MEMORANDUM
 THE ÓPmelf CORPORATION
 BENDIX COMPUTER DIVISION

FROM:
Raymond Fillingim

We realize that the accompanying errata listing is rather lengthy. Also at some future date the pages incorporating errors will be reprinted. Therefore, the following method of handing these errata is suggested.

Instead of penciling in all of the corrections, you might prefer to simply mark the pages in error (being sure these marks are distinctive enough that they will not be missed in subsequent references to these pages). These marks will then remind you to refer to the accompanying list for corrections.

jj
Enc.

CHAPTERS 1 THROUGH 8
PAGE

LOCATION

2-6 Line 12

2-8 Operation Column of

Address Preparation Commands, 8th Formula

2-8 Operation Column of Add and Subtract Commands, 7 th Formula

2-8 Operation Column of	
	Add and Subtract
Commands, 8th Formula	

$\begin{array}{ll}\text { 2-8 Operation Column of } \\ & \text { Add and Subtract Tests } \\ \text { Commands, 5th Formula }\end{array}$

CORRECTION

Reads . . . PE register are set to zero.. Should Read . . . PE register are ignored . . .

Reads
Should Read $|X+(A C C)| \rightarrow(O A)$

Reads $\quad-\mathrm{X}+(\mathrm{ACC}) \rightarrow(O A)$
Should Read $|-X+(A C C)| \rightarrow$ (OA)

Reads $\quad X+(A C C) \overrightarrow{(A C C)}$
Should Read $|X+(A C C)| \rightarrow$ (ACC)

Reads $\quad-\mathrm{X}+(\mathrm{ACC}) \rightarrow(\mathrm{ACC})$
Should Read $|-X+(A C C)| \rightarrow(A C C)$

Reads $\quad-\mathrm{X}+(\mathrm{ACC})>0$
Should Read $|-X+(A C C)|>0$

PAGE
LOCATION

2－8	Operation Column of
	Add and Subtract Tests
	Commands，8th Formula

$2-8$

Note Under Register Opsazions，Last Line
$2-10$

2－10
$2-12$
$3-2$

3－2
$4-2$

Line 21
Line 6

Line 8

Lines 1 and 2

Reads
Should Read

Reads
Shosif Read

Reads
Should Read

Reads

Should Read

Reads
Should Re

Read
Shocid Read

Add

Reads
Should Read

Reads
Should Read

Reads
Should Read

Read

Should Read

CORRECTION

$$
\begin{aligned}
& X+(A C C)>0 \\
& |X+(A C C)|^{>}>0
\end{aligned}
$$

$$
31 X+(A C C, 0>0
$$

$$
3 i|X+(A C C)| 0>0
$$

$$
3:-X+(A C C) 0>0
$$

$$
3|\times X+(A C C)| 0>0
$$

＊The CA ryzizror can $E=r \leq a d$ or $1 y$ bw an ERO or ERA opcode． ＊T：CA T egister can oriy be zeed with an ERO of ERA opcode。 The PE register can orio be sed wioh tre LDR ppcode．

```
0.oforlismet.o
```



```
Bp=cif1ed 2Lock_EEgth is raacbedo
```

。o (2xarion (2 trecogt 53) 50
be cparared ono
- . Incatió (0 =hrough 63) -0
be opraasd oron

* Ar I tu=1d of 00 ir an Irdex
Commard specifīs msmor. loca=
tion 00000 , and ots Jocation
will be peratel or y_{0} these
commads。 Howerer, ar I field f
00 as ased with t^{2} = generai ca三e
of Opesand Assemoly indicates -0
index address is p ecified.
- o of the 3 index locatiors. 。
. . of the 64 index locations. .
- . discussed i- Par=IV0
-. $11 \equiv c=s \in d$ in VIme II,
。。。Chapter 12 of Part IV 。。。
- . Chaprer 12 of Volume II. .

