












































































































































































































































































































































IP(2) �~� 

IP(13) �~� 

IP(7) --. 

IP(5) --. 

IP(4) ---. 
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} 

Integers, variables, and special parameters 
Variable n is located at I(n + 100) 
Integer n is located at I(n) 

} 

Functions (produced by GEN subroutines) 
Function n begins at 

I(lP(2) + (n - I) * IP(6)) 

} 

Input-output blocks for unit generators 
Block n begins at 

I(IP(13) + (n - 1) * IP(l4)) 

} Note parameters 

} 

Location table for instrument definitions 
The definition of instrument n begins at 

I(I(lP(5) + n)) 

} Instrument definition table 

For example if IP(2) = 1000, functions will start at 1(1000). 
Certain special parameters in I have fixed locations and a particular 

meaning, as follows 

I(1) Number of words on the current data statement in the P(n) 
array 

1(2) Subscript of first empty location in instrument definitions 
1(3) Subscript of note parameters for the note currently being 

played 
1(4) Sampling rate 
1(5) Number of samples to synthesize in the current group 
1(6) Subscript of starting location in the instrument definition 

for the unit generator currently being played 
1(7) Master random number 
1(8) Monophonic-stereophonic signal 

1(8) = 0 for monophonic; 1(8) = 1 for stereophonic 
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Any location in the I array may be set by an SV3, SI3, or SIA 
operation. In the set-variable operation the scale factor for variables is 
used so that 

I(n) = IP(l2)· P(m) 

whereas for integers no scale factor is involved 

I(n) = P(m) 

The following constants are compiled into the IP(n) array. The array 
is constructed by a BL0CK DATA subprogram and is stored in labeled 
C0MM0N memory, labeled P ARM. 

IP(I) 
IP(2) 
IP(3) 
IP(4) 
IP(5) 

IP(6) 
IP(7) 
IP(8) 
IP(9) 

IP(lO) 

IP(lI) 

Number of operation codes in Pass III 
Beginning subscript of functions 
Standard (default) sampling rate 
Beginning subscript of instrument definitions 
Beginning subscript of location table for instrument 
definitions 
Length of a function 
Beginning subscript of blocks of note-parameter storage 
Length of a block of note-parameter storage 
Number of blocks of note parameters (equals the maxi­
mum number of voices that can play simultaneously) 
Subscript of unit-generator input-output block which is 
reserved for storage of samples of the acoustic output 
waveform. SAM0UT puts out samples from this block 
Sound zero. This is integer with decimal point at right end 
of the word 

IP(l2) Scale factor for unit-generator variables (input-outputs, 
etc.) 

IP(l3) Subscript of beginning of unit-generator input-output 
blocks 

IP(I4) Length of a unit-generator input-output block 
IP(l5) Scale factor for functions 

18. Note Parameters 

The word count and parameters PI through Pn are read by Pass III 
from a data statement on the input file and are initially put into 1(1) 
and into the P array. If PI = 1 == N0T, the parameters must be moved 
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to a vacant block of note-parameter storage because other data state­
ments will be read into the P array before the N0T is completed. Note­
parameter blocks start at I(n) (n = IP(7)), each block is IP(8) locations 
long, and IP(9) blocks are available. 

A block contains the following arrangement of the information 

I(n) = P3 (the instrument number) 
I(n + 1) = P2 * IP(l2) 
I(n + 2) = P3 * IP(l2) 

I(n + m + 1) = Pm * IP(12) 

All subsequent locations to end of block are filled out with zeros. All 
locations are in fixed-point format. All locations except the first are 
scaled by the IP(12) scale factor. The first location I(n) contains the 
instrument number, unscaled. If a block is empty, I(n) contains -1. 

When a unit generator is called to calculate part of a note, 1(3) = n 
is set to the first location of the note-parameter block for that note. 
Consequently note parameter Pk may be found at I(n + k - 1). 

19. Instrument Definition 

An instrument in Pass III is defined by a sequence of data statements, 
which are read from the input medium. The description is stored in the 
I(n) array in the instrument definition table. 

The format of the input data statements in Pass III is in the following 
table. 

Word 
Record # Count P(l) P(2) P(3) 

1 3 2 Action time Inst No 
2 n 2 Action time Unit type D 1 .•• Dn - 3 

3 n 2 Action time Unit type D 1 •.. 

last 2 2 Action time 

The description is terminated by a two-word statement. The quantities 
Di specify the various inputs and outputs to the unit generators. 

If Di < -100, then JDiJ - 100 is a function number 
If -100 :::; Di < 0, then JDiJ is the number of a unit-generator 

input-output block 
If 1 :::; Di :::; 100, then Di is a note-parameter number 
If 100 < Db then Di - 100 is a variable number 
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The mnemonic form of instrument definition as written on the score 
and read by READ 1 has already been described in Section 4. Examples 
are given in Section 5. 

The instrument definition is stored starting in I(n) where n = 

1(IP(5) + Inst number). Instrument definitions are stored in successive 
locations in I(n) according to their action times. The first unused 
location in the instrument definition table is kept in 1(2). An instrument 
with a given number may be redefined at any action time. The new 
definition will be used subsequently. However, no " garbage collection" 
is done and the old definition will continue to occupy space in I(n). 

The format of the description in I(n) is as follows: 

I(n) 
I(n + 1) 

S1 ) 

~~. 
Sn 
I(m) 

/. 

