stored Objects
Shows how to protect objects using IDs and authority lists.

Using Name Spaces
Shows how to use name spaces (lists of directories).

Creating Symbolic Links
Shows how to use symbolic links between directories or directory entries.

Directory Services contains the following services and packages:

Naming Service
Directory Mgt
Name Space Mgt
Symbolic_Link_Mgt

Protection Service

Part ill Overview

Authority List Mgt
Identification-Admin
Identification-Mgt
User_Mgt -

YKELIM1NAKY

Part m Overview

.f'KELIM1,NAK Y

UNDERSTANDING DIRECTORIES 1
Contents

Directory Structure .. III -1-2
Pathname Syntax ... TII-I-3
Alias Entries and Master Entries m-I-3
Symbolic Links .. m -1-4
Protecting Directories and their Contents m-I-5

The Clearinghouse: Naming in a Distributed System ITI-I-5
A Node's Default Directories III -1-8

Directory Operations .. 111-1-8
Retrieving Entries .. TII-I-8
Listing a Directory .. m -1-9
Process Globals and Directories m -1-9
Directory Operations and Transactions TII-I-IO
Standalone Directories .. III -1-10

Summary ... ~ .. TIl-I-II

Understanding Directories III-I-I

rK~LINll~AK I

directory joe

Name specs Name src Name schedule

AD AD AD

Figure ill-I-I. Directories Contain <Name, AD> Pairs

Directories allow you to associate a name with the object's AD and store the <name, AD> pair
in a directory (Figure ITI-l-l). Given a full pathname, you can find the object associated with
that name.

This chapter explains in more detail the concepts of BiiNTM directories.

111-1.1 Directory Structure

III-1-2

In other systems, directories map names to files or directories only. By contrast, the directory
service allows an AD for any type of object to be stored in a directory. This includes files,
other directories, devices, programs, IDs, authority lists, data defmitions, version groups, form
definitions, report definitions, and so on.

All names within a given directory must be unique. The storage of names in directories is
case-sensitive; that is, lowercase characters are distinct from uppercase (for example,
My_File is distinct from my_file).

Examples of valid names include:

ADA source tools
Chapter-I. 12 673-59-1257
% of cost is-per_sq_inch
2

A directory can contain another directory (a subdirectory), allowing for conventional tree
structures and hierarchies. For example, in Figure IIT-I-2, src is a subdirectory of joe. A
directory that contains an entry or another directory is the parent of that entry or directory.

A directory can also contain an alias entry. An alias entry is another name for an AD that
already has a name. Because an AD can have any number of aliases, you can set up directory
structures that are not limited to trees or strict hierarchies (Figure 111-1-2).

Understanding Directories

I'KELIMlNAK Y

~

Figure ill-1-2. A Directory Structure with Aliases

,
I ,
I alias ,

I

In Figure ill-1-2, an example of an alias is the name module 1 in directory joel src. Joe
has a name for this module as does Sue. Both names reference the same underlying object.
Note that an alias can reference an AD on a different node in the distributed system. Deleting
an alias has no effect on the referenced object, so Joe can delete his module_l without
affecting Sue's.

Directories and subdirectories are common in other systems. Using BiiNTM directory services,
however, a set of connected directories is not limited to tree structures. A single object can be
stored in the same directory under different names (aliases) or in other directories under the
same or different names. Directories can be linked together into meaningful, networked struc
tures.

{correct this later. 6/24/88 - stanf} Cycles are allowed; that is, in Figure ill-1-2, Sue's file
module_l can be aliased to directory sue, even though sue is a parent of sue/ src.

111-1.1.1 Pathname Syntax

See the "Pathname Syntax" appendix in the BiiNTM/OS Reference Manual for an explanation of
the different kinds of pathnames and their syntax.

111-1.1.2 Alias Entries and Master Entries
Calling Directory_Mgt. Store to store an AD with a name for the first time places an
entry in the directory and the associated passivated AD is the master AD. Subsequent
Stores of an AD for which a master already exists result in alias entries.

Storing an AD to an object doesn't always produce a master AD for the object. Only the first
AD to cross the boundary between active and passive space as a result of a Store (or

Understanding Directories III-1-3

YK.r.LIlVlll"1AK I

Create_directory) or update of an object which contains the AD produces a master. If
the first AD to cross the boundary from active to passive space does so as a result of some
other operation, then subsequent Stores of the AD (or updates of its container) will NOT
produce a master AD.

111-1.1.3 Symbolic Links

III-l-4

A symbolic link contains a pathname. Symbolic link evaluation retrieves whatever AD is
stored with that pathname. If an AD to a symbolic link is stored in a directory entry, then
retrieving from the entry does not return the entry's AD. Instead, an AD to the object
referenced by the link is returned.

Aliases and symbolic links provide two ways to associate an AD with different names.

Both are useful in that they allow the user flexibility in the naming and symbolic referencing of
objects.

Both aliases and symbolic links may be stored in any directory for which the user has store
rights.

However, using an alias in a Directory_Mgt. Delete causes only the alias to be deleted;
the underlying object is not affected. Using a symbolic link in a Directory_Mgt. Delete
causes the symbolic link object itself (not the object referenced by the link's value) to be
deleted.

An alias has the following advantages:

• It references the same object type.

• The alias may inherit "mastership," so that even if the master pathname is deleted, there
may still be a named reference to the object (inheritance requires that the alias entry reside
on the same volume set as the master AD).

An alias has this disadvantage:

• It references the same object type, i.e, the associated AD is "object instance" specific, so
that if the underlying object is deallocated, the alias may be left as a dangling reference.
For instance, if you have a program / joe/prog that is aliased by / joe/bin/p and you
replace / joe/prog with a revised version of the same program, the / joe/prog alias
will point to the outdated version. If the alias was /vs2/ joe/prog, it would be a
dangling reference to the old version.

A symbolic link has the following advantages:

• It references an object NAME. Any object can exist under this name at one time or
another. This means you can also update an object under that name and not end up with a
dangling reference as for aliases (you might want to replace an existing program with a
revised version, or some such).

• You can set its value to a CL variable, for example, $mybin, which gives you a great deal
of flexibility.

A symbolic link has the following disadvantages:

• The symbolic link cannot inherit "mastership" for the object referenced by the link's value.

Understanding Directories

rKELlMJNAKY

• The associated link value is "name" specific, so that if a different object is stored under the
same name, the user may end up accessing something incompatible with the type needed.

111-1.1.4 Protecting Directories and their Contents
Most ass determine who has access to what programs and data using an owner/group/world
mechanism. Access to programs and data depends on whether your group (or you, or
everyone) has the authority to read, write, or execute a file.

The BiiNTM system extends the familiar three-level owner / group / world protection to flexible,
multi-level protection. This is done with authority lists and IDs. The associated authority list
protects the object. (Chapter 111-3 discusses authority lists and IDs in more detail.)

Each caller is represented by a list of IDs which that caller can portray. By default, these IDs
are the user ID, ux _group, and wor Id, which the caller acquires during the logon session.
When the caller tries to access a protected object, the caller's IDs are compared with the IDs in
the authority list to determine access.

There can be any number of IDs in the authority list (Figure ITI-1-3), as opposed to the three
allowed in owner / group / world protection. The authority list contains a list of IDs and
associated type rights. For each ID, the type rights specify what the 10 holder can do with the
object protected by this authority list

directory authority list type rights

IDs joe TTT list, store, control

ux_group TFF

guest FFF

admin TTT

proj-mgr TFF

sue TFF
t

world TFF

Figure ID-1-3. A Directory is Protected with an Authority List

For example, according to the authority list associated with directory joe in Figure IIT-1-3, a
caller holding the ID for pro j_ manager has list rights, and can list the contents of the
directory. But a caller holding the 10 for gue st has no type rights and cannot access that
directory at all.

Chapter ITI -3 discusses authority lists and IDs in more detail.

111-1.2 The Clearinghouse: Naming in a Distributed System
The Oearinghouse maintains the database showing where objects are actually stored in a dis
tributed system, by keeping track of where each volume set is mounted. (A volume set is a
logical disk, and contains programs and objects of various types as well as files.)

Understanding Directories III-1-5

rKELINu.l~AK I

Directory_Mgt goes to the Clearinghouse to fmd the node and volume set, then to the
node' and volume set to find the named object. This process is transparent to the caller, so that
the caller does not need to know which node an object is stored on. (The caller also doesn't
need to know about the Clearinghouse, beyond understanding its role in finding named
objects.)

To illustrate, Figure 111-1-4 shows the process Directory_Mgt goes through to return an
AD for a full pathname.

Caller

/ / /spirit/eng/id/joe

Caller has full
pathname, wants
AD

Directory_Mgt

/ / /spirit/eng/id/joe

Directory_Mgt sends
full pathname
to Clearinghouse
to discover node,
vs and home AD

AD +----t Retrieve C/usr /joe) '---------'
Caller receives
AD corresponding
to full pathname

o Directory_Mgt
retrieves AD for
object named
/usr /job on node Y

Clearinghouse

CD Clearinghouse
finds node, sends
full path +
node path to
Directory_Mgt

Figure m-1-4. Directory_Mgt uses the Clearinghouse to Resolve Network Names.

When specifying an organization or full pathname, for example to access an object or selVice
in a different/organization/domain in the distributed system, it is helpful to understand a little
about how objects and selVices are stored and named over the distributed system. The dis
tributed storage-and-naming system works like this.

Every object that has been Stored with Directory_Mgt. Store exists on a volume set,
which is a logical disk. There can be many names for any volume set, and many volume sets
attached to a particular node.

All the volume sets attached to all the nodes in a distributed system form the passive space.
The passive space is grouped into naming domains, so-called to distinguish them from other
kinds of domains in the BiiNTM system. A naming domain is identified by the org / dom part
of a pathname; for example, spirit_motors/ engineering. Each volume set is as
signed to a naming domain, and a naming domain can contain one or more volume sets. All
volume sets in a naming domain must have unique names.

Understanding Directories

Objects in the passive space are identified by pathnames. The BiiNTM system needs a way to
identify objects anywhere in the distributed system, no matter where they are. To refer to an
object in the same naming domain, you can simply use a node or relative pathname. To refer
to an object in a different naming domain, you must use a pathname that begins with two or
more slashes (organization or full pathname). The rest of this paper describes how full path
names are built.

In BiiNTM systems, there are many valid pathnames for any object. However, there is one
standard pathname, called the canonical patname, which uniquely identifies a passive object
anywhere in a network of BiiNTM systems by specifying the volume set it is on and its path
name within the volume set. All utilities that result in full pathnames show them in canonical
fonn. For example, the output of list. current_directory is always a canonical path
name.

A canonical full pathname looks like this:

/ / / org / dom/ vs / vsname/ palh1UJT1U!

The parts of this pathname have the following meanings:

org

dom

vs

vsname

pathname

A BiiNTM distributed system can be divided into several organizations. The
organization is the largest division in a distributed system. For example, a
system for a large corporation might be divided by division (systems,
components, and software) or by site (portland, new york,
maui, and berlin). -

Each organization can be divided into several domains. For example, the
organization systems could be divided into the domains
engineering, doc, marketing, manufacturing, and
shipping, or alternatively first_floor, second_floor, and
basement.

vs is a predefined directory in each naming domain that holds the names
of all volume sets in the naming domain. The literal word vs in a path
name indicates that the rest of the pathname refers to an object on one of
the volume sets in the network. (vs is actually one of several
environments in each domain. Two other environments are home and
node, which will be discussed later. However, the vs environment is
always used in the canonical pathname.)

This is the name of a particular volume set. Volume sets ~ay have names
like vsl, vs2, and vs3 or sys volset, user volset, and
temp_vol set, or anything else. -

The pathname that follows the volume set name traces the directories from
the top directory of the volume set to the specified object. It uniquely
identifies the object in the volume set.

For example, if usr is the name of a volume set, then the canonical pathname of the file
-jane/books/ ssg might be

///software/doc/vs/usr/jane/books/ssg

Note that this pathname does not specify the node on which the volume set usr is currently
mounted. This pathname continues to be valid even if the volume set is moved to another node
in the distributed system, as long as it remains in the same naming domain.

The canonical fonn is not the only way to refer to an object in the distributed system, espe
cially if the object is in your naming domain. Here are some other valid ways of building
pathnames:

Understanding Directories 111-1-7

I"KELIMlNAK Y

• I I lorgldom/homelusernamelpath~

This pathname identifies the object relative to the home directory of the specified user. For
example, if /usr / jane is the home directory of user jane, the following full patbnames
refer to the same object:

Illsoftware/doe/home/jane/bookslssg
Illsoftware/doe/vs/usr/jane/bookslssg

• II lorgldom/nodelnodenamelpathnmne

This full patbname identifies the object according to the node to which it is attached. For
example, if the volume set usr in the example is attached to the node named greedo, the
following full pathname names the same object as the one in the previous example:

Illsoftware/doe/node/greedo/usr/jane/bookslssg

111-1.2.1 A Node's Default Directories
The following directories are installed by the system in anode's / s y s directory, thereby
presenting a common set of directories at all BiiNTM nodes:

aid An alias to the attribute ID directory on the system volume set

dev

home

id

node

rid

sso

sys

tdo

vs

An alias to the device directory on the system volume set.

An active-only directory that provides access to the home Clearinghouse
environment of the node's naming domain (see CH_Client in the
BiiNTM/OS Reference Manual). References of type /home/jerry resolve
to an AD for the home directory of ID jerry.

An active-only directory that provides access to the ID Oearinghouse en
vironment of the node's naming domain.

An active-only directory that provides access to the node Clearinghouse
environment of the node's naming domain. A listing of "/node" lists the
names of all the nodes belonging to the node's naming domain.

An alias to the resource ID directory on the system volume set.

An alias to the SSO directory on the system volume set (contains Schedul
ing Service Objects).

An alias to the root directory of the node's system volume set.

An alias to the IDO directory on the system volume set (contains Type
Definition Objects).

An active-only directory that provides access to the vs Oearinghouse en
vironment of the node's home naming domain.

In addition to these root directory entries, BiiNTM lUX reserves the following entries:
Ibin lete lusr Itmp

111-1.3 Directory Operations

111-1.3.1 Retrieving Entries

The most common directory call is Directory_Mgt. Retrieve. Retrieve takes a
name such as /usr / joe as a parameter and returns an AD for the object stored under the
specified name.

Understanding Directories

l"K~LIMlNAK Y

Storing an object's AD by name in a directory does not necessarily mean the object itself is
also stored there. Directory names can reference objects stored in active memory or in passive
store.

(Storing of objects in directories is distinct from thefiling service, which stores data in tradi
tional file structures. See Chapter 111-3 for information about storing objects.)

111-1.3.2 Listing a Directory
To list the contents of a directory, you open it as a read-only device to be read with
Byte_Stream _AM or Record_AM. The result is a stream of entry names in ASCII collat
ing sequence. Associated ADs are not read.

In contrast to Byte_Stream_AM or Record_AM, the Open calls in Directory_Mgt
allow a pattern to be specified that is used to filter the stream of names. Only those entry
names in the directory that match the pattern will be read. A pattern is a combination of plain
characters which simply match the identical characters in a name, and pattern operators each
of which matches a sequence of zero or more characters in a name.

The pattern operators are:

?

*
[amz]

[a-z]

\

Matches any single character.

Matches zero or more characters.

Where amz denotes zero or more characters. Matches any of the single
characters within brackets.

Where a and z are single characters. Matches all ASCII characters >= a
and <= z. Match always fails if z < a.

Escape character. Interprets the following character literally and not as a
pattern operator. Must precede any of ?, *, [,] that are to be
matched.

Not (negation). Makes sure the character immediately following does
NOT match. For example, a [! b] c matches every 3-character string
beginning with a and ending with c, except the string abc.

Directory_Mgt in the BiiNTM/OS Reference Manual lists which access method calls are
supported and the exceptions that can be raised.

111-1.3.3 Process Globals and Directories

In the BiiNTM system, every process has process globals that determine the environment in
which the process executes.

Process globals carry the following items pertinent to directories:

home directory Location after successful login, that is, initial current directory. Set by a
system administrator.

current directory Current location in a directory structure and usual starting directory for
evaluating relative pathnames.

command name space

Understanding Directories

Default directory list to search for commands during name evaluations
started, for instance, by Human Interface Services.

III-1-9

authority list

r ~.c.L.lIYlll"lA~ I

Default authority list, to protect objects for which ADs are being stored
with a name for the first time, when the directory in which the ADs are
being stored has no default authority list.

111-1.3.4 Directory Operations and Transactions
These calls automatically participate in the caller's transaction:

Create directory
Delete-
Get name
Open directory by name
Rename - -
Retrieve
Store

If there is no caller's transaction, Create_directory, Rename, and Delete start their
own transactions.

Directory_Mgt calls are atomic; when carried out within a transaction, if the transaction
aborts their effects are undone, whether or not the directory call has already successfully com
pleted.

The Directory_Mgt package description in the BiiNTM/OS Reference Manual describes
transaction locking.

111-1.3.5 Standalone Directories

III-I-lO

A normal directory is integrated into the system's directory structure. Occasionally, however,
it's useful to create directories that are independent of the system's directory structure.
Standalone_Directory_Mgt creates such directories. The entries in a standalone direc
tory are managed with normal Directory_Mgt calls.

Standalone directories differ from nonnal directories in several important ways:

• Normal directories have names, whereas standalone directories are identified only by their
ADs (that is, they do not have names).

• Normal directories are created and passivated in an existing parent directory. Standalone
directories are created in the active space; it is the caller's responsibility to passivate the
standalone before using it. The caller must update the standalone before trying to use it;
failure to do so will raise an exception during calls on the standalone.

• A nonnal directory resides on the same volume set as its parent directory; a standalone
directory's home volume set depends on where the caller passivates the standalone's master
AD.

• Entries in a normal directory are always protected by an authority list. By default, stan
dalones also protect their entries with an authority list; however, if a standalone is created
with the no_authority parameter set to true, the entries in the standalone are not
protected by an authority list.

Once a standalone is created, the user cannot later add or remove the protecting authority
list (An existing list can be replaced.)

• In normal directories, ownership of the directory is assigned to whomever makes the
Create directory call. Similarly, by default, ownership of a standalone directory is
assigned to whomever first passivates the directory. That is, ownership is assigned to the
user_ID of the calling process.

Understanding Directories

It is possible to create nonnal directories in standalones. As with nonnal directories, the caller
can also invoke Directory_Mgt calls on entries within this structure.

For example, a caller may wish to define a database with two components: a database descrip
tion and a set of associated ADs to components of the database. One approach would be to
define the database using two ADs, one to the descriptor, one to a standalone directory contain
ing the related AD set. In a simplified scenario, the caller would act as follows:

1. Create the database and database descriptor.

2. Call Create standalone directory to create a standalone in the active space (this
operation does not store and uPdate the standalone directory).

3. Copy ADs for the descriptor and standalone ADs into the database.

4. Call Passi ve_Store_Mgt . Update to passivate the database and its embedded objects
(that is, the descriptor and standalone).

5. The caller may create and store entries in the standalone, and perfonn other calls common
to directories.

A standalone directory can be deleted from the system by calling
Passi ve_Store_Mgt. Destroy, which will destroy the standalone directory and any
entries it contains. A standalone may also be deleted implicitly as a result of master AD
deletion, for instance, by deleting an object that contains the standalone's master AD.

To prevent unwanted deletion of standalone directory entries, the caller might call Destroy
from a utility that asks the user for confinnation before completing destructive operations.

111-1.4 Summary
• Directories associate names with objects by storing <name, AD> pairs in the directory.

• Directory_Mgt .Retrieve is an important call to obtain an AD for an object in the
BiiNTM directory structure.

• Directory entry names can be listed using Byte_Stream_AM or Record_AM.

• When listing directory contents, the names can be "filtered" so that only names that match a
pattern are listed.

• Directories can be set up with hierarchies, subdirectories, and aliases to other directories,
across the entire distributed system (crossing node boundaries).

Understanding Directories III-I-II

rKJ!.L.1lVlll"'AK I

III-1-12 Understanding Directories

PK~L1M1NAKY

USING DIRECTORIES 2
Contents

Creating a Directory ~ m-2-2
Storing an AD in a Directory .. m -2-3
Retrieving a Directory Entry .. III -2-4
Deleting a Directory Entry .. III -2-4
Listing a Directory .. 111-2-5
Using a Pattern to Filter a Directory Listing III -2-7
Retrieving a Directory from Process Globals 111-2-7

Using Directories 111-2-1

PRELIMINARY

Directories allow you to name and organize objects in a BiiNTM system. You can name an
object by associating a name with the object's AD and storing the <name, AD> pair in the
directory (Figure 111-2-1). Given a name, you can then find any object in the system. This
chapter gives some specific techniques for using directories.

Packages Used:

Directory_Mgt Manages directories and directory entries.

directory Joe

Name specs Name src Name schedule

AD AD AD

Figure ill-2-1. Directories Contain <Name, AD> Pairs.

After reading this chapter, you will be able to:

• Create a directory

• Store a directory entry

• Retrieve a directory entry

• Delete a directory entry

• List a directory

• Use a pattern to filter a directory listing

• Retrieve a directory from process globals.

Complete listings of the following examples can be found in Appendix X-A.

111-2.1 Creating a Directory

1II-2-2

The simplest way to create a directory is to call Directory_Mgt. Create_directory,
specifying the pathname of the new directory and using defaults for the rest of the parameters.
The pathnamemust be a System_Defs. text record.

Calls Used:

Directory Mgt.Create directory
- Creates a directory.

Using Directories

The following example from procedure Create_directory_comrnand_ex creates a new
directory with the name given as input. This excerpt shows just the declarations and state
ments to create the directory:

45 dir name: System Defs.text(252);
46 -= Name of the directory to be created.
47
48 dir AD: Directory Mgt.directory AD;
49 -= Newly created-directory's AD; returned
50 -- but not used by "create.directory".

60 Command Handler.Get string(
61 cmd odo => opened command,
62 arg-number => 1, -
63 arg=value => dir_name);

72 dir AD := Directory Mgt.Create directory (
73 -name => dir_name); -

The Create_directory call automatically:

• Stores a master AD for the new directory in the parent directory.

• Creates a representation of the new directory in passive store.

• Assigns an authority list to protect the new directory, either the parent directory's default
authority list or the default authority list in process globals.

• Sets the owner of the new directory to the caller's ID.

• Returns the new directory's AD to the caller with all type rights.

You then have a new directory ready for use.

111-2.2 Storing an AD in a Directory
The simplest way to create a directory entry is to call Directory_Mgt. Store, specifying
the new pathname and the object's AD, and using defaults for the other parameters.

Calls Used:

Directory Mgt.Store
- Creates a new directory entry: AD and name.

The calling process must have store rights in the parent directory for the call to succeed. The
calling process will have store rights if the calling process:

• Created the target directory

• Has become its owner, or

• Is granted store rights by the authority list protecting the parent directory.

Directory_Mgt. Store cannot overwrite an existing entry.

If the AD is the first AD stored in passive store for the object, then:

• The directory entry is the object's master AD,

Using Directories III-2-3

• The caller's ID is the object's owner,

• Either the parent directory's authority list or the process globals authority list protects the
object, if the authority list parameter is defaulted.

If there are subsequent stores of the same AD under different names, the subsequent entries are
alias entries and the object's owner remains the master AD's owner.

Note that storing the AD for the object does not store the object itself. To update the object's
passive version, you must call Passive_Store_Mgt. Request_update after
Directory_Mgt.Store.

The following example from procedure Named_copy_ex stores an AD in a new directory
entry:

9 source: System Defs.text;
10 dest: system:Oefs.text)

62
63
64
65
66

source AD := Directory Mgt.Retrieve(source);
dest AD := Passive Store Mgt.

- Create copy stub(source AD);
Directory Mgt.Store(name- => dest, -

- object => dest_AO);

111-2.3 Retrieving a Directory Entry
Retrieving a directory entry is a common way to obtain an AD for a named object in the BiiNTM
system. To retrieve a directory entry, use Directory_Mgt. Retrieve. Retrieve ac
cepts a name (and optional directory and ID) and returns an AD for a directory entry.

Calls Used:

Directory Mgt.Retrieve
- Returns AD associated with pathname.

The following excerpt from the Make_objectyublic_ex example procedure retrieves an
AD for the ID world.

43 -- Get the world 10 AD
44 world name: constant System Defs.text(9} :=
45 (i, 9, "/id/world"); -
46 world untyped: constant System. untyped word :=
47 DIrectory_Mgt.Retrieve(world_name};-

111-2.4 Deleting a Directory Entry

III-2-4

To delete a directory entry, use Directory_Mgt. Delete, giving the pathname and using
the defauJts for the other parameters.

The calling process must have list and store rights in the parent directory for a Delete to
succeed.

If the AD is the object's master AD (the first AD stored in passive store) and no ~ias entries
exist for this object on the same volume set, then deleting the AD deletes the object's passive
version.

Using Directories

If the AD is the master AD and alias entries do exist on the same volume set, then the OS
converts one of the alias entries to the master AD, and the object's passive version is not
deleted.

111-2.5 Listing a Directory
To list the contents of a directory, open the directory as a device and use Byte_Stream _AM
or Record_AM to read the opened device. The result is a list of entry names.

Remember that ADs are Retr ieved; names are Read.

Calls Used:

Directory Mgt.Open directory
- Given a directory AD, opens directory for sequential reads.

Byte Stream Am.Ops.Read
- - Reads bytes from opened device.

Byte Stream Am.Ops.Write
- - Writes bytes to opened device.

Byte Stream AM.Ops.Close
- - Qoses an opened device.

The following example from the List_current_directory_cmd_ex example proce
dure uses the following steps:

1. Opens directory as an input device.

2. Opens standard output.

3. Sets up a buffer.

4. Sets up a read/write loop: reads bytes from directory into buffer, writes from buffer to
standard output.

Using Directories 111-2-5

PRELIMINARY

11 procedure List_current_directory_cmd_ex
12
13 Function:
14 Lists names of entries in user's current
15 directory.
16
17 Each entry name is written to the user's
18 standard output, on a separate line.

37 is

60 opened_dir: Device Defs.opened device;
61 -- Opened device for reading stream of names
62 -- from user's current directory.
63
64 standard output: Device Defs.opened device :=
65 Device Defs . opened device (-
66 Process Mgt.Get process globals entry(
67 Process Mgt-Types.standard output»;
68 User's standard output. -
69
70 name buffer: array(l .. 250) of character;
71 ---Each entry name is read into this buffer
72 -- and then written from it.
73
74 length: System.ordinal;
75 Length in bytes (characters) of last
76 entry name read.

79 begin

92 -- Open directory for reading, filtered by
93 -- ":pattern":
94
95 opened dir := Directory Mgt.Open directory{
96 dir => Directory AD from-untyped word{
97 Process~Mgt.Get~rocess_globals_entry{
98 Process Mgt Types.current dir»,
99 pattern => pattern); -

100
101
102 -- Get and write each entry name:
103
104 loop
105
106 length := Byte Stream AM.Ops.Read(
107 opened dev-=> opened dir,
108 buffer-VA => name buffer' address,
109 length- => name=buffer'size/8);
110
111 Byte Stream AM.Ops.Write{
112 opened dev => standard output,
113 buffer-VA => name buffer' address,
114 length- => length);
115
116 end loop;
117
118 exception
119
120 when Device Defs.end of file =>
121
122 Byte_Stream_AM.Ops.Close{opened_dir);
123
124 RETURN;
125
126 end List_current_directory_cmd_ex;

1II-2-6 Using Directories

111-2.6 Using a Pattern to Filter a Directory Listing
To ftIter a directory listing according to a pattern, use Directory_Mgt. Open or
Directory Mgt. Open directory by name. When you specify a pattern to these - - - -
calls, only the directory entries that match the pattern are returned by Reads.

For example, you could add a pattern specification to the call Open_directory. The
pattern must be a text record confonning to System_Defs. text. The following ex
ample from List_current_directory_cmd_ex "filters out" those entries beginning
with a period (those that match pattern! . *):

27 --*D* define. argument pattern \
28 --*D* :type = string
29 --*D* set.lexical class symbolic name
30 --*D* set.maximum-Iength 252 -
31 --*D* set.value default ,,*,.
32 --*D* end -

54 pattern: System Defs.text(252) := (252,252, (others => ' '));
55 Optional ":pattern" used to select entries
56 -- matching the pattern, such as "abc?" or
57 -- "m*device". Default is "!.*", meaning all
58 -- entries NOT beginning with a "." (period).

92 -- Open directory for reading, filtered by
93 -- ":pattern":
94
95 opened dir := Directory Mgt.Open directory(
96 dir => Directory AD from-untyped word(
97 Process_Mgt.Get~rocess_globals_entry(
98 Process Mgt Types.current dir)),
99 pattern => pattern); -

100

111-2.7 Retrieving a Directory from Process Globals
The call Process_Mgt. Getyrocess_globals_entry allows you to retrieve one of
the two directory ADs in the process's process globals. A process's globals contain the ADs
for two directories: the home directory of the process's user _I D and the current directory.

Calls Used:

Process_Mgt.Get_process_globals_entry
Retrieves a value from a slot in process globals.
Directory Mgt.Get name
Gets the full pathname ofan object's master AD.

The following example from Show_current_directory_cmd_ex retrieves the name of
the current directory from process globals with the following calls:

1. Process_Mgt. Getyrocess_globals_entry gets the AD for the current direc
tory.

2. Directory_Mgt. Get_name gets the name associated with the AD of the current direc
tory.

Using Directories 111-2-7

l'KELIMlNAK l'

29 is

37 current dir: Directory Mgt.directory AD :=
38 Directory Mgt.directory AD(-
39 Process_Mgt.Get-process_globals_entry(
40 Process Mgt Types.current dir»;
41 Current directory's AD. -
42
43 current dir untyped: System. untyped word;
44 FOR current dir untyped USE AT -
45 current-dir'address;
46 -- Current dIrectory's AD as an untyped word.
47
48 dir name: System Defs.text(252);
49 Current directory's name.

51 begin
52
53 -- Get current directory's pathname:
54
55 Directory Mgt.Get name(
56 obj ~> current dir untyped,
57 name => dir_name); -

III=2=8 Using Directories

rKELI1Vll~AK l'

PROTECTING STORED OBJECTS 3
Contents

Concepts .. ill-3-3
Why Objects Need Authority-Based Protection III-3-3
IDs Identify the Caller ... III-3-3
A Process's 10 List ... ill-3-4
Type Rights on an 10 .. III -3-5
Authority Lists Specify Who Can Access Objects III-3-5
How a Caller's Access Rights to an Object Are Evaluated 1II-3-6

Techniques .. III-3-8
Getting Infonnation about an Object's Protection ill -3-9
Using Default Protection ... 1II-3-9
Creating an Authority List .. III -3-9
Changing a Directory's Default Authority List III-3-10
Changing an Object's Owner and Authority List III-3-10

Summary .. 111-3-11

Protecting Stored Objects III-3-1

III-3-2

PRELIMINARY

This chapter shows you how to protect stored objects from unauthorized access, using IDs and
authority lists.

Packages Used:

Identification Mgt
Provides operations to manage IDs and ID lists.

Authority List Mgt
- Provides calls to manage authority lists and to evaluate a caller's access

rights to objects protected by authority lists.

Provides calls to manage a user's protection set and user profile.

Objects may be protected with authority lists and IDs.

An authority list shows which IDs can access the object, with what access rights. An ID
identifies what agent is trying to access the object. A process carries IDs for agents it may
represent in an id list (Figure III-3-1).

Caller

10 list

joe

finance -

design_team '- _-
world

Authority List: r
Type

IDs Rights

fred TTT

susan TFF

finance TTF

world FFF

After evaluation, caller is granted "use" and
"modify" rights to object, via 10 "finance."

Target
Ob ject

D

SSG\prstob

Figure ill -3-1. A Caller Accesses a Protected Object

In Figure m-3-1, the caller carries IDs for joe, finance, design_team and world.
When this caller tries to access an object, all these IDs are used in evaluating the caller's'
access to the object. (Evaluation is discussed in more detail later in this chapter.)

, The object itself is protected by an authority list. In the authority list, ID f red has all rights,
ID susan has "use" rights, ID finance has "use" and "modify" rights, and ID wor ld has
no rights. When a caller tries to access this object, these <ID, type rights> pairs are used in
evaluating the caller's access to the object.

Protecting Stored Objects

YKELIN1l1'lAK Y

111-3.1 Concepts
The following concepts present authority-list-based protection from a user standpoint

111-3.1.1 Why Objects Need Authority-Based Protection
When you store an object, you must protect it with authority-based protection. This is distinct
from the address space protection mechanism provided by ADs. Basically, authority lists are
intended to extend the architecture's capability-based protection (ADs) into passive store.

An object is stored in passive store similar to the way files are stored in a conventional filing
system. If there were no authority-list protection, the object would be accessible to any user
over an entire distributed BiiNTM system, not just to the caller who stored the object. This
presents a problem: how can the object itself be protected from unauthorized access while in
passive store, which is accessible from the entire distributed system? Authority lists provide a
solution.

You associate the object with an authority list. To oversimplify, the authority list specifies
exactly which IDs, with what type rights, can access the object. Thereafter, any caller's ID
must appear in the authority list, with the proper type rights, for the caller to access the object.
(Evaluation is discussed in full in Section 111-3.1.6).

111-3.1.2 lOs Identify the Caller
An ID represents an entity, either an individual or an access class. An individual is usually a
user (joe). An access class may represent a collection of users (design group), a
program (database) or all "outsiders" (world).

Typically, each individual has a unique ID, which is created by the system administrator when
creating a new user. The system administrator may also define various access classes within
the system and create IDs for them, so that users, by holding an ID to one or more access
classes, may also portray themselves as members of these classes.

The caller carries IDs in an ID list which is stored in the caller's process globals. The first ID
in the list is the caller's user ID. The ID list can contain one or more IDs. For example, in
addition to the caller's user ID, a single caller might carry IDs for the following:

another user (j oe)
a group of users (design team)
a program (db_data_entry)
a group of programs (cad system)
a generic ID (world) -

To access an object, one of a caller's IDs must match an ID in the object's authority list, with
the proper rights. Access to the object is evaluated according to the rights associated with that
ID in the authority list (This is oversimplified; more on evaluation in Section 111-3.1.6).

In addition to the IDs in the caller's process globals, many Directory_Mgt calls accept an
explicit ID. This is especially useful for system utilities that may require rights for an ID that
is not available in the ID list itself.

Protecting Stored Objects III-3-3

I"K~LIM1NAK y

ill-3.t.2.t What's In an ID?

Figure 111-3-2 shows the parts of an ID.

10

User (logon) name

password

joe

opensezme

Protection set

joe TTT

admin TTT

Figure ll·3·2. Parts of an ID

User (logon) name Name for this ID.

Protection set

Password

User profile

A protection set protects an ID just as an authority list protects a stored
object. IDs are protected with protection sets instead of authority lists
because IDs are maintained in the Clearinghouse, not in passive store. In
Figure 111-3-2, the protection set for ID joe allows all type rights to callers
joe and admin.

Password for this ID. Originally set by the system administrator, and
changeable by anyone with control rights to the ID.

Originally set by the system administrator, and some parts changeable by
anyone with control rights to the ID.

IDs and ID lists are active-memory-only objects, maintained through
Identification_Mgt and the Clearinghouse. Thus, calls to Passive_Store_Mgt on
IDs and ID lists will raise exceptions.

IDs are created with the Identification_Admin package.

111-3.1.3 A Process's 10 List

III-3-4

The caller's ID list is in the caller's process globals. By convention, the OS always interprets
the first ID in a process's ID list as the user lD. (By default, the second ID in the list is the
group lD for BiiNTM lUX applications.) BiiNTM/UX User's Guide). See Figure 111-3-3 for an
illustration of an ID list

Any caller can obtain an AD to its ID list with Process _Mgt
. Getyrocess_globals_entry or can list the contents of an ID list with
Identification_Mgt. List_IDs, but setting the ID list in the process globals can only
be done using the Process_Admin or Job_Admin packages.

The caller's ID list is inherited by child processes, just as other items in process globals are
inherited.

Protecting Stored Objects

l"KKLIMlNAK Y

10 List

Joe user ID (first in list)

finance

design_team

world

Figure m-3-3. A Process's ID List

111-3.1.4 Type Rights on an 10

The following type rights are defmed for IDs:

Portray rights Needed to enter an ID into a process's ID list

Control rights Needed to change an ID's password or to set an object's owner. The user
ID in a process's ID list must also have control rights.

By default, users have portray and control rights to their own user IDs.

Portray rights are acquired by being passed an ID AD with such rights, or through rights
evaluation. ID rights can be amplified to control and portray rights by providing the correct
passwordroIdentification_Mgt.Portray_ID.

111-3.1.5 Authority Lists Specify Who Can Access Objects

An authority list is composed of a protection set, a record containing <ID, type rights mask>
pairs. Normally, the caller who stores an object assigns the authority list, either specifying one
or using the default.

An authority list is an object in itself, separate from the object it protects. As objects, authority
lists need to be stored using Directory_Mgt and updated using Passive_Store_Mgt;
these calls are not done automatically.

Both active and stored objects can be protected by authority lists, and any number of objects
can share a single authority list, thus saving storage space (Figure III-3-4).

Protecting Stored Objects III-3-5

I'KELJMlNAK Y

Active Memory

object A

Passive Store

ob ject C

authority list

TIT

testing TIF

design_team TIF

world TFF

SSG\share

Figure ID-3-4. Multiple Objects Sharing an Authority List

111-3.1.6 How a Caller's Access Rights to an Object Are Evaluated
Whenever a caller retrieves or activates an AD, the caller's access rights to that object are
evaluated. That is, the caller's IDs are checked against the authority list, to return the proper
type rights on the underlying object.

Directory_Mgt . Retrieve does an implicit Authority_List_Mgt .Evaluate
against retrieved ADs before returning the result to the caller.

Object activation, which is done transparently by Passi ve_Store_Mgt, also does an
Evaluate; however~ evaluation differs somewhat between a Retrieve and activation. The
following sections discuss each evaluation process.

ID-3.1.6.1 Evaluating Access During a Retrieve

Figure 111-3-5 shows the steps in the evaluation during a Directory_Mgt. Retrieve.

1II-3-6 Protecting Stored Objects

Combine type
rights associated
with matching IDs

(OR)

Combine results
with rights in

ob ject' s master AD
AND

Return AD with
evaluated type

rights

PRELIMINARY

Activate AD
with rights
as stored

Caller receives
AD with no

rights

Caller gets
no access

Figure ill-3-S. Evaluating Access During a Retrieve

1. If the object has an authority list, proceed to step 2. Otherwise, activate the object, granting
the same type rights as when the object was stored, and end evaluation.

2. If at least one of the caller's IDs matches an 10 in the object's authority list, evaluation
continues at step 4. If the caller's IDs do not match any in the authority list, evaluation
proceeds to step 3.

3. If the caller is the object's owner or volume set administrator, the caller receives an AD
with no type rights (no authority list access) and evaluation ends. If the caller is not the
object's owner or volume set administrator, the caller gets the exception
Directory_Mgt. no_access and evaluation ends.

4. The type rights associated with the matching IDs in the authority list are combined (logical
OR). This results in the maximum type rights for that caller and that authority list.

5. The maximum type rights are then compared (ANDed) with the type rights in the object's
master AD. This results in the least type rights for that caller and that object. That is, the
caller can never get more rights than are present in the object's master AD.

6. The caller receives an AD with the final evaluated type rights.

Protecting Stored Objects III-3-7

PREUMINARY

For example, consider the caller, object, and authority list in Figure 111-3-6.

joe

Caller's
10 List

finance

design_team

world

I- l
I
I

matching 10 I
with maximum I

rights I
L -

Object

ob ject' s

I
"'-1

Object's
master AD

owner 10

Y project· I
,~ authority list

susan TTT

testing TTF

design_team TTF

admin TTT

world TFF

Figure m-3-6. Example: Evaluating Access During a Retrieve

1. The caller's IDs design_team and world match IDs in the object's authority list

ITFF I

2. Type rights associated with ID design_team are "use" and "modify". Type rights associated
with ID world are "use". A logical OR between these two results in type rights "use" and
"modify".

3. The type rights in the object's master ID are "use" only. A logical AND between these
rights, and the results of the OR operation gives "use" rights only.

4. The caller receives. an AD for the object with "use" rights.

ID-3.1.6.2 Evaluating Access Rights During Activation

A caller's access to an object is also evaluated when activating the object's AD. If access is
not granted, a null AD is activated in place of the AD that should be activated, instead of
raising Directory_Mgt . no_access . See the Passive_Store_Mgt package for
more information about AD activation.

111-3.2 Techniques
After reading this section, you will be able to:

• Get infonnation about an object's protection

• Use default protection

• Create an authority list

1II-3-8 Protecting Stored Objects

PRELIMINARY

• Change a directoryts default authority list

• Change an objecfs owner and authority list.

Creating IDs is a privileged operation for the system administrator; see the BiiNTM Systems
Administrator's Guide.

111-3.2.1 Getting Information about an Object's Protection

The following calls are used to get infonnation about an objecfs ID and authority lists.

Calls Used:

Identification Mgt.Get object owner
Returns the oWner ID AD of the object.

Authority List Mgt.Get object authority
- Returns AD fur the objecfs authority list

Authority_List_Mgt.List_authority
Returns the set of authority list entries.

Directory Mgt.Get default authority
- Retrieves directoryts default authority list.

Authority List Mgt.Evaluate
- Returns type rights on object.

Identification Mgt.List IDs
Returns the setof IDs from the ID list.

Note that the calls List _ authori ty and List_IDs require the caller to receive results in
an out variable.

111-3.2.2 Using Default Protection

NonnallYt what happens by default is all the protection you need. The usual way to store an
object with authority list protection is to use Directory_Mgt. Store, accepting the target
directoryts default authority list as the object's protecting authority list.

111-3.2.3 Creating an Authority List

In general, to avoid unexpected results, an authority list should be stored and updated before
being assigned to protect objects.

Calls Used:

Authority List Mgt.Create authority
- Creates an authority list

To create an authority list:

1. Create a protection set (list of <ID, type rights> pairs) in the fonn required by
User_Mgt.protection_set.

Protecting Stored Objects 111-3-9

rK.r.,LJ.IVll~AK :r:

2. Create the new authority list with Create authority, specifying the protection set.
You will receive an AD, with control rights-; to the new authority list.

3. Store the new authority list AD with Directory_Mgt. Store.

4. Passivate the new authority list with Passive_Store_Mgt . Request_Update.

The following example from Make_objectyublic_ex shows how to create a simple
authority list for an object, allowing all type rights for the world ID.

10 procedure Make_object-public_ex(

42 is

51
52
53
54
55
56
57
58
59
60
61
62
63

Define the protection set
entries: constant User Mgt.protection set(l) := (

size => 1, length => 1, -
entries => (1 => (rights => (true, true, true),

id => world_id»};

Create the authority list
aut list: constant

-Authority List Mgt.authority list AD :=
Authority-List-Mgt.Create authority(entries};

aut untyped: -System. untyped word;
FOR-aut_untyped USE AT aut_lIst' address;

64 begin

67 Directory Mgt.Store(aut list path, aut untyped);
68 Passive_Store_Mgt.Request_update(aut_untyped);

Once the authority list has been created, stored, and updated, you can then associate that list
with any object.

111-3.2.4 Changing a Directory's Default Authority List

You may want to change a directory's default authority list to another authority list. Note that
Directory_Mgt. Create_directory sets the default authority list to null; the caller
must act to set a directory's default authority list.

Calls Used:

Directory Mgt.Set default authority
- Sets directory's default authority list

A directory's default authority list is the first one Store looks for when a master AD is stored
with default protection '

The default authority list of a directory is not necessarily the authority list that protects the
directory itself.

111-3.2.5 Changing an Object's Owner and Authority List

Protecting Stored Objects

PK~LIMlNAKY

Calls Used:

Identification Mgt.Portray ID
Returns ID AD with control and portray rights.

Identification Mgt.Set object owner
Sets or changes the owner ID of an object.

Authority List Mgt.Set object authority
- Associates a new authonty list with an object.

To change an object's owner:

1. Obtain the new ownerlD AD with Directory_Mgt . Retrieve.

2. Obtain control rights to the new owner ID with Identification_Mgt. Portray _ID.

3. Replace the object's current owner with anew owner with Set_object_owner. The
caller's ID (either passed or default user ID) must match the old owner ID, and must have
control rights. By default, Set_object_owner uses the caller's user ID, which has
control rights.

To change an object's authority list:

1. Replace the object's authority list with a new authority list via
Set_object_authority. The caller's ID (either passed or default user ID) must
match the owner ID, and must have portray rights'. By default,
Set_object_authority uses the caller's user ID, which has portray rights.

111-3.3 Summary
• Objects may be protected with authority lists and IDs.

• An authority list shows which IDs can access the object, and what type rights they can
acquire.

• An ID identifies what caller is trying to access the object.

• A caller carries one or more IDs in an ID list which is stored in the caller's process globals.
The first ID in the ID list is the caller's user ID.

• A protection set protects an ID just as an authority list protects a stored object.

• Whenever a caller retrieves or activates an AD, the caller's access to that object is
evaluated.

• During a Retrieve, the caller's IDs are compared with the object's authority list and
master AD to return the proper rights on the retrieved AD.

• During AD activation by Passive_Store_Mgt, the "containing" object's owner ID is
compared with the object's authority list to return the proper rights on the activated AD.

Protecting Stored Objects 1II-3-11

rK.r.LINll~AK :r

1II-3-12 Protecting Stored Objects

PRELIMINARY

USING NAME SPACES 4
Contents

Concepts .. m -4-2
A Name Space is a List of Directories llI-4-2
How a Name Space References Directories Ill-4-3

Techniques .. m -4-3
Creating a Name Space .. III -4-3
Changing a User's Command Name Space Ill-4-4
Changing the Command Name Space within a Job or Process llI-4-4

Summary ... Ill-4-5

Using Name Spaces III-4-1

rK~L.llYlll'1AK I

A name space is a list of directories to be searched when looking for an object. This is similar
in function to the UNIX-like path environment variable or the MS-DOS PATH command.
This chapter gives concepts and techniques for creating a name space.

Packages Used:

Name Space Mgt
- - Provides calls to manage name spaces (lists of directories).

Name Space

CD •
~ /bin

Q) /Iocal/bin

® /usr/bin

directories

/

local

If this is caller's
..---- current directory,
G) this directory will

be searched first

Figure ffi-4-1. A Name Space Lists Directories to be Searched

111-4.1 Concepts
A name space contains a string list. Each string list is the name of a directory.

111-4.1.1 A Name Space is a List of Directories

1II-4-2

Directories in a name space are searched in the order in which they appear. For example, in
Figure III-4-1, Directory_Mgt first looks in directory /bin, then in directory
/10 cal /b in, then in directory / us r / bin. If the "current directory", represented by dot (.),
is in the name space, the directory that is current at the time the call is made will be searched.

Each user's user profile references a command name space, used by CLEX when searching for
commands.

The directories in the name space are used only for retrieving and listing. That is, no
Store/Delete/Rename or other Directory_Mgt calls are allowed on the listed direc
tories.

Using Name Spaces

r.K~LllYllr"illA.K I

Opening a name space does not open any directories in the name space. Instead, directories
are opened as encountered during Reads. Thus, the first directory in the name space is
opened at the beginning of the first Read request. Rights evaluation is perfonned against
listed directories when they are opened, to make sure list rights are present in the directories.

As name space Reads progress, the current opened directory is closed and the next directory
in the name space is opened. When the last directory in the list reaches end_of_file, the
name space is also marked as at end_of_file.

A pattern may be specified to select only names which satisfy the pattern (see Chapter 111-2 for
an example of using a pattern).

Name spaces are constants and cannot be modified once they have been created.

111-4.1.2 How a Name Space References Directories

Reads on name spaces return names (not ADs), just like Reads on directories.

When read using Byte_Stream_AM Reads, the names are separated by an ASCII newline
character; for Record_AM Reads, each name is returned as a record.

Note that if a directory's patbname is renamed after the name space is created, the directory
cannot be opened in the name space because the name space won't be able to find it.

Relative pathnames are usually avoided in name spaces, because you want to use the same
name space regardless of your starting directory. An exception to this is the current directory
(.) which is often the first element in a name space.

Reads on name spaces do not participate in transactions and the directory currently being read
is not locked.

111-4.2 Techniques
After reading this section, you will be able to:

• Create a name space

• Change the command name space in the user profile

• Change the command name space in process globals.

111-4.2.1 Creating a Name Space
To create a name space, use Name_Space_Mgt. Create_name_space, specifying the
list of directories. The list must confonn to System_Defs. string_list.

Calls Used:

Name Space Mgt.Create name space
- - Creates a name space containing text entries.

The following is from the example Create_name_space_cmd_ex in Appendix X~A. The
developer uses the Command_Handler package to get the new name space's name and
parent directory from user input.

Using Name Spaces III-4-3

78 is

86 directory list: System Defs.string list(508);
87 -- String list containing pathnames of the
88 -- directories in the new name space.

143 Command Handler.Get string list (opened cmd, 2,
144 arg=value => directory=list); -

210 name space := Name Space Mgt.Create name space(
211 directory_list}; - --

221 Directory_Mgt.Store(name, name_space_untyped);

337 Passive Store Mgt.Request update(
338 name_space_untyped); -

111-4.3 Changing a User's Command Name Space
To change a user's command name space in the user profile, use User_Mgt:

1. Use User_Mgt. Get_user-profile to get the current user profile record.

2. Change the conunand-path component of the user-profile record to contain the
desired new command path, of type System_Defs. string_list.

3. Use Set_user-profile with the new user-profile record to insert the new com
mand name space in the user's profile.

It is the responsibility of the one modifying a user profile to guarantee the validity of names in
the profile.

111-4.4 Changing the Command Name Space within a Job or
Process

1II-4-4

The call Process_Mgt. Set-process_globals_entry allows you to insert a name
space into its slot in process globals, to be effective for the duration of the job or process.

Calls Used:

Process_Mgt.Set-process_globals_entry
Assigns a value to a process globals entry.

Note that as for any object, the name space should be created and passivated before being
assigned to process globals.

The following example from Process_Globals_Support_ex shows setting the
cmd_name_space slot in process globals.

Using Name Spaces

l'K~LIM1NAKY

492 procedure Set command name space{
493 ns: Name_Space_Mgt:name=space_AD}
494
495 Logic:
496 1. Check that "ns" is a name space.
497 2. Set the new command name space.
498 is
499 ns untyped: System. untyped word;
500 FOR ns untyped USE AT -
501 nS'address;
502 begin
503 if not Name Space Mgt.
504 Is name space{ns untyped} then
505 RAISE System_Exceptions.type_mismatch;
506
507 else Process Mgt.Set process globals entry{
508 slot =>-Process-Mgt Types.cmd name space,
509 value => ns untyped}; --
510 end if; -
511
512 end Set_command_name space;

111-4.5 Summary
• A name space is a list of directories to be searched when looking for an object.

• Each user's user profile references a command name space, used by CLEX when searching
for commands.

Using Name Spaces III-4-5

rK.r.L.l.1U.l.l"'1B.K I

III=4=6 Using Name Spaces

PRELIMINARY

CREATING SYMBOLIC LINKS 5
Contents

Concepts .. m-5-2
Suppressing Link Evaluation .. m-5-2
How Symbolic Links Compare with Aliases III-5-3
Symbolic Links and Links in General ' .. III-5-3

Techniques .. III-5-3
Creating a Symbolic Link .. 111-5-3

Summary ... III-5-4

Creating Symbolic Links 111-5-1

A symbolic link provides a way to associate another name with an object already stored under
a different name. This chapter gives concepts and techniques for creating a symbolic link.

Packages Used:

Symbolic Link Mgt
- Provides calls to create, list, and identify symbolic links.

Figure III-5-1 diagrams a symbolic link.

name 1 specs

AD1

name 2 proj.spec

AD2

symbolic link

~ joe/specs

Retrieve (" "'sue/pro j. spec") returns AD1

Figure ill-S-!. A Symbolic Link

111-5.1 Concepts
A symbolic link contains a pathname. Symbolic link evaluation retrieves whatever AD is
stored with that pathname.

If an AD to a symbolic link is stored in a directory entry, then retrieving from the entry does
notretum the entry's AD. Instead, an AD to the object referenced by the link is returned.

For example, in Figure III-5-1, a Directory_Mgt. Retrieve (n-sue/proj . spec")
returns ADl.

It is also possible to suppress the link. For example, in Figure 111-5-1, you can obtain AD2 by
suppressing link evaluation of -sue/pro j . spec.

111-5.1.1 Suppressing Link Evaluation

III-5-2

The at sign (@) suppresses link evaluation.

If Directory Mgt. Retrieve is called with a pathname that contains an at sign (@), the
part of the pathname preceding the at sign is evaluated. If the resulting object has the link
attribute, the link evaluation is suppressed and the AD of the named object itself is used to
complete the evaluation.

Creating Symbolic Links

PRELIMINARY

For example, in Figure 111-5-1, a Directory_Mgt. Retrieve ("-sue/proj . spec@")
returns AD2.

The one exception to this rule is Directory _Mgt. Delete when the name supplied is the
name of the link object itself. In this case, whether or not there is a trailing at sign, the link
object itself is deleted.

111-5.1.2 How Symbolic Links Compare with Aliases
Symbolic links and aliases provide two different ways to associate another name with an object
that already has a name. A symbolic link can be thought of as a "soft link," and an alias as a
"hard link."

A symbolic link is a new name for a new object that contains the name of an existing object.

An alias is a new name for an object that already has a name.

Aliases can become master ADs, whereas symbolic links can't

A symbolic link has the following advantages:

• It references an object name. Any object can exist under this name at one time or another.
This means you can also update an object under that name and not end up with a dangling
reference as for aliases (you might want to replace an existing program with a revised
version, or some such).

• You can set its value to a CL variable, for example $mybin, which gives you a great deal
of flexibility.

A symbolic link has the following disadvantages:

• The symbolic link cannot inherit "mastership" for the object referenced by the link's value.

• The associated link value is "name" specific, so that if a different object is stored under the
same name, the user may end up accessing something incompatible with the type needed.

111-5.1.3 Symbolic Links and Links in General
Symbolic links are one implementation of the OS link attribute as defined by Link Mgt.
You may also provide your own implementation of the link attribute, so that a
Directory_Mgt. Retrieve will execute your implementation when it retrieves your ob
ject with the link attribute. See the Link_Mgt package for information about implementing
the link attribute.

111-5.2 Techniques
After reading this section, you will be able to:

• Create a symbolic link.

111-5.2.1 Creating a Symbolic Link
To create a symbolic link, use Symbolic_Link_Mgt. Create_symbolic_link,
specifying the pathname within the link. An AD to the link is returned.

Creating Symbolic Links III-5-3

Calls Used:

Symbolic Link Mgt.Create symbolic link
- Creates a symbolic link. -

111-5.3 Summary

111-5-4

• A symbolic link. provides a way to associate a name with an object stored under a different
name.

• Symbolic link. evaluation retrieves whatever AD is stored with that pathname.

• The at sign (@) can suppress link. evaluation, to allow you to retrieve the AD of the
symbolic link.

Creating Symbolic Links

PRELIMINARY

Part IV
I/O Services

This part of the BiiNTM/OS Guide gives concepts and techniques for managing files, terminals,
windows, printers, and other devices using byte stream, record, and character display I/O.

The chapters in this part are:

Understanding 110 Access Methods
Explains the I/O access methods provided by the OS. An access method is
a set of operations for accessing devices.

Using Basic 110 Shows basic byte stream and record I/O techniques.

Managing Stream Files
Shows you how to manage stream files.

Using Windows Explains the use of windows on character and graphics terminals, includ
ing terminal manager support for windows and I/O access methods.

Using Character Display 110
Shows you how to do I/O to a character display device.

Printing Explains spooled and direct printing.

Understanding Structured Files
Explains basic filing concepts and trade-offs between the available struc
tured fue organizations.

Managing Files and Indexes
Explains calls and data structures for managing files and indexes.

Using Record 110 with Structured Files
Explains the concepts and techniques for using record I/O with structured
files.

Locking Files and Records
Explains concepts and techniques for locking and unlocking files and
records.

Processing Collections of Records
Explains concepts and techniques for processing collections of records.

I/O Services contains the following services and packages:

basic /10 service:
Byte Stream AM
Device Defs
Simple=File_Admin

character terminal service:
Character Display AM
Character-Terminal Mgt
Terminal Admin -
Terminal-Defs
Terminal-Info
Window Services

print service:

Part IV Overview

Printer Admin

spool service:
Spool Defs
Spool-Device Mgt
Spool=Queue_Admin

filing service:
File Admin
File-Defs
Record AM

database support service:
Join Interface

PREUMINARY

Record Processing Support
Sort Merge Interface
Trusted_Record_Processing_Support

data definition service:
Data Definition Mgt
DDF Utility Support
Field Access

volume set service:
Volume Set Admin
Volume-Set-Defs
VSM Disk Admin
VSM=Disk=Support

basic disk service:
Basic_Disk_Mgt

basic streamer service:
Basic_Streamer_Mgt

null device service:
Nul de v_Mgt

Part IV Overview

Contents

PRELIMINARY

UNDERSTANDING 1/0 1
ACCESS METHODS

Devices .. '" IV-I-2
Opened Devices .. IV-I-2
Concurrent Access to Opened Devices IV-I-3
Device Independence .. IV -1-4
How Access Method Implementations Can Vary IV-I-6
BiiNTM Operating System I/O Access Methods IV-I-6

Byte Stream I/O .. IV-I-7
Record I/O -.. IV-I-7
Character Display I/O ... IV -1-8

Standard I/O Connections .. IV -1-9
Summary ... IV -1-9

Understanding I/O Access Methods IV-I-I

PK~LIMlNAKY

This chapter describes the I/O access methods provided by System Services. An access
method is a set of operations for accessing devices. Applications interact with devices through
access methods. The I/O access methods provided by the BiiNTM Operating System are:

Packages Used:

Byte Stream AM
- - Provides device-independent I/O using streams of bytes.

Record AM Provides device-independent record I/O.

Character Display AM
- Provides device-independent I/O to character display devices such as

printers, plotters, and windows on character and graphics tenninals.

The BiiNTM programming languages provide their own calls for I/O. You may prefer to use
them when writing code which must be portable between operating systems.

IV -1.1 Devices
A device is an object that supports one or more I/O access methods, and which represents a
hardware or software system device. Device_Defs. device is the Ada type for ADs to
devices.

Devices may be implemented in hardware or software. Device types provided by the BiiNTM
Operating System include:

basic disk
basic streamer
command input device
directory
file
fonn
name space
pipe
print device
report
window

Tenninals and disks are nonnally not accessed directly as devices, but are accessed through
windows and files, respectively.

IV-1.2 Opened Devices
When a device is opened, an opened device is created. Opened devices are I/O channels to
devices. Each access method Open call creates a new opened device.
Device_Defs. opened_device is the Ada type for ADs to opened devices.

When performing I/O, an application selects an access method and passes a device to be
opened to its Open call. An opened device representing an I/O channel is returned. The
opened device is then passed as a parameter when making I/O calls on the channel. See Figure
IV=l=1.

Understanding 110 Access Methods

PRELIMINARY

Opened Device

Process

I/O

Representation of
a physical device

Figure IV-I-I. Opened Devices are 110 Channels to Devices

Zero or more opened devices can be active simultaneously for a given device. Depending on
the device, subsequent I/O calls may either be restricted to the access method used to open the
device, or allowed to be from any supported access method.

A Close call closes a single opened device. I/O processing with a device is active until all
opened devices associated with the device are closed. When a job tenninates, any opened
devices which have not been closed by the application are closed. The access method
Is_open calls can be used to detennine whether ajob's opened devices have been closed.

Multiple processes, in one or more jobs, can share a single opened device. An opened device.
exists until it is closed by all jobs that reference it.

IV-1.3 Concurrent Access to Opened Devices
Asynchronous I/O allows the execution of a process to proceed concurrently with the execu
tion of I/O operations it has called. A process that opens a device is free to pass the opened
device to other processes in the same or different jobs. These processes can then make concur
rent I/O calls.

Multiple opened devices can be open concurrently on the same device. For example, multiple
jobs can concurrently open and read a flie. This increases efficiency and allows a process the
option of waiting for the completion of I/O from multiple devices.

I/O operations are nonnally perfonned synchronously. For input calls, however, a process
may choose not to block, and to wait for the arrival of input after having made an input call.
Blocking can be avoided or postponed by the Enable_input_notification and
Disable_input_notification calls common to all the access methods. These calls
activate and deactivate asynchronous notification to processes of the arrival of input from an
opened device.

A device manager acts as a traffic cop, supervising record locking, serialization of process I/O,
etc. The application, however, can explicitly stipulate the degree of concurrency which can be
exercised with an opened device. Device_Defs. allow_mode, a parameter in access
method Open calls, defines what concurrent I/O is allowed on an opened device. These
modes include:

Understanding IiO Access Methods IV-1-3

PRELIMINARY

reader s - Allows only readers to share a device. A process is considered a reader when it
opens a device for input or inputyartial.

anything - Allows other readers or writers to share a device. Synchronization is the
application's responsibility.

nothing - Allows no concurrent use of a device.

Figure IV -1-2 shows two processes communicating concurrently with the same opened device.

Process A Opened Device

Figure IV-1-2. Concurrent I/O

Representation of
a ph ysicol device

IV-1.4 Device Independence

IV-14

Each access method is supported by multiple devices. See Figure IV-1-3. This enables an
application to be independent of any particular device. An access method is a set of operations
that give a caller a pre-defmed I/O channel to one or more devices.

Understanding I/O Access Methods

Printer

PRELIMINARY

BYte_stream-7
I/O

Window File

()

" " "

Pipe

" " "

User
Application

" ~

Basic
Disk

Figure IV -1-3. Access Methods are Supported by Multiple Devices

User
Defined
Device

BiiNTM Operating System attributes provide a method for derming general purpose operations
supported by multiple object types. This method enables type-specific implementations of
general purpose operations, such as access method calls, to be bound to a specific object type,
such as a device type. Devices with access method attributes can perfonn I/O via a standard
access method interface. For example, an application may send records to a report device and
to a file. Both devices contain the record 1/0 attribute and are able to interpret the data in their
own way.

