
The Official Documentation for the BeOS™

DEVELOPER'S
GUIDE

O'REILLY™ The Be Development Team

DEVELOPER'S
GUIDE

DEVELOPER'S
GUIDE

The Be Development Team

O'REILLY™
Cambridge • Koln • Paris • Sebastopol • Tokyo

Be TM Developer's Guide
Copyright © 1997 Be, Inc. All rights reserved.

BeOS Preview Release copyright © 1990-1997 Be, Inc. All rights reserved.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted-in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise-without the prior written permission of Be, Inc.

The contents of this book are furnished for informational use only; they are subject to
change without notice and should not be construed as a commitment by Be, Inc. Be has
tried to make the information in this book as accurate and reliable as possible, but
assumes no liability for errors or omissions.

Be, Inc., will from time to time revise the software described in this book and reserves the
right to make such changes without notification. The software is furnished under license
and may be used or copied only in accordance with the terms of the license.

Be, the Be logo are registered trademarks and BeBox, BeOS, GeekPort, and Beware are
trademarks of Be, Inc. Apple and Macintosh are registered trademarks and Apple Desktop
Bus, Mac, MacOS, QuickTime, and TrueType are trademarks of Apple Computer, Inc.
Bitstream and 4 in 1/TrueDoc (Printing System) are registered trademarks of Bitstream
Font Technology Solutions, Bitstream Inc. PowerPC is a trademark of International
Business Machines. Metrowerks is a registered trademark and CodeWarrior is a trademark
of Metrowerks, Inc. PowerCenter, PowerTower, and PowerWave are trademarks of Power
Computing Corporation. UMAX, the UMAX logo, and SuperMac S900 are trademarks of
UMAX Computer Corporation. SuperMac is a registered trademark of Radius Inc., used
under license by UMAX Computer Corporation. OpenGL is a registered trademark of
Silicon Graphics, Inc. All other trademarks mentioned belong to their respective owners.
ProFont courtesy of Andrew Welch, Stephen C. Gilardi, and Carl R. Osterwald.

Be, Inc.
800 El Camino Real
Suite 300
Menlo Park, CA 94025

http://www.be.com

This book is printed on acid-free paper with 85% recycled content, 15% post-consumer
waste. O'Reilly & Associates is committed to using paper with the highest recycled content
available consistent with high quality.

ISBN: 1-56592-287-5

Table of Contents

Preface ix

1 Introduction 1
Introduction 3
Conventions 7

2 The Application Kit 15
Messaging 20
Scripting 32
BApplication 39
BClipboard 57
BHandler 61
Blnvoker 70
Blooper 75
BMessage 91
BMessageFilter 117
BMessageQueue 122
BMessenger 125
BRoster 131
Global Variables, Constants, and Defined Types 138

3 The Storage Kit 145
File System Architecture 150
Entries and Nodes 154
MIME and File Types 157
BAppFilelnfo 158
BDirectory 166
BEntryList 178
BEntry 183
BFile 194
BFilePanel 201
BMimeType 213
BNode 222

v

vi Table of Contents

BNodelnfo 231
The Node Monitor 236
BPath 247
BQuery 257
BRefFilter 269
BResources 270
BStatable 279
BSymLink 286
BVolume 289
BVolumeRoster 293
Global C Functions 295
Attribute C Functions 295
Index C Functions 301
Query C Functions 308
File System Info C Functions 311
Global Constants and Defined Types 313

4 The Interface Kit 323
Drawing 334
Responding to the User 354
The Coordinate Space 368
BAlert 379
BBitmap 384
BB ox 392
BButton 396
BCheckBox 400
BColorControl 403
BControl 409
BDragger 417
BFont 420
BListltem 434
BListView 439
BMenu 453
BMenuBar 465
BMenuField 470
BMenuitem 475
BOutlineListView 486
BPicture 492
BPictureButton 495

Table of Contents vii

BPoint 500
BPolygon 504
BPopUpMenu 506
BPrintJob 510
BRadioButton 519
BRect 523
BRegion 532
BScreen 536
BScrollBar 542
BScrollView 550
BSeparatorltem 554
BShelf 556
BStatusBar 561
BStringltem 567
BStringView 569
BTextControl 571
BTextView 578
BView 606
BWindow 658
Global Functions 683
Global Variables, Constants, and Defined Types 702

5 The Kernel Kit 729
Threads and Teams 732
Ports 752
Semaphores 761
Areas 773
Images 789
System and Time Information 799
Miscellaneous Functions and Constants 803

6 The Support Kit 805
BArchivable 808
BAutolock 812
BDataIO and BPositionIO 813
BFlattenable 816
BList 818
Blocker 823
BMemoryIO and BMalloclO 827

viii Table of Contents

BStopWatch 830
Functions and Macros 833
Constants and Defined Types 841
Error Codes 846

A Message Protocols 851

B Keyboard Information 873

Index 885

PREFACE

If you use a computer everyday, chances are good that your hardware is no more
than five years old. And if you actually like computers, it's more likely that you own a
box that's less than two years old. How old is your operating system? Updates help,
certainly, but how old is the core software technology behind your "Version X" or
"UltraLimp '96" OS?

In the last five years, the computer hardware industry has undergone drastic changes.
CPU speeds and disk capacities have shot through the roof while the price per
MegaHertz and Gigabyte has fallen dramatically. Computers now boast two, four,
even eigh~ CPUs on a single motherboard. The major OS vendors try to keep up with
this change, but they have other concerns, such as maintaining backwards
compatibility and supporting their loyal following. They can't make the clean break
with the past that new hardware demands.

The BeOS is a fresh start. Be likes hardware-the faster the better. If you've seen it
running, then you know what a computer can do when the dead weight is removed.

But the BeOS isn't just about speed. It's also about the things that a modern OS
should give you automatically, with no outboard equipment, and without having to
reboot your computer every time you make a change. Like networking, true parallel
processing, real-time response in the user interface, recognition of standard data
formats. Intelligent design that recognizes and knows how to use the capacities of the
hardware to its fullest: That's the reason for the BeOS.

About the Be Books
There are two books that make up the Be developer's reference bible. Together, they
contain descriptions of every C++ class, every function, every constant that the BeOS

ix

x Preface

defines, and let you know how and when to use them. If you want to design an
application that will run on the BeOS, you'll need these books.

The first book, the Be Developer's Guide, describes the foundation "kits" in the OS;
these are the kits that every developer will need to understand:

• Tbe Application Kit. This is the kit that gets you started.

• Tbe Storage Kit. An interface to the file system.

• Tbe Inteiface Kit. Windows, views, buttons, controls-everything you need to
design a graphic user interface.

• Tbe Kernel Kit. Access to the lowest programmable level of the BeOS.

• Tbe Support Kit. A catchall for common functionality and definitions.

Be Advanced Topics-the "geek" book-is about special topics. There you'll find the
kits that don't pertain to every application. But most developers will need to know at
least a little bit about some of them.:

• Tbe Media Kit. Real-time processing of audio and video data.

• Tbe Midi Kit. MIDI data generation and processing, including the Headspace®
General MIDI synthesizer.

• Tbe Game Kit. Lets your game take over the machine.

• Tbe OpenGL Kit. An implementation of the OpenGL® 3D graphics interface.

• Tbe Network Kit. An interface to the network and mail.

• Tbe Device Kit. Lets you create your own device drivers.

Support Information
Be provides as much information as possible about the BeOS via the Web and other
electronic means. Our belief is that if you can get help yourself, even in the middle of
the night, you'll feel better about your experience with the BeOS.

For basic customer and technical support, visit the Support section of the Be web site
at http://www.be.com/support/index.html.

Support offers a wealth of Frequently Asked Questions (FAQs), software updates, and
user and technical manuals, including links to the latest version of this Developer's
Guide, in both on-line and downloadable formats. You can also find information
about Be's electronic mailing lists, and on-going information about the BeOS, at the
following sites:

Be FAQs: http.//www.be.com/support/qandaslindex.html

Preface

BeOS Updates: http://www.be.com/support/updates/index.html

Be Documentation: http://www.be.com/documentationlindex.html

Be Internet Mailing Lists: http://www.be.com/aboutbe/mailinglists.html

Also available on our web site is an Assistance Request form, to use when you cannot
find the information you need on the web site, and want to request help from our
Customer Technical Support group: http://www.be.com/support/assist/custsupport.html.

If you cannot submit a help request via a web form, send e-mail to one of our
support addresses. Please help us help you by including as much information about
the problem as possible, such as the configuration of your system, what you were
doing, what happened, what you expected to have happen and why, and anything
else about your configuration or problem that you think we should know.

Here is a list of Be's support addresses and their uses.

For BeOS users in the Americas or Pacific Rim:

• custsupport@be.com - for questions regarding set up, installation, configuration
and compatibility of the BeOS, or other technical questions that are not about
programming or coding.

• custservices@be.com - for assistance with obtaining any of our products or for
questions about your BeOS subscription.

For BeOS users in Europe:

• custsupport@beeurope.com - for questions regarding set up, installation,
configuration and compatibility of the BeOS, or other technical questions that are
not about programming or coding.

• custservices@beeurope.com - for assistance with obtaining any of our products or
for questions about your BeOS subscription.

By using the Web as your first stop for support information, you help yourself and us.
You will likely find the answer yourself more quickly than we can get it to you, and
we can conserve our resources to help you more quickly on those occasions when
you need more in-depth assistance.

If web searching and e-mail don't do the trick and you would rather talk to a human,
you can call us. We're available Monday through Friday, between 6 AM and 6 PM

(Pacific time) for people in the Western hemisphere and 8 AM to 6 PM GMT for those
of you in the Eastern Hemisphere. Be's support phone numbers can be found (you
guessed it) on our web site at http://www.be.com/support/index.html.

xi

CHAPTER ONE

Introduction

Introduction 3
Software Overview 3
Servers 4
Kits 5
Libraries 6

Conventions 7
Documentation Conventions 7
Naming Conventions 9
Programming Conventions 11

CHAPTER ONE

Introduction

The Be operating system (BeOS™) is designed to take advantage of modern
computer hardware, particularly machines with more than one CPU. The BeOS offers:

• Preemptive multithreading (true "multitasking")
• Protected address spaces
• Virtual memory
• An attributed file system
• Dynamically loaded device drivers
• Interapplication messaging
• Built-in networking
• Real-time streaming of audio and video data
• Shared, dynamically linked libraries
• An object-oriented programming environment

The BeOS is designed for efficient multithreading from top to bottom. For example,
the application framework creates a separate thread for each window. On systems
with more than one processor, the kernel automatically splits assignments between
the CPUs and gives priority to threads that need uninterrupted attention.

The application programming interface (API) is designed to make the features of the
BeOS easy to use. Written in C++, it includes numerous class definitions from which
you can take much of the framework for your application.

Software Overview
The BeOS software lies in three layers:

• A microkernel that works directly with the hardware and device drivers.

3

4 Chapter 1 • Introduction

• Servers that attend to the needs of running applications. The servers take over
much of the low-level work that would normally have to be done by each
application.

• Dynamically linked libraries that provide an interface to the servers and the Be
software that you use to build your applications.

Applications are built on top of these layers, as illustrated below:

The API for all system software is organized into several "kits." Each kit has a distinct
domain-there's a kit that contains the fundamental software for creating and running
an application, a kit for putting together a user interface, one for accessing the file
system, another for networking, and so on.

Servers
Servers are separate processes that run in the background and carry out basic tasks
for client applications. They typically serve any number of running applications at the
same time.

If you look inside the /boot/beos/system/servers directory, you'll see a number of
servers listed. The one that you should know about is the Application Server.

The Application Server handles most of the low-level user interface work: It creates
and manages windows on the screen, renders images, and monitors what the user is
doing with the keyboard and mouse. It's the application's conduit for both drawing
output and event input.

An application connects itself to the server when it constructs a BApplication object
(as defined in the Application Kit). This should be one of the first things that every

Introduction • Kits

application does. Every BWindow object (defined in the Interface Kit) also makes a
connection to the Application Server when it's constructed. Each window runs
independently of other windows-in its own thread and with its own connection to
the server.

Kits
The Be software kits are written in C++ and make significant use of class definitions
(the two notable exceptions are the Kernel Kit and Network Kit, which are primarily
straight C). Some of the kits are important to all applications, others are used only by
applications that are concerned with specific topics. Most applications will need to
open files and put windows on-screen, for example; fewer will want to process audio
data.

The kits are summarized below:

• The Application Kit identifies your application as a distinct entity, lets your
application communicate with other applications, and defines a messaging service
that the system uses to notify your application of user events (mouse down, key
up, and so on).

The Application Kit's principal class is BApplication. Virtually every application
must have one (and only one) BApplication object to act as its global
representative. Begin with this kit before programming with any of the others.

• The Storage Kit is an interface to the file system. The BeOS recognizes more than
one file system architecture. These architectures are abstracted by the kernel so
that each distinct architecture "looks" the same to the Storage Kit. Some
architectures are more powerful than others, but the fundamental concept of
hierarchically organized files and directories is enforced at the kernel level.

• The Interface Kit is used to build and run a graphical and interactive user
interface. It structures the tasks of drawing in windows and handling the messages
that report user actions (like clicks and keystrokes). Its BWindow class
encapsulates an interface to windows. Its BView class embodies a complete
graphics environment for drawing.

Each window is represented by a separate BWindow object and is served by a
separate thread. A BWindow has a hierarchy of associated BView objects; each
BView draws one portion of what's displayed in the window and responds to user
actions prompted by the display. The Interface Kit defines a number of specific
BViews, such as BListView, BButton, BScrollBar, and BTextView-as well as
various supporting classes, such as BRegion, BBitmap, and BPicture.

Every application that puts a window on-screen will need to make use of this kit.

5

6 Chapter 1 • Introduction

• The Kernel Kit defines a C interface for creating, coordinating, and communicating
between threads. It also defines a system of memory management, letting you
share memory between application and lock chunks of memory into RAM.
Applications that rely on the higher-level kits may not need to use much of this
kit.

• The Media Kit defines an architecture for processing audio and video data. It gives
applications the ability to generate, examine, manipulate, and realize (or "render")
medium-specific data in real time. Applications can, for example, synchronize the
transmission of data to different media devices, so they can easily incorporate and
coordinate audio and video output.

• The Midi Kit lets you generate and process music data in MIDI (Musical
Instrument Digital Interface) format. The Kit includes a General MIDI synthesizer
designed by the folks at Headspace®, Incorporated (http://www.headspace.com).

• The OpenGL Kit is an implementation of the OpenGL® 3D graphics interface.

• The Device Kit defines the API for creating loadable device drivers. Drivers for
graphics cards run as extensions of the Application Server; printer drivers run in
the Print Server. All other drivers are loaded by the kernel.

• The Game Kit consists of a single class-BWindowScreen-that gives an
application direct access to the graphics card driver for the screen. Designed for
the needs of game makers, BWindowScreen can be used by any application
even the ones that don't let you shoot at aliens.

• The Network Kit contains C functions that let you identify remote machines that
are connected to the network and communicate with those machines through the
TCP and UDP message protocols. This kit also contains API (including the
BMailMessage class) that lets applications talk to the Be mail daemon and send
and receive SMTP and POP mail messages.

• The Support Kit is a collection of various defined types, error codes, and other
facilities that support Be application development and the work of the other kits.
It includes basic type definitions, the BList class for organizing ordered collections
of data, and a system for archiving objects and reconstructing them from their
archives.

Libraries
The Be software is organized into a set of dynamically linked libraries (DLLs). Code
from the library is not compiled into your application. Instead, the library is resident
on the user's machine and your application links to it when it's launched.

Conventions • Documentation Conventions

The libraries are found in /boot/beos/system/lib; dynamic libraries are identified by a
".so" suffix:

Library Contents

libroot.so Provides access to the kernel; all applications must link with this library.

libbe.so Contains the Application, Interface, and Support Kits, as well as most of the
Storage Kit. All applications should link with this one, too.

libGL.so The OpenGL Kit.

libdevice.so The Device Kit.

libgame.so The Game Kit.

libmedia.so The Media Kit.

libmidi.so The Midi Kit.

libmail.so The library for applications that want to use the mail portions of the Network Kit.

libnet.so The rest of the Network Kit.

libnetdev.so The library for developing a Network Server add-on.

libtracker.so Contains parts of the Tracker application that can be used by other applications.
Currently, the library contains the code for the BFilePanel class (the API is
defined by the Storage Kit).

Conventions
This section looks at some of the conventions that the BeOS and this book follow. It

includes:

Documentation conventions
The way we've put this book together-how Classes are described and how font
typefaces are used.

Naming conventions
Our standards for the APL

Programming conventions
The conventions for allocating and freeing memory, for creating objects, and
more.

Documentation Conventions

Class Descriptions

Since most Be software is organized into classes, much of the documentation you'll
be reading in this book will be about classes and their member functions. Each class
description is divided into the following sections:

7

8 Chapter 1 • Introduction

Overview
An introductory description of the class.

Data Members
A list of the public and protected data members declared by the class, if there are
any. If this section is missing, the class declares only private data members, or
doesn't declare any data members at all.

Hook Functions
A list of the virtual functions that you're invited (or expected) to override in a
derived class. Hook functions are called automatically by the system at critical
junctures; they "hook" application-specific code into the generic workings of the
kit.

Hook functions are listed in this section only for the class that first declares them.
If class A declares a hook function and its derived class, B, implements it, the
function will be described as a "Member Function" for both classes, but will be
listed as a hook function only for class A.

Constructor and Destructor
The class constructor and destructor. Only documented constructors produce valid
members of a class. Don't rely on default constructors.

Static Functions
The static functions that are declared for the class. Static functions don't operate
on a particular object, but serve a class-wide purpose. Often they return an
instance of the class or set a state shared by all instances.

Member Functions
A full description of all public and protected member functions, including hook
functions-but not static functions and the constructor and destructor, which are
described in their own sections. The functions are alphabetized.

Operators
A description of any operators that are overloaded to handle the class type.

If a section isn't relevant for a particular class-if the class doesn't define any hook
functions or overload any operators, for example-that section is omitted.

Rely only on the documented API. You may occasionally find a public function
declared in a header file but not documented in the class description. The reason it's
not documented is probably because it's not supported and not safe; don't use it.

Typography

API elements are presented in a distinct font-for example, system_ time (),
be_app, and B_STRING_TYPE. The only exceptions are class names, which appear in
the same font as surrounding text-for example, BFile and BOutlineListView.

Conventions • Naming Conventions

Where it presents the syntax of a function or data structure, the book gives each part
of the definition its own font style. For example:

virtual status_t lnvoke(BMcssage *message= NULL)

typedef char font_family[B_FONT _FAMILY _LENGTH + 1)

Four different fonts are used:

• The API element being defined is bold-for example, Invoke() and font_family.

• The names of other API elements that enter into the definition (such as default
arguments) are in a non-bold version of the API font-for example, NULL and
B_FONT _FAMILY _LENGTH.

• The names of parameters are italic-for example, message.

• Data types are in plain (roman) text-status_t, BMessage, and char in the
examples above-as are other keywords like typedef and virtual.

Naming Conventions
All our class names begin with the prefix "B". The rest of the name is in mixed case;
for example:

BTcxtView

BFilc

BDACStream

BMessageQueuc

BScrol!Bar

BList

The simplest thing you can do to prevent namespace collisions is to refrain from
putting the "B" prefix on class names you invent.

Other names associated with a class-the names of data members and member
functions-are also in mixed case. The names of member functions begin with an
uppercase letter-for example, AddResource () and UpdateifNeeded (). The
names of data members begin with a lowercase letter (what and bottom). Member
names are in a protected namespace and won't clash with the names you assign in
your own code; they therefore don't have-or need-a "B" prefix.

All other names in the Be API are single case-either all uppercase or all lowercase
and use underbars to mark where separate words are joined into a single name.

9

10 Chapter 1 • Introduction

The names of constants are .all uppercase and begin with the prefix "B_". For
example:

B_LONG_TYPE

B_OP_OVER

B_PULSE

The only exceptions are common constants not specific to the Be operating system.
For example:

true

false

NULL

All other names-global variables, macros, nonmember functions, members of
structures, and defined types-are all lowercase. Global variables generally begin
with "be_",

be_app

be_roster

be_ clipboard

but other names lack a prefix. They're distinguished only by being lowercase. For
example:

rgb_color

system_time ()

app_info

To summarize:

Category

Class names

Member functions

Data members

Constants

Global variables

Everything else

Prefix

B

none

none

B_

be_

none

Spelling

Mixed case

Mixed case, beginning with an uppercase letter

Mixed case, beginning with a lowercase letter

All uppercase

All lowercase

All lowercase

Conventions • Programming Conventions

Occasionally, private names are visible in public header files. These names are
marked with prefixed underbars, and often postfixed ones as well-for example,
pthread and _remove_ volume_ (). Don't rely on these names in the code you
write. They're neither documented nor supported, and may change or disappear in
the next release.

An underbar prefix is also used for kit-internal names that may intrude on an
application's namespace, even though they don't show up in a header file. For
example, the kits use some behind-the-scenes threads and give them names like
"_pulse_task_" and they may put kit-internal data in public messages under names
like "_button_". If you were to assign the same names to your threads and data
entries, they might conflict with kit code. Since you can't anticipate every name used
internally by the kits, it's best to avoid all names that begin in underbars.

Programming Conventions
The software kits were designed with some conventions in mind. Knowing a few of
them will help you write efficient code and avoid pitfalls. The conventions for MIME
types, memory allocation, and object creation are described below.

MIME Types

To type data, files, applications, protocols, and just about anything else that needs to
be identified at run time, the BeOS adopts-and extends-the MIME (Multipurpose
Internet Mail Extensions) media types. This single system is used throughout the
operating system.

A MIME media type is a string in the following form:

supertype/ subtype

The top-level supertype name designates a general category of data-such as text or
image data-and the subtype names a specific format of that general type. For
example, "image/jpeg" indicates image data in JPEG format and "text/plain" is plain,
unadorned text.

The MIME standard defines seven top-level supertype categories. They are:

"text"
Data formats that encode characters; "plain" and "enriched" are common subtypes.

"image"
Data formats that capture pictures that can be produced on a display device like a
monitor or printer; "jpeg" and "gif' are two of the subtypes.

11

12 Chapter 1 • Introduction

"audio"
Data that can produce sounds through an audio output device, like a speaker or a
telephone; "basic" is a recognized subtype.

"video"
Formats that capture moving images; "mpeg" is one subtype.

"application"
Executable data.

"multi part"
Multiple-format data.

"message"
This is used to indicate that the data is an e-mail message.

In the BeOS, every application is identified by a type string in the "application"
category. For example, "application/x-vnd.Be-simpleclock" identifies the Clock
application and "application/x-vnd.Be-STEE" identifies StyledEdit. This MIME type
name serves as the application's signature.

Be defines an additional supertype:

"suite"
Identifiers for groups of message protocols.

Although the set of type categories is limited, experimental and private subtypes can
be freely formed. However, they should be marked with an initial uppercase or
lowercase "x", as in the signature examples above.

Responsibility for Allocated Memory

The general rule is that whoever allocates memory is responsible for freeing it:

• If your application allocates memory, it should free it.

• If a kit allocates memory and passes your application a pointer to it, the kit retains
responsibility for freeing it.

For example, a Text () function like this one,

char *text= someObject->Text();

returns a pointer to a string of characters residing in memory that belongs to the
object that allocated it. The object is responsible for freeing the string.

The data that's passed back to you by pointer isn't guaranteed to be valid forever. In
general, you should copy pointed-to data if you want it to stick around.

Conventions • Programming Conventions

In contrast, a Get Text () function would copy the string into memory that your
application provides:

char *text= {char *)malloc{someObject->TextLength{) + 1);
someObject->GetText{text);

Your application is responsible for the copy.

In some cases, you're asked to allocate an object that kit functions fill in with data:

BPicture *picture = new BPicture;
someViewObject->BeginPicture(picture);

someViewObject->EndPicture{);

Again, you're responsible for freeing the object.

Assigned Responsibility

The principle of you-allocate-it-you-free-it is modified in cases where one object is
assigned to another. For example, in the Interface Kit, you can make one BView
object the child of another BView:

myView->AddChild{anotherView);

The parent BView takes responsibility for its child; when the parent is deleted, it will
make sure that its children are also deleted. Similarly, a BMenu object in the Interface
Kit takes responsibility for its BMenultems.

Exceptions

Sometimes a BeOS class is in a better position to allocate memory than the
application. An example is the Find.Resource () function in the BResources class of
the Storage Kit. This function allocates memory on the caller's behalf and copies
resource data to it; it then passes responsibility for the memory to the caller:

size_t length;
void *res= resObj.FindResource{B_RAW_TYPE, "name", &length);

The BResources object allocates the memory in this case because it knows better than
the caller how much resource data there is and, therefore, how much memory to
allocate.

Exceptions like this are rare and are clearly stated in the documentation.

Object Allocation

All objects can be dynamically allocated (using the new operator). Most, but not all,
can also be statically allocated (put on the stack). In general, you should statically

13

14 Chapter 1 • Introduction

J

allocate objects whenever you can. However, some objects may not work correctly
unless they're allocated in dynamic memory. The general rules are:

• If you assign one object to another (as, for example, a child BView in the Interface
Kit is assigned to its parent BView or a BMessage is assigned to a Blnvoker), you
should dynamically allocate the assigned object.

This is because there may be circumstances that would cause the other object to
free the object you assigned it. For example, a parent BView deletes its children
when it is itself deleted. In the Be software kits, all such deletions are done with
the delete operator. Therefore, the original allocation should always be done
with new.

• If an object controls a thread, it must be dynamically allocated. This applies to all
BLooper objects, including the BApplication object (in the Application Kit) and all
BWindows and BAlerts (in the Interface Kit).

