

IP(2) �~�

IP(13) �~�

IP(7) --.

IP(5) --.

IP(4) ---.

MUSIC V MANUAL 159

}

Integers, variables, and special parameters
Variable n is located at I(n + 100)
Integer n is located at I(n)

}

Functions (produced by GEN subroutines)
Function n begins at

I(lP(2) + (n - I) * IP(6))

}

Input-output blocks for unit generators
Block n begins at

I(IP(13) + (n - 1) * IP(l4))

} Note parameters

}

Location table for instrument definitions
The definition of instrument n begins at

I(I(lP(5) + n))

} Instrument definition table

For example if IP(2) = 1000, functions will start at 1(1000).
Certain special parameters in I have fixed locations and a particular

meaning, as follows

I(1) Number of words on the current data statement in the P(n)
array

1(2) Subscript of first empty location in instrument definitions
1(3) Subscript of note parameters for the note currently being

played
1(4) Sampling rate
1(5) Number of samples to synthesize in the current group
1(6) Subscript of starting location in the instrument definition

for the unit generator currently being played
1(7) Master random number
1(8) Monophonic-stereophonic signal

1(8) = 0 for monophonic; 1(8) = 1 for stereophonic

160 CHAPTER THREE

Any location in the I array may be set by an SV3, SI3, or SIA
operation. In the set-variable operation the scale factor for variables is
used so that

I(n) = IP(l2)· P(m)

whereas for integers no scale factor is involved

I(n) = P(m)

The following constants are compiled into the IP(n) array. The array
is constructed by a BL0CK DATA subprogram and is stored in labeled
C0MM0N memory, labeled P ARM.

IP(I)
IP(2)
IP(3)
IP(4)
IP(5)

IP(6)
IP(7)
IP(8)
IP(9)

IP(lO)

IP(lI)

Number of operation codes in Pass III
Beginning subscript of functions
Standard (default) sampling rate
Beginning subscript of instrument definitions
Beginning subscript of location table for instrument
definitions
Length of a function
Beginning subscript of blocks of note-parameter storage
Length of a block of note-parameter storage
Number of blocks of note parameters (equals the maxi­
mum number of voices that can play simultaneously)
Subscript of unit-generator input-output block which is
reserved for storage of samples of the acoustic output
waveform. SAM0UT puts out samples from this block
Sound zero. This is integer with decimal point at right end
of the word

IP(l2) Scale factor for unit-generator variables (input-outputs,
etc.)

IP(l3) Subscript of beginning of unit-generator input-output
blocks

IP(I4) Length of a unit-generator input-output block
IP(l5) Scale factor for functions

18. Note Parameters

The word count and parameters PI through Pn are read by Pass III
from a data statement on the input file and are initially put into 1(1)
and into the P array. If PI = 1 == N0T, the parameters must be moved

MUSIC V MANUAL 161

to a vacant block of note-parameter storage because other data state­
ments will be read into the P array before the N0T is completed. Note­
parameter blocks start at I(n) (n = IP(7)), each block is IP(8) locations
long, and IP(9) blocks are available.

A block contains the following arrangement of the information

I(n) = P3 (the instrument number)
I(n + 1) = P2 * IP(l2)
I(n + 2) = P3 * IP(l2)

I(n + m + 1) = Pm * IP(12)

All subsequent locations to end of block are filled out with zeros. All
locations are in fixed-point format. All locations except the first are
scaled by the IP(12) scale factor. The first location I(n) contains the
instrument number, unscaled. If a block is empty, I(n) contains -1.

When a unit generator is called to calculate part of a note, 1(3) = n
is set to the first location of the note-parameter block for that note.
Consequently note parameter Pk may be found at I(n + k - 1).

19. Instrument Definition

An instrument in Pass III is defined by a sequence of data statements,
which are read from the input medium. The description is stored in the
I(n) array in the instrument definition table.

The format of the input data statements in Pass III is in the following
table.

Word
Record # Count P(l) P(2) P(3)

1 3 2 Action time Inst No
2 n 2 Action time Unit type D 1 .•• Dn - 3

3 n 2 Action time Unit type D 1 •..

last 2 2 Action time

The description is terminated by a two-word statement. The quantities
Di specify the various inputs and outputs to the unit generators.

If Di < -100, then JDiJ - 100 is a function number
If -100 :::; Di < 0, then JDiJ is the number of a unit-generator

input-output block
If 1 :::; Di :::; 100, then Di is a note-parameter number
If 100 < Db then Di - 100 is a variable number

162 CHAPTER THREE

The mnemonic form of instrument definition as written on the score
and read by READ 1 has already been described in Section 4. Examples
are given in Section 5.

The instrument definition is stored starting in I(n) where n =

1(IP(5) + Inst number). Instrument definitions are stored in successive
locations in I(n) according to their action times. The first unused
location in the instrument definition table is kept in 1(2). An instrument
with a given number may be redefined at any action time. The new
definition will be used subsequently. However, no " garbage collection"
is done and the old definition will continue to occupy space in I(n).

The format of the description in I(n) is as follows:

I(n)
I(n + 1)

S1)

~~.
Sn
I(m)

/.

Type of first unit generator in instrument
Pointer to second unit-generator description = m

Subscripts and parameters pertaining to first unit
generator

Type of second unit generator
Pointer to third unit generator

I(r) 0 Terminates description of instrument

The S/s that specify inputs, outputs, and functions for the unit
generators have the following meaning:

If SI < 0, then / SI/ is the subscript in I which specifies the beginning
of a function or of a unit generator input-output block.

If 1 ::::; SI ::::; 262,144, then SI is the number of a note-card parameter.
If 262, 144 < Sh then SI - 262,144 is the subscript in I of a variable.

The number of the variable is SI - 262,144 - 100.

20. F0RSAM

F0RSAM is a subroutine that contains unit generators written in
F0R TRAN. These may be used either sepa,rately or together with
SAMGEN which contains unit generators written in basic machine
language.

