
~ ........ DIVISION OF BENDIX AVIATION CORPORATION 

5630 Arbor Vitae Street, Los Angeles 45, California 

BITS OF MEANING 

__ .. 

0 
c:::::i 
0 

+ 

x 

I 000 I I 00 I I I 0 I I 000 I I I 0000 I I 0 I 0 
+ 00 I 000 I I 0 IO I I I II 000 I 0 I I I 00 I I 0 X 

I 0 I I 00000I0010 I I I 000 I 00000000 f (x} 



INTRODUCTION TO THE BENDIX G-15 

One of man's first problems was to find shelte·r; he solved it by walking 
over the land until he found a cave. This was a simple, direct solution 

to a simple problem. As centuries 
merged into Ages, he faced more prob
lems and learned and remembered more 
facts; concurrently his brain became 
more active. His thinking-power in
creased, both in rate and complexity 
so that he faced more problems and 
learned more facts, at an ever-increas
ing rate. Thus caught in a maelstrom 
of mental activity, man swirled dizzily 
into the present. Because of the in
creasing complexity of the problems, 
men were forced to become specialists, 
dividing the problems into subproblems, 
and then dividing the subproblems, and 
so on. One of the categories in which 
some men specialized was mathematics. 

Other men came to the mathematicians for solutions to those problems whose 
factors could be expressed numerically. But the mathematicians soon found 
that two types of problems were arising more and more frequently: 

1. problems of such complexity that their solutions were impossible 
by the pencil-and-paper method; 

2. problems whose solutions for any given case were possible, but 
which had to be repeated for case after case, until they became 
so time-consuming that the mathematicians had no time left for 
other work. 

So the mathematicians turned to the engineers, and asked for development 
of machines to help men in the generation of solutions, by increasing the 
speed at which each mathematician 
could work. The engineers respond
ed with various assorted combina
tions of keys, wheels, gears, cams, 
etc., which were referred to as 
"calculating machines". A calcula
ting machine was placed on a mathe
matician 1 s desk and called a "desk 
calculator". This man-machine sys
tem generated solutions at a highly 
increased rate, making possible more 
solutions per mathematician. 

But the increased demands upon mathe-
maticians soon surpassed even the most efficient man-machine system so far 
devised. Engineers were called on again, and this time they switched to 
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electronic equipment. Use of electronic circuits greatly reduced the 
time necessary to perform arithmetic operations, to the point where 
a single operation, such as an addition, could be performed in a few 
microseconds ( 1 ths of a second). This new type of machine was 

1000000 
called a "digital computer". 

Some engineers did not switch entirely to electronic circuits: they 
combined them with the mechanical features of the old calculating mach
ines, developing a computing machine which used mechanical operations 
to represent arithmetic and physical quantities, such as degrees of 
rotation of a shaft, to represent quantities, or numbers. This type 
of computer is called an "analog computer". The accuracy of an analog 
computer is limited by the accuracy with which a physical quantity can 
be measured. 

The digital computers, using electronic circuits, represent numbers and 
quantities with digits, and any desired degree of accuracy can be ob
tained through adding more digits. Therefore, greater accuracy can be 
obtained in this type of computer. Most digital computers are general 
purpose, designed for a multitude of uses, scientific and commercial. 
Because the Bendix G-15 is a digital computer, we shall limit our dis
cussion to digital computers. 

A digital computer consists essentially of five 
sections: 

1. Input section, through which it assim
ilates data and control information; 

2. Storage section, called ''Memory", in 
which it stores assimilated data and 
control information; 

3. Control section, in which it interprets 
the available control information; 

4. Arithmetic section, in which it performs arithmetic operations 
on the available data, as indicated by the Control section; 

5. Output section, through which it communicates solutions to the 
outside world. 
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The first digital computers were very 
large and very expensive, leaving many 
individuals and companies without the 
ability to purchase or lease one. As 
these people sank deeper and deeper into 
the vortex of problems, Bendix Aviation 
Corporation came to their aid by estab
lishing the Bendix Computer Division, 
which developed a low-cost, medium-sized 
general-purpose computer, called the 
"G-15 11 • 

WHAT IS A PROGRAM? 