Devices may often be accessible by more than one access method. For example, an application
calls the byte stream Open for a device which supports both byte stream and record I/O. The
opened device, although opened with a byte stream I/O call, can be used for making record I/O
calls.

Table IV-I-I. Devices and Supported Access Methods

ACCESS METHOD

Device Byte Stream Record Char Display

basic disk X X

basic streamer X X

command input device X X

directory X X

me X X

Understanding I/O Access Methods 1V-1-5

PRELIMINARY

ACCESS METHOD

Device Byte Stream Record Char Display

form X

name space X X

pipe X X

print device X X X

report X

window X X X

IV-1.5 How Access Method Implementations Can Vary
Devices may be opened in one of the following modes:

input - Input Read rights required.

inputyartial - Input Read rights required. A file can be opened in this mode even if all
volumes used by the file are not online.

output - Output Write rights required.

inout - Input and output. Read and write rights required.

The modes in which a device can be opened depend on the type of device. For example, the
device manager should not allow a printer to be opened in input mode.

A device manager must implement every operation of the access method being supported,
although it need not support them. An instance of an access method operation may raise
System_Exceptions.operation_not_supported. Some operations are common
to all access methods. All others are access method-dependent.

IV-1.6 BiiNTM Operating System I/O Access Methods

IV-l-6

The byte stream, record, and character display access methods have the following operations in
common:

Open_by _name
Ops.Close
Ops.Disable_input_notification
Ops.Enable_input_notification
Ops.F1ush
Ops.Get_device_info
Ops.Get_device_object
Ops.Is_open
Ops.Open

Table IV-1-2. Common 110 Operations

Understanding I/O Access Methods

PRELIMINARY

IV-1.6.1 Byte Stream I/O

An application should always be able to use byte stream I/O for all devices. (Forms and
reports are exceptions since they are designed for record data.) Therefore, a device manager is
expected to provide at least an implementation of the byte stream access method.

Process A

z
&....-/ ---1/

~

Opened
Device

Bytes

" I/O -

"F11 ~I'\ 71161?7I I I
,. t

Byte
Pointer

Stream File

Figure IV-1-4. Byte Stream I/O

Table IV -1-3 lists selected byte stream access method calls.

IV-1.7 Record I/O

Byte_Stream_AM.Ops.At_end_of_file
Byte_Stream_AM.Ops.Read
Byte_Stream_AM.Ops.Set_position
Byte_Stream_AM.Ops. Write

Table IV-1-3. Selected Byte Stream Access Method Calls

Stream
of

Bytes

Record I/O is used to read and write records. Forms and reports are specifically designed to be
used with this access method. '

Process A

Opened Device

Records

I/O CCCE5
current
Record
Pointer

Stream File

Figure IV-l-S. Record I/O

Records can be accessed in any of four ways:

Physical sequential
Physical random
Indexed sequential
Indexed random.

Understanding I/O Access Methods

Series
of

Records

IV-I-7

This access method provides access by index and key, and provides fue and record locking.

Table IV -1-4 lists selected record access method calls.

Record_AM.Ops.Delete
Record_AM.Keyed_Ops.Delete_by _key
Record_AM.Ops.Get_DDef
Record_AM.Ops.Insert
Record_AM.Ops.Lock_all
Record_AM.Ops.Read
Record_AM.Keyed_Ops.Read_by _key
Record_AM.Keyed_Ops.Read_key _value
Record_AM.Keyed_Ops.Set_key _range
Record_AM. Ops. Set_open_mode
Record_AM.Ops.Set_position
Record_AM.Ops.Unlock_all
Record_AM.Ops.Update
Record_AM. Keyed_ Ops. Update_by _key

Table IV -1-4. Selected Record Access Method Calls

IV-1.8 Character Display 1/0

IV-1-8

The character display access method is typically used to access devices with two-dimensional
display surfaces.

Process A

Opened
Window A

Process 8 :1 Window B 1

Character Terminal
Opened Device

Figure IV-I-6. Character Display I/O

Understanding I/O Access Methods

PRELIMINARY

Character_Display _AM.Ops. Clear
Character_Display _AM.Ops. Clear_to_bottom
Character_Display _AM. Ops. Clear_to_end_of_line
Character_Display_AM.Ops.Delete_char
Character_Display_AM.Ops.Delete_line
Character_Display _AM.Ops.Get_cursor-POsition
Character_Display _AM. Ops. Insert_char
Character_Display _AM. Ops. Insert_line
Character_Display _AM.Ops.Move_cursor_absolute
Character_Display _AM.Ops.Move_cursor_relative
Character_Display _AM.Ops.Read
Character_Display _AM.Ops.RinLbell
Character_Display_AM. Ops. Set_input_type_mask
Character_Display _AM.Ops. Write

Table IV -1-5. Selected Character Display Access Method Calls

IV-1.9 Standard 1/0 Connections
A process normally executes in an environment w,ith four existing I/O assignments:

standard_input
standard_output
standard_message
user_dialog

These I/O assignments are declared in
Process Mgt Types. process globals entry and are retrieved using
process=Mgt:- (See the BUNTU/OS Reference Manual.) They are part ofa caller's default
environment and are contained in process gJobals, objects that hold user information about a
specific process. user_dialog is normally a window which is guaranteed to be an inter
active device for situations in which a timely response is needed.

The information in the process globals for a specific process is available to any user with an
AD to the process. See Chapter VI-2 for more infonnation on process globals.

IV-1.10 Summary
• An access method is a set of operations for accessing devices. Applications interact with

devices through access methods.

• A device is an object that supports one or more I/O access methods, and which represents a
hardware or software system device.

• Opened devices are I/O channels to devices.

• Multiple opened devices can be open concurrently on the same device.

• A process that opens a device is free to pass the opened device to other processes in the
same or different jobs.

• BiiNTU Operating System attributes provide a method for defining general purpose opera
tions supported by multiple object types.

Understanding VO Access Methods N-1-9

IV-I-IO

PRELIMINARY

• A process nonnally executes in an environment with four existing I/O assignments:
standard input, standard output, standard message,and
user_dialog. - -

Understanding I/O Access Methods

PRELIMINARY

USING BASIC 1/0 2
Contents

Opening and Closing an I/O Device .. IV -2-2
Reading and Writing Bytes ... IV -2-3
Handling End-of-File .. IV-2-3
Using Default I/O Connections .. IV-2-4
Positioning Within a Byte Stream .. IV -2-5
Reading and Inserting Records Sequentially IV -2-6

Using Basic I/O IV-2-1

I"K~LIMlNAK Y

You use the byte stream access method or the record access method to perfonn basic I/O on an
opened device. This chapter describes the techniques for using the Byte _ Stream_AM and
Record_AM packages to perfonn basic I/O.

Packages Used:

Device Defs Provides declarations common to different I/O access methods.

Byte Stream AM
- - Provides device-independent I/O using streams of bytes.

Record AM Provides device-independent I/O for one-record-at-a-time access.

The examples used in the following sections are parts of two procedures:
Output_bytes_ex and Output_records_ex. See Appendix X-A for the complete
listings.

IV-2.1 Opening and Closing an I/O Device
When opening a device with an open call from the Byte_Stream_AM package, the call
returns an opened device. When you are through using an opened device, you remove access
to it with a close call.

Calls Used:

Byte Stream AM.Open by name
- - Opens a device given its pathname, creating an opened device object.

Byte Stream AM.Ops.Close
- - Ooses an opened device.

This example uses the Open_by _name call to open a device for reading:
18 source_opened_device: Device_Defs.opened_device;

29 source opened device :=
30 Byte_Stream_AM.Open_by_name(
31 name => name,
32 input output => Device Defs.input,
33 allow- => Device=Defs.readers);

In the example the open call returns an opened device to the variable
source_opened_device. The input_output parameter specifies the type of I/O for
the opened device; the type of I/O is set to input for reading. The allow parameter
specifies how other callers can use the opened device, while you have it open; the allow mode
is set to readers indicating that other callers can read from the device.

When you close an opened device, you remove the connection between your program and the
device.

50
51

Byte Stream AM.Ops.Close(
source_opened_device);

Using Basic I/O

PRELIMINARY

IV-2.2 Reading and Writing Bytes
Once you create an opened device, you can read and write bytes using an I/O access method.

Calls Used:

Byte Stream AM.Ops.Read
- - Reads bytes from an opened device.

Byte Stream AM.Ops.Write
- - Writes bytes to an opened device.

A simple procedure might:

1. Declare a fixed-size buffer to hold the bytes read

2. Declare an opened input device and an opened output device

3. Qpen the devices.

You can declare a simple 4Kbyte fixed-size buffer as follows:

24 BUFSIZE: constant System. ordinal := 4_096;
25 buffer: array(l .. BUFSIZE) of
26 System.byte ordinal;
27 bytes_read: System. ordinal;

You can request the number of bytes to be read into the buffer using the opened input device
(in this case, the opened device source_opened_device). A byte count is returned.

38 loop
39 bytes read := Byte Stream AM.Ops.Read(
40 source opened device,-
41 buffer'address,
42 BUFSIZE);
43 Byte Stream AM.Ops.Write(
44 dest opened device,
45 buffer' address,
46 bytes read);
47 end loop; -

The Wr it e call writes the data from the buffer to the opened output device (in this case, the
opened device dest_opened_device).

IV-2.3 Handling End-af-File
The Devic_Defs. end_of_file exception is raised when a read call attempts to read past
the end of an input stream.

Calls Used:

Byte Stream AM.Ops.Close
- - Closes the caller's opened device.

Byte Stream AM.Ops.At end of file
- - Checks whether ali opened device is at EOF.

Using Basic I/O IV-2-3

PRELIMINARY

You can monitor the'end-of-file condition using an exception handler. For example, after
reading records inside a loop in the procedure Output_bytes, a Close call is made when
end-of-file is detected:

48 exception
49 when Device Defs.end of file =>
50 Byte Stream AM.Ops~Close(
51 source_opened_device);

An alternative way to check forend-of-file is to use an At_end_of_file call. This call
returns a boolean of true, if the opened device indicates an end-of-fIle condition. The next
Read call on this opened device will raise Device_Defs. end_of_file.

IV-2.4 USing Default 1/0 Connections

IV-2-4

Default I/O connections for standard input and standard output exist in a process's global
variables, the process global entries.

Calls Used:

Process_Mgt.Get-prooess_globals_entry
Retrieves the process globals entry.

You can retrieve a process's standard output with the Get-process_globals_entry
call. Here is a complete listing of the Hello _OS_ex example which uses this technique:

1
2
3
4
5
6

with Byte Stream AM,
Device Defs-;
Process Mgt,
Process-Mgt Types,
System;- -

7 procedure Hello_OS_ex is
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Function:
Write "Hello, world!" on a separate line to the
standard output, using OS packages.

hello: constant string := "Hello, world!" & ASCII.LF;
stdout: constant Device Defs.opened device :=

Process_Mgt.Get-process_globals_entry(
Process_Mgt_Types.standard_output);

begin
Byte Stream AM.Ops.Write(

opened dev => stdout,
buffer-VA => hello(l) 'address,
length- => System.ordinal(hello'length»;

end Hello_OS_ex;

Nonnally, your standard output is directed to your tenninal. You can redirect standard output
to another opened device by setting the Process_Mgt_Types. standard_output
process globals entry. See the
Process_Globals_Support_Ex. Set_standard_output example call in Appendix
X-A.

A simple utility that takes input from a device and directs it to standard output is shown below.
It uses most of the programming techniques previously discussed.

Using Basic I/O

PRELIMINARY

Calls Used:

Byte Stream AM.Open by name
- - Opens a device by creating an opened device for the caller.

Byte Stream AM.Ops.Close
- - Closes an opened device for access.

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

procedure Output bytes ex(
name: System Defs~text)

-- Input device to read.

is

Function:
Opens the named input device and
copies bytes from it to the caller's
standard output, until end-of-file.

source opened device: Device_Defs.opened_device;
dest opened device: Device Defs.opened device;
function Opened device from untyped is new

Unchecked conversion (-
source => System. untyped word,
target => Device Defs.opened device);

BUFSIZE: constant System.ordinal-:= 4 096;
buffer: array(l .. BUFSIZE) of -

System.byte ordinal;
bytes read:

begin -
System. ordinal;

source opened device :=
Byte_Stream_AM.Open_by_name(

name => name,
input output => Device Defs.input,
allow- => Device-Defs.readers);

dest opened device := Opened device from untyped(
Process=Mgt.Get-process_globals=entrY(

Process_Mgt_Types.standard_output»;

loop
bytes read := Byte Stream AM.Ops.Read(

source opened device,
buffer'address,
BUFSIZE);

Byte Stream AM.Ops.Write(
dest opened device,
buffer' address,
bytes read);

end loop; -
exception

when Device Defs.end of file =>
Byte Stream AM.Ops~Close(

source opened device);
end Output_bytes=ex; -

IV-2.5 Positioning Within a Byte Stream
Prior to reading or writing bytes, the byte pointer for an open device can be set to any byte
position in a byte stream.

Calls Used:

Byte_Stream_AM.Ops.Set-position

Using Basic I/O

Moves the byte pointer for an opened device to a specified byte offset in
the byte stream.

IV-2-5

PRELIMINARY

To set the byte pointer, indicate the opened device and then specify a signed byte offset from
the starting byte. Positioning can occur:

.• From the beginning of the device

• From the current pointer position

• From the end of the fue (last byte plus one).

If the byte pointer is set beyond the device's end-of-fue, a subsequent write to the device
causes the device to increase to the size indicated by the new byte pointer position.

IV-2.6 Reading and Inserting Records Sequentially

IV-2-6

Reading and writing records sequentially is very similar to reading and writing bytes. Record
I/O accesses a record as a unit, while byte stream I/O accesses a byte as a unit.

Calls Used:

Record AM.Open
- Opens a device given its pathname.

Record AM.Ops.Close
- Ooses an opened device.

Record AM.Ops.Read
- Reads a record.

Record AM.Ops.Insert
- Inserts a record.

The following procedure, Output_records_ex, is a general-putpOse utility that reads
records sequentially from a file into a buffer, and then outputs them sequentially using stan
dard output. It does the same thing with records that the Output_bytes_ex procedure does
with bytes:

• Declares source and destination opened devices

• Accepts record input from the specified device

• Outputs the record using standard output.

The example Output_record_ex sets up a variable length record buffer to read in records
of any length. The following declaration declares and allocates a variable length buffer:

58 buffer size: System.ordinal:= 256;
59 buffer-AD: System. untyped word :=
60 ObJect Mgt.Allocate(buffer size/4);
61 64 words (256 bytes) is the initial buffer
62 -- size. Buffer size is increased as needed.
63 -- The buffer is in a separate object for easy
64 -- resizing.
65 bytes read: System.ordinal := 0;
66 -- If record requires multiple "Read" calls,
67 -- then this variable tracks bytes read so far.

A read status VA variable is declared to contain status infonnation about the read call. - -
A read_position variable contains the record position for the next read.

Using Basic I/O

PRELIMINARY

68 read status VA: Record AM. operation status VA :=
69 new Record AM.operation status record; -
70 read position:- Record AM.position modifier :=
71 Record_AM. next; - -

The Read call reads records from an input device into a variable length buffer. The buffer is
resized when it is too small to handle a record.

91 loop
92 begin
93 bytes read := bytes read +
94 Record AM.Ops.Read(
95 source opened device,
96 read position~
97 System. address' (
98 bytes read,
99 buffer AD),

100 buffer size - bytes read,
101 status-=> read_status_VA);
102
103 -- When control reaches this point, "Read"
104 -- succeeded without a length error and
105 -- this loop can be exited.
106 EXIT;

If the buffer is too small, a recovery block resizes the buffer by handling the
Device_Defs . length_error exception. The record buffer is resized by checking the
length of the buffer for the Read call using read_status_VA. rec_length.

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

exception
when Device Defs.length error =>

buffer size := read status VA.rec length;
if buffer size = - - -

Record AM.unknown length then
buffer sIze := 2 * 4 *

Object Mgt.Get object size(buffer AD);
-- Double the buffer size if an exact
-- new size is not available.

end if;
Object Mgt.Resize(

buffer AD,
(buffer size+3)/4);

-- May make object even bigger than
-- requested, but that's OK.

read position := Record AM.rest of current;
end; - - - -

The buffer is resized, the read yo sit ion is set to read the next record, and the Read
succeeds without a length error. When the record is read, the record can be inserted to the
standard output.

127 Record AM.Ops.Insert(
128 dest opened device,
129 System.address' (0, buffer AD),
130 bytes_read}; -

See Chapter IV -9 for more infonnation about record I/O operations.

Using Basic I/O IV-2-7

PRELIMINARY

IV-2-8 Using Basic I/O

PRELIMINARY

MANAGING STREAM FILES 3
Contents

Concepts .. IV-3-2
What Is a Stream File? ... IV -3-2
Using Access Methods with Stream Files IV-3-3
Temporary Files .. IV -3-4

Techniques .. IV-3-5
Creating a Stream File ... IV-3-5
Copying a Stream File ... IV-3-6
Emptying a Stream File .. IV-3-6
Deleting a Stream File ... IV-3-6
Creating Temporary Files .. IV -3-7

Summary ... IV -3-8

Managing Stream Files IV-3-1

PKELlMlNAKl:

This chapter shows how to create, copy, and delete stream flIes. To read and write stream
flIes, use the access method techniques that Chapter IV -2 describes.

Packages Used:

Simple File Admin
- - Manages stream files.

Byte Stream AM
- - Provides device-independent I/O using streams of bytes.

Record AM Provides device-independent I/O for one-record-at-a-time access. Con
tains the Record_AM.Ops and Record_AM. Keyed_Ops packages.

A streamfile is a file consisting of a contiguous stream of bytes. Figure IV-3-1 shows a
stream file being opened using byte stream I/O.

Process A

7 ~/ ---..II •
Opened
Device

Bytes

~ I/O
.....

Fl1 .'IA 711 f;1?71 1 I - t
Byte
Pointer

Stream File

Figure IV-3-l. Stream File Being Opened for Access

Stream
of

Bytes

IV-3.1 Concepts
For creating, copying, and destroying stream files, you use the Simple_File_Admin pack
age. For basic I/O with stream files, you use the Byte_Stream_AM and Record_AM
packages.

IV -3.1.1 What Is a Stream File?

IV=3=2

There are two different classes of files: stream files and structured files. The main difference
between a stream file and a structured file is that stream files cannot be indexed. But stream
files can contain records, and you can use record I/O with stream files. For indexed files, you
must use a structured file organization.

You create and destroy stream files using the calls in the Simple_File_Admin package.
You can use these calls inside transactions, but the file is not created or destroyed until the
calling transaction commits.

The system automatically handles disk space allocations for stream files (including file expan
sion and volume set selection). You can specify allocations for stream files with calls in the
S imp Ie _ F i Ie_Admin package. This lets you control how much disk space to allocate for
stream files. Stream files are allocated in this manner:

Managing Stream Files

PRELIMINARY

• Penn anent stream fIles with patbnames are created on the same volume set as the directory
or subdirectory indicated by the patbname.

• Temporary files without pathnames are created on the default system volume set, unless
specified otherwise.

These type rights affect stream files:

read rights

write rights

control rights

Required to open a stream fIle for input.

Required to open a stream flie for output.

Required to allocate disk space for a file and to otherwise manipulate a
file.

IV-3.1.2 Using Access Methods with Stream Files

You can access stream files using either byte stream or record I/O. In general, you should use
byte stream I/O to access a stream file, although you can use record I/O to access records in
stream files. Mixing I/O methods when accessing stream files can cause problems. See the
Simple _F ile _Admin package in the BiiNTM/OS Reference Manual for guidelines.

Stream files are not transaction-oriented; transactions and transaction operations don't affect
I/O operations or other operations on stream files.

IV -3.1.2.1 Byte Stream 110

You perfonn byte stream I/O on stream files using the calls in the Byte_Stream_AM pack
age. These calls let you open a stream file for input or output, read bytes from a stream flie, or
write bytes to a stream flie. You can position a byte pointer to any byte in the file prior to
reading or writing.

IV -3.1.2.2 Record I/O

You perfonn record I/O on stream flies using the calls in the Record_AM package. These
calls let you open a stream file for record input or output, read records from a stream file, or
write records to a stream file.

During a Record_AM read operation, each record is read up to the next tennination character.
During a write operation, a tennination character is appended to delimit the boundaries be
tween records. The tennination character (term_char) is set up when the stream file is
created. It defaults to an ASCII line feed.

You can use stream files for pages of text. Each line of text is a record. A record containing
only an ASCII fonn feed (that is, a page mark) is the end of a page of text Page marks can be
created using a Record_AM. Ops • New yage call.

Figure IV-3-2 shows possible line formats. The angle brackets <> indicate a required element.
The braces {} indicate a repeating element.

Managing Stream Files IV-3-3

rK~LIlVllNAK I

empty-line : = <preceding-delimiter> <terminator>

data-line : = <preceding-delimiter> {<data character> }
<terminator or EOF>

page-mark : = <preceding-delimiter> <form-feed>
<terminator>

Figure IV -3-2. Line Formats for Stream Files

preceding-delimiter

data-character

terminator

is either a terminator or the beginning of the file and is not part of the line
that follows it

is any character except a tenninator.

is the file's specified tennination character.

The definition of the page mark excludes its tennination by the end-of-file marker. A fonn
feed character written without the trailing tenninator is treated by record I/O as a data charac
ter. To be compatible with stream files that use byte stream I/O, the data line is allowed to be
terminated by the end-of-file marker.

Other record-oriented characteristics of stream files include:

• Each record in a stream file has a unique, system-maintained record ID.

• A tennination character cannot be part of a record.

• Records cannot be indexed.

• Records cannot be deleted.

• Records can be read sequentially or randomly based on the physical ordering of the records
in the file.

• Records can only be inserted at the end of the file.

• Records can be updated as long as the size of the record doesn't change.

• Stream files don't participate in transactions, don't support record locking, and don't sup
port file logging.

IV-3.1.3 Temporary Files

IV-3-4

Temporary files are stream files that are not named when created. They exist for the duration
of the current job unless they are explicitly saved and named.

You use a special Simple_File_Admin call, Create_unnamed_file, to create a tem
porary file. If you intend to create a temporary fIle and then save it later, it's best to indicate
its volume set when the fIle is first created. That way, you can make sure that the pathname
you assign the file (when you save it) is on the correct volume set.

• You can explicitly destroy a temporary fIle by making a Destroy_file call.

• You can name a temporary file by making a Save_unnamed_file call.

Managing Stream Files

PK~LIMINARY

• Once a file is named, it has a corresponding directory entry. By deleting this entry with a
Directory_Mgt. Delete call, you get rid of the passive version of the file object. The
file goes away when the last AD that references it goes away.

IV-3.2 Techniques
This section provides the techniques for creating, copying, and destroying stream files. After
reading this section you will be able to:

• Create a stream file

• Copy a stream file

• Empty a stream file

• Delete a stream file

• Create a temporary stream file.

The examples used in the following sections are parts of one procedure: Stream_file_ex.
See Appendix X-A for the complete listing.

IV-3.2.1 Creating a Stream File

When creating a stream file, you only need to specify the file's pathname to the call that
creates your file. The filing system:

• Creates a stream file using the file's pathname

• Stores an entry in the new file's directory

• Returns an AD for the file with all type rights.

Calls Used:

Simple File Admin.Create file
- - Creates a stream-file.

You specify the file's patbname in the name parameter, which must be a
System_Defs. text type. The directory where you want to create the file must exist and
the filename must be unique, or you will get an exception. To create a file use:

20 Text Mgt.Set(filename, ".my file 1");
21 fileT:= Simple File Admin~Create file(filename);
22 -- Creates a stream file in the-current
23 -- directory.

The rest of the parameters are defaulted. You can specify the number of bytes to preallocate
for disk storage with the bytes_toyreallocate parameter. The default is no byte
preallocation. You can specify an alternate tennination character with the t er~ char
parameter. The default tennination character is an ASCII line feed.

Managing Stream Files IV-3-5

I'KELIM1,NAK Y

IV-3.2.2 Copying a Stream File

Once you create a file, you can copy its contents to another file.

Calls Used:

Simple File Admin.Copy file
- - Copies the contents of one fue to another.

You copy a file by specifying the source_file and target_file parameters. Forex
ample:

28 Text Mgt.Set(filename, limy file 2");
29 file2:= Simple File Admin~Create file(filename);
30 Simple File AdmIn.Copy file (source file => filel,
31 - - - target-file => file2);
32 Creates a second file in the current directory,
33 -- and then copies the contents of the first file
34 -- to the second.

You have the option of de allocating unused pages in the second file by setting a shrink
boolean to true.

IV-3.2.3 Emptying a Stream File

You can empty a stream file with one call.

Calls Used:

Simple File Admin.Empty file
- - Empties a file of its contents without de allocating it.

For example, to empty the contents of a file use:
36 Simple File Admin.Empty file(file1);
37 -- Empties the first file.

If there is more than one caller using the file, the file is not emptied until all callers have closed
the fue. This default setting can be changed by setting a not i f Y _if ~ bu s y boolean to true.
If this parameter is true, Device_Defs . device_in_use is raised when a file is in use,
and the file is not emptied.

Empt y _ file is slightly more complex when done inside a transaction. See the
Simple_File_Admin package in the BiiNTU/OS Reference Manual.

IV-3.2.4 Deleting a Stream File

You can delete a file by simply deleting its directory entry or by destroying the file.

IV-3-6 Managing Stream Files

PRELIMINARY

Calls Used:

Directory Mgt.Delete
- Deletes a directory entry. This may also destroy the referenced objecfs

passive version.

Simple File Admin.Destroy file
- - Deallocates all parts of the file, but not its directory entry.

Process_Mgt.Get~rocess_globals_entry

Gets the default directory for the stream file.

To delete a file's directory entry you call Delete, giving the file's pathname in the name
parameter. For example, to delete a file in the current directory use:

39 Text Mgt.Set(filename, "my file 2");
40 Directory Mgt.Delete(filename);-
41 The second file's pathname is deleted. The
42 -- second file is destroyed when the last
43 -- reference to it goes away.

You can also delete a fue with the Destroy_file call. You need to specify the file's AD
with the file parameter. This example destroys a temporary file:

67 Simple File Admin.Destroy file(file3);
68 -- Destroys-the temporary-file before its job
69 -- terminates. If it is not destroyed or saved,
70 -- it goes away when the job terminates.

This call only destroys the file, not the file's directory entry.

If there is more than one caller using the open file, the file is not destroyed until all callers have
closed the file. The notify_if_busy parameter can change this. If true, this parameter
causes the Device_Defs. device_in_use exception to be raised when the file is in use;
the file is not destroyed when this exception is raised.

Do not use a Delete call to delete a temporary stream file; use the Destroy_file call. If
you use the Destroy_file call in a transaction, the file is not destroyed if the transaction
aborts.

IV-3.2.5 Creating Temporary Files

You can create temporary stream files for intennediate data storage (for example, a work file).
Temporary files exist for the duration of the current job, and are automatically destroyed when
the job tenninates.

Calls Used:

Simple File Admin.Create unnamed file
- - Creates a temporary stream file.

Passive Store Mgt.Home volume set
- Returns an obJect's home volume set.

Process_Mgt.Get~rocess_globals_entry

Gets a process globals entry.

Managing Stream Files IV-3-7

rK~L.1Nll~AK 1:

To create a temporary file, you must specify its volume set in the volume_set parameter.
For example:

45 file2:= Simple file Admin. Create. unnamed file(
46 Passive Store Mgt.Home volume-set(-
47 Process_Mgt.Get-Frocess_globals_entry(
48 Process Mgt Types.current dir»);
49 Creates a temporary file in the current
50 directory using the current directory's
51 volume set.

This example retrieves the home volume set for the current directory and uses it as the volume
set for the file. You can name a temporary file and save it as a penn anent fue using
Simple_File_Admin.Save_unnamed_file.

IV-3.3 Summary

IV-3-8

• Use stream files to read and write bytes.

• You cannot index stream fues.

• Stream files don't participate in transactions.

• Temporary fues exist only for the duration of the current job unless you explicitly name
and save them.

Managing Stream File§

PRELIMINARY

USING WINDOWS 4
Contents

Concepts .. IV -4-2
Terminals and Windows ... IV -4-3
Accessing Windows ... IV-4-4
Window Coordinates .. IV-4-4
Terminal Attributes ... IV -4-5
The Input Model ... IV -4-6
The Output Model .. IV -4-7
Overlapped Windows ... IV -4-7
Some Key Points ... IV -4-9
Resizing a Window .. IV -4-10
Basic Window Operations ... IV -4-12
Window Style .. IV -4-12
Menus and Windows ... IV -4-13
User Agents .. IV-4-15
Character Terminal Manager ... IV -4-15
Character Terminal Manager Support for Input Operations IV -4-15
Character Terminal Manager Support for Output Operations IV -4-16
Character Terminal Manager Support for Access Method Operations IV -4-16

Techniques ... IV-4-18
Obtaining an AD for the Underlying Terminal IV -4-18
Creating a Window .. IV -4-19
Setting a Window's Attributes .. IV -4-19
Setting a Window's Style ... IV -4-19

Summary .. IV -4-20

Using Windows IV-4-1

rK~LJ.IVlll~AK I

This chapter discusses the use of windows on character terminals, including tenninal manager
support for windows and I/O access methods.

Packages Used:

Character Terminal Mgt
- Manages character terminals.

Terminal Defs
- Defines constants, types, and exceptions used by the terminal selVice

packages.

Window Services
- Provides windows on character and graphics terminals, including pull

down menus.

A window is a portion of the tenninal screen through which a user interacts with an application
program. In general, the screen can contain multiple windows; the windows do not overlap.
The user controls the size, location, and visibility of windows, but the application program
controls the contents. The application uses one of three access methods to do I/O to a window.
Coordinate systems describe the location of windows with respect to the screen and the loca
tion of specific points within a window. A user can move a window, resize it, pan it vertically
or horizontally, and request that it be closed. Windows can have pop-up menus. Terminal
managers provide support for windows and I/O access methods.

IV-4.1 Concepts
The following terms are used throughout this chapter:

physical terminal The physical tenninal is a video display device with a keyboard.

user The human being interacting with the system through a tenninal.

application The application program being run by the user. Typical examples are text
editors and spread-sheet programs. The term "application" also covers any
additional software that lies between the application and the operating sys
tem.

virtual terminal A device that, to an application, is indistinguishable from a physical ter
minal. A virtual tenninal provides a screen-like drawing space for the out
put of characters or graphics, and a keyboard and mouse for input.

frame buffer The drawing space of a virtual tenninal. An application writes to the
frame buffer associated with a virtual tenninal. The frame buffer is visible
to a user through a rectangular screen area; that is, through a window. The
part of the frame buffer that is visible through a window is called the view.

window The rectangular screen area where the view appears. Many windows may
be visible on the screen at the same time.

view The visible part of the frame buffer. The view may not be larger than the
frame buffer.

input focus There may be many windows on a terminal, but there is only one keyboard
(and mouse). The input focus is that virtual terminal to which keyboard
and mouse input are connected at a given time.

IV-4-2 Using Windows

PRELIMINARY

Figure IV -4-1 shows the relationships among views, windows, frame buffers, and a physical
tenninal.

..---
..-"

..-"-Physical
Terminal

~----------------~---
---..-

---..---
r-:::::l-~ ",

--

-
-------..-

-

Frame Buffer

--

View

-- ..---

Figure IV-4-1. Windows Displayed on a Physical Terminal

IV-4.1.1 Terminals and Windows

The current system release supports character tenninals. Graphics tenninals will be supported
in a future release.

Character tenninals have some subset of the features specified in the ANSI X3.64 standard:
character insertion and deletion, line insertion and deletion, cursor positioning, scrolling, and
so forth. The DEC VT -1001 is a typical character tenninal.

The screen of a character tenninal is divided into a Cartesian grid of fixed-width, fixed-height
character cells each of which contains a displayable character. Each cell is identified by (x,y)
coordinates, starting with (1,1) in the upper-left hand comer. The x coordinate increases to the
right, and the y coordinate increases downwards. Graphics terminals have all the capabilities
of character tenninals and others as well; for example, line drawing, line and point attributes,
and raster primitives. The graphics tenninals to be supported are (TBD).

The screen of a graphics tenninal is divided into a Cartesian grid of pixels, each of which is
identified by (x,y) coordinates in the same fashion as character cells on a character tenninal.

On a character tenninal, a window consists of a rectangular grid of character cells; on a
graphics tenninal, it consists of a rectangular grid of pixels. The size of the window is initially
suggested by the application, and may be modified by the user. Note the following:

1 DEC VT -100 is a trademark of Digital Equipment Corp.

Using Windows IV-4-3

.t"K~LJMlNAKY

• The system constrains windows on character terminals to be as wide as the screen.

• Character terminal windows do not overlap. Graphics terminal windows can overlap.

IV-4.1.2 Accessing Windows
An application does I/O to a physical terminal through the frame buffer and keyboard as
sociated with the applicationts virtual terminalt but we will talk about I/O to windows since
they provide the visible evidence of I/O activity within a frame buffer.

An application creates and manipulates windows through the Window_Services packaget
which provides a procedural interface for creating and destroying windows, manipulating the
characteristics of windows, and building and installing menus on windows.

Once a character terminal window has been set up, three access methods are available for
performing I/O in the window:

• Character_Display_AM

• Byte_Stream_AM

• Record AM.

Character_Display_AM provides operations for doing character I/O to windows, treating
the window as a two-dimensional grid of character cells. Operations are provided for input,
output, insertion and deletion of lines and characters, cursor movement, etc.

Character_Display_AM is the primary access method for character terminal windows,
but an application can also use Byte_Stream_AM and Record_AM. Under these access
methods, I/O to a window is treated as a stream of characters. Operations are provided for
input, output, etc. Several of these operations have slightly different semantics when they are
used to access windows.

An application mixes access methods when it calls the Open function of one access method
and then uses the returned opened device to call operations provided by other access methods.
An example would be calling Byte_Stream. Ops . Open and then using the returned
opened device object to call Character_Display_AM. Ops. Insert_line. The extent
to which access methods can be mixed is device-dependent.

IV-4.1.3 Window Coordinates

IV=4=4

Window_Services treats terminals and virtual terminals as two-dimensional display sur
faces, and provides operations that refer to positions on the surfaces. A position is specified by
a pair of coordinate values within a coordinate system.

An application using Window_Services may need to access either character positions or
pixel positions. Accordingly, Window_Services provides both a character-oriented coor
dinate system and a pixel-oriented coordinate system. Each operation that takes parameters to
describe a position also includes a boolean parameter to select which coordinate system is used
to interpret the values.

Figure IV -4-2 shows the position of a window relative to the screen as measured in the
character-oriented and pixel-oriented coordinate systems. In each case, the horizontal com
ponent of the position is given first followed by the vertical component. The upper left corner
of the window is in the 4th character column of the screen (counting from the left) and the 5th

Using Windows

PRELIMINARY

character row (counting from the top). Thus the character-oriented coordinate system position
is (4,5). The same corner is in pixel column number 10 (1 is at the left), and pixel row number
40 (1 is at the top). Thus the pixel-oriented coordinate system position is (10,40).

(4,5) Character-oriented

(10,40) Pixel-oriented

SSG\windserv

Figure IV-4-2. Window_Services Coordinate Systems

IV-4.1.4 Terminal Attributes

There are a number of attributes that affect the I/O done to a window. Tenninal attributes are
defined on a per-tenninal basis and affect all the windows on the tenninal. Table IV -4-1lists
these attributes. The table provides suggested defaults; the actual defaul~ are device depend
ent.

See the Terminal_De f s package for more detailed infonnation.

Table IV -4-1. Terminal Attributes

Attribute Default Setting

erase BS «Ctrl-1b)

cancel NAK «Ctrl-U»

newline LF (<Ctrl-J»

EOL NUL (<Ctrl-@»

EOF EaT (<CtrI-D»

literal_next SYN «Ctrl-V»

redraw _inPUCline DC2 (<Ctrl-R»

suspend SUB (<Ctrl-Z»

interrupt ETX (<Ctrl-C»

tennination DEL (<Ctrl-?»

debug STX (<Ctrl-B»

Using Windows IV-4-5

Table IV·4·1: Terminal Attributes (conL)

Attribute Default Setting

stop DC3 (<Ctrl·S»

start DCI (<Ctrl.Q»

do_flow _controCout wait_for_any

do_flow _controCin false

ignore_break false

do...,parity _checking true

bad_char_handling discanCbad_char

visuaCbell false

baud_rate b_9600

physicaCchar_detail (none,one,eight)

IV-4.1.5 The Input Model

IV-4-6

An application running in a window obtains user input by calling the Read procedure in one
of the four access methods mentioned earlier. The Read procedure returns one or more input
events of a certain type. This section characterizes the various types of input and presents the
general input model.

If a keyboard were the only input device of a teIminal, and a teIminal did not provide multiple
windows, the input model would be simple. To obtain keyboard input, an application would
call the appropriate Read procedure, which would (optionally) block until the user typed
something. If the user typed while no application was reading, the data would be stored in an
input event queue until the application requested it.

This simple input model is inadequate because there are other types of input:

Mouse input A teIminal may have a mouse in addition to a keyboard. The mouse intro
duces a new type of input event. (Input events should not be confused with
the events defined by Event Mgt. As used here, the teImevent
describes an action perfoImedby the user.) A mouse input event contains
infoImation about the position of the mouse in addition to the state of its
buttons. Furthennore, an application that wishes to read input from both
the mouse and keyboard must be able to distinguish between keyboard
input events and mouse input events.

Window-related input
Imagine a clock application that does nothing but draw a clock face in the
frame buffer, updating it each second. According to the material presented
so far, the user sees a window that may be much smaller than the frame
buffer itself, in which case only a small part of the clock face is visible,
and the application is not particularly useful. The application could im
prove its user interface if it could draw a smaller clock face that would fit
within the view of the frame buffer. To do this, the application would need
a way to fmd out about changes in the origin and size of the view.

Window Services makes that possible by defining a number of
window-related input events that can infoIm the application about events
that occur to the window; the application can then take whatever action is
appropriate.

User-defined input The user may define input events.

Using Windows

YKt;LIMlNAK Y

The system provides an enumeration type, Terminal_Defs. input_enum, that denotes all
four types of input events (the literals from menu_itemyicked through
scroll_requested denote window-related input):

keyboard The user typed something on the keyboard.

mouse The user moved the mouse, or its buttons, or both.

menu_itemyicked
The user picked an item from a menu.

focus_changed The user changed the input focus.

overlap changed
- The user changed the window's overlap state.

size_changed The user changed the window's size.

view_changed The user panned the view to a new position on the frame buffer.

position changed
- The user moved the window to a new location on the screen.

close requested
- The user requested that the window be closed.

scroll requested
- The user requested that the window be scrolled.

user_defined An application initiated a user-defined input event.

The system provides another type, Terminal_ Def s . input _type_mask, that denotes a
set of these input types. There is always an input type mask in effect for a given virtual
tenninal. Newly arriving input events are accepted if their type matches one of those in the
input type mask for that window; otherwise they are discarded. When a new input event is
accepted, it is stored in an input event queue or passed immediately to an application blocked
on a read call.

IV-4.1.6 The Output Model

output to a window is accomplished through output to the window's frame buffer using one of
the three access methods. See the BiiN

TU
lOS Reference Manual.

IV-4.1.7 Overlapped Windows

As mentioned earlier, the system supports multiple windows on a single physical tenninal.
The rest of this chapter describes Wi ndow _ S erv ice s, the interface for creating, destroying,
and controlling windows. But before describing this interface, a more detailed discussion of
windows is required.

Recall that an application draws figures or characters on a drawing space called a frame buffer.
A rectangular portion of the frame buffer, the view, is mapped to a rectangular area on the
screen. This rectangular area is called the window and is the same size as the view. The origin
of the view is measured relative to the frame buffer, and the position of the window is
measured relative to the screen.

Figure IV -4-3 shows these relationships.

Using Windows IV-4-7

IV-4-8

Position

rK~L1lVll~AK I

Screen

Window

~----------------~\ \ \
\ \
\ \
\ \
\ \
\ Frame Buffer \
\

Origin \

~
\
\
\

't

\
\
\
1

View

Figure IV -4-3. Relationship Between Window and View

Figure N-4-3 shows a single window, but in general it is possible to display multiple windows
on a single tenninal screen and to have the windows overlap like sheets of paper on a desktop.
(Support for overlap is device dependent, with each device manager defining the level of
support it provides; in particular, overlap is not supported on character tenninals.)

Overlapped windows are ordered in aJront-to-back relationship that detennines what is dis
played in areas of the screen that are covered by more than one window. Some windows may
be partially or wholly obscured by windows that are logically in front of them.

Figure N -4-4 shows a possible layout for three windows whose front-to-back ordering is (WI,
W2, W3). W2 is partially obscured by WI, but W3 is unobscured since it does not overlap
with WI or W2.

Using Windows

PRELIMINARY

W1
W3

W2

Figure IV -4-4. Example ot Overlapped Windows

IV-4.1.8 Some Key Points

• Windows are independent of one another. The abstraction presented to an application is
that it caQ draw images on a frame buffer that is completely independent from all other
frame buffers. The application can treat the frame buffer as if it were an entire screen.
Since frame buffers are independent, so are windows.

• An application cannot affect the screen outside its window. All drawing operations are
clipped to the boundaries of the frame buffer. Only the portion of the frame buffer inside
the view is visible in the window. Screen areas outside the window belong to other ap
plications or are unused.

• A frame buffer's size is fixed when it is created, and never changes. The corresponding
view cannot be enlarged beyond the edges of the frame buffer. Thus a window can never
be larger than its frame buffer.

• The user controls the layout, size, and front-to-back ordering of windows, but an applica
tion has full control of a window's contents. This includes drawing on the frame buffer and
panning the view over the frame buffer. Everything else is controlled by the system. This
includes clipping, maintaining the coordinate system for the frame buffer, and changing the
layout, size, and visibility of windows. The system software that interacts with the user to
perfonn these tasks is called:

- The character terminal user agent for character tenninals.

- The graphics terminal user agent for graphics terminals.

Using Windows IV-4-9

rK.r..LllYlll~AK I

IV-4.1.9 Resizing a Window

If the user changes the size of the window, then the view's size must also change so that a
different portion of the frame buffer becomes visible in the window. But what is the position
of the new view in the frame buffer? As shown in Figure IV -4-5 there are several possibilities.

The figure shows a frame buffer and view before and after the view size is doubled. In (b), the
left top comer of the new view is at the same position as the left top comer of the old view. In
(c), the middle of the new view is at the same position as the middle of the old view. In either
case, the application had no opportunity to control the position of the view and hence the
window's contents, which means that the user's ability to control layout is in conflict with the
application's responsibility to control contents.

Frame Buffer
Before Resize

~
LJ

(a)

Frame Buffer
A fter Resize

One
Possible

New
View

(b)

Frame Buffer
A fter Resize

Another
Possible

New
View

(c)

Figure IV -4-5. Example Showing Two Possible Resize Rules

To address this problem, Window Services allows an application to specify a resize rule
that describes the desired effect of a resize operation on the view origin. Whenever possible,
this rule is used to resize a window. Thus the application indicates its wishes before the resize
operation occurs.

A resize rule identifies a stable point within the frame buffer by describing its position relative
to the view. The stable point occupies the same position relative to the view's borders after the
resize as before the resize. For example, if the resize rule is LT the left top comer is the stable
point. The frame buffer contents that appeared in the left top comer of the window before the
resize still appear in the left top comer after the resize. Figure IV -4-6 illustrates this by
showing a frame buffer and view before and after a resize that enlarges the view. The resize
rule is LT. After the resize operation, the same contents still appear in the left top comer of the
window.

Using Windows

PRELIMINARY

Frame Buffer and
View Before

When in the course
of Ihumanl events it
becomes necessary
for one people to
dissolve th e
political bonds

Window Before

Ihumanl

Frame Buffer and
View After

When in the course
of human events it
bee omes necessary
for one peo~le to
dissol ve th e
political bonds

Window After

human events it
omes necessary

one people to

Figure IV -4-6. Left Top Resize Rule

Resize rules are two-character strings. The first character describes the stable point's horizon
tal position, and the second character describes its vertical position. Legal resize rules allow L,
M, and R for the first character, indicating left, middle, and right, and T, M, and B for the
second character, indicating top, middle, and bottom.

Two other characters are allowed in either position of a resize rule:

F

c

Using Windows

The horizontal or vertical dimension is fixed. Any point in the contents is
stable relative to the left and right borders or top and bottom borders. The
window.cannot be resized in the corresponding dimension.

The position of the window's contents remains as specified, and its borders
move as required to perfonn the resize.

An attempt to move the window partially off the screen moves the contents
as required and adjusts borders as necessary. For example, Figure IV-4-7
shows a screen and a window with the CC resize rule. An attempt to move
the window partially off the screen to the right would move the window's
contents the requested distance and clip the window and view on the right
to fit

IV-4-11

rKELIlVllr-lAK I

Frame Buffer and
View Before

He saw the cat

Frame Buffer and
View After

He saw the

Figure IV -4-7. Contents Resize Rule Example

IV-4.1.10 Basic Window Operations

The above describes the basic functions of Window_Services; the following is a list of the
corresponding calls:

Get Window Services Attr ID
- Returns the windowing attribute ID.

Create window Creates a window on a terminal.

Destroy window
- Destroys a window on a terminal.

Get_terminal Returns the terminal containing a window.

Change _view Moves a window's view over its frame buffer to a (new) origin.

Set resize rule
- - Sets a window's resize rule.

Get resize rule
- - Returns a window's resize rule.

Get window status
- - Returns a window's status.

Insert input event
- - Inserts an input event into a window's input event queue.

See the Window_Services package for more information.

IV-4.1.11 Window Style

IV=4=12

An application can control two aspects of a window's style:

Interactions

Appearance

The application can choose what user-interactions are permitted for a win
dow. These interactions include generating a close request, moving the
window, re-sizing the window, and panning the window vertically or
horizontally.

The application can choose whether a window has title and information
bars, and what the contents of the bars is. The application can also affect
the size and position of sliders within scroll bars.

Using Windows

PREUMINARY

Note that the appearance of a window may be related to the set of permitted interactions. For
example, graphics terminals may add scroll bars to a window and use the scroll bars to specify
panning operations. The appearance and attributes of border areas like scroll bars are device
specific.

Window_Services provides two calls for controlling the elements of a window's style:

• Get_window_style

• Set_window_style

These calls enable the application to control border areas and window interactions. The opera
tions are fully described in Window_Services, but several points are worth emphasizing:

• Some combinations of border areas are not permitted. The exact combinations permitted
are defined by each device manager. All devices allow a window with no border areas.

• megal combinations of border areas are silently transformed into legal combinations. If an
application needs to know what border areas are actually present, it can call the
Get_window_style operation.

• The contents of a border are maintained even if the border area is not present. For example,
the application can supply text for the information line even if the line is not currently
present. Then, when the information line is added, the text appears.

IV-4.1.12 Menus and Windows

Pull-down menus can be associated with windows. The number of menus per window and the
menus' features are device dependent, but as a minimal level of support, all devices support a
menu consisting of a single list of text items that can be selected from the keyboard. This
section describes the fu11level of support.

IV -4.1.12.1 Menu Hierarchy

A pull-down menu is a three part hierarchy:

Menu group

Menu

Menu item

A menu group is a collection of menus (see below). A window can have
zero or more menu groups, up to a device-dependent limit.

A menu is a collection of menu items (see below). A menu group can have
zero or more menus, up to a device dependent limit. Each menu has a title.

A menu item is text or a bitmap (on devices that support bitmaps). A
menu can have zero or more menu items, up to a device dependent limit.

Figure IV -4-8 shows the preferred layout for a typical menu group. The menus in the group
appear side by side in a Menu bar, which displays the title of each menu. The character
terminal user agent defines how menu items are selected.

Using Windows IV-4-13

YKELlM1NAKY

A menu bar

!
Menu title 1 Menu title 2 Menu title 3 Menu title 4

Menu item 1

Menu item 2

Menu item 3

.. A pop-up
Menu item 4 menu

Figure IV -4-8. Menu Bar and Pull-down Menu

Full menu support includes the following additional features. (Some device managers do not
support all these features.)

• A menu item can have a check mark in front of it. The meaning of a check mark is
application dependent. A typical use is to indicate the most recent item selected from the
menu.

• A menu item can have a character associated with it. The character is displayed along with
the menu item. The character can be typed to select the item from the menu. Items that do
not have a character can only be selected by using the mouse.

• A menu item can be disabled. A disabled menu item cannot be selected. Disabled menu
items are displayed in gray.

IV -4.1.12.2 Building and Installing a Menu

IV-4-14

An application builds a menu by building the menu's DDejdescription. This is done by using
the Data_Definition_Mgt package, as desribed in the Window_Services .Ops pack
age. The end result is that the application obtains an AD for the menu group.

The application then installs the menu group in a window, supplying the menu group AD and
an ID for the menu group. This ID is analogous to the menu and menu item IDs. It is used in
subsequent references to the menu group and is included in the input event passed to the
application when a menu item is selected. After installing the menu group, the application no
longer needs the AD and can discard it

After installing the menu group, the application can enable and disable menu items, place and
remove a check mark in front of items, and even replace the text of a text item.

Using Windows

PRELIMINARY

To disable the user's ability to invoke menus in a menu group, the application removes the
menu group from the window.

Window_Services provides the following operations for installing menus:

Install menu group
- - Installs a menu group in a window and gives the group an ID.

Remove menu group
- - Removes an installed menu group from a window.

Menu group enable
- - Enables or disables a menu group.

Menu item check
- - Adds or removes a menu item checkmark.

Menu item enable
- - Enables or disables a menu item in an installed menu group.

Replace menu item text
- - Replaces the text of a menu item.

IV-4.1.13 User Agents

As noted earlier, the user controls the layout of windows; that is, the user controls the size,
position, and overlap of windows, as well as which window is the input focus. The system
provides this control through a user agent, which is software that interprets some user actions
as requests to manipulate windows.

For each teoninal in the system, there is a user agent that:

• Parses teoninal input

• Interprets special input sequences as user commands to manipulate the display.

• Calls the needed operations.

There is currently one user agent defined, for character teoninals. See the "Character Teoninal
User Agent" appendix in the BiiNTM/OS Reference Manual.

IV-4.1.14 Character Terminal Manager

See the Character_Terminal_Mgt package for more information about the character
terminal manager.

IV-4.1.15 Character Terminal Manager Support for Input Operations
The general windows input model is described on page IV -4-6. The character terminal
manager supports that model with the following clarifications.

The character teoninal manager generates all defined input event types except mouse,
overlap_changed, and user_defined.

An application uses Character_Display_AM.Ops. Read to read the input events of a
window opened using Character_Display_AM. Ops. Open.

An application can use the Set_input_type_mask call of one of the access methods to
specify the input events that are accepted, and later read, from a window.

Using Windows IV-4-15

PREUMINARY

The Read call of Record_AM and Byte_Stream_AM can be mixed with the Read call of
Character_Display_AM as follows. The Read call of Record_AM and
Byte_Stream_AM only returns one input event type, keyboard input If an application calls
Read in Byte_Stream_AM or Record_AM Read for a window whose current input mask
does not include keyboard input, the keyboard input type is added to the current input mask.
(The keyboard type is not subsequently removed from the input mask unless the application
explicitly requests that action using Set_input_type_mask.) The Read call searches the
input buffer of the virtual terminal for keyboard input. All input events with types other than
keyboard are discarded until keyboard input is found. The keyboard input is then returned to
the user. If no keyboard input is found and the block parameter is true, the application
blocks until keyboard input arrives.

With respect to reading keyboard input, the Read functions of Character_DisplaY_AM
and Byte_Stream_AM have the same semantics. If the window is in line editing mode and
keyboard input is currently at the front of the input queue, then characters are copied to the
caller's buffer until the number of characters requested is reached, an end of line delimiter is
encountered, or some other type of input event is encountered. If the window is not in line
editing mode and keyboard input is currently at the front of the input queue, then characters are
copied to the caller's buffer until the number of characters requested is reached, some other
type of input event is encountered, or there is no more input currently available for the win
dow.

The Read function of Record_AM is exactly the same with one exception. If the window is
in line editing mode and the size of the line is greater than the length of the read request, then
the number of bytes requested is copied to the caller's buffer and the caller receives a
length_error exception. The remainder of the line can be read by calling Read with the
recyosition parameter set to rest_of_current.

IV-4.1.16 Character Terminal Manager Support for Output Operations

The general windows output model is described on pages IV -4-7. The character terminal
manager fully supports that model.

For more infonnation about specific input and output operations, see the B yt e St re am AM, - -
Record_AM, and Character_Display_AM packages.

IV .. 4.1.17 Character Terminal Manager Support for Access Method Operations

The character terminal manager supports Byte_Stream_AM, Record_AM, and
Character_Display_AM.

IV-4.1.17.1 Character Terminal Manager Support for Byte_Stream_AM

IV-4-16

The character terminal manager supports all the operations of Byt e _Stream_AM except for
the following:

• Setyosition

• Truncate.

Several Byte_Stream_AM operations have different semantics with windows:

• Open and Get device info take a window device as a parameter, instead of a ter-
minal device. - -

Using Windows

PREUMINARY

• Get device object takes an opened device and returns the window device that was
opened to get the opened device, rather than the tenninal on which the window resides.

• Enable input notification will signal an action when any input is in the input
queue, but the application may not receive any input (for example, because of the settings
of the input mask or because of device limitations). If this happens and the application
does not wish to block when it perfonns a subsequent Read operation, it should set the
block parameter of Read to false and be prepared to receive no input.

IV -4.1.17.2 Character Terminal Manager Support for Record_AM

The character tenninal manager supports all the operations of Record_AM except for the
following:

• Delete

• Insert

• Insert control record - -
• Lock all

• Setyosition

• Truncate

• Unlock

• Unlock all

• Update

• Write control record. - -
There are several restrictions in accessing windows by Record_AM. The only access mode
supported is physical sequential. The sequential positions supported for Read are next and
rest_of_current. The only write position supported is after_last. The operations
not supported are Setyosition, Write_control_record, Rewrite, Delete,
Truncate, Lock_all, and Release.

Several Record_AM operations have different semantics with windows:

• Get_device_info and Get_device_object have the same semantics as their
countetparts in Byte_Stream_AM.

• Open operates on a window device instead of a tenninal, and the extend,
single_rec_lock, read_ctl_rec, and load parameters are ignored.

• Write writes a line to the window. The line tenninates at the end of the write and the
cursor moves down one row or moves to the beginning of the next row depending on the
current output attributes.

• New_line and Newyage are interpreted appropriately for windows. New_line
causes a line feed character to be written to the frame buffer. (Depending on the output
attributes in effect for the window, other characters such as a carriage return may also be
written to the frame buffer.) Newyage clears the frame buffer to the background color
and leaves the cursor at the first column of the first row.

• Get status returns an AD to a record ofinfonnation about the current status ofa win
dow-:-Most fields are set to constant values and are not meaningful for windows. The only
meaningful fields are input_output, usage, operation_completed,
last_call, rec_length, and at_EOF. If the length of the current.record cannot be

Using Windows IV-4-17

PRELIMINARY

detennined (because the user has not typed a line tenninator), rec length is set to the
unknown length constant defmed in Record AM. The at EOF field is set to true
when an end-of-file character is encountered and all previous user input has been read.
These fields are updated after each Record AM operation.

• The above comments about Enable input notification and Read (see
"Character Tenninal Manager Support for Byte _Stream_AM") are also applicable here.

IV-4.1.17.3 Character Terminal Manager Support for Character_Display_AM

The charactertenninal manager implements all the operations of Character_Dis play_AM
except Font_list.

Several Character_Display_AM operations have different semantics with characterter
minals.

• Set_terminal_attr and Set_window_attr have the nonnal semantics except that
a few attributes are not relevant to character terminals and are ignored. Those attributes are
mouse_sampling, font_index, background_color, and text_color .

• The above comments about Enable input notification and Read (see
"Character Tenninal Manager Support for Byte_Stream _AM") are also applicable here.

IV-4.2 Techniques
This section shows you some techniques for using Window_Services:

• Obtaining an AD for the underlying tenninal

• Creating a window

• Setting a window's attributes

• 'Setting a window's style.

These techniques are shown throughexcetpts from the Simple_Editor_ex procedure.
Simple _ Edi to r _ ex is a simplified screen editor allowing certain operations on an ASCII
text file.

Appendix X-A contains the complete listing of Simple_Editor.

IV-4.2.1 Obtaining an AD for the Underlying Terminal

IV-4-18

Calls Used:

Window Services.Ops.Get terminal
- Returns the terminal containing a window.

One of the editor's first tasks is to create a new window from the old opened window. This
requires the editor to obtain an AD for the underlying tenninal, as in the following call to
Get terminal:

Using Windows

PRELIMINARY

837 -- Create new window from old opened window.
838 old window := Character Display AM.Ops.
839 -Get_device_object(process_Mgt.Get-process_globals_entry(
840 Process Mgt Types.standard input));
841 underlying termInal-:= Window ServIces.Ops.
842 Get_terminal(old_window);-

IV-4.2.2 Creating a Window

Calls Used:

Window Services.Cps.Create window
- Creates a window on a tenninal.

After obtaining the underlying terminal, the editor needs to create a new window in which the
editing operations can take place. To do this, the editor calls Create_window:

843 edit window := Window Services.Ops.Create window(
844 terminal - => underlying terminal,
845 pixel units => false, -
846 fb size => Terminal Defs.point info' (
847 - last column, frame rows), - -
848 desired window size =>-Terminal Defs.point info' (
849 last column, preferred window rows), -
850 window-pos => origin, -
851 view_pos => origin);

IV-4.2.3 Setting a Window's Attributes

Calls Used:

Window Services.Ops.Set window attr
- Modifies a window's attributes.

Next, the editor is changes some of the window's default attributes by modifying selected
fields of window_attributes and then calling Set_window_attributes.

832 window attributes: Terminal Defs.window attr :=
833 Terminal_Defs.default_window_attr;

852 Set window's input and output attributes
853 change from default:
854 window attributes.enable signal := false; for AC AB
855 window-attributes.line editing := false; for AH
856 window-attributes.echo-:= false;
857 -- NOTE: track cursor NYI (use user agent to change view)
858 window attributes.track cursor := true;
859 Window-Services.Ops.Set-window attr(
860 window => edit wIndow, -
861 attr => window attributes,
862 attr mask => (others => true));

IV-4.2.4 Setting a Window's Style

Calls Used:

Window Services.Ops.Set window style
- Modifies a window's styie information.

Using Windows IV-4-19

I'KELlM1NAK I'

The editor's final task prior to opening the window for editing is to defme the window's title
bar by calling Set_window_style:

863 -- Set Title and Info lines
864 Text Mgt.Set(new window info.title, file name);
865 Window Services.Ops.Set-window style(-
866 window => edit window,-
867 new info => new window info,
868 style_list => (others =>-true»;

IV-4.3 Summary

IV-4-20

• A window is a portion of the tenninal screen through which a user interacts with an ap
plication program. In general, the screen can contain multiple windows, and the windows
can overlap. Both character and graphics tenninals can have windows.

• An application creates and manipulates windows through the Window_Services pack
age, which provides a procedural interface for creating and destroying windows, manipulat
ing the characteristics of windows, and installing menus on windows.

• Once a character tenninal window has been set up, four access methods are available for
perfonningI/O in the window: Character_Display_AM, Byte_Stream_AM, and
Record AM.

• Window_Services offers both character-oriented and pixel-oriented coordinate systems.

• The user controls the layout, size, and visibility of windows, but an application has full
control of a window's contents.

• Resize rules allow an application to specify a stable point in the view when a window is
resized.

• An application can control two aspects of a window's style: the user interactions pennitted
for the window and the window's appearance. The window's appearance and the user's
interactions may be related (for example, through border areas).

• Pull-down menus can be associated with windows. The number of menus per window and
the menus' features are device dependent, but as a mimimallevel of support, all devices
support a menu consisting of a single list of text items that can be selected from the
keyboard.

• Pull-down menus have a three-part hierarchy: menu group, menu, and menu item. There
are two phases to menu manipulations: building the menu and using the menu.

• Window Services provides a way for applications to find out about changing view and
window information in a timely manner by defming a number of Window_Services
input events that can be read by an application reading from a window. These input events
infonn the application about events that occur to the window. The application can then
take whatever action is appropriate.

Using Windows

rK~LIM1.NAK y

USING CHARACTER DISPLAY 1/0 5
Contents

Concepts .. IV-5-2
Character Display Devices .. IV -5-2
The Fram.e Buffer ... IV-5-2
The Output Model .. IV -5-4
The Input Model ... IV-5-4
Window Attributes .. IV -5-6
Operations .. IV -5-6

Techniques .. IV -5-8
Opening a Window ... IV -5-8
Clearing the Fram.e Buffer .. IV -5-9
Writing to the Frame Buffer .. IV -5-9
Moving the Cursor to an Absolute Position IV -5-9
Moving the Cursor Relative to its Current Position IV -5-10
Reading Input Events ... IV-5-10
Inserting Characters .. IV-5-11
Deleting Olaracters .. IV-5-11
Identifying the Underlying Device IV -5-11

Summary .. IV-5-11

Using Character Display I/O IV-5-1

This chapter shows how to do I/O to a character display device.

Packages Used:

Character Display AM
- Provides device-independent I/O to character display devices such as

printers, plotters, and windows on character and graphics tenninals.

Window Services
- Provides windows on character and graphics tenninals, including pull

down menus.

Terminal Defs
Defines constants, types, and exceptions used by the tenninal service
packages.

IV-S.1 Concepts
This section presents an overview of character display devices and how an application accesses
them using the Character_Display_AM. Ops package.

IV-S.1.1 Character Display Devices

A character display device displays and manipulates ASCII characters on a two-dimensional
surface. The most common example of a character display device is a window on the screen of
a character or graphics tenninal. Windows are virtual devices through which I/O is done to a
physical terminal. Another example of a character display device is a printer.

The operations for character display devices include input, output, cursor movement,
manipulation of the display surface, control and status activities, and identifying and changing
the attributes associated with a device.