F0RSAM is called in Pass III by the statement

CALL F0RSAM

The call causes F0RSAM to compute NSAM (= 1(5» samples of the

MUSIC V MANUAL 163

output of unit generator, type J (J is given in the instrument descrip­
tion). Unit-generator types in F0RSAM are numbered 101 and up in
order to differentiate them from SAMGEN unit generators, which are
numbered 1 through 100.

The block diagram of the program is shown in Fig. 59.

Common
initialization

af addresses
and parameters

Fig. 59. Block diagram of
F0RSAM program.

Computation can be made in either fixed or floating-point arithmetic.
Usually the scale-factor variables, IP(12) and IP(15), will be necessary
to scale the results.

A listing of a small F0RSAM program with only one unit generator
is shown below. The initializing routines in the program accommodate
other unit generators which can be added to the program simply by
extending the G0 T0 at 205 and writing the unit-generator code.

The dimension statement includes three arrays from Pass III, I, P,
and IP, and two other arrays, Land M, which are used to address the
unit-generator inputs and outputs. Land M are computed by the
initialization procedure.

Specifically, the jth input or output will be found at I(m) where
m = L(j). M indicates whether an input or output is a single number
(note parameter or variable) or a block of numbers (function or 1-0
block). If M(j) = 0, the jth input is a single number; if M(j) = 1, the
jth input is a block. For blocks, L(j) gives the subscript of the first
number in the block. Inputs and outputs are sequentially numbered.
Thus in the data statement

0SC P5 P6 B2 Fl S ;

P5 is the first, P6 the second, B2 the third, Fl the fourth, and S the
fifth. For more convenient referencing, an equivalence is set up so that
L(i) == Li and M(i) == Mi.

164 CHAPTER THREE

SUBROUTINLFOHSAM
DIMENSIONI(15000),P(100),IP(20),L(8),M(8)
COMMONI,P/PARM/IP
LQUIVALENCE(Ml,M(I»,(M2,M(2»,(M3,M(3»,(M4,M(4»,(M5,M(5»,(M6,M

1(0», 0i07,~H7», (Ma,tJI(B», (L1,L(!», (L2,L(2», (L3,L(3», (L4,L(4», (
2L5,L(5)), (L6,Ub)) , (L 7, U7)) , (LB,·L (8))

C COMMON INITIALIZATION OF GENERATOHS
N1=I(6) +2
N2=I (N1-1>-1
U0204J1=IJI , N2
J£=J1-~J1 + 1
IF(I(Jl»200,201,201

200 L(J2)=-!(Jl)
M(J2)=1
GOT02U4

201 M(J2)=0
IF(I(J1)-262144)202,~02,203

202 L(J2)=I(Jl)+1(3)-1
GOT0204

203 L(J2)=I(Jl)-262144
204 CONTINUE

NSA",1=I (5)
N3=I (lH-2)
WGEN= N3 -100

20~ 60TO(101,30G,300),N0EN
C UNIT GENERATOR 101- INTERPOLATING OSCILLATOR

101 SFU=IP(12)
SFF=IP(15)
SFUI=l./SFU
SFFI=l./SFF
SFUFI=SFU/SFF
SUM=FLOAT(I(L5»*SFUI
IF(Ml)21U,210,211

210 AMP=FLOAT(I(Ll»*SFUI
211 IF(M2)212,212,213
212 FREQ=FLOAT(I(L2»*SFUI
213 XNFUN=IP(6)-1

D0223J3=1,NSAM
J4=INT<SUM) +L4
FRAC=SUM-AINT(SUM)

216 Fl=FLOAT(I(J4»
F2=FLOAT(I(J4+1»

217 F3=Fl+(F2-Fl)*FRAC
IF(M2)21b,218,219

218 SUM=SUM+FREQ
60T0220

219 J4=L2+J3-1
SUM=SUM+FLOAT(I(J4»*SFUI

220 IF(SUM-XNFUN)215,214,214
214 SUM=SUM-XNFUN
215 J5=L3+J3-1

IF(M1)221,221,222
221 I(J5)=IFIX(AMP*F3*SFUFI)

60T0223
222 J6=L1+J3-1

I(J5)=IFIX(FLOAT(I(J6»*F3*SFFI)
223 CONTINUE

I(L~)=IFIX(SUM*SFU)
300 RETURN

E.ND

The number of samples to be generated is put in NSAM. Most of the
unit generators will operate with a loop such as D0 223 J3 = 1,
NSAM.

In the computations performed by the unit generator, it is necessary

MUSIC V MANUAL 165

to test to see whether an input is a single number or an 1-0 block. If
Mj = 0, the jth input need only be obtained once from I(Lj). If the jth
input is an 1-0 block (M j = 1), then each value is obtained with the
help of the main D0 index J3. For example, the third input is located at
1(15) where

J5 = J3 + L3 - 1

The particular unit generator is an oscillator that interpolates between
adjacent values of the function (see Section 6 for discussion of why
interpolation is useful). Computations are carried out in floating-point
arithmetic. Since the input data are fixed-point numbers, they must be
floated and scaled by appropriate constants. Scale factors for 1-0
blocks and for functions are given in IP(12) and IP(15), respectively.
The necessary scaling constants are computed at 101.

21. SAMGEN

SAMGEN is one of the few basic machine language programs in
Music V. Consequently it must be written specifically for the particular
machine on which it is to be used. The Bell Laboratories program is
written in GMAP for a General Electric 635 computer. A few com­
ments about the program may be of use in designing programs for
other machines.

SAMGEN includes the unit generators of type numbers less than
100. The computation of the actual acoustic samples, which is the
preponderance of the computation in Music V, is done by SAMGEN.

The general form of SAMGEN is shown in Fig. 60.
SAMGEN is written in such a way that one procedure can be used to

set the parameters in all of its unit generators. This procedure accesses
the I array in common storage during Pass III in order to find out

1(3) the subscript in the I array of the note parameters for the
note being played

] (5) the number of samples to generate and
](6) the subscript in the I array for the instrument definition table

of the unit generator being played.