Type of first unit generator in instrument 
Pointer to second unit-generator description = m 

Subscripts and parameters pertaining to first unit 
generator 

Type of second unit generator 
Pointer to third unit generator 

I(r) 0 Terminates description of instrument 

The S/s that specify inputs, outputs, and functions for the unit 
generators have the following meaning: 

If SI < 0, then / SI/ is the subscript in I which specifies the beginning 
of a function or of a unit generator input-output block. 

If 1 ::::; SI ::::; 262,144, then SI is the number of a note-card parameter. 
If 262, 144 < Sh then SI - 262,144 is the subscript in I of a variable. 

The number of the variable is SI - 262,144 - 100. 

20. F0RSAM 

F0RSAM is a subroutine that contains unit generators written in 
F0R TRAN. These may be used either sepa,rately or together with 
SAMGEN which contains unit generators written in basic machine 
language. 

F0RSAM is called in Pass III by the statement 

CALL F0RSAM 

The call causes F0RSAM to compute NSAM (= 1(5» samples of the 
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output of unit generator, type J (J is given in the instrument descrip­
tion). Unit-generator types in F0RSAM are numbered 101 and up in 
order to differentiate them from SAMGEN unit generators, which are 
numbered 1 through 100. 

The block diagram of the program is shown in Fig. 59. 

Common 
initialization 

af addresses 
and parameters 

Fig. 59. Block diagram of 
F0RSAM program. 

Computation can be made in either fixed or floating-point arithmetic. 
Usually the scale-factor variables, IP(12) and IP(15), will be necessary 
to scale the results. 

A listing of a small F0RSAM program with only one unit generator 
is shown below. The initializing routines in the program accommodate 
other unit generators which can be added to the program simply by 
extending the G0 T0 at 205 and writing the unit-generator code. 

The dimension statement includes three arrays from Pass III, I, P, 
and IP, and two other arrays, Land M, which are used to address the 
unit-generator inputs and outputs. Land M are computed by the 
initialization procedure. 

Specifically, the jth input or output will be found at I(m) where 
m = L(j). M indicates whether an input or output is a single number 
(note parameter or variable) or a block of numbers (function or 1-0 
block). If M(j) = 0, the jth input is a single number; if M(j) = 1, the 
jth input is a block. For blocks, L(j) gives the subscript of the first 
number in the block. Inputs and outputs are sequentially numbered. 
Thus in the data statement 

0SC P5 P6 B2 Fl S ; 

P5 is the first, P6 the second, B2 the third, Fl the fourth, and S the 
fifth. For more convenient referencing, an equivalence is set up so that 
L(i) == Li and M(i) == Mi. 
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SUBROUTINLFOHSAM 
DIMENSIONI(15000),P(100),IP(20),L(8),M(8) 
COMMONI,P/PARM/IP 
LQUIVALENCE(Ml,M(I»,(M2,M(2»,(M3,M(3»,(M4,M(4»,(M5,M(5»,(M6,M 

1(0», 0i07,~H7», (Ma,tJI(B», (L1,L(!», (L2,L(2», (L3,L(3», (L4,L(4», ( 
2L5,L(5) ), (L6,Ub) ) , (L 7, U7) ) , (LB,·L (8) ) 

C COMMON INITIALIZATION OF GENERATOHS 
N1=I(6) +2 
N2=I (N1-1>-1 
U0204J1=IJI , N2 
J£=J1-~J1 + 1 
IF(I(Jl»200,201,201 

200 L(J2)=-!(Jl) 
M(J2)=1 
GOT02U4 

201 M(J2)=0 
IF(I(J1)-262144)202,~02,203 

202 L(J2)=I(Jl)+1(3)-1 
GOT0204 

203 L(J2)=I(Jl)-262144 
204 CONTINUE 

NSA",1=I (5) 
N3=I (lH-2) 
WGEN= N3 -100 

20~ 60TO(101,30G,300),N0EN 
C UNIT GENERATOR 101- INTERPOLATING OSCILLATOR 

101 SFU=IP(12) 
SFF=IP(15) 
SFUI=l./SFU 
SFFI=l./SFF 
SFUFI=SFU/SFF 
SUM=FLOAT(I(L5»*SFUI 
IF(Ml)21U,210,211 

210 AMP=FLOAT(I(Ll»*SFUI 
211 IF(M2)212,212,213 
212 FREQ=FLOAT(I(L2»*SFUI 
213 XNFUN=IP(6)-1 

D0223J3=1,NSAM 
J4=INT<SUM) +L4 
FRAC=SUM-AINT(SUM) 

216 Fl=FLOAT(I(J4» 
F2=FLOAT(I(J4+1» 

217 F3=Fl+(F2-Fl)*FRAC 
IF(M2)21b,218,219 

218 SUM=SUM+FREQ 
60T0220 

219 J4=L2+J3-1 
SUM=SUM+FLOAT(I(J4»*SFUI 

220 IF(SUM-XNFUN)215,214,214 
214 SUM=SUM-XNFUN 
215 J5=L3+J3-1 

IF(M1)221,221,222 
221 I(J5)=IFIX(AMP*F3*SFUFI) 

60T0223 
222 J6=L1+J3-1 

I(J5)=IFIX(FLOAT(I(J6»*F3*SFFI) 
223 CONTINUE 

I(L~)=IFIX(SUM*SFU) 
300 RETURN 

E.ND 

The number of samples to be generated is put in NSAM. Most of the 
unit generators will operate with a loop such as D0 223 J3 = 1, 
NSAM. 

