Cromemes

3100 \& 3101 TERMINAL
 SERVICE MANUAL

This document has been prepared by Beehive International and is furnished on the condition that it will be used by the customer solely for the purpose of supporting the operation, service and maintenance of Beehive products. The rights of the customer with respect to this document will be governed by mutually acceptable provisions of the contract with Beehive International. This document shall not be duplicated by the customer, nor released, disclosed or used, in whole or in part, for any purpose other than stated herein, without the express written permission of said Beehive International.

TABLE OF CONTENTS

Section Title Page
SECTION IV - THEORY OF OPERATION
4.1 INTRODUCTION 4-1
4.2 GENERAL FUNCTION DESCRIPTION 4.1
4.2 .1 Power Supply 4-1
4.2.2 Monitor 4-1
4.2.3 Keyboard $4-1$
4.2 .4 Logic Board. 4-1
4.3 DETAILED FUNCTIONAL DESCRIPTION 4.6
4.3.1 Power Supply 4.6
4.3 .2 Monitor 4.6
4.3.3 Vertical Synchornization 4.6
4.3 .4 Horizontal Synchronization 4.6
4.3.5 Video Information 4.6
4.3 .6 Keyboard 4-6
4.3 .7 Display Organization 4-6
4.3 .8 Cursor Location Counter 4-7
4.3.9 Memory 4-11
4.3.10 Character Generator 4-11
4.3.11 Video Shift Register 4-11
4.3.12 Input/Output Operations UART (Receiver) 4-11
4.3.13 UART (Transmit) 4-11
4.3.14 Block Send Circuit 4-11
4.3 .15 Auxiliary Send Circuit 4-12
4.3.16 Special Function (F1-F16) 4-12
SECTION V - MAINTENANCE
5.1 INTRODUCTION 5-1
5.2 PREVENTIVE MAINTENANCE 5-1
5.2 .1 Troubleshooting Equipment 5-1
5.3 CORRECTIVE MAINTENANCE 5-1
5.3 .1 Troubleshooting Preliminary Considerations 5-2
5.3.2 Troubleshooting Flow Diagrams 5-2
5.3.3 Full/Duplex Echoplex Test 5-2
5.4 MONITOR ADJUSTMENTS 5-17
5.5 DISASSEMBLY PROCEDURE 5-18
5.5.1 Case Removal 5-18
5.5.2 Logic Board Removal 5-18
5.5.3 Keyboard Assembly 5-18
5.5.4 Fan Removal 5-18
5.5.5 Monitor Assembly Removal. 5-18

SECTION VI - DRAWINGS/SCHEMATICS

APPENDICES

A	MONITOR	
1	General Information	A. 1
2	Theory of Operation	A-1
3	Preliminary Adjustments . . .	A-6
4	Troubleshooting and Maintenance	A. 9
B	GLOSSARY	
C	PROGRAMMABLE LOGIC ARRAY INPUTS	
	TABLES	
Table	Description	Page
5-1	Troubleshooting Flow Diagram Index. .	5-3 ff

FIGURES
Figure
Description
Page
4-1 Basic Block Diagram 4-2
4 Basic Functional Flow Diagram 4-3
43 Basic Functional Flow Diagram 4-4
44
4.5

4-6
Power Supply Block Diagram 4-5
Character Dot Matrix 4.8

4-7
Timing Diagram $4-9$

5-1
Timing Diagram 4.10

5-2
Echoplex Test Connector
5-2
Monitor Adjustments
5-17
5-3
Assembly Drawing 5-19
A-1 Voltage Waveform
A. 10

A-2 Interconnecting Cabling Diagram A-11
A-3 Circuit Board Components Location A-11
A-4 TV5, 9 and 12 Without Power SupplyA. 12

SECTION IV

Theory of Operation

4.1 INTRODUCTION

This section contains the theory of operation for the BEEHIVE B150 Terminal. This discussion is presented as a functional description at a detailed block diagram leve! referencing appropriate functional blocks on the diagrams.

4.2 GENEŔAL FUNCTIONAL DESCRIPTION

The B150 consists of four basic functional components, Power Supply, Monitor, Keyboard and Main Logic Board. Figure $4-3$ shows the basic functional flow diagram of the terminal. These functions are briefly described in the following paragraphs.

4.2.1 Power Supply

The Power Supply provides the required, regulated DC voltages to the terminal. This assembly will operate on 100,115 , or $230 \vee \mathrm{VAC} 50 / 60 \mathrm{~Hz}$ power (see Section 11).

4.2.2 Monitor

The Monitor Assembly includes a 12 inch (30.5 cm), diagonally measured, CRT and its supporting solid-state circuitry. The Monitor is controlled by the vertical and horizontal synchronization signals, and the video signals generated on the logic board. A full screen of information consists of 24
lines of 80 characters and a one raster scan between lines. Brightness and contrast adjustments are provided by external potentiometers located on the rear panel, (see Figure 2-2, Section 11). Other monitor adjustments are discussed in Section V and in Appendix A.

4.2.3 Keyboard

The keyboard is the input device used by the operator to communicate with the terminal. The keyboard contains the switches and supporting circuitry to generate the appropriate control signals and ASCII codes utilized in the B150 terminal. The keyboard conforms to the proposed ANSI keyboard standard for data keys, but has been expanded to facilitate the capabilities of the B 150 .

4.2.4 Logic Board

The Logic Board contains the major function and control circuits in the B150 termina. It also holds all of the DC voltage regulators to power the unit, with the exception of the +5 V regulator. The basic operations accomplished by the main logic board are: Generation of data and control signals for the monitor, interaction with the keyboard, control of the data sent between the B150 and any external device, and generation of the basic timing signals essential for the operation of the terminal.

Figure 4-3 BASIC FUNCTIONAL FLOW DIAGRAM

FIGURE 4-4 POWER SUPPLY BLOCK DIAGRAM

4.3 DETAILED FUNCTIONAL DESCRIPTION

A detailed discussion of the BEE HIVE B150 terminal operation is contained in the following paragraphs. The Subassembly components of the terminal are functionally interdependent, however, the isolation of various functions to the responsible subassembly is relatively simple. The function of each subassembly is also described. Schematic diagrams are provided in Section VI of this manual.

4.3.1 Power Supply

The Power Supply provides $+5,+15,+12$, and -12 VDC voltages to the circuitry from a 115 or 230 VAC source at 50 or 60 Hz . Figure $4-4$ is a block diagram of the Power Supply subassembly. The DC regulators utilized are overcurrent and thermally protected.

The power applied to the Power Supply is stepped down in voltage. The transformer output voltages are rectified by three bridge circuits. The output from the rectifiers and filters provides power to the $+5,+15,+12$, and -12 VDC regulator circuits.

4.3.2 Monitor

The monitor displays data on the CRT in a pattern determined by the vertical and horizontal synchronization signals, and the video information driving signals. $A+15$ VDC voltage is applied by the Power supply to the Monitor. Appendix A presents general and detailed data on the Monitor Assembly.

4.3.3 Vertical Synchronization

Vertical synchronization is applied to the vertical oscillator and triggers it at the vertical refresh rate determined by the driving logic. The vertical frequency is stabilized by the vertical frequency control, which determines the point of oscillation. The output pulse of the vertical oscillator is applied to the driver amplifier which shapes the pulse and is controlled by the vertical linearity control. The output of the driver amplifier is applied to the vertical driver by way of the height control. The vertical driver output pulse is applied to the yoke of the CRT and causes vertical deflection. The refresh rate is $50-60 \mathrm{~Hz}$. switch selectable.