A digital computer is capable of automatically receiving information 
from an external source, storing numbers representing data and control 
information in memory, transfering them from memory to the arithmetic 
element, performing specific operations on them, and transfering the 
results from the arithmetic element back to memory, and transmitting this 
information to the outside in intelligible form. In order for the computer 
to perform these operations, some control information (instructions) must 
be supplied to it. A sequence of individual instructions designed to 
accomplish a specific purpose is called a program. A program designed to 
work on specific data numbers in the computer is also stored in the memory 
of the computer, along with the data upon which it will operate. Because 
the computer can read only numbers, individual program instructions must 
be coded in number form, and this means the computer must be able to dis
tinguish between data and instructions. Instructions coded in numerical 
form are referred to as "c01mnands". 

COMMAND vs. DATA 

The distinction the computer makes between data and commands is based 
upon the time during which a number is inspected. There are two types 
of machine-time connnon to all digital computers: read-command-time (RC), 
during which COIIllllands are interpreted, and execution-time (EX), during 
which commands are executed. If a number is inspected during RC, the 
computer will regard it as a command; if it is inspected during EX, the 
computer will regard it as data. Following each RC there will be an EX, 
and following each EX, unless the computer is stopped by the execution of 
a command, there will be an RC. 

ORDER OF COMMANDS 

An order of commands has thus far been implied; for any given command, 
except the first, another can be found which must precede it, and its 
operation on data is dependent up.on the execution of the previous com
mand. There are basically two ways of determining such an order. The 
first is by building a predetermined sequential order into the machine, 
electronically. In this case, a program may be started at a given lo
cation in the memory, and, from there on, until the computer is cOlillllanded 
to stop, commands will be taken, one at a time, from each succeeding 
memory location, in order. Thr progrannner can deliberately insert a com-
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mand at any point, which will, upon execution, tell the computer to 
break this sequence and start a new one, beginning at a new memory 
location. 

The second method of ordering commands is by program control, in which 
each command contains, among other information, the memory location of 
the next command to be obeyed. In this manner, the logical path follow
ed by the computer is determined by the programmer. Such an ordering of 
commands is used in the Bendix G-15. 

MEANINGS OF NUMBERS 

Thus far two possible uses of a number have been discussed, and a third 
has been implied. The two which have been discussed are: 

1. to represent quantity, and 

2. to logically express, in the form of a numerical code, an 
instruction. 

The third use, which has been implied, is to designate a location as 
an address. Every number in memory, whether it be a conunand or data, 
has a unique address. A command calling for an operation to be per
formed on a data number must contain, as well as a numeric code for 
the operation, the address of the data number (operand). The address 
of an operand in no way describes the quantity represented by the op
erand, any more than the address of a house describes the contents of 
the house. 

In some computers, and the G-15 is one of them, each connnand must also 
contain the memory location (address) to which the operand is to be 
transferred. This is because not all operands are destined for the 
arithmetic element every time they are called for; it is possible, and 
sometimes desirable, to merely transfer a number from one location to 
another, within memory. 

G-15 COMMAND 

The basic parts, then, of a G-15 command, are: 

1. Operation code; 

2. Address of operand; 

3. Address to which operand is to be transferred; 

4. Address of the next cormnand to be obeyed. 

MACHINE FORM OF A NUMBER 

Numbers in the G-15 are in a form different from the customary decimal 
form. 
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Since we have ten fingers, we count in groups of ten; the G-15 has no 
fingers, being of an advanced design, but it has two electronic states 
between which its components will fluctuate: "ON" and "OFF". The G-15 
therefore desires to count in groups of two. Counting in groups of ten 
requires ten digits, 0 through 9; counting in groups of two requires 
only two digits, 0 and 1. When we say we count in groups of certain 
magnitude, we are really stating by implication that we are using a 
certain number system, in which any quantity can be expressed by a 
unique series of available digits within that system. An infinite 
number of such systems can be defined, each having a different number 
of unique digits. 