In the computations performed by the unit generator, it is necessary 
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to test to see whether an input is a single number or an 1-0 block. If 
Mj = 0, the jth input need only be obtained once from I(Lj). If the jth 
input is an 1-0 block (M j = 1), then each value is obtained with the 
help of the main D0 index J3. For example, the third input is located at 
1(15) where 

J5 = J3 + L3 - 1 

The particular unit generator is an oscillator that interpolates between 
adjacent values of the function (see Section 6 for discussion of why 
interpolation is useful). Computations are carried out in floating-point 
arithmetic. Since the input data are fixed-point numbers, they must be 
floated and scaled by appropriate constants. Scale factors for 1-0 
blocks and for functions are given in IP(12) and IP(15), respectively. 
The necessary scaling constants are computed at 101. 

21. SAMGEN 

SAMGEN is one of the few basic machine language programs in 
Music V. Consequently it must be written specifically for the particular 
machine on which it is to be used. The Bell Laboratories program is 
written in GMAP for a General Electric 635 computer. A few com­
ments about the program may be of use in designing programs for 
other machines. 

SAMGEN includes the unit generators of type numbers less than 
100. The computation of the actual acoustic samples, which is the 
preponderance of the computation in Music V, is done by SAMGEN. 

The general form of SAMGEN is shown in Fig. 60. 
SAMGEN is written in such a way that one procedure can be used to 

set the parameters in all of its unit generators. This procedure accesses 
the I array in common storage during Pass III in order to find out 

1(3) the subscript in the I array of the note parameters for the 
note being played 

] (5) the number of samples to generate and 
](6) the subscript in the I array for the instrument definition table 

of the unit generator being played. 

The procedure then reads through the instrument description for the 
unit generator being played. (See instrument description, Section 19.) 

For each unit generator, the procedure expects a certain number of 
inputs CSt's) in a certain order, e.g., if unit type = 2 (oscillator), then 
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I ni tialize unit 
gene rotor 
being played 

Fig. 60. Block diagram of SAMGEN program. 

Sl = amplitude, S2 = frequency, S3 = output, S4 = function, and 
S5 = sum. It then sets addresses in the specified unit generator accord­
ing to the following conventions: 

If Si < 0, then I Sil is the subscript in the I array of the beginning 
of a function or of unit-generator 1-0 block. 

If 0 < Si < 262,144, then Si is the number of a note parameter. 
Note parameter Px is located at 1(1(3) + x-I). (See Section 
18 for more information on note-parameter storage.) 

If Si > 262,144, then Si - 262,144 is the subscript in the I array 
ofa variable: variable x is located at I(x + 100). 

After the addresses are initialized, SAMGEN transfers control to the 
specified unit generator, which generates the number of samples 
specified in 1(5). 

The calling sequence is 

CALL SAMGEN 

Almost all information is supplied by the I array which is located in 
unlabeled common storage according to the statement 

C0MM0N I 

SAMGEN uses no subroutines. 
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22. SAM0UT 

SAM0UT is another GMAP subroutine called by Pass III which 
(1) scales samples which are ready to be output, and (2) calls FR0UT 
to output these samples onto magnetic tape. Samples (S1) are scaled 
according to 

SI = SI/218 + 2048 

The calling sequence is 

CALL SAM0UT (IARRAY, N) 

where IARRA Y = address of first sample to be output, and N is the 
number of samples to be output. 

Other routines used by SAM0UT are 

FR0UT4 

No common storage is used. 

23. SAM0UT for Debugging 

This version of SAM0UT (cf. Section 22) is provided for debugging 
purposes only. It is called by Pass III with the call 

CALL SAM0UT (IARRA Y, N) 

in order to print out N samples starting from location IARRA Y. It 
must perform the same de scaling operations as the normal SAM0UT, 
i.e., 

samplel = (sample1/218) + 2048 

This version of SAM0UT is written in F0R TRAN and will print the 
sample values in any convenient format. It is recommended that in 
using this version of SAM0UT one should be careful of excessive 
output since it is easy to ask for a very large number of acoustic 
samples. 

24. Acoustic-Sample Output Program: FR0UT 

The subroutine package FR0UT is called by both Pass III and 
SAM0UT in order to write the actual acoustic samples generated by 
Music Vanta magnetic tape. FR0UT is coded in assembly language 
rather than F0RTRAN (1) for efficiency and (2) because it must write 
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special physical records onto tape in a form suitable for digital-to­
analog conversion. This is usually not possible in a compiler language 
such as F0RTRAN. 

The exact form of FR0UT will depend on the particular machine 
configuration of a computer installation. It is therefore necessary that 
this program be written by an experienced programmer at any compllter 
installation that desires to run Music V. 

There follows a general description of the FR0UT programs written 
at Bell Telephone Laboratories for use with the General Electric 
GE645 computer. It should act only as a model for such a program 
written for another machine. 

Basically FR0UT simply takes sample values that are produced by 
Music V, packs several samples into one computer word, and writes 
them onto magnetic tape in a form suitable for digital-to-analog 
conversion. 

At BTL, the digital-to-analog converters operate with 12-bit samples. 
Since the GE645 computer is a 36-bit word-length machine, FR0UT 
packs the acoustic samples three per word. 

One packed computer word is of the form 

I 36 bits I 

aaaaaaaaaaaab bbbbbbbbbb bcccccccccccc 
L sample 1--1 L sample 2-' L sample 3.J 

Since the maximum integer value that can be represented in 12 bits is 
409510, FR0UT screens the sample values it receives from Music V to 
be sure that it falls in the range 0 to 4095. Should any samples to be 
written by FR0UT be outside this range, they are clipped to 0 and 4095. 

