
THE ~nm/co' R PO RAT I 0 N COMPUTER DIVISION

5630 Arbor Vitae Street, Los Angeles 45, California

PROGRAMMING FOR THE G-15

+

I 000 I I 00 I I I 0 I I 000 I I I 0000 I I 0 I 0
+ 00 I 000 I I 0 I 0 I I I 11 000 I 0 I I I 00 I I 0 x

I 01100000I0010111000 I 00000000 f(x)
x ... _ ..

FORWARD

This manual is designed to teach the reader to program the G-15 com
puter in machine language. It was written in essentially two sec
tions: the first, from the standpoint of an available assembly rou
tine, discusses coding in a simplified form and operations on deci
mal numbers only; the second, from the standpoint of the machine it
self, discusses coding and numbers in binary form.

It is assumed that the reader has previously read the introduction to
the G-15, entitled "Bits of Meaning," and therefore is familiar with
the decimal, binary and sexadecimal number systems.

Many of the topics covered in this manual are of an advanced nature
and do not indicate the complexity of progranuning normally faced by a
user. As a matter of fact, there are other complete progralilllling
systems available which are not discussed in this manual and which
are much simpler than the machine language progralilllling discussed here.

The Applications Section Training Group wishes to express its thanks
to those other Bendix Computer Division personnel and those Bendix
G-15 users who so patiently and thoroughly reviewed the initial
drafts of this manual. Many of their conunents and criticisms are
reflected in this edition.

Copyright
January 1960

General Information

Problem Analysis

Method of Solution

TABLE OF CONTENTS

Drum Memory and Addresses

Connnands

Arithmetic Operations

Subroutines

Decimal Scaling

Multiply

Divide

Logical Operations

Shift

Extract

Repetitive Processing of Data - Loops

Input/Output System

Connnands in Binary Form

Innnediate vs. Deferred Connnands

Sequencing of Connnands

Connnand Lines

Special Connnands

Multiplication and the Two-Word Registers

Division and the Two-Word Registers

Machine Form of a Number and Scaling

The Need to Automatically Check Computations

Test Connnands

Test for Overflow

Test for Sign of AR (neg.)

Test for "Ready"

Test for Punch Switch On

Test for Non-0

To Subtract a Magnitude

Subroutines

Inputs/Outputs

Normal Inputs

Typewriter Inputs

1

3

3

5

13

20

27

32

35

39

42

42

44

47

51

60

68

69

69

70

70

76

89

104

105

106

108

108

109

109

110

113

127

128

128

TABLE OF CONTENTS (Cont'd.)

Enable Actions

Punched Tape Output and Output Format

Typewriter Output

Debugging

Break-Point

Single-Cycle

Input/Output Connnands

Blank Leader

Loader Program

Program Preparation Routine (PPR)

Precession, As Used by PPR

Other PPR Operations Available

Decimal Number Inputs and Scaling

Extract, And Its Use in Number Conversion

Other Progrannning Techniques

Indexing

Floating-Point Operation

Miscellaneous

Index

133

134

140

141

141

142

142

145

147

150

163

165

167

177

186

191

201

203

209

PROGRAMMING THE G-15 IN MACHINE LANGUAGE

In the Introduction to the G-15, a separate booklet, we briefly traced
the development of a growing need for computers to solve two types of
problems:

1. problems whose solutions are essentially simple in nature,
but which must be solved over and over again, each time for
a different set of values; and

2. problems whose solutions are so complicated that men cannot
spare the time and effort to solve them by the pencil-and
paper method.

In the first case, a program can be written once to generate the solu
tion, and then it can be operated again and again in the computer, each
time with a different set of inputs, and each time yielding a new out
put. In this way literally hundreds or thousands of individual solu
tions to the same problem can be "cranked out" by the computer in the
time required for a man with pencil and paper to generate a single solu
tion. The cost of the computer is justified because it is less than the
cost of the man-hours needed to do the same thing without the computer.
In the second case, the programmer can decide what operations need to
be performed, write a program for the computer, directing it to perform
them in the proper sequence, and operate the program in the computer,
feeding it the necessary original inputs. The speed at which the com
puter can perform these operations makes it possible to generate a solu
tion in a reasonable period of time, whereas, with pencil and paper, so
much time would be consumed in performing individual operations that the
end solution would be years away. Just making a solution possible soon
enough to be of some value justifies the computer's cost.

We saw that there are essentially two types of ·computers: analog and
digital. The fact that precision is easier come by in a digital com
puter accounts for the increasing demand for them in certain applica
tions where accuracy is of primary importance. The G-15 fills the com
mon need for a medium-priced digital computer.

The G-15, like all other digital computers, is composed of five major
sections:

1. input,

2. memory,

3. control,

4. arithmetic, and

5. output.

- 2 -

Numbers are stored in memory in binary form, and the computer works
in binary. Each word of memory can contain, in its 29 bits, either
a data number or an instruction in number form, referred to as a
connnand. Whether a number is treated as data or as a connnand depends
on the time during which it is inspected. There are three categories
of machine-time:

1. read connnand time (RC),

2. execute time (EX), and

3. wait time (WT).

Because each connnand contains the address of the operand, there may
be wait time before the operand is available. Similarly, because
each connnand contains the address of the next connnand to be read
and obeyed, there may be wait time before that connnand is available.
Wait time may thus be further subdivided into two categories:

1. wait to execute (WTE), which will follow the reading of a
connnand, and

2. wait to read (WTR), which will follow the execution of the
previous connnand.

It is the progrannner's duty, among other things, to minimize this wait
time.

Connnands contain the following basic parts:

1. a code for the desired operation or transfer,

2. address of operand,

3. address to which operand is to be transferred, and

4. address of the next connnand in the logical sequence of the
program.

The reason an address is given, to which the operand is to be trans
ferred, is that numbers may be moved about in memory under control of
the program, without any arithmetic operations being performed on them.
In many digital computers, this cannot be done directly; every number
must go to the accumulator or from the accumulator to memory.

Words within the G-15 contain 29 bits. A data number is contained with
in one 29-bit word, having 28 bits of magnitude and a sign-bit.

We pointed out that a knowledge of the machine's operations on numbers
as they appear to it will be important to progrannners. Therefore, the
binary number system was discussed, as was binary arithmetic. Methods
for converting binary numbers to their decimal equivalents, and vice

- 3 -

versa, were pointed out. The possibility of overflow resulting from
an addition in the computer was brought up. This is the condition
that arises when an erroneous value results from an attempt to generate
a value too great for the computer to hold. It was also mentioned that
the computer must complement negative numbers prior to adding them to
other numbers, and that, in such a case, the result must be recomple
mented, if negative, in order to restore it to the normal form of a
signed magnitude. In the addition of negative numbers, the end-around
carry feature was described. It was pointed out that subtraction is
merely the addition of a number after changing its sign, and that the
computer subtracts by doing exactly this.

The need for a "short-cut" number system was brought up, since bit
chasing is tedious when each number has 29 bits. The system adopted
was the hex number system, because of the ease in converting back and
forth between it and the binary system.

We then discussed briefly the duties of a programmer.

PROBLEM ANALYSIS

In order to use the computer to solve any problem, the programmer
must devise a general, logical method of arriving at the solution.
The first step in this is analysis of the problem itself. What is
called for? Take, for example, the problem of finding the roots of
a quadratic equation,

2
ax + bx + c = 0.

Two values of x are called for, either of which, when substituted for
x, will satisfy the equation. This is a very simple problem; usually
the problem presented to a programmer will not be so clear-cut, He
might be asked, for example, to choose the best route for a road through
a mountain range, both from the standpoint of construction and from the
standpoint of usage. In this case, defining exactly what it is th~t is
called for is not so simple a task.

He will then have to find out as much as he can about the inputs for
the problem: the number of them, the range in values, from great to
small, the degree of accuracy that will be available. From this informa
tion he will have to deduce the best degree of accuracy to maintain
throughout the solution of the problem. If there are too many inputs
to be stored all at one time in memory, he will have to write his pro
gram to work in sections, calling for only a portion of the inputs at
any one time. In the example of the quadratic equation, only three in
puts are necessary: a, b, and c. Storage space will not be a problem
in this case.

METHOD OF SOLUTION

When the progranuner has adequately defined the problem and the data
available, he must choose a method of solution. Usually there will
be as many of these as there are programmers. Whether or not one

- 4 -

method is better than another depends on several factors. Is the time
consumed in generating solutions an important factor? If they are to
be used to control aircraft, it is. If they are to be used to file
income-tax returns, it probably isn't. Time will probably be of little
importance in the generation of solutions for the quadratic equation.
If the program is going to be a long one, some choices of approach to
the problem might significantly reduce the length of the program itself,
saving the programmer work. The method of solution for the roots of a
quadratic equation is pretty well standardized.

-b t /b2-4ac
x =

2a

FLOW DIAGRAM

When a method of solution has been determined, it must be outlined,
one major step at a time, since this is the manner in which the com
puter operates. Each arithmetic process should be shown.

An outline of the logical pattern, or "flow", of the method to be
used is called a "flow diagram". A flow diagram for the solution
of the roots for the quadratic equation might be:

Multiply a by 2 to get 2a

Multiply 2a by 2 to get 4a

Multiply 4a by c to get 4ac

2 Multiply b by b to get b

2 2 Subtract 4ac from b to get b -4ac

2
Get the square root of b -4ac

Divide -b + /b2-4ac by 2a to get one answer

- 5 -

Subtract /b2-4ac from -b to get -b - /b2-4ac

ivide -b - /bZ-4ac by 2a to get the other answer

Remember, the above is merely a break-down, step by step, of the
method of solution of the problem. Not shown in the method of so
lution, but nevertheless essential to the program itself, will be
a provision for the input of the data (in this case, a, b, and c),
and the output of the answers. You have noticed that this problem
calls for additions, subtractions, multiplications, divisions, and
taking the square root of a number.

Before we go any further into the development of the program we
must explore the operation of the computer, with an eye toward
making up the proper conunands to achieve a desired result.

DRUM MEMORY AND ADDRESSES

It has been pointed out that each word in the memory of the G-15 is
29 bits in length. Now picture 108 words laid out in a long line,
end-to-end, (29 x 108 =) 3132 bits in length. Find a cylinder (any
old cylinder will do), with a circumference somewhat greater than the
length of this long line, and wrap the line around it. Do this twenty
times, so that the cylinder has twenty long lines around it. Make
their leading and trailing edges line up. Leave some unused space for
more long lines (for various special purposes).

~ Trailing edge

<.-- Leading edge

You will now have something similar to that shown above. Notice the
unused gap running the length of the cylinder on its circumference be
tween ~he leading and trailing edges of the long lines (don't do any
thing ~~th it yet, just notice it), Mount the cylinder on an axle,
attach this to a motor, and supply some power. The cylinder will re-

- 6 -

volve. Mount a device length-wise over the cylinder barely raised
away from its surface, and use this device to look at the bits in the
long lines as they pass beneath it. Mount a similar device to write
bits into the long lines.

Instead of using a paper cylinder and writing with a pencil, use a
metal cylinder coated with a magnetic coating, and write with elec
trical pulses, magnetizing individual spots beneath the 11write-headsu
(to represent 1) and leaving other spots unmagnetized (to indicate O).
Read the magnetized spots with "read-heads", and generate the corres
ponding electrical pulses. Attach some complicated circuitry, in
cluding an input and an output system, put an attractive case around
the whole works, and you have the Bendix G-15 digital computer.

We call the cylinder a "drum", and we speak of "drum memory". In the
long lines of memory, there are (20 x 108 =) 2160 words. Each bit of
each of these words is available at the read-heads once per drum rev
olution; at each bit-time, 20 bits are available, one out of each long
line. The reason we use 11T11 numbers when numbering bits in a word, as
shown in the drawing below, is that the numbering is in the order in
which the bits will be inspected (Tl first, then T2 through T29, I
standing for time). Thus, the sign of a word will be inspected before
any of the magnitude bits. Similarly, each bit in each long line is
available to be written into once per drum revolution; at each bit-time
20 bits are available, one out of each long line. The sign (Tl) will
be written first, then the magnitude bits in the order in which they
are numbered (T2 through T29).

TTTTTTTTTTTTTTTTTTTTTTTTTTTTT
2.'t l l7 Z6 ZS l'f 23 U ll Z 19 18 17 16 IS' l'f 13 ll II 10 ' 8 7 6 5" 'f 3 2 I

The speed at which the drum revolves is 1800 rpm, or 30 rps. If the
drum revolves once per l/30th of a second, and, if there are 108 words
per long line, the time required for the reading or writing of one
complete word should be:

Read

- 7 -

1 1 1
108 30 = 3240 sec.= .00033 sec.'s

Within the next few pages, you will see that actually a complete word
can be read or written in slightly less time than this.

In computer operation, addresses of words in memory are of the utmost
importance. Now that the 20 long lines of memory have been described,
you can see that the location of a specific word is composed of two
parts:

Part I: a designation of the line in which the word is located,
and

Part II: a designation of the location of the word within that
line.

The 20 long lines are numbered 00 through 19, and the words in each
one, starting at the leading edge, are numbered 00 through 99, uO
(100) through u7 (107). (The substitution of the hex digit u for
the decimal digits 10 is for the purpose of holding the word-number
to two digits.) The addresses of all words in long lines are:

line word

00 . 00 .
l

00 u7
01 : 00

l
01 : u7

19
{

00 .

19
J

u7 .

Before looking at addresses, as they appear in commands in the com
puter, we must fill out the rest of the picture of memory, since
every location in "working" memory (that part of memory available
to programmers, as opposed to the remaining part, which is essentially
of engineering importance only) is addressable in the same manner as
shown above.

- 8 -

The drawing to the left shows a cross-section of the drum, as already
described. It is now time to add to the previous description. The
drawing to the right shows an erase-head innnediately following the

0 0

read-head; this is true for each long line in memory. The read-head
feeds the write-head with electrical pulses mirroring the contents of
the bit-positions as they pass under the read-head. Each bit in each
line, as it is read, is moved ~~ead, along the circumference of the
drum. Of course the trailing e~ge of each long line is moving along
at the same speed as the leading\edge, so each bit so written will be
placed in a vacated bit-position Qn the drum. The "clear", or erased,
state of the drum is O's, so only l's are written, when called for.
The result is that l's appear where they should, and all other bits,
are equal to 0. This is appropriately called a "recirculating" memory.
Note that any specific bit in any specific word will not occupy the
same physical position on the drum during each revolution. Because it
is stepped ahead along the circumference, it actually will be available
slightly more than once per drum revolution. .An entire long line is
inspected and recirculated in slightly less than one drum revolution.
The length of time necessary for the complete inspection and recircu
lation of a long line is referred to as a "drum cycle".

The spacing between the r~ad- and the write-heads is such that there
are approximately 2070 dru:lrt cycles per minute, or 34.S per second.
Each drum cycle requires .029 seconds. Each word is read or written
in .00027 seconds. We refer to 1 th's of a second as "milliseconds".
Therefore, 1000

1 word-time = .27 milliseconds (ms.),
1 drum-cycle = 29 milliseconds (ms.).

It seems there is an unused strip along the drum, between.the long line
erase- and write-heads. If a second erase-head is placed before the
long line write-head, it will merely duplicate the effect of the other
erase-head. But now, anything can go on between the two of them, and
there will be no injurious carry-over into the long line; in it, O's
and l's will be where they should be.

- 9 -

This space
isolated
and avail
able

If, as shown in the drawing below, read- and write-heads are placed
in the isolated gap on the circumference of the drum, a recirculating
short line will be created. The shortness of the short line will be
determined by the proximity of one head to the other. As far as stor
age capacity of the computer's memory is concerned, there is no ad
vantage to this system; it would be more economical to increase the
length of each long line. But remember that it was pointed out that
any given bit, and therefore, any word, in a long line is available
only once per drum cycle, or once per 108 word-times. If a short line
contains four words, each bit, and therefore each word, will be avail
able once per four word-times. Or, to put it another way, each word
in a 4-word short line is available (108 ~ 4 =) 27 times per drum cycle.

- 10 -

A consideration of timing within the computer will demonstrate the
value of 4-word short lines. It has been stated previously that every
word, whether it be data or a command, has a unique address. It can
be seen that the word "address" as used here denotes more than mere
location in space; it also denotes a location in time. At a given word
time (specified in its address), a given word will be available at the
read-head. Suppose this word is a command, and the computer is in RC
(read command) time. This command will be read and interpreted at the
word-time specified in its address. It, in turn, calls for a data word,
located at another address, and, therefore, at another word-time. If
no care had been used originally in picking addresses for commands and
data, this command would call for a data word which would be, on the
average, 1/2 drum cycle away. The time a computer consumes in search
ing for a specified word is called "access-time". It is the programmer's
job, among other things, to minimize this dead time by wisely selecting
the addresses for commands and data when he is writing a program for
the G-15. A well-written program, from this standpoint, and all other
things being equal, will operate in the computer much more rapidly than
will a poorly written one. The average access-time for any word in a
4-word short line is only two word-times. Availability of these short
lines makes the programmer's job easier and provides for faster program
operation than would otherwise be possible. The gaps between the lead
ing and trailing edges of four of the long lines are used for short
lines of this nature. These short lines are numbered 20 through 23,
and the complete addresses of the words in them are:

20.00

2J03
21.00

2J03
22.00

22t3
23.00

J
23.03

Three more of the gaps are used for 2-word short lines, referred to
as "2-word registers". These are also available for storage, although
they have special circuitry associated with them which enables them
to be used for certain operations of arithmetic, as well. These are
numbered 24 through 26, and the complete addresses of the words they
contain are:

- 11 -

24.00
24.01
25.00
25.01-
26.00
26.01

Line 24 is called the "MQ" register; the two words in it are called
''MQo" and 1'MQ1". It derives this name from the fact that it holds
the ~ultiplier prior to a multiplication and ~uotient following a
division.

Line 25 is called the "ID" register; the two words in it are called
"IDo" and "ID1"· It derives this name from the fact that it holds
the multipl,!_cand prior to a multiplication and the ~enominator prior
to a division.

Line 26 is called the "PN" register; the two words in it are called
"PNo" and "PN1". It derives this name from the fact that it holds
the Product following a multiplication and the !iumerator prior to a
division.

It can be seen, then, that multiplication and division, when called for
by the proper commands, will involve all three of the two-word registers.

Another gap is occupied by a 1-word short line, referred to as "AR".
The number of this line may be either 28 or 29. This line has circui
try associated with it making it a 1-word accumulator; if it is re
ferred to as line 28, this circuitry is not employed, and it behaves
the same as any other word in memory (in such a capacity it is very
convenient, of course, because it is available at every word-time);
if it is referred to as line 29, the special circuitry is employed,
and it will combine binary numbers, as discussed in the Introduction
to the G-15.

For the programmer whose application of the computer requires more
accuracy than can be carried in 29 bits, "double-precision" arith
metic is possible within the G-15. It is no harder to program using
it than it is to program ordinary single-precision arithmetic. In
double-precision operations, two computer words are used to express
each data number. These two words must be contiguous in the same
line, the first in an even location, the second in the following odd
location. It has been pointed out (page 12 of the Introduction) that,
in single-precision operation, each word starts with sign-time. This
is true in double-precision, as well, except that sign-time occurs
only ·during even-numbered word-times. The remaining 28 bits in the
even-numbered word contain the least significant information in the
number, and all 29 bits of the odd-numbered word are used to complete
the magnitude. So a double-precision number actually has slightly
more than double the precision of a single word, since it has 57 bits
of magnitude, as opposed to 28. All operations which can be specified
by commands to affect single words can be very easily modified to
similarly affect double-precision numbers.

- 12 -

For the multiply and divide operations, the two-word registers whtch
are used for single-precision arithmetic will also suffice for double-_
precision arithmetic. But in the cases of addition and subtraction,
AR, the one-word line used for single-precision arithmetic, i~ obvi
ously not capable of performing double-precision operations. PN
(line 26) is used for this purpose: it is the double-precision ac
cumulator, in addition to its other functions. If it is being used
for this purpose, it is referred to as-line 30.

Line nllinbers 27 and 31 are also legal, but are actually special codes,
not referring to existing lines in the G-15 memory. They will be dis
cussed later.

The remaining available gaps between the leading and trailing edges
of the long lines along the length of the drum are used for engineer
ing purposes, and are not available to the programmer.

The remaining available space on the circumference of the drum for
additional long lines is used for timing and control information,
mostly from an engineering standpoint. One of these long lines is
of interest to programmers, however. It is called the "number track".

The number track is a long line, divided into bits and words, similar
to any other long line. But each word in it contains, rather than
data or a command, timing information which affixes a word-number,
ranging from 00 through u7, to each similarly located word in each
long line. This number track is recirculated in the same manner,
about the circumference of the drum, as are the long lines. In word
u7 of the number track, there is a special indicator which signifies
that the next word is the beginning of the line, word 00. The pulse
which is generated by this indicator, when it is read, is referred
to as "TO". Thus the beginning, and each succeeding, word number in
each long line is fixed and remains constant. This, of course, is
essential for addressing words. The short lines are so situated that
word 00 in each of them will occur simultaneously with word 00 in each
long line. Notice that, for the 4-word short lines, word 00 will also
arise concurrently with the following words in the long lines: 04, 08,
12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80,
84, 88, 92, 96, uO, and u4. You might want to write for yourself a
similar list of long line locations corresponding to words 01, 02, and
03 in the short lines. We knew that such would be the case as soon as
we said that the short lines recirculate 27 times per each recirculation
of the long lines. The 2-word registers recirculate 54 times per long
line recirculation, and they are so situated that word 00 in them occurs
at every even word-time of the long lines (00 is considered even), and
word 01 in them occurs at every odd word-time of the long lines. AR,
the one-word register, occurs at every word-time, since it only requires
one word-time for its recirculation.

It is of the utmost importance to the programmer to know that the num
ber track is correctly on the drum before he attempts to operate any
program in the computer. If the number track is not correct, the ad
dresses associated with the words in memory will not be correct or

- 13 -

constant. Therefore, a corrunand is available to the prograrruner, which
enables him to inspect the numbe~ track. This corrunand will be discus
sed later.

COMMANDS

Although corrunands, as well as data, are in binary form when stored in
the computer, we need not worry about the actual 29 bits that make up
a connnand. A program was written by Bendix personnel which can accept
connnands in a simplified form and translate them into the binary lan
guage of the computer. No flexibility in the operation of the computer
is lost in this translation. This Bendix program is called PPR (Pro
gram Preparation Routine), and is made available to every user of the
G-15 computer.

A connnand for the G-15 must specify the following information:

1. desired operation,

2. address of operand,

3. address to which operand is to be transferred, and

4. address of next connnand to be obeyed.

In addition to this information, a connnand may contain inforination
relating to the duration of its execution.

The desired operation is specified by a decimal digit ranging from 0
through 7 in the C portion of the connnand.

0 - Calls for a straight transfer of a single-precision operand
from one location to another. After this transfer has been
performed, the operand, in its original form, will be in
both locations in memory. This is sometimes called a 11copy".

1 - Calls for use of "inverting gates 11 during the transfer of
the operand from one location to another. The inverting
gates will complement negative numbers passing through them
in the manner described in the Introduction to the G-15.

2 - Depends, for its meaning, on the address of the operand and
the receiving location.

If both of these addresses refer to memory lines whose numbers
are less than 28, this C code calls for an exchange of AR,
which is the single-precision accumulator, and memory, in the
following way: the original contents of AR are copied into
the specified receiving address, and the operand is copied into
AR. If this exchange is called for at an even word-time, and
if the receiving address is a two-word register, AR's original

- 14 -

contents will be blocked from entering the even half of the
two-word register, and that half of the two-word register
will be cleared to 0 instead. AR's original contents will
be lost.

If AR is specified as either the operand or the receiving
address, or if PN, as line 30, is specified as the receiving
address, the absolute value of the operand (a positive number)
will be transferred to the receiving address.

3 - Also depends on the specified address of the operand and the
receiving location for its meaning.

If both of these addresses contain line numbers less than
28, an exchange of AR with memory, similar to that described
above, is performed. In this case, however, the operand,
on its way to AR, will pass through the inverting gates and
be complemented if negative. If this exchange is called
for at an even word-time, and if the receiving address is
a two-word register, AR's original contents will be blocked
from entering the even half of the two-word register, and
that half of the two-word register will be cleared to 0
instead. AR's original contents will be lost.

If AR is specified, either as the operand or the receiving
address, or if PN, as line 30, is specified as the receiving
address, the sign of the operand will be changed during the
transfer, and then the operand, with its new sign, will pass
through the inverting gates. This is, in effect, a "subtract"
command.

4 - Calls for a "copy" of a double-precision number from one
memory location to another, being the double-precision
equivalent of 0.

5 - Calls for use of inverting gates during the transfer of a
double-precision operand, being the double-precision equiva
lent of 1.

6 - Depends on the specified address of the operand and the
receiving location for its meaning.

If both of these addresses contain line numbers less than
28, this C code calls for an exchange of AR with memory for
two word-times, each exchange being similar to that called
for by a 2, under the same conditions. During the first
word-time of execution (even), AR's original contents are
copied to the first half of the receiving address, and the
first half of the operand is transferred to AR. During the
second word-time of execution ('odd), AR's contents (now the
first half of the double-precision operand) are transferred
to the second half of the receiving address, and the second
half of the operand is transferred to AR. If the receiving

- 15 -

address is a two-word register, during the first word-time
of execution AR's original contents will be blocked from
entering the even half of that two-word register, and that
half of the two-word register will be cleared to 0 instead.
AR's original contents will be lost.

If either the operand or the receiving address contains a
line number greater than or equal to 28, the absolute value
of the double-precision operand will be transferred.

7 - Depends on the specified address of the operand and the
receiving location for its meaning.

If these both contain line numbers less than 28, a double
precision exchange will be performed, in the manner described
above, for a C of 6, with the exception that all numbers
entering AR will pass through the inverting gates and be
complemented if necessary. If the receiving address is a
two-word register, during the first word-time of execution
AR's original contents will be blocked from entering the
even half of the two-word register, and that half of the
two-word register will be cleared to 0 instead. AR's orig
inal contents will be lost.

If either the operand or the receiving address refers to a
line whose number is greater than or equal to 28, the sign
of the double-precision operand will be changed during the
transfer, and then the double-precision operand, with its
new sign, will pass through the inverting gates and be com
plemented if necessary. This is, in effect, a double-pre
cision "subtract".

The line in which the operand is located is called the "source", and,
in the layout of a command, the two-digit decimal number of this line,
ranging from 00 through 31, is referred to as "S". AR, as a source,
must always be referred to as line 28. PN, as a source, must always
be referred to as line 26.

The line which contains the receiving location is referred to as the
"destination", and, in the layout of a command, the two-digit decimal
number of this line, ranging from 00 through 31, is referred to as "D".

The address of the operand is completed by specification of a word-time.
A two-digit number, ranging from 00 through u7, in the "T" portion of
a command, specifies this word-time. This same T number is combined
with D, in order to complete the receiving address. So we see that,
if a word is copied from one long line to another, the word being trans
ferred will occupy the same word-time in both lines.

The type of operation we have been discussing so far is referred to as
"deferred" operation. No matter when (what word-time) the command it
self is read and interpreted, the computer will wait, or defer action,
until the word-time specified for the operation arises. There is

- 16 -

another type of operation called "immediate", in which the operation
called for by the C code may be performed continuously for any number
of word-times on S and D, up to 108 (a whole drum cycle). In this
type of operation, the transfer called for will start immediately, in
the word-time following that in which the command itself was read, and
it will col'l.tinue through continuous word-times, until a "flag" is
reached. This flag will be a word-time specified as T in the command,
and the execution will cease with the word-time immediately preceding
the flag.

If immediate execution, rather than deferred, is desired, a one-digit
prefix must be placed in the "P 11 portion of the command. This digit
must be a ''u". If no prefix is desired, this portion of the command
should be left blank.

Each command contains within it the address of the next command to be
obeyed, and this is why the computer can perform a sequence of co:nmands
of any length automatically, after once being told where to start. The
word-time of the next command is entered as a two-digit number, ranging
from 00 through u7, in the 11N11 portion of a command. This address con
tains no line number, because once the computer has started to obey a
sequence of commands from one of the memory lines, it continues to look
in the same line for the next command in the sequence.

The computer can follow a sequence of commands in either of two modes;
continuous operation or break-point operation. Ordinarily the computer
will be in the continuous mode, but the computer operator can, at any
time, cause the computer to switch to the break-point mode through an
external switch action. When in the continuous mode, the computer can
only be stopped, under program control, through execution of a special
command, called the halt command. When in the break-point mode, how
ever, the computer can be stopped, under _program control, after execu
tion of a specially marked command, as well as by the halt command.
Any command may be so marked, and this is done through insertion of
a minus (-), in the 11BP 11 portion of the command. If no break-point
mark is desired in the command, this portion of the command should be
left blank.

Shown in the layout of a command are two shaded portions; 111" and
'~NOTES". From experience, programmers of the G-15 have found it
desirable to include, with each command, as it is written on a coding
sheet, the word-time in which the command is located and some brief
note explaining the function of the command. This information, al
though on the coding sheet, is not entered into the computer as part
of the command.

If D = 31 in a command, the computer will treat this cormnand as a
11special 11 corrnnand, and interpret it in a special way. The S number
will be treated as a special operation code, and the C number will
usually be interpreted in the light of the special operation called
for. Additions, subtractions, and copies of various types can be
performed through any chosen combinations of the various portions of
commands already discussed, but multiplications, divisions, and other

- 17 -

special operations are called for through use of special cormnands.
We will discuss each special corrunand as necessary, and they will be
summarized on pages 56-59.

With a firm knowledge of:

L the binary form of data within the machine, and

2. the format of machine commands,

we are ready to consider the various machine operations which can be
combined to form a program.

Since many programs need data upon which to operate, usually one of
the first things they do is to call for a computer input. The normal
inputs to the G-15 computer are:

1. typewriter, and

2. punched paper tape.

The G-15 has an input/output system which only operates when commanded.
There are two ways of cormnanding this system to operate:

1. special commands, under program control, and

2. spe~ial external switch actions, which the computer operator
can take at will.

Initially, of course, when the computer is first turned on, there is no
useful information in its memory. The question arises, therefore, how
is a program initially entered into the memory of the computer, so that
it can be operated later, calling in its own data upon which to operate?
The answer is to make available some sort of external action for the
computer operator to take, in order to activate the compute•'s input/
output system. The external control console for the G-15 is an electric
typewriter, connected by a cable to the computer. A picture of this
typewriter is on page 130. Certain keys on the typewriter, namely q, r,
t, i, p, a, s, f, c, b, and m, can directly activate the computer in the
ways indicated in the drawing, if the computer operator chooses to enable
them to do so. He does this by moving the enable switch, mounted on the
base of 'the typewriter, to the "ON" position. This switch should never
be turned on until the compute switch, which controls the automatic op
eration of the computer in either of the two modes already discussed,
is turned off. The "OFF" position for the compute switch is the center
position.

The use of the keys already named, while the enable switch is on, is
referred to as "enable action". Notice in the drawing that a "p" enable
action will cause the computer's input/output system to read punched
tape. From now on we will adopt the custom of underlining a letter in
order to indicate the appropriate enable action; e.g., £•

- 18 -

Given a punched paper tape containing the PPR program, you can mount
this tape on the photo-reader of the computer, strike £., and you will
see the photo-reader light turn on and the tape winding mechanism
start to work, pulling the tape past the reader. One "block" of the
tape will be read. A block of tape is a line's worth of information
destined for the memory of the computer. When this initial block
has been rrread" into the computer, and the photo-reader light goes
off, if you turn off the enable switch and turn the compute switch
on to "GO", the conunands now in the memory of the computer will be
operated, and they have been written to call for the reading of four
more blocks of punched tape. You will be able, of course, to see the
photo-reader turn on again and four blocks of tape pass by it, at
which point the basic portion of the PPR program will be in the memory
of the computer. It will be occupying long lines 17, 16, 15, and 05.
The initial block of tape, which was read in because of the R action,
will no longer be in the memory of the computer.

With the compute switch still on "GO", PPR will operate. As a program
operates, the neons on the front of the computer will flicker rapidly,
as they reflect certain portions of each conunand being operated in the
sequence of the program. A drawing of these neons is on page 208~
Notice that there is a set of five neons for both S and D, and that
each neon has a numerical value associated with it, the neons being
arranged in the form of a binary number containing five bits. Through
reading the lighted neons, you can determine the values for S and D
of the command which has just been executed. Of course it will be im
possible for you to read these neons as the program operates, because
the computer is executing commands very rapidly. But when the computer
stops, these neons will remain steady, showing th~ S and D of the last
command executed. Below the S and D neons there is another set of
five neons, which reflect the status of the input/output system. When
no input or output is in progress, the "ready" neon, marked with an "R"
will be on. If an input or output is in progress, this neon will be
off, and some configuration of the other four will be lighted, showing
the binary number associated with the input or output in progress.
Each input and each output has a unique special number associated with
it.

After PPR has been entered into the computer and is operating, the
neons will eventually stop flickering, showing an S of 28, a D of 31,
and an input or output called for with the unique number 12. 12 is
the special number associated with a typewriter input. In PPR, a
special command has been executed, and this co:nmand has told the com
puter to start a typewriter input. The special command for this is:

L L+2 N 0 12 31.

Notice that this is a special command (D = 31), and that the special
operation code is 12, the number associated with the input called for.
This is the case in all input/output conunands. Special commands with
D = 31 are always immediate. This can be overridden, and any special
command can be made deferred through the insertion of a prefix, P = w.
There is no such prefix in this command. It therefore will start

- 19 -

execution immediately, in L + 1, and this execution will continue up
through the last word-time preceding the "flag" in T. This flag is
L + 2; therefore the last word-time of execution will also be L + 1,
and we have thus limited execution of this command to one word-time,
L + 1. This is all that is necessary, since the input/output system
can be properly activated in one word-time of execution.

When the input/output system has been activated through the execution
of one of the appropriate special connnands, the computer continues
obeying commands in the normal sequence, taking the next command from
location N. There is no interlock built into the G-15 to prevent
computation during an input or output. If the program, in this case
PPR, depends on the arrival of data in memory from the input called
for, something must be done to prevent the computer from following
the sequence of commands until the data has arrived. The progrannner
does this, when writing his program, through insertion, at a given
point in the program, of a counnand designed to cause the computer to
wait for the completion of the input before preceding to further com
mands in the sequence. This was done by the programmers who wrote
PPR.

In order to understand how this can be done, you must first understand
that the G-15, like most digital computers, can make simple decisions,
based on the existance or nonexistance of a given condition within the
circuitry of the computer itself. The computer can be directed to
interrogate any of several conditions through the use of certain spe
cial commands, called "test" commands. When the computer reads a com
mand and finds that the command calls for a test, it performs that test
during the specified word-time or word-times of execution. After the
execution is complete, if the condition being tested for was not found
to exist, in other words' the answer to the question as·ked was "no"'
the computer will take its next command from N. If on the other hand,
the condition tested for was found to exist, in other words, the answer
to the question asked was "yes", the computer will automatically take
the next command from N + 1.

The special command which prevents the computer from continuing the
sequence in a program until an input or an output is finished is a test
connnand, called the "ready" test, which tests the input/output system
for being ready. If the input/output system is ready, there is no input
or output currently in progress. Thus, after an input or output has
been called for, and the ready test is given, the test cannot be answered
"yes" until the specified input or output is finished. In order to stop
the computer from proceeding in the sequence of a program, the ready
test is written in the following way:

L L L 0 28 31.

You can see, from inspection of this connnand, that, as long as the
answer to the question is "no", the next command, being taken from N,
will be the ready test itself. The only way this test can be prevented
from repeating itself over and over again is for the input/output system
to "go ready", making the answer to the question "yes", at which time

- 20 -

the next conunand will be taken from N + 1, which is in reality L + 1.
The sequence of the program would resume at L + L Notice that it
was said that the neons would remain steady at some point during the
operation of PPR, with S = 28, D = 31, and the inputfoutput neons
indicating the special number 12.

At this point during the operation of PPR, the commands comprising
any desired program can be typed in. PPR is also able to accept
other inputs and operate on them at this time, but we will postpone
a discussion of the various inputs to PPR until page 59, after you
have some knowledge of the make-up of a program.

Only the computer operator will know when the typewriter input is
finished because he will be doing the typing. When he is done, he
strikes the "s" key in order to notify the computer that the input
is finished. When he does this, the input/output neons will change,
and only the "ready" neon will be lighted. The ready test in PPR
will be answered "yes", and the program, in this case, PPR, will con
tinue its normal sequence.

Now that we have some general knowledge (to be expanded later on) of
the manner in which programs and data are entered into the computer,
let's inspect the available methods for performing arithmetic and
other operations on numbers under program control.

ARITHMETIC OPERATIONS

We will assume at this point that the numbers upon which we desire to
perform these operations have already been entered into the proper
memory locations of the computer.

Single-precision numbers are combined to form totals in the one-word
short line called AR. If the destination during the transfer of a
number is 28, the original contents of AR will be replaced with the
number being transferred. If, however, the destination is 29, the
number being transferred will be combined with the original contents
of AR in whatever manner is prescribed by the C code in the command.
Usually, when numbers contained in specified computer words are to be
added or subtracted from each other in a program, we cannot predict,
at the time we write the program, what the signs of these numbers will
be. In such a case, it is, of course, necessary, in order to generate
the proper sum or difference in AR, to transfer the numbers through
the inverting gates on their way to AR. We would therefore use C
codes of 1 for "add" and 3 for "subtract".

T s BP E S L p or N c D N 0 T
Lk

00 02 03 i 10 28 10.02 ~AR
c

03 04 05 1 10 29 +
10.04~~

05 06 N 1 28 10 AR~l0.06

- 21 -

L
T s D p or N c BP N 0 T E S
Lk

00 02 03 1 10 28 + 10.02 ~AR_c_

03 04 05 3 10 29 10.04 ~AR.+_

05 06 N 1 28 10 AR ~10.06

-·

L
T p or N c s D BP N 0 T E s
Lk

00 02 03 3 10 28 10.02 ~AR c

03 04 05 1 10 29 +
10.04~~

05 06 N 1 28 10 AR~l0.06

If double-precision numbers are to be added or subtracted, the two
word short line, PN, which serves as a double-precision accumulator,
is used as the destination for the transfer of the numbers. If D = 26,
the ·original contents of PN are replaced by the number being transfer
red. If, however, D = 30, the number being transferred is combined
with the original contents of PN in order to form the proper sum or
difference, as called for by the C codes in the transfers. Here, of
course, we would use the double-precision equivalents of 1 and 3 for
C, 5 and 7 respectively. Notice that, although a single-precision
number can be subtracted into a cleared accumulator, AR, with a C of
3 and a D of 28 (sometimes called "clear and subtract"), such is not
the case with the double-precision accumulator, PN. In order to replace
the original contents of PN with the number being transferred, D must
equal 26. If D = 26 and the source line is any other line in memory
(other than AR, of course), a C of 7 will be interpreted as calling for
an exchange of AR with memory, because both S and D will be less than
28. Therefore in order to "clear and subtract" a double-precision
number in PN, PN must first be cleared to zero and then the double
precision number subtracted using a C of 7. A special command is
available, which will clear all of the two-word registers:

L L+3 N 0 23 31.

Because D = 31, this command will be immediate. It will operate for
two word-times, L + 1 and L + 2, during which it will cause O's to b~
written into both halves of all three two-word registers.

- 22 -

L
T p or N c s D BP N 0 T E s
Lk

00 02 04 5 10 26 +
10.02-03 ~ PN__O_.._l

04 06 08 5 10 30 + 10.06-07 ~ PN_n i-t-_
~

08 10 N 5 26 10 +
PN__D_.._l~ 10.10-11

L
T p or N c s D BP N 0 T E S
Lk

00 02 04 5 10 26 +
10.02-03 ~ PN_o_ .1

04 06 08 7 10 30 10.06-07 -=4PN_n i-t-_

08 10 N 5 26 10
+ ,

PN0-1l --410 .10-11

L
T p or N c s D BP N 0 T E s
Lk

00 03 03 0 23 31 Clear 2-word registers

03 04 06 7 10 30 10.04-05 ~ PNO~l+

06 08 10 5 10 30 +
10.08-09 ~PNO~l+

10 12 N 5 26 10 +
PNO....t..l~ 10.12-13

The magnitude of a single-precision number can be added to a quantity
in AR through the use of a C of 2, since AR, as the destination, will
be line 29. The magnitude of a single-precision number can be placed
in AR, replacing the original contents of AR, preparatory to adding
something to it, through the use of the same C and a destination of 28.
In either case the C of 2 will call for the transfer of the magnitude
of the operand, because the destination is greater than or equal to 28.
Similarly, the magnitude of an answer in AR can be transferred to some
predetermined storage location in memory through the use of a C of 2,
because the source in this command would be 28 (AR).

- 23 -

. -·-

T c s 0 E S L p or N BP N 0 T
Lk

00 01 02 1 10 28 lO.ol 4AR c

02 03 04 1 10 29
+

10.03~~

04 05 N 2 28 10 IARf~l0.05

T c s 0 BP N 0 T E S L p or N Lk

00 01 02 2 10 28 f 10.0~-4ARc
02 03 04 1 10 29 +

10.03 ~AR+

04 05 N 1 28 10 AR ~10.05

L
T p or N c s 0 BP N 0 T E S
Lk

00 01 02 1 10 28 +
10.01 ~ AR_c_

02 03 04 2 10 29 l 10.03f~AR+
04 05 N 1 28 10 AR ~10.05

In order to generate a +O in AR, we find the use of absolute values
advantageous. You might guess that you could generate a +O in AR
by subtracting the contents of AR from AR, in a fashion similar to
the one below:

L T N 3 28 29.

This method is fine if AR is originally positive, because the C of 3
will cause the sign of AR's contents to be changed, thus yielding a
negative number, and then it will cause this negative number to pass
through the inverting gates and be complemented. Because D = 29, this
negative complement will be added to the original contents of AR, so
that the sum generated in AR will be a positive number plus its nega
tive complement. Any positive number plus its negative complement will
yield +O as a resulto

- 24 -

100011011001000100001111110
011100100110111011110000010

1 000000000000000000000000000

000000000000000000000000000

But, if AR originally contains a negative number, the C of 3 will
cause the sign of this number to be changed to a positive sign, and
thus the magnitude bits will pass through the inverting gates un
complemented. The initial sum generated in AR, therefore will be
negative, and its magnitude will be twice that of the original con
tents of AR; if, in the generation of the sum, an end-around-carry
is generated, the final sign of the sum will be positive, but the
magnitude, in most cases, will be unequal to 0.

100011011001000100001111110
100011011001000100001111110

1 000110110010001000011111100

000110110010001000011111100

Usually, when it is desired to generate a +O in AR, you cannot pre
dict, at the time you are writing your program, what the sign of the
original contents of AR will be. Therefore, in order to insure a
positive number in AR, you must precede the conunand shown above with
another conunand whose purpose is to replace the original contents of
AR with their absolute value. This connnand will be of the form:

L T N 2 28 28.

L
T p or N c s D BP N 0 T E S
Lk

00 01 02 2 28 28 jAR\~ARc
02 03 N 3 28 29 AR~AR+

L
T p or N c s D BP N 0 T E S
Lk

00 01 02 2 10 28 /10.011 ~ARC
02 03 04 3 28 28 AR~AR c

04 05 06 2 10 29 J10.os/-+AR+

06 07 N 1 28 10 AR-410.07

- 25 -

The absolute value of a double-precision number may be added to the
original contents of the double-precision accumulator, PN, through
the use of the double-precision equivalent of a C of 2: this would
be a C of 6. The absolute value of the double-precision number will
be transferred because D = 30. The command would be of the form:

L T N 6 s 30.

T
L p or N c s D BP N 0 T E s Lk

00 02 04 5 10 26 +
10.02-03 ~ PNO, l

04 06 08 6 10 30 I 10.06-07 f---4 PN__o_._l+

08 10 N 5 26 10 +
PN0_ 1~ 10.10-11

Notice that a C of 6 cannot be used to replace the original contents
of PN with a double-precision absolute value, because D, in this case,
would have to be 26, and therefore the rule that, for a C of 6 to call
for the transfer of absolute value, either S or D must be greater than
or equal to 28, would be violated. Similarly, the absolute value of a
double-precision number in PN cannot be transferred to a predetermined
storage location in memory by a C of 6, because PN, as a source, must
always be referred to as line 26. The answer to this problem is to
first clear the two-word registers, including PN, and then add the magni
tude to PN, C = 6 and D = 30.

T s D BP 0 T s L p or N c N E
Lk

00 03 03 0 23 31 Clear 2-wor:d registers

03 04 06 6 10 30 I 10.04-051 ~PN0 l+

06 08 10 6 10 30 \10.08-09 l---tPN0 • l+

10 12 N 5 26 10
+

PNQ. 1~10.12-13

Any command which would normally affect only one data word, such as
the deferred commands we have been discussing up to this point, can
be made to affect a "block" of contiguous data words by being made
immediate.

T s D BP N 0 T E s L p or N c
Lk

05 09 N 0 10 11 10.09~11.09

- 26 -

L p T s or N c D BP N 0 T E S
Lk

00 u 09 N 0 10 11 10.01-08 ~11.01-08

T s BP L p or N c D N 0 T E S
Lk

00 u 01 N 0 10 11 line 10~ line 11

We thus can have ''block adds", ''block subtracts", "block copies",
etc.