CHAPTER TWO

The Application Kit

Introduction

Messaging
Messages

Message Loops

System Messages

Application-Defined Messages

Scripting
Messages, Properties, and Specifiers

Suites

BApplication
Overview

Hook Functions

Constructor and Destructor

Static Functions

Member Functions

BClipboard
Overview

Constructor and Destructor

Member Functions

BHandler
Overview

Hook Functions

Constructor and Destructor

Static Functions

Member Functions

Blnvoker
Overview

Constructor and Destructor

Member Functions

15

19

20
20

23
25
28

32
32
38

39
40
46
46
47
47

57
57

59
60

61
61
63
63

63
64

70
70

70

71

16

Blooper
Overview

Hook Functions

Constructor and Destructor

Static Functions

Member Functions

BMessage
Overview

Data Members

Constructor and Destructor

Member Functions

Operators

BMessageFilter
Overview

Hook Functions

Constructor and Destructor

Member Functions

Operators

BMessageQueue
Class Description

Constructor and Destructor

Member Functions

BMessenger
Overview

Constructor and Destructor

Member Functions

Operators

BRoster
Overview

Constructor and Destructor

Member Functions

Global Variables, Constants, and Defined Types
Global Variables

Constants

Defined Types

Chapter 2 • The Application Kit

75
75
77
77

79
79

91
92
93
93
95

116

117
117
118
118
120
122

122
122
123
123

125
125
125
128
131

131
131
132
132

138
138
139
143

Contents 17

Application Inheritance Hierarchy

r---==iH''J BHandler
i ... -~ H ~ :·. ~ ~~.;.. o.;U .~ ... O ... ~ ... 0 .-. •• 0 ~~;,;::

BR osier

BClipboard

CHAPTER TWO

The Application Kit

The Application Kit is the starting point for all applications. Its classes establish an
application as an identifiable entity-one that can cooperate and communicate with
other applications (including the Tracker). It lays a foundation for the other kits.
Before designing and building your application, you should become comfortably
familiar with this basic kit.

There are four parts to the Application Kit:

• Messaging. The kit sets up a mechanism through which an application can easily
make itself multithreaded and a messaging service that permits the threads to talk
to each other. This service can deliver messages within your own application, or
from one application to another-it's used for both inter- and intra-application
communication. It's also used by the BeOS to deliver user event messages (key
clicks, mouse moves) to your application.

• Tbe BApplication class. Every application must have a single instance of the
BApplication class-or of a class derived from BApplication. Your app's
BApplication object establishes a connection to the Application Server. The server
is a background process that takes over many of the fundamental tasks common
to all applications: It renders images in windows, controls the cursor, and keeps
track of system resources.

The BApplication object also runs the application's main message loop, where it
receives messages that concern the application as a whole. Externally, this object
represents the application to other applications; internally, it's the center where
applicationwide services and global information can be found. Because of its
pivotal role, it's assigned to a global variable, be_app, to make it easily accessible.

Other kits-the Interface Kit in particular-won't work until a BApplication object
has been constructed.

19

20 Chapter 2 • The Application Kit

• The BRoster class. The BRoster object keeps track of all running applications. It can
identify applications, launch them, and provide the information needed to set up
communications with them.

• The BClipboard class. The BClipboard object provides an interface to the clipboard
where cut and copied data can be stored, and from which it can be pasted.

The messaging framework is described in the next section, followed by a discussion
of scripting. The classes follow in alphabetical order.

Messaging
The Application Kit provides a high-level messaging service built on top of the
kernel's system of ports, threads, and semaphores. The service lets you:

• Put together parcels of structured information that can be sent from one thread to
another. The parcels are BMessage objects.

• Deliver messages to a destination. This is the job of a BMessenger object
although local messages can be "posted" directly, without the aid of a messenger.
BMessengers represent remote destinations and can be used instead of pointers to
keep track of local objects.

• Process messages as they arrive. This task is entrusted to BLooper objects. A
BLooper sits on top of a thread in which it runs a message loop, getting messages
and dispatching them one at a time.

• Define your own message-handling code. A BLooper dispatches an arriving
message by calling a "hook" function of a BHandler object. Each application can
implement these functions as it sees fit.

The following sections examine the messaging system components.

Messages
BMessage objects are parcels of information that can be transferred between threads.
The message source constructs a BMessage object, adds whatever information it
wants to it, and then passes the. parcel to a function that delivers it to a destination.

A BMessage can hold structured data of any type or amount. When you add data to a
message, you assign it a name and a type code. If more than one piece of information
is added under the same name, the BMessage sets up an array of data for that name.
The name (along with an optional index into the array) is then used to retrieve the data.

For example, this code adds a floating-point number to a BMessage under the name
"pi",

Messaging • Messages

BMessage *msg = new BMessage;
float pi = 3.1416;
msg->AddData("pi'', B_FLOAT_TYPE, &pi, sizeof(float));

and this code locates it:

float *pi;
ssize_t numBytes;
msg->FindData ("pi", B_FLOAT_TYPE, &pi, &numBytes) ;

A number of specialized functions simplify the code for specific data types. Adding
and finding pi would most typically look like this:

BMessage *msg = new BMessage;
msg->AddFloat ("pi", 3 .1416) ;

float pi;
msg->FindFloat ("pi", &pi) ;

Command Constant

In addition to named data, a BMessage object also has a public data member, called
what, that says what the message is about. The constant may:

• Convey a request of some kind (such as SORT_ITEMS or BEGIN_ANIMATION) .

• Announce an event (such as LIMIT_EXCEEDED or B_WINDOW_RESIZED).

• Label the information that's being passed (such as PATIENT_INFO or
NEW_ COLOR).

Not all messages have data fields, but all should have a command constant. A
constant like RECEIPT_ACKNOWLEDGED or CANCEL may be enough to convey a
complete message.

The BeOS defines command constants for a number of standard messages-such as
B_REPLY, B_KEY_DOWN, and B_RESET_STATUS_BAR. They're discussed where the
topics they relate to come up in this manual and are summarized in Appendix A,
Message Protocols.

By convention, the constant alone is sufficient to identify a message. It's assumed that
all messages with the same constant are used for the same purpose and contain the
same kinds of data.

Type Codes

Data added to a BMessage is associated with. a name and stored with two relevant
pieces of information:

• The number of bytes in the data
• A type code indicating what kind of data it is

21

22 Chapter 2 • The Application Kit

The Support Kit defines a number of codes for common data types, including these:

Type

B_CHAR_TYPE

B_INT32_TYPE

B_FLOAT_TYPE

B_SIZE_T_TYPE

B_MESSENGER_TYPE

B_RECT_TYPE

B_RGB_COLOR_TYPE

B_STRING_TYPE

B_COLOR_8_BIT_TYPE

Meaning

A single character

A 32-bit integer (int32, uint32, vint32, or vuint32)

A float

A size_t value

A BMessenger object

A BRect object

An rgb_color structure

A null-terminated character string

Raw bitmap data in the B_COLOR_8_BIT color space

In addition, B_MIME_TYPE indicates that the name of the data item is a MIME-like
string that conveys the true type of the data. The full list of types can be found under
"Type Codes" in Chapter 6, Tbe Support Kit.

You can add data to a message even if its type isn't on the list. A BMessage will
accept any kind of data; you must simply invent your own codes for unlisted types.

Message Protocols

Both the source and the destination of a message must agree upon its format-the
what constant and the names and types of data fields. They must also agree on
details of the exchange-when the message can be sent, whether it requires a
response, what the format of the reply should be, what it means if an expected data
item is omitted, and so on.

None of this is a problem for messages that are used only within an application; the
application developer can keep track of the details. However, protocols must be
published for messages that communicate between applications. You're urged to
publish the specifications for all messages your application is willing to accept from
outside sources and for all those that it can package for delivery to other applications.
The more that message protocols are shared, the easier it is for applications to
cooperate with each other and take advantage of each other's special features.

The software kits define protocols for a number of messages. They're discussed in
Appendix A, Message Protocols.

Extensions

It's important that the message constants and type codes you define not be confused
with those already defined by the BeOS, or those that the BeOS might define in the

Messaging • Message Loops

future. For this reason, we've adopted a strict convention for assigning values to all
Be-defined constants. The value assigned will always be formed by combining four
characters into a multicharacter constant, with the characters limited to uppercase
letters and the underbar. For example, B_KEY_DOWN and B_VALUE_CHANGED are
defined as follows:

enum {

} ;

B_KEY_DOWN = '_KYD',
B_VALUE_CHANGED = '_VCH',

And B DOUBLE_TYPE and B_POINTER_TYPE are defined as follows:

enum {

} ;

B_DOUBLE_TYPE 'DBLE',
B_POINTER_TYPE = 'PNTR',

Use a different convention to define your own constants (or you'll risk having your
message misinterpreted). Include some lowercase letters, numerals, or symbols (other
than the underbar) in your multicharacter constants, or assign numeric values that
can't be confused with the value of four concatenated characters. For example, you
might safely define constants like these:

#define PRIVATE_TYPE Oxlf3d
#define OWN_TYPE 'Rcrd'

Message Ownership

Typically, when an application creates an object, it retains responsibility for it; it's up
to the application to free the objects it allocates when they're no longer needed.
BMessage objects are no exception to this rule. Passing a message to the messaging
mechanism doesn't relieve you of responsibility for it. The system makes a copy so
you can delete the object immediately if you have no further use for it.

Similarly, when the system delivers a BMessage to you, it retains ownership of the
object and will eventually delete it-after you're finished responding to it. A message
receiver can assert responsibility for a message--essentially replacing the system as
its owner-by detaching it from the message loop (with BLooper's
DetachCurrentMessage () function).

Message Loops
In the Be model, messages are delivered to threads running message loops. Arriving
messages are first placed in a queue. They're then taken from the queue one at a time

23

24 Chapter 2 • The Application Kit

and dispatched to an object that can respond. When the response is finished, the
thread deletes the message and takes the next one from the queue---or, if the queue
is empty, waits until another message arrives .

. The message loop therefore dominates the thread. The thread does nothing but get
messages and respond to them; it's driven by message input.

BLooper objects set up these message loops. A BLooper spawns a thread and sets the
loop in motion. Posting a message to the BLooper delivers it to the thread (places it
in the queue). The BLooper removes messages from the queue and dispatches them
to BHandler objects. BHandlers are the objects ultimately responsible for received
messages. Everything that the thread does begins with a BHandler's response to a
message.

Two hook functions come into play in this process-one defined in the BLooper class
and one declared by BHandler:

• BLooper's DispatchMessage () function is called to pass responsibility for a
message to a BHandler object. It's fully implemented by BLooper (and kit classes
derived from BLooper) and is only rarely overridden by applications.

• MessageRecei ved () is the BHandler function that DispatchMessage () calls
by default. It's up to applications to implement this function to handle expected
messages. For example:

void MyHandler::MessageReceived(BMessage *message)
{

switch (message->what) {
case COME_HERE:

break;
case GO_THERE:

break;
default:

baseClass: :MessageReceived(message);
break;

There's a close relationship between the BLooper role of running a message loop and
the BHandler role of responding to messages. The BLooper class inherits from
BHandler, so the same object can fill both roles. The BLooper is the default handler
for the messages it receives.

While a thread is responding to a message, it keeps the BLooper that dispatched the
message locked. The thread locks the BLooper before calling DispatchMessage ()
and unlocks it after DispatchMessage () returns.

Messaging • System Messages

Handler Associations

To be notified of an arriving message, a BHandler must "belong" to the Blooper; it
must have been added to the Blooper's list of eligible handlers. The list can contain
any number of objects, but at any given time a BHandler can belong to only one
Blooper.

Handlers that belong to the same Blooper can be chained in a linked list. If an object
can't respond to a message, the system passes the message to its next handler.

Blooper's Add.Handler () function sets up the looper-handler association;
BHandler's SetNextHandler () sets the handler-handler link.

Message Filters

You can arrange to have a filtering function examine an incoming message before the
Blooper dispatches it-before DispatchMessage () and the target BHandler's hook
function are called. The filter can set up conditions for handling the message, change
the target handler, or even prevent the message from being dispatched and respond
to it directly.

The filtering function is associated with a BMessageFilter object, which holds the
criteria for when the filter should apply. If a BMessageFilter is attached to a BHandler
(Add.Filter ()), it filters only messages destined for that BHandler. If it's attached as
a common filter to a Blooper object (AddCommonFil ter ()), it can filter any
message that the Blooper dispatches, no matter what the handler. (In addition to the
list of common filters, a Blooper can, like other BHandlers, maintain a list of filters
specific to its role as a target handler.)

System Messages
Special dispatching is provided for a subset of messages defined by the system. These
system messages are dispatched not by calling MessageRecei ved () , but by calling a
BHandler hook function specific to the message.

~

System messages generally originate from within the Be operating system (from
servers, the kits, or the Tracker). They notify applications of external events, usually
something the user has done-moved the mouse, pressed a key, resized a window,
selected a document to open, or some other action of a similar sort. The command
constant of the message names the event-for example, B_KEY_DOWN,
B_SCREEN_CHANGED, or B_REFS_RECEIVED--and the message may carry data
describing the event. The receiver is free to respond to the message (or not) in any
way that's appropriate.

25

26 Chapter 2 • The Application Kit

A few system messages name an action the receiver is expected to take, such as
B_ZOOM or B_MINIMIZE. The message tells the receiver what must be done. Even
these messages are prompted by an event of some kind-such as the user clicking
the zoom button in a window tab.

System messages have a fixed format. The names and types of data fields are always
the same for each kind of message. For example, the system message that reports a
user keystroke ori the keyboard-a "key-down" event-has B_KEY_DOWN as the
command constant, a "when" field for the time of the event, a "key" field for the key
that was hit, a "modifiers" field for the modifier keys that were down at the time, and
so on.

Although the set of system-defined messages is small, they're the most frequent
messages for most applications. For example, when the user types a sentence, the
application receives a series of B_KEY_DOWN messages, one for each keystroke.

Specialized Bloopers

System messages aren't delivered to just any BLooper object. The software kits derive
specialized classes from BLooper to give significant entities in the application their
own threads and message loops. These are the objects that receive system messages
and define how they're dispatched. Each message is matched to the specific kind of
BLooper that's concerned with the particular event it reports or . the particular
instruction it delivers.

More specifically, both the BApplication class in this kit and the BWindow class in the
Interface Kit derive from BLooper:

• The BApplication object runs a message loop in the main thread and receives
messages that concern the application as a whole--such as requests to quit the
application or to open a document.

• Each BWindow object runs in its own thread and receives messages that report
activity in the user interface--including notifications that the user typed a
particular character on the keyboard, moved the cursor on-screen, or pressed a
mouse button. Every window that the user sees is represented by a separate
BWindow object.

Each of these classes is concerned with only a subset of system messages
BApplication with application messages (discussed on page 41) and BWindow objects
with interface messages (discussed in Chapter 4, Tbe Interface Kit). In addition, the
generic BLooper class defines a B_QUIT_REQUESTED message that's common to both
groups. Each class arranges for special handling of the system messages it's
concerned with.

Messaging • System Messages

Message-Specific Dispatching

Every system message is dispatched by calling a specific virtual "hook" Junction, one
that's matched to the message. For example, when the Application Server sends a
B_KEY_DOWN message to the window where the user is typing, the BWindow
determines which object is responsible for displaying typed characters and calls that
object's KeyDown () virtual function. Similarly, a message that reports a user request
for basic information about the application is dispatched by calling the BApplication
object's AboutRequested () function. Messages that report the movement of the
cursor are dispatched by calling MouseMoved () , those that report a change in the
screen configuration by calling ScreenChanged () , and so on.

These hook functions are declared in classes derived from BHandler and are often
recognizable by their names. Hook functions fall into three groups:

• Those that are left to the application to implement. These functions are named for
what they announce-for what led to the function call rather than for what the
function might be implemented to do. KeyDown () is an example.

• Those that have a default implementation to cover the common case. Like those in
the first group, these functions also are named for the occurrence that prompted
the function call. ScreenChanged () is an example.

• Those that are fully implemented to perform a particular task. These are functions
that you can call, but they're also hooks that are called for you. Like most ordinary
functions, they're named for what they do-like Zoom ()-not for what led to the
function call.

The hook functions that are matched to system messages can fall into any of these
three categories. Since most system messages report events, they mostly fall into the
first two categories. The function is named for the message, and the message for the
event it reports.

However, if a system message delivers an instruction for the application to do
something in particular, its hook function falls into the third group. The function is
fully implemented in system software, but can be overridden by the application. The
function is named for what it does, and the message is named for the function.

Picking a Handler and a Hook Function

A BLooper picks a BHandler for a system message based on what the message is. For
example, a BWindow calls upon the object that displays the current selection to
handle a B_KEY_DOWN message. It asks the object in charge of the area where the
user clicked to handle a B_MOUSE_DOWN message. And it handles messages that affect
the window as a whole-such as B_WINDOW_RESIZED-itself.

27

28 Chapter 2 • The Application Kit

The BLooper identifies system messages by their command constants alone (their
what data members). If a message is received and its command constant matches the
constant for a system message, the BLooper will dispatch it by calling the message
specific hook function-regardless what data field the message may have.

If the constant doesn't match a system message that the BLooper knows about, the
message is dispatched by calling MessageRecei ved (} . MessageRecei ved (} is,
therefore, reserved for application-defined messages. It's typically implemented to
distribute the responsibility for received messages to other . functions. That's
something that's already taken care of for system messages, since each of them is
mapped to its own function.

Application-Defined Messages
Although the system creates and delivers most messages, an application can create
messages of its own and have them delivered to a chosen destination. There are three
ways to initiate a message:

• Messages can be posted to a thread of the same application.
• They can be sent to a thread anywhere, generally one in a remote application.
• They can be dragged and dropped.

Posted Messages

Messages are posted by calling a BLooper's PostMessage (} function. For example:

BMessage message(FORGET_ABOUT_IT);
myLooper->PostMessage(&message, targetHandler);

This hands the message to the BLooper so that it can be dispatched in sequence
along with other messages the thread receives. Posting depends on the message
source knowing the address of the destination BLooper; it therefore works only for
application-internal messages.

Target Handlers

AB the example above shows, it's possible to name a target BHandler when posting a
message. The only requirement is that the BHandler must belong to the BLooper; it
must have been added to the BLooper's list of eligible handlers.

The target is respected when the message is dispatched; the dispatcher always calls a
hook function belonging to the designated BHandler. If the message matches one
that the system defines and the target BHandler is the kind of object that's expected
to handle that type of message, the dispatcher will call the target's message-specific
hook function. However, if the designated target isn't the handler of design for the
message, the BLooper will call its MessageRecei ved (} function.

Messaging • Application-Defined Messages

For example, if a B_KEY_DOWN message is posted to a BWindow object and a BView
is named as the target, the BWindow will dispatch the message by calling the BView's
KeyDown () function. However, if the BWindow itself is named as the target, it will
dispatch the message by calling its own MessageRecei ved () function. BView
objects are expected to handle keyboard messages; BWindows are not.

Preferred Handlers

A BLooper can also keep track of a preferred handler for the messages it receives.
When the target handler is a NULL pointer,

BMessage message(FORGET_ABOUT_IT);
myLooper->PostMessage(&message, NULL);

the BLooper resorts to its preferred handler.

This feature allows messages to be targeted dynamically. The BLooper can change
the object it considers its preferred handler to fit the exigencies of the moment. For
example, a BWindow makes sure that whatever object is the current focus of the
user's actions is its preferred handler. Thus, PostMessage () calls that don't name
another handler will always affect the current focus.

Sent Messages

Messages can be posted only within an application-where the thread that calls
Pos tMessage () and the thread that responds to the message are in the same team
and may even be the same thread.

To send a message to another application, it's necessary to first set up a BMessenger
object as a local representative of the remote destination. BMessengers can be
constructed in two ways:

• By naming a particular instance of a running application. The BRoster object can
provide signatures and team identifiers for all running applications.

• By naming a particular BHandler or BLooper object in your own application.

The first method constructs a BMessenger that can send messages to the main thread
of the remote application, where they'll be received and handled by its BApplication
object.

The second method constructs a BMessenger that's targeted to a BLooper and
BHandler (including, possibly, the BLooper's preferred handler) in your own
application. However, you can place the BMessenger in a message and send it to a
remote application. That application can then employ the BMessenger to target
messages to your objects.

29

30 Chapter 2 • The Application Kit

Thus, a BMessenger can be seen as a local identifier for a remote BLooper/BHandler
pair. Calling the object's SendMessage () function delivers the message to the
remote destination. BMessengers can also send messages to local destinations.
However, it's generally simpler to post a local message than to send it-although the
results are the same and posting a message isn't any more efficient than sending it.

Dropped Messages

Through a service of the Interface Kit, users can drag messages from a source
location and drop them on a chosen destination, perhaps in another application. The
source application puts the message together and hands it over to the Application
Server, which tracks where the user drags it. The drag-and-drop session is initiated by
BView's DragMessage () function. For example:

BMessage message(COLOR);
message.AddData ("color", B_RGB_COLOR_TYPE, &theColor, sizeof (rgb_color));
myView->DragMessage(&message, aBitmap, offsetsintoTheBitmap);

When the user drops the message inside a window somewhere, the server delivers it
to the BWindow object and targets it to the BView (a kind of BHandler) that's in
charge of the portion of the window where the message was dropped. The message
is placed in the BWindow's queue and is dispatched like all other messages. Tn

contrast to messages that are posted or sent in application code, only the user
determines the destination of a dragged message.

A message receiver can discover whether and where a message was dropped by
calling the BMessage object's WasDropped () and DropPoint () functions.

See "Responding to the User" in Chapter 4, Tbe lnteiface Kit, for details on how to
initiate a drag-and-drop session.

Two-Way Communication

A delivered BMessage carries a return address with it. The message receiver can reply
to the message by calling the BMessage's Send.Reply () function. Replies can be
synchronous or asynchronous.

Synchronous Replies

A message sender can ask for a synchronous reply when calling the sending function.
For example:

BMessage reply;
myMessenger.SendMessage(&message, &reply);
if (reply.what != B_NO_REPLY) {

Messaging • Application-Defined Messages

In this case, Send.Message () waits for the reply; it doesn't return until one is
received. (In case the message receiver refuses to cooperate, a default reply is sent
when the original message is deleted.)

A message receiver can discover whether the sender is waiting for a synchronous
reply by calling the BMessage's IsSourceWai ting () function.

Asynchronous Replies

A message sender can provide for an asynchronous reply by designating a BHandler
object for the return message. For example:

myMessenger.SendMessage(&message, replyHandler);

In this case, the sending function doesn't wait for the reply; the reply message will be
directed to the named BHandler. An asynchronous reply is always possible. If a
BHandler isn't designated for it, the BApplication object will act as the default
handler.

You can also name a target BHandler for an asynchronous reply to posted and
dragged messages:

myLooper->PostMessage(&message, NULL, replyHandler);

myView->DragMessage(&message, aBitmap, offsets, replyHander);

Replies to Replies

BMessage's SendReply () function has the same syntax as Send.Message () , so it's
possible to ask for a synchronous reply to a message that is itself a reply,

BMessage message(READY);
BMessage reply;
theMessage->SendReply(&message, &reply);
if (reply->what != B__NO_REPLY) {

or to designate a BHandler for an asynchronous reply to the reply:

theMessage->SendReply(&message, someHandler);

In this way, two applications can maintain an ongoing exchange of messages.

Publishing Message Protocols

The messaging system is most interesting-and most useful-when data types are
shared by a variety of applications. Shared types open avenues for applications to
cooperate with each other. You are therefore encouraged to publish the data types
that your application defines and can accept in a BMessage, along with their assigned
type codes.

31

32 Chapter 2 • The Application Kit

Contact Be (devsupport@be.com) to register any types you intend to publish, so that
you can be sure to choose a code that hasn't already been adopted by another
developer.

If your application can respond to certain kinds of remote messages, you should
publish the message protocol-the constant that should initialize the what data
member of the BMessage, the names of expected data fields, the types of data they
contain, the number of data items allowed in each field, and so on. If your
application sends replies to these messages, you should publish the reply protocols
as well.

Scripting
Scripting is a way of using messages to control an application. The control is
exercised through BHandler objects, since they're the objects that respond to
messages.

Any message, especially any message delivered from a remote source, can be
considered a scripting message, since it tells the application that receives it what to
do. However, a "script" usually is thought of as a series of instructions (or in this case,
messages) that put an application through its paces. Therefore, the scripting system
must build on the bare messaging framework discussed in the previous section to
make applications more vulnerable to outside control.

To aid scripting, the BeOS includes the following features:

• A set of messages that target self-declared properties of objects.

• A way of specifying which particular instance of a property a message targets.

• A method of resolving specifiers to find the object that should handle a message.

• The ability for an object to advertise the set (or suite) of messages it can handle
and specifiers it can resolve.

The following sections explain how these features complement each other and
together define a scripting system.

Messages, Properties, and Specifiers
To open objects to external control, the scripting system defines a small set of
messages that target object properties. There are four such messages:

• B_CREATE_PROPERTY creates a new instance of the property
• B_DELETE_PROPERTY destroys an instance of the property
• B_SET_PROPERTY sets the value of (an instance of) the property
• B_GET_PROPERTY gets the value of (an instance of) the property

Scripting • Messages, Properties, and Specifiers

These messages are not system messages; they're dispatched by calling
MessageReceived().

The messages are generic; none of them is specific to a particular property or
BHandler. However, almost anything associated with an object can be conceived as a
property of the object-its current state, another object it knows about, a service it
provides, and so on. Therefore, these messages can potentially put an object under
almost total control. For example, a simple on-screen gadget, like an on-off switch,
could treat its label, size, location, current setting, enabled state, the window it's in,
and what it turns on and off as properties. An object representing a modem might
regard its data rate, current connection, readiness to send or receive, and even the
data it transmits as properties.

Treating an attribute of an object as a property doesn't mean that the object must be
implemented any differently; it means only that the object's message-handling code
will recognize messages that name the property.

The messages listed above have meaning only to the extent that BHandlers provide
code that responds to them for particular properties. It's up to each class derived from
BHandler to decide which messages its objects will respond to and for which
properties. For example, an on-off switch might honor both B_GET_PROPERTY and
B_SET_PROPERTY messages for its current setting, but would probably not allow a
B_SET_PROPERTY message to change the window it's in. A BHandler is as scriptable
as you decide to make it.

Object Properties

A property is a value with a name. The name is a character string and is specific to an
object's class. For example, a BaggyPants class might recognize properties such as
"Waist'', "Leg", "Zipped", and "Pocket". The data type of the property and the set of
permissible values depend on the property. For example, the "Waist" property might
take int32 measurements between 10 and 42 as values and "Zipped" could be either
true or false.