The procedure then reads through the instrument description for the
unit generator being played. (See instrument description, Section 19.)

For each unit generator, the procedure expects a certain number of
inputs CSt's) in a certain order, e.g., if unit type = 2 (oscillator), then

166 CHAPTER THREE

I ni tialize unit
gene rotor
being played

Fig. 60. Block diagram of SAMGEN program.

Sl = amplitude, S2 = frequency, S3 = output, S4 = function, and
S5 = sum. It then sets addresses in the specified unit generator accord­
ing to the following conventions:

If Si < 0, then I Sil is the subscript in the I array of the beginning
of a function or of unit-generator 1-0 block.

If 0 < Si < 262,144, then Si is the number of a note parameter.
Note parameter Px is located at 1(1(3) + x-I). (See Section
18 for more information on note-parameter storage.)

If Si > 262,144, then Si - 262,144 is the subscript in the I array
ofa variable: variable x is located at I(x + 100).

After the addresses are initialized, SAMGEN transfers control to the
specified unit generator, which generates the number of samples
specified in 1(5).

The calling sequence is

CALL SAMGEN

Almost all information is supplied by the I array which is located in
unlabeled common storage according to the statement

C0MM0N I

SAMGEN uses no subroutines.

MUSIC V MANUAL 167

22. SAM0UT

SAM0UT is another GMAP subroutine called by Pass III which
(1) scales samples which are ready to be output, and (2) calls FR0UT
to output these samples onto magnetic tape. Samples (S1) are scaled
according to

SI = SI/218 + 2048

The calling sequence is

CALL SAM0UT (IARRAY, N)

where IARRA Y = address of first sample to be output, and N is the
number of samples to be output.

Other routines used by SAM0UT are

FR0UT4

No common storage is used.

23. SAM0UT for Debugging

This version of SAM0UT (cf. Section 22) is provided for debugging
purposes only. It is called by Pass III with the call

CALL SAM0UT (IARRA Y, N)

in order to print out N samples starting from location IARRA Y. It
must perform the same de scaling operations as the normal SAM0UT,
i.e.,

samplel = (sample1/218) + 2048

This version of SAM0UT is written in F0R TRAN and will print the
sample values in any convenient format. It is recommended that in
using this version of SAM0UT one should be careful of excessive
output since it is easy to ask for a very large number of acoustic
samples.

24. Acoustic-Sample Output Program: FR0UT

The subroutine package FR0UT is called by both Pass III and
SAM0UT in order to write the actual acoustic samples generated by
Music Vanta magnetic tape. FR0UT is coded in assembly language
rather than F0RTRAN (1) for efficiency and (2) because it must write

168 CHAPTER THREE

special physical records onto tape in a form suitable for digital-to­
analog conversion. This is usually not possible in a compiler language
such as F0RTRAN.

The exact form of FR0UT will depend on the particular machine
configuration of a computer installation. It is therefore necessary that
this program be written by an experienced programmer at any compllter
installation that desires to run Music V.

There follows a general description of the FR0UT programs written
at Bell Telephone Laboratories for use with the General Electric
GE645 computer. It should act only as a model for such a program
written for another machine.

Basically FR0UT simply takes sample values that are produced by
Music V, packs several samples into one computer word, and writes
them onto magnetic tape in a form suitable for digital-to-analog
conversion.

At BTL, the digital-to-analog converters operate with 12-bit samples.
Since the GE645 computer is a 36-bit word-length machine, FR0UT
packs the acoustic samples three per word.

One packed computer word is of the form

I 36 bits I

aaaaaaaaaaaab bbbbbbbbbb bcccccccccccc
L sample 1--1 L sample 2-' L sample 3.J

Since the maximum integer value that can be represented in 12 bits is
409510, FR0UT screens the sample values it receives from Music V to
be sure that it falls in the range 0 to 4095. Should any samples to be
written by FR0UT be outside this range, they are clipped to 0 and 4095.

Pass III first calls FR0UTO during its initializing sequence with the
call

CALL FR0UTO (66,167)

where 66 is a file code (i.e., a logical file name of the tape file onto
which packed acoustic samples are to be written), and 167 is the record
length in 36-bit words to be written onto this tape (samples per tape
record = 3 x words per tape record).

Whenever Music V has produced some samples that are ready to be
output, subroutine SAM0UT is called by Pass III, which in turn calls
FR0UT with the call

CALL FR0UT4 (lA, N)

which writes N samples onto tape starting from the location IA.

MUSIC V MANUAL 169

At the end of the composition, Pass ITT calls FR0UT with the call

CALL FR0UT3

FR0UT3 completes the output buffer, if it was only partially filled,
with zero-voltage samples, empties this last buffer onto tape, and
writes an end-of-file mark.

Packing of samples can be accomplished by machine-language
shifting instructions and buffering. Acoustic sample tapes typically are
unlabeled and unblocked, and use fixed-length records.

FR0UT3 prints a statement giving the number of samples out of
range in the file which has just been terminated.

25. GEN-Pass III Function-Generating Subroutines

GENI
GENI is a F0RTRAN subroutine to generate functions composed of

segments of straight lines. The calling sequence is

CALL GENI

Data are supplied by the Pen), I(n), and IP(n) arrays. The jth function
Fj(i) is generated according to the form shown in the diagram below.

'. TM

~
I I
I I
I I
I I

Linear interpolation is used to generate the function between M
points which are specified by the user. Thus between any two abscissa
points Nm and Nm+ 1 the function points are computed according to the
relation

The number of corners M is arbitrary and is determined by the word
count 1(1). M = (1(1) - 4)/2.

170 CHAPTER THREE

In general the user will set NI = 0 and NM = IP(6) - 1, so that the
number of points in the function equals IP(6).