Mixing access methods means opening a device using the Open function of one access method
and then using the resulting opened device object to call operations of another access method.
The extent to which access methods can be mixed is device dependent Character display I/O
can generally be mixed with byte-stream I/O and record I/O.

IV-S.1.2 The Frame Buffer

IV-5-2

To manipulate characters on the device's two-dimensional display surface, an application
program performs operations on a conceptual entity called the frame buffer. The frame buffer
is a two-dimensional grid of character cells whose contents are displayed on the surface of the
device by a device-specific implementation of Character_Display_AM. ops.

On character and graphics terminals, for example, part of the frame buffer is visible through a
rectangular area of the tenninal screen called a window. The visible part of the frame buffer is
called the view. Figure IV -5-1 depicts these relationships.

For more infonnation on windows, views, and frame buffers, see Chapter IV-4.

Using Character Display I/O

Physical
Terminal -- --

~ ------

\..,

Window

Window

....
........

PREUMINARY

---------------- -----
""

..

..
./

........
.... -

........ ...

Frame
Bu ffer

View ----------

Frame
Bu ffer

....-

View

........-

Figure IV-S-l. Views, Windows, and Frame Buffers

The mechanism for specifying the dimensions of a frame buffer is device-dependent. Calling
Window_Services. Ops. Create_window, for example, sets the dimensions of the
frame buffer as well as the desired size and position of the corresponding view and window.

On a character tenninal, each cell in the frame buffer contains a displayable AScn character;
on a graphics tenninal, each cell is measured in pixels and has a fixed width and height. In
both cases, cells are identified by their (column, row) coordinates, starting with (1,1) in the
upper left-hand comer of the frame buffer and increasing downwards and to the right. Note
that the column coordinate comes first in the coordinate pair.

Figure IV-5-2 shows the frame buffer's coordinate system.

Using Character Display 110 IV-5-3

2

3

4

5

6

7

8

9

10

11

PRELIMINARY

2 3 4 5 6 7 8 9 10 11 12 13 14

x ~ r---r-- 10-. ---------- ----r-- Location (5,6) in
Frame Buffer

Figure IV -5-2. The Frame Buffer Coordinate System

A cursor is used to identify specific character cells within the frame buffer. For example, the
Wr i te procedure writes characters at the cursor's current location and moves the cursor to a
new location. Insert char inserts characters at the cursor's current location and moves
trailing characters to the right. Move cursor absolute and - -
Move_cursor_relative move the cursor without affecting the display.

IV-S.1.3 The Output Model

To write characters to the current cursor location in the frame buffer, an application uses the
Write procedure. Printable characters are written and the cursor is movedjorward, while
control characters are either discarded, printed as <Ctrl-X>, or given special treatment. Note
that writing to location (x,y) in the frame buffer overwrites the previous contents of that loca
tion.

To insert characters at the current cursor location in the frame buffer, an application uses the
Insert_char procedure. Printable and control characters are treated as in Write. Trailing
characters are moved to the right (and off the edge of the frame buffer if necessary).

IV-S.1.4 The Input Model

IV-5-4

Input is obtained with the Read call. Read is not supported by output-only devices, such as
print devices.

Input is classified according to the type of input event it represents.
Terminal_ Def s . input _ enum enumerates the input event types, and
Terminal_Defs. input_type_mask specifies which input event types are currently ac
cepted for a device.

Using Character Display I/O

PRELIMINARY

Note that input events are not related to the event types discussed in the Event_Mgt package.

The following is a list of the input event types:

• keyboard

• mouse

• menu_item-picked

• focus_changed

• overlap_changed

• size_changed

• view_changed

• position_changed

• close_requested

• scroll_requested

• user defined

This input model has a number of important features:

• The Read procedure blocks until input arrives (if blocking is requested), and then returns
input data.

• Input from all sources is merged into one stream. This preselVes the time-ordering of input
events, which is crucial to applications where keyboard input describes something to be
drawn at the current mouse position.

• Although input from different sources is merged into one stream, contiguous sequences of
input events from different sources are returned separately; that is, a call to Read returns
only one type of input event. For example, if the input buffer for a device currently con
tains 7 keyboard characters, 2 mouse events, and 23 more keyboard characters, then three
successive requests to read 80 bytes of input data will return, in succession, 7 characters, 2
mouse events, and 23 characters. Because different types of input events are not inter
leaved within a single read, the application does not have to parse the input stream to
separate the input events.

• Because Terminal Defs. input type mask detennines which input event types to
accept, unwanted input is discarded at the earliest possible time.

• The application can change the set of accepted input event types at any time by changing
Terminal Defs. input type mask, but caution is important when doing so. For
example, suppose the currentlnput mask accepts only keyboard input. Then suppose that
the application decides to accept mouse input, notifies the user of this, and changes the
input mask accordingly. If the user manipulates the mouse before the application changes
the input mask, mouse events may be lost. The application can avoid this by initially
setting the input mask to accept both keyboard and mouse events, and then discarding the
mouse events when they are not meaningful.

• Traditional keyboard-only input looks like simple byte-stream input. By default, keyboard
input is the only type of input accepted for a new device. An application can obtain
keyboard input for a device by calling the Read procedure in Byte_Stream_AM. Ops,
Record_AM.Ops,orCharacter_Display~AM.Ops.

Using Character Display I/O IV-5-5

PRELIMINARY

IV-5.1.5 Window Attributes

A set of attributes is defined for each window on a tenninal. These attributes affect the I/O
operations perfonned in the window. Table IV-5-1lists the attributes and their suggested
defaults.

See Terminal Defs. window attr for detailed infonnation about the affect of these - -
attributes.

Window attributes can be queried and set using the following Terminal_Admin. Ops calls:

• Get Terminal Attr - -
• Set Terminal Attr - -

Table IV -5-1. Window Attributes

Attribute Default Setting

fonCindex 1

background_color dark (color intensities all 0)

texccolor white (color intensities all ordinal'last)

map_out_LF _to_CRLF true

map_out_CR_to_LF true

scroll true

linewrap true

map_cootroCchars true

fdLis_DEL false

track_cursor false

optimize_output true

enable_signal true

line_editing true

mouse_sampling butto~sampling

echo true

echo_erase true

echo_LF _cancel true

no_flush false

ignole_in_CR false

map_in_CR_to_LF true

map_in_LF_to_CR false

IV-5.1.6 Operations

The calls in Character_Display _AM. Ops fall into six logical groups:

• Input

Get_input_type_mask

Set_input_type_mask

Read

IV-5-6 Using Character Display I/O

rK~L1M1NAKr

Enable_input_notification

Disable_input_notification

Discard_input

• Output

Write

Insert char

Flush

Discard_output

Ring_bell

• Cursor Movement

Get_cursor-position

Move cursor absolute - -
Move cursor relative - -

• Display

Clear

Clear_to_bottorn

Clear to end of line

Delete char

Delete line

Insert line

• Control and Status

Open

Close

Is_open

Get_device_object

Get device info - -
Begin_batch_changes

End_batch_changes

• Attributes

Get enhancement

Set enhancement

Set_region_enhancement

Font list

Using Character Display I/O N-5-7

PRELIMINARY

IV-S.2 Techniques
This section shows you some techniques for using Character_Display_AM .Ops:

• Opening a window

• Clearing the frame buffer

• Writing to the frame buffer

• Moving the cursor to an absolute position

• Moving the cursor relative to its current position

• Reading input events

• Inserting characters

• Deleting characters

• Identifying the underlying device.

These techniques are shown through excerpts from the Simple_Editor_ex procedure.
Simple _ Edi tor_ex is a simplified screen editor allowing the following operations on an
ASCII text rtIe:

• Moving the cursor forward one column

• Moving the cursor back one column

• Moving the cursor up one row

• Moving the cursor down one row

• Paging up by the size of the view

• Paging down by the size of the view

• Deleting a character (forward)

• Deleting a character (backward)

• Inserting text

• Saving the edited file

• Quitting the editor.

Appendix X-A contains a complete listing of Simple_Editor_ex.

Because of the nature of this example, these techniques are oriented toward windows and
tenninals.

IV-S.2.1 Opening a Window

IV-5-8

After reading the file to be edited into a buffer and creating a window in which to do the
editing, the editor needs to open the window:

870
871
872
873
874

-- Open the edit window
open edit window := Character Display AM.Ops.Open(

device => edit window, -
input output => Device Defs.inout,
exclusive => true);-

Using Character Display I/O

rK~LINll.NAK y

edi t _ window is the device returned by a call to
Window_Services.Ops.Create_window.

The other two parameters indicate that the window is to be opened for both input and output,
with exclusive access.

IV-S.2.2 Clearing the Frame Buffer

The editor's next task is to clear the frame buffer and move the cursor to the (1,1) position:

876 -- Clear window on terminal screen.
877 Character_Display_AM.Ops.Clear(open_edit_window);

The opened _ edi t _window is the opened device returned by the earlier call to Open.

Related calls clear the frame buffer from the current cursor position to the end of the line
(Clear_to_end_of_line) and from the current cursor position to the end of the window
(Clear_to _bot tom).

IV-S.2.3 Writing to the Frame Buffer

Next, the editor needs to display the file in the window. The Wr it e operation writes charac
ters to the frame buffer (overwriting its previous contents) and leaves the cursor after the
written data:

879 -- Write from edit buffer to frame buffer.
880 -- NOTE: There cannot be more line feeds in the length
881 of characters written than there are rows in
882 the frame buffer, otherwise some of the first
883 -- characters will be overwritten in the frame buffer
884 -- The last line is written up to the line feed to
885 -- avoid having a blank line at bottom of the window
886 Character Display AM.Ops.Write(
887 opened dev =>-open edit window,
888 buffer-VA => edit-buffer.lines'address,
889 length- => System.ordinal((last column * (frame_rows - 1»)
890 + (Last_char_in_row(frame_end)-- 1»);
891

edit_buffer .lines' address is the address of the beginning of the buffer.

The formula for the length parameter writes up to, but not including, the linefeed in the last
line that the frame buffer will write. If the last linefeed is written the first line of the frame
buffer will be overwritten and the last line of the frame buffer will be blank.

IV-S.2.4 Moving the Cursor to an Absolute Position

Since the write operation leaves the cursor after the last character, the editor needs to move the
cursor to the (1,1) position by calling Move_cursor_absolute:

893 -- Home the cursor (1,1 position).
894 Character Display AM.Ops.Move cursor absolute(
895 opened dev =>-open edit wIndow, -
896 new-pos => origIn); -

This procedure is called absolute because the new cursor coordinates specify an absolute loca
tion within the frame buffer. That is, calling the procedure with coordinates (x,y) moves the
cursor to column x and row y of the frame buffer. (Column numbers increase to the right; row
numbers increase downward.)

Using Character Display 110 N-5-9

PRELIMINARY

IV-S.2.S Moving the Cursor Relative to its Current Position

Cursor movement may also be relative to the cursor's current location in the frame buffer. For
example, the following call moves the cursor forward (to the right) one column by assigning
the value 1 to the parameter delta_col:

272 Character Display AM.Ops.Move cursor relative(
273 opened dev =>-open edit wIndow, -
274 delta col => 1, - -
275 delta=row => 0);

Assigning -1 to delta_col would move the cursor backward (to the left) one column, and
assigning 1 (-1) to delta row would move the cursor down (up) one row.

IV-S.2.6 Reading Input Events

IV-5-10

The default input mask is for keyboard input so a call to read is all that needed for input.

908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941

procedure Handle_input

is

event num:
event-type:
char_buffer_AD:

System. ordinal;
Terminal Defs.input enum;
char_array_AD := new char_array' (others => ' ');

begin

-- Enter the basic read and process loop
loop

-- Read the next input event
-- default input mask is keyboard
Character Display AM.Ops.Read(

opened dev =>-open edit window,
buffer-VA => char-buffer AD.all'address,
max events => 1, - -
max-bytes => 0,
block => true,
type read => event type,
num read => event=num);

case event type is
when Terminal_Defs.keyboard =>

key input (char buffer AD(I»;
when Terminal_Defs~menu_item_picked =>

key input (char buffer AD(I»;
when others => - -

null;
end case;

end loop;
end Handle_input;

Setting the maximum number of events (max_event s) to 1 and the maximum number of
bytes (max _ b yt e s) to 0 ensures that exactly one event will be read. The procedure blocks
until input is available, and returns the number and type of the event in event _ type and
event _ num respectively.

char_buffer_AD. all' address is the address of the buffer in which the input events
will be placed.

Using Character Display I/O

J'KELIM1NAK Y

IV-S.2.7 Inserting Characters

The following code inserts a character at the current cursor location in the frame buffer.
535 -- Insert the character in the frame buffer
536 -- (Frame buffer cursor is moved automatically)
537 Character Display AM.Ops.Insert char (
538 opened dev =>-open edit window,
539 buffer-VA => insert char' address,
540 num_char => 1); -

Unlike Write which overwrites characters, Insert_char pushes trailing characters to the
right and leaves the cursor at the end of the inserted string. Characters pushed off the edge of
the frame buffer are lost.

IV-S.2.8 Deleting Characters

The following code deletes a character from the frame buffer.
382 -- Delete the character from the window.
383 Character Display AM.Ops.Delete char(
384 opened_dev =>-open_edit_window);

Note that the number of characters deleted can be specified (here it defaults to 1) and that
deletion starts at the cursor's current location. Trailing characters on the line are moved to the
left, and new space at the end of the line is cleared to the current background color.

IV-S.2.9 Identifying the Underlying Device

To create a new window from an old window, the editor obtains a reference to the device
underlying the old opened window by calling Get_device_object:

837 -- Create new window from old opened window.
838 old window := Character Display AM.Ops.
839 -Get_device_object(process_Mgt.Get-process_globals_entry(
840 Process Mgt Types.standard input»;
841 underlying termInal-:= Window ServIces.Ops.
842 Get terminal(old window);-
843 edit window := Window Services.Ops.Create window (
844 terminal - => underlying terminal,
845 pixel units => false, -
846 fb size => Terminal Defs.point info' (
847 - last column, frame rows), - -
848 desired window size =>-Terminal Defs.point info' (
849 last column,> preferred window rows), -
850 window pas => origin, -
851 view_pas => origin);

IV-S.3 Summary
• The Character Display AM package is used for doing I/O to character display

devices. Common examples Of such devices are printers and windows on character and
graphics tenninals.

• To manipulate characters on the device's display surface, an application program perfonns
operations on a frame buffer, a two-dimensional grid of character cells.

• The operations defined for character display devices fall into six groups: input, output,
cursor movement, display, control and status, and attributes .

• Both input and output are defined for windows, but input is not defined for devices like
printers. Input is implemented through a Read procedure that uses an input mask to

Using Character Display I/O IV-5-11

IV-5-12

I'KELJ.M1NAK I'

specify which types of input events are accepted. Output is implemented through the
Write and Insert_char procedures.

• Cursor movement operations and output operations occur within the frame buffer. Each
(x,y) location in the frame buffer specifies a character cell that contains a displayable ASCn
character.

• Display operations alter the appearance of the display surface. There are several operations
to clear the display.

• The attribute operations query and set the attributes of a device.

• The control and status operations perfonn basic activities like opening and closing devices.

Using Character Display I/O

PRINTING 6
Contents·

Concepts .. IV -6-2
Spool Queue ,.............................. IV -6-3
Print Device ... IV-6-3
Spooled Printing ... IV -6-3
Direct Printing ... IV -6-3
Spool File ... IV -6-3
Printer Lists ... IV -6-3
Print Area and Print Position .. IV-6-4
Requesting Form Type and Sheet Size IV -6-4
Printinfo .. IV -6-5
Print Properties .. IV -6-5
Implementation of Spool Device Attributes IV -6-5
Delayed Printing ... IV -6-7
Banner Page and Print Termination Message IV -6-7
Default Properties .. IV -6-7

Techniques .. IV -6-8
Printing to a Spool File .. IV -6-8
Printing Directly to a Printer .. IV -6-9
Controlling Print Properties .. IV -6-10
Administering Spool Devices .. IV -6-11
Adding a New Printer .. IV -6-12

Summary '.. IV -6-12

Printing IV-6-1

PRELIMINARY

IV-S.1 Concepts

IV-6-2

This chapter describes spooled and direct printing.

Packages Used:

Declares types and constants used by spooling packages.

Spool Device Mgt
- - Manages spool devices.

Spool Queue Admin
- - Provides administrative calls for spool queues.

P r in ter _ Adrni n Provides administrative operations for printers.

A spool queue, which is required for all printing, is usually installed at system configuration.
A print device is created by an application for printing. The print device is opened by an
access method. If the print device is opened in spooled mode, the application's output is
written to a spool file to await printing. Printing also requires an opened printer. See Figure
IV-6-1.

Spool Queue

Opened
Application Print Print 6 __ ~ .. ~D--1 D_e_Vi_ce: __ --:J"~1 rOOI

roe]

U
EJ

Printer

Figure IV -6-1. Spooled Printing

Output attributes, optional capabilities and basic printing and spooling functions can be con
trolled through the procedural interface.

Printing

PRELIMINARY

IV-S.1.1 Spool Queue

A spool queue is required for all printing. A spool queue contains spooled files, printer
properties and capabilities, spooling properties, and a iist of connected printers. Printer
devices are created in association with a specific spool queue.

IV-S.1.2 Print Device

A print device is a device created by an application through which data is spooled or printed.
A print device must be created before writing a spool file or printing directly and is associated
with a specific spool queue. It contains infonnation specific to the print job including whether
the print mode is spooled or direct.

The lifetime of a print device is limited by the application which created it The application is
responsible for explicitly deallocating the print device. The same instance of a print device can
be used for several opens, writes and closes.

IV-S.1.3 Spooled Printing

A print device may be opened in spooled or direct mode. Spooled is by far the more com
monly used mode. When the mode is spooled, output is written to a spool file which is
attached to the spool queue. The point at which the spool file is printed depends on:

• Its position in the rank (relative position) of spool files for the spool queue,

• The priority of the spool queue compared to other spool queues, and

• Whether the spool file's rank is changed by moving it to another rank position, to another
spool queue or by deleting it before it prints.

IV-S.1.4 Direct Printing

A print device may be opened in direct mode. Generally this mode is infrequently used,
usually chosen when printed information is urgently required. As with spooled mode, direct
mode is controlled by the spool queue. The difference is that printing is written directly to a
printer rather than to a spool file.

IV-S.1.5 Spool File

When a print device is opened for spooled printing, an Ope n call creates a new spool file.
Wr it e calls send data to a spool file.

Close readies the spool file for printing and allocates it in first in, first out order on its spool
queue. The spool file is then printed when it reaches the top of the spool file rank and one of
the printers connected with the spool queue is ready.

IV-S.1.S Printer Lists

Printing

Lists of printers available for spooled and direct printing are maintained in spool queues, print
devices and spool files. A member of a printer list is free for printing if it is not already
engaged in printing and has the required fonn type mounted.

When a print device is created for a spool queue, the print device inherits the complete printer
list of the spool queue. This list may be modified but must be a full set or subset of the spool
queue's list. The print device's printer list is inherited by its spool files.

IV-6-3

.t"K~LIM1NAKY

A printer's connection with a spool queue is not exclusive. One spool queue may be connected
with several printers, and one printer may be connected with several spool queues. In the latter
case, the spool queue priority determines the order in which competing spool queues will gain
use of a single printer to which they are connected. In direct printing, spool queue priority is
not evaluated. The spool service simply uses the requested printer if it is available.

IV-6.1.7 Print Area and Print Position

The print area defines the area on a sheet or form where output may be printed. Characteris
tically, the print area will be less than the physical size of the page, being indented from the top
and left side of the physical page. The print position is the location within the print area where
printing will next commence. The initial print position for character output is top and left
(column 1, line 1). See Figure IV-6-2.

Initial
print
positio

-
n

r--------------, I sheet width I

I left I I right I '. f

t ---,
-~

~ ~- I
..