In some cases, a property might be represented by another object. For example,
"Pocket" could designate an object, possibly one with its own set of properties.

An object might also have more than one representative of a property. Although a
BaggyPants object would have just one "Waist", it probably would have a pair of
"Leg" values and likely more than one "Pocket". A property name can cover a set of
data elements, provided the elements are all of the same type.

Therefore, a scripting message must not only name a particular property, it must also
specify a particular instance of the property-which "Leg" or "Pocket" is targeted by a
B_SET_PROPERTY message, for example. This is the task of a specifier that's added to
each message.

33

34 Chapter 2 • The Application Kit

Specifiers

A specifier has two jobs: It must name a property, and it must pick out a particular
instance of the property. It therefore needs a structure that can combine various
pieces of arbitrary information. Since this is exactly what ,BMessage objects are
designed to do, a specifier takes the form of a BMessage inside another BMessage.
The scripting BMessage holds its specifier BMessages in a named data array, just as it
holds other data. However, because specifiers are a special breed with a peculiar role
to play, they're added to the scripting message by a special function,
AddSpecifier ()-not by the functions that would normally be called to add one
message to another. AddSpecifier () places the specifiers in a data field named
"specifiers" and can often construct the specifier BMessage from information it's
passed.

A specifier message has two required elements:

• It records the property name in a field named "property".

• Its what data member is a constant that indicates how to find a particular instance
of the property-a particular "Leg" or "Pocket" belonging to the BaggyPants
object, for example.

There are six standard specifier constants:

• B_INDEX_SPECIFIER. The specifier message has a field named "index" with an
index to particular instance of the property. For example, if a BaggyPants object
keeps its "Pocket" objects in a list, the index would pick an object from the list.

• B_REVERSE_INDEX_SPECIFIER. The index counts forward from the end of the
list.

• B_RANGE_SPECIFIER. In addition to an "index" field, the specifier message has a
field named "range" that counts a range of items beginning at the index.

• B_REVERSE_RANGE_SPECIFIER. The "index" counts from the end of the list
forward. Depending on the kind of data and the message protocol, the "range"
may extend toward the front of the list from the index or toward the end of the
list. In other words, the index works in reverse, the range may or may not.

• B_NAME_SPECIFIER. The specifier message has a "name" field with the name of a
particular instance of the property. For example, "right" and "left" could name
different "Leg" values of the BaggyPants object.

• B_DIRECT_SPECIFIER. The property name is sufficient specification by itself,
usually because there's just one instance of the property. For example, "Zipped" or
"Waist" could directly specify particular data of the BaggyPants object. If there's
more than one value for the property, a B_DIRECT_SPECIFIER would specify
them all (both "Leg" values, for example).

Scripting • Messages, Properties, and Specifiers

Applications can define other types of specifiers. The two required elements are a
"property" field with the name of the property and a what constant that doesn't clash
with those listed above (or with any that may be added in future releases). To
prevent clashes, Be will never define specifier constants with values greater than
B_SPECIFIERS_END. Define your own constants as increments from that value.

The Specifier Stack

A BMessage can contain more than one specifier. Suppose, for example, that a record
is kept of what's in each "Pocket" of the BaggyPants object. (It doesn't matter whether
the record is kept by the BaggyPants object or by a separate Pocket object.) If this is
treated as a "Contents" property, a B_GET_PROPERTY message assigned to a
BaggyPants object could ask for the first five items in the left hip pocket. It would
need two specifiers: The one at index 0 would be for the "Contents" property and the
one at index 1 would be for the "Pocket" property:

Specifier at index 0:

Property name: "Contents"
Specifier: B_RANGE_SPECIFIER

Specifier fields: "index" = 0, "range" = 5

Specifier at index 1:

Property name: "Pocket"
Specifier: B_NAME_SPECIFIER

Specifier fields: "name" = "left hip"

If we imagine a Wardrobe class with a "Pants" property, we can extend the example
so that a message directed to a Wardrobe object can ask, "Get the first 5 items in the
left hip pocket of the pair of pants that were worn yesterday." It would need an
additional specifier something like this:

Specifier at index 2:

Property name: "Pants"
Specifier: B_REVERSE_INDEX_SPECIFIER

Specifier fields: "index" = 1

In more practical terms, a message sent to a BApplication object can use specifiers to
target properties of a view. For example, it could ask, "Get the enclosing rectangle for
the BView named "George" in the application's fifth window." The only limits on the
number of specifiers are those imposed by the imagination and the application's
architecture.

35

36 Chapter 2 • The Application Kit

Clearly, the specifiers are ordered. The order of evaluation is the reverse of the order
in which AddSpecifier () adds them to the "specifiers" array. The specifier with the
highest index must be evaluated first. After each specifier is evaluated, it's popped
from the stack so the one with the next highest index can be evaluated, and so on
until none remain.

The specifier that must be evaluated next is the current specifier,
GetCurrentSpecifier () opens that specifier in the BMessage and reveals its
contents.

Resolving Specifiers

The presence of a specifier in a BMessage always raises a doubt about the designated
handler for the message. That's because the specifier might specify another BHandler.
Suppose, for example, that the BaggyPants and Pocket classes both derive from
BHandler and that Pocket objects respond to REMOVE_HAND messages. A
REMOVE_HAND message could be targeted to a BaggyPants object, but with a specifier
naming one of its "Pocket" values. It would then be up to the BaggyPants object to
make sure the message was redirected to the specified Pocket object. That object
would respond to the message just like any other REMOVE_HAND message, without
regard to the specifier.

To settle the question of which object should ultimately handle a message with
specifiers, the message is passed to the target BHandler's ResolveSpecifier ()
hook function before being dispatched. Derived classes implement
ResolveSpecifier () to examine the message and (at least) the current specifier to
determine which BHandler should be the message target-or should be given a
chance to resolve the next specifier. For example, the BaggyPants version of
ResolveSpecifier () would resolve specifiers for its "Pocket" property by finding
the specified Pocket object and making it the new target of the message.

ResolveSpecifier () is called once for each proposed target-as long as the
message has unevaluated specifiers. For example, the Wardrobe object that gets the
message illustrated in the previous section ("Get the first 5 items in the left hip pocket
of the pants worn yesterday") would resolve the "pants worn yesterday" specifier and
designate the BaggyPants object as the new target. The BaggyPants object would then
resolve the "left hip pocket" specifier and name the appropriate Pocket object as the
target. That object would recognize that it could respond to a "get the first 5 items"
message . and designate itself as the target, ending the series of
ResolveSpecifier () calls.

Specifier Roles

From these examples, it's apparent that specifiers play at least two roles:

Scripting • Messages, Properties, and Specifiers

• They're an integral part of the content of a message that targets a particular
property of an object (a B_GET_PROPERTY message, for example).

• They also help direct a message to the object that knows how to respond.
Specifiers can be nothing more than a way of picking the object that should be
responsible for the message. The message doesn't have to be one that targets an
object property.

For both cases, BHandler classes must provide ResolveSpecifier () functions that
evaluate the specifiers. For the first case, they must also implement a
MessageRecei ved () function that responds to the message.

Unresolved Specifiers

If a specifier is malformed-for example, if it contains an out-of-range index
Resol veSpecifier () can prevent the message from being handled (simply by
returning NULL). In that case, no further attempt is made to resolve specifiers and the
message is not dispatched. (To explain what has happened, ResolveSpecifier ()

should send an error message in reply.)

If ResolveSpecifier () doesn't recognize the current specifier, it calls the inherited
version of the function to give its base class a chance. If the specifier can't be
resolved by any class, it should reach the BHandler version of
ResolveSpecifier () (through successive calls to the inherited function). If the
BHandler class also can't resolve the specifier, it presumes that the message can't be
handled. It prevents the message from being dispatched and arranges for a
B_MESSAGE_NOT_UNDERSTOOD reply.

Message Protocols

The specifier is just one part of the protocol for a scripting message. For example, a
B_SET_PROPERTY message must contain a new value for the property being set and
a B_GET_PROPERTY message anticipates a message in reply with the requested
information.

Detailed protocols will be worked out as the scripting system is used and extended.
For now, follow these limited guidelines:

• A B_SET_PROPERTY message has a field named "data" with the new data values
that should be set. If a range of values is specified, the "data" array must cover the
range. It might contain a single item-for example, a single string for a range of
text-or it might have one item in the array for each value in the range.

• Every scripting message should receive a reply. The reply message has a data field
named "error" with an error code indicating the success or failure of the scripting
request-such as, B_OK or B_BAD_SCRIPT_SYNTAX. If no other constant is
appropriate, the what data member of the reply should be the default B_REPLY.

37

38 Chapter 2 • The Application Kit

• For a successful B_GET_PROPERTY message, the reply message has a field named
"result" with the requested data. If a range of. values are requested, the "result"
array must cover the range with a single item (such as a string) or with a separate
item for each value in the range.

The scripting system takes care of some replies. If a specifier isn't recognized, it will
fall through to the BHandler version of ResolveSpecifier (), which sends a
B_MESSAGE_NOT_UNDERSTOOD reply. If the specifiers can be resolved but the
message isn't recognized, it falls through to the BHandler version of
MessageRecei ved (), which also sends a B_MESSAGE_NOT_UNDERSTOOD reply.

Suites
To make scripting work, BHandler classes need to advertise-in documentation and
at run time-the specifiers they can resolve and the messages they can respond to. If
an object's scripting capabilities aren't documented, no one will know to use them.
Moreover, unless it's possible to match those capabilities with an actual object at run
time, the scripting enterprise will remain static and subject to guesswork.

To facilitate the exchange of information at run time, a class can group the specifiers
and messages it understands into one or more sets-or suites--and assign each one a
name. A suite name has the form of a MIME-like identifier with "suite" as the type and
a specific name as the subtype. For example, "suite/vnd.Be-view" is the name of a set
of scripting messages and specifiers that a BView object in the Interface Kit
understands. Once a suite is named and documented, other classes may choose to
support it with their own implementations.

At run time, you can query an object for the suites it supports by sending it a
B_GET_SUPPORTED_SUITES message. In return, you can expect a B_REPLY message
with an "error" field containing an error code. If the code is B_OK, the message
should also have a field named "suites" with the names of all suites the target object
understands.

To make this query work, scriptable BHandler classes implement a
GetSupportedSui tes () function that adds one or more suite names to the reply
message. (Despite the fact that the message and the function have matching names,
B_GET_SUPPORTED_SUITES is not a system message.)

A suite can include any type of message. It's not limited to messages with specifiers
or those that target object properties. (However, all the suites currently defined in the
BeOS are restricted to B_SET_PROPERTY and B_GET_PROPERTY messages. This will
change in future releases.)

BApplication

The Universal Suite

The implementations of ResolveSpecifier () and MessageReceived() in the
BHandler class are inherited by all derived classes-as long as they call the inherited
versions of these functions in their own implementations. Therefore, the BHandler
class is able to impart a minimal, but important, set of scripting capabilities to every
message-handling object, no matter what its class. These capabilities constitute a
universal suite shared by all objects that respond to messages. Because it's universal,
the suite doesn't need a name.

However, it does require some explanation. Any BHandler can respond to:

• A B_GET_PROPERTY message with a B_DIRECT_SPECIFIER specifier for the
"Messenger" property. In its reply, the BHandler provides a BMessenger object
that can send messages directly to the BHandler. Thus, you can use an array of
specifiers to locate a particular BHandler-such as the third button in an alert
panel of a particular application-and then communicate directly with that object
through the BMessenger it provides.

• A B_GET_PROPERTY message with a B_DIRECT_SPECIFIER specifier for the
"InternalName" property. The BHandler returns its name in the reply message.

• A B_GET_SUPPORTED_SUITES message. This message and the reply were
discussed on the preceding pages.

Documentation

A suite name means nothing without some documentation detailing what specifiers
and messages the suite includes and the protocols for using them. Since a suite can
be implemented by more than one class, suites could reasonably be documented in a
separate section apart from any particular class. However, for the current release, all
suites the BeOS defines are supported by only one class. Also, some classes have
scripting capabilities but don't give them suite names. Therefore, in this book, the
class descriptions for scriptable BHandler objects have a "Scripting Support" section
in the class overview with information about the scripting capabilities of the class.
The BHandler and BApplication classes in this kit have "Scripting Support"
descriptions. In the Interface Kit, the BWindow, BView, BTextView, BControl, and
BTextControl classes have them.

BApplication
Derived from: public BLooper

Declared in: be/app/ Application.h

Library: lib be.so

39

40 Chapter 2 • The Application Kit

Overview
The BApplication class defines an object that represents and serves the entire
application. Evety Be application must have one (and only one) BApplication object.
It's usually the first object the application constructs and the last one it deletes.

The BApplication object has these primacy responsibilities:

_. It makes a connection to the Application Seroer. Any application that puts a
window on-screen or relies on other system services needs this connection. It's
made automatically when the BApplication object is constructed.

• It runs the application's main message loop. The BApplication object is a kind of
BLooper, but instead of spawning an independent thread, it runs a message loop
in the application's main thread (the thread that the main () function executes in).
This loop receives and processes messages that affect the entire application,
including the initial messages received from remote applications. It gets several
messages from the Tracker (such as reports of what documents to open). Any
application that's known to the Tracker or that cooperates with other applications
needs a main message loop.

• It's the home for applicationwide elements of the user intetface. For example, it's
expected to put a panel on-screen with information about the application for the
user, it keeps a list of the application's windows, and it also lets you set, hide, and
show the application's cursor. The ability to define the look of the cursor is
provided by BApplication's SetCursor () function.

The user interface centers mainly on windows and is defined in the Interface Kit.
The BApplication object merely contains the elements that are common to all
windows and specific to the application.

Derived Classes

BApplication typically serves as the base class for a derived class that specializes it
and extends it in ways that are appropriate for a particular application. It declares
(and inherits declarations for) a number of hook functions that you can implement in
a derived class to augment and fine-tune what it does.

For example, your application might implement a RefsRecei ved () function to
open a document and display it in a window or a ReadyToRun () function to finish
initializing the application after it has been launched and has started to receive
messages. These two functions, like a handful of others, are called in response to
system messages that have applicationwide import. All of these messages and the
hook functions that respond to them are discussed in the next section.

BApplication • Overview 41

If you expect your application to get messages from remote sources, or its main
thread to get messages from other threads in the application, you should also
implement a MessageReceived() function to sort through them as they arrive.

A derived class is also a good place to record the global properties of your
application and to define functions that give other objects access to those properties.

Application Messages

The BApplication object runs the main message loop where it receives application
messages-system messages that are not the province of any particular window, but
concern the application as a whole. For these messages, the BApplication object acts
as both looper (receiving and dispatching the message) and handler (responding to
the message).

All seven application messages report events. Two of them notify the application of a
change in its status:

• The B_READY_TO_RUN message reports that the application has finished launching
and configuring itself.

• The B_APP _ACTIVATED message is delivered when the application becomes the
active application-the one that the user is currently engaged with-and when it
relinquishes that status to another application.

Two of the messages are requests that the application typically makes of itself:

• A B_QUIT_REQUESTED message is taken by the BApplication object to be a
request to shut the entire application down, not just one thread. An application
that has a user interface usually interprets some user action (such as clicking a
Quit menu item) as a request to quit and, in response, posts a
B_QUIT_REQUESTED message to the BApplication object. An application that's the
servant of other applications may get the request from a remote source.

• A B_ABOUT_REQUESTED message requests information about the application,
usually through an About. .. menu item. The application should set up this item to
deliver a B_ABOUT_REQUESTED message to the BApplication object. In response,
the BApplication object should display a window with general information about
the application.

Other application messages report information from remote sources:

• The B_ARGV _RECEIVED message is delivered either on-launch or after-launch
when the application receives strings of characters the user typed on the
command line, or when it's launched by another application and is passed a
similar array of character strings.

42 Chapter 2 • The Application Kit

• The B_REFS_RECEIVED message passes the application one or more references to
entries (files or directories) in the file system. Typically, this means the user has
chosen some files to open-by picking them in the file panel, double-clicking a
document icon in a Tracker window, or dragging the icon and dropping it on the
application icon.

The system is the source of one repeated message:

• Periodic B_PULSE messages are posted at regularly spaced intervals. They can be
used to arrange repeated actions when precise timing is not critical.

All application messages are received by the BApplication object in the main thread.
The object dispatches them all to itself; it doesn't delegate them to any other handler.
The following chart lists the hook functions that are called to initiate the application's
response to system messages and the base class where each function is declared:

Message type Hook function Class

B_READY_TO_RUN ReadyToRun () BApplication

B_APP_ACTIVATED AppActivated () BApplication

B_QUIT_REQUESTED QuitRequested() Blooper

B_ABOUT_REQUESTED AboutRequested (l BApplication

B_ARGV_RECEIVED ArgvRecei ved () BApplication

B_REFS_RECEIVED RefsReceived () BApplication

B _PULSE Pulse() BApplication

Qui tReques ted () is first declared in the BLooper class. BApplication reinterprets
it-and reimplements it-to mean a request to quit the whole application, not just
one of its threads.

Only three application messages-B_APP_ACTIVATED, B_ARGV_RECEIVED, and
B_REFS_RECEIVE~contain any data; the rest are empty. See "Application
Messages" in Appendix A, Message Protocols, for details on the content of these
messages.

Constructing the Object and Running the Message Loop

The BApplication object must be constructed before the application can begin
running or put a user interface on-screen. Other objects in other kits depend on the
BApplication object and its connection to the Application Server. In particular, you
can't construct BWindow objects in the Interface Kit until the BApplication object is in
place.

Simply constructing the BApplication object forms the connection to the server. The
connection is severed when you quit the application and delete the object.

BApplication • Overview

be_app

The BApplication constructor assigns the new object to a global variable, be_app.

This assignment is made automatically-you don't have to create the variable or set
its value yourself. be_app is declared in Application.h and can be used throughout
the code you write (or, more accurately, all code that directly or indirectly includes
Application.h).

The be_app variable is typed as a pointer to an instance of the BApplication class. If
you use a derived class instead-as most applications do--you have to cast the
be_app variable when you call a function that's implemented by the derived class.

((MyApplication *)be_app)->DoSomethingSpecial();

Casting isn't required to call functions defined in the BApplication class (or in the
BHandler and BLooper classes it inherits from), nor is it required for virtual functions
defined in a derived class but declared by BApplication (or by the classes it inherits
from).

main()

Because of its pivotal role, the BApplication object is one of the first objects, if not the
very first object, the application creates. It's typically created in the main () function.
The job of main () is to set up the application and turn over its operation to the
various message loops run by particular objects, including the main message loop run
by the BApplication object.

After constructing the BApplication object (and the other objects that your application
initially needs), you tell it to begin running the message loop by calling its Run ()

function. Like the Run () function defined in the BLooper class, BApplication's Run ()

initiates a message loop and begins processing messages. However, unlike the
BLooper function, it doesn't spawn a thread; rather, it takes over the main thread.
Because it runs the loop in the same thread in which it was called, Run () doesn't
return until the application is told to quit.

At its simplest, the main () function of a Be application would look something like
this:

#include <Application.h>

main()
{

new BApplication("application/x-vnd.ORA-app5");

be_app->Run();
delete be_app;

43

44 Chapter 2 • The Application Kit

The string passed to the constructor ("application/x-vnd.ORA-appS") sets the
application's signature. This is just a precautionary measure. It's more common (and
much better) to set the signature at compile time as an attribute and resource. If there
is a compile-time signature, it's used and the one passed to the constructor is ignored.

The main () function shown above doesn't allow for the usual command-line
arguments, argc and argv. It would be possible to have main () parse the argv array,
but these arguments are also packaged in a B_ARGV _RECEIVED message that the
application gets immediately after Run () is called. Instead of handling them within
main () , applications generally implement an ArgvRecei ved () function to do the
job. This function can also handle command-line arguments that are passed to the
application after it has been launched; it can be called at any time while the
application is running.

Configuration Messages Received on Launch

When an application is launched, it may be passed messages that affect how it
configures itself. These are the first messages that the BApplication object .receives
after Run () is called.

For example, when the user double-dicks a document icon to launch an application,
the Tracker passes the application a B_REFS_RECEIVED message with information
about the document. When launched from the command line, the application gets a
B_ARGV_RECEIVED message listing the command-line arguments. When launched by
the BRoster object, it might receive an arbitrary set of configuration messages.

After all the messages passed on-launch have been received and responded to, the
application gets a B_READY_TO_RUN message and its ReadyToRun () hook function
is called. This is the appropriate place to finish initializing the application before it
begins running in earnest. It's the application's last chance to present the user with its
initial user interface. For example, if a document has not already been opened in
response to an on-launch B_REFS_RECEIVED message, ReadyToRun () could be
implemented to place a window with an empty document on-screen.

ReadyToRun () is always called to mark the transition from the initial period when
the application is being launched to the period when it's up and running-even if it's
launched without any configuration messages. The IsLaunching () function can let
you know which period the application is in.

Quitting

The main message loop terminates and Run () returns when Quit () is called.
Because Run () doesn't spawn a thread, Quit () merely breaks the loop; it doesn't
kill the thread or destroy the object (unlike BLooper's version of the function).

BApplication • Overview

Quit () is usually called indirectly, as a byproduct of a B_QUIT_REQUESTED message
posted to the BApplication object. The application is notified of the message through
a Qui tRequested () function call; it calls Quit () if Qui tRequested () returns
true.

When Run () returns, the application is well down the path of terminating itself.
main () simply deletes be_app, cleans up anything else that might need attention,
and exits.

Aborted Run

Applications with restricted launch behavior (B_EXCLUSIVE_LAUNCH and
B_SINGLE_LAUNCH) may be launched anyway in violation of those restrictions.
When this happens, the Run () function returns abruptly without processing any
messages and the application quits as it normally does when Run () returns.
Messages that carried on-launch information for the aborted application are
redirected to the instance of the application that's already running.

Applications should be prepared for their main () functions to be executed in this
abortive manner and guard against any undesired consequences.

Locking

You sometimes have to coordinate access to the BApplication object, since a single
object serves the entire application and different parts of the application (windows, in
particular) will be running in other threads. Locking ensures that one thread won't
change the state of the application while another thread is changing the same aspect
(or even just trying to examine it).

The BApplication object is locked automatically while the main thread is responding
to a message, but it may have to be explicitly locked at other times.

This class inherits the locking mechanism-the Lock () , Unlock () , and other
functions-from BLooper. See that class for details.

Scripting Support

The BApplication object can handle the following scripting request:

Property name: "Name" for the name of the application
Specifiers: B_DIRECT_SPECIFIER

Messages: B_GET_PROPERTY only
Data type: A null-terminated string (char *)

45

46 Chapter 2 • The Application Kit

It also resolves the following specifiers by forwarding the message to the specified
BWindow object:

Property name: "Window" for a BWindow object belonging to the application
Specifiers: B_INDEX_SPECIFIER and B_REVERSE_INDEX_SPECIFIER

The BeOS doesn't bless these rather limited abilities with a suite name.

See the "Scripting" section of this chapter for more information.

Hook Functions
AboutReguested()

Can be implemented to present the user with a window containing information
about the application.

AppActi vated ()

Can be implemented to do whatever is necessary when the application becomes
the active application, or when it loses that status.

ArgvRecei ved ()

Can be implemented to parse the array of command-line arguments (or a similar
array of argument strings).

Pulse ()

Can be implemented to do something over and over again. Pulse () is called
repeatedly at roughly regular intervals in the absence of any other activity in the
main thread.

ReadyToRun ()

Can be implemented to set up the application's running environment. This
function is called after all messages the application receives on-launch have been
responded to.

Ref sRecei ved ()

Can be implemented to respond to a message that contains references to files and
directories. Typically, the references are to documents that the application is being
asked to open.

Constructor and Destructor
BApplication()

BApplication(const char *signature)
BApplication(BMessage *archive)

BApplication • Member Functions

Establishes a connection to the Application Server, assigns signature as the
application identifier if one hasn't already been set, and initializes the applicationwide
variable be_app to point to the new object.

The signature that's passed becomes the application identifier only if a signature
hasn't been set as a resource or file-system attribute. It's preferable to assign the
signature at compile time, since that enables the system to associate the signature
with the application even when it's not running.

Every application must have one and only one BApplication object, typically an
instance of a derived class. It's usually the first object that the application creates.

Like other BHandlers, the BApplication object is archivable and can be reconstructed
from a BMessage archive.

-BApplication()

virtual -BApplication(void)

Closes the application's windows, if it has any, without giving them a chance to
disagree, kills the window threads, frees the BWindow objects and the BViews they
contain, and severs the application's connection to the Application Server.

You can delete the BApplication object only after Run () has exited the main message
loop. In the normal course of events, all the application's windows will already have
been closed and freed by then.

See also: the BWindow class in the Interface Kit, Qui tReques ted ()

Static Functions

Instantiate()

static BApplication *lnstantiate(BMessage •archive)

Returns a new BApplication object, allocated by new and created with the version of
the constructor that takes a BMessage archive.

See also: BArchivable:: Instantiate (), instantiate_object (),Archive ()

Member Functions

AboutRequested()

virtual void AboutRequested(void)

47

48 Chapter 2 • The Application Kit

Implemented by derived classes to put a window on-screen that provides the user
with information about the application. The window typically displays copyright data,
the version number, license restrictions, the names of the application's authors, a
simple description of what the application is for, and similar information.

This function is called when the user operates an About... menu item and a
B_ABOUT_REQUESTED message is delivered to the BApplication object as a result.

To set up the menu item, assign it a model message with B_ABOUT_REQUESTED as
the command constant and the BApplication object as the target, as follows:

BMenuitem *item;
item= new BMenuitem("About application name" B_UTF8_ELLIPSIS,

new BMessage(B_,ABOUT_REQUESTED));
item->SetTarget(be_app);
menu->Additem(item);

See also: the BMenu class in the Interface Kit

AppActivated()
virtual void AppActivated(bool active}

Implemented by derived classes to take note when the application becomes--or
ceases to be-the active application. The application has just attained that status if the
active flag is true, and just lost it if the flag is false. The active application is the
one that owns the current active window.