Similarly, we grew up among people 
who speak the English language, so 
we speak English; the G-15 is the 
child of electricity and magnetism, 
who do not speak English, but who 
speak only in terms of existance or 
nonexistance, i.e., "ON" and "OFF". 
Instructions, in order to be intel
ligible to the G-15, must be exress
ed in these "ON-OFF" terms, or as a 
series of O's and l's. As has been 
mentioned previously, instructions 
for the computer are coded in numer
ical form, and these numbers are 
called "commands". 

All numbers in memory, whether they be data or commands, are referred 
to as '~ords", and each word has 29 digit-positions. The number sys
tem in which numbers are expressed as a series of digits, each having 
either of two possible values, is called the binary number system; of 
course the number system which utilizes ten unique digits is the deci
mal number system. 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 

NUMBER SYSTEMS 

Any number system has a 
system. equals the base. 
Binary Decimal 
O} Base 0 
1 = 2 1 

2 
3 
4 Base 
5 = 10 
6 
7 
8 
9 

base; the number of unique symbols in the 

Sexadecimal 

0 10(10) 
1 11(10) 
2 12(10) 
3 13(10) 
4 14(10) = y 
~ 15(10) = z 

= u 
= v 
=w 
=x 

7 
8 
9 

Base 
= 16 
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Quantities are expressed in any number system by a series of digits 
ordered about a base point. Integral values are represented to the 
left of this point; fractional values, to the right of it. In a given 

= 

abcd.efgh(lO) 

a x 103 
+b x 102 
+c x 101 
+d x 10° 
+e x 10-l 
+f x 10-2 
+g x 10-3 
+h x 10-4 

series of digits, as you move to the 
left, away from the base point, eacli 
digit-position represents a positive 
power of the base one greater than 
that represented by the preceding 
digit-position. The first digit
position to the left of the base 
point represents units, or the base 
raised to a power of zero. As you 
move to the right, away from the base
point, the represented powers of the 
base increase by 1 in a negative di

rection, starting at the minus one power of the base innnediately to 
the right of the point. 

With a knowledge of the number system employed, you can interpret a 
number written in that system: 

Binary Decimal Sexadecimal 

11001.101(2) 1765.49(10) x23y.z6(l6) 

= 1 x 24 = 1 x 103 = x x 16~ (13 x 163) 
+l x 23 +7 x 102 +2 x 161 
+o x 22 +6 x 101 +3 x 160 

16~i· +o x 21 +5 x 10° +y x 16_1 (14 x 
+l x 20 +4 x 10-l +z x 16_2 (15 x 16 ) -1 10-2 +l x 2_2 +9 x +6 x 16 
+o x 2_3 
+l x 2 

NUMBER CONVERSIONS 

Note that, in the above example, when we "interpreted" the Binary and 
Sexadecimal numbers, what we really did was to convert them to unique 
corresponding decimal values. For most of us this is the only number 
system in which we feel "at home", and, when we are faced with pictur
ing the quantity represented by a number in any other system, we must 
convert that number to a decimal number. Since the computer works in 
binary, and you and I work in decimal, it is apparent that we must be 
able to handle each number system and convert numbers from each system 
to the other with ease. It is also apparent that, if these conversions 
are possible between binary and decimal, similar conversions are possi
ble among all number systems. This, of course, is true, because: 

1. a given quantity can be expressed in any number system, to any 
desired accuracy, by a unique number, and 

2. all expressions of the same quantity are equivalent. 
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One method of number conversion is ''by inspection". For example, given 
the binary number, 