T
L p or N c s D BP N 0 T E S

Lk

00 01 01 1 10 28 10.01~ AR c

01 u 01 02 1 10 29 10.02-00 ~AR+

02 03 N 1 28 09 AR~09.03

T
L p or N c s D BP N 0 T E S

Lk

00 01 02 2 28 28 jAR)-}ARc

02 03 04 3 28 29 AR-4AR+

04 u 05 05 0 28 18 AR~ 18.05-04

05 06 N 1 31 31 Number track to line 18

We have already mentioned the number track. There is a special com
mand available, which will copy words from the number track into line
18, where they may be treated as data:

L T N 1 31 31.

- 27 -

PPR will make this conunand immediate, because D = 31. Any number of
words may be copied, depending on the relationship of T to L. If the
entire number track is desired in line 18, T should equal L + 1.

In this particular case only, the words arriving at line 18 will not
replace the original contents of that line, but they will be logically
added to the original contents, instead. Logical addition is an
"either-or" proposition, in which a 1 will result in the sum if either
of the numbers being added, or each of them, contains a l; there is no
"carry".

0 + 0 = 0

0 + 1 1

1 + 0 = 1

1 + 1 1

For this reason, line 18 should be cleared prior to receiving the
contents of the number track.

So far we have been treating data words in the computer as if they were
in binary form. Although this is correct, it is desirable to give a
program decimal numbers as inputs and receive from the program decimal
numbers as outputs. In such a case, the program itself will have to
convert the decimal numbers it receives to their binary equivalents
before performing operations on them, and it will have to convert its
binary answers to their decimal equivalents before transmitting them
as outputs. Fortunately each programmer who uses the G-15 does not
have to write the necessary number-conversion routines in each program
he develops, because this work has already been done for him by the
Bendix Computer Division.

SUBROUTINES

The final effort of a programmer may go by any of various names, de
pending on the use for which it is intended. Some programmers write
programs which are complete entities in themselves, in that they
accept some raw data, perform all of the necessary operations on it,
and yield valuable, final answers which are of use to the computer
user. Other programmers write sequences of commands designed to
accomplish some intermediate result which will be necessary during
the manipulation of the raw data in other programs. The conversion
of decimal numbers to binary is such a manipulation, and the binary
numbers which result are intermediate to a final answer of a program.
A sequence of commands designed to yield such useful intermediate re
sults is called a subroutine, implying that it is designed to be a
subordinate part of a longer routine, which might be called a program.
Subroutines are written in such a way that they can be easily incorpo
rated into longer routines in a manner prescribed by their author.
These specifications always accompany a subroutine when it is distrib
uted, or "issued", to computer users in general.

- 28 -

In order to understand how subroutines can be incorporated into your
program, you must first be aware of the fact that it is possible, by
a special command, to cause the computer to cease taking commands from
the normal sequence, and start a new sequence at a prescribed location.
Commands which can cause the computer to do this are referred to as
"jump", ''branch", or "transfer" connnands; in programming the G-15, we
refer to them as transfer commands, where we use the word transfer to
mean "transfer control". The special connnand·which will cause the
G-15 to do this is:

L L+2 N c 21 31,
or,

LwT N c 21 31.

Normally the G-15 continues taking connnands in a sequence from the
same line in memory, where each command is found in that line at the
word-time equal to N of the previous command. When this special
transfer command is interpreted and executed, however, the computer
will transfer program control to the line in memory specified by the
C number in this corrnnand, and the first command in the new line will
be found at the word-time equal to N of the transfer command. Notice
that only eight lines can be specified as connnand lines, because C is
a one digit number ranging from 0 through 7. This correctly implies
that not all lines in the memory of the computer are capable of being
read for commands. A memory line which has this capability is referred
to as a "command line". Connnand line numbers are associated with memory
lines according to the following table:

Command line number Memory line number

0 00
1 01
2 02
3 03
4 04
5 05
6 19
7 23

The specifications for each available subroutine will contain the line
number in which the subroutine must operate, the word-time in that line
at which the first command of the subroutine is located, and the memory
location in which the data upon which the subroutine is to operate is to
be stored, along with other information.

Thus, if you have a data number which you want converted from decimal
to binary, you must consult the specifications for the number-conversion
subroutine for this information, and then incorporate into your program
the necessary commands to:

1. place the decimal number in that memory location prescribed,
and

- 29 -

2. transfer control to the prescribed command line, in which
the subroutine is located, at the initial word-time in
that line, which is also prescribed in the specifications.

When a subroutine has been entered, in the course of operation of a
program, and the subroutine has done its work, there must be some
provision for having the subroutine return program control to the
main part of the program. The specifications for each subroutine
will state where the output of the subroutine will be stored, and
the main program can be written so that, upon re-entry from the sub
routine, it will perform its operations using the intermediate re
sult in this location. A question arises, for the programmer who is
writing the subroutine, as to what line and what word-time within
that line the subroutine is to transfer control to. Obviously, this
will be different for each main program which uses the subroutine,
and therefore a transfer connnand, coded in the form we have already
discussed, will not help the programmer writing a subroutine.

The solution adopted for this problem is a second type of transfer
conunand, called a "return" connnand. This is also a special command,
and is coded in the following way:

L L+2 L+l c 20 31.

When this connnand is executed, it will transfer control to command
line C, at a predetermined word-time. The manner in which this word
time is predetermined is through the prior execution of a transfer
command. When a transfer command is executed, in addition to trans
ferring control to line C, word N, it ''marks" a word-time, which is
the last word-time of execution of the transfer command. This mark
determines the word-time in line C to which the return connnand will
return control; when a return command is executed, subsequent to the
execution of a transfer command, control will be returned to line C
(C in the return command) at the marked word-time. Because it gener
ates this mark, the transfer command, whose special operation code
is 21, is called a ''Mark, Transfer" command.

Assume that the number-conversion subroutine is in line 02, and the
main program is in line 00, and the following information is contained
in the specifications for that subroutine:

Execution •••••••••••••••••••••••••. Cornmand line 02
Entry Word-time 46
Exit•.•.......•............• Word - time 4 7
Input •••••••••••••••.•••••.••••••••• x (decimal) in IDl

(7 digits and sign)
Return connnand in AR

Output •••••.••.•••••••••••••••••••• x (binary) in MQo

Assuming x (decimal), consisting of seven digits and a sign, is in
23.00, and that x (binary) is desired in 00.59, the following se
quence of commands will satisfy the requirements:

- 30 -

L
T c s D BP N 0 T E s p or N
Lk

00 04 06 6 23 25 x = (23.00)~ID_l

06 07 08 0 00 28 00.07~AR

I -
07 49 48 0 20 31 - Return Conunand

08 w 50 46 2 21 31 Mark, transfer to 02.46

50 52 53 0 24 28 x = (MQo)~AR

53 59 N 0 28 00 x = (AR) ~00.59

Now we come to an interesting point, which, we hope, has been bothering
you: if all words in the memory of the computer are of binary form,
how is it that decimal numbers can be entered during an input? In
order to answer this question, which·now, at least, is bothering you,
you must understand the input system for the G-15.

INPUTS

On the keyboard of the typewriter, as shown on page 130, the digit keys,
certain letter keys, and the minus sign, tab, carriage return and 11/ 11

keys can all cause a direct affect in the way of data input. Any of
the digit keys, 2 through O, the L key, which is used for 1, and the
letter keys, u, v, w, x, y, and z, which are sufficient to complete the
hex number system, will generate a 4-bit code during an input:

Key 4-bit code

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
u 1010
v 1011
w 1100
x 1101
y 1110
z 1111

- 31 -

The minus key sets a "sign flip-flop" with a l; if the minus key is
not struck during the input of a number, this flip-flop will retain
a 0. The tab and carriage return keys have identical effects on the
input system; they each cause the sign flip-flop's contents to be
placed in the sign-bit of a word.

Each time a 4-bit code is entered, during an input, it causes all
of_ short line 23 (four words = 116 bits) to be shifted towards the
high-order end of the line, in the direction shown by the arrow in
the drawing below. The four vacated bit-positions in the low-order
end of the line, bits Tl through T4 of 23.00, are cleared to 0000.
These four bit-positions receive the incoming 4-bit code,

TZ! Tl

01 •a 01 I oo

Thus, after seven digits have been entered, there are 28 bits properly
set in 23.00, Tl through T28. If hex digits, representing a binary
number, were entered, the 28-bit magnitude is exactly reproduced in
these 28 bits. Unfortunately this magnitude is not properly positioned
in the word, however, because we know that it should occupy bits T2
through T29, and a sign should occupy bit Tl, Either the tab or the
carriage return key will have the same effect on line 23: it will
shift the line's contents toward the high-order, end by one bit-position,
vacating Tl of 23.00, and that bit will receive the present contents of
the sign flip-flop. Four words, each consisting of seven hex digits
and a sign, could be entered into line 23 by repeating this process.
At any point, line 23's contents can be transferred, word-for-word, into
the low-order four words of line 19, 19.00-19.03, by striking the 11/"

key, referred to, because of its effect, as the "reload" key. Line 19's
contents will be shifted towards the high-order end of the line by four
full word-times whenever this action is taken. Thus you can see that
it is possible to enter an entire long line's contents (108 words)
during one input operation.

Now, if the seven digits that are entered for any given number are dec
imal digits, rather than hex digits, we will have a 28-bit magnitude
consisting of 4-bit codes, each of which ranges in value from 0000 to
1001. It is obvious that this binary number is not the binary equiva
lent of the decimal number entered.

Digits typed in: 9876543 (tab) s

23.00: 1001100001110110010101000011~

binary integral value equivalent to 9876543.(lO):

0000100101101011010000111111p

We call a binary number in this form "binary-coded-decimal". It is
a number of this form which we will obtain when typing in decimal digits
and which we will supply as an input to the number-conversion subroutine•

- 32 -

DECIMAL SCA.LING

At this point, we must settle on some accepted system for discussing
the quantities that are being handled by the computer. Since no
decimal points are entered during the type-in of inputs, a system is
necessary for interpreting the numbers entered. It is convenient, and
therefore connnon, to consider all numbers in the computer as fractions.
In other words, if we enter the decimal number, -9876543, we will as
sume that the computer handles it as the number, -.9876543. Now, this
does not mean that the computer can only handle fractional quantities;
it does mean that we must have some method for properly interpreting
the numbers that are in the machine. If the quantity we are represent
ing with this number is really -98.76543, we will say that the machine
holds this number divided by 100, or multiplied by lo-2. And we can,
in general, say that the machine holds our number, A, multiplied by a
factor of 10 raised to some power. This factor we call the "scale fac
tor". If A* represents the machine form of the number A, and S repre
sents the scale factor of A, then A* = S•A. This determination of
scale factors for numbers is called "scaling". Usually the scale fac
tor associated with a number in the computer which is being affected
by a given connnand will be entered in the notes column for that com
mand on the coding sheet.

As you know, numbers whose decimal points are not lined up cannot be
added to, or subtracted from, each other, without first shifting either
or both of them, in order to line up the decimal points.

1.654 =
+ 398.7 =

1.654
398.7
400.354

The decimal scale factor of a number in the computer merely fixes the
decimal point in that number.

A*
.0001654

.0003987

=
=
=

A • S - -
0001. 654· 10-4

000398.7•10-6

Therefore, numbers in the computer must have like scale factors before
they can be properly added to, or subtracted from, each other. This can
be accomplished by multiplying either or both of them by l•lon , where
n equals the number of decimal places the number is to be shifted •

• 0001654(=0001.654•10-4) =.0001654(=0001.654•10-4)

.0003987(=000398.7·10-6)·10.0000000(=1•102)=.0398700(=0398.700•10-4)

.0400354(=0400.354·10-4)

We have already said that it is convenient to consider all numbers in
the machine as fractions. This would eliminate the multiplier,
10.0000000, in the above example. An obvious solution to this dilennna
would be to rescale .0001654 rather than .0003987, in the following manner:

- 33 -

.0001654(=0001.654·10-4)·.0100000(=01.00000°10-2)=.0000016(=000001.6·10- 6)

.0003987(=000398.7•10-6) =.0003987(=000398.7·10- 6)

.0004003(=000400.3·10-6)

Unfortunately, this method of rescaling, although it properly aligns the
decimal points for the addition of the two numbers, causes a loss of ac
curacy in one of them, and therefore, in the result. It is desirable to
rescale .0003987, by shifting it to the left, because no significance will
be lost in that number, as you saw above, and yet, no accuracy will be
lost, either. If we cannot have the number, 10.0000000, in the computer,
we must find a substitute for it. A substitute for multiplication by any
number is division by its reciprocal. The reciprocal of 1·102 is l·l0-2.
Therefore, instead of multiplying .0003987 by 10.0000000(=1·102), we can
divide .0003987 by .0100000{=01.00000•l0-2):

.0001654(=0001.654•10-4) =.0001654(=0001.654•10-4)

.0003987(=000398.7·10-6)+.0lOOOOO(=Ol.OOOOO·l0-2)=.0398700(=0398.700-10-4)

.0400354(=0400.354·10-4)

When two numbers are multiplied together, the scale factor of the product
equals the product of the scale factors:

a·lOn•b•lOm=a·b·lOn+m

When a number is divided by another, the scale factor of the quotient
is the quotient of their respective scale factors:.

n
a· 10 = .§!... 10n-m
b·lOm b

The method of scaling we have just discussed is called "fixed-point"
scaling, because it is a means of interpreting numbers in the machine
in relation to a fixed machine-point, which immediately precedes the
most significant bit of a number, making the number a fraction, as it
appears in the machine.

Because scaling is merely a means of interpreting values in the machine,
however, any method of scaling is permissable, as long as it is consistent
and dependable. Another method in common usage is "floating-point" scaling.
For a discussion of this method, see page 201.

BACK TO ARITHMETIC

Because the G-15 has a limit of 28 magnitude bits for a single-precision
number, it is possible to attempt to generate a sum in AR which cannot
be contained within 28 bits, and therefore the sum which is generated is
erroneous. The condition that arises in such a case is called "overflow",
and the machine is equipped to detect this, although it will do nothing
about it automatically. However, an overflow test command is available
for inclusion in programs, and the progrannner can take whatever action
he deems necessary in that sequence of commands which starts with the

- 34 -

"yes" answer for any overflow test. The overflow test conunand is t

L L+2 N 0 29 31.

In addition to testing for the presence of the overflow condition,
this ~ommanq also turns off the overflow indicator. Furthermore,
that indicator can only be turned off by the overflow test conunand.
The corollary to this, naturally, is that, once the overflow indicator
has been turned on, through the generation of an overflow, it will
remain on until it is tested.

It is essential, when checking for the generation of overflow by a
certain conunand or sequence of conunands, to be sure that the indi
cator is off when that conunand or sequence of connnands is entered.
Turning off the overflow indicator through use of the overflow test
conunand is the only way to insure this, but you must remember that,
even though you are only using the test connnand for this purpose,
nevertheless it is a test conunand, and, depending on the original
setting of the indicator, the next conunand may be taken from either
N or N + 1. One solution to this is, of course, to place the saille
conunand at N and N + 1, so that, regardless of the answer to the
test, the same sequence of conunands will follow.

T
L p or N c s 0 BP N 0 T E s

Lk

00 02 02 0 29 31 Turn off overflow

02 04 05 1 21 28 + 21.00~ AR_c 10-5

03 04 05 1 21 28
~

21.00~~ 10-5

05 07 08 1 21 29 +
21.03~~ 10-5

08 10 10 0 29 31 Overflow?

10 12 N 1 28 22 No AR~ 22.00 10-5

11 13 00 0 16 31 Yes Halt

Another solution is to write the overflow test conunand in the following
way:

L L+2 L-1 0 29 31.

If the answer is "no", the program will continue at L - 1. If the answer
is "yes", the next connnand will be taken from N (= L -1) + 1 = L, and
the test will be repeated. Of course it will be answered "no" the second
time, because the indicator was turned off by the test the first time.

- 35 -

T
L p or N c s D BP N 0 T E s

Lk

),-~ ~(05 ~~~ oz 04 0 29 31 '.., Turn off overflow 1!

04 08 09 1 21 28 +
21.00 ~AR,.. 10-5

09 11 12 1 21 29 +
21.03~AR+ 10-5

12 14 14' 0 29 31 Overflow?

14 16 N' 1 28 22 No AR ~22.00 10-5

15 17 00 0 16 31 Yes Halt

The same overflow test is also effective for double-precision arith
metic in PN.

T
L p or N c s D BP N 0 T E s

Lk

00 02 02 0 29 31 Turn off overflow

02 04 07 5 21 30 +
21.00-01 ~PNO_.l 10-8

03 04 07 5 21 30 +
21.00-01 ~ PNQ~ 10-8

07 10 12 7 21 30 21.02-03 ~ PN+ 10-8

12 14 14 0 29 31 Overflow?

14 16 N 5 26 22 No PN ~22.00-01 10-8

15 17 00 0 16 31 Yes Halt

Two arithmetic operations remain undiscussed: they are multiplication
and division. These cannot be performed by normal commands which call
for the t:;:-ansfer of words. They require special commands.

MULTIPLY

The special command for multiply is:

L T N 0 24 31.

When this connnand is given, the computer will automatically multiply
two numbers in specific locations of its memory: the multiplicand
will be in the two-word register ID, and the multiplier will be in
the two-word register MQ. The product will be generated in the two
word register PN.

- 36 -

Multiplication is essentially a double-precision process, and both
halves of ID and MQ enter into it, a double-precision product being
generated in all of PN. We know that the most significant half of
a double-precision number is in an odd word-time, and the least
significant half of the same number is in the immediately preceding
even word-time. Therefore, if we draw the two-word registers as
shown below, the most significant bit in each number involved will
be the left-most bit, as is customary in the writing of numbers in
any number system.

101
11 I •

""
11

ttq.
11

... 11 11

But single-precision multiplication can also be performed in the
two-word registers, the only difference being that the single
precision multiplicand will occupy only the most significant, or
odd, half of ID, and the multiplier will occupy the same position,
respectively, in MQ.

A single-precision multiplication will, nevertheless, yield a double
precision product in PN, due to the fact that multiplication, in the
machine, is a double-precision process. The product, in PN, is gen
erated through a series of successive additions of ID into PN (see
pages 70 - 75 for an explanation of multiplication). For this
reason, if a single-precision multiplicand is loaded into the odd
half of ID, the even half of ID must be cleared to 0. After a mul
tiplication of two single-precision numbers has been performed, and
the product is in PN, if a single-precision product is desired, it
will be available in the odd half of PN; if a double-precision prod
uct is desired, it will be available in all of PN.

The T number in the multiply command is a "relative timing number"
indicating the number of word-times for which the multiplication is
to be performed. Two word-times are necessary for each bit in the
multiplier which is to enter into the multiplication. If two single
precision numbers are to be multiplied, obviously the multiplier will
contain 28 magnitude bits which are to enter into the operation;
therefore, the T number in the multiply command should be 56. If the
multiplier is a double-precision number, 57 bits of magnitude are to
enter into the operation; therefore, the T number in the multiply com
mand should be v4 (= 114).

The location of the multiply command should always be an odd word
time, because the operation is essentially double-precision in nature,
and immediate. It has already been pointed out that double-precision
operations must begin in even word-times. You will find this situation
applying in the cases of other commands, as well.

- 37 -

If the multiply connnand automatically multiplies the two numbers in
ID and MQ, it stands to reason that, before the multiply connnand is
given, the proper numbers must be in those two registers. They can
be there only if your program places them there prior to calling for
a multiplication. But copying words into the two-word registers is
a bit more complicated than copying words into any other memory loca
tions.

There is a flip-flop called "IP11 , which is associated with the two
word registers. Under certain conditions, the sign of a number will
be divorced from the magnitude bits and sent to IP, when the desti
nation is a two-word register; the magnitude bits will always be
transmitted to the addressed register, however. Whenever a sign of
a number is divorced and sent to IP, the bit in the two-word register
which would normally have received the sign is cleared to 0. Simi
larly, under certain conditions, the sign of a number being trans
ferred from a two-word register to some other memory location may be
taken from IP, rather than from the two-word register source; the
magnitude bits of the number being transferred will always come from
the two-word register source, however.

It should be noted here that the clear two-word registers connnand
also clears the IP flip-flop.

The following rules apply to transfers of information to and from
the two-word registers.

1. If the destination is a two-word register (24, 25, 26) and
C is even (O, 2, 4, 6), the sign of the number will be sent
to IP.

a. If ID is the destination, IP will be cleared prior to
receiving the sign of the number.

b. If either MQ or PN (26) is the destination, IP will
not be cleared prior to receiving the sign of the
number, but the sign will be added to the present
contents of IP. Since IP can retain only one bit,
it will contain, in this case, the least significant
bit of the sum, and any carry generated by the sum
will be lost.

2. If the source is a two-word register (24, 25, 26) and C is
even, the sign accompanying the number will be taken from
IP, rather than from the normal sign bit in the two-word
register source.

3. If ID is the destination and C is even, for every bit set
in ID, the corresponding bit in PN will be cleared.

4. If an exchange of AR with memory is called for (C = 2, 3, 6, 7)
and the destination is a two-word register, during any even
word-time of execution, AR's contents will be blocked from

L

00

03

06

09

66

L

00

04

11

18

L

00

04

09

66

p

p

- 38 -

entering the two-word register, and twenty-nine O's will be
transferred instead; AR's contents will be lost.

5. As an exception to rules 1 - 4, if the transfer called for
is from one two-word register to another, IP will remain
unaffected.

6. As.an exception to rules 1 - 5, if the source is PN (26),
the destination is PN (26), and C = 0 or. 4, the sign bit in
IP will be combined with the magnitude bits from PN, this
number will pass through the inverting gates, and the result
ant number will be placed in PN, the.sign remaining with the
magnitude bits.

T
or N c s D BP N 0 T E s
Lk

03 03 0 23 31 Clear 2-word registers

05 06 0 10 25 10.05 ~IDl 10-5

07 09 0 20 24 20.03~MQ1 10-5

56 66 0 24 31 Multiply 10-10

! 68 N 4 26 21 p~ _]_ ~ 21.00-01 10-10

T
·. or N c s D BP N 0 T E s
\ L_k_

02 04 4 10 25 10.02-03 ~ IDO.l
10-""5"

08 11 4 21 24 21.00-.01 ~ M~l 10-5

v4 18 0 24 31 Multiply 10-10

.70 N 4 26 10 p~ ._l---7 10. 70-71 10-10

T p or N c s D BP N 0 T E s
~
02 04 6 10 25 10.02~ ID1 10-5

06 09 6 20 24 20.02~MQ1 10-5
--'-

~6 66 0 24 31 Multiply 10-10

67 N 0 26 11 PN-1---) 11.67 10-10

- 39 -

DIVIDE

The special command for divide is~

L T N (1 or 5) 25 31.

There is no difference in the effect of the divide command between a
C of 1 and a C of 5. When this command is given, the computer will
automatically divide the numerator, in PN, by the denominator, in ID,
generating a quotient in MQ.

Division is also essentially a double-precision process, both halves
of ID and PN entering into it, but the precision of the quotient gen
erated in MQ is determined by the number of word-times for which the
division is carried out. The T number in the divide command is also
a relative timing number. If a single-precision quotient is desired,
let T = 57; the single-precision quotient will be generated in the
even half of MQ. If a double-precision quotient is desired, let
T = v6 (= 116); the double-precision quotient will occupy both halves
of MQ. A more complete description of the division process is con
tained in pages 76 - 84.

The location of the divide command should always be an odd word-time.

T c s D BP N 0 T E s L p or N Lk

00 03 03 0 23 31 Clear two-word registers

03 05 06 0 21 25 21.01---7 ID.l 10-5

06 07 09 0 10 26 10.07~PN1 10-1

09 57 67 5 25 31 Divide 10-2

67 68 N 0 24 28 MQO~AR.c 10-2

T c s D BP N 0 T E s L p or N Lk

00 02 04 6 10 25 10.02 -4 ID...l 10-5

04 05 07 0 20 26 20.01~ PN_i io- 7

07 57 65 1 25 31 Divide 10-2

65 66 N 0 24 21 MQO---) 21.02 10-2

- 40 -

l
T p or N c s D BP N 0 T E s
Lk

00 02 04 4 10 25 10.02-03 ~ IDO. l 10-6

04 06 09 4 21 26 21. 02-03 ---4 PN_o_~l 10-8

09 v6 18 5 25 31 Divide 10-2

18 22 N 4 24 20 M~_l~ 20.02-03 10-2

Some problems require more mathematical processes than we have discussed
up to this ~oint, for instance, the generation of a square root or a
trigonometric function. Any of these more exotic processes can be per
formed through a series of arithmetic operations which approximate the
desired value. Subroutines have been written by the Bendix Computer
Division for various mathematical processes, and each of these subrou
tines can be incorporated into a main program in the same manner in
which the number-conversion subroutine was, in the previous example.

Suppose the following information is included in the specifications for
the square root subroutine, and you desire to store in 19.u6-u7 the
double-precision square root of a double-precision number in 21.00-01:

Execution ...••.•.•••..•....•..•••.• From command line 01
Entry ••••..•••••••••..••.•.•.•.•.•• At word-time 94
Exit •••••••.•••.•.•..•.•...•....••• Return command from 01.98
Input ••••••.••.••..•.....•••..•.•.. N ~PNO, 1

Return command___.AR
Outp~t •••.•.•.•••.••...••••••.•••.• J'N" double-precision PNO, 1

: JN single-precision = 20.03
N = 21. 00-01

A sequence of commands starting at word-time 56 in the main program,
which could be in any command line other than 01 of course, in this
case, line 00, to accomplish the above purpose,might be:

l p' T
or N c s D BP N 0 T E s
Lk

56 57 58
I

0 00 28 00.57~ ARc

57 (1- uO 99 0 20 31 J Return command

58 60 62 5 21 26 21. 00-01~ PN_O_ _l
....,.

62 64 94 1 21 31 Go to square root subroutine

63 u6 N 5 26 19 PN0....t. 1~19.u6-u7

- 41 -

Mention of taking the square root of a number gives rise to the discus
sion of two more test commands which are available, and which operate
in the same fashion as the other test commands which have already been
discussed. These two test commands are:

L T N C s 27:

the contents of the operand will be tested for non-zero. If all of the
bits tested equal O, the answer to this question will be "no"; the next
command will be taken from N. If any of the bits tested equals 1, the
answer will be "yes"; the next command will be taken from N + 1. Any C
may be used in this test command, and the test will be performed on bits
in a predictable manner, depending on the C used.

L 1*2 N 0 22 31:

the sign of AR will be tested for negative. If the sign is negative,
the answer will be "yes".

L
T p or N c s D BP N 0 T E S
Lk

00 01 02 1 20 28 20.01~ AR c

02 03 04 3 10 29 10.03 ~AR+

04 06 06 0 28 27 Test AR/= 0

06 08 00 0 16 31 =O Halt

07 09 N 1 28 21 I= 0 AR~21.0l

T
L p or N c s D BP N 0 T E s

Lk

00 u 05 05 0 20 27 Test line 20 I= 0

05 u 10 06 0 21 20 = 0 Line 21 ~Line 20

06 07 11 1 20 28 /. 0 20.03-±. ARC

11 15 15 1 20 29
+

u 20.00-02 --4AR+

15 17 17 0 22 31 Test AR negative

17 20 N 1 28 10 +
+

AR ~10.20

18 20 N 1 28 11 - AR~ll.20

- 42 -

LOGICAL OPERATIONS

So far the only operations upon data which we have discussed are arith
metic, and we have assumed that the data numbers represent quantities.
But we spoke earlier of another meaning for numbers: code. Programs
can be written to process data which is in code form, where each bit,
or group of bits, in a data word represents some information other than
a quantity; it might, for instance, represent the answer to a question,
or the sex or marital status of a person who is being treated by the
program as a statistic. There are operations available in the computer
which are essentially logical, rather than arithmetic, in nature. The
bits in a word may be shifted to the right or to the left, or individual
bits in a word may be isolated from the rest, for independent treatment.

SHIFT

The shifting process can be performed by either of two commands:

L T N 1 26 31
or

L T N 0 26 31.

In either case, the words shifted, and the directions in which they are
shifted, are the same: ID shifts right, and MQ shifts left, concurrently.

11 ID.

II
11

~
'1Cl1 t I l'IQ•

11

The data word whicn is to be shifted must be placed in either of these
two-word registers, depending on the desired direction of the shift,
prior to giving the shift command. All of ID will shift to the right,
with the exception of bit Tl of IDo, the sign bit, which will not be
involved in the shift. All 58 bits of MQ will shift left.

The number of shifts that will be performed is determined by the number
of word-times of execution allowed; each shift will move all bits in ID
to the right one bit-position and all bits in MQ to the left one bit
position. T, in each of the shift commands, is a relative timing number,
indicating the number of word-times of execution; two word-times are
necessary for each shift. Therefore, T should equal 2 times the number
of shifts desired: Twill always be an even number.

The shift command, L T N 1 26 31, will operate on ID and MQ in the
above manner for the number of shifts called for by the T number. The
other shift command, L T N 0 26 31, will also operate in the above
manner, but the duration of its execution may be determined either by
the T number in the command, or by the contents of AR. For every shift
performed by this command, a 1 will be added to AR, in the least signi
ficant magnitude bit-position, bit T2, and the generation of an end
around-carry in AR will terminate the shifting process with the shift

- 43 -

causing it. If the number of word-times of execution called for by T
in the command is fulfilled before the occurrence of this end-around
carry in AR, the shift will also be terminated. Therefore, T, in this
connnand, sets a limit upon the number of shifts that will be performed,
but the number of shifts might be less, depending on the contents of
AR. The location of a shift corrnnand should always be an odd word-time.

Before Execution

,ID1 1010110101100001011111100llqo IDO 1101111010101001001111010lllp

MQ1 011000111100011111100011011Ijo MQ0 110100111100000111111101010'*

AR 0011110111100000000000000114>

L
T s p or N c D BP N 0 T E s
Lk

00 02 04 5 20 25 + 20.02-03 ~ IDO_Ll

04 08 11 5 20 24 + 20.00-01 ~ M~· _l
~

11 40 N 1 26 31 Shift

After Execution

rn1 000000000000000000001010l~OlP rn0 110000101111110011001101111~

MQl 001101110110100111100000111~1 M~ 110101001000000000000000000of

AR 0011110111100000000000000llcf>

Before Execution

rn1 101011010llOOOOiOllllllOOllcp rn0 1101111010101001001111010114>

MQ1 0110001111000111111000110111):> MQ0 110100111100000111111101010ofi.

AR ooooooooooooooooooooooooooocf>

L
T p or N c s D BP N 0 T E s
LJt

00 02 04 5 20 25 +
20.02-03~ ID0_1_l

04 08 11 5 20 24 +
20.00-01~ MQ0_

1
l

11 40 N 0 26 31 Shift

- 44 -

After Execution

IDl 000000000000000000001010110lfl IDO

MQ1 001101110110100111100000111~1 MQ0

AR 000000000000000000000001010~

110000101111110011001101111~

1101010010000000000000000004>

Before Execution

ID1 1010110101100001011111100114> rn0 110111101010100100111101011*

MQ1 0110001111000111111000110llif> MQ0 110100111100000111111101010~1

AR lllllllllllllllllllllllllOOq1

T
l p or N c s D BP Lk

00 02 04 5 20 25

04 08 11 5 20 24

11 40 N 0 26 31

After Execution

ID1 000000001010110101100001011~1 IDO

MQ1 110001111110001101110110100~1 MQ0

AR oooooooooooooooooooooooooooqo

EXTRACT

N 0 T E s
+ 20.02-03 --7- IDO_,_l

+
20. 00-01 ~M~ _l

Shift

11001100110111101010100100lt>

110000011111110101001000000~

The isolation of certain bits in a word, so that they may be treated
independently of the other bits in the word, is accomplished through
a logical operation called, logically enough, "extraction". There
are several 11extract 11 commands, of which we will discuss only two here.
When you call for an extract operation, you must, of course, specify
the bits to be extracted; you do this by using a ''mask" during the
extraction, which is a word in which you have set l's in those bit
positions corresponding to the bits in the data word you want to save
and O's in all the rest. For example, we want bits T29 - T22 and Tl
only: the following mask should be used:

llllllllOOOOOOOOOOOOOOOOOOOcli_
T29 ~l

One of the extract commands we will discuss now is:

- 45 -

L T N 0 31 D.

The source of 31 marks this as a special connnand, but it will be defer
red unless a prefix of u is inserted in the connnand. During each word
time of execution, the contents of the appropriate word in short line
21 will be compared with a mask in the corresponding word in short line
20, and the bits marked for saving by the mask will be saved, The re
sulting word, containing bits duplicating those in the data word in line
21, and having O's in the bit positions not "covered" by the mask, will
be transmitted to the appropriate word in the destination. All of this
happens within a single word-time. It may be repeated for as many con
tiguous word-times as called for, if the command is immediate.

10.06

10.07

10.08

10.09

T
L p or

Lk

00 u 05

01

02

03

04

05 u 10

10 u 15

22.02

22.03

22.00

22.01

Before Execution

0011100001110000110011101ooqo

01101110001101011111000010191

000111000011100111011110000~0

100111000001001111001111000~1

N c s D BP N 0 T E s

05 0 . 00 20 00.01-04 ~20.01-00

zzzOOOo+

zOOOOOo+

OOOOzzz-

zOOOzzz+

10 0 10 21 10.06-09 ~ 21.02-01

N 0 31 22 20· 21 ~ 22 .03-02

After Execution

00110000000000000000000000090

000000000000000011110000101q1

000100000000000011011110000~0

10011100000100000000000000090

- 46 -

Before Execution

10.05 101101111101000100110111100~1

T
L p or N c s D BP N 0 T E s

Lk

00 01 02 0 00 20 00.01~ 20.01

01 zzOOOOO-

02 05 06 0 10 21 10.05 --)21.01

06 09 11 0 31 28 20• 21--} ARc

11 05 N 0 28 10 AR--110.05

After Execution

10.05 10110111000000000000000000091

The other extract conunand to be discussed here is:

L T N 0 30 D.

The use of a mask in line 20 and a data word in line 21 is the same
as for the previous conunand, and the resulting word will be transmit
ted, as in the other case, to the destination, at the appropriate
word-time. But the effect of the mask is reversed. Those bits in the
word in line 21 corresponding to O's in the mask in line 20 will be
saved, and O's will be transmitted in all those bit-positions corre
sponding to l's in the mask. This is called "not mask" extraction.

Before Execution

10.05 101101111101000100110111100111

L
T p or N c s D BP N 0 T E s

L_k_

00 01 02 0 00 20 00.01---420.01

01 zzOOOOO-

02 05 06 0 10 21 10.05~21.0l

06 09 11 -0 30 28 20• 21--4 ARc

11 05 N 0 28 10 AR ---j 10. 05

L p

00 u

01

02

03

04

05 u

10 u

- 47 -

After Execution

10.05 0000000011010001001101111004>

Before Execution

io.06 0011100001110000110011101oocp

10.07 011011100011010111110000101ct

lo.os 00011100001110011101111ooooip

10.09 100111000001001111001111000q1

T
or N c s D BP Lk

N 0 T E s

05 05 0 00 20 00.01-04 ~20.01-00

zzzOOOo+

zOOOOOo+

OOOOzzz-

zOOOzzz+

10 10 0 10 21 10.06-09-4 21.02-01

15 N 0 30 22 20•21~22.03-02

After Execution

22.02 0000100001110000110011101oocr

22.03 0110111000110101oooooooooooqo

22.00 0000110000111001oooooooooooqo

22.01 000000000000001111001111000~1

Neither of these extract commands will alter the data word in line 21,
or the mask in line 20, The extraction performed by the first command
is expressed logically as: 20·21. It is r~d as "20 and 21 11 • The
other extraction is expressed logically as 20·21. It is read as '~ot
20 and 21 11 •

REPETITIVE PROCESSING OF DATA - LOOPS

Very often a programmer is faced with a necessity of writing a program
designed to perform the same process, be it mathematically or logically,

- 48 -

on each of a sequence of stored data words. For instance, all of line
19 might be filled with 108 single-precision data numbers, each of which
is to be processed in the same manner.

To write a program which contains 108 sequences of commands, so that the
same process can be performed on each of these words, will be, in many
cases, impractical, because the program will be too long to be stored

· in memory along with the data upon which it will operate. For this rea
son, programmers have adopted a method of repeating a given sequence of
commands for any desired number of times. In the sequence, certain key
commands, usually those which call for a data word and those which store
a result, will be "modified" during each pass through the sequence, so
that, each time they are interpreted, they will call for the same opera
tion on a different word.

Because the computer's only method of determining whether a word is data
or a command is based on the time during which it is read, RC or EX, a
command can be treated as data by another command. This enables us to
incorporate into a program one command which can transfer another com
mand into AR, where a constant can be added to it, causing a predictable
change in it. We can then transfer the new form of this command from
AR to the command's original location in our program. Thus, the next
time this command is read and interpreted, during the flow of our pro
gram, it will call for something different.

L
T p or N c s D BP N 0 T E s

L_k_

00 00 01 ·l 10 28 + 10.00---4-ARc ~

01 02 03 3 11 29 11.02~.AR+

03 00 04 1 28 10 AR~ 10.00

04 00 06 0 00 28 00.00-4 ARc

06 07 08 0 00 29 00.07--4 AR+

07 r "" u
01 00 0 00 00 J

08 00 10 0 28 00 AR ---..) 00. 00

10 03 05 0 00 28 00.03-4ARc

05 07 09 0 00 29 00.07~.AB+

09 03 00 0 28 00 AR~00.03
___,j

- 49 -

The preceding example is fine for the hypothetical case previously
mentioned, with the one exception that the "loop" which we have gen
erated will be unending, There must be some provision, within the
loop, for exiting from it. We can do this through use of a "counter",
as shown in the example below, where we test this counter for reach
ing a certain limit, at which point we exit from the loop.

L
T p or N c s D BP N 0 T E s
LJt

00 00 01 1 10 28 +
10.00~ARc ~

01 02 03 3 11 29 ll.02~AR+

03 00 04 1 28 10 +
AR~ 10.00

04 14 15 0 00 28 00.14~AR c

14 ooooooo+ Counter

15 16 17 3 00 29 00.16--4 AR+

16 00000u7+ Limit

17 18 19 0 28 27 Test AR /. 0

19 21 00 0 16 31 = 0 Halt

20 16 21 0 00 29 I= 0 00.16 ~AR__,,.,,_

21 22 23 0 00 29 00.22~AR+

22 0000001+

23 14 26 0 28 00 AR~00.14

26 00 06 0 00 28 00.00~ARc

06 07 08 0 00 29 00.07~AR+

07 (
I-

01 00 0 00 00 :1 ._u

08 00 10 0 28 00 AR--)00.00

10 03 05 0 00 28 00.03~ARc

05 07 09 0 00 29 00.07-4AR+

09 03 00 0 28 00 AR~00.03 -

- 50 -

Another, more complex, method of looping and providing for an exit from
the loop, is to set up a ''base" conunand, as was done in the previous
examples, a "difference 11 dunnny conunand, by which we modify the base, as
was also done in the previous examples, and a "limit", which equals the
base conunand plus a predetermined number of increments. This method is
shown in the example below.

T c s 0 BP s L p or N N 0 T E
Lk

00 01 02 0 00 28 Base I--7ARc
011

... -] .. u w7 15 1 10 28..i Base I

02 03 04 0 00 29 Difference ~~

03 [I- u 01 00 0 00 00~~ Difference

04 05 06 3 00 29 Limit·~AR+

05 [I- u8 15 1 10 28~~ Limit

06 07 08 0 28 27 Test AR fo 0

08 10 00 0 16 31 = 0 Halt

09 05 10 0 00 29 fo 0 Limit --7 AR+

10 01 12 0 28 00 Reset Base I

12 14 20 0 31 31 Next comm.and from AR
r- -n 20 1-00 15 1 10 28 -

15 02 07 3 11 29 ll.02~AR+

07 u 12 13 1 28 20 AR~ 20.00-03

13 14 16 0 00 28 Base II~AR

14 [
~ ..

~ u w7 00 0 20 10 - Base II
~

16 03 11 0 00 29 Difference ----) AR+

11 14 17 0 28 00 Reset Base II

17 19 19 0 31 31 Next comm.and from AR
I- -..;:;: a 19 ... oo 00 0 20 10 --

- 51 -

Also shown in the example is the use of another special command, as
yet undiscussed. This new cOIIUD.and is:

L T N 0 31 31.

It directs the computer to take the next command, at word time N,
from AR. As you can see, it would be possible to have the modified
form of the base command in .AR when the computer is given the "next
command from AR" command. This will usually save the machine time,
and is therefore preferable to the previous method of looping.

THE INPUT/OUTPUT SYSTEM

When all the arithmetic and logical operations necessary have been
performed on the data by a program, the only remaining work for the
program to do is to cormnunicate the answers to the outside world.
This necessitates use of the input/output system again.

The input/output system can perform only one operation at a time, and
care must be taken, when programming this system, to prevent giving it
a second operation, either input or output, to perform while it is still
engaged in a previous one. The result of such a mistake will be that
the system will attempt to start an operation called for by the "logical"
sum of the two special codes. For instance, if you desired to type out
the answers, and chose the command, L Lr~ N 0 09 31, which
does call for a "type-out", and the input/output system was still per
forming a "type-in", whose special code, as we know, is 12, the system
would attempt to start an operation called for by the logical sum of
these two special codes. In logical addition, a 1 will result in a bit
position if either of the numbers being added has a l, or if they both
have a 1, and there will be no "carry" from one bit-position to the
next:

O + O = O, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 1.

12 = 1100
09 = 1001

1101 = 13.

In this case, an input or output whose special code is 13 would be called
for, and this, of course, would be erroneous.

The way to prevent this from happening is to precede each input and each
output command with a ready test, previously discussed, so that the pro
gram cannot continue to the new input/output command until the input/
output system is ready.

OUTPUTS

There are two normal outputs of the G-15:

1. typewriter, and

2. punched paper tape.

- 52 -

Line 19 is the only source of information for the tape punch; either
line 19 or Af1 may be the source of information for the typewriter.
The three output cormnands are:

1. L L+2 N 0 08 31 type Af!..' s contents,

2. L L+2 N 0 09 31 type line 19 's contents, and

3. L L+2 N 0 10 31 punch line 19's contents.

The computer is very flexible in its choice of forms for an output;
the form of an output may be determined by the progrannner. As a matter
of-fact, the progrannner must tell the computer what form the output is
to be in. He does this by supplying the computer with a "format" for
the output. This format must be placed in a specific location in memory
prior to calling for the output. When the output is called for, the
computer will automatically, in this order:

1. copy the format from its location in memory into a special
buffer, called the MZ buffer, where it can control the out
put, and

2. start the output.

The location for this format depends on the source of the information:

line 19 format: 02.00 - 02.03

Af1 format: 03.00 - 03.03.

When an output has been called for, and the proper format has been
loaded automatically into the MZ buffer, inspection of the format
will begin, and it will proceed in the direction shown by the arrow
in the drawing below.

03 02 0/ 00

- 53 -

Inspection of the format will be from the high-order end of word 03
toward the low-order end of word 00. Each group of three bits will
be inspected and interpreted as calling for some character of outpu~,
according to the following table:

Character

digit
end
carriage return
period (point)
sign
reload
tab
wait

Example 1:

SDDPDDDWWTE

loo qoo oqo on, ooo 900 oqo ni., 111 ~~o ooi,

02.03
02.02

803007z-
100000o+

Example 2:

Code

000
001
010
CfIT •
100
101
110
111

SDDDDDDDTSDDDDDDDTSDDDDDDDTSDDDDDDDCE
I

loo qoo oqo oo~ ooo goo oqo ooq 110 ~Cf> ooq ooo opo oqo ooq ooo qoo
$ s

l~o loq b~o oqo ooo, ooo goo oqo ooq 110 ~iqo oqo ooo qoo oqo ooq ooo

qoo o~o 001,

02.03 800000x
02.02 0000034
02.01 OOOOOxO
02.00 0000110

If the output information being called for by the format is coming
from line 19, the following rules apply to the inspection of the
output format:

1. each sign code will cause the sign-bit (Tl) of 19.u7 to
be inspected, and the appropriate sign will be transmitted;

2. each digit code will cause the inspection of bits T26-T29
of 19.u7, and the proper hex digit will be transmitted,
after which the entire contents of line 19 will be shifted
toward the high-order end of the line by four bit-positions;

- 54 '-

3. each carriage return code will cause a carriage return to
be transmitted, after which the entire contents of line 19
will be shifted toward the high-order end of the line by
one bit-position;

4. each tab code will cause a tab to be transmitted, after
which the entire contents of line 19 will be shifted toward
the high-order end of the line by one bit-position;

5. each wait code will cause a blank to be transmitted, after
which the entire contents of line 19 will be shifted toward
the high-order end of the line by four bit-positions;

6. each period (point) code will cause a period to be transmitted;

7. each reload code will cause the transmission, if tape is being
punched, of a reload character, but, if the typewriter is be
ing activated, nothing will be transmitted, after which the
format will be reloaded and the inspection of the format will
be resumed with the first code;

8. each end code will cause the output to cease, and the input/
output system to go ready, as well as causing the transmission
of a "stop code", if tape is being punched; but, before an
end code is interpreted as an end code by the output system,
that system will cause a check of all of line 19 for at least
one non-zero bit: if no 1 is found, the end code will be
allowed to operate as an end code, but, if a 1 is found, any
where in the line, the end code will be interpreted as a re-
load code, as described above (7). ·

If the output information being called for by the format is coming from
AR, the rules applying to outputs from line 19 apply, with the following
exceptions:

1. all references to line 19 must be changed to refer to AR;

2. the end code will be interpreted as an end code, regardless
of the current contents of AR.