This function is called only when the change in active application is a consequence
of a window being activated. It will be called when an application is launched
(provided that the application puts a window on-screen). However, it's always called
after ReadyToRun () , not before.

See also: BWindow: : WindowActi va ted () in the Interface Kit, "B_APP _ACTIVATED"
in Appendix A, Message Protocols

Archive()

virtual status_t Archive(BMessage *archive, bool deep= true} canst

Calls the inherited version of Archive () , then adds the application signature to the
BMessage archive.

See also: BArchi vable: :Archive (), Instantiate () static function

ArgvReceived()

virtual void ArgvReceived(int32 argc, char **argtl)

BApplication • Member Functions

Implemented by derived classes to respond to a B_ARGV _RECEIVED message that
passes the application an array of argument strings, typically arguments typed on the
command line. argv is a pointer to the strings and argc is the number of strings in the
array. These parameters are identical to those traditionally associated with the
main () function.

When an application is launched from the command line, the command-line
arguments are both passed to main () and packaged in a B_ARGV _RECEIVED

message that's sent to the application on-launch (before ReadyToRun () is called).
When BRoster's Launch () function is passed argc and argv parameters, they're
similarly bundled in an on-launch message.

An application might also get B_ARGV_RECEIVED messages after it's launched. For
example, imagine a graphics program called "Splotch" that can handle multiple
documents and is therefore restricted so that it can't be launched more than once (it's
a B_SINGLE_LAUNCH or a B_EXCLUSIVE_LAUNCH application). If the user types:

$ Splotch myArtwork

in a shell, it launches the application and passes it an on-launch B_ARGV _RECEIVED

message with the strings "Splotch" and "my Artwork". Then, if the user types:

$ Splotch yourArtwork

the running application is again informed with a B_ARGV_RECEIVED message. In
both cases, the BApplication object dispatches the message by calling this function.

To open either of the artwork files, the Splotch application will need to translate the
document pathname into a file reference. It can do this most easily by calling
get_ref_for_path (), defined in the Storage Kit.

See also: RefsReceived (), "B_ARGV_RECEIVED" in Appendix A, Message Protocols

CountWindows()

int32 CountWindows(void) const

Returns the number of windows belonging to the application. The count includes
only windows that the application explicitly created. It omits, for example, the private
windows used by BBitmap objects.

See also: the BWindow class in the Interface Kit

Dispatch Message()

virtual void DispatchMessage(BMessage •message, BHandler •targe~

49

50 Chapter 2 • The Application Kit

Augments the BLooper function to dispatch system messages by calling a specific
hook function. The set of system messages that the BApplication object receives and
the hook functions that it calls to respond to them are listed under "Application
Messages" in the overview.

Other messages-those defined by the application rather than the Application Kit
are forwarded to the target BHandler's MessageRecei ved () function. Note that the
target is ignored for most system messages.

DispatchMessage () locks the BApplication object and keeps it locked until the
main thread has finished responding to the message.

See also: BLooper: : DispatchMessage (), BHandler: : MessageRecei ved ()

GetApplnfo()

status_t GetApplnfo(app_info *thelnfo) const

Writes information about the application into the app_info structure referred to by
thelnfo. The structure contains the application signature, the identifier for its main
thread, a reference to its executable file in the file system, and other information.

This function is the equivaient to the identicaliy named BRoster function-or, more
accurately, to BRoster's GetRunningAppinfo ()-except that it provides information
only about the current application. The following code:

app_info info;
if (be_app->GetAppinfo(&info) B_OK

is a shorthand for:

app_info info;
if (be_roster->GetRunningAppinfo(be_app->Team(), &info) == B_OK

GetAppinfo () returns B_OK if successful, and an error code if not.

See the BRoster function for the error codes and for a description of the information
contained in an app_info structure.

See also: BRoster: : GetAppinfo ()

HideCursor(), ShowCursor(), ObscureCursor()

void HideCursor(void)

void ShowCursor(void)

void ObscureCursor(void)

BApplication • Member Functions

HideCursor () removes the cursor from the screen. ShowCursor () restores it.
ObscureCursor () hides it temporarily, until the user moves the mouse.

See also: SetCursor (), IsCursorHidden ()

lsCursorHidden()

bool lsCursorHidden(void) const

Returns true if the cursor is hidden (but not obscured), and false if not.

See also: HideCursor ()

lsLaunching()

bool lslaunching(void) const

Returns true if the application is in the process of launching-of getting itself ready
to run-and false once the ReadyToRun () function has been called.

IsLaunching () can be called while responding to a message to find out whether
the message was received on-launch (to help the application configure itselD or after
launch as an ordinary message.

See also: ReadyToRun ()

MessageReceived()

virtual void MessageReceived(BMessage *message)

Augments the BHandler version of MessageRecei ved () to handle scripting requests
delivered to the BApplication object.

See also: BHandler: :MessageReceived()

ObscureCursor() see HideCursor()

Pulse()

virtual void Pulse(void)

Implemented by derived classes to do something at regular intervals. Pulse () is
called regularly as the result of B_PULSE messages, as long as no other messages are
pending. By default, pulsing is disabled-the pulse rate is set to 0-but you can
enable it by calling the SetPulseRate () function to set an actual rate.

51

52 Chapter 2 • The Application Kit

You can implement Pulse () to do whatever you want. However, pulse events aren't
accurate enough for actions that require precise timing.

1he default version of this function is empty.

See also: BWindow: : Pulse () in the Interface Kit, SetPulseRate ()

Quit()

virtual void Quit(void)

Kills the application by terminating the message loop and causing Run () to return.
You rarely call this function directly; it's called for you when the application receives
a B_QUIT_REQUESTED message and Qui tReques ted () returns true to allow the
application to shut down.

BApplication's Quit () differs from the BLooper function it overrides in four
important respects:

• It doesn't kill the thread. It merely causes the message loop to exit after it finishes
with the current message.

• It therefore always returns, even when called from within the main thread.

• It returns immediately. It doesn't wait for the message loop to exit.

• It doesn't delete the object. It's up to you to delete it after Run () returns.
(However, for some reason, Quit () does delete the BApplication object if it's
called when no message loop is running.)

Before shutting down, the BApplication object responds to every message it received
prior to the Quit () call.

See also: BLooper: : Quit () , Qui tRequested ()

QuitRequested()

virtual bool QuitRequested(void)

Overrides the BLooper function to decide whether the application should really quit
when requested to do so.

BApplication's implementation of this function tries to get the permission of the
application's windows before agreeing to quit. It works its way through the list of
BWindow objects that belong to the application and forwards the Qui tReques ted ()
call to each one. If a BWindow agrees to quit (its Qui tRequested () function returns
true), the BWindow version of Quit () is called to destroy the window. If the
window refuses to quit (its QuitRequested() function returns false), the attempt
to destroy the window fails and no other windows are asked to quit.

BApplication • Member Functions

If it's successful in terminating all the application's windows (or if the application
didn't have any windows to begin with), this function returns true to indicate that
the application may quit; if not, it returns false.

An application can replace this window-by-window test of whether the application
should quit, or augment it by adding a more global test. It might, for example, put a
modal window on-screen that gives the user the opportunity to save documents,
terminate on-going operations, or cancel the quit request.

This hook function is called for you when the main thread receives a
B_QUIT_REQUESTED message; you never call it yourself. However, you do have to
post the B_QUIT_REQUESTED message. Typically, the application's main menu has an
item labeled "Quit." When the user invokes the item, it should post a
B_QUIT_REQUESTED message directly to the BApplication object.

See also: BLooper: : Qui tReques ted () , Quit ()

ReadyToRun()

virtual void ReadyToRun(void)

Implemented by derived classes to complete the initialization of the application. This
is a hook function that's called after all messages that the application receives on
launch have been handled. It's called in response to a B_READY_TO_RUN message
that's posted immediately after the last on-launch message. If the application isn't
launched with any messages, B_READY_TO_RUN is the first message it receives.

This function is the application's last opportunity to put its initial user interface on
screen. If the application hasn't yet displayed a window to the user (for example, if it
hasn't opened a document in response to an on-launch B_REFS_RECEIVED or
B_ARGV _RECEIVED message), it should do so in ReadyToRun () .

The default version of ReadyToRun () is empty.

See also: Run (), IsLaunching ()

Refs Received()

virtual void RefsReceived(BMessage •message)

Implemented by derived classes to do something with file system entries that have
been referred to the application in a message. The message has B_REFS_RECEIVED
as its what data member and a single data field named "refs" that contains one or
more entry_ref (B_REF_TYPE) items.

Typically, the entry refs are for documents that the application is requested to open.
For example, when the user double-clicks a document icon in a Tracker window, the

53

54 Chapter 2 • The Application Kit

Tracker sends a B_REFS_RECEIVED message to the application that owns the
document. The BApplication object dispatches the message by passing it to this
function.

There are a number of things you can do with the entry _ref taken from the
message. For example, you might create a BEntry object for it and inquire whether it
refers to a file:

BEntry entry(&ref);
if (entry.IsFile()

If you're sure it's a file reference, you might create a BFile object and open it. For
example:

void MyApplication::RefsReceived(BMessage *message)
{

uint32 type;
int32 count;
entry_ref ref;

message->Getinfo("refs", &type, &count);
if (type != B_REF_TYPE)

return;
for (long i = --count; i >= O; i--) {

if (message->FindRef ("refs", i, &ref) == B_OK) {
BFile file;
if (file.SetTo(&ref, B_READ_WRITE) == B_OK)

REFS_RECEIVED messages can be received both on-launch (while the application is
configuring itself) or after-launch (as ordinary messages received while the
application is running).

See also: the BEntry class in the Storage Kit, ArgvRecei ved () , ReadyToRun () ,

IsLaunching () , "B_REFS_RECEIVED" in Appendix A, Message Protocols

ResolveSpecifier()

virtual BHandler *ResolveSpecifier(BMessage *message, int32 index,
BMessage *specifier, int32 command, canst char *property)

Resolves specifiers for the "Name" and "Window" properties. See "Scripting Support"
in the class overview and the "Scripting" section of this chapter for more information.

See also: BHandler:: ResolveSpecifier ()

BApplication • Member Functions

Run()
virtual thread_id Run(void)

Runs a message loop in the application's main thread. This function must be called
from main () to start the application running. The loop is terminated and Run ()

returns when Quit () is called, or (potentially) when a B_QUIT_REQUESTED message
is received. It returns the identifier for the main thread (not that it's of much use once
the application has stopped running).

This function overrides BLooper's Run () function. Unlike that function, it doesn't
spawn a thread for the message loop or return immediately.

See also: BLooper : : Run () , ReadyToRun () , Qui tReques ted ()

SetCursor()

void SetCursor(const void *cursory

Sets the cursor image to the bitmap specified in cursor. Each application has control
over its own cursor and can set and reset it as often as necessary. The cursor on
screen will have the shape specified in cursor as long as the application remains the
active application. If it loses that status and then regains it, its current cursor is
automatically restored.

The first four bytes of cursor data is a preamble that gives information about the
image, as follows:

• The first byte sets the size of the cursor image. The cursor bitmap is a square, and
this byte states the number of pixels on one side. Currently, only 16-pixel-by-16-
pixel images are acceptable.

• The second byte specifies the depth of the cursor image, in bits per pixel.
Currently, only monochrome one-bit-per-pixel images are acceptable.

• The third and fourth bytes set the hot spot, the pixel within the cursor image that's
used to report the cursor's location. For example, if the cursor is located over a
button on-screen so that the hot spot is within the button rectangle, the cursor is
said to point to the button. However, if the hot spot lies outside the button
rectangle, even if most of the cursor image is within the rectangle, the. cursor
doesn't point to the button.

To locate the hot spot, assume that the pixel in the upper left corner of the cursor
image is at (0, O). Identify the vertical y coordinate first, then the horizontal
x coordinate. For example, a hot spot 5 pixels to the right of the upper left corner
and 8 pixels down-at (5, 8)-would be specified as "8, 5."

55

56 Chapter 2 • The Application Kit

Image data follows these four bytes. Pixel values are specified from left to right in
rows starting at the top of the image and working downward. First comes data
specifying the color value of each pixel in the image. In a one-bit-per-pixel image, 1
means black and 0 means white.

Following the color data is a mask that indicates which pixels in the image square are
transparent and which are opaque. Transparent pixels are marked O; they let
whatever is underneath that part of the cursor bitmap show. through. Opaque pixels
are marked 1.

The Application Kit defmes two standard cursor images. Each is represented by a
constant that you can pass to SetCursor () :

B_HAND_CURSOR The hand image that's seen when the computer is first turned on. This is
the default cursor.

B_I_BEAM__CURSOR The standard I-beam image for selecting text.

See also: HideCursor ()

SetPulseRateQ
void SetPulseRate(bigtime_t microseconds)

Sets how often Pulse () is called (how often B_PULSE messages are posted). The
interval set should be a multiple of 100,000 microseconds (0.1 second); differences
less than 100,000 microseconds will not be noticeable. A finer granularity can't be
guaranteed.

The default pulse rate is 0, which disables the pulsing mechanism. Setting a different
rate enables it.

See also: Pulse ()

ShowCursorQ see HideCursor()

WindowAtQ
BWindow *WindowAt(int32 indeX) const

Returns the BWindow object recorded in the list of the application's windows at index,
or NULL if index is out of range. Indices begin at 0 and there are no gaps in the list.
Windows aren't listed in any particular order (such as the order they appear on
screen), so the value of index has no ulterior meaning. The window list excludes the
private windows used by BBitmaps and other objects, but it doesn't distinguish main
windows that display documents from palettes, panels, and other supporting windows.

BClipboard • Overview

This function can be used to iterate through the window list:

BWindow *window;
int32 i = O;

while (window = be_app->WindowAt(i++)) {
if (window->Lock()) {

window->Unlock();

This works as long as windows aren't being created or deleted while the list index is
being incremented. Locking the BApplication object doesn't lock the window list.

It's best for an application to maintain its own window list, one that arranges
windows in a logical order and can be locked while it's being read.

See also: CountWindows ()

BClipboard
Derived from: none

Declared in: be/app/Clipboard.h

Library: lib be.so

Overview
A clipboard is a shared repository for data-a vehicle for transferring data between
applications or between different parts of the same application. An application adds
some amount of data to the clipboard, then some other application (or the same
application) retrieves (or "finds") that data. This mechanism permits, most notably,
the ability to cut, copy, and paste data items. For example, the BTextView class, in
the.Interface Kit, responds to B_CUT, B_COPY, and B_PASTE messages by adding data
to and retrieving it from the system clipboard.

A BClipboard object represents a clipboard and is the programming interface to the
clipboard service. If you provide a unique name when constructing a BClipboard
object, a new clipboard with that name is created for you. If you provide the name of
an existing clipboard, the new object will be an additional interface to that clipboard.

However, for most uses, you don't need a clipboard that's your own creation, but
rather one that's common to all applications. The BeOS creates just such a
clipboard-named "system"-when you boot the machine. Then, when each
application starts up, it's automatically given a BClipboard object for the common

57

58 Chapter 2 • The Application Kit

clipboard. The object is assigned to a global variable, be_clipboard. The
be_clipboard variables in all applications refer (ultimately) to the same system
clipboard.

The system be_clipboard object is the one that you should use for all normal cut,
copy, and paste operations. An application-created clipboard might be used for more
limited data sharing. For example, you can construct a BClipboard with a private
name, add data to it, and pass the name to another application. That application can
use the name to construct its own BClipboard interface to the clipboard you created.

The Data Container

A clipboard uses a BMessage to hold its data. The BClipboard object hands you the
BMessage in response to a Data () request. Once you have the BMessage container,
you can add data to it or find what's already there by calling standard BMessage
functions. You can ignore the what data member of the BMessage, or you can use it
to indicate something about what the clipboard contains.

There are few established conventions for arranging data in the clipboard, other than
those that the BMessage class imposes. The BeOS follows this rule: If the what data
member of the container BMessage is B_SIMPLE_DATA, the clipboard is understood
to hold just one item of data, though it may hold it in more than one data format. For
example, a B_SIMPLE_DATA clipboard might contain some copied text in three
formats-in a format native to the application that put the text in the clipboard, in a
rich but possibly less informative standard format such as HTML or RTF, and as a
simple ASCII string. Each format is a separately-named data field in the BMessage.

The retrieving application can choose the format that's most appropriate for the
impending paste operation, generally the richest format that it can deal with. It might
care what the names of the data fields are, or it might look only at the data types. If
the type is B_MIME_TYPE, the name is a MIME string that encodes the true data type.
The BTextView object accepts B_MIME_TYPE data with the name "text/plain".

Using the Clipboard

You must bracket all interactions with a BClipboard object with calls to Lock () and
Unlock () . This . prevents other applications (or other threads of the same
application) from accessing the clipboard while you're using it. Conversely, if some
other application (or another thread in your application) holds the lock to the
clipboard when you call Lock () , your thread will block until the current lock holder
calls Unlock ()-in other words, Lock () will always succeed, even if it has to wait
forever to do so. Currently, there's no way to tell if the clipboard is already locked,
nor can you specify a time limit beyond which you won't wait for the lock.

BClipboard • Constructor and Destructor

When putting data in the clipboard, interactions should also be bracketed by calls to
Clear () and Conuni t () . Clearing the clipboard removes all data that it currently
holds. The Conuni t () function tells the clipboard that you're serious about the
additions you've made. If you don't commit your additions, they'll be lost.

The following code fragment demonstrates the expected sequence of function calls:

if (be_clipboard->Lock()) {
be_clipboard->Clear();
BMessage *clipper= be_clipboard->Data();

clipper->AddString("text", theData);

be_clipboard->Commit();
be_clipboard->Unlock();

When retrieving data from the clipboard, it's necessary to lock and unlock the
BClipboard object, but not to clear it (which would remove the data before you could
look at it) or commit changes. For example:

if (be_clipboard->Lock()) {
BMessage *clipper= be_clipboard->Data();

if clipper->FindString("text", &theText) == B_OK) {

be_clipboard->Unlock();

Once the BClipboard is locked, it's possible to both retrieve and add data during the
same session, but such a pursuit doesn't correspond to traditional manipulations.

Constructor and Destructor
BClipboard{)

BClipboard(const char *name, bool transient= false)

Creates a new BClipboard object for the name clipboard. If there's no clipboard with
that name or name is NULL, one is created. Otherwise, the new object is an interface
to the clipboard previously created, by any application, with name.

The transient flag tells the clipboard service whether to save the clipboard when the
system shuts down. If saved, the data in the clipboard will be available again when
the user next turns the computer on. If not, the data is lost.

See also: Name ()

59

60 Chapter 2 • The Application Kit

-BClipboard()
virtual -BClipboard(void)

Deletes all memory allocated by the BClipboard, including the container BMessage
and the data it holds.

Member Functions

Clear()
status_t Clear(void)

Erases all items that are currently on the clipboard. Normally, you call Clear () just
after locking the clipboard and just before getting the data container with the
intention of adding new data to it. This function returns B_ERROR if the BClipboard
isn't locked, and B_OK otherwise.

See also: Commit ()

Commit()
status_t Commit(void)

Forces the clipboard to notice the items you added. Additions to the clipboard are
lost unless followed by a call to Commit () . The call to Commit () must precede the
call to Unlock () . If the BClipboard isn't locked, this function fails and returns
B_ERROR. If successful, it returns B_OK.

See also: Clear ()

Data()
BMessage *Data(void) canst

·Returns the BMessage object that holds clipboard data, or NULL if the BClipboard isn't
locked. The returned object belongs to the system; you should not free it, assign it to
another object, or arrange for it to be delivered as an ordinary message.

See also: the BMessage class

DataSourceQ
BMessenger DataSource(void) canst

Returns a BMessenger object for the application that last committed data to the
clipboard. The BMessenger targets that application's BApplication object.

See also: the BMessenger class

BHandler • Overview

Lock(}, Unlock()

bool Lock(void)

void Unlock(void)

These functions lock and unlock the clipboard. Locking the clipboard gives a thread
exclusive permission to invoke the other BClipboard functions. If some other thread
already has the clipboard locked when your thread calls Lock () , your thread will
wait until the lock-holding thread calls Unlock (). Your thread should also invoke
Unlock () when it's done manipulating the clipboard.

Lock () should invariably be successful and return true.

See also: BLooper : : Lock ()

Name()

canst char *Name(void) canst

Returns the name of the clipboard. The returned string belongs to the BClipboard object.

BHandler
Derived from: public BArchivable

Declared in: be/app/Handler.h

Library: libbe.so

Overview
BHandlers are the objects that respond to messages received in message loops. The
class declares a hook function-MessageRecei ved ()-that derived classes must im
plement to handle expected messages. BLooper's DispatchMessage () function calls
MessageRecei ved () to pass incoming messages from the BLooper to the BHandler.

All messages are entrusted to BHandler objects-even system messages, which are
dispatched by calling a message-specific function, not MessageRecei ved (). These
specific functions are declared in classes derived from BHandler-especially
BWindow and BView in the Interface Kit and BLooper and BApplication in this kit.
For example, the BApplication class declares a ReadyToRun () function to respond to
B_READY_TO_RUN messages, and the BView class declares a KeyDown () function to
respond to B_KEY_DOWN messages.

All messages that aren't matched to a specific hook function-messages defined by
applications rather than the kits-are dispatched by calling MessageRecei ved () .

61

62 Chapter 2 • The Application Kit

Associations

To be eligible to get messages from a BLooper, a BHandler must be in the BLooper's
circle of handlers. At any given time, a BHandler can belong to only one BLooper.
BLooper's Add.Handler () function is the agent for forming looper-handler
associations; a BHandler's Looper () function identifies the BLooper it's currently
associated with.

BHandlers that belong to the same BLooper can be chained together in a linked list.
The default behavior for MessageRecei ved () is simply to pass the message to the
next handler in the chain. However, system messages are not passed from handler to
handler.

When a BHandler is assigned to a BLooper, the BLooper becomes its default next
handler. That assignment can be changed by SetNextHandler () .

Targets

You can designate a target BHandler for most messages. The designation is made
when calling BLooper's PostMessage () function or when constructing the
BMessenger object that will send the message. Messages that a user drags and drops
are targeted to the object (a BView) that controls the part of the window where the
message was dropped. The messaging mechanism eventually passes the target
BHandler to DispatchMessage (), so that the message can be delivered to its
designated destination.

Filtering

Messages can be filtered before they're dispatched-that is, you can define a function
that will look at the message before the target BHandler's hook function is called. The
filter function is associated with a BMessageFilter object, which records the criteria for
calling the function.

Filters that should apply only to messages targeted to a particular BHandler are
assigned to the BHandler by SetFil terList () or AddFil ter (). Filters that might
apply to any message a BLooper dispatches, regardless of its target, are assigned by
the parallel BLooper functions, SetCommonFilterList () and AddCommon

Filter (). See those functions and the BMessageFilter class for details.

Scripting Support

All BHandler objects respond to the following scripting messages:

Property name: Messenger" for a BMessenger object that targets the BHandler
Specifiers: B_DIRECT_SPECIFIER

BHandler • Static Functions

Messages: B_GET_PROPERTY only
Data type: A BMessenger object (B_MESSENGER_TYPE)

Property name: "InternalName" for the name of the BHandler
Specifiers: B_DIRECT_SPECIFIER

Messages: B_GET_PROPERTY only
Data type: A null-terminated character string (B_STRING_TYPE)

Since any object that can respond to any message at all can respond to these
requests, there's no need for a suite name; it's the universal suite.

See the "Scripting" section of this chapter for more information.

Hook Functions
MessageReceived()

Implemented to handle received messages.

Constructor and Destructor
BHandler()

BHandler(const char *name= NULL)
BHandler(BMessage *archive)

Initializes the BHandler by assigning it a name and registering it with the messaging
system. Because BHandlers are archivable objects, they can also be reconstructed
from a BMessage archive.

-BHandler()

virtual -BHandler(void)

Removes the BHandler's registration, frees the memory allocated for its name, and
gets rid of any BMessageFilters assigned to the BHandler and the BList object that
holds them.

Static Functions

Instantiate()
static BHandler *lnstantiate(BMessage *archive)

63

64 Chapter 2 • The Application Kit

Returns a new BHandler object, allocated by new and created with the version of the
constructor that takes a BMessage archive. However, if the archive doesn't contain
data for a BHandler of some kind, this function returns NULL.

See also: BArchivable:: Instantiate (), instantiate_object (),Archive ()

Member Functions

AddFilterQ see SetFilterUst()

ArchiveO
virtual status_t Archive(BMessage *archive, bool deep= true) const

Archives the BHandler by writing its name, if any, to the BMessage archive.

See also: BArchi vable: : Archive () , Instantiate () static function

FilterlistQ see SetFilterUst()

GetSupportedSuitesQ
virtual status_t GetSupportedSuites(BMessage *message)

Implemented by derived classes to report the suites of messages and specifiers they
understand. This function is called in response to a B_GET_SUPPORTED_SUITES
BMessage delivered to the BHandler.

A suite is identified by a MIME subtype for the type suite. For example, a BView
object identifies the set of messages it can handle by "suite/vnd.Be-view" and a
BControl identifies its set by "suite/vnd.Be-control".

The message that's passed as an argument will eventually be sent as a reply to the
B_GET_SUPPORTED_SUITES request. Each derived class should place the names of
all suites it implements in the message, then pass the message to its base class. The
suite names should be placed in a data field named "suites" as B_STRING_TYPE
items. For example:

status_t MyHandler::GetSupportedSuites(BMessage *message)
{

status_t err;
err= message->AddString("suites", "suite/vnd.Me-my_handler");
if (err)

return err;
return baseClass: :GetSupportedSuites(message);

BHandler • Member Functions

The return value is added to the message as a B_INT32_TYPE value in a field named
"error". BHandler's version of the function simply returns B_OK.

Looper()

BLooper *Looper(void) canst

Returns the BLooper object that the BHandler is associated with, or NULL if it's not
associated with any BLooper. A BHandler must be associated with a BLooper before
the BLooper can call upon it to handle messages it dispatches. (However, strictly
speaking, this restriction is imposed when the message is posted or when the
BMessenger that will send it is constructed, rather than when it's dispatched.)