The parameters of the function are arranged as follows:

P(1)

3

P(2)

Action
time

P(3) P(4) P(5) P(6) P(7) P(8)

Function TIN 1

No (j)

The function is stored starting in I(n) where n = IP(2) + (j - 1) *
IP(6) and is scaled by IP(15) so that, for example, len) = Tl * IP(15).

GEN2
GEN2 is a F0RTRAN subroutine to generate a function composed

of sums of sinusoids. The calling sequence is

CALL GEN2

Data are supplied by the Pen), I(n), and IP(n) arrays.
The jth function Fli) is generated according to the relation

F;(i) ~ (amp normaIiZer)t~, Ak sin ;~\
M 2k"} + k ~ Bk cos P -=- \ i = O ... P - 1

P (= IP(6» is the number of samples in a function.
The parameters for the function are arranged as follows:

P(1) P(2) P(3) P(4) P(5) P(-) P(-)

3 Action
time

2 Function Al ±N
No (j)

The number of sine terms is INI. If N is positive, amp normalizer
is computed so max I Fli) I = .99999. If N is negative, amp normalizer
= .99999. The number of cosine terms M is computed from N and the
word count 1(1). M = I{l) - N - 5.

The number of samples in the function is IP(6).
The function is stored s~arting in I(n), and is scaled by IP(5)

len) = IP(15) * Fj(O), etc.

where n = IP(2) + (j - 1) * IP(6).
Thefirst and last samples of the function are equal, Fj(O) = Fj(P - I),

thus the period in samples is P - 1.

MUSIC V MANUAL 171

GEN3
General description:

GEN3 is a F0RTRAN subroutine which generates a stored function
according to a list of integers of arbitrary length. These integers specify
the relative amplitude at equally spaced points along a continuous
periodic function. The first and last points are considered to be the
same when the function is used periodically (e.g., by an oscillator).
Calling sequence:

CALL GEN3

Other routines used by GEN3 :

none
Data statement:

GEN, action time, 3, stored function number, PI, P2 , •.. , Pnj

Examples:
The following P/s will generate the functions shown below.

(1) 0, 1,-1
will generate

(2) 0, 8, 10, 8, 0,
-8, -10,0:

(3) -1000, 0:

o~----------------------~-------

O~--------------~r-------------4

o~------------------------~~~-

172 CHAPTER THREE

26. Data Input for Pass ill-DATA

Subroutine DATA is called by Pass III with the call

CALL DATA

This causes one data statement to be read from file 11 into the P array
in C0MM0N storage according to

READ (11) K, (P(J), J = 1, K)

I(I) is set equal to K (word count).

Annotated References by Subject

Music IV Program
M. V. Mathews, "The Digital Computer as a Musical Instrument," Science,

142, 553-557 (November 1963). A semitechnical description of Music IV
with some discussion of applications. This is a good introductory article.

M. V. Mathews, "An AcoustIc Compiler for Music and Psychological Stimuli,"
Bell Sys. Tech. J. 40, 677-694 (May 1961). A technical description of an
early version of a sound generating program. This is the first complete
published description.

J. R. Pierce, M. V. Mathews, and J. C. Risset, "Further Experiments on the Use of
the Computer in Connection with Music," Gravesaner Blatter, No. 27/28,
92-97 (November 1965). A semitechnical description emphasizing applica­
tions of Music IV. This is a good follow-up for the paper in Science.

J. C. Tenney, "Sound Generation by Means of a Digital Computer," J. Music
Theory, 7, 25-70 (1963). A discussion of Music IV as seen by a composer
using the program. The article contains many details and is a good introduc­
tion for a musician.

Appendix A Psychoacoustics
and Music

J. R. Pierce
and M. V. Mathews

Although the technology of electronic and computer sound generation
has given us new tools of almost unlimited power for making new
sounds, it has also created a new problem-the need to understand the
psychoacoustics of musical perception. Sounds produced by conven­
tional instruments are so well known that composers can proceed with
the intuitions they have developed from long experience. However, no
such intuitions exist for new sounds. Instead, the composer must
understand the relation between the physical sound wave and how it is
perceived by a hearer. Psychoacoustics addresses this question and
hence has become an essential knowledge for the modern composer.

With some exceptions (Helmholtz, 1863; Plomp, 1966) original
scientific work in psychoacoustics has not been directed chiefly at
musical problems. Thus we must draw on a variety of sources in
seeking to understand musical phenomena, and we may often wish that
investigators had had music in mind.

Loudness

The perceived loudness of a sound depends on many factors in
addition to its intensity. For example, in order for a pure tone or
sinusoid at 100 Hz to be heard, its sound intensity must be 1000 times
greater than that of a pure tone at 3000 Hz. For most of the musical

173

174 APPENDIX A

range the perceived loudness increases as the 0.6 power of the sound
pressure (Stevens, 1961). The perceived loudness increases more slowly
with sound pressure for 3000-Hz tones than it does for very low fre­
quencies, say, 100 Hz; and in the 'uncomfortably loud range, tones of
equal power are about equally loud. This means that as we turn the
volume control up or down, the balance of loudness among frequency
components changes slightly.

Masking and Threshold Shifts

A tone or a noise masks or renders us incapable of hearing a less
powerful tone. A tone has a strong masking effect for tones of higher
frequency and a weaker masking effect for tones of lower frequency.
The frequency range of masking is greater for loud tones than for soft
tones. Thus we would expect that in a musical composition some
sounds might be masked and unheard when the volume is set high,
whereas they would be unmasked and heard when the volume is low.

Masking can be considered as a raising of the level at which tones
become audible. Some rise in the threshold persists for i sec or longer
after a loud tone (Licklider, 1951), but the aftereffect of a loud tone on
hearing is much less than that of a bright light on seeing.

Limens or Just Noticeable Differences

Limens or jnd's of loudness and frequency have been carefully
measured. They are surprisingly small. However, there is evidence that
the limens are much smaller than the frequency or loudness differences
that can be detected in complicated listening tasks, which are more akin
to music (Plomp, 1966, p. 19). Very small differences in frequency (less
than a half tone) and loudness can be detected in successive tones that
are not too short.