Print
Area

Figure IV -6-2. Print Area

I
I
I
I
I
I

sheet
length

I
I
I
I
I
I
I
I

I-

~~~J 

IV-6.1.8 Requesting Form Type and Sheet Size 

IV-6-4 

Applications whose output must print on a certain form or specific size of sheet may request 
that the needed form or sheet be mounted before printing. The request may be one of three 
kinds: 

none - No form or sheet requirements 

form - Name of a form 

sheet - Size of (plain) sheet required. 

If a fOIm or sheet is specified, print or spool service will prompt for acknowledgement that the 
requested form or sheet size is mounted before printing. 

Printing 



PREUMINARY 

IV-S.1.9 Printinfo 

Printinfo entries contain printer capabilities corresponding to a printer type (printers with the 
same capabilities). The entries in the printinfo denote, for example, whether the printer sup
ports colors, and what bytes trigger corresponding functions, such as the bytes that make the 
printer print in red. A spool queue contains a printinfo reference which is specified when the 
spool queue is installed. 

When a printer is connected to a device, the printer's actual capabilities are checked against the 
capabilities in the printinfo entry associated with a spool queue. The capabilities associated 
with the printer must be equal to or be a superset of the capabilities referenced by the printinfo 
associated with the spool queue. If this requirement is met, spooled and direct printing and 
printer emulation can be supported on a specific printer. 

IV-S.1.10 Print Properties 

Print properties are maintained in spool queues, spool files, and print devices. These· 
properties include: 

• Device status 

• Tennination message description and enable/disable status 

• Banner description and enable/disable status 

• Spool file deletion enable/disable status 

• Print copy count 

• Printer list. 

These properties can be set and queried. A Close call disconnects the spool file from the 
print device. Therefore, to modify or inquire about the properties of a spool file, the inquiry 
calls should be made to the spool file instead of the print device. Also, deleting a spool file 
does not affect an existing print device for which the spool file has been created, and vice 
versa. 

IV-S.1.11 Implementation of Spool Device Attributes 

Printing 

Spool device is a collective tenn applied to the following objects: spool queue, print device, 
spool file, and printer. Table 1-1 defines the availability of spool device attribute implemen
tations among the various spool devices. "X" indicates that the attribute(s) is available for the 
indicated spool device, "XS" indicates that the attribute is only available for a print device 
when it is opened in spooled mode, and "-" indicates that the attribute(s) is not available for 
the indicated spool device. 

N-6-5 



I'K~LJ.M1NAK r 

Table IV -6-1. Implementation of Spool Device Attributes 

SPOOL DEVICE 

8pool_ Device _Mgt.Ops. calls print device spool file spool queue printer 

Ge'-OperatiOll_SUPport 

Get_access_method_supporl 

Get_devicc_status X X X X 

Is..graphics_device 

Get_standarcCcharacter_size 

Get...,parameter_text 

Set..,parameter_text 

Get..,prin,-area-POSition X X - -
Get..,prin'-are&_size 

Is..,pixeCunits 

Get..,printer_list 

Connect..,printer 

Disconnect..,printer 

Get_tenninatiOll_message 

Set_termination_message 

Is_tenninatiOll_message_enabled 

Enable_termination_message X X X -
Disable_termination_message 

Get_banner..,page_line 

Set_banner..,page_line 

Is_banner..,page_enabled 

Enab1e_banner..,page 

Disable_banner-page 

Delete_device 

Get_request_class X X - X 

Ge,-sheet_request 

Set_sheet_request X - - X 

Is..,printin&-enabled 

Enab1e..,printing - X X X 

Disable..,printing 

Abort..,printing 

Get30py_number 

Se,-copy_nwnber 

Is_deletin&-enabled XS X X -
Enable_deleting 

Disable_deleting 

Set_test..PJint XS X - -
Get..,prin,-count - X - -

IV=6=6 Printing 



PRELIMINARY 

IV-S.1.12 Delayed Printing 

Printing can be explicitly delayed for a spool queue until a specified time or delayed until a 
specified time when the size of the print job exceeds a specified limit. Print delays are clas
sified as none for no delay, time for a timed delay, or size for a delay dependent upon the 
size of the spool file and the number of outstanding print requests. 

IV-S.1.13 Banner Page and Print Termination Message 

A banner page is an optional page which may be printed to identify a print job. A banner page 
consists of up to five lines. A print termination message is an optional message which may be 
sent to the user who created the print device to signal completion of a print job. 

The lines of banner pages and tennination messages are defined by 
Incident_Defs. incident_code. Fonnalparameters $pl through $p5 may be used 
within message texts used to defined banner page lines and tennination messages. Formal 
parameters are defined in the BiiNTM Command and Message Guide. Each time a print device 
is created, these fonnal parameters are assigned the following defaults: 

$pl - The basename of the spool queue where the print device 
has been created. 

$p2 - The node on which the print device has been created. 

$p3 - The job within which the print device has been created. 

$ p4 - The time at which the spool fue was created or the print 
device was opened for direct printing. 

$ p 5 - The user who created the print device. 

The fonnal parameters are updated when a spool file is created (spooled mode) or a print 
device is opened (direct mode). 

IV-S.1.14 Default Properties 

A new spool queue receives the following default properties: 

• Spool queue properties: 

Spooling is enabled 

The lowest spool queue priority is assigned 

No spool queue print delay is set. 

• Print properties: 

No printers are connected 

Printing is enabled 

No multiple copies are requested 

Automatic deleting of printed spool files is enabled. 

Printing IV-6-7 



rK~LJ.IYlll""A.K I 

• Other properties: 
No banner page will be printed 

No printer tennination message will be issued. 

A new spool queue receives the following default properties: 
Print mode is spooled 

Print position is (1,1). 

When a print device is created, it inherits the print properties of its associated spool queue. 
When a print device created in spooled mode is opened, the resultant spool file inherits the 
print device's print properties. The application may modify these print properties at any time 
between the creation of the print device and the time that the spool ftIe begins to print. Print 
properties of a print device created for direct printing may be modified after the print device is 
created and before printing commences. Attempts to modify print properties after printing has 
commenced will fail. 

IV-S.2 Techniques 
After reading this section, you will be able to: 

• Print to a spool file 

• Print directly to a printer 

• Control print properties 

• Administer spool queues and printers 

• Add a new type of printer. 

The sample code segments are excerpted from the pr int _ cmd _ ex example package. Ap
pendix A contains a complete listing of this package. 

IV-S.2.1 Printing to a Spool File 

IV=6=8 

Calls Used: 

Spool_Device_Mgt.Create-print_device 
Creates a print device for a spool queue. 

Spool Device Mgt.Create print device by name 
- - Creates a print device for a spool queue. 

Spool Device Mgt.Ops.Set copy number 
- - Sets the numberof copies to print. 

The first step in sending output to a printer is to create a print device. Then the print device is 
opened and the output is written to a spool file. for spooled mode or to na printer for direct 
mode (via calls of an access method supported by the print device). The actual time that a 
spool file is printed depends on queue priorities and delays and printer availability. Output 

Printing 



PRELIMINARY 

written in direct mode is printed immediately if the requested printer is available, otherwise the 
write call must be reissued until the printer is available. 

In the following example, Spool_Device_M9t oCreateyrint_device is called to 
create a print device for spooled printing. pixel_units are set to false which causes the 
print_area to be interpreted as character cells. The print_area is set to 132 characters 
wide by 66 characters long. The print_mode defaults to spooled. The print device is 
then opened and written to with byte stream access method calls. 

After the print device is closed, the data is written to a spool file buffer to await an available 
printer or sent directly to a specific printer, depending upon the mode in which the print device 
was created. 

93 sheet size: constant Spool_Defs.size_t := 
94 (132,66); 

139 on untyped := Directory Mgt.Retrieve(on device); 
140 if-Spool Defs.Is spool queue(on untyped) then 
141 print device:~ - -
142 Spool_Device_Mgt.Create-print_device( 
143 spool queue => spool queue, 
144 pixel-units => false; 
145 print-area => sheet size); 
160 open print := Byte stream AM.Ops.Open( 
161 - - print device, 
162 Device_Defs. output) ; 
163 
164 while not 
165 Byte Stream AM.Ops.At end of file (open source) 
166 loop- - - - - -
167 bytes read := Byte Stream AM.Ops.Read( 
168 opened dev => open source, 
169 buffer-VA => buffer' address, 
170 length- => buffer_size); 
171 
172 Byte Stream AM.Ops.Write( 
173 opened_dev => open-print, 
174 buffer VA => buffer' address, 
175 length- => bytes read); 
176 end loop; -
177 
178 Byte Stream AM.Ops.Close(open source); 
179 Byte=Stream=AM.Ops.Close(open=print); 

When the application issues a Close call, the printer is reallocated in the spool queue printer 
list and again becomes available for spooled or direct printing. 

The number of copies of the spool fue that will be printed defaults to 1. The number of copies 
may be changed by calling Spool_Device_Mgt oOps 0 Set_copy_number with the 
desired number of copies. 

IV-6.2.2 Printing Directly to a Printer 

Printing 

When a print device is created for direct printing (the print_mode parameter in 
Spool_Device_Mgt 0 Createyrint_device is set to page_wise or line_wise), 
an Open call establishes a direct connection with a printer from the print device's printer list. 

147 
148 
149 
150 
151 
152 
153 
154 

elsif Spool Defs.Is print device(on untyped) then 
print devIce := - - -

Spool_Device_Mgt.Create-print_device( 
spool queue => spool queue, 
pixel-units => false; 
print-area => sheet size, 
print-mode => Spool-Defs.page wise); 

-- direct printing- -

IV-6-9 



IV-S.2.3 Controlling Print Properties 

IV-6-10 

Calls Used: 

Spool_Device_Mgt.Set-page_output_attributes 
Sets page output attributes. 

Spool_Device_Mgt.Get-page_output_attributes 
Returns the page output attributes associated with a print device. 

These calls petmit query and modification of page output parameters for a print device. These 
parameters include: . 

• Line feed and carriage return mapping 

• Mapping of control characters 

• Scrolling 

• Linewrap 

• Print color (if the printer is capable of color). 

The first four parameters default to true and the print color defaults to black when a print 
device is created. The settings of these parameters can be queried and reset. 

The spool service and print service confonn to the standard printing model in which: 

• Linewrap is set so that text is never lost. 

• Line feeds and carriage returns are mapped to the line feed/carriage return combination. 

• Control characters are printed as a two-character sequence (A<character». 

• A page advance is perfonned when the current print position is in the last column of the last 
row. 

• Text color, if applicable, is set black. 

Table IV -6-2 lists other calls that control properties with brief descriptions of their uses: 

Table IV ·6·2. Getting and Setting Print Properties 

Property How to Get and Set It 

Get the current print 
position and print area size. 

Spool Device Mgt.Ops.Get-print area position 
Spool:Oevice~gt.Ops.Get_print:area:size 

Set and check the completed 
number of copies of a print job. 

Spool Device Mgt.Ops.Set copy number 
Spool=Device~gt.Ops.Get:pr~nE_count 

Get a list of printers Spool_Device_Mgt.Ops.Get_printer_list 
available for a spool queue, 
spool me, or print device. 

Get a device's sheet requesL Spool_Device_Mgt.Ops.Get_ sheet _request 

Get a device's character size. Spool_Device_Mgt.Ops.Get_ standard_character_ size 

Check whether sizes are Spool_Device_Mgt.Ops.ls_pixel_units 
measured in pixels or 
character UnIts. 

Get and seta spool queue's Spool Queue Admin.Get delay class 
print delay properties. Spool-Queue-Admin.Get-print-delay 

Spool:Queue:Admin.Set:print:delay 

Printing 



t"K~L1MlNAK Y 

Property How to Get and Set It 

Get and set the priority 
assigned to a spool queue. 

Spool Queue Admin.Get priority 
Spool:Queue:Admin.Setyriority 

Get the request class for a Spool_Device_Mgt.Ops.Get_request_class 
~lflle,pmUrte~orprint 

Vice. 

Get the printinfo associated 
with a spool queue. 

Spool_Queue_Admin.Get_printinfo 

Get and set a printinfo. Printer Admin.Get printer type 
Printer:Admin.Set:printer:type 

IV-6.2.4 Administering Spool Devices 

Printing 

Table IV -6-3 lists calls that inquire about and set the states of spool devices, enable and disable 
spool device capabilities, install a spool queue and move spool fIles. 

Table IV -6-3. Executing Print and Spool Tasks 

Task How to do It 

Check what spool device Spool Defs.Is emulation 
an AD references. - Is print device 

Isyrinter 
Is printinfo 
Is-spool file 
Is:spool:queue 

Get and set the emulation Spool Device Mgt.Get emulation 
in effect for a print device. Set_emulation -

Get the output device for a Spool_Device_Mgt.Get_output_device 
print device (spool file for 
~led prinung or a printer 
or direct printing.) 

Get a print device's print mode. Spool_Device_Mgt.Get_print_mode 

Get a ~t device's 
associated spool queue. 

Spool_Device_Mgt.Get_spool_queue 

Stop and disable printing. Spool_Device_Mgt.Ops.Abort_printing 

Delete a spool ~ueue, print 
device, or spoo file. 

Spool_Device_Mgt.Ops.Delete_device 

Enable or disable automatic Spool Device Mgt.Ops.Enable deleting 
deletion of printed spool Spool:Oevice:Mgt.Ops.Disable_deleting 
fUes. 

Enable or disable printing Spool Device Mgt.Ops.Enable-printing 
by a spool me, spool Spool:Oevice~gt.Ops.Disable-printing 
queue, or printer. 

Print or don't print a banner Spool Device Mgt.Ops.Enable banner page 
Ii!ge, and set a banner page Spool-oevice~gt.Ops.Disable banner page 

e. Spool:Oevice:Mgt.Ops.Set_banner_page_l~ne 

Set, prin~ or don't print a Spool Device Mgt.Ops.Enable termination message 
tennmatlon message. Spool-oevice~gt.Ops.Disable termination message 

Spool:Oevice:Mgt.Ops.Set_terffiination_message 

Associate a fonnal parameter 
with a text string. 

Spool_Device_Mgt.Ops.Set_parameter_text -;...,,. 

Detennine supported access methods. Spool_Device_Mgt.Ops.Get_access_method_support 

Detennine a spool device's status. Spool_Device_Mgt.Ops.Get_device_status 

Get a list of the attribute Spool_Device_Mgt.Ops.Get_operation_support 
calls supported by a device. 

Check enable or disable status. Spool Device Mgt.Ops.Is banner page enabled 
- - Is de1eting-enabred 

Is-~rintin£-enabled 
Is: ermina Ton_message_enabled 

Check whether a device Spool_Device_Mgt.Ops.Is_graphic_device 
supports graphics. 

N-6-11 



rKELl~AK:r 

Task How to do it 

Enable or disable spooling. Spool Queue Admin.Enable spooling 
Spool=Queue=Admin.Enable=spooling 

Get a list of spool fdes in 
print order. 

Spool_Queue_Admin.Get_rank_list 

Install a spool queue. Spool_Queue_Admin.Install 

Detennine if a ~l queue Spool Queue Admin.Is emPt 1 contains ~ s~l files, Spool=Queue:Admin.Is=spoo ing_enabled 
and if s ing is enabled. 

Change the order of printing 
for a Spool fIle. 

Spool_Queue_Admin.Modify_rank 

Move a spool fde to another 
spool queue. 

Spool_Queue_Admin.Move_spool_file 

IV-S.2.5 Adding a New Printer 

Calls Used: 

Printer_Admin.Set-printer_type 
Associates a printinfo with a printer. 

Spool_Device_Mgt.Ops.Connect-printer 
Connects a printer to a spool queue, or selects a printer from the spool 
queue's printer list to be stored in the printer list of a print device or spool 
file. 

The process of adding a new printer requires an existing printinfo for the type of printer to be 
added, and a printer object Then, the printer can be associated with its printinfo with 
Printer_Admin. Set-printer_ type, and the printer can be added to a printer list with 
Spool_Device_Mgt.Ops.Connect-printer. 

IV-6.3 Summary 

IV-6-12 

• A spool queue is an instance of a spool device class and is required for all printing. 

• A print job may be spooled or sent directly to a printer. 

• A print device must be created before writing a spool file or printing directly. 

• A print device opened in Spool Defs .print mode t. spooled mode will send the 
print output to a spool file. - --

• A print device opened in Spool_Defs .print_mode_t . line_wise or 
Spool_ Def s . pr int _mode _ t . page_wi se mode will send the print output directly 
to a printer. 

• Printinjo entries contain printer capabilities corresponding to printers with the same 
capabilities. 

• Lists of printers available for spooled and direct printing are maintained in spool queues, 
print devices, and spool files. 

• The print area defmes the area on a sheet or fonn where output may be printed. 

• The print position is the location within the print area where printing will next commence. 

Printing 



Printing 

PRELIMINARY 

• A banner page is an optional page which may be printed to identify a print job. 

• A print termination message is an optional message which may be sent to the user who 
created the print device to signal completion of a print job. 

• Applications whose output must print on a certain form or specific size of sheet may re
quest that the needed fonn or sheet be mounted before printing. 

• Print properties are maintained in spool queues, spool files, and print devices. 

• Printing can be explicitly delayed for a spool queue until a certain time, or until a certain 
time if the size of the print job exceeds a limit. 

IV-6-13 



IV-6-14 Printing 



r Kr..LUVlll"'1AK I 

UNDERSTANDING STRUCTURED FILES 7 
Contents 

Stream Files and Structured Files .......................................... IV-7-2 
Data Areas ........................................................ IV-7-3 

Buckets ............................................................... IV-7-4 
Records ............................................................... IV-7-3 
Indexes ............................................................... IV -7-4 
Structured File Organizations ............................................. IV -7-4 

Sequential Files .................................................... IV -7-5 
Relative Files ...................................................... IV -7-5 
Unordered Files .................................................... IV-7-6 
Clustered Files ..................................................... IV -7-7 
Hashed Files ....................................................... IV-7-8 

File Descriptors ........................................................ IV -7-8 
Using Byte Stream and Record I/O with Files ................................. IV-7-9 
Structured Files and Transactions ......................................... IV-7-10 
Summary ............................................................ IV-7-10 

Understanding Structured Files IV-7-1 



This chapter is an overview of the concepts and tenninology for structuredjiles. This chapter 
does not present any programming techniques. 

Packages Used: 

Data Definition Mgt 
- Manages field and record data definition (DDe!) creation for structured 

files. 

Field Access Provides buffer access to fields in records that reference DOefs. 
File Admin 

File Defs 

Provides calls and declarations for managing structured fues. 

Provides declarations used for filing operations. 

Join Interface 
- Provides database support for joins of indexed files or record stream 

devices. This package is only available to trusted type managers. 

Record AM Provides device-independent I/O for accessing records one record at a 
time. Contains the Record AM. Ops and Record AM. Keyed Ops 
packages. - --

Re co rd _AM. Op s Provides a common interface for record I/O calls. 

Record AM.Keyed Ops 
- PrOvides record I/O calls for indexed files. 

Record_Processing_Support 
Provides calls for processing collections of records. 

Sort Merge Interface 
- - Provides calls for sorting and merging records. 

Trusted Record Processing Support 
- Provides calls for processing collections of records using user-supplied 

routines. This package is only available to trusted type managers. 

The following chapters explain more about using structured files: 

• Chapter IV-8 explains how to use the filing and record I/O calls to build indexes in struc-
tured files. 

• Chapter IV -9 explains how to use record I/O to access structured files with indexes. 

• Chapter IV-I 0 explains how to use locking to control concurrent access to structured fues. 

• Chapter IV-II explains how to use the record processing and database support packages to 
process collections of records. 

These chapters further explain the concepts in this chapter, and present programming tech
niques for using them. 

IV-7.1 Stream Files and Structured Files 
The filing service provides two kinds of files: stream files and structured files. Stream files 
contain a stream of contiguous bytes and allow random byte access within file. You usually 
use byte stream I/O to read and write stream files. Stream files cannot have indexes. 

Understanding Structured Files 



Structured files contain a collection of records having a common structure. These files can 
have indexes and allow record positioning within the file. You usually use record I/O with 
structured files, for reading and writing records. 

This chapter describes structured files. Chapter IV -3 describes stream files. 

IV-7.1.1 Data Areas 

Files are represented by afile object that can be accessed through afile AD. The file's contents 
reside in several data areas. A structured file has a primary data area and can have one or 
more secondary data areas. Figure IV -7 -1 shows a file AD to a structured file object with 
primary and secondary data areas. 

File Ad 

I I 
File Object 

I 
.... 

Figure IV-7-1. File Objects and Data Areas 

A structured ftIe has one primary data area, and it contains the file's data. A structured file can 
have up to 16 secondary data areas. Secondary data areas contain indexes. 

IV-7.2 Records 
Record are named collections of data havingjields to hold the data. Fields can contain any 
type of data except ADs. Records can have two formats: 

Fixed-length records 
Each field in the record has a fixed size. 

Variable-length records 
One or more fields in the record vary in size. 

A record has a size that you can specify when you create a structured file. The maximum size 
of a record can vary depending on your file organization. The maximum record size for 
records in sequential files is 16 megabytes. The record size is limited to the size of the bucket 
(minus the bucket overhead) for unordered, clustered, and hashed file organizations. 

Each record in a .ftIe has a record ID that provides access to the record's physical location in a 
file. A record gets a unique ID when it is inserted in a file. Record IDs can only change when 
the key value the ftIe' s organization index changes. You can get a record ID when inserting or 
reading a record. 

Records in relative files have a record number for quick record access. In a relative ftIe, each 
record in the file has a fixed position with a corresponding unique number. When a record is 

Understanding Structured Files IV-7-3 



inserted in the file, the record receives a unique record number. This record number does not 
change. 

IV-7.3 Buckets 
The filing service divides the primary and secondary data areas of structured files into a num
ber of fixed-sized buckets. The filing service uses buckets to transfer records between active 
and passive store. A bucket can hold many records that can span across multiple buckets 
depending on the file organization. Some file organizations allow you to choose the bucket 
size. 

IV-7.4 Indexes 
Indexes provide fast access to structured files. An index can either be an organization index or 
an alternate index. An organization index defines the organization of the primary data for 
clustered and hashed files. When creating a fIle, you create an organization index which you 
cannot delete or deactivate while the file exists. An alternate index does not affect the or
ganization of the primary data area. After creating a file, you can add alternate indexes which 
you can destroy, deactivate, or reorganize at any time. Up to fifteen alternate indexes can be 
added to a hashed or clustered file. Up to sixteen alternate indexes can be added to a sequen
tial, relative, or unordered file. 

An index can have one of these structures: 

B-tree 

Hashed 

Uses a b-tree data structure to organize an index's record key values. 

Uses a hashing function to index records. 

B-tree indexes contain record key values in a b-tree. Searching for particular key values 
compares key values at each level of the tree until the correct key value is found. Key values 
map to record IDs that provide access to a specific record in the file's primary data area. This 
structure is particularly suited for indexed-sequential record access, for example, scanning all 
employee records from G through P. 

A hashed index uses a hashing function to index records. The hashing function lets you access 
any record in the file quickly, for example, reading a specific employee record. An indexed
random read typically takes one disk access with hashed indexes. Indexed-sequential reads are 
not possible using this index. 

Chapter N -8 provides more information about using indexes with structured files. 

IV-7.S Structured File Organizations 

IV-7-4 

Each structured file has a file organization that dictates how records are stored in the file. A 
structured file can have one of these organizations: 

clustered 

hashed 

relative 

Records are organized in related groups (clusters) according to a clustering 
b-tree organization index. 

Records are organized according to a hashed organization index. 

Records are organized in an array of fixed-size record slots. 

Understanding Structured Files 



sequential 

unordered 

IV-7.S.1 Sequential Files 

Records are organized in the sequence in which they are inserted. 

Records are organized according to available free space. 

A sequential file is a stream of fonnatted records where the logical and physical order of the 
records are the same. Figure IV-7-2 shows a sequential file. 

Records 

Figure IV -7 -2. Sequential File 

Primary 
Data 
Area 

Sequential files do not depend on a tennination character to read a record because the filing 
service already knows the structure of the record. Sequential ftIes are efficient for serial or 
sequential processing of records, where you position reading and writing by retrieving the next 
record. Major characteristics of sequential files include: 

• You cannot delete records in sequential file. 

• You can update records as long as the updated record is the same size as the original record. 

• The filing service automatically inserts records at the end of the ftIe (useful for history or 
log files). 

• Records can be indexed using up to 15 b-tree alternate indexes in separate secondary data 
areas. 

• The maximum record size in primary data is 16 megabytes. 

• Variable length records are not restricted to a bucket size. 

• Indexes are allowed. 

• There is no secondary data area unless the ftIe has alternate indexes. 

• The primary bucket size is always 4 kilobytes. 

IV-7.S.2 Relative Files 

A relative ftIe consists of a sequence of fixed-size record slots; each slot can be empty or can 
contain one record. Figure IV-7-3 shows a relative ftIe. 

Understanding Structured Files IV-7-5 



Records 

Fixed-sized 
slots 

Figure IV·7·3. Relative File 

Primary 
Data 
Area 

Relative files let you randomly access a record by record number or record ID. This makes 
relative files more efficient for random access than sequential files. The characteristics of 
relative files include: 

• You can insert and delete records. 

• Records with varying lengths can change size only if the record does not exceed the size of 
the record slot. 

• You can access records by record number. 

• Indexes are allowed. 

• The primary bucket size is always four kilobytes. 

e You must explicitly handle free space for relative fues. 

IV-7.S.3 Unordered Files 

IV-7-6 

An unordered file organizes records in the primary data area according to available free space. 
Figure IV -7 -4 shows an unordered fue. 

Data 
Buckets 

A 
~C~dS 

Figure IV· 7 m4. Unordered File 

8 

o 

Primary 
Data 
Area 

In unordered files there are no organization indexes; the system determines the record order
ing. Unordered files are for applications that require concurrent record inserts. 

The characteristics of unordered files include: 

Understanding Structured Files 



rK~Lll\,ll~AK I 

• Records can be deleted and updated,. 

• Unordered files works well for files with records of varying lengths. 

• Favors concurrent record inserts. 

• The maximum primary record size is limited to the size of the bucket minus bucket over
head. 

• Unordered files pack variable-length records efficiently. 

IV-7.S.4 Clustered Files 

A clustered fue organization provides fast indexed-sequential access to records. The organiza
tion index influences the placement of records in a clustered file. Figure IV -7 -5 shows a 
clustered file. 

Data 
Buckets 

B-tree 
Organization 
Index 

A reCOrdS 

Figure IV -7 -5. Clustered File 

B 

D 

Secondary 
Data 
Area 

Primary 
Data 
Area 

Records in the file's primary data area are clustered, meaning the filing service physically 
stores records with similar key values near each other. The characteristics of clustered files 
include: 

• Records can be inserted, updated, and deleted. 

• Updated records can change size. 

• Random access is allowed. 

• The organization index must be a b-tree index. (Note that the first index created on a file 
must be an organization index.) 

• You can change key values in the organization index at any time. 

Understanding Structured Files IV-7-7 



• You can index records with up to fifteen alternate indexes. You define each alternate index 
in a separate secondary data area. 

• The maximum primary record size is limited to the size of the bucket minus any bucket 
overhead. 

IV-7.S.S Hashed Files 

Hashed files are designed for indexed-random access via an organization key. Like a clustered 
file, the organization index influences the placement of records in a hashed file. Figure IV -7-6 
shows a hashed file. 

Data 
Buckets 

A 
Hashed 

Organization 
Index 

Hash 
Number 

B 
Figure IV-7-6. Hashed File 

c 

D 

In a hashed file organization, the filing service stores records and keys in the file's primary 
data area; there is no secondary data area. The filing service organizes a hashed file' using a 
hashing function that produces hashed values for record positioning in the primary data area. 
The characteristics of hashed files include: 

• Records can be inserted, updated, and deleted. 

• Updated records can change size. 

• The organization index must be hashed. 

• Random reads via the organization key usually require only a single disk access. 

• Index-sequential access via the organization key is only possible for reading duplicate se
quences. 

• The maximum primary record size is limited to the size of the bucket minus bucket over
head. 

IV-7.S.6 File Descriptors 

IV-7-8 

File descriptors contain infonnation about a file's logical and physical characteristics. There 
are three possible descriptors for a ftIe: 

Logical file descriptor . 
Contains options for selecting a structured ftIe' s record fonnats, record 
DDefs, transaction locking, and logging. See the File_Admin package 
for the logical file descriptor record. 

Physical file descriptor 
Contains infonnation about a structured file's volume layout. See the 
File _Admin package for the physical ftIe descriptor record. 

Understanding Structured Files 



Index descriptor Contains information for an index in a structured file. A file can have 
several indexes and several index descriptors. See the File_De£s pack
age for the specification of the index descriptor record. 

You must use a logical file descriptor to create a file, but you only use a physical file descriptor 
to control the file's disk space and volume set allocation. You use index descriptors to create 
indexes in a fue. 

IV-7.6 Using Byte Stream and Record 1/0 with Files 
You normally use byte stream I/O to access stream files and record 1/0 to access structured 
files. But structured files support byte stream and record I/O. Table IV-7-1 summarizes the 
differences between stream and structured file access. 

Table IV -7 -1. Accessing Stream and Structured Files 

Byte_Stream_AM Record AM 

Stream Read and write bytes Tennination character appmded 
during insert. Read record up to next 
tennination character. 

Structured Read bytes of a record. Read and insert records. 
No writes allowed. 

With stream files, you can read or write the entire contents of the file. Using byte stream I/O, 
you can read but not write structured files. This protects against inadvertent modification of 
the file's record structure. When reading a structured file using byte stream I/O, all internal 
control information and deleted records are filtered out. 

You usually use record 1/0 to access a record-oriented device such as a file, pipe, or directory 
one record at a time. There are four record access modes: 

physical-sequential Sequential access according to the physical sequence of records in the file. 

physical-random Random access to records using physical positioning. 

indexed-sequential Sequential access to an indexed file in key sequence starting with any key 
value in an index. ~ 

indexed-random Random access to records according to a record's key value. 

You only use physical-sequential and physical-random modes to access structured files that do 
not have indexes. You can use any access mode to access structured files with indexes. Table 
IV -7 -2 shows access modes for files. 

Table IV-7-2. File Access Modes 

Stream Seqential Relative Unordered Clustered Hashed 

Physical-Sequential x x x x x x 

Physical-Random x x x x x x 

Index-Sequential x x 
(Organizatioo Index) 

Index-Sequential x x x x x 
(Alternate Index) 

Index-Random x x 
(Organizatioo Index) 

Index-Random x x x x x 
(Alternate Index) 

Understanding Structured Files IV-7-9 



PRELIMINARY 

Chapter IV -9 discusses in more detail how to accessing files with record I/O. 

IV-7.7 Structured Files and Transactions 
Transactions can lock indexes, records, and structured files to synchronize concurrency during 
file access operations. Chapter IV -10 provides infonnation about locking structured files. 

IV-7.8 Summary 

IV-7-10 

• Structured files are collections of records having a similar structure. 

• You usually use record I/O to access structured files. 

• The filing selVice always stores a file's data in a primary data area. 

• Records are named collections of data having fields to hold the data. 

• Indexes provide fast access to records in files. 

• Organization indexes influence the placement of records in the primary data area. 

• Alternate indexes do not influence the placement of records in the primary data area, and 
are optional for all structured file organizations. 

• Structured files can be indexed with either b-tree or hashed indexes. 

• The filing selVice provides five structured file organizations. Each structured file organiza
tion has characteristics that make them suitable for particular applications. 

• There are three descriptors that can be defined for a fue: logical, physical, and index. 

Understanding Structured Files 



PRELIMINARY 

MANAGING FILES AND INDEXES 8 
Contents 

Concepts .............................................................. IV -8-2 
Index Keys ........................................................ IV -8-2 
Index Structures .................................................... IV -8-3 
Choosing Indexes ................................................... IV -8-5 
Record DDefs ..................................................... IV -8-6 
Index Key DDefs ................................................... IV -8-7 
Null Values ....................................................... IV-8-9 

Techniques ........................................................... IV -8-10 
Defining Record DDefs ............................................. IV -8-10 
Defining Index Key DDefs .......................................... IV-8-12 
Creating Files ..................................................... IV-8-12 
Building Organization Indexes ....................................... IV -8-14 
Building Alternate Indexes .......................................... IV -8-15 

Summary ............................................................ IV -8-16 

Managing Files and Indexes IV-8-1 



PRELIMINARY 

This chapter provides the concepts and techniques for managing structured files and indexes. 

Packages Used: 

File Defs 

File Admin 
Provides declarations for fuing and indexing. 

Administers files. 

Data Definition Mgt 
- Manages the data definitions (DDefs) for creating records, fields, and in

dexkeys. 

IV-S.1 Concepts 
Indexes provide fast access to records in structured files. To create an index, you derme its 
structure and key defInition. You use DDefs to define an index structure and the index key 
definition. Figure IV -8-1 shows an index for a file. 

Data 
Buckets 

8-tree 
Organization 
Index 

A reCO'dS 
fP-, 
L-J 

Figure IV-B-l. An Indexed File 

D 

Secondary 
Data 
Area 

Primary 
Data 
Area 

The index has a b-tree organization, is located in the secondary data area of the file, and uses 
key values to reference records in the primary data area. 

IV-S.1.1 Index Keys 

IV-8-2 

Within an index, you can define particular record fields as keys. Keys let you identify par
ticular records, order records in a file, or specify records you want to retrieve or update. You 
can order records in a key by ascending or descending order based on the key value in each 
record. Keys are efficient for reading and retrieving records in a file 9 but are less efficient for 
inserting updating, and deleting records. 

Managing Files and Indexes 



rK~LIMlNAKY 

If a key value uniquely identifies a record, the key is a primary key. For example, the name 
key for an employee record uniquely identifies an employee. Keys whose values do not 
uniquely identify a record are secondary keys. For example, the key dept in an employee 
record does not uniquely identify an employee record. Figure IV -8-2 shows a representation of 
an index with key values. 

Secondary 
Data 
Area 

Primary 
Data 
Area 

Figure IV -S-2. Index Key Values that Point to Records 

The calls in the Record_AM. Keyed _ Ops package provide specific keyed operations for 
indexed access to structured files. 

IV-S.1.2 Index Structures 

There are three index structures: 

• B-tree alternate indexes are located in secondary data areas of structured files. These 
indexes do not affect the rue organization. 

• B-tree organization indexes organize records in the primary data area based on the sort 
sequence of an organization key. 

• Hashed organization indexes organize records in the primary data based on a hash function 
that detennines the record locations. 

IV -S.1.2.1 B-Tree Alternate Index 

You can build b-tree alternate indexes on any structured file B-tree alternate indexes do not 
reorganize a file, which means you can delete or deactivate them without destroying the file. 
These indexes support fast sequential access and moderately fast random access. Figure 
IV-8-3 shows a b-tree alternate index. 

B-tree alternate indexes: 

• Exist in the secondary data area 

• Contain record key values in the b-tree structure. 

Managing Files and Indexes IV-8-3 



SECONDARY 
DATA 
AREA 

PRIMARY 
DATA 
AREA 

PRELIMINARY 

{Key Value, Record IDJ 

x-----RECORD(S) 
FOR 

"CAr' 

o branch levels 

- leaf levels (sorted) 

Figure IV -8-3. B-Tree Alternate Index 

IV -8.1.2.2 B-Tree Organization Index 

IV-8-4 

A b-tree organization index is used to organize clustered files. You can only delete or deac
tivate a b-tree organization index by destroying the file. Figure IV -8-4 shows a b-tree or
ganization index for a clustered fue. 

SECONDARY 
DATA 

KEY = 'CAT' 

/ separator ,z "5 pointer 

o~ bronch levels 

- leaf levels (sorted) 

AREA {Key Value, Record IOJ 

- - - - - - - -~ - - - - - - - - - - - - - -
PRIMARY 

DATA 
AREA 

CLUSTERED RECORDS (ROUGHLY SORTED) 

I@iID 
'eJ ~ 

~ 
@AN 

MAT 

- Buckets 

Figure IV -8-4. Clustering B-Tree Organization Index 

Managing Files and Indexes 



PREUMINARY 

B-tree organization indexes: 

• Have buckets that contain the key portion of the record 

• Are not strictly sorted 

• Indexed-sequential access via the organization key is very fast for large scans. 

IV -8.1.2.3 Hashed Organization Index 

You use hashed organization indexes with hashed fIles for fast random access to key values. 
Figure IV -8-5 shows a hashed organization index for a hashed fIle. 

KEY = "CAT" 

hashed 
value I 

PRIMARY 
DATA 
AREA 

RECORD 
FOR 

"CAT" 
- BUCKETS 

Figure IV -8-5. Hashed Organization Index 

Hashed organization indexes: 

• Only uses the primary data area. 

• Uses a hashing function to provide quick access to any record in the fIle. 

• Except for duplicate key values, are not accessible via indexed-sequential access. 

• Do not reorganize the primary data area of hashed files. 

IV-S.1.3 Choosing Indexes 

Table IV -8-1 lists index performance considerations by application type: 

Table IV-8-1. Index Performance Considerations 

B·Tree Clustered 
Alternate B·tree Hash 

Application Index Org Index Org Index 

Full-ordered scan Good Excellent Not 
in sorted order available 
-- employees G to T 

Online random access Satisfactory Satisfactory Excellent 
--employee 
Albert Emstein 

U~te-intensive Satisfactory Poor Satisfactory 
-- ey value changes 

Insert-intensive Satisfactory '" Satisfactory 

'" In a b-tree index for a clustered file, insert-intensive operations cause the average access time to degrade after the 
initial reserved space is used up (if the proper jill{actor is selected), and after imtialloading or reorganization. 

Managing Files and Indexes IV-8-5 



PREUMINARY 

IV-S.1.4 Record DDefs 

IV-8-6 

You use data definitions (DDefs) to define the data layouts for structured fues. If you want to 
use indexes, you must use DDefs. Record DDefs specify a complete DOef for a record. You 
can use field DDefs to specify each record field so you can logically group the field DDefs to 
create record DOefs. Field DDefs have the advantage that you can reuse them to create other 
record DOefs in your application. You define record and field DDefs using the 
Da ta _ Def ini t ion_Mgt package. 

NOTE 

If you do not use DOefs for record layouts, you have to maintain your own record layout. 
(Ada users use record types; C users use structures.) The filing service does not restrict 
using a single field for multiple keys, overlapping fields, or having the same record por
tion appear in different fields with different field types. 

Before creating a structured file, you create a record DDefthat defines the file's record struc
ture. The record DDefinc1udes the record's: 

• Alignment 

• Size 

• Field data types. 

Figure IV -8-6 shows a record DOef for an employee file. 

Non-Root 
Nodes 

root = 

type = 

Root 
Node 

non-root 

ordinal 

lower bounds = 

upper bounds = 

AD 

DDef Object 

Properties 
100 

999 

metatype = record 

root = public 
Properties 

Salary 

Figure IV -8-6. A Simple Record DDef 

Managing Files and Indexes 



PREUMINARY 

In this figure, the DDef consists of several nodes including: 

• A root node that represents the DDef corresponding to a record with fields 

• The non-root nodes that represent the record's fields. 

To create a DOef node, you create the node and add property values to the node. A node's 
property values include the node's size, length, and data type. 

To create a record DOef, you use the Data_Definition_Mgt calls in the following order: 

1. Make a Create_DDef call to create a DDefobject. 

2. Make a Create node call specifying meta type record to create a DDefnode 
inside the DOef Object. 

3. Define a DDef field. 

a. Make a Create_simple_field call to create the field. 

b. Make an Add...,property_ value call to define the property values for the field. 

Repeat this step until all the DDef fields are created. 

4. Make a Close call to close and bind the DDef. 

When you create a record DDef, you can derive the DDef from individual field DDefs. You 
can also define a record layout to ensure that the record DDef and the record layout cor
respond. You do this using an Ada representation clause. See section IV-8.2 for examples of 
setting up record DOefs. 

You use DDef_specified field in a logical file descriptor to specify the record DOefthat 
defines a structured file's record layout. See the Data_Definiton_Mgt package in the 
BiiNTM/OS Reference Manual for more infonnation about DDefs. 

IV-8.1.5 Index Key DDefs 

The index key DDef defines the record fields that make up a key value for a structured file. An 
index key DOef describes either: 

• A single key built on a single field (for example, the Dept key has one field, department) 

• A composite key built on two or more fields (for example, the Dept_Salary key has two 
fields, department and salary). 

You can use index key DDefs to specify whether values for an index field are sorted in ascend
ing or descending order. For example, the department field could be sorted in ascending order 
from department 1 to department 500, and the salary field could be sorted in descending order 
from 10, 000 to 1, 000. An index key DDef can take one of two fonns: 

Derived 

Non-derived 

The index key DDefis derived from a record DDef. 

The index key DDefis created separately. 

Figure IV -8-7 shows an index key DDef built on the department field in an employee file. 

Managing Files and Indexes IV-8-7 



IV-8-8 

Non-Root 
Node 

Non-Root 
Node 

PRELIMINARY 

Record Layout DDef Index Key DDef 

~i---+r-'I A----,~~J c:::l _12 I 
--------------

Root 
Node 

Property 

metatype = record 

root = public Properties 
~--------------------~ 

name = "Employee_Data" 

deriveall = false 

INDEX 
KEY 

FIELD 

Properties for Dept are derived from 
"Dept" in the record layout DDef. 

"Dept" FIELD 
IN 

RECORD 
LAYOUT 

root non-root 

type ordinal Properties 

lower bounds 100 

upper bounds = 999 

Figure IV-8-'. A Simple Derived Index Key DDef 

You can derive an index key DDef from one or more of the record DOef's nodes, using the 
Data_Definition_Mgt calls as follows: 

1. Make a Create DDef call to create anew DDefobject This DDefis separate from the 
record DOef. -

2. Make a Create_node call to create a record DDefnode inside the DDefobject 

3. Derive a DOef field from the record DDef. 

a. Make a Create field call to create the field. 

Managing Files and Indexes 



PRELIMINARY 

b. Make an Addyroperty_ value call to define the property values for the field. 

These calls create a field DDef node that references your existing field defmitions (in the 
record DDefused for your file's record layout). 

Repeat this step until all the DDef fields are created for your index key. 

4. Make a Close call to close and bind the DDef. This computes field sizes and positions. 

Figure N -8-8 shows the layout of a record DDef and an index key DDef from the record 
DDef. 

RECORD KEY 
0 0 

Dept 2 bytes 2 bytes 
2 2 

Padding 
4 

Name Undefined 

25 bytes 

Padding 

{ 
36 36 

Salary 8 bytes 

44 44 
Length 2 bytes { 
Job_Desc { 

46 Undefined o .. length 

Figure IV -8-8. Layout of a Derived Index Key DDef 

NOTE 
The filing service adds the padding in the record layout for proper alignment of the 
record fields. The index key DDef uses the same image as the record DDef. 

IV-S.1.6 Null Values 

A null values is the highest possible value you can give a field. You can use null values to 
write efficient queries, because the filing service groups all keys with null values together. 
This provides a faster search algorithm for these fields. For example, a query for "all the 
employees in department 10 whose salary is null" can be very efficient for an index on depart
ment and salary. 

The null_attribute in an index descriptor defmes how an index handles null values. The 
null_attribute has three options: 

none Indicates an index does not allow null values. 

Managing Files and Indexes N-8-9 



index null 

PRELIMINARY 

Indicates an index allows null values, and the filing selVice enters them in 
the index structure. 

no index null Indicates the index allows null values, but the filing selVice does not enter 
- - them in the index structure. 

Composite keys have the following rules concerning nulls: 

1. Some fields can be null and others may have values. If one field is null, the entire key is 
not treated as null. 

2. Multiple null values are allowed in a unique index. 

3. If you use the no_index_null option in an index and any field in the key is null, the 
entry is not stored in the index. 

NOTE 
Organization indexes do not allow null values. 

In your record layout, you need to account for any variable length fields or fields that 
accept null values because the fonnat of a null field is different. If a null field is fixed, it 
is preceded by a one byte null indicator. If a null field is variable and it is null, the length 
is set to a special constant value. 

IV-S.2 Techniques 
This section presents the techniques for using structured fues and indexes. After reading this 
section j you will be able to: 

• Define a record DDef 

• Define an index key DDef for a file 

• Create a file 

• Build an organization index 

• Build an alternate index. 

Chapter IV-3 describes the techniques for copying, emptying, and destroying files. The ex
ample package Employee_Filing_Ex in Appendix X-A complete code for the examples 
in this section. 

IV-S.2.1 Defining Record DDefs 

IV-8-10 

Before creating a structured file, you need to layout the record structure for your file. The 
most convenient way to do this is to create a record DDef. 

Managing Files and Indexes 



PREUMINARY 

Calls Used: 

Data Definition Mgt.Create DDef 
- Creates a DDef object to contain the record and fields layout for a record. 

Data Definition Mgt.Create node 
- Creates a record DOef node inside the DDef object 

Data Definition Mgt.Create simple field 
- Creates a field DDd node as a component of a record DDef node. 

Data_Definition_Mgt.Add-property_value 
Adds a DDefproperty to a DDefnode. 

For example, to create a four-field layout, you must create five nodes and add the properties 
indicated below: 

record DDef node: pi node name is Employee Data, 
pi-meta-type is mt record, 
pi-root-is public root node, 

** Field nodes-** . --

Dept: 

Name: 

Salary: 

pi node name is Dept, 
pi-root-is non root node, 
pi-type is ord-2, -
pi-node name is Name, 
pi-root-is non root node, 
pi-type is string, -(System Defs.text) 
pi-header for max length is-true, 
pi-varying is-true, 
pi-length is 25: 
pi-node name is Job Descr, 
pi-root-is non root-node, 
pi-type is strIng, -
pi-length is 200: 
pi-node name is Salary, 
pi-root-is non root node, 
pi-type is realS, -
pi=default_value is a: 

The root DDef node is specified as equivalent to an Ada record structure (that is, it has a record 
metatype). It is declared as public so that nodes in other DDef objects can reference it This is 
useful when deriving an index key DDef from this record DDef. 

Each of the field DDef nodes is declared as a non-root node and has various properties such as 
data type, length, and upper/lower bounds added to it For a complete list of these possible 
properties, including supported data types, see the Data_Definition_Mgt package. 

The DDef structure shown above is equivalent to the following Ada record declaration: 

subtype Job Desc length t is 
integer-range a .. 200; 

type Employee Data( 
Job Desc length: Job Desc length t) is 

record - - - -
Dept: System.short ordinal 

range 100 .. 999; 
Name: System Defs.text(25); 
Job Desc: string(l .. Job Desc length); 
Salary: float; --

end record; 

Managing Files and Indexes IV-8-11 



PRELIMINARY 

Be aware that the data definition service determines tlie alignment rules for each data type. 
Basically, these rules conform to the alignment rules for Ada with the exceptions noted in the 
Data_Definition_Mgt package. It's important that you understand these exceptions be
fore you define your record layout. 

IV-S.2.2 Defining Index Key DDefs 

The easiest way to create an index key DDef is to derive it from the record DDef. 

Calls Used: 

Data Definition Mgt.Create DDef 
- Creates a DDef object to contain the defInition of an index key DDef. 

Data Definition Mgt.Create node 
- Creates an index key DDef node inside the containing index DDef object. 

Data Definition Mgt.Create field 
- Creates a field ODd' node as a component of an index DDef node. This 

field becomes part of the key definition. The field DDef node can simply 
reference the defInition of a field in an existing record DDef. 

Data_Definition_Mgt.Add-property_value 
Adds a DDef property (for example, a reference to a field defInition in an 
existing record DDef) to an index key DDef node. 

You derive the index key DDeffrom the file's existing record DDef. To derive a key using the 
record DDefEmployee_Data described previously, you set up the following structure: 

record DDef node: pi meta type is mt record, 
pi-root-is public root node, 
pi-DDef name is "Employee DDef", 

-"Employee Data", -
pi derive all is false, 

** Index key field nodes ** 
Dept: pi maps to is "Dept", 
Salary: pi-maps-to is "Salary", 

pi=descending is true, 

This composite index key is set up by mapping DDefnodes from Employee_Data to a new 
record DDef consisting of these fields: 

• Dept in ascending order (defaulted). 

• Salary in descending order. 

The root DDef node is specified as being derived from the structure for the "Employee_Data" 
record layout. It's declared as public so that nodes in other DDef objects can reference it. 
Each of the field DDef nodes is declared as referencing an existing field node. All properties 
associated with each field node in the file's record layout are mapped to the respective field 
node in the index key DDef. 

IV-S.2.3 Creating Files 

IV~8~12 

When creating a named file, you supply a pathoame for the file and its logical file descriptor. 
The logical file descriptor contains options for selecting record formats, record DDefs, trans
action locking, and logging. 

Managing Files and Indexes 



PK}4;LlMINARY 

Calls Used: 

File Admin.Create file 
Creates a pennanent fue. 

File Admin.Create unnamed file 
- Creates a temporary file that exists for the duration of the current job. 

You specify a file using a logical fue descriptor. The logical fue descriptor contains options 
for selecting record fonnats, record DDefs, transaction locking, and logging. The 
File~Admin .logical_file_descr_record record represents a logical file descrip
tor. You must specify a logical file descriptor as parameter to the File_Admin. 
Create file and File Admin. Create unnamed file calls to create files. The - - --
following Create_file call creates an unordered file. 

508 new file := File Admin.Create file( 
509 - name => file name, -
510 logical file descr => ( 
511 -- Set the-file's logical 
512 -- file descriptor. 
513 file org => File_Defs.unordered, 
514 DDef-specified => true, 
515 term-char => File Defs.term char, 
516 record DDef => employee_DDef,-
517 record-layout => ( 
518 DDef specified => true), 
519 lock escalation count => 0, 
520 xm locking - => true, 
521 =- Required for any record locking, 
522 -- including transaction locking. 
523 short term logging => true, 
524 -- Required for transaction support. 
525 long_term_logging => false, 
526 max rec num => 
527 -max-employee count, 
528 bytes per bucket- => 4096, 
529 fill factor => 
530 File Admin.fill factor dont care, 
531 org_index - => org_index_name»; 

To specify the file organization you use the file _ org field in the logical file descriptor. 
Line 529 specifies the file_org parameter as File_Defs. unordered. 

You specify a file's volume layout with a physical file descriptor. There is only one physical 
file descriptor for each data area of a file. The filing service provides a default physical file 
descriptor, so you only need to specify a physical fue descriptor when you want to change the 
default (see the File_Admin package). You can specify a physical file descriptor as 
parameter to the F il e _Admin. 
Create_file and File_Admin. Create_unnamed_file calls when creating fues. 
The File_Admin. Getyhysical_file_descr call retrieves a physical file descriptor. 
The physical file descriptor fields you specify optionally include: 

• A description of the number of bytes and volume locations of data areas 

• Initial values for the expansion volume and expansion sizes of data areas. 

Managing Files and Indexes IV-8-13 



PRELIMINARY 

IV-S.2.4 Building Organization Indexes 

IV-8-14 

You can create indexes for any ftIe organization. Before opening a ftIe for indexed access, you 
must first create the file's organization index. 

Calls Required: 

File Admin.Build index 
- Builds an index. 

You build an organization index by specifying the correct index descriptor to the 
Build_index call. You specify an index descriptor for each index a structured file has. An 
index descriptor specifies the index's name, the index's organization, and special options that 
indicate (among other options) whether an index can use duplicates, null values, and phantom 
protection. The data structure File_Defs. index_descr_record represents an index 
descriptor. You specify an index descriptor as parameter to the 
File Admin. Build index call to build an index. The - -
File_Admin. Get_logical_index_descr call retrieves an index descriptor. 

The following Build_index call builds an organization index for a unordered file. 

534 File Admin.Build index( 
535 file => new file, 
536 logical index descr => ( 
537 -- Set the Index descriptor for Department. 
538 name => dept_index_name, 
539 active => true, 
540 index org => 
541 FIle Defs.btree index, 
542 duplicates allowed ~> false, 
543 duplicate order => 
544 File Defs.by increasing record lD, 
545 null attribute - => File Defs.none, 
546 DDef- => dept-index DDef, 
547 phantom-protected => false, -
548 utilization maintenance => true, 
549 bytes-per_bucket => 
550 File_Defs.page_size»; 

Line 538 sets the index name to dept_index_name. Line 540 sets the index organization 
to File_Defs .btree_index. For a hashed file, you set this field to 
File_Defs. hashed_index. Line 546 sets the DDef field to dept_index_DDef, the 
index DDef created earlier. A ftIe's organization index is always active. This assures that the 
organization index structure is always up-to-date so that it may be used to detennine the place
ment of a newly inserted record. 

The File_Admin package provides additional calls for getting infonnation about index 
descriptors. These calls are: 

File Admin.Get index names 
Gets the illilex names associated with the specified file. 

File Admin.Get index status 
- Gets dynamic information associated with the specified index. 

Managing Files and Indexes 



PRELIMINARY 

IV-S.2.5 Building Alternate Indexes 

You can add alternate indexes to any structured fue organization. An alternate index (like an 
organization index) requires you to specify an index key DDef as part of the index descriptor 
parameter. 

Calls Required: 

File Admin.Build index 
- Buiids an index. 

You build an alternate index on a previously created file. You specify an index descriptor 
using File_De£s. index_descr_record. You provide the index descriptor as a 
parameter to File_Admin. Build_index. The following example defines a department
salary index that uses a composite key built on department and name fields. 

553 File Admin.Build index ( 
554 file => new file, 
555 logical=index_descr => ( 
556 name => 
557 dept salary index name, 
558 active - - - => true, 
559 index org => 
560 FIle Defs.btree index, 
561 -- A unordered org index with 
562 -- a b-tree index. 
563 duplicates allowed => false, 
564 duplicate order => 
565 File Defs.by increasing record ID, 
566 null attribute - => - -
567 File Defs.none, 
568 DDef - => 
569 dept salary index DDef, 
570 phantom-protected - => true, 
571 -- Uses bucket-level locking. 
572 utilization maintenance => true, 
573 bytes-per_bucket => 
574 File_Defs.page_size»; 

Line 556 sets the index name to dept_salary _index_name. Line 559 sets the index 
organization to File_De£s. btree_index, which is necessary for a unordered file. Line 
568 sets the DDe£ field is set to dept_salary_index_DDe£, the index DDefcreated 
earlier. 

This index is a composite index. Composite keys are sorted field by field in prefix order. The 
greater-than comparison of descending fields is reversed so that their key entries are stored in 
reverse order in the index structure. 

The File_Admin package provides additional calls for destroying, deactivating, and reor
ganizing alternate indexes. These calls are: 

File Admin.Destroy index 
- DestroYS an alternate index. 

File Admin.Deactivate index 
Deactivates-an alternate index. 

File Admin.Reorganize index 
- Reorganizes an alternate index. 

Managing Files and Indexes IV-8-15 



PRELIMINARY 

IV-S.3 Summary 

IV-8-16 

• Use the File Admin package to manage structuredfi,les. 

• DDefs define a file's record and index layout. 

• Define a single or composite index key value using a DOef. You can derive the index key 
DDef from a file's record DDef. 

• You build indexes using the index descriptor record in the File_Defs package. 

• You can build alternate indexes for any structured file organization. 

• Only clustered and hashed file organizations can have organization indexes. 

• B-tree alternate indexes provide fast indexed-sequential and moderate indexed-random ac
cess. 

• B-tree organization indexes used as organization indexes for clustered files are best for 
index sequential access. 

• Hashed organization indexes used as organization indexes for hashed files provide very fast 
indexed-random access. 

Managing Files and Indexes 



Contents 

PREUMINARY 

USING RECORD 1/0 9 
WITH STRUCTURED FILES 

Concepts .............................................................. IV -9-2 
Current Record Pointer .............................................. IV -9-2 
Access Modes ..................................................... IV -9-3 
Record I/O and Structured Files ....................................... IV -9-8 
End of File ........................................................ IV -9-9 
Record I/O and Transactions ......................................... IV -9-11 
Files and Disk Flushes .............................................. IV -9-11 
Record I/O Operation Status ......................................... IV -9-11 

Techniques ........................................................... IV-9-12 
Opening and Closing Structured Files .................................. IV -9-12 
Setting Open Mode ................................................ IV -9-13 
Inserting Records .................................................. IV -9-13 
Accessing Fields in Record Buffers .................................... IV -9-14 
Deleting Records .................................................. IV -9-14 
Reading and Updating Records ....................................... IV-9-15 
Using Physical-Random Access ...................................... IV -9-17 
Using Physical-Sequential Access ..................................... IV -9-18 
Using Indexed-Random Access ....................................... IV-9-19 
Using Indexed-Sequential Access ..................................... IV-9-20 
Reading Key Values Sequentially ..................................... IV-9-22 
Reading and Updating Records by Key ................................. IV-9-23 

Summary ............................................................ IV-9-23 

Using Record I/O with Structured Files IV-9-1 



PRELIMINARY 

This chapter presents the concepts and techniques for using record I/O with structured flies. 

Packages Used: 

Record AM Provides device-independent record I/O. 

Record I/O lets you access records one record at a time from any system device that supports 
record access. This chapter emphasizes using record I/O with structured files. You can use 
these same techniques to access records on other system devices. 

IV-9.1 Concepts 
This section discusses the concepts and tenninology related to using record I/O with structured 
files. 

IV-9.1.1 Current Record Pointer 

IV-9-2 

The current record pointer (CRP) represents the current record location in a file. Figure 
IV -9-1 shows the current record pointer during a read of a sequential file. 

Current 
Record 
Pointer 

Buffer 

Sequential 
File 

Figure IV-9-1. A Record 110 Read Operation 

You use the CRP to access records by physical or indexed location. During physical access, 
the CRP points to the current record. You can use the CRP to step through a file's records in 
either forward or reverse sequence. You can set the position of the CRP to the first or last 
record in a file, a record ID, or to a record number. During indexed access, the CRP points to 
the current index value. You can set the CRP to the first, last, or any particular key value. 

You can use the position modifier parameter modifier in record I/O calls to adjust the CRP. 
This parameter can be: 

current 

next 

The current record. 

The next record in the sequence of records. 

Using Record I/O with Structured Files 



PRELIMINARY 

prior The prior record in the sequence of records. 

rest of current 
The rest of the current record. For reading the unread part of the current 
record when a Device Def s . length error is raised during a read 
call. - -

These calls modify the CRP: 
Record_AM.Ops.Delete 
Record AM.Ops.Read 
Record=AM.Ops.Set-position 
Record_AM.Ops.Update. 
Record_AM.Keyed_Ops.Read_key_value 

These calls do not modify the CRP: 
Record_AM.Keyed_Ops.Read_by_key 
Record_AM.Keyed_Ops.Update_by_key 
Record_AM.Keyed_Ops.Delete_by_key 

Unsuccessful record I/O calls have no effect on the CRP. 

IV-9.1.2 Access Modes 

An access mode detennines the order in which records in a file are accessed. You can access 
records either sequentially or randomly, and in either a physical or an indexed order. Depend
ing on the operations you perfonn on a file, some access modes are more efficient. You can 
access structured files with one or more of these access modes: 

physical-sequential Access to a set of records by their physical order. 

physical-random Access to a single record by the record's physical address. 

indexed-sequential Access to a set of records using an index key value range. 

indexed-random Access to a single record using an index key value. 

Sequential operations are always relative to the CRP. Random operations generally do not 
depend on the positioning of the CRP. 

IV -9.1.2.1 Physical-Sequential Access 

You can access any structured flie using physical-sequential access. This mode is the fastest 
way to do full flie scans. Figure IV-9-2 shows physical-sequential access. 

Using Record I/O with Structured Files IV-9-3 



PRELIMINARY 

Buffer 

Step CD pPo _______ .s_te_p_®_2_-" 
Read 

Sequential 
File 

Position 
After 
Read 

Record ~ .3 
Current % 
Pointer 

Next read will advance pointer. 

Figure IV -9-2. Physical-Sequential Access 

For physical-sequential access mode, you can do the following: 

• Read records in sequence and, based on the record's value, delete or update the current 
record. 

• You read records according to the way the fuing service places them physically in the file. 
This is the default mode. 

• Set the CRP's initial position with one or more of these calls: Record_AM. Open, 
Record_AM.Ops . Read, or Record_AM. Ops. Setyosition. Afiersetting the in
itial position, yoU' can read records in sequence using the position modifier. 

• Do not use index ranges. 

NOTE 

Physical-sequential reads on unordered, clustered, and hashed files read records as they 
are physically located in the file. 

After finishing a read operation, the CRP still points to the current record. The CRP 
moves just before the next read. 

IV -9.1.2.2 Physical-Random Access 

IV-9-4 

In physical-random access, you must precede each Read, Update, or Delete call with a 
Set yO sit i on call to set the position of the CRP. Figure IV -9-3 shows physical-random 
access. 

Using Record I/O with Structured Files 



PRELIMINARY 

Buffer 

Step CD ... ______ ........... ___ " 

Next 
Random 
Read 

Figure IV -9-3. Physical-Random Access 

For physical-random access mode, you can do the following: 

Sequential 
File 

• Read records in sequence and, based on the record's value, delete or update the current 
record. 

• Use the SetJ>osition call to move the CRP to the first position, last position, a record 
ID, or record number (if in a relative file) in a file. 

• Read, update, or delete the current record using the current position modifier. You 
cannot do insertions by record ID or record number. The record ID and record number 
cannot change during the lifetime of a record unless the file is reorganized. 

IV -9.1.2.3 Indexed-Sequential Access 

In the indexed-sequential access mode, you select a range of key values to read. The key range 
determines the subset of records in a fue and the logical ordering within the subset. Figure 
IV -9-4 shows indexed-sequential access. 

Using Record IJO with Structured Files IV-9-5 



IV-9-6 

Index 

Current 
Record 
Pointer 

PREUMINARY 

Position 
After 
Read 

advance pointer. 

Figure IV -9-4. Indexed-Sequential Access 

For indexed-sequential access, you can do the following: 

• Select a range of key values to read. 

• Read records in forward or reverse index order. 

• Use this access mode for any file that has a clustered index or b-tree alternate index or
ganization. 

In keyed access, the CRP is actually an index key value. The CRP is initialized by a 
Set_key_range call. You specify an index name and a key value range. You can then 
read, update, or delete records within that range as follows: 

1. You call Set key range to set starting and ending boundaries within the index. The 
values of the Starting and ending boundaries depend on whether you are reading an ascend
ing or descending index .. 

2. The modifiers next and pr ior are relative to the index structure, not the key values. For 
example: 

• Reading an index consisting of one descending field will return the next lower key value 
using next as a modifier. 

• Reading an index consisting of one ascending field will return the next higher key value 
using next as a modifier. 

Using Record I/O with Structured Files 



PRELIMINARY 

3. The first Read call after a Set key range call is relative to the starting boundary 
(which mayor may not be inclusive).-

• If the starting boundary is designated as inclusive and the key value exists, the position 
modifier is ignored. 

• If the starting boundary is exclusive, or the key value specified does not exist, the posi
tion modifier is applied to locate a starting position. 

• The position modifier is always applied on subsequent reads. Other aspects of the 
position modifier are the same as those for physical-sequential access. 

4. A Read call returns the actual record defined by the CRP and position modifier. For keyed 
access, it is possible to just read the key values and record IDs of the records. This is done 
by calling Read_key _val ue. 

• This pennits a fast scan via an index without accessing the primary data area. 

• The returned record IDs can be used to read the actual records later, if desired. 

5. Inserts do not affect the CRP (except for relative files where a Setyosition can 
precede an Insert call). The filing seIVice detennines the locations of the insertions. 

IV-9.1.2.4Indexed-Random Access 

In this access mode, records are read randomly by supplying a key value to a unique index. 
Figure IV-9-5 shows indexed-random access. 

Index Buffer 

Sequential 
Current record Fil e 
pointer not set 
for 
Read_by_Key 

Figure IV -9-5. Indexed-Random Access 

In the indexed-random access mode, you can do the following: 

• Randomly access records without modifying the CRP with the Read_by_key, 
Update_by_key, and Delete_by_key calls. 

• Specify a unique index name and an index key value for a particular record. The filing 
seIVice detennines the locations of the insertions. 

Using Record I/O with Structured Files IV-9-7 



PRELIMINARY 

IV-9.1.3 Record 1/0 and Structured Files 

Some structured file organizations only allow you to use particular record I/O calls. These 
access characteristics apply to the following file organizations. 

IV-9.1.3.1 Sequential Files 

In this fue organization, the physical sequence of the records corresponds to the order in which 
they were written. Sequential files have the following access considerations: 

• You establish a current record position using Record_AM. Ops . Setyosition. 

• You can use the next or pr ior position modifiers to position the CRP. A 
Record AM. Ops . Read call with the modifier parameter set to next returns records 
in the same order as the records are written A Record AM. Ops . Read call with 
modifier set to prior returns records in reverse order. 

• A Record_AM. Ops. Insert call appends a new record at the end of the sequential file. 

• When you read a record with the Record_AM. Ops . Read call or set the record position 
with the Record_AM. Ops. Setyosition call, the Record_AM. Ops. Update call 
overwrites the record at which the CRP points. 

• The length of variable-sized records cannot be changed. 

• The Record_AM. Ops . Delete call is not allowed. 

• The Record AM. Ops . New lines call inserts a control record with the specified num-
ber of empty fiites in it. -

• The Record_AM. Ops . Newyage call inserts a control record with a page mark. 

Sequential files with variable-sized records can store control data having no direct relationship 
to the contents of the records. For example, some control data in a file controls the format and 
page layout in text flIes. This additional information is stored in separate control records 
containing a number of empty lines or page mark characters. The 
Record_AM. Ops. Insert_control_record call inserts a record with control infor
mation. You must use the Record_AM. Ops. Set_open_mode call to set 
Record_AM. read_ctl_rec to true to get control records in read operations, otherwise 
control records are ignored. No index entries are added for control records. 

IV -9.1.3.2 Relative Files 

IV-9-8 

Relative files have the following access considerations for physical-sequential access: 

• After using Record_AM. Ops. Setyosition to initially set the CRP, you use the 
position modifiers next or pr ior for positioning the CRP. 

• A sequential Record_AM. Ops . Read call returns records in ascending or descending 
order of the record numbers. Empty slots are skipped automatically. 

• A Record AM. Ops. Update call overwrites the record you just read. The length of 
variable-sized records may shrink or grow unless it exceeds the maximum record length 
given by the slot size. 

• The Record AM. Ops. Delete call deletes the record that was accessed by the im
mediately preceding Record_AM. Ops . Read call or the record that was defined by the 
preceding Record_AM. Ops. Setyosition call. 

Using Record I/O with Structured Files 



PRELIMINARY 

Relative files have the following considerations for physical-random access: 

• Access by record number, to the beginning of the file or the end of the file is done by 
calling Record_AM. Ops. Setyosition. You do this prior to making 
Record AM.Ops.Update, Record AM.Ops.Delete,or 
Record=AM.Ops. Insert calls. -

• For the Record_AM. Ops . Insert call, the filing service inserts the new record in the 
first empty slot if you specify first with Record_AM. Ops. Setyosition. If you 
specify 1 a s t, the filing service inserts the new record at the end of the file. 

• The filing service raises the invalid_record_address exception when an addressed 
slot is not empty. 

• You can insert records using any record number. For example, if the first record written to 
the file is record number 100, the slots with numbers 1 to 99 are marked empty. 

IV-9.1.3.3 Hashed Files 

Hashed files have the following access considerations: 

• You can do indexed-sequential access only with hashed files having a hashed organization 
index supporting duplicates. 

• Physical positioning is allowed. 

• A Device_Defs. end_of_file exception is raised after all duplicates of the current 
key value are read. 

IV-9.1.4 End of File 

The EOF pointer points past the last record in the file to the end-of-file. When end-of-file is 
reached during a read, the Device_Defs. end_of_file exception is raised. The 
at_EOF boolean in the operation_status_record data structure also indicates the 
end-of-file. 

The EOF pointer for a storage file may change as records are inserted, updated, and deleted. 
The at _ EOF boolean in the operation status reco"rd is set when the last record in the file is 
read. A Device_Defs. end_of_file exception is raised if a Read is attempted at or 
beyond the current end-of-file. If writers are active in the file, the end-of-fue can change in the 
instant after a Record_AM. Ops. Read call. 

IV·9.1.4.1 End of File for Indexed Access 

During indexed-sequential access, the Device_Defs. end_of_file exception is raised if 
an attempt is made to read outside of certain boundaries. This attempt is detected in a manner 
consistent in all cases. The cases are: 

• Reading by ascending key values in a descending index structure using prior, starting at 
the lower key value 

• Reading by ascending key values in an ascending index structure using next, starting at 
the lower key value 

• Reading by descending key values in a descending index structure using next, starting at 
the higher key value 

• Reading by descending key values in an ascending index structure using prior, starting at 
the higher key value. 

Using Record I/O with Structured Files IV-9-9 



PRELIMINARY 

Figure IV -9-6 shows how EOF is detected for each of these cases. 

Descending Index 

Ascending Index 

Descending Index 

Ascending 

L Left of Index 
R Right of Index 
EOF End-of-file exception 

L R 

L R 

L 

60-_..-._ .... ~ .... 

Read next 

X R 

'-EOF 

R 

Reading by 
ascending key values 
starting at the 
lower key value 

Reading by 
ascending key values 
starting at the 
lower key value 

Reading by 
descending key values 
starting at the 
higher key value 

Reading by 
descending key values 
starting at the 
higher key value 

Figure IV -9-6. EOF Detection During Indexed-Sequential Access 

When reading sequentially via a nonunique index, the system returns the next record of the 
duplicate sequence and sets a duplicate boolean to true if records exist with the same index 
key value. See the operation_status_record in the Record_AM package. 

Reading all duplicates for a single key value can be done for both b-tree and hashed indexes. 
(This is a sequential and not a random operation.) You must use Set_key _range to set the 
start and stop boundaries to the same value. 

When rereading a record using a current position modifier, key_value _changed is 
raised if the key value that was used to locate the record changed as the result of an intervening 
Update or Delete call. 

For a single opened file, you can alternate back and forth between physical-sequential and 
indexed-sequential access by varying the use of Record_AM . Ops. Set_key _range and 
Record_AM. Ops. Set_position calls. 

Using Record 110 with Structured Files 



PREUMINARY 

IV-9.1.5 Record 1/0 and Transactions 

Certain record I/O operations will block if a record or file is locked by another transaction. 
The duration of the blocking can be set using a timeout parameter. The default value for 
this parameter is wait_forever. 

Once an opened file becomes part of a transaction (this is an implicit association), it may not 
be used by another transaction until the first transaction commits or aborts; otherwise 
ODO_using_different_transaction is raised. (An opened fIle associates with a 
transaction the first time it is used in a call that reads or modifies records.) 

You can fmd infonnation on transaction semantics and locking for record I/O calls on files in 
Chapter IV -10. 

IV-9.1.6 Files and Disk Flushes 

In order for a fIle to be consistent, all infonnation changed by Record_AM. Ops. Insert, 
Record_AM. Ops. Update, or Record_AM. Ops. Delete calls must be physically writ
ten to the file. This infonnation includes both your data and any affected system-maintained 
control infonnation. In the case of files, both data buffers and control infonnation are main
tained in nonvolatile memory to protect against power failures. Because of this protection, 
infonnation is not flushed from nonvolatile memory to a disk when a file is closed. However, 