Pass III first calls FR0UTO during its initializing sequence with the 
call 

CALL FR0UTO (66,167) 

where 66 is a file code (i.e., a logical file name of the tape file onto 
which packed acoustic samples are to be written), and 167 is the record 
length in 36-bit words to be written onto this tape (samples per tape 
record = 3 x words per tape record). 

Whenever Music V has produced some samples that are ready to be 
output, subroutine SAM0UT is called by Pass III, which in turn calls 
FR0UT with the call 

CALL FR0UT4 (lA, N) 

which writes N samples onto tape starting from the location IA. 
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At the end of the composition, Pass ITT calls FR0UT with the call 

CALL FR0UT3 

FR0UT3 completes the output buffer, if it was only partially filled, 
with zero-voltage samples, empties this last buffer onto tape, and 
writes an end-of-file mark. 

Packing of samples can be accomplished by machine-language 
shifting instructions and buffering. Acoustic sample tapes typically are 
unlabeled and unblocked, and use fixed-length records. 

FR0UT3 prints a statement giving the number of samples out of 
range in the file which has just been terminated. 

25. GEN-Pass III Function-Generating Subroutines 

GENI 
GENI is a F0RTRAN subroutine to generate functions composed of 

segments of straight lines. The calling sequence is 

CALL GENI 

Data are supplied by the Pen), I(n), and IP(n) arrays. The jth function 
Fj(i) is generated according to the form shown in the diagram below. 

'. TM 

~ 
I I 
I I 
I I 
I I 

Linear interpolation is used to generate the function between M 
points which are specified by the user. Thus between any two abscissa 
points Nm and Nm+ 1 the function points are computed according to the 
relation 

The number of corners M is arbitrary and is determined by the word 
count 1(1). M = (1(1) - 4)/2. 
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In general the user will set NI = 0 and NM = IP(6) - 1, so that the 
number of points in the function equals IP(6). 

The parameters of the function are arranged as follows: 

P(1) 

3 

P(2) 

Action 
time 

P(3) P(4) P(5) P(6) P(7) P(8) 

Function TIN 1 

No (j) 

The function is stored starting in I(n) where n = IP(2) + (j - 1) * 
IP(6) and is scaled by IP(15) so that, for example, len) = Tl * IP(15). 

GEN2 
GEN2 is a F0RTRAN subroutine to generate a function composed 

of sums of sinusoids. The calling sequence is 

CALL GEN2 

Data are supplied by the Pen), I(n), and IP(n) arrays. 
The jth function Fli) is generated according to the relation 

F;(i) ~ (amp normaIiZer)t~, Ak sin ;~\ 
M 2k"} + k ~ Bk cos P -=- \ i = O ... P - 1 

P (= IP(6» is the number of samples in a function. 
The parameters for the function are arranged as follows: 

P(1) P(2) P(3) P(4) P(5) P( -) P( -) 

3 Action 
time 

2 Function Al ±N 
No (j) 

The number of sine terms is INI. If N is positive, amp normalizer 
is computed so max I Fli) I = .99999. If N is negative, amp normalizer 
= .99999. The number of cosine terms M is computed from N and the 
word count 1(1). M = I{l) - N - 5. 

The number of samples in the function is IP(6). 
The function is stored s~arting in I(n), and is scaled by IP(5) 

len) = IP(15) * Fj(O), etc. 

where n = IP(2) + (j - 1) * IP(6). 
Thefirst and last samples of the function are equal, Fj(O) = Fj(P - I), 

thus the period in samples is P - 1. 
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GEN3 
General description: 

GEN3 is a F0RTRAN subroutine which generates a stored function 
according to a list of integers of arbitrary length. These integers specify 
the relative amplitude at equally spaced points along a continuous 
periodic function. The first and last points are considered to be the 
same when the function is used periodically (e.g., by an oscillator). 
Calling sequence: 

CALL GEN3 

Other routines used by GEN3 : 

none 
Data statement: 

GEN, action time, 3, stored function number, PI, P2 , •.. , Pnj 

Examples: 
The following P/s will generate the functions shown below. 

(1) 0, 1,-1 
will generate 

(2) 0, 8, 10, 8, 0, 
-8, -10,0: 

(3) -1000, 0: 

o~----------------------~-------

O~--------------~r-------------4 

o~------------------------~~~-



172 CHAPTER THREE 

26. Data Input for Pass ill-DATA 

Subroutine DATA is called by Pass III with the call 

CALL DATA 

This causes one data statement to be read from file 11 into the P array 
in C0MM0N storage according to 

READ (11) K, (P(J), J = 1, K) 

I(I) is set equal to K (word count). 

Annotated References by Subject 

Music IV Program 
M. V. Mathews, "The Digital Computer as a Musical Instrument," Science, 

142, 553-557 (November 1963). A semitechnical description of Music IV 
with some discussion of applications. This is a good introductory article. 

M. V. Mathews, "An AcoustIc Compiler for Music and Psychological Stimuli," 
Bell Sys. Tech. J. 40, 677-694 (May 1961). A technical description of an 
early version of a sound generating program. This is the first complete 
published description. 

J. R. Pierce, M. V. Mathews, and J. C. Risset, "Further Experiments on the Use of 
the Computer in Connection with Music," Gravesaner Blatter, No. 27/28, 
92-97 (November 1965). A semitechnical description emphasizing applica­
tions of Music IV. This is a good follow-up for the paper in Science. 