1100111.101(2 )' 

to be converted to its decimal equivalent, we can inspect the number 
digit-by-digit and generate an equivalent decimal number to represent 
the same quantity: 

1100111.101(2) = 1·26+1·25+0·24+0·2 3+1·22+1·2 1+1·2°+1·2-1+0·2-2+1·2-3 

= 64 + 32 + o + o + 4 + 2 + 1 + 1/2 + o + l/s 

= 103 5/s = l03.625(lO)' 

Or, given the decimal number, 

103.625(10)' 

we can inspect it, and, through the reverse of the preceding process, 
we can extract from this decimal number each power of 2 which is con
tained in it. When we have done 
this, we will have all the informa
tion necessary to generate a unique 
binary number as a series of binary 
digits7around a binary6point. Since 
128(=2 )>103.625>64(=2 ), we know 
that the coefficient for each power 
of 2 greater than or equal to 27 must 
be O; the binary number we generate 
can have any number of leading O's, 
but usually we don't write them. 
The first non-0 coefficient of a 
power of 2 is in the 26 digit-posi
tion; this coefficient is 1. After 
26 has been extracted from 103.625, 
39.625 remains. This, in turn, is 
inspected for the highest power of 
2 it contains. This process is re
repeated until the entire number has 
been converted; for each power of 2 
found during the inspection, a 1 is 

Decimal 

103.625 
- 64.000 = 26 

' 39.625 5 
32.000 = 24, 

7.625 < 23, 
7.625 < 22, 
4.000 = 2 ' 
3.625 
2 .ooo = 21, 
1.625 0 
1.000 = 2 , 

Binary 

o. 625 -1 
0. 500 = 2 -2' •• 
0.125 < 2_3,·:· 
0.125 = 2 , •• 
0.000 

placed in the binary number, and for each power of 2 not found, a 0 is 
placed in the binary number, as shown in the above example. 

= 1 1 0 0 1 1 1 1 0 1 (2) 

Note that an even fractional value in one number system may, upon 
conversion to another number system, yield an unended fraction: 

1/10 = 1/16 + 1/32 + 1/256 + 1/512 + ••• 



- 8 -

In such a case, of course, the conversion by inspection is carried to 
the desired degree of accuracy in the new number system. 

You can see that conversion of numbers from one system to another by in
spection becomes progressively more difficult as the magnitude of the 
number increases or as the length of the fractional part of the number 
increases. Fortunately, a general rule for number conversions can be de
rived from the inspection method. First, note that an integral value in 
a given number system must be equivalent to a unique integral value in any 
other system. Similarly, a fractional value in a given number system must 
be equivalent (or nearly equivalent) to a fractional value in any other 
system. With these two points in mind, reconsider the conversion of 
103.625(10) to its binary equivalent, treating the integral and fractional 
parts separately. 

If we divide 103 by 2, we will determine whether or not 103 is an exact 
multiple of 2. We will also know how many times greater than 2 it is. 
Conversely, we will also know if 103 is not an exact multiple of 2. In 
such a case, the remainder can be no greater than 1, and this remainder 
will indicate that 1 (or 1·20) must be added to some multiple of 2 in 
order to yield 103. 

51 , remainder = 1, 
2/103 

or, 
(51°2 1) + (1.2°) = 103(10)' 1. 

If we now proceed to divide 51 by 2, we will determine what multiple of 
2 it contains, and whether or not it also contains a remainder = 1. 

25 , remainder = 1, 
2/51 

or, 1 0 2. (25·2 ) + (1·2 ) = 51(10)' 

By substitution in (1), we get 

~25·2 1 ) + (1.20~ • 21 + (1·2°) = 10\10)' 

(25·22) + (1·21) + (1·2°) = 10\10). 