Pitch

The pitch of a complex tone is often thought of as that of its lowest
partial. However, experiments made with repetitions of various patterns
of pulses (Flanagan and Guttman, 1960) and with complex tones in
which the upper partials are harmonics of a frequency higher than the
fundamental (Plomp, 1967) show that, although the fundamental
dominates at higher frequencies, the repetition rate of the tone or of its
higher partials dominates at lower frequencies. The pitch of a tone may

PSYCHOACOUSTICS AND MUSIC 175

be highly uncertain by one or more octaves; thus Shepard produced a
circle of 12 tones, which when cyclically repeated give the impression of
always rising in pitch, with no break (Shepard, 1964). Tones with
inharmonic partials, including gongs, bells, and tones specially syn­
thesized by computers (Mathews, 1963; Pierce, 1966) may produce a
sensation of pitch; a tune can be played on them. But the pitch may not
be the first partial; for example, the hum tone of a bell is not the pitch
to which the bell is tuned.

Quality or Timbre of Steady Tones

The sound quality or timbre of steady tones depends on the partials.
Although partials up to the sixth (and sometimes higher) can be heard
individually by careful listening, we tend rather to hear an over-all
effect of the partials through the timbre of the tone. A pure tone or
sinusoid is thin. A combination of octave partials is bright. A tone with
a large number of harmonic partials is harsh or buzzy (Pierce, 1966).
In general, the timbre appears to be dissonant or unpleasant if two strong
partials fall within a critical bandwidth, which is about 100 Hz below
600 Hz and about a fifth of an octave above 600 Hz (Plomp, 1966).

The timbre of a sound is strongly affected by resonances in the vocal
tract or in musical instruments. These resonances strengthen the
partials near the resonant frequencies. Three important formants or
ranges of strengthened frequency are produced by the vocal tract; they
give the qualities to vowel sounds which are identifiable independent of
pitch.

Transient Phenomena

Textbooks give harmonic analyses of the sounds of various musical
instruments, but if we synthesize a steady tone according to such a
formula it sounds little like the actual instrument. Steady synthesized
vowels do not sound like speech if their duration is long.

Temporal changes such as attack, decay, vibrato, and tremolo,
whether regular or irregular, have a strong effect on sound quality. A
rapid attack followed by a gradual decay gives a plucked quality to any
waveform. Also, the rate at which various partials rise with time and
the difference in the relative intensity of partials with loudness are
essential to the quality of the sound (Risset, 1965). Indeed it is at least
in part the difference in relative intensity of partials that enables us to
tell a loud passage from a soft passage regardless of the setting of the

176 APPENDIX A

volume control. This clue is lost in electronic music if the tones employed
have a constant relative strength of partials, independent of volume.

The "warmth" of the piano tone has been shown to be due to the
fact that the upper partials are not quite harmonically related to the
fundamental (Fletcher et at., 1962).

Consonance

Observers with normal hearing but without musical training find
pairs of pure tones consonant if the frequencies are separated by more
than the critical bandwidth (Plomp, 1966), or if the frequencies coincide
or are within a few hertz of one another (in this case beats are heard).
Pairs of tones are most dissonant when they are about a quarter of a
critical bandwidth apart. For frequencies above 600 Hz, this is about a
twentieth of an octave.

Excluding bells, gongs, and drums, the partials of musical instruments
are nearly harmonic. When this is so, for certain ratios of the frequencies
of fundamentals, the partials of two tones either coincide or are well
separated. These ratios of fundamentals are 2:1 (the octave), 3:2 (the
fifth), 4:3 (the fourth), 5:4 (the major third), and 6:5 (the minor third).
Normal observers find pairs of tones with these ratios of fundamentals
to be more pleasant, and intervening ratios less pleasant (Plomp, 1966).

Musical consonance and dissonance depend on many factors in
addition to frequencies of partials. For example, unlike nonmusicians,
classically trained musicians describe pairs of pure tones with these
simple numerical ratios of frequency as consonant and intervening
ratios as dissonant. The only reasonable explanation is that trained
musicians are able to recognize familiar intervals and have learned to
think of these intervals only as consonant.

Plomp (1966) has pointed out that, in order for complex tones to
attain a given degree of consonance, low tones must be separated by a
larger fraction of an octave than high tones, and he has observed that
composers follow this principle.

If the partials of a tone are regularly arranged but not harmonic, the
ratios of frequencies of the fundamental (or first partial) that lead to

, consonance are not the conventional ones (Pierce, 1966).

Combination Tones

When we listen to a pure tone of frequency f1 and another tone of
somewhat higher frequency f2' we hear a combination tone of lower

PSYCHOACOUSTICS AND MUSIC 177

frequency 2f1 - f2' even at low sound levels (Goldstein, 1967). At
much higher sound levels, around 100,000 times or more the power at
threshold, it is possible to hear faint frequencies 2f1, 2f2, f1 + f2'
f2 - fb etc. Combination tones are due to nonlinearities in the hearing
mechanism. They can contribute to dissonance and to beats.

Reverberation

Reverberation is important to musical quality; music recorded in
an organ loft sounds like a bad electronic organ. The reverberation for
speech should be as short as possible; for music about 2 sec is effective.
Music sounds dry in a hall designed for speech. Reverberation is not the
only effect in architectural acoustics. Our understanding of architectural
acoustics is far from satisfactory (Schroeder, 1966).

The Choir Effect

Many voices or many instruments do not sound like one voice or one
instrument. Some experiments by the writers show that a choir effect
cannot be attained by random tremolo or vibrato. It must be due to
irregular changes in over-all waveform, caused by beating or head
motions, or by. differences in attack.