a Record_AM. Ops. Flush call is available to write the modified contents ofa file to disk at 
any time. 

IV-9.1.7 Record 1/0 Operation Status 

The status of a record I/O operation is returned in the operation_status_record. You 
can retrieve operation status after most Record_AM calls. Table IV-9-1 shows infonnation 
available in the operation_status_record: 

Table IV -9-1. Operation Status Record 

Parameter Desc:rlption 

rec_length Actual record length in bytes if the last call was a "Read". 

rec ID Record ID of the record that was processed by the last successful call. 

rec num Nwnber of the record that was processed by the last successful call. This is 
valid only for relative meso 

insert_dupl True if the record has a duplicate in at least one active index that allows 
duplicates, else false. 

at EOF True if an end_oCme exception is raised, else false. 

at EOP True if the CRP points to the end of a page in a stream me or in a sequential 
me, else false. 

ctl record True if the last record read or positioned to was a control record, else false. 

duplicate True if additional records with the same key value have not yet been accessed 

I 
by a Read or Read_key_value can. else false. 

Query a file's open status with Record_AM. OpS. Get_open_status. See the 
Record_AM. open_status_record record in the Record_AM package. 

Using Record I/O with Structured Files IV-9-11 



PRELIMINARY 

IV-9.2 Techniques 
After reading this section, you will be able to: 

• Open and close a structured file 

• Set a file t s open mode 

• Get record IDs and record numbers 

• Insert a record 

• Read and update a record 

• Access fields in a record buffer 

• Set a key range and read key values sequentially 

• Delete indexed records sequentially 

• Read records using physical-random, physical-sequential, indexed-random and indexed
sequential access. 

This section assumes that you are familiar with the record buffering, record DDef, and index 
DDef techniques described in Chapter IV -2. The following techniques cover the common 
cases for using record I/O with different access modes. Appendix X-A provides the complete 
listing for these examples. 

IV-9.2.1 Opening and Closing Structured Files 

IV-9=12 

Opening a file makes an existing file available for processing. 

Calls Used: 

Record AM.Open by name 
- Opens a file using the patbname of the file. 

Record AM.Ops.Open 
- Opens a file using an AD to the fue object. 

Record AM.Ops.Close 
- Closes a file using an AD to the fue object. 

The Record_AM package has two open calls. Record_AM. Open_by _name lets you open 
a file by name; Record_AM. Ops .Open lets you open a file with a file AD. An open call 
returns an opened fue that you can use in subsequent file processing operations. If multiple 
processes are allowed access to a fue, the filing service maintains a file status for an opened 
file for each particular opening of the fue. The open calls let you specify how you want to use 
the opened fue and how you want to allow other callers to use the file. You can specify the 
parameters: 

• input_output that specifies the type of 1/0 you want to do with the fue 

• allow that specifies the operations other users can do with the file 

• block that specifies whether to wait for the fue if it is in use. 

When you open a file: 

Using Record I/O with Structured Files 



PRELIMINARY 

• You acquire a file-level lock (except when the allow parameter is set to anything). 

• If the file is already opened or locked in a mode which is incompatible with your allow 
mode and you set the block parameter to false, the filing service raises the 
Device_Defs. device_in_use exception. 

• If you set the block parameter to true, you wait until other users release their locks or 
until the system interrupts. This tenninates file processing and closes the associated 
opened file. 

A Close call tenninates access to an opened file. If the opened file was passed to other jobs, 
each job must tenninate or close the file before it is totally deallocated. 

IV-9.2.2 Setting Open Mode 
The Set_open _mode call sets particular options that modify the behavior of an opened file. 

Calls Used: 

Record AM.Ops.Set open mode 
- Sets bOolean values associated with an opened file. 

Possible values are specified using the open_mode _ val ue data structure as follows: 

read ctl rec If true you want to read data records and control records in a sequential or 
stream flie; otherwise you want to retrieve only data records. 

load If true a clustered, hashed, or unordered file is opened for initial loading. 

auto close If true the current transaction automatically closes the file when it commits 
or aborts; otherwise the file remains open until you close it or your job 
tenninates. 

level 3 If true you want level 3 consistency. Chapter IV -10 discusses level 3 
consistency. 

For example, the following procedure sets the open mode level_ 3 boolean to true: 

72 level 3 mode: Record AM.open mode value (Record AM.level 3} .= 
73 (mode id => Record AM.level 3~ --
74 value => true);- -

90 Record AM.Ops.Set open mode ( 
91 opened dev =>-opened file, 
92 mode value => level 3 mode); 
93 -- Sets level 3 consistency. 

IV-9.2.3 Inserting Records 

When you insert a record in a file, the filing service determines where to insert the record in 
the file. Where the filing service inserts the record depends on the file organization. For 
example, the filing service appends a record to the end of a sequential file, but for clustered or 
hashed files it inserts the record based on the file's indexing algorithm. During the insert, the 
filing service automatically assigns each new record a record ID. 

Using Record I/O with Structured Files IV-9-13 



PRELIMINARY 

Calls Used: 

Record AM.Ops.Insert 
- Inserts a record. 

To insert a record into an opened fue, you load the record into a record buffer and pass the 
buffer to the Record_AM. Insert call. To load the record into the buffer, you can use an 
Ada address clause or calls in the Field_Access package. 

To use the Ada address clause to load a record buffer, you declare a record buffer and declare 
your record as a virtual address to the buffer. When you assign the record's data to your record 
(for example, an employee record), the record data is located at the address of the record buffer 
which in effect loads the buffer. 

Remember, you need to understand the DDef alignment rules in the 
Data_Definition_Mgt package ifyourfue references a record DDef. 

IV-9.2.4 Accessing Fields in Record Buffers 

If your fue references a record DDef, you can also access a buffer using the Field_Access 
package. The Field_Access calls do field alignment and check for null values. 

Calls Used: 

Field Access.Initialize record 
- Initializes and Sizes a buffer for a record based on a DDef and, optionally, 

fills the record's buffer with default values. 

Field Access.Get 
Gets a value for a single field from a previously initialized record buffer. 

Field Access.Put 
- Puts a value for a single field into a previously initialized record. 

Field_Access aligns the fields according to the record layout definition contained in the 
DDef. It also checks if null values are allowed for a particular field. 

The remainder of the examples in this chapter use an Ada record declaration, rather than the 
field access method. This is possible as long as the representation and alignment of the file's 
record DDef is the same as the Ada declaration (true in most cases, but watch out for varying 
strings since the data definition service lays out the fixed part of the record before the varying 
part). 

IV-9.2.S Deleting Records 

When you delete a record and its key values, the record is no longer accessible. 

IV-9-14 Using Record I/O with Structured Files 



PRELIMINARY 

Calls Used: 

Record AM.Ops.Delete 
- . Deletes a record at the position of the CRP. 

Record AM.Keyed Ops.Set key range 
- Sets two key vaiue bOundaries within an index. 

To delete a set of records in a key range, you set the key range for the records to be deleted 
with this call: 

379 Record AM.Keyed Ops.Set key range ( 
380 opened dev - => opened file, 
381 index - => Employee Filing EX. 
382 dept index name, - -
383 select_range => ( 
384 start comparison => Record AM.inclusive, 
385 start-value => start key descr, 
386 stop comparison => Record AM~inclusive, 
387 stop=value => stop_key_descr»; 

The following call reads and deletes the records in the key range: 
388 loop 
389 -- CRP is updated after each delete 
390 -- (no read is necessary to preface 
391 -- the Delete). 
392 Record AM.Ops.Delete( 
393 opened dev => opened file, 
394 modifier => Record-AM. current, 
395 -- Normally defaulted. 
396 timeout => Record AM.wait forever, 
397 status => null);- -
398 
399 end loop; 

When the end of the key range is reached, the filing service raises the 
Device_Defs. end_of_file exception which exits the loop. 

In addition to the Record_AM. Ops. Delete call, there is a 
Record_AM. Ops. Truncate call that deletes a specified record and all the records that 
follow it in physical sequence. 

IV-9.2.6 Reading and Updating Records 

You usually update a file by reading a record and doing the update. 

Calls Used: 

Record_AM.Ops.Set-position 
Sets the CRP. 

Record AM.Ops.Read 
- Reads a record from an opened file. 

Record AM.Ops.Update 
- Updates a record. 

Using Record I/O with Structured Files IV-9-15 



IV-9-16 

PRELIMINARY 

The following exampl~ sets a position in the file to begin reading with the 
Record_AM. SetJ)osition call, reads each record into a record buffer, changes the 
record in the buffer, and updates the record in the file. 

578 Record AM.Ops.Set position(opened file, 
579 where => -Record AM.record specifier( 
580 type of specifier => Record AM.first)' ( 
581 type_of_specifier => Record_AM.first»; 
582 loop 
583 bytes read := Record AM.Ops.Read( 
584 opened dev => opened file, 
585 buffer-VA => bufferTaddress, 
586 length- => buffer' length); 
587 
588 current record VA. salary := 
589 pay=raise * current_record_VA.salary; 
590 
591 Record AM.Ops.Update( 
592 opened dev => opened file, 
593 buffer-VA => bufferTaddress, 
594 length- => buffer' length}; 
595 end loop; 
596 

Each field in the record buffer (for example, a salary field) can be individually addressed by 
specifying the field's name (for example, current_record_ VA. salary). 

You can retrieve record IDs and record numbers from the operation status the read calls return. 
You declare a read status variable that contains information about the read, make a 
SetJ)osition call to set the CRP, and read the record. You can then use the status vari
able to obtain the record 10: 

42 read status VA: Record AM. operation status VA := 
43 new Record AM.operation status record; -
44 -- Virtual address of status record. 

67 Record_AM.Ops.Set-position( 
68 opened dev => opened file, 
69 where ~> Record-AM.record specifier( 
70 type of specifier => Record AM.first)' ( 
71 type_of_specifier => Record_AM.first)}; 
72 loop 
73 bytes read := Record AM.Ops.Read( 
74 opened dev => opened file, 
75 buffer-VA => bufferTaddress, 
76 length- => buffer' length, 
77 status => read status VA}; 
78 if current record VA. name = employee then 
79 RETURN read_status_VA.rec_ID; 
80 
81 end if; 
82 end loop; 

You can also use the status variable to obtain the record number: 

Using Record I/O with Structured Files 



PREUMINARY 

99 Record_AM.Ops.Set-position( 
100 opened dev => opened file, 
101 where ~> Record-AM.record specifier( 
102 type of specifier => Record AM.first)' ( 
103 type_of_specifier => Record_AM.first»; 
104 loop 
105 bytes read := Record AM.Ops.Read( 
106 opened dev => opened file, 
107 buffer-VA => bufferTaddress, 
108 length - => buffer' length, 
109 status => read status VA); 
110 if current record VA. name = employee then 
111 RETURN read_status_VA.rec_num; 
112 
113 end if; 
114 end loop; 

Note that only records in relative files have record numbers. 

IV-9.2.7 Using Physical-Random Access 

Two cases of physical-random access are discussed here: 

• Reading Records Randomly Using Record IDs 

• Reading Records Randomly Using Record Numbers. 

Calls Used: 

Record_AM.Ops.Set-position 
Sets the CRP. 

Record AM.Ops.Read 
- Reads a record from an opened file. 

Reading Records Randomly Using Record IDs. Random reads using record IDs are avail
able to all file organizations. You can read records randomly by specifying a record 10: 

151 Record_AM.Ops.Set-position( 
152 opened file, 
153 where ~> Record AM.record specifier ( 
154 type of specifier => Record AM.id)' ( 
155 type of specifier => Record AM.id, 
156 rec_Id - => rec_IO»; 
157 
158 bytes read := Record AM.Ops.Read( 
159 opened dev => opened file, 
160 buffer-VA => bufferTaddress, 
161 length- => buffer' length); 

Reading Relative Files Randomly Using Record Numbers. Random reads (using record 
numbers) are available only for relative files. 

Using Record I/O with Structured Files IV-9-17 



PRELIMINARY 

172 begin 
173 Record_AM.Ops.Set-position( 
174 opened file, 
175 where ~> Record AM.record specifier( 
176 type of specifier => Record AM.number}' ( 
177 type of specifier => Record AM.number, 
178 rec num- => rec number}); 
179 bytes read := Record AM.Ops.Read( -
180 opened dev => opened file, 
181 buffer-VA => buffer'address, 
182 length- => buffer' length); 

The records are addressed by a relative record number. The first record is assigned the number 
1, the second the number 2, and so forth. Records can be written by specifying any record 
number (the number does not have to be in a numeric sequence). 

IV-9.2.8 Using Physical-Sequential Access 

IV-9-1S 

There are four basic cases of physical-sequential access: 

• Reading Records in a Forward Sequence Starting at the Beginning 

• Reading Records in a Reverse Sequence Starting at the End 

• Reading Records Sequentially Starting with a Record ID 

• Reading Records Sequentially Starting with a Record Number. 

Calls Used: 

Record_AM.Ops.Set-position 
Sets the CRP. 

Record_AM.Ops.Read 
Reads a record from an opened file. 

You use the same calls and declarations in all these cases. You set up a record buffer and your 
record as shown on page IV-9-14. Remember that you use the Ada address clause to define 
your record. You can access each field in the record buffer as a virtual address. For example, 
you can specify the salary field with the buffer field name current _ record_VA. salary. 

Reading Records Sequentially in a Forward Sequence. This case is used to read all records 
in a sequence starting at the beginning of the file. The current read pointer is positioned to the 
beginning of the file. 

514 
515 
516 
517 
518 
519 
520 
521 
522 
523 
524 
525 
526 
527 

Record_AM.Ops.Set-position( 
opened dev => opened file, 
where - => Record-AM.record specifier( 

loop 

type of specifier => Record AM.first)' ( 
type_of_specifier => Record_AM.first»; 

bytes read := Record AM.Ops.Read( 
opened dev => opened file, 
buffer-VA => buffer'address, 
length- => buffer' length); 

DO ANY NEEDED PROCESSING HERE. 

end loop; 

Using Record I/O with Structured Files 



PRELIMINARY 

Each successive record is read in a forward sequence until EOF is detected and 
Device Defs. end of file is raised. - - -
Reading Records Sequentially in a Reverse Sequence. This case is used to read all records 
in a sequence starting at the end of the file. The current read pointer is positioned to the end of 
the ftIe. 

482 Record_AM.Ops.Set-position( 
483 opened dev => opened file, 
484 where - => Record-AM.record specifier( 
485 type of specifier => Record AM.last)' ( 
486 type of specifier => Record AM.last»; 
487 -- Positions current record pointer 
488 -- to last record in file. 
489 loop 
490 bytes read := Record AM.Ops.Read( 
491 opened dev => opened file, 
492 modifier => Record-AM.prior, 
493 buffer VA => buffer'address, 
494 length- => buffer' length); 
495 
496 -- DO ANY NEEDED PROCESSING HERE. 
497 
498 end loop; 
499 

Notice that record_spec is initialized to the last record in the file. The modifier 
value is set to prior. Each successive record is read in reverse sequence until EOF is 
detected and Device Defs. end of file is raised. - - -
Reading Records Sequentially Using Record IDs. Sequential reads using record IDs are 
available to all file organizations. You use the record ID to establish a starting point for a 
sequence of Read calls. Your program must keep track of record IDs using the 
operation_status_record in order to specify a record 10 from which to start reading. 
You initialize the read to a specific record 10 using a rec_ID value from the status infor
mation. Use the same techniques as in the example on page IV-9-17. 

Reading Relative Files Sequentially Using Record Numbers. Sequential reads using record 
numbers are available only for relative files. You use the record number to establish a starting 
point for a sequence of Read calls. Your program must keep track of record numbers using 
the oper at i on _ s ta t us_record in order to specify a record number from which to start 
reading. You initialize the read to a specific record number using a number value from the 
status infonnation. Use the same techniques as in the example on page IV -9-17. 

IV-9.2.9 USing Indexed-Random Access 

The only way to manipulate a single specified record using indexed-random mode is to make 
an Update_by_key or Delete_by_key call. These calls do not affect the CRP. 

Calls Used: 

Record AM.Keyed Ops.Update by key 
- UPdates a record bykeyvalue from an opened file. 

An Update_by _key call requires you to specify Record_AM . key_val ue _ descr 
record which supplies the key value for the update. Otherwise, the record at the current posi-

Using Record I/O with Structured Files IV-9-19 



PRELIMINARY 

tion of the CRP is updated. In the following example, the record at the current position is 
updated. 

621 current record VA. salary := 
622 pay=raise * current_record_VA.salary; 
623 
624 -- Default is the current record. 
625 Record AM.Keyed Ops.Update by key( 
626 opened dev-=> T2 opened file, 
627 buffer-VA => buffer'address, 
628 length- => buffer'length, 
629 index => Employee Filing EX. 
630 dept salary index name); -
631 -- Employee Yo index. 

In this example, an employee's salary is raised and the salary is updated. 

IV-9.2.10 Using Indexed-Sequential Access 

IV-9-20 

Indexed-sequential access lets you read in a forward or reverse sequence in a file using the 
index. 

Calls Used: 

Record AM.Keyed Ops.Set key range 
- SetS two key vaiue bOundaries within an index. 

Record AM.Ops.Read 
- Reads a record from an opened file. 

The result of the Read is different depending on whether the index is ascending or descending, 
and whether the key range is being traversed in a forward or reverse sequence. 

Reading in a forward sequence. To read forward in a simple index, use the next option as 
the modif ier value to your Read call. 

Follow these steps: 

• Specify an index with an index DDeffield that does not have the pi descending 
property identifier (that is, the field is sorted in ascending order). -

• Set the start value of the index key range to a minimum value at which you want to begin 
reading. 

The read starts from the low key value and ascends to the high key value in the key range, 
going from left to right in the index structure until Device_Defs. end_of_file is raised. 

This example uses a simple single-field index on department (ascending). 

Using Record I/O with Structured Files 



PRELIMINARY 

107 -- A simple index declaration. 
108 dept_index_DDef: Data Definition Mgt. 
109 -node_reference; 
110 
111 dept index name: constant 
112 FIle Defs.index name := 
113 (max length ~> File Defs.index name length, 
114 length => 14, - --
115 value => "Dept_Index_DDef fI); 
116 
117 type dept key buffer is 
118 record - -
119 dept: department_number; 
120 end record; 

KThis procedure positions to the beginning of the range, and reads successive records until the 
end of the range. You set the start value to the left of the index (the low end), and a stop value 
to the right of the index (the high end). You set the key range to start at the low end of the key 
range and stop at the high end. 

212 Record AM.Keyed Ops.Set key range ( 
213 opened dev - => opened file, 
214 index - => -
215 Employee Filing EX.dept index name, 
216 select_range => ( - - -
217 start comparison => Record AM.exclusive, 
218 start-value => start key descr, 
219 stop comparison => Record AM~inclusive, 
220 stop=value => stop_key_descr»; 

The simple index is read by ascending key values starting at the low end of the key range. 
222 loop 
223 bytes read := Record AM.Ops.Read( 
224 opened dev => opened file, 
225 modifier => Record-AM.next, 
226 -- Next is normally defaulted. 
227 buffer VA => buffer' address, 
228 length- => buffer' length); 
229 
230 DO ANY NEEDED PROCESSING HERE. 
231 
232 end loop; 

Reading in a reverse sequence. To read in reverse in a simple index, use the pr ior option 
as the modif ier value to your Read call. 

Follow these steps: 

• Specify an index with an index DDef field that does not have the pi descending 
property identifier (that is, the field is sorted in ascending order). -

• Set the start value of the index key range to a maximum value of the range at which you 
want to begin reading. 

The read starts with the high key value of the key range and reads to the low key value of the 
range, going from right to left in the index structure until Device_Defs . end_of_file is 
raised. 

This example uses a simple single-field index on department (descending). 

Using Record I/O with Structured Files IV-9-21 



PRELIMINARY 

107 -- A simple index declaration. 
108 dept_index_DDef: Data Definition Mgt. 
109 -node_reference; 
110 
III dept index name: constant 
112 FIle Defs.index name := 
113 (max length ~> File Defs.index name length, 
114 length => 14, - --
115 value => "Dept_Index_DDef "); 
116 
117 type dept key buffer is 
118 record - -
119 dept: department_number: 
120 end record; 

The start value is set to the right of the index (the high key value of the key range). The stop 
value is to the left of the index (the low key value of the key range). You set the key range 
with the start value (high end) and stop value (low end) values. 

266 Record AM.Keyed Ops.Set key range ( 
267 opened dev ~> opened file, 
268 index - => -
269 Employee Filing EX.dept index name, 
270 select range => (- - -
271 start comparison => Record AM.exclusive, 
272 start-value => start key descr, 
273 stop comparison => Record AM~inclusive, 
274 stop=value => stop_key_descr»; 
275 

The index is read by descending key values starting at the high end of the key range. 

276 loop 
277 bytes read := Record AM.Ops.Read( 
278 opened dev => opened file, 
279 modifier => Record-AM.prior, 
280 -- Sets read modifIer to prior. 
281 buffer VA => buffer' address, 
282 length- => buffer' length); 
283 
284 DO ANY NEEDED PROCESSING HERE. 
285 
286 end loop; 

IV-9.2.11 Reading Key Values Sequentially 

IV-9-22 

The Record_AM. Keyed~Ops package provides keyed operations that let you read just the 
key values of records. 

Calls Used: 

Record AM.Keyed Ops.Set key range 
- SetS two key v"iiue bOundaries within an index. 

Record AM.Keyed Ops.Read key value 
- Reads key values from an opened file. 

Reading key values is no different than reading records. However, the primary data area of the 
file is never touched when key values are read. This allows a fast scan of the values in an 
index without the overhead of reading entire records. 

Using Record 110 with Structured Files 



PRELIMINARY 

To read duplicates of one key value, you must specify a nonunique index and set the start and 
stop values of the index to the same value. 

The following declaration sets the start and stop values to the same value. 
299 start key value: constant Employee Filing EX. 
300 dept key buffer := (dept => 305); -
301 - Start value for duplicate 
302 -- key field. 
303 
309 
310 stop key value: constant Employee Filing EX. 
311 dept key buffer := (dept => 305); -
312 - Stop value for duplicate 
313 -- key field. 
314 

When reading sequentially via a nonunique index, the next key value is returned in a duplicate 
sequence. The duplicate field in the operation_status_record is set to true if 
additional records exist with the same key value. 

IV-9.2.12 Reading and Updating Records by Key 

Sequential reads by key can be combined with random updates. 

Calls Used: 

Record AM.Ops.Set key range 
- Sets two key value boundaries within an index. 

Record AM.Keyed Ops.Delete by key 
- Deletes a record deSIgnated by a unique index key value. 

Essentially, you do a series of reads until you find a record you need to update: 
542 Record_AM.Ops.Set-position( 
543 opened dev => opened file, 
544 where ~> Record-AM.record specifier( 
545 type of specifier => Record AM.first)' ( 
546 type_of_specifier => Record_AM.first»; 
547 loop 
548 bytes read := Record AM.Ops.Read( 
549 opened dev => opened file, 
550 buffer-VA => buffer'address, 
551 length- => buffer' length); 
552 
553 if current record VA.dept = 175 then 
554 Record AM.Keyed-Ops.Delete by key( 
555 opened dev => opened file,-
556 index - => Employee Filing Ex. 
557 dept_index_name); - -
558 
559 end if: 
560 
561 end loop; 

IV-9.3 Summary 
• Record AM can be used with a number of different devices including flIes, DDefs, pipes, 

and directories. 

Using Record I/O with Structured Files IV-9-23 



IV-9-24 

PRELIMINARY 

• Structured files are generally accessed using Record_AM. Only indexed structured files 
can use the Keyed_Ops nested package. 

• The CRP points to the current record. Nonnally, this is the most recently read record or the 
current index and index key value. The CRP can be physically positioned to a particular 
record us~g Setyosition or Set_key_range calls. 

• Keyed access can also occur without setting the CRP using Read_by _key, 
Update_by_key, and Delete_by_key calls. 

• Physical-sequential access can be done from the beginning of a rue in a forward sequence, 
from the back of a file in a reverse sequence, or by record ID or record number (from any 
random starting point). 

• The major difference between physical-sequential access and physical-random access is 
that each read is preceded with a Setyosition call for physical-random access, while 
physical-sequential access uses the next position modifier. 

• Indexed-sequential access depends on the properties of the DOefs used to defme the in
dexes (that is, ascending or descending). Both ascending and descending indexes can be 
read in either forward or reverse order. 

Using Record 110 with Structured Files 



PRELIMINARY 

LOCKING FILES AND RECORDS 10 
Contents 

Concepts .............................................................. IV -10-2 
Concurrency Control and Recovery .... .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV -10-3 
Transaction Locking ............................................... IV -10-4 
Acquiring Locks .................................................. IV -10-6 
Lock Escalation ................................................... IV -10-7 
Releasing Locks ................................................... IV -10-7 
Consistency Levels ................................................ IV -10-7 
Reading Key Range Values .......................................... IV-10-8 
Locking and Nested Subtransactions ................................... IV-10-8 
Lock Contention ................................................. IV -10-10 
Logging ........................................................ IV-10-11 
Transactions and Opened Device Objects .............................. IV -10-11 
File-Level Locks Associated with Opened Devices ...................... IV-10-12 
File Administration Operations and Locking ........................... IV-IO-12 

Techniques .......................................................... IV-IO-12 
Using Level 3 Consistency ......................................... IV-IO-12 

Summary ........................................................... IV-IO-14 

Locking Files and Records IV-IO-I 



PRELIMINARY 

The filing selVice is built for high levels of concurrency and integrity. It uses sophisticated 
algorithms to support readers while writing, provides highly concurrent b-tree and hashed in
dexes and supports transaction based synchronization and recovery. For applications that want 
to eliminate the overhead of transactions, the filing selVice also supports nontransaction
oriented files. 

Packages Required: 

Record AM Provides device-independent I/O for record access. Contains the 
Record_AM. Ops and Record_AM. Keyed_Ops packages. 

Re cord_AM. Ops Common interface for record I/O calls. 

Record AM.Keyed Ops 
- Special I/O calls for indexed access to files. 

File Admin Basic declarations and calls for file administration. 

In a multiuser system that does not support transaction locking, lost updates can occur. For 
example, when updating a record in a file, you read the record from passive store into a private 
copy, update your copy, and write the copy back to passive store. You can lose your update if 
another user reads the same record you are updating before your write completes, updates their 
copy, and writes their copy back to passive store after your write completes. Figure IV -10-1 
shows how a lost update can happen. 

Transaction 1 

Read record A 

Update record A 

Write record A 

Transaction 2 

Read record A 

Update record A 

Write record A 
overwrites T1' s 
updates 

Figure IV-tO-t. Lost Update Problem 

Locking can prevent lost updates. 

IV-10.1 Concepts 

IV-IO-2 

Some problems that can occur in multiuser systems that allow more than one user to access a 
file simultaneously are: 

• . Lost updates - when one user overwrites another user's changes. 

• Reading uncommitted changes - when a user reads data modified by transactions that have 
not completed. 

Locking Files and Records 



PRELIMINARY 

• Nonreproducible reads - when a user reads the same record twice in a transaction getting 
different results each time. 

These problems can be avoided by using locking features the fuing service provides. 

IV-10.1.1 Concurrency Control and Recovery 

An efficient online multiuser data processing system should: 

• Assure that the data accessed by the users looks consistent from their viewpoint, especially 
when multiple users are trying to access the same pieces of data (concurrency control). 

• Assure that any changes to the data are undone if a transaction has an unsuccessful tennina
tion (rollback). 

• Assure that any changes to the system's data are redone if there is a media failure, system 
crash, or application error (rollforward). 

The filing service supports concurrency control by providing transaction-based locking and 
recovery by using logging techniques. The fuing service provides two different logging tech
niques: 

• Short-term logging to support rollbacks of transactions 

• Long-term logging to support rollforward operations. 

The filing service lets you use locking, short-tenn logging, and/or long-tenn logging for any 
structured file, by appropriately setting the following fields in the logical file descriptor when 
creating the file: 

xm _locking Specifies that the file can be locked for transactions. 

short term logging 
- - Specifies short-tenn logging to support rollback for transaction aborts. 

long term logging 
- - Specifies long-tenn logging to support rollforward for recovery from 

media failure or user errors. 

Any structured file you create with at least one of the locking or logging fields set to true is 
called a transaction-orientedfile. Any fue you create with all the locking and logging fields 
set to false is a nontransaction-oriented fue. Nontransaction-oriented files do not support 
transaction locking, short-tenn logging, or long-tenn logging, and do not have the transaction 
overhead associated with transaction-oriented files. Nontransaction-oriented fues are more 
efficient to use in applications where concurrency control and recovery are not important. 

NOTE 

If you do not have a transaction when accessing transaction-oriented files, the filing ser
vice will automatically start a transaction and commit it at the end of the operation. 

All the transactions started internally by the fuing service are low-overhead transactions. 
The only exceptions are the long-tenn logged fues where the filing service starts real 
transactions. 

Locking Files and Records IV-IO-3 



PRELIMINARY 

IV-1 0.1.2 Transaction Locking 

IV-IDA 

Most locking is done implicitly by the filing selVice when you access or modify the data 
contained in files. However, the fuing selVice does provide the option to place certain locks 
explicitly, and to drop some locks. 

The filing service uses hierarchical locking for concurrency control. The three levels of the 
hierarchy are: 

• Files (highest level) 

• Index key ranges 

• Records (lowest level). 

Figure IV-IO-2 shows the locking hierarchy. 

File 

Records 

Figure IV -10-2. Locking Hierarchy 

A record-level lock locks one individual record. An index-key-range-Ievellock locks all the 
records whose index key fields fall in the range that is being locked, which is usually a subset 
of the records contained in a file. A file-level lock locks all the records in the file. File-level 
locks are more efficient, because only one lock is required to lock all the records in a file. 
Record-level locks provide better concurrency, because each transaction locks only a subset of 
records in a file. 

Locking Files and Records 



PRELIMINARY 

IV-IO.I.2.1 Lock Modes 

There are two basic lock modes supported by the filing service: 

• read (r) lock (shared or s-locks). 

• write (w) lock (exclusive or x-locks) 

Read locks prevent other transactions from updating a record. This lock mode allows other 
transactions to read but not modify the record. Write locks prevent other transactions from 
reading or updating the record. Figure IV -10-3 shows how write locks prevent other users 
from accessing records you are using. 

Transaction 1 

Read and W-Iocks 
record A 

Modifies record A 

Writes record A 

Commit 

Transaction 2 

Tries to read and 
W-Iock record A 
(must try again, 
T1 has W-Iock on it) 

Reads and W-Iocks 
record A (record A 
has T1 's updates) 

Modifies record A 

Writes record A 

Figure IV-IO-3. An Update with an X-lock 

In the figure IV-I0-3, transaction 2 cannot read record A until transaction 1 commits, because 
transaction 1 holds a write lock on on it. 

To understand locking, it is necessary to explain several locks that are not visible to trans
actions. In addition to the read and write locks, the filing service uses intention locks. Inten
tion locks tag an entity at a higher level and indicate that locking is being done at a finer level. 
(Only the read, write, and protect locks are visible to you. The intention-read and intention
write locks are used internally by the filing service.) For instance, an intention lock on a file 
indicates that locking is being done at a lower (key range or record) level. There are three 
intention locks: 

• intention-read (ir) lock (also known as intention-share or is-lock) 

• intention-write (iw) lock (also known as intention-exclusive or ix-lock) 

Locking Files and Records IV-IO-5 



PRELIMINARY 

• protect (r-iw) lock (also known as shared intention-exclusive or six-lock). 

For instance, when there are record-level write locks in a file, the filing service puts an 
intention-write lock at the fue-Ievel. This prevents other transactions from placing a file-level 
write lock on the same fue. 

The protect (r-iw) lock is a combination of read (r) and intention-write (iw) locks. A protect 
lock is useful for transactions that may want the exclusive right to modify a file, but want to 
allow other transactions to read the file. The protect lock is also useful for transactions that 
may want to read many records but update only a few. 

Another lock mode is the dirty read (null) lock. This lock mode does not provide any locking. 

NOTE 
If you lock one level of the locking hierarchy, the lower levels of the hierarchy are 
considered locked with the same lock mode. For example, when a file is locked with a 
write lock, all the records in that file are considered locked with a write lock. 

IV-I0.l.2.2 Lock Mode Compatibility 

Table IV-tO-t shows the compatibility between lock modes. 

Table IV -10-1. Compatibility of Locks 

null lr lw r r-lw w 

null yes yes yes yes yes yes 

Ir yes yes yes yes yes no 

Iw yes yes yes no no no 

r yes yes no yes no no 

r-Iw yes yes no no no no 

w yes no no no no no 

Compatibility between lock modes is an issue only when different transactions are competing 
for the locks on the same record or file. A11locks within the same transaction are always 
compatible. 

IV-10.1.3 Acquiring Locks 

IV-IO-6 

Transactions implicitly acquire locks when they read or write records in a file. The filing 
service always places write locks on records that are written (inserted, updated, or deleted). 
For reads, the :filing service allows you to choose the lock -mode for the record being read. The 
default lock for reading is the read_lock. 

For applications that read records before updating them, you can place a write lock on the 
record when you read it. Therefore, the filing service does not have to upgrade the lock to a 
write lock during the record update. On the other hand, for applications where consistency is 
unimportant, you can do a dirty read using the dirt y _read lock mode. With a dirty read, 
transactions do not acquire locks and other transactions can change the data you are reading. 

Transactions can explicitly acquire file-level locks by calling Rec<?rd _AM. Ops . Lock_all 
and setting the by_transaction parameter to true. With file-level locks, you do not need 
to have locks with the same mode at the key range or record level, avoiding the overhead of 

Locking Files and Records 



PRELIMINARY 

individual record locks. Transactions can also acquire iue-Ievellocks implicitly through lock 
escalation by the filing system. The appropriate file-level intention locks are always acquired 
whenever a lock is placed on a record or key range. 

See page IV -10-8 for information about how transactions acquire locks from subtransactions. 

IV-10.1.4 Lock Escalation 

The filing selVice automatically attempts to upgrade the file-level lock, when a transaction 
reaches a threshold for the number of record locks a transaction can hold in the file. (The 
filing service tries to convert the transaction's record locks to a single file-level lock.) The 
filing selVice raises the lock_escalation_failed exception ifit is unable to upgrade 
the lock. 

When creating a file, you can specify the lock_escalation_count in the file's logical 
file descriptor to set the threshold value for the iue's record locks. If you set this value to zero, 
the exception Record_AM. too_many_locks is raised when a transaction exceeds the 
default limit for the number of record locks per file per transaction. 

IV-10.1.5 Releasing Locks 

The filing selVice automatically releases all the locks acquired in the transaction when a trans
action terminates. However, you can explicitly release some read and protect locks before a 
transaction tenninates. 

There are several ways to release read and protect locks. You can release file-level read locks 
and file-level protect locks using the Reco rd _AM. Op s . Unlo ck _all call. (You need to 
set the by _ transact ion parameter to true.) You can release record-level read locks using 
the Record_AM. Ops. Unlock call. Only one instance of a lock is released unless the 
unlock parameter is set to all_read_Iocks. (If a lock has been acquired a number of 
times, each instance of the lock must be unlocked to completely unlock h'le file or record.) 
You can also release record-level read locks in the Record_AM. Ops . Read or 
Record_AM. Keyed_Ops. Read_key_value calls, by setting the unlock parameter to 
free or all read locks. - -

IV-1 0.1.6 Consistency Levels 

A transaction can have different levels 0/ consistency. In general, as the level of consistency 
increases, the amount of concurrency decreases. The filing selVice provides support for the 
following levels of consistency: 

Level 3 

Level 2 

Locking Files and Records 

Transactions with level 3 consistency are serializable, that is, their be
havior is the same whether they are run concurrently or serially according 
to some serial order. 

Level 3 transactions guarantee that all modified data is kept locked until 
the end of the respective transactions, repeated reads always give the same 
results, and phantoms are prevented. 

Transactions with level 2 consistency guarantee that all modified data is 
kept locked until the end of the respective transactions, and that none of 
the data the transaction reads is dirty (changed but not committed by other 
transactions). No guarantees are made as to whether reads are repeatable 
and whether can phantoms occur. 

IV-IO-7 



PRELIMINARY 

Levell Transactions with level 1 consistency only guarantee that the data that is 
modified is kept locked until the end of the respective transactions (dirty 
reads). No other guarantees are made. 

NOTE 
A phantom is a nonexistent entity whose appearance after a transaction has started would 
change the results of the transaction. 

Phantom protection may reduce concurrency and should be switched off unless neces
sary. 

With level 3 consistency, the filing service automatically sets key range locks on record fields 
in an index when a transaction accesses a file through the index. When a transaction holds key 
range locks, no other transaction can write (insert, delete, or modify) records in the key range 
(phantom protection). 

Your application has level 3 consistency when: 

• Phantom protection is set. You do this by building indexes with the 
phantomyrotected boolean set to true in the index descriptor. 

• Key range locking for the opened device is turned on. You tum on key range locking with 
the Record_AM. Ops. Set_open_mode call setting the open mode value 
Record AM. level 3 to true. - -

Your application can have level 2 consistency when: 

• Transactions release read locks before they complete. 

• Key range locking for an opened device is turned off. You do this with the 
Record_AM. Ops . Set_open_mode call setting the open mode value 
Record AM . level 3 to false. - -

Your application can have level 1 consistency when: 

• Transactions do reads without placing any locks (dirty read). A dirty read is set for a read 
call using a lock mode of Record_AM. dirty_read. 

IV-10.1.7 Reading Key Range Values 

When an application is interested only in reading key values in an index (by using the call 
Record_AM. Keyed _ Ops . Read_key _val ue) but not the whole records, you can tum 
record locking off. This can be done by setting the no_record_locking parameter to 
true. You can do this only if the index is phantom protected and the opened device has level 3 
consistency. 

IV-1 0.1.8 Locking and Nested Subtransactions 
The filing seIVice supports logically nested subtransactions that are useful for providing 
synchronization in multithreaded applications and for constructing the building blocks for 
transaction-oriented applications. You can use subtransactions to build large applications by 
suitably nesting one building block within another. You can also use subtransactions to devel
op applications where the operations in a transaction need to be split into smaller atomic units. 
Splitting a transaction into smaller units provides a convenient way of containing errors, and 
provides a way of building more reliable software in a distributed environment. 

Locking Files and Records 



PRELIMINARY 

Transa~tions and subtransactions can inherit locks from their child transactions. Inherited 
locks behave differently from the other locks described in this chapter. 

When a child transaction commits, the parent subtransaction inherits the locks the child held. 
These inherited locks then become available to other descendants of the same parent. A des
cendant can acquire a lock in the base (noninherited) fonn as long as the lock being acquired 
does not conflict with the locks held by any other transaction. To transactions that are not 
descendants, the inherited locks look and behave similarly to the base locks. 

If the child transaction aborts, the locks disappear and cannot be inherited. 

The inherited locks are called the held locks. There is a held lock mode corresponding to each 
lock mode; for instance, when a write lock is inherited, the inherited version is called write
held lock. 

Figure IV-IO-3 shows how locks are inherited by subtransactions. In the figure, T2 cannot 
acquire a write lock on flie F2 until T8 commits. 

To release a read lock in a subtransaction before the subtransaction has tenninated, you can 
specify these values for the unlock parameter in the read calls: 

unlock to held 
- - The subtransaction releases the (read) lock, and its parent inherits the lock. 

free The subtransaction releases the (read) lock, but the parent does not inherit 
it. 

all read locks to held 
- - Ail tlie read locks associated with a particular subtransaction are released. 

The parent inherits the locks. 

all read locks 
- All the read locks associated with a particular subtransaction are released. 

The parent, however, does not inherit the locks. 

If these parameters are specified for a root level transaction, the unlock mode 
unlock_to_held is equivalent to the free mode, and all_read_Iocks_to_held 
mode is equivalent to the all_read_Iocks mode. 

You can also release flie-Ievel and record-level read locks by calling 
Record_AM.Ops. Unlock_all and Record_AM.Ops. Unlock respectively. 

Locking Files and Records IV-IO-9 



PRELIMINARY 

rF1I 
~ 

T1 

rF3I 
~ 

T 4 aborts, T5 comm its 

/'" 
T3 I ~~lockJ I ~:heIJ I ~:held J T2 

T6, T7 started 

T1 

I ;~'OCk] r( \3 I ;~'OCk] I ~~he,J I ;:he'd] 

I ~~'ock] r! \7 I ;~'OCk] 

rF1I m-'l 
~~ 

T3. T6, T7 commit T8 started 

T1 rF1--'I fF'2"""I rF3I 

/ ' ~~~ 
~8 I ;~'ocJ T2 

T2 now acqu ires F2 

Figure IV-IO-4. Locks Inherited by Subtransactions 

IV-10.1.9 Lock Contention 

IV-IO-IO 

Deadlock is a condition where two or more transactions are in a simultaneous wait state, each 
waiting for the other transactions to release a lock before it can proceed. The filing selVice 
uses two independent schemes for avoiding transaction deadlocks. 

The default mechanism for avoiding deadlock is the timestamp ordering mechanism. If two 
transactions contend for the same lock, the fuing selVice uses their timestamps to avoid dead
locks. When contending for a lock, a transaction can wait for another transaction that holds the 
lock when the other transaction has an earlier timestamp. If the transaction that wants the lock 
has an earlier timestamp, it is not allowed to wait. Subtransactions are exceptions to this rule: 
a parent transaction can wait for a lock held by a child transaction, even though the parent 
transaction has an earlier timestamp. 

Locking Files and Records 



PRELIMINARY 

Instead of the timestamp ordering mec:Qanism, you can use the timeout mechanism to break 
deadlocks. Most Record_AM calls have a timeout parameter that specifies the amount of 
time a transaction should wait for a lock. When you specify a timeout value in a call, the filing 
service makes sure that your transaction waits no longer than the duration of the timeout for 
any single lock. The Record AM. timeout exception is raised at the end of the timeout 
period if the lock is unavailable. 

If you give a timeout value of zero, the Record_AM. timeout exception is raised if a trans
action cannot obtain a lock immediately. The timeout value wait_forever is the default 
value, and switches the transaction into the timestamp ordering mechanism. 

The Transaction_Mgt package allows you to specify timeouts for transactions. A timed 
out transaction raises a Transaction_Mgt. transaction_not_active exception. 
You can also break deadlocks using calls in the Event_Mgt package to send signals (events) 
to a process that is blocked for a lock. Operations that are interrupted by a signal raise the 
exception System_Defs. system_calI_interrupted. 

See Chapter II -4 for more infonnation about transactions. 

IV-10.1.10 Logging 

The filing service supports short-tenn and long-tenn logging of transactions. Short-tenn log
ging provides rollback recovery for transactions. You can request short-tenn logging when 
you create a file by setting short_term _logging to true. Short-tenn logging ensures that 
changes made in a file are rolled back if a transaction aborts or the system crashes. 

When a subtransaction commits, the changes are passed on to the parent transaction. The 
changes are made permanent only when the root-level transaction commits. When a subtran
saction aborts, the changes made in the subtransaction and the ones inherited from its children 
are rolled back. 

Long-tenn logging provides rollfoIWard recovery for transactions. You request long-tenn log
ging when creating a file by setting long_term_Iogging to true. Long tenn logging can 
be requested only for files that are transaction locking files and are short-tenn logged. The 
filing service uses the long-term log infonnation to restore a file by rolling fOIWard all the 
changes made to a file since a particular backup. Only the changes that a root-level transaction 
commits are rolled forward. 

IV-10.1.11 Transactions and Opened Device Objects 

Two or more transactions cannot use the same opened device simultaneously. The exception 
Record_AM. odo_using_a_different_transaction is raised if a transaction at
tempts to open a device that is already opened by another transaction. 

NOTE 
After a transaction releases the lock on the opened device, the value current is invalid 
for the current record pointer (CRP). The CRP has to be redefined in a new transaction. 
The values next and prior are valid. 

Locking Files and Records IV-IO-l1 



PRELIMINARY 

IV-10.1.12 File-Level Locks Associated with Opened Devices 

In addition to the file-level locks associated with transactions, the filing selVice associates 
file-level locks with opened devices. These locks apply to both files transaction-oriented and 
nontransaction-oriented, and are independent of transaction locks. 

The filing selVice automatically associates ftIe-levellocks with opened devices when a file is 
opened. The lock mode is based on how you open the file using the input_output and 
allow parameters. Table IV-IO-2 shows the lock modes. 

Table IV-IO-2. Lock Modes for Opened Device Locking 

Allow Mode During Open Call 

input_output anything readers nothing 

input ir r w 

output iw r-iw w 

inout iw r-iw w 

The kind of lock held by an opened device detennines the operations allowed by other opened 
devices on a file. For instance, a write-lock disallows any other opens on a file, while a 
read-lock disallows all opens for writing to the file. 

You can explicitly add and remove file-level locks associated with an opened device, using the 
Record_AM. Ops. Lock_all and Record_AM. Ops . Unlock_all calls. The 
by_transaction parameter must be set to false. You cannot remove the locks that the 
filing selVice automatically places at the time of doing the open. 

All the locks associated with an opened device are released when the opened device is closed. 

IV-1 0.1.13 File Administration Operations and Locking 

The File_Admin package provides calls for managing files and indexes. Some of the file 
administration calls are transaction~oriented, and they interact with file processing on 
transaction-oriented files. File administration uses the same set of transaction locks to obtain 
isolation as those used by file processing. 

File administration places write locks on files for File_Admin. Create _file and 
File_Admin. De s troy _ f il e operations. If a transaction-oriented file is being read, the 
filing selVice will not allow a destroy fue operation until the transaction that is reading the file 
has completed. File administration places intention-read locks on the ftIe for the 
Save_unnamed_file, Build_index, and Destroy_index operations. 

IV-10.2 Techniques 
When you finish this section you should be able to write transaction-oriented applications that 
support different levels of consistency. 

IV-10.2.1 Using Level 3 Consistency 

IV-IO-12 Locking Files and Records 



PRELIMINARY 

Calls Required: 

Record AM.Ops.Set open mode 
- Sets the open-mode parameter level_3 to true. 

Record AM.Keyed Ops.Set key range 
- Sets the index key range for the read. 

Record AM.Ops.Read 
- Reads a record from an opened device. 

Record AM.Keyed Ops.Update by key 
- UPdates the employee records by key values. 

The following example starts a transaction that perfonns an indexed-sequential read and up
date of a clustered file using a unique b-tree alternate index. The transaction reads employee 
records using the write_lock lock mode, and updates the records with a new salary value. 
The transaction does not release the locks on its records as it reads them; it holds them until it 
resolves. Other transactions are not allowed to read or write the file until the transaction 
commits. 

85 
86 
87 
88 
89 
90 
91 
92 
93 

111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 

Locking Files and Records 

opened file := Record AM.Open by name( 
name => file name, -
input output => Device Defs.inout, 
allow- => Device=Defs.anything); 

Recor"d AM. Ops . Set open mode ( 
opened dev =>-opened file, 
mode value => level 3 mode); 

-- Sets level 3 consistency. 

loop 
bytes read := Record AM.Ops.Read( 

opened dev => opened file, 
buffer-VA => current record addr, 
length- => Employee_Filing_Ex. 

max rec size, 
lock - ~> Record AM.write lock, 
unlock => Record-AM.no unlock); 

Another caller cannot-read or update 
the same record at any time. 

if current record VA.salary = 3 000.00 then 
current-record-VA.salary := -

current_record_VA.salary + 300.00; 

Record AM.Ops.Update( 
opened dev => opened file, 
modifier => Record-AM. current, 
buffer VA => current record addr, 
length- => Employee_Filing_Ex. 

max rec size, 
timeout- ~> Record AM. wait forever, 
status => null);- -

end if; 
end loop; 

IV-IO-13 



PRELIMINARY 

IV-10.3 Summary 

IV-IO-14 

• Locking is used to control concurrent access to the records, files, or key range values. 

• . There are transaction-oriented files and nontransaction-oriented files. Some files are more 
transaction-oriented than others. 

• Transaction-oriented files can do transaction locking, short-term logging, and/or long-term 
logging. 

• Transaction and opened devices can acquire locks. Transactions can lock files or records; 
opened devices can only lock flIes. 

• Key range locking provides phantom protection. 

• Locks held by child transactions can be passed to parents. 

• Changes made in a fue that uses short-term logging are rolled back if a transaction aborts. 

• The long-tenn logging information is used to restore a fue by rolling forward all the 
changes made to a file since a particular backup. 

• A lock held by an opened device determines what kinds of opened devices and activities 
are allowed on a fue. 

• Nontransaction-oriented flIes do not support transaction locking, short-term logging, or 
long-term logging. 

Locking Files and Records 



Contents 

PRELIMINARY 

PROCESSING COLLECTIONS 11 
OF RECORDS 

Concepts ......................... ' .................................... IV -11-3 
Reading Records ... ' ............................................... IV -11-3 
Updating Records ................................................. IV-11-5 
Database Operations ............................................... IV-II-5 
Selection ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV -11-6 
Projection ........................................................ IV -11-7 
Difference, Intersection, and Union .................................... IV -11-9 
Interaction Between Record Processing Calls ............................ IV -11-9 
Joins ........................................................... IV-II-10 
Sorting and Merging ............................................. . IV-II-II 

Techniques .......................................................... IV -11-13 
Selecting a Set of Records ........................................... IV -11-14 
Using Projection on an Index ........................................ IV-II-IS 
Joining Records from Two Devices ................................... IV-II-16 
Sorting Records in a File ........................................... IV ~ 11-16 
Sorting and Merging Records from Two Files .......................... IV -11-17 

Summary ........................................................... IV-II-18 

Processing Collections or Records IV-ll-l 



IV-1 1-2 

PRELIl\1INARY 

This chapter describes the filing selVice' s support for processing collections of records. 

Packages Used: 

Join Interface 
- Provides support for perfonning nested block joins of records from mul

tiple opened devices. Only authorized users can use the calls in this pack
age. 

Record AM Provides device-independent I/O for records. 
Record Processing Support 

- Provides support for processing large collections of records. 

Sort Merge Interface 
- - Provides calls for sorting and merging records from one or more input 

devices into a single ordered record stream. 

Trusted Record Processing Support 
- Provides additionai support for processing collections of records. Only 

authorized users can use the calls in this package. 

The record processing packages provide special calls for developing large record processing 
applications such as database filing systems. Figure IV -11-1 shows how you can customize a 
read call to do special processing of records in artIe: 

Associating 
User's Read Function 

User's 
Read 

Function 

,~ 

Associate_read 
procedure 

" 
Sets opened 

device to use 
user's read 

function 

Making The Read Call 

User's 
Read 
Call 

T F 

Call 
Associate 

,~ 
Read 

Filing Procedure Default 
Service's Read 

Read Function 

Calls 
,~ 

User's 
Function 

Figure IV-II-I. Customizing a Read Call 

Processing Collections of Records 



PRELIMINARY 

The Trusted_Record_Processing_Support.Associate_read-procedure~
sociates an implementation for a read call with an opened device. When you read from the 
opened device, the filing selVice will use your implementation for the read call. 

IV-11.1 Concepts 
The operations for processing collections of records are more efficient than the record I/O 
techniques in Chapter N-9 because: 

• They minimize the processing time and the data transfer necessary between system fue 
buffers and the user's address space. 

• They can reduce the ~sociated disk activity (seeks and latency). 

• They minimize, in the distributed applications, the amount of communication necessary 
between nodes. 

• They are efficient for processing collections of records. 

IV-11.1.1 Reading Records 

The calls in the record processing support packages let you read record fields and read data 
from a single index. You can use these calls together with the Record_AM read calls to 
create applications that efficiently read collections of records. You can use the record process-
ing support calls together with these Record_AM read calls: . 

• Record_AM. Ops . Read - reads a record from an opened device 

• Record AM. Keyed Ops. Read by key - reads a record from an opened device 
given a uDique key vaiue - -

• Record AM. Keyed Ops. Read key value - reads a key value fonn an opened 
device. - - --

These record processing calls are for reading collections of records: 

• Record Processing Support. Set oriented read - for reading all the 
records on a device - - -

• Trusted Record Processing Support.Associate read procedure-fur 
customizing your read procedures. - - -

The Set_oriented_read call lets you read a complete file with one call instead of having 
to write a call that does this. This is convenient when you want to read all the records on a 
device. 

The Associate_readyrocedure call lets you customize a read call with your own 
implementation of the call. To use the Associate_readyrocedure call, you provide 
an implementation for the 
Trusted_Record_Processing_Support.Process_record(asubprogram 
template for a read procedure}, and pass its subprogram type as the read_function 
parameter to Associate_readyrocedure. Once you associate your read implemen
tation with an opened device, the read call will use your implementation to read records from 
the opened device. Because this call is in the Trusted ...... Record_Processing_Support 
package, you must be an authorized user to use it. 

Processing Collections of Records IV-1l-3 



PRELIMINARY 

NOTE 
During a Set_oriented_read call, you can buffer the output records to one or two 
output streams. During the Associate_read.J>rocedure call, returns a single 
buffer when the buffer is full and ready to be written. 

IV-II.I.I.I Record Streams 

IV-1 1-4 

In record processing, you read collections of records called record streams. A record stream 
device is an opened device that is either: 

• A sequential file that does not contain any indexes or use any transaction locking 

• A pipe that is a stream of records. 

You use record stream devices as temporary devices to hold the output from the record 
processing operations. 

If you store record IDs in a record stream device, you create a record ID stream. A record ID 
stream is a record stream in which each record contains a record ID. Most of the record 
processing support calls use record ID streams to process records. 

You can use the Associate record ID stream call in the - --
Record_Processing_Support package to associate a record ID stream with a file. 
Figure IV-11-2 shows an operation using record IDs and a file's primary data. 

( ) A projection creates 
a stream of record IDs. 

~ ~ Record 10 stream 

~ _1 ..... A_S_S_o_ci_a_te ___ r_ec_o_rd ___ I_D ___ st_r_ea_m_~ 

Records with 
record IDs ! 

Read 
Matches record IDs from 
stream with record IDs 

from file. 

Figure IV-II-2. Associating a Record ID Stream with a File 

You can direct a record stream or record ID stream to an output device using the Record_AM 
read calls or the Set oriented read call. 

Processing Collections of Records 



PRELIMINARY 

IV-ll.1.1.2 DDefs and Record Processing Support 

You can use data definitions (DDefs) to defme the fields used for processing records. You can 
derive your DOef from the record DDefs of the fue that is the specified input device for your 
application. See Appendix X-A for examples of derived DDefs. 

IV-11.1.2 Updating Records 

Using the basic record I/O calls, you update a record by reading and updating the entire record. 
But this is often inefficient when updating collections of records, because you usually only 
update a single field in each record rather than the entire record. 

To efficiently update collections of records, you can use the Record_AM update calls together 
with the record processing support calls. You use these Record_AM calls for updates: 

• Record_AM. Ops . Update - updates a record or record fields on an opened device 

• Record AM. Keyed Ops. Update by key - given a unique key value, updates a 
record on an opened device. - -

Using the Record_Processing_Support . Associate_update_fields call, you 
can associate any number of fields to update with an opened device. Only the record fields 
you specify are updated. You can specify any number of fields to update with 
fields_to_update parameter. When you make an update call and specify a record, the 
filing selVice examines your buffer to find the new values for those fields. The filing selVice 
then logs the changes to the record and maintains any indexes that are affected by the update. 

Variable-length fields may change in length when they are updated, and multiple value fields 
may have values added or deleted. The filing selVice automatically expands and contracts 
variable-length records to accommodate this. 

IV-11.1.3 Database Operations 

By combining the record processing calls and the Record_AM calls, you can implement many 
database and filing operations. The filing selVice provides special record processing support 
for these database operations: 

• selection - extracts specific records (rows) from a given device. 

• pro jection - extracts specific fields (columns) from a given device. 

• intersect - builds a relation consisting of only the records appearing in two or more 
streams. 

• difference - builds a relation consisting of all the records appearing in one stream, but 
not in any other given streams. 

• union - builds a relation consisting of all records appearing in all of the given streams. 

• j 0 i n - combines the given streams by concatenating all of the records in the streams, 
creating a stream with all the combinations of records in the given streams. 

Figure IV -11-3 shows the database management operations. 

Processing Collections of Records IV-ll-S 



PRELIMINARY 

Selection 

Union 

01 b1 

02 b1 

03 b2 

Intersection 

b1 c1 

b2 c2 

b3 c3 

Pro jection 

Difference 

01 b1 c1 

02 b1 c1 

03 b2 c2 

Figure IV-11-3. DBMS Operations 

IV-11.1.4 Selection 

IV-1 1-6 

Selection lets you select individual records or a collections of records from one or more opened 
devices. The read calls in the Record_AM package provide the basic calls needed to perfonn 
record selection. For example, you can use the Record_AM. Keyed _ Ops call 
Set_key _range to set the range of key values to read in a fIle, and the Record_AM. Ops 
call Read to read all the employee records in a given department. You can do this without 
reading the records for the employees in any other departments. See Chapter IV -9 for ex
amples of how to do this. 

Processing Collections of Records 



PRELIMINARY 

The Record_Processing_Support package provides this call to optimize record selec
tion: 

• Associate_record_ID_stream - for associating a record ID stream with an opened 
device with read rights. 

The As so cia t e _ re cord _ ID _ stream call helps you select records by their record IDs. 
This call associates a record ID stream with the opened device you want to read. When you 
call Set_oriented_read, the record IDs of the records you are reading are automatically 
output to the associated record ID stream. 

IV-l1.1.4.1 Customizing a Selection 

You can use the calls in the Trusted_Record_Processing_Support package to cus
tomize the implementation of your selection operation This package provides two calls for 
optimizing record selection: 

• Associate_index_selection_function - for customizing your own index selec
tion function. 

• Associate_readyrocedure - for customizing your own read call for record selec
tion. 

These calls let you associate a selection implementation with an opened device. Whenever a 
read call is made to that opened device, the filing seIVice uses the associated read implemen
tation for the device to do the read. You can only use these calls if you are an authorized user. 

IV-l1.1.4.2 Using the Associate_index_selection_function Call 

To use the Associate_index_selection_function call, you must provide the 
opened device the selection function is associated with and a subprogram type for the selection 
function. (See the System package for a description of the BiiNTM Ada 
System . subprogram_type type.) The selection function must be an implementation of 
the Trusted_Record_Processing_Support .Entry_qualifies call that does 
record selection with an index. You pass the subprogram type for your implementation of this 
call in the Associate index selection function call's selection function 
parameter. You can do this with tlte BiiNTM Ada-subprogram_type attribute. When you 
execute a read on the associated device, the read will automatically use your 
Entry_qualifies implementation to perfonn the read. 

IV-ll.1.4.3 Using the Associate_readJ>rocedure Call 

To use the Associate_read_procedure call, you provide an implementation for the 
Trusted_Record_Processing_Support. Process_record that does record selec
tion, and you associate your implementation with the opened device you are reading from. 
Your call returns the selected part of the record when records are read from the device. 

You can also use Associate_readyrocedure to do record projection or both record 
selection and projection in a single procedure. 

IV-11. f.5 Projection 

Projection is a database operation that extracts record fields (columns) from an opened device. 
This is most efficient for processing fields in records, rather than entire records. For example, 
the projection operation could get certain employee ID numbers in an employee database by 
accessing only the record fields with the ID numbers instead of the entire employee record. 

Processing Collections or Records IV-H-7 



PRELIMINARY 

You can set up projection operations for reading or updating fields in an opened device using 
either primary or index projections. You can use these Record_Processing_Support 
calls for projection operations: 

• Associateyrimary_datayrojection - associates a projection of the primary 
fields with an opened device. 

• Associate_indexyrojection - associates a projection of the index fields with an 
opened device. 

To create a projection operation, you must first associate a projection with an opened device. 
Figure IV -11-4 shows a record projection operation that reads only the requested fields in an 
indexed file. 

File 

Fields 
"in 

Record 

Fields !jIll 
in Buffer ~ 

! 
Read 

Figure IV-II-4. A Primary Data Projection 

Associates a 
pro jection with 

an opened device 
for fields Band C. 

For each record 
in read set, 

returns onl y fields 
Band C to the 
caller's buffer. 

The projection operation is created using the Record_Processing_Support. 
Associateyrimary_datayrojection call to associate the projection operation 
with a read call for an opened device. After setting up a projection, any read call on the 
opened device automatically projects to the output stream the fields in each record you specify 
in your projection implementation. 

IV-l1.1.S.1 Using the Associateyrimary_datayrojection Call 

IV-11-8 

The Associateyrimary_datayrojection lets you specify the primary data fields 
you want to project, and whether you want the output with record IDs. You specify your 
output with these parameters: 

primary_fields The fields to be extracted from the primary data of the record being 
read. 

record_ID _output The record 10 of the record being read is included in the output 

Processing Collections of Records 



PRELIMINARY 

If you specify both parameters, the output appears in this order: 

[record ID, primary fields] 

This call creates a projection of an opened device's primary data area. Each time a read call 
reads a record from the opened device, the primary fields are projected to the output device 
associated with the read call. The projection writes the primary fields in the order you specify, 
with fixed length fields first followed by the variable length fields. 

IV-ll.1.S.2 Using the Associate_index.J>rojection Call 

To project only key values, you can use the Associate_index.J>rojection call. You 
specify your output with these parameters: 

key_ value_output The specified key to be extracted from the index data of the file being 
read. If this key does not exist, the read produces erroneous results. 

record_ID_output The record ID of the record being read is included in the output. 

When you specify both parameters, the output appears in this order: 

[record ID, key value] 

With this call, you can only access the secondary data area containing the index's key values 
during a read. The rest of the record is inaccessible. For each record, a record ID and/or the 
key value is returned to the output device. Prior to making this call, you must set the index key 
range with a call to Record_AM. Keyed_Ops. Set_key_range. 

You can also use Trusted_Record_Processing_Support call 
Associate_read.J>rocedure to create your own projection operation. 

IV-11.1.6 Difference, Intersection, and Union 

Three calls in the Record_Processing_Support package manipulate streams of 
record_IDs to provide low-level support for the database operations intersection, union, and 
difference. 

• Intersect record IDs - fonns the intersection of two record ID streams. - -
• Union record IDs - fonns the union of two record ID streams. - -
• Difference record IDs - fonns the difference of two record ID streams. - -
These calls let you perfonn intersection, union, or difference on the record ID streams created 
by a selection or projection operation. 

IV-11.1.7 Interaction Between Record Processing Calls 

Certain combinations of the record processing calls are incompatible when you use them on 
the same opened device. A record processing call disables an incompatible call that is active 
on the same device. Table IV -11-1 lists the record processing calls and the calls they are 
incompatible with. 

Processing Collections of Records IV-1l-9 



PREUMINARY 

Table IV-II-I. Interaction of DBMS Calls 

Call Disables these calls 

Associate_read,.J>rOCedure Associate..primary_data-projection 
Associate_mdeX-PIOjection 

Associate-primary_data-projection Associate read~ure 
Associate:indeX-PIOjection 

Associate_index-projection Associate read-procedure 
Associate:;primary _data-projection 

Associate_index_selectionJW1ction Associate_recorcCID_stream 

Associate_recordJD _stream Record AM.Set ~ range 
Associ8"te_index: ed.ion_function 

Record_AM.Set-POsition Record AM.Set kfr) range 
Associate record -stream 
Associate:index_se1ed.ion_function 

Record_AM.Seckey _range Associate record ID stream 
Associate:index_se1e"Ction_function 

IV-11.1.8 Joins 

IV-II-IO 

The join operation lets you join together records from multiple opened devices into one opened 
device based on the values of common fields. Figure IV-11-5 shows a join using two input 
files. 

Table 1 Table 2 

colA colS com colE 

1 green red X 

2 green green Y 

3 red yellow Z 

~ 
JOIN / 

Table 3 

colA colS colE 

1 green Y 

2 green y 

3 red X 

Figure IV -11-5. A Join Operation 

The Join_Interface package provides two calls: 

• J 0 i n - the call that joins the records from the input devices producing a single stream of 
joined records and an optional stream of alternate records. 

• Block_join - the function template you provide for joining blocks of records. 

Processing Collections of Records 



PRELIMINARY 

The Join call performs the low-level block access to data in the input devices, and in the 
process calls your implementation of the Block_Join call that actually performs the join. 

When you make a call to Join_Interface. Join, you specify a list of input devices in the 
participating_devices parameter. If you only specify one input device, you only 
access the primary data in the input device. You reselVe the buffers for the join with the 
buffers_to_reserve parameter. You specify the record streams for the output in the 
join_output and alternate_output parameters. The user_info parameter returns 
the process-specific information for the join procedure. 

The parameter join~rocedure specifies an implementation of the Block_join func
tion. This parameter is the subprogram type of your implementation of the join operation. 
You obtain the subprogram type value by applying the BiiNTM Ada subprogram_type at
tribute to the block join implementation you want to use. 

Join calls your implementation of Block_join. Your implementation of this call: 

• Joins the sets of records 

• Fills the output buffers 

• Requests the next set of input from the Join call. 

The Block_join operation gets the set of records you want to join from the records 
parameter. This parameter is the list of record locations for each input device, and contains 
null AOs the first time Block_join is called. Block_join completes the join and fills the 
output buffers. Block_join then returns a communication_block_ VA type that con
tains the next block list, the output buffers, and a request for the next set of records. You must 
instantiate the communication_block_ VA data structure prior to the Block_join call. 
You can pass this data structure into Block_join as part of the user_info parameter. If 
there are more blocks to join, the process is repeated. 

The join operation only provides data from files; any selections associated with flies cannot be 
active during a join. To select records for a join, you must do a selection on the file to produce 
a record 10 stream, and pass the record 10 stream to the Join call. 

IV-11.1.9 Sorting and Merging 

You use sorting and merging to produce one ordered record stream from one or more record 
streams. Figure IV -11-6 shows how records can be sorted and merged. 

Processing Collections of Records IV-ll-ll 



Fields 
in 

Record 

PRELIMINARY 

B is the sort key. It is specified as ascending. 

Initial values for B: 1, 4, 2, 5 

! 

! 
Sorted values for B: 1, 2, 4, 5 

Figure IV -11-6. Sorting and Merging Records 

The Sort_Merge_Interface package provides these calls for sorting and merging record 
streams: 

• Sort - sorts a single record stream and produces an ordered stream of records. 

• S ort _merge - sorts and merges an arbitrary number of input record streams, and 
produces a single ordered stream of records. 

• Special collation sort merge - sorts and merges records with arbitrary string 
fields ordered by a collating sequence that you specify. 

You can only use Sort_Merge_Interface calls to sort opened structured files or pipes. 
If you attempt to sort records using an unsupported device, the sort/merge service does not 
return exceptions. You cannot use Sort_Merge_Interface calls with transactions. If 
you try to use these calls with transactions, the operations will not be atomic and exceptions 
will not be raised. 

IV-l1.1.9.1 Sorting Records 

IV-11-12 

To sort records, you specify the input device (where you are reading the records from) and the 
output device (where you want to write the records to). Because the sort calls use the 
Record_AM. Ops calls Read and Close to access input devices, you must assure that the 
input device is opened to allow physical-sequential or indexed-sequential reading of records. 
The reads begin at the current position of the input device and continue until 
Device_Defs. end of file is raised. After the sort, the input and output devices 
remain open. 

The Sort call sorts records from a single opened input device. The Sort_Merge and the 
Special_collation_sort_merge calls can sort and merge records from one or more 
input devices. The Sort_Merge and Special_collation_sort_merge calls take the 
parameter input_devices, a variable-length array of input descriptors. Each descriptor 

Processing Collections of Records 

( 
~ 



PRELIMINARY 

specifies an opened input device (file or pipe) and a boolean indicating whether or not the 
records are presorted. 

You select the level of concurrency you want for an input device. An opened input device can 
be opened for exclusive use (no concurrency) or shared use (dirty read). Generally, you should 
pass in an exclusively opened device (no concurrency). 

You can also specify tuning options with the tuning_opts parameter. These options in
clude options for gathering statistics, for indicating the volume set to use for work files, and for 
indicating specific work files to be used during the sort. 

Any read options or record processing operations associated with an input device are passed 
along with the device. 

IV -11.1.9.2 Sort Ordering 

The sort ordering is normally based on values of a sort/merge key composed of typed fields 
that you must layout using a DDef (see Chapter IV -8 for a description of how to create 
DDefs). You must assign each field of the DDefin the sort/merge key a pi_descending 
value of either true (descending) or false (ascending). The default value is false. 

The ordering of multiple input devices in the input_devices parameter can detennine the 
ordering of records with duplicate key values when those records appear on different input 
devices. (Options for ordering records with duplicate key values, by insertion time or by 
record ID, only hold within a single file.) For example, you specify three input devices in the 
order A, B, and C. Device A has a record a; device B has the records bI and b2; device C has 
record c. All these records have identical key values. The ordering of the input devices 
determines the output, which can be either a/bl/b2/c or a/b2/bl/ c. (IfB was presorted 
or you specify stable_sort, the relative ordering ofbl and b2 are the same in the output 
as the input. Otherwise, their ordering is arbitrary.) 

The Special_collation_sort_merge call takes the additional parameter 
al ternate _ CS for specifying an alternate collating sequence for string fields. (See the 
string collating sequences required by the runtime systems of certain languages such as 
COBOL.) The ordering of each string field is nonnally performed using the ASCII collating 
sequence. You must specify any alternate collating sequence. A collating sequence is an array 
of 256 bytes where CS (x) = N implies that a byte with a value x should be ordered as if it 
held the value N in the standard numeric ordering. A collating sequence can map more than 
one byte value to the same ordering value, that is, C S (x) = N = C S (y) is allowed. 

IV-ll.l.9.3 Stable Sorts 

You can optionally specify a stable sort with the stable_sort parameter. A stable sort 