J. C. Tenney, "Sound Generation by Means of a Digital Computer," J. Music 
Theory, 7, 25-70 (1963). A discussion of Music IV as seen by a composer 
using the program. The article contains many details and is a good introduc­
tion for a musician. 



Appendix A Psychoacoustics 
and Music 

J. R. Pierce 
and M. V. Mathews 

Although the technology of electronic and computer sound generation 
has given us new tools of almost unlimited power for making new 
sounds, it has also created a new problem-the need to understand the 
psychoacoustics of musical perception. Sounds produced by conven­
tional instruments are so well known that composers can proceed with 
the intuitions they have developed from long experience. However, no 
such intuitions exist for new sounds. Instead, the composer must 
understand the relation between the physical sound wave and how it is 
perceived by a hearer. Psychoacoustics addresses this question and 
hence has become an essential knowledge for the modern composer. 

With some exceptions (Helmholtz, 1863; Plomp, 1966) original 
scientific work in psychoacoustics has not been directed chiefly at 
musical problems. Thus we must draw on a variety of sources in 
seeking to understand musical phenomena, and we may often wish that 
investigators had had music in mind. 

Loudness 

The perceived loudness of a sound depends on many factors in 
addition to its intensity. For example, in order for a pure tone or 
sinusoid at 100 Hz to be heard, its sound intensity must be 1000 times 
greater than that of a pure tone at 3000 Hz. For most of the musical 
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range the perceived loudness increases as the 0.6 power of the sound 
pressure (Stevens, 1961). The perceived loudness increases more slowly 
with sound pressure for 3000-Hz tones than it does for very low fre­
quencies, say, 100 Hz; and in the 'uncomfortably loud range, tones of 
equal power are about equally loud. This means that as we turn the 
volume control up or down, the balance of loudness among frequency 
components changes slightly. 

Masking and Threshold Shifts 

A tone or a noise masks or renders us incapable of hearing a less 
powerful tone. A tone has a strong masking effect for tones of higher 
frequency and a weaker masking effect for tones of lower frequency. 
The frequency range of masking is greater for loud tones than for soft 
tones. Thus we would expect that in a musical composition some 
sounds might be masked and unheard when the volume is set high, 
whereas they would be unmasked and heard when the volume is low. 

Masking can be considered as a raising of the level at which tones 
become audible. Some rise in the threshold persists for i sec or longer 
after a loud tone (Licklider, 1951), but the aftereffect of a loud tone on 
hearing is much less than that of a bright light on seeing. 

Limens or Just Noticeable Differences 

Limens or jnd's of loudness and frequency have been carefully 
measured. They are surprisingly small. However, there is evidence that 
the limens are much smaller than the frequency or loudness differences 
that can be detected in complicated listening tasks, which are more akin 
to music (Plomp, 1966, p. 19). Very small differences in frequency (less 
than a half tone) and loudness can be detected in successive tones that 
are not too short. 

Pitch 

The pitch of a complex tone is often thought of as that of its lowest 
partial. However, experiments made with repetitions of various patterns 
of pulses (Flanagan and Guttman, 1960) and with complex tones in 
which the upper partials are harmonics of a frequency higher than the 
fundamental (Plomp, 1967) show that, although the fundamental 
dominates at higher frequencies, the repetition rate of the tone or of its 
higher partials dominates at lower frequencies. The pitch of a tone may 
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be highly uncertain by one or more octaves; thus Shepard produced a 
circle of 12 tones, which when cyclically repeated give the impression of 
always rising in pitch, with no break (Shepard, 1964). Tones with 
inharmonic partials, including gongs, bells, and tones specially syn­
thesized by computers (Mathews, 1963; Pierce, 1966) may produce a 
sensation of pitch; a tune can be played on them. But the pitch may not 
be the first partial; for example, the hum tone of a bell is not the pitch 
to which the bell is tuned. 

Quality or Timbre of Steady Tones 

The sound quality or timbre of steady tones depends on the partials. 
Although partials up to the sixth (and sometimes higher) can be heard 
individually by careful listening, we tend rather to hear an over-all 
effect of the partials through the timbre of the tone. A pure tone or 
sinusoid is thin. A combination of octave partials is bright. A tone with 
a large number of harmonic partials is harsh or buzzy (Pierce, 1966). 
In general, the timbre appears to be dissonant or unpleasant if two strong 
partials fall within a critical bandwidth, which is about 100 Hz below 
600 Hz and about a fifth of an octave above 600 Hz (Plomp, 1966). 

The timbre of a sound is strongly affected by resonances in the vocal 
tract or in musical instruments. These resonances strengthen the 
partials near the resonant frequencies. Three important formants or 
ranges of strengthened frequency are produced by the vocal tract; they 
give the qualities to vowel sounds which are identifiable independent of 
pitch. 

Transient Phenomena 

Textbooks give harmonic analyses of the sounds of various musical 
instruments, but if we synthesize a steady tone according to such a 
formula it sounds little like the actual instrument. Steady synthesized 
vowels do not sound like speech if their duration is long. 

Temporal changes such as attack, decay, vibrato, and tremolo, 
whether regular or irregular, have a strong effect on sound quality. A 
rapid attack followed by a gradual decay gives a plucked quality to any 
waveform. Also, the rate at which various partials rise with time and 
the difference in the relative intensity of partials with loudness are 
essential to the quality of the sound (Risset, 1965). Indeed it is at least 
in part the difference in relative intensity of partials that enables us to 
tell a loud passage from a soft passage regardless of the setting of the 
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volume control. This clue is lost in electronic music if the tones employed 
have a constant relative strength of partials, independent of volume. 