Direction and Distance

We can experience a sidedness to sound by wearing headphones fed
from two microphones, but the sound seems to be inside our head.
We experience externalization of the sound-as coming from a par­
ticular direction-only when we allow head movements in a sound field.
Although we cannot detect the direction of the source of a sinusoidal
tone in a reverberant room, we can detect the direction by the onset of
such a tone, and we can detect the direction of clicks and other changing
sounds. The first arrival of the sound dominates later reverberant
arrivals in our sensing of the direction of the source; this is called the
precedence effect (Wallach, Newman, and Rosenzweig, 1949). We can
detect vertical angle of arrival, although no one is sure how this is done.
We can also sense the distance of a source in a reverberant room; this
sensation must depend on some comparison of the direct arrival and the
reverberant sound (Gardner, 1967).

Memory and Overlearning.

Most memory experiments are not done with musical sounds, but
many are relevant to music.

178 APPENDIX A

Miller (1956) found that subjects can remember a sequence of from
5 to 9 randomly chosen digits, letters, or words. On the other hand, a
good bridge player can remember every card that has been played in
an entire game. Our ability to deal with stimuli depends on their
familiarity or "meaning" to us. This familiarity comes about through
overlearning. Overlearning has been insufficiently investigated because,
although it is common in life, it is very difficult to achieve in the
laboratory.

The phonemes of a language are overlearned. A subject can readily
distinguish the phonemes of his own tongue, but not those of another.
He can distinguish dialects of his own language, but not those of a
foreign tongue. He can understand his native language in a noisy place
better than he can understand a foreign language even though he is
expert in it.

Conventional elements and structures in music are undoubtedly
overlearned. Much of our appreciation of harmony, much of our ability
to remember conventional tunes (Mozart, Haydn, and some other
musicians could remember compositions heard only once) must
depend on overlearning, just as our ability to use and remember
language does. Performance with unfamiliar material is much poorer.

Psychological Distance; Scaling

Some psychological stimuli have the same pattern of similarity for
all people. Color is one. The psychological distance between stimuli
such as colors can be obtained by computer analysis of data expressing
either the confusions that subjects make among pairs of stimuli or the
numbers that they assign to the pairs to express their judgments of
similarity. This kind of analysis is called multidimensional scaling. The
stimuli may appear in a psychological space of one dimension (loudness
does), two dimensions (color does) or three (vowels do) or more
dimensions. Psychological distance is dependent on, but not propor­
tional to, physical parameters. Thus red and violet light are of all colors
the farthest apart in wavelength, and yet they look more alike-they
are closer together psychologically-than the "intermediate" colors
orange and blue.

Unhappily, multidimensional scaling is just beginning to be applied
in the field of music (Levelt et al., 1966). Further results might be
enlightening. For instance, we is nearly you said backwards, and yet we
perceive no similarity between the sounds of the two words. Is the
retrograde of a phrase psychologically similar to the phrase, or is

PSYCHOACOUSTICS AND MUSIC 179

retrograde (in the words of Tovey) for the eye only? Transpositions
certainly are psychologically close, but what about augmentations and
inversions? What about changes in rhythm? What about manipulations
of the tone row?

References

Flanagan, J. L., and N. Guttman, "On the Pitch of Periodic Pulses," J. Acoust.
Soc. Amer. 32, 1308 (October 1960).

Fletcher, H., E. D. Blackham, and R. Stratton, "Quality of Piano Tones,"
J. Acoust. Soc. Amer. 34, 749 (June 1962).

Gardner, M., "Comparison of Lateral Localization and Distance for Single- and
Multiple-Source Speech Signals," J. Acoust. Soc. Amer. 41, 1592 (June 1967),
Abstract.

Goldstein, J. L., "Auditory Nonlinearity," J. Acoust. Soc. Amer. 41, 676-689
(March 1967).

von Helmholtz, H. L. F., Die Lehre von der Tonempfindungen als physiologische
Grundlage fur die Theorie der Musik, 1863. On the Sensations of Tone as a
Physiological Basis for the Theory of Music (Dover, New York, 1954).

Levelt, W. J. M., J. P. van de Geer, and R. Plomp, "Triadic Comparisons of
Musical Intervals," Brit. J. Math. Statist. Psychol. 19 (Part 2), 163-179
(November 1966).

Licklider, J. C. R., "Basic Correlates of the Auditory Stimulus," in Handbook of
Experimental Psychology, S. S. Stevens, Ed. (John Wiley & Sons, New York,
N.Y., 1951).

Mathews, M. V., "The Digital Computer as a Musical Instrument," Science 142,
553 (November 1963).

Miller, G. A., "The Magical Number Seven, Plus or Minus Two," Psycho!. Rev.,
63, 81 (1956).

Pierce, J. R., "Attaining Consonance in Arbitrary Scales," J. Acoust. Soc. Amer.
40, 249 (July 1966).

Pierce, J. R., and E. E. David, Man's World of Sound (Doubleday, Garden City,
N.Y., 1958).

Plomp, R., Experiments on Tone Perception (Institute for Perception RVO-TNO,
Soesterberg, The Netherlands, 1966).

Plomp, R., "Pitch of Complex Tones," J. Acoust. Soc. Amer. 41, 1526-1533
(June 1967).

Risset, J. C., "Computer Study of Trumpet Tones," J. Acoust. Soc. Amer. 38,
912 (November 1965), Abstract.

Schroeder, M. R., "Architectural Acoustics," Science 151, 1355 (March 1966).
Shepard, R. N., "Circularity in Judgments of Relative Pitch," J. Acoust. Soc.

Amer. 36, 2346 (December 1964).
Stevens, S. S., "Procedure for Calculating Loudness: Mark VI," J. Acoust. Soc.

Amer.33, 1577-1585 (1961).
Wallach, H., E. B. Newman, and M. R. Rosenzweig, "The Precedence Effect in

Sound Localization," Amer. J. Psychol. 52, 315-336 (1949).

Appendix B Mathematics

In the body of this text an effort has been made to minimize the number
and difficulty of mathematical expressions. In certain places some
computations characteristic of signal theory must be done. This
appendix lists the relations that are required by the text. No proofs are
given, and the conditions under which the relations are true are not
spelled out. They hold in a useful (and widely used way) for almost all
real signals. We apologize for the strong MIT and EE accent in the
mathematical language. If one has something to say, it is better to
speak with an accent than to remain silent.