4.3.4 Horizontal Synchronization

The horizontal synchronization pulses are applied to the horizontal amplifier where they are amplified and applied to the horizontal driver. The output of the horizontal drive is applied through the width coil to the yoke, where it causes the horizontal deflection. The horizontal deflection signal is also applied to the flyback transformer. The horizontal deflection signal is stepped up to approximately 12 KV where it is then rectified, filtered and applied to the anode cap of the CRT to provide the high voltage required.

4.3.5 Video Information

The Video Information is applied to the video amplifier by way of the contrast control, external to the monitor. The video information signal from the video amplifier is appiied to the cathode of the CRT gun to cause an On,'Off condition corresponding to light patterns of the screen. The brightness control is external to the monitor and varies the voltage on the accelerating grid of the CRT.

4.3.6 Keyboard

The keyboard is compatible with ANSI standards. Section III defines the ASCII codes available and shows the keyboard layout.

The keyboard enables the operator to manually input information to the terminal. When a key is depressed, the keyboard logic generates the corresponding 7-bit ASCII code and presents the data in parallel form to the keyboard data lines. After a short delay for debouncing, the strobe is driven to its active leve! and held there as long as the key is held down. For those keys which auto repeat. the strobe line is pulsed at a 15 character per second rate. The BREAK key is not encoded, but is a function line that is driven low for approximately 400 milliseconds when the key is depressed. The following keys cause special 8 -bit (non-ASCII) codes: AUX SEND, $\downarrow, \rightarrow, \leftarrow, \uparrow, C L E A R / H O M E, S E N D$, EOS, EOL, and DELETE CHAR. These codes are used internal to the CRT only and are not transmitted.

4.3.7 Display Organization

The main timing shain (oscillator, dot position counter, character position counter, character height counter, and character line counter)
defines the configuration of the display on the CRT. There are 27 lines, 3 of which are used for vertical retrace and 24 of which are used to display characters. The 27 lines are composed of ten scans each. Each scan being composed of 7×10 dot matrix field which contains a 5×7 character matrix for the displayed character.

Oscillator The oscillator is crystal controlled with a frequency of 10.8864 MHz . Two $74 \mathrm{HO4}$'s are connected in series by a 100 pf capacitor. Each 74 H 04 has a 1 Kohm feedback resistor around it. A 10.8864 MHz crystal is connected from the input of the first 74 HO to the output of the second. The output of the oscillator is buffered, inverted and fed to the Dot Position Counter.

Dot Position Counter This divide-by-seven counter defines each of the seven dots required to compose one character. The outputs of this four stage counter are labeled DPC1, DPC2, DPC4, and DPC8. The Counter actually presets to a count of 10 , counts up through the overflow point at 15 to a count of zero, and presets then back to a count of 10 . The Dot Position counter output, DPC8, drives the Character Position Counter.

Character Position Counter The Character Position Counter is composed of two binarytype counters that define 96 character times, each being seven dots wide. The output of the Character Position Counter drives the Character Height Counter.

Character Height Counter The Character Height Counter is a standard counter that defines 10 scans of 96 characters each, with each character being seven dots wide. The output of the Character Height Counter drives the Character Line Counter.

Character Line Counter The Character Line Counter is a binary counter that starts at a count of zero and counts to a maximum of 26 for a total of 27 character lines. The final output of this counter runs at the vertical refresh rate.

Horizontal and Vertical Drive The Horizontal

Drive is started when the Character Position Counter leaves the video area of the scan and is active for the following 40 character times. The high active output of this flip-flop is sent to the monitor on pin 9 of connector J .

The vertical drive is generated during the time that the Character Line Counter is decoding 24.

4.3.8 Cursor Location Counter

The Cursor Location Counter identifies the location of the cursor. This is a count made from the Cursor Line Counter, called CURL, and the Cursor Position Counter, called CURP. These two counters, in conjunction with the ROLL counter, are used to address the memory to determine the entry point of the next character. The cursor location counters are compared with the next character. The cursor location counters are compared with the Character Position Counter and the Character Line Counter to generate the signal called CNTR CURSOR. This signal is used to generate the cursor displayed on the CRT. Also associated with the cursor location counters is the appropriate circuitry to move the cursor up, down, right, left, home,etc.
A LINE FEED code causes the Cursor Line Counter to increment by one. A CARRIAGE RETURN code clears the Cursor Position Counter.

With the terminal operating in FORMAT MODE, when the cursor is incremented off the bottom line, the cursor automatically wraps around to the top of the display, i.e., the Cursor Line Counter is reset to zero. However, if the terminal is not in FORMAT MODE, the display scrolls whenever the cursor increments from a count of 23.

A scroll is initiated by any of 3 functions if activated when the cursor is on the last line of the display and the terminal is not in FORMAT MODE:
a. LINE FEED or CTRLJ
b. CURSOR DOWN or ESC B
c. If the cursor is on the last position of the last line.

1. Cursor right

2. Any displayable character
3. Space

FIGURE 4-5
CHARACTER DOT MATRIX

FIGURE 4-6 TIMING DIAGRAM

13.9 Memory

. ie page memory is actually a 2048 byte memory. Each byte consists of 9 bits: 7 for data, one for protect, and one for blink. Of these 2048 bytes, 1920 are displayable. The program does not have the capability of displaying or writing into the remaining 128. In order to write data into the page memory from the receiver, the memory address is muxed over to the cursor location registers and the signal WRITE is generated. The UART is then reset and is capable of receiving the next character. The page memory output is sent to the character generator input buffer at the proper time to generate the displayable characters. The program has the capability of shutting down the screen refresh for any given operation to increase the program operating time.

4.3.10 Character Generator

The Character Generator is a read-only memory (ROM) that is addressed by the character (in ASCII). The scan configuration and the character indicates the pattern desired on that scan. e-bit dot patterns are generated which form .ortion of a character. The output of the character generator is applied to the parallel-to-serial video shift register.

*4.3.11 Video Shift Register

The parallel-to-serial Video Shift Register is loaded with data by the low-active signal, DPC8, and is clocked by the main oscillator output. The dots are shifted out, mixed with cursor information, and blanking signals, and applied to the monitor through the CONTRAST control as video information.

4.3.12 Input/Output Operations UART (Recsiver)

Data can be received by the B150 from one of three sources; from the two $1 / O$ interfaces into the receive side of the UART or from the keyboard through the transmit side of the UART to the receive side of the UART.

The UART is driven by a clock generated internally off the main counter chain. No separate nacillator is required. A rotary switch located
on the back panel switches the clock rate for operation from 75 to 19200 baud. The times 16 clock is then applied to the transmitter and receiver of the UART.

The EIA line receiver receives data at RS 232C levels and gates them into the UART when the B 150 is on-line. Through the same gating, data is brought in from the transmit side of the UART. The data is brought into the UART where it is converted to parallel (seven bits) data.