BLooper objects are automatically associated with themselves; they can act as
handlers only for messages that they receive in their own message loops. All other
BHandlers must be explicitly tied to a particular BLooper by calling that BLooper's
Add.Handler () function. A BHandler can be associated with only one BLooper at a
time.

In the Interface Kit, when a BView is added to a window's view hierarchy, it's also
added as a BHandler to the BWindow object.

See also: BLooper: : Add.Handler () , BLooper: : Pos tMessage () , the BMessenger
constructor

Message Received()

virtual void MessageReceived(BMessage *message)

Implemented by derived classes to respond to messages that are dispatched to the
BHandler. The default (BHandler) implementation of this function responds only to
scripting requests. It passes all other messages to the next handler by calling that
object's version of MessageReceived ().

You must implement MessageRecei ved () to handle the variety of messages that
might be dispatched to the BHandler. It can distinguish between messages by the
value recorded in the what data member of the BMessage object. For example:

void MyHandler: :MessageReceived(BMessage *message}
{

switch (message->what } {
case COMMAND_ONE:

break;
case COMMAND_TWO:

break;

65

66

case COMMAND_THREE:

break;
default:

l

baseClass: :MessageReceived (message) ;
break;

Chapter 2 • The Application Kit

When defining a version of MessageReceived(), you must incorporate the
inherited version as well, as shown in the example above. This ensures that:

• Any messages handled by base versions of the function are not overlooked.

• The message is passed to the BHandler's next handler if your version of the
function and the inherited versions don't recognize it.

• The scripting system (for all BHandlers) and keyboard navigation (for BView
objects) will continue to work. The MessageRecei ved {) functions defined in kit
classes sometimes include code that helps run these systems.

If the message comes to the end of the line-if it's not recognized and there is no
next handler-the BHandler version of this function sends a B_MESSAGE_
NOT_UNDERSTOOD reply to notify the message source.

See also: SetNextHandler {), BLooper: : PostMessage {),
BLooper::DispatchMessage{),GetSupportedSuites{)

NextHandlerO see SetNextHandler()

ResolveSpecifierO

virtual BHandler *ResolveSpecifier(BMessage *message, int32 index,
BMessage *specifier, int32 what, const char *property)

Implemented by derived classes to determine the proper handler for a BMessage that
has specifiers. The message is targeted to the BHandler, but the specifiers may
indicate that it should be assigned to another object. It's the job of
ResolveSpecifier() to examine at least one specifier, more if necessary, and
return the object that should handle the message or look at the next specifier. This
function is called before the message is dispatched and before any filtering functions
are called.

The BMessage that is about to be dispatched is passed to ResolveSpecifier () as
the first argument, message. The next two arguments detail the specifier that is next in
line to be resolved (the current specifier)-index is its position in the "specifiers" field
in the BMessage and specifier is the specifier message itself. The final two arguments

BHandler • Member Functions

extract information from the specifier-what is its what data member and property is
the property name in the specifier message.

The what argument will let you know whether you need to look inside the specifier
for more information and what information to look for. For example, if what is
B_NAME_SPECIFIER, the specifier BMessage should have a name in a field called
"name". If it's B_RANGE_SPECIFIER, it should have "index" and "range" fields. See
AddSpecifier () in the BMessage class for a discussion of specifier contents.

ResolveSpecifier () has four options:

• If the property picks out a BHandler object that belongs to another BLooper, it
should send or post the message to that BLooper and return NULL. The message
will be handled in the message loop of the other BLooper; it won't be further
processed in this one. For example, a BHandler that kept a list of proxies might
use code like the following:

if ((strcmp(property, "Proxy") == 0)
&& (what == B_INDEX_SPECIFIER)) {

int32 i;
if (specifier->Findint32 ("index", &i) == B_OK) {

MyProxy *proxy= (MyProxy *)proxyList->ItemAt(i);
if (proxy) {

message->PopSpecifier();
if (proxy->Looper() != Looper()) {

proxy->Looper()->PostMessage(message, proxy);
return NULL;

Since this function resolved the specifier at index, it calls PopSpecifier () to
decrement the index before forwarding the message. Otherwise, the next handler
would try to resolve the same specifier.

• If the property picks out another BHandler object belonging to the same BLooper,
it can return that BHandler. For example:

if (proxy) {
message->PopSpecifier();
if (proxy->Looper() != Looper()) {

proxy->Looper()->PostMessage(message, proxy);
return NULL;

else {
return proxy;

67

68 Chapter 2 • The Application Kit

This, in effect, puts the returned object in the BHandler's place as the designated
handler for the message. The BLooper will give the returned handler a chance to
respond to the message or resolve the next specifier.

Again, PopSpecifier () should be called so that an attempt isn't made to resolve
the same specifier twice.

• If it can resolve all remaining specifiers and recognizes the message as one that
the BHandler itself can handle, it should return the BHandler (this). For
example:

if ((strcmp (property, "Value") == 0)
&& (message->what == B_GET_PROPERTY)

return this;

This confirms the BHandler as the message target. ResolveSpecifier () won't
be called again, so it's not necessary to call PopSpecifier () before returning.

• If it doesn't recognize the property or can't resolve the specifier, it should call the
inherited version of ResolveSpecifier () and return what it returns. For
example:

return baseC/ass:ResolveSpecifier(message, index,
specifier, what, property);

The BApplication object takes the first path when it resolves a specifier for a
"Window" property; it sends the message to the specified BWindow and returns
NULL. A BWindow follows the second path when it resolves a specifier for a "View"
property; it returns the specified BView. Thus, a message initially targeted to the
BApplication object can find its way to a BView.

BHandler's version of ResolveSpecifier () recognizes a B_GET_PROPERTY
message with a direct specifier requesting a "Messenger" for the BHandler or the
BHandler's "InternalName" (the same name that its Name () function returns). In both
cases, it assigns the BHandler (this) as the object responsible for the message.

For all other specifiers and messages, it sends a B_MESSAGE_NOT_UNDERSTOOD reply
and returns NULL. The reply message has an "error" field with B_SCRIPT_SYNTAX as
the error and a "message" field with a longer textual explanation of the error.

Seea~o:BMessage::AddSpecifier(),BMessage::GetCurrentSpecifier()

SetFilterlistQ, FilterlistQ, AddFilterQ, RemoveFilterQ

virtual void SetFilterlist(BList * lis'f)

BList *Filterlist(void) canst

virtual void AddFilter(BMessageFilter *filter)

virtual bool RemoveFilter(BMessageFilter *filter)

BHandler • Member Functions

These functions manage a list of BMessageFilter objects associated with the BHandler.

SetFilterList () assigns the BHandler a new list of filters; the list must contain
pointers to instances of the BMessageFilter class or to instances of classes that derive
from BMessageFilter. The new list replaces any list of filters previously assigned. All
objects in the previous list are deleted, as is the BList that contains them. If list is
NOLL, the current list is removed without a replacement. FilterList () returns the
current list of filters.

Add.Filter () adds a filter to the end of the BHandler's list of filters. It creates the
BList object if it doesn't already exist. By default, BHandlers don't maintain a BList of
filters until one is assigned or the first BMessageFilter is added. RemoveFilter ()
removes a filter from the list without deleting it. It returns true if successful, and
false if it can't find the specified filter in the list (or the list doesn't exist). It leaves
the BList in place even after removing the last filter.

For SetFilterList (), AddFilter (), and RemoveFilter () to work, the
BHandler must be assigned to a BLooper object and the BLooper must be locked.

See also: BLooper: : SetCommonFil terList (), BLooper: : Lock (), the
BMessageFilter class

SetName(), Name()

void SetName(const char *string)

canst char *Name(void) const

These functions set and return the name that identifies the BHandler. The name is
originally set by the constructor. SetName () assigns the BHandler a new name, and
Name () returns the current name. The string returned by Name () belongs to the
BHandler object; it shouldn't be altered or freed.

See also: the BHandler constructor, BView: : FindView () in the Interface Kit

SetNextHandler(), NextHandler()

void SetNextHandler(BHandler * handlef)

BHandler *NextHandler(void) const

These functions set and return the BHandler object that's linked to this BHandler. By
default, the MessageRecei ved () function passes any messages that a BHandler
can't understand to its next handler.

When a BHandler object is added to a BLooper (by BLooper's Add.Handler ()
function), the BLooper becomes its next handler by default. BLoopers don't have a
next handler.

69

70 Chapter 2 • The Application Kit

However, when a BView object is added to a view hierarchy (by AddChild ()), the
Interface Kit assigns the BView's parent as its next handler-unless the parent is the
window's top view, in which case the BWindow object becomes its next handler. The
handler chain for BViews is therefore BView to BView, up the view hierarchy, to the
BWindow object.

SetNextHandler () can alter any of these default assignments. For it to work, the
BHandler must belong to a BLooper object, its prospective next handler must belong
to the same BLooper, and the BLooper must be locked.

See also: MessageRecei ved () , BLooper: : AddHandler ()

Blnvoker
Derived from: none

Declared in: be/app/Invoker.h

Library: Iibbe.so

Overview
A Blnvoker is a simple object that can be "invoked" to send a message to a target
destination. That's all it can do. It records the message and keeps track of the
destination where it should be delivered. When its Invoke () function is called, it
sends the message to the target.

A Blnvoker instance can be used as an independent object, likely in the service of a
more fully functional object of some kind. The class can also be used as a base for
more interesting derived classes. Most typically, however, the Blnvoker protocol is
added, through multiple inheritance, to classes that primarily derive from other, richer
base classes. For example, the BControl and BListView classes in the Interface Kit
derive from Binvoker as well as, principally, from BView. BMenuitem derives from
both BArchivable and Binvoker.

Constructor and Destructor
Blnvoker()

Blnvoker(BMessage •message,
canst BHandler •handler, canst BLooper *looper = NULL)

Blnvoker(BMessage •message, BMessenger messengery
Blnvoker(void)

Blnvoker • Member Functions

Initializes the Binvoker with a message and sets the target where the message is to be
sent when Invoke () is called. The target can be set as a local BHandler object, as
the preferred handler of a local BLooper, or with a BMessenger object. A BMessenger

· can target either local or remote objects. The handler, looper, and messenger
arguments passed to the constructor work precisely like identical arguments passed
to SetTarget () . See that function for a full description of how to set the Binvoker's
target.

A Binvoker doesn't have a default message or target. If a target isn't specified when
constructing the object, SetTarget () must be called to set it. If a message isn't set,
SetMessage () can be called to set it. However, you can also pass the BMessage to
Invoke () each time you call it.

See also: SetTarget () , SetMessage () , Invoke ()

-Blnvoker()

virtual -Blnvoker(void)

Frees the BMessage object.

Member Functions

Command() see SetMessage()

HandlerForReply() see SetHandlerForReply()

Invoke()

virtual status_t lnvoke(BMessage •message= NULL)

Sends the message passed as an argument-or, if the message argument is NULL, the
message last assigned by SetMessage ()-to the designated target. The message is
sent asynchronously with no time limit (an infinite timeout).

Invoke () is not called for you in Binvoker code; it's designed to be called in derived
or client classes when the conditions are met for taking the action encapsulated in the
message. For example, a BButton object (defined in the Interface Kit) calls Invoke ()
from its MouseDown () and KeyDown () functions when the button is clicked or
operated from the keyboard. It's up to each derived class to define what events
trigger the call to Invoke () -what activity constitutes "invoking" the object.

If variable information needs to be added to the message each time it's sent-for
example, the current time-it's possible to treat the message assigned to the Binvoker
as a model or template for the message that actually gets sent. In this case, you need

71

72 Chapter 2 • The Application Kit

to get the message from the Blnvoker, copy it, add the necessary data to the copy,
and pass the copy to Invoke () . For example, this code adds the current time:

BMessage copy(theinvoker->Message());
copy .Addlnt64 ("when", system_ time ());
theinvoker->Invoke(©);

Invoke () fails and returns B_BAD_ VALUE if a BMessage hasn't been assigned to the
object and the message argument is NULL. Otherwise, it returns any errors
encountered when sending the message. These are the same errors returned by
BMessenger's Send.Message () function; they include B_BAD_PORT_ID if a target
destination hasn't yet been set for the Blnvoker or the one that was set has become
invalid. If successful in sending the message, Invoke () returns B_OK.

See also: SetTarget () , SetMessage ()

Is Targetlocal 0 see SetT arget()

MessageQ see SetMessage()

MessengerO see Set Target()

SetHandlerForReplyQ, HandlerForReplyO

virtual status_t SetHandlerForReply(BHandler *replyHandler)

BHandler *HandlerForReply(void) const

These functions set and return the BHandler object that will be responsible for
handling replies to all messages the Blnvoker sends. When Invoke () is called, the
replyHandler is passed to the BMessenger's Send.Message () function, as follows:

theMessenger->SendMessage(message, replyHandler);

By default, the handler for replies is NULL, which means that all replies will be
directed to the BApplication object.

SetHandlerForReply () always returns B_OK.

See also: BMessenger: : Send.Message ()

SetMessageQ, MessageQ, CommandO

virtual status_t SetMessage(BMessage *message)

BMessage *Message(void) const

uint32 Command(void) const

Blnvoker • Member Functions

SetMessage () assigns a message to the Binvoker, deleting any message previously
assigned. The message is not copied; this function transfers ownership of the
BMessage object to the Binvoker. The Binvoker will free the object when it's
replaced by another message or when the Binvoker is itself freed. Passing a NULL

message frees the current BMessage object without replacing it.

Message () returns a pointer to the Binvoker's message, and Command () returns its
what data member. If a message has not been assigned to the Blnvoker, both
functions return NULL. (Note that Command () will also return 0 if that happens to be
the command constant of the message.)

The message passed to SetMessage () and returned by Message () belongs to the
Binvoker object; you can modify it, but you shouldn't assign it to another object or
delete it (except by passing NULL to SetMessage ()).

SetMessage () always returns B_OK.

See also: Invoke ()

SetTarget(), Target(), lsTargetlocal(), Messenger()
virtual status_t SetTarget(const BHandler *handler, const BLooper *looper= NULL)
virtual status_t SetTarget(BMessenger messenger,

BHandler *Target(BLooper **looper= NULL) const

BMessenger Messenger(void) const

bool lsTargetLocal(void) const

These functions set the Binvoker's target-the destination of the messages it sends-
and return information about the current target.

SetTarget () sets the target to a particular BHandler object, or to the preferred
handler of a particular BLooper. It can be passed either a pointer to a BHandler
handler or a NULL handler and a pointer to a BLooper looper, it's never necessary to
specify both the handler and the looper, for these reasons:

• If you pass SetTarget () a valid target handler, the Binvoker will send messages
to the BLooper associated with the handler so that the BLooper will dispatch them
to that BHandler object. The target handler must be a BHandler that's known to a
BLooper-that is, it must either be a BLooper itself or have been explicitly added
to a BLooper's list of eligible handlers.

To identify the BLooper where messages should be delivered, SetTarget () calls
the handler's Looper () function. Therefore, it's not necessary to also pass
SetTarget () a looper argument (other than the default NULL). If a BLooper is
specified, it must match the object that Looper () returns for the handler.

73

74 Chapter 2 • The Application Kit

• If you pass Set Target () a NULL handler but a valid looper, the target will be the
Blooper's preferred handler. This permits the targeting decision to be made
dynamically. When the Blnvoker sends a message to the Blooper, the Blooper
will dispatch it to whatever object happens to be its preferred handler at the time.

For example, the preferred handler of a BWindow object (in the Interface Kit) is
the current focus view. Therefore, by passing a NULL handler and a BWindow
looper to SetTarget (),

theinvoker->SetTarget(NULL, someWindow);

the Blnvoker can be targeted to whatever BView happens to be .in focus when the
BWindow receives the message. This is useful for actions that affect the current
selection.

• For obvious reasons, the handler and looper can't both be NULL.

Instead of a BHandler or Blooper, you can set the target as a BMessenger object. The
messenger will send messages to the BHandler and Blooper specified when it was
constructed. The arguments passed to the BMessenger constructor parallel the
handler and looper arguments passed to Set Target () . See the BMessenger class for
details.

Target () returns the current target BHandler and, if a looper argument is provided,
fills in a pointer to the target Blooper that will receive the messages Invoke ()

sends. If the target BHandler is the preferred handler of the Blooper, Target ()

returns NULL. It also returns NULL if a target hasn't been set yet.

Target () provides the target BHandler and Blooper whether they were set directly,
indirectly (where one of the objects is inferred from the other), or through a
BMessenger object. However, it can only identify objects that are local to the
application. If the BMessenger has a remote target, Target () returns NULL and sets
the pointer referred to J:)y looper to NULL, as it would if a target wasn't set.
IsTargetLocal () can distinguish these cases; it returns true if the Blnvoker and
its target are in the same application, and false if they're not.

Messenger () returns the BMessenger object the Blnvoker uses to send its messages.
This may be the messenger passed to SetTarget () or an object the Blnvoker
constructs for itself. If a target hasn't been set yet, the returned BMessenger will be
invalid.

When successful, SetTarget () returns B_OK. It fails and returns B_BAD_ VALUE if
the proposed target handler isn't associated with a Blooper. It also fails if a handler
and a specific looper are both named but the handler is associated with some other
Blooper object. In this case, it returns B_MISMATCHED_VALUES to indicate that
there's a conflict between the two arguments. SetTarget () doesn't detect invalid
Bloopers and BMessengers.

Blooper • Overview

Target() see Set Target()

Blooper
Derived from: public BHandler

Declared in: be/app/looper.h

Library: lib be.so

Overview
A Blooper object runs a message loop in a thread that it spawns for that purpose. It's
a simple way to create a thread with a message interface.

Various classes in the Be software kits derive from Blooper in order to associate
threads with significant entities in the application and to set up message loops with
special handling for system messages. In the Application Kit, the BApplication object
runs a message loop in the application's main thread. (Unlike other Bloopers, the
BApplication object doesn't spawn a separate thread, but takes over the thread in
which the application was launched.) In the Interface Kit, each BWindow object runs
a loop to handle messages that report activity in the user interface.

Running the Loop

Constructing a Blooper object gets it ready to work, but doesn't actually begin the
message loop. Its Run () function must be called to spawn the thread and initiate the
loop. Some derived classes may choose to call Run () within the class constructor,

MyLooper::MyLooper(const char *name, long priority)
BLooper(name, priority)

Run();

so that simply constructing the object yields a fully functioning message loop. Other
classes may need to keep object initialization separate from loop initiation. (The
BApplication and BWindow classes maintain this separation. An application must
explicitly call Run () after constructing the BApplication object; a BWindow calls
Run () for you just before putting the window on-screen for the first time.)

Receiving and Dispatching Messages

You can deliver messages to a Blooper's thread by posting them directly (calling its
PostMessage () function) or by sending them through a proxy object (calling a

75

76 Chapter 2 • The Application Kit

BMessenger's SendMessage (} function or the Send.Reply (} function of a BMessage
object). In addition, drag-and-drop operations deliver messages to the threads of the
destination windows.

No matter how they get there, all messages are delivered to a port owned by the
BLooper object. The BLooper transfers arriving messages from the port to a queue (a
BMessageQueue object) as soon as it can. The port doesn't offer much flexibility as a
data container and its capacity is fixed (typically 100 slots); the queue is more flexible
and has unlimited capacity.

The BLooper takes messages from the queue one at a time, in the order that they
arrive, and calls DispatchMessage (} for each one. DispatchMessage (} hands the
message to a BHandler object; the BHandler kicks off the thread's specific response
to the message.

Posting or sending a message to a thread initiates activity within that thread,
beginning with the DispatchMessage (} function. Since DispatchMessage (}
immediately transfers responsibility for incoming messages to BHandler objects,
BHandlers determine what happens in the BLooper's thread. Everything that the
thread does, it does through BHandlers responding to messages. The BLooper merely
runs the posting and dispatching mechanism.

The BLooper object is locked when DispatchMessage (} is called; it stays locked
until the thread has finished responding to the message.

Targeted and Preferred Handlers
When a message is posted or sent to a thread, a target BHandler can be named for it.
The target is specified when PostMessage (} is called or when the BMessenger
proxy that will send the message is constructed. Messages that aren't targeted to a
specific object are entrusted to the BLooper's preferred handler-the object that was
last set as the default handler for the thread. The preferred handler can change from
time to time depending on circumstances. (For example, a BWindow sets its
preferred handler to match its current focus view.)

Because the BLooper class inherits from BHandler, a BLooper can be named as the
target for messages it dispatches; a BLooper object can play both roles--the
dispatcher role of running the message loop and the handler role of responding to
messages. In fact, a BLooper is its own default preferred handler (technically, it's the
handler of choice when there's no specific target and the preferred handler is NULL,

but it amounts to the same thing).

For it to successfully handle messages you define, you must derive a class from
BLooper and implement a MessageRecei ved (} function that can respond to the
messages it dispatches to itself. However, the BLooper class can also be used without

Blooper • Constructor and Destructor

change, as it's defined in the kit-as long as all messages are targeted to another
handler, or another object is designated as its preferred handler.

Eligible Handlers

A BLooper keeps a list of the BHandler objects that are eligible for the messages it
dispatches. Add.Handler () places a BHandler in the list, and RemoveHandler ()
removes it. (The BLooper is an automatic member of the list; it cannot be removed
from its own list or added to the list of another BLooper.)

A BHandler can be associated with only one BLooper at a time; it can't get messages
dispatched by any BLooper except the one it's currently affiliated with. However, this
eligibility constraint is imposed not by DispatchMessage (), but by the BMessenger
constructor when a target BHandler is named for the messages it will send and by
PostMessage () when a BHandler is proposed as the target of a message posted to
the BLooper.

The BLooper reveals the membership of its handlers list through its HandlerAt ()
function. A BHandler's Looper () function reveals which BLooper it currently
belongs to.

Hook Functions
DispatchMessage()

Passes incoming messages to a BHandler; can be overridden to change the way
certain messages or classes of messages are dispatched.

Qui tRequested ()
Can be implemented to decide whether a request to terminate the message loop
and destroy the BLooper should be honored or not.

Constructor and Destructor

Blooper()
Blooper(const char *name= NULL,

int32 priority= B_NORMAL_PRIORITY,
int32 portCapacity = B_LOOPER_PORT _DEFAULT _CAPACITY)

BLooper(BMessage *archive)

Assigns the BLooper object a name and sets up the port at which it will receive
messages and the message queue where messages will reside until they're
dispatched. However, you must call Run () to spawn the thread that the BLooper will
oversee; the constructor doesn't do it. Run () creates the thread at the specified
priority level and begins the message loop.

77

78 Chapter 2 • The Application Kit

The priority determines how much attention the thread will receive from the
scheduler and, consequently, how much CPU time it will get relative to other threads.
It's best to choose one of the discrete priority levels defined in kernel/OS.h;
intermediate priorities are possible but not recommended. The defined priorities,
from lowest to highest, are:

B_LOW_PRIORITY

B_NORMAL_PRIORITY

B_DISPLAY_PRIORITY

B_URGENT_DISPLAY_PRIORITY

B_REAL_TIME_DISPLAY_PRIORITY

B_URGENT_PRIORITY

B_REAL_TIME_PRIORITY

For threads running in the background that shouldn't
interrupt other threads.

For all ordinary threads, including the main thread.

For threads associated with objects in the user
interface, including window threads.

For interface threads that deserve more attention
than ordinary windows.

For threads that animate the on-screen display.

For threads performing time-critical computations.

For threads controlling real-time processes that need
unfettered access to the CPUs.

Some derived classes may want to call Run () in the constructor, so that the object is
set in motion at the time it's created.

A BLooper is constructed in a locked state and must be locked when Run () is called.
Run () unlocks the BLooper to begin message processing, but locks it again for each
dispatched message.

BLooper objects should always be dynamically allocated (with new), never statically
allocated on the stack.

See also: Run () , BHandler: : SetName ()

-Blooper()
virtual -Blooper(void)

Gets rid of the BLooper's port and all its contents, frees the message queue and all
pending messages, stops the message loop, and destroys the thread in which it ran.
BHandlers that have been added to the BLooper are not deleted, but BMessageFilter
objects added as common filters are, as is the BList object that contains them.

With the exception of the BApplication object, BLoopers should be destroyed by
calling the Quit() function (or QuitRequested ()), not by using the delete
operator.

See also: Quit ()

Blooper • Member Functions

Static Functions

Instantiate()

static Blooper *lnstantiate(BMessage *archive)

Returns a new Blooper object, allocated by new and created with the version of the
constructor that takes a BMessage archive. However, if the archive message doesn't
contain data for a Blooper object, this function returns NULL.

See also: BArchivable: : Instantiate (), instantiate_object (),Archive ()

LooperFor Thread()

static Blooper *LooperForThread(thread_id thread)

Returns the Blooper object that runs a message loop in the specified thread, or NULL

if the thread doesn't belong to a Blooper.

This function is useful in lower-level code to find whether the code is executing in a
Blooper's thread and might possibly, therefore, be tying up the message loop and
interfering with the responsiveness of the Blooper. For example:

BLooper *looper;
if (looper = LooperForThread(find_thread(NULL))

Member Functions

AddCommonFilter() see SetCommonFilterList()

AddHandler(), RemoveHandler(), HandlerAt(), CountHandlers(),
lndexOf()

void AddHandler(BHandler * handlery

bool RemoveHandler(BHandler * handlery

BHandler *HandlerAt(int32 index) canst

int32 CountHandlers(void) canst

int32 lndexOf(BHandler * handlery canst

Add.Handler () adds handler to the Blooper's list of BHandler objects, and
RemoveHandler () removes it. Only BHandlers that have been added to the list are
eligible to respond to the messages the Blooper dispatches. (However, this constraint
is imposed not by DispatchMessage (), but by PostMessage () and the
BMessenger constructor.)

79

80 Chapter 2 • The Application Kit

Add.Handler () fails if the handler already belongs to a Blooper; a BHandler can
belong to no more than one Blooper at a time. It can change its affiliation from time
to time, but must be removed from one Blooper before it can be added to another.
RernoveHandler () returns true if it succeeds in removing the BHandler from the
Blooper, and false if not or if the hand/et: doesn't belong to the Blooper in the first
place.

Add.Handler () also calls the handler's SetNextHandler () function to assign it the
Blooper as its default next handler. RemoveHandler () calls the same function to set
the handler's next handler to NULL.