Fourier Series

A "not too discontinuous" function f(x) with period T can be
represented almost everywhere by the series

ao 277" 4rr
f(x) = "2 + al cos y x + a2 cos y x + ...

b . 277" b' 4rr + lSlnyX+ 2SlnyX+'"

where

2 fT 217-i
at = T J 0 f(x) cos T dx

180

MATHEMATICS 181

and

2 r . 27Ti bi = if 0 f(x) sm T dx

Fourier Transform

A "not too discontinuous" function f(x) for which the integral of
f2(X) exists may be transformed and inverse transformed according to
the relations

f
+OO

pew) = -00 p(t)e- Joot dt

1 f+oo pet) = - P(w)eJoot dw 27T _ 00

pew) is called the Fourier transform of pet); pew) is also called the
amplitude spectrum of pet).

Input-Output Relations for Time-Invariant Linear Systems

The output oCt) of a time-invariant linear system due to an input
i(t) may be written

f
+OO

oCt) = _ 00 i(t - x)h(x) dx

where hex) is called the impulse response of the system. For realizable
systems, hex) = 0 for x < O. The transform of hex) is called the
transfer function H(w) of the linear system and is written

f
+OO

H(w) = _ 00 h(t)e- Jrot dt

The Fourier transform of the output O(w) and the Fourier transform
of the input I(w) are related by the simple equation

O(w) = H(w)I(w)

Convolution Theorem

The three time functions, x(t), yet), and z(t), have as their respective
Fourier transforms X(w), Yew), and Z(w). If z is the product of x and y

z(t) = x(t)· yet}

182 APPENDIX B

then

1 J+ 00 Z(w) = 27T _ 00 X(a)Y(w - a) da

If Z is the product of X and Y

Z(w) = X(w). Yew)

then

J
+OO

z(t) = _ 00 x(a)y(t - a) da

Definition of Unit Impulse

The unit impulse Set) can be considered the limit

Set) = lim 1 e -t2
/2u

2

u->O V27Ta

I t is zero everywhere except at t = 0, but its integral is unity

J
+OO

_ 00 S(t) d t = 1

Spectrum of Cos wot

Although the integral of cos2 wot does not exist, and hence cos wot
does not have a legitimate Fourier transform, the transform pew) can
be usefully defined as

pew) = 7T[S(W - wo) + sew + wo)]

Note in particular that the inverse transform

= cos wot

Autocorrelation Function and Power Spectrum

If pet) is an ergodic random function, then an autocorr~lation
function cp(T) may be defined by the relation

cp(T) = J~~ 2~ f~T p(t)p(t + T) dt

MATHEMATICS 183

More generally

cp(1") = E<p(t)p(t + 1")

where E<) is defined in some way that makes sense for the random
function pet). The power spectrum <I>(w) is the Fourier transform of
cp(1"). Thus

1 f+oo <I>(w) = - cp(1")e- jOlt dt
27T _ 00

cp(1") = s:: <I>(w)ejw
• d1"

Note that the 2~ factor is in the transform rather than the inverse

transform.

Random Functions and Linear Systems

H(w) is the transfer function of a linear system having an input i(t)
and an output oCt). Let <l>i(W) and <l>o(w) be the power spectra of the
input and output, respectively; then

<l>o(w) = I H(w) I 2 <l>i(W)

Mean-Square Function

If pet) is a random function with autocorrelation function cp(1") and
power spectrum <1>(w), then

f
+OO

E<p(t)2) = cp(O) = _ 00 <I>(w) dw

Index

AD2-AD4: adder units, 128
AD2 generator, tutorial discussion, 47
Algorithm, 135
Amplitude function, 91
Analog-to-digital converter, 26
Attack, 53, 73, 175
Autocorrelation function, 182

Band-pass noise, 70, 129
Beats, 87
Bn, 125
Buffer memory, 32

CARD,139
Choir effect, 177
C0M,121
Combination tones, 176
Composing subroutines, tutorial

discussion, 78
Compositional functions, 86
C,0N, function evaluator, 150

tutorial discussion, 91
Consonance, 176
Convolution theorem, 181
C0NVT

convert subroutine, 152
for ENV, 75 '
for glissando, 66
simple example, 63
tutorial discussion, 62
for 12-tone scale, 65

Cos mot, spectrum of, 182
D array

Pass I, 81, 122
Pass II, 95, 146

DATA, operation of, 172
Data statement

function of, 117
for Pass I, 121

Decay, 53, 73, 175
Define instrument, INS, \23
Digital data storage, 31
Digital-tape control for sound

recording, 32
Digital-to-analog converter, 27
Direction perception, 177
Dissonance, 176
Distance perception, 177
Duration function, 90
Duration of note, P4, 46
Duty-factor function, 90

End section, SEC, 123
ENV: envelope generator

description, 130
tutorial discussion, 73

ERR0R, operation of, 144
ERR~ codes, table of, 145
External data connection, 33

Filter, errors introduced by, 15
Filters, smoothing, 16

185

186 INDEX

FLT: filter, 76
Fn,125
Foldover errors, 7, 15, 19
F0RSAM

block diagram, 163
operation of, 162

F0RTRAN, 43
Fourier series, 180
Fourier transform, 181
Frequency-limited function, 12
Frequency scale, logarithmic, 80
FR0UT, operation of, 167
FR0UTO, 168
FRfOVT3, 169
FR0UT4,168
Function evaluator, C0N,150

G array, Pass II, 66, 146, 148
GEN program for stored functions

data statement, 123
use in Pass III, 157
use of, 50

GEN1, operation of, 169
GEN2, operation of, 170
GEN3, operation of, 171
Glissando, simple instrument with, 58
Graphic score, 89