4.3.13 UART (Transmit)

The keyboard data lines for bits 1 through 7 are applied to the transmit input data lines along with the seven BUS lines. Also coming from the keyboard circuit is a load signal which triggers the UART to initiate the transmission. As the UART receives the character for transmission, it performs the appropriate parity generation, provides one or two stop bits, divides the $\times 16$ clock to get the baud rate, and transmits the character. The character is applied through an EIA RS 232C interface to the computer or modem. Also coming from the UART is output data at a TTL level which is applied to the receiver side of the UART through the previously mentioned logic. The EIA interface includes a Data Terminal Ready signal which indicates the status of the B150 to the computer and a Request to Send signal which indicates that the terminal has data to send to the computer. The Clear-to-Send line coming from the computer is monitored at the EIA RS 232C interface levels. It is received by a line receiver which converts it to TTL levels and applies it to the UART clock control circuit to control transmission. An optional times 8 clock (TTL levels) is available as part of the interface. The BREAK key is on the keyboard and enables a timer which holds the transmit data line in a spacing condition for a predetermined length of time.

4.3.14 Block Send Circuit

The Block Send feature allows the operator to compose a message on the terminal screen and then, by depressing the SEND key, cause the terminal to send the entire message to the computer at the selec. ted baud rate.

The sequence of operations is described in Figure 4-1.

The operation is as follows:

1. Raise Request-to-Send
2. When Clear-to-Send, send STX ($\emptyset 2)$ header.
3. Send data
4. If FORMAT and END OF PROTECTED FIELD, send HT code (1118)
5. If not FORMAT and END of LINE, send CR/LF sequence. ($0158 / 012_{8}$)
6. When end of message, send ETX $\left(003_{8}\right)$
7. Time out and drop Request-to-Send.

4.3.15 Auxiliary Send Circuit

The Aux Send feature is identical to the Block Send except for two points:

1. The message is transmitted out the AUX Port instead of the Main I/O Port.
2. The delimiters sent at the start of message, end of unprotected field, end of line, and ETX are selected from a different portion of the Block Send ROM.

4.3.16 Special Function (F1-F16)

Sends a code sequence to the computer from the terminal. The code is instigated by pressing any one of the 16 function keys.

1. An STX is transmitted $\left(002_{8}\right)$
2. An Escape code $\left(033_{8}\right)$
3. Code character (see ASCII Code Chart Table 3-2)
4. And ends with an ETX $\left(003_{8}\right)$

SECTION V

Maintenance

5.1 INTRODUCTION

This section contains information to aid in the maintenance of the B150 Terminal. Preventive and corrective maintenance procedures are specified as well as troubleshooting aids and techniques.

5.2 PREVENTIVE MAINTENANCE

No scheduled periodic maintenance is required. However, several precautions can be taken periodically to ensure proper operation. Care should be exercised to see that there is proper air circulation for the fan. The terminal should not be placed on a shag carpet or other soft surface that could impede the air entrance to the fan. Special care must be taken to ensure that no paper or other loose articles are placed under the terminal. The degree of dust density in the air should be considered in selecting the location of the terminal.

The interior of the unit may be wiped free of dust. Accumulation of dirt causes overheating and component breakdown. Dirt acts as an insulating blanket and prevents efficient heat dissipation. A small brush is very useful for dislodging dirt; a cot-ton-tipped applicator is good for narrow or hard to get places.

The following is a list of the troubleshooting aids that are provided in this manual to assist in the troubleshooting of functional failures.

Circuit Schematics Detailed Block Diagram Functional Flow Diagram	See Section VI Figures 1, 2, \& 3 of Section IV
Timing Diagrams Glossary of Terms Troubleshooting Flow Diagrams	See Section IV Disassembly/Assembly procedures
Adjustment Procedures Configuration/Strapping Power Supply Adjustments Character Dot Matrix	This Section
Chis Section	

5.2.1 Troubleshooting Equipment

The following is a list of tools and standard equipment required to repair a B150 Terminal:

V/O Multimeter
Oscilloscope
Assorted Electronic Hand Tools

5.3 CORRECTIVEMAINTENANCE

This section provides corrective maintenance information to aid in servicing the 8150 Terminal. It is suggested that the configuration sheet and the turn-on procedure be consulted before performing the corrective maintenance described here (see Section (II).

5.3.1 Troubleshooting Preliminary Considerations

The most common problem occuring in B150 are switch, control and operation related. A simple procedure may be followed to help determine if the problem is control and/or operation-related or internal circuitry related by checking the following:

> Illegal Operation (Refer to Section II) Improper Baud Rate Setting
> Wrong Transmit or Receive Mode Loose Interconnect Cable

5.3.2 Troubleshooting Flow Diagrams

A list of troubleshooting flow diagrams is given in Table 5-1. This index lists apparent failure and refers the user to the proper flow diagram. The Table is only intended to allow the user to verify the subassembly where trouble exists and not to indicate the specific problem. The user is advised to return the defective subassembly and have that subassembly repaired or replaced by an authorized service agent.

1. Find the apparent trouble in the Troubleshooting Flow Diagram Index.
2. Proceed to the specified Troubleshooting Flow Diagram in the diagram section and begin the troubleshooting procedure.
3. If an adjustment procedure is referenced in the Troubleshooting Flow Diagram, perform the adjustment and return to the flow diagram to complete the troubleshooting process.
4. Reference is made to Timing diagrams contained in (Section VI) this manual.

5.3.3 Full-Duplex Echoplex Test

A specially wired connector may be assembled that will allow the operator to perform this test. This connector tester allows the terminal to be operated and tested independent of an external data device. The connector mates with the Main I/O Port. Set-up for the test is as follows:

FDX (Full Duplex Mode)
Baud Rate -- Any Setting
Test Connector Installed in the $1 / \mathrm{O}$ Port

Enter data from the keyboard as you would if you were on-line to a computer. If data is displayed on the screen properly, then the B150 is transmitting and receiving data properly.

The Test Connector is wired as follows: (Refer to Figure 5.1.)

Connects Transmitted Data Line out of the terminal to received data line into the terminal. Pin 2 to Pin 3 of the $1 / O$ Port.

Maie Type Amphenol Connector

Beehive Pari No. 606-0011-25 AP

Figure 5-1 ECHOPLEX TEST CONNECTOR

Table 5-1. Troubleshooting Flow Diagram Index

Apparent Failure	Troubleshooting Flow Diagram
GENERAL No raster present No raster present	$\begin{aligned} & 5.1 A \\ & 5.1 B \end{aligned}$
OFF LINE Cursor either absent, multiple cursors, cursor not in home position or screen filled with video blocks No character displayed when written, non cursor advance Wrong character displayed No escape functions No control functions	$\begin{aligned} & 5-2 A \\ & 5-2 B \\ & 5.2 C \\ & 5-2 D \\ & 5-2 E \end{aligned}$
ON LINE No data being transmitted Transmits invalid data No reception Receives invalid data and/or improper parity	5-3A 5-38 5-3C 5-3D
DISPLAY All displayed characters out of focus Rolling display Display too tall/short for screen size Height of displayed characters uneven Display too wide/narrow for screen size Display not centered Tilted display Others A. Single vertical line B. Physical damage C. Dot in center of screen D. Uneven intensity/focus E. Burned phosphor F. Uneven display dimensions G. Excessive H.V. Arcing	$\begin{aligned} & 5.4 \mathrm{~A} \\ & 5.4 \mathrm{~B} \\ & 5.4 \mathrm{C} \\ & 5.4 \mathrm{D} \\ & 5.4 \mathrm{E} \\ & 5.4 \mathrm{~F} \\ & 5.4 \mathrm{G} \\ & 5.4 \mathrm{H} \end{aligned}$

5-2A

5-2B

S-4C,D,E,F,G

FIGURE 5-2 MONITOR ADJUSTMENTS

5.4
 MGN:TOA ADGUTMENTS

The tolowing adestments shouic be made while the monitor is in the 6150 terminal.