You might wonder about the desirability of punching tape as an output,
rather than typing the outputs. Punched tape output is useful for two
purposes:

1. to keep a permanent, easily reproducible set of outputs,
which can be reproduced, without ·1sing the computer, through
use of a relatively cheap tape interpretor; and

2. as interim storage of results, to be used as inputs by the
same program or another later on. The connnand to read tape
is:

L Irl-2 N 0 15 31.

- 55 -

A tape input is the same as a typewriter input, but it is
ended by the 11 stop code" already mentioned, rather than by
activation of the "s" key.

Just as we converted decimal inputs to binary numbers for computer op
eration, so we must now convert the binary answers to their decimal
equivalents, through another conversion subroutine, so that the outputs
will be in decimal form.

If the specifications for the binary-to-decimal number conversion sub
routine contain the following information, and if you have a binary
answer (x·l0n(2)) in AR, the following sequence of commands, starting
at word-time 10 in the main program in line 00, is designed to convert
this answer to decimal form, and store the converted answer, ready for
output, in 19.u7.

L

10

12

13

14

70

Execution ••..••..••.•......•....... Command line 02
Entry ..•..•....••.•.•.•••••..•...•. Word-time 61
Exit ..•...•.•..••.•.•.•..•.•••••... Word-time 63
Input ..•......••.•.•.....••..•••..• x (binary)___.ID1

Return command----.AR
Output. .••.•.•...•..•.••..........• "'!:'I xj (decimal) in AR

(7 digits and sign)
-- --· -

T p or N c s D BP N 0 T E s
Lk

11 12 0 28 25 AR~ ID_l

13 14 0 00 28 00 .13---4 AR.c.

~ t- 65 64 0 20 31 .,] Return cormnand .. ~

70 61 2 21 31 Go to number conversion w
sub---1:__Q_]J,_tine

u7 N 0 28 19 AR~l9.u7

The output of this subroutine will be a decimal fraction, and, if we
know the scale factor for the answer, we can properly position the
decimal point (called for by a period code in the format) in the
type-out of the answer.

-2 In the above example, assume that the answer is x·lO •
format for properly positioning the decimal point during
out would be:

S D D P D D D D D C E

100 000 000 011 000 000 000 000 000 010 001

An output
the type-

When a program has reached the end of all that it is to do, and the
only thing left is to stop, this can be accomplished by a special

- 56 -

command, called the "halt" command:

L L+2 N c 16 31.

The C in this command has no effect upon its interpretation or execution.
A halt command may be given at any time, but, if it is given while an
input or an output is in progress, the input/output system will continue
to operate until the end of the process.

After the computer has been stopped by either a halt command or a break
pointed command, it will continue to operate under program control, with
the next command taken from the location called for by the N of the com
mand which halted the computer, if the compute switch is moved to "OFF",
and back to either "GO" or "BP".

At this point we have covered the bulk of special commands which are
available, although some remain unmentioned.

L

L

L

L

L
or
L

p T

T

56

v4

57

57

N

N

N

N

N

N

c

0

0

0

1

5

s D

23 31

24 31

24 31

25 31

25 31

Clear two-word registers. T must equal
at least L + 3, since at least two word
times of execution are necessary. All
58 bits of ID, MQ, and PN, and the IP
flip-flop will be cleared to 0.

Multiply, single-precision. The single
precision number in ID1 will be multiplied
by the single-precision number in MQ1, and
the product will occupy PN, while the sign
of the product will occupy the IP flip
flop. If a single-precision product is
desired, it is in PN1. If a double-preci
sion product is desired, it is in all of
PN.

Multiply, double-precision. The double
precision number in ID will be multiplied
by the double-precision number in MQ, and
the double-precision product will be in
PN, while the sign of the product will be
in the IP flip-flop.

Divide, single-precision. The number in
PN (if single-precision, in PN1) will be
divided by the number in ID (if single
precision, in ID1), and the single-preci
sion quotient will be in MQo, while the
sign of the quotient will be in the IP
flip-flop.

L
or
L

L

L

L

L

L

L

L

v6

v6

T

T

T

T

T

T

T

N

N

N

N

N

N

N

N

N

1 25 31

5 25 31

1 26 31

0 26 31

0 31 D

0 30 D

c s 27

0 22 31

0 28 31

- 57 -

Divide, double-precision. .The double
precision number in PN will be divided
by the double-precision number in ID,
and the double-precision quotient will
be in MQ, while the sign of the quotient
will be in the IP flip-flop.

Shift. ID will shift right, and MQ will
shift left, for the indicated number of
shifts. T = 2 times the number of shifts
to be performed.

Shift under control of AR. ID will shift
right, and MQ will shift left, for the
indicated number of shifts. Shifting will
cease at the end of execution time or
after an end-around-carry has been gener
ated in AR, whichever occurs earlier.
1 will be added to AR for each shift per
formed, Usually T will equal 54, allowing
27 shifts, which is the maximum that can
be performed without shifting all bits
of a word out of the word.

Extract 20·21. The bits from word T in
21 called for by the mask in word T in
20 will be transferred to word T in the
destination. All other bits in word T
in the destination will equal 0.

Extract 20·21. The bits from word T in
21 called for by the reverse of the mask
in word T in 20 will be transferred to
word T in the destination. All other bits
in word T in the destination will equal 0.

Test word T in line S for non-0. The bits
tested will depend on the C in this com
mand. If none of the bits tested contain
a 1, the next conunand will be taken from N.
If any one of the bits tested does contain
a 1, the next conunand will be taken from
N + 1.

Test the sign bit of AR for negative. Only
one word-time df execution is necessary,
and the flag in T may be L + 2. If the sign
of AR is positive, the next conunand will be
taken from N. If the sign of AR is negative,
the next conunand will be taken from N + 1.

Ready test. If the input/output system is
not ready, the next conunand will be taken
from N. If the input/output system is ready,

L

L

L
or
L w

L

L

L

L

T N

T N

T N

T N

L+2 L+l

T N

T N

T N

0 29 31

c 16 31

c 21 31

c 21 31

c 20 31

0 12 31

0 15 31

0 06 31

- 58 -

the next conunand will be taken from N + 1.
If it is desired to use this conunand in order
to ''hold U,P 11 a program from proceeding until
the input/output system goes ready, both T
and N should be set equal to L.

Test for overflow. Only one word-time of
execution is necessary, so the flag in T
may be set equal to L + 2. If the over
flow flip-flop has not been set, the next
connnand will be taken from N. If the over
flow flip-flop has been set, the next com
mand will be taken from N + 1. Execution
of this connnand automatically resets the
overflow flip-flop to the "off" condition.

Halt. This conunand needs only one word
time of execution, so the flag in T may
be set equal to L + 2. The C in this
conunand will have no affect on its opera
tion. The computer will start a new se
quence of comm.ands at N, if, after it has
halted, the compute switch is moved to the
"off" position and then to either "GO" or
"BP".

Mark, transfer control. Only one word
time of execution is necessary for this
conunand. Program control will be trans
ferred to line C, word N. The last word
time of execution of this command will be
11marked", for use by a subsequent return
command.

Return conunand, Program control will be
transferreo to line C at the marked word
time.

"Gate Type-in". Only one word-time of
execution is necessary for this command,
so the flag in T may be set equal to L + 2.
The typewriter will be activated for input
to the computer.

Read punched tape. Only one word-time of
execution is necessary for this command,
so the flag in T may be set equal to L + 2.
One block of tape will be read into the
computer.

Reverse punched tape. Only one word-time
of execution is necessary for this command,
so the flag in T may be set equal to L + 2.

L T N 0

L T N 0

L T N 0

L T N 1

L T N 0

08 31

09 31

10 31

31 31

31 31

- 59 -

The tape will automatically be reversed,
and positioned for the read-in of the
last block previously read into the com
puter.

Type AR's contents. This command needs
only one word-time of execution, so the
flag in T may be set equal to L + 2.
The type-out will be under control of the
format contained in words 03.00 - 03.03.

Type line 19's contents. This command
needs only one word-time of execution, so
the flag in T may be set equal to L + 2.
The type-out will be under control of the
format contained in words 02.00 - 02.03.

Punch line 19's contents on tape. This
connnand needs only one word-time of exe
cution, so the flag in T may be set equal
to L + 2. The punch-out will be under
control of a format contained in words
02.00 - 02.03.

Copy number track into line 18. Any
words may be copied, depending on L and
T of this innnediate command. To copy
the entire number track into line 18,
T should equal L + 1. Line 18 should be
cleared prior to giving this command.

Take next connnand from AR. The next com
mand will be read from AR at word-time N.
Program control will return to the same
line in which this command is located, for
the succeeding command.

The commands we have discussed can be combined to constitute a program,
and when this is done, PPR is used to enter the program into the computer.
PPR takes each command and converts it to the binary form needed by the
machine and places it in its proper location. PPR can also punch a block
of tape containing the information in any long line in memory. It can
accept hex constants and place them in their proper locations, and it can
accept decimal constants, convert them to binary, and place them in their
proper locations. It can read tape, accept corrections to the information
from the tape, and produce a new, corrected tape.

Through certain auxiliary routines associated with it, PPR can help the
progrannner in checking out his program, it can automatically prepare
output formats, and it can list, in decimal command form, all the com
mands in a program, either in the order in which they would be operated,
or in the numeric order in which they are located.

- 60 -

In addition, PPR has other capabilities. The various tasks it can
perform, and the way in which it is told to perform each of them,
are listed and discussed in detail in the G-15 operating manual.

Although PPR can be used to enter a program into the memory of the
computer, there must be a way of doing this that does not require
PPR to already be in the memory of the computer. We know this,
because PPR, itself, can be loaded into the computer when there is
no useful information already in memory. It stands to reason that
the same method by which PPR is originally loaded, could also be
used to originally load any other program, under similar conditions.

This method is a "loader" program which operates in the manner
described on pages 147 - 149.

Once we have used PPR to initially make up a program, we can give
PPR an instruction to punch a block of tape containing this program,
and we can precede this block of tape with another block, containing
such a loader program. In this manner, any program prepared by PPR
can be made self-sufficient, and PPR will no longer be necessary
either to load the program into the memory of the computer, or to
operate it.

Several times, in the preceding pages, reference has been made to
information in the following portion of this manual. An attempt
has been made, up to this point, to present a basic, yet fairly
complete, picture of the G-15 and the methods to follow in program
ming it. The following pages present the same picture, in much
greater detail, complete with some of the more exotic possibilities
in utilizing the full powers of the computer.

COMMANDS IN BINARY FORM

Remember it has been pointed out several times that there is no
difference in appearance between data numbers and conunands in the
computer; each form of computer word occupies 29 bits. We have
already had a brief look at data words, both single- and double
precision; it is now time to consider the contents of connnands.
Connnands occupy only single words; there is no such thing, in the
G-15, as a double-precision form of a command, occupying 58 bits,
although you will see the term "double-precision corrnnand" used.
This term is used to refer to a command calling for an operation
on a double-precision data number. In the 29 available bits, the
following information must be specified:

1. operation,

2. address of operand,

3. address to which operand is to be transferred, and

4. address of next connnand to be obeyed.

- 61 -

07f06 02 lo1

T N s D

Specification of the operation requires three bits: 01, 12, and 13.
Bit 01 indicates whether single- or double-precision operation is
required; if it contains O, single-precision is indicated; if it con
ta1ns 1, double-precision is indicated. Bits 12 and 13 contain a two-
bit code for the operation itself; this code is called the "characteristic
(CH)".

00 - calls for a straight transfer of the operand from one location
into another. After this operation has been performed, the
operand, in its original 'form, will be in both locations in
memory.

01 - calls for use of "inverting gates" during the transfer of the
operand from one location to another. Inverting gates perform
the complementation which has been previously described. The
sign of the number is the first bit to be transferred. The
inverting gates inspect it to determine whether or not it is
a 1: if it is not 1, they allow the following magnitude bits
to pass through unchanged; if it is a 1, they complement the
following magnitude bits.

10 - calls for an exchange of numbers between memory and the one
word register, AR. After execution of a conunand calling for
this, the specified receiving address will contain the orig
inal contents of AR, as the result of a straight transfer;
AR will contain the specified operand, also as the result of
a straight transfer. It obviously makes no sense to exchange
AR with itself in this manner. Therefore, this characteris
tic has an entirely different meaning if AR is specified in
the conunand as either the operand or the receiving address.
Any other memory locations may be specified, but if PN is
specified as either of the two addresses in the command, the
line number 26 should be used, rather than the number 30, each
of which, you remember, may refer to PN. In this way we have
a rule governing the meaning of this characteristic: 10 calls
for an exchange between memory and AR if neither the address
of the operand nor the receiving address contained in the com
mand is equal to, or exceeds, 28. Do not worry about line
number 31; it is a special address, and it will be better to
cover it later. We see, then, that the contents of AR and a
memory location may be exchanged (the address of the operand =
the receiving address), or the contents of AR may be transfer
red to one place in memory and AR may receive the contents of
another, entirely. different, word.

If AR is specified as the operand (AR is always referred to
as 28 when it is the operand) in a conunand whose operation
code is 10, the absolute value of the contents of AR is

- 62 -

transferred to the receiving address (28 bits of magnitude,
less sign-bit). The result of the transfer will always be
a positive number. Similarly, if AR is specified as the
receiving address, it will receive only the absolute value
of the operand. If, in such a case, AR is referred to as
line 28, this absolute value will appear in AR, of course
always positive. If AR is referred to. as line 29, special
circuitry which turns AR into an accumulator is called into
action, and the absolute value of the operand (a positive
number) will be added to the present contents of AR. The
result may or may not be positive, depending on the previous
contents of AR.

If line 30 (PN, as the double-precision accumulator) is
specified as the receiving address, the magnitude of the
operand will be added to PN. This will normally be a
double-precision command. If it is not (it is, therefore,
a single-precision command), 28 bits of the operand will
be transferred to the receiving half (odd or even, depending
on the address of the operand) of PN, and added to the present
contents of that half of PN.

11 - if neither the specified address of the operand nor the spec
ified receiving address is equal to, or exceeds, 28 (AR), an
exchange of AR and memory similar to that called for by 10,
discussed above, is performed. There is one important dif
ference, however. Note that this characteristic is a combi
nation of 10 and 01. If you remember that 01 called for use
of the i~verting gates (to complement negative numbers), you
could make an informed guess that they are involved in this
exchange of AR with memory. You would be right. The contents
of the operand, on its way to AR, pass through the inverting
gates, and the operand will be complemented if negative. The
inverting gates will not be used for that part of the exchange
that transfers the original contents of AR to memory. So,
upon execution of this command, the original contents of AR
will appear in memory, as the result of a straight transfer,
and the contents of the operand, complemented if negative,
will appear in AR.

Again, there is a special meaning for this characteristic if
AR is specified as either the sending or the receiving address,
or if PN, referred to as line 30, is specified as the reGeiving
address. In either of these cases, one covering single-preci
sion operation, the other, double-precision operation, this
operation will cause a subtraction, which is, in the terms of
the computer, as already mentioned, a combination of changing
the sign of the operand and then complementing the operand on
its way to the receiving address, if necessary. If AR is
specified as line 28 and as the receiving address, the operand,
with changed sign and complemented if necessary will be trans
ferred into AR. This we could call a "clear and subtract".
If AR is specified as line 29 and as the receiving address,

- 63 -

the special circuitry which activates AR as an accumulator
will be called into action, and the operand, so modified,
will be added to the original contents of AR, which, in
effect, is a subtraction. If PN is referred to as line 30
and as the receiving address, the contents of a double
precision operand will be subtracted from-the original
contents of PN. Notice there is no "clear and subtract"
possible with PN; if this is desired, two connnands will
be necessary, one to clear it to O, and another to subtract
the desired operand from O. If AR is referred to as the
operand in a subtraction, the sign of the operand will be
changed, ·and then the operand will be complemented if
necessary on its way to the receiving address.

Notice here that one way to clear either of the accumulators
(AR or PN) would seem to be to subtract its contents from
itself. A - A= 0. Since they behave in similar fashion,
we will consider here only AR, thus limiting the examples
to 29 bits, rather than 58. If the number contained in AR
is positive,

1110101010111100110011010llop,

and we subtract it from itself (change the sign, complement
if the new sign is negative, and add),

111010101011110011001101011
000101010100001100110010101

1 000000000000000000000000000

000000000000000000000000000

we're in good shape; we get what we expect. AR is cleared
to O. But, if AR is originally negative,

111010101011110011001101011.01,

and we subtract it from itself (change the sign, complement
if the new sign is negative, and add),

111010101011110011001101011
111010101011110011001101011

1 110101010111100110011010110

110101010111100110011010110

we're in terrible shape. We expected O, and didn't get it.

You see, there was a basic assumption underlying the sugges
tion that subtracting a number from itself in AR would clear
AR to O. That assumption was that, when a 28-bit magnitude
is added to its 28-bit complement, 28 O's must result with
an end-around-carry of 1 into the sign position. Since the

- 64 -

addition of positive and negative sign yields 1 in the sign
position, when the end-around-carry of 1 is added to the
result, A positive sign (O) is obtained. Thus, remembering

.. that there is no carry from the sign position into the least
significant magnitude position, in such a case, 29 O's (+ O)
must result. The fallacy in our original suggestion was that,
because two magnitudes were being added together, one with a
negative sign and the other with a positive sign, we assumed
that a magnitude and its complement magnitude would be added.
We never did get the complement, however, if our original
number was negative. When its sign was changed, during .the
subtraction process, a positive sign resulted, and the in
verting gates allowed the number to pass through, unmodified.

Of course we can always make sure that AR contains a positive
number to begin with, by transferring the contents of AR into
itself with a characteristic of 10, calling for absolute value.
Now AR can be cleared by subtracting its contents.from itself.

We have now covered all of the possible combinations that can be squeezed
out of the three bits in a G-15 conunand that specify the operation. For
the sake of ease in remembering these, we'll assign a corresponding dec
imal number, called a "C" code, to each one, as shown below.

"C" sin CH

0 0 00

4 1 00

1 0 01

5 1 01

2 0 10

2 0 10

6 1 10

Meaning

Straight single-precision transfer.

Straight double-precision transfer.

Single-precision transfer via the
inverting gates.

Double-precision transfer via the
inverting gates.

If 28, 29, 30 or 31 not specified,
transfer contents of AR to receiving
address, operand to AR.*

If 28, 29 or 30 is specified, trans
fer absolute value of operand to re
ceiving address.

If 28, 29, 30 or 31 not specified,
transfer contents of AR to first
word of specified double-precision
receiving address, first word of
double-precision operand to AR.
Then transfer the present contents
of AR to second word of specified
d.ouble-precision receiving address,
and the second word of double-precision
operand to AR. *

"C" s/n CH

6 1 10

6 1 10

6 1 10

3 0 11

3 0 11

7 1 11

7 1 11

7 1 11

- 65 -

Meaning

If 30 is specified as the receiving
address, transfer a double-precision
absolute value (57 bits).

If 28 is specified as operand, trans
fer absolute value from AR to first
half of double-precision address, then
transfer all 29 bits from AR, treated
this time as most significant half of
a double-precision magnitude, to the
second word of the double-precision
receiving address.

If 28 or 29 is specified as receiving
address, transfer absolute value of
least significant half of double
precision number to AR, then trans
fer the most significant half of the
double-precision magnitude (all 29
bits) to AR.

If 28, 29, 30 or 31 not specified,
transfer contents of AR to receiving
address, and operand via inverting
gates to AR.*

If 28, 29 or 30 is specified, change
sign of operand, then transfer operand
with new sign, via inverting gates, to
receiving address.

If 28, 29, 30 or 31 not specified,
perform same transfers as for opera
tion code 6 under these conditions,
except that all numbers transferred
to AR are transferred via the in
verting gates. *
If 30 is specified as the receiving
address, change sign of double
precision operand and transfer it
to the receiving address, via the
inverting gates.

If 28 is specified as the operand,
transfer the number in AR with its
sign changed, and complemented if
necessary, to the first word in the
double-precision receiving address.
Then transfer all 29 bits from AR,
treated as the second 29 bits of a
double-precision number, and comple-

"C" S/D CH

7 1 11

- 66 -

Meaning

mented, if that was called for orig
inally, to the second word of the
double-precision receiving address.

If 28 or 29 is specified as receiving
address, change sign of first word of
double-precision operand and transfer
it via the inverting gates to AR.
Then transfer the second word, all
29 bits, via the inverting gates
also, to AR.

* Note: If this table is being used for reference, see page 82.

Notice here that the operations listed so far do not constitute the
complete list of operations available in the computer; to name two
very important ones which were not included, multiply and divide. We
will see later how these operations, and many others, are called for,
but first we must complete the description of the basic parts of a com
mand.

So far all we have discussed are operations. Another part of each com
mand is the address of the operand: the computer must be told on which
number in its memory the operation is to be performed. Remember that
it has been pointed out that an exact address in memory consists of a
line number plus a word number, called a word-time. The line in which
the operand is located is called the nsource", and, in the layout of
a command on page 61, this number is referred to as "S". If the line
containing the operand is called a source, the obvious name for the
line which will receive the transferred word is "destination". This
is referred to in the layout of a command as "D". S and D can each
range from 00 through 31, although the meaning of 31 has not yet been
explained, In binary (a11 words in memory are in binary), 5 bits are
required to represent the decimal number 31.

31(10) = 11111(2)

Notice that five bits have been allotted to both S and D. Since no
address is complete without a word-time, there must be an allocation
for this in a command. There is; it is "T". There are 108 word-times
per long-line. No other line in memory requires more; in fact, no
other line in memory requires nearly as many, so the range 00 - 107
(u7) will be sufficient.

107(lO) = 6v(l6) = 1101011(2),

so seven bits will be sufficient for T; notice that seven have been
allowed. Now, is T combined with S to form an address, or with D?
The answer is: with both! So we see that, if the straight transfer

- 67 -

of a single word from one long line to ano~her is called for, the
word being transferred will, upon execution of the conunand, occupy
the same word-time in the new line as it does in the old. The
drawing below will clarify.this.

00 - 19

20 - 23

24 - 26
& 30

28 & 29

00 - 19

20 - 23

24 26

28

N

Drop sign
if CH = 10
and S or D

~ 28

A

I
N
VG
E
R T
T E
I S
N
G

Change sign
if CH = 11
and S or D

, 28

As long as no conunand is being
executed, the read-heads for
each line in memory (there are
28 of them plus the number track)
are connected to the correspond
ing write-heads, and bits, words,
and whole lines are recirculating
merrily along. This is all going
on behind the drawing to the left.
But then, when a conunand is exe
uted, things begin to happen. If
no conunands were ever executed, it
would be an easy matter to under
stand what's going on in the com
puter, but computers, as a rule,
don't do much of anything useful
if no commands are being executed.
When a command is executed, it has
a source (S), a destination (D), a
word-time (T) during which it is
to be executed, and an operation
(CH and s/D), and other things we
won't mention here. During word
time T a word is entering the
source selector from each line
in memory, as shown in the draw
ing. Notice that only one line
number for PN is shown (26, not
30); this is because PN can be a
source of data in only one capac
ity (as a storage location).

In the case of AR, 29 is an illegal line number for AR as a source. AR
must be referred to as line 28 when being treated as a source. The source
selector now has a word from each line, and it must pick out the correct
one and ignore the rest. Of course it can do this, because the conunand
has informed it of the line specified by S. The word frou memory whose
address is S.T leaves the selector, on its way to be processed.

Processing actually consists of being transferred back to memory again,
over the proper circuit, which, in some cases, will perform an addition
of bits. It also may consist of complementing a negative number. Part
of the processing will be called for by the CH in the conunand. Depend
ing on the value of CH, switch A in the drawing may be in one position
or the other, causing the word being transferred to pass around or
through the inverting gates. The word then arrives at the destination
selector. The destination selector will usually disconnect the read
head for the line chosen as D from the corresponding write-head, pre-

- 68 -

venting recirculation of word T in that line. It will allow all other
read-write connections to remain intact, so that word T in all other
lines is being recirculated. It will then take the word it has received
from the source selector and feed it to the proper line. Thus, what
was originally in the destination line at word-time T is lost and re
placed with word T from the source line. The source line has recircu
lated and still contains word T. If ~he destination is either 29 or 30,
the original contents of the destination line at word time T is not lost,
but is added to word T arriving from the destination selector.

In order to hold down the size of this book to a single volume, we will
leave it to the reader to trace through this procedure for each opera
tion code listed in the preceding table.

IMMEDIATE vs. DEFERRED COMMANDS

A series of commands could be written to perform any of these opera
tions on a sequance of words; S, D, and the operation could be the same
in each of the series of commands, with T being increased by 1, in the
case of single-precision operation, or by 2, in the case of double
precision operation, in each succeeding command. As an example, a
straight single-precision transfer of 04.10 to 05.10 would be coded
with a "C" code of O, a source of 04, a destination of 05, and T = 10.
This could be followed by another command with the same "C" code, the
same source, the same destination, but with T = 11. Then T could be
increased by 1 again, and so on. Up to a whole long line could be
transferred, one word at a time, in this way. By this method, it would
require 108 commands to transfer 108 words. There is a way of accom
plishing this with one command: it is to code the command in such a
way that its execution will cover any desired number of contiguous
word-times. In the layout of a command, as shown on page 61, bit 29
of the command is a one-bit indicator called 11 I/D 11 • The 11 111 stands
for 11immediate 11 • kt immediate command is one which will be executed
immediately after it is read and interpreted. Its execution will con
tinue until the computer is told to stop the execution. The T number
in such a command serves as a "flag", telling the computer when to
stop the execution of the command. The execution will be stopped before
T, but after the innnediately preceding word-time. To indicate immediate
execution of a command, bit 29 of the command is set with 0. In the
above example, if it was desired to transfer words 10 - 15 from line 04
to line 05, a command with a 11C11 code of 0, S = 4, D = 5, T = 16, and
I/D = O, could be located at word 09 of some line out of which it would
be read. Which line of memory the command would be in is as yet an
open question. The command would be read at word-time 09 and executed
immediately, meaning that its execution would start in the very next
word-time, 10. It would continue operating through 10, 11, 12, 13, 14,
and 15. The T number of 16 would serve as a flag, stopping the opera
tion after word-time 15 and before word-time 16.

An important point to note in the discussion of immediate commands is
that an immediate conunand must execute for at least one word-time
before the flag can be effective. If, in the previous example, the
immediate conunand located at word 09 had a T of 10, the flag could not

- 69 -

stop the operation until a complete drum cycle had elapsed, and word
10 was coming up for the second time. This, then, would be the way
in which one command could cause the transfer of one whole long line
to another: let T of the command be 1 greater than the location of
the command itself, and let the command be an immediate command call
ing for the straight transfer of words.

Any of the previously discussed commands, either single- or double
precision, can be made immediate by setting bit 29 of the connnand
equal to O.

If an immediate command is not desired, or, to put it another way, it
is desired that operation be deferred until some particular word-time,
and then be performed for that word-time only, bit 29 of the command
must be set to 1, indicating deferred (D) operation. Of course a
deferred double-precision command will still obey the rules for double
precision operations: namely, the operation will continue until the
next sign-time, which will be two word-times later. In other words,
making a double-precision command deferred does not alter the fact
that two contiguous words will be operated upon; it merely pinpoints
the two words. An inunediate double-precision connnand will operate on
contiguous two-word numbers until stopped by a flag.

The immediate connnands which can be made from each of the operation
codes discussed so far are often referred to as "block" operations,
since they operate on blocks of numbers.

SEQUENCING OF COMMANDS

As shown in the layout of a G-15 command on page 61, each connnand con
tains in itself the address of the next command (N) to be obeyed, and
the word-time portion of this address is in bits 20 - 14. Notice that
seven bits are allotted and are sufficient to express any word-time in
memory. Commands, like data, may occupy any word. .An address consists
of more than a specified word-time, however; a line number must also
be included. In the case of N, in a command, the line-number is implied
to be the same as the number of the line in which the current command
is located. In other words, the G-15 will continue looking for commands
in the same line, once it has started with a conunand in that line. Since
this is the case, it is only necessary to specify the word-time at which
the next command is located in the same line.

COMMAND LINES

Not all lines in memory are connected to the special circuits which in
terpret commands. Any line which is so connected is called a "command
line", and connnands located in it can be read and executed, The com
mand lines are 00, 01, 02, 03, 04, 05, 19, and 23. A command can also
be executed out of AR, but this special action by the computer must,
in turn, be called for by a special command, which will be di.scussed
later. In order to preserve numerical continuity in all references to
command lines, line 19 is referred to as command line 06, and line 23
is referred to as command line 07. AR, because of its special nature

- 70 -

in this regard, is not referred to as a command line. Once a command
line has been chosen, the computer will continue to obey commands in
that line, but how does a command line get chosen originally? What
happens when a program must occupy more than one line? These are
logical questions, and we will look into their answers just as soon
as we complete the discussion of commands, themselves.

The only bit in a command word which remains unmentioned at this point
is bit 21. You may now consider it mentioned, although this would be
the wrong time in the discussion to describe its function. For our
purposes at present, always assume it contains 0.

So far, although many computer operations have been discussed, they do
not include all of the operations we will need for the solution for the
quadratic equation. Multiplication and division are just two of the
operations not supplied through the normal operation codes. It has been
pointed out that, although there is no line 31 in the memory of the G-15,
this number may be placed in a conunand as either the source (line) or the
destination (line). If 31 is specified as either S or D in a conunand,
the computer will know that no ordinary transfer is being called for.

SPECIAL COMMANDS

Upon discovery of D = 31 in a conunand, the computer will treat this com
mand as a "special" conunand, and interpret it in a special way. The S
number will be treated as a special operation code, and the three bits
which normally specify the operation will usually be interpreted in the
light of the special operation called for.

In the example of the quadratic equation, all additions and subtractions.
can be performed by using normal operations, but the other operations
necessary, of which multiplication and division are two, will require
special commands.

MULTIPLICATION AND THE TWO-WORD REGISTERS

The multiply conunand contains: D = 31, S = 24, and 11C11 code = 0. Before
this conunand is executed, however, the proper numbers to. be multiplied
together must be in the two-word registers ID and MQ, as mentioned before.
Therefore, the multiply conunand must be preceded by two other conunands
in the program, which load these two registers. The product, after mul
tiplication, will appear in PN. The progranuning method for performing
a multiplication can be derived from a further study of the two-word
registers and how they operate.

Any two-word register can be loaded with either a single-precision num
ber (via a single-precision transfer) or a double-precision number (via
a double-precision transfer), but the two-word registers will always
word in double-precision when a multiplication is called for. Two 57-
bit magnitudes will be multiplied together. If a single-precision mul
tiplication is really desired, it can be achieved by only loading the
most significant bits of ID and MQ, making sure that the remaining,
least-significant bits are cleared to 0. A 56-bit product (to be expected

- 71 -

when two 28-bit numbers are multiplied together) will appear in PN in
double-precision form. If a single-precision product is desired, it
will be in the most significant word of PN. So, in the case of a single
precision multiplication, the two-word registers must be cleared to 0
before they are loaded with the multiplier and multiplicand. Of course
the product will be the same, regardless of which of the two numbers is
treated as the multiplier and which as the multiplicand.

The G-15 is internally wired in such a way that each bit (of the 58
bits) in PN may be cleared as the corresponding bit in ID is set.··k
Therefore, if all 58 bits of ID are set, regardless of how they're
set, prior to a multiplication, all 58 bits of PN will automatically
be cleared, and PN will be ready to receive the product. The setting
of MQ will affect no other register, nor will it be affected by the
setting of any other register.

In a multiplication, although the magnitudes of the two numbers are to
be multiplied, we know that the signs must be added, if the laws of
signs are to be obeyed. A product is usually worthless if it contains
the wrong sign. The G-15 knows this, too. Therefore, when the two
word registers are being loaded, via a normal operation (transfer),

+ 0 1

+GB
if the 11C11 code is even, (O, 2, 4, 6), the sign of the number is
divorced from the magnitude and sent to a special "flip-flop" asso
ciated with the two-word registers, called IP. A flip-flop is a two
state device, one state equalling 0, the other equalling 1, and it
can remember which state it is in. It can also be read, or "sensed 11 ,

to determine which state it is currently in. The bit in the two-word
register which would normally receive the sign will not; it will be
set to 0. When ID is loaded, IP will be set with the sign of the num
ber going into ID. When MQ or PN is loaded, the sign of the number
being transferred will be added to the present value of IP, and the
result will remain in IP. Similarly, when a number is transferred,
via a normal operation, out of a two-word register, and the "C" code
is even, the magnitude will come from the register specified as S,
but the sign will come from IP. This function of IP is automatic.
The only special precaution the programmer must take in order to in
sure its operation is to transfer numbers to and from the two-word
registers with even "C" codes. So, in the setting of ID and MQ prior
to a multiplication, the program will have to set ID first, then set
MQ, thus insuring the correct sign of the product in IP. Then the
multiply command may be given.

-I< Note: this feature is automatic if ID is set with any even C
code (O, 2, 4, 6).

- 72 -

When the computer is commanded to multiply, the following will be the
state of affairs in the two-word registers;

ID - Multiplicand

MQ - Multiplier

PN - cleared to 0 and ready for product

IP - correct sign (0 or 1) of product

It has been stated that the two-word registers will multiply in double
precision fashion, regardless of whether or not double-precision opera
tion is really desired. Remember that, in double-precision numbers the
most significant bits are in the odd-numbered word (in the case of the
two-word registers, we refer to these as ID1, MQ1, and PN1). All 29
bits are magnitude bits. 28 of the bits in the even-numbered word (IDo,
MQo, and PNo) are the least significant bits of the magnitude, and the
sign-bit of this word is the sign of the number, or O, if the sign went
to IP.

In the case of double-precision multiplication, then, we would want the
initial conditions to be as follows, where x's represent significant
bits of magnitude.

Word 1 Word 0

ID~ xxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxO

MQ: xxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxO

PN: 00000000000000000000000000000 00000000000000000000000000000

IP: 0 or 1, whichever is the correct sign of the product.

To transfer the double-precision multiplicand from its resting place in
memory to IDo,1, we would use a straight double-precision transfer (C = 4),
with D in the command equal to 25 (ID). Because the C code is even, the
sign will be disengaged from the magnitude, and sent to IP. Because ID
is the destination, IP will be loaded with this sign. Then, to load MQo,1,
we would transfer the double-precision multiplier, also with a C = 4, with
D in the command equal to 24 (MQ). Because the C code is even, the sign
will be disengaged and sent to IP. Because MQ is the destination, IP
will add this sign to its present contents, and the result, which will
appear in IP, will be the correct sign of the product. When the signs
are disengaged, the bits in the two-word registers which would normally
have received them are cleared to 0, as shown above. When ID is loaded
(each of the 58 bits is set with some value, replacing what was origi
nally there}, each corresponding bit (and therefore, all 58 bits) of PN
is cleared to 0. Thus the desired initial conditions will be achieved
through the execution of two commands, the first of which loads ID, the
second, MQ.

- 73 -

In the case of single-precision multiplication, we would want the ini
tial conditions to be as follows, where x's represent significant bits
of magnitude.

Word 1 Word 0

ID: xxxxxxxxxxxxxxxxxxxxxxxxxxxxO 00000000000000000000000000000

MQ: xxxxxxxxxxxxxxxxxxxxxxxxxxxxO 00000000000000000000000000000

PN: 00000000000000000000000000000 00000000000000000000000000000

IP: 0 or 1, whichever is the correct sign of the product.

To transfer the single-precision multiplicand from its resting place
in memory to IDl (the most significant half of the two-word register),
we would use a straight single-precision transfer (C = O), with D in
the command equal to 25 (ID). Because the C code is even, the sign
will be disengaged from the magnitude, and sent to IP. Because ID is
the destination, IP will be loaded with this sign. Then, to load MQ1,
(again, the most significant half of the two-word register), we would
transfer the single-precision multiplier, also with a C = O, with D
in the command equal to 24 (MQ). Because the C code is even, the sign
will be disengaged and sent to IP. Because MQ is the destination, IP
will add this sign to its present contents, and the result, which will
appear in IP, will be the correct sign of the product. When the signs
are disengaged, the bits in the two-word registers which would normally
have received them are cleared to O, as shown above. These are bit 1
in both ID1 and MQ1 (remember, this is a single-precision transfer from
an odd-numbered location in memory, thus congruent to 1 mod 2, to word
01 in ID and MQ). When ID is loaded (the first 29 bits are set with
some value replacing what was originally there), each corresponding
bit (and therefore, the 29 bits of PN1) of PN is cleared to O. The
desired initial conditions will not be totally achieved unless something
further is done to clear the remaining bits of ID, MQ, and PN. It will
do no good to follow the two commands which load ID1 and MQ1 with two
more which load IDo and MQo, because this will cause the resetting of
IP, and destroy the sign of the product. But the two-word registers
could be cleared first, and then ID1 and MQ1 set with the desired num
bers. This is the procedure to be followed, and there is a special
command which clears all bits in the two-word registers and also clears
IP to 0. Since it is a special command, it has D = 31. Since it is
going to operate on two-word registers, it must operate for two word
times. Its source (S) = 23. The C code = O. Since the C code = O, it
will operate for only one word-time, unless it is made immediate by set
ting the r/n bit in the command = O. The T number in this command, as
in any other immediate command, then becomes a flag, telling the computer
when to stop execution of the command. Remember that an immediate com
mand will be executed starting in the word-time after that in which the
command was read, and it will continue to be executed during each suc
ceding word-time up through the one immediately preceding the flag. It
will not be executed during the word-time whose number equals the flag.
If we refer to the location of a command as L, then, in the case of the

- 74 -

corrnnand which clears the two-word registers, T = L + 3. In order to
simplify the writing of flags ,for T numbers, we drop the plus sign,
and use the desired number to be added to L as a subscript for L. In
the case of the command we are presently considering, then, T = L3 •

Three commands, then, are necessary to establish the desired initial
conditions for what we might call a single-precision multiply, although
that really is a misnomer. The first will clear the two-word registers
and IP, the second will load ID1, and the third will load MQ1.

The special circuitry associated with the two-word registers does es
sentially two things. We have already seen that it enables PN to act
as an accumulator. The other feature accomplished through this special
circuitry is a "shifting" process. A shift is the movement of bits
toward the high-order or the low-order position within a register. In
the G-15 it is accomplished one bit-position at a time. ID shifts to
ward the low-order (Tl) position (this is usually referred to as shift
ing to the right). MQ shifts toward the high-order (T29) po.sition (this
is usually referred to as shifting to the left).

Multiplication involves both the shifting and the additive features of
the two-word registers, in the following way. The contents of ID are
shifted right by one bit-position, moving all 57 magnitude bits to the
right one place. The right-most bit (T2 of IDo) is lost. The left
most bit-position (T29 of IDl) is filled-in with a O. Simultaneously
MQ is shifted left by one bit-position, moving all bits to the left
one place. The left-most bit enters an inspection station, where it
is inspected for 1 (it will, of course, be either 1 or O). The right
most bit-position is filled-in with a 0. After such a simultaneous
shift, during a single-precision multiplication, ID and MQ would con
tain:

Word 1 Word 0

ID: Oxxxxxxxxxxxxxxxxxxxxxxxxxxxx 00000000000000000000000000000

MQ: xxxxxxxxxxxxxxxxxxxxxxxxxxxOO 00000000000000000000000000000

Compare these with the initial conditions shown on page 73.

If the bit from MQ which is inspected is a 1, the new contents of ID
are added to PN; if it is a O, the addition is not performed. The
first addition in PN will, of course, be to O, since PN was initially
cleared. This process requires two word-times; because it is essen
tially a double-precision process, it must begin with an even word
time. It can be repeated as often as desired (28 times for a full
single-precision multiplication). The multiply conunand must be im
mediate, and it will perform the process over and over again, for the
indicated number of word-times. T in the corrnnand is a "relative
timing number". It will be set equal to the desired number of word
times of execution of the conunand; this should be an even number, and
the execution should begin at an even word-time, requiring the irrnne
diate multiply command to be located at an odd word-time. If the

- 75 -

process is allowed to continue for 28 times (T = 56), two full single
precision words can be multiplied together, and their product, a series
of sums, will appear in PN. Notice that at least one shift is perform
ed prior to the first addition, and the product will actually occupy the
56 most significant bit-positions in PN. In any number system, if two
28-digit numbers are multiplied together, a 56-digit product, counting
any leading O's, will result. If the initial shift in the computer were
not performed, it would be possible, in the case of large numbers, to
generate an overflow and an erroneous result.

After a single-precision multiplication, the most significant bits of
the answer will appear in PN1, bits 29 - 2. Bit 1 of PN1 and bits
29 - 3 of PNo will contain the least significant bits of the product.
Assuming that a single-precision product is all that is required, the
least significant bits are merely excess accuracy, and can usually be
ignored.

In ordinary pencil-and-paper multiplication, if you were to multiply
two 28-bit numbers, you would inspect the multiplier from right to

1111111111111111111111111111
1100101010000000001111000001
1111111111111111111111111111

1111111111111111111111111111
1111111111111111111111111111

1111111111111111111111111111
1111111111111111111111111111

1111111111111111111111111111
1111111111111111111111111111

1111111111111111111111111111
1111111111111111111111111111

1111111111111111111111111111
11001010100000000011110000000011010101111111110000111111

left, one bit at a time. If you found a 1, you would add the multi
plicand to what you already had in the way of a partial sum. If you
found a O, you would not add the multiplicand. You would then shift
the multiplicand to the left one place, and inspect the next bit in
the multiplier. You would do this 28 times, once for each bit in the
multiplier, and you would generate, as a result, a sum, which repre
sents a product of the two original numbers. The computer does the
same thing, in reverse. It starts with the high-order end of the
multiplier and inspects toward the low-order end. The shifts are
exactly the reverse, therefore; you shifted to the left, but the com
puter shifts to the right. A double-precision multiply corrnnand causes
exactly the same sequence of events, but the relative timing number
(T) in the corrnnand is set to allow the process to continue for 57 times
(T = 114). Notice that the multiply corrnnand may be allowed to operate
for any number of times, merely by setting T = 2k, where k = the num
ber of times desired. The resultant product will always be predictable.

- 76 -

DIVISION A..~D THE TWO-WORD REGISTERS

Division is somewhat similar to multiplication, in that it also utilizes
the shifting and additive features of the two-word registers in order to
reach a result.

The divide command contains: D = 31, S = 25, and C = 1 or 5 (these are
interchangeable: the setting of the s/D in the command has no bearing
on the operation). As in the case of multiplication, the numbers to be
divided must be set up in the two-word registers. The rules governing
the initial set-up of the two-word registers apply here as well as in
the case of multiply, except that the denominator will be loaded into
ID, the numerator into PN, and the quotient will appear in MQ. Because
PN is cleared as ID is set, the denominator must be loaded first, then
the numerator. In order to clear MQ, preparatory to receiving the
quotient, the clear command will have to be given. The proper sign of
the quotient will be generated in the same manner as it is for a product.

When the computer is commanded to divide, the following will be the
state of affairs in the two-word registers:

ID - Denominator

PN - Numerator

MQ - cleared to 0 and ready for quotient

IP - correct sign (0 or 1) of quotient

In division, as in multiplication, the two-word registers will operate
in double-precision fashion. The most significant word is the odd
numbered word (ID1, PN1, and MQ1). If single-precision division is
required, the single-precision denominator usually will be in ID1,*
bits 29 - 2 (remember its sign will be in IP), followed by insignif
icant O's in bit 1 of ID1 and all 29 bits of IDo. Wherever the denom
inator is in ID*, the single-precision numerator should be similarly
positioned in PN.

In the case ~f single-precision division, usually we want the initial
conditions to be as follows *, where x's represent significant bits
of magnitude.

Word 1 Word 0

ID: xxxxxxxxxxxxxxxxxxxxxxxxxxxxO 00000000000000000000000000000

PN: xxxxxxxxxxxxxxxxxxxxxxxxxxxxO 00000000000000000000000000000

MQ: 00000000000000000000000000000 00000000000000000000000000000

IP: 0 or 1, whichever is the correct sign of the quotient.

* The reason for making this indefinite statement will follow a descrip
tion of the machine's divide process.

- 77 -

In order to get MQ cleared, the first command in the set-up for a divi
sion would be the clear command. This would be followed by two straight
single-precision transfers from memory to ID1 and PN1, in that order.
The signs of these two numbers will be disengaged and sent to IP, where
the proper resultant sign will be generated, O's will occur in the bits
in ID (bit 1 of ID1) and PN (bit 1 of PN1) which would normally have
received the signs.

When the desired initial conditions have been established, the divide
command may be given. In order to understand the computer's division
process, we must first inspect the pencil-and-paper method, to deter
mine what process is involved there; we're so used to doing it, that
we usually don't consciously analyze the process as we do it, but
there is an underlying, reasonable pattern to the process of "long
division". Consider the following long division in binary arithmetic.

, 0101000
101000/011001000000

000000
0110010

101000
0010100

000000
101000
101000
0000000

000000
0000000

000000
0000000

000000
000000

~n division we are attempting to find the ratio of one number to another.
We call one of these numbers the denominator, and the other, the numera
tor. The resultant ratio, which we call a quotient, is the ratio of the
numerator to the denominator: N/D.
The first step is to subtract the
denominator, in its present form
(D•20), from the numerator. We
find that this yields a negative
result. (In the decimal system
we would inspect each possible
multiple of D, starting with 9·D,
but, in the binary system, the
only possible multiples of D are
l·D and O·D). We therefore dis
card the coefficient of 1, and

N
N

0 - l•D•2
0

- O·D·2
= -r
= +Rl

1

say that N contains O·D plus a remainder, R1. We now shift D to the
right one place (in the binary system, this yields D·Z-1), and attempt
to subtract it from this remainder. This remainder, of course, equals
N, since N - 0 = R1. In effect, what we are doing, knowing that N does
not contain D, is attempting to discover whether or not N contains D/2.