HandlerAt () returns the BHandler object currently located at index in the BLooper's
list of eligible handlers, or NULL if the index is out of range. Indices begin at 0 and
there are no gaps in the list. CountHandlers () returns the number of objects
currently in the list; the count should always be at least 1, since the list automatically
includes the Blooper itself. IndexOf () returns the index of the specified handler, or
B_ERROR if that object isn't in the list.

For any of these functions to work, the BLooper must be locked.

See also: BHandler: : Looper (), BHandler: : SetNextHandler (),

PostMessage (), the B.Messenger class

Archive()

virtual status_t Archive(BMessage *archive, bool deep= true) const

Archives the BLooper by recording the priority of its thread and the capacity of its
port in the BMessage archive passed as an argument.

See also: BArchivable: :Archive (), Instantiate () static function

CommonFilterList() see SetCommonFilterList()

CountHandlers() seeAddHandler()

CurrentMessage()

BMessage *CurrentMessage(void) const

Returns a pointer to the message that the Blooper's thread is currently processing, or
NULL if it's currently between messages.

You won't always need this function, since the current message is also passed as an
argument to BHandler's MessageReceived() hook function. However, the hook
functions that respond to system messages (such as MouseDown () and

Blooper • Member Functions

ScreenChanged ()) are typically passed only part of the information contained in
the current BMessage, not the entire object. In such a case, you will have to call
CurrentMessage () to get complete information about the instruction or event the
BMessage object reports.

For example, a KeyDown () function (declared in the BView class of the Interface Kit)
might check whether the Control key was pressed at the time of the key-down event as
follows:

void MyView: :KeyDown(const char *bytes, int32 numBytes)
{

BMessage *message= Window()->CurrentMessage();
if (message->FindLong ("modifiers") & B_CONTROL_KEY) {

See also: BHandler: : MessageRecei ved (), DetachCurrentMessage ()

DetachCurrentMessage()

BMessage *DetachCurrentMessage(void)

Detaches the current message (the message the Blooper's thread is currently
processing) from the message loop and returns it, or returns NULL if the Blooper is
between messages. Detaching the message means that:

• It will no longer be the current message. CurrentMessage () (and this function)
will return NULL until the thread gets another message from the queue.

• The thread won't automatically delete the message when the message cycle ends
and it's ready to get the next message. It becomes the caller's responsibility to
delete the message later (or to post it once more so that it will again be subject to
automatic deletion).

Since the message won't be deleted automatically, you have time to reply to it later.
However, if the thread that initiated the message is blocked waiting for a reply, you
should send one (or get rid of the BMessage) without much delay. If a reply hasn't
already been sent by the time the message is deleted, the BMessage destructor sends
back a default B_NO_REPLY message to indicate that a real reply won't be
forthcoming. But if the message isn't deleted and a reply isn't sent, the initiating
thread may continue to block. (BMessage's IsSourceWai ting () function will let
you know whether the message source is waiting for a reply.)

Detaching a message is useful only when you want to stretch out your response to it
beyond the end of the message cycle, perhaps passing responsibility for it to another
thread while the Blooper's thread continues to get and respond to other messages.

81

82 Chapter 2 • The Application Kit

See also: BHandler: : MessageRecei ved (), BMessage: : WasDeli vered (),
CurrentMessage()

Dispatch Message()

virtual void DispatchMessage(BMessage *message, BHandler *target)

Dispatches messages as they're received by the BLooper's thread. Precisely how
they're dispatched depends on the message and the designated target BHandler. The
BWindow and BApplication classes that derive from BLooper implement their own
versions of this function to provide for special dispatching of system messages. Each
class defines its own set of such messages.

The target may be the BHandler object that was named when the message was
posted, the handler that was specified when the BMessenger was constructed, the
current preferred handler, the handler that was designated as the target for a reply
message, or (for a BWindow) the BView where the message was dropped. It might be
the BLooper itself, acting as a specific target or in its capacity as the default preferred
handler. For system messages the target may be NULL; if so, the dispatcher must
figure out a target for the message based on the contents of the BMessage object.

DispatchMessage (i is the first stop in the message-handling mechanism. The
BLooper's thread calls it automatically as it reads messages from the queue-you
never call it yourself.

Blooper's version of DispatchMessage () dispatches B_QUIT_REQUESTED
messages by calling its own Qui tReques ted () function, but only if the message is
targeted to the BLooper itself. All other messages are forwarded to the targets
MessageRecei ved () function. The BApplication and BWindow classes add other
kinds of message-specific dispatching.

You can override this function to dispatch the messages that your own application
defines or recognizes. Of course, you can also just wait for these messages to fall
through to MessageRecei ved ()-the choice is yours. If you do override
DispatchMessage (),you should:

• Call the base class version of the function after you've handled your own
messages.

• Exclude all messages that you've handled yourself from the base version call.

For example:

void MyLooper: :DispatchMessage(BMessage *msg, BHandler *target)
{

switch (msg->what) {
case MY_MESSAGEl:

break;

Blooper • Member Functions

case MY_MESSAGE2:

break;
default:

baseClass: :DispatchMessage(msg, target);
break;

Don't delete the messages you handle when you're through with them; they're
deleted for you.

The system locks the BLooper before calling DispatchMessage () and keeps it
locked for the duration of the thread's response to the message (until
DispatchMessage () returns).

See also: the BMessage class, BHandler: :MessageReceived(), Qui tRequested ()

Handler At() see AddHandler()

lndexOf(seeAddHandler()

lsLocked() see Locking Thread()

Lock(), LockWithTimeout(), Unlock()

bool Lock(void)

status_t LockWithTimeout(bigtime_t timeout)

void Unlock(void)

These functions provide a mechanism for locking data associated with the BLooper,
so that a thread can't alter the data while another thread is in the middle of doing
something that depends on it. Only one thread can have the BLooper locked at any
given time. Lock () blocks until it can lock the object, then returns true. If the.
calling thread already has the object locked, it returns true immediately. If another
thread has the BLooper locked, it waits until that thread releases the lock and it can
acquire it; it then returns true. It returns false only if the BLooper can't be locked
at all-for example, if it was destroyed by another thread.

LockWi thTimeout () is an alternative to Lock () that permits you to limit how long
it should block waiting for the lock. The timeout is specified in microseconds. If it
can't acquire the lock before the time limit expires, it returns B_TIMED_OUT. If the
timeout is 0, it doesn't block but returns immediately with or without the lock. If the
timeout is B_INFINITE_TIMEOUT, it blocks without limit, just as Lock () does.

83

84 Chapter 2 • The Application Kit

If it locks the Blooper (or if the calling thread already has it locked),
LockWithTimeout () returns B_OK. In addition to B_TIMED_OUT, it may also return
B_BAD_ VALUE if the Blooper has been deleted, is invalid, or was improperly
allocated. Each of these failures would cause Lock () to return false.

Note that if Lock () returns 0 (false), it has failed to lock the Blooper, but if
LockWithTimeout () returns 0 (B_OK), it has succeeded.

Unlock () releases the lock previously obtained by Lock () or
LockWithTimeout (). Only the locking thread should call Unlock(). This is the
natural result if it's called in the same section of code to balance a previous Lock ()

or LockWithTimeout () call, as follows:

if (myLooper->Lock()) {
myLooper->DoSomethingCritical();

myLooper->Unlock () ;

Calls to Lock() (or LockWi thTimeout ()) and Unlock() can be nested. For
example, the function that's called within the brace of the lock in the example above
can itself call Lock () and Unlock () :

status_t MyLcoperClass::DoSomethingCritical{void)

if Lock())

Unlock();
return B_OK;

return B_ERROR;

If the locking functions are called more than once from the same thread, it will take
an equal number of Unlock () calls from that thread to unlock the Blooper. Only
when Unlock () has released the lock at the base level will another thread be
permitted to lock the Blooper.

Locking is the basic mechanism for operating safely in a multithreaded environment.
It's especially important for the kit classes derived from BLooper-BApplication and
BWindow.

However, it's generally not necessary to lock a Blooper when calling functions
defined in the class itself or in a derived class. The Blooper is locked for you when:

• It's constructed; Run () unlocks it.

• It dispatches a message; it remains locked until the response to the message is
complete.

Moreover, BApplication and BWindow functions are implemented to call Lock () and
Unlock () when necessary. Functions you define in classes derived from Blooper (or

Blooper • Member Functions

from BApplication and BWindow) should also call Lock () (or LockWi thTimeout ())
and Unlock () . In addition, you should employ the locking mechanism when calling
functions of a class that's closely associated with a BLooper-for example, when
calling functions of a BView that's attached to a BWindow.

Although locking is important and useful, you shouldn't be too cavalier about it.
While you hold a BLooper's lock, no other thread can acquire it. If another thread
calls a function that tries to lock, the thread will hang until you unlock. Each thread
should hold the lock as briefly as possible.

See also: LockingThread (), BMessenger: : LockTarget () , the BLocker class in
the Support Kit

LockingThread(), lslocked(), Countlocks(),
CountlockRequests(), Sem()

thread_id LockingThread(void) canst

boo! lsLocked(void) const

int32 CountLocks(void) canst

int32 CountLockRequests(void) const

sem_id Sem(void) const

These functions may be useful while debugging a BLooper.

LockingThread () returns the thread that currently has the BLooper locked, or -1 if
the BLooper isn't locked.

IsLocked () returns true if the calling thread currently has the BLooper locked (if
it's the locking thread) and false if not (if some other thread is the locking thread or
the BLooper isn't locked).

CountLocks () returns the number of times the locking thread has locked the
BLooper-the number of Lock () (or LockWi thTimeout ()) calls that have not yet
been balanced by matching Unlock () calls.

CountLockRequests () returns the number of threads currently trying to lock the
BLooper. The count includes the thread that currently has the lock plus all threads
currently waiting to acquire it.

Sem () returns the sem_id for the semaphore that the BLooper uses to implement the
locking mechanism.

See also: Lock ()

85

86 Chapter 2 • The Application Kit

Message Received()

virtual void MessageReceived(BMessage •message)

Simply calls the inherited function. For the current release, the BLooper
implementation of this function does nothing of importance.

See also: BHandler: : MessageRecei ved ()

MessageQueue()

BMessageQueue *MessageQueue(void) canst

Returns the queue that holds messages delivered to the BLooper's thread. You rarely
need to examine the message queue directly; it's made available so you can cheat
fate by looking ahead.

See also: the BMessageQueue class

PostMessage()

status_t PostMessage(BMessage *message,
BHandler *handler,
BHandler *replyHandler = NULL)

status_t PostMessage(uint32 command,
BHandler *handler,
BHandler *replyHandler = NULL)

status_t PostMessage(BMessage *message)
status_t PostMessage(uint32 command)

Delivers a message to the BLooper, just as constructing a BMessenger and calling
SendMessage () would.

If a target handler object is named for the message, it will be passed as the
designated handler to DispatchMessage (). DispatchMessage () will, in tum, call
an appropriate function of the handler to respond to the message. However, if the
target BHandler isn't associated with the BLooper (if the handlers Looper ()
function returns NULL or some other BLooper object), the posting fails. A BHandler
must be associated with a BLooper before it can be the target for dispatched
messages; it can't get messages from any other BLooper except the one to which it
belongs. For example, BViews in the Interface Kit can receive messages only from the
BWindows to which they're attached.

If the handler is NULL, the designated handler will be the BLooper's preferred
handler at the time DispatchMessage () is called.

Blooper • Member Functions

For the versions of PostMessage () that take a single argument and don't allow you
to designate a handler, the handler will be the BLooper object. These shorthand
functions may not be supported in the future. It's better programming practice to
name the BLooper explicitly as the target handler.

Replies to the posted message will be delivered to the replyHandler BHandler. Like
the target handler, this object must belong to a BLooper (not necessarily this
BLooper) or be a BLooper itself. If a replyHandler isn't specified, replies will be
delivered to the BApplication object.

The caller retains ownership of the posted message; it's safe to delete it when
Pos tMessage () returns.

If a command is passed rather than a message, PostMessage () creates a BMessage
object, initializes its what data member to command, and posts it. This simply saves
you the step of constructing a BMessage when it won't contain any data. For
example, this code

myWindow->PostMessage(command, handler);

is equivalent to:

BMessage message(command);
myWindow->PostMessage(&message, handler);

PostMessage () returns B_OK if successful, B_MISMATCHED_VALUES if the posting
fails because the proposed target BHandler doesn't belong to the BLooper, and
B_ERROR, B_BAD_PORT_ID, or some other error if it fails because the BLooper is
invalid or corrupted.

See also: BHandler: : Looper (), DispatchMessage ()

Preferred Handler() see SetPreferredHand/er()

Quit()

virtual void Quit(void)

Closes down the BLooper, if it's locked. This function fails if the BLooper isn't locked.

If Run () hasn't been called yet, Quit () just deletes the BLooper object. But if Run ()

has been called, it exits the message loop, frees the message queue, kills the thread,
and then deletes the BLooper object.

When Quit () is called from the BLooper's thread, all this happens immediately. Any
pending messages are ignored and destroyed. Because the thread dies, Quit ()

doesn't return.

87

88 Chapter 2 • The Application Kit

However, when called from another thread, Quit () waits until all previously posted
messages (all messages already in the queue) work their way through the message
loop and are handled. It then destroys the Blooper and returns only after the loop,
queue, thread, and object no longer exist.

Quit () therefore terminates the Blooper synchronously; when it returns, you know
that everything has been destroyed. To quit the Blooper asynchronously, you can
post a B_QUIT_REQUESTED message to the thread (that is, a BMessage with
B_QUIT_REQUESTED as its what data member). PostMessage () places the message
in the queue and returns immediately.

When it gets a B_QUIT_REQUESTED message, the Blooper calls the Quit

Requested () virtual function. If Qui tRequested () returns true, as it does by
default, it then calls Quit () .

See also: QuitRequested ()

QuitRequested()

virtual bool QuitRequested{void)

Implemented by derived classes to determine whether the BLooper should quit when
requested to do so. The Blooper calls this function to respond to
B_QUIT_REQUESTED messages. If it returns true, the Blooper calls Quit () to exit
the message loop, kill the thread, and delete itself. If it returns false, the request is
denied and no further action is taken.

Blooper's default implementation of Qui tRequested () always returns true.

A request to quit that's delivered to the BApplication object is, in fact, a request to
quit the entire application, not just one thread. BApplication therefore overrides
Qui tReques ted () to pass the request on to each window thread before shutting
down.

For BWindow objects in the Interface Kit, a request to quit might come from the user
clicking the window's close button (a quit-requested event for the window), from the
user's decision to quit the application (a quit-requested event for the application),
from a Close menu item, or from some other occurrence that forces the window to
close.

Classes derived from BWindow typically implement Qui tReques ted () to give the
user a chance to save documents before the window is destroyed, or to cancel the
request.

If a BWindow represents the last window the application has open (or the last one
that gives the user access to menus and the ability to continue doing work), closing
the window is tantamount to quitting the application. In this case,

Blooper • Member Functions

Qui tReques ted () should make sure the application quits by passing the request
along to the BApplication object. For example:

bool MyWindow::QuitRequested()
{

if (myDocurnents <= 1)
be_app->PostMessage(B_QUIT_REQUESTED, be_app);

return true;

After asking the application to quit, Qui tReques ted () returns true to immediately
dispose of the window. If it returns false, BApplication's version of the function will
again request the window to quit.

If you call Qui tRequested () from your own code, be sure to also provide the code
that calls Quit () :

if (myLooper->QuitRequested()
myLooper->Quit();

See also: BApplication: : Qui tRequested (), Quit ()

RemoveCommonFilter() see SetCommonFilterList()

Run()

virtual thread_id Run(void)

Spawns a thread at the priority level that was specified when the Blooper was
constructed and begins running a message loop in that thread. If successful, this
function returns the thread identifier. If unsuccessful, it returns B_NO_MORE_THREADS

or B_NO_MEMORY to indicate why.

Run () expects the Blooper to be locked when it's called-and to be locked just
once. Since a Blooper is locked on construction, you should not lock it again before
calling Run () . Run () will unlock the Blooper, but make sure that it's locked while
the thread responds to each dispatched message.

A Blooper can be run only once. If called a second time, Run () returns B_ERROR,

but doesn't disrupt the message loop already running. (Currently, it drops into the
debugger so you can correct the error.)

The message loop is terminated when Quit () is called, or (potentially) when a
B_QUIT_REQUESTED message is received. This also kills the thread and deletes the
Blooper object.

See also: the Blooper constructor, the BApplication class, Quit ()

89

90

SetCommonFilterlist(}, CommonFilterlist(),
AddCommonFilter(), RemoveCommonFilter()

virtual void SetCommonFilterlist(BList *list)

BList *CommonFilterlist(void) const

virtual void AddCommonFilter(BMessageFilter *filtery

virtual void RemoveCommonFilter(BMessageFilter *filte1)

Chapter 2 · • The Application Kit

These functions manage a list of filters that can apply to any message the BLooper
receives, regardless of its target BHandler. They complement a similar set of functions
defined in the BHandler class. When a filter is associated with a BHandler, it applies
only to messages targeted to that BHandler. When it's associated with a BLooper as a
common filter, it applies to all messages that the BLooper dispatches, regardless of
the target.

In addition to the list of common filters, a BLooper can maintain a filter list in its role
as a BHandler. These filters apply only if the BLooper is the target of the message
(see SetFilterList () in the BHandler class).

SetCornmonFil terList () assigns the BLooper a new list of common filters; the list
must contain pointers to instances of the BMessageFilter class or instances of classes
that derive from BMessageFilter. The new list replaces any list of common filters
previously assigned. All objects in the previous list are deleted, as is the BList itself. If
list is NULL, the current list is removed without a replacement.
CornmonFil terList () returns the current list of common filters.

AddCornmonFil ter () adds a filter to the end of the list of common filters. It creates
the BList object if it doesn't already exist. By default, BLoopers don't keep a BList of
common filters until one is assigned or AddCornmonFil ter () is called for the first
time. RemoveCornmonFilter () removes a filter from the list without freeing it. It

returns true if successful, and false if it can't find the specified filter in the list (or
the list doesn't exist). It leaves the BList in place even after removing the last filter.

For SetCornmonFilterList(), AddCornmonFilter(), and RemoveCornmonFil
ter () to work, the BLooper must be loked.

See also: BHandler:: SetFilterList (), Lock (),the BMessageFilter class

SetPreferredHandler(}, PreferredHandler()

void SetPreferredHandler(void) const

BHandler *PreferredHandler(BHandler * handle1)

BMessage

These functions set and return the BLooper's preferred handler-the BHandler object
that should handle messages not specifically targeted to another BHandler.

To designate the current preferred handler-whatever object that may be-as the
target of a message, pass NULL for the target handler to PostMessage () or to the
BMessenger constructor.

Posting or sending messages to the preferred handler can be useful. For example, in
the Interface Kit, BWindow objects name the current focus view as the preferred
handler. This makes it possible for other objects-such as BMenultems and
BButtons-to target messages to the BView that's currently in focus, without knowing
what view that might be. For example, by posting its messages to the window's
preferred handler, a Cut menu item can make sure that it always acts on whatever
view contains the current selection. See Chapter 4, The Inteiface Kit, for information
on windows, views, and the role of the focus view.

By default, BLoopers don't have a preferred handler; until one is set,
PreferredHandler () returns NULL. Note however, that messages targeted to the
preferred handler are dispatched to the BLooper whenever the preferred handler is
NULL. In other words, the BLooper acts as default preferred handler, even though the
default is formally NULL.

See also: BControl:: SetTarget () and BMenuitem:: SetTarget () in the
Interface Kit, PostMessage ()

Thread(), Team()
thread_id Thread(void) canst

team_id T eam(void) canst

These functions identify the thread that runs the message loop and the team to which
it belongs. Thread () returns B_ERROR if Run () hasn't yet been called to spawn the
thread and begin the loop. Team () always returns the application's team_id.

Unlock() see Lock()

BM es sage
Derived from: none

Declared in: be/app/Message.h

Library: lib be.so

91

92 Chapter 2 • The Application Kit

Overview
A BMessage bundles information so that it can be conveyed from one application to
another, one thread of execution to another, or even one object to another. Servers
use BMessage objects to notify applications about events. An application can use
them to communicate with other applications or to initiate activity in a different
thread of the same application. In the Interface Kit, BMessages package information
that the user can drag from one location on-screen and drop on another. Behind the
scenes in the Storage Kit, they convey queries and hand back requested information.

A BMessage is simply a container. The class defines functions that let you put
information into a message, determine what kinds of information are present in a
message that's been delivered to you, and get the information out. It also has a
function that lets you reply to a message once it's received. But it doesn't have
functions that can make the initial delivery. For that it depends on the help of other
classes in the Application Kit, particularly BLooper and BMessenger. See the
"Messaging" section near the beginning of this chapter for an overview of the
messaging mechanism and how BMessage objects work with these other classes.

As a data container, a BMessage can be used for purposes other than sending a
message. The operating system assigns them at least three other roles:

• They contain the data that's copied to the clipboard.
• They serve as object archives.
• They record document-specific settings for a print job.

The clipboard is represented by the BClipboard class, documented in this chapter.
Archiving and the BArchivable class are described in the Support Kit. Print settings
are outlined for the BPrintJob class, in the Interface Kit.

The BMessage class defines five sets of functions:

• The primary set deals with the contents of the message. AddData () puts data in a
message, ReplaceData () replaces it with something else, MakeEmpty () and
RemoveName () remove data previously added, Get Info () gets information
about the data the message contains, and FindData () retrieves it.

Most of these functions have specialized versions that are optimized to handle a
particular type of data-for example, AddRect () adds a BRect object, AddRef ()
adds an entry_ref structure complete with the string the structure refers to, and
AddMessage () adds one BMessage to another.

• A smaller set of functions reports on the status of a received message. For
example, IsSourceWai ting () tells whether the message sender is waiting for a
reply, WasDropped () says whether it was dragged and dropped, and
DropPoint () says where it was dropped.

BMessage • Constructor and Destructor

• A few functions, such as AddSpecifier () and PopSpecifier (), help with the
scripting system.

• SendReply () can send a reply to a received message. It works just like
SendMessage () in the BMessenger class, except that it can't initiate the first
message in an exchange and it marks the reply message as a reply.

• Finally, Flat ten () writes the contents of a message as a flat stream of bytes so
the message can be stored on disk or manipulated simply as raw data rather than
as an object. Unflatten () reconstructs the BMessage from its flattened state.

When data is added to a BMessage, it's associated with a name, a number of bytes,
and a type code. The name can be anything you choose, and the number of bytes
must be accurate. The type code should permit the message receiver to identify the
type of data in the message, so it must be defined as part of a protocol that the
sender and receiver both understand. A number of codes for common types are
defined in the Support Kit; see "Type Codes" in Chapter 6, Tbe Support Kit.

Data Members
uint32 what

A coded constant that captures what the message is about. For example, a
message that's delivered to report a mouse-down event will have B_MOUSE_DOWN

as its what data member. An application that requests information from another
application might put a TRANSMIT_DATA or SEND_INFO command in the what

field. A message that's posted as the result of the user clicking a Cancel button
might simply have CANCEL as the what data member and include no other
information.

Constructor and Destructor
BMessage()

BMessage(uint32 command)
BMessage(BMessage •message)
BMessage(const BMessage &message)
BMessage(void)

Assigns command as the new BMessage object's what data member, and ensures that
the object otherwise starts out empty. Given the definition of a message constant such
as,

#define RECEIPT_ACKNOWLEDGED Ox80

93

94 Chapter 2 • The Application Kit

a complete message can be created as simply as this:

BMessage msg(RECEIPT_ACKNOWLEDGED);

As a public data member, what can also be set explicitly. The following two lines of
code are equivalent to the one above:

BMessage msg;
msg.what = RECEIPT_ACKNOWLEDGED;

Other information can be added to the message by calling AddDa ta () or a kindred
function.

A BMessage can also be constructed as a copy of another message, or assigned from
another message:

BMessage *differentMsg =new BMessage(QUIT_THAT);
msg = *differentMsg;

It's necessary to copy any messages you receive that you want to keep, since the
thread that receives the message automatically deletes it before getting the next
message. (More typically, you'd copy any data you want to save from the message,
but not the BMessage itself.)

As an alternative to copying a received message, you can sometimes detach it from
the message loop so that it won't be deleted (see DetachCurrentMessage () in the
Blooper class).

BMessage objects can be either dynamically allocated with the new operator or
statically allocated, as shown in the examples above.

When posting or sending a message, or when initiating a drag-and-drop operation,
you retain ownership of the BMessage and are responsible for being sure it's
destroyed. Stack allocation is therefore often adequate. However, when assigning a
BMessage to another object (such as a Binvoker), ownership is transferred with it.
Since the object must continue to live after the assigning function returns, dynamic
allocation is usually required.

See also: BLooper: : DetachCurrentMessage ()

-BMessage()

virtual -BMessage(void)

Frees all memory allocated to hold message data. If the message sender is expecting
a reply but hasn't received one, a default reply (with B_NO_REPLY as the what data
member) is sent before the message is destroyed.

BMessage • Member Functions

The system retains ownership of the messages it delivers to you. Each message loop
routinely deletes delivered BMessages after the application is finished responding to
them.

Member Functions

Add Data(}, AddBool(), Addlnt8(), Addlnt16(), Addlnt32(},
Addlnt64(), AddFloat(), AddDouble(}, AddString(}, AddPoint(},
AddRect(), AddRef(), AddMessage(}, AddMessenger(},
AddPointer(), AddFlat()

status_t AddData(const char *name, type_code type,
const void *data,
ssize_t numBytes,
bool fixedSize = true,
int32 numltems = 1)

status_t AddBool(const char *name, bool aBoo~

status_t Addlnt8(const char •name, int8 anlnt8)

status_t Addlnt16(const char *name, int16 anlnt16)

status_t Addlnt32(const char *name, int32 anlnt32)

status_t Addlnt64(const char *name, int64 anlnt64)

status_t AddFloat(const char *name, float aFloat)

status_t AddDouble(const char *name, double aDouble)

status_t AddString(const char *name, const char *string)

status_t AddPoint(const char *name, BPoint point)

status_t AddRect(const char *name, BRect rec~

status_t AddRef(const char *name, const entry_ref *ref)

status_t AddMessage(const char *name, const BMessage *message)

status_t AddMessenger(const char *name, BMessenger messenger)

status_t AddPointer(const char *name, const void •pointer)

status_t AddFlat(const char *name, BFlattenable *object, int32 numltems = 1)

These functions put data in the BMessage. AddData () copies numBytes of data into
the object, and assigns the data a name and a type code. It copies whatever the data
pointer points to. For example, if you want to add a string of characters to the

95

96 Chapter 2 • The Application Kit

message, data should be the string pointer (char *). If you want to add only the
string pointer, not the characters themselves, data should be a pointer to the pointer
(char **). The assigned type must be a specific data type; it should not be
B_ANY_TYPE.