The adjustments that follow should be done with the terminal case removed. A drawing of the Monitor PC Board adiustment points is shown in Figure 5-2, while other monitor adjustments are made from the back panel of the terminal.

Brightness
Contrast.
Vertical Adjustments
Focus
Centering
WARPING: The Monitor employs high voltages. Care shiould be used in making any adjustments as power will be applied to the Monitor.

The brantress \& contrast controls (located on the back fanei) should be positioned to a point where the white raster on the CRT is extinguished. Fill
the screen of the CRT with characters from the keyboard and adjust the contrast control for the sharpest display of the characters in the upper left hand side of the screen.

The vertical frequency control (R 116, Figure $5-5$) is set to the approximate mechanical midpoint initially. This adjustment will correct for a rolling display and should be adjusted to correct that symptom alone. No discrete measurement is necessary, except for a visual observation as to the steadiness of the display.

Fill the screen again with characters. The vertical height control (R 124, Figure 5-2) should be adjusted $61 / 2$ inches from the top of the characters on the first row to the bottom of the characters on the last row in the center of the display.

The vertical linearity control (R 121, Figure 5-2) should be adjusted so the characters on the first row are equally as tall as the characters on the last row. Their height should be approximately 0.18 inches (46 mm).

If the screen is blank, fill it with characters and adjust the horizontal width coil (L101, Figure 5.2) for $8 \frac{1}{2}$ inches (21.6 cm) from the left margin to the right margin of the display characters.

The horizontal linearity is adjusted to correct for the compression of the display on the left hand side of the screen. To correct this, loosen the clamp securing the yoke and slide the cardboard sleeve in or out to give uniform width to the characters on the right and left borders of the display.

Adjust the focus control (R 107, Figure 5-2) for best overall display focus. It may be necessary to readjust the contrast control and repeat this step.

Centering of the display is accomplished by rotating the small permanent magnets glued behind the deflection yoke. Magnets should be removed and reglued with silicone adhesive. If the display as a whole is tilted, correction may be accomplished by rotating the entire yoke.

Additional descriptions and adjustments can be found in Appendix A.

5.5 DISASSEMBLY PROCEDURE B150

The B 150 disassembles into replacable components: The Keyboard, Monitor Assembly, Logic Board, and Fan. All Major components can be removed and replaced quickly. An accompanying diagram Figure 5-3, shows major assembly sections and their interrelation. The following explanations relate to this diagram.

5.5.1 Case Removal

The reinforced fiber case is one piece and is fastened to the chassis with six screws and lock washers. The screws are located: Two on the front of the case below the keyboard, and four screws in the back of the case surrounding the black rear panel. Lift the case straight up for removal.

Assemble in the reverse order.

5.5.2 Logic Board Removal

Place the terminal in an upside down position on a soft surface to avoid damage. Remove the
(5) screws and lock washers that secure the Bottom Plate to the chassis. The Logic Board is attached to the Bottom Plate with plastic clips (see Point A, Figure 5-3).

CAUTION: Do not remove the screws holding the keyboard.

Carefully lift the Bottom Plate/Logic Board and notice that there are four wiring harness attachment points: One for the keyboard at the front of the Logic Board (see Point B, Figure 5-3) and three for the power supply/monitor electronics and +5 V regulator at the left rear (if the terminal is viewed from the bottom) of the Logic Board (see Point C, Figure 5-3). Carefully remove the keyboard strap and لift the front of the board so that the other plugs can be removed. The rear plugs have a plastic spring clip type connector that must be compressed before removal. The board should be pulled forward to clear the switches and plugs from their holes in the rear of the chassis and the board can then be removed.

Assemble in the reverse order.

5.5.3 Keyboard Assembly

Remove the case as described abowe. Remove the seven screws and lock washers (see point E, Figure 5-3) from the underneath side of the chassis on the keyboard end. Move the keyboard away from the monitor slightly and unplug the wire strap from the logic board to the keyboard (see Point F, Figure 5-3). Remove the keyboard.

Assemble in the reverse order.

5.5.4 Fan Removal

The Fan is removed by first removing the case (see above) and removing the four mounting screws at the back of the terminal (see Point G, Figure 5-3). Unhook the power cord and remove.

Assemble in the reverse order.

5.5.5 Monitor Assembly Removal

The bottom plate/logic board and case should be removed first (see above). Three screws and lock washers (see Point D, Figure 5.3)) hold the Monitor Assembly to the chassis. Remove the screws from the underside of the chassis. The complete Monitor Assembly can then be removed.

Assemble in the reverse order.

SECTION VI

Drawings / Schematics

B150 Logic Board Assembly Drawing

1 of 17 B150 Schematic

(582) aust 1

$$
\left.\left.\frac{T E \sin }{A D T} \frac{2}{1} \sqrt{13}\right]_{E S} \quad \frac{13}{12}\right]_{E S}
$$

$$
\left.(O \angle 4) \angle D A D \frac{19}{2} \sqrt{2}\right)^{2} \text { HOLL CEGAB } \frac{13}{12}
$$

$$
c
$$

THRE
(7ES) MEECTEDCTS

Custant

KEYBOARD-8150 FOUR MODE
EL $112-1775$
SCHEMATIC

Appendix A

 MONITORSection 1
GENERAL INFORMATION

1.1

MONITOR DESCRIPTION

The I'V monitor is a solid-state unit for use in industrial and commercial installations where reliability and high quality video reproduction are desired.

The monitor features printed circuit board construction for reliability and uniformity. All circuits of the TV monitor are transistorized. The synchronization circuits have been custom designed to accept vertical and horizontal drive signals thus enabling the interfacing of this monitor with industrial or simple sync sources. This feature simplifies the user's sync processing and mixing and allows the unit to operate without requiring composite sync. The electronic packaging has been miniaturized for compatibility with small volune requirements.

Section 2

THEORY OF OPERATION

2.1 VIDEO AMPLIFIER

The video amplifier consists of Q101 and its associated circuitry.

The incoming video signal is applied to the monitor through the contrast control through R109 to the base of transistor Q101.

Transistor Q101 and its components comprise the video output driver with a gain of about 17. Q104, operating as a ciass B amplifier, remains cutoff urtii a DC-coupled, positive-going signal arrives at its base and turns on the transistor.
R.111 adds series feedback which makes the terminal-to-terminal voltage gain relatively independent of transistor variations as well as stabilizes the device against voltage and current changes caused by ambient termperature variations.

The negative going signal at the collector of Q101 is DC-coupled to the cathode of the CRT. The class B biasing of the video driver allows a larger video output signal io modulate the CRT's cathode and results in a maxumum available contrast ratio.

The overall brightness at the screen of the CRT is determined by the negative potential at the grid and is varied by the brightness control.

2.2 VERTICAL DEFLECTION

Transistor Q102 is a programmable unijunction transistor, and together with its external circuitry, forms a relaxation oscillator operating at the vertical rate. Resistor R115, variable resistor R116 and capacitors C105 and C106 form an RC network providing proper timing.