- 78 -

It does, and we know that because we get a positive result after the
subtraction. R1 contains l·D·2-l plus a remainder, R2. We continue
this shifting and subtracting process until we arrive at a remainder
of 0 or until we achieve the desired accuracy in the resultant quotient.

0
N O·D·2 + R

1
0 -1

N = O·D·2 + l·D·2 + R2

0 -1 -2
N = O·D·2 + l·D·2 + O·D·2 + R 3

0 -1 -2 -3
N = O·D·2 + l ·D·2 + O·D·2 + l·D·2

The reason we have taken a close look at the way you divide is that,
contrary to popular belief, the designers of digital computers are
"just plain folks"; they think the way you do, and when they were
faced with the problem of designing a division operation for the
Bendix G-15, they followed the same reasoning we have followed here.
They noted one important exception to it, however, from the stand
point of the computer: the computer cannot "inspect" prior to a
subtraction; it must subtract, and then inspect the result. Since
the numerator is in PN, and since the subtraction will also be per
formed in PN, it is obvious that, after the subtraction, the orig-
inal numerator will be lost in any event, and either a positive or
a negative remainder will be in PN. The computer will have to be
able to determine its future course on the basis of the sign of the
remainder in PN. The bit that goes in the quotient is easily deter
mined: if the sign of the remainder is negative, a 0 goes in the
quotient; if the sign of the remainder is positive, a 1 goes in the
quotient. If the remainder is positive, there is no problem: the
denominator must be shifted right one more place and a new trial sub
traction performed. But, in the case of a negative remainder, the
problem is a bit more difficult. We know that the division yielded
a 0 at this point, and the remainder actually indicates the quantity
by which the denominator exceeded the numerator (or previous remainder,
if this is not the first subtraction}. If we shift the denominator
right one more time, obtaining 1/2 its previous value, and add this
to the negative remainder, we will know whether or not an original
subtraction of D/2, rather than D, from N would have yielded a positive
result. (N - D + D/2 = N - D/2}. In short, we can devise the follow
ing rule: subtract D from N; if tpe result (R1) is positive, place a
1 in the quotient, and subtract D/2 from R1, continuing the process.
If the result is negative, place a 0 in the quotient, and add D/2 to
Rl, continuing the process.

The designers worried about one other point: the necessity for carry
ing many insignificant trailing O's along with N, in order to perform
the long division process. They realized that, after subtracting D
from N, and arriving at a remainder R1, the ratio of R1 to D/2 is the
same as the ratio of 2·R1 to D (R1:D/2::2·R1:D). Therefore, rather
than shift D right to obtain D/2, they decided to shift R1 left to
obtain 2·R1, and do this successively, with each remainder, always
adding (in the case of a negative R) or subtracting D (in the case
of a positive R) from the new value. Although it seems that overflow

- 79 -

might be caused by shifting a remainder to the left (if the remainder
has a 1 in the most significant bit position prior to the shift}, this
will not cause overflow, because of the manner in which the numbers
are treated by the circuitry employed during a divide operation. Any
temporary overflow condition will right itself in the next step of the
continuing process. Such a temporary overflow will not set the over
flow indicator. The algorithm upon which this division process is
based is that N will never equal or be greater than 2·D. The long
division in binary, as shown on page 77, will look like the following,
as it is performed by the computer.

(0101000
101000/011001 N

sub 101000 D
O} - 001111 R1

- 011110 2 ·R1
add 101000 D

1) 001010 Rz
010100 2•Rz

sub 101000 D
O) - 010100 R3

- 101000 2·R3
add 101000 D

1) 000000 R4
000000 2•R4

sub 101000 D
O} - 101000 Rs

-1010000 2·RS
add 101000 D

O} - 101000 R6
-1010000 2·R6

Notice that the overflow caused by 2·R5 is corrected by the next.addi
tion. This is a temporary overflow.

At the beginning of the division process, MQ is shifted left one bit
position, while D is subtracted from N. MQ, then, if it were not
cleared prior to the division, would look like this, where Y's re
present the original contents of MQ.

Word 1 Word 0

MQ ~ YYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYO

In the case of division, although MQ shifts left, ID does not shift
right~ so D·zO remains in ID. R1 is inspected~ if it is positive, a
1 is placed in T2 of MQo; if it is negative, a 0 is placed in the same
bit. PN, containing R1 , is shifted left one bit-position, so that it
now contains 2·Rl. The sign of Rl is used to control the inverting
gates during the next transfer of D to PN for addition or subtraction.
(Notice that D will pass through the inverting gates because the C
code of the divide corrunand contains a 1.) If the sign of R1 is positive,
it will be reversed and combined with D from ID on the next pass, so that,
as D passes through the inverting gates on its way to PN, the effect will

- 80 -

be to subtract D from 2·R1. If the sign of Rl is negative, it will be
reversed, combined with D from ID, and cause the addition of D to 2·R1.
A complete step such as the one described above will require two word
times, since division is essentially a double-precision operation, even
though single-precision numbers may actually be involved. The next step
in the process will begin with the shifting of MQ left by one bit-posi
tion again, so that the first bit in the quotient will occupy T3 of MQo,
and T2 will be ready to receive the next bit. During the second step,
2·R1 will be in PN, and D will be added to, or subtracted from it. This
process will continue for as many word-times of execution as are allowed
by the divide command. The command will be immediate, and the relative
timing number in T will be set to allow 57 word-times of execution
(T = 57) for a single-precision divide.

After 56 word-times of execution, at 2 per step in the division process,
28 bits of quotient will be generated in MQQ, and MQ will look like this,
where Y's represent original bits, and x's represent quotient bits.

Word 1 Word 0

MQ: YYYYYYYYYYYYYYYYYYYYYYYYYYYYY xxxxxxxxxxxxxxxxxxxxxxxxxxxxO

If only 56 word-times of execution are allotted, the first x in the
drawing above (in T29 of MQo) will represent x·D·2o, while the remain
ing bits in MQO will represent a fractional quotient. If a 57th word
time of execution is called for, during that word-time MQo will be
shifted left one bit-position, and a new bit will be placed in T2 of
MQQ, so that MQ will look like this.

Word 1 Word 0

MQ: YYYYYYYYYYYYYYYYYYYYYYYYYYYYY xxxxxxxxxxxxxxxxxxxxxxxxxxxxO

Notice that MQ1 did not move, while MQo did. The first bit in MQo
(x·D·20) is shifted into a flip-flop which detects overflow. The bit
now in T29 of MQo represents x 0 D·2-l, and the whole word is a fraction
al quotient. This is the normal form for a ratio, and it is the form
most desirable when programming the G-15. Overflow will be indicated
if the quotient actually equals or exceeds 1, since, in that case, a 1
will reach the overflow flip-flop during thts last shift. If T = 56 in
the divide command, the overflow indicator may be erroneously set, and
should never be depended upon.

The rule, then, for a single-precision division is:

1. Never divide an N which is greater than, or equal to D.

2. Use a T = 57 in the divide command.

3. As in the case of multiply, the divide command must be located
at an odd word-time.

- 81 -

You can see that there are exceptions to this rule, but that a thorough
knowledge of computer logic and much experience are required. In no
case will division work if N is greater than or equal to 2·D.

Double-precision division involves exactly the same operations as does
its single-precision counterpart. Of course, the execution time of the
command must be greater. With 57 bits of quotient to be generated, 114
word-times would be necessary. If this is the time allotted, the first
bit of the quotient (T29 of MQ1) will represent x.n.20. In the case of
double-precision, two more word-times are necessary to shift the entire
quotient one bit-position to the left. If T = 116, all 57 bits of the
quotient will be fractional, T29 of MQl representing x·D·2-l, and T2 of
MQo representing x·D·2-57. In this case, the overflow flip-flop will
be set with x·D·20. If the quotient equals or exceeds 1, x will equal
1, and overflow will be indicated. If T = 114, erroneous overflow may
be indicated.

The rule, then, for double-precision division is:

1. Never divide an N which is greater than, or equal to D.

2. Use a T = 116 (v6) in the divide command.

Again, exceptions are possible, but thorough knowledge of computer logic
and much experience are required. In no case will division work if N
is greater than or equal to 2·D.

Remember that a quotient is nothing more than a ratio of one number to
another. It stands to reason that, if 2/17 = 4/34, etc.,

00000000000000000000000000000 000000000000000000000000001qo

divided by

00000000000000000000000000000 000000000000000000000001oooip,

equals

00000000000000000000000000000 00000000000000000000000001oop

divided by

00000000000000000000000000000 00000000000000000000001000lcf /

which, in turn, equals

00000000000000000000000000000 010000000000000000000000000~

divided by

00000000000000000000000000010 001000000000000000000000000~,

- 82 -

and any of these quotients equals the quotient derived by dividing

00010000000000000000000000000 oooooooooooooooooooooooooooqo

by

10001000000000000000000000000 000000000000000000000000000+.

So long as the denominator and the numerator occupy corresponding bit
positions in ID and PN, respectively, which bit-positions they occupy
will have no. effect on the quotient. For each denominator and numera
tor, regardless of their positions in these two registers, provided
the above requirement is met, there will be one correct quotient appear
in MQo for single-precision division, and one correct double-precision
quotient, if that is called for, in all of MQ.

It would be desirable to round off a quotient to the nearest figure in
the last digit carried, but this is not possible, because there is no
way of examining the remainder in the G-15. Truncating the quotient,
i.e., ignoring the value of digits beyond the one carried, will result
in the quotient reported being somewhere between correct and one unit
low, and averaging a half unit low. This would give a systematic error
which could seriously affect accuracy after a large number of opera
tions. One way of avoiding this is to add an average of one half to
all quotients. This is simply done by making the last bit always 1,
i.e., adding one unit to half of the quotients: those originally end
ing in zero. This is called the "Princeton Round-off". A truncated
quotient is between zero and one unit low, while a Princeton-rounded
quotient is between one unit low and one unit high.

There is no way to program the elimination of the Princeton round-off;
it will always occur. If you desire a single-precision quotient without
this round-off, you can carry the division out as a double-precision
operation, making T = 116 (v6) in the divide command, in which case the
single-precision quotient will be in bits 29 - 2 of MQ1, and the rest
of the bits in MQ will contain the remainder. The Princeton round-off
will occur at T2 of MQo·

Notice that, in either single-precision multiplication or single-precision
division, four commands are necessary to set up for, and perform, the op
eration. One command clears the two-word registers, two others load each
of the two-word registers containing the numbers to be operated on, and
the fourth command actually calls for the desired operation. The clear
command can sometimes be eliminated by utilizing special circuitry con
necting AR and the two-word registers.

In the table of normal operations (pages 64 - 66), it was pointed out
that, if both S and D are less than 28, codes 2 and 6 call for exchanges
of AR with memory. So do codes 3 and 7, under similar circumstances,
except that, in these two cases, complementation of negative numbers is
involved. If any one of these four commands is used to load ID (25),
MQ (24), or PN (26) from some other location in memory (S less than 28),
during all even word-times AR cannot load any of these three registers.

- 83 -

In other words, the contents of AR will be blocked off from IDo, MQo,
and PNo. In the place of the contents of AR, the even half (word 00}
of the specified two-word register will receive 29 O's. If the C
code = 6, during the following odd word-time, the contents of AR will
be transferred to the odd half of the specified two-word register.
Because the C code is even, the sign of the double-precision number
will go to IP, according to the rules discussed earlier. Notice that
during the even word-time of execution, the original contents of AR
attempt to reach the even half of the specified two-word register,
but are blocked off, and O's are transferred instead. During the same
word-time, the even-numbered word from memory goes to AR. During the
following odd-numbered word-time, the contents of AR (originally an
even-numbered word from memory) goes to the odd half of the specified
two-word register. The fact that this word was delayed one word-time
because of its transfer via AR does not alter the fact that it is the
first word of a double-precision number. Therefore, even though it
reaches the two-word register at an odd word-time, its sign will be
divorced, and sent to IP, in accordance with the rules already mention
ed.

Consider, then, a single-precision multiplication: A·B, where A is
stored in an even-numbered word. If a transfer of A to ID via the AR
register is called for (C = 6), during the first word-time (an even
numbered word-time), the original contents of AR attempts to reach IDo,
but is blocked off, and all 29 bits of IDo are cleared to 0. During
the same time, A is transferred to AR. During the next word-time (an
odd word-time), A is transferred from AR to ID1, but, since A is the
first half of what the computer believes to be a legitimate double
precision number, its sign, being treated as the sign of the number, is
disengaged from the magnitude bits, and it is transferred to IP. Tl of
ID1, which normally would have received this sign, is cleared to O.
Since every bit in ID has been set during this operation, every bit of
PN has been cleared. The only initial condition remaining to be satis
fied is the placing of the multiplier, B, in MQ1· If Bis in an odd
word in memory, a straight single-precision transfer to MQl will accom
plish this. Since the C code for this is 0 (therefore, it is even), the
sign will be disengaged from the magnitude portion of B, and it will be
sent to IP, to be combined with IP's present contents. Notice that the
initial conditions in this case will be:

Word 1 Word 0

ID: xxxxxxxxxxxxxxxxxxxxxxxxxxxxO 00000000000000000000000000000

MQ: xxxxxxxxxxxxxxxxxxxxxxxxxxxxO YYYYYYYYYYYYYYYYYYYYYYYYYYYYY

PN: 00000000000000000000000000000 00000000000000000000000000000

IP: 0 or 1, whichever is the correct sign of the product.

In the above layout of the two-word registers, the Y's in MQo represent
the original contents of that word, remaining after MQ1 has been set.
Since, during a multiplication, MQ is shifted to the left one bit-position

- 84 -

at a time, each succeeding bit being inspected to determine whether
or not the contents of ID should be added to the contents of PN, and
since, if a single-precision multiplication has been called for, only
28 bits from MQ will be inspected, the remaining "garbage" in MQ will
have no effect on the multiplication. There is no need to clear MQo
prior to a single-precision multiplication. However, if the multi
plier were in an even-numbered word in memory, it would be perfectly
permissable to use a transfer via AR (C = 6) to get it into the odd
half of MQ. In this case, of course, MQo would be cleared.

In the case of a single-precision division (N/D), if D is stored in
an even word in memory, and transferred into ID1 via AR, this will
succeed in properly preparing ID for the division and setting up IP
for the addition of signs. But setting ID clears PN, and not MQ.
PN could be set with the proper value (N), either by a straight
single-precision transfer, or by a transfer via the accumulator, and,
in either case, it would also be set up properly. If PN1 were set
by a straight single-precision transfer (C = O), PNo would still have
been cleared because each bit in IDo was set (to O). MQ will remain
unaffected, containing its original contents.

Word 1 Word 0

ID: xxxxxxxxxxxxxxxxxxxxxxxxxxxxO 00000000000000000000000000000

PN: xxxxxxxxxxxxxxxxxxxxxxxxxxxxO 00000000000000000000000000000

MQ: YYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYY.YYYYYYYYYYYYYY

IP: 0 or 1, whichever is the proper sign of the quotient.

The Y's in the above layout of MQ represent its original contents,
remaining after both ID and PN have been set. This is perfectly
all right, however, since MQ is shifted to the left one bit-position
at a time, as each bit of the quotient is placed in T2 of MQo. Tl
of MQo is cleared by the initial shift, preparatory to the placement
of the first quotient bit in MQo. If a full 28-bit quotient is gen
erated, all the Y's shown above in MQo will be shifted out to the
left, and all 28 magnitude bits of that word will contain quotient
bits.

REVIEW

At this point, we pause to review what has been covered. We first
pointed out that, in order to effectively use the computer, the
programmer must analyse the problem:

1. determine the formula(s) by which a solution can be reached,
or in some way define exactly what is called for;

2. discover the form, magnitude, and ranges in values, of the
data which will be available as input for the program;

- 85 -

3. choose an appropriate method of solution;

4. outline, very briefly, the logical path to be followed in
this method, such an outline being called a flow diagram.

We then analysed a sample problem, that of solving for the roots of
a quadratic equation of the form, a•x2+b·x+c. After we developed a
flow diagram for its solution, we saw that we needed more thorough
knowledge of available computer operations, especially the arithmetic
operations.

This lead us to a discussion of commands as they appear, in binary, in
the computer. The first part of a command we studied was the C code,
consisting of a two-bit characteristic and a one-bit indicator for
either single- or double-precision operation. We saw that the various
possible C codes in three bits run the gamut of 0 - 7, where 4, 5, 6,
and 7 are essentially the double-precision counterparts of the single
precision codes 0, 1, 2, and 3, respectively.

Each of these operations is a transfer of some type, and it may call
for the use of special circuitry during the transfer, such as invert
ing gates, or circuitry which can change a sign, drop a sign, or add.
The various types of transfers that were seen to be available were:

1. straight single- or double-precision transfer from one
place in memory, including either the single- or double
precision accumulator, to another, also including the
accumulators; C = O, 4;

2. single- or double-precision transfer via the inverting
gates (to accomplish complementation of negative numbers,
preparatory for addition) from one place in memory, in
cluding either of the accumulators, to another, also in
cluding either of the accumulators; C = 1, 5;

3. exchange of memory with AR, both single-precision words,
and the transfer in each direction, a straight single
precision transfer; C = 2;

4. transfer of a double-precision number via AR, in which,
during the even word-time, the even word of the double
precision operand goes to AR while the original contents
of AR go to the even word of the double-precision desti
nation; during the odd word-time, the new contents of AR
go to the odd word of the destination, while the odd word
of the operand goes to AR; C 6;

5. transfer either a single- or a double-precision magnitude
to or from the appropriate accumulator, the sign being
dropped during the transfer; C = 2, 6;

6. exchange memory with AR, both single-precision words, the
transfer from AR to memory being a straight single-precision

.·-~ ..

- 86 -

transfer, but the transfer from memory to AR being via the
inverting gates; C = 3;

7. transfer of a double-precision number via AR, as in (4),
above, except that each word of the double-precision operand
as it enters AR, enters via the inverting gates; C = 7;

8. transfer either a single- or a double-precision number to or
from the appropriate accumulator, but with a change of sign,
and subsequent passage through the inverting gates, for com
plementation, if necessary, preparatory to addition (changing
the sign of a number and adding it accomplishes the same end
result as subtracting it); C = 3, 7.

After discussing the normal operations (each one actually a different
type of transfer of words available in the G-15), we examined the
various addresses contained in a connnand.

One of these is the address of the operand, the word(s) to be transferred.
All addresses in the memory of the computer are composed of a line num
ber and a word number, or word-time, within that line. An address is
denoted in the following manner, where LL stands for line number, and
TT, for word-time: LL.TT. The line containing the number to be trans
ferred is called the Source, and the address of the operand is SS.TT,
usually written S.T. The address of the word(s) receiving the number
to be transferred is also composed of a line number and a word-time,
and is written D.T, where D stands for Destination. In a connnand, the
word-time (T) involved in both these addresses is the same, and is given
only once. Therefore, a transfer of a word(s) from one line to another
will place the number being transferred in the Destination at the same
word-time it occupies in the Source, or (in the case of transfers be
tween, lines of different lengths) in a word-time congruent to the word
time it occupies in the Source.

The functions of S and D were described. They control selectors which,
in turn, modify the normal recirculation of memory at the proper word
time in the proper line.

We then discovered that a series of individua.l connnands, each with the
same S, D, and C, but with successively increasing T's, can be replaced
by one immediate command, in which the T number is a flag, telling the
computer when to stop the operation. In such a case, the operation com
mences in the very next word-time after the command has been read, so
the location of an innnediate connnand helps to determine how many, and
which words will be transferred. We called these immediate connnands
"block" commands, since they work on blocks of congruent words in given
lines.

If it is not desired that a command be immediate, it can be made defer
red, in which case it will operate only on the word (or two words, in
the case of double-precision) indicated by the T number. A bit indicating
whether the command is immediate or deferred is included in the command,
itself. It is the I/D bit, (T29).

- 87 -

It was pointed out that, when we say a G-15 command contains within
itself the address of the next catmnand to be obeyed, and thus the
program sequence is determined by the programmer when he makes up
the individual commands in his program, we are only partly correct.
Each command contains the word-time at which the next connnand is to
be read, but the line number in which that next command is located
is not contained within the current command. The reason it is not,
is that, once a sequence of commands is started in any "command"
line, the line will remain the same, and thus, need not be specified
from command to command. Only word-times need be specified. It was
also pointed out that not all lines in the memory of the G-15 are
"command" lines. Connnands can only be read out of lines 00, 01, 02,
03, 04, 05 9 19, and 23. These are called "command" lines O, 1, 2, 3,
4, 5, 6, and 7, respectively.

Two points remained open, although they were discussed:

1. how a command line is initially chosen, and how a program
can switch from one line to another, should that be nec
essary; and

2. the meaning of the BP bit in a G-15 command, this being
the only bit not defined.

After the discussion of the various parts of a command, the concept
of special cormnands was introduced. It was pointed out that not all
of the operations necessary for the solution of the quadratic equation
were, as yet, described. The two most apparent of these omitted opera
tions were multiply and divide.

If D is set equal to 31 in a cormnand, since there is no line referred
to by that number, the G-15 treats this conunand as a special command.
In this case, the S number in the command will become a special opera
tion code, and the C code will usually be treated in the light of the
special operation called for. Having thus defined special commands,
we proceeded to discuss two of them, multiplication and division.

We saw that the command calling for a multiplication contains D = 31,
S = 24, C = O, and T = a relative timing number, which indicates for
how many word-times the execution of the command is to be carried out,
where two word-times are necessary for each bit in the product. The
duration of operation of this command can be of any length, provided
T is a multiple of 2, and, in any case, the results will be predictable.
This command must be an immediate command, and, because its operation
is always double-precision in nature, it must be located at an odd word
time, so that the first word-time of execution will be an even word-time.

We also saw that it is necessary to place the multiplicand and the
multiplier in the two-word registers, ID and MQ, respectively, prior
to giving the multiply command. Certain clearing of the two-word
registers is also necessary. The rules for setting up these registers,
and how they operate during the multiplication were discussed, but suf
fice it to say here that the product will appear in PN: if a full single-

- 88 -

precision multiplication is called for .. (T = 56), the product will be
in PNi; if a full double-precision multiplication is called for (T =
114), the product will be in PNo,l• In any case, the correct sign
of the product will be generated in IP. In this regard, we saw that',
if a number, either single- or double-precision, is transferred to
any two-word register with an even C code (0 is treated as even), the
sign will be divorced from the magnitude, the sign going to IP, and
the magnitude going to the magnitude bits of the appropriate word(s)
in the appropriate two-word register. Similarly, when a number is
transferred out of any two-word register, if the C code is even, the
magnitude bits of the number will be picked up from the register it
self, while the accompanying sign will be picked up from IP. Although
this makes ordinary use of the two-word registers for storage slightly
confusing, it is necessary for proper operation during multiplication
and division.

After multiplication, we discussed division, and saw that it, too,
utilizes the two-word registers and IP. The divide command contains
D = 31, S = 25, C = 1 or 5 (the operation will be exactly the same,
regardless of which is used), and T = a relative timing number. For
a single-precision divide, T must equal 57; for a double-precision
divide, T must equal 116. Exceptions to this rule are possible but
require thorough knowledge of the internal logic involved and extreme
care in treatment of the quotient. This command must be immediate,
and, because its operation is always double-precision in nature, it
must be located at an odd word-time, so that the first word-time of
execution will be an even word-time.

The denominator and the numerator are placed in ID and PN, respec
tively, prior to giving the divide conunand. Certain clearing of the
two-word registers is also necessary. The quotient will appear in
MQ; a single-precision quotient will appear in MQo; a double-precision
quotient will appear in MQo,l• The correct sign of the quotient will
be generated in IP. The least significant bit in a quotient will
always be l; this is called the Princeton round-off.

A quotient represents the ratio of one number to another. In the G-15,
this ratio should be in the form of a proper fraction, less than 1. If
a quotient less than 1 is to be obtained, care must be taken to insure
that, prior to the division, the numerator, as it appears in the machine,
is less than the denominator, as it appears in the machine. Since a
ratio is desired in a division, the location of the numbers to be divided,
in ID and PN, is immaterial, provided they occupy corresponding bit-posi
tions in those two registers.

Because of a unique circuit connecting AR and the two-word registers,
use of a C code equal to 6 in the transfer of a single-precision number
from an even location in memory (S less than 28), via AR, and into the
odd half of ID (ID1), will accomplish all the clearing necessary for a
single-precision multiplication or division, eliminating the necessity
for a clear conunand. This same circuit will cause the same clearing to
occur whenever S is less than 28, D equals 24, 25, or 26, and the C code
equals 2, 3, 6, or 7.

- 89 -

MACHINE FORM OF A NUMBER AND SCALING

Several times reference has been made to the machine form of a number,
and, in the Introduction to the G-15, it was implied that the following
numbers in machine form are equal to the decimal numbers shown below~

Binary number in machine Decimal equivalent

oooooooooooooooooooooooooooio

00000000000000000000000000140

000000000000000000000000001ijo

000000000000000000000000001~1

1.

2.

3.

-3.

This implies that the binary point in a machine number is usually be
tween the least significant magnitude bit and the sign bit.

0000000000000000000000000001.+(2) = +1.(10)

This would mean that usually a machine number is entirely integral,
and has no fractional bits. But if this were the case, the result
of a multiplication or of a division is most disconcerting, for a
multiplication will result in a product smaller than either the multi
plicand or the multiplier, and a division will result in a quotient
larger than the numerator, and, in some cases, also larger than the
denominator. These statements are verified by the fact that multi
plication of even the very largest possible numbers cannot cause over
flow, and division of a number by another can cause overflow.

In short, it would seem, from inspection of these results, that num
bers in the computer are actually fractional rather than integral.
If two fractions are multiplied together, the resultant product will
be smaller than either of the original numbers, and if a fraction is
divided by another fraction, the result will in all cases exceed the
value of the numerator, and may exceed the value of the denominator.

Actually, the computer treats every binary number in its memory as a
28-bit fraction with a sign. The binary point in the machine, some
times referred to as the machine-point, precedes the most significant
bit of a number. If this is the case, then:

.oooooooooooooooooooooooooooit>c2>

.1oooooooooooooooooooooooooocpc2>

0 -28
= 1·2 ·2 (10)

= 1•227.2-28
(10}

-28
= 1·2 (10)

-1
= 1·2 (10)

We can interpret any 28-bit binary value in the machine in any way
we want; that is to say, we can understand the true binary point for
our purposes to follow T2 if the machine holds l/228th of what we
intended. The maximum value we can express in 28 bits is:

- 90 -

1111111111111111111111111111.(2)'

which equals

0 1 2 26 27
1•2 +1·2 +1·2 + ••• +1·2 +1·2 '

and this is 1 less than 1·228 • Therefore, the machine will always be
able to make a fraction out of whatever we give it, not by changing
any bits, but merely by assuming the binary point to always precede
T29 of the word.

Of course addition and subtraction will yield the same, familiar
results, as we interpret them, since these operations will be per
formed on fractions all of which have the same denominator.

Ifa+b=
a b c

c, then~+~=~.

Regardless of the fact that we might be fOnsidering a and b as inte
gers, and the computer is considering them as fractions, the fraction
which results in the computer must represen.t the integer c, as we
interpret it. We will be able to convert the bits of the result as
a binary integer and arrive at the decimal integer equivalent.

a 000000000000000000000000000
b 000000000000000000000000001
c 000000000000000000000000001

If a = 1, b = 2, c will equal 3. We can so place a in a word in memory
that it will be of the form shown above. We interpret this as a.2-28.
We can similarly place b in another word, knowing that it will be sim
ilarly interpreted. We can then transfer a to AR (D = 28), and b to
AR (D = 29), and they will be added in AR. The sum in.AR will appear
as shown above. We know it is really c•20·2-28, and we interpret it
as c•20, or 3.

Suppose, in the example above, we wanted to add numbers containing
fractional as well as integral bits. Let a = 1.5 and b = 2.75. The
sum of these, c, must equal 4.25. We must first determine how many
bits will be required to express the longest fraction in the binary
equiva,lents of these numbers. .5(10) = .1(2)> which is 1/2. • 7?(10) =
.11(2)' which is 1/2 + 1/4 = 3/4. .25(10) = .01(2)> which is 1/4. The
most oits required by any fraction involved are two. Therefore, if
two fractional bits are reserved, each number involved can be fully ex
pressed. Note that not all decimal fractions will convert evenly to
binary fractions. Sometimes a progrannner must decide what accuracy is
needed, and let this determine the number of fractional bits needed.

When we speak of fractional bits, as in the paragraph above, we are
referring to bits which we will interpret as fractional, as opposed .to
those which we will interpret as integral. When we say that the com
puter holds a·2-28, we are saying that we know that a, as it appears.
in the machine, is in the form, a.20.2-28, meaning that the true binary
point, for us, is 28 bits to the right of the machine binary point.

- 91 -

This means there are no bits left to express any fractional value for
a. If we were to place a in a word in memory in such a way that two
fractional bits followed the true binary point, and do the same for b
and c, then the conditions of the problem in the above paragraph would
be met. This means that a, as it appears in the machine, must be in
the form, a.22.2-28. For a = 1, the value in the machine would appear
as

oooooooooooooooooooooooooto~,

where the true binary point would be known to be at the point shown
by the arrow. In such a case, we say that the machine holds a·2-26
(note that this equals a.22.2-28), or, that the true binary point is
26 places to the right of the machine binary point.

Now, using the same process for placing b, and for interpreting c,
let's add, using our new values, and check the result.

000000000000000000000000011

000000000000000000000000101

000000000000000000000001000

-26 = a•2

= b·2-26

= 100.01(2) = 4.25(10)'

which is
correct.

If we let A* be the machine representation of any binary number A,
then

n
A* = 2 ·A,

where n may range from 0 through -28, depending on the fractional
accuracy being carried with A.

The entire subject we have just discussed is called "scaling". In
the above expression, 2n is called the "scale factor" of A. Every
number is "scaled" somehow when it is placed in the computer. A is
said to be scaled 2n in the machine. From now on, we won't have to
make long, cumbersome references to the true binary point in a number
as it appears in the machine; we can simply say the number is scaled
in a certain manner, and you will immediately know where the true binary
point is.

As you can see, the concept of scaling is really quite simple and straight
forward; scaling is a short-hand method of interpreting the numbers that
appear in a digital computer.

In ordinary decimal arithmetic, you know that you cannot add

100.962
6.75401,

- 92 -

because the decimal points are not lined up cprrectly. Rather, you can
add them, but you shouldn't; the result will be meaningless. Similarly,
in ordinary binary arithmetic, you cannot, or at least you sould not,
add

110.111
1.00011,

because the binary points are not lined up correctly. In the computer,
you should not add two numbers which are scaled differently, for the
same reason. You can, and occasionally progranuners have, but the
result is meaningless, as they have found out, much to their chagrin.

Suppose we are to add a + b, where a is scaled 2-15, and b is scaled
2-13. It's obvious that one or the other of these numbers will have
to be moved, in order to line up the true binary points prior to the
addition. You already know how numbers are moved back and forth within
a word in the computer: they're shifted in one direction or the other.
In the case of pencil-and-paper arithmetic, the job of lining up the
base points of two numbers, in order to add them, is simple: we rewrite
the numbers. In the previous binary addition, we would rewrite the num
bers as

110.111
1.00011,

and proceed to add them. Unfortunately, as we shift numbers in a com
puter, we must lose bits. 29 bits are allotted to each single-precision
number; after it is shifted, there will still be only 29 bits allotted
to any single-precision number. Thus, if the number is shifted to the
left, bits will be lost from the most significant end; if the number is
shifted to the right, bits will be lost from the least significant end.
In the case under consideration, a can be shifted left two places, in
creasing it by a factor of 22, and thus rescaling it from 2-15 to 2-13,
and making it compatible with b. Or b can be shifted to the right two
places, decreasing it by a factor of 2-2, and thus rescaling it from
2-13 to 2-15, making it compatible with a.

Which would be the better scheme can be determined from consideration of
a number of factors:

1. the desired scaling of the answer, if any particular scaling
is desired;

2. the number of integral bits that must be allowed to insure
that overflow will not occur when the numbers are added (this
can be determined by considering the largest possible sum of
a and b, and in all events, this number of bits must be allowed,
regardless of what shifting is necessary to insure it; other
wise, the answer will be erroneous);

3. the fractional accuracy desired in the sum.

- 93 -

From these considerations and perhaps others, unique to a given problem,
you will determine the shifting that is required prior to the addition.
It may be that both numbers will have to be shifted. In any event, once
you have decided that shifting is necessary prior to an addition in your
program, you will, of course, need a connnand which will direct the com
puter to do it.

The shift connnand is another special command, with D = 31, S = 26, C = 1
(or any other non-zero number), and T = a relative timing number (similar
in function to T for a multiply or divide command). The command will be
immediate, and, like multiplication and division, it is double-precision
in nature. Two word-times are required for each shift of one bit-position.
Therefore, two times the number of bit-positions desired in the shift = T.
If you wished to shift a number 10 bit-positions in either direction, T
of the shift command would equal 20. Because this operation is immediate
and double-precision in nature, it must be located at an odd word-time.

You have already seen that shifting can take place in the two-word reg
isters, and this is where the shifting caused by this command will occur.
When this command is executed, ID will shift to the right the indicated
number of bit-positions, and, simultaneously, MQ will shift to the left
the same number of bit-positions. If you have one number you want to
shift, prior to giving the shift conunand you must place that number in
the appropriate two-word register. Either half of the register will do
for a single-precision number. You might have a number in each of these
registers, one moving to the right, the other to the left.

Notice, if you have a single-precision number you wish to shift to the
right, and you load that number in ID1, then execute the shift command,
the number will move to the right, and the vacated bits will be filled
in with O's, which, of course, would be fine. But, under the same con
ditions, if you loaded that number in IDQ, the vacated bit-positions in
IDQ would be filled in with bits from ID1, and unless ID had been pre
viously cleared, the single-precision word containing your number would
receive "garbage", which could very well contain l's. Of course this
would change your number, making it erroneous. A similar situation, but
in reverse, holds true for the shifting of a single-precision number to
the left in MQ.

You are probably wondering why any non-zero C is permissible in the com
mand discussed above, and why a C of zero is not permissible. The only
function of a C in this command is to distinguish it from a similar com
mand, with D = 31, S = 26, and C = O. The latter is also a shift com
mand, calling for the exact operation described above, but if C = O, a
tally of the shifts performed will be kept in AR. For each complete
shift of the registers by one place, 1·2-28 will be added to the present
contents of AR.

Of course the operation called for by this second shift command will
cease at the end of the indicated number of word-times, just like any
other command. But it will also cease if an end-around-carry is gen
erated in AR, regardless of whether or not the indicated number of word
times have been consumed. In other words, this shift is performed under
control of AR.

- 94 -

An example of the usefulness of such a command might be the following:
rescale the binary number x, in the computer, by a factor of 2(a-b),
where a and b will also be available in the computer. Assume all num
bers are single-precision. When you originally write your program,
you won't know how many shifts to call for to be performed on x. As
a matter of fact you won't even know in which direction x is to be
shifted. All this depends on the current values of a and b.

You could subtract b from a in AR, and, depending on the sign (+ or -)
of the answer, you could load x into the proper half of the proper two
word register: ID1 if x is to be shifted to the right, because the sign
of (a - b) is negative; MQo if x is to be shifted to the left, because
the sign of (a - b} is positive. There is an implication here that
some provision is available to programmers to cause their programs to
automatically determine which of two alternate logical paths to follow,
based on inspection of a given condition in the computer. This is
correct, and the method available for doing this will be discussed
shortly, in pages 105 - 109. For the moment, you may assume that such
a decision has been made, and x is in the proper two-word register.

The problem now is to use the number in AR to control the shifting
process. We know that the shift command we want has D = 31, S = 26,
C = 0. It's operation will cease either when an end-around-carry has
been generated in AR or when the number of word-times called for by T
has been consumed, whichever occurs earlier. We will set T with some
maximum number, so that, unless (a - b} is useless (due to the fact
that it calls for so many shifts that all of x will be lost), (a - b)
will effectively control the process. Assuming that we want only a
single-precision answer, x·2(a-b}, from either ID1 or MQo, the maximum
number of shifts that can be performed in either direction, without
losing all significance, will be twenty-seven. On the twenty-eighth
shift in either direction, all twenty-eight magnitude bits of the
original x will be lost. We will therefore set T = 54 (= 2·27). And
thus we have the shift command that will be included in our program.

The problem now is to so set AR that, after (a - b) shifts have been
performed, and (a - b}•l·2-28 has been added to AR, an end-around-carry
will be generated. Any positive number plus its negative complement
will yield +O in the computer. Therefore, if we start with the nega
tive complement of J<a - b}I in AR, and if we add 1-2-28 to it J (a - b)I
times, we will have generated, in AR, the quantity,

-28
• 2 '

and this must be +O. Because we cannot know that (a - b} will always be
positive, we use its absolute value, which of course will be positive.
After the last shift, there will be an end-around-carry, and the sign
will be changed to +. The end-around-carry will halt the shifting proc
ess.

Of course the same scaling rules that apply to addition of single-preci
sion numbers apply as well to the subtraction of single-precision numbers.

- 95 -

Multiplication is a slightly different case. If a•b is desired, a is
scaled 2-15, and b is scaled 2-13, ab will be scaled 2-28, in accord
ance with the rule of exponents.

-15 -13 -28
a-2 •b•2 = a•b•2 •

A very simple rule governing the scaling of a product in PN is, follow
ing the multiplication of one number by another, the product will be
scaled by a factor equal to the product of the scale factors of the two
numbers.

Consider now a multiplication of 1·2-28 by 4.2-28. The product will
be 4, scaled 2-56. The initial condition of the two-word registers
would be:

Word 1 Word 0

ID: 00000000000000000000000000010 oooooooooooooooooooooooooooqo

MQ: 00000000000000000000000001000 ~

PN: 00000000000000000000000000000 ooooooooooooooooooooooooooocl>

IP: 0 or 1, whichever is the correct sign of the product.

Each bit in MQ, starting with T29 of MQ1, will be checked for 0 or 1.
If it is O, nothing will be added to PN; if it is 1, the present con
tents of ID will be added to PN. The T number of the command will be
56, allowing the inspection of 28 bits from MQ. Thus the Y's in MQo,
shown above, representing the original contents of MQo before the
multiplier was loaded, will have no bearing on the process. The bits
in MQ are made available for inspection by being shifted out of MQ,
to the left, to an inspection station. A shift is performed before
the first bit from MQ1 can be inspected. For each shift to the left
of MQ, ID is shifted to the right. 25 O's will be inspected before
the 1 in MQ1 is sensed at the inspection station. Then the 1 will
be shifted into the inspection station, making a total of 26 shifts
to the left, before ID is to be added to PN for the first time. This
means that ID will have been shifted to the right 26 times before it
is added to PN. ID will then look like this:

Word 1 Word 0

ID: 00000000000000000000000000000 00000000000000000000000010oop

Since this is the only 1 that will be found in MQ, this is the only
addition to PN that will take place. Therefore, upon completion of
the multiplication, PN will also look like the above. Notice that,
in the full double-precision magnitude of the two-word register (we
previously stated that, during both multiplication and division, the
operation of the two-word registers is essentially double-precision
in nature, even if single-precision numbers are actually involved
in the operation), the answer is 4.2-56. This is to be expected;

- 96 -

the computer was given two fractions to multiply together, each of
which was very small. Naturally, the resultant fraction will be even
smaller, and, in fact, it is so small that, if you demand a 28-bit
expression of its value (take the single-precision answer from PN1),
the nearest value to it that can be expressed in 28 bits is.O.

Notice, then, that multiplication can result in an answer whose scale
factor will require more than the 28 bits of PN1 for expression. As
long as you are aware of this, and can devise methods for using the
answer, fine. But, if you want the answer expressed in 28 bits, re
scale the two numbers entering into the multiplication before you
multiply, in such a way that the scale factor of the product (equal
to the product of the scale factors of the two numbers) will lie in
the range 20 - 2-28.

In division, the scaling rule is: the quotient, in MQ, will be scaled
by a factor equal to the quotient of the scale factors of the numbers
being divided. For example, if a/b is desired, a is scaled 2-15, and
b is scaled 2-13,

-15 -2 a·2 a . 2 =
b.2-13 b

Another example:

-28 -28 a•2 =!!. . 2

b-2°
b

And finally, one more example:

-28 20 a·2 a . =

b·2-28
b

In each of the above examples, there is a basic assumption that a
appears in the machine to be smaller than b, in accordance with the
rule for division. Notice that a can appear smaller than b, in the
machine and yet, as in the second example above, we interpret it as
being of greater magnitude than b. The scaling we associate with a
number in the machine is unknown to the computer; it merely aids us
in interpreting the numbers the computer works with. In the second
example, we know that a, as it appears in the machine, represents a
28-bit binary integer, counting any leading O's (because the true
binary point is 28 places to the right of the machine binary point),
while b, in the machine, represents a 28-bit binary fraction, count
ing any trailing O's, (because the true binary point coincides with
the machine binary point). In reality, then, as we interpret these
numbers in the machine, we are dividing a relatively large magnitude
by a relatively small magnitude. The computer, not realizing this,
will perform the division correctly, without generating overflow, as
long as the 28-bit value in the machine representing a is less than
the 28-bit value in the machine representing b.

- 97 -

We have discussed scaling in the light of single-precision numbers in
order to minimize the number of bits you have to keep track of. All of
the principles and rules of scaling that have been mentioned apply equal
ly well to either single- or double-precision numbers, the only differ
ence between the two forms being that, in single-precision, scale-factors
can range from 20 to 2-28, except in the case of a product, where some
care must be exercised, while in double-precision, scale factors can
range from 20 to 2-57.

Now all four basic arithmetic operations (+, -, x, t) are available, and
you know how to arrange numbers in the computer to suit your purposes.
You also know how to interpret the results. In the solution of the
quadratic equation, there is one operation that has not, as yet, been
described: it is taking the square root of a number (/bZ-4ac). There
is no one connnand that will cause the computer to do this, because the
computer is not wired to do it directly. We can generate the square
root of any number through a combination of the four basic arithmetic
operations, repeated over and over again, but we will, for the present,
postpone a discussion of this.

We are ready to expand the original flow diagram of our solution of the
quadratic equation, as it appears on page 4, but first, we must decide
on what ranges of values we will allow for a, b, and c. Remember the
formula is:

x = -bt /b2 -4ac
2a

We previously decided to use single-precision, so the scale factor for
each value must lie in the range 20 to 2-28. Let's arbitrarily allow
7-bit fractional accuracy in the binary numbers, so that a, b, and c
will be scaled 2-21. In terms of decimal equivalents, this means that
ou1 program will be able to process values accurate to the nearest
l/lOOth, since 1/27 = 1/128, and this is even a smaller value than
1/100. Notice that 6 fractional bits would not give accuracy to the
nearest 1/100, since 1/26 = 1/64. Now let's also assume that we want
x to the same accuracy, scaled 2-21. We could do whatever shifting is
necessary to insure that the numerator, prior to the division, is scaled
2-21. The question, therefore, is, how do we determine what scaling the
denominator needs? We will find the answer from the following equation:

The solution of the above equation is: n = 0. This means that the true
binary point of D would have to coincide with the machine binary point,
meaning that -1 < D < 1. Since D = 2a, -1 < 2a < 1, or -1/2 < a < 1/2.
This is, of course, too great a restriction on a; our program could, in
no sense, be called a general program.

Let's go in the other direction:

-21 x•2 ·

- 98 -

The solution of the above equation is~ n = -42. We know that we can
position N in such a way as to meet this requirement, through shifting.
This would seem to work out quite well, so let's do it.

This means that the integral portion of 2a is going to be expressed in
21 bits. 2a is scaled 2-21 in the machine. Since this is so, we better
make sure that the integral portion of a does not, in any case, exceed
20 bits, even though a will originally be scaled 2-21 (in other words,
a, as originally stored in the machine, will always have at least one
leading O). In 20 bits we can express all integral values up to, and
including, 220 -1; this, then, becomes the limit for a. 220=1048576(10)•
Therefore, -1048575 'a ~ 1048575. Now that a set of limits has been
found for a, let's find a similar set for b and c. Notice that we are
going to generate 4a. If 2a requires 21 bits, 2l·2a will require 22
bits. We would like to shift the product 4ac in such a way as to scale
it 2-42 The reason for this is, if b is scaled 2-21, as it was agreed
it would be, b·b will be scaled 2-42. If 4ac is scaled the same way,
we can subtract immediately, without having to rescale b2. If 4ac is
to be shifted to be scaled 2-42, its integral value must not, under any
conditions, require more than 42 bits for expression. We have already
seen that 22 bits will be necessary for 4a. If c = 220, 4a·220 will
require 42 bits for expression. Therefore c cannot exceed 220 =
1048576(10)·

It is possible that what looks like a subtraction in the formula,
b2-4ac, might very well become an addition, if either a or c, but not
both, is negative. Therefore, it might be possible, if we allow 42
bits for the integral portion of both b2 and 4ac, that the combination
of b2 and 4ac will cause overflow. Since this is undesirable, we must
prevent it. We can do this by limiting the integral value possible,
in the generation of 4ac, to 41 bits, thus being sure that in all cases,
as it is expressed in 42 bits, it will have at least one leading O. If
we similarly limit b2, no overflow will be possible when we add b2 and
-4ac. Therefore, we will revise our limit for c. Whereas we originally
suggested that c not exceed 220, we will now say that c may not exceed
219 = 524288(10)"

If we limit both b2 and -4ac to 41 integral bits, the result of b2-4ac
will be limited to 42 bits. When we take the square root of that num
ber, we will get a number whose integral value is limited to 21 bits,
and this number will be scaled 2-21, since the square root of 2-42 is
2-21. When this is combined with b, however, to form the final numer
ator, overflow might result. The square root will have to be limited,
in its integral portion, to 20 bits, scaled 2-21, meaning that it will
have a leading O. If this is so, the radicand, b2-4ac, will have to
be limited, in its integral portion, to 40 bits. This means that b2
and -4ac will have to be limited to 39 integral bits, to assure no
possibility of overflow when they are combined. The limits on a and c,

- 99 -

up to this point, will limit the integral value of 4ac to 41 bits.
To reduce this to 39 bits, we could further cut down on c, but it
would be preferable to cut the limit on a, assuming that, in the
equation, ax2+bx+c, greater values will be desired for c than for
a. We have previously seen that presently 4a will require 22 in
tegral bits. If we cut this down to 20, and c retains its limit of
19, the limit of the integral bits in 4ac will be the desired 39.
Since 4a = 2·2·a, to get a result limited to 20 integral bits, we
must limit a to 18 integral bits, meaning that the maximum a expres
sable will be 218-1. 218 = 262144(10); therefore -262143 ~a~
262143.