preserves the original ordering of records with duplicate key values within a file. This kind of 
sort is typically inefficient than an unstable sort. 

The sort operations also support unique sorts, which are sorts that delete duplicates from the 
final output. 

IV-11.2 Techniques 
After reading this section, you will be able to: 

Processing Collections of Records IV-11-13 



PRELIMINARY 

• Select a set of records 

• Set up a projection using an index 

• Join records from two different opened devices 

• Sort records from a single file 

• Sort and merge records from two files. 

The examples used in the following sections are in the example packages called DBMS_Ex and 
Join_Ex. See Appendix A for complete listings. 

IV-11.2.1 Selecting a Set of Records 

IV-11-14 

To select records in a fue you either use a Read call or a Set_oriented_read call. 

Calls Used: 

Record Processing Support.Set oriented read 
- Sequentially reads an opened file andsends all data to an output device 

until end-of-file or a user interrupt. 

Typically, you associate a read implementation with the device you you want to do the selec
tion from, and then do the read. The read implementation you supply actually does the selec
tion. This example uses the Set_oriented_read call to automatically read a file sequen
tially until the end-of-file. After reading the records, they are written to the output devices you 
specify instead of being copied into a buffer. This allows two output streams to be created 
from a single pass of the input fue (for example, the selected records and the rejected records). 
This is more efficient for applications in which the records read from a file are destined to be 
immediately rewritten to another device. 

The Set_oriented_read call takes two locking parameters: 

lock Specifies the lock mode of every record read. 

u.nlock Specifies the unlock mode of every record read. 

These parameters are ignored if the file being read is not transaction-oriented. 

The unlock parameter is the same as the one specified in Record_AM. Ops. Read. 
Records can be incrementally unlocked as the set of records is read (each previous locked 
record is unlocked in the specified mode). 

The timeout parameter is also the same as the one specified in Record_AM. Ops . Read. 
The timeout is the maximum time to block waiting for a single record lock. 

Processing Collections of Records 



PRELIMINARY 

57 Trusted Record Processing Support.Associate read procedure( 
58 opened dev- =>-opened file, - -
59 user info => System:null address, 
60 read:procedure => read_procedure); 
61 
62 
63 Record AM.Keyed Ops.Set key range( 
64 opened dev - => opened file, 
65 index - => -
66 Employee Filing Ex.dept index name, 
67 select range-=> (- - -
68 start comparison => Record AM.inclusive, 
69 start-value => start key descr, 
70 stop comparison => Record AM:inclusive, 
71 stop:value => stop_key_descr»; 
72 
73 Record Processing Support.Set oriented read( 
74 opened dev - => opened file, -
75 modifier => Record-AM.next, 
76 output device => Process Globals Support Ex. 
77 Get standard output, - - -
78 -- Normally defaulted. 
79 alt output => System. null word, 
80 no record lock => false, -
81 lock - => Record AM.read lock, 
82 unlock => Record-AM.no unlock, 
83 timeout => Record:AM.walt_forever); 

IV-11.2.2 Using Projection on an Index 

You can project the values for selected fields in records during a read. 

Calls Used: 

Record AM.Keyed Ops.Set key range 
- Sets two boundaries within an index. 

Record Processing Support.Associate index projection 
- Sets up a projection of the valuesfor specIfied key fields in a composite 

index during a read. 

Record AM.Ops.Read 
- Reads only the previously specified field values in each record that is read. 

Processing Collections of Records IV-II-IS 



PREUMINARY 

134 -- Filters out all fields except those specified 
135 -- in the DDef. 
136 Record Processing Support. 
137 Associate-primary_data_projection( 
138 opened dev => opened file, 
139 record-ID output => false,-
140 primary_fIelds => projection_DDef_ref); 
141 
142 
143 loop 
144 Only reads the fields specified in 
145 the DDef. 
146 bytes read := Record AM.Ops.Read( 
147 opened dev => opened file, 
148 modifier => Record-AM. next, 
149 -- Normally defaulted. 
150 buffer VA => current record addr, 
151 length- => System.ordinal( 
152 Employee_Filing_Ex.max_rec_size»; 
153 
154 DO ANY NEEDED PROCESSING HERE. 
155 
156 end loop; 

IV-11.2.3 Joining Records from Two Devices 

You join records from two (or more) different opened devices in blocks. The system does the 
join of the devices (files); you supply the join semantics. 

Calls Used: 

Join Interface.Block join 
- Provides atemplate for a user-supplied function that joins blocks of 

records in memory buffers. 

Join Interface.Join 

289 Join Interface.Join( 
290 -participating devices => join devices, 
291 buffers to reserve => buffer reservation, 
292 user info'- => u_info'address, 
293 join-procedure => 
294 Join ex'subprogram value, 
295 join output ~> out file, 
296 alternate_output => System.nuII_word); 

IV-11.2.4 Sorting Records in a File 

You can easily sort records from a single opened input device to an opened output device. 

Calls Used: 

Sort Merge Interface.Sort 
- - Sorts the records from a single input device to produce an ordered stream 

of records. 

Processing Collections of Records 



PRELIMINARY 

You specify the opened input device (from which the records are to be sequentially read) and 
the opened device (to which the sorted records are to be sequentially written). You must 
assure that the input device is opened in a manner that allows physical-sequential reading of 
records and provides for the desired level of concurrent use of the device. Physical-sequential 
reads begin at the current position of the input device and continue until 
Device_Defs. end_of_file is raised. After the sort, the input and output devices are 
automatically closed. 

193 Sort Merge Interface. Sort ( 
194 Input devIce => inventory file, 
195 DDef - => inventory-DDef ref, 
196 output device => Process Globals Support Ex. 
197 Get standard output,- - -
198 stable sort =>-true, 
199 tuning-opts => Sort Merge Interface. 
200 no:tuning) ; - -

You have the option to specify whether the sort is stable, that is the original ordering of 
records with duplicate key values within a fue is preserved. A stable sort is typically in
efficient than a corresponding unstable sort. You also have tuning options; these include 
options for gathering statistics, for indicating the volume set to use for work files, and for 
indicating specific work fIles to be used during the sort. 

IV-11.2.5 Sorting and Merging Records from Two Files 

In addition to sorting records from a single opened input device, you can also sort and merge 
records from an arbitrary number of sorted or unsorted input devices. 

Calls Used: 

Sort Merge Interface.Sort merge 
- - Sorts the records from a single input device to produce an ordered stream 

of records. 

Sort_merge takes the same parameters as Sort. In addition, it takes the parameter 
input_devices, which is a variable-length array of sort-merge input descriptors. Each 
descriptor specifies an opened input device that supports Re cord_AM. Op s . Read and a 
boolean indicating whether or not the records are presorted. The ordering of multiple input 
devices in this array detennines the ordering of records with duplicate key values when those 
records appear on different input devices. (Options for ordering records with duplicate key 
values -- by insertion time or by record ID -- only hold within a single file.) 

248 -- Perform the sort-merge. 
249 Sort Merge Interface.Sort merge( 
250 Input devices => sort-input array, 
251 DDef - => sort-DDef ref, 
252 output device => Process Globals Support EX. 
253 Get standard output,- - -
254 stable sort =>-true, 
255 tuning-opts => Sort Merge Interface. 
256 no:=tuning) ; - -
257 

Processing Collections of Records IV-II-I7 



PRELIMINARY 

IV-11.3 Summary 

IV-II-I8 

• Use record processing support for large applications for which you want to perfonn opera
tions on only selected data in files. 

• Record processing support operations are associated with opened devices. Selected field 
values (in a file's primary data area), record IDs, and/or index key values can be supplied 
with each individual record during reads. Selected field values can be updated. 

• DDefs are used to define the field values used by filters. These DDefs should be derived 
from the record DDefused to define a file's record layout 

• A record stream device can be a non-trans action-locking sequential ftIe (without indexes) 
or a record-oriented pipe that consists of record IDs. Record stream devices can be as
sociated with an opened device for a ftIe so that records (or records fields) in the file are 
selected on the basis of the record IDs in the record stream device. 

• Record streams can be used to perfonn the relational database operations difference, union, 
and intersection. 

• You can write your custom read and custom index selection routines to associate with open 
devices. However, this is not possible for most users. 

• You can write your own block join routine to bring together infonnation contained in mul
tiple ftIes into a single file based on the values of common fields. Your custom procedure 
gets record location infonnation contained in currently processed blocks of data. This, also, 
is not available to most users. 

Processing Collections of Records 



PRELIMINARY 

Part V 
Human Interface Services 

This part of the BiiNTM/OS Guide discusses selVices used for interacting with users. 

Understanding Human Interface Services 
Basic concepts of Human Interface SelVices. 

Creating a BiiNTM Application 
An example of a simple, complete application program which uses Human 
Interface SelVices. 

Building New Commands 
Reading and processing program-defined invocation and runtime com
mands. 

Programming with Command Language Variables 
Reading, creating, and setting job and session variables. 

Programming with Menus 
Displaying menus and processing menu selections. 

Understanding Forms 
Describes data entry/display fonns and the fonn selVice. 

Programming with Forms 
. Displaying and processing fonns for data entry and display. 

Programming with Reports 
Setting up and printing reports from data records. 

Human Interface SelVices contains the following selVices and packages: 

Part V Overview 

Command Service 
CL Defs 
Command Execution 
Command-Handler 
Environment Mgt 
Help_Text_Adm 

Form Service 
Form Defs 
Form-Handler 

Report Service 
Report_Handler 



PRELIMINARY 

Part V Overview 



Contents 

PRELIMINARY 

UNDERSTANDING HUMAN 1 
INTERFACE SERVICES 

Concepts ............................................................... V-I-3 
Why Use Human Interface Services? .................................... V -1-4 
Utilities ............................................................ V -1-4 
Command Service ................................................... V -1-6 
Environment Service ................................................. V -1-8 
Menu Service ...................................................... V-I-II 
FOllll Service ...................................................... V-I-12 
Report Service ..................................................... V -1-15 

Summary ............................................................. V-I-17 

Understanding Human Interface Services V-l-l 



V-1-2 

PRELIMINARY 

This chapter provides a general overview of the BiiNTM system's user interface software. 

The next eight chapters discuss how to create a BiiNTM program, including interacting with the 
user: using commands, variables, menus, and fonns for input, and variables, fonns and reports 
for output. 

Figure V -1-1 shows the relationships between the five Human Interface Services and an ap
plication program. 

I 

Figure V-I-I. Human Interface Services and a BiiNTM Program 

• Read Chapter V -2, "Creating a BiiNTM Application", to understand the relationships be
tween an application program and various service areas, including Human Interface Ser
vices. 

• Read Chapter V -3, "Building New Commands", to use the command service to create and 
use program-specific commands. The BiiNTM Command and Message Guide describes how 
to create command definitions interactively. 

• Read Chapter V -4, "Programming with Command Language Variables", to use the 
environment service to read and write CLEX user, and job variables. 

Understanding Human Interface Services 



PRELIMINARY 

• Read Chapter V -5, "Programming with Menus", to use the menu service to create menus 
and read menu selections. 

• Read Chapter V-5.3, "Understanding Fonns", for the concepts necessary to use the/orm 
service for user input and data display. 

• Read Chapter V-7, "Programming with Fonns", to use fonns, change a fonn's appearance 
and structure, and get data from and put data into fonns. 

• Read Chapter V -8, "Programming with Reports", to use the report service to write reports 
from data records. 

• Read Chapter TBD, "Interacting with Users in Standard Ways", for guidelines on how to 
use Human Interface Services in a manner consistent with the BiiNTM system's own 
programs and utilities. 

Chapter 11-5 describes how to create and display messages, including help messages. The 
manage .messages utility creates and maintains files of messages; it is described in the 
BiWTM Command and Message Guide. 

Human Interface Services is composed of five service areas: 

Command Service Manages the command interface. Also manages command language Gob 
and session environment) variables. 

Form Service 

Report Service 

V-1.1 Concepts 

CL Defs Contains declarations used by the command service, 
for processing command language (CL) arguments and 
variables. 

Command Execution 
- Contains a procedural interface to command, execution. 

Command Handler 
- Contains operations for reading and processing 

program commands and arguments. 

Environment Mgt 
- Contains operations to get, set, or remove local and 

global environment variables. 

Help_Text_AdmManages command and fonn help texts. 

Manages fonns, for structured data input and display. 

Form Defs Defines types and constants used by the Form_ 
Handler package. 

Form Handler Provides calls to process, control, and change forms. 

Generates reports; formats data records for display. 

Report Handler 
- Provides calls for initializing and printing a report. 

Human Interface Services provide methods of interacting with human users. The model is that 
a user controls an application program to create, retrieve, update, and display information. 

To control a program, a user has a choice of commands or menus: 

Understanding Human Interface Services V-1-3 



commands 

menus 

PRELIMINARY 

Provide a set of free-form commands, each with appropriate arguments and 
default values. The command service provides calls to prompt the user to 
enter a command, returning the command's index and name, and its ar
gument values. 

Provide a list of choices. The menu service provides calls to enable the 
user to make a menu selection, then to read the selection indexes. 

The environment service provides calls to read command language variables, including job 
variables in active memory, and user and system variables in passive store. Variables can be 
created and set in active memory. 

The form service provides calls to display a data entry form, prompting the user to enter a 
complete, consistent data record. 

The report service provides a call to initialize a report, given its definition and input and output 
devices. Another call prints the initialized report. 

Some Human Interface Services are based on data definitions, or DDefs. There are DDefs for 
commands, menus, forms, and reports. The term definition, as in a command definition, is 
used throughout this chapter to refer to the underlying DDef. For more information on DOefs 
and specific DDefproperties, see the Data_Definition_Mgt and 
DDF _Utility_Support packages in the BiiNTM/OS Reference Manual. 

Once a file's record defInition (DDet) has been created, it can be used to automatically 
generate a default data entry form and a default report. 

V-1.1.1 Why Use Human Interface Services? 

These services provide consistent, standard methods of interacting with the user. A BiiNTM 
user, on invoking your program, is already familiar with the user interface. 

The BiiNTM OS, and the system utilities, call these services to interact with the user. 

The primary value of Human Interface Services is that each service performs its own process
ing, returning a complete result to your program's request. 

Extensive "help" is provided by the services. You define the help texts, and attach each text to 
the appropriate point (a program, a command, a menu item, or a form's field). The help text is 
displayed upon the user's "help" request. 

For example, after your program displays a form, the user can move through the data fields, 
request form-specific help, and be prompted to correct invalid or inconsistent entries, all with
out your program's intervention. When the user completes the form, valid input data is then 
available. 

V-1.1.2 Utilities 

V-1-4 

Several utilities are used with Human Interface Services, to set up variable groups, and to 
create command, menu, form, and report definitions. 

Figure V-1-2 shows the relationship between a service's utility, the definition it produces, and 
the service your program calls. 

Understanding Human Interface Services 



PRELIMINARY 

t Program 

D 
, 

Figure V-1-2. Utility, Data Definition, and Service 

Command Service Utility 

manage.commands 
Creates both invocation command and command set 
definitions, defining all commands and their ar
guments. See the BiiNTM Command and Message 
Guide for more infonnation about using the 
manage. commands utility to create command 
definitions. 

manage.variable group 
Marupulates groups of variables, creating, modifying, 
and storing variable groups. The environment selVice 
then reads and writes these variables; the environment 
service does not provide calls to create group vari
ables. 

Form Service Utilities 

create. standard form 
Creates a default fonn definition, given a file's record 
definition. The default definition can then be used 
with the fonn selVice, or revised using the 
edi t . form utility. 

edi t . form Creates and modifies fonn definitions, including all 
fields and values. See the BiiNTM Systems Form Editor 
Guide for more infonnation on defining fonns. 

Understanding Human Interface Services V-1-5 



PREUMINARY 

edit. key_map Edits a fonn's keyboard mapping. This becomes part 
of a fonn's definition. 

Report Service Utilities 

create.standard report 
Creates a default report definition from a file's record 
definition. The default definition can then be used 
with the report selVice, or revised using the 
edit 0 report utility. 

edi t . report Creates and modifies report definitions, including all 
fields, column headings, and control breaks. See the 
BiiNTU Systems Reports Guide for more infonnation on 
defining reports. 

Help texts are defmed within each seIVice's utilities. Messages are defined with the 
manage .messages utility, or with the manage .messages command set in the 
manage. progr am utility. See the BiiNTU Command and Message Guide for more infor
mation on defming help texts and messages. 

V-1.1.3 Command Service 

V-1-6 

The command selVice is used to parse and execute commands entered to your program. CLEX 
uses this interface for its own commands. 

Figure V-1-3 shows the relationship of a BiiN
TU 

program to the command selVice. 

! Program 

I 

Figure V-1-3. BiiNTM Application Program and the Command Service 

Understanding Human Interface Services 



PRELIMINARY 

V -1.1.3.1 Command Concepts 

• New commands are defined using the manage. command command set in the 
manage. program utility - see the BiiNTU Command and Message Guide. 

• The command service uses the command definitions - to help the user correctly enter and 
complete a command. 

• There are three types of commands - processed by the command service: built-in 
commands, CLEX commands, and program-defined commands. 

• built-in commands Part of, and processed by, the command service itself. Built-in runtime 
commands directly perform some action, such as setting a variable 
(set. variable). Built-in control commands control the logical 
flow of commands (if / then / else / endif). 

CLEX commands Commands specific to the command language executive (CLEX). 

program-defined commands 
Each program has an invocation command, which is entered to CLEX 
to invoke (execute) the program. Programs using the command service 
defme their own runtime commands, which control and are im
plemented by the program. 

• A command consists of up to three parts: 
command. name [:argument=value] ..• 

[::control_option=value] ... 

command. name The name of the command. 

:argument = value 
Zero, one, or more arguments may be part of a command. 

Arguments have a name, a type, and a value - an argument name is 
a string of characters, preceded by a colon (":" , for example, 
: argument _name). The argument type is one of seven: boolean, 
integer, range, string, string list, pointer, or "derived". A derived 
argument's actual value may be any of the other types. The ar
gument value's type must match the defmed argument type. 

- Arguments may be mandatory or optional - mandatory arguments 
must be entered with the command name. Optional arguments may 
be entered to specify an argument value other than the default value, 
if any, defined with the command. 

::control_option = value 
There are several control options defined in the command language, 
used to request input/output redirection, background execution, and so 
forth. 

• A sequence of commands can be stored in a commandfile - for inclusion into the command 
input stream with the built-in include. command command. A command flie can be 
made into an executable script by using the make. script utility. 

• An optional command history can be used - to record commands entered. One or more 
recorded commands may be re-executed. The built-in command 
list .last commands shows the recorded commands; one or more of these recorded 
commands are redone with the redo .last commands command. 

• There is support/or BiiNTM/UX invocation command conventions - such as argv, argc, 
envp; see the BiiNTM/UX User's Guide. 

Understanding Human Interface Services V-I-7 



PRELIMINARY 

Why Use Commands? 

Commands provide an easy, standardized way to interact with the user: 

• Commands provide a common entry fonnat. 

• Commands are entered and confinned without program intervention. A complete, correct 
command is then available to the program. 

Programs Using the Command Service 

Most programs using the command service will be new utilities. 

Commands are defined during program development. Each distinct function that the program 
perfonns should have its own command. 

Commands are grouped in command sets. Separate command sets may be defined for different 
program tasks, or for different user groups. 

Not all programs are suitable for command-oriented input There are several alternatives to 
using commands to control your program: 

menus 
keyboard input 

graphics input 

Read menu item selections; see Chapter V-5. 

Read the keyboard directly; see Chapter IV-5. 

Read the mouse's position and state. See TBD. 

V -1.1.3.2 Command Summary 

• Commands provide a consistent user control mechanism, used by all BiiNTM utilities. 

• A command consists of the command name, arguments if any, and optionally one or more 
control options. 

• The command service requires the user to enter a complete command; help is available for 
each command and each argument. Calls in the Command_Handler package return the 
en~red command values. 

• New commands are defined with the manage. commands command set in the 
manage. program utility. Each command defmition is stored under a pathname. 

• Some commands are built-in; other commands are defmed by programs using the command 
service (including the CLEX program itself). 

• Built-in commands are part of every command set. These commands are intercepted and 
processed by the command service itself. 

• Your program can request execution of a CLEX command, optionally in a new CLEX 
instance, using calls in the Command_Execution package. 

• Menus are another method for the user to control a program. See Chapter V -5 for more 
infonnation about menus. 

V-1.1.4 Environment Service 

V-1-8 

The environment service manages BiiNTM CL (Command Language) variables in active 
memory. A BiiNTM CL variable can contain a value of any CL type. Variables can be shared 
between jobs and processes in a session. 

Understanding Human Interface Services 



PRELIMINARY 

Figure V -1-4 shows how variables in passive store and active memory are related, and the 
order of evaluation for variables. 

evaluation 

Passive Store (manage. var _groups util ity) 

System Variable Groups (/var _groups) 

User Variable Groups ('" Ivar _groups) 

copied on 
reference 

~A_ct_iv_e_M_em_o_ry ___ (_E_n_vi_ro_n_m_e_n_t __ M~gt_c_a_" S...;..) I 
global (session) buffer ~ 

local (job) buffer 

Figure V -1-4. Command Language Variables 

V -1.1.4.1 Environment Variable Concepts 

• A command language variable - has a name, a type, a mode, and a value: 

name 

type 

mode 

value 

A CL string of letters and digits. 

One of the six CL_De£s types: boolean, integer, range, 
string, string list,orpointer. 

Either read_only, indicating that the variable can be read but not 
assigned, or read _ wr it e, indicating that the variable can be read or 
assigned a value. 

Any value of the appropriate type. 

• There are two kinds of variables - those dynamically created in active memory, using calls 
in Environment Mgt (and the . variable commands built into the command 
service), and those defmed in passive store, using the manage. var iable group 
utility. -

• Variables in active memory - are dynamically created in one of two buffers: either a 
job-specific local buffer or the session-specific global buffer. 

• 

Variables in passive store - are in system and user groups. System variable groups are 
stored in the /var_groups directory and can only be updated by the 
system administrator. User variable groups are stored in each user's 
,., /var groups, and are maintained with the 
manage. variable_group utility . 

Understanding Human Interface Services V-1-9 



V-I-IO 

PRELIMINARY 

- Sets of system or user variables - may be collected together in a group by giving them a 
group name. For example, eli. prompt is the prompt variable in the eli. group. 
Group variables may only be created with the manage. variable_group utility. 

System variable groups apply to all sessions on this node. System variables are created 
and maintained by the system administrator. System variables are in pre-defined 
groups, stored in the system directory /var_groups. 

- User variable groups contain user-specific infonnation, values, and defaults. User vari
ables are created and maintained with the manage. variable_group utility. User 
variables are stored in a "var-iroups" directory in your home directory 
(- /var groups). 

Job variables are created and used by jobs, in the global buffer. Job variables may be 
created and used either by calls to Environment Mgt, or by programs using the 
Command_Handler package (programs with runtime commands). Subsequent jobs 
in this session inherit all existing job variables. 

Local variables are used like job variables, but only exist for the duration of a job. 
Local variables are stored in the local buffer. 

• Variable names are evaluated upwards until found -

1. local buffer 

2. global buffer 

3. user variable groups (-/var_groups directory) 

4. system variable groups (/var_groups directory). 

• Each job has its own copy - of system, user, and job variables (global buffer), and local 
variables (local buffer). Referencing a user or system variable causes a copy of that vari
able to be created in the job's global variable buffer. Job variables may be created in either 
the global or local buffer. Local variables are created, set, and removed in the job's local 
variable buffer. 

• Subsequent jobs are affected by changes to the global buffer - since they inherit a copy of 
the current global buffer. 

• Changes only affect the job's copy of the variables - changes to stored (system or user) 
variables are only made in the job's global variable buffer. Use the 
manage. var iable _group utility to change system and user variables pennanently. 

• Variables may also be created and changed - using four built-in commands common to 
CLEX and the command seIVice: 

create. variable 
Creates a new local or global variable, optionally with an initial value. 

set. variable Sets a value into an active variable which has mode 
CL Defs.read write. 

remove. variable 
Removes a variable from the local or global buffer. The version of the 
variable in passive store is not affected. 

list. variable Lists the type, mode, name, and current value of the specified variables 
or variable groups. 

Understanding Human Interface Services 



PRELIMINARY 

V-1.I.4.2 Environment Variable Summary 

• A variable has a name, a type, a mode and a value. The variable's type is one of the six CL 
types: boolean, string, .... The variable's mode is either read only or 
read_write. The variable's value is of the appropriate type. -

• Command language (CL) variables control aspects of the current CLEX instance (such as 
message type and language) and contain infonnation for use by jobs and programs (such as 
the current directory). 

• System and user environment variables in passive store are maintained by the 
manage . variable_group utility. 

• Variables in active memory are in either the local or global buffer. Stored variables are 
copied into the global buffer when referenced. 

• Global variables are inherited by subsequent jobs and processes in this session. 

• Variables may be read, set, and changed procedurally and interactively. Either call the 
environment service (Environment Mgt), or enter one of the built-in. variable 
commands: create. variable, set. variable, list. variable, and. 
remove. variable. 

V-1.1.5 Menu Service 

Menus are available to a BiiNTM program. They are defined by the Window_Services pack
age. 

Menu definitions may be created procedurally with calls to Data_Definition_Mgt. 

Figure V-1-5 shows a menu group in a window, with one of the menus currently selected. 
This figure also shows the relationship between the window service (which provides the menus 
and the window), the display access method (which returns the user's selection), and your 
BiiNTM program. 

Window 
Service 

r 

Menu 1 

"-

" 
Window 

/'jI(##/ Menu 3 
Menu item 1 
·~;4/~A 
Menu item 3 

~ 

Application 
Program 

~r 
/l)tJ~ Ch aracter { 

Display t---------------~ 
Access ----------------------~ 
Method 

Figure V-I-S. BiiNTM Application Program and Menus 

Understanding Human Interface Services V-I-II 



PRELIMINARY 

V -1.1.5.1 Menu Concepts 

• A menu has a title and one or more menu items - the user selects a menu title, causing that 
menu to appear, and then selects one item from the menu. 

• Each menu is part of a menu group - a menu group contains one or more menus. 

• A window can have only one menu group enabled - several menu groups can be installed in 
one window, but only one menu group is enabled at any time. 

• Menu items may have associated "help" messages - the user can request an explanation of 
any menu item. 

• Menu items may be picked by the cursor or by index - to choose an item, the user enters the 
displayed item's index number. 

• Menu selection events - can be read by calling the character display access method 
(Character_Display_AM). 

V -1.1.5.2 Menu Summary 

• Menus provide a consistent, easy-to-use user interface. 

• A menu group contains one or more menus. Menus consist of a menu title and one or more 
menu items. 

• A window can have several menu groups installed, but only one menu group at a time can 
be enabled. 

• After a menu group is installed and enabled, menu selections and menu "help" messages 
are displayed without program intervention. 

V-1.1.6 Form Service 

V-1-12 

The form service creates, modifies and executes interactive forms for structured data entry and 
display. 

A form displayed in a window resembles a form printed on paper. Unlike paper forms, the 
forms created and controlled by using the form service can be dynamically changed for various 
data input and display requirements. 

An example form is shown in Figure V -1-6. 

Understanding Human Interface Services 



PRELIMINARY 

Part ID: Description: 

Location: Unit: each feet (circle 
lb inch one) 

Qty on hand: Usage this month: 

Reorder point: Usage this year: 

Reorder qty: Usage last year: 

Supplier ID: 

Average unit cost: $_,_._ 

Last unit cost: $_,_._ 

Date first activity: 

Date last activity: Status: 

Figure V -1-6. Example Form 

The cursor, which marks the current position in the fonn, may be moved back a space to erase 
an incorrect character, or back to the previous field to reenter a value. The contents of part of 
the form can be altered depending on the value of a previously entered field. Intennediate 
values can be calculated and stored transparently until needed later by the fonn. Even the 
order of execution of the form can be altered dynamically depending on the data entered. 

Creating an executable form involves: 

• Designing the form's data and layout requirements 

• Generating a fonn definition with edit. formor define. standard_form 

• Creating a fue of associated "help" messages 

• Writing a program to execute a form, which can include processing routines (called before 
or after a field), key catchers (called by individual key sequences), and key lists (for the key 
catchers) 

• Testing the fonn with the application. 

The form service (Form_Handler package) provides calls to: 

• Open and close a form 

• Execute a form 

• Modify data and control the execution network path 

• Manage form elements 

• Query the state of the form, a form element, or the last user interaction. 

The Chapter V -5.3 describes the various parts of an interactive fonn and how they are com
bined into a single, executable form. 

Understanding Human Interface Services V-1-13 



text 
I 

Part ID: 3512734 

PRELIMINARY 

alphanumeric field 
I 

Description: 1/2" aluminum conduit 

Location: 02-F12 Unit: feet <--- overlaid enumeration 

Qty on hand: 500 Usage this month: 375 <--- n.uI'1I£ric 
field 

Reorder point: 750 Usage this year: 6250 

Reorder qty: 2000 Usage last year: 9475 

Supplier ID: RohmCo StanEfCo <---- group 

. Average unit cost: $ 1.86 

Last unit cost: $ 1.65 <--------------- numeric field 

Date first activity: 1985-06-25 <----------------- ~efiad 

Date last activity: 1987-03-13 Status: REORDER 

Delete this part (press <Return> to affirm)? DELETE 
I 

option field 

Figure V-I-7. Annotated Executable Form 

Form definitions are created with the define standard form and edit. form utilities. - -
A form defmition may be derived from a file's record definition. 

define.standard form 

edit.form 

Creates the simplest, default form defmition, given a data record defini
tion. 

Creates and modifies form definitions. Enables a programmer to design a 
form directly on the terminal screen and to define the properties for each 
form element as it is drawn and positioned. Detailed information for using 
edit. form is given in the BiiNTM Systems Form Editor Guide. 

Application developers will nonnally use edit. form to create and update a form's defini
tion. Form definitions can also be created procedurally using Data_Definition_Mgt. 

V -1.1.6.1 Form Summary 

V-1-14 

• The form selVice builds upon the concept of a paper form to provide interactive forms 
capabilities on a terminal. 

• A form can be created with the edit. form or define. standard form. 

• A form may consist of the following form elements: 

texts 

screen fields 

enumerations 

subforms: simple subforms and group subforms 

Understanding Human Interface Services 



- piles 

subprogram interfaces 

processing routines 

key catchers 

key lists. 

PRELIMINARY 

• Variable length alphanumeric screen fields, and the screen elements containing them, can 
expand to accommodate data entered into the field. 

V-1.1.7 Report Service 
The report service provides formatted output from sets of records. A report is a printed or 
displayed document containing labelled data, often presented in hierarchical groups with sub
totals and totals. A typical report is shown in Figure V -1-8. 

Part ID Description Location Unit 

1234567 wiring harness 13-B27 each 
3512734 1/2" aluminum conduit 02-F12 feet 
4766117 5/16" hex carriage bolt 07-A02 each 
7689482 flexible control cable 06-C13 inch 

Figure V ·1·8. Example Report 

V-I.I.7.1 Report Concepts 

The report service requires a record definition that describes the data to be printed. The report 
definition can be created from an existing file's record definition. 

The fonnat of a standard report page is shown in Figure V -1-9. 

Understanding Human Interface Services V-I-IS 



V-1-16 

PRELIMINARY 

I--~---------------------------------------I-
1 System date 1 1 Page Number 1 1 
1------------------------------------------1 1 
1 Page Heading 1 1 heading 
1------------------------------------------1 1 
1 field 1 1 ... 1 field i 1 ... 1 field nil 
1------------------------------------------1 
1 1 
1 1 
1 1 
1 1 page 
1 1 1 1 1 1 1 body 
1------------------------------------------1 area 
I I 1 1 
1 1 
1 1 
1 1 1 

1------------------------------------------1-
1 Page Footing 1 1 footing 
1------------------------------------------1-

Figure V-1-9. Layout ofa Standard Report Page 

There are two methods for creating and modifying report definitions: by using interactive 
utilities (define. standard_report and edit. report) and procedurally, using 
Data_Definition_Mgt. 

define.standard report 
Creates the simplest, default report definition, given a data record defIni
tion. 

edi t . report Creates and modifies report definitions. See the BiiNTM Systems Reports 
Guide for detailed information on edit. report. 

Application developers will normally use edit. report to create and update a report's 
definition. Report definitions can also be created procedurally using 
Data_Definition_Mgt. 

Reports are composed of the following components: 

Report Details A report detail is the smallest printable piece of a report. There are three 
kinds of details: 

Report Parts 

• Data detail 

• Computed detail 

• Text detail. 

A report consists of the following logical report parts, each consisting of 
one or more report details: 

• Record print layout 

• Report heading 

• Page heading 

• Page footing 

Understanding Human Interface Services 



PRELIMINARY 

• Control group heading (only if a control group hierarchy is defmed) 

• Control group footing (only if a control group hierarchy is defined). 

Printing a Report 

Reports are either printed or displayed depending oil the type of output device, that is, depend
ing on whether the physical output device is a printer, a tenninal, or some other output device 
which supports character display I/O. 

Two methods are available for printing (or displaying) a report: procedurally, by calling the 
Report_Handler. Print procedure, and interactively, by using the print. file utility. 

Both of these methods read data records from the report input device, format each line of the 
report, and write the result to the given report output device. 

V-1.1.7.2 Report Summary 

• A report is produced from sets of input data records, fonnatted as desired, often presented 
in hierarchical groups with subtotals and totals. 

• There are two utilities for creating and modifying report definitions: edit. report and 
define. standard_report. 

• The report service (Report_Handler) provides calls to associate a report with an input 
and output device, print a report, and control error handling. 

• A report can be printed or displayed either procedurally, with the 
Report_Handler. Print procedure, or interactively, using the print. file utility. 

V-1.2 Summary 
• Human Interface Services is composed of five services: 

command service Given a command definition, parses and returns invocation and runtime 
commands. 

environment service 

menu service 

form service 

report service 

Reads, writes, and creates BiiNTM CL variables. 

Given a menu definition, provides on-screen menus (lists of menu 
items). 

Given a fonn definition, controls execution of a data entry or display 
fonn. 

Given a report defmition, produces a printed report from data records. 

• These services perfonn most of the processing necessary for user interaction, including 
enforcement of input requirements and automatic display of "help" messages. 

• A default data entry form, and a default report, can be automatically created from a file's 
record definition. 

• Human Interface Services provide a complete, consistent user interface, shared by BiiNTM 
system utilities and CLEX itself. 

Understanding Human Interface Services V-I-17 



PRELIMINARY 

V-I-IS Understanding Human Interface Services 



Contents 

PREUMINARY 

CREATING A BiiNTM 2 
APPLICATION PROGRAM 

Concepts ............................................................... V-2-4 
Designing a BiiNTM Program ........................................... V -2-4 
Defining the Application's Data Structure ................................ V-2-5 
Example Program Overview ........................................... V -2-5 

Techniques ............................................................ V-2-10 
Creating and Processing the Invocation Command ......................... V-2-10 
Using Windows in a Program ......................................... V -2-11 
Processing a Menu Selection .......................................... V-2-12 
Displaying a Message ............................................... V-2-15 
Getting Data from a Fonn ............................................ V-2-17 
Displaying Data Using a Fonn ........................................ V-2-19 
Updating a File ..................................................... V-2-20 
Printing a Report from a File .......................................... V-2-21 
Printing a Report from a Sorted File .................................... V -2-24 

Summary ............................................................. V -2-28 

Creating a BliNn .. Application Program V-2-1 



V-2-2 

PRELIMINARY 

This chapter describes how to use the various parts of the BiiNTM system software to create a 
simple application program. The example is an inventory program controlled with menus, 
which gets structured input from a user, updates the inventory files, displays fonnatted infor
mation, and prints an inventory report. 

The complete source code for this example program is listed in Appendix A. 

Packages Used: 

Ac ce s s _Mgt Interface for checking or changing rights in access descriptors. 

Character Display AM 
- Provides device-independent 1/0 to character display devices such as 

printers, plotters, and windows on character and graphics tenninals. 

Data Definition Mgt 
- Manages data definitions (DOefs). This interface is a symbol table for the 

development of a OOef compiler. 

Directory_Mgt Manages directories and directory entries. 

File Admin Administers files. 

Form_Handler Provides calls to process, control, and change fonns. 

Message Services 
- Provides calls to write messages from message files, message stacks, or 

message blocks. 

Process_Mgt Provides public operations on processes. 

Record AM Provides device-independent record 1/0. 

Report Handler 
- Provides calls for initializing and printing a report. 

Window Services 
- Provides windows on character and graphics tenninals, including pull

down menus. 

Figure V -2-1 shows the external relationships of a BiiNTM program to its terminal (windows), 
its control input (menus), its notes, warnings, and help infonnation (messages), its data input 
and display (forms), and its printed output (reports). 

As with most computer systems, the BiiNTM OS (CLEX) invokes the program and passes in 
invocation command arguments. And, as usual, the program interacts with files. 

Creating a BilNTM Application Program 



PRELIMINARY 

EJ 
v - ~ 

Menu \ 

I 
\ 
\ 

/ \ 
\ 
\ 
\ 

[WindOW 1 " 
~ ~ 

I , 
" 

~ I 
/ 

/ 
/ Program 

/ 
/ 

/ 
~ 

~ c:=J 
Form 

Figure V -2-1. Typical BiiNTM Application Program 

A BiiNTM program relies on various system seIVices. Each of these seIVices are described in 
other chapters in this BiiNTM/OS Guide. 

BiiNTM provides several ways of interacting with users via tenninals: 

• Windows, to reseIVe an area of the tenninal screen for a program. A program may open 
any number of windows. Usually, there is one main window for user input and data dis
play, and optionally a small window for help and error messages. The message window 
may be the already existing system message window. 

• Messages, to display a text with up to five parameters (such as rue name and error number) 
in a user-selected language and fonnat (short, long, help). 

• Menus, to allow a user to select an item from a list. The menu group 10, menu 10, and 
menu item 10 numbers are returned to the program. 

• Commands, to allow the user to control a program. See Chapter V -3, "Building New 
Commands", for more infonnation. 

Creating a BliNn .. Application Program V-2-3 



PRELIMINARY 

• Forms, to enforce structured data entry. Each data entry field may have an associated help 
message. Forms are also used to display structured data. 

• Reports, to produce a formatted display of a set of data records. 

A BiiNTM program itself is insulated from changes to: 

• Message texts and variants - only the message file itself needs to be updated. Message 
variants are automatically displayed in the user's desired language and format 

• Changing languages for menus or commands - if the numeric menu and command IDs 
remain the same. 

• Form layouts - the displayed formats may be changed; as long as no fields are added or 
deleted, the program win not know the difference. 

• Report layouts - the report formatting, headings, control breaks, footings, and so forth, can 
be changed. 

The following tasks are described in this chapter: 

• How to create and read the program's invocation command. 

• How to create and display messages. 

• How to use windows, menus, and forms to interact with the user. 

• How to read, write, and update records in named files. 

• How to print a report from a file and how to sort records from a file and then print a report 
from the sorted records. 

V-2.1 Concepts 

V-2.1.1 Designing a BiiNTM Program 

V-2-4 

As with any program on any system, a complete program description is the first step when 
creating an application For a BiiNTM program, this program description includes: 

• Whether it's to be a batch or interactive program, 

• Whether to use a menU-driven or command-driven user control interface, 

menu selections Simplest for the user - defme menu groups, individual menus and menu 
items 

runtime commands Provides more control - define sets of commands, command names, 
types and numbers of command arguments. 

• What input and output files are required, including the record layout of the program's files, 

• Design of data entry and display forms, if used, 

• What data manipulation is desired, and 

• What types of reports are to be produced. 

Once the main files' record layouts have been specified, the specification of default data input 
fonns and reports can be done automatically (see the next section, "Defining the Application's 
Data Structure"). 

Creating a BoN
TN Application Program 



PRELIMINARY 

V-2.1.2 Defining the Application's Data Structure 

The data definition (record layout) of a file can be used to automatically generate input and 
display fonns and report definitions (DDefs). The resulting fonn and report DOefs can then be 
edited with the corresponding editor utilities to create a desired fonnat. 

Tools Used: 

TBD Creates a record DDejfor a flie. 

define.standard form 
Creates a standard fonn DOef from a record DDef. 

edit.form Edits a fonn description's layout and screen properties. 

define.standard report 
Creates a standard report DOef from a record DOef. 

edi t . report Edits a report description. 

Figure V-2-2 shows the relationship between a flie's record DDef, the standard fonn layout, 
and the standard report layout 

record 
part_ID 
desc 
unit 
location 

• • • 
end record; 

System_Defs. textlpart_ID_lenCJth; 
System_Defs. text desc_length); 
System _Defs. text un it_length); 
System_Defs.text loc_length); 

Form 
Editor 

Report 
Editor 

Part 10 _ ~ 
xxxx xxxx 

Desc __ 
xxxx xxxx 

Unit __ xxx x xxxx 

Location _ xxxx xxxx 

Form Report 

Form DDef Record DDef Report DDef 

Figure V-2-2. File Data Definition and Associated Forms and Reports 

V-2.1.3 Example Program Overview 

The example program is a menu-driven inventory control program. The menu group's title 
line is used to select one of six menus. Using selections from the menus, the user may inquire 
about parts on file, enter a new part 10 and description, change part infonnation, print one of 
two inventory reports, and re-index the parts flie. 

Creating a BiiNn~ Application Program V-2-5 



V-2-6 

PRELIMINARY 

The program has an associated message fue which contains the texts of all infonnation, warn
ing, and error messages. Help texts are stored within the menu and fonn defmitions. 

Menus 

The menus in the example program are shown in Figure V -2-3. 

Housekeeping Exit Program +-- Menu Group 

Inquiry Menu 

* 1. 
2. 

* 3. 

Search by Part 10 
Search by Part Description 
Exit MenU! 

Posting Menu 

* 1. Receipts 
2. Issues 
3. Returns 
4. Spoilage 
5. Journal Entry 

* 6. Exit Menul 

Update Menu 

Add Part * 1. 
* 2. 
* 3. 
* 4. 

Change Part Information 

Exit Menu 
Delete Part 1 

Reports Menu 

* 1. 
* 2. 
* 3. 

Print Report by Part 
Print Report by Location 
Exit MenU! 

I Housekeeping Menu I 
* 1. Index Parts File 
* 2. Exit Menu 

(* ----.. menu selection enabled in example program) 

Figure V -2-3. Example Program Menus 

Data Files 

There are two data files used by this program: the inventory parts file, indexed by part ID, and 
the log flie, where records of updates and changes to the parts file are written. 

The parts fue record layout, in Ada, is: 

Creating a BiiNTM Application Program 



PRELIMINARY 

(from Inventory_Files specification) 

244 subtype part ID type is System Defs.text( 
245 part_ID_Iength) ; -
246 
247 subtype supplier ID type is System_Defs.text( 
248 supplier_ID_Iength); 
249 
250 subtype location type is System_Defs.text( 
251 loc_length);-

254 subtype qty type is System. ordinal 
255 range 0 .. 9_999_999; 

259 subtype cost type is float 
260 range 0.0 .. 99_999_999.99; 
261 
262 type supplier array type is 
263 array (l .. max_suppliers) of supplier_ID_type; 

266 type parts_record_type is 

269 
270 

272 
273 

275 
276 

278 

280 
281 
282 
283 

record 
part_ID: 

desc: 
desc_length) ; 

unit: 
unit_length) ; 

location: 

qty on hand: 
reorderyoint: 
reorder qty: 
suppliers: 

part_ID_type; 

System_Defs.text( 

System_Defs.text( 

location_type; 

qty type; 
qty=type; 
qty type; 
supplier_array_type; 

285 usage this month: qty_type; 
286 usage-last-month: qty_type; 
287 usage-last-year: qty_type; 
288 avg unit cost: cost type; 
289 last unit cost: cost=type; 
290 date-first act: 
291 Timing=Conversions.numeric_time; 

294 date last act: 
295 Timing_Conversions.numeric_time; 

298 status: System Defs.text( 
299 status length); -

302 end record; 

The log file record layout, in Ada, is: 

Creating a BiiNnl Application Program V-2-7 



V-2-8 

PREUMINARY 

(from Inventory_Files specification) 

316 type action_type is ( 
317 create, 

319 update, 

321 delete, 

323 receipt, 
324 issue, 
325 returns, 
326 spoilage, 
327 journal); 
328 
329 
330 type log_record_type is 

332 
333 

335 

record 
part_ID: 

action: 

337 time: 

part_ID_type; 

action_type; 

338 Timing_Conversions. numeric_time; 

340 doc number: System Defs.text{ 
341 -doc_length);-

343 qty: 

346 job ID: System Defs.text{ 
34 7 -job_length) ; -

353 end record; 

Program Source Code Files 

A typical menu-driven application program has the following outline: 

Setup Open a window for this program, open the necessary files, display the 
main menu group. 

Input Get a menu selection from user, get necessary data for operation (input 
directly from user, from a form, or from a ftIe). 

Processing 

Output 

Termination 

Perfonn the selected operation. 

Display infonnation in program window, update files, print a report. 

Dose ftIes, deallocate objects, close the program's window. 

The example program is organized into the one main procedure and six Ada packages. Each of 
the packages collects the procedures related to a given selVice area: windows, files, menus, 
forms, and reports. The relationship between these parts of the example program are shown in 
Figure V-2-4. 

Creating a BliNn" Application Program 



Setup 

Inventory 
Windows 

(i_windows.s) 
(i_windows.b) 

PREU:MINARY 

Inventory_main 

(inventory_moin.sb) 

Inventory Messages 
(i_msgs.ms) 

Inventory 
Files 

(i_files.s) 
(i_files.b) 

Inventory 
Menus 

(i_menus.s) 
(i_menus.b) 

Inventory 
Forms 

(i_forms.s) 
(i_forms.b) 

I 
Inventory 
Reports 

(i_reports. s) 
(i_reports. b) 

Figure V -2-4. Example Program Source Files 

The following program fragment shows how the example program sets up its windows, opens 
its files, and prepares for menu input 

(from Inventory_Main) 

29 procedure Inventory_main 

38 is 

97 begin 

101 Inventory_Windows.Open_program_windows; 

125 Character Display AM.Ops.Set input type mask( 
126 opened dev =>-Inventory Windows.main window, 
127 new mask => Terminal Defs.input type mask' ( 
128 -Terminal_Defs.menu=item-picked => true, 
129 others => false»; 

Processing 

The following program fragment shows the example program's main processing loop: read the 
menu selection, then perfonn the appropriate action (possibly just exit program). 

Creating a BiiNTM Application Program V-2-9 



PRELIMINARY 

(from Inventory_Main) 

134 loop 

139 Character Display AM.Ops.Read( 
140 opened_dev =>-Inventory_Windows.main_window, 

151 case menu select.menu is 
152 
153 when Inventory Menus.inquiry menu ID => 
154 Inventory Menus.Process Inquiry menu( 
155 selection => menu_select.item); 

157 when Inventory_Menus.posting_menu_ID => 

173 when Inventory Menus.exit menu ID => 
174 EXIT; - --

179 
180 
181 

Termination 

end case; -- "case menu select.menu is" 

end loop; 

The following program fragment shows how the example program closes both its windows 
(which disables enabled menus) and its files. 

(from Inventory_Main) 

186 Inventory_Files.Close-parts_file; 

200 Inventory_Windows.Close-program_windows; 
201 
202 end Inventory_main; 

V-2.2 Techniques 
After reading this section, you will be able to: 

• Interact with the command line: 

Create and store an invocation command definition and argument definitions 

Read command line argument values. 

• Set up a window for a program 

• Accept and process user menu selections from menus 

• Display a message 

• Set up a fonn and get the user's input data 

• Display a form containing program-generated information. 

• Update a given record from a file 

• Print a report from a file. 

V-2.2.1 Creating and Processing the Invocation Command 

V-2-10 Creating a BiiNTM Application Program 



PREUMINARY 

Calls Used: 

manage.program 
Creates command definitions. 

Command_Handler.Open_invocation_command-processing 
Opens the invocation command device for processing. 

Command_Handler. Get_argument_type 
Returns argument values. 

Command Handler.Close 
- Closes the opened invocation command input device. 

Defme your program's invocation command name and the necessary arguments. ' Use the 
manage. conunands command set in the manage. program utility to define the program's 
invocation command. 

Call Command_Handler. Open_invocat ion_cornrnand-proces sing to open the in
vocation command input device. The invocation command has already been parsed, and calls 
to Conunand _ Handl er . Get_argument _type will return the invocation argument values. 

When you are through reading argument values, close the opened invocation command input 
device by calling Conunand_Handler. Close. 

See Chapter V -3 for more information on processing commands. 

V-2.2.2 Using Windows in a Program 

Calls Used: 

Character Display AM.Get device object 
- Returns the object underlyiiig a device. 

Process_Mgt.Get-process_globals_entry 
Returns process global variables; in this case, we are looking for the stan
dard input device. 

Window Services.Ops.Create window 
- Creates a new windOw with a given size and poSition 

Window Services.Ops.Get terminal 
- Returns an ADto the terminal on which an existing window is installed. 

The following program fragment shows how the example program sets up its main window. 
The program assumes that the standard input, on entry, is from a window. 

First, you need to fmd that opened window, then the actual window, then the terminal display
ing the actual window. Then you can set up the new program window on that terminal. 

Creating a BiiN
nl 

Application Program V-2-11 



PRELIMINARY 

(from Inventory_Windows spec~fication) 

27 main window size: Terminal_Defs.point_info:= 
28 80,20);-

31 main buffer size: Terminal_Defs.point_info:= 
32 80,20);-

35 main_window-F0s: Terminal_Defs.point_info:= 
36 1,1); 

(from Inventory_Windows body) 

12 procedure Open_program_windows 

21 
22 
23 
24 
25 
26 

is 

begin 

old opened window: 
old-window: 
underlying_terminal: 

Device Defs.opened device; 
Device-Defs.device; 
Device=Defs.device; 

31 old opened window := 
32 -Process_Mgt.Get-Frocess_globals_entry( 
33 Process_Mgt_Types.standard_input); 

37 old window := Byte Stream AM.Ops.Get device object( 
38 -old_opened_window); - --

43 underlying terminal := 
44 Window-Services.Ops.Get terminal( 
45 old_window) ; -

49 main window := Window Services.Ops.Create window( 
50 terminal - => underlying terminal, 
51 pixel units => false, -
52 -- characters, not pixels 
53 fb size => main buffer size, 
54 desired window size => main-window-size, 
55 window pos - => main-window-pos, 
56 view pos => - -
57 Terminal_Defs.point_info' (1,1»; 

71 end Open_program_windows; 

V-2.2.3 Processing a Menu Selection 

Calls Used: 

Character Display AM.Ops.Set input type mask 
- Sets the allowable input events for a wmdow. 

Character Display AM.Read 
- Reads an event from a terminal. 

Data Definition Mgt.Retrieve DDef 
- Retrieves an object's DDef, given the object's AD. 

Directory Mgt.Retrieve 
- Retrieves a stored object's AD, given the object's pathname. 

Window Services.Ops.Install menu group 
- Installs a menu group in a wIndow. 

Window Services.Ops.Menu group enable 
- Enables an installed menu group. 

V-2-12 Creating a BiiNTM Application Program 



PRELIMINARY 

This technique shows how to: 

• create a menu (using a utility) 

• install and enable a menu 

• read the user's menu selection 

• process a menu's selections. 

Creating Menus 

Defme the menu titles and menu item texts, then the menu groups. 

Create each menu group, using the TBD (edit . menu) utility. 

1. Create a null menu group to contain the menus. 

2. Add each menu and its title to the menu group. 

3. Add each menu item and its text to each menu. 

Store the menu group DDef under a pathname. 

Installing and Enabling a Menu Group 

Retrieve the menu group's DDef. 

Install and enable the menu group, using calls in Window_Services: 

1. Install_menu_group - install the menu group in an open window. 

2. Menu_group_enable - enable a menu group for user selection. 

(from Inventory_Menus specification) 

74 inv menu group ID: constant 
75 -TermInal_Defs.menu_group_ID := 1; 

(from Inventory_Menus body) 

30 menu_group_DDef_AD: Data_Definition_Mgt.DDef_AD; 

33 menu group node: 
34 Data_Definition_Mgt.node_reference; 

46 menu group DDef AD := DDef from untyped ( 
47 Directory Mgt.Retrieve( -
48 name ~> menu_group_DDef_path»; 

53 menu group node := Data Definition Mgt. 
54 Retrieve DDef( - -
55 DDef-=> menu group DDef AD, 
56 name => menu=group=DDef=root_name); 

61 Window Services.Ops.Install menu group ( 
62 window => Inventory WIndows. 
63 main window, 
64 menu group => menu-group node, 
65 ID - => inv_rnenu_group_ID); 

69 Window Services.Ops.Menu group enable( 
70 window => Inventory Windows. 
71 main window, 
72 menu group => inv menu group ID, 
73 enable => true); - -

Creating a BliNn .. Application Program V-2-13 



V-2-14 

PRELIMINARY 

Reading a Menu Selection 

To read a menu selection: 

• Set the input type mask for the menu group's window to include 
Terminal_Defs.menu_item-picked, 

• Wait for an input event at the tenninal, and 

• Read the menu selection values (menu group 10, menu 10, and menu item 10 numbers). 

(from Inventory_Main) 

79 menu select: Terminal_Defs.menu_selection; 

90 event num: System. ordinal; 

125 Character Display AM.Ops.Set input type mask( 
126 opened dev =>-Inventory Windows.main window, 
127 new mask => Terminal Defs.input type mask' ( 
128 -Terminal_Defs.menu=item-picked => true, 
129 others => false»; 

139 Character Display AM.Ops.Read( 
140 opened dev =>-Inventory Windows.main window, 
141 buffer-VA => menu select' address, -
142 max events => 1, -
143 max-bytes => 0, 
144 block => true, -- Wait 
145 type read => event type, 
146 num read => event=num); 

151 case menu select.menu is 
152 
153 when Inventory Menus.inquiry menu ID => 
154 Inventory Menus.Process Inquiry menu( 
155 selection => menu_select.item); 

Example Menu Processing Routine 

Use the menu and item selection numbers (for example, in a case statement) to detennine the 
appropriate action. 

Oefme the menu and item numbers: 

Creating a BuN
TY 

Application Program 



PRELIMINARY 

(from Inventory_Menus specification) 

80 inquiry menu IO: constant 
81 Terminal:Oefs.menu_IO := 1; 
82 
83 posting menu IO: constant 
84 Terminal=Oefs.menu_IO := 2; 
85 
86 update menu IO: constant 
87 TerminaI_Oefs.menu_IO := 3: 
88 
89 report menu IO: constant 
90 Terminal_Oefs.menu_IO := 4: 
91 
92 housekeeping menu IO: constant 
93 Terminal:Oefs~menu_IO := 5: 
94 
95 exit menu IO: constant 
96 Terminal_Oefs.menu_IO := 6; 
97 
98 Inquiry menu items 
99 inq by part item: constant 

100 -Terminal Oefs.menu item IO .= 1: 
101 inq by desc Item: constant-
102 -Terminal Oefs.menu item IO := 2; 
103 inq exit item: constant-
104 -TermInal Oefs.menu item IO := 3: - --

Process the menu's selections: 
(from Inventory_Menus body) 

79 procedure Process inquiry menu( 
80 selection: Terminal Defs.menu item IO} 
81 -- Selection made In this menu. 
82 is 

86 begin 
87 
88 case selection is 
89 
90 when inq_by-part_item => Inventory_Forms. 
91 Process_inquiry_form; 
92 
93 when in~by_desc_item => 
94 
95 Message Services. Write msg( 
96 msg=id => no_selection_code, 

105 when in~exit_item => 
106 return; 
107 
108 when others => null; 
109 
110 end case; 
111 
112 end Process_inquiry_menu; 

V-2.2.4 Displaying a Message 

Calls Used: 

Message Services.Write msg 
- Writes a specIfied message and its parameters to an opened device. 

Creating a BiiNTM Application Program V-2-15 



PRELIMINARY 

Messages are used to display status infonnation and for warnings and errors. 

To use messages, you must create a message file containing the texts for all your program's 
messages. This is done with the manage .messages utility (or the manage .messages 
command set in the manage. program utility), using your message definition commands. 

The program need only know the message file's patbname: 
(from Inventory_Messages specification) 

24 message file: constant System Defs.text AD := 
25 new-System Defs.text' (- -
26 31,31,"/example/inventory/message_file"); 

32 message object: constant System. untyped word := 
33 System. null_word; -
34 
35 pragma bind (message object, 
36 "inventory_messages.message_file"); 

A program refers to a message by an Incident_Defs. incident_code, which deter
mines the message file, the message index numbers (module number and message number), 
and the severity level. 

The message definition commands can be stored in your source file near the 
Incident _ Def s . incident_code declarations. The manage. program utility can ex
tract message definition commands from your source. fue, to create the message file. 

To define a given message: 
(from Inventory_Messages specification) 

30 module: constant:= 4; 

33 
34 

50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 

*M* 
-- *M* 

set. language :language = English 
create.variable module :value 4 

no selection code: constant 
- Incident-Defs.incident code := ( 

message object =>-
Inventory Messages.message object, 

module - => module, -
number => 1, 
severity => 

Incident_Defs.warning); 

*M* store :module = $module :number = 1\ 
*M* :msg name = no selection\ 
*M* :short = "Selection $p1<selection 
*M* number> is not implemented." 

To write a message to the default message device (window): 
(from Inventory_Menus body) 

80 

95 
96 
97 
98 
99 

100 
101 
102 
103 

selection: Terminal_Defs.menu_item_ID) 

Message Services.Write msg( 
msg-id => no selection code, 
param1 => - -

Incident_Defs.message-parameter( 
typ => Incident Defs.ord, 
len => 0)' ( -

typ => Incident Defs.ord, 
len => 0, -
oval => selection»; 

Creating a BiiNu
", Application Program 



PRELIMINARY 

V-2.2.S Getting Data from a Form 

Calls Used: 

Directory Mgt.Retrieve 
- Retrieves a stored object's AD, given the object's pathname. 

Form Handler.Clear 
- Clears a form from its window. 

Form Handler.Close form 
- Closes and deallocates an opened form. 

Form Handler.Fetch value 
- Gets a value from a field in a form. 

Form Handler.Get 
- Displays a form for user input; returns when the form is finished. 

Form Handler.Open form 
- Opens a form for processing. 

Record AM.Open by name 
- OPenSa device for record access, given the device's pathname. 

Record AM.Ops.Close 
- Closes an open device. 

Record AM.Ops.Update 
- Updates (writes) a record to an open device. 

Defme the form layout, field names, and field types. Create the fonn DDef with the 
define. standard_form utility, and/or the edit. form utility. Store the form's DDef 
under a pathname. 

Get the stored form DDefby calling Directory_Mgt. Retrieve with the form's path
name, then converting the returned untyped word to a DDef AD using an instance of 
Unchecked_Conversion. Open the form by calling Form_Handler . Open_form. 

(from Inventory_Forms body) 

40 opened_form: Form_Defs.opened_form_AD; 

44 opened form := Form Handler.Open form( 
45 DDef => DDef from untyped( -
46 Directory-Mgt.Retrieve( 
47 name => form_pathname»); 

If the form has groups or piles to be set, call 
For~Handler. Create_group_instances as necessary. 

(from Inventory_Forms body) 

406 when Inventory_Menus.update_add_item => 
407 
408 Form Handler.Create group instances( 
409 opened form a - => opened form, 
410 group - - => update-add, 
411 number_of_instances => 1); -

If desired, open the form for record access: 

Creating a BiiNn 
.. Application Program V-2-17 



V-2-1S 

PRELIMINARY 

(from Inventory_Forms body) 

432 opened record form := Record AM.Open by name( 
433 name - => update_form-pathname, 
434 input_output => Device_Defs.inout); 

Display the fonn and allow user data entry, by calling Form_Handler. Get, specifying the 
fonn and the window where the fonn is to be displayed: 

(from Inventory_Forms body) 

439 
440 
441 
442 
443 
444 

form status := Form Handler.Get( 
opened form a -=> opened form, 
opened-window a => -

Inventory=Windows.main_window); 

if form_status /= Form_Defs.finished then 

Fetch data from fields in the fonn by calling Form_Handler . Fetch_value: 
(from Inventory_Forms body) 

451 
452 
453 
454 
455 
456 
457 
458 
459 
460 
461 
462 
463 

Form Handler.Fetch_value( 
opened form a => opened form, 
element - => part ID field, 
subunit => System nefs.null text, 

-- added subunit; value correct? -
value buffer VA => part ID'address, 
value-length- => part=ID'size/8, 
value -t => 

Data Definition Mgt.t string, 
element value length => length, 
empty - - => empty); 

if empty then 

Read a data record from the fonn by calling Record_AM. Ops . Read: 
(from Inventory_Forms body) 

371 parts record: 
372 Inventory_Files.parts_record_type; 

380 length: System. ordinal; 

495 
496 
497 
498 

length := Record AM.Ops.Read( 
opened dev => opened record form, 
buffer-VA => parts record' address, 
length- => parts=record'size/8); 

Clear the form from the window by calling Form_Handler. Clear_form. Close the fonn 
by calling Form_Handler.Close_form: 

(from Inventory_Forms body) 

553 Form Handler.Clear( 
554 opened_form_a => opened_form); 
555 
556 Form Handler.Close form( 
557 opened_form_a ~> opened_form); 

Close record access to the fonn, if opened: 
(from Inventory_Forms body) 

Record AM.Ops.Close( 561 
562 opened_dev => opened_record form); 

Creating a BiiNTY Application Program 



PRELIMINARY 

V-2.2.6 Displaying Data Using a Form 

Calls Used: 

Directory Mgt.Retrieve 
- Gets a stored object's AD, given its pathname. 

Form Handler.Clear 
- Clears a fonn from its window. 

Form Handler.Close form 
Closes and deallocates an opened fonn. 

Form Handler.Open form 
- Opens a fonn for processing. 

Form Handler.Put 
Displays a read-only fonn. 

Form Handler.Store value 
Assign'S a value to a field in an opened fonn. 

Record AM.Open by name 
- 6Pen'S a device for record access, given the device's pathname. 

Record AM.Ops.Close 
- Closes an open device. 

Record AM.Ops.Update 
- Updates (writes) a record to an open device. 

This section describes how to use a fonn to display structured infonnation. 

Defme and create the fonn, retrieve and open the form's DDef, and set any necessary groups 
or piles, as described in the previous section, "Getting Data from a Fonn". 

If the fonn has been opened for record access (see previous section), write a data record into 
the fonn by calling Record_AM .Ops. Update: 

(from Inventory_Forms body) 

371 parts record: 
372 InventorY_Files.parts_record_type; 

476 Record AM.Ops.Update( 
477 opened dev => opened record form, 
478 buffer-VA => parts record' address, 
479 length- => parts=record'size/8}; 

Store data directly into individual fields in the fonn by calling 
Form Handler.Store value: 

Creating a BliNn. Application Program V-2-19 



PRELIMINARY 

(from Inventory_Forms body) 

276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 

Form Handler.Store value{ 
opened form a - => opened form, 
element - => desc_fIeld, 
subunit => System Defs.nuII_text, 

-- added subunit; value-correct? 
value buffer VA => 

parts record.desc'address, 
value length => 

parts record.desc'size/8, 
value t - => 

Data_Definition_Mgt.t_string); 

Display the fonn and its contents by calling Form_Handler. Put, specifying the fonn and 
the window where the fonn is to be displayedQ 

Clear the fonn from the window by calling Form_Handler. Clear_form, then close the 
fonn by calling Form_Handler. Close_form. 

V-2.2.7 Updating a File 

V-2-20 

Packages Used: 

Access Mgt.Permits 
- Checks an object for given access rights. 

Directory Mgt.Retrieve 
- Returns an AD to an object, given a pathname. 

Record AM.Keyed Ops.Read by key 
- Reads a record from an opened indexed device, given the index key value. 

Record AM.Keyed Ops.Update by key 
- UPdates a record in-an opened indexed device, given the index key value. 

Record AM.Ops.Close 
- Ooses an opened device. 

Record AM.Ops.Insert 
- Inserts a record into an opened device. 

Record AM.Ops.Open 
- Opens a given device for record input or output, given a device AD. 

Record AM.Ops.Open by name 
- Opens a given device for record access, given a device's pathname. 

This section briefly describes how to use the filing service to update records in a fue. For more 
infonnation and procedural examples, see Chapter IV-9, "Using Record I/O with Structured 
Files". 

1. Define the file's record layout and then create the file's record DOef. This can be done 
procedurally using calls to Data Definition Mgt. Store the file and its record DDef 
under pathnames. - -

2. Open the file by calling Record_AM. ops. Open or Record_AM. Open_by_name. 

3. Read/write/rewrite records: 

Creating a BliNn" Application Program 



rKELINllNAK r 

• If the file is indexed: 

read a record Get the index key value of the desired record, and call 
Record_AM.Keyed_Ops.Read_by_key. 

write a record Set the record value, then call Record_AM. Ops . Insert. 

rewrite a record Set the record value, then call 
Record_AM.Keyed_Ops.Update_by_key. 

• If the file is not indexed: 

read a record Set the record pointer with Record_AM. Ops . Set yo si tion, 
then read the record with Record_AM. Ops. Read. 

write a record Write the record with Record_AM. Ops . Insert. 

rewrite a record Rewrite the record with Record_AM. Ops. Update. 

4. Dose a file by calling Record_AM. Ops. Close. 

V-2.2.8 Printing a Report from a File 

Calls Used: 

Byte Stream AM.Open by name 
- - Opens a device for byte stream access, given the device's pathname. 

Directory Mgt.Retrieve 
- Retrieves an object, given the object's pathname. 

Record AM.Open 
- Opens a file or device for record access. 

Record AM.Ops.Close 
- Closes an opened file or device. 

Report Handler.Initialize 
- Initializes an opened report, given the report DDef and the input and out

put devices. 

Report Handler.Print 
- Prints an initialized report. 

This technique shows how to produce a given report from a file to an output device. 

Creating a BiiNTI" Application Program V-2-21 



PRELIMlNAKY 

Parts File 

(part_ID) (desc. loc, unit) 

abc453-69 first part, shelf6, ton 

def3-3-4 motor mount. bin106, each 

xyz7445 some part. bin41. each 

zzz0123x another part, bin12. foot 

Report by Part_ID 

Unit of 
Part 10 Description Location Measure 

abc453-69 first part shelf6 ton 

def3-3-4 motor mount bin106 each 

xyz7445 some part bin41 each 

zzz0123x another part bin12 foot 

Figure V -2-5. File and an Associated Report 

Create the report itself: 

• Given the previously created file's record DDef, use the define. standard_report 
utility and/or the edi t . report utility, to create the desired report fonnat. 

• Store the report DDef under a pathname. 

Open the desired input file, by calling Record_AM. Ops . Open. 

• To select a range of records in an indexed file for inclusion in the report, call 
Record AM. Keyed Ops. Set key range with the appropriate first and last key 
values. - - --

V-2-22 Creating a BiiNTM Application Program 



PKELIMINAKY 

(from Inventory_Reports body) 

56 procedure Print_report_by-part( 
57 output_dev_pathname: System_Defs.text) 

65 is 
66 
67 opened_output: Device_Defs.opened_device; 

73 initialized_report: Device_Defs.opened_device; 

76 local-parts_file: Device_Defs.device:= 
77 Record AM.Ops.Get device object( 
78 Inventory_Files.parts_file); 

81 opened local parts file: 
82 Device_Defs.opened_device; 

89 begin 

94 opened local parts file := Record AM.Ops.Open( 
95 dev - => local-parts_fIle, 
96 input output => Device Defs.input, 
97 allow- => Device=Defs.readers); 

Open the desired output device (must support the byte stream access method) by calling the 
appropriate Open: 

• Fortenninal output, call Character_Display_AM. Open. 

• For printer or file output, call Byte _ S trearn _AM. Open. 

(from Inventory_Reports body) 

102 opened_output := Byte_Stream_AM.Open_by_name( 
103 name => 
104 output_dev_pathname, 
105 input output => 
106 Device_Defs.output); 

Get the report DDefby calling Directory_Mgt. Retrieve with the stored DOef's path
name. You will then have to convert the Retr ieved untyped word into a DDef AD, by 
calling an instance of Unchecked_Conversion. 

(from Inventory_Reports specification) 

55 report_by-part_DDef_str: constant string := 
56 "/example/inventory/DDefs/report_byyart": 

60 report by part DDef pathname: 
61 System Defs.text( 
62 report by part DDef str'length) := ( 
63 report_by~art_DDef_str'length, 
64 report_byyart_DDef_str'length, 
65 report_by-part_DDef_str); 

(from Inventory_Reports body) 

111 report DDef := DDef from untyped( 
112 Directory Mgt.Retrieve( 
113 name ~> report_by_part_DDef_pathname»; 

Initialize the report handler by calling Report_Handler. Initialize with the report 
DDef, and the opened input and output devices. 

Creating a BiiNTM Application Program V-2-23 



PRELIMINARY 

(from Inventory_Reports body) 

119 initialized report := Report Handler.Initialize( 
120 description => report DDef, 
121 input => opened:local-parts_file, 
122 output => opened_output); 

Print the report by calling Report_Handler. Print with the initialized report. 
(from Inventory_Reports body) 

127 Report Handler.Print( 
128 report => initialized_report); 

Close the report's input file: 
(from Inventory_Reports body) 

152 Record AM.Ops.Close( 
153 opened_dev => opened_local-parts_file}; 

V-2.2.9 Printing a Report from a Sorted File 

V-2-24 Creating a BiiNTM Application Program 



t"KELIMlNAKY 

Calls Used: 

Byte Stream AM.Open by name 
- - Opens the report output device. 

Directory Mgt.Retrieve 
- Retrieves the report definition, given the report's pathname. 

Event Mgt.Wait for all 
- Waits fur all of a specified set of events to occur. 

Pipe_Mgt.Convert-pipe_to_device 
Converts a pipe AD into a device AD. 

Pipe Mgt.Create pipe 
- Creates a new pipe. 

Process Mgt.Deallocate 
- Deallocates a spawned process. 

Process_Mgt.Get-process_globals_entry 
Gets one of the process globals entries (in this case, this process's AD). 

Process_Mgt.Spawn-process 
Creates a new process which runs concurrently with the calling process. A 
tennination action is specified. 

Record AM.Ops.Open 
- Given a device AD, opens a fue or device for record access. 

Record AM.Open by name 
- Glvena pathname, opens a file or device for record access. 

Record AM.Ops.Get DDef 
- Gets the DDef underlying an opened device. 

Record AM.Ops.Close 
- Ooses a file. 

Report Handler.Initialize 
- Initializes an opened report, given the report DDef and the input and out

put devices. 

Report Handler.Print 
- Prints an initialized report. 

Sort Merge Interface.Sort 
- - Sorts records from an input device to an output device, using a sort DDef 

to specify the sort fields and their ordering. 

This section describes how to sort a file and use the sorted records as input to a report. The 
example uses a pipe from the sort procedure to the report procedure. 

Create a Report Definition 

Create and store the report's DDef, as described in the previous section, "Creating a Simple 
Report". 

Create a Sort Definition 

Create the sort DDef, which defines the sort key fields and their ordering. This can be done 
interactively, with the TBD utility, or procedurally, using calls to Data_Definition_Mgt. 
Store the sort DDef under a pathname. 

Creating a BiiNTM Application Program V-2-25 



V-2-26 

PRELIMINARY 

Your Sort Procedure 

Implement the fue-sorting procedure: 

• Use the subprograrn_ value pragma to get an AD to your "Sort" procedure (process): 
(from Inventory_Reports body) 

42 type connection_record is 

46 record 
47 sort out: Device Defs.opened device; 
48 ---Output from "Sort" to pipe.-
49 report in: Device Defs.opened device; 
50 -- Input from pipe to "Print "-:-
51 report out: Device Defs.opened device; 
52 -- Output device far "Print". -
53 end record; 

158 procedure Sort( 
159 param_buffer: System. address; 

161 param_length: System. ordinal} 

168 is 
169 
170 conn rec: connection_record; 

172 FOR conn rec USE AT param_buffer; 

187 begin 

231 end Sort; 
232 pragma subprogram value( 
233 Process Mgt.Initial proc, 
234 Sort}; - -

• Open the input file, with Record_AM. Ops. Open or 
Record_AM.Ops.Open_by_narne. 

• Get the sort DDef: 
(from Inventory_Reports body) 

182 opened sort DDef: 
183 Device Defs.opened device; 
184 sort DDef reference: -
185 Data_Definition_Mgt.node_reference; 

200 opened_sort_DDef := Record_AM.Open_by_name( 
201 name => 
202 sort_by_loc_DDef-Fathname, 
203 input output => Device Defs.input, 
204 allow- => Device-Defs.readers, 
205 block => true};-

209 sort DDef reference .-
210 Record AM.Ops.Get DDef( 
211 opened_dev =>-opened_sort_DDef}; 

• Use the input end of the pipe for the output device. 

• Call Sort Merge Interface. Sort with the sort DDef, and the opened input and 
output devICes. -

Creating a BiiNTM Application Program 



rK~LINU~AKY 

(from Inventory_Reports body) 

217 Sort Merge Interface.Sort( 
218 Input device => 
219 opened_local-parts_file, 
220 DDef => sort DDef reference, 
221 output device => conn-rec.sort out, 
222 stable-sort => true~ -
223 tuning-opts => 
224 Sort_Merge_Interface.no_tuning); 

• Close the input file, with Record_AM. Ops . Clo se. 

Your Report Procedure 

Implement the report procedure: 

• Use the subprogram_value pragma to get an AD to your "Print" procedure (process). 

• Get the report DDef: 
(from Inventory_Reports body) 

252 report_DDef: Data_Definition_Mgt.DDef AD; 

266 report DDef := Dbef from untyped( 
267 Directory Mgt.Retrieve( 
268 report_by_loc_DDef_pathname»; 

• Use the output end of the pipe for the report input device. 

• Call Report Handler. Initialize with the report DDef, and the opened report in-
put and output devices. 