We can continue this process until no more divisions are possible, and 
the remainder in each case will equal the coefficient of some positive 
power of 2 in the ascending order, 20, 
21, 22, etc., as shown in the following 
series of divisions, where the remainder 
in each case is shown to the right of 
the dotted line. Associated with each 
remainder is a corresponding term in 
the binary expansion of 103(10)• We 
can then write these remainders as a 
sum equal to 103(lO): 

1·26+1-2 5+0-24+0-2 3+1.22+1.2 1+1·2° = 

0 
2/1 
2/3 
2/6 

2/i2 
2/E 
2/51 

2/163 

103(10)' 
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And thus we have determined the unique binary number equivalent to 
103(10) : 

1 1 0 0 1 1 

Similarly, for the fractional part of the number, if we multiply .625{lO) 
by 2 and achieve a result equal to 1.000(10), we know that this fractional 
number is exactly equal to 1/2 (2-l). If the result is greater than 1.000, 
the original fractional number is greater than, and thus contains, 1/2. 
If the result is less than 1.000, tpe original fractional number is less 
than, and thus does not contain, 1/2 • 

or, 
3. 

• 625 
x 2 
1.250, 

-1 -1 
(1·2 ) + (.250·2 ) = .625(10) • 

If we now proceed to multiply .250 by 2, we will determine whether or 
not it contains 1/2. 

or, 
4. 

.250 
x 2 
0.500, 

-1 -1 
(0·2 ) + (.500·2 ) = .250(10) • 

By substitution in (3), we get 

(1·2-1) + [0-2-1) + (.500·2- 1~ • 2-1 = .625(10) -, 

= .625(10) • (1·2-1) + (0·2-2) + (.500·2-2) 

We can continue this process until no more multiplications are possible or 
until the desired degree of accuracy in the binary result is achieved, and 
the integral value in each case (O or 1) 
will equal the coefficient of some nega
tive power of 2 in the descending order, 
2-l, 2-2, 2-3, etc., as shown in the fol
lowing series of multiplications, where 
the integral value in each case is shown 
to the left of the dotted line. Associ
ated with each integer is a corresponding 
term in the binary expansion of .625(10)• 
We can then write these as a sum equal 
to .625(lO) : 

-1 -2 -3 
1•2 +0·2 +1•2 = .625(10) • 

I 
~625 

2 
1·2-l rv 1 250 

-2 
0·2 ~ 

-3 
1·2 ~ 

2 
0 500 

2 
1 000 

And thus we have determined the binary equivalent of .625(lO) 

.1 0 
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By combining this with the previously derived integral binary value for 
103(lO)' we get 

103.625(10) = 1100111.101(2). 

If the above methods work for the conversion of decimal numbers to binary, 
it stands to reason that they will also work for conversions between any 
number systems. This is true, although a proof of it will not·be includ
ed here. 

The general rule we can derive has two parts: 

Part I: The integral part (x) of a number in the system with base = N 
can be converted to a unique corresponding integral part (x') 
of a number in the system with base = M by successively divid
ing x and each succeeding quotient by M(N) until a quotient of 
0 is reached. The first remainder (may equal O) is the coef
ficient of MO, and each succeeding remainder is the coefficient 
of the next succeeding positive power of M, in ascending order. 

Part II: The fractional part (y) of a number in the system with base = N 
can be converted to a corresponding fractional part (y') of a 
number in the system with base = M by successively multiplying 
y and the fractional part of each succeeding product by M(N) 
until a product of 0 or the desired accuracy is reached. The 
integral part (may equal O) of the first product is the coef
ficient of M-1, and the integral part of each succeeding prod
uct is the coefficient of the next succeeding negative power 
of M, in descending order. 

BINARY ARITHMETIC 

Before doing a binary-to-decimal conversion as a further illustration of 
the general rule, we must briefly note that the rules -of arithmetic apply 
as well to binary as to decimal numbers. 