Similarly, the integral portion of b2 is limited to 39 bits. If b
contains 20 integral bits, b2 may contain 40. If b contains 19
integral bits, b2 may contain 38, which meets our requirement. So
we will limit b to 19 integral bits, the maximum b then being 219-1.
-524287 ~ b ~ 524287.

Now no overflow will be popsible in either the generation of b2-4ac
or the generation of -b~Jb2-4ac.

We have thus set up the following limits and scale factors, for this
program:

where:

x = -b ± /b2-4ac
2a

-262143.(a~ 262143, or

18 18 -21
-(2 -1) " a ' (2 -1), where a is scaled 2 ;

-524287' b ~ 524287, or

19 19 -21
-(2 -1) 'b ~ (2 -1), where b is scaled 2 ;

-524288 ~ c ~ 524288, or

19 19 -21
-(2) °' c ~ (2), where c is scaled 2 ;

-21 x will be scaled 2 •

With these ranges of values for a, b, and c, we can truly say that
this program can be used in almost any application, in order to
solve for the roots of a quadratic equation. There is one further
restriction:

if

as a approaches O,

+ ~·---~
-b- /b2-4ac

x =
2a , then

x approaches -b+b 0
---0- = 0 or

-2b
0

- 100 -

and the division will yield an erroneous result. In any case, a must
be unequal to O. If jal < 1/2, the limit for fbj will decrease in
proportion.

FLOW DIAGRAM

We can now go on to expand the original flow diagram, as it was
developed on page 4.

Clear 2-wd. reg.'s

Shift MQ left 2 places

MQ1~memory

Clear 2-wd. reg. 's

PN 0 1 --.MQO 1
' '

Shift MQ left 2 places

MQ1 ~memory

-21 a·2

2a·2-2l

Clear 2-wd. reg.'s

4a~IDl

PN0, 1 __.,..memory

Clear 2-wd. reg.'s

4ac~PN0 l
subtract '

Compute JbZ-4ac

- 101 -

b~AR.(28), op. code = 3
(Clear & Subtract)

/bZ -4ac · ~ AR., add

AR.-+ AR.(28), op. code = 1
(Recomplement answer)

Clear 2-wd. reg.'s

AR--+ID1

4a·2-21

-21
c•2

-42 4ac•2

2 -42
(b -4ac)·2

-21 (v'h2-4ac) ·2

• . t;-rr-;-- - 21 (-D+Vb""-'+ac) ·2

-21
(-bfv"bL4ac) • 2

.. ~ -21
(- o-tv' b"" -'+ac) • 2

- 102 -

Shift ID right 21 places

IDO,l ~memory

Clear 2-wd. reg.'s

-~~PN0,1'

MQ0--.-+~ memory

b ~AR(28), op. code = 3
(clear & subtract)

subtract

AR ~AR(28), op. code = 1
(recomplement answer)

Clear 2-wd. reg.'s

Shift ID right 21 places

rn0 1 ~memory
'

Clear 2-wd. reg.'s

-b../b2-4ac --+PNO l ,

.. ~ -42
(-0-tv'O ... -'+ac) •2

.. ~ -42 (-O-tv'0 ... -4ac) ·2

.. ~ -42
(-0-tv' 0""-'+ac) • 2

-21
(-b-/b2-4ac) ·2

I 21
(-b../bZ-4ac) • 2-

(-b-/b2-4ac)·2-21

-42 (-b-/bL4ac) ·2

- 103 -

(-b-/bZ-4ac) -21
x2 (2a) "2

In this expanded flow diagram you can see the program begin to take
shape. The arrows connecting the boxes indicate the logical path of
the program, from step to step. Each box in this flow diagram re
presents one connn.and, with perhaps one. or two exceptions, one of
which is the box containing "Compute /b2-4ac 11 • A former statesman
once said, "My job is to reduce problems to manageable proportions."
That is exactly the function and purpose of a flow diagram. Initially,
a problem may seem quite complicated and unmanageable, but, when it is
disected into individual little parts, each part becomes easily under
standable and manageable. Each programmer develops his own method of
flow-diagramming. The diagram above is perhaps a little more detailed
than need be, but limiting the logical size of the boxes in a flow
diagram to approximately one connn.and per box is a fine idea when
starting out as a prograrmner.

Notice that arrows have been used inside boxes to indicate the direction
of a transfer.

Certain transfers are usually named in order to simplify references to
them. The transfer of a number into AR or PN, replacing what was orig
inally there (D = 28 for AR, 26 for PN), prior to an addition (the char
acteristic will usually equal 0 or 1), is called "clear and add". The
transfer of a number into either of the same two registers, to be com
bined with their present contents (D = 29 for AR, 30 for PN), thus
performing an addition, is called "add". The transfer of the magnitude
of a number into AR (C = 2), replacing what was originally there (D = 28),
prior to an addition, is called "clear and add magnitude". The transfer
of a number into AR or PN with the same characteristic and D = 29 or 30
is called 11add magnitude". The transfer of a number into AR with a C = 3,
and D = 28, is called "clear and subtract 11 o The transfer of a number
into AR or PN with the same characteristic and D = 29 or 30, is called
"subtract". The transfer of the result of any of these operations from
either AR or PN to some storage location in memory is referred to as
"storing" the result.

Remember that if any two-word register, with the exception of PN = 30,
(which is greater than or equal to 28), is the destination of a transfer
whose C code is 2, 3, 6, or 7, the operation called for will be a trans
fer via AR, and the even half of the two-word register will be cleared.
Therefore, "clear and add magnitude" into PN, which would require a
destination of 26, is out. But a transfer of a number into PN with
C = 4 will divorce the sign from the magnitude and load it into IP.
This leaves the magnitude of the number in PN, with a positive sign (O),
in Tl of PNo, where we want the sign of a double-precision number which
is to be involved in an addition.

- 104 -

Similarly, "clear and subtract" into PN is out, since its C code is 7,
and PN must be referred to as 26. But the same thing can be accomplished
by first clearing PN, and then subtracting a number from O.

THE NEED TO AUTOMATICALLY CHECK COMPUTATIONS

There are certain conditions which might arise in the operation of this
program, as it is written, which would result in erroneous answers.
Despite the scaling and the limitations on a, b, and c that we have
chosen, in either of the two divisions we have incorporated, the nu
merator could exceed the denominator in apparent value in the machine.
As has been pointed out, this would cause an overflow and an erroneous
quotient. But how will the person using the program know when this has
occurred? How will he know which answers can be trusted, and which
cannot? We must include something in our program which will prevent
the output of an erroneous answer.

We have been very careful, in our choice of scaling and limitations,
to prevent the possibility of overflow in any of the necessary addi
tions or subtractions. Does this mean that no overflow can occur as
a result of any of these? Ideally, yes; practically, no. If the
limitations, as we set them, on a, b, and c, are obeyed, no overflow
will occur. But, never trust anyone else to follow your limitations
when using your program. Anyone who knows how to operate the computer,
without knowing why it does what it does, might try to use this program
for his purposes. To him, because he might not understand why the limi
tations have been imposed, they may be meaningless. If he attempts to
use values outside the prescribed ranges, overflow might result. He
will, of course, be unaware of this, and treat the answers he receives
as accurate, unless they are obviously wrong. To prevent this sort of
thing from happening, even though we have taken steps to prevent it,
we must include in the program something which will prevent an output
in the case of overflow resulting from addition or subtraction.

Our program, as diagramed, includes a computation of a square root. It
is possible that the radicand might be negative. We will assume that
we do not want imaginary numbers as answers. We must, therefore, make
sure the radicand is not negative before proceeding to compute and put
out an answer.

In short, there are two types of
deleterious conditions that might
arise during the operation of
almost any program. One is that
type of situation that cannot
adequately be prevented through
an "ounce" of caution, because
it might arise from given data
which, on the face of it, seems
to be perfectly acceptable. The
other is that type of situation
that arises when someone other

- 105 -

than the programmer, himself, attempts to twist the program to suit his
own needs, heedless of warning. In this case, the programmer might very
well like the output to consist of a few well-chosen four-letter words,
but, for our purposes, we will be content with merely frustrating the
offender by refusing to give him an answer.

TEST COMMANDS

The G-15, like many other digital computers, has the ability to deter
mine the presence or absence of any one of several conditions, and a
program can be written with two alternate logical paths, either of which
will be followed, during operation of the program, depending on the deci
sion made by the computer. The program itself will tell the computer
when to "test" a particular condition, and the commands which do this
are called "test" commands. Depending on which state the tested condi
tion is in (off or on), the computer will take its next command from N
(as it usually would) or N + 1, respectively. Always remember that only
one of two answers to the test is possible: there is no "maybe" in the
computer.

This simple "decision-making" power of computers is what has led laymen
to use the term "electronic brain", and other equally erroneous terms,
when referring to computers. You can see that, actually, the G-15 does
not "think"; it merely tests, upon command, the condition of a circuit
or component as to 11on" or "offl', and, in this respect only, it can
answer "Yes" or 11No" to a particular, properly chosen, question or "test".

A limitless number of tests can be included in any program, each with
two alternate paths, so a program 1 s flow diagram, unlike the straight,
unswerving one we generated, can take on the shape of a "tree 11 •

The following tests are available in the G-15:

1. test for overflow, D = 31, s = 29, c = o· •
2. test for sign of AR (neg.), D = 31, s = 22, c = O;

3. test for "ready", D = 31, s = 28, c = O·
'

4. test for punch switch on, D = 31, s = 17, c = l;

- 106 -

5. test for non-zero, D = 27, S any memory line,

Test for overflow:

You can see that this is a special connnand (D = 31). It connnands the
computer to test the condition of the overflow flip-flop. If it is off
(no overflow), the next command will be taken from N (as usual). If it
is on (overflow), the next connnand will be taken from N + 1 (thus chang
ing the path of the program). In our program, this path will not contain
further computation, but will halt the program (the command to halt com
puter operation has not yet been discussed).

We will use this test immediately following additions and subtractions.

The manner in which the computer determines the existence
condition is somewhat indirect, and should be understood.
cuss it in relation to a single-precision addition in AR.

of an overflow
We will dis-

Three questions are automatically asked by the computer when the addition
is performed:

1. Is the intermediate sign of the result 0 (= +)?

2. Did the inverting gates complement the last number to enter
AR?

3. Was there an end-around-carry out of bit T29 of AR?

The computer uses the answers to these questions in order to determine
whether or not an overflow was generated in the following way:

L If the answer to question (1) is uno", the intermediate sign
of the result is 1 (= -), the two numbers added were of unlike
sign, and overflow could not result. If the answer is "yes",
the intermediate sign of the result is 0 (= +), the two num
bers added were of like sign (both+ or both -), and overflow
could result. In this case only, proceed to (2).

2o If the inverting gates did not complement the last number to
enter AR, both numbers were positive; if the inverting gates
did complement the last number to enter AR, both numbers were
negative. In either case, proceed to (3).

3. If both numbers were positive, and an end-around-carry did occur,
overflow is present; if both numbers were positive, and an end
around-carry did not occur, overflow is not presento

Examples:

if a + b = c,

- 107 -

Overflow No Overflow

If both numbers were negative, and an end-around-carry did
occur, overflow is not present; if both numbers were nega
tive, and an end-around-carry did not occur, overflow is
present.

Examples:

if a + b = c,

No Overflow Overflow

The importance of understanding the method in which the computer
determines the presence or absence of overflow is pointed up by the
following example:

Assume we wish to double a negative number by adding it to itself:

2•(-a) = -a+ (-a) = -2a.

We could transfer the number (-a) into AR, replacing the original con
tents of AR, with a properly coded connnand containing C = 1 and D = 28.
The number will be complemented on its way to AR, and it will be ready
for addition. Now we could transfer the contents of AR to AR, calling
for an addition (S = 28, D = 29). In this latter command, however, C
must equal O, so that the complement form of the negative number will
be retained. We would therefore write a connnand with C = O, S = 28,
D = 29.

But look at what happens to us when we attempt to check overflow.

Assume the number was -2·2-28 :

0000000000000000000000000010~.

After execution of the first connnand mentioned above, AR will contain:

1111111111111111111111111110~,

- 108 -

which is the complement of the original negative number, ready for ad
dition. Because of the C = 0 in the second conunand discussed above, the
following addition will be performed in AR:

111111111111111111111111111
111111111111111111111111111
111111111111111111111111111~

111111111111111111111111110

and this is a valid answer, being the complement of -4·2-28 • We can
see that no overflow occurred. But the computer believes that two
positive numbers were added, because (1) the intermediate sign of the
result is 0 (= +), and (2) the inverting gates did not complemen& the
last number to enter AR (indeed they could not, because C = O, and the
number did not pass through them at all). The computer is aware that
an end-around-carry has occurred in AR, through the addition of two
positive numbers, and overflow is indicated, the overflow flip-flop
being automatically turned on. Therefore, if we test for a possible
overflow after this addition, the test will be answered "yes", even
though, in reality, no overflow occurred.

Therefore, if we have a number, a, whose sign could be either + or -
at the time the program is operated, and if we wish to generate 2a by
adding a to itself, and if this could result in a true overflow, neces
sitating an overflow test following the addition, the best method would
be to transfer a from its storage location in memory to AR twice, each
time with C = 1. In the first transfer D will be 28, and in the second
transfer D will be 29. Now the sum can be checked reliably for overflow.

Test for sign of AR (neg.):

This, too is a special connnand. It connnands the computer to test the
sign-bit of the number in AR.

If it is off (O), the next connnand will be taken from N (as usual). If
it is on (1), the next connnand will be taken from N + 1 (thus changing
the path of the program). In our program, this path will not contain
further computation, but will halt the program.

We will use this test to determine the sign of the redicand prior to
taking the square root; we want to halt rather than take the square
root of a negative number.

Test for "ready":

This is a special connnand. It connnands the computer to test for the pres
ence of the "ready" state of the input/output system which we have not,
as yet, discussed. We will explain the effect and use of this test later,
when we discuss inputs and outputs.

- 109 -

Test for punch switch on:

This is a special command. It connnands the computer to test the setting
of an external switch. Again, since this test is associated primarily
with outputs, we will discuss it later.

Test for non-zero:

Notice that D = 27; this is the only possible line number that has not
yet been discussed. This is the only case in which this number is per
missible as a destination.

If c O, 29 bits of S.T will be tested for non-zero.

If C 4, 58 bits from the double-precision number contained in S.T
and T + 1 will be tested for non-zero.

If C = 1, 29 bits of S.T, after passing through the inverting gates,
will be tested for non-zero.

If C = 5, 58 bits of the double-precision number contained in S.T and
T + 1, after passing through the inverting gates, will be tested for
non-zero.

If S = 28, and C = 2, the magnitude of the number will be tested for
non-zero.

If S < 28, and C = 2, all 29 bits of the original contents of AR will
be tested for non-zero, and the contents of S.T will be placed in AR.

If C = 6 (S < 28), during the first word-time of execution (even), all
29 bits of the original contents of AR will be tested for non-zero, and
S.T will be placed in AR. During the next word-time of execution (odd),
AR's contents (S.T) will be tested for non-zero and S.T + 1 will be
placed in AR.

If S = 28, and C = 3, the sign of AR will be changed and all 29 bits,
after passing through the inverting gates, will be tested for non-zero.

If C = 7 (S < 28), the operation will be the same as for C = 6, except
that numbers entering AR will enter via the inverting gates.

In the case of two-word registers, IP will never be tested for non-zero.

Now that we know the test commands that are available, we can incorporate
them into our program at strategic places, in order to prevent the output
of erroneous answers.

One situation we want to prevent is the division of a number by another
which appears to be smaller in value in the computer. In the case of
each of the two divisions we have called for, we generate the numerator
by shifting (-b t /bZ-4a~)z-21 right 21 places, arriving at a double-

- 110 -

precision value in ID equal to (-b t /b2-4ac)2-42 • We want to assure
ourselves that this value is less than the double-precision value,
2a·2-21. To do this we must subtract the absolute value. ~positive
magnitude) of 2a·2-21 from the absolute value of (-b !:' /b -4ac)2-42,
and inspect the sign of the result.

TO SUBTRACT A MAGNITUDE

You probably noticed, in the discussion of the various transfers
possible in the G-15, there was no mention of "subtract magnitude"
or of "clear and subtract magnitude", although mention was made of
11add magnitude" and "clear and add magnitude". The reason for this
is that no single transfer available will cause the subtraction of
a magnitude. This is most easily accomplished through a series of
transfers. We can clear and add the magnitude of D into AR, then
store AR's contents in memory. In memory, then, we will have JDJ .
Now we can clear and add the magnitude of N into AR. AR will now
contain f NJ • Now we subtract from AR the number in memory which
equals IDl . The result in AR is f Nf - I DI • This number may be
either positive or negative, depending on whether ID J exceeds \NI or
not. Notice that the result in AR will be positive if the two magni
tudes are equal (+O). If we subtract the absolute value of the de
nominator from the absolute value of the numerator, and get a negative
result, we know that the magnitude of the denominator exceeds that of
the numerator, and division is permissible. If the result is positive,
we know that the magnitude of the numerator either exceeds, or is equal
to, that of the denominator, and in either case division is not permis
sible.

We therefore want to clear and add the absolute value of the numerator
into AR. But, the numerator is a double-precision value, scaled 2-42.
The denominator, likewise, will be treated as a double-precision value,
scaled 2-21, but we know that, when D is in ID, all the least signifi
cant magnitude bits, from Tl of ID1 through T2 of IDo, will be O's,
because all we do to generate it is to transfer the single-precision
number, 2a·2-21 into ID1, being careful to clear the rest of ID. If
the most significant 28 bits of magnitude of the numerator equal or
exceed the most significant 28 bits of the denominator, we can be sure
that the numerator at least equals the denominator, and we cannot divide.
We can pick up the first 28 magnitude bits of the numerator from ID1,
following the shift, and leave Tl of that word behind, by transferring
out of ID1 with a C = O. Carried with the 28 magnitude bits wi11 be the
original sign of the numerator, from IP. We'll store this number in
memory. Then we'll clear and add the magnitude of D (= 2a·2-21) into
AR, and store it back in memory, calling it JD(. Now we can clear and
add f NI (C = 2) into AR, and subtract f Dj • The result, in AR, will be
[N/ - !Dj. If this result is positive, we cannot divide; if it is nega
tive, we can. Therefore, we will use the "test for sign of AR (neg.)"
command. Our computation will proceed with the command located at an
address one greater than the N of the test conunand. The command at the
location with an address equal to N of the test command will call for
a halt.

- 111 -

The "halt" corrnnand is another special corrnnand; D = 31, S = 16, C = O.
This command is very easy to explain= its execution causes the computer
to stop.

Now we can rewrite those two portions of the flow diagram preceding the
divide operations.

Clear 2-wd. reg.'s

AR____.,. ID l
+ ' -21

(-b-/b2-4ac)·2

Shift ID right 21 places +1 2 -42 (-b- b -4ac)'2

rn1 __,.memory N

AR~memory ID I

Halt (-)

(continue)

As for overflow errors, unfortunately we cannot test for overflow after
shifting MQ left in order to rescale 2a and 4a, since the overflow flip
flop is not connected to MQ during a shift operation, although it is
during a divide. If the limit for a is exceeded, an overflow may occur
at either or both of these times, and we will be unable to detect it.
But we can prevent computation from proceeding if any of the additions
or subtractions causes an overflow.

The first point in the program where we can detect an overflow is the
generation of b2-4ac in PN. If we follow this subtraction with an over
flow test, the computer will test for the overflow flip-flop being set.
Unfortunately, it could have been set earlier, by another program. Once
the overflow flip-flop has been set, it can only be turned off in either

- 112 -

of two ways. One is to turn off the computer (not with a halt connnand,
but through an actual switch action which turns off the power). The
other way it can be turned off is by the overflow test itself. In ad
dition to testing the flip-flop, this command resets it to the "off"
position if it was on. A previous program run in the computer may have
turned on the overflow flip-flop and never tested it. In such a case
it will remain on.

In order to be sure the overflow flip-flop is off prior to the execution
of those steps in our program which could turn it on, we will precede
them with an overflow test whose only function is to turn off the flip
flop. The fact that this test connnand will start either of two alter
nate paths through our program now becomes a hindrance rather than a
help, because we want to continue with the same sequence, regardless
of the condition of the overflow flip-flop. We can solve this problem
by placing the same connnand at both N and N + 1, so that, no matter
which will be taken as the next command, the same operation will be
performed. These two connnands will have the same N, so that, following
either of them, the same path will be followed through the logic of our
prog;ram.

Another method is commonly used, however, to achieve the same net effect.
We will use it in this program, in order to familiarize you with it. We
know that, if the overflow flip-flop is on, the next connnand will be taken
from N + 1. Suppose we choose an N for the test connnand such that N + 1 =
the location of the overflow test command itselfo If the overflow flip
flop is off, the program will continue with the connnand located at N,
which is one word-time earlier than the test command. This is fine; the
test connnand will not be read and interpreted again. If the overflow
flip-flop is on, the next connnand will be taken from N + 1, which is the
location of the overflow test connnand itself. This means the test will
be repeated. But, the first time the test was made, the flip-flop was
reset to the "off" conditiono Therefore, this time, when it is tested,
it will be found to be off, and the program will continue at N. No matter
which condition the flip-flop is in when the test is initially given, the
program will eventually continue at N.

--~--4Test Overflow
on

off

If we precede the generation of b2-4ac with this operation, we can follow
the subtraction with another overflow testo This time, the program will
halt if overflow is found (N + 1), and it will continue if overflow is
not found (N). Notice that, from now on, if the program continues~ we
need not reset the overflow flip-flop in the manner described above, prior
to testing it after a series of arithmetic operations.

Other points at which we want to test for overflow will be following the
generation of:

- 113 -

1. -b + /b2-4ac

-b + /b2-4ac
2. 2a

3. -b - /b2-4ac

- /b2-4ac
4.

-b
2a

We want to include one other test in the program; a test of the sign of
(b2-4ac) prior to attempting to compute the square root of it. If this
difference is negative, we want to halt. We will, of course, use the
corrnnand which tests the sign of AR (neg.). If the answer is yes, the
next corrnnand will be taken from N + 1, where we will place a ''halt".
If the answer is no, the program will continue at N.

This completes the use of test corrnnands in the computation.

SUBROUTINES

Up to this point we have very neatly evaded the issue of computing a
square root in a computer not wired to do it directly. It must be
done through a series of basic arithmetic operations. We can no longe~
evade it, however; it's the only portion of the computation remaining
unplanned. How are we going to do it? A mathematician-turned-song
writer-and-performer has answered our question in one of his songs:

'~lagiarize, plagiarize, plagiarize.
Let no one else's work evade your eyes."

Bendix Computer Division, of course, does not reconunend or condone plagi
arism, but it does supply a standard "package" of programs designed to
make life easier for its customers. This package is standard equipment
with every G-15 computer. Each of these programs is designed to perform
a connnonly needed function among computer users. Typical examples are
calculation of square roots and trigonometric functions. These programs
are called "subroutines". A subroutine operates out of a prescribed
connnand line in memory, with certain inputs, which are also prescribed,
and it is usually designed to generate a solution, or set of solutions,
which will appear at a prescribed location in memory.

There is a square root subroutine available. The command line prescribed
for its execution is line 01. The input, the number whose square root
is desired, must be placed in PNo,1, prior to execution of the subroutine.
The first command is at word-time 94. The answer will appear in PNO,l·
All of these facts, and others, can be found on a specifications sheet
which accompanies a write-up of the subroutine. All subroutines are
written-up, and specifications similar to those above are supplied.

- 114 -

If this subroutine is to occupy line 01, certainly our program should
not. Assume that our program will occupy line 00. 1~e question, then,
is, at the right point in our program, after we have the number whose
square root we desire in PNo,1, how do we cause the computer to change
command lines from 00 to 01, and take its next connnand from word 94 in
the new corrnn.and line?

There is a special connnand (D = 31), whose function is to'cause the com
puter to change connnand lines. This is called the ''mark and transfer
control" connnand. In it, S = 21, and C = the line number to which con
trol is to be transferred. The line number specified could be O, 1, 2,
3, 4, 5, 6 (referring to line 19), or 7 (referring to line 23). The
word in the new line at which the new sequence is to start will be lo
cated, as usual, in the N portion of the mark and transfer control com
mand.

The mark and transfer control corrnn.and that we want to incorporate in
our program, then, will contain D = 31, S = 21, C = 1, and N = 94.

The word "mark" in the name of this corrnnand has special significance,
other than just making the corrnnand sound complicated. In the case of
a subroutine, be it one from the "standard package", or one that you
write for yourself, there will come a time, after the subroutine has
done its work, when you would like it to return to your own main pro
gram, in whatever line that might be (in this case, line 00), at a
given word-time. Each of the subroutines in the standard package is
equipped with a "return" corrnnand, which is similar in nature to a mark
and transfer control corrnn.and. In the return corrnn.and, which is also a
special connnand, D = 31, S = 20, and C = the line number to which con
trol is to be returned. We will call this the "return line". The
determination of the word-time at which the sequence in the return line
will begin, however, is a bit different than in the preceding case.

When a mark and transfer control command is executed, a "mark" is gen
erated electronically in the computer, at the word-time irrnn.ediately
preceding the word-time of execution. In other words, if the corrnn.and
is executed at word-time 10, the mark will be at word-time 09. If the
return command is properly made up, it will cause the computer to sense
this mark, after the return line has been selected, and the computer
will take its next corrnn.and, in the return line, from the next location.
If the mark is at word-time 09, the next corrnn.and will be taken in the
return line from word-time 10. Notice that this was the time of execu
tion of the original mark and transfer control command in that same
line: it was not the word-time in which that command was located.

Thus, if the mark and transfer control corrnn.and and an accompanying
return command are properly made up, a transfer of control to a new
line will be effected at the proper word-time in the new line, and,
while still taking corrnn.ands from the new line, the computer gets a
command directing it to return to a return line (which usually will
be the line from which control was originally transferred, in our case,
line 00, although this does not have to be the case); it will return
control to the corrnnand line specified, and take its next corrnn.and at

- 115 -

a word-time corresponding to the word-time of execution of the original
mark and transfer control corrnnand.

In the following drawing the spiral indicates the passage of time, in
the direction shown by the arrow, which is outward. As the spiral passes
the heavy vertical line, which represents word-time 00, a complete drum
cycle has elapsed. Ten complete drum cycles are shown, in the center of
the spiral a fraction of another cycle is shown, and, on the outside of
the spiral, a fraction of still another drum cycle is shown.

Let us refer to that drum cycle of which only a fraction is shown in the
center of the spiral as drum cycle 1. Then, counting outward, drum cycles
2 through 11 are completely shown, followed by a fraction of drum cycle 12.

- 116 -

During drum cycle 1, assume control of the computer is in corrnnand line 00.
It remains there up through word-time 10 of cycle 2. Sometime before word
time 10 of cycle 2, a mark and transfer control corrnnand is read in line 00,
calling for a transfer of control to line 01 at word-time 94. This com..:
mand is executed at word-time 10 of drum cycle 2, shown in the drawing.
Beginning with word-time 11 in drum cycle 2, control is in corrnnand line
01, and the computer is waiting for the next corrnnand, which it will read
at word-time 94 of drum cycle 2. This corrnnand will come from word-time
94 in corrnnand line 01. An "electronic mark" was generated by the mark
and transfer control corrnnand, at the word-time whose number is one less
than that of the word-time of execution of the conunand itself.

If the corrnnand is executed, as we say, at word-time 10, this mark will
be at word-time 09, as shown in the drawing. Such a mark will last in
definitely, being turned off, or erased, only by either the creation of
another "mark" by a similar corrnnand, or turning off the computer. The
square root subroutine, in line 01, is now operating, starting at word
time 94 of drum cycle 2. It continues for approximately 9 drum cycles
(stated in the specifications), through word-time 99 of drum cycle 11,
in the drawing. At word-time 98 in corrnnand line 01, which is finally
reached in the last drum cycle of execution during the square root sub
routine, a return corrnnand is located. This is specified in the write
up of the subroutine, and will be, for all subroutines. This corrnnand
specifies the conunand line to which control is to be transferred (re
turned), in our case, line 00, and it enables the computer to sense the
iv.ark (currently coming up at the next word-time 09). Beginning at word
time uO (100) in drum cycle 11, control has been returned to line 00,
and the computer is looking for the next corrnnand. It will find the next
corrnnand at either of two locations: the location specified by the N of
the return corrnnand, or the marked location. Which of these will contain
the next conunand the computer will read is determined by which arrives
earlier. The early word gets control.

It therefore becomes the progranuner's responsibility to see to it that
the return corrnnand in the subroutine is timed in such a way that the
marked location cannot be missed. He cannot place this return corrnnand
in any location in the subroutine other than the one specified, which,
in this case, is word-time 98. But he can set up the command so that
the marked word-time will have to come up before the word-time spec~fied
by N in the return corrnnando

We have set word-time 10 as the next conunand in our program, upon the
return from the square root subroutine, for purposes of example. We
want to be sure that word-time 09, which bears the mark, will come up
before N of the return conunand. We could set N of the return command
in the subroutine equal to 10. In that way, the location picked by
the mark and the location picked by N of the return conunand would coin
cide, and there would be no doubt as to which word in line 00 would be
the first to be interpreted as the next corrnnand.

But notice, if we could make up a general return connnand in such a way
that we would always return to the marked word-time in the same return
line, no matter what that marked word-time might be, we could then use

- 117 -

the same return command in the subroutine, no matter how many times in
the course of the program we wanted to enter the subroutine. In our
particular example, we only use the square root subroutine once, but
it is not inconceivable that some programs would use it literally
dozens of times. It is possible to make up a return command for any
subroutine in such a way that it can be used over and over again, each
time returning control to the same line, but at a different word-time,
depending on where the mark is currently located. Remember it was
said that a mark is erased by the setting of a new one. Only one mark
may exist in the computer. This general return command is ideal, be-
cause now the place at which the main program picks up, after receiving
control back from the subroutine can, in each case, be picked through
the setting of the mark and transfer control command which transfers to
the subroutine. One time we could set the T of the mark and transfer
control command equal to 10, the next time, to 90, and so on. The main
program will pick up at word-time 10 after the first use of the subroutine,
at word-time 90 after the second use of the subroutine, and so on.

Such a general return command is made up in the following manner, for the
reasons indicated. Make the command immediate, and let it be executed
for one word-time. This can be done by setting T equal to the location
plus two. In this case, the immediate command will be read at word-time
L (location), and the immediate execution will begin in the next word
time, L + 1. '.I'he T number will act as a flag, as mentioned previously
in the discussion of immediate commands. Since T = L + 2, the opera
tion will be stopped after word-time L + 1, and therefore will last only
one word-time. During this word-time, the computer will begin to search
for the existing mark. The mark, when found, will be rejected unless
it is in the last word-time of execution of the return command or later.
Since there is only one word-time of execution of this command when
coded in this form, it is also the last. Therefore, the search for a
mark will begin at L + 1 and continue until the mark is found, and the
next command in the return command line will be specified by the loca
tion of the mark. Let N = L + 1 in the return command; it cannot specify
the next command in the return command line, because N = L + 1 and can
not be effective for one whole drum cycle. The mark must be found and
become effective at some time during the drum cycle; the worst case
would be the one in which the mark is at L, determining L + 1 (= N) as
the location of the next command. (A detailed description of the occur
rence of machine signals in this regard follows: do not attempt to
mas.ter it on the first reading of this text.)

Drawing 1 shows pictorially what will be the effect of a mark when the
return command is coded properly: T = L + 2, N = L + 1. The return
command is located at word-time 12 and executes during word-time 13,
as shown on the time-spiral. Because word-time 13 is also the last
word-time of execution a mark sensed at that time will be effective.

The first possible location of the next corrnnand in the return command
line, therefore, is l~, as indicated by the X in the drawing. If the
mark is not found at 13, the search will continue until it is found, and
in the drawing this is seen to be word-time 37. The next command there
fore, in the return command line, will be taken at 38. The worst case

- 118 -

would be the one in which the search continues for a whole drum cycle.
The mark would be found during word-time 12. During word-time 12 there
will also be a signal telling the computer to read a corrnnand from the
next word-time, this signal having been generated by the N specified in
the return corrnnand itself. Thus, in the worst possible case both the
mark signal and the N signal will be present during the same word-time,
12. The N signal is interrogated at T21, whereas the mark signal is
interrogated at Tl3. Therefore, even in the worst case, it will be the
mark signal that picks the next ~orrnnand)- and not the N signal.

Drawing 2 shows pictorially the operation of the return corrnnand when
coded in a different manner. In this case the corrnnand is executed dur
word-times L + 1 through N - 1. Shown in the drawing, L = 12, N = 27,
and the word-times of execution are 13 through 26. The location of
the next connnand to be taken from the return connnand line cannot be
determined by any signal occuring during execution time, unless that
signal occurs during the last word-time of execution. The N signal
does occur during word-time 26, because N = 27; therefore, the loca
tion = N will arrive earlier than any existing marked location, unless
the mark is also present during word-time 26. In any event, the next
command will be taken from the return connnand line at word-time N.
This is a convenient way to program a transfer of control to line C,
word N, without setting a new mark, and therefore allowing an already
existing mark to remain.

In drawing 3, where no care has been used in formulating the return com
mand, L = 12, T = 44, and N = 20. The connnand will execute from 13
through 43, so the first mark or N signal occuring at 43 or later will
determine the word-time at which the next connnand will be taken in the
return command line. The drawing shows an existing mark at word-time
37, and we know that the N signal will be, as shown in the drawing, at
19. It is evident, then, that the next such signal will not occur until
the following drum cycle, at word time 19. This will be the N signal,
and so the next command in the return connnand line will be at 20 (N).
This third case makes it apparent that care should be exercised in making
up return connnands. The first method, T = L + 2, N = L + 1, is the best.

Up to this point we have been speaking rather blithely about setting
the return connnand in a subroutine; now we will see how. Every sub
routine requires, as an input, a return connnand. Most subroutines
require it to be placed in AR. Regardless of the location specified,
the return connnand must be placed there prior to transferring control
to the subroutine. One of the first steps in any subroutine, then,
is to pick up the word containing this return connnand and transf~r it
to the proper location in the subroutine, so that, when that location
is finally reached, in the course of the subroutine, the proper return
corrnnand will be there to be read and executed. In the case of the
square root subroutine, the return connnand must be placed in AR prior
to entering the subroutine.

Notice that a connnand, in this case the return connnand, can be treated
as data. If it is read during execution time, rather than during read
connnand time, the computer will be unable to tell the difference between

- 119 -

Drawing 1~

L T BP N CH s D ~ -NOTES-

0 IJ/. 0 13 L'.;_,e _2_0_,_3_/_,_l'.;_,,e

- 120 -

Drawing 2:

L VD T BP N CH s D l!1! -NOTES-

12 0 27 0 27 Line 20 a1 Line
_# #,

- 121 -

Drawing 3:

L !/o T BP N CH s D .~ -NOTES-

12 31 ,Line

- 122 -

it and legitimate data. Thus, a connnand could not only be placed in
AR, but it could, while there, be modified through the addition of a
constant.

This leads us to a brief discussion of another special command, which
tells the computer to "take the next connnand from AR". This, too, is
a special connnand, containing D = 31, S = 31, and C = O. Thus, a com
mand could be transferred to AR, modified there, and executed out of
AR, in its modified form. The N of the "take next connnand from AR"
connnand will be the word-time at which the connnand in AR will be read.

REVISED FLOW DIAGRAM

Having determined which test connnands we must incorporate, and how to
set up for, enter, and exit from, the square root subroutine, we can
revise the expanded flow diagram for the solution of the quadratic
equation.

Clear 2-wd. reg. 's

Shift MQ left 2 places

MQ1 --+memory

Clear 2-wd. reg.'s

-21
a·2

-2 2·2

on

- 123 -

Shift MQ left 2 places

MQ1~memory

Clear 2-wd. reg. 's

4a~ID1

PNO, 1 ~memory

Test overflowi----~-~

off

4ac~PN
0,1

off

PN ----..AR~ C = 0
0

on

-21
c•2

-42 4ac•2

2 -42
(b -4ac)·2

sign of radica~d in AR

- 124 -

lli-------tTest sign of AR (neg.)
yes

no

Return comma.nd~AR

Mark, transfer to
square root subroutine

Return

PN1~memory

b~AR,
Clear and subtract

/b2-4ac ~AR,

M--------iTest overflow
yes

no

AR---4-AR, recomplement

Clear 2-wd. reg.'s

AR~IDl

Shift ID right 21 places

rn 1~ memory

D-->AR
Clear & add magnitude

-21 (/b2-4ac)·2

• . r.--r--;-- - 21
(-o-tv'b""-4ac) ·2

.. ~ -21
(-o-tv' b"" -4ac) • 2

-42 (-b+/b2-4ac) • 2

N

f nl

- 125 -

AR~memory

N--->AR, Clear & add mag •

...--------tTest for sign of AR (neg.)

no yes

100, 1 ~memory

Clear 2-wd. reg.'s

2a ---+ID1

MQ0--+ memory

b~AR

Clear & subtract

--------tTest overflow
yes

AR~AR,

re complement

no

Clear 2-wd. reg. 's

AR____. ID l

. . ~ -42
(-o-tV b"'-4ac) • 2

(-b+Jb2-4ac) -21
x = ·2

1 2a

-I -21 (-b b2-4ac)•2

- 126 -

Shift ID right 21 places

ID1--+ memory

INl~AR.,
Clear & add magnitude

IDI ~AR, subtract

.,_---1Test for sign of AR. (neg.)
no

Halt

yes

ID 0 -1--•)memory
'

Clear 2-wd. reg.'s

(-b-/b2-4ac)---+PN

MQ0 ---+memory

0 1

.../1 -42 (-b b2-4ac)·2

N

.I -42 (-b b2-4ac)·2

.I -42 (-b b2-4ac)·2

. (-b-/b2-4ac) -21
x = •2

2 2a .

This is the complete flow diagram for the main computation part of the
program: it will occupy line 00. The square root subroutine will occupy
line 01. However, the program still lacks a method or "scheme" of input,
and any provision for output. We call for a, b, and c from memory, but
as yet have made no provision for initially storing them there. Similarly,
we generate two answers, x1 and x2, the two roots of the quadratic equa
tion, but we have no provision as yet for communicating these carefully
derived answers to the outside world. They're still stored away inside
the computer. We have also made no provision for stopping the computer,
or in any way terminating the main body of the program, although we do
halt the computer in the case of error.

The next step in development of the program, now that we know the exact
form in which we want the inputs, is to devise an input scheme; it, too,
will be flow diagramed, and we will treat it almost as a separate program,
although the input scheme is really an integral part of any program.

- 127 -

Because of their similarities, we will discuss inputs and outputs to
gether, and then flow-diagram each method chosen for this particular
program. They will, of course, be much shorter than the main body of
computation.

INPUTS/OUTPUTS

A general-purpose computer is worthless unless it can receive inputs
and yield outputs. The requirements of any input or output system
are:

1. compatibility with the central portion of the computer,

2. ability to handle any type of information that may be
needed or yielded by the computer,

3. accuracy,

4. speed.

These four requirements are listed in their relative order of impor
tance.

Certainly the input system must be compatible with the central portion
of the computer. It must be able to convert, if necessary, incoming
information into a form recognizable by the computer. In the case of
the G-15, the information must be in the form of electrical pulses
which can generate magnetized spots on the surface of the drum, called
"bits". In special cases, certain inputs to the G-15 may be electronic
"signals", capable of activating a specific circuit or component direct
ly. Such signals might, for example, cause an operation within the com
puter similar to that which could be caused by the execution of a connnand
in a program. Most signals of this sort, you will see later, will call
for an input or output, in the same manner it might be called for by a
command in a program. This will not always be the case, however. In any
event, whether an input of pulses or signals is necessary, a human opera
tor is not anatomically equipped to supply them directly. He is there
fore supplied with a set of buttons and switches, which he can manipulate,
and which close and open circuits, supplying the computer with the pulses
and signals it needs.

In some cases, the computer can be linked directly to some other system.
In such a case, the input system receives electrical inputs, rather than
manual inputs, and it must convert these to other pulses and signals in
the form needed by the computer" This type of operation is sometimes
referred to as "on-line" operation because the computer is on a line with
the external system. A typical example of this type of operation might
be one in which radar receivers are linked to the computer through some
type of device which converts the range pulses and angle of deviation
from North of the set itself to binary form. Cases of this type, where
the computer is used "on-line" require special peripheral equipment for
the computer, which is not suppLied as standard equipment. In some cases,
actual modification of the computer itself might be necessary.

- 128 -

The inputs with which we will concern ourselves at present are those
which can be handled by the standard input equipment, supplied with
the computer. These will fall into the "operator" category. We will
hereafter refer to them as "normal" inputs.

NORMAL INPUTS

Normal inputs to the G-15 can come from either of two sources:

1. an electric typewriter, which supplies the operator with
the buttons and switches he needs, and

2. a photo-electric tape reader, which reads punched tape
somewhat similar in appearance to teletypewriter tape.

Since the second source is merely a speedier substitute for the first
(a reel of tape is punched in codes which simulate the activation of
a typewriter key), and since the typewriter contains a button or switch
for every possible pulse and signal, we will discuss the typewriter
first.

TYPEWRITER INPUTS

The electric typewriter is connected to the G-15 by a cable, which con
tains many individual lines. Over these lines pass the various inputs
from the keyboard and switches on the typewriter. As has already been
mentioned, there are essentially two types of inputs that can be sup
plied to the computer. One type is electrical pulses, which set up
information in the memory of the computer; the other type is "signals",
which cause the computer to act, these signals having the same general
effect as a progrannned command.

We will consider first the inputs from the typewriter which enter the
memory of the computer. They are supplied by any of the typewriter
keys heavily outlined in the drawing on page 130. Notice they include
all of the hex digits, 0 through z (L = 1), the minus sign, the tab,
the carriage return, and the slash (/) key. Inputs which enter the
memory of the computer, enter at word-times, of course, and they become
parts .of words. Therefore, they must be in binary notation. The hex
number system, as was pointed out earlier, is merely a short cut for
binary representation. These inputs could just as well be entered from
only two keys on a differently wired typewriter and with some modification
of the input-system, one key for 11011 and another for 11111 • It would take
29 punches of these keys to enter one complete word into memory. With
the use of hex digits, a complete word can be entered through striking
only 7 or 8 keys: seven hex digits and a sign. If the sign is positive,
no key is struck; if it is negative, the minus sign key is struck.

Mounted within the typewriter, beneath the key-board, are a set of switches,
one for each of these keys. As a key is struck, the associated switch is
activated. The corresponding 4-bit code is generated and transmitted to
the computer.

- 129 -

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
u 1010
v 1011
w 1100
x 1101
y 1110
z 1111

The minus sign, tab, slash (reload), and carriage return key do not
enter 4-bit codes, although they do affect what is stored in memory,
as will be explained shortly.

The 4-bit code, when it is generated, is transmitted into word 00 of
short-line 23, at the least significant end, so that it occupies bits
Tl through T4 of that word. When the next key is struck, assuming
for the moment that it, too, will be a hex digit, a new 4-bit code
is entered into these same bits, and the preceding one is shifted to
the left, into the next four bits, so that the first "character" of
input will occupy bits TS through TS, and the second character will
occupy bi ts Tl through T4, of word 00 in line 23. This process will
continue as long as you keep on striking hex digit keys. Finally,
after seven of these keys have been struck, word 00 of line 23 will
look like this:

All of short line 23 will have been shifted to the left 28 bits. Tl
of 00 will be in T29 of 00, the rest of the bits from 00 will be in
01, and so on, and 28 bits from word 03 will have been lost.

If you continue to enter hex digits, line 23 will continue to shift
left, four bits at a time, until eventually, if you enter enough hex
digits, the first characters of input will begin to "fall out" of
23.03, and will be lost. There must be a stopping-point. But, before
we discuss that, let's continue with the input for a moment, where we
have seven hex digits in 23.00.

Notice that, in this case, Tl of 23.00 (the sign-bit) contains the
least significant bit of the seventh 4-bit code entered. A shift of
one bit is necessary if we want to merely complete word 23.00, without
losing any bits from the first code entered.