The "warmth" of the piano tone has been shown to be due to the 
fact that the upper partials are not quite harmonically related to the 
fundamental (Fletcher et at., 1962). 

Consonance 

Observers with normal hearing but without musical training find 
pairs of pure tones consonant if the frequencies are separated by more 
than the critical bandwidth (Plomp, 1966), or if the frequencies coincide 
or are within a few hertz of one another (in this case beats are heard). 
Pairs of tones are most dissonant when they are about a quarter of a 
critical bandwidth apart. For frequencies above 600 Hz, this is about a 
twentieth of an octave. 

Excluding bells, gongs, and drums, the partials of musical instruments 
are nearly harmonic. When this is so, for certain ratios of the frequencies 
of fundamentals, the partials of two tones either coincide or are well 
separated. These ratios of fundamentals are 2:1 (the octave), 3:2 (the 
fifth), 4:3 (the fourth), 5:4 (the major third), and 6:5 (the minor third). 
Normal observers find pairs of tones with these ratios of fundamentals 
to be more pleasant, and intervening ratios less pleasant (Plomp, 1966). 

Musical consonance and dissonance depend on many factors in 
addition to frequencies of partials. For example, unlike nonmusicians, 
classically trained musicians describe pairs of pure tones with these 
simple numerical ratios of frequency as consonant and intervening 
ratios as dissonant. The only reasonable explanation is that trained 
musicians are able to recognize familiar intervals and have learned to 
think of these intervals only as consonant. 

Plomp (1966) has pointed out that, in order for complex tones to 
attain a given degree of consonance, low tones must be separated by a 
larger fraction of an octave than high tones, and he has observed that 
composers follow this principle. 

If the partials of a tone are regularly arranged but not harmonic, the 
ratios of frequencies of the fundamental (or first partial) that lead to 

, consonance are not the conventional ones (Pierce, 1966). 

Combination Tones 

When we listen to a pure tone of frequency f1 and another tone of 
somewhat higher frequency f2' we hear a combination tone of lower 
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frequency 2f1 - f2' even at low sound levels (Goldstein, 1967). At 
much higher sound levels, around 100,000 times or more the power at 
threshold, it is possible to hear faint frequencies 2f1, 2f2, f1 + f2' 
f2 - fb etc. Combination tones are due to nonlinearities in the hearing 
mechanism. They can contribute to dissonance and to beats. 

Reverberation 

Reverberation is important to musical quality; music recorded in 
an organ loft sounds like a bad electronic organ. The reverberation for 
speech should be as short as possible; for music about 2 sec is effective. 
Music sounds dry in a hall designed for speech. Reverberation is not the 
only effect in architectural acoustics. Our understanding of architectural 
acoustics is far from satisfactory (Schroeder, 1966). 

The Choir Effect 

Many voices or many instruments do not sound like one voice or one 
instrument. Some experiments by the writers show that a choir effect 
cannot be attained by random tremolo or vibrato. It must be due to 
irregular changes in over-all waveform, caused by beating or head 
motions, or by. differences in attack. 

Direction and Distance 

We can experience a sidedness to sound by wearing headphones fed 
from two microphones, but the sound seems to be inside our head. 
We experience externalization of the sound-as coming from a par­
ticular direction-only when we allow head movements in a sound field. 
Although we cannot detect the direction of the source of a sinusoidal 
tone in a reverberant room, we can detect the direction by the onset of 
such a tone, and we can detect the direction of clicks and other changing 
sounds. The first arrival of the sound dominates later reverberant 
arrivals in our sensing of the direction of the source; this is called the 
precedence effect (Wallach, Newman, and Rosenzweig, 1949). We can 
detect vertical angle of arrival, although no one is sure how this is done. 
We can also sense the distance of a source in a reverberant room; this 
sensation must depend on some comparison of the direct arrival and the 
reverberant sound (Gardner, 1967). 

Memory and Overlearning. 

Most memory experiments are not done with musical sounds, but 
many are relevant to music. 
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Miller (1956) found that subjects can remember a sequence of from 
5 to 9 randomly chosen digits, letters, or words. On the other hand, a 
good bridge player can remember every card that has been played in 
an entire game. Our ability to deal with stimuli depends on their 
familiarity or "meaning" to us. This familiarity comes about through 
overlearning. Overlearning has been insufficiently investigated because, 
although it is common in life, it is very difficult to achieve in the 
laboratory. 

The phonemes of a language are overlearned. A subject can readily 
distinguish the phonemes of his own tongue, but not those of another. 
He can distinguish dialects of his own language, but not those of a 
foreign tongue. He can understand his native language in a noisy place 
better than he can understand a foreign language even though he is 
expert in it. 

Conventional elements and structures in music are undoubtedly 
overlearned. Much of our appreciation of harmony, much of our ability 
to remember conventional tunes (Mozart, Haydn, and some other 
musicians could remember compositions heard only once) must 
depend on overlearning, just as our ability to use and remember 
language does. Performance with unfamiliar material is much poorer. 