Binary Addition Table Binary Multiplication Table 

0 1 0 1 

0 0 1 0 0 0 

1 1 0 1 0 1 
carry 1 

By inspection, you can see that 010(2) = 2(10) and 110(2) = 6(10)· If 
we add these two binary numbers, we should get the binary equivalent of 

8(10) = 1000(2)' 
010 
110 

1000 
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If we multiply these two binary numbers (010 and 110), we should get the 
binary equivalent of 12(lO)" 

010 
110 
000 

010 
010 
01100 = 12(10) 

We know, from our previous conversion by inspection, that 1100111.101(2\ = 
103.625(10); now we'll convert this binary number, using the derived ged
eral rule. Note that lO(lO) = 1010(2). 

I 1010 
1010/1100111 

1010 
1011 
1010 

1 
1010/1010 

1010 

11 = remainder: 11(2) = 3(lO) 

0 = remainder: 

0 
1010/1 

Q. 
1 = remainder: 

Combining, we get 

.101 
1010 
1010 

1010 
110010 = 110.010 110(2) = 6(10) 

.010 
1010 
0100 

0100 
010100 = 010.100 010(2) = 2(10) 

.100 
1010 
1000 

1000 
101000 = 101.000 : 101(2) = 5(10) 

2 1 0 -1 -2 -3 
1100111.101(2) = 1•10 +0•10 +3·10 +6·10 +2·10 +5·10 ' 

1100111.101(2) = 1 

COMPUTER DATA 

0 3 • 6 2 5 (10) • 

With this preparation, we are now ready to discuss data numbers as they 
appear in the G-15 memory. Two features of the machine already mention
ed are: 

1. the G-15 works in binary only; and 

2. every word (number) in memory has 29 digit-positions (a binary 
digil_ is referred to among computer personnel as a ''bit", and, 
from now on, we will speak of bits, rather than digits). 

Notice that an addition of two words could very well result in a sum 
which would require more than 29 bits for expression. In such a case, 
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the result generated in the computer will be erroneous. An attempt to 
generate a number too large for the computer to hold causes a condition 
called "overflow", which the G-15 is equipped to detect. 

a 
b 
a+b: 

000000000000000000000000000] 
000000000000000000000000000~ 

lDOQQ_OOOOOOOOOOOOOOOOOOOOOOOOO 

If the computer attempts 
to add the two numbers 
shown, the sum will ex
ceed 29 bits. 

It is also important to notice here that the machine has no facility 
for storing or recognizing the symbols, + and -. These, as well as 
all other information, must be represented in the computer in binary 
notation. One of the bits in each word has been set aside for this 
purpose; it is 

TTTTTT 
II 10 9 8 7 6 5 If 3 2. I 

-------------------~ 
Magnitude Sign 

the right-most (least significant) bit, Tl, as shown above. A zero 
here will indicate plus, and a one will indicate minus, to the machine. 
The computer interrogates this "sign" bit before operating on the asso
ciated 28 bits of magnitude. During an addition of two numbers, the 
signs are added, but there is no "carry" from the sign-position into 
T2, the least significant bit of magnitude. Thus, the addition of two 
positive numbers, in the computer, would yield the correct positive re
sult, provided no overflow occurred: 

000000000000000000000000000 
000000000000000000000000001 
000000000000000000000000001 

+l 
+2 
+3 ' 

which is correct. But notice that the addition of a positive and a 
negative number would result in an erroneous answer: 

000000000000000000000000000 -1 
000000000000000000000000001 +2 
000000000000000000000000001 1 -3 ' 

which is incorrect. Similarly, the addition of two negative numbers 
would yield an erroneous result: 

000000000000000000000000000 
000000000000000000000000001 
000000000000000000000000001 . . 