HARVEY, 121

I array
Pass II, 95, 146
Pass III, 119, 155, 159

I used by READ1, 143
IBC,142
IBCD,139
ICAR,139
Impulse modulator, 12
Input-output blocks, correct use of,

158
Input-output routines for Pass I and

Pass II, 139
INS, define instrument, 123
Instrument with attack and decay, 53
Instrument definition

operation of in Pass III, 161
table, 162

Instrument that varies waveform with
amplitude, 60

Instruments
definition of, 124
interactions between, 98
multiple use, 157

1-0 blocks, 47

IP array
Pass I, 81, 121
Pass II, 63, 148
Pass III, 119, 160

IP (12), 157
IP (15), 157
ISAM,157
ITI array, 155
IVT,142

J in READl, 143
Just noticeable differences, 174

Lin READl, 143
Limens, 174
Linear systems with random inputs,

183
L0P,142
Loudness, 173
LSG, line-segment generator, 100

Magnetic tape, digital, 31
Masking, 174
Mean-square function, 183
Memory and overlearning, 177
Metronome function

example, 87
operation of, 148

MLT generator, tutorial discussion, 49
M0VL, operation of, 141
M0VR, operation of, 141
Music I-Music V

general description, 34
references, 172

Music V
comparison with Music IV, 115
general operation of, 116
overviewof,37

NBC, number of break characters, 142
N0T, play note, 123
Note concept, 34, 36
Note-parameter storage blocks, 154,

155, 160
Note playing, operation of, 154
NPW, 143
NSAM, 162, 164
Numerical representation of functions

of time, 2
NUMU, 143

OP codes
adding more, 142
table of, 122

Orchestra, elementary example, 44
0SC generator

description, 127
distortions in, 13 8
with interpolation, 138
with rounding, 138
special discussion, 134
with truncation, 138
tutorial discussion, 49

0UT generator
description, 126
tutorial discussion, 48

P array
Pass I, 81, 121
Pass II, 63

PARM,160
Pass I

block diagram, 120
C0MM0N statement, 121
description, 120
general operation, 116

Pass I subroutines, 118
Pass II

block diagram, 146
C0MM0N statement, 146
description, 145
G array, 148
general operation, 118
IP array, 148
report, 149

Pass II subroutines, PLS, 94
Pass III

block diagrams 154, 156
description, 153
general operation, 119

Pitch, 174
Pitch function, 91
Pitch-quantizing example, 94
Play note, N0T, 123
Play-to-action time, 155
PLF, execute subroutine in Pass I, 123

general operation, 144
score record, 82
use as composing subroutine, 78
use to multiply melodies, 83
use with graphic score, 89

PLS, execute subroutine in Pass II, 124
operation of, 151
tutorial example, 94

Pn, 125
Power spectrum, 182
Pressure function p (t), 2

INDEX 187

Psychoacoustics
importance, 173
references, 179

Psychological distance, 178

Quantizing, 5
Quantizing errors

basic equations for, 24
definition, 7
mathematical analysis, 22

RAH: random and hold generator, 132
RAN: random function generator

description, 128
tutorial discussion, 68
use for band-pass noise, 70
use for vibrato, 70

Random and hold generator: RAH,
132

READ,U8
READO

debug, 143
operation of, 139

READ 1
block diagram of, 140
debug, 143
operation of, 139
stereo-mono control, 142

READ2,143
Realizable filters, errors in, 15
Real-time synthesis, 34
Report, Pass II, 149
Reverberation, 177

SAMGEN
block diagram, 166
operation of, 165

SAM0UT for debugging, 167
operation of, 167

Sample and hold analysis, 21
Samples of acoustic waveform, Si!, 46
Sampling

alternative analysis, 16
basic equation, 14
definition, 4
error bounds, 18
errors, 15
mathematical analysis, 11

Sampling interval, T, 11
Sampling rate, R, 5, 11
Sampling switch for digital-to-analog

converters, 29
Scale factors, 157
Scaling, 178

188 INDEX

Score, elementary example, 44
Score statements, description of, 117
SEC, end section, 123
SET: set new function number, 134
Set integer in all passes, SIA, 124
Set integer in Pass III, SI3, 124
Set new function number: SET, 134
Set variable in Pass I, SVl, 123
Set variable in Pass II, SV2, 123
Set variable in Pass III, SV3, 123
SIA, set integer in all passes, 124
SI3, set integer in Pass III, 124
Signal-to-noise ratio from quantizing,

7
Smoothing filter

design of, 29
use of, 4

SNA8,142
S0RT, 146, 150
S0RTFL, 146, 150
Sound-processing fundamentals

problems, 40
references, 39

Sound-synthesis programming,
fundamentals of, 33

Spectrum of sampling impulses, 13
Starting time of note, P2, 46
Steady-state time, 75
STER,142
Stereophonic output box: STR, 131
Stored function, 34,49, 50, 135
STR: stereophonic output box, 131
Subroutine in Pass I, PLF, 123
Subroutine in Pass II, PLS, 124
SVl, set variable in Pass I, 123
SV2, set variable in Pass II, 123
SV3, set variable in Pass III, 123, 157
Swell and diminuendo, simple

instrument with, 58
Swells, instrument for, 99

T array, Pass II, 146
T(1), 153, 155
T(2), 155
T(3), 155
Tempo function, 148
TER, terminate piece, 123
Threshold shifts, 174
TI array, 155
Timbre of steady tones, 175
Time-invariant linear systems, 181
Time scale, 34
TMIN,155
Training orchestra, parameters, 105
Tremolo, 175
Tutorial examples

problems, 106
references, 105

Unit generator
description of, 34
list of, 124
simple, 46

Unit impulse, definition of, 182

Variables
in Pass I, 81
in Pass II, 66
in Pass III, 60

Vibrato
simple instrument with, 55
in tone quality, 175
using RAN, 70

Vn,125
Voices

combining, 46
definition, 36

Voltage function of time, 3

Word size, changing, 142
WRITEl,143
WRITE2,148