Psychological Distance; Scaling 

Some psychological stimuli have the same pattern of similarity for 
all people. Color is one. The psychological distance between stimuli 
such as colors can be obtained by computer analysis of data expressing 
either the confusions that subjects make among pairs of stimuli or the 
numbers that they assign to the pairs to express their judgments of 
similarity. This kind of analysis is called multidimensional scaling. The 
stimuli may appear in a psychological space of one dimension (loudness 
does), two dimensions (color does) or three (vowels do) or more 
dimensions. Psychological distance is dependent on, but not propor­
tional to, physical parameters. Thus red and violet light are of all colors 
the farthest apart in wavelength, and yet they look more alike-they 
are closer together psychologically-than the "intermediate" colors 
orange and blue. 

Unhappily, multidimensional scaling is just beginning to be applied 
in the field of music (Levelt et al., 1966). Further results might be 
enlightening. For instance, we is nearly you said backwards, and yet we 
perceive no similarity between the sounds of the two words. Is the 
retrograde of a phrase psychologically similar to the phrase, or is 
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retrograde (in the words of Tovey) for the eye only? Transpositions 
certainly are psychologically close, but what about augmentations and 
inversions? What about changes in rhythm? What about manipulations 
of the tone row? 
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Appendix B Mathematics 

In the body of this text an effort has been made to minimize the number 
and difficulty of mathematical expressions. In certain places some 
computations characteristic of signal theory must be done. This 
appendix lists the relations that are required by the text. No proofs are 
given, and the conditions under which the relations are true are not 
spelled out. They hold in a useful (and widely used way) for almost all 
real signals. We apologize for the strong MIT and EE accent in the 
mathematical language. If one has something to say, it is better to 
speak with an accent than to remain silent. 

Fourier Series 

A "not too discontinuous" function f(x) with period T can be 
represented almost everywhere by the series 

ao 277" 4rr 
f(x) = "2 + al cos y x + a2 cos y x + ... 

b . 277" b' 4rr + lSlnyX+ 2SlnyX+'" 

where 

2 fT 217-i 
at = T J 0 f(x) cos T dx 
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and 

2 r . 27Ti bi = if 0 f(x) sm T dx 

Fourier Transform 

A "not too discontinuous" function f(x) for which the integral of 
f2(X) exists may be transformed and inverse transformed according to 
the relations 

f
+OO 

pew) = -00 p(t)e- Joot dt 

1 f+oo pet) = - P(w)eJoot dw 27T _ 00 

pew) is called the Fourier transform of pet); pew) is also called the 
amplitude spectrum of pet). 

Input-Output Relations for Time-Invariant Linear Systems 

The output oCt) of a time-invariant linear system due to an input 
i(t) may be written 

f
+OO 

oCt) = _ 00 i(t - x)h(x) dx 

where hex) is called the impulse response of the system. For realizable 
systems, hex) = 0 for x < O. The transform of hex) is called the 
transfer function H( w) of the linear system and is written 

f
+OO 

H(w) = _ 00 h(t)e- Jrot dt 

The Fourier transform of the output O(w) and the Fourier transform 
of the input I( w) are related by the simple equation 

O(w) = H(w)I(w) 

Convolution Theorem 

The three time functions, x(t), yet), and z(t), have as their respective 
Fourier transforms X(w), Yew), and Z(w). If z is the product of x and y 

z(t) = x(t)· yet} 
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then 

1 J+ 00 Z(w) = 27T _ 00 X(a)Y(w - a) da 

If Z is the product of X and Y 

Z(w) = X(w). Yew) 

then 

J
+OO 

z(t) = _ 00 x(a)y(t - a) da 

Definition of Unit Impulse 

The unit impulse Set) can be considered the limit 

Set) = lim 1 e -t2
/2u

2 

u->O V27Ta 

I t is zero everywhere except at t = 0, but its integral is unity 

J
+OO 

_ 00 S( t) d t = 1 

Spectrum of Cos wot 

Although the integral of cos2 wot does not exist, and hence cos wot 
does not have a legitimate Fourier transform, the transform pew) can 
be usefully defined as 

pew) = 7T[S(W - wo) + sew + wo)] 

Note in particular that the inverse transform 

= cos wot 

Autocorrelation Function and Power Spectrum 

If pet) is an ergodic random function, then an autocorr~lation 
function cp( T) may be defined by the relation 

cp(T) = J~~ 2~ f~T p(t)p(t + T) dt 
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More generally 

cp( 1") = E<p(t)p(t + 1") 

where E< ) is defined in some way that makes sense for the random 
function pet). The power spectrum <I>(w) is the Fourier transform of 
cp( 1"). Thus 

1 f+oo <I>(w) = - cp( 1")e- jOlt dt 
27T _ 00 

cp(1") = s:: <I>(w)ejw
• d1" 

Note that the 2~ factor is in the transform rather than the inverse 

transform. 

Random Functions and Linear Systems 

H(w) is the transfer function of a linear system having an input i(t) 
and an output oCt). Let <l>i(W) and <l>o(w) be the power spectra of the 
input and output, respectively; then 

<l>o(w) = I H(w) I 2 <l>i(W) 

Mean-Square Function 

If pet) is a random function with autocorrelation function cp( 1") and 
power spectrum <1>( w), then 

f
+OO 

E<p(t)2) = cp(O) = _ 00 <I>(w) dw 
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FLT: filter, 76 
Fn,125 
Foldover errors, 7, 15, 19 
F0RSAM 

block diagram, 163 
operation of, 162 

F0RTRAN, 43 
Fourier series, 180 
Fourier transform, 181 
Frequency-limited function, 12 
Frequency scale, logarithmic, 80 
FR0UT, operation of, 167 
FR0UTO, 168 
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data statement, 123 
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GEN1, operation of, 169 
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GEN3, operation of, 171 
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Magnetic tape, digital, 31 
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Mean-square function, 183 
Memory and overlearning, 177 
Metronome function 

example, 87 
operation of, 148 

MLT generator, tutorial discussion, 49 
M0VL, operation of, 141 
M0VR, operation of, 141 
Music I-Music V 

general description, 34 
references, 172 

Music V 
comparison with Music IV, 115 
general operation of, 116 
overviewof,37 

NBC, number of break characters, 142 
N0T, play note, 123 
Note concept, 34, 36 
Note-parameter storage blocks, 154, 