• Call Report_Handler. Print to print the report. 

• Close the report output device, by calling Record_AM. Ops . Close. 

Creating a Pipe 

Create the pipe, and open its input and output ends: 
(from Inventory_Reports body) 

334 sort_pipe := Pipe_Mgt.Create_pipe; 

340 sort out => Record AM.Ops.Open( 
341 Pipe Mgt.Convert pipe to device( 
342 sort pipe), - --
343 Device Defs.output), 
344 report in - => Record AM.Ops.Open( 
345 Pipe Mgt.Convert pipe to device( 
346 sort pipe), - --
347 Device_Defs.input), 

Spawning Your Sort and Print Processes 

Spawn your "Sort" and "Print" processes: 

Creating a BliNn" Application Program V-2-27 



I'K~LIMl~AKI 

(from Inventory_Reports body) 

311 this_process_untyped: System. untyped_word; 

316 sort~rocess: Process_Mgt_Types.process_AD; 

319 print~rocess: Process_Mgt_Types.process_AD; 

354 this~rocess_untyped := 
355 Process_Mgt.Get~rocess_globals_entry( 
356 Process_Mgt_Types.process); 

360 sort~rocess := Process_Mgt.Spawn~rocess( 
361 init proc => Sort' subprogram value, 
362 param buffer => conn rec'address, 
363 term_action => ( -
364 event => Event Mgt.user 1; 
365 message => System. null address, 
366 destination => this~rocess_untyped)); 

370 print~rocess := Process_Mgt.Spawn~rocess( 
371 init proc => Print' subprogram value, 
372 param buffer => conn rec'address~ 
373 term action => ( -
374 event => Event Mgt.user 2, 
375 message => System. null address, 
376 destination => this_process_untyped)); 

Wait for completion of the two processes, then deallocate them: 
(from Inventory_Reports body) 

380 Event Mgt.Wait for all( 
381 events => - -
382 (Event Mgt.user 1 .. Event_Mgt.user_2 => 
383 true, -
384 others => false), 
385 action_list => term_events); 

390 Process_Mgt.Deallocate(sort~rocess); 
391 Process_Mgt.Deallocate(print_process); 

V-2.3 Summary 

V-2-28 

• A BiiNTM program can be controlled by menus or commands. 

• A data file's record layout can be used to generate default fonn and report fonnats. Fonn 
and report fonnats can be updated without changing the calling program. 

• Input to a program can come from a window, a file, or a data entry fonn. 

• Output from a program can be displayed in a fonn, written to a device, or printed as a 
report. 

Creating a BiiNTM Application Program 



PRELIMINARY 

BUILDING NEW COMMANDS 3 
Contents 

Concepts ............................................................... V-3-2 
Developing Command-Driven Programs ................................. V -3-4 
Types of Commands ................................................. V -3-4 
Review of Command Syntax ........................................... V -3-7 
Review of Command Defmitions ...................................... V-3-10 
Types of Command Input ............................................ V -3-11 
Alternatives to Command Input ........................................ V-3-12 
Entering Commands to Programs ...................................... V-3-12 

Techniques ............................................................ V-3-13 
Defining an Invocation Command ...................................... V-3-13 
Defining a Runtime Command Set ..................................... V-3-14 
Reading the Invocation Command ..................................... V-3-14 
Processing Command Arguments ...................................... V-3-14 
Processing Runtime Commands ....................................... V-3-16 
Reading a Command Input Line as Text ................................. V-3-16 
Executing Commands from a Program .................................. V-3-16 

Summary ............................................................. V-3-17 

Building New Commands V-3-1 



rK~L.1lYlJ.l"'laK I 

This chapter describes how to process a program's invocation and runtime commands and 
arguments. 

Packages Used: 

CL Defs Contains declarations used by the command selVice, for processing com
mand language (CL) arguments and variables. 

Command Handler 
Contains operations for reading and processing program commands and 
arguments. 

Command Execution 
- Contains a procedural interface to command execution. 

New commands for command-driven programs are created with the manage. commands 
command set in the manage. program utility. Your program calls the command selVice 
(with the command definition) to get and parse each command. Your program can then per
fonn (implement) the returned command. 

There are three ways in which you can create the command definitions for a program's com
mands: 

1. Enter manage. commands runtime commands to create the command definitions 
(command DDefs) interactively. 

2. Create manage. commands runtime commands in a command file. Submit the command 
fue to the manage. program utility to create the command DDefs. 

3. Include manage. commands runtime commands as tagged comment lines in a program's 
source fue. Use the : tagged commands argument to the manage. program utility to 
extract and process the definition commands from the tagged comment lines. 

The invocation command DDef is stored with the program itself. Runtime commands sets are 
stored under pathnames, which your program then uses when opening command set process
ing. 

V-3.1 Concepts 

V-3-2 

• New commands are defined using the manage. commands command set in the 
manage. program utility - see the BiiNTM Command and Message Guide. 

• The command service uses the command definitions - to help the user correctly enter and 
complete a command. 

• There are three types of commands processed by the command service - built-in commands, 
CLEX commands, and program-defined commands; see "Types of Commands", below. 

built-in commands Part of, and processed by, the command selVice itself. Built-in runtime 
commands directly perfonn some action, such as setting a variable 
(set. variable). Built-in control commands control the logical 
flow of commands (if / then / else / endif). 

CLEX commands Commands specific to the command language executive (CLEX). 

program=defined commands 
Each program has an invocation command, which is entered to CLEX 

Building New Commands 



to invoke (execute) the program. Programs using the command service 
defme their own runtime commands, which control and are im
plemented by the program. 

• Commands can be readfrom many different devices - including tenninals, pipes, and files. 

• Commands are entered and confirmed without program intervention - a complete, correct 
command is then available to the program. 

• "help" is available to the user for each command and each argument - the command ser
vice displays requested "help" texts (defmed with the command DDef), without requiring 
any program action. 

• A command consists of up to three parts: 
command. name [:argument=value] ... 

[::control_option=value] ... 

command. name The name of the command. The command name may have two parts, 
separated by a period: cornmand_ verb. command_noun. See 
"Command Names", below. 

: argument value 
Zero, one, or more arguments may be part of a command. See 
"Argument Types and V alues", below. 

Arguments have a name, a type, and a value - an argument name is 
a string of characters, preceded by a colon (":", for example, 
: argument_name). The argument is one of seven types: 
boolean, integer, range, string, string list, pointer, or "derived" 
(actual value may be any of the preceding six types). The argument 
value's type must match the defmed argument type. 

Arguments may be mandatory or optional - mandatory arguments 
must be entered with the command name; there is no default. Op
tional arguments may be entered to specify an argument value other 
than the default. 

An optional argument's value may be entered or defaulted - if an 
explicit value (: argument=value) is not entered, the argument 
has its default value, if any, defined with the command. 

: : control option = value 
- There are several control options defined in the command language, 

used to request input/output redirection, background execution, and so 
on. See "Control Options", below. 

Control options are processed by the command service. Control op
tions entered with a command remain in effect until the next command 
is read (next Command_Handler . Get_command call). 

• An optional command history can be used - to record commands entered. 

The last cl i . n urn _la s t _ crnds commands entered are stored in a command buffer in 
active space. 

Commands may be re-executed from the command buffer, either by index number, or 
by giving an unambiguous abbreviation (or a pattern to be matched) of a previous com
mand. 

The command history can be turned on and off as desired. 

Building New Commands V-3-3 



PRELIMINARY 

• A commandfile is a sequence 0/ commands stored in a text file - command files can be 
included into the command input stream by using the built-in include. command com
mand. A command file can be made into an executable script by using the make. s cr ipt 
utility. 

• There are two methods for reading commands from an arbitrary file or device: 

- Call Command_Handler .Open_runtime_commandyrocessing on the file 
or device to return an opened command input device. Use 
Command_Handler. Get_ calls with that command input device. 

Enter the built-in runtime command include. command, specifying the file's or 
device's pathname. The specified file's or device's records are inserted into the com
mand input stream. When the end of the file or device is reached, command input 
returns to the original device. The program reads the included commands as part of 
the original device's input command sequence. 

• The record access method is supported/or runtime command input - the command 
service's implementation of Record_AM allows non-Ada languages to read and process 
runtime commands. See the package description for Command_Handler, in the 
BiiNTM/OS Reference Manual. 

• There is support/or BiiNTM/UX invocation command conventions - for such constructions as 
Is -ld. The command service can set the expected invocation command variables (argv, 
argc, envp); see the BiiNTM/UX Commands Reference Manual. 

V-3.1.1 Developing Command-Driven Programs 

This section describes how to develop a command-driven program. 

Not all programs are suitable for command-oriented input Some applications can use menu
oriented input (see Chapter V -5). 

Most programs using the command sexvice will be new utilities. 

Determine the invocation command name and the arguments your program will use on entry. 
Create and store its command definition, as described above and in Section V -3.2.1, "Defining 
an Invocation Command", below. 

To develop the runtime commands for your program: 

• Each distinct function that the program perfonns should have its own command. Com
mands are defined during program development 

• Group related commands into command sets. Separate command sets may be defined for 
different program tasks or for different user groups. 

• Create and store the command definition(s) as described above and in Section V-3.2.2, 
"Defining a Runtime Command Set", below. 

V-3.1.2 Types of Commands 

V-3-4 

There are three types of commands processed by the command service: built-in commands, 
CLEX commands, and program-defined commands. All of these commands use the CL syntax. 

built-in commands Commands which are built into, and processed by, the command service. 

CLEX commands Commands which are recognized and processed by CLEX. 

Building New Commands 



rKELliVll.NAK r 

program-defined commands 
Commands which are specific to a program: 

invocation command 
The command which is entered to CLEX to execute 
the program. 

runtime commands Commands entered to and processed by your program. 

Runtime commands may be placed in a startup com
mand file, to be automatically processed by your 
program directly after invocation, if desired. 

Each of these three types of commands are described in the corresponding sections below. 

V -3.1.2.1 Built-in Commands 

Some commands are built into and processed by the command service. These commands can 
be entered to CLEX, and are part of all command sets (see "Program-Defined Commands", 
below). 

There are two types of built-in commands, built-in control commands and built-in runtime 
commands. Each of these two types is described in the following tables. 

Table V-3-1 describes the built-in control commands. 

Table V-3-1. Built-in Control Commands 

Control Commands Description 

label label_1IIJm8 Labels a point in the command input stream; used by got o. The 
label_1IIJm8 may be any sequence of alphanumeric characters. 

goto label Transfers command input to the Imt command following the given 
labeL 

if condition then Perfonns commands (any ~), d~ndini:I the current evalua-
commands tion of condition. A condiiion can any ean expression, for 

elsif condition example, ($i < 5) OR $$exists (-/log/log_file). 
commands 

else 
commands 

endif 

loop 
commands 

Executes commands repeatedly, until an exi tloop is executed. 
or forever. 

[if condition then 
[commands] 
exitloop 

endif] 
[commands] 

endloop 

for range expression loop Repeatedly executes the loop, once for each element in the range 
cotiimaniis expression. The ran~e expression may be either a range (for $i 

[exitloop] in -3 .. 5), or a stnng list (for $i in (a bed e)}. An 
endloop exi tloop condition may be specified. 

while condition loop While condition evaluates true, executes the loop. An exi tloop 
commands may be specified. 

[exitloop] 
endloop 

Table V-3-2 describes the built-in runtime commands. 

Built-in runtime commands may have appropriate control options, for example: 

echo Hello ::output=x 

echo Hello > x 

Building New Commands V-3-5 



PRELIMINARY 

Table V -3-2. Built-in Runtime Commands 

Commands Description 

echo Echoes a given value to the standard output. Useful for displaying 
infonnation while in a command loop. 

run Executes a program or script. 

set. current_directory Sets the current directory to the given pathname. 

list. current_directory lists the current directory's pathname. 

set.alias Defmes an alias name for a given string. 

remove. alias Removes one or more alias names. 

list.alias lists the current values of the given alias names. 

include.conunand Inserts the given file into the runtime command input. Useful for 
reading pre-defmed command sequences stored in fales. 

set.command-9ath Sets the current command path (command name ~ace) to the 
given se~tring list) of directob}: pathnames. Wi no argument 
value, u tes the set of availab e commands, b~ searching 
through the current command name space, in or(ier (of directories 
currently specified). 

list.command-9ath lists the current pathnames in the command path. 

list. last_commands lists the last commands buffer, out of which commands can be 
re-executed with redo .last commands. 

redo. last_commands Repeats a previous command, or a sequence of commands. 

set.history_log Sets the scope (local or ~lobal) of history record~ for sUbs~uent 
~bs. If local (default, invoked jobs will not ' erit the er's 

'story me. If global, invoked jobs do inherit the caller's 
history file. 

start.history_log Creates a user histo~ me to be the current history, or restarts 
recordinn intothe~ histo~ me after stop. history l~ was 
called. the user 'story fi e name is not s~cified, the defa t 
pathname is -/$logon.history dir hi story timestamp, 

stop. history_log ~s recording into the job history m.e, and into the command 
ere 

list.history_log lists entries from the job history me, or from a specified history 
me. 

create.variable Creates a new CL variable in memoty. 

set.variable Assigns a value to a CL variable. 

remove. variable Removes a CL variable from memory. 

list.variable lists the names, types, modes, and values of the given variables. 

V -3.1.2.2 CLEX Commands 

Some commands are defined by the Command Language Executive (CLEX) for various 
system-related functions. See the BiiNTU Command Language Executive Guide for a complete 
description. 

Programs and utilities are called from CLEX; each has its own invocation command. 

V -3.1.2.3 Program-Defined Commands 

V-3-6 

There are two types of program-defined commands: the program's invocation command, en
tered to CLEX to invoke your program, and the program's runtime commands, which are 
processed by and control the program. 

Building New Commands 



All programs (except ported C programs) should defme their invocation commands. The in
vocation command definition contains the name of your program and defmes any arguments. 

Programs using the command service have runtime commands, grouped in command sets. 

• A command set defines the names of all commands and their argument names, types, 
defaults, and pennissible values. Command sets are defined during program development, 
using the manage. program utility. 

• All command sets include all the built-in commands. See "Entering Commands to 
Programs", below. 

• All command sets should have an abort or exit command defined, to stop command 
processing and tenninate the program. These commands are not built in, but should be 
defined with each command set. 

• The command set definition is a command DDef, stored under a pathname. The 
Command Handler.Open andCommand Handler.Change cmd setcallshave 
a mandatory parameter for thepathname of the command set defmitioo. -

• There may be several command sets defined for one program; for example, one primary 
command set for general operations, some of which in tum have their own command sets. 
The current command set may be changed with 
Command_Handler.Change_cmd_set. 

• Command_Handler calls use the command set definition to automatically check for cor
rect command names, ensure completion of mandatory arguments, and supply default 
values for optional arguments. 

All commands, except the invocation command itself, must have a command definition. If 
there is no invocation command definition, calls in this package will succeed if the invocation 
command uses CLEX syntax. No type checking, range checking, or consistency checking can 
be perfonned on the entered arguments (see below, "Reading the Invocation Command", in 
Techniques). 

V-3.1.3 Review of Command Syntax 

This section briefly reviews the three components of a command: 

• command name 

• command arguments, if any 

• control options, if any 

V -3.1.3.1 Command Name 

The command name may be one word (for example, echo) or have two parts, separated by a 
period (H."; for example, set. alias). The two parts of a command name are the verb (for 
example, set.) and the noun (for example, alias). 

For invocation commands (see "Types of Commands", above), the command name may be 
preceded by the absolute or relative pathname of the directory where the named program or 
script resides: .... / library / command. name 

There are some command verbs suggested for compatibility with the OS utilities: 

change For "update", "modify". 

Building New Commands V-3-7 



list 

remove 

t"K~LI1Vllp!jAK I 

For "show", "display". 

For "delete", "kill". 

V -3.1.3.2 Argument Types and Values 

V-3-8 

Argument types and values are briefly described. 

Argument Types 

Table V -3-3 describes each of the seven argument types. 

An argument's default value may be a constant or a variable. In an argument's defmition, any 
command language (CL) variable (of the correct type) can be used as the default value of an 
argument. 

Table V -3-3. Argument Types 

Argument Types Description 

boolean Possible values are true or false. Boolean arguments nonnally 
have theirdefmed default value false. Enterin~a boolean ar-
gument without a value is recognized as true. or example, 
: boolean argument is the same as : boolean argument 
= true. - -

integer A s~uence of nmnbers, p<?ssibly including underscores ~ "), and 
~ionany preceded by a flUS (' + ") or minus (' - ") sir:. ossible 
values are m the ran,e - "31 (-2 147 483 648 to 2"32-1 
(4_294_967_295. - - -

range Two inte\ers, separated bl two periods r' .. t'), for exam~e, 
- 5 .• 3. ither or both 0 the low and hIgh values may 
defaulted. 

string Any se(luence of characters, possibly enclosed in double quotation 
manes ' .. ",forexample, "string of characters"). 

string list One or more strin~, enclosed in parentheses" ( ) ". separated by 
spaces;forexamp ,("string value 1" string2 
"string value 3"). There are several types (lexical classes) 
of strings, such as blankless and symbolic (for patbnames); 
see the BiWU Command and Message GuUk. 

pointer A relative or absolute patbname to a stored object; for example, 
-/object. 

derived Any of the above six types. The actual ~ of a deri ved 
vanable t~ is detennined (derived) by e command service from 
the format of the entered value. 

Argument Values 

An argument value can be entered with or without the argument name, that is, in named or 
positional notation. 

named notation The argument name is followed by an equals sign ("=") and the argument 
value. Boolean arguments are a special case; entering the name of a 
boolean argument without a value (: boolean _ arg) is the same as enter
mg :boolean_arg = true. 

For example: 
:boolean argument 

(or) -
: boolean_argument true 

: integer_argument 15 

positional notation Argument values entered by themselves are assigned to arguments m se
quence (the sequence of arguments in the command definition). That is, 
the first unentered argument (one which does not already have a value 
entered in named notation) is assigned the entered value. 

Building New Commands 



For example, the first argument of the built-in command 
set. current directory is the directory name (: directory). 
Entering set. current_directory -/my_dir is equivalent to 
entering set. current_directory : directory = -/my_dir 

Named and positional notation can both be used in a single command, if you are sure of the 
defined order of arguments. 

An argument's value may be entered as a constant, variable, function, or expression: 

constant A simple value of the argument's type. For example, 

:range_arg = 4 .. 7 

variable A variable name, of the same type as the argument, whose value is as
signed to the argument For example, 

function 

expression 

V -3.1.3.3 Control Options 

:string_arg = $user.name 

A CL function giving a value of the argument's type. For example, 

:integer_arg = $$len($string_var) 

A CL expression giving a value of the argument's type. For example, 

:boolean_arg = (not $boolean_var) 

Several control options are part of the command language. A control option is specified by a 
double colon (" : : "), the control option's name (one of the names defined below), and pos
sibly a value: 

::control_option = value 

The command service processes all control options. The given control options are set for the 
current command and remain in effect until the next Command Handler. Get command - -
call. 

Control options for CLEX commands are processed by CLEX. 

Control options for invocation commands (see "Program-Defined Commands", above) are also 
processed by CLEX, and are not directly available to the called program or script. 

Table V -3-4 describes each of the control options currently defined. 

Building New Commands V-3-9 



PK~LIMlNAKY 

Table V -3-4. Control Options for Runtime Commands 

Control Options I Description 

:: input or < Specifies an inl?ut device's (or file's) pathname. redirecting the 
standard input (ievice. 

: : output or> Specifies an output device's (or me's) pathname, redirecting the 
standard output Cievice. 

: : output_extend or» Whether to extend (if true) or overwrite (if false) the output device. 
Default is to overwrite. 

: : message Specifies a message device's (or me's) pathname, redirecting the 
standard message device. 

: : message_extend Whether to extend (if true) or overwrite (if false) the message 
device. Default is to overwrite. 

: : window Requests that the command be executed in a separate window. 

:: service Detennines the scheduling service object (SSO) to be used for this 
command. 

: : node Detennines the node on which the command is to be run, for 
example, : :node=/ / /my_node. 

: :historY_log Starts a new history log file for this command, for example, 
::history_log = ~/log/this_log. 

: : debug Specifies that this command is to be run in d8bug mods (see the 
Bi~ Application Debugger Guide. 

: : separate or & Requests that this command be executed as a separate job. 

V-3.1.4 Review of Command Definitions 

V-3-10 

The following is a short example of the command definition syntax (that is, the runtime com
mands for the manage. program utility). See the BiiNTY Command and Message Guide for 
complete information. 

All commands are part of a given command DDef. There will be one command DDef for the 
invocation command, and one for each command set 

An invocation command is defined as follows: 
set.program -/example/my program 

-- The invocation name Is the same as the program's name 

manage. commands -- call the "manage. commands" command set 

create. invocation_command 

define.argument :arg_name 
: type 

set.mandatory 
end 

define.argument :arg_name 
: type 

set.mandatory 
end 

end 
exit -- exit "manage.commands" 

exit -- exit "manage.program" 

Runtime commands are defined in sets: 

my argument 1 \ 
string -

my argument 2 \ 
boolean -

create.runtime_command_set :cmd_def = ~/example/my_program.command_set 

define. command :cmd name 
define. argument :arg_name 

command.name 1 
command_argument_l \ 

Building New Commands 



set.mandatory 
end 

end 

rK~LIMJNAKY 

:type range 

define.command :cmd name = command.name 2 
define. argument :arg_name command argument 1 \ 

: type boolean- -
end 

define.argument :arg_name 
:type 

end 
end 

command_argument_2 \ 
range 

define.command :cmd name exit 
end 

end 

After creating a command DDef, it can be listed with the list : cmd def runtime com
mand. 

Help Texts 

Help texts are defmed with each command and argument. Help texts are stored in help files. 
The default help file is part of a program's OEO. 

Either use the default help file associated with a program, or set the help file to be used with 
set. help_file messageJileyathname. 

Before the end of each defined command and argument, enter the help text, using the 
set. description command: 

create.runtime_command_set :cmd_def = -/example/my-program.command_set 

define. command :cmd name command.name 
define.argument :arg_name = command_argument \ 

:type = range 
set.mandatory 
set.description :text = " 

Range of values for this command. 
" 

end 

set.description :text = " 
Performs a given action, using the 
values specified with ' : command_argument' . 

end 

define. command :cmd name = exit 
set.description :text 

Exits the program. 

end 

end 

V-3.1.5 Types of Command Input 

Any device supporting the byte stream access method can be used for command input. 

The usual interactive command input device is the standard input 

Building New Commands V-3-11 



PK~LIMlNAK y 

After Command_Handler. Get_command has been called to parse a new command (and 
return the command name and command index), the command may be read in several ways: 

• In parts, reading each argument, with a series Command_Handler. Get_argument_type 
calls. See the appropriate sections under Techniques, below. 

• As a string, using Command_Handler. Get_command_string. 

• As a record, using Record_AM. Ops . Read See the package description for 
Command_Handler, in the BiiNTM/OS Reference ManU(ll. 

Startup Command File 

Runtime commands can be stored in a particular startup file, to be read automatically by 
your program. After the startup file has been read, runtime commands may be entered. 

Call Command_Handler. Open_startup_commandyrocessing to access the star
tup command file, then call Command_Handler . Get_command to get each command. 

Process each command as a runtime command (see "Reading Runtime Commands", below). 

When the last command (for example, exit) is read, or the end of the startup file is reached, 
close the startup command input device by calling Command_Handler. Close. 

Changing the Command Set 

The Command_Handler. Change_cmd_set procedure changes the current command set 
definition. 

Reading Commands as Records 

The command selVice supports the record access method for command input. Programs writ
ten in non-Ada languages can use the record access method (Record_AM. Ops . Read call) 
to get a record of the current command. 

See the package description for Command_Handler, in the BiiNTM/OS Reference Manual. 

V-3.1.6 Alternatives to Command Input 
There are several alternatives to using commands to control your program: 

menus 

keyboard input 

Read menu item selections. See Chapter V-5, Programming with Menus. 

Read the keyboard directly. See Chapter IV-5, Using Character Display 
//0. 

V-3.1.7 Entering Commands to Programs 

V-3=12 

All command sets include all of the built-in commands. The user can enter these commands as 
desired; the command service processes these commands transparently to your program. 

Some useful built-in commands are: 

run Executes any invocation command, for another program or script. For 
example, to display the current directory's entries, the user would enter 
run "list. current_directory". 

Building New Commands 



include. command 
Includes a given command file into the command input stream. At the end 
of the file, command input returns to the default 

.alias The three . alias commands (set. alias, list. alias, 
remove. alias) can set up aliases inside your program, for your runtime 
commands. 

. variable The four. variable commands (create. variable, 
set.variable,list.variable,remove.variable)cancreare 
and set variables for your program to read, or for use as argument values. 

control The control commands (if / then / else / endif, and the 
loop / exi tloop / endloop constructs) can set up runtime com
mand loops, possibly using variables. 

V-3.2 Techniques 
After reading this section, you will be able to: 

• Define an invocation command 

• Define runtime commands 

• Create and store invocation and runtime commands 

• Read the invocation command 

• Read argument values 

• Read a runtime command 

• Read a command input line as entered 

• Give a command to be execured by CLEX. 

V-3.2.1 Defining an Invocation Command 

Utility Used: 

manage.program 
Creates invocation command and runtime command set DDefs. 

To define an invocation command: 

1. Detennine the invocation name of your program, and use that entry name for your ex
ecutable program object 

2. Detennine the arguments for the invocation command, their types and'defaults, and 
whether each argument is mandatory or optional. 

3. Create an invocation command definition, in one of two ways: 

• In your program source text, using tagged comment lines. Use the 
: tagged commands argument to the manage. program utility to extract the com
mand defUiltion into a command file. 

• In a separate command file. 

Building New Commands V-3-13 



4. Use the manage. program utility, optionally with a file of definition commands as input, 
to create and store the invocation command's DOef. 

V-3.2.2 Defining a Runtime Command Set 

Utility Used: 

manage.program 
Creates invocation command and runtime command set DOefs. 

Detennine the names and arguments for each runtime command. 

Follow the process described above, in "Defming an Invocation Command", to create the com
mand set DOef(s). 

V-3.2.3 Reading the Invocation Command 

Calls Used: 

Command_Handler.Open_invocation_command-processing 
Opens a device for reading the invocation command. 

To read the invocation command, just call 
Command_Handler.Open_invocation_command-processing;thereisoruyone 
command, and it is already parsed. 

Next, read each argument value, as described below ("Processing Command Arguments"). 

V-3.2.4 Processing Command Arguments 

V-3-14 Building New Commands 



rK~LIM1NAK y 

Calls Used: 

Command_Handler. Get_argument_type 
Gets the value of a given argument of the current command. 

Command Handler.Get boolean 

Command_Handler. Get_integer 

Command_Handler.Get_range 

Command_Handler. Get-pointer 

Command_Handler. Get_string 

Command Handler.Get enumeration index - - -
Command_Handler.Get_string_list 

Command_Handler.Get_number_of_string_list_elements 

Command_Handler. Get_string_Iist_element 

Command Handler.Get argument info 
- Gets a record containing the name of an argument and the type and origin 

of its value. The origin of the argument's value is none, entered by the 
user, defined default value or defined default variable's value. This infor
mation is usually only relevant for der i ved argument types or if multiple 
default value sources are supported. 

To read argument values, you must have an opened command input device and a current 
command. The current command is either the invocation command or has been gotten by 
Command Handler.Get command. ' 

You must know at least the position (or name) of the argument: 

argument name Defined by the command definition. 

For positional notation without a command definition (invocation com
mands only), the argument names default to pI, p2, p3 and so forth, 
where n in pn is the argument position (argument number) in the com
mand. 

The name pO is reserved for the command name. Its argument number is 
zero. The name cmd _name is also predefined for the invocation 
command's name. 

argument number Defined by the command definition, or else by the position in the invoca
tion command line. 

Argument number zero is the command name itself. 

You may specify either the argument name or number in a 
Command_Handler. Get_argument_type call. For ease of program maintenance, using ar
gument numbers is recommended (in case the names change). 

• If both a name and a number are specified, the name is ignored. 

• Ifno number is specified, the given name is used. 

• If neither the argument name nor the argument number are specified, the call raises 
System_Exceptions.bad-parameter. 

Building New Commands V-3-1S 



rK~L.1lVlll"'l8.A I 

Call Command_Handler. Get_argument_info ifnecessary (always necessary for 
der i ved argument types) for the type of the argument and the origin of its current value. 

Use the appropriate Command_Handler . Get_argument_type call to return the value of 
each argument 

If no value has been entered for an argument, and no default value is defined, 
CL ...,.:Def s . no_value is raised. This is only possible for arguments dermed as "not 
mandatory", since the command selVice guarantees that all mandatory arguments have a value. 

V-3.2.5 Processing Runtime Commands 

Calls Used: 

Command Handler.Get command 
- Gets and-parses the next command from a given input device. 

Command_Handler. Get_argument_type 
Gets the value of an argument of the current command. 

The most common way to read runtime commands is to open the runtime command input 
device, then use a loop to read and process runtime comm-ands until an exit (or similar) 
command is entered. 

V-3.2.6 Reading a Command Input Line as Text 

Calls Used: 

Command Handler.Get line 
Gets a line of text from a given input device. 

Reads a line of text, terminated by a carriage return/linefeed, directly from the command input 
device. This procedure can be used to read lines of data from the command input device, 
bypassing the command selVice' s parsing mechanism. 

An optional prompt can be specified, to alert the interactive user that the entered line will not 
be processed as a command. 

V-3.2.7 Executing Commands from a Program 

Calls Used: 

Command Execution.Execute command 
- Executes one or more CLEX commands. Blocks until finished. 

Command_Execution. Run-program_or_script 
Executes one CLEX invocation command, in a separate job. 

Set up a text record of the desired command(s), and make the appropriate call. 

V-3-16 Building New Commands 



V-3.3 Summary 
• Commands provide a consistent user control mechanism, used by all BiiNTM utilities. 

• A command consists of the command name, arguments if any, and possibly some control 
options. 

• The command service requires the user to enter a complete command; help is available for 
each command and for each argument. 

• Commands can be read from any device supporting the byte stream access method, includ
ing fIles and pipes. 

• Some commands are built-in; other commands are defmed by programs using the command 
service (including CLEX itself). 

• Built-in commands are part of every command set. These commands are intercepted and 
processed by the command service itself. 

• New commands are defined with the manage. commands command set in the 
manage. program utility. Command DDefs are stored under a pathname. 

• New commands are processed by the command service, using a command DDef. The 
parsed command can be read in parts, or as a string, using calls in the 
Command_Handler package. A command can be read as a record using the 
Record_AM. Ops . Read call. 

• Your program can request execution of a CLEX command, optionally in a new CLEX 
instance, using calls in the Command_Execution package. 

• Menus are another method for the user to control a program. See Chapter V -5, 
Programming with Menus. 

Building New Commands V-3-17 



V-3-18 Building New Commands 



Contents 

PROGRAMMING WITH 4 
COMMAND LANGUAGE VARIABLES 

Concepts ............................................................... V -4-3 
System Variables .................................................... V-4-4 

Techniques ............................................................. V-4-5 
Read and Set an Environment Variable's Value ............................ V-4-5 
Display all Environment Variable Names ................................. V-4-6 
Get and Set Environment Variable Values in ASCII ........................ V -4-7 
Create and Remove an Environment Variable ............................. V -4-8 

Summary .............................................................. V -4-9 

Programming with Command Language Variables V-4-1 



V-4-2 

rK~L.l1Vlll""AA I 

This chapter describes how to create,·read, set, and remove command language (CL) variables, 
using calls in the Environment_Mgt package. Some CL variables influence the 
application's environment; for example, the eli. prompt variable contains CLEX's prompt 
string. CL variables can also be used to save·infonnation and share it with subsequent jobs. 

Packages Used: 

CL Defs Contains declarations used by the command selVice, for processing com
mand language (CL) arguments and variables. 

Environment Mgt 
- Contains operations to get, set, or remove local and global environment 

variables. 

Figure V -4-1 shows how variables in passive store and active memory are related, and the 
order of evaluation for variables. 

Passive Store (manage.var _groups utility) 

System Variable Groups (/var _groups) 

User Variable Groups ('" /var _groups) 

copied on 
reference evaluation 

,..A_ct_iv_e_M_e_m_o ... ry ____ C ... E_n_vi_ro_n_m_e_n_t_-_M .... g_t _c_a_11 s ..... ) I 
globol (session) buffer ~ 

local (job) buffer 

Figure V-4-1. Command Language Variables 

This chapter discusses the use and modification of variables, using calls in the 
Environment_Mgt package. Forexample: 

• How to read a variable's value. 

• How to set a variable's value. Variables are created when set, if they do not already exist. 

• How to overwrite an existing variable's value. 

• How to remove a variable. 

Programming with Command Language Variables 



PRELIMINARY 

V-4.1 Concepts 
These concepts must be understood to use CL variables: 

• A variable has a name, a type, a mode, and a value -

name A CL string of letters and digits, up to CL_Defs .max_name_sz 
characters. 

type One of the CL Defs types: boolean, integer, range, string, 
string list, or pointer. 

mode Either CL Defs. read only, indicating that the variable can be 
read but not assigned, orCL_Defs. read_write, indicating that the 
variable can be read or assigned a value. 

value Any value of the appropriate type. 

• There are two types of variables - those dynamically created in active memory, using calls 
in Environment Mgt (and the . variable commands built into the command service) 
and those defmed in passive store, using the manage. variable_groups utility. 

• Dynamically created variables exist in one of two buffers - either a local buffer or the 
global buffer. The local buffer exists for the duration of the job; the global buffer exists for 
the duration of the session. All processes in a job share the same variables (buffers). 

• Variables in passive store are stored in system and user groups - system variable groups 
can only be updated by the system administrator. User variable groups are maintained with 
the manage. variable_groups utility. 

- Sets of system or user variables - may be collected together in groups, by giving them a 
group name. For example, eli. prompt is the prompt variable in the eli. group. 
Group variables may only be created with the manage. variable_groups utility. 

- System variable groups apply to all sessions on this node. System variables are created 
and maintained by the system administrator. System variables are in pre-defined 
groups, stored in the system directory /var_groups. See the "System Variables" 
section below. 

- User variable groups contain user-specific infonnation, values, and defaults. User vari
ables are created and maintained with the manage. var iable groups utility. User 
variables are stored in a "var~ups" directory in your home directory 
(-/var_groups). 

- Job variables are created and used by jobs, in the global buffer. Job variables may be 
created and used either by calls to Environment_Mgt or by programs using the 
Command_Handler package (programs with runtime commands). Subsequent jobs 
in this session inherit all existing job variables. 

- Local variables are used like job variables, but only exist for the duration of a job. 
Local variables are stored in the local buffer. 

• Variable names are evaluated upwards until found -

1. local buffer 

2. global buffer 

3. user variable groups (-/var groups directory) 

4. system variable groups (/var_groups directory) 

Programming with Command Language Variables V-4-3 



• Eachjob has its own copy o/system, user, andjob variables (global buffer), and local 
variables (local buffer) - referencing a user or system variable causes a copy of that vari
able to be created in the job's global variable buffer. Job variables may be created in either 
the global or local buffer. Local variables are created, set, and removed in the job's local 
variable buffer. . 

• Subsequent jobs are affected by changes to the global buffer - since they inherit a copy of 
the current global buffer. 

• Changes only affect the job's copy 0/ the variables - changes to stored (system or user) 
variables are actually made in the job's global variable buffer. Use the 
manage. variable_groups utility to change system and user variables pennanently. 

• Variables may also be created and changed - using four commands built into the command 
service: 

create. variable 
Creates a new local or global variable, optionally with an initial value. 

set. variable Sets a value into a variable which has mode CL Defs. read write. - -
remove. variable 

Removes a variable from the local or global buffer. The version of the 
variable in passive store is not affected. 

list. variable Lists the type, mode, name, and current value of the specified variables. 

• "read_write" system and user variables can be hidden - by creating a new variable with 
the same name in either of the job's buffers. "read_only" system or user variables 
cannot be hidden this way. 

• Rights/or Environment_Mgt calls - you must have use rights to read, modify rights to 
set, and control rights to create or remove variables. Group variables, being stored under 
pathnames, are subject to the usual access right restrictions. 

• All pre-defined variables - are either part of a variable group, or are dynamically created 
(OEO and status). 

status 

OEO 

integer variable created by each CLEX, before executing its first 
command. This variable is in the calling job's local buffer, and is set 
by CLEX from the exit status of the last executed command. 

The command selVice's built-in run command also creates a local 
status variable. The value of this variable is the exit status of the 
run program or script. 

pointer variable created by the command selVice for every program. 
This variable is a pointer to the program's outside environment object 
(OEO), or null if there is no OEO. 

OEO is needed for the command selVice's implementation of 
Record_AM; see the Conunand _Handler package for more infor
mation. 

V-4.1.1 System Variables 

System variables are defined as part of CLEX. Current system variables are in six groups: 

• logon 

• cli (command line interface) 

V-4-4 Programming with Command Language Variables 



• pglob (process globals) 

• user 

• msg (message) 

• ux (BiiN™ lUX) 

V-4.2 Techniques 
After reading this section, you will be able to: 

• Get a variable's type (boolean, integer, ... ) and mode (read or read_wri te), then read 
the variable's value. 

• Set a value into a variable. Variables are created when set, if necessary. 

• Get and display all currently defined variable names. 

• Display a variable's value, read a user input value, and set the variable. That is, convert 
to/from a string value from/to a variable's value. 

• Remove a variable from active memory . 

. V-4.2.1 Read and Set an Environment Variable's Value 

Calls Used: 

Environment Mgt.Get var type 
- Gets the type Of a named variable. 

Environment Mgt.Get var mode 
- Gets the mode(read or read_write) of a named variable. 

Environment_Mgt.Get_~pe 
Gets a value from a variable of the named type. 

Environment_Mgt.Set_~pe 
Sets a value into a variable of the named type. 

Text IO. Put Puts a string or character value out to the standard output. 

Text IO. Get Gets a string or character value from the standard input. 

The following program fragment shows how to read the type and mode of a variable, given a 
variable name. 

If the given variable is ofCL_Defs. integer_type, this program will read the variable's 
current value. If the variable is in CL_Defs. read_write mode, this program will incre
ment the value by one, and then store the incremented value back into the integer variable. 

Programming with Command Language Variables V-4-5 



(from Manage_Application_Environment_Ex.sb) 

25 variable name: System Defs.text( 
26 CL Defs.max name sz): 
27 variable type: -CL Defs.var type: 
28 variable=mode: CL=Defs.var=mode: 

32 integer_value: integer: 

81 Text_IO.Put("Enter a variable name:" ); 
82 
83 Text_IO.Get(variable_name.value): 
84 
85 variable type := Environment Mgt.Get var type ( 
86 var_name => variable_name): --
87 
88 variable mode ~= Environment Mgt.Get var mode ( 
89 var_name => variable_name); --
90 
91 if variable_type = CL_Defs.integer_type then 
92 
93 integer value := Environment Mgt.Get integer ( 
94 var=name => variable_name); -

102 if variable mode = CL Defs.read write then 
103 integer_value := integer_value + 1; 

120 end if; -- if "read write" 

159 end if; -- if "integer_type" 

V-4.2.2 Display all Environment Variable Names 

V-4-6 

Calls Used: 

Environment Mgt.Get all names 
- Gets the names of all currently defined variables. 

Text IO. Put Puts a string value out to the standard output. 

The following program fragment shows how to read the names of all local variables, then put 
each name to the standard output. 

Programming with Command Language Variables 



c n.LL.lIVl.ll"IIJ~.K I 

(from Manage_Application_Environment_Ex.sb) 

25 variable name: System Defs.text( 
26 CL_Defs.max_name_sz); 

30 variable_name_list: System_Defs.string_Iist(1000); 

57 Environment Mgt.Get all names( 
58 group name => System Defs.null text, 
59 list - => variable name list, 
60 global => false); - -
61 
62 Text IO.Put_Iine("List of local variables:"); 
63 
64 for i in 1 .. variable_name_list.count loop 
65 
66 String List Mgt.Get element( 
67 from -=> variable name list, 
68 elyos => i, --
69 element => variable_name); 
70 
71 Text_IO.Put_line(variable_name.value); 
72 
73 end loop; 

V-4.2.3 Get and Set Environment Variable Values in ASCII 

Calls Used: 

Environment Mgt.Convert and get 
- Gets an ASCII-representation of a variable's value. 

Environment Mgt.Convert and set 
- Sets a variable from an ASCII representation of the value. 

Text IO. Put Puts a string or character value out to the standard output. 

Text IO. Get Gets a string or character value from the standard input. 

The following program fragment asks for a variable name, then reads the type and mode of the 
variable. The current value of the variable is read as an ASCII representation, and displayed. 

If the variable is in CL_Defs. read_write mode, the user is prompted to enter a new 
ASCII representation for the variable's value. The entered value is then set into the variable. 

Programming with Command Language Variables V-4-7-



PRELIMINAKY 

(from Manage_Application_Environment_Ex.sb) 

25 variable name: System Defs.text( 
26 CL Defs.max name sz); 
27 variable type: -CL Defs.var type; 
28 variable=mode: CL=Defs.var=mode; 

33 
34 

81 
82 
83 
84 
85 
86 
87 
88 
89 

124 
125 
126 
127 
128 
129 
130 
131 
132 
133 

142 
143 
144 
145 
146 
147 
148 

152 
153 
154 
155 
156 
157 

ASCII value: 
answer: 

System Defs.text(1000); 
character; 

Text_IO.Put("Enter a variable name:" ); 

Text_IO.Get(variable_name.value); 

variable type := Environment "Mgt.Get var type( 
var_name => variable_name); --

variable mode := Environment Mgt.Get var mode ( 
var_name => variable_name); --

Environment Mgt.Convert and get( 
var name => variable name, 
value => ASCII_value); 

Text IO.Put("Value of H); 
Text-IO.Put(variable name.value); 
Text-IO.Put(" variable is:"); 
Text=IO.Put_line(ASCII_value.value); 

if variable mode = CL Defs.read write then 

else 

- - -
Text IO.Put("Enter new value:"); 
Text=IO.Get(ASCII_value.value); 

Environment Mgt.Convert and set( 
var name => variable name, 
value => ASCII value, 
var_type => variable_type); 

Text IO.Put("Mode of H); 
Text-IO.Put(variable name.value); 
Text=IO.Put_line(" variable is 'read-only' ."); 

end if; -- if mode read write 

V-4.2.4 Create and Remove an Environment Variable 

V-4-8 

Calls Used: 

Environment Mgt.Set ~pe 
- Sets a value into a variable of the named ~pe. The variable is created if it 

does not already exist. 

Environment Mgt.Remove 
- Removes a variable. Locally created variables (OEO and status) and 

loop variables (for i in range) cannot be removed. 

The following program fragments create a new local integer variable, named 
"new_integer". The new variable may be read or set as needed by the program. At the end 
of the program, the variable is removed (since it was a local variable, it would have dis
appeared at program tennination anyway). 

Programming with Command Language Variables 



(from Manage_Application_Environment_Ex.sb) 

25 variable name: System Defs.text( 
26 CL_Defs.max_name_sz); 

44 Text Mgt.Set( 
45 dest => variable name, 
46 source => "new_integer"); 
47 
48 Environment Mgt.Set integer ( 
49 var name => varIable name, 
50 value => 0, -
51 mode => CL Defs.read write, 
52 global => false); -

164 Text Mgt.Set( 
165 dest => variable name, 
166 source => "new_integer"); 
167 
168 Environment Mgt.Remove( 
169 var name => variable name, 
170 quiet => true, -
171 global => false); 

V-4.3 Summary 
• Variables have a name, a type, a mode, and a value. The variable's type is one of the six 

CL types: boolean, string, .. '0 The variable's mode is either read_only or 
read_write. The variable's value is of the appropriate type. 

• Command language (CL) variables control aspects of the current CLEX instance (such as 
message type and language) and contain infonnation for use by jobs and programs (such as 
the current directory). 

• Global variables are inherited by subsequent jobs and processes in this session. Local 
variables are specific to the creating job. 

• System and user environment variables in passive store are maintained by the 
manage. variable_groups utility. 

• Environment variables may be set and changed using commands common to CLEX and the 
command handler seIVice: create. variable, set. variable, list. variable, 
and remove. variable. 

• Environment variable values can be read procedurally in two ways: as a value of the correct 
type (Get_type calls) or as an ASCII representation of the value (Convert_and_get 
call). . 

• Environment variable values can be set procedurally in two ways: with a value of the 
correct type (Set type calls) or with an ASCII representation of the value 
(Convert_and':=-set call). 

Programming with Command Language Variables V-4-9 



I'KELIMlNAK Y 

V-4-10 Programming with Command Language Variables 



rK~LUVu.NAK Y 

PROGRAMMING WITH MENUS 5 
Contents 

Concepts ............................................................... V-5-3 
Why Use Menus? .................................................... V-5-3 

Techniques ............................................................. V-5-3 
Define a Menu Group ................................................ V-5-4 
Install a Menu Group in a Window ...................................... V -5-5 
Enable an Installed Menu Group ........................................ V -5-6 
Get a Menu Selection ................................................. V -5-6 
Display a Checkmark for a Menu Item ................................... V -5-7 
Change a Window's Enabled Menu Group ................................ V-5-7 
Remove an Installed Menu Group from a Window ........................... V -5-7 

Summary .............................................................. V -5-8 

Programming with Menus V-5-1 



V-5-2 

This chapter describes how to use menus defined by the Window_Services package. 
Menus are created procedurally using Data_Definition_Mgt. The resulting menu data 
definition (menu DDef) is stored under a pathname. This chapter describes some design con
siderations for menus and the procedural aspects of menu usage but does not describe the menu 
editor utility itself. 

Packages Used: 

Character Display AM 
- Provides device-independent I/O to character display devices such as 

printers, plotters, and windows on character and graphics tenninals. 

Window Services 
- Provides windows on character and graphics tenninals, including pull

down menus. 

This chapter describes the following tasks: 

• How to defme a menu group. 

• How to install and enable (display) a menu group in a window. 

• How to detennine the menu choice made by a user. 

• How to change or remove a displayed menu group. 

Figure V -5-1 shows a menu group in a window, with one of the menus currently selected. 
This figure also shows the relationship between the window service (which provides the menus 
and the window), the terminal access method (which returns the user's selection), and your 
BiiNTM program. 

Application 
Program 

Window 
Service 

, 

Menu 1 

\.. 

~ 

Window 

/)i##/ Menu 3 
Menu item 1 
~PG/~~ 
Menu item .3 

~ 

~r 
/I')P~ Character{ 

Display 1-----------------. 
Access -----------------Method 

Figure V-S-l. BiiNTM Application Program and Menus 

Programming with Menus 



V-S.1 Concepts 
• Each menu is part 0/ a menu group - a menu group contains one or more menus. 

• A window can have only one menu group enabled - several menu groups can be installed in 
one window, but only one menu group is enabled at any time. 

• A menu has a title and one or more menu items - the user selects a menu title, causing that 
menu to appear, then selects one item from the menu. 

• Eachmenu item has a number and a string - the menu item's string is displayed, and the 
menu item's number is returned when the item is selected. The returned menu item's 
selection record contains three numbers: the menu group, menu, and menu item numbers. 

• Menu items may be picked by the cursor or by index - to choose an item, the user either 
moves the cursor onto the item and presses <TBD> or enters the displayed item's index 
number. 

• Menu items may have associated "help" messages - the user can request an explanation of 
any menu item. The associated "help" message is displayed by the menu service, without 
program intervention. 

• Some special/unction keys are used with menus - each implementation of menus defines its 
own. 

• Windows and this type 0/ menu are provided by the window service - in the 
Window_Services package and its. Ops nested package. 

• Menu item selections are input events - the character display access method 
(Character Display AM package) provides a Read call to read such events. Your 
program may read a menu item selection, a keyboard or mouse event, or any of the 
window-related events (see Terminal_Defs. input_enum for a complete list of 
awaitable tenninal input events). Note that mice are not supported by the character display 
access method. 

V-S.1.1 Why Use Menus? 

Menus provide an easy, standardized way to interact with the user: 

• Menus provide a common display and user input fonnat. 

• There are no commands for the user to learn or remember. 

• The user selects a menu item, without program intervention, resulting in one or more menu 
selections to be read. 

V-S.2 Techniques 
After reading this section, you will be able to: 

• Define a menu group 

• Install a menu group in a window 

• Get the user's menu item selection 

• Set a checkmark for a menu item 

• Change a window's enabled menu group 

Programming with Menus V-5-3 



• Remove a menu group from a window. 

For information about creating and using windows, see Chapters IV-4 and IV-5. 

V-S.2.1 Define a Menu Group 

V-5-4 

As part of program development, the menus to be used are defined. Design considerations 
when creating menus and menu groups include: 

• Determining the logical operation to be performed by each menu selection. 

• Grouping logically related items into menus. Each menu should contain from 2 to 10 menu 
items. (More than 10 menu items may be cumbersome for the user.) 

• Grouping logically related menus into menu groups. 

• Determining possible sets of menu groups: a menu selection may lead to a new menu 
group, under program control. 

Each menu group, and its associated menus and their menu items, is created by calls to the 
DDefprocedural interface (Data_Definition_Mgt package). 

The Make_Menu_DDef_Group_Ex package, in Appendix A, shows how to procedurally 
create a simple menu group, containing two menus and five menu items: Menu 1 has two 
menu items; Menu 2 has three. 

After being created, the menu group's DDef may be stored under a pathname. Your program 
then retrieves the menu group's DDeflater by its pathname. The menu group is installed in a 
window and enabled, as described in the next section. 

To change a menu item's text during program execution, call 
Window_Services.Replace_menu_item_text. 

The following program fragment defmes a menu group, menu, and some of the menu item 
numbers. These constants are used by the program to interpret a menu selection record (see 
"Get a Menu Selection", below). 

Programming with Menus 



(from Inventory_Menus specification) 

74 inv menu group ID: constant 
75 TermInal Defs.menu_group_ID .- 1; 

80 ~nquiry menu ID: constant 
81 Terminal-Defs.menu ID := 1: 
82 
83 posting menu ID: constant 
84 Terminal=Defs.menu ID := 2: 
85 
86 update menu ID: constant 
87 Terminal_Defs.menu_ID := 3: 
88 
89 report menu ID: constant 
90 Terminal_Defs.menu_ID := 4: 
91 
92 housekeeping menu ID: constant 
93 Terminal=Defs:menu_ID := 5: 
94 
95 exit menu ID: constant 
96 Terminal_Defs.menu_ID := 6: 
97 
98 Inquiry menu items 
99 inq by part item: constant 

100 -Terminal Defs.menu item ID := 1: 
101 inq by desc Item: constant 
102 -Terminal Defs.menu item ID := 2: 
103 inq exit item: constant-
104 -TermInal_Defs.menu_item ID := 3; 

V-S.2.2 Install a Menu Group in a Window 

Calls Used: 

Window_Services. Install_menu_group 
Installs a menu group in a window. 

The following program fragment retrieves the stored menu group's DDef, then installs the 
menu group in a window. 

(from Inventory_Menus body) 

33 menu group node: 
34 Data_Definition_Mgt.node_reference: 

46 menu group DDef AD := DDef from untyped ( 
47 Directory Mgt.Retrieve( -
48 name ~> menu_group_DDef-path}}: 

53 menu group node := Data Definition Mgt. 
54 Retrieve DDef (- -
55 DDef-=> menu group DDef AD, 
56 name => menu=group=DDef=root_name); 

61 Window Services.Ops.Install menu group( 
62 window => Inventory WIndows. 
63 main window, 
64 menu_group => menu-group node, 
65 ID => inv_menu_group_ID}; 

Programming with Menus V -5-5 



l"KELINllNAK I 

V-S.2.3 Enable an Installed Menu Group 

Calls Used: 

Window Services.Ops.Menu group enable 
- Displays the menu group and enables user menu item selection. 

The following program fragment enables the menu group installed in the previous section. 
(from Inventory_Menus body) 

69 
70 
71 
72 
73 

Window Services.Ops.Menu group enable( 
window => Inventory Windows. 

main window, 
menu group => inv menu group ID, 
enable => true); - -

V-S.2.4 Get a Menu Selection 

V-5-6 

Calls Used: 

Character Display AM.Ops.Set input type mask 
- Determines the allowable typeS-of userlnput from a window, including 

menu item selection. 

Character Display AM.Ops.Read 
- Reads an input event from a window. 

The following program fragment defmes the types and variables for getting a menu selection. 
(from Inventory_Main) 

79 menu_select: Terminal_Defs.menu_selection; 

86 event_type: Terminal_Defs.input_enum; 

90 event num: System. ordinal; 

The following program fragment sets the window input mask to menu_itemyicked, waits 
for the user's menu item selection, then calls the appropriate subprograms to perform the 
selection. 

Programming with Menus 



(from Inventory_Main) 

125 Character Display AM.Ops.Set input type mask( 
126 opened dev =>-Inventory Windows.main window, 
127 new mask => Terminal Defs.input type mask' ( 
128 -Terminal_Defs.menu=item-picked => true, 
129 others => false»; 

139 Character Display AM.Ops.Read( 
140 opened dev =>-Inventory Windows.main window, 
141 buffer-VA => menu select'address, -
142 max events => 1, -
143 max-bytes => 0, 
144 block => true, -- Wait 
145 type read => event type, 
146 num_read => event=num); 

151 case menu select.menu is 
152 
153 when Inventory Menus.inquiry menu ID => 
154 Inventory Menus.Process Inquiry menu( 
155 selection => menu_select.item); 

V-5.2.5 Display a Checkmark for a Menu Item 

Calls Used: 

Window Services.Ops.Menu item check 
- Displays a check mark 0/) next to a given item in a menu. 

Your program can display a (terminal-dependent) checkmark next to that menu item. The 
checkmark can indicate that the item is or was selected. For example, a menu of attributes for 
an object may have several attributes selected, with the selected attributes' menu items check
marked. 

V-5.2.6 Change a Window's Enabled Menu Group 

Calls Used: 

Window Services.Ops.Menu group enable 
- Enables or disables an installed menu group in a window. 

To disable the currently enabled menu group, call 
Window_Services .Ops . Menu_group_enable with the enable parameter false. 

To enable another installed menu group in a window, just call 
Window_Services .Ops . Menu_group_enable for that menu group, with the enable 
parameter true. This implicitly disables the previously enabled menu group. 

V-5.2.7 Remove an Installed Menu Group from a Window 

Call Used: 

Window Services.Ops.Remove menu group 
- Removes an installed menu group from a window. 

Programming with Menus V-5-7 



Call Remove_menu_group to remove an installed menu group. There is no change·to any 
other installed menu groups (that is, none become enabled). 

V-S.3 Summary 

V-5-8 

• Menus provide a consistent, easy-to-use user interface. 

• A menu contains a menu title and one or more menu items. 

• A menu group contains one or more menus. 

• A window can have several menu groups installed, but only one menu group at a time can 
be enabled. 

• After a menu group is installed and enabled, menu selections and menu "help" messages 
are displayed without program intelVention. 

• After the user has made a selection, an input event is available, containing the chosen menu 
group, menu, and menu item numbers. 

Programming with Menus 



l'KELIMlNAKY 

UNDERSTANDING FORMS 6 
Contents 

Creating a Form Description ............................................... V -6-4 
Record I/O ............................................................. V -6-4 
Form Elements .......................................................... V -6-4 
Texts .................................................................. V-6-5 
Screen Fields ........................................................... V-6-5 

Character Fields ..................................................... V -6-5 
Option Fields ....................................................... V -6-7 

Enumeration ............................................................ V -6-7 
Null Enumeration Element ............................................ V -6-9 

Protecting Fields ........................................................ V -6-9 
Data Fields ............................................................. V -6-9 
Subforms .............................................................. V -6-9 
Groups ................................................................ V -6-9 
Piles ................................................................. V-6-10 
Expansion and Contraction of Forms ........................................ V -6-12 
Subroutines and the Subroutine Interface .................................... V -6-13 
Processing Routines ..................................................... V -6-14 
Key Catchers .......................................................... V -6-15 
Symbolic Keys ......................................................... V -6-16 
Key Lists ............................................................. V -6-19 
Form Name Environments ................................................ V-6-19 
Execution Paths ........................................................ V -6-20 

Explicit Modification of the Path Registers ............................... V -6-21 
Implicit Modification of the Path Registers ............................... V-6-21 

Messages and Help Infonnation ........................................... V -6-21 
Window Management ................................................... V -6-22 
Summary ............................................................. V -6-22 

Understanding Forms V-6-1 



V-6-2 

The fonn service provides means to create, modify, test and execute fonns which can be used 
interactively. Fonnsthe fonn service displays on screens have the same general appearance as 
fonns printed on paper that are frequently encountered in everyday transactions. Unlike paper 
fonns, the forms created and controlled by the form service and directed by a high-level ap
plication program can perform a wide variety of functions dependent on the needs of the user 
and nature of the fonn. 

Traditionally, a fonn has been a printed document with labelled spaces provided for writing in 
infonnation. A typical paper fonn is shown in Figure V -6-1. 

PARTS FILE INFORMATION 

Part 10: Description: 

Location: Unit: each feet (circle 
lb inch one) 

Qty on hand: Usage this month: 

Reorder point: Usage this year: 

Reorder qty: Usage last year: 

Supplier 10: 

Average unit cost: $_,_._ 

Last unit cost: $_,_._ 

Date first activity: 

Date last activity: Status: 

Figure V-6-1. Sample Paper Form 

The fonn service builds on this concept to provide interactive fonns capabilities on a terminal. 
For example, the cursor, which marks the current position in the fonn, may be moved back a . 
space to erase an incorrect character, or back to the previous field to reenter a value. The 
contents of part of the fonn can be altered depending on the value of a previously entered field. 
Intennediate values can be calculated and stored transparently until needed later by the fonn. 
Even the order of execution of the fonn can be altered dynamically depending on the data 
entered. 

This chapter describes the various parts of an interactive fonn and how they are combined into 
a single, executable fonn as shown in Figure V -6-2. 

Understanding Forms 



PARTS FILE INFORMATION 
I 

texts----------------- alphanumeric fzeld 
I I 

Part 1D: 3512734 Description: 1/2" aluminum conduit 

Location: 02-F12 Unit: feet <----- overlaid enumeration 

Qty on hand: 500 Usage this month: 375 <------ numeric 
fzeld 

Reorder point: 750 Usage this year: 6250 

Reorder qty: 2000 Usage last year: 9475 

Supplier ID: RohmCo StanEfCo < -- group with 
three instances 

Average unit cost: $1.86 

Last unit cost: $1.65 <------------------------ numeric field 

Date first activity: 1985-06-25 <----------------- datefzeld 

Date last activity: 1987-03-13 Status: REORDER 

Delete this part (press <Return> to affirm)? DELETE 
I 

option fzeld 

Figure V -6-2. Annotated Executable Form 

This section describes the fonn parts available for constructing an executable fonn. The next 
chapter, V -7 describes how an executable fonn is controlled. 

Packages Required: 

Form Defs Defines types and constants used by the Form_Handler package. 

Form Handler Provides calls to process, control, and change fonns. 

Form_Def s contains the definitions for fonn properties (such as character display 
characteristics), symbolic keys (control keys, application keys, and infonnation keys), and 
other definitions which describe the physical attributes and current operational status of a fonn. 

Form_ Handle~ provides calls to: 

• Open and close a fonn. 

• Execute a fonn. 

• Modify data and control the execution network path. 

• Query the state of the fonn, a fonn element, or the last user interaction. 

Understanding Forms V-6-3 



V-S.1 Creating a Form Description 
A form can be created with edit. form (the form editor), create. form, or procedurally 
with the Data_Definition_Mgt package. 

The form editor is an interactive tool that enables a form developer to interactively create and 
modify form descriptions. This tool enables a form developer to design a form directly on the 
terminal screen and to define the properties for each form element as it is drawn and 
positioned. Detailed information for using the form editor is given in the BiiNTM Systems Form 
Editor Guide. Upon successful completion of an editing session, the form editor generates an 
executable form description. 

create. form automatically creates the most simple, default form design based on a file's 
associated record description. The resulting form description can be used as input to the form 
editor for tailoring the form to the user's needs, or be executed as is. 

Both the form editor and create. form generate a form description which can be executed 
by a user and controlled by Form_Handler calls. 

Every form is represented as a/orm DDej. (Form description is a higher-level synonym for 
form DDef.) The form DDef defines the elements of a form, their order of execution, display 
attributes, location, etc. Application programmers will normally use the form editor to create a 
form description. Form descriptions can also be created procedurally using 
Data_Definition_Mgt although this method requires a detailed understanding ofDDefs 
and is, therefore, not recommended. This low-level procedural interface is mainly of interest 
to implementors of interactive applications that create forms at runtime. 

Form descriptions are stored with a directory entry and consequently are retrieved with 
Directory_Mgt. Retrieve when their AD is needed for calls such as 
Form_Handler.Open_form. 

V-S.2 Record I/O 
If record 1/0 is used for executing a fonn, a record description must be associated with the 
form. A record description describes the structure of a communication area used by an ap
plication program to communicate with an executing fonn. The primary benefit of employing 
record I/O is ease of use. It may not be appropriate for more complex applications for which 
Form Handler calls are more effective. 

If all or most of the screen fields that a fonn will use are already defmed in an existing record 
description, associating a form with the related record description is usually the most effective 
means for transferring data. Given an associated record, Form_Handler can store and 
retrieve the data from the form and record with single calls. When a form is not associated 
with a record description, the data for each screen field must be stored and retrieved with 
individual Form Handler calls. 

V-S.3 Form Elements 

V-6-4 

A form may consist of the following/orm elements: 

• Texts 

Understanding Forms 



• Screen fields 

• Enumerations 

• Subfonns 

• Groups 

• Piles 

• Data fields 

• Subprogram interfaces 

• Processing routines 

• Key catchers 

• Key lists. 

The first five fonn elements (texts, screen fields, enumerations, subforms and groups) are 
called sheet elements. The remaining form elements affect the appearance of the form (piles), 
hold intennediate data values (data fields), and affect the execution of the fonn. The sheet 
elements are visible elements in the screen image of the form, called a/orm sheet. The fonn 
sheet is the rectangular area displayed on the screen. 

V-S.4 Texts 
Texts are strings which commonly serve as labels for screen fields. In Figure V-6-3, the string 
Part ID: is an example of a text in such a use. Texts may also be used independently for 
other purposes such as column headers or explanatory text. 

V-S.5 Screen Fields 
Screen fields are areas defined on the fonn sheet for receiving or storing user input. Screen 
fields include: 

• Character 

• Option. 

V-S.5.1 Character Fields 

Character fields are areas defined on the form sheet in which a user may enter data. Figure 
V-6-3 illustrates an character field with an associated text string. 

PartID: __ _ 

Figure V -6-3. Character Field 

A screen field is not required to have an associated text. 

Character fields are of the following kinds: 

Understanding Forms V-6-5 



V-6-6 

• Numeric 

• Alphanumeric 

• Date. 

Numeric fields have fixed lengths. Internally, they are represented as 4-byte integer, 8-byte 
integer, or 8-byte real. Alphanumeric fields may be of fixed or variable length depending on 
how they are defmed. 

The size of a numeric field on the screen depends on the format definition. There are no 
fonnats for alphanumeric fields. Table V -6-1 illustrates examples of numeric field fonnatting. 
See the BiiNTM Systems Form Editor Guide for detailed instruction on fonnatting numeric 
fields. 

Table V -6-1. Examples of Numeric Formatting 

Field Fonnat Clear When Leading Trailing Dimla!ed 
Contents String Zero Text Text ield 

10.34 99999.99 irrelevant 00010.34 

10.34 ·····.99 irrelevant ···10.34 

5410.34 zazz,99 irrelevant 5.410.34 

0 99999.99 not set 00000.00 

0 99999.99 set 

10.34 ZZZZ9.99 irrelevant •• •• ··10.34·· 

10.34 ····9.99 irrelevant $ $···10.34 

12.34 ZZ9.9999999E+99 irrelevant 12.3400000E+00 

-12.34 -9.99999ge2'22+ irrelevant -1.234000E 1+ 

10.34 +O.999999E+99 irrelevant +O.l03400E+02 

A date field is a special case of an character field. 

Data fields require a fonnat string. The fonnat string is comprised of replacement characters 
and insertion characters. Replacement characters may include: 

YY - Last two digits of a year. 

YYYY - All four digits of a year. 

MM - Integer value of a month. 

MMM - Abbreviation of a month. 

DD - Interger value of a day. 

DDD - Abbreviation of a day. 

HH - Integer value of hours. 

II - Integer value of minutes. 

SS - Integer value of seconds. 

Insertion characters are printable characters that provide explanatory text or punctuation. Ex
amples of data fonnatting showing the use of replacement and insertion characters are il
lustrated in Table V-6-2: 

Understanding Forms 



Table V -6-2. Examples of Date Formatting 

Field Format Dimla!ed 
Contents String ield 

19841128120109 YYYY-MM-DD 1984-11-28 

1984 11 28 120109 YYYY:Mmm:DD 1984:Nov:28 

19841128120109 Year:yyyy Month:Mmm Day:dd Year: 1984 Month:Nov Day:28 

19841128120109 DDMMYY 2811 84 

1984 1224120109 DDD-YYYY 359-1984 

1984 11 28 120109 HH:1I:SS 12:01:09 

198411 28 120109 /Ill /01/ 

1984 1224 1201 09 DDD days HH hours 359 days 12 hours 

The contents of a date field are automatically validated after entry. If the contents of a part of 
the field are invalid, the local cursor is positioned at the beginning of that part. 

Default fonnats for these varieties of screen fields are shown in Table V -6-3: 

Table V -6-3. Default Screen Field Formats 

Default Format Type 

-zzz.zz:z:z2f) int4 

-zzzzzz2zzzzzzzzzz9 int8 

-9.9999999999E-99 real8 

yyyy-rnm-dd date 

V-S.S.2 Option Fields 

An option field is composed of a visible text string which may be selected and deselected with 
a symbolic key or a mouse. The actual data transmitted is a boolean value indicating whether 
or not the field is selected. Figure V -6-4 illustrates an option field. 

Delete this part (press <Return> to affirm)? DELETE 

Figure V -6-4. Option Field 

In Figure V-6-4, the DELETE string is an option field. An option field is highlighted when 
selected (true) and displayed in nonnal intensity when not selected (false). An option field is 
selected and deselected with the <select local> key. 

v-s.s Enumeration 
Enumerations are sheet elements consisting of an ordered set of values. The values of an 
enumeration are represented with texts. Each enumeration is assigned a nonnegative integer 
value. Each tuple (value, screen representation) is called an element of the enumeration. If an 
element's representation is empty, the element is called the null element of the enumeration. 

Enumeration elementss are selected with the <select local> key. When selected, the element is 
highlighted. Any previously selected element of the enumeration is simultaneously returned to 

Understanding Forms V-6-7 



I'KELIMlNAK J: 

normal intensity. The value of the currently highlighted element is the value assigned to the 
enumeration when the enumeration is left Characters cannot be entered into enumeration 
elements. 

Enumerations may be one of two kinds: overlaid and scattered. 

An overlaid enumeration is an enumeration in which the enumeration elements are displayed 
one at a time. The user toggles through the enumerations by using the <select local> key. The 
enumeration element currently displayed when the enumeration is left (commonly by pressing 
the <next> key) defmes the value which will be assigned to the enumeration. 

Figures V -6-5 and V -6-6 illustrate the first two enumeration elements of an overlaid enumera
tion field with the text title Unit: and four units of measure as enumeration elements. 

Unit: each 

Figure V -6-5. Overlaid Enumeration: Initial Value 

After the user presses <select local>, the second enumeration value, feet, overlays the first 
enumeration value, each. 

Unit: feet 

Figure V-6-6. Overlaid Enumeration: Subsequent Value 

Each time <select local> is pressed, the next enumeration element will overlay the previous 
element until the last element is overlaid with the first and the cycle begins again. 

A scattered enumeration is an enumeration in which all of the enumeration elements are dis
played simultaneously. The screen representations of the elements are arranged within the 
rectangular area allocated to the enumeration. The element whose value represents the current 
value of the enumeration is highlighted while all other elements are displayed in the display 
attributes defmed for the enumeration. Figure V -6-7 illustrates a scattered enumeration. 

Uni t: each feet 
lb inch 

Figure V -6-7. Scattered Enumeration 

The figure shows that the feet element is highlighted and, therefore, currently selected. 

The local cursor can be moved from a screen field or enumeration to a scattered enumeration 
with the <next>, <next with clear> or <previous> keys. Once the cursor is in a scattered 
enumeration the <next>, <next with clear> or <previous> keys move the cursor between the 
enumeration elements. The element at which the cursor is positioned can be selected with the 
select local> key. The currently selected element is highlighted and the previously 
selected element (if any) is returned to normal intensity. The enumeration element currently 

Understanding Forms 



highlighted when the enumeration is left defines the value which will be assigned to the 
enumeration. 

V-S.S.1 Null Enumeration Element 

A null element of an enumeration is an element which is associated with the value empty, 
meaning no value selected. An enumeration mayor may not contain a null element. In an 
overlaid enumeration, the null element, if present, must have a screen representation (possibly 
containing only spaces). 

If a scattered enumeration has a null value which is not assigned a screen representation, it can 
be selected with the <delete> key. If the enumeration has a null value that is represented on 
the screen, the value is selected like any other value. 

V-6.7 Protecting Fields 
Screen fields that are created with the protected property are used only for output 
Form_Handler . Store_value is used to place the new value into the fonn. They are not 
included in the network of paths (see the "Execution Path" section for more infonnation on a 
fonn's network of paths). These protected fields can be used, for example, to display the 
results of a calculation or logic decision. On the screen, they would appear the same as any 
other character field, but the user cannot enter data into them. 