Most of the other functions-AddBool (), AddFloat (), AddRect (),and so on-are
specialized and simplified variants of AddDa ta () . They each add a particular type of
data to the message, ensure its integrity, and register it under the appropriate type
code, as tabulated below:

Function

AddBool()

Addint8 ()

Addint16 ()

Addint32 ()

Addint64 ()

AddFloat ()

AddDouble ()

AddString ()

AddPoint ()

AddRect()

AddRef ()

AddMessage ()

AddMessenger ()

AddPointer ()

Adds type

a bool

an int8 or uint8

an int16 or uint16

an int32 or uint32

an int64 or uint64

a float

a double

a character string

a BPoint object

a BRect object

an entry_ref

a BMessage object

a BMessenger object

a pointer to anything

Assigns type code

B_BOOL_TYPE

B_INT8_TYPE

B_INT16_TYPE

B_INT32_TYPE

B_INT64_TYPE

B_FLOAT_TYPE

B_DOUBLE_TYPE

B_STRING_TYPE

B_POINT TYPE

B_RECT_TYPE

B_REF_TYPE

B_MESSAGE_TYPE

B_MESSENGER_TYPE

B_POINTER_TYPE

Each of these type-specific functions calculates the number of bytes in the data they
add. AddString (), like AddData (), takes a pointer to the data it adds. The string
must be null-terminated; the null character is counted and copied into the message.
Similarly, AddRef () adds the pointed to entry_ref structure to the message (and
the variable-length name that's one of the elements of the structure); AddMessage ()
adds one BMessage to another.

The other functions are simply passed the data directly. For example, Addint32 ()
takes an int32 or uint32 and AddMessenger () takes a BMessenger object,
whereas AddData () would be passed a pointer to an int32 and a pointer to a
BMessenger. AddPointer () adds only the pointer it's passed, not the data it points
to. To accomplish the same thing, AddData () would take a pointer to the pointer.
(The pointer will be valid only locally; it won't be useful to a remote destination.)

AddFlat () flattens an object (by calling its Flatten () function) and adds the flat
data to the message. It calls the object's TypeCode () function to learn the type code

BMessage • Member Functions

it should associate with the data. FindFlat () will reverse this process and restore
the object to its unflat form. The BFlattenable protocol is documented in the Support
Kit.

Names of data can be arbitrarily assigned, but a name can't be more than 255
characters long.

If more than one item of data is added under the same name, the BMessage creates
an array of data for that name. Each successive call appends another data element to
the end of the array. For example, the following code creates an array named
"primes" with 37 stored at index 0, 223 stored at index 1, and 1,049 stored at index 2.

BMessage *msg =new BMessage(NUMBERS);
int32 x 37;
int32 y 223;
int32 z 1049;

msg->Addint32 ("primes", x);
msg->AddFloat ("pi", 3 .1416);
msg->Addint32 ("primes", y) ;

msg->AddData("primes", B_INT32_TYPE, &z, sizeof(int32));

Note that entering other data between some of the elements of an array-in this case,
"pi"-doesn't increment the array index.

All elements in a named array must be of the same type; it's an error to try to mix
types under the same name.

When you call AddData () to place the first item in an array under a new name, you
can provide it with two arguments, fixedSize and numltems, that will improve the
object's efficiency when it adds subsequent items to the array. If the fixedSize flag is
true, each item in the array must have the same number of bytes; if the flag is
false, items can vary in size. For example, all items in an array of integers will be
the same size, but the items in an array of strings are likely to have differing lengths.
AddDa ta () takes the numltems argument as a hint, an indication of how many items
will be added to the array. It can more economically allocate memory for the items if
it can anticipate how many there will be.

When adding subsequent items to the array, AddData () ignores the fixedSize and
numltems arguments; they're relevant only when the array is first established. You
can call AddDa ta () with these arguments to provide the necessary hints when
setting up the array, then call other functions to add more items.

You can also provide a numltems hint to AddFlat () when you call it to set up a
new array. AddFlat () calls the object's IsFixedSize () function to discover
whether all items in the array will be the same size.

These functions return B_ERROR if the data is too massive to be added to the
message, B_BAD_TYPE if the data can't be added to an existing array because it's the

97

98 Chapter 2 • The Application Kit

wrong type, B_NO_MEMORY if the BMessage can't get enough memory to hold the
data, and B_BAD_VALUE if the proposed name for the data is longer than 255 bytes. If
all goes well, they return B_OK.

There's no limit on the number of named fields a message can contain or on the size
of a field's data. However, since the search is linear, combing through a very long list
of names to find a particular piece of data may be inefficient. Also, because of the
amount of data that must be moved, an extremely large message (over 100,000 bytes,
say) can slow the delivery mechanism. It's sometimes better to put some of the
information in a common location (a file, a private clipboard, a shared area of
memory) and just refer to it in the message. Sometimes later messages can be used to
arrange for the transfer of data if the message receiver requires it.

See also: FindData (), Getinfo ()

AddSpecifier()
status_t AddSpecifier(const BMessage *message)
status_t AddSpecifier(const char *property)
status_t AddSpecifier(const char *property, int32 index)
status_t AddSpecifier(const char *property, int32 index, int32 range)
status_t AddSpecifier(const char *property, const char *name)

Adds an item to a data field named "specifiers" in the BMessage. The item is itself a
message, but one with a special role in the scripting system: It names a property of an
object and specifies how to pick out a particular instance of the property.

To identify the property, the specifier message has a B_STRING_TYPE field named
"property" containing the property name. To identify which instance of the property
is of interest, it has a what data member that indicates a method for locating the
instance. The method may be supported by additional data fields.

The BeOS defines the following types of specifiers (what data members):

B_INDEX_SPECIFIER

B_REVERSE_INDEX_SPECIFIER

B_RANGE_SPECIFIER

The specifier message has a B_INT32_TYPE field named
"index" with the index of a particular instance of the
property. Indices begin at 0.

The "index" in the specifier message counts from the end
toward the beginning of the list.

The specifier message has an "index" field plus another
B_INT32_TYPE field named "range"; it specifies a total
count of "range" data items beginning with the item at
"index".

BMessage • Member Functions

B_REVERSE_RANGE_SPECIFIER

B_NAME_SPECIFIER

B_DIRECT_SPECIFIER

The "index" and "range" count from the end of the data
toward the beginning. For some types of data, especially
text, the range may not work in reverse even though the
index docs.

The specifier message has a B_STRING_ENTRY called
"name" with the name of a particular instance of the
property.

The data in question is adequately identified by the
property name alone. In other words, the target object
has either just one instance of the property or all
instances are specified.

Other kinds of specifiers are also possible. So that the ones you define aren't
confused with those the BeOS defines (or might define in the future), they should be
assigned values greater than B_SPECIFIERS_END. For example:

#define VALUE_SPECIFIER B_SPECIFIERS_END + 1

You can construct the specifier BMessage yourself and add it by calling the version of
AddSpecifier () that takes a message argument. Or, for some of the specifiers listed
above, you can have AddSpecifier () construct it:

• If you pass a property name to AddSpec if ier () , and no other arguments, it adds
a B_DIRECT_SPECIFIER specifier to the BMessage.

• If you pass a property name and an index, it adds a B_INDEX_SPECIFIER

specifier.

• If you also pass a range, it adds a B_RANGE_SPECIFIER specifier.

• If you pass a name, it adds a B_NAME_SPECIFIER specifier.

To be recognized as a specifier, a BMessage must be added by calling
AddSpecifier (). Constructing a specifier BMessage and calling Add.Message () or
AddDa ta () won't work.

If a BMessage has specifiers, the "specifiers" name should not be used for any other
data (another type of BMessage, for example). If it doesn't have specifiers, the name
is free to be used for any type of data.

AddSpecifier () returns B_OK if it's able to add the specifier to the BMessage and
an error code, generally only B_NO_MEMORY to indicate that it has run out of memory,
if not.

See also: GetCurrentSpecifier (), HasSpecifiers ()

CountNames()

int32 CountNames(type_code type) canst

99

100 Chapter 2 • The Application Kit

Returns the number of named data fields in the BMessage that store data of the
specified type. An array of information held under a single name counts as one field;
each name is counted only once, no matter how many data items are stored under
that name.

If type is B_ANY_TYPE, this function counts all named fields. If type is a specific type,
it counts only fields that store data registered as that type.

See also: Getinfo ()

DropPoint() see WasDropped()

Find Data(}, FindBool(), Fintlnt8(}, Findlnt16(), Findlnt32(},
Findlnt64(), FindFloat(}, FindDouble(}, FindString(}, FindPoint(},
FindRect(), FindRef(), FindMessage(}, FindMessenger(},
FindPointer(}, FindFlat()

status_t FindData(const char *name,
type_code type,
int32 index,
const void **data,
ssize_t *numBytes) const

status_t FindData(const char *name,
type_code type,
const void **data,
ssize_t •numBytes) const

status_t FindBool(const char *name,
int32 index,
bool • aBoo~ const

status_t FindBool(const char •name, bool *aBoo~ canst
bool FindBool(canst char *name, int32 index= 0) const

status_t Findlnt8(const char *name,
int32 index,
int8 • anlnt8) canst

status_t Findlnt8(canst char •name,
int8 * anlnt8) canst

status_t Findlnt16(const char •name,
int32 index,
int16 •anlnt16) const

status_t Findlnt16(const char •name, int16 *anlnt16) const

BMessage • Member Functions

int16 Findlnt16(const char *name, int32 index= 0) canst

status_t Findlnt32(const char *name,

int32 index,
int32 • anlnt32) canst

status_t Findlnt32(const char *name, int32 *anlnt32) canst
int32 Findlnt32(const char *name, int32 index= 0) canst

status_t Findlnt64(const char *name,
int32 index,
int64 * anlnt64) canst

status_t Findlnt64(const char *name, int64 *anlnt64) canst

status_t FindFloat(const char *name,
int32 index,
float * aF!oat) canst

status_t FindFloat(const char *name, float *aFloat) canst
float FindFloat(const char *name, int32 index= 0) const

status_t FindDouble(const char •name,

int32 index,
double * aDouble) canst

status_t FindDouble(const char *name, double *aDouble) const
double FindDouble(const char *name, int32 index= 0) const

status_t FindString(const char *name,

int32 index,
const char **string) const

status_t FindString(const char *name, const char ••string) const
const char *FindString(const char *name, int32 index= 0) canst

status_t FindPoint(const char *name,

int32 index,
BPoint *point) const

status_t FindPoint(const char *name, BPoint *point) const
BPoint FindPoint(const char *name, int32 index= 0) const

int32 FindRect(const char *name,
int32 index,
BRect *reef) canst

int32 FindRect(const char *name, BRect *rect) canst
BRect FindRect(const char *name, int32 index= 0) canst

status_t FindRef(const char *name,
int32 index,
entry_ref *ref) const

101

102 Chapter 2 • The Application Kit

status_t FindRef(const char *name, entry_ref *re}} const

status_t FindMessage(const char *name,
int32 index,
BMessage •message) const

status_t FindMessage(const char *name, BMessage •message) const

status_t FindMessenger(const char *name,
int32 index,
BMessenger • messengef) const

status_t FindMessenger(const char *name, BMessenger *messengef) const

status_t FindPointer(const char *name,
int32 index,
void ••pointef) const

status_t FindPointer(const char *name, void **pointef) const

status_t FindFlat(const char *name,
int32 index,
BFlattenable *object) const

status_t FindFlat(const char •name, BFlattenable *object) const

These functions retrieve data from the BMessage. Each iooks for data stored under
the specified name. If more than one data item has the same name, an index can be
provided to tell the function which item in the name array it should find. Indices
begin at 0. If an index isn't provided, the function will find the first, or only, item in
the array.

FindData () places a pointer to the requested data item in the variable referred to by
data and records the size of the item (the number of bytes it takes up) in the variable
referred to by numBytes. It asks for data of a specified type. If the type is
B_ANY_TYPE, it provides a pointer to the data no matter what type it actually is. But
if type is a specific data type, it provides the pointer only if the name field holds data
of that particular type.

It's important to keep in mind that FindData () only gives you a pointer to the data,
never the data itself. If the data is a pointer-for example, a pointer to an object-it
provides a pointer to the pointer. The variable that's assigned the returned pointer
must be doubly indirect. For example:

MyClass **object;
ssize_t numBytes;
if (!msg->FindData("name", B_POINTER_TYPE, &object, &numBytes))

(*object)->GetSomeinformation();

BMessage • Member Functions

The other functions are specialized versions of FindData (). They match the
corresponding Add ... () functions and search for named data of a particular type, as
described below:

Function

FindBool ()

FindintS ()

Findint16 ()

Findint32 ()

Findint64()

FindFloat()

FindDouble)

FindString ()

FindPoint()

FindRect ()

FindRef ()

Find.Message ()

Find.Messenger ()

FindPointer ()

Finds data

a bool

an int8 or uintB

an int16 or uint16

an int32 or uint32

an int64 or uint64

a float

a double

a character string

a BPoint object

a BRect object

an entry_ref

a BMessagc object

a BMessenger object

a pointer to anything

Registered as type

B_BOOL_TYPE

B_INTB_TYPE

B_INT16_TYPE

B_INT32_TYPE

B_INT64_TYPE

B_FLOAT_TYPE

B_DOUBLE_TYPE

B_STRING_TYPE

B_POINT_TYPE

B_RECT_TYPE

B_REF_TYPE

B_MESSAGE_TYPE

B_MESSENGER_TYPE

B_POINTER_TYPE

FindString () works like FindData (); it places a pointer to the string in the
variable that its string argument refers to. You have to copy the characters yourself.

The other type-specific functions retrieve the requested data item from the message
by copying it to the variable referred to by the last argument; you get the data, not
just a pointer to it. For example, FindMessenger () assigns the BMessenger it finds
in the message to the messenger object, whereas FindData () would provide only a
pointer to a BMessenger. FindPointer () puts the found pointer in the void*

variable that pointer refers to; FindData (), as illustrated above, would provide a
pointer to the pointer. (If the message was delivered from a remote source, pointers
retrieved from the message won't be valid.)

Find.Ref () retrieves an entry_ref structure; the data that's used to reconstitute the
structure may have been added as an entry_ref (through AddRef ()), or as a
flattened BPath object (AddFlat ()).

FindFlat () assigns the object stored in the BMessage to the object passed as an
argument-it calls the objects Unflatten () function and passes it the flat data from
the message-provided that the two objects have compatible types. The argument
objects AllowsTypeCode () function must return true when tested with the type
code stored in the message; if not, FindFlat () fails and returns B_BAD_VALUE.

103

104 Chapter 2 • The Application Kit

If these functions can't find any data associated with name, they return a
B_NAME_NOT_FOUND error. If they can't find name data of the requested type (or the
type the function returns), they return B_BAD_TYPE. If the index is out of range, they
return B_BAD_INDEX. You can rely on the values they retrieve only if they return
B_OK and the data was correctly recorded when it was added to the message.

When they fail, FindData () and FindString () provide NULL pointers.
FindRect () hands you an invalid rectangle and FindMessenger () an invalid
BMessenger. Most of the other functions set the data values to 0, which may be
indistinguishable from valid values.

Finding a data item doesn't remove it from the BMessage.

(Several functions, such as FindRect () and Findint32 (),have versions that return
the found value directly. These versions don't report errors and may not be supported
in the future.)

See also: Get Info (), AddData ()

Flatten(}, Unflatten(), FlattenedSize()

status_t Flatten(BDataIO *object, ssize_t *numBytes = NULL) const
status_t Flatten(char *address, ssize_t numBytes = NULL) const

status_t Unflatten(BDataIO *object)
status_t Unflatten(const char *address)

ssize_t FlattenedSize(void) const

These functions write the BMessage and the data it contains to a "flat" (untyped)
buffer of bytes, and reconstruct a BMessage object from such a buffer.

If passed a BDataIO object (including a BFile), Flatten () calls the object's Write ()

function to write the message data. If passed the address of a buffer, it begins writing
at the start of the buffer. FlattenedSize () returns the number of bytes you must
provide in the buffer to hold the flattened object. Flatten () places the number of
bytes actually written in the variable that its numBytes argument refers to.

Unflatten () empties the BMessage of any information it may happen to contain,
then initializes the object from data read from the buffer. If passed a BDataIO object,
it calls the object's Read () function to read the message data. If passed a buffer
address, it begins reading at the start of the buffer. It's up to the caller to make sure
that Unflatten () reads data that Flatten () wrote and that pointers are positioned
correctly.

Flatten () returns any errors encountered when writing the data, or B_OK if there is
no error.

BMessage • Member Functions 105

If it doesn't recognize the data in the buffer as being a flattened object or there's a
failure in reading the data, Unflatten () returns B_BAD_VALUE. If it doesn't have
adequate memory to recreate the whole message, it returns B_NO_MEMORY.

Otherwise, it returns B_OK.

See also: the BDataIO class in the Support Kit

GetCurrentSpecifier(), PopSpecifier()

status_t GetCurrentSpecifier(int32 *index,

status_t PopSpecifier(void)

BMessage •specifier = NULL,
int32 *what= NULL,
const char **property= NULL) const

GetCurrentSpecifier () unpacks the current specifier in the BMessage, the one at
the top of the specifier stack; PopSpecifier () changes the notion of which
specifier is current, by popping the current one from the stack.

These functions aid in implementing a class-specific version of BHandler's
Resol veSpecifier () function-the first gets the specifier that needs to be
resolved, and the second pops it from the stack after it is resolved. You can also call
them to examine relevant specifiers when handling a message that targets an object
property (such as B_GET_PROPERTY or B_DESTROY_PROPERTY).

A scripting BMessage keeps specifiers in a data array named "specifiers"; each
specifier is itself a BMessage, but one with a special structure and purpose in the
scripting system. See the "Scripting" section near the beginning of this chapter for an
overview of the system and the place of specifiers in it.

The specifiers in a message are ordered and, until PopSpecifier () is called, the
one that was added last-the one with the greatest index-is the current specifier.
PopSpecifier () merely decrements the index that picks the current specifier; it
doesn't delete anything from the BMessage.

GetCurrentSpecifier () puts the index of the current specifier in the variable that
its first argument, index, refers to. If other arguments are provided, it makes the
specifier BMessage a copy of the current specifier. It also extracts two pieces of
information from the specifier. It places the what data member of the specifier in the
what variable and a pointer to the property name in the property variable. These last
two output arguments won't be valid if the specifier argument is NULL.

Both functions fail if the BMessage doesn't contain specifiers. In addition,
GetCurrentSpecifier () fails if it can't find data in the BMessage for its specifier
and property arguments, and PopSpecifier () fails if the BMessage isn't one that

106 Chapter 2 • The Application Kit

has been delivered to you after being processed through a message loop. When it
fails, GetCurrentSpecifier () returns B_BAD_SCRIPT_SYNTAX, but
PopSpecifier () returns B_BAD_VALUE. On success, both functions return B_OK.

See also: AddSpecifier (), HasSpecifier (), BHandler: :ResolveSpecifier ()

Getlnfo()

status_t Getlnfo(const char *name,
type_code *typeFound,
int32 *countFound = NULL) canst

status_t Getlnfo(type_code type, int32 index,
char ••nameFound,
type_code *typeFound,
int32 *countFound = NULL) canst

Provides information about the data fields stored in the BMessage.

When passed a name that matches a name within the BMessage, Get Info () places
the type code for data stored under that name in the variable referred to by
typeFound and writes the number of data items with that name into the variable
referred lo by cuuntFound. It then returns B_OK. If it can't find a name field within
the BMessage, it sets the countFound variable to 0, and returns B_NAME_NOT_FOUND

(without modifying the typeFound variable).

When passed a type and an index, Getinfo () looks only at fields that store data of
the requested type and provides information about the field at the requested index.
Indices begin at 0 and are type specific. For example, if the requested type is
B_DOUBLE_TYPE and the BMessage contains a total of three named fields that store
double data, the first field would be at index 0, the second at 1, and the third at 2-
no matter what other types of data actually separate them in the BMessage, and no
matter how many data items each field contains. (Note that the index in this case
ranges over fields, each with a different name, not over the data items within a
particular named field.) If the requested type is B_ANY_TYPE, this function looks at
all fields and gets information about the one at index whatever its type.

If successful in finding data of the type requested at index, Getinfo () returns B_OK

and provides information about the data through the last three arguments:

• It places a pointer to the name of the data field in the variable referred to by
nameFound.

• It puts the code for the type of data the field contains in the variable referred to by
typeFound. This will be the same as the type requested, unless the requested type
is B_ANY_TYPE, in which case typeFound will be the actual type stored under the
name.

BMessage • Member Functions 107

• It records the number of data items stored within the field in the variable referred
to by countFound.

If Getinfo () can't find data of the requested type at index, it sets the countFound
variable to 0, and returns B_BAD_TYPE. If the index is out of range, it returns
B_BAD_INDEX.

This version of Get Info () can be used to iterate through all the BMessage's data.
For example:

char *name;
uint32 type;
int32 count;

for (int32 i = O;
msg->Getinfo(B_ANY_TYPE, i, &name, &type, &count);
i++) {

If the index is incremented from 0 in this way, all data of the requested type will have
been read when Get Info () returns false. If the requested type is B_ANY_TYPE, as
shown above, it will reveal the name and type of every field in the BMessage.

See also: HasData (), AddData (), FindData ()

Has Data(}, HasBool(}, Haslnt8(), Haslnt16(), Haslnt32(},
Haslnt64(), Hasfloat(), HasDouble(}, HasString(}, HasPoint(),
HasRect(), HasRef(}, HasMessage(}, HasMessenger(},
HasPointer()

boo! HasData(const char *name, type_code type, int32 index= 0) const

boo! HasBool(const char *name, int32 index= 0) canst

bool Haslnt8(const char *name, int32 index= 0) canst

bool Haslnt16(canst char *name, int32 index = 0) canst

boo! Haslnt32(const char *name, int32 index= 0) canst

bool Haslnt64(const char *name, int32 index= 0) canst

boo! HasFloat(const char *name, int32 index= 0) canst

bool HasDouble(const char *name, int32 index= 0) canst

bool HasString(const char *name, int32 index= 0) canst

boo! HasPoint(const char *name, int32 index= 0) canst

108 Chapter 2 • The Application Kit

bool HasRect(const char *name, int32 index= 0) const

bool HasRef(const char *name, int32 index= 0) const

bool HasMessage(const char *name, int32 index= 0) const

bool HasMessenger(const char *name, int32 index= 0) const

bool HasPointer(const char *name, int32 index= 0) const

These functions test whether the BMessage contains data of a given name and type.
They're generally less useful than the corresponding Find ... () functions. If the
message contains the data you're looking for, you probably will want to call
Find ... () to get it. Since the Find ... () functions return errors if the message doesn't
have data of the requested name and type, it's more efficient to just call Find ... ()
and not bother with Has ... ().At any rate, here's how these functions work:

If type is B_ANY_TYPE and no index is provided, HasData () returns true if the
BMessage stores any data at all under the specified name, regardless of its type, and
false if the name passed doesn't match any within the object.

If type is a particular type code, HasData () returns true only if the BMessage has a
name field that stores data of that type. If the type and name don't match, it returns
false.

If an index is supplied, HasData () returns true only if the BMessage has a name
field that stores a data item of the specified type at that particular index. If the index is
out of range, it returns false.

The other functions-HasBool (), HasFloat (), HasPoint (), and so on-are
specialized versions of HasData (). They test for a particular type of data stored
under the specified name.

See also: Getinfo ()

HasSpecifiers()
bool HasSpecifiers(void) const

Returns true if the BMessage has specifiers added by an AddSpecifier () function,
and false if not.

See also: AddSpecifier (), GetCurrentSpecifier ()

lsEmpty() see MakeEmpty()

ls Reply() see WasDelivered()

BMessage • Member Functions 109

lsSourceRemote() see WasDelivered()

lsSourceWaiting() see WasDelivered()

lsSystem()

bool lsSystem(void) canst

Returns true if the what data member of the BMessage object identifies it as a
system-defined message, and false if not.

MakeEmpty{), lsEmpty()

status_t MakeEmpty(void)

bool lsEmpty(void) const

MakeEmpty () removes and frees all data that has been added to the BMessage,
without altering the what constant. It returns B_OK, unless the message can't be
altered (as it can't if it's being dragged), in which case it returns B_ERROR.

IsEmpty () returns true if the BMessage has no data (whether or not it was emptied
by MakeEmpty ()), and false if it has some.

See also: RemoveName ()

Previous() see WasDelivered()

Print T oStream ()

void PrintToStream(void) canst

Prints information about the BMessage to the standard output stream (stdout). Each
field of named data is reported in the following format,

#entry name, type = type, count = count

where name is the name that the data is registered under, type is the constant that
indicates what type of data it is, and count is the number of data items in the named
array.

RemoveName{), RemoveData()

status_t RemoveName(const char *name)

status_t RemoveData(const char *name, int32 index= 0)

110 Chapter 2 • The Application Kit

RemoveName () removes all data entered in the BMessage under name and the name
itself. RemoveData () removes the single item of data at index in the name array. If
the array has just one data item, it removes the array and name just as
RemoveName () would.

Both functions free the memory that was allocated to hold the data, and return B_OK

when successful. However, if there's no data in the BMessage under name, they
return a B_NAME_NOT_FOUND error. If message data can be read but can't be changed
(as it can't for a message that's being dragged), they both return B_ERROR. If the
index is out of range, RemoveData () returns B_BAD_INDEX (the index is too high)
or B_BAD_VALUE (the value passed is a negative number).