The MA register starts the manory cycle whict brings the new com－ mand from memory and placesit in tre B
At tre stare of a memory cycle the new command is brought from memory and placed is the B

PAGE
4－2 Line 12 Reads

4－3	Line 16
4－3	Bottom of Page
4－6	Line 14
4－8	CD7 Column at Bottom $(\overline{9} \wedge \overline{8} \wedge \overline{6})$
4－8	$\begin{aligned} & \text { CD Decoding } 9 \wedge 8 \wedge 7 \wedge \\ & 6 \wedge 12 \wedge 11 \wedge \frac{10}{10} \end{aligned}$
4－15	Line 1

4－31 Line 26

4－33	Table 4．4－2，Bit
	Position 3 of J
	Register

4－34 Figure 4．4－3，Immediate Right of ULA and ULB

4－34 Figure 4．4－3，Immediate Right of UDA and UDB

4－34 Figure 4．4－3，Between UWA，UWB and JWA，JWB JWC，JWD

Reads

Should Read

Reads Should Read

Add

Reads
Should Read
Add

Reads
Should Read
Reads
Should Read

Reads
Should Read
Reads
Should Read

Reads
Should Read
Reads
Should Read
Reads

Should Read

CORRECTION

．．．register which starts the memory cycle which brings ．．． －．．register．The memory cycle now brings ．．．
．．．peripheral units ${ }_{2}$ control ．． ．．．peripheral units ${ }_{2}$ control．．
＊At the present time only the Central Processor is capable of receiving and acting upor inter－ rupts．Therefore，with present equipment，the Central Processor will transmit interrupts to another Central Processor only．

。．．locations 1 through 63） ．．．locations $\underline{0}$ through 63）．．

1

TiC 157
TLC 157

```
. . . the least 2 bits . . .
. . . the least sigrificant 2
bits . . .
```

－．Figure 4．3－2 it is seen ．． ．．．Figure 4．4－2 it is seen ．．

UWB

JWB

DATA word
LOGIC word
LOGIC word
DATA word
OUTPUT
INPUT
Interrupt Requests
TRANSMIT
RECEIVE
Interrupt Requests
Reads $\quad . \quad$ and Table 4．3－2．
Should Read $\quad . \circ$ and Table $\overline{4.4-2}$ ．
Reads ．．．is therefore forbidden。
Should Read ．．．is therefore forbidden。＊
4-38 Bottom of Page Add

5-1	Figure 5.1-1, Lower
	Right, Above D Register

Bottom of Page
Figure 4.4-6, Bottom

Right, Above D Register
Line 23

Bot
Add
Should Read

Reads Should Read

Add

Reads
Should Read

Reads
Should Read

Reads

Should Read

Reads
Should Read
*A negative zero exponent in the PE register is not detected by the hardware. It therefore becomes the programmer's responsibility to avoid this condition.

```
. . . necessary and sufficient
to . . .
. . . and sufficient . . .
```

B(L31)41D21
B(L21) 41D21
. . . double precision operation. double precision operation.*
*During index operations, the number to be stored is always shifted to zero exponent and truncated. Therefore, the EA(L21)B transfer, when used in an index operation, will always result in zeros being stored in 27B21.

- . operation is performed.
. . . operation is performed.
*Bits 30 and 31 of the B register are reset during a store zero operation, but this is accomplished by the M(0)31B0 transfer (the M register being cleared before the transfer).
. . . for a negative exponent,for a negative, non-zero exponent, . . .
-. . overflow (when a underflow (when a . . .
. . . exponent overflow condition 。 . .
. . . exponent underflow condition . . .
- . . For a positive exponent . . - . For a positive or zero exponent . . .

Line 19

5－6	Table 5．1－3，Under When Used Column，4th Line
5－6	Table 5．1－4，Title Box lst Line
5－6	Table 5．1－4，Last Line

LOCATION
Table 5．1－3，Under When Used Column，2nd Line

Table 5．1－4，Title Box 1st Line

Table 5．1－4，Last Line

Reads
Should Read

Reads Should Read

Reads
Should Read
Reads
Should Read

Add

Reads
Should Read

Reads
Should Read

Reads
Should Read
Reads
Should Read

Add

Read
Should Read

Reads
Should Read
．．．is negative
．．．is negative and exponent
is not zero ．．．
。．．is plus 。 。 ．
．．．is plus or exponent is
zero．．
．．．of Bits 31 through 27 ．．
。。。of Bits 31 through 21 ．．．
。．．（PE）as exporent）．．．
－．（PE）as exponert）exponent sign in sirgle or double precision floating point numbers．（Set $=$ minus，Reset $=$ plus）

26B21 Al1 six bits reset in a singie or double preci－ sion Elcating point number，indicates a zero exponert（EXZ）．
．．．in Part IV where．．． －．in Chapter 12 of Volume II where 。。 。
．．．of ar add or subtract com－ mand is 。 。 ． －．．of a sim or difference operation is．。
．．．WS（Working Sign）．．．WS（Working Sign）$\underset{\sim}{*}$
．．．indicating subtract．WS ．． ．．．indicating a difference． WS 。 。 。
＊Provided the contents of the accumulator is being used as one of the operands．
．．．if the subtrahend and denominator are ．．． ．．．if one of the operands of a subtract operation and the denominator of a divide operation are 。 ．．
．．．that the subtrahend of a．． ．．．that one of the operands of a