V-6.8 Data Fields 
Datafields are not defined on the fonn sheet and are, therefore, not visible. They are used as 
storage areas for data used in computations or for exchanging data between processing 
routines, key catchers, and the application program. 

V-6.9 Subforms 
A subform is a fonn included in another fonn. This sheet element is provided as a con
venience for making complex fonns out of simpler fonns. A subfonn can be created once and 
referenced by several other fonns and subfonns. Subforms may contain all the form elements 
allowed in a fonn, and may be nested. 

V-6.10 Groups 
A group is a subfonn which may be replicated. Each replication is called an instance of the 
group. The initial number of instances of a group is defined when the fonn is created, and may 
be modified during execution. Groups may contain any elements which may be used in a fonn 
including texts, screen fields, subfonns, other groups, piles, processing routine calls, and key 
catcher calls. 

For example, when the user enters the first supplier ID and leaves the field by using an 
application-defined key (that calls Form_Handler. Create_group_instances) rather 
than the usual key such as <next>, a second instance of the group is created so that the user, in 
this case, can enter a second supplier ID. In the sample fonn, a maximum of three instances 
can be displayed for character field for a supplier identification. Figure V -6-8 illustrates this 

Understanding Forms V-6-9 



group showing supplier IDs entered into the first two instances of the group, and the third 
instance created and awaiting entry of data. 

Supplier ID: RohmCo StanEfCo 

Figure V -6-8. Group Instances 

Groups are deployed (displayed) horizontally to the right, or vertically and downward. Figures 
V -6-9 and V -6-10 illustrate the two deploying directions for group instances. (The group 
shown in Figure V-6-8 is deployed horizontally.) 

I instance #1 I instance #2 I instance #31 

Figure V -6-9. Group Instances in a Horizontal Deployment 

Groups may contain multiple sheet elements as shown in Figure V -6-10. These group in
stances contain name strings (alphanumeric fields), an enumeration of two values (Sex) and a 
numeric field with two insertion characters (SSN#). 

Last Name First Name Sex 

M F 
M F 
M F 
M F 

SSN# 

Figure V-6-10. Group Instances with Multiple Sheet Elements 

The number of instances of a group can be varied before or during the execution of the fonn 
with Form_Handler .Create_group_instances and 
Form_Handler . Remove_group_instances from within processing routines, key 
catchers or the application program. 

The maximum number of instances of a group can be set by the fonn programmer when the 
fonn is created or modified. The number of instances of a group may be zero. In this case, the 
group occupies an area the size of one character (unless the group is a member of a pile in 
which case it occupies no space at all). 

V-S.11 Piles 

V-6-10 

A pile is a sheet element occupying an area in a fonn in which other sheet elements can reside. 
Piles give the fonn designer control over the appearance of a fonn by specifying a fixed area of 
the fonn in which a choice of elements can be displayed. 

While the locations of sheet elements not on a pile are detennined directly by coordinates, 
piles offer an indirect method of positioning. A pile is a layout feature and cannot be executed. 
Processing routines or key catchers can be used to display pile elements. The order of execu
tion of sheet elements is not affected by their being on a pile. 

Understanding Forms 



Piles, therefore, serve two primary functions. First, they reserve one area on the fonn for use 
by elements selected by the fonns designer. Second, the pile's reserved area can be sized 
sufficiently for the anticipated maximum expansion of its variable-length elements so that 
expansion will not dislocate neighboring sheet elements thereby altering the appearance of the 
fonn. (Read about expansion and contraction of a fonn in the next section.) 

When a pile is defined, one or more sheet elements are assigned to it. The order in which they 
are listed specifies their relative position or rank. Processing routines and key catchers deter
mine which of the elements of pile are to be displayed. The selected pile elements are dis
played in a horizontal or vertical deployment (specified when the pile is defined) in the order 
of their rank. 

For example, a fonn detennines which elements are to be displayed in a field depending upon 
whether the individual is (1) married and male, (2) married and female or (3) not married. The 
elements defined for the pile in this fonn include: 

• Given N arne of Spouse 

• Premarital N arne 

• Age 

• Separate Household 

This example describes a fonn used to collect personal data. The following figure shows the 
fonn (without the specific pile elements shown). 

Name: Given Name: 

+------+--------+ +-------+ 
I male I female I Imarriedl 
+------+--------+ +-------+ 

0 •••••••••••••••••••••••••••••••••••••••••••••••••••• 

[pile] 

Address: 

Figure V -6-11. Form with a Pile 

The following sheet elements is displayed in the pile of the fonn when "female" and "married" 
have been selected. (The deployment is vertical.) 

0 •••••••••••••••••••••••••••••••••••••••••••••••••••• 

. Given Name of Spouse: 

. Premarital Name: 

Figure V -6-12. First Pile Usage 

Understanding Forms V-6-11 



The following fonn element is displayed in the pile of the fonn when "male" and "married" 
have been selected. 

o •••••.••..•••••••••••••••••••••••••••••.•••••••••••• 
. Given Name of Spouse: 

Figure V -6-13. Second Pile Usage 

The following fonn element is displayed in the pile of the fonn when "married" has not been 
selected. 

o •.••••.•••...•.•.•••••.......•.....•.•••..•..•..•••. 
+------------------+ 

. Age: __ Iseparate household I 
+------------------+ 

Figure V-6-14. Third Pile Usage 

Piles may not be nested, but a group containing a pile may be located on a pile. Groups having 
no instances and a default instance of zero occupy an area the size of one character on a pile. 
Otherwise the area occupied is detennined by the number of default instances. 

V-6.12 Expansion and Contraction of Forms 

V-6-12 

Variable size sheet elements (alphanumeric screen fields of variable length and, optionally, 
piles and subforms) can expand beyond their default size when data is being entered into them. 
When they do expand horizontally, all of the sheet elements whose left boundaries are located 
right of the right border of the expanding element are automatically moved to the right. 
Likewise when they expand vertically, sheet elements whose upper boundaries are located 
beneath the lower boundary of the expanding element are automatically moved down. Thus, 
sheet elements are kept from being obscured by neighboring expanding elements. In table-like 
forms, column and line relationships are preserved. 

If a sheet element is about to expand over the boundary of the form sheet, the form sheet 
expands; that is, the rectangular area occupied by the form sheet within the window's frame 
buffer expands. When the fonn sheet is constrained by the size of the frame buffer, it can no 
longer expand. All subsequent operations which require expansion of a sheet element are 
rejected. 

Expansion of sheet elements not included within subforms and groups always affects subfonns 
and groups as a whole unit. For example, a variable-length alphanumeric field that expands 
into the upper-left comer of a group instance will move all elements of the group as a unit 
regardless of whether any individual group element is in the path of the expanding field. The 
area that a subfonn or group instance occupies may grow if the group contains elements of 
variable size such as an alphanumeric screen field, group or pile. 

Understanding Forms 



When a form expands or contracts, the rectangular area containing a scattered enumeration is 
relocated as a whole unit. 

If the deploying direction of a group is horizontal and if one or more instances of the group 
grows, instances with higher instance indexes are moved to the right but do not change their 
size. Figures V -6-15 and V -6-16 illustrate the effect of the growth of a group instance. In
stance #1 grows horizontally, and instances #2 and #3, which do not change in size, move to 
the right. 

instance #1 I instance #2 I instance #3 

screen field 

Figure V -6-15. Effect of the Expansion of a Group Instance: Before Expansion 

instance #1 I instance #2 I instance #3 

screen field 

Figure V -6-16. Effect of the Expansion of a Group Instance: After Expansion 

The number of instances is restricted by the size of the frame buffer of the window in which 
the form is currently displayed. The frame buffer defines the limits of expansion for a form 
whether that expansion is by the addition of a group instance, or due to the expansion of a 
variable-length form element (such as an alphanumeric screen field). 

Contraction is the opposite of expansion. When a sheet element contracts, the form mayor 
may not contract depending on whether the contracting sheet element was the sole cause of the 
expansion. Contraction commonly occurs after an alphanumeric field is left. The area oc
cupied by the field during data entry contracts to the rectangular size needed for displaying the 
current contents of the field or the size of the minimum area depending on which size is 
greater. 

An alphanumeric screen field first expands horizontally until it reaches the maximum line 
length (specified when the field was created) and then expands vertically. 

NOTE 
When an element of a group, a field is not constrained in its expansion by the deployment 
direction of the group. 

V-S.13 Subroutines and the Subroutine Interface 
Two kinds of subroutines may be used in a form: processing routines and key catchers. Sub
routines are incorporated into a form by specifying a subprogram interface. This interface 
specification contains: 

• The name of the subprogram interface definition 

Understanding Forms V-6-13 



rK~L.l1Ylll"'1a.K I 

• The name of the image module in which the subprogram is contained 

• The name of the subprogram within the image module 

• Link option (link_at_bind_time) 

• A description of the formal parameters of the subprogram. 

The name of the image module and the name of the subprogram within the image module are 
used to retrieve a subprogram value (an AD to a domain object plus a procedure entry offset). 
The subprogram value is retrieved by calling Link_By_Call. Link. The Form_Handler 
can then call the subprogram using the subprogram value. 

The link option is set during fonn development. When set false, the subprogram is not linked 
to the fonn description at bind time. This makes it possible to create, bind and test a fonn 
whose processing routines and key catchers are not yet available. The fonn retrieves the 
subprogram value during the execution of the fonn when the subprogram is first called by the 
Form_Handler. When the link option is set to true, the subprogram is linked to the fonn 
description at bind time. 

Subroutines must be implemented according to the interlanguage calling conventions (see the 
BiiNTM Systems Programmer's Guide) for the language in which the subroutine is written) in 
order to be callable by the fonn service. Also, subroutines which are to be linked to fonns 
must be image modules (see the BiiNTM Systems Linker Guide). 

V-S.14 Processing Routines 

V-6-14 

Processing routines are subroutines written in high-level languages which are executable fonn 
elements. They can be used to: 

• Validate contents of screen fields 

• Control the order in which screen fields are entered 

• Modify contents of screen fields 

• Modify the appearance of the fonn sheet depending on user input 

• Perfonn any application-specific operations such as calculations. 

Processing routines are included in the network of the form execution path, and therefore, are 
called when the execution of the fonn reaches the point where they reside in the network. 
Processing routines may make Form_Handler calls to: 

• Create and remove group instances 

• Change the display attributes of sheet elements 

• Store and retrieve field values 

• Alter the order of execution of the fonn 

• Call other fonns. 

A processing routine call which has more than one successor in the form's network of paths 
must have a nextyath_element parameter defmed in its subprogram interface in order 
for it to proceed. The actual value of this parameter specifies a path element. The value is 
stored in the nextyath_element path register by Form_Handler. Form execution will 

Understanding Forms 



rK~LJ.1Vlli"'AK I 

then continue at that element when the processing routine has finished executing. Processing 
routine calls with only a single successor must not have a next yath _element parameter. 

Another parameter of the interface is terminal_input. This parameter is a byte string 
which is interpreted as a sequence of symbolic keys by Form_Handler, and inserted into the 
stream of input keys replacing the last key processed. Processing routines and key catchers 
can simulate user input by writing into this queue with this parameter. 

More than one processing routine call may refer to the same subprogram interface. Therefore, 
a single processing routine may be called from several locations within a form's network of 
paths. 

The subprogram interface describes the formal parameters of the subroutine and the processing 
routine call describes the actual parameters. 

V-S.15 Key Catchers 
Key catchers are subroutines written in high-level languages which are activated by pre
defined keystrokes. They can be used to trigger entire functions with a single keystroke. A 
key catcher is assigned to a region of a form. A region defines the area of effectiveness of a 
key catcher. It may include a single screen field or enumeration, a group, a subform or the 
entire form. A single key catcher may be assigned to several regions, or several key catchers 
may be assigned to the same region. 

A subprogram interface for a key catcher is similar to a subprogram interface for a processing 
routine with the exception that a key catcher's interface does not include the 
nextyath_element parameter, and does include the trigger_key parameter. 
trigger_key references an internal queue which contains the symbolic key that triggered 
the key catcher. 

A key catcher for which a subprogram interface has been specified is included into a form by 
defining a key catcher call, and assigning it to the fonn, a subform, a screen field or enumera
tion. A key catcher call must have the following parameters: 

• The name of the subprogram interface. 

• A key list (a list of keys which are to be caught by the key catcher). 

• The actual parameters (the actual values of the fonnal parameters specified in the sub-
program interface). 

When interpreting a keystroke, key catchers are scanned in the order in which they are as
signed in the fonn description. Generally, the first key catcher in such a list is assigned to a 
screen field, and secondary key catchers are assigned to the group or subfonn. The least 
significant key catcher is assigned to the region defined by the entire form. 

When the fonn user enters a character, the character is transformed into the corresponding 
symbolic key. Then the key lists of the effective key catchers are searched for that symbolic 
key according to the ordering of the key catchers. This search is performed for every entered 
character. The search stops when the symbolic key is found in a key list. Then the key catcher 
pertaining to that list is called. If the search does not succeed, the input character is processed 
by the Form_Handler according to the type of the current sheet element. 

Understanding Forms V-6-15 



PK~LIM1NAKY 

V-6.16 Symbolic Keys 

V-6-16 

A symbolic key is a printable character, a control key, an application key or an information key. 
Printable characters correspond to the ASCII characters in the range 20 hex to 7E hex. A 
standard set of control keys are predefined in Form _ Def s and enable the user to trigger 
functions used in typical fonn dialogues. An example of a symbolic key is <previous> which 
moves the cursor back to the previous screen field or enumeration. Application keys, which are 
also declared in Form_Defs, trigger application-defmed functions. The application keys give 
the fom developer the opportunity to customize the fonn with unique features. 

Information keys differ from the other symbolic keys in that they are input events from the 
teminal. These keys may be included into key lists and caught by application-defmed key 
catchers. If they are caught by the Form_Handler, they do not trigger any action. 

Symbolic keys are used to mask differences among tenninal keyboards thereby contributing to 
the device-independent benefits of using fomm services. The tables V -6-4, V -6-5 and V -6-6 
contain definitions for the symbolic keys. 

Table V -6-4. Control Keys 

Mnemonic Name Function Value (hex) 

abort_execution Aborts execution of the fonn. 0100 

backspace Moves the cursor to the left by one space in 0101 
the active screen field or one part in a date 
field. 

begin_oCelement Moves the cursor to the first character input 0102 
position. 

begin_oCline Moves the cursor to the first character posi- 0103 
tion of the current line. 

bel Causes an audible or visible signal on the 0104 
tennina!. 

close_requested Requests that the fonn sheet window be 0105 
closed. 

correct DisKlays the data input to a nmneric screen 0106 
fiel without fonnatting. This k~ has no 
effect on nonnumeric screen fiel s. 

delete_character Deletes the character (or the part of a date 0107 
field) under the cursor. 

delete_charactecleft Deletes the character to the left of the cur- 0108 
sore 

delete Deletes active screen field' s in~ charac- 0109 
ters, replacing them with null c racters. 
Also, selects the null element (if any) of a 
scattered enumeration if the null element has 
no screen representation. 

down Moves the cursor to the next line in a o lOA 
multiple-line screen field. 

end_oCfonn Skips to the end of the fonn, or to the next o lOB 
compulsory screen field. Sets the 
destination path registerto lEND. 

forward_space Moves the cursor one space (or one part in a 010e 
date field) to the right. 

global_help Displays help infonnation for the fonn. 010D 

help DisNlays help infonnation for this screen o toE 
fiel . 

home Returns the input cursor to the beginning of 010F 
thefonn. Sets the destination patti 
register to IBEGIN. 

Understanding Forms 



Table V-6-4. Control Keys (cont.) 

Mnemonie Name Funetion Value (hex) 

insert_space Inserts a blank :r;:ce at the cursor ~ition. 0110 
In a date field, fects only the part of the 
date at the cursor position. 

insert_overwrite Switches between insert and overwrite 0111 
mode. In insert mode, existing characters 
move right to make room for new charac-
ters. In overwrite mode, existin£ characters 
are replaced by new characters at are input 
in thell' position. 

next When the cursor is in a screen field or 0112 
overlaid enumeration, skips to the next 
screen field, enumeration or to the end of the 
form. When the cursor is in a scattered 
enumeration, advances the cursor to the next 
enumeration element When the cursor is in 
a part of a date field, advances the cursor to 
the next part of the date field. 

nexc with_clear Deletes the rest of the current screen field 0113 
starting at the current cursor position (does 
nothing in an overlaid enumeration), then 
skips to the next screen field, or enumeration 
or to the end of the form. When the cursor 
is in a scattered enumeration, skips to the 
next element of the enumeration. 

previous Moves the cursor to the beginning of the 0114 
previous screen field. Sets the 
de st ina t i on path ~ister to the last 
touched screen field. en the cursor is in 
an overlaid enumeration, skips to th~-
vious screen field or enumeration. en the 
cursor is in a scattered enumeration, skips to 
the previous enumeration element. When 
the cursor is in a date field, moves the cursor 
to the previous part of the date field. 

refresh Refreshes (redisplays) the fann image. 0115 

reset Resets the fonn to its defmed initial state, 
then restarts fonn entry at the flfSt field. 

0116 

restore Restores the previous value of a field. 0117 

button_Creleased The fll'st mouse button has been released. 0118 

button_2_released The second mouse button has been released. 0119 

button_3_released The third mouse button has been released. 011A 

button_ 4_released The fourth mouse button has been released. 011B 

button_5_released The flJ'St mouse button has been released. 011C 

select_local Selects and deselects the value of option 0110 
screen fields. displays the next element in an 
overlaid enumeration and selects the current 
element of a scattered enumeration. 

menu_item-picked Indicates that a menu item was selected. 011E 

up Moves the cursor to the srevious line in a 011F 
multiple-line screen fiel . 

Understanding Forms V-6-17 



Table V -6-5. Application Keys 

Mnemonic: Name Function Value (hex) 

CI Application key 1. 0200 

C2 Application key 2. 0201 

C3 Application key 3. 0202 

C4 Application key 4. 0203 

CS Application key S. 0204 

C6 Application key 6. 0205 

C7 Application key 7. 0206 

CS Application key S. 0207 

C9 Application key 9. 020S 

CIO Application key 10. 0209 

C11 Application key 11. O2OA 

CI2 Application key 12. O2OB 

C13 Application key 13. 020C 

C14 Application key 14. O2OD 

CIS Application key 15. 020E 

CI6 Application key 16. 020F 

C17 Application key 17. 0210 

CIS Application key 18. 0211 

C19 Application key 19. 0212 

C20 Application key 20. 0213 

V-6-18 Understanding Forms 



Table V ·6·6. Information Keys 

Mnemoilic Name Function Value (hex) 

button_l,..pressed The first mouse button been pressed. 0300 

button_2,..pressed The second mouse button been pressed. 0301 

button_3,..pressed The third mouse button been pressed. 0302 

button_ 4,..pressed The fourth mouse button been pressed. 0303 

button_5..,pressed The five mouse button been pressed. 0304 

input_focusJained The window containing the fonn gained 0305 
the input focus. 

inputjocus_lost The window containing the fonn lost 0306 
the input focus. 

overlap_changed The visibility of the window containing 0307 
the fonn changed. 

size_changed The size of the window containing the 0308 
fonn changed. 

view_changed The position of the view of the fonn 0309 
changed. 

position_changed The ~ition of the window containing 
the onn changed. 

030A 

scrolCrequested Kind of scrolling requested: panning. 030B 
bar. or dragging. 

user_defmed_event A user-defined evenL 030C 

By default, control keys are effective over an entire fonn. They enable a user to trigger 
commonly used functions. The fonn programmer can disable control keys or give them other 
functions by catching them with a key catcher. 

V-6.17 Key Lists 
A key list contains names of printable and symbolic keys which are to be captured by the 
associated key catcher. Key lists can be created and modified with the fonn editor. 

V-6.18 Form Name Environments 
The name of a fonn element is called a basename. A basename is represented by a string of 
AScn characters. To address all elements of a fonn, fonn service distinguishes between three 
name environments within a fonn: 

Form name environment - Names of all elements of a fonn with the exception of those con
tained in a group or subfonn of the fonn. 

SUbform name environment - Names of all elements of a simple or group subfonn with the 
exception of those contained in a subfonn of that subfonn. 

Form global name environment - Names of all elements of the fonn including those contained 
in subfonns. 

The names of the elements of a fonn or subfonn must be unique within the name environment 
of the fonn or subfonn. 

Instances of group subfonns are named by the basename of the group followed by the number 
of the instance (index) in parentheses. 

Understanding Forms V-6-19 



rK.r..LI1Vlll"'AK I 

To address elements within subforms, a form network patbname is constructed of one or more 
basenames or indexed basenames separated by a "/' (slash): For example, 
/group_3 (2) / screen_field_a is the form network patbname for screen_field_a 
of the second instance of group_3 of the fonn. 

An absolute patbname starts with a "/" and is evaluated starting with the name environment of 
the form. The simplest absolute patbname is the slash by itself that addresses the name en
vironment of the form. 

A relative pathname is any patbname that does not start with a slash, and is evaluated from the 
name environment of the currently executing subform or group instance, or from the form 
name environment if no subform or group instance is executing. 

The patbname "." (dot) represents the name environment of the fonn, subfonn or group in
stance currently executing. Similarly, the patbname " .. " represents the parent subform or 
group instance of the current subform or group instance, or the fonn if there is no parent 
subform or group instance. 

When no patbname (null string) is specified, the present form element is considered to be 
contained in the name environment of the subfonn or group instance currently executing, or if 
there is none, it is considered to be in the fonn name environment 

V-S.19 Execution Paths 

V-6-20 

Execution of a fonn follows a path or a network of paths composed of the following elements: 

• Screen fields 

• Processing routines 

• Subfonns 

• Groups 

• Fictive, predefmed path elements: BEGIN and END. 

BEGIN is the path element of a network, subfonn, or group that has no predecessor. END is 
the path element of a network, subfonn, or group that has no successor. Processing routines 
are the only path elements which may have more than one successor. A fonn may contain 
fonn elements which are not included in the execution network (texts, piles, subroutine inter
faces, data fields, key catcher calls and key lists). Screen fields and subforms may be included 
in the network of paths; process routine calls must be included. 

The path elements are executed in an order that is determined by: 

• the network of paths, ~d 

• the contents of the path registers. 

destination and nextyath_element are predefined path registers that contain an 
arbitrarily selected path element and the nonnal successor to the current path element, respec
tively. They may be used by an application program, processing routines, and key catchers to 
influence the order in which path elements are executed. 

destination denotes a target path element to which execution will proceed. 
nextyath_element contains the next path element to be executed. Normally, execution 

Understanding Forms 



will be pennitted to follow the network as defined. However, conditions arise in which execu
tion must deviate from the dermed path such as when infonnation entered into a screen field 
fails to pass a validation test and execution is returned to the current path element (screen field) 
for re-entry of the data. 

Execution begins with the current element, the first path element or the next path element 
depending on the following possible values of destination: 

• If destination denotes a successor, execution proceeds from the current element to the 
destination element. 

• If destination denotes a predecessor, execution begins with the first path element of 
the fonn and proceeds until the destination is reached. 

• If destination is empty, execution proceeds with the next path element. 

V-6.19.1 Explicit Modification of the Path Registers 

destination is explicitly set by an application program, a processing routine or a key 
catcher by calling Form_Handler. Set_destination. 

nextJ>ath_ element can only be modified with processing routines. The purpose of this 
register is to enable a processing routine to select one of its direct successor path elements. 
Selection of a successor is required if the routine has more than one successor. 

V-6.19.2 ImpliCit Modification of the Path Registers 

destination is implicitly set to empty if: 

• The target path element is reached. 

• The target path element cannot be reached. 

• A screen field which requires input would have been skipped. 

next J>ath _element is implicitly set if: 

• The most recently processed path element has a single successor, then 
nextJ>ath_element is set to the name of the successor. 

• destination is set to a predecessor, then nextJ>ath_element is set to BEGIN. 

V-6.20 Messages and Help Information 
Local help infonnation may be optionally assigned to screen fields and enumerations. The 
fonn developer must specify the name of a message and the name of the message file that 
contains the help infonnation. The message and the message file need not be available when 
the fonn is created but must exist by the time the fonn is executed. Local help messages can 
be accessed during execution by pressing the <help> key. Infonnation relating to the entire 
fonn can be accessed during execution by pressing the <global help> key. 

Me s s age_Adm calls are used to define and store help infonnation. Infonnation messages are 
displayed on the standard message device. See the BiiNTM Command and Message Guide for 
additional infonnation on messages. 

Understanding Forms V-6-21 



rK.r.;Ll1Vlli~AK I 

V-S.21 Window Management 
The window in which the fonn is displayed must have a frame buffer that is large enough to 
display the form with its current contents, otherwise Form_Handler. Get and 
Form_Handler .Put calls will fail. The size of the frame buffer limits the expansion of 
fonns with variable size fonn elements. 

V-S.22 Summary 

V-6-22 

• The fonn selVice builds upon the concept of a paper fonn to provide interactive fonns 
capabilities on a tenninal. 

• A fonn can be created with the fonn editor or the create. form utility. 

• A fonn may consist of the followingjorm elements: 

- Texts 

- Screen fields 

- Enumerations 

- Data fields 

- Subfonns 

Groups 

- Piles 

- Subprogram interfaces 

- Processing routines 

- Key catchers 

- Key lists. 

• Variable length alphanumeric screen fields and the screen elements containing them can 
expand to accommodate data being entered into the field. 

• Execution of a fonn will follow a path or a network of paths composed of the following 
elements: 

- Screen fields 

- Processing routines 

- Subfonns 

- Groups 

- Fictive, predefined path elements: BEGIN and END. 

• The path elements are executed in an order that is detennined by the network of paths and 
the contents of the path registers (destination and nextyath_element). 

Understanding Forms 



PROGRAMMING WITH FORMS 7 
Contents 

Creating Executable Fonns ................................................ V-7-2 
Command Language Variables ............................................. V -7-3 
Fonn. Utilities ........................................................... V-7-5 
Editing Translation Tables ................................................. V -7-6 
Techniques ............................................................. V-7-6 

Opening and Closing Fonns ........................................... V -7-6 
Executing Fonns .................................................... V -7-7 
Setting and Resetting the Initial State of a Fonn. ............................ V -7-8 
Inserting, Storing, and Deleting the Contents of Screen and Data Fields ......... V -7-8 
Controlling the Execution Path ......................................... V -7-9 
Processing Routines and Key Catchers .................................. V -7 -10 
Defining a Processing Routine ........................................ V -7 -10 
Defining a Key Catcher .............................................. V -7 -11 
Intenupting Execution ............................................... V -7-11 
Adding and Removing Group Instances ................................. V -7 -11 
Modifying the Appearance of a Fonn. ................................... V-7-12 
Inquiring About an Element, Fonn Sheet, and Fonn Status .................. V -7-13 
Inquiring About the Last Edited Sheet Element and Input Event .............. V -7 -14 

Summary ............................................................. V-7-14 

Programming with Forms V-7-1 



This chapter describes how to use the procedural interface of the fonn service to control and 
modify fonns before and during their execution. You should read V-5.3 before reading this 
chapter. 

Packages Required: 

Form Defs Defines types and constants used by the Form_Handler package. 

Form Handler Provides calls to process, control, and change fonns. 

V-7.1 Creating Executable Forms 
Developing an executable fonn involves: 

• Designing a fonn 

• Generating a fonn description with the fonn editor (edit. form) or create. form 

• Creating and binding a message fue 

• Writing an application to execute a fonn 

• Writing processing routines, key catchers and key lists, as needed 

• Testing the fonn with the application. 

The following procedure is recommended for accomplishing the above steps. 

Step 1 - Design the Form 

Determine the primary design considerations related to the physical layout and the logic con
trolling the execution of the fonn. These considerations may include: 

• Names and locations of sheet elements 

• Specifications for subfonns, groups and piles 

• The logic defIDing the network of paths 

• Specifications for key catcher regions 

• Functional descriptions of processing routines and key catchers including parameter 
specifications and Form_Handler calls. 

If the fonn to be designed is based on a record description and can be executed sequentially 
without requiring any logic decision, no path logic considerations need be detennined. The 
fonn editor provides a default path network. create. form also automatically provides a 
rudimentary, sequential, nonbranching path to the fonn. 

Step 2 - Create the Form 

Use the fonn editor, create. form or the DDef procedural interface to create a fonn 
description. 

Step 3 - Test the Form 

Use test. form to test and debug the execution logic, the validity of processing routine and 
key catcher calls, and the validity of the contents of fields. 

Step 4 - Create a Message File 

Use manage .messages to create a message file for the application program. This file can 

V-7-2 Programming with Forms 



be used for local and global help messages triggered by the <help> key, and for messages 
generated by processing routines and key catchers. 

Step 5 - Bind the Message File 

For a stable set of forms, use install. outside_environment to bind the message file 
to the application program. (More volatile form applications may handle messages directly.) 

Step 6 - Write an Application Program 

A form is called by a high-level language program. 

Step 7 - Write Subroutines, Translation Tables and Key Lists 

Write processing routines and key catchers referenced in the form design. Use the translation 
table editor to create any translation tables needed in addition to the default translation table 
provided by the Form_Handler. (Translation tables map the ASCII sequences generated by 
input devices to symbolic keys.) 

Step 8 - Test the Form with the Application 

Use test. form to again test the form. Include desired debug features in the application 
program, processing routines, and key catchers. 

Step 9 - Create a Window 

To execute a form, this program must create a window for the form to execute within. A 
window must be provided before a form can be opened. Therefore, the application program 
calls Window Services. Create window or - -
Window_Services. Ops. Create_window to provide a window for the form. 

V-7.2 Command Language Variables 
The following list contains the names, descriptions, types,· and initial values of the CL 
(Command Language) variables used by the form service. CL variables affect the appearance 
and performance of the form editor and Form_Handler. See the BiiNTM Systems Form 
Editor Guide for instructions on setting a screen field so that it can accept a CL variable as 
input and for a description of the CL variables used to make general adjustments to the form 
editor. The scope of each of the variables may be: 

H - Evaluated by the Form_Handler. 

E - Evaluated by the fonn editor. The variables are valid 
throughout the editing session or are relavant only in the 
initialization phase. 

D - Evaluated by the form editor. These variables provide 
default values for editor adjustments which may be changed 
during an editing session. 

See V-I for a general discussion of CL variables. 

form. decimal character 
Character which will be displayed and accepted as the decimal symbol. 
The possible values are Form_Defs .point and Form_Defs. comma. 

Scope: H, D 
Type: string 

Initial Value: "." 

form. insert mode 
Input mode set when the user starts to edit a new fOnTI. If true, mode is 

Programming with Forms V-7-3 



insert, else the mode is overwrite. The value of this variable can be 
toggled with the <insert overwrite> key. 

Scope: 
Type: 

Initial Value: 

form. visual bell 

H, E 
boolean 
true (insert) j 

Indicates whether signals sent to the tenninal will be visual or audible. If 
true, signal is visual, else the signal is audible. 

Scope: 
Type: 

Initial Value: 

H, D 
boolean 
false (audible) 

form . key_map Symbolic name of the translation table that is used by the 
Form_Handler to translate incoming characters into symbolic keys. If 
null, a standard, internal translation table is used. 

Scope: H 
Type: string 

Initial Value: null 

form. expansion step 
Contains the number of characters by which a variable-length, al
phanumeric field will expand horizontally when the present size is ex
ceeded by data being entered into the field. 

Scope: 
Type: 

Initial Value: 

H, E 
integer 
1 

form. escape character 
- The character which is used as the escape symbol in a fonnat string. See 

the BiiNTM Systems Form Editor Guide for infonnation concerning fonnat
ting screen fields. 

Scope: 
Type: 

Initial Value: 

H, D 
string 
\ (backs lash) 

form. editor key map 
- Symbolic name of the translation table used by the fonn editor to translate 

incoming characters into symbolic keys. If null, a standard, internal trans
lation table is used. 

Scope: E 
Type: string 

Initial Value: null string 

form.window-position_line 
Line number of the upper-left position of the Info window. The upper line 
of the Main window depends on the CL variable 
form. info window lines and the upper line of the Message win
dow is likewise dependent on the values of 
form. info_window_lines plus form.main_window_lines. 

Scope: E 
Type: integer 

Initial Value: 1 

form.window-position_colurnn 
Column number of the upper-left position of the Info window. 

Scope: E 
Type: integer 

Initial Value: 1 

V -7 -4 Programming with Forms 



form. window columns 
- Width in columns of the three editing windows. 

Scope: E 
Type: integer 

Initial Value: 80 

form. info window lines 
Number of lines in the Info window. 

Scope: E 
Type: integer 

Initial Value: 10 

form.main window lines 
Number of lines in the Main window. 

Scope: E 
Type: integer 

Initial Value: 10 

form.message window lines 
- Number of lines in the Message window. 

Scope: D 
Type: integer 

Initial Value: 1 

form.pop up message window 
- - Detennines whether the Message window will open and close upon the 

receipt of a message or stay open. If true, a Message window is opened 
each time a message is to be displayed, and closed when input is entered 
into any of the editor windows. 

Scope: D 
Type: boolean 

Initial Value: false 

form.editor adjustments 
- Symbolic name of the form editor adjustments object. This object contains 

adjustments that affect the appearance and operation of the fonn editor. 
Adjustments may be made and saved with the fonn editor. If this string is 
null, default adjustments are used. 

V-7.3 Form Utilities 

Scope: E 
Type: string 

Initial Value: null string 

The following utilities are provided to automatically create a simple, standard fonn, to test a 
fonn, and to map symbolic keys to specific tenninals: 

• test. form 

• create. form 

• Translation tables editor. 

test. form interactively tests and debugs fonns. It provides the following functions: 

• Identifies any missing processing routines or key catchers. 

• Provides infonnation about fields. 

Programming with Forms V-7-5 



• Displays and permits changing the contents of fields. 

test. form displays and executes a form. When during execution of the form a processing 
routine or key catcher is found to be missing or a field's contents are invalid, execution is 
suspended and a message is displayed. The form tester may change or change the contents of 
fields. 

The form tester may change the value of the predefined path registers destination and 
nextJ>ath_element while the form is executing. It is not possible, however, to modify 
the path. 

When form execution is terminated, status information for the form displays. 

create. form automatically generates the most simple, default form design based upon the 
description of the associated data record. This utility is called with the name of a record 
description and the name to be given the new form. It can be used with the form editor to 
customize a fom. 

V-7.4 Editing Translation Tables 
Translation tables map the ASCII sequences generated by input devices to symbolic keys by 
associating a raw key (a sequence of keystrokes) with a symbolic key. Translation tables can 
be created and edited with the translation tables editor]. A translation table is required for each 
terminal on which a form will be executed thus providing terminal independence. 

One default translation table is always associated with the Form_Handler. See 
Form_Defs for a description. of the elements of this default translation table. 

V-7.5 Techniques 
After reading this section, you will be able to: 

• Open, execute, and close a form 

• Insert data into a form and retrieve data from a form 

• Alter the order of execution 

• Add and remove group instances before and during execution of a form 

• Modify the appearance of form elements 

• Retrieve information about the state of a form. 

The sample code segments are excerpted from the Inventory_Forms_Ex example pack
age. 

V-7.5.1 Opening and Closing Forms 

V-7-6 Programming with Forms 



rK~LIM1NAKY 

Calls Used: 

Form Handler.Open form 
- OpenS a fonn. 

Form Handler.Close form 
- Closes a form. 

The application program opens the fonn with Open_form. Then the fonn can be activated for 
dialogue. The status of the fonn is set to initialized, and defaults are assigned to the 
fonn element values. Close_form deallocates the opened form. The following excetpt 
shows a fonn being opened and closed: 

40 opened_form: Form_Defs.opened_form_AD; 

44 opened form := Form Handler.Open form ( 
45 DDef => DDef from untyped( -
46 Directory-Mgt.Retrieve( 
47 name => form_pathname»); 

[form is executed] 

191 Form Handler.Close form ( 
192 opened_form_a ~> opened_form); 

V-7.S.2 Executing Forms 

Calls Used: 

Form Handler.Get 
- Executes a fonn (displays the fonn and accepts input from the user). 

Form Handler.Compute 
- Executes a form without displaying the form or requiring input 

Form Handler.Put 
- Displays a form without executing it. 

When Get is called, the fonn sheet is displayed and the form awaits user input The opened 
fonn must have status initialized, suspended, or input_required. This is the 
most common method for executing a form as shown in the following example code: 

236 
237 form status := Form Handler.Get( 
238 opened form a -=> opened form, 
239 opened-window a => Inventory Windows. 
240 - - main_window) ; 

Compute executes a fonn similar to Get but does not display the form or require input. 
Execution is suspended if input is required by a field. This call can be used to validate screen 
field values which receive their values from processing routines rather than user input. 

Pu t displays a form while refusing user input. It is commonly used for displaying forms on 
output-only devices such as printers, or for displaying forms on terminals when no input is 
required. 

Programming with Forms V-7-7 



V-7.5.3 Setting and Resetting the Initial State of a Form 

Calls Used: 

Form Handler.Set initial state 
Sets-the status of the fonn to initialized and marks the current con
tents of the screen fields and enumerations as initial values. 

Form Handler.Reset form 
- Resets a fonn to the same state as immediately after its last initialization. 

Form Handler.Clear 
- Clears a fonn from the screen. 

Set_initial_state sets the status of the fonn to initialized and sets the current 
contents of the fields, the current number of instances of groups, and the current display at
tributes of fields and texts at their initial values. 

Initial values are particularly significant under the following conditions: 

• If the <reset> key is entered (or Reset form is called) while the fonn is executing, 
the fields, group instances, and display attnbutes of fields and texts are reset to their respec
tive initial values. 

• If there is more than one data entry sequence defmed by the network of paths, 
Form Handler uses the initial values as necessary to keep the fonn consistent with it
self. For example, the fonn user may enter data into all the fields of a path, then use 
symbolic keys to return to an earlier field in the path and change its value. If the user then 
causes execution to proceed along another path, Form_Handler implicitly resets the con
tents of the fields, group instances, and display attributes of fields and text in the first path 
to their initial values. 

Reset_form returns a fonn to the state immediately after its last initialization. The last 
initialization may have been perfonned implicitly with Open_form or explicitly with 
Set_initial_state. See the Interrupting Execution section for an example of 
the use of this call. 

- Clear removes a fonn sheet from the window usually in preparation for a new operation. 
The status of the fonn remains unchanged. 

702 
703 Form Handler.Clear( 
704 opened_form_a => opened_form); 
705 
706 Form Handler.Close form ( 
707 opened_form_a ~> opened_form); 

V-7.5.4 Inserting, Storing, and Deleting the Contents of Screen and Data 
Fields 

V-7-8 Programming with Forms 



I'KELIM1NAK Y 

Calls Used: 

Form Handler.Store value 
- Sets the value of a screen field, data field or enumeration element. 

Form Handler.Fetch value 
- Retrieves the value entered into a screen field, data field or enumeration 

element. 

Form Handler.Delete value 
- Empties a screen field, data field, or enumeration. 

Store_value assigns a value to a screen field, data field, or enumeration. If the fonn is 
displayed, the new values of screen fields appear on the screen. 

276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 

Form Handler.Store value( 
opened form a - => opened form, 
element - => desc fIeld, 
subunit => System Defs.null text, 

-- added subunit; value-correct? -
value buffer VA => 

parts record.desc'address, 
value length => 

parts record.desc'size/8, 
value t - => 

Data_Definition_Mgt.t_string}; 

Fetch_value retrieves the value entered into a screen field, data field or enumeration ele
ment. 

249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 

Form Handler.Fetch value( 
opened form a - => opened form, 
element - => part ID field, 
subunit => System Defs.null text, 

-- added subunit; value correct? -
value buffer VA => part ID'address, 
value-length- => part-ID'size/8, 
value-t =>-

Data Definition Mgt.t string, 
element value length => length, 
empty - - => empty}; 

if empty then 
-- null part_ID; return to menu 

Delete_val ue removes the value of a screen field, data field, enumeration which are con
tained in an associated record description, and which have a representation for the null value 
defined. 

V-7.5.5 Controlling the Execution Path 

A fonn will execute according to the network of paths defined when the fonn is created or 
modified. This network of paths may contain branches controlled by processing routines 
which detennine the next executable element depending upon the value of entered or cal
culated data. Explicit control over the execution path is provided by Set_destination. 

Programming with Forms V-7-9 



Calls Used: 

Form Handler.Set destination 
Stores a path element name in the destination path register. 

Set_destination stores a path element name in the destination path register. If the 
path element is a successor of the current path element, all path elements up to the specified 
path element are executed. If the specified path element is a predecessor of the current path 
element, execution of the fonn starts again with the first path element of the form and con
tinues to the specified element. A boolean may be set to indicate whether processing routines 
are to be executed. 

The nextyath_element path register, unlike destination, cannot be modified 
directly by the application or by Form_Handler but can be modified by a processing 
routine. 

V-7.S.6 Processing Routines and Key Catchers 

A subroutine (processing routine or key catcher) is added to a form with the form editor. The 
form editor incorporates a subroutine into a form by specifying a subprogram interface for the 
subroutine. To generate the subprogram interface, the editor requires: 

• Programming language 

• Name of the subprogram interface 

• in parameters 

• out parameters 

• Link option. 

V-7.S.7 Defining a Processing Routine 

V-7-10 

A processing routine is added to a form by defming the following items with the fonn editor: 

• Name of the processing routine call 

• Subprogram interface 

• Name of the referenced form element 

• in parameters 

• out parameters. 

next yath_ element is an out parameter that specifies the name of a path element of the 
currently executed subfonn or form, and is stored in the nextyath_element predefmed 
path register. A processing routine with more than one direct successor must have this 
parameter. Processing routines with only one successor must not specify this parameter. 

terminal_input, an optional in parameter, ~s an actual value of a byte string that is 
interpreted as a sequence of symbolic keys and inserted into the stream of input keys replacing 
the last key processed. This parameter references an internal queue where symbolic keys 
arriving from the keyboard are stored. A processing routine can write directly into this queue 
to simulate user input. 

Programming with Forms 



When a processing routine call is reached during the execution of a fonn, Form_Handler 
calls the processing routine specified by the corresponding subprogram interface. The same 
processing routine can be called from several locations within a fonn's network of paths. 

V-7.S.8 Defining a Key Catcher 

A key catcher is added to a fonn in the same way as a processing routine except for the 
additional following items: 

• Key list 

• Region of effectiveness. 

A key list is created by the fonn editor and contains the keys to be caught by a key catcher. 
The region of effectiveness is a screen field, enumeration, subform or group to which a key 
catcher is assigned. 

trigger_key is an in parameter which receives the value of the symbolic key that triggers 
the key catcher. It references a predefined Form_Handler register. This register enables the 
key catcher to inquire as to which key contained in the associated key list caused the call. 

V-7.S.9 Interrupting Execution 

Besides altering the execution path, the application may also stop execution. With the next 
two calls, execution can be arbitrarily terminated, or halted. These calls can only be made by 
processing routines or key catchers. When the processing routine or key catcher returns, the 
application again gains control. 

Form Handler.Abort form 
- Aborts execution of a fonn. 

Form Handler.Suspend form 
- Suspends execution of a fonn. 

Abort_form halts and exits the execution of a form. All data entered during the current 
execution of the fonn is lost. This call can be made indirectly by pressing the <abort> key. 

Suspend_form suspends execution of a form without losing the currently entered data and 
awaits a status change before execution is resumed. Suspend_form can only be called by a 
processing routine or a key catcher. The execution of the form is suspended when the calling 
processing routine or key catcher returns, and the application gains control. The application 
must call Get to resume execution of the form. 

V-7.S.10 Adding and Removing Group Instances 

The number of group instances required for any given execution of the fonn can vary accord
ing to the value of data entered. Therefore, the next two calls provide a means for increasing 
and decreasing the number of instances of a group prior to or during the execution of a form. 
When a fonn is created, a default number of instances is assigned to each group. This number 
may be changed dynamically with Create_group _instance and 
Remove_group_instance. 

Programming with Forms V-7-11 



Calls Used: 

Form Handler.Create group instance 
- Creates group instances. 

Form Handler.Remove group instance 
- Removes group instances. 

The following code shows creating a group instance. 
808 begin 
809 -- Add another instance of the supplier 1D group. 
810 Form Handler.Create group instances( 
811 opened form a - => opened form, 
812 group - - => suppliers field, 
813 nUmber_of_instances => 1}; -
814 
815 exception 
816 when Form_Handler.maximum_number_reached => null; 
817 
818 end; 

In this example, the Supplier ID is a group of three instances. The first instance is dis
played when the field is executed (default instances = 1). Entering a supplier 10 and pressing 
the <return> key advances the cursor to the next screen field. If this part ID has a second 
supplier, the user presses the <next> key to display a second group instance. After the third 
group instance is displayed, the form selVice knows that this group has a maximum of three 
instances and will continue with the next path element regardless of the key pressed. This code 
segment is called by a key catcher which is triggered by the <next> key. 

V-7.S.11 Modifying the Appearance of a Form 

Screen fields, enumerations and text can be given the following display attributes: 

• inverse video 

• underline 

• half-bright 

• blinking 

• blank fill 

• text color (color tenninal only) 

• font index (graphics tenninal only) 

• concealment (contents of a field are not displayed). 

Any of these attributes may be changed, or reset to their initial values. 

Calls Used: 

Form Handler.Change display attributes 
- Changesthe display attributes of a screen field, enumeration, or text. 

Form Handler.Restore display attributes 
- Restores the display attributes of a screen field, enumeration, or text. 

V-7-12 Programming with Forms 



Display attributes include: 

• inverse video 

• underlining 

• half-bright 

• blinking 

• blank fill 

• font index 

• concealing (not displaying) the contents of a field. 

An example use of these two calls is to blink. a field's contents to alert the user that the entered 
data is erroneous and must be reentered. The field is restored to its original attributes after the 
user enters a valid value. 

V-7.S.12 Inquiring About an Element, Form Sheet, and Form Status 

An application can more effectively control the execution of a fonn when it is able to access 
the identity and current state of fonn elements. The availability of infonnation about the fonn 
sheet during execution ensures that device-dependent considerations stay transparent to the 
user. Fonn status and other current state infonnation gives a valuable snapshot of the execut
ing fonn. All this infonnation is made available to the application.by the following calls. 

Calls Used: 

Form Handler.Get current number of group instances 
- Gets-the current number ofinstances of a group. 

Form_Handler.Get_current-path_element 
Gets the name and type of the path element currently being executed. 

Form Handler.Get current subunit 
- Gets-the pathname of the current subunit. 

Form Handler.Get element info 
- Returns infonnatlon about an element. 

Form Handler.Get index sequence of current subunit 
- Gets-the index of each subUnit (group instances and subfonns) comprising 

the current subunit 

Form Handler.Get last edited sheet element 
- Getsthe pathname of the last edited screen field or enumeration. 

Form Handler.Last input event 
- Gets mronnation about the last input event. 

Form Handler.Get selected sheet element 
- Getslnfonnation about thesheet element selected by the last mouse event. 

Form Handler.Get sheet info 
- Returns information about the currently displayed fonn sheet. 

Form Handler.Get status info 
Returns infonnation about the status of a fonn. 

Programming with Forms V-7-13 



rl<~L.l1V1.l1'lllli\.K I 

Get_element_info returns the type of the element and whether the contents of the ele
ment have been changed since the last initialization. 

Get_sheet_info returns size infonnation about the currently displayed fonn sheet and 
whether it is designed to be displayed on a character or graphics terminal. 

Get_selected_sheet_element returns similar infonnation as Get_element_info 
except that the element is selected by a mouse event. This call is used by key catchers which 
catch mouse events. 

This infonnation is typically evaluated by the application program when the execution of a 
fonn is suspended or aborted. 

V-7.5.13 Inquiring About the Last Edited Sheet Element and Input Event 

These calls return infonnation identifying a previous action. 

Calls Used: 

Form Handler.Get last edited sheet element 
ProVIdes the fonn network patiiiiame of the screen field or enumeration 
last edited. 

Form Handler.Get last input event 
- RetUrns the type of the last input event. 

Get_Iast_edited_sheet_element returns the form networkpathname of the last 
screen field or enumeration that was edited. This call is commonly used by processing 
routines to aid in detennining which successor to choose as the next path element. 

Get_last_input_event returns the type of the last input event. This call is used 
similarly to get_Iast_edited_sheet_element. 

V-7.6 Summary 
• Form_Handler enables an application to dynamically control a fonn. 

• After a form has been created, it can be executed and controlled by Form Handler calls 
which perfonn the following functions: -

- Open and close a fonn 

- Execute a fonn 

- Insert and store data 

- Modify the order of execution 

- Add and remove group instances 

- Modify the appearance of the fonn 

- Inquire about the state of the fonn. 

• Developing an executable fonn involves: 

V-7-14 Programming with Forms 



- Designing a fonn 

- Generating a fonn description 

- Creating and binding a message file 

- Writing an application to execute the fonn 

- Writing processing routines, key catchers and key lists, as needed 

- Testing the fonn with the application. 

• The following steps comprise a recommended procedure for accomplishing these tasks: 

Step 1 - Design a Fonn Layout. 

Step 2 - Create the Fonn. 

Step 3 - Test the Fonn. 

Step 4 - Create a Message File. 

Step 5 - Bind the Message File. 

Step 6 - Write an Application Program. 

St~p 7 - Write Subroutines, Translation Tables and Key Lists. 

Step 8 - Test the Fonn with the Application. 

Step 9 - Create a Window. 

• A screen field can be set to accept a CL variable as input. 

• The following utilities are provided to automatically create a simple, standard form, to test 
a form and to map symbolic keys to specific tenninals: 

test.form 

- create.form 

- Translation tables editor. 

Programming with Forms V-7-1S 



V-7-16 Programming with Forms 



GENERATING REPORTS 8 
Contents 

Concepts ............................................................... V -8-2 
Report Olaracteristics ................................................ V -8-2 
Control Groups ..................................................... V-8-5 
Representation of Report Descriptions ................................... V -8-6 
Creating and Modifying a Report Description ............................. V -8-7 
Report CL Variables ................................................. V -8-9 
Printing a Report From the Command Line .............................. V -8-11 

Techniques ............................................................ V -8-11 
Printing a Report From Your Program .................................. V -8-11 
Setting Global Assignments ........................................... V -8-13 

Summary .............................................................. V -8-14 

Generating Reports V-8-1 



V-S.1 Concepts 
This chapter discusses the ways to create and modify a report description and print a report. 

Packages Used: 

Report Handler 
- Provides calls for initializing and printing a report. 

A report is a printed or displayed document containing labelled data, often presented in hierar
chical groups with subtotals and totals. A simple report is shown in Figure V-8-l. 

INVENTORY REPORT 

Part ID Description Location Unit 

1234567 wiring harness 13-B27 each 
3512734 1/2" aluminum conduit 02-F12 feet 
4766117 5/16" hex carriage bolt 07-A02 lb 
7689482 flexible control cable 06-C13 inch 

Figure V-8-l. Sample Report 

V-S.1.1 Report Characteristics 

V-8-2 

A report is made up of various combinations of the following report parts: 

• Report heading 

• Report footing 

• Page heading 

• Page footing 

• Control group footing 

• Control group heading 

• Record print layout. 

A typical report consists of one or more pages of data, a report heading, and a report footing 
(see Figure V-8-2). 

Generating Reports 



Report 
Footing r;;t page--l 

, ••• t. ••••••••• , 

,.._1 ____ , 
I ith page I 

. I 
~..J 

~ ••• L ••••••••• ! ~ .... 
. : I 

~_I ____ ., ~..J 

I first page I 
I .... ; 

Report 
Heading 

I 

Figure V -8-2. Page Series of a Report 

The report heading prints on a separate page and may contain explanatory information similar 
to the title of a book or the burst page of a print job. The report footing may print on the last 
page or a separate page and can contain summary statistical infonnation pertaining to the 
report. Both are optional. . 

Data appears on the report pages other than the report heading and footing pages. The layout 
of a page is defined by the page body area shown in Figure V -8-3. 

Generating Reports V-8-3 



V-8-4 

r-
I 
I 
I 
I 
I 
I 
I 
I 
I 

page 
length 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 't.. __ 

r- - - -- -page width - - - - -, 

I I 

Page Heading 

(date. page number, table heading) 

Page Body Area 

(Record print layouts, 
Control group headings and 

Control group footings) 

Page Footing 

(statistics) 

Figure V -8-3. Parts of a Report Page 

heading 

page 
body 
lines 

footing 

A page header typically contains the date, page number, and headings for the columns of data. 
The page footer typically contains statistics or is empty. Both are optional. 

The record print layout defines how the records are to be printed. This layout includes infor
mation about: 

• the record fields selected for printing 

• additional, explanatory information 

• user-defined expressions 

• position, display attributes, and formatting of the record fields. 

The page body area contains one or more kinds of items defined by the record print layout: 

• A data corresponds to a field of the record from which the report is derived. It contains a 
reference to this field and all information about the layout of the data. When the detail is 
printed, the content of the corresponding record field is printed. 

• Computed data contains a mathematical expression. The expression may contain 
references to data in the same report part or in another report part. It contains all infor
mation about the layout of the data. When the report is printed, the expression is calculated 
and the result of the calculation is printed. 

• A text represents an explanatory text string. 

The data in the page body area may be an unstructured stream of records or may be structured 
in groups of records framed by intermediate headings and footings called control groups. The 
records within control groups have in common a particular field which contains the same 
value. 

Generating Reports 



Figure V -8-4 illustrates control groups in three consecutive pages of a report. Two control 
groups are defined. Control group 2 is nested within control group 1. The 
dominant/subdominant relationship of the control groups defines the control hierarchy . 

.-----. Page Heading 

Control Group Heading 1 

I Control Group Heading 2 

• • • 

I Control Group Footing 2 

I Control Group Heading 2 

••• 

Page F aotlng L _____ --I 

Page 1 

.-----. Page Heading 

• •• 
I Control Group Footing 2 

I Control Group Heading 2 

• •• 

J Control Group Footing 2 

Control Group Footing 1 

Control Group Heading 1 

I Control Group Heading 2 

• •• 
I Control Group Footing 2 

L ~~e ~~g_ --I 
Page 2 

. -----. 
Page Headin g 

I Control Group Heading 2 

• • • 

I Control Goup Footing 2 

Control Group Footing 1 

Page Footing L _____ --I 

Page 3 

Figure V-8-4. Report With Nested Control Groups 

V-S.1.2 Control Groups 

Records printed in the page body area can be grouped into control groups. If a stream of 
records contain groups of records having at least one field with the same value, this collection 
of records can be printed as a group. The field with the common value can be designated as a 
control group field. 

Control groups may be nested. When nested, control groups define a hierarchical structure 
called the control group hierarchy that controls the sequence of printing the records. 

Each time a record of the file is read, the contents of all control fields are evaluated. The 
change of the value of a record field designated as a control field causes a control break. On a 
control break, printing is suspended until the following actions have been perfonned: 

• All control group footings are printed beginning from the lowest level of control group 
hierarchy up to the level associated with the highest level of the control field which caused 
the control break. 

Generating Reports V-8-5 



• All control group headings are printed beginning from the level associated with the highest 
level of the control field which caused a control break down to the lowest level. 

Figure V-8-5 shows a report with control breaks on the location field of the Parts Master 
File record of the Inventory Program example. The Cost column is dermed as computed data 
which is the product of qty_on_hand (not reported) and ave_unit_cost (not reported). 

Date: 12/31/87 Inventory Location Report Page: 1 

Location Part 1D Description Unit Cost 

02-F12 3512734 1/2"' aluminum conduit feet 121.98 
3571998 5/8" aluminum conduit feet 317.69 
3521195 3/4" aluminum conduit feet 79.50 

Total: 519.17 

07-A02 4766117 5/16" hex bolt lb 17.69 
4619984 3/8" stove bolt lb 37.55 
4722390 1/2" crenellated nut lb 7.05 

Total: 62.26 

Grand Total: 581. 43 

Figure V -8-S. Report With Control Breaks 

V-S.1.3 Representation of Report Descriptions 

V-8-6 

A report description is composed of report parts. Figure V -8-6 shows an example of the report 
parts that are combined in a report description. 

Generating Reports 



r--------

Control 
Hierarchy 1 

Heading 

Control 
Hierarchy 1 

Footing 

Control 
Hierarchy 2 

Heading 

Control 
Hierarchy 2 

Footing 

Report 
Heading 

Report 
Footing 

Page 
Heading 

Page 
Footing 

Record 
Print Layout 

------ ........ ---- ........ ---- ........ --::::: 
L _______ _ 

"" --"" ---",,----
~--

Figure V -8-6. Report Parts of a Report Description 

----

The report sexvice requires a record DDef that describes the data to be printed. The record 
DDefcan be created using Data_Definition_Mgt, or an existing record DDeffor a fue 
can be used. 

V-8.1.4 Creating and Modifying a Report Description 
Three methods are available for creating and modifying report descriptions: interactively with 
edi t . report, dynamically with create. report, and procedurally using 
Data_Definition_Mgt. The report editor, edit. report, is the most commonly used 
method. create. report is the easiest method for generating a simple report. 
Data_Definition_Mgt is the most fundamental and complex method and is primarily a 
tool for utility writers. 

Application programmers will normally use edit. report to create a report description. 
Report descriptions can also be created procedurally using Data_Definition_Mgt, al
though this method requires a detailed understanding ofDDefs. This low-level procedural 
interface is mainly of interest to implementors of utilities such as edit. report. 

The report editor, edit. report, is an interactive utility for creating and modifying report 
descriptions. Upon successful completion of a report design or update, the report editor 
generates a report description that can be used to print the report. See the BiiNTM Systems 
Reports Guide for detailed information on report editor. 

Generating Reports V-8-7 



V-8-8 

create. report automatically creates the most simple, default report design based upon the 
description of an associated data record. See the BiiN

TU 
Systems Reports Guide for instructions 

on using this editor. The layout of a standard report page i~ shown in Figure V-8-7. 

System Date I 
Page Heading 

Field a ••• Field i 

Field a (1) ••• Field i (1) 

Field a (2) ••• Field i (2) 

• • • 
Field a (m) ••• Field i (m) 

• • • 

Page Footing 

I Page Number 

••• Field n 

• •• Field n (1) 

• •• Field n (2) 

••• Field n (m) 

heading 

page 
body 
area 

footing 

Figure V -8-7. Layout of a Standard Report Page 

The report parts for a standard report assume the following default properties: 

Record print layout The data of the record print layout is taken from the corresponding fields 
of the record. 

Within the page body area, the data is printed line by line (according to the 
records read) and positioned beneath the matching column. 

The width of a column is detennined by the length of the name of the field 
in the heading and by the length of the field (by the fonnat string for 
numeric fields), whichever is larger. The smaller one is centered within 
the column. 

Default fonnats for numeric and date data are shown in Table 4-1. 

Table V -8-1. Standard Report Default Formats 

Default Fonnat Type 

-zzzzzzzzz9 int4 

-zzzzzzzzzzzzzzzzzz9 int8 

-9.9999999999E-99 rea18 

yyyy-mm-dd date 

Numeric fields are right-justified; byte string fields are left-justified. 

Control group hierarchy 
When the report is associated with a variant record, control hierarchies are 
defined by the standard layout for readability. 

Generating Reports 



If the record description does not contain variant parts, no control group 
hierarchy is defmed. 

Control group headings 
No control group heading is defined. 

Control group footings 
No control group footing is defined. 

Page heading The page heading prints the date on the left and the current page number 
on the right. A tabular heading line is printed in the third line of the 
heading. For variant records, the tabular heading line reflects the contents 
of the first record to print on any given page. 

Page footing The page footing is defined as a single, empty line. 

Report heading and footing 
The report heading and footing are not defined. 

V-S.1.5 Report CL Variables 

The following lists contains the names, descriptions, types, and initial values of the CL 
(Command Language) variables used by the report service. CL variables affect the appearance 
and performance of the report editor and report handler. See the BiiNTM Systems Reports Guide 
for instructions on the use of CL variables. See V-I for a general discussion of CL variables. 

The scope of a variable is defmed as E or D. E means that the variable is valid throughout the 
editor session or is only relevant in the initialization phase. D means that the variable provides 
default values for editor adjustments which may be changed during an editor session. 

Report Editor-Specific CL Variables 

report.editor_key_map 
Symbolic name of the translation table that is used by the report handler to translate incoming 
characters into symbolic keys. If null, a standard, internal translation table is used. 

Scope: 
Type: 

Initial Value: 

E 
string 
null string 

report.window~osition_line 

Line number of the upper-left position of the Info window. The upper line of the Main win
dow depends on the CL variable report. info_window_lines and the upper line of the 
Message window is likewise dependent on the values of report. info_window_lines 
plus report .main_window_lines. 

Scope: 
Type: 

Initial Value: 

E 
integer 
1 

report.window~osition_column 

Column number of the upper-left position of the Info window. 
Scope: E 

Type: integer 
Initial Value: 1 

report.window_columns 
Width in columns of the three editing windows. 

Scope: E 
Type: integer 

Initial Value: 80 

Generating Reports V -8-9 



report.info_window_lines 
Number of lines in the Info window. 

Scope: 
Type: 

Initial Value: 

E 
integer 
10 

report.main_window_lines 
Number of lines in the Main window. 

Scope: E 
Type: integer 

Initial Value: 10 

report.message_window_lines 
Number of lines in the Message windowo 

Scope: D 
Type: integer 

Initial Value: 1 

report.pop_up_message_window 
Determines whether the Message window will open and close upon the receipt of a message or 
stay open. If true, a Message window is opened each time a message is to be displayed, and 
closed when input is entered into any of the editor windows. 

Scope: D 
Type: boolean 

Initial Value: false 

report.editor_adjustments 
Symbolic name of the report editor adjustments object. This object contains adjustments that 
affect the appearance and operation of the form editor. Adjustments may be made and saved 
with the form editor. If this string is null, default adjustments are used. 

Scope: E 
Type: string 

Initial Value: null string 

General CL Variables Used by the Report Editor 

form. decimal character 
Character which will be displayed and accepted as the decimal symbol. The possible values 
are Form_Defs .point and Form_Defs. comma. 

Scope: D 
Type: string 

Initial Value: "." (point) 

form. escape_character 
The character which is used as the escape symbol.in a format string. See the BiiNTM Systems 
Reports Guide for information concerning formatting screen fields. 

Scope: D 
Type: string 

Initial Value: \ (backslash) 

form. visual bell 
Defmes whether the editor user will be informed visually or audibly of incorrect input. If true, 
the signal is visual, else the signal is audible. 

Scope: D 
Type: boolean 

Initial Value: false (audible) 

V -8-10 Generating Reports 



user.verbose 
Indicates whether status messages should be displayed. 

Scope: 
Type: 

Initial Value: 

user.language 

o 
boolean 
false (not displayed) 

Defmes whether the editor user will be infonned visually or audibly of incorrect input. If true, 
the signal is visual, else the signal is audible. 

Scope: 0 
Type: string 

Initial Value: null string 

msg.long_text 
Used by the message service to detennine whether the long or short version of a message is to 
be used. 

Scope: 0 
Type: boolean 

Initial Value: false (short) 

V-S.1.6 Printing a Report From the Command Line 

print. file is a general purpose utility with which reports can be printed or displayed. It 
reads the input fue and writes the report to a spool queue. See the BiiNTM Systems 
Administrator's Guide for more infonnation about this utility. 

V-S.2 Techniques 
After reading this section, you will be able to: 

• Print a report from your program 

• Optionally sort a file and print the sorted entries 

• Change global assignments. 

The examples used are excerpted from the Inventory_Reports_Ex example listed in 
Appendix X-A. 

V-S.2.1 Printing a Report From Your Program 

Calls Used: 

Report Handler.Initialize 
- Initializes a report for printing. 

Report Handler.Print 
- Prints an initialized report. 

Initialization associates a report description with an input device opened for record stream 
input, and an output device opened for character display output to which the report is printed. 
Report_Handler. Print prints an initialized report. 

Generating Reports V-8-11 



V-8-12 

The entire input stream is printed in input order; that is, by record number for relative files or 
by index for indexed files. The input file may be the entire, original file associated with the 
report description or a subset of this file. 

If the fue is an indexed fue, a subset of the original fue can be selected with 
Record_AM. Keyed_Ops calls. If the report control hierarchy fields differ from the key 
fields of which the file index is composed, then Sort_Merge_Interface. Sort can be 
called to generate a record stream with the required record order. 

The following sample code demonstrates the use of Report_Handler .Print in which a 
range of records is printed in indexed order. 

76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 

local-parts_file: Device_Defs.device:= 
Record AM.Ops.Get device object ( 

Inventory Files.parts file); 
AD to parts fIle. -

opened local parts file: 
Device Defs.opened device; 

-- AD to-locally opened parts file. 

part: System Defs.text(4) := (4,4,"part"); 
Paramete~ to "report printing" message, 
since this report is-by "part". 

begin 

-- Open parts file for reading, so no 
-- concurrent updates will interfere: 

opened local parts file := Record AM.Ops.Open( 
dev - => 10cal-parts_fIle, 
input output => Device Defs.input, 
al~ow- => Device=Defs.readers); 

Open output device: 

opened_output := Byte_Stream_AM.Open_by_name( 
name => 

output dev pathname, 
input output => 

Device_Defs.output); 

-- Get report definition (DDef): 

report DDef := DDef from untyped( 
Directory Mgt.Retrieve( 

name ~> report by part DDef pathname»; 
Assume "Report_Hanche~. Is_~eportn. 

-- Initialize report: 

initialized report := Report Handler.Initialize( 
description => report DDef, 
input => opened=local-parts_file, 
output => opened_output); 

-- Print report: 

Report Handler.Print( 
report => initialized_report); 

Generating Reports 

I~ 
\J 
~ 



131 -- Display "report_printing" message: 
132 
133 Message Services.Write msg( 
134 msg-id => report printing code, 
135 paraml => Incident Defs.message parameter( 
136 typ => Incident Defs.txt, -
137 len => part.length), ( 
138 typ => Incident Defs.txt, 
139 len => part.length, 
140 txt val => part), 
141 param2 => Incident_Defs.message-parameter( 
142 typ => Incident Defs.txt, 
143 len => output_dev-pathname.length) , ( 
144 typ => Incident Defs.txt, 
145 len => output_dev-pathname.length, 
146 txt_val => output_dev-pathname), 
147 device => Inventory_Windows.message_window); 
148 
149 
150 Close locally opened parts file: 
151 
152 Record AM.Ops.Close( 
153 opened_dev => opened_local_parts_file); 

The report service also implements record I/O as another method for printing reports. This 
method enables printing reports from applications written in languages such as COBOL that 
provide record I/O but do not support ADs. Using record I/O to print a report is similar to 
writing to a file. The application program opens a device specifying the report description. 
Each Insert call supplies a record to the report service. The report is sent to the application 
program's current output device; that is, the standard output specified in the process globals. 

The report service allows report descriptions for files which contain variant records. 

V-8.2.2 Setting Global Assignments 

Calls Used: 

Report Handler.Set global assigns 
- Assigns the error handling controls for an initialized report. 

Several global properties may be set by report editor. Two of these, error decision and line 
end decision, may be changed with Set_global_assigns. 

The error decision defmes the action to be taken when a numeric error (overflow, underflow, 
or division by zero) occurs during the evaluation of an arithmetic expression. Possible actions 
include: 

• Printing the error symbol (default is ?) instead of the erroneous value 

• Suspending the evaluation of the current item, and continuing printing with the next item 

• Tenninating the report (closing output and returning). 

The line end decision defines the action to be taken when the width of the mounted sheet is too 
small for printing the report lines. Possible actions include: 

• Printing the remaining characters on the next line 

Generating Reports V-8-13 



r Kr..LllY1.l1~.&K I 

• Discarding the remaining characters 

• Tenninating the report. 

V-S.3 Summary 

V-8-14 

The report selVice and related utilities provide methods for creating and modifying a report 
description and for printing a report. 

e A report is a printed or displayed document containing labelled data, often presented in 
hierarchical groups with subtotals and totals. 

• A report description is composed of report parts. 

• Methods for creating and modifying report descriptions include the report editor, 
create. report and the Data_Definition_Mgt procedural interface. 

• Methods for printing or displaying a report include Report_Handler. Print, 
pr int . file and record I/O. 

• Report Handler includes calls to associate a report description with an input and out
put device, print an initialized report and control error handling. 

Generating Reports 