-1 
-2 
+3 ' 

which is incorrect. In order to enable itself to add numbers correctly, 
regardless of sign, the computer "complements" all negative numbers prior 
to addition. The word, "complement" can have any of various meanings when 
used to describe an arithmetic operation; in the case of the G-15, 

1. only negative numbers are complemented, and 
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2. for each negative number possible there is a unique complement, 
formed by retaining the negative sign and the least significant 
bits of magnitude up to, and including the first, least signi
ficant,l encountered, and from there on, changing all l's to 
O's and all O's to l's. 

For example, the complement of 

000000000000000000000000000~1 (-1) is 111111111111111111111111111~1. 

The complement of 

111010110000000000001010110cf. is 000101001111111111110101010~. 

In an addition in the computer, if there is a "carry" out of T29, an 
"end-around-carry" is performed, and the carried 1 is added into the 
sign position (Tl). Following these two rules, the addition of -1 
and +2, shown to yield an erroneous result on page 12, will yield the 
correct result: 

000000000000000000000000000 1 -1 
000000000000000000000000001 +2 , 

complement the negative number, and then add: 

111111111111111111111111111 
000000000000000000000000001 

1 000000000000000000000000000 

000000000000000000000000000 

-1 (complemented) 
+2 

(end-around-carry) 
+l 

which is correct. Similarly, the addition of -1 and -2, shown to yield 
an erroneous result on page 12, will yield the correct result: 

000000000000000000000000000 1 -1 
000000000000000000000000001 1 ~ 

complement the negative numbers, and then add: 

111111111111111111111111111 1 
111111111111111111111111111 

1 llllllllllllllllllllllllllO 
----------------------~~11 

111111111111111111111111110 1 

. . -1 (complemented) 
..:.£ (complemented) 

(end-around-carry) 

in order to interpret this result, it must be ~complemented. Just as 
all negative numbers are complemented prior to addition, so, any negative 
results are in complement form. The rule for recomplementation is, of 
course, the same as the rule for complementation. The complement of a 
complement is the original form of a number (sign and magnitude). 

The complement of 

llllllllllllllllllllllllllOili is 0000000000000000000000000011't, 

or -3, which is the correct result. 
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If two numbers of like sign are added, there should be no change of 
sign. If both are positive, and, during the addition there is a carry 
out of T29, overflow is present, and, in this case, the end-around
carry causes an erroneous sign (-), and the magnitude of the result 
will be erroneous. If both numbers are negative and complemented (when 
the computer adds them it will assume that each has been complemented), 
there should be an end-around-carry, and the absence of it will indicate 
overflow. In this case also, both the sign and the magnitude of the 
result will be erroneous. Prove this to yourself by writing down two 
uncomplemented negative numbers (28 bits of magnitude and a 1 in the 
sign-bit) of such magnitudes that, when combined, more than 28 bits 
will be needed to express the resultant magnitude. Complement them 
and add the complements. Recomplement the result, if necessary (if 
the result is negative), and compare it with the correct solution. 

It is an invaluable aid to a progra1IDI1er to be able to manipulate num
bers with pencil and paper in the form in which they are in the machine 

(binary). With 29 bits per word, this 
is the type of chore that drives people 
out of a profession, if nothing else. 
It is affectionately called ''bit-chasing" 
by some progrannners. In order to allevi
ate this situation and to simplify the 
inputs and outputs for the computer, 
a "short-cut" number system is needed. 
The selected number system must be 
easily converted to binary, and vice
versa, by inspection, in order to 
avoid tedious paper-work. With 28 
bits of magnitude (the sign will be 
the same for all number systems), use 
of the decimal system for this purpose 
is prohibitive. 

Remember that a word of data in the G-15 has 28 bits of magnitude and 
a sign, 

Magnitude 

and choose a random example: 

110100001111010100110001100~1 

Now expand the 28 bits of magnitude into a series of terms, as would 
be done in the inspection method of conversion (after all, we want to 
retain the inspection method and just save ourselves from the necessi.ty 
of adding up the terms): 

1·227+1·226+0·225+1·224+0·223+0·222+0·221+0·220+1·219+1·218+1·217+ 

1·216+0·215+1·214+0•213+1·212+0·2ll+0·210+1·29+1·28+0·27+0·26+0·25+ 

l-24+1·23+o·22+0.21+1-2°. 
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Notice that, if 24 is factored out of each term as many times as possible, 
we will wind up with a series of terms of the form: 

(24}n(a23+b22+c21+d2°). 