When power is applied, C105 and C106 charge exponentially through R115 and R116 until the voltage at the junction of R116 and C105 equals the anode "A" firing voltage. At this time, one of the unijunction's diodes that is connected between the anode and anode gate ' G ' becomes forward biased allowing the capacitors to discharge through another diode junction between the anode gate and the cathode ' K ' and on through R120.
R.117 and R.118 control the voltage at which the diode (anode-to-anode gate) becomes forward biased. This feature "programs" the firing of Q102 and prevents the unijunction from controlling this parameter. Therefore, the changing of firing points from one device to another, together with the temperature dependency of this parameter, is no longer a problem as it can be with conventional unijunction transistors.
:a rertical oscillator is synchronized externally to the vertical interval from the vertical drive pulse at R113. At the time of the vertical interval, an
external negative pulse is applied through R.113, C104, and CR101 to the gate of Q102, causing the firing level of the unijunction to decrease.

The sawtooth voltage at the anode of Q102 is directly coupled to the base of Q103. Q103 is a driver amplifier and has two transistors wired as a darlington pair; their input and output leads exit as a three-terminal device. This device exhibits a high input impedance to Q102, and thereby maintains excellent impedance isolation between Q102 and Q104.

The output waveform from the unijunction oscillator is not suitable, as yet, to produce a satisfactory vertical sweep. Such a waveform would produce severe stretching at the top of the picture and compression at the bottom. C105 and C106 modify the output waveform to produce satisfactory linearity. The sawtooth waveform output at Q103 is coupled through R.122, the vertical linearity control R121, and on to C106 where the waveform is shaped into a parabola. This parabolic waveform is then added to the oscillator's waveform and changes its slope. Slope change rate is determined by the position of the variable resistor R121.

Q103 supplies base current through R123 and R124 to the vertical output transistor, Q104. Height control R124 varies the amplitude of the sawtooth voitage present at the base of Q104 and, therefore, varies the size of the vertical raster on the CRT.

The vertical output stage, Q104, uses a power type transistor which operates as a class A amplifier. No output transformer is required since the output impedance of the transistor permits a proper impedance match with the yoke connected directly to the collector. C107 is a DC-blocking capacitor which allows only AC voltages to produce yoke current. L1 is a relative high impedance compared to the yoke inductance. During retrace time, a large positive pulse is developed by L1 whcin reverses the current through the yoke and moves the beam from the bottom of the screen to the top. Resistor R126 prevents oscillations by providirg damping across the vertical deflection coils.

To obtain a signal appropriate for driving Q106, the horizonial output transistor, a driver stage consisting of Q105 and T101, is used. The circuitry associated with Q105 and Q106 has been designed to optimize the effeciency and reliability of the horizontal deflection circuits.

A positive going pulse is coupled through R127 to the base of Q1C5. The amplitude and duty cycle of this waveform must be as indicated in the electrical specifications (Section 1.2) for proper circuit operation.

The driver scage is dicher cut of or driven into saturation by the base signal. The output signal appears as a rectangular waveform and is transformer-coupled to the base of the horizontal cutput stage. The polarity of the voltage at the secondary of the driver transformer is chosen such that Q106 is cut off when Q105 conducts and vice versa.

During condiction of the driver transistor, energy is stored in the coupling transformer. The voltage at the secondary is then positive and keeps Q106 cut off. As soon as the primary current of T'101 is interrupted due to the base signal driving Q105 into cut off, the secoudary voltage changes polarity. Q106 starts conducting, and its base current flows. This gradually decreases at a rate determined by the transformer inductance and circuit resistance.

The horizontal output stage has five main functions: to suppiy the yoke with the correct horizontal scanning currents; develop a "C" VDC supply voitage for use with the CRT; develop a " B " VDC supply voltage for the video output stage; and develop a "D" VDC for the CRT bias.

Q106 acts as a switch which is turned on or off by the rectangular waveform on the base. When Q106 is turned on, the supply voltageplus the chare; on C113 causes yoke current to increase in a linear manner and moves the beam from near the center of the screen to the right side. At this time, the transistor is turned off by a positive voltage on its base which causes the output
circuit to oscillate. A high reactive voltage in the form of a half cycle negative voltage pulse is developed by the yoke's inductance and the primary of T2. The peak magnetic energy which was stored in the yoke during scan time is then transferred to C109 and the yoke's distributed capacity. During this cycle, the beam is returned to the center of the screen.

The distributed capacity now discharges into the yoke and induces a current in a direction opposite to the current of the previous part of the cycle. The magnetic field thus created around the yoke moves the scanning beam to the left of the screen.

After slightly more than half a cycle, the voltage across C109 biases the damper diode CR103 into conduction and prevents the flyback pulse from oscillating. The magnetic energy that was stored in the yoke from the discharge of the distributed capacity is released to provide sweep for the first half of scan and to charge C113 through the rectifying action of the damper diode. The beam is then at the center of the screen. The cycle will repeat as soon as the base voltage of Q106 becomes negative.

C113, in series with the yoke, also serves to block DC currents through the yoke and to provide "S" shaping of the current waveform. "S" shaping compensates for stretching at the left and right sides of the picture tube because the curvature of the CRT face and the deflected beam do not describe the same arc.

L101 is an adjustable width control placed in series with the horizontal deflection coils. The variable inductive reactance allows a greater or lesser amount of the deflection current to flow through the horizontal yoke and, therefore, varies the width of the horizontal scan.

The negative flyback pulse developed during horizontal retrace time is rectified by CR104 and filtered by C110. This produces approximately ' D " VDC which is coupled through the brightness control to the cathode of the CRT (V1).

This same pulse is transformer-coupled to the secondary of transformer T2 where it is rectified by CR2, CR106, and CR105 to produce rectified voltages of approximately 12 KV (9 and 12 inches) or 9 kV (5 inches), " C " VDC, and 'B' VDC respectively. 12 kV or 9 kV is the anode voltage for the CRT, and " C " VDC serves as the source voltage for grids No. 2 and 4 (focus grid) of the CRT The " B " VDC potentail is the supply voltage for the video output amplifier, Q101.

Section 3

PRELIMINARY ADJUSTMENTS

3.1

SYNCHRONIZATION AND DRIVE SIGNALS

Apply horizontal and vertical drive signals to the horizontal and vertical drive terminals as indicated on your schematic. Adjust their levels to a nominal +4 V peak-to-peak. The duty cycle of each signal must be adjusted as described in Section 1.2.

The horizontal drive signal is required to initiate horizontal scan and high voltage, and should be connected before applying power to the monitor.

3.2 BRIGHTNESS

Normally, the monitor will be used to display alphanumeric or other black and white information. Moreover, the video polarity is usually white characters on a black background.

The brightness control should be adjusted at a point where the white raster is just extinguished. The CRT will then be at its cutoff point, and a maximum contrast ratio can be obtained when a video signal is applied.
3.3 VIDEO CONTRAST

Q101 is designed to operate linearly when a +2.5 V signal is applied to its base. Some models incorporate a 500 ohm external contrast control to maintain this level of +2.5 V peak-to-peak when measured at the video input terminal of the printed circuit board edge connector. (Refer to the schematic.)

In all cases, the output $D C$ impedance of the video signal source must be 500 ohms, or less.