155, 160 
Note playing, operation of, 154 
NPW, 143 
NSAM, 162, 164 
Numerical representation of functions 

of time, 2 
NUMU, 143 

OP codes 
adding more, 142 
table of, 122 
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with interpolation, 138 
with rounding, 138 
special discussion, 134 
with truncation, 138 
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0UT generator 
description, 126 
tutorial discussion, 48 

P array 
Pass I, 81, 121 
Pass II, 63 

PARM,160 
Pass I 

block diagram, 120 
C0MM0N statement, 121 
description, 120 
general operation, 116 

Pass I subroutines, 118 
Pass II 

block diagram, 146 
C0MM0N statement, 146 
description, 145 
G array, 148 
general operation, 118 
IP array, 148 
report, 149 

Pass II subroutines, PLS, 94 
Pass III 

block diagrams 154, 156 
description, 153 
general operation, 119 

Pitch, 174 
Pitch function, 91 
Pitch-quantizing example, 94 
Play note, N0T, 123 
Play-to-action time, 155 
PLF, execute subroutine in Pass I, 123 

general operation, 144 
score record, 82 
use as composing subroutine, 78 
use to multiply melodies, 83 
use with graphic score, 89 

PLS, execute subroutine in Pass II, 124 
operation of, 151 
tutorial example, 94 

Pn, 125 
Power spectrum, 182 
Pressure function p (t), 2 
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Psychoacoustics 
importance, 173 
references, 179 

Psychological distance, 178 

Quantizing, 5 
Quantizing errors 

basic equations for, 24 
definition, 7 
mathematical analysis, 22 

RAH: random and hold generator, 132 
RAN: random function generator 

description, 128 
tutorial discussion, 68 
use for band-pass noise, 70 
use for vibrato, 70 

Random and hold generator: RAH, 
132 

READ,U8 
READO 

debug, 143 
operation of, 139 

READ 1 
block diagram of, 140 
debug, 143 
operation of, 139 
stereo-mono control, 142 

READ2,143 
Realizable filters, errors in, 15 
Real-time synthesis, 34 
Report, Pass II, 149 
Reverberation, 177 

SAMGEN 
block diagram, 166 
operation of, 165 

SAM0UT for debugging, 167 
operation of, 167 

Sample and hold analysis, 21 
Samples of acoustic waveform, Si!, 46 
Sampling 

alternative analysis, 16 
basic equation, 14 
definition, 4 
error bounds, 18 
errors, 15 
mathematical analysis, 11 

Sampling interval, T, 11 
Sampling rate, R, 5, 11 
Sampling switch for digital-to-analog 

converters, 29 
Scale factors, 157 
Scaling, 178 
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Score, elementary example, 44 
Score statements, description of, 117 
SEC, end section, 123 
SET: set new function number, 134 
Set integer in all passes, SIA, 124 
Set integer in Pass III, SI3, 124 
Set new function number: SET, 134 
Set variable in Pass I, SVl, 123 
Set variable in Pass II, SV2, 123 
Set variable in Pass III, SV3, 123 
SIA, set integer in all passes, 124 
SI3, set integer in Pass III, 124 
Signal-to-noise ratio from quantizing, 

7 
Smoothing filter 

design of, 29 
use of, 4 

SNA8,142 
S0RT, 146, 150 
S0RTFL, 146, 150 
Sound-processing fundamentals 

problems, 40 
references, 39 

Sound-synthesis programming, 
fundamentals of, 33 

Spectrum of sampling impulses, 13 
Starting time of note, P2, 46 
Steady-state time, 75 
STER,142 
Stereophonic output box: STR, 131 
Stored function, 34,49, 50, 135 
STR: stereophonic output box, 131 
Subroutine in Pass I, PLF, 123 
Subroutine in Pass II, PLS, 124 
SVl, set variable in Pass I, 123 
SV2, set variable in Pass II, 123 
SV3, set variable in Pass III, 123, 157 
Swell and diminuendo, simple 

instrument with, 58 
Swells, instrument for, 99 

T array, Pass II, 146 
T(1), 153, 155 
T(2), 155 
T(3), 155 
Tempo function, 148 
TER, terminate piece, 123 
Threshold shifts, 174 
TI array, 155 
Timbre of steady tones, 175 
Time-invariant linear systems, 181 
Time scale, 34 
TMIN,155 
Training orchestra, parameters, 105 
Tremolo, 175 
Tutorial examples 

problems, 106 
references, 105 

Unit generator 
description of, 34 
list of, 124 
simple, 46 

Unit impulse, definition of, 182 

Variables 
in Pass I, 81 
in Pass II, 66 
in Pass III, 60 

Vibrato 
simple instrument with, 55 
in tone quality, 175 
using RAN, 70 

Vn,125 
Voices 

combining, 46 
definition, 36 

Voltage function of time, 3 

Word size, changing, 142 
WRITEl,143 
WRITE2,148 