PAGE	LOCATION		CORRECIION
5-16	Line 20	Reads Should Read	. . . to the minizend. It to the other. It . . .
5-16	Lines 22 and 23	Read Should Read	. . . that the mincend was larger than the subtrabend and the . . . -. . that the smaller of the two operards was complemented and the
5-24	Table 5.3-2, Time Column, 2nd Line	Reads Should Read	$\begin{aligned} & 0.048 \mathrm{msec} . \\ & 0.048 \mathrm{msec} \end{aligned}$
5.25	Line 5 (Leapfrog Kill Formula)	Reads Should Read	
5-26	Figure 5.3-8, Inpat OR Gate to LFC Inverter 3rd Term Down	Reads Stould Read	$\frac{\mathrm{N}^{4}}{\frac{\mathrm{~N}^{4}}{\mathrm{D}^{4}}}$
5-24	Table 5.3-2 Time Column, Last Lirue.	Reads Should Read	or 2.006 zsec. or 2.016 มsec.
5-24	Table 5.3-2, Elapsed Time Column, Last Line	Reads Should Read	$\frac{2.289}{2.299}$ isec.
5-25	Line 1	Reads Should Read	- . . are generatel in Figure . . 。. . are illustrated in Figure
5-28	Panel C, Ontput of Parallel Inverters Above PCis and PK17 Inverters	Reads Should Read	$\begin{aligned} & 26 \text { LFKI3 } \\ & 26 \text { LFC13 } \end{aligned}$
5-28	Pane1 C, Output of Parallel Inverters $\mathrm{B} \in$ low PKi6 and PC17 Inverters	Reads Should Read	$\begin{aligned} & 26 \mathrm{LFC} 13 \\ & 26 \mathrm{LFK} 13 \end{aligned}$
5-28	Panel D As Drawn:		Be:
5-33	Lines 7 through 11	Delete	
5-34	Line 13	Reads Should Read	. . . sections of Part IV sections of Volume II . . . $\begin{aligned} & 6 \text { of } 12 \\ & \mathrm{MA} \\ & 1 / 18193 \\ & 1 / 18 / 63 \end{aligned}$

PAGE	LOCATION		CORRECTION
5－35	Line 5	Reads Should Read	．．．complement form。 Certain ．．
5－35	Bottom of Page	Add	＊When transferring the value of the exponent to the EP register from the B register complementing is done only if the exponent is negative and non－zero（B27 ヘ EXZ）．
5－40	Table 5．4－2，（Borrow Out）Column，2nd Number Down	Reads Should Read	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
6－11	Line 9	Reads Should Read	．．．or $\underline{1,000}_{8}$ ，words ．．． ．．．or $1_{2} \mathrm{OOO}_{8}$ ，words ．．．
$\begin{aligned} & 6-13 \\ & \text { and } \\ & 6-14 \end{aligned}$	Figure 6．2－2 and Figure 6．2－3，Bottom of Each	Add	NOTE：The memory addresses on this page are shown in octal and decimal．
6－19	Figure 6．3－3，Blocking Oscillator Circuit	Add	A line connecting the collector of Q5 with the collector of Q6
6－19	Figure 6．3－3，Blocking Oscillator Circuit	As Drawn：	Should Be ：
6－21	Line 12	Reads Should Read	．．．through Q 5 to ．．．
6－24	Figure 6．3－5，Top， Center，D．C．Voltage Input	Reads Should Read	$\begin{array}{r} -12 \mathrm{~V} \\ +12 \mathrm{~V} \end{array}$
6－29	Line 18	Reads Should Read	。．．available in Part III ．．． ．．．available in Volume II．
6－33	Lines 20 and 21	Delete	．．．of the read portion of a memory cycle。。 ．
6－38	Center of Page，Diode Immediately Below Q2	Labe 1	CR1
6－38	Center of Page，Diode Immediately Below Q3	Labe 1	CR2 $\begin{aligned} & 7 \text { of } 12 \\ & \mathrm{MA} 2193 \\ & 1 / 18 / 63 \end{aligned}$