3.4 VERTICAL ADJUSTMENTS

There is a slight interaction among the vertical frequency, height, and linearity controls. A change in the height of the picture may affect linearity.
(1) Apply video and synchronization signals to the monitor,
(2) Set the vertical frequency control, R116, near the mechamoal center for its rotation.
(3) Adjust the vertical height control, R124, for desired height.
(4) Adjust the vertical linearity control, R121, for best vertical linearity.
(5) Remove the vertical drive signal from the unit. Or, alternatively, use a short jumper lead, and short the vertical drive input terminal of the printed circuit card edge connector to ground.
(6) Readjust the vertical frequency control, R116, until the picture rolls up slowly.
(7) Restore vertical drive to the monitor.
(8) Recheck height and linearity.

3.5 HORIZONTAL ADJUSTMENTS

Raster width is affected by a combination of the low voltage supply, width coil L101, and the horizontal linearity sleeve located on the neck of the CRT beneath the yoke.
(1) Apply video and synchronization signals to the monitor. insert the horizontal linearity sleeve about 2,3 of its; length under the yoke. (If you received a monitor from the factory in which the placement of the linearity sleeve has been determined, make a mark on the sleeve and reinsert the sleeve to this mark when removal of the yoke and linearity sleeve are required.) If the linearity sleeve is inserted farther than necessary, excessive power will be consumed, and the horizontal output circuitry onuid be overstressed.
(2) Adjust the horizontal width coil, L101, for the desired width
(3) Insert the linearity sleeve farther under the yoke to obtair the best linearity. Although this adjustment will affect
the raster width, it should not be nses solely for that purpose. The placement of the lineariny s!eeve should be optimized for the best linearity.
(4) Readjust L101 for proper width.
(5) Observe final horizontal linearity and width, and touch up either adjustment if needed.

 Section 1.2 are used.
3.6 FOCTOS ATIUSTMEIT

The focus control, R107, provides an adjustment for maintaining best cirumbit display focus. However, because of the construction of the gun assernay the CRT, this control dues not have a large effect on focus

3.7 CENTERING

If the raster is not properily centered, it may be repesithoned by rotatini il.. ring magnets behind the deflection yoke.

The ring magnets should not be used to offset the raster from its noninet center position because it would degrade the resolution of the display.

If the picture is tilted, rotate the entire yoke.

Section 4
 THOUBLESHOOIIING AND MAINTENANCE

4.1
TROUBLESHOOTING GUIDE
SYMPTOM
POSSIBLE REMEDY
Check "A" bus Q106, Q105, CR2
1. Sereen is dark
2. Loss of video
3. Power consumption is to high
CR105, Q101
Check horizontal drive waveform; Check proper placement of horizontal linearity sleeve; Q105, Q106

The voltage waveforms are shown in Fig. 1, and Fig. 2 is the interconnecting cabling diagram. Figure 3 shows the circuit board component locations.

Fig. 1 Voltage Waveform

Fig. 2 Interconnecting Cabling Diagram

FIOI ANO RIO8 ARE USED ONLY WHEN LOW VOLTAGE POWER SUPPLY IS NOT SWOLEE
Fig. 3 Circuit Board Components Lecation

Appendix B GLOSSARY

ART DATA 1, 2 3, 4, 5, 6, 7 - Asynchronous Receiver parailel output data lines bits 1 to 7 .
$\overline{\text { ART IN }}$ - UART Receiver Serial Input Line - inputs come from I/O port, AUX port, and unit's own transmitter.
ART OUT - UART Serial Transmit Data line - transmits to I/O, AUX, and unit's own Receiver
ART XMIT CLK - X 16 Clock used to clock data out of the transmitter
AUX ART CLK - X16 Clock used to clock data out of the transmitter when in an AUX mode
AUX CTS - AUX Clear to Send
AUX RTS - AUX port Request to Send
AUX SEND - Signal used to Enable AUX Port XMIT DATA Line
AUX TIMER - Timer used to Delay AUX Port CTS for Printer interface. This is a unit controlled delay

BCURL ILLEGAL - Buffered Cursor Line lllegal - Used to denote EOM line in Block Xmit.
$\overline{\text { BCURP ILLEGAL }}$ - Buffered Cursor Position lilegal - Used to denote EOM Position in Block Xmit.
BEEP ENABLE - Decode of Control " G " (0078)
BFR IN USE - Denotes Receiver Buffer is in use and cannot receive another character for transfer to the bus
BLINK CLK - Clock of Binary Counter that clocks the blink memory
BLINK EN - Output of Blink Memory bit - enables Blink Clock to input to video
BLINK FLOP CLK - Clock used to Enable Blink Flop - Clock to Start Blink - Clock to Stop Blink - D type Flop

CLR BCURL EN - Clear Buffered Cursor Line Enable--. signals clears the registers storing the cursor line count in a block transmission
CLR BFR EN - Clear Buffer Enable - signal clears input buffer of receiver to a null
$\overline{C L R ~ C U R L ~}-$ Clear cursor line; resets cursor line registers to zero
$\overline{\text { CLR CURP }}$ - Clear cursor position; resets cursor position registers to zero
CLR REG - Clear register - signal which clears insert/delete character registers at output of memory.
$\overline{C L R ~ S C R N ~-~ C l e a r ~ s c r e e n ~-~ c o m m a n d ~ u s e d ~ t o ~ i n i t i a t e ~ s c r e e n ~ b l a n k i n g ~ o r ~ v i d e o ~ b l a n k i n g ~ f o r ~ s p e c i a l ~ o p e r a t i o n s ~}$
CLR SEQ - Clear Sequence - command used to clear sequence counter inputting PLA
CNTR CARRY - Counter Carry
CNTR CURSOR - Counter Cursor - final cursor compar output signal
CPC CARRY - Character position count carry - Counter Carry - Signal denoting 30 ms time out has been completed.
CPC 1- Character position Count $=1$
$\overline{\text { CURL ILLEGAL }}$ - Cursor line illegal - signal which flags cursor line position as off disflayable screen
$\overline{C U R P}$ ILLEGAL - Cursor position illegal - signal which flags cursor position as off displayable screen
CURSOR LINE BUFFER - Buffer that is loaded to store cursor character position for block send operations.
CURSOR LINE REGISTER - Register containing current line position. Counts 0 to 23 up or down to depict

cursor line count on display | CURSOR POSITION BUFFER - Buffer that is loaded to store cursor character position for block send operations. |
| :--- |
| CURSOR POSITION REGISTER - Register containing current cursor position Counts 0 to 79 up or down to depici |
| cursor position within any one line on display |

EN AUX PORT - Enable Auxiliary Port - Signal will turn on Input/Output gates on Auxiliary port .
EN AUX SEND - Enable Auxiliary Send - Command signal which starts a block send out Auxiliary port.
EN BFR OUT - Enable Buffer Out - Command signal used to put receiver buffer on the bus for character receipt to display

EN BLK SEND - Enable Block Send - Command signal which starts block send out main port
EN LIT OUT - Enable Literal PRom Output - Signal used to put block send delimiter Rom on the bus
EN MAIN PORT - Enable Main Port - Signal will turn on Input/Output gates on main port.
EN MEM OUT - Enable Memory Out - Signal used to output contents of memory onto bus for block send output
EN REG OUT - Enable Register Out - Signal used to put stored contents of insert/delete registers onto the bus for restoration to new location in memory.