Such terms would satisfy the conditions of a new number system, with 
base 24, and coefficients ranging from 0 through 24-1 (which is equal 
to 23+22+21+20). This is called the sexadecimal number system (abbre
viated hex). 

The expansion above would look like this: 

(24 ) 6(1·23+1.22+0·2 1+1·2°)+(24) 5(0·23+0·22+0·21+0·2°)+(24}4 (1·23+1·2 2+ 

1·21+1·2°)+(24 )3(0·23+1·22+0·21+1·2°)+(24) 2(0·23+0·22+1·21+1·2°}+(24}1 

3 2 1 0 4 0 3 2 1 0 
(0·2 +0·2 +0·2 +1·2 }+(2 ) (1·2 +0·2 +0·2 +1·2 ). 

This series of terms can now be written in the following manner: 

13·166+0·165+15·164+s·163+3·162+1·161+9·16°. 

Following the list of unique symbols to be used as digits in the hex 
system, as shown on page 5, 

6 5 4 3 2 1 0 
x·l6 +0·16 +z·l6 +5·16 +3·16 +1·16 +9·16 . 

This, in turn, can be written as a hex number: x0z5319.(l 6). 

To sununarize the decimal and binary equivalents for each hex digit: 

Hex Decimal Binary 

0 0 0 
1 1 1 
2 2 10 
3 3 11 
4 4 100 
5 5 101 
6 6 110 
7 7 111 
8 8 1000 
9 9 1001 
u 10 1010 
v 11 1011 
w 12 1100 
x 13 1101 
y 14 1110 
z 15 1111 

By assuming leading O's in the above binary equivalents for the various 
hex digits, it can be seen that each hex digit exactly corresponds to a 
unique set of four bits. This is also true for decimal digits, but note 
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that we run out of single decimal digits before all possible combinations 
of four bits have been exhausted. 

Conversion from hex to binary and from binary to hex is a very simple 
process by inspection, and, once you have mastered the above table, you 
will be able to make these conversions almost as rapidly as you can read 
the numbers. Seven hex digits exactly cover 28 bits, each hex digit cor
responding to a group of four bits in a corresponding position in the 
binary number: 

PROGRAMMING THE G-15 

(as the number appears in 
the computer) 

(as we represent the machine form of 
the number in a "short-hand" system) 

It is the function of the progrannner to analyze a problem in order to 
determine what inputs are to be called for, how they are to be processed, 
and what outputs are to be derived. It is then his function to use his 
knowledge of the operations and capabilities of the computer to prepare 
a sequence of connnands which will be able to automatically control the 
computer and cause it to perform the necessary operations in the proper 
order. 

To understand the actual form of connnands for the G-15, you must be pre
sented with more information than we can present in this short space. A 
machine-language progrannning manual is available. Of course all arith
metic operations, addition, subtraction, multiplication, and division are 
available, as are many other mathematical operations, such as the extraction 
of square roots and the generation of trigonometric functions. There are 
also available many "logical" operations, dealing with the manipulation of 
any specific bits within data words. 

In addition to machine-language progrannning, there is an even simpler coding 
system available with the G-15, called INTERCOM. This is an interpretive 
system in which operations called for by the progrannner are performed by a 
program already in the memory of the computer. Each "connnand" written in 
the INTERCOM system by the progrannner is interpreted by the program in the 
machine, and, on the basis of what is called for, that program will operate 
a sequence of machine-language connnands. There is also a manual available 
for progrannning and coding in the INTERCOM system. 