ENABLE

ON ((j

Type AR
Stop Input or Output

(Set "ready" I

Set Command Line equal to
following number (or,
if no number follows, = 0) ___ __.

Take next command from
word 00 in current command line

"Gate" type-in
Restore AR and return to

marked location for next command

- 130 -

mmmm a
mm •0• ••••m••

• • , ... ,~1
•Ei•• •

PUNCH

ON~

of next com
mand in AR

Execute 1 command
Read p. tape
Reload

Save AR and
mark location
of next command

Reverse p. tape

- 131 -

Associated with the input system is a flip-flop, which, like all
flip-flops, can be in either of two states. It can contain a 0
or a lo This particular flip-flop is referred to as the "sign
flip-flop". It can be set to 0 (cleared) by striking either the
tab key or the carriage return key on the typewritero It will
also be cleared after termination of any input. Once cleared, it
can only be set to 1 by the striking of the minus sign key on the
typewriter. When either "tab" or "carriage return" is struck,
line 23 is shifted by one bit, rather than four, and the content
of the sign flip-flop is "dumped" into the sign-bit (Tl) of 23.00.

Therefore, if we desire to shift the seven hex digits we have just
set up in 23.00 to the left one bit-position, causing them to occupy
bits T2 through T29 of 23.00, and place a sign in Tl, we strike either
the tab or the carriage return keyo The present content of the sign
flip-flop will become the sign of the binary (hex) number in 23.00.

If the tab key was struck twice in succession, the first input would
cause all of line 23 to shift left one bit, and the content of the
sign flip-flop (call it x, since it could be either 0 or l~ depend
ing on whether or not the minus key was struck previously) would
be entered into Tl of 23.00. The second input would again shift
line 23 to the left one bit~ placing x in T2 of 23.00, and the con
tent of the sign flip-flop (now known to be O, since the sign flip
flop was cleared) would be entered into Tl of 23.00. Any succession
of inputs is permissible, and the result in line 23 will be predict
able. Notice that a minus sign can be struck at any time, but will
not enter the computer until the tab or the carriage return key is
struck.

Finally, when line 23 is filled as desired, it seems we have run
out of space for the storage of inputs. But this is not correcto
There remains one heavily-outlined key in the drawing, whi:h has
not yet been discussed: the slash (reload) key. Striking this key
will cause all of long line 19 to be shifted towards its upper end
by four full words, and cause the transfer of all four words in
line 23 into the now vacated low-order four words of line 19
(23o00 - 03 ~19.00 - 03)o

These four words will also remain in line 23. Input may continue,
and eventually line 23 will be refilled with new inputs (the old
words will be pushed out of the high-order end of the line; where
they go~ nobody knows. It has been said they go where a light goes
when it goes "out".), and the slash key may be struck again. Line
19 will shift by four words again, and the four words in line 23
will be transferred into the four low-order words of line 19. Thus
eight words have entered the computero If we number them in reverse
of the order in which they were entered (call the first word entered
07; the last, 00), then the situation in the computer will look like
this:

- 132 -

07

06

05

04

03 03

02 02

01 01

00 00

Line 23 Line 19

Eventually, with 27 reloads, we could fill line 19 with input. If,
at that time, another reload is struck, the first four words of in
put will be lost. Provided this is not allowed to happen, and line
19 is filled with input, the first word of input will be in 19.u7.
Four more words of input can be acconnnodated in line 23, but no re
load should be given after they have been entered. This is the limit
of one input. No more information can be absorbed by the computer
during one input.

Now we come to the method for stopping any normal input. Any normal
input is stopped by a "stop" code. The 11s 11 key on the typewriter will
supply this code. This brings us to the second type of input from the
typewriter: signals which control the computer directly.

The "s" key supplies the computer with a "stop" code, which is a sig
nal capable of controlling the computer directly. The computer is
capable of handling only one normal input or output operation at one
time. When one is in progress, the input/output system will be in a
"not ready" status, which can be determined by inspecting the neon
lights on the front panel of the computer. (See page 208. The bot
tom row of neons contains a group of five lights pertaining to inputs
and outputs. One of these is marked "R"; it is the "ready" light.)
If the "ready" light is not on, th~ input/output system is not ready,
because an input or an output is in progresso If the computer's
input/output system is not ready, the process currently being carried
out must be stopped before another is begun. The stop code will do
this.

The only way the stop code can be provided to end a typewriter input
is via the striking of this key. It may be done at any point during
the input, even before any information has been placed in line 23.
In that case, of course, line 23 will retain its original contents.

- 133 -

In order for an input or output to be processed by the input/output
system, it must be called for. This can be done by corrunand in a pro
gram, but this will be discussed later. It can also be done from the
keyboard of the typewriter.

We now seem to be on the horns of a dilerruna. We have just said that
a typewriter input, or, for that matter, any normal input, cannot be
processed until it is called for. We then proceeded to say that we
would originally call for it through an input from the typewriter.

11ENABLE 11 ACTIONS

Notice again the difference between the two types of input from the
typewriter: one, already discussed, places information from the
keyboard into the memory of the computer; the other, which we are
now discussing, supplies control signals directly from the keyboard
to the computer. The latter type is called for in only one way:
through a switch action. It cannot be called for by a program. In
the preceding drawing of the typewriter, you will notice a switch
mounted on the front of the base of the typewriter, called the "enable"
switch. This switch has only two positions: to the left, it is on;
in the center position, it is off. When the enable switch is on, the
control keys on the keyboard are enabled to send control signals to
the computer; when it is off, these keys are not connected to the
computero

There is only one exception to this rule, and we have discussed it;
when a type-in of information for the memory of the computer is
called for, the stop code to end it can be, and must be supplied by
striking the s key. In this case, the enable switch need not be on.
In all other cases, including use of the s key to stop any other in
put or output, the enable switch must be on in order to activate the
control keys on the keyboard. Because this is the only way these in
puts can be called for, and because they are not really inputs, in
the sense that they don't place information in the memory of the com
puter, they are not usually referred to as inputs. Rather, they are
referred to as "enable actions" or "control actions". The custom
adopted as a short-hand for specifying one of these actions is to
underline the appropriate letter (e.g., ~). We will drop the refer
ence to these as inputs, and adopt the name, "enable actions".

As seen in the diagram on page 130, _g_ will call for a typewriter input.
We have already mentioned that ~will stop any normal input or output,
and set the input/output system ready.

Two other enable actions should be mentioned here: they are c and f.
Much earlier in this book, a question was deliberately left u~answe;ed,
with the excuse that it would be covered later. The question was: How
do we initially select a connnand line, and how do we change control from
one corrunand line to another during the operation of a program, if that
is necessary? The latter part of the question has been answered: we
change connnand lines under program control through use of either the
mark and transfer control command or the return connnand. The former

- 134 -

part of the question will be answered now. We can initially select
a cormnand line through the use of the two enable actions, .£_and f.
You will notice in the drawing that .£_ will signal the computer to
set the command line equal to the following number, or, if no number
follows, to cormnand line 00. This implies that .£. woulo be followed
by the typing of a number from 0 through 7, corresponding to the
desired cormnand line. This is correct. A 0 may follow c or not;
there will be no difference in the effect of the signal.

Seiecting a cormnand line, however, does not fully establish the ad
dress of the first conunand to be obeyed. There still remains the
word-time portion of the address. In the two conunands that transfer
control to a specified cormnand line, this is accounted for, either
in the conunand itself, or in the timing of the corrnnand, combined with
the existence of a "mark" in the computer. In the case of enable
actions, a word-time must be supplied by another enable action, f.
This signals the computer to take the next command from word 00 of
the selected conunand line. Notice, there is no provision to specify
any word-time other than 00. Ir however, this is not specified, and
the computer is allowed to start operating, it will take the first
corrnnand in the selected corrnnand line at whatever word-time it received
as the N of the last conunand read, which, in most cases, will lead to
an erroneous result, since it is a good bet that, when you choose to
change conunand lines, the desired word-time for the start of the new
sequence will be different.

Because of this feature of the faction, it has been the experience
of many progrannners of the G-15 that it is best, wherever possible,
to start a program at word-time 00.

As you can see, in the drawing on page 130, there are many other enable
actions which, as yet, remain uncovered. They will be discussed, one
by one, as they arise during the further discussion of inputs and out
puts.

Discussion of punched tape input requires some knowledge of what punched
tape contains. Therefore, we will next bring up punched tape output,
followed by punched tape input.

PUNCHED TAPE OUTPUT AND OUTPUT FORMAT

The use of punched tape for output serves two purposes. It preserves
information in a form in which it can be retained for later use as an
input for the computer; in other words, it acts as an interim storage
device. The second purpose is to speed up the output operation of
the computer (the other normal output is via the typewriter, and is
a good deal slower), and yields an output in a form which can be proces
sed off-line (not involving the computer), on any suitable tape-reading
device which can read this type of punched tape and type out the contents,
much on Lhe order of some teletypewriters.

When a punched tape output is called for, the output information will be
taken from line 19 in a manner prescribed by a format stored in the memory
of the computer.

- 135 -

A format is a series of binary codes, each of which calls for a type
of output character. The types of characters, their abbreviations,
and the related format codes are shown below:

Type of Output Character Abbreviation Format Character

Digit D 000

End (stop) E 001

Carriage Return c 010

Period (point) p 011

Sign s 100

Reload R 101

Tab T 110

Wait (skip one digit) w 111

The complete format for the punching of tape is contained in four
words in memory, 02.00 - 02.03. The desired format characters are
placed end-to-end, beginning with T29 of word 03 in line 02, and
working backwards, ignoring word-boundaries, towards Tl of word 00.
The format may be any desired length within the limit of four words.
Since all of line 19 may contain information to be transferred to
the tape punch, it is readily apparent that not enough 3-bit format
characters can be placed in the available bits in four words to call
for every digit and every sign of the output. The reload code in
the format will cause all of the preceding format characters to be
reinspected, as the processing of line 19 continues. At this point
we must investigate the processing of line 19.

Each D in the format will call for the output of bits T29 down through
T26 of word 19.u7 (the most significant four bits of the word, and
therefore, the most significant hex digit of the word) as a hex digit.
Line 19 will then be shifted up four bits, losing the four which have
just been inspected, and vacating the four least significant bits (T4
down through Tl) of word 19.00. Thus, successive D's in the format
will cause a succession of hex digits in the output, and they will
also cause a succession of shifts in line 19.

Each S in the format will cause an inspection of bit Tl of word 19.u7,
and an output of either a plus, or a minus sign. No shift will occur
in line 19. Notice that the sign of a number will have to be called
for at the time it is in Tl of 19.u7.

Each W in the format will cause a 4-bit shift of line 19~ but there
will be no output of the corresponding hex digit; instead, an output
which will be treated as a blank character is substituted.

- 136 -

Each T in the format will cause a special tab code to be punched on
tape. Line 19 will be shifted one bit.

Each C in the format will cause a special carriage return code to be
punched on tape. Line 19 will be shifted one bit.

Each P in the format will cause a period to be punched on tape. Line
19 will not be shifted.

The only two remaining format characters are R and E. Each R will
cause a special reload code to be punched on tape. There will be
no shift of line 19. The inspection of the entire format, beginning
at T29 of 02.03 will be repeated. Thus, once an R has been placed
in a format, the format is essentially closed in a loop. Any remain
ing bits in the allotted four words in line 02 will never be inspected,
and the output will never end. Use of R in a format requires caution.
A way to stop an output under control of such a format by program com
mand is available, and will be discussed later. Striking ~ on the
typewriter keyboard will also stop it.

Use of an E character in a format is the normal method of stopping an
outputo In addition to punching a stop code on the tape, it supplies
a stop code for the output. But the operation of this character of
format is very special, and requires closer scrutiny. You have noticed
that, as characters (hex numbers and signs) in line 19 are used up,
during an output, they are shifted out of the line (processing of a
sign does not accomplish this), and bits are vacated at the low end
of the line, in word 00. In any shift, the vacated bit-positions are
filled with O's. When line 19 contains nothing but O's, we want output
to cease. Thus, by clearing line 19 and then properly positioning the
output data in line 19, prior to the output, we can control the duration
of the output. This is made possible through the computer's interpreta
tion of an E character in a format. When the E character is encountered,
as the format is inspected, character-by-character, line 19 is searched
for at least one non-0 bit. If a 1 is found anywhere in the line, the
E character is automatically interpreted as an R, and causes the same
sequence of events as is caused by an R character. Eventually line 19
will contain all O's. When the E character is encountered, the search
of line 19 is performed, it is found that the entire line is clear, and
the E character is interpreted as calling for a stop code to be genera
ted on the tape, and for the output to be stopped. At this point, the
input/output system will be "ready".

Consider, as an example, the case of the program we have already devel
oped, in which two answers will be generated, each a signed single
precision number. We could first clear line 19. The best method for
this is an inunediate conunand, allowed to work for one complete drum
cycle, with S containing O's in each of its words, and D = 19. We
could, for example, clear the two-word registers (and IP) with the
clear conunand, then use any one of them as S, with C = O, and D = 19.
We would make this an inunediate conunand (r/D = O), and set T (flag)
equal to L1. During each word-time either the even or the odd half
of the specified two-word register will be copied into the specified

- 137 -

word-time of line 19. After execution of this colTlill,and, every word in
line 19 will contain 29 0 's. After· line 19 has b'een cleared, we could
transfer x1, generated by our program, into 19.u7, and x2 into 19.u6.
Then we set up the following format in line 02.

S D D D D D D D T S D D D D D D D C E

I I I I I I I I I I I I t I I I I I
100 0000000 0000000000000011010000 010 00 o,oo 000000,0000,00010001

I I l I I I I I I

02 .03 02 .02

After both the data and the format are properly loaded, we initiate
the output to the tape punch. Let's examine the results.

The first character of the format is inspected, and found to call for
a sign. Therefore, bit Tl of 19.u7 is inspected, and a code for plus
or a code for minus is punched on tape.

The second character of the format is inspected, and found to call
for a digit. Therefore, the hex digit representing the four bits
T29 - T26 in 19.u7 is punched on tape. Call this the first hex
digit. Line 19 is shifted up four bits, so that T29 - T26 of 19.u7
receive the bits which previously occupied bits T25 - T22 of the
same word; call this the second hex digit. Bits T4 - Tl of 19.u6
receive O's from the previous word (all of line 19 has been cleared
to O, except words u6 and u7).

The third character of the format is inspected, and found to call for
a digit. The same sequence of events occurs again, the third hex
digit of the number x1 arriving in T29 - T26 of 19.u7, while the sec
ond hex digit is punched on tape. The shift of line 19 leaves bits
TB - Tl of 19.u6 cleared.

The same thing happens for the fourth, fifth, sixth, seventh, and
eighth characters of the format, which all call for digits. After
the eighth format character has been processed, and the character it
calls for has been punched, line 19 is shifted again. The result, up
to and including this shift will be: the sign and seven hex digits
representing x1 have all been punched on tape, sign first, followed
by the most significant digit down through the least significant digit.
Line 19 has been shifted so that 28 bits from 19.u7 have been lost,
T29 of 19.u7 contains what was originally the sign-bit of that same
word, bits T28 down through Tl of 19.u7 contain the magnitude bits of
x2 (originally in 19.u6), and T29 of 19.u6 contains the bit that was
originally the sign-bit of the same word. Bits T28 through Tl of 19.u6,
like the rest of the line, contain O's.

- 138 -

The ninth character of the format is inspected, and found to call
for a tab. A tab code is punched on tape, and line 19 is shifted
by one bit. 19.u7 now contains all of xz, while the rest of the
line is cleared.

The tenth character of the format is inspected, and found to call
for a sign. Bit Tl of 19.u7 is inspected, and tlie proper sign code
is punched on tape.

The eleventh through the seventeenth characters of the format are
inspected, and, since they also call for a series of digits, are
processed in the same fashion as were the second through the eighth
format characters. After the seventeenth character of the format
has been processed, its corresponding character of output has been
punched, and the corresponding shift of line 19 has been carried out,
the result will be: the sign and seven hex digits representing xz
have all been punched on tape, sign first, followed by the most sig
nificant digit down through the least significant digit. Line 19
contains only one of the original data bits, in T29 of 19.u7, which
was originally the sign-bit of x2 in 19.u6. The rest of line 19 is
clear.

The eighteenth character of the format is inspected, and found to
call for a carriage return. A carriage return code is punched on
tape, and line 19 is shifted one more bit. Now the entire line is
cleared to O.

The nineteenth character of the format is inspected, and found to
call for a stop code. Line 19 is searched, and, since it is found
to contain nothing but O's, this character is treated as an E char
acter. The stop code called for is punched on tape. A stop code'
is also generated which stops the output and sets the inputfoutput
system "ready" for another input or output.

At this point there is a tape.hanging out of the computer (top,
front). There will be no doubt in your mind where the punch is
after you have once activated it. A toggle switch on the face of
the computer allows you to feed blank tape through the punch until
you can tear off the piece of tape containing the entire contents
of the output you called for. How will you know when you reach
the end of valuable information? You know which character was
punched last; it was the stop code. Therefore, if you can recog
nize a stop code, you can tell the end of the information on the
tape. The following table shows the codes punched on tape corre
sponding to each character which can be punched. In the punched
codes, as shown~ a 1 represents punch; a O, no punch. It will be
seen that there are five "channels" on the tape.

The length of tape so generated is referred to as a 11block11 of tape.
Every block is ended by a stop code. Its length will be determined
by the lowest-ordered word in line 19 containing nori-0 data when the
output is called for which generates the block of tape.

- 139 -

Output Character Code Punched

0 10000
1 10001
2 10010
3 10011
4 10100
5 10101
6 10110
7 10111
8 11000
9 11001
u 11010
v 11011
w 11100
X· 11101
y 11110
z 11111

Space 00000
Minus 00001

CR 00010
Tab 00011

Reload 00101
Period 00110

Stop 0010(}-'''
Wait 00111

The particular block of tape generated in our example
the equivalent of two words, since, by the end of the
tion of the format, all of line 19 will contain O's.
punched codes on the tape would be:

1st sign
2nd digit

8th digit
9th tab

10th sign
11th digit

17th digit
18th CR
19th stop

on Tape

will contain
first inspec
The order of

Notice that the tape now contains the same characters that you might
choose to supply, were you to 11gate" type-in, and enter the two num
bers x1 and xz as typewriter inputs.

- 140 -

A block of punched tape can be read (by a photo-reader mounted on
the front of the computer), upon connnand to the computer; this is
the other normal input. Were this block of tape to be mounted on
the drive mechanism of the photo-reader, and a £_action taken (see
drawing on page 130); it would be read as a computer input. The
rules governing the entry of its information are the same as those
governing a type-in~ The first character entered, being a sign,
would not immediately enter memory, but would enter the sign flip-
flop. Then seven digits would be entered into word 00 .of line 23.
The next character of input, the tab, would shift line 23 one bit,
placing the seven previously entered digits in bits T29 - T2 of
23.00. The sign of the number would be dumped into Tl of the same
word from the sign flip-flop, and that flip-flop would be cleared.
The next eight characters would be entered in the same way, the first
complete 29-bit number (x1), being shifted into bits T28 - Tl of 23.01
and T29 of 23.00, while bits T28 - Tl of 23.00 receive seven new digits.
The following character, a carriage return, will have the same effect
as the tab, and the result will be x1 in 23.01 and x2 in 23.00. The
next character, the stop code, automatically reloads, shifts line 19
by four complete words, and places words 23.00 - 03 in 19.00 - 03 *·
These words also remain in line 23. Then it terminates the input,
and sets the input/output system "ready" for another operation. This,
then, is the pattern for the entry of a block of tape into the memory
of the G-15. All of line 19 could be loaded in this manner, and the
last four words to be entered into line 19 would remain in line 23.
This fact will be important to us a little later. Punched tape input
is preferable to typewriter input in one respect, at least: speed.

TYPEWRITER OUTPUT

The format which controls the output from line 19 to punched tape
also controls the output from line 19 to the typewriter, in exactly
the same way, except in the case of typing, keys, tabs, and the
carriage return on the typewriter are affected, rather than punch
heads. You can actually see the keys move as the contents of line
19 are typed outo

The contents of AR may also be typed out, under control of a format
made up in exactly the same way as the format for line 19. The AR
output format must be placed in line 03, words 00 - 03; prior to
calling for the type-out of ARo Again, the inspection of the format
will begin with T29 of word 03 and move toward the low-order end of
the line. During a type-out of its contents, AR will be shifted in
the same manner as line 19.**

* Note: This automatic reload feature of the stop code is not true
when the s key is used to stop a type-in.

** Note: Because four words' worth of format should, in all cases,
be sufficient to "cover" one word of output, it should be
unnecessary for an "end" code in the format to be automa
tically changed to a "reload" code. For this reason, the
"end" code in an AR format will never be changed to cause
a reload.

- 141 -

The type-out of the contents of AR brings us to another topic. You
will notice, from inspection of the drawing on page 130, .!!.. will cause
the contents of AR to be typed out. You will also notice that this
is the only output of the three mentioned (and these are all of the
normal outputs) which can be called for through an enable action.

Consider for a moment the function of the whole class of enable
actions. It is to enable the operator to give the computer com
mands directly, not in the normal binary connnand form. When would
this be useful? Primarily, when the computer does not have loaded
in its memory the desired program. These actions enable the opera
tor to get a program into the memory of the computer, either one
connnand at a time, through type-in, or a block of tape at a time~
through the reading of tape. Once the program has been loaded,
control can be given to it, within the computer, and it will operate
the machine. For instance, when the computer is first turned on,
perhaps in the morning, there will be no information in its memory.
Turning it off the night before cleared memory. The enable actions
enable an operator to start the computer. At such a time it is hard
to conceive of the need for an output. Quite the contrary, when out
puts are required, a program will have generated them, and that same
program can call for them with connnands, none of which we have yet
defined.

DEBUGGING

The reason for providing for this one output, the type-out of the con
tents of AR, through enable action, is to assist the progrannner in
"debugging" his program. It has been painfully established by almost
all the progrannners who have preceded you, no matter what computer or
progrannning system has been employed, that very few programs work suc
cessfully in all respects as originally written. There are usually a
few flaws, perhaps stennning from carelessness, or from lack of knowl
edge, or from a change in requirements. Finding these flaws by inspec
tion of the program is sometimes almost impossible, especially in very
long and complicated programs. In such cases, the progrannner will
usually resort to making up a "test case", for which he will calculate
the correct answer(s). He will then enter his program into the computer,
and allow it to operate with the inputs of the test case. He will cause
the program to halt temporarily at various strategic points, and inspect
the partial results he has achieved. In this way he can eventually iso
late the steps in the program which are causing the trouble. How does
he inspect these results? He stops the program at points where AR con
tains vital information, and inspects AR. Thus, the provision for type
out from AR.

BREAK-POINT

Now we come to the only remaining question which was intentionally left
open earlier, and answer it. In the machine form of a connnand, bit
T21 was left undefined. This bit in a connnand is called the BP bit.
BP stands for Break-Point. If a connnand contains a 1 in this bit, the

- 142 -

computer will halt upon execution
action has been taken previously.
mand.)

of the command, provided a switch
(Do not break-point a return com-

On the front of the typewriter base is a switch called the "compute"
switch. Other than performing an enable action, the computer will
not operate until this switch is on. The center position for this
switch is the off position. The switch is on when thrown either to
the left or to the right. If thrown to GO, it will cause the computer
to continue operating until either a halt command is reached or the
compute switch is moved back to the off position. If thrown to BP,
it will cause the computer to operate until a halt command is reached,
the switch is thrown back to the off position, or a command with
BP = 1 (called a "break-pointed" command) is reached. If you want
the computer to be sensitive to these inserted break-points, then,
you must move the compute switch to BP rather than GO to operate your
program. A rule is that the enable switch and the compute switch
should never be on simultaneously. If you have stopped at a break
point, turn compute off before turning enable on.

The entire process of debugging encompasses far too many techniques
and far too much effort to be thoroughly discussed here, but one of
the important facets of it is this periodic inspection of AR. Com
bined with the ability to type out the contents of AR, are certain
other enable actions. For instance, ~' will place in AR the address
of the next command the computer will obey if the canpute switch is
turned back on. This enable action, followed by §:_, should help you
determine whether or not your program is following the predicted path.

Notice that the contents of AR will shift as it is typed out. This
means that, following the type-out, AR will no longer contain what
it did. If, after inspection of AR, you wish to return to your pro
gram, it is quite conceivable that this destruction of AR's contents
will cause errors in the rest of the program. Prior to §:_, you should
take the ~ action, which will save the contents of AR and mark the
location of the next command. Following§:_, £will restore this infor
mation.

"SINGLE CYCLE"

Another enable action which is of help in the debugging process is i,
which causes only one step to be executed. You could operate a whole
program through a long enough series of i's. If you will look at the
drawing on page 208, you will see that among the neons on the front
of the computer, there is a set for S and another for D. These lights
will contain the S and D number, respectively, of the command being
executed. By following your program, as it is written on paper, and
these lights through a series of i's, you can often spot errors in
the path of your program. Do not single cycle return commands.

INPUT/OUTPUT COMMANDS

It is necessary for most programs to call for their own inputs and
outputs, by command. The commands which will do this are:

- 143 -

"Gate" type-in: D = 31, S = 12, C = 0.

Read punched tape: D = 31, S = 15, C = 0.

Type AR: D = 31, S 08, c o.

Type line 19: D = 31, S = 09, C = O.

Punch line 19 on tape: D = 31, S = 10, C = 0.

These inputs and outputs will behave in the manner described.

The G-15, although it can handle only one normal input at a time, has
no interlock to prevent the initiation of another before the input/out
put system is ''ready". In such a case, the input or output called for
will be a logical sum of the two special (S) codes of the conflicting
conunands. In short, the results of allowing your program to make this
mistake are disastrous. For example, if, during a type line 19 opera
tion (S = 09), you executed a "gate" type-in conunand (S = 12), you
would suddenly find you were, as far as the computer is concerned, re
questing an input/output operation with S = 13, their logical sum. It

1001
1100

1101 = 13 (10)

just so happens that this special
code for an input/output operation
calls for 11read magnetic tape".
You might not even have a magnetic
tape drive at your installation,

but nevertheless, the computer would attempt to read from one. Of course
it would never receive a stop code, and thus the attempted input would
never terminate, to say nothing of the fact that neither your desired
input nor your desired output will be accomplished.

In order to prevent such distressing occurrences, you are equipped with
a test conunand which can be incorporated in your program. It was men
tioned earlier, but not defined: "test for 'ready'". If the input/
output system is 11ready 11 , the next conunand will be taken from N + 1;
if not, the next conunand will be taken from N. The most conunon use of
this test is to set N = the location of the test itself, so that the
test will be repeated until the input/output system is ready for a new
operation, at which time the test will be met, and the program will
proceed at N + 1. At this point another input or output might be called
for. Another use of the ready test so progranuned is to prevent the pro
gram from trying to use a set of inputs until they have been completely
received. In order to achieve the most benefit from the ready test you
will usually want to make it immediate, and let it be executed as often
as possible. If N is set equal to L, you want the last word-time of
execution to be L - 1, so that no delay will be involved waiting to
take the next conunand from N. If the last word-time of execution is
to be L - 1, the flag (T) in the test command must also equal L. The
ready conunand then, programmed in this recommended way, will contain
D = 31, S = 28, C = 0, T = L, N = L, and the conunand will be immediate.
This command should precede all normal input or output commands.

- 144 -

There is a very important implication in what has just been said. The
G-15 continues to operate your program during any normal input or out
put. In many computers, input and output time is "dead" time as far
as computation goes, but this is not so in the G-15. While you are
typing out one answer, for example, you can be computing the next. As
a matter-of-fact, experienced progranuners write programs in which almost
none of the input/output time required is left unused as far as computa
tion goes.

At this point we can develop another program, not very long, which will
handle the inputs and outputs for our main computation program. Let's
assume we want to type the answers we derive, x1 and x2, out of line 19.
Since we will have to use a line 19 format (we already developed it;
see page 137), we might just as well use command line 02 for this pro
gram. Thus, the program and its output format will occupy the same .
line.

Clear line 19

Test readyi--------.a

yes

Gate type-in of
a, b, c

no

Test ready 1---------
no

yes

Transfer a(23.02)____,..memory
location for computation program

Transfer b(23.0l) >memory
location for computation program

Transfer c(23.00)----+-memory
location for computation program

Mark and transfer control to
line 00.

Return

Type line 19

- 145 -

In addition, we must include a connnand at the end of the program in
line 00, a mark and transfer control conunand, which will transfer
control back to this program at the correct point, for the type-out
of the answers.

In the computation program, when we generate x1, we will store it in
19.u7. Similarly, we will store xz in 19.u6, so that these numbers
will be properly positioned, ready for output, prior to returning to
the output portion of the program above.

Notice that the first thing this input/output program does is to clear
line 19, so that it will always be clear when we attempt to type out
our answers. If this were not done, and line 19 contained some garbage,
we would type out this garbage as well as our valid answers during the
first output.

The input/output program continues in a "loop". After completion of
one run of the whole program, it inunediately returns to an earlier
conunand and eventually calls for type-in of a new set of a, b, and c.
(N of last connnand = L of test.)

In this way, our program will continue forever, always calling for a
new set if inputs after typing out the last set of answers. Of course
we can stop this at any time we want by turning off the compute switch
on the typewriter and walking away from the computer. More will be
said later concerning loops and their uses.

Now we know that we can enter our program a line at a time, into the
computer and punch out that line on tape. Suppose we punch line 01
(the square root subroutine) on tape. Then, on the same tape, we
follow it with line 00, the main computation program. Then, still on
the same tape, we follow line 00 with line 02. Finally when we run
the tape out of the punch, we will have a long piece of punched tape
containing three blocks, as shown in the drawing below, where the arrow
indicates the direction in which the tape would be read.

~ ~ Line I Line ooJ I Line]

BLANK "LEADER"

Notice that a blank space is located before the first block, between
blocks, and after the last block. When a tape is mounted on the photo
tape-reader, it must have some leader which can be fed through the
mechanism and onto the winding-spool, similar to the loading of a movie
film. After an input, the drive mechanism coasts to a stop, and we
don't want valuable information from the next block to slip past the
photo-reader during this coast-time. The blank tape at the end will
result simply from manually feeding the tape out of the machine, prior
to tearing off the desired length, after it has been punched. Approx
imately 9" to l' of blank tape should be left before the first block

- 146 -

as "leader", for initial winding purposes. Approximately 611 to 9" of
blank tape should be left between blocks, to allow the tape drive
mechanism to coast to a stop without allowing any information in the
next block to slip past the photo-reader. This means that, when an
input from punched tape is called for, an indeterminate length of
blank tape will be "read" prior to the reading of any valuable informa
tion. The "reading" of blank tape will cause no input .J:o the computer.

There is an acceptable method for generating blank leader automatically,
under program control. This method is based on the fact that the "punch
line 19" command not only initiates the punch operation, but also reloads
the line 19 format (in line 02) into a four~word inspection buffer.

If the punch command is given before the end of the line 19 format has
been reached during its inspection, the format will be automatically
reloaded, and its inspection will begin anew, from the first format
character. In this way, the end code in the format might never be
reached, and the output would continue indefinately. As a matter of
fact, if the punch command is repeated often enough, only the first
character of the output format will ever be inspected.

Therefore, as tape is punched, a series of characters will be trans
mitted to tape; it will be a series of whatever is called for. by the
first format character. Of all data transmitted to the tape punch,
the only one which causes no punch is a + sign. We therefore will
cause a series of + signs to be transmitted, thus causing blank tape
to be fed out of the punch. The first format character in the line 19
format (contained in line 02) must be a sign character, and the sign
bit of 19.u7 must be 0 (= +). In this manner, for as long as punching
continues we will get only blank tape.

Ten strokes of the punch will yield one inch of tape. Two drum cycles
are necessary for each punch stroke. Therefore, 20 drum cycles are
necessary to generate one inch of blank tape. The generation of nine
inches of blank tape would require 180 drum cycles.

In order to achieve this, the punch tape command should be executed at
word-time 00 of every drum cycle for 180 drum cycles.

-28
l80(lO) •2 __,.AR.c ,''.

Subtract 1·2-28

Test AR.(neg.)1----~~---------;

no

Punch tape
(executed at 00

yes

"Set Ready"

- 147 -

In the program flow-diagrammed on the preceding page, N in the punch
tape command will equal the word-time in which the subtract command
is located. The program will continue looping and counting the elapsed
drum cycles by subtracting 1 from 180 for each drum cycle. Eventually
AR will contain +0, and when 1 is subtracted from it, it will contain
-1, the answer to the test will be "yes", and the program will exit
from the loop. At this point the proper length of blank tape will have
been punched.

You h51ve noticed the use of a "set ready" conunand in the flow diagram.
This is a special command with D = 31, S = 00, and C = Oo When this
command is executed, whatever input or output is in progress will be
automatically and arbitrarily stopped. No "stop" code will be punched
on the tape. This command must be used with caution; it may shift
the contents of line 19. Do not place the valid outgoing information
in line 19 until after the set ready command has been executed.

LOADER PROGRAM

Suppose now, we entered the following program, and punched it on tape,
and then we spliced this block of punched tape onto the other, preceding
line /01.

Word 00, N 01

Word 01, N 03

Word 03

Block Transfer
Line 19~Line 02

Mark and Transfer
Control to 02.03

Block Transfer
Line 19____,.Line 01

yes

Block Transfer
Line 19--+Line 00

no

no

- 148 -

yes

Block Transfer
Line 19 --+Line 02
N of this connnand
equals starting
location of input
program.

no

This is called a "loader" program. Its value is derived from the fact
that, if E.. is used to cause the reading of a block of tape, and if,
after the input has ceased, the enable switch is turned off and the
compute sw].tch is turned to GO, the computer will take its next com
mand from 23.00, which, as you know, will be the same as 19.00. Now
we can trace the operation of this program.

The loader will be in line 19, and its first four words will also be
in line 23, following the input caused by E..•

When the compute switch is thrown to GO, the next connnand is taken
from23.00.

This connnand, word 00 of the loader program, causes the transfer of
all of line 19 into line 02. The next connnand to be executed, still
in the same conunand line, (connnand line 07, which is line 23) is at
word 01.

This command is a mark and transfer control connnand, and control is
transferred to line 02. The N number of this command selects the
word-time of the first connnand to be read from line 02~ it is word
time 030

The program in line 02, beginning with word 03, will now be executed.
But this is the loader program, itselL Word 03 calls for an input
from punched tape. A preceding 11ready11 test is unnecessary, because
it can be firmly predicted that no input or output is already in pro
gress. The block of tape read into line 19 will be the next block on
the program tape, following the loader. This is the block containing
the square root subroutine, destined for line 01. Therefore, after
this input is completed, line 19 is transferred, word-for-word, into
line 01. Then the next block of tape is read, still under control of
the loader program in line 02. This block of tape contains the main
computation program, and therefore, upon completion of the input,
line 19 is transferred into line 00. The remaining block of tape is
then read into line 19. This block contains the input/output program
designed to accompany the computation program, and is destined for

- 149 -

line 02. But line 02 is already in use; it contains the loader pro
gram. After the input is finished, the loader program will execute
one more co:mmand, which will be its last. It calls for all of line
19 to be transferred into line 02. The loader program thus destroys
itself, and line 02 contains the input/output program we desire. The
corrnnand line is still line 02; nothing has been done to change that.
The next command, as always, will be taken from the same command line,
at a word-time specified as N of the previous co:mmando Therefore~ if,
as indicated in the flow diagram, the N of the last command of the
loader program equals the location of the initial command of the input/
output program, during the next read-command time the input/output pro
gram will start its normal execution, just as we originally planned it.

A loader of this type is called, rightly enough, a "self-destroying"
loader. Its purpose is to set up the memory of the computer for the
operation of a given program completely, and yet occupy no part of
memory after the set-up has been completed and it is no longer needed.

This type of procedure, involving the use of a loader program, is some
times given the picturesque name of "bootstrap", for obvious reasons.
Once such a tape has been mounted on the drive mechanism of the photo
reader, the only actions necessary at the typewriter are:

1. with the compute switch off, put the enable switch on;

2. strike £_;

3. after one block of tape has been read into the computer,
make sure the enable switch is off, and move the compute
switch to GO.

From that point, in our example, the rest of the program will pick
itself up by its own bootstraps, enter the computer's memory at the
proper locations, and proceed to operate until it reaches the point
where it gates the type-in of the first set of a, b, and c. At this
point the S and D neons on the face of the computer will not be flick
ering rapidly as step after step is executed, because always the same
step is being executed. It is the "ready" test. The neons will re
main steady, indicating D = 31, S = 28, and an input/output code of
12 (the code for a "gate type-in").

You will enter the numbers in the following order, as determined by
the way we originally formulated the input program: a (tab) b (tab)
c (tab) s. Each number will consist of seven hex digits and a sign.
The s will set the input/oll;tput system "ready", the test on which the
program was "hung up" will be met, and the program will proceed.
Provided the numbers entered don't generate erroneous results, the
computation program will place the two answers in 19.u7 and 19.u6
and transfer control back to the input/output program, which will
type them out in the following order: x1 (tab) x2 (carriage return).
It will then hang up again on the "ready" test, awaiting a new set of
inputs. It will keep on performing this cycle until we simply don't
supply any more inputs.

- 150 -

Notice that we will have to convert decimal numbers for a, b, and c,
to hex numbers, prior to the input, and that, when these hex numbers
are typed in, they will be scaled, to our knowledge, 2-21. The dec
imal numbers should therefore be converted to binary, rather than hex,
21 bits being allowed for the expression of the integral value, and
7 bits for the fractional value. From the resultant series of bits,
a corresponding hex number can very easily be made up, and it will
be this number that will be typed in.

The output will also be in hex, representing a binary value scaled
2-21. This binary value must be converted to its decimal equivalent,
which can be done quite easily, by inspection. A table of corres
ponding powers of 10 and 2, as well as corresponding powers of 10 and
16, is located in the back of this book (page 207).

Only two tasks remain to be performed before we can punch a complete
program tape of the type described above.

One is to choose word-locations in the appropriate command lines for
all of the necessary commands. Because of the nature of the memory
in the G-15, as has been pointed out previously, timing becomes a
consideration in the writing of a program. We wish to minimize the
amount of wait-time preceding both the reading of commands and their
execution, in order to enable the program, as a whole, to operate in
the shortest amount of time possible. We therefore will have to
choose wisely the locations into which we place the commands, the
times at which we will execute them, the words in which we store con
stants used by our program, and its inputs.

The other task is to code, in binary, each command and constant that
our program needs. We know the binary make-up of a command, so this
will not be difficult. From the binary number, we will have to get a
hex number which can be typed into the computer. When this has been
done for all the words in a line, that line's contents will be in line
19. We can then punch a block of tape. We must repeat this for each
block of tape necessary. Although this is not a difficult task, it
is time-consuming.

PROGRAM PREPARATION ROUTINE (PPR)

Fortunately, Bendix Computer Division has developed a program, called
the Program Preparation Routine (PPR), which will do this. As inputs,
it needs corrnnands composed of decimal numbers for T, N, C, S, and D,
in the form shown below.

T N c s D

The decimal number for T will contain two digits, ranging from 00
through u7. Similarly, that for N will also contain two digits,
within the same range. The decimal number for C will contain one
digit, ranging from 0 through 7. The decimal number for Swill con
tain two digits, ranging from 00 through 31. Similarly, for D, the
decimal number will contain two digits, within the same range.

- 151 -

PPR needs to be told the location for the corrunand, as well as being
given the "decimal form" of the conunand. From these two facts, it
will cause the proper binary corrunand to be entered into the specified
word-time of the line it uses for storage. This is line 18. Finally,
line 18 will contain all of the conunands we want to appear in, say,
line 00, at the appropriate word-times. We can then give PPR a com
mand to punch a block of tape with this line. It will transfer line
18 to line 19, and then punch line 19 on tape. Now we can give PPR
another corrunand to clear line 18, and then proceed to set up a new
line of our program in the same manner. Eventually, we will generate
the entire program tape we desire.

When reference is made to giving PPR a command to do something, the
question of how this is done arises. PPR gates type-in after comple
tion of every operation. At that time, the operator types in what
we call a "psuedo-conunand" which can be recognized by PPR, telling
it what is desired next. Some of these are:

"accept a decimal corrunand input, and store it in word

"punch out the program now stored in line 18'1 ;

"clear line 18".

II•

'

There are many more such psuedo-conunands for PPR, and they, along
with PPR's functions and capabilities, are discussed elsewhere in
this book.

At the present time, assume the availability of such psuedo-corrunands,
and we will proceed to see how the conunands of a program, in partic
ular, the program we have developed, are coded, in decimal form, prior
to being supplied to PPR.

The decimal form has already been shown, but some additions must be
made to it:

p T N c s D BP

P is a "Prefix". PPR does not know whether a corrunand, as coded in
decimal form, is intended to be an inunediate or a deferred corrunand.
It will assume that all corrunands with D fa 31 will be deferred, and
all corrunands with D = 31 will be inunediate. If this assumption is
correct as pertaining to a corrunand, the P is left blank. I~ it is
incorrect, in that you wish to make a conunand with D fa 31 i1nmediate,
you must supply a P of "u". If it is incorrect in that you wish to
make a corrunand with D = 31 deferred, you must supply a P of ''w".

BP stands for breakpoint. If you wish a command to be breakpointed,
you must supply a minus sign at this point. If you do not wish the
command to be breakpointed, you supply no sign, which is tantamount,
as we have seen, to supplying a plus sign.

- 152 -

Usually the connnands of a program are written on standard, printed
forms, called "coding sheets". The following pages contain our pro
gram, its loader, and line 02, coded on such sheets. Notice that
the location of each conunand and constant needed by our program is
also specified, along with the connnand or constant, itself. This
location will be supplied to PPR, but not as an integral part of
the coded connnand. You will see that most of the connnands are ex
plained somewhat in a "NOTES" column on the sheet, just as a matter
of convenience.

Pay close attention to the timing numbers, T and N in each connnand,
and how they have been chosen to reduce wait time during the opera
tion of the program.

Following the coding sheets, there will be some discussion of the
timing numbers chosen for individual connnands.

You will notice that no
square root subroutine,
it in its present form.
taining that subroutine,
gram tape.

coding for line 01 is included. This is the
It has already been written, and we will use
We will simply reproduce a block of tape con
and include this reproduction in our own pro-

FORM
BCD

108-5-0

..

G-15 0
PROGRAM PROBLEM:

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

32 33 34 35

36 37 38 39

40 41 42 43

44 45 46 47

48 49 50 51

52 53 54 55

56 57 58 59

60 61 62 63

64 65 66 67

68 69 70 71

72 73 74 75

76 77 78 79

80 81 82 83

84 85 86 87

88 89 90 91

92 93 94 95

96 97 98 99
uo Ul U2 U3

U4 U5 U6

- 153 -

Los Angeles 45,Calilornia
PageL of2...

Prepared by Date:

Loader Line 02

T
L p or N c s D BP N 0 T E S L_k

00 u 01 01 0 19 02 line 19 --.. line 02

01 03 03 2 21 31 Mark, Transfer____.,, 02 .03

03 05 05 0 15 31 Read Tape

05 05 05 0 28 31 Test Ready

06 u 07 07 0 19 01 line 19 ____.,.line 01

07 09 09 0 15 31 Read Tape

09 09 09 0 28 31 Test Ready

10 u 11 11 0 19 00 line 19--+line 00

11 13 13 0 15 31 Read Tape

13 13 13 0 28 31 Test Ready

14 u 15 00 0 19 02 line 19 ___,.line 02

(next command 02.00)

FORM
BCD

108-5-0

..

G-15 D
PROGRAM PROBLEM:

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

32 33 34 35

36 37 38 39

40 41 42 43

44 45 46 47

48 49 50 51

52 53 54 55

56 57 58 59

60 61 62 63

64 65 66 67

68 69 70 71

72 73 74 75

76 77 78 79

80 81 82 83

84 85 86 87

88 89 90 91

92 93 94 95

96 97 98 99
uo Ul U2 U3

U4 U5 U6

Computation

T
L p or

Lk

00 03

03 05

06 07

09 56

66 68

71 04

76 77

78 81

81 85

86 07

11 56

68 70

73 04

79 81

82 85

85 87

88 89

91 56

40 42

44 47

47 49

50 53

55 56

05 07

04 06

08 10

- 154 -

' .
Los An&eles 45, California

Pace -1. of __§_

Prepared by Date:

Line QQ

N c s D BP N 0 T E s

03 0 23 31 Clear 2-wdo Registers

06 0 21 25 a = (21.0l)----+ID1

09 0 00 24 2 = (00.07)--.MQ1

66 0 24 31 Multiply

71 4 26 24 PN_ll _l --+M~ 1 ...
76 0 26 31 Shift MQ left 2 bits

78 0 24 20 2a = (MQ1) ~ 21.01

81 0 23 31 Clear 2-wd. Registers

86 0 20 25 2a = (20.0l) ~ID1

11 0 00 24 2 = (00.07)~MQ1

68 0 24 31 Multiply

73 4 26 24 PN~~M~l

79 0 26 31 Shift MQ left 2 bits

82 0 24 28 MQ1~AR (4a)

85 0 23 31 Clear 2-wd. Registers

88 0 28 25 4a = (AR)----+ID1

91 0 23 24 c = (23.0l)___.,.MQ1

40 0 24 31 Multiply

44 4 26 20 4ac = (PNO __ .l)-+20.02,03

47 0 23 31 Clear 2-wd. Registers

50 0 22 25 b = (22.0l)~IDl

55 0 22 24 b = (22 .01) ---..MQ1

05 0 24 31 Multiply

04 0 29 31 Test Overflow

08 7 20 30 4ac = (20.02,03)--=-.PN+

12 0 29 31 Test Overflow
.