EXT CLK INPUT- External Clock Input - Input line on I/O port; a TTL times 16 clock on this input can externally clock the terminal (switch selectable to input)

EXT XMIT CLK (X8) - Externai Transmit Clock (times 8)- This is a TTL output clock at 8 times the baud rate which can be used to clock an external device (switch selectable to output)

FE - Fiaming Eiror - One of thia :ubsec uatputs of the IIART Receiver
FIGE TIMER Sigrat ased to start AUX port internal delay timer
FMT FIOPCLK -. Fismat Flip Flar Chock - Clockins signal used to set or reset Format-Format On-Forniar O:,
FORMAT - Term used to detine an estabilisined protected-improtected screen of data

H BLANK - Horizontal Blanking - Part of signal necessary for monitor display
H DRIVE - Horizontal Drive - Signal to monitor for horizontal deflection on CRT.
HOLD REG BZ - Holding Register Busy - Sigral indicates the UART transmitter is holding a character to ke transm te.

INCR CURL - Increment Cursor Line - Signal used to upcount cursor line register
INCR CURP - Increment Cursor Position - Signal ujed to upcount cursor position register
INCR ROLL - Increment Roll Register - This signai increments the roll counter for scroll feature; an upcouni of this counter will add of this counter will add 80 positions to display.

INS MODE - Insert Mode - Signal indicates to PLA program that the input at this time is to be inserted into memory instead of overwritten in memory.

INTERNAL OPN - Internal Operation - This signal indicates the function under operation is internatly controlird and not necessarily transmitted to the $1 / O$ ports

KB AUX EN - Keyboard Auxiliary Enable - Signal off keyboard which will enable the Auxiliary port on the term:it from the keyboard
$\overline{K B A U X}$ ONL - Keyboard Auxiliary On Line - Signal off keyboard which will enable the AUX port on line with with the main $1 / O$ port and the terminal

KB BREAK EN - Keyboard Break Enable - Signal off keyboard which fires break function in terminal
KB DISABLE - Keyboard Disable - Locks out keyboard entry
$\overline{\mathrm{KB} \text { LD ART }}$ - Keyboard Load UART - Signal loads UART with character input from keyboard; similar to
$\overline{\text { KB NO XMIT }}$ - Keyboard No Transmit - Signal flags an internal operation being done from keyboard and is mot * to be transmitted over the 1/O ports.

KB OUT EN - Keyboard Output Enable - Timing signal used to enable keybaord input to display
$\overline{\text { KB RESET }}$ - Keyboard Reset - Signal is an output actuated by Control Home/Clear Command from keyboarr: signal will reset all functions of terminal

KEY STROBE - Keyboard Strobe - Signal which tells unit a key is depressed on keyboard


```
MAIN ART CLK -.. Main UART Clock - Clock at 16 times the baud rate; main timing clock for transmit and receive
\(\overline{\text { MAX ROLL }}\) - Maximum Roll - Register count equals 23 ; will automatically reset roll register
MEMORY SHIFTER - Name given to set of registers which do memory shift in insert/delete operations
MODE 0,1 -Mode Zero; Mode One - State for PLAS; 15 sequences exist in Mode 0 and 15 operations of 15 sequences each exist in Mode 1
MR - Master Reset - Input to UART to do a reset of the UART device
```

NULL SUPPRESS - Name of circuit which decodes a Null on the bus and suppresses transmission of same

Off 1-4 - Operarion inputs 1,2,3,4-Binary value of each input: Input $1=1$, Input 2=2, Input $3=4$, Input $4=8$. if operation 1-4 all equal a high operation 15 is decoded

PE - Parity Error - Unused output of UART which flags wrong parity receipt to the terminal
PROG LD ART - Program Load UART - Signal which loads the UART with characters from screen for block transmission

PROT BIT - Protect Bit - Signifies bit in memory which stores protected data fields for formated display

ROLL REGISTER - This is the register which is incremented in a Roll function (scroll)

SELECTED CLK - Selected Clock - Signifies 1 of 2 clock (baud) rates to be input to UART, either main port or auxiliary port rate.

SEND DATA - Transmit data line on main port
SET BEEP - Command which will fire bell one shot to give an audible alarm
ST - Strobe - This is the main timing strobe of the unit; all decodes and memory inputs are timed to strobe.

```
THRE -- Transmitter Holding Register Empty
THRL - Transmitter Holding Register Load
TR 1-8 - Transmitter Receiver Input/Output bits 1 through 8
TRC - Transmitter Register Clock
TRE - Transmitter Register Empty
TRO - Transmitteer Register Output
```

UAFRT - Universal Asynchronous Receiver Transmitter (Transmit/Receive)
$\overline{\text { V ELANK }}$ - Vertical Blanking - Monitor drive signal.
VIDEO CURSOR - Name given to cursor signal when input to video drive circuit for display on CRT
VIDEO DRIVER - Name of circuit which drives final video output to CRT for display
VIDEO PROT - Video Protect - Narne given to signal defining protected display area's output from memory bit VIDEO SERIALIZER - 74166 serial shift register

Whs 1, 2 - Word Length Select 1 and 2
WRITE BLINK - Command given to start memory input as a blinking video display
WRITE EN - Write Enable - Command given to write a character to memory
\bar{W} WITE PROT - Write Protect - Command given to start memory input of protected data fields for Format Display

Appendix C

PROGRAMMABLE LOGIC

 ARRAY INPUTS
PROGRAMMABLE LOGIC ARRAY INPUTS

MODE 0

PLA INPUT DESIGNATION	INPUT TERM	DESCRIPTION
193	SEQ4	This set of four inputs comes from the SEQUENCE counter and functions as
112	SEQ3	the program counter. These four inputs do not change between
111	SEQ2	Mode 0 and Mode 1.
110	SEQ1	
19	SEQ5	This bit indicates to the program that an ASCII ESCAPE code has been received as a lead-in code and the next byte received is the second byte of an ESC sequence. This bit goes active upon receipt of an actual ESC code or is set directly from the keyboard if an ESC-type operation is desired.
18	MODE	This input indicates to the PROGRAMMABLE LOGIC ARRAY whether to interpret the inputs as Mode 0 or Mode 1 terms.
17	INSERT MODE	This is a function line from the keyboard which indicates to the program whether an alphanumeric input byte should be inserted into the text or overwrite the character under the cursor.
$16 \cdot 10$	$\begin{aligned} & \text { BUS7 - } \\ & \text { BUS } \end{aligned}$	This set of seven inputs brings the bus information into the PLA. In Mode 0, the bus holds the contents of the data input buffer. This set is used to decode the incoming byte, regardless of source.
		MODE 1
$\begin{array}{ll} 1 & 13 \\ 1 & 12 \\ 1 & 11 \\ 1 & 10 \end{array}$	$\begin{aligned} & \text { SEQ4 } \\ & \text { SEQ3 } \\ & \text { SEQ2 } \\ & \text { SEQ1 } \end{aligned}$	This set of four inputs comes from the SEQUENCE counter and functions as the program counter. These four inputs do not change between Mode 0 and Mode 1.
19	FORMAT	This active high signal indicates to the program whether the terminal is in the FORMAT mode, where protected data is recognized.
18	MODE	This input indicates to the PROGRAMMABLE LOGIC ARRAY whether to interpret the inputs as Mode 0 or Mode 1 terms.
17	ILLEGAL	This term is high when the cursor is taken off the displayable portion of the screen. It also goes high for one cycle when the stored cursor location (BCURP and BCURL) is decremented and underflows. This indicates that the cursor has been returned to its original location on the screen.
16.13	OPN4 OPN1	These four bits are outputs from the OPERATION REGISTER which indicates the function being accomplished in Mode 1.
12	CARRY	This input is used when the 30 millisecond timer is being used. The timer is fired, which drops this bit low It goes high at the end of the timeout. When not being used, this bit pulses.
11	PROTECT BIT	This input goes high when the FORMAT MODE is "on" and the byte under the cursor is protected.
10	XMTR BUSY	This bit is high when the transmitter is sending a byte.