PAGE	LOCATION		CORRECTION
6-38	Bottom, Right of Center, D. C. Voltage Input at R2	Reads Should Read	$\begin{aligned} & -100 \mathrm{~V} \\ & -102.5 \mathrm{~V} \end{aligned}$
6-38	Bottom, Left of Center, D. C. Voltage Input at R1	Add	-102.5V
6-39	Line 16	Reads Should Read	Bit $\frac{33}{}$ of 。 。 Bit $\frac{32}{}$ of
6-39	Line 21	Reads Should Read	$\begin{aligned} & \text { - . . bit } \frac{33}{3} \text { contains . . . } \\ & \text { - . . bit } \underline{32} \text { contains . . . } \end{aligned}$
6-39	Line 23	Reads Should Read	. . . to bit 33. Then . . .
6-40	Line 20	Reads Should Read	$\begin{aligned} & \text {. . . to bit } 33 \text { of the . . . } \\ & \text {. . . to bit } 32 \text { of the . . . } \end{aligned}$
6-40	Line 23	Reads Should Read	$\begin{aligned} & \text {. . . to bit } \frac{33}{} \text { is not } \\ & \text {. . . to bit } 32 \text { is not . . . } \end{aligned}$
6-40	Line 23	Reads Should Read	. . . into bit 33 , thus . . .
6-50	Top, Center, Legend Box	Reads Should Read	$\begin{aligned} & * \text { From DC-11 } \\ & * * \text { From MM-10 } \\ & * * * \text { From Centra1 Processor or } \\ & \quad D C-11 \\ & * \text { From MM-10 } \\ & * * \text { From Central Processor or } \\ & \quad \text { DC-11 } \\ & * * \text { From DC }-11 \end{aligned}$
6-50	Center of Page, 3rd Line Receiver Down, Input	Reads Should Read	$\begin{aligned} & \text { SM3 } \\ & \text { LM3 } \end{aligned}$
6-56	Line 3	Reads Should Read	Figure 6.6-5 has . . . Figure $6.5-4$ has . . .
6-56	Line 12	Reads Should Read	. . . Figure 6.6-5 is a Figure $\underline{6.6-4}$ is a . . .
6-58	Lines 11 and 12	Delete	. . . solenoid 12K4 energized provides a hold contact for 12 K 5 , and 12 K 5 keeps the D. C. voltages on.
6-58	Line 27	Reads Should Read	$\begin{aligned} & \text {. . . the } \$ 12 \text { volt . . . } \\ & \text {. . . the }+12 \text { volt . . . } \end{aligned}$

7-9	Figure 7.1-6, D4 Package, Immediately Below M	Add	A
7-15	Table 7.1-2, V03 Package, R_{L} Column	Reads Should Read	$\begin{aligned} & 7.10 K \\ & 2.10 K \end{aligned}$
7-15	Table 7.1-2, V13 Package, BCD No. Column	Reads Should Read	$\begin{aligned} & 1 \mathrm{C} 2312 \\ & 1 \mathrm{C} 2313 \end{aligned}$
7-18	Figure 7.1-15, Title Box	Reads Should Read	$\text { . . . to Figure } 7.1-13$
7-22	Figure 7.2-1, Upper Right CR2	As Labeled: CR3	Should Be:
7-22	Figure 7.2-1, Center, Test Point Pin Number	Reads Should Read	$\begin{aligned} & \mathrm{J} \\ & 1 \mathrm{~J} \end{aligned}$
7-22	Figure 7.2-1, Lower Left CR1 Part Number	Reads Should Read	$\begin{aligned} & 94928 \\ & 94 \mathrm{~A} 28 \end{aligned}$
7-24	Figure 7.2-2, Lower Right, Value of Capacitor Between Pins D and E	Reads Should Read	4 uf 47uf
7-26	Figure 7.3-1, Top AND Gate, Lower Input Term	Reads Should Read	$\overline{\frac{S E}{C S}!}$
7-26	Figure 7.3-1, Bottom AND Gate, Upper Input Term	Reads Should Read	$\frac{\overline{\mathrm{CSC}}}{\mathrm{SHD}}$
7-28	Lower Right, Logic Term at Anode of CR23	Reads Should Read	$\begin{aligned} & \overline{\mathrm{C} 1} \\ & \mathrm{C} 1 \end{aligned}$
7-28	Lower Right, Junction of Anodes of CR23, 24, and 25	Add	Tie Poi.at
7-30	Line 12	Add	It is impossible to hand clock the G-20 through an external memory read cycle and read into the internal (Central Processor) B register.