FORM
BC°'

10 8-5.Q

G-15 D
PROGRAM PROBLEM:

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

32 33 34 35

36 37 38 39

40 41 42 43

44 45 46 47

48 49 50 51

52 53 54 55

56 57 58 59

60 61 62 63

64 65 66 67

68 69 70 71

72 73 74 75

76 77 78 79

80 81 82 83

84 85 86 87

88 89 90 91

92 93 94 95

96 97 98 99
uo Ul U2 U3

U4 U5 U6

Com12utation

T
L p or

Lk

12 14

13 15

14 16

16 18

17 19

18 [uO

19 21

22 25

26 w 20

20 21

23 25

61 63

60 00

27 29

30 31

32 34

34 35

35 37

36 39

39 41

43 42

87 89

90 93

94 95

96 97

98 ul

- 155 -

Los Angeles 45, Cal I forn ia
Page __L af _§_

Prepared by Date:

Line 00

N c s D BP N 0 T E S

14 1 26 28 PN0....!:...+ARc

00 0 16 31 Halt

16 0 22 31 Test for sign of AR (neg.)

19 0 00 28 Return Connnand~(00.18)~AR

00 0 16 31 Halt

99 0 20 31.] Return Connnand

22 0 20 03 2a = (20.01)--+03.21

26 0 22 03 b = (22 .01) ---+03 .25

94 1 21 31 Mark, Transfer ---+ 01. 94

23 0 03 20 2a = (03.21)--+20.0l

'
61 0 03 22 b = (03.25)~22.0l

60 0 29 31 Test Overflow

27 0 00 00 Go to 27

30 3 22 28 b = (22.0l)~ARc

32 0 20 29 r= (20.03)~AR+
34 0 29 31 Test Overflow

36 1 28 28 + AR---+ARc

00 0 16 31 Halt

39 0 23 31 Clear 2-wd. Registers

43 0 28 25 AR_____,. ID,

87 0 26 31 Shift ID right 21 bits

90 0 25 23 N = (ID_l)---+23.01

94 2 23 28 JNf = J(23 .01)}----+ARc

96 0 28 23 INI = (AR)~23.03
98 2 20 28 I nl = f(20.0l)l_..,.ARc

u2 0 28 23 Inf= (AR)~23.0l

FORM
BCD

108-5. 0

..

G-15 D
PROGRAM PROBLEM:

0 1 2 3

4 5 6 1

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

32 33 34 35

36 37 38 39

40 41 42 43

44 45 46 47

48 49 50 51

52 53 54 55

56 57 58 59

60 61 62 63

64 65 66 67

68 69 70 71

72 73 74 75

76 11 78 79

80 81 82 83

84 85 86 87

88 89 90 91

92 93 94 95

96 97 98 99

uo Ul U2 U3

U4 U5 U6

ComEutation

L
T p or
L_k

u2 u3

u4 us

u6 00

01 03

02 04

10 13

15 17

21 24

29 57

89 30

u5 u7

24 25

28 31

33 35

37 38

38 40

41 44

45 47

49 42

92 93

95 96

97 ul

u3 u5

51 53

52 54

56 59

- 156 -

Los Angeles 45,Callfornia
Page ...i.. of __§_

Prepared by Oat e:

Line 00

N c s D BP N 0 T E S

u4 0 23 28 N:. (23 .. 03)~ARc

u6 3 23 29 N = (23.0l)~AR+
01 0 22 31 Test for sign of AR (neg.)

00 0 16 31 Halt

10 4 25 21 N = (ID0...1. 1)~21.00,0l

15 0 23 31 Clear 2-wd. Registers

21 0 20 25 2a = (20.0l)~ID1
29 4 21 26 N = (21.00,0l)~PNQ.l
89 1 25 31 Divide

u5 0 24 28 M~~ARc

24 0 28 19 AR___.,19.u7

28 3 22 28 0 = (22.0l)~ARc

33 3 20 29 ;-:. (20.03)~ AR+

37 0 29 31 Test Overflow

41 1 28 28 AR~AR

00 0 16 31 Halt

45 0 23 31 Clear 2-wd. Registers

49 0 28 25 AR--+IDl

92 0 26 31 Shift ID right 21 bits

95 0 25 28 ID1 --+AR

97 2 28 28 I N/ =l (AR)f ~ ARc

u3 3 23 29 jnJ= (23.0l)~AR+

51 0 22 31 Test for sign of AR (neg.)

00 0 16 31 Halt

56 4 25 21 N = (ID0_,-1)~21.02,03

59 0 23 31 Clear 2-wd. Registers

FORM
BCD

108-5.0

..

G-15 D
PROGRAM PROBLEM:

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

32 33 34 35

36 37 38 39

40 41 42 43

44 45 46 47

48 49 50 51

52 53 54 55

56 57 58 59

60 61 62 63

64 65 66 67

68 69 70 71

72 73 74 75

76 77 78 79

80 81 82 83

84 85 86 87

88 89 90 91

92 93 94 95

96 97 98 99
uo Ul U2 U3

U4 U5 U6

- 157 -

Los Angeles 45, California
Page -2... of __§_

Prepared by Date:

Com:eutation Line 00

L
T c s BP p or N D N 0 T E S
LJl

59 61 62 0 20 25 2a = (20.0l)~IDl

62 66 69 4 21 26 N = (21.02,03)~PNO.l

69 57 25 1 25 31 Divide

25 26 31 0 24 28 M~ ~AR.c

31 u6 48 0 28 19 AR.~19.u6

48 50 50 2 21 31 Mark, Transfer~02.50

FORM
BCD

108-5. 0

G-15 D
PROGRAM PROBLEM :

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

32 33 34 35

36 37 38 39

40 41 42 43

44 45 46 47

48 49 50 51

52 53 54 55

56 57 58 59

60 61 62 63

64 65 66 67

68 69 70 71

72 73 74 75

76 77 78 79

80 81 82 83

84 85 86 87

88 89 90 91

92 93 94 95

96 97 98 99
uo Ul U2 U3

U4 U5 us

- 158 -
.

Los Angeles 45, California
Page -2.. of _§_

Prepared by Date:

InEut/ Outi;~ut
- 02 Line

T c s 0 BP T E S L p or N N 0
Lk

02 0000011

03 800000x

00 01 04 2 28 28)t ClP::i.r AR

04 05 06 3 28 29 J
06 u 07 07 0 28 19 Clear line 19

07 07 07 0 28 31 Test Ready

08 10 10 0 12 31 Gate Type-in

10 10 10 0 28 31 Test Ready

11 12 13 0 23 28 a= (23.00)____,.ARc

13 17 18 0 28 21 a = (AR)---.2L01

18 22 23 0 23 28 b = (23.02)~AR~

23 25 26 0 28 22 b = (AR) ~22.01

26 28 00 0 21 31 Mark, Transfer ~00.00

50 52 07 0 09 31 Type line 19

- 159 -

At this point let's discuss the program as it is coded. The first
part of the program to be operated will be in the loader. With the
entire program tape, generated in a manner already described, loaded
on the photo-reader mechanism, you will strike the E.. key, and one
block of tape (the loader) will be read into line 19. Striking the
E.. key also sets the computer to take its next connnand from word 00
of connnand line 7 (line 23). This word will, of course, be the same
as word 00 in line 19, and, as a matter of fact, so will words 01,
02, and 03.. The connnand located at 23.00 is a "block copy" of all
of line 19 into all of line 02. Remember the function of the T num
ber in an innnediate connnand: it is to serve as a flag, stopping the
execution of the connnand after word-time T - 1, and before word-time
T. Word-time T, in this case, 01, will be the first word-time fol
lowing the end of the execution of the connnand at 23.00, and it there
fore is the first word-time available for the reading of another com
mand. No time will be lost while the computer waits to read the next
connnand if it is located in word 01. This, then, explains the choice
of word 01 as N in the connnand at 23.00. Of course, the next connnand
in the program must be located at word 01 in the same connnand line.
It is, and it is a "mark and transfer control" connnand, causing the
computer to take its next connnand from word 03 in line 02. This is
also an innnediate connnand, and must be executed for one word-time, 02.
Thus 03 is the best possible location for the next connnand, and that's
why it was chosen as N in the connnand located at 23.01.

Now, notice that line 19 contains, in words 00, 01, 02, and 03, the
same four words that are contained in line 23, and that line 02 con
tains the same words as line 19. Therefore, words 00, 01, 02, and
03, in line 02 are the same as the four words in line 23. So command
03 in line 02 is the connnand as shown on the coding sheet for the
loader. At 03 a command from line 02 will be read which will call
for the reading of a block of tape, and the program will continue
to 05, the next connnand. Up to this point, no time has been lost in
either waiting to read the next connnand or in waiting to execute any
command.

The connnand located at 02.05 will cause the computer to test for the
normal input/output system "ready". If it is not ready (there is an
input or an output in progress), the answer to the question asked of
the computer will be "no", and the program will continue at N. Remem
ber that the G-15 will continue to compute while an input or output is

·in progress. Since N of the test connnand is 05, the test will be re
peated, over and over again, until the input/output system is ready,
which will be the case only when the block of tape has been read. No
tice that the computer has not stopped operating; it is merely repeat
ing the same connnand until a given condition exists, at which point it
will go on to a new command, and the only reason it is doing this is
that this is the way the program was written. Notice that the ready
test is also an irrnnediate command, executing during word-times 06
through 04, when it is stopped by the flag (05) in T. 05 is therefore
the next available word-time for reading a connnand, and N equals 05,
so there will be no lost time in waiting to read the next command.

- 160 -

Further study on your own should indicate that, because of the T's and
N's chosen in the connnands of the loader, there will be no wait-time of
either variety involved in the operation of this part of the program.
Eventually, at word-time 14, another innnediate command will be read, and
this one, during word-times 15 thr.ough 14, will "block copy" all of line
19 (at this point containing the input/output portion of the program)
into all of line 02, destroying the loader, which has, at this point,
outlived its usefulness. Here the first wait-time is encountered. The
last word-time of execution of this command is 14, so the'next available
word-time at which the next command could be read will be 15. But the
next command is called for from word 00 of line 02 (the program continues
in the same command line, although the contents of that line have changed).
Word-times 15 through u7 will be lost time during the current drum cycle,
while the computer waits to read the next command (at 00).

The next command in the program (02.00) calls for placing the magnitude
of AR.'s present contents in AR. Its execution time will be 01, and no
time will be lost in waiting to execute. You might ask yourself, looking
at the coding for 00 in the input portion of the program, in line 02,
why a drum cycle would not be lost. It has been stated previously (page
151) that PPR will make all conunandswith D /: 31 deferred. And a long
time ago (page69) it was stated that, when the computer is directed to
defer execution of a command until the word-time indicated in T, it must
wait one word-time at least before it can execute the conunand. If, then,
a deferred conunand is given at word-time 00, to be executed in 01, why
is it that the computer will not have to wait until 01 in the next drum
cycle to execute the command? The reason is that, the authors of PPR,
thinking all the time, were one jump ahead of you. When PPR is directed
to make a command deferred (D /: 31), it first tests to determine the
relationship between T and L. If T is one greater than L, PPR increases
T by one (T = L2) and makes the conunand immediate. In other words, the
command at 00 of the input part of the program, could have been coded in
the following form, and the same effect in the resultant machine-language
program would be achieved:

L p T N C S D

00 u 02 04 2 28 28

Although no time will be lost waiting to execute this command, notice
that two word-times will be lost waiting to read the next command, since
it is called for at 04, even though the next available word-time for its
location will be 02. The reason for this is that line 02 must contain,
as well as this part of the program, the output format, which has already
been discussed, and which in this case, occupies words 02 and 03 of the
line. Obviously no command can be stored in either of these locations
without disturbing part of this format.

You should be able to carry out the rest of this analysis of the program,
as coded, for yourself, spotting any wait-to-execute or wait-to-read com
mand time. Notice that an attempt has been made to cut down on this
wasted time as much as possible, although this program still wastes quite
a bit of time. You might devise for yourself ways in which to cut down

- 161 -

on this waste, by arranging the incoming data (a, b, and c) differently,
performing some of the operations in a different order, using different
temporary storage locations, etc.

Notice that, towards the end of the computation portion of the program,
in line 00, the amount of wait-time increases, due to the increasing
unavailability of storage locations for the necessary corrnnands.

This program is not the most efficient method of arriving at the solu
tion for the roots of a quadratic equation; it is straight-forward,
however, and coincides with the original flow-diagram for the solution
of the problem, as developed on pages 122 - 126.

It was operated with the inputs:

a = 1 (0000080)

b = 1 (0000080)

c = -6 (0000300-)

and the results were:

x1 = 0000101 = 2(2-21) + Princeton round-off (from division)

x2 =-0000181 =-3(2-21) + Princeton round-off (from division).

The Program Preparation Routine, as it appears on punched tape, is
very long, consisting of many blocks of information. Of all these
blocks, four are basic, in that they form the heart of the routine.
With them you can prepare all of the corrnnands in machine language for
a long line; you can also enter hex constants into the long line at
any desired word-time; you can punch a tape of the line's contents;
and you can set up almost all of memory in any way you wish (not all
of memory, however, because PPR has been written to protect itself,
and, if you corrnnand it to destroy part of itself, it will reject your
command).

The line in which PPR stores the conrrnands and constants you give it
is line 18. Word-times will be fixed in this line. The whole line
itself may, however, be placed in any other long line in the memory
of the G-15, with the exceptions of lines 05, 15, 16 and 17, since
these are the lines occupied by the basic package of PPR. Thus, we
could use PPR to enter the proper machine-language corrnnands at proper
word-times in line 18, along with the properly located hex constants,
and then cause PPR to copy line 18 into line 00, thus setting up the
main computation part of our program. We could also cause PPR to
punch a block of tape containing this line of program, so that it
would be preserved in its machine-language form, relieving us of the
necessity of having to re-type all of the individual corrnnands and
constants, in case it is ever desired to re-enter the program into
the computer.

- 162 -

When PPR has been read into the memory of the computer (E.., then GO),
its four basic lines will be occupying lines 05, 15, 16, and 17, and
the computer will be "hung up" on a ready test, gating type-in. PPR
is waiting for a command from you to do something.

The first thing you would probably want PPR to do is to clear any
already existing garbage out of line 18; you would probably want to
do this just prior to making up any line of program or constants.
The command which will tell PPR to do this is xOO (tab) s. The neons
on the front panel of the computer will flicker momentarily, as line
18 is cleared.

PPR, after performing an indicated task, will always return to that
point where it gates type-in of a new command, eager to do more work.
The next thing you might want to have it do is start a series of com
mands, accepting your commands in their "decimal command" form, con
verting them to their true binary machine language form, and storing
them in line 18 at the proper word-times. PPR can be told to start
such a series of commands at word-time ab by the command, yab (tab) s.
It will immediately type a carriage return and L = ab, and then gate
type··in of the command, itself. When the command has been typed in,
followed by (tab) s, PPR will convert the various portions of it, make
up the proper machine language command, and store it in word ab of
line 18. On the next line, on the typewriter, PPR will then type a
new L, equal to the N of the command just entered. PPR will be un
able to notice the end of such a sequence of cormnands, and, at some
point, after a new L has been typed out, you will not enter another
decimal command to be converted and stored, but, inste~d, you will
enter another command to be interpreted by PPR as telling it what to
do next. PPR will be able to recognize this new command; there is no
danger of it trying to incorporate it as another machine language com
mand in the program you are making up.

This next command you give PPR might be to reproduce, on punched tape,
the present contents of line 18; in this case it would be x06 (tab) s.
All of the words in line 18, 108 of them in all, will be added, regard
less of overflow, and the sum, called a "check sum", because it can be
used to check for accurate read-in of the tape later, will be typed
out, after which the contents of the line will be punched on tape. In
our previous discussion of typing out or punching the contents of line
19, it was pointed out that the output will end when the end code of
the output format is sensed, and a resulting check of all of line 19
indicates that the whole line is clear. PPR block copies all of line
18 to line 19, and then executes a command calling for the contents of
line 19 to be punched on tape, under control of an "abbreviated" format
(DDDDDDDDDDDDDDDDDDDDDDDDDDDDDE), which calls for four words of output
at a time. If each D calls for an output character representing four
bits, 29 D's will "cover" 116 bits = four full words. This tape will
be relatively unintelligible upon inspection but will serve as interim
storage of all bits. When it is read into line 19, line 19's original
setting, bit-by-bit, will be reproduced. If words 00, 01, 02, and 03
in line 18 are all clear, but there is some non-zero information in the
next higher group of four words, the last word of output would be word 04.

- 163 -

When such a tape is read into the computer, the last word from tape will
remain in 00 of line 19, leaving the first word of input in word u3 of
line 19. This would not be too good, since all the words in the line
would be removed from their correct location by four word-times. In
order to avoid such an embarrassing state of affairs, PPR will, when
called upon to punch line 18's contents on tape, check words 00 through
03 for non-zero. If they contain only zeroes, PPR will insert two bits
in word 03, so that its hex form will be 4400000. Thus, as the output
continues, every time the end code of the format is reached, a check of
line 19 will yield non-zero, causing output to continue for four more
word-times, until, finally, words 03 down through 00 will be punched on
tape, at which point line 19 will be entirely cleared to zero, and the
output will cease. This will assure us of a tape, which, when read into
the computer, will load word 00, and therefore all other words, correctly.
Remember that when such a tape is read, word 03, although you originally
set it with nothing, will now contain the hex number 4400000.

"PRECESSION", AS USED BY PPR

When you call for the output of line 18's contents, there may be many
full words of zeroes at the high end of the line. Output of these words
is unnecessary since they need not be filled, during input, to guarantee
that the non-zero words will be set correctly. If only the last four
words contain non-zero information, only four words will be punched on
tape. When this tape is read into the computer, only the last four words
of line 19 will be set, but they will be properly set. PPR gets rid of
words containing all zeroes prior to punching out the contents of line
18, by four-word groups. As soon as the first non-zero four-word group,
counting from u7 down, is encountered, output is initiated. To under
stand how PPR eliminates words from a line four-at-a-time, you must
understand the effect of the following command, where both S and D are
less than 28, and C = 2:

L p T N C S D

L u 2 s D

Consider first a short line. S = D = 20, T = LG• A C code of 2 calls
for an exchange of AR with memory. During each word-time of execution,
(AR)~D.T and (S.T)~AR. Let the connnand be:

L p T N c s D

00 u 06 N 2 20 20

word-time of AR holds con- this word in line AR re-
execution: tents of: 20 receives: ceives:

01 (AR) (AR) (01)
02 (01) (01) (02)
03 (02) (02) (03)
04..vOO (03) (03) (00)
05JU01 (00) (OO) (AR) = (01)

- 164 -

The contents of line 20 have moved up one word-time: what was in 00 is
now in 01, what was in 01 is now in 02, what was in 02 is now in 03,
and what was in 03 is now in 00. AR's original contents have been re~
stored to AR.

Notice that a fifth word-time of execution is necessary, even though
we are moving four words. It is necessary to complete the cycle and
restore AR.

In the case of a long line, where 108 words are to be moved up, it is
impossible to get a 109th word-time of execution in one immediate com
mand. Yet this word-time of execution is necessary, to complete the
cycle and restore AR. Consider the command,

L p

00 u

word-time of
execution:

01
02

u7
00

T

01

N c s D

N 2 19 19

AR holds con-
tents of:

(AR)
(01)

(u6)
(u7)

this word in
19 receives:

(AR)
(01)

(u6)
(u7)

line AR re-
ceives:

(01)
(02)

(u7)
(00)

All 108 words in long line 19 have been moved up one word-time with
the exception of word 00, which never reached 01, although it would
have, had the execution been continued for one more word-time. AR
currently holds the contents of word 00, and its original contents
are in word 01, where we desire to place the contents of word 00.
One more word-time of execution, during 01, would cause the contents
of AR and 19.01 to be exchanged, restoring AR with its original con
tents, and placing the contents of 19.00 in 19.01. Therefore, the
command above, in order to achieve the desired effect on the entire
long line, must be followed by one more connnand, which exchanges the
contents of AR and 19.01. Why can't one innnediate command be execu
ted for 109 word-times? This question will be left for you to answer.

Let the above command be followed by another:

L p T N c s D

01 01 N 2 19 19

These two connnands, taken together, will cause all of line 19 to be
moved up by one word-time, and AR to be restored. Notice that a
whole drum cycle will, of necessity, be lost in wait~time, either
waiting to read the next command or waiting to execute a connnand.

- 165 -

It is essential that no corrnnands affecting either AR or 19.01 intervene
between these two. For that reason you should try to keep them together
as a pair.

It is interesting to note that a long line can be moved up two word
times, with the cycle completed and AR restored, in exactly the same
number of commands and time:

L p

00 u
01 u

word-time of
execution:

01
02

u7
00

02
03

00
01

T

01
Q2

N c s D

01 2 19 19
N 2 19 19

ARholds con-
tents of:

(AR)
(01)

(u6)
(u7)

(00)
(02)=(01)

(u7)=(u6)
(OO)=(u7)

this word in
19 receives:

(AR)
(01)

(u6)
(u7)

(00)
(01)

(u6)
(u7)

line AR re-
ceives:

(01)
(02)

(u7)
(00)

(02)=(01)
(03)=(02)

(OO)=(u7)
(Ol)=(AR)

All words in the long line have been moved up two word-times, and AR
has been restored.

Therefore, since PPR desires to eliminate words containing all zeroes
by groups of fours, from the high-order end of line 19, it is done
through pairs of commands of the type shown above. Two such pairs
move all words in any long line up by four word-times. By assumption,
if PPR tests and finds such may be done, four words containing zeroes
will move "up" from 19.u4 - u7 to 19.00 - 03.

The movement of words through a line in this fashion is called "preces
sion".

OTHER PPR OPERATIONS AVAILABLE

.Before commanding PPR to punch a tape containing the contents of line 18,
you may want to place some hex constants in the line at strategic loca
tions. The command which tells PPR to accept a seven-digit hex number
and store it at location ab in line 18 is: zab (tab) t d1d2d3d4d5d6d7
(tab) s. Of course, this must be repeated for each constant to-be so
entered.

- 166 -

If, in accepting a sequence of decimal commands, PPR finds that a loca
tion which is about to receive a new command is already filled, PPR will
type out the contents of that location before accepting the new command.
You may disregard this typeout and proceed to enter the new command into
the location, if you desire to destroy the word currently contained there.
If you desire to keep that word, you may, of course, choose a new loca
tion for the command you desire to enter, merely by giving PPR a new
yab (tab) s command, specifying a new ab. If the last yab, which started
the current sequence of commands, was followed by a minus (-) prior to
the (tab) s, the contents of any location called for which is found to
be non-zero, will be converted by PPR to decimal command form prior to
the typeout. If, in the last yab (tab) s command, there was no minus in
serted, the contents of any such location will be typed out as a hex num
ber.

If you cause PPR to enter a hex number in any location, it will enter the
number, and then it will type out the location into which the number was
entered, followed by a typeout of the original contents of that location,
if non-zero.

After a line of program and/or constants is made up in line 18, PPR may
be commanded to block copy all of line 18 into any other line of memory,
excepting lines 05, 15, 16, and 17, all of which are occupied by PPR
itself (PPR will refuse to destroy itself). The command which will cause
PPR to do this is klx03, where kl stands for the desired line number.

If you find a mistake in a line of your program and wish to correct it
through the use of PPR, you can cause PPR to block copy any line of mem
ory into line 18, and, as a bonus, to type out any given word in that
line. The command to do this is: klijx02 (tab) s, where line kl will
be copied into line 18, and word ij will be typed out. If a minus pre
cedes the (tab) s, the word typed out will first be converted to decimal
command form; otherwise, it will be typed out as a hex number.

PPR may also be commanded to type out the entire contents of line 18:
x05 (tab) s. All words will be typed out as hex numbers.

Line 18 will be typed out, and, at the same time, punched on tape, if
PPR is given the connnand, x07 (tab) s.

PPR will punch a block of tape containing the number track if it is
given the command xOl (tab) s.

PPR will read a block of tape which you have mounted on the photo-reader
mechanism if given any one of the following commands:

wOO (tab) s read tape, type check sum

wOl (tab) s read tape, type check sum, type out

w02 (tab) s read tape, type check sum, punch tape

- 167 -

w03 (tab) s •••••.•••• read tape, type check sum, type and punch

In any of these cases, the contents of the block of tape read will be
block copied into line 18. In all of these cases, if the compute switch
is on GO, after the operation called for has been performed on one block
of tape, a new block will be read and the same operation will be per
formed on it. This will continue until all the tape has been read, and,
eventually, the photo-reader will be activated, even though no tape is
passing through it, in which case, the input will never cease, since no
stop code will be read. If the compute switch is thrown to BP, PPR will
stop at a breakpointed command in the read tape sequence of conunands
which follows the reading of the current block.

If PPR is stopped at any time in this manner, remember that, if the
compute switch is thrown to GO, it will innnediately continue in the
same sequence of steps. To return to that portion of PPR which gates
the type-in of PPR connnands, strike sc5f. As a matter of fact, if,
for any reason, you are not currently in PPR, but in some other pro
gram, and you know that PPR remains in memory intact, you can always
return to that portion of PPR which gates type-in of PPR connnands
through this keyboard action.

Finally, PPR can be commanded to transfer control to any line from 0
through 4, at any word-time, by the connnand, cijx04 (tab) s, where
c = 0 through 4, and ij is the location of the desired connnand in that
line.

Other operations are possible with PPR, including certain auxiliary
operations, of primary interest in three main areas:

1. automatic compilation of loader programs;

2. automatic compilation of output formats;

3. check-out and correction of programs, including listing of
connnands and constants.

PPR and all its auxiliary routines are thoroughly discussed in the
Bendix G-15 operating manual.

DECIMAL NUMBER INPUTS AND SCALING

If PPR is capable of taking decimal numbers (for the various parts of
a command), and generating the proper binary equivalents in the machine,
it stands to reason that, we, too, could write our program to do this,
so that we would not have to convert each decimal input to binary and
then to hex prior to typing it in. Let's figure out a method for ac
cepting decimal inputs, rather than requiring hex inputs.

Obviously, the keys on the typewriter, since there is one for each hex
digit, will be sufficient for the decimal digits 0 - 9. If a digit
is struck, we know that four bits will enter line 23, word 00. If a

- 168 -

complete seven-digit decimal number and its sign are entered, the signed
number will appear in 23.00. But, unlike a hex entry, it will not be in
the form of a binary magnitude and sign; it will be in a code, each four
bits corresponding to a digit of the decimal number. The four most signi
ficant bits in 23.00 will contain a four-bit code for the most significant
decimal digit; the next four bits will contain a similar code for the next
decimal digit entered, and so on. This four-bit code for decimal digits
is called "Binary-Coded-Decimal". Remember that a complete BCD (Binary
Coded-Decimal) number, signed, as it occupies 29 bits of a word in the com
puter, is not the binary equivalent of the represented decimal magnitude,
signed. As an example, suppose we entered the decimal number, (7196323-)
into the computer, digit-by-digit. In 23.00 we would have:

011100011001011000110010001zj1

representing

7 1 9 6 3 2 3 -

The problem now is to convert this code into a true, corresponding, bi
nary magnitude. Let's treat the seven-digit decimal number entered as
an integral number, so that

7196323 = 7·106 + 1·105 + 9·104 + 6·103 + 3·102 + 2·101 + 3·10°.

Now consider the first four bits of the BCD number in 23.00: they re
present a multiple of 106. If we had, stored in the computer's memory,
as a constant, a binary value for 106, we could multiply that value by
the four-bit multiplier (in this case, 7(10)-0111). Similarly, we could
multiply each digit times the corresponding binary equivalent of a power
of 10, and, when we added all these products together, the sum would be
the binary equivalent of the original decimal number. Because the dec
imal number was integral, so would the binary equivalent be integral.
In order to prevent overflow in the additions, we would have to be sure
to scale each individual product in such a way that their sum could not
possibly overflow out of the most significant bit-position in the accu
mulator. The maximum decimal number which could be specified is 9999999.
Since this is less than 224, twenty-four bits would be sufficient to ex
press it. Therefore, if the individual products are scaled 2-24 in the
computer, no overflow can result from their sum; of course they will all
have to be scaled similarly. It is convenient, however, to scale a con
verted decimal integer 2-28, for other reasons, which will be discussed
later. This will be alright; it merely means that the binary equivalent
will have at least four leading O's.

The first four bits of the BCD number to be converted to binary are,
of course, scaled 2-4. They represent, in our example, 7. If we
scale the binary equivaient of 106 by 2-24, the resultant product, the
binary equivalent of 7.106, will be scaled 2-28, according to the rules
discussed previously.

The binary (hex form will be used) equivalents of the powers of 10 in
volved in this case are:

- 169 -

106 = 00z4240

105 = 00186u0

104 = 0002710

103 = 00003y8

102 0000064

101 = OOOOOOu

10° = 0000001

Scaled -24
2 '

-28
rather than 2 , these become:

106 = Oz42400

105 = 0186u00

104 = 0027100

103
As these magnitudes would appear

0003y80 in the machine, for our purposes,

102
scaled 2-240

= 0000640

101 = OOOOOuO

10° = 0000010

Now, suppose we clear the two-word registers, and then we store the BCD
number (7196323-), which we wish to convert, in MQ1• Its sign will go
to IP. Since we are loading MQ, it will be added to what is already
there, but we know that is O, since we previously cleared the two-word
registers. The 28 bits of BCD code will be in the 28 most significant
bits of MQ1. Now we load 106.2-24 into IDl, but with a C of 1, rather
than 0. Since this C is not even, the sign of the number will accompany
the magnitude, and will not be sent off to IP; of course the sign will
be O. If ID is loaded with an odd C, the setting of it will not cause
PN to be cleared. We know that PN will contain O's, though, because
we previously cleared the two-word registers. Now suppose we multiply
these two numbers, but allow the multiplication to last only eight word
times, rather than the usual 56. We said previously, we could cut a
multiplication short at any time, provided an even number of word-times
has been allowed, and be able to predict the result in PN. Eight word
times would be just sufficient for four bits from the most significant
end of MQl to be inspected. The effect, in PN, will be to generate the
product of these four bits times the contents of ID. Io other words, in
PN we will have 7'106 scaled 2-28, which is what we want. MQ will have
been shifted left by four bits. Thus the four-bit binary code for the
first decimal digit is gone, and the four most significant bits ·in MQl
contain the next decimal digit, scaled 2-4.

- 170 -

Suppose now, we reload ID1, again with a C equal to 1, with 105 ·2-24•
The sign in IP and the product in PN will remain undisturbed. Now we
can again multiply for eight word-times. The effect will be to gener
ate a sum in PN equal to the old product plus a new one which is, in
our example, 1-105.2-28. The sum will equal (7.106 + 1•105)·2-28.

We can do this seven times in all, arriving at a sum in PN equal to

(7·106+1·105+9·104+6•103+3•102+2·101+3·10°)·2-28

-28 which is the desired answer. It is a binary integer, scaled 2 in
the machine, representing the decimal integer we started with.

This number could be manipulated satisfactorily by a program; as far
as the computer is concerned it is a binary fraction, with the machine
binary point preceding the most significant bit. But, since the deci
mal number may have been scaled, itself, in the decimal system, con
taining fractional digits, this procedure would eventually lead to
misery, since both a decimal and a binary scale factor would have to
be remembered by the programmer. We would like to treat it as a deci
mal fraction in the machine, represented in binary, and, just as we
previously spoke of the machine treating every number as a fraction,
scaled 2-28, we would now like to speak of the machine treating every
number as a fraction, scaled l0-7. If only seven decimal digits are
allowed per number during input, then the machine value will always
be a fraction, if the machine treats this number as scaled lo-7.

But there is something further that must be done to the converted num
ber, as we left it, before we can say it is scaled lo-7 in the machine.
We have a decimal integer scaled 2-28; if we divide it by 107·2-28
(which, in hex, would be represented in the machine as 0989680), we
will truly have in the machine the binary equivalent of a decimal
fraction, and from here on out, we can drop all references to binary
scaling, and speak only of decimal scaling. Therefore, in our con
version process, one more major step is required: we have an integer
scaled 2-28 in PNo; it is already properly located as the numerator
for a division. If we load the denominator (098968016) into ID1 with
a C of 1, leaving PN undisturbed, we can perform a single-precision
divide, and MQo will contain the quotient. IP will stiil contain the
sign of the number, which is what we want. The quotient will equal
the original decimal integer, call it "D", divided by 107, or D·l07-zO.
We have thus completely eliminated binary scaling, and have substituted
decimal scaling, which jibes more closely with the way in which we are
used to handling numbers.

Applying the same rules here to decimal scaling that we applied earlier
to binary scaling, if we say that

-7
A* = A• 10 ,

where A* is the machine representation of A, we are saying that there
are no fractional digits in A; its true decimal point is seven decimal

- 171 -

places to the right of the machine decimal point, or, following the
least significant decimal digit.

In our problem, we originally chose to allow seven binary digits for
fractional accuracy, in order to carry accuracy at least to the near
est 1/lOOth. Now we can carry accuracy exactly to the nearest 1/lOOth,
merely by rescaling a, b, and c. Rather than enter them as seven-
digi t decimal numbers with the true decimal point following the least
significant digit, we can understand the true decimal point to be to
the left two places allowing fractional accuracy to the nearest l/lOOth.
We are saying, then, that the machine will contain a, b, and c, all
scaled 1Q2.10-7, or lo-5. In other words, the true decimal point is
five decimal places to the right of the machine decimal point, and the
following two decimal digits are fractional, in the true sense of the
word.

This will make the inputs easier (we haven't yet discussed the outputs,
but they will be easier, too), and it will reduce the scaling problems
to a form with which we are familiar. But notice what else it will do;
it will greatly restrict the range of values we can have for these three
numbers, and therefore, for the answers. If seven decimal digits are
allowed for a number, and two of them must be interpreted as fractional,
the range of values for any number is -99999.99 ~ N ~ 99999.99. Compare
this with the ranges we were able to accommodate when we used binary
scaling and did our own conversions of inputs and outputs.

Whether you decide to use decimal or binary scaling will depend to a
great deal on the requirements of your particular problem, but you
should always be aware that operation of the computer is essentially
designed for work with binary numbers representing binary quantities.
Once you become familiar with the new number system, you will find it
no harder to use than the decimal number system; as a matter of fact,
you will find it easier.

The flow diagram of our computation will be simplified, if we treat
the numbers in the machine as decimal numbers. Notice that we will
again resort to double-precision numbers in order to retain both wide
range and the necessary accuracy. Notice also the mental gymnastics
we play in order to avoid repositioning an answer by shifting. Shift
ing rescales a number in a binary manner. It will not usually be
adaptable to dealing with decimally scaled numbers.

a~AR, clear & add

AR---,AR, add

Store 2a----;>memory

-5
a•lO

-5
2a·lO

-5
2a·l0

-----t Test Overflow
on

off

Clear 2-wd. reg.'s

PN0 1 ~memory
'

4ac ~PNO, 1 , subtract

-----i Test Overflow
on

off

---~,.. AR, C = 1

lf-----tTest sign of AR (neg.)
yes

no

Return command~AR

- 172 -

-5
4a·l0

-5
4a·l0

-5
c·lO

sign of radicand in AR

- 173 -

Mark, transfer to
square root subroutine

Return

PN 1 __..memory

b-+AR, clear & subtract

/b2-4ac ~AR, ad

.-~~~-1Test Overflow
on

off

AR----+AR, recomplement

Clear 2-wd. reg.'s

AR---.rn1

1·10-S~MQl

PN0 1 -.+memory , .•

2a ----l'AR,
Clear & add magnitude

AR~memory

magnitude

-b•lO -5

• . J:;-7r'-;-- - 5 (-o-tV0"--4ac)·lO

(-b+v'h2-4ac)·l0-lO,
let odd word = N

l nf

lnl

.,_--'----I Test sign of AR (neg.)
no

yes

Clear 2-wd. reg.'s

-b+/b2-4ac ~PN
O,l

MQ0 ~memory

- 174 -

b ---?>AR; Clear & Subtract

/b2-4ac ~AR, subtract

-----1 Test Overflow
on

off

AR--+ AR, recomplement

Clear 2-wd. reg.'s

AR~ID1

PN0 , 1 ~memory

N __;_AR
Clear & add magnitude

-5
2a"l0

-~ -10
(-b-+V b ... -4ac) • 10

.. (-b~) -5
x = ·10

1 2a

-b•lO
-5

. 10
(-b-/b2-4ac)•l0- ,
let odd word = N

ln)---.+AR, subtract

___ _,Test sign of AR (neg.)
no

yes

Clear 2-wd. reg.'s

MQ0~memory

HALT

- 175 -

-5 2a•l0

= (-b-Jb2-4ac) •10-5
x2 2a

We have already discussed the manner .in which we treat the input data,
in order to supply this computation program with the numbers it needs,
but, before we flow diagram a new input scheme, we should consider out
put. We will write an input/output program for this case, just as we
did before.

We will, upon completion of the computation, have two answers, each
scaled lo-5, in 19.u7 and 19.u6. These will be binary numbers, but
they will be meaningless to us in their binary form. We must convert
them back to decimal and type out decimal answers. We can indicate
the proper scaling of the answers by the positioning of the decimal
point in the type-out. We know, if these answers are scaled lo-5 in
the computer, each of them should be typed out in the form: SDDDDDPDD.

The method we developed for the conversion of a BCD number to binary
grew directly out of the inspection process~ we developed the binary
equivalent for each multiple of a power of ten, and then added these
binary equivalents. It stands to reason that, from the inspection
process, as it was defined in the Introduction, we can develop a re
verse conversion process for our program, to convert a binary number
to its decimal equivalent.

The binary scaling of our numbers was eliminated by generating a binary
scale factor of 20, and leaving remaining only a decimal scale factor.
If each number, as it appears in the machine actually has a binary scale

•factor of 20, it is truly a fraction. The general rule for converting
a binary fraction to its decimal equivalent is~ multiply the binary

- 176 -

fraction by the binary equivalent of 10, which is 1010. Retain the
integral portion of the product as the coefficient of lo-1 Perform
the same operation on the fractional portion of the product. Retain
the integral portion of the new product as the coefficient of the next
power of 10 in the decreasing series, which would be 10-2. Repeat the
process as often as necessary (the fractional portion of some product
equals O), or until the desired accuracy in the converted form of the
original fraction is achieved.

As an example, consider the conversion to decimal of the binary frac
tion,

7(10)

9(10)

3 (10)

.1011100000111001110101000011
1010

1 0111000001110011101010000110
101 11000001110011101010000110

0111.0011001001000010010010011110
1010

0 0110010010000100100100111100
001 10010010000100100100111100

0001.1111011010010110111000101100
1010

1 1110110100101101110001011000
111 10110100101101110001011000

1001.1010000111100100110110111000
1010

1 0100001111001001101101110000
101 00001111001001101101110000

0110.0101001011110000100100110000
1010

0 1010010111100001001001100000
010 10010111100001001001100000

0011.0011110101100101101111100000
1010

0 0111101011001011011111000000
001 11101011001011011111000000

0010.0110010111111001011011000000
1010

0 1100101111110010110110000000
011 00101111110010110110000000

0011.1111101110111110001110000000

The decimal equivalent of the above binary fraction is .7196323.
Compare the binary equivalent of this fraction with the BCD number
corresponding to this fraction.

We can use the above method to convert each answer generated by our
program to its BCD equivalent. Then we can type out this BCD number
as the answer, so that, on the typewriter, a decimal number will
appear which can be read directly. Of course, the BCD equivalent will •
be in the form of a fraction: it will be a decimal number scaled lo-7.

- 177 -

-5 If we choose to interpret it, as we do, scaled 10 , we can move the
decimal point to the right five decimal places, arriving at a number,
as we have already seen, of the form SDDDDDPDD. Thus, we can use the
output format itself to properly scale the answer, as it is typed out,
so that it can be read directly.

We will place the answer in ID1 and the multiplier, 1010(2)' in MQ1,
in the four most significant bits. When we multiply a number scaled
20 (the answer) by a number scaled 2-4 (the multiplier), we get an
answer scaled 2-4 (the integral portion of the product will be in the
first four bits of PN1). If we had a way of "extracting" these four
bits and saving them, we could then reload ID with the remaining bits
from PN, which constitute the fractional portion of the product, re
load MQ1 with the same multiplier (the first one was shifted out as
it was inspected}, and perform the process all over again. Eventually,
after seven such operations, each time saving the integral portion of
the product, we would have the seven BCD digits corresponding to our
answer. If we had a way of recombining them, end-to-end in one word,
we would have exactly the number we wish to type out as an answer.

EXTRACT, .AND ITS USE IN NUMBER CONVERSION

There is an extract operation available in the G-15. It is called for
by a special command of slightly different form from the other special
commands we have thus far considered. S in this command equals 31;
again the computer will know, since there is no line numbered 31, that
a special operation is being called for. C equals 0. Any destination
may be specified. The command will operate during whatever word-time(s)
is (are) specified; it· may be either immediate or deferred. The number
out of which certain bits are to be extracted must be in line 21, in
whatever word you desire (of course, you must be sure that it will be
in the word available during the word-time of execution of this command).
In the corresponding word of line 20, there will be a "mask", which will
specify to the computer which bits you wish extracted. The mask in line
20 will contain a 1 in each bit-position to be extracted, a 0 in each
bit-position you wish left behind. For instance, the mask in our case
above, would be: 1111000000000000000000000000, causing only the first
four bits of the product (the integral portion, a BCD digit) to be ex
tracted. The result of the extraction, containing O's in all those bit
positions not extracted, will be transferred to the destination during
the same word-time. The number from which the bits were extracted will
remain intact in line 21, while the mask will also remain intact in line
20.

There is a second extract operation available in the G-15, which causes
exactly the same sequence of operations to occur, with the exception that
the bits extracted from the number in line 21 will be those bits corre
sponding to O's in the mask, while the others, corresponding to l's in
the mask, will be left behind. In short, the extract operation is the
same, but interpretation of the mask is exactly reversed. The command
for this is: S = 30, C = O, D may be any line.

- 178 -

Consider now, the first product we arrived at, on page 176.

01110011001001000010010010011110

This requires more than 29 bits, and therefore, we would have to use
two words in lines 20 and 21. This means we would have to make the
extract operations innnediate for two word-times of execution (T = L3).
We could load this number in line 21, and a mask in line 20, as shown
below (word-boundaries have been ignored):

01110011001001000010010010011110
11110000000000000000000000000000

01110000000000000000000000000000

00000011001001000010010010011110

Line 21 (number)
Line 20 (mask)

Result 1

Result 2

The first extraction, S = 31, yields result 1, in which we have only
the first binary-coded-decimal digit, in its proper position. We
could now store this in memory.

The second extraction, S = 30, yields result 2, in which we have only
the remaining fractional portion of the product, similar to that shown
in the first product on page 176, except that here, there are four
leading O's. This is fine4 if we transfer this to ID (double-precision)
and multiply it by 1010·2- , we will get the second product shown on
page 176, except that it will be removed four places to the right. In
short, this second product will be: 0000000lllll011010010ll0lll00010ll00.
If we load this into line 21, and a mask into line 20, as shown below, we
can perform the extractions all over again:

000000011111011010010110111000101100
000011110000000000000000000000000000

000000010000000000000000000000000000

000000001111011010010110111000101100

Line 21 (number)
Line 20 (mask)

Result 1

Result 2

The first extraction, S = 31, yields result 1, in which we have only
the first binary-coded-decimal digit, in its proper position (the
second group of four bits). We could now store this in memory.

The second extraction, S = 30, yields result 2, in which we have only
the remaining fractional portion of the product, similar to that shown
in the second product on page 176, except that here, there are eight
leading O's. This, again, is fine; if we transfer this to ID and multi
ply it by 1010·2-4, we will get the third product shown on page 176, ex
cept that it will be removed eight places to the right.

We could continue this process until seven multiplications have been per
formed., with all of the accompanying extractions. At that point, we would
have saved seven results from the first extractions, and they would be,

- 179 -

eliminating trailing O's, and expressing them as single-precision
28-bit magnitudes:

0111000000000000000000000000
0000000100000000000000000000
0000000010010000000000000000
0000000000000110000000000000
0000000000000000001100000000
0000000000000000000000100000
0000000000000000000000000011

If we now add these together, we will get=

0111000110010110001100100011

If this were typed out, it would yield=

7 1 9 6 3 2 3

which is the number we expected.

This method will work, and we could program it, but it involves many,
many conunands. Prior to each set of extractions, the product must be
transferred from PN to line 21, and a new mask must be transferred into
line 20. Prior to each multiplication, the two-word registers must be
re-set-up. This method will also require quite a few storage locations
in memory.

The Bendix Computer Division engineers,
always aiming to make life easier for
the programmer, built into the G-15 a
special extract command, designed espe
cially for the purpose of saving bits
in PN and resetting ID for further mul
tiplication. It is a special command:
D = 31, S = 23, C = 3. It may be either
deferred or immediate. In our case, we
will make it immediate, operating for
two word-times, thus covering both halves
of PN and ID.