PROGRAMMABLE LOGIC ARRAY OUTPUTS

INSTRUCTION	$\begin{aligned} & \text { OUTPUTT } \\ & 8765432.1 \end{aligned}$	DESCRIPTION
GROUP ?		
load REG	-A...AAA	loads REG1 with byte from memory, REG1 byte shifted to REG2
decr ECUJRL	-A...AA-	decrements the stored cursor count, underflows when on proper line.
decr BCURP	-A...A-A	decrements the stored position count, underflows when on proper character position. No action unless BCURL has underflowed, indicating that the cursor is on the proper line.
set BEEP	- A...A-	activates the one-shot controlling the beeper.
clear REG	-A...-AA	clears REG2 to a null code and REG1 to a space code.
decr CURP 2	-A...-A-	used to move the cursor to the last position of a line (CPC-79).
incr ROLL	-A...--A	increments the ROLL counter which causes the data on the screen to shift up one character line. The top line goes to the bottom.
Group 2		
FORMAT clock	-AAAA...	issues a clock pulse to the FORMAT flip-flop. Whether the flop will "set" or "clear" is controlled by the LSB of the SEQ counter.
PROTECT clock	- A AA-...	issues a clock pulse to the PROTECT flip-flop. Whether the flop will "set" or "clear" is controlled by the LSB of the SEQ counter.
KB CONTROL clock	-AA-A...	issues a clock pulse to the KEYBOARD DISABLE flip-flop. Settingor clearing is controlled by the LSB of the SEQ counter.
BLINK clock	-AA--...	issues a clock pulse to the BLINK flip-flop. Setting or clearing is controlled by the LSB of the SEQ counter.
start TIME	-A-AA...	this command is issued when the 30 millisecond timeout is desired. The CARRY input to the PLA is used to sense the timeout.

NOTE: GROUP 1 and GROUP 2 instructions can be combined to accomplish two operations in the same instruction time. If only ane instruction is desired, the undesignated bits should be programmed to "-'s". (e.g.. clear REG alone is -..A_-_-AA; clear REG and start TIME is -A-AA-AA.)

GROUP 3
clear BCURL
EN AUX SEND
load UART
clear BUFFER
clear CURL
clear CURP
WRITE
GROUP 4

NOTE: 1. The execution of GHOUP 3 instructions LOAD UART, CLEEAR BUFFER, CLEAR CURL, and CLEAR CURP acrually takes piace during the cycle following the issuing of the instruction.
2. GROUP 3 and GROUP 4 instructions can be combined to accomplish two operations in the same instructicn time If only one instruction is desired, the undesignated bits should be programmed with -'s.

PROGRAMMABLE LOGIC ARRAY OUTPUTS (concluded)

INSTRUCTION	$\begin{aligned} & \text { OUTPUT } \\ & 87654321 \end{aligned}$
GROUP 5	
load SEQ	AAAAxxxx
load OPN	AAA-xxxx
load LIT ADDR	AA-Axxxx
BUS BUFFER	A-AAxAAA
BUS REG	A-AA×AA-
BUS MEM	$A-A A \times A-A$
BUS LIT	A-AA×A--
GOTO MO	A-- $-x \times x$ x

DESCRIPTION

used to preset the SEQ counter and accomplish a program "jump". The xxxx portion identifies the desired SEQ count.
used to preset the OPN register which designates Mode 1 operations. All operations in Mode 1 are identified by a different OPN count (ADVANCE is OPN=A-AA). This OPN register is a PLA input in Mode 1 only. Issuing this instruction in Mode 0 causes a move to Mode 1. The xxx portion identifies which operation will be loaded. used to load the addressing register of the LITERAL PROM, which governs what delimiters will be transmitted in the block-type transmissions.
The $x \times x x$ portion identifies the address to be loaded.
data input buffer is gated to the bus.
REG2 is gated to the bus.
output of the refresh memory is gated to the bus LITERAL PROM is gated to the bus.
(NOTE: If $x=0$, the screen refresh is maintained for the course of the operation. If $x=1$, the refresh will be terminated until the completion of the current operation.) this instruction terminates any Mode 1 operation and returns the program to its "idle" state. The x 's have no significance in this instruction and are usually programmed to -'s.

OPERATION CODE ASSIGNMENT

UP
INSERT CHARACTER
9
DELETE CHARACTER

10

11
RETURN CURSOR
FUNCTION
CLEAR TO END OF SCREEN

CLEAR TO END OF LINE
FORWARD PROTECT TEST
BACKWARD PROTECT TEST
ADVANCE

BACKSPACE

LINE FEED

FORMAT TAB

FUNCTION KEY SEND

DESCRIPTION

This routine clears the screen to nulls starting at the cursor location and terminating at the end of the screen. This does not include any bytes which can be recognized as protected.
Same as described above, except that the operation terminates at the end of the line containing the cursor.
Tests to see if the byte under the cursor is protected. If so, the cursor will advance to the right and down if necessary.
Tests to see if the byte under the cursor is protected. If so, the cursor will move to the left and up, if necessary.
Moves the cursor one position to the right and tests to see if the cursor moved off the displayable portion of the line. If so, the cursor is sent to the first position of the current line and the program goes to the LINE FEED routine.
Moves the cursor one position to the left and tests to see if the cursor moved off the beginning of the line. Given this condition, the cursor is sent to the last position of the current line and the program moves to the UP routine.
Moves the cursor down one line and tests to see if the cursor left the bottom of the page.
Moves the cursor up one line and tests to see if the cursor left the top of the page, in which case the cursor is sent to the bottom line.
Starts at the cursor position and moves all data to the end of the line or the first protected field one position to the right.
Starts at the cursor position and moves all data to the end of the line or the first protected field one position to the left.

Searches for the next protected field. Places the cursor in the first unprotected location following this field. If no protected field is found before the end of th: page, the cursor is sent home.
Moves the cursor forward and simultaneousty decrements the stored cursor courl: until the cursor count underflows. The cursor is now positioned in its originai location.
Sends the constants surrounding the lower-case code generated by the depression of a Function key.

OPERATION CODE ASSIGNMENT

(concluded)

OPN

FUNCTION
SEND TEXT

START SEND

SEND DELIMITERS

DESCRIPTION
Sends the data from the refresh memory during a block-send operation. Also recognizes the points at which delimiters should be sent.

Sends the two start-of-message codes from the LITERAL PROM and positions the cursor for the transmission of text.

Sends the proper delimiters at the end of an unprotected field, end of line, and the end of the message.


```
                    ** UHERAIIUN 14**
                    * staki seno muutiNe **
```



```
*P 4! *1 LMML-H-HP!HL*-\infty AF &A-AAAA- :LUAU LIf AUUK I (HFAUEK NULL)
```