9 of 12

7-33	Eigure 7.3-6, Center, Switch at Base of Q13	Reads Should Read	$\begin{aligned} & \text { S/F } \\ & \text { S1F } \end{aligned}$
7-33	Figure 7.3-6, Center, Switch at Base of Q13 Upper Contact (To R6)	Label	Fixed
7-33	Figure 7.3-6, Center, Switch at Base of Q13 Lower Contact (To R28)	Label	Variable
7-40	Figure 7.3-10, Right Center, Value of Capacitor C15	Reads Should Read	$\begin{aligned} & \text { O1uf } \\ & .01 \mu \mathrm{f} \end{aligned}$
7-41	Figure 7.3-11, Lower Right, 0A Gate Feeding C2 Pulse Amplifier, Lower Input Term	Reads Should Read	Man. C2 Man.
7-42	Line 8	Reads Should Read	two ten-input AND-gates which are in turn fed into two ten-input ORtwo ten-input $\overline{\text { OR-gates, which }}$ are in turn fed into two teninput AND-
7-43	Line 4	Reads Shoula Read	- . . Thus, it can be seen that the If no asynchronous events (e.g. input/output) are in process the
7-43	Lines 17 and 18	Delete	- . or completely insufficient
7-43	Line 18	Delete	. . . if this should happen, it would mean that
7-43	Lines 19 and 20	Delete	
7-55	Figure 7.4-6, Upper Left, DC Voltage Input	Add	T approx.-18V
7-58	Upper Right	As Drawn:	Should Be:

Left，Center
As Drawn：

Right，Center，AC Voltage Input at 12L2－3

Lower Right

Lines 2 and 3

Line 3

Line 5

Bottom of Page

Figure 7．6－2，Center， Logic Input Signal

Line 8

Reads
Should Read

As Drawn：

Read
Should Read

Reads
Should Read

Reads
Should Read
Add

Reads
Should Read
Reads
Should Read

Should Be：

115 VAC
115VAC RETURN
Should Be：

．．and immediately following relay 。 ．
．．．and relay
．．SLAVE position．The
。．．SLAVE position＊．The＝．
．． $5 \mathrm{Ks}, 5 \mathrm{K8}$ and 5K9 are
。．． 5 K 3 and 5 K 8 are ．．
＊Note also that since the system switch being referred to is the system switch on the Central Processor，the Centrai Processor must be in the SLAVE condition or $O N$ condition before it can send a SYSTEM ON signal out over the communication line．
$\mathrm{URB} \wedge \mathrm{TGO}$
URBへTGO
．．connector pin is to ．．
．．connector ping respec－
tively，is to．．

PAGE	LOCATION		CORRECTION
8-32	Line 6	Reads Should Read	pin is tc be . . . pin, respectively, is to be .
2-8	Immediately Beiow Address Preparation Commands	Add	NOTE: The accumulator is not disturbed in these opcodes.
2-8	Note, Immediately Below Address Preparation Commands	Delete	
4-10	Line 4	Reads Should Read	the ERA opcodes . . the ERO opcodes . .
4-17	Figure 4.2-7, Center, Immediately Beiow and to Left of "opcode"	Reads Shvuld Read	8 12
5-41	Line 23	Reads Should Read	. . . equal and positive - . . equal at time of subtraction
6-34	Line 23	Reads Should Read	. . . the collector of Q 2 or Q3 will the cathode of CR1 or CR2 wiil
6-34	Lines 24 and 25	Reads Should Read	. . . the collectors of both Q2 and Q3 are . . - . the cathodes of soth CR1 and CR2 are . . .
6-35	Line 22	Reads Should Read	(When TR and TW are (When $\overline{\overline{T R}}$ and $\overline{W W}$ are
6-41	Figure 6.5-1 Lower Right, Formula for PW	Reads Should Read	$\begin{aligned} & \mathrm{B} 32] \underline{\underline{X P C}} \\ & \therefore \mathrm{XPC} \end{aligned}$
6-46	Line 3	Reads Should Read	```. . . signals DC1 through DC5 are signals DCO through DC4 are . . .```
6-48	Line 4	Reads Should Read	Part IV Volume II
7-41	Figure 7.3-11, Upper Left Input Term of AND gate on set side of SRC F/F	Reads Should Read	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 * \end{aligned}$
7-44	Figure 7.3-12, (C), First Line Note: Figure 7.5-1 (Page 7-58) as a valid guide to the circuitry. It should n schematic because sever called out wrong. A co shooting, will be sent	Reads Should Read , as correct operation of ot, however, al of the ter rrected drawi out in the ne	his erratum serves rn-on/turn-off cycle as a troubleshooting trip connections are table for troublere.