During each word-time of execution of this command, the word in that word
time of line 02 will serve as a mask for an extraction. The bits in those
bit-positions in PN which correspond to the bit-positions in the mask con
taining O's, will remain in PN. The bits in PN for which there are corre
sponding l's in the mask in line 02 will be transferred to ID. PN will
retain only the results of the extraction which treated the mask in reverse
(extracting bits corresponding to O's in the mask); ID will receive only the
results of the extraction which treated the mask in the normal manner (ex
tracting bits corresponding to l's in the mask). Thus, if we set up masks
in line 02 which will have O's corresponding to the integral portions of
PN, and l's corresponding to the remaining bits (the fractional portions

- 180 -

in PN» we will, through execution of this one conunand, generate the
sum of the integral portions of the products in PN1, while we directly
reload ID for the next multiplication. Remember that the resultant pro
duct, in each case, is moved to the right by four more places, so that
the integral portion of PN, as it grows longer, will never be disturbed
by the succeeding multiplication.

The extractor, or mask, used after the first multiplication will be:

odd word: Ozzzzzz
even word: zzzzzzz

After the second multiplication:

odd word: OOzzzzz
even word: zzzzzzz

After the third multiplication:

odd word: OOOzzzz
even word: zzzzzzz

After the fourth multiplication:

odd word: OOOOzzz
even word: zzzzzzz

After the fifth multiplication:

odd word: OOOOOzz
even word: zzzzzzz

After the sixth multiplication:

odd word: OOOOOOz
even word: zzzzzzz

After the seventh multiplication, no extraction will be necessary:
the seventh BCD digit will occupy the desired four bits, and no fur
ther multiplications are necessary.

The BCD number which results will be the desired answer in decimal.
It can be placed properly in line 19 for type-out under control of
the output format. Several times we have mentioned that we want the
form of the decimal answers, as they are typed out, to be SDDDDDPDD.
Our output format, therefore, for two such answers, will be:

io~olo~o~o~o~p~~o~I 0~1~o~o~p~o~r 0~01,1~o~r 0~1~0~
s o 1 o 1 o 1 1 1 a 1 ~~ 4-f o 1 o o r ~l w o ~I s I s

Word 03 Word 02 Word 01

- 181 -

One further point remains, before we flow-diagram this new input/output
program. We have mentioned, up to this point, that we will reload the
multiplier into MQ1 before each multiplication during the conversion
for output. The multiplier is 1010. Why not place seven multipliers
in MQ1 all at once, and multiply for only eight word-times (therefore
four bits) each time? In that case, our multiplier will look like this:
0101010101010101010101010101. Cutting short a multiplication is fine,
and this will work. But, if we are going.to do this, notice that each
multiplication will end with a multiplication by O. This merely means
to the computer that it is not to add the shifted contents of ID to what
it already has in PN. Why must we tell the computer that? There is no
good reason for it, so we can eliminate the last 0 in each group of four
bits, making our multiplier look like this:

1011011011011011011010000000.

We will limit the word-times of execution of the multiplication, in
each case, to six, meaning that only three bits from MQ1 will be in
spected. The hex equivalent of this binary number is v6xv680.

Now let's flow-diagram the new input/output program, for line 02.

no
yes

23.00--+MQl
-5

(a· 10) (lO}

Gate type-in of b

Mark, transfer to con-
version subroutine

Return

MQ0 ~memory
-5

(a•lO)(2)

Test Ready
no

yes

23.00~MQl
-5

(b·lO)(lO)

yes

- 182 -

Gate type-in of c

Mark, transfer to con
version subroutine

Return

MQ0 --+memory

Test Readyi--------
no

Mark, transfer to con
version subroutine

MQ0 --.!)memory

Clear line 19

Mark, transfer to
line 00

Convert answers

Type line 19

Return

Return

------tTes t Ready,__ _____ _.
yes no

-5
(b•lO)(Z)

-5
(c·lO)(lO)

-5
(c.10)(2)

Notice that, in the preceding flow diagram, we made reference to a
conversion subroutine. This we are also going to write, since we now
know how. It will be in line 02, along with the input/output program.
The mark, transfer connnand need not cause control to be transferred
from one line to another; it may simply transfer control within the
same line to another word-time, as it will do in this case. We need
not supply this subroutine with a return connnand each time we enter it,
because we will code the subroutine with a return connnand already in it.

- 183 -

The reason for th~t provision, as we mentioned earlier, is to allow
very general use of a subroutine by any number of users, all of whom
may not wish to return to the same line upon completion of the sub
routine.

The following is a flow diagram of the conversion subroutine for BCD
to binary, written assuming that the BCD number to be converted is
already in MQ1 •

Clear PN

10102-24

Multiply
T = 8

Divide

- 184 -

6 5 4 3 2 1 (D1 ·10 +D2 ·10 +D3 ·10 +D4 ·10 +D5 ·10 +D6 ·10)·

2-28

100·2-24

(D1 ·106+D2 ·105+D3 ·104+D4 ·103+D5 ·102+D6 ·101

+D •100)·2-28
7

107 ·2-28

(D1lo6+D2105+D3104+D4lo3+D5lo2+D6101+D7100)·20

107

Another conversion subroutine is also necessary in the program, and it,
too, will be in line 02. This is the subroutine for converting the bi
nary answers to their BCD equivalents. When we discussed this conversion
process earlier, we omitted one point at that time, which now must be
mentioned, since you will see provision for it in the flow diagram which
follows.

The least significant BCD digit generated will be 10-7, or 1/107 . This
quantity is a good deal greater than 2-28, or 1/228. For this reason,
the last bit in the binary number prior to conversion can have no effect
on the BCD result. As a matter of fact, 2-23 > l0-7 > 2-24. In order
to arrive at the seven-digit decimal number closest to the value repre
sented in 28 bits, we must round off the binary number prior to conver
sion.

2-28 = .000000003725
13·2-28 = .000000048425
14·2-28 = .000000052150

-28 -7 -28 13•2 _7 is very close to .5·10 ; so is 14•2 • But the latter exceeds
.5·10 , and, faced with a choice, we choose to round up to the next
higher decimal digit only if we are at least within 1/2 of it. We will
therefore choose the smaller of the two round-off numbers, since it will
require a value in the original binary number of more than ,5·10-7. Our
round-off, expressed in hex, will be:

.OOOOOOx

Now we can flow-diagram the binary - BCD conversion subroutine, assuming
the number to be converted has already been placed in AR, with a C of 1.

Round-off----+AR add

Clear 2-wd. reg. 's

v6xv680---:)MQ1

Special extract

Special extract

Special extract

- 185 -

0
(X(2) + .000000x)·2

-1 -2
D ·10 +D 0 10

1 2

-1 -2 -3 -4
D 0 10 +D •10 +D 0 10 +D •10

1 2 3 4

- 186 -

Special extract

Return

The loader program and the square root subroutine will remain the same.
The square root subroutine just "cranks out" square roots of binary num
bers. What those numbers represent makes no difference at all to the
subroutine.

The program tape thus prepared can be read into the computer with an E..
switch action, followed by moving the compute switch to GO. The program
will gate type-in, at which time a must be typed in. Type-in will be
gated again, and this time b must be entered. Type-in will be gated a
third time, and c must be entered. Notice that the program has been
written to make as much use as possible of the time required to type in
a number. You will be unable to type in the number so fast that the
computer will not have to wait for you. After the third type-in, compu
tation will take place, and two decimal answers will be typed out. These
can be read directly, since their decimal points will be properly posi
tioned. Type-in will again be gated, this time for a new set of values.

OTHER PROGRAMMING TECHNIQUES

A commonly needed programming technique remains undiscussed because the
program we have been considering up to this point does not require it.
However, because it is such a common technique, it cannot remain unmen
tioned any longer. It is called looping. Consider the case in which
you are given 50 random positive numbers in 19.00 - 49, and you must sort
them, placing the least number in 00, and the greatest number in 49.

We know that corrun.ands are in the same binary form as constants and data
in the memory of the computer. In fact, we know that the only distinction
the computer can make between commands and constants or data is based on
when it reads the words: if a word is read during RC time, it will be
treated and interpreted as a command; if it is read during EX time, it
will be treated and interpreted as data. Thus, any command could be
treated as data by the computer, if it were read during EX time. A com
mand could be called into AR, and have something added to it, or sub
tracted from it. We also know that a command can be executed out of AR,
the computer being told to do this by a special command, D = 31, S = 31,
C = 0. When this special command is executed, the computer is set up to
take the next command from AR at time N of the special command. After

- 187 -

the conunand in AR is executed, the computer will go to N (of the conunand
executed from AR) in the same conunand line from which it was previously
taking conunands.

The requirements of the proposed problem are to pick a number, say 19.00,
and compare it with all 49 others, each time exchanging if necessary, to
assure that, at the end of the series of comparisons, the least number
of the 50 is in 19.00, and then repeat the process in order to get the
smallest number in 19.01, etc •. The total number of comparisons neces
sary will be:

for 00:
for 01:
for 02:

for 48:
for 49:

49
48
47

1
0

1225 = total number of comparisons necessary.

It's an easy job to flow-diagram the comparison and exchange, if an ex
change is necessary:

I (19.00)~ARc

II (19.0l)~AR+

III
i--------...i(l9.00)~Temp. storage (ID)

yes

go to next
comparison

no
IV

(19.0l)~Temp. storage (MQ)

v
(MQ)-.....,.19.00

VI
----i(ID)~l9.0l

It would be an easy job to write this same sequence 1225 times, each
time for the comparison of a new pair of numbers, but the resultant
program would be too long to store in the memory of the computer. In
the flow diagram above, the next comparison would be of 19.00 against
19.02. The same diagram would be sufficient for our purposes if boxes
II, IV, and VI were modified to affect 19.02, rather than 19.01. We
could then modify them again, to affect 19.03, etc •• Eventually they
would affect 19.49, and after that, we could be sure that the least

- 188 -

number of the 50 would be in 19.00. If, instead of an arrow in the pre
ceding flow diagram pointing to the next comparison, we inserted steps
to modify steps II, IV, and VI, and then drew an arrow going back to step
I, we would be indicating a loop which would be repeated over and over
again, each time comparing 19.00 with a new word from line 19. This loop
would be unending, and this, of course, would be disastrous. We will there
fore establish a limit beyond which the loop will not continue; that limit
will be after 19.00 has been compared with 19.49. At that point we will
continue with the program, and the flow diagram will be as follows:

I (19.00)~ARc

II (19.01)__:__,..AR+

AR neg.?

no

yes

Modify II, IV, VI

-------------1Does II call for 19.50?
no

go to next set
of comparisons
for next number
position (19.01)

yes

III (19.00)~ID

IV (19 .01)---+MQ

v (MQ)---,).19.00

VI (ID)~l9.0l

Now 19.01 must be compared with each succeeding location, resulting in
the placement of the next least value in 19.01, according to the terms
of the problem. This could also be done with a loop involving the above
flow diagram. After the above flow diagram is followed up through the
limit for step II, we can insert steps to modify I, III, and V to affect
the next higher Location in line 19. But, notice that steps II, IV, and
VI will all be set to affect 19.50. They must all be reset, but not to
their original values. Every time the above flow diagram is entered for
a new set of comparisons, steps II, IV, and VI must be set to initially
affect a word in line 19 whose number is one greater than the word af
fected by steps I, III, and IV. New initial values for II, IV, and VI
will have to be set in the program every time I, III, and V are modified.

- 189 -

r-------------------- -----,
Loop B I

I
Set initial values

....---~ for steps II, IV, VI

r--- -----
1 I (19.00)--->ARc

----.,
Loop A

I
I II (19.0l)~AR+

I
I III

l
I

no
yes

I Modify II, IVj VI IV (19.01)-+ MQ

I
I '----tDoes II call for 19.50? v (MQ)----l>l9.00

L~---

Modify I, III, V VI (ID)~l9.0l

I
I
I

Does I call for 19.49?------

I
-----1

I
L-

yes
no

Modify initial values
for II, IV, VI

-- - - ;.._ - ____ ...J

Notice that we have established a limit for the looping back to step I
after modifying it, in order to prevent undesired continued operation
of the program after a certain point. Only 50 numbers are to be ordered;
the fiftieth is in 19.49. When all the preceding ones have been ordered,
the one remaining in 19.49 must be in its correct position and need not
be compared at all. So, when step I would call for 19.49, we wish to
leave the loop, having accomplished all that was originally asked for.

We have, then, in the above flow diagram, two loops, one within the other.
We will call the smaller one (which is operated a varying number of times
per each operation of the larger one) loop A. The larger loop we will
call loop B; it will be operated 49 times. A pass through a loop we will
call an "iteration". The two loops are shown in the above flow diagram.

- 190 -

After we leave loop B, we are done, and the 50 numbers are ordered as
desired. We could. halt at this point, giving the HALT command an N
equal to the starting location of the entire program, so that it could
be repeated again, if desired.

There is one remaining difficulty with this program, as flow-diagram-
med on the preceding page. After it has operated once, steps I through
VI will be modified, and the program would not operate successfully in
another complete pass, from the beginning, without some restoring. Every
program which modifies itself should also restore itself to its initial
condition, so that it can be operated as many times as desired without
having to be reloaded, in its entirety, into the memory of computer. Such
restoration by the program itself is called "housekeeping".·

Housekeeping should be done initially in a program. We will therefore,
further alter the preceding flow diagram, as follows:

Set original values for
I, III, and V

j_
Set original values for
initial values of II, IV,
and VI

:1
:i:: oop B ..

~

l Loop A]]
~

~

l Haltj

The only remaining question is, "how do you modify a connnand in a pro.,.
gram?"

Take step II in the above flow diagram, for instance. It calls for the
transfer of 19.01 to AR+, with the sign changed and via the inverting
gates. A connnand corresponding to this might be:

L p T N c S D

u6 01 50 3 19 29

To modify this command, transfer it into AR: (19.u6)~ARc. Use a
C of 0 to do this. If the command itself is negative, that is an

- 191 -

indication of the fact that the conunand calls for a double-precision
operation; this does not mean that we want to complement the binary
number, however. All we want to do is to modify it in its present form,
by adding a 1 to T. After (19.u6) is in AR, add the following constant
("dununy conunand") to it:

L p T N c s D

u 01 00 0 00 00

This is called a "dummy conunand" because it will never be read and
interpreted as a corrnnand; it is merely a constant, entered in decimal
corrnnand form when making up the program using PPR, for the sake of
convenience. Transfer this constant into AR+. The result in AR will
be:

L p T N c s D

02 50 3 19 29

Now store the present contents of AR into word u6 of the conunand line
containing step II, and the next time this word is interpreted as a
conunand it will be executed at word-time 02.

Notice that the dummy connnand has a prefix of u. Why?
this make the connnand innnediate or deferred? What will
of this on the binary number generated by PPR?)

(Hint: will
be the effect

Rather than actually modify connnands as they appear in a long line
(which would necessarily entail great time delays, since the corrnnand
would have to be picked up from a word in a long line, and then, in
its modified form, be restored into the same word-position in the same
long line), we would like to operate the modified command, in each
case, out of AR, which is always available. Now the problem arises,
if step I places a number in AR, how can we then modify a command there
and execute it from there without destroying the number which was orig
inally placed there by step I? The answer is that we will have to store
the number called for by step I in a short line, then operate step II,
with a destination of ARc, rather than AR+. Then we will place a com
mand in our program which calls for the original number from its short
line temporary storage location. The destirration of this command will
be AR+.

Always be careful, when executing commands from AR, that you don't
destroy valuable data already residing in AR.

INDEXING

"Indexing" is probably the easiest and most convenient way of modifying
and operating a conunand out of AR. It involves a "Base" command, which
is modified by a "Difference" (dummy command), and the result is restored
into the Base, so that, on the next pass, the new base will again be mod
ified, and so on. Usually there will be a "Limit" associated with such

- 192 -

an index. If there is a limit, the modified version of the base will
be checked against it each time, in order to determine whether or not
the limit has been reached. All of this modification and checking will
be done in AR, and the final contents of AR will then be operated as a
connnand (unless the limit has been reached, of course). The sequence of
steps might be:

Base---+ARc

Difference --+AR+

Limit~AR+

Test (AR) for non-o--~--- out
no

yes

Limit~AR+

(AR)~Base

Next connnand from AR

:

Such an index for step II might be:

Base •••••• , 00 50 3 19 28
Difference ••.•.••••.•••• u 01 00 0 00 00
Limit • •.. ,, ..•....•.•.••• 50 50 3 19 28.

These could all be stored in a short line, and thus be available with
out undue delay during the modification process. Notice, in the pre
ceding flow diagram, modification takes place prior to execution of the
connnand, not after. If this is the case, and if we want to use the same
steps for all passes through the loop, in~luding the first, the Base
must start out with a T number one lower than the first word-time at
which we want to execute the command. Notice above that the Base has
a T = 00, even though step II should initially contain T = 01. The pre
vious flow diagrams for this problem must now be revised slightly. Notice
in the revision that not all indices have been assigned a limit, because
we know that some bases can never be increased too far, due to the fact
that their modification is dependant upon modification of other bases,
where limits have been imposed.

- 193 -

Base I~20.00MI---------~

Limit I~ 20.01

Base II --> 20. 02

Limit II~ 20.03

Base III---..> 21.00

Base IV ~21.01 Continue)

Base V ~21.02

Base VI~ 21.03

Difference -4 22. 00

a---~Base I~ARc

Difference ~AR+

Limit I~AR+

Test (AR) non-01---------~
'-----'

yes

Limit I~AR+

(AR)~Base I

Base II~ARc

Difference ~AR+

no

- 194 -

(AR)--+ Base II
22.01 (Base II,

new initial value}

Base III-.+ARc

Difference ---.AR+

(AR)--+ Base III

Base IV~ARc

Difference~AR+

(AR)--. Base IV
22.02 (Base IV,

new initial value)

Base V __.ARc

Difference~AR+

(AR)~Base V

Base VI~AR.c

Difference --:>AR+

(AR)~ Base VI
22.03 (Base VI,

new initial value}

b Base I ---+ARc

Next Conunand from AR

- 195 -

(AR)---+23.00 (Temp.
storage)

Base IV --+ARc

Difference ~AR+

(AR)--+ Base IV

Base VI ~ARc

Difference~ AR+

(AR)--+Base VI

Base II ----.ARc

Difference --+AR+

Limit II ~AR+

Test (AR) non-0 t-----------1~
no

yes

Limit I I--+ AR+

(AR) _.Base II

Next Command from AR

(23. 00) --..AR+

Test (AR) neg.t----------Y"b
yes

no

- 196 -

Next Connnand from AR

Base IV---;.AR.c

Next Connnand from AR

Base V ----:,.ARc

Next Command from AR

Base VI~ARc

Next Cormnand from ARt-------.,.b

The following coding sheets contain the individual connnands in this
program.

Notice that, in the Bases, T = w7 (127), and the connnand, so written,
has deliberately been made inunediate. The eight most significant bits
in such a connnand will be:

(1) 01111111. ••

All of the Bases are initially modified, prior to being executed,
through the addition of a Difference, whose eight most significant
bits are:

(2) 00000001 •••

When (2) is added to (1), the result will bet

(3) 10000000 ••• ,

which will be a deferred command with T = 00. This is what is ini
tially desired. Bases II, IV, and VI are further modified by the
Difference, so that T = 01 prior to their execution for the first
time.

This program, as written, requires slightly less than three minutes
to sort numbers which are already in their proper order, and it re
quires eight minutes to sort numbers in the worst possible arrangement

- 197 -

initially. It is not by any means, a "good" program, because it is
inefficient. Notice that it will exchange numbers which are equal,
and it will "sort" fifty numbers which are already in proper order.

It was written in this manner to demonstrate the use of indexing in
as straight-forward, and uncomplicated, a way as possible.

The "Notes" column on each coding sheet has been left blank, for you to
fill-in, as a review.

FORM
BCD

108-5 .o

G-15 D
PROGRAM PROBLEM:

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

32 33 34 35

36 37 38 39

40 41 42 43

44 45 46 47

48 49 50 51

52 53 54 55

56 57 58 59

60 61 62 63

64 65 66 67

68 69 70 71

72 73 74 75

76 71 78 79

. 80 81 82 83

84 85 86 87

88 89 90 91

92 93 94 95

96 97 98 99
uo Ul U2 U3

U4 us U6

.

50-Word Sort

T
L p or

Lk

00 01

04 u 09

05 (49

06 I u w7

07 I 50

08 I ... u w7

09 u 14

10 (u w7

11 [u w7

12 [u w7

13 [u w7

14 u 19

15

16 ! u 01

17

18

19 20

21 24

25 29

30 31

32 34

33 37

38 40

41 42

43 44

45 46

- 198 -

Los Angeles 45, Cali lorn ia
Page _l_ of i

Prepared by Date:

Line 00

N c s D BP N 0 T E S

04 0 00 00

09 0 00 20

49 0 19 28 ~ Limit I
-

51 3 19 28 Base II
..,

51 3 19 28 I Limit II -
-

49 0 19 28 I Base I

14 0 00 21

60 0 24 19 - Base V

u4 0 25 19 -~ Base VI
-1

52 0 19 28 I Base III

58 0 19 28 ~ Base IV

19 0 00 22

Base VI

00 0 00 oo -m Difference

Base II

Base IV

21 0 20 28 a

25 0 22 29

30 3 20 29

32 0 28 27

00 0 16 31

38 0 20 29

41 0 28 20

43 0 20 28

45 0 22 29

47 0 28 20

FORM
BCD

108-5-0

G-15 D
PROGRAM PROBLEM:

0 1 2 3

4 5 6 1

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

32 33 34 35

36 37 38 39

40 41 42 43

44 45 46 47

48 49 50 51

52 53 54 55

56 57 58 59

60 61 62 63

64 65 66 67

68 69 70 71

72 73 74 75 I
76 77 78 79

80 81 82 83

84 85 86 87

88 89 90 91

92 93 94 95

96 97 98 99
uo Ul U2 U3

U4 U5 U6

SO-Word Sort

T
L p or

Lk

47 49

50 52

53 56

57 60

61 65

66 68

70 73

74 78

79 82

83 84

85 86

87 91

92 96

97 99

uO u3

u4 00

02 04

-;

~ 0 u6 _. xx

49 52

·54 58

59 60

62 66

67 71

72 76

77 79

80 81

- 199 -

Los Angeles 45,California
Page 2.. of _]_

Prepared by Date:

Line 00

N c s 0 BP N 0 T E S

50 0 28 22

53 0 21 28

57 0 22 29

61 0 28 21

66 0 21 28

70 0 22 29

74 0 28 21

79 0 28 22

83 0 21 28

85 0 22 29

87 0 28 21

92 0 21 28

97 0 22 29

uO 0 28 21

u4 0 28 22

02 0 20 28 b

u6 0 31 31

49 0 19 28 _ ~
54 0 28 23

59 0 22 28

62 0 22 29

67 0 28 22

72 0 22 28

77 0 22 29

80 0 28 22

82 0 22 28

FORM
BCD

108-5. 0

- .

G-15 D
PROGRAM PROBLEM:

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 21 I
28 29 30 31

32 33 34 35

36 37 38 39

40 41 42 43 I
44 45 46 47

48 49 50 51

52 53 54 55 (

56 57 58 59

60 61 62 63

64 65 66 67 I

68 69 70 71

72 73 74 75

76 77 78 79

80 81 82 83

84 85 86 87

88 89 90 91

92 93 94 95

96 97 98 99
uo Ul U2 U3

U4 U5 U6
'

- 200 -

Los Angeles 45, California
Page ..1.. of 2.

Prepared by Date:

50-Word Sort Line 00

L
T

N c s 0 BP N 0 T E S p or
Lk

82 84 86 0 22 29

86 87 88 3 20 29

88 89 19 0 28 27

20 23 24 0 20 29

24 25 02 0 28 22
-~ (28 J u6 .. xx 51 3 19

51 52 55 0 23 29

55 57 u3 0 22 31

u3 u4 02 0 21 28

u6.., ~ l xx 52 0 19 28 J
52 54 56 4 28 25

56 58 02 0 22 28
-
~ I 28 :~ u6 _ xx 58 0 19

58 60 63 4 28 24

63 66 02 0 21 28

u6 J I xx 60 0 24 19 I
60 63 02 0 22 28

u6 xx u4 0 25 19

- 201 -

FLOATING-POINT OPERATION

When the range of numbers which is anticipated during a calculation
is either very large or unpredictable, it may become extremely diffi
cult to work with fixed-point data. In such situations, floating
point arithmetic is usually used.

In floating-point operation a data word is divided into two major por
tions, similar in function to the characteristic and the mantissa of a
logarithm. One portion contains a fraction; the other, an integral
power of 2 by which the fraction is to be multiplied. The sign-bit of
the data word is associated with the fraction, as its algebraic sign.
Any arbitrary decision as to how many bits of a word will be used to
express the fraction and how many will be reserved to express the ac
companying exponent of the base of 2 is permissible.

The Bendix programmers have generally adopted the following rule. The
fraction part of the data word is contained in bit positions TlO through
T29. The sign of the fraction is contained in bit Tl of the data word
and the scale factor is contained in bits T2 through T9.

[
I I I I I ft I

Fraction
II I lo I 11
Scale
Factor

s

As Tl of the data word indicates the algebraic sign of the fraction and,
since signed exponents are desirable, the scale factor is formed by
adding 128 to the power of 2. Thus, the range of the scale factor is
0 :S scale factor < 255, while the range of the power of 2 is -128 :S
power of 2 < 127. Therefore, the larger the scale factor, the smaller
the number.that is represented in the fraction or mantissa of the data
word.

In floating-point operation it is often desirable to keep as many signi
ficant bits as possible in the mantissa of a data word and to use the
scale factor to express all leading zeroes. A special command is avail
able in the G-15 that will allow the progrannner to keep all significant
bits of a data word and will also keep a count of how many leading zeroes
were dropped. This command is the "normalize" command. It's normal form
is:

L 54 N 0 27 31.

The "normalize" command operates in the following manner:

1. MQo,l and AR are the only registers involved in the execution
of this instruction.

2. MQO,l will shift left until a 1 bit appears in T29 of MQ1. For
every leading zero that is lost from MQ1 a 1 is added to AR in

- 202 -

-28 the 2 position. A zero will be inserted in Tl of MQo after
each shift.

3. As in a shift connnand, the location for the "normalize" com
mand must be odd.

Unlike some other machines, floating-point arithmetic operations are not
automatic in the G-15. It is up to the progrannner to keep track of the
scale factors and fractions that he is working with. Thus multiplication
and division become rather simple progrannning problems in floating-point
because all the programmer must do is separate the fractional portions
of the numbers from the scale factors, do the multiplication or division
with the fractions, either add or subtract the scale factors to get the
new scale factor of the product or quotient and then combine the product
or quotient with the new scale factor for storage.

Addition and subtraction are now more difficult because the programmer
must compare the scale factors of the numbers to be added or subtracted,
and if they are unequal, must shift one of the numbers until the scale
factors do become equal. He must keep track of the number of shifts to
get the new scale factor of the number. A shift command is available
to help the programmer keep a count of the number of shifts that have
been made. This is a special command and its normal form is:

L 54 N 0 26 31.

This cominand will operate on ID and MQ in the same manner as the shift
command mentioned earlier with the following exception, for each bit
position shift in ID and MQ a one will be added to AR scaled 2-28. If
at any time during the shift the one added to AR causes an end-around
carry in AR, the shift will terminate and no more bits will be shifted
in ID and MQ. Therefore, by using this command the progranuner can either
count the shifts in AR or use AR, loaded with the complement of the num
ber of bit-positions that he desires shifted, to control the number of
shifts. The location of this conunand must be odd so that execution will
start at an even word-time.

The two extract commands previously discussed enable the progrannner to
separate the fraction and the scale factor so that he can operate on them
separately. After the operations have been performed on both the scale
factors and the fraction, the progrannner will want to combine the new
fractions and scale factors for storage. .Another extract conunand is
available for this purpose. Its normal form is:

L T N 0 27 D.

This extract command operates in the following manner:

1. Where there are one bits in the mask at word-time T in line
20, the corresponding bits in line 21 are extracted to word
time T of the destination.

- 203 -

2. Where there are zero bits in the mask at word-time T in line
20, the corresponding bits in AR are extracted to word-time
T of the destination.

Thus, by use of this extract connnand the progrannner can unite his new
scale factor with the new fraction for storage.

From the preceding paragraphs, it can be seen that floating-point opera
tion in the G-15, although it presents a somewhat more difficult program
ming effort, can operate with very large or very small numbers that fixed
point operation could not handle.

MISCELLANEOUS TOPICS TO BE COVERED BEFORE CLOSING

So far, in discussing outputs, we have mentioned the possibility of
either punching or typing the contents of line 19. If it is desired to
get both a tape and a typed copy of the line's contents, two separate
outputs would have to be called for.

On the base of the typewriter, as shown on page 130, there is a punch
switch. If this switch is on when a type-out of line 19's contents is
called for, the characters of output, as well as activating the type
writer, will also activate the punch, and the two outputs will proceed
simultaneously as the result of one command (Type line 19). Of course
the speed of the punch will be slowed down to the speed of the type
writer, which is considerably slower than the normal speed of the punch,
when used alone. This punch switch is merely a physical connection
enabling the pulses which reach the typewriter to also reach the punch.

Of course, the punch switch must be on prior to execution of the "type
line 19" connnand. And so the question arises, "How can you be sure the
punch switch has been manually turned on?" A test corrnnand is available
which tests for this condition. It is a special command, D = 31, S = 17,
C = 1. If the switch is on, the next corrnnand will be taken from N + l;
if the switch is off, the next command will be taken from N.

Normally, you would use this test prior to calling for a type-out of
line 19's contents, if you want to be sure that a tape will also be
punched. The "type line 19" connnand would be available only after the
test was answered affirmatively, the next connnand coming from N + 1.

If the answer is "no", you would normally want to repeat the test until
the switch is turned on. In such a case, it would be desirable to call
the operator's attention to the fact that he is to throw the punch switch
on. It is reasonable to assume that the operator will not be aware of
this desire of yours; he might not even be at the computer (coffee-break,
of course). What then?

There is a special command available (D = 31, S = 17, C = O) which rings
a bell inside the computer once each time it is executed. At N you could
give this connnand, and then go back to the test again. The bell would
thus be rung once each time the test is executed and answered negatively.
Presumably this continuous bell-ringing would cause somebody to come to

- 204 -

the computer. There would be the operating instructions for your pro
gram, containing one all-important sentence: "If the bell continuously
rings, turn on the punch switch."

The ringing of the bell requires a physical action on the part of the
computer: the movement of a solenoid, striking the rim of the bell.
It is a safe bet that, whenever physical action is involved, timing
problems occur. In this case, it is safe to allow one complete drum
cycle execution time for the command. This will be sufficient to cause
the solenoid to ring the bell. Since D = 31 in the "ring bell" command,
PPR will make the command immediate. Set T (the flag) equal to L + 1,
allowing a complete drum cycle of execution.

Solenoids require a recovery time, and, if the solenoid which rings the
bell is not allowed to recover after each ring, it will merely vibrate
against the bell, causing a buzz, rather than a series of individual
rings. Recovery time for this solenoid is three drum cycles. Therefore,
three drum cycles must elapse between executions of the "ring bell" com
mand. These can be achieved through purposeful "bad" coding of connnands,
requiring ''maximum access-time". For instance, the following command
will waste two drum cycles~

L p T N c s D

51 51 50 0 00 00
50 ..

Notice that both the "ring bell" and "test punch switch" commands have
a special S code of 17.

ring bell: T N 0 17 31
test punch switch on~ T N 1 17 31.

The punch switch test will also ring the bell, if a full drum cycle of
operation is allowed (T = L + 1). Of course, recovery time for the
solenoid is still necessary.

Recovery time is also necessary in one other case already discussed in
this text. When type-in is called for, the stop code of the input is
supplied by striking the "s" key. There is a physical contact involved
in/ this action, and that contact will remain closed for approximately
1 10 second (3 drum cycles). If another input or output is initiated
prior to the opening of that contact, the stop code pulse will still be
present, and that input or output will immediately stop.

Therefore, rule: after completion of typewriter input (ready test is
successfully met), allow three drum cycles to elapse before initiating
any other input or output.

concerning punched tape output, one point should be made quite clear.
The reloading of the format will cause a reload code to be punched on
tape. If the tape being punched is later to be read into the computer

- 205 -

(interim storage) you must be sure that it is originally punched under
control of an output format which calls for four full words prior to
the reload.

The number track, mentioned previously, is a timing channel physically
located on the surface of the drum. It occupies a long line similar to
the long lines already discussed, and this long line recirculates once
per drum cycle in the same manner as all other long lines. There is no
way to program the loading of this channel: it is loaded automatically
when the computer is turned on. Two blocks of punched tape will auto
matically be read: the computer will automatically load the number
track with the information from the first; the second should be a loader
program designed to read in a test routine, in the normal manner. The
contents of this block of tape will occupy line 19. Turn-on procedure,
including use of test routines, is fully discussed in the Operating
Manual.

The function of the number track is to affix specific word-times to all
words in memory. At each word-time, in the number track, the T and N
portions of the word contain the number of the next word-time to come up
under the read-heads. The computer compares T's and N's of connnands being
interpreted with the T and N available from the number track, and in this
way is able to determine when to execute or read a connnand.

Page 206 contains a type-out of the number track. The words are typed in
four-word groups, reading from left to right, one group per line. The
first word typed out is u7, and the last is 00. Notice that in all words
except u7, the r/D bit is set equal to 1.

Word u7 is unlik~ any of the others. You would expect its T and N to
contain 00, but this is not the case. The counting of T and N is, of
necessity, modulo 128 (there are seven bits for each). However, there
are only 108 words per long line, and, therefore, only 108 word-times
possible for either T or N. Word u7 in the number track contains 20 in
each of these positions, so that, when this is added to the respective time
counters, they will be cleared to 00 indicating that the next word-time
will be 00. The meaning of other bits set in word u7 of the number track
would require more engineering background than the reader is assumed to
have at this point.

Notice, if you store a connnand in word u7 of a connnand line, and if you
expect your program to read and interpret this connnand at word-time u7,
it will be interpreted simultaneously with the jumping ahead of the counters
by 20 word-times. Therefore, if you want to do this, the T and N portions
of your connnand must equal the desired word-time plus 20 in each case.
For example, if, at word-time u7, you desire to call for the transfer of
word 10 from line 08 to line 09, and then you desire to take your next com
mand at word-time 11, your connnand would be coded in the following manner:

L

u7
11

p T N c

30 31 0

s D

08 09

- 206 -

Numb2r Track

-1414794 yv6v000 yu6u000 y969000
y868000 y767000 y666000 y565000
y464000 y363000 y262000 yl61000
y060000 xz5z000 xy5y000 xx5x000
xw5w000 xv5v000 xu5u000 x959000
x858000 x757000 x656000 x555000
x454000 x353000 x252000 xl51000
x050000 wz4z000 wy4y000 wx4x000
ww4w000 wv4v000 wu4u000 w949000
w848000 w747000 w646000 w545000
w444000 w343000 w242000 wl41000
w040000 vz3z000 vy3y000 vx3x000
vw3w000 vv3v000 vu3u000 v939000
v838000 v737000 v636000 v535000
v434000 v333000 v232000 v131000
v030000 uz2z000 uy2y000 ux2x000
uw2w000 uv2v000 uu2u000 u929000
u828000 u727000 u626000 u525000
u424000 u323000 u222000 ul21000
u020000 9zlz000 9yly000 9xlx000
9wlw000 9vlv000 9ulu000 9919000
9818000 9717000 9616000 9515000
9414000 9313000 9212000 9111000
9010000 8z0z000 8y0y000 8x0x000
8w0w000 8v0v000 8u0u000 8909000
8808000 8707000 8606000 8505000
8404000 8303000 8202000 8101000

- 207 -

Powers of 11211 Hex Powers of 11 10 11

k =no. of pre-zeros k = no. of pre-zeros

2n -n n -n
2 k n 10 (Hex) 10 (Hex) k n

1 1 0 0 0000001 1 0 0
2 .50000000 0 1 OOOOOOu .199999u 0 1
4 .25000000 0 2 0000064 .k28z5w29 1 2
8 .12500000 0 3 00003y8 .k4189375 2 3
16 .06250000 0 4 0002710 .k68xv8vv 3 4
32 .03125000 0 5 00186u0 .ku7w5uw4 4 5
64 .01562500 0 6 00z4240 .kl0w6z7u 4 6
128 .00781250 0 7 0989680 .klux7z2u 5 7
256 .k3906250 2 8 5z5yl00 .k2uz3lxw 6 8
512 .kl953125 2 9
1024 .k9765625 3 10
2048 .k4882812 3 11
4096 .k2441406 3 12
8192 .kl220703 3 13
163~4 .k6103516 4 14
32768 .k3051758 4 15
6553-6 .kl525879 4 16
131072 .k7629395 5 17
262144 .k3814697 5 18
524288 .kl907349 5 19
1048576 .k9536743 6 20
2097152 .k4768372 6 21 Constants
4194304 .k2384186 6 22
8388608 .k1192093 6 23
16777216 .k5960464 7 24 Tr= 3 .14159265
33554432 .k2980232 7 25 .,,..,,= 9.86960440.
67108864 .kl490116 7 26 fiF = 1. 77245385
134217728 .k7450581 8 27 e = 2. 71828183
268435456 .k3725290 8 28 log e = 0.43429448
536870912 .kl862645 8 29 log 2 = 0.30103000

log = 0.49714987

NC-AR

.---C-o_m_m...._a_n_d_L..._in-e--... 0
SELECT. INDIC.

If LIT,
Next Command

from AR

READY
Light

- 208 -

DOUBLE
PRECISION

O'FLO GO HALT

000
D.A.

DB-PR P - SIGN

00
TEST

0 PROD./QUOT •
Sign lndic.

If LIT, Next
Command from N + 1

instead of N

- 209 -

INDEX

Abbreviated Format (see Input/Output System)
Absolute Value (see Magnitude)
Access Time, 10, 150, 152, 159-161
Accumulator

Double Precision (see PN Register)
Single Precision (see AR Register)

"Add", 20, 103
"Add Magnitude", 22, 25, 103
Address, 7, 10-11, 15, 66

of next command, 16, (see also Next Command)
Analysis (see Problem Analysis)
Arithmetic Operations, 20-27, 33-41, 202
AR Register, 11, 20

Bell (see Ring Bell)
Binary-Coded-Decimal (see Decimal Inputs)
Binary Point

in machine (see Machine Point)
true, 91

Binary Scaling (see Scaling)
Bits

ordering of, 6
Blank Leader (see Leader)
Block of Punched Tape, 18, 138, 140
Block Operations, 25-26, 68-69, 163-165

"Bootstrap" (see Loader)
Break-Point Operation, 16, 141-142

"C" Codes, 13-15, 64-66
Characteristic (CH), 61-66
Check Sum, 162
Clear (see Erase)

"Clear & Add",. 20, 103
"Clear & Add Magnitude", 22, 25, 103
"Clear & Subtract", 21, 62, 103

Coding Sheets, 152-158
Command

binary form, 60-61
decimal form, 13, 150-151, 162
modification of, 122, 186-191, (see also Indexing)
ordering of, 69

next command from AR, 51, 122, 186-187, 191
parts of with respect to computer operation, 13-17, 61-70, 141-142,

205
restoration of (see "Housekeeping")
special (see Special Command)

- 210 -

Connnand Line, 28, 69-70
selection of, 134

Complement, 23-24, 63-64
Complementation (see Inverting Gates)
Compute Switch, 17, 130, 142, 167
Control Information (see Timing)
Copy, 13-14
Copy via AR, (see Transfer via AR)
Cycle, drum (see Drum Cycle)

Debugging, 141-142
Decimal Conunand (see Command)
Decimal Inputs, 31, 167-168

conversion to binary, 28-30, 168-170
Decimal Scaling (see Scaling)
Decision-Making (see Test Connnands)
Deferred Connnand, 15, 69, 160
Destination, 15, 66-68
Divide, 39-40, 76-84

considered as a ratio, 81-82
round-off (see Round-Off)

Double Precision, 11-12
Drum Cycle, 8
Drum Revolution, 6
Drum Memory, 5-13

Enable Actions, 17, 133-134, 142
Enable Switch, 17, 130, 133, 142
End-Around-Carry, 106-108
Erase, 8-9
Erase Head, 8-9
Exchange AR with Memory, 13-15, 61-62, 163-165

D = two-word register (see Two-Word Registers)
Extract, 44-47, 177-180, 202-203

Fixed-Point Operation (see Scaling)
Flag (see Innnediate Command)
Flip-Flop

sign, 131
Floating-Point Operation, 201-203, (see also Scaling, Floating-Point)
Flow Diagrams

description of, 4-5
Format (see Input/Output System)

Halt Connnand, 56, 111
"Housekeeping", 190

- 211 -

ID Register (see Two-Word Registers)
Innnediate Connnand, 16, 18-19, 68-69, 160
!ntmediate-Deferred Bit, 68
Indexing, 50, 191-196
Input/Output System

commands, normal, 18, 142-143
enable actions (see Enable Actions)
normal inputs, 17, 128-133

punched tape, 18, 140
typewriter, 17-19, 30-31, 128-134, 204

drawing of, 130
normal outputs, 51-52

abbreviated format, 162
format, 52-55, 135-136, 138, 204-205
punched tape, 54, 134-139, 145-147, 162-163, 203-205
typewriter, 140-141, 203-204

ready (see Test Ready)
requirements, 127
simultaneous with computation, 19, 144
stop code, 132, 136, 140

recovery time for S key, 204
Introduction, 1-3
Inverting Gates, 13, 61, 67, 106
IP Flip-Flop (see Two-Word Registers, use of, in multiplication)

Leader, 145-147
Loader Program, 60, 147-149
Logical Addition, 27, 51, 143
Logical Operations, 42-47
Long Lines, 6-7
Loop

simple, 47-49, 145
through connnand modification and indexing, 50-51, 186-196

Machine Point, 89
Magnitude

of a number (see following: "Clear & Add", "Add", and "Subtract")
Mark & Transfer, 28, 29, 114-121
Mask (see Extract)
Maximum Access (see Access Time)
Memory (see Drum Memory)
M~thod of Solution; 3-4
Millisecond, 8
Minimum Access (see Access Time)
MQ Register (see Two-Word Register)
Multiply, 35-38, 70-75

Round-Off (see Round-Off)

- 212 -

Neons, front panel, 18, 132, 208
Next Connnand (see Connnands, ordering 'of)
Next Connnand from AR, 51, 122, 186~187, 191

''Normalize", 201-202
Notes, 16
Number

BCD (see Decimal Inputs)
conversions, 27, 28-30, 55, 168-170, 175-180, 182-186
machine form, 89
table of powers, 207

Number Track, 12-13, 26-27, 205-206

Operand, 15, 66
Operation Code

special (see ppecial Operations)
Output (see Input/Output System)
Overflow (see also Test)

definition, 33
indicator, to turn off, 34, 111-112
resulting from divide, 80
temporary, 79

Photo Reader, 18
PPR (see Program Preparation Routine)
PN Register (see Two-Word Register)
Precession, 163-165
Prefix, 16, 18, 151

"Princeton" Round-Off (see Round-Off)
Problem Analysis, 3
Problem Method (see Method of Solution)
Program Preparation Routine, 13, 18-20, 59-60, 150-151, 160-163, 165-167
Psuedo-Connnands for PPR, 151, 162, 165-167
Punched Tape (see Input/Output System)
Punch Switch, 130, 203-204

Range of Values
associated with scaling, 97-100, 171

Read Heads, 6, 8-9
Ready (see Test Ready)
Recirculating Memory, 8-9, 67-68
Recovery Time, 204
Relative Timing Number, 36, 39
Rescaling, 91-92
Return Connnand, 29, 114-121, 142
Return Line, 29, 114 ·
Revolution, Drum (see Drum Revolution)
Ring Bell, 203-204

- 213 -

Round-Off
after division, 82
of binary number prior to conversion to BCD, 184

Scaling, Fixed Point
binary, 89-97
decimal, 32-33, 170-171

in BCD output, 175, 180
Scaling, Floating Point, 201-202
Selector, Source & Destination, 67
Self-Destroying Loader (see Loader)
Set Ready, 146-147
Shift, 42-44, 93-94, 201-202
Short Lines, 9-12
Sign Flip-Flop (see Flip-Flop)
Sign Time (see Bits, ordering of)

"Single-Cycle", 142
Single-Double Precision Bit, 61, 64-66
Solenoid, 204
Special Commands, 16-17, 18, 70

table of, 56-59
Sorting, 186-197
Source, 15, 66-68
Stop Code (see Input/Output System)

"Store", 103
"Store Magnitude", 22
"Subtract", 14-15, 20, 62, 103
"Subtract Magnitude", 110
Subroutines, 27, 113, 118

square root, 40

"T" Numbers
pertaining to bits, 6

Temporary Overflow (see Overflow)
Test Connnands, 19, 105-109

non-zero, 41, 109
overflow, 33-34, 106-108
punch switch on, 109, 203-204

and ring bell, 204
ready, 19-20, 108, 143
sign of AR negative, 41, 108

Timing (see Machine Time}
Problems where physical action is required, 204

Timing and Control Information, 12, (see also Number Track)
in innnediate connnands (see Innnediate Connnands)
relative timing number (see Relative Timing Number)

"TO" Pulse, 12
Transfer Control (see Mark & Transfer)

Transfer via AR
divide, 82, 84
multiply, 82-23

Two-Word Registers, 10-12

- 214 -

double precision accumulator, PN register, 11, 21
exchange of AR with memory, D = two-word register, 13-15
sunnnary of rules, 37-38
use of, in division, 39-40, 76-84
use of, in multiplication, 35-38, 70-75

Word-Time, 6-7, 8, (see also Number Track)
as part of address, 15, 66

"Working Memory", 7
Write Heads, 6, 8-9

	0000
	0001
	0002
	0003
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214