See also: MakeEmpty ()

ReplaceData(), Replace Boal(), Replacelnt8(), Replacelnt16(),
Replacelnt32(), Replacelnt64(), ·ReplaceFloat(), ReplaceDouble(),
ReplaceString(), ReplacePoint(), ReplaceRect(), ReplaceRef(),
ReplaceMessage(), ReplaceMessenger(), ReplacePointer(),
ReplaceFlat()

status_t ReplaceData(const char *name,
type_code type,
const void *data,
ssize_t numBytes)

status_t ReplaceData(const char *name,
type_code type,
int32 index,

const void *data,
ssize_t numBytes)

status_t ReplaceBool(const char •name, bool aBoo~
status_t ReplaceBool(const char *name,

int32 index,
bool aBoo~

status_t Replacelnt8(const char *name, int8 anlnt8)
status_t Replacelnt8(const char *name,

int32 index,
int8 anlnt8)

status_t Replacelnt16(const char *name, int16 anlnt16)

BMessage • Member Functions

status_t Replacelnt16(const char •name,
int32 index,
int16 anlnt16)

status_t Replacelnt32(const char *name, long anlnt32)
status_t Replacelnt32(const char *name,

int32 index,
int32 anlnt32)

status_t Replacelnt64(const char •name, int64 anlnt64)
status_t Replacelnt64(const char •name,

int32 index,
int64 anlnt64)

status_t ReplaceFloat(const char •name, float aFloa~
status_t ReplaceFloat(const char •name,

int32 index,
float aFloa~

status_t ReplaceDouble(const char *name, double aDouble)
status_t ReplaceDouble(const char *name,

int32 index,
double aDouble)

status_t ReplaceString(const char *name, const char •string)
status_t ReplaceString(const char •name,

int32 index,
const char *string)

status_t ReplacePoint(const char *name, BPoint point)
status_t ReplacePoint(const char *name,

int32 index,
BPoint pain~

status_t ReplaceRect(const char *name, BRect rec~
status_t ReplaceRect(const char •name,

int32 index,
BRect rec~

status_t ReplaceRef(const char •name, entry_ref *ref)
status_t ReplaceRef(const char •name,

int32 index,
entry _ref •ref)

status_t ReplaceMessage(const char •name, BMessage *message)

111

112

status_t ReplaceMessage(const char *name,
int32 index,
BMessage *message)

Chapter 2 • The Application Kit

status_t ReplaceMessenger(const char *name, BMessenger messenger,
status_t ReplaceMessenger(const char *name,

int32 index,
BMessenger messenger,

status_t ReplacePointer(const char •name, canst void •pointer,
status_t ReplacePointer(const char *name,

int32 index,
canst void *pointer,

status_t ReplaceFlat(const char *name, BFlattenable *objec~
status_t ReplaceFlat(const char *name,

int32 index,
BFlattenable *objec~

These functions replace a data item in the name field with another item passed as an
argument. If an index is provided, they replace the item in the name array at that
index; if an index isn't mentioned, they replace the first (or only) item stored under
name. If an index is provided but it's out of range, the replacement fails.

ReplaceData () replaces an item in the name field with numBytes of data, but only
if the type code that's specified for the data matches the type of data that's already
stored in the field. The type must be specific; it can't be B_ANY_TYPE.

ReplaceFlat () replaces a flattened object with another object, provided that the
type reported by the argument object (by its TypeCode () function) matches the type
recorded for the item in the message. If not, it returns B_BAD_ VALUE.

The other functions are simplified versions of ReplaceData (). They each handle the
specific type of data declared for their last arguments. They succeed if this type
matches the type of data already in the name field, and fail if it does not. The new
data is added precisely as the counterpart Add ... () function would add it.

If successful, all these functions return B_OK. If unsuccessful, they return an error
code-B_ERROR if the message is read-only (as it is while the message is being
dragged), B_BAD_INDEX if the index is out of range, B_NAME_NOT_FOUND if the
name field doesn't exist, or B_BAD_TYPE if the field doesn't contain data of the
specified type.

See also: AddDa ta ()

BMessage • Member Functions 113

ReturnAddress()

BMessenger ReturnAddress(void)

Returns a BMessenger object that can be used to reply to the BMessage. Calling the
BMessenger's SendMessage () function is equivalent to calling SendReply (),
except that the return message won't be marked as a reply. If a reply isn't allowed (if
the BMessage wasn't delivered), the returned BMessenger will be invalid.

If you want to use the ReturnAddress () BMessenger to send a synchronous reply,
you must do so before the BMessage is deleted and a default reply is sent.

See also: SendReply () , Was Delivered ()

Send Reply()
status_t SendReply(BMessage *message,

BMessage *reply,
bigtime_t sendTimeout = B_INFINITE_ TIMEOUT,
bigtime_t replyTimeout = B_INFINITE_ TIMEOUT)

status_t SendReply(BMessage *message,
BHandler *replyHandler = NULL,
bigtime_t sendTimeout = B_INFINITE_ TIMEOUT)

status_t SendReply(uint32 command, BMessage *reply)
status_t SendReply(uint32 command, BHandler *replyHandler = NULL)

Sends a reply message back to the sender of the BMessage (in the case of a
synchronous reply) or to a target BHandler (in the case of an asynchronous reply).
Whether the reply is synchronous or asynchronous depends on how the BMessage
that's sending the reply was itself sent:

• The reply is delivered synchronously if the message sender is waiting for one to
arrive. The function that sent the BMessage doesn't return until it receives the
reply (or a timeout expires). If an expected reply has not been sent by the time the
BMessage object is deleted, a default B_NO_REPLY message is returned to the
sender. If a reply is sent after the sender gave up waiting for it to arrive, the reply
message disappears into the bowels of the system.

• The reply is delivered asynchronously if the message sender isn't waiting for a
reply. In this case, the sending function designates a target BHandler and BLooper
for any replies that might be sent, then returns immediately after putting the
BMessage in the pipeline. Posted messages and messages that are dragged and
dropped are also eligible for asynchronous replies.

SendReply () works only for BMessage objects that have been processed through a
message loop and delivered to you. The caller retains ownership of the reply message

114 Chapter 2 • The Application Kit

passed to SendReply () ; it can be deleted (or left to die on the stack) after the
function returns.

SendReply () sends a message-a reply message, to be sure, but a message
nonetheless. It behaves exactly like the other message-sending function,
BMessenger's SendMessage ():

• By passing it a reply argument, you can ask for a synchronous reply to the reply
message it sends. It won't return until it receives the reply.

• By supplying a replyHandler argument, you can arrange for an expected
asynchronous reply. If a specific target isn't specified, the BApplication object will
handle the reply if one is sent.

By default, SendReply () doesn't return until the reply message is delivered (placed
in the Blooper's port queue). It's possible, in some circumstances, for the receiving
port queue to be full, in which case SendReply () will block until a slot becomes
free. However, you can limit how long SendReply () will wait to deliver the
message before it gives up and returns. The sendTimeout argument is the number of
microseconds you give the function to do its work. If the time limit is exceeded, the
function fails and returns an error (B_TIMED_OUT).

When asking for a synchronous reply, separate sendTimeout and replyTimeout limits
can be set for sending the message and receivir;g the reply. There is no time limit if a
timeout value is set to B_INFINITE_TIMEOUT-as it is by default. The function won't
block at all if the timeout is set to 0.

If a command is passed rather than a message, SendReply () constructs the reply
BMessage, initializes its what data member with the command constant, and sends it
just like any other reply. The command versions of this function have infinite
timeouts; they block until the message is delivered and, if requested, a synchronous
reply is received.

This function returns B_OK if the reply is successfully sent. If there's a problem in
sending the message, it returns the same sort of error code as BMessenger's
SendMessage (). It may also report a reply-specific problem. The more informative
return values are as follows:

Error code

B_BAD_REPLY

B DUPLICATE_REPLY

B_BAD_THREAD_ID

B_BAD_PORT_ID

B_TIMED_OUT

Is returned when

Attempting to reply to a message that hasn't been delivered yet.

Sending a reply after one has already been sent and delivered.

Sending a reply to a destination thread that no longer exists.

Sending a reply to a Blooper and port that no longer exist.

Taking longer than the specified time limit to deliver a reply message
or to receive a synchronous reply to the reply.

BMessage • Member Functions

If you want to delay sending a reply and keep the BMessage object beyond the time
it's scheduled to be deleted, you may be able to detach it from the message loop. See
DetachCurrentMessage () in the BLooper class.

See also: BMessenger: : SendMessage (), BLooper: : DetachCurrentMessage (),
Error,ReturnAddress()

Unflatten() see Flatten()

WasDelivered(), lsSourceRemote(), lsSourceWaiting(), lsReply(),
Previous()

boo! WasDelivered(void) const

boo! lsSourceRemote(void) const

boo! lsSourceWaiting(void) const

boo! lsReply(void) const

115

const BMessage *Previous(void) const

These functions can help if you're engaged in an exchange of messages or managing
an ongoing communication.

WasDeli vered () indicates whether it's possible to send a reply to a message. It

returns true for a BMessage that was posted, sent, or dropped-that is, one that has
been processed through a message loop-and false for a message that has not yet
been delivered by any means.

IsSourceRemote () returns true if the message had its source in another
application, and false if the source is local or the message hasn't been delivered yet.

IsSourceWaiting () returns true if the message source is waiting for a
synchronous reply, and false if not. The source thread can request and wait for a
reply when calling either BMessenger's SendMessage () or BMessage's
SendReply () function.

IsReply () returns true if the BMessage is a reply to a previous message (if it was
sent by the SendReply () function), and false if not.

Previous () returns the previous message-the message to which the current
BMessage is a reply. It works only for a BMessage that's received as an asynchronous
reply to a previous message. A synchronous reply is received in the context of the
previous message, so it's not necessary to call a function to get it. But when an
asynchronous reply is received, the context of the original message is lost; this

116 Chapter 2 • The Application Kit

function can provide it. Previous () returns NULL if the BMessage isn't an
asynchronous reply to another message.

See also: BMessenger: : SendMessage (), SendReply (), ReturnAddress ()

WasDropped{), DropPoint()

bool WasDropped(void) const

BPoint DropPoint(BPoint *offset= NULL) const

WasDropped () returns true if the user delivered the BMessage by dragging and
dropping it, and false if the message was posted or sent in application code or if it
hasn't yet been delivered at all.

DropPoint () reports the point where the cursor was located when the message was
dropped (when the user released the mouse button). It directly returns the point in
the screen coordinate system and, if an offset argument is provided, returns it by
reference in coordinates based on the image or rectangle the user dragged. The offset
assumes a coordinate system with (0.0, 0.0) at the left top corner of the dragged
rectangle or image.

Since any value can be a valid coordinate, DropPoint () produces reliable results
only if WasDropped () returns true.

See also: BView: : DragMessage ()

Operators
(assignment)

BMessage &operator =(const BMessage&)

Assigns one BMessage object to another. After the assignment, the two objects are
duplicates of each other without shared data.

new

void *operator new(size_t numBytes)

Allocates memory for a BMessage object, or takes the memory from a previously
allocated cache. The caching mechanism is an efficient way of managing memory for
objects that are created frequently and used for short periods of time, as BMessages
typically are.

BMessageFilter • Overview 117

delete

void operator delete(void *memory, size_t numBytes)

Frees memory allocated by the BMessage version of new, which may mean restoring
the memory to the cache.

BMessageFilter
Derived from:

Declared in:

Library:

Overview

none

be/ app/MessageFilter.h

lib be.so

A BMessageFilter holds a function that can look at incoming messages before they're
dispatched to their designated handlers. The object keeps the conditions that must be
met for the function to be called. The function can do what it likes with the
message-it can take care of global matters before the handler-specific response to
the message begins; it can modify the target handler for the message; or it can even
handle the message itself and prevent it from being dispatched.

You can implement the filtering function either as a member function in a class
derived from BMessageFilter or as a nonmember function that you assign to
BMessageFilter instances when you construct them. For a member function, you
override the Filter () hook function that BMessageFilter declares. For a
nonmember function, you define a function of type filter_hook and pass a pointer
to it to the BMessageFilter constructor. The nonmember function doesn't require you
to derive a class from BMessageFilter, but it puts the function you implement in the
global namespace.

If a f i 1 ter_hook function is assigned to a BMessageFilter object, the system prefers
it to the Filter () member function; it will not call the member function.

After construction, a BMessageFilter is attached to a message loop by assigning it
either to a BHandler object or to a Blooper:

• If assigned to a BHandler object, the filter will apply only to messages targeted to
that BHandler. See SetFilterList () and AddFilter () in the BHandler class.

• If assigned to a Blooper object as a common filter, it can apply to any message
the Blooper dispatches regardless of the target handler. See
SetCommonFil terList () and AddCommonFil ter () in the Blooper class. (A
Blooper can also be assigned specific filters in its role as a BHandler.)

118 Chapter 2 • The Application Kit

All applicable filters in both categories are applied to a message before the message is
dispatched to the target BHandler (before DispatchMessage () is called). Common
filters apply before handler-specific filters.

The BMessageFilter belongs to the BHandler or BLooper to which it's assigned and
should not be deleted in application code unless you first remove it from its owner. It
will be deleted when the BHandler or BLooper is destroyed or when a set of
replacement filters is assigned.

A BMessageFilter object should be assigned to only one BHandler or BLooper. To use
the same filter in a variety of circumstances, simply copy the BMessageFilter object
and assign a different instance to each BHandler or BLooper. It's a light object that
can easily be duplicated without much overhead.

See also: BHandler: : SetFil terList (), BLooper: : SetCommonFil terList ()

Hook Functions
Filter()

Implemented by derived classes to respond to an incoming message before the
message is dispatched to a target BHandler.

Constructor and Destructor
BMessageFilter()

BMessageFilter(message_delivery delivery,
message_source source,
uint32 command,
filter_hook filter= NULL)

BMessageFilter(message_delivery delivery,
message_source source,
filter_hook filter= NULL)

BMessageFilter(uint32 command,
filter_hook filter= NULL)

BMessageFilter(const BMessageFilter &object)
BMessageFilter(const BMessageFilter *object)

Initializes the BMessageFilter object so that its Filter () function-or the filter hook
function passed as an argument-will be called for every incoming message that
meets the specified delivery, source, and command criteria.

The first argument, delivery, is a constant that specifies how the message must arrive:

• B_DROPPED_DELIVERY. Only messages that were dragged and dropped should
be filtered.

BMessageFilter • Constructor and Destructor

• B_PROGRAMMED_DELIVERY. Only messages that were posted or sent in
application code (by calling PostMessage () or a Send ... () function) should be
filtered.

• B_ANY_DELIVERY. All messages, no matter how they were delivered, should be
filtered.

If a delivery method isn't specified, B_ANY_DELIVERY is assumed.

119

The second argument, source, specifies where the message must originate:

• B_LOCAL_SOURCE. Only messages that originate locally, from within the same
team as the receiving thread, should be filtered.

• B_REMOTE_SOURCE. Only messages that are delivered from a remote source
should be filtered.

• B_ANY_SOURCE. All messages, no matter what their source, should be filtered.

If a message source isn't specified, B_ANY_SOURCE is assumed.

The third argument, command, limits the filter to a particular type of message. Only
messages that have what data members matching the specified command constant
will be filtered. If a command isn't specified, the command constant won't be a
criterion in selecting which messages to filter; any message that meets the other
criteria will be filtered, no matter what its what data member may be.

The filtering criteria are conjunctive; for the filter function to be called, an arriving
message must meet all the criteria specified.

A filter function passed as an argument must be of the type filter_hook. This type
is defined as follows

filter_result (*filter _hook)(BMessage *message,
BHandler **target,
BMessageFilter * messageFilter)

The return type of the function and its first two arguments are the same as for the
member Filter () function. The third argument gives the filter_hook access to
the same information as Filter (). For example, the member function can discover
which BLooper is dispatching the message by calling another member function,
Looper():

filter_result MyFilter::Filter(BMessage *message, BHandler **target)

BLooper *theLooper Looper();

120 Chapter 2 • The Application Kit

The f i1 ter_hook can call the same function through its messageFilter pointer:

filter_result filter(BMessage *message, BHandler **target
BMessageFilter *messageFilter)

BLooper *theLooper = messageFilter->Looper();

For more information, refer to the description of the member Filter ().function.

See also: Filter ()

-BMessageFilter()

virtual -BMessageFilter(void)

Does nothing.

Member Functions

Command(), FiltersAnyCommand()

uint32 Command(void) const

bool FiltersAnyCommand(void) const

Command () returns the command constant (the what data member) that an arriving
message must match for the filter to apply. Fil tersAnyCommand () returns true if
the filter applies to messages regardless of their what data members, and false if it's
limited to a certain type of message.

Because all command constants are valid, including negative numbers and 0,
Command() returns a reliable result only if FiltersAnyCommand() returns false.

See also: the BMessageFilter constructor, the BMessage class

Filter()

virtual filter_result Filter(BMessage *message, BHandler **target)

Implemented by derived classes to examine an arriving message just before it's
dispatched. The message is passed as the first argument; the second argument
indirectly points to the target BHandler object that's slated to respond to the message.

BMessageFilter • Member Functions

You can implement this function to do anything you please with the message,
including replace the designated target with another BHandler object. For example:

filter_result MyFilter::Filter(BMessage *message, BHandler **target)
{

if (*target->Isindisposed()
*target= *target->FindReplacement();

121

return B_DISPATCH_MESSAGE;

The replacement target must be associated with the same Blooper as the original
target. If the new target has filters that apply to the message, those filtering functions
will be called before the message is dispatched.

This function returns a constant that instructs the Blooper whether or not to dispatch
the message as planned:

• B_DISPATCH_MESSAGE. Go ahead and dispatch the message.

• B_SKIP _MESSAGE. Stop. Don't dispatch the message and don't filter it any further;
this function took care of handling it.

The default version of this function does nothing but return B_DISPATCH_MESSAGE.

If a filter_hook function was assigned to the BMessageFilter object when it was
constructed, it will be called instead of Filter () .

See also: the BMessageFilter constructor

FiltersAnyCommand() see Command()

Looper()

Blooper *Looper(void) const

Returns the Blooper object that dispatches the messages that the BMessageFilter
filters, or NULL if the BMessageFilter hasn't yet been assigned to a BHandler or
Blooper.

MessageDelivery(), MessageSource()

message_delivery MessageDelivery(void) const

message_source MessageSource(void) const

These functions return constants, set when the BMessageFilter object was
constructed, that describe the categories of messages that can be filtered.
MessageDelivery() returns a constant that specifies how the message must be

122 Chapter 2 • The Application Kit

delivered (B_DROPPED_DELIVERY, B_PROGRAMMED_DELIVERY, or B_ANY_

DELIVERY). MessageSource () returns how the source of the message is
constrained (B_LOCAL_SOURCE, B_REMOTE_SOURCE, or B_ANY_SOURCE).

See also: the BMessageFilter constructor

Operators
= (assignment)

BMessageFilter &operator=(canst BMessageFilter&)

Assigns one BMessageFilter object to another so that both objects are independent
copies of each other. After the assignment, both objects share the same filtering
function and record the same calling criteria.

BMessageQueue
Derived from: none

Declared in: be/app/MessageQueue.h

Library: lib be.so

Class Description
A BMessageQueue maintains a queue where arriving messages (BMessage objects)
are temporarily stored as they wait to be dispatched. Every BLooper object uses a
BMessageQueue to manage the flow of incoming messages; all messages delivered to
the BLooper's thread are placed in the queue. The BLooper removes the oldest
message from the queue, passes it to a BHandler, waits for the thread to finish its
response, deletes the message, then returns to the queue to get the next message.

For the most part, applications can ignore the queue-that is, they can treat it as an
implementation detail. Messages are delivered to a BLooper by calling its
PostMessage () function, by constructing a BMessenger object and calling
SendMessage () , or through a drag-and-drop operation. Each method of delivery
puts the message in a port owned by the BLooper and then in the queue.

A BLooper calls upon a BHandler's MessageRecei ved () function-and other,
message-specific hook functions-to handle the messages it takes from the queue.
Applications can simply implement the functions that are called to respond to
received messages and not bother about the mechanics of the message loop, port,
and queue.

BMessageQueue • Member Functions

However, if necessary, you can manipulate the queue directly, or perhaps just look
ahead to see what messages are coming. The BLooper has a MessageQueue ()

function that returns its BMessageQueue object.

See also: the BMessage class, BLooper : : Mes sageQueue ()

Constructor and Destructor

BMessageQueue()

123

BMessageQueue(void)

Ensures that the queue starts out empty. Messages are placed in the queue by calling
Add.Message () and are removed by calling NextMessage () .

Each BLooper object constructs a BMessageQueue for itself; you don't need to
construct one.

See also: Add.Message (), NextMessage ()

-BMessageQueue()

virtual -BMessageQueue(void)

Deletes all the objects in the queue and all the data structures used to manage the
queue.

Member Functions

Add Message()

void AddMessage(BMessage *message)

Adds message to the queue.

See also: NextMessage ()

CountMessages()

int32 CountMessages(void) const

Returns the number of messages currently in the queue.

Find Message()

BMessage *FindMessage(uint32 what, int32 index = 0) const
BMessage *FindMessage(int32 index) const

124 Chapter 2 • The Application Kit

Returns a pointer to the BMessage that's positioned in the queue at index, where
indices begin at 0 and count only those messages that have what data members
matching the what value passed as an argument. If a what argument is omitted,
indices count all messages in the queue. If an index is omitted, the first message that
matches the what constant is found. The lower the index, the longer the message has
been in the queue.

If no message matches the specified what and index criteria, this function returns
NULL.

The returned message is not removed from the queue.

See also: NextMessage ()

ls Empty()

bool lsEmpty(void) const

Returns true if the BMessageQueue contains no messages, and false if it has at
least one.

See also: CountMessages ()

Lock(), Unlock()

bool Lock(void)

void Unlock(void)

These functions lock and unlock the BMessageQueue, so that another thread won't
alter the contents of the queue while it's being read. Lock () doesn't return until it
has the queue locked; it always returns true. Unlock () releases the lock so that
someone else can lock it. Calls to these functions can be nested.

See also: BLooper : : Lock ()

NextMessage()

BMessage *NextMessage(void)

Returns the next message-the message that has been in the queue the longest-and
removes it from the queue. If the queue is empty, this function returns NULL.

RemoveMessage()

void RemoveMessage(BMessage *message)

BMessenger • Constructor and Destructor 125

Removes a particular message from the queue and deletes it.

See also: Find.Message ()

Unlock() see Lock()

BMessenger
Derived from: none

Declared in: be/app/Messenger.h

Library: libbe.so

Overview
A BMessenger is an agent for sending messages to a destination. Each BMessenger
object targets a particular BLooper and possibly a specific BHandler for that BLooper.
The messages it sends are delivered to the BLooper and dispatched by the BLooper
to the BHandler. The destination objects can belong to the same application as the
message sender, but typically are in a remote application. Within the same
application, it takes fewer steps to post a message directly to a BLooper than to
construct a BMessenger and ask it to send the message-however, the result is the
same and both methods are equally efficient.

BMessenger objects can be transported across application boundaries. You can create
one for a particular BHandler/BLooper combination in your application and pass it by
value to a remote application. That application can then use the BMessenger to target
the objects in your application. This is, in fact, the only way for an application to get
a BMessenger that can target a remote object (other than a remote BApplication
object).

Constructor and Destructor
BMessenger()

BMessenger(const char *signature,
team_id team= -1,

status_t *error= NULL)
BMessenger(const BHandler *handler,

const BLooper *looper= NULL,
status_t *error= NULL)

BMessenger(const BMessenger &messengei'j
BMessenger(void)

126 Chapter 2 • The Application Kit

Initializes the BMessenger so that it can send messages to an application identified by
its signature or by its team. The application must be running when the BMessenger is
constructed.

If the signature passed is NULL, the application is identified by its team only. If the
team specified is -1, as it is by default, the application is identified by its signature
only. If both a real signature and a valid team identifier are passed, they must
match-the signature must identify the team application. If more than one instance of
the signature application happens to be running, the team picks out a particular
instance as the BMessenger's target. Without a valid team argument, the constructor
arbitrarily picks one of the instances.

BMessengers constructed in this way send messages to the main thread of the remote
application, where they're received and handled by that application's BApplication
object. This type of messenger is needed to initiate communication with another
application.

A BMessenger can also be aimed at a particular BHandler object-or at the preferred
handler for a particular Blooper. For this type of BMessenger, you must pass the
constructor a pointer to a BHandler or Blooper living in your application:

• If a target .handler is specified, the Bl\1essenger Vlill send messages to the BLooper
associated with that BHandler object, and the Blooper will dispatch them to the
BHandler. The target BHandler must be able to tell the BMessenger (through its
Looper () function) which Blooper object it's associated with. The BMessenger
asks for this information at the time of construction. Therefore, the handler must
either be a Blooper itself or have been added to a Blooper's list of eligible
handlers.

Because the handler identifies its Blooper, there's no need to separately specify
the Blooper to the constructor. The looper argument can be left NULL, as it is by
default. If a specific looper is named, it must match the object that Looper ()

returns for the handler.

• A target looper must be specified only if the handler is NULL. In this case, the
BMessenger will send messages to the Blooper and the Blooper will dispatch
them to whatever object happens to be its preferred handler at the time. This
permits the targeting decision to be made dynamically.

• The target handler and looper cannot both be NULL, for obvious reasons.

A primary purpose for constructing BMessengers for local BHandlers and Bloopers is
to give remote applications access to those objects. You can add a BMessenger to a
message and send the message to the remote application. That application can then
use the BMessenger to target a BHandler and Blooper in your application.

BMessenger • Constructor and Destructor

The constructor reports its success or failure by placing an error code in the
status_t variable that the error argument points to, provided that the argument isn't
omitted or NULL. If it can't make a connection to the signature application-possibly
because no such application is running-it reports a B_BAD_VALUE error. If passed
an invalid team identifier, it registers a B_BAD_TEAM_ID error. If the team and the
signature don't match, it conveys a B_MISMATCHED_VALUES error.

127

If it can't discover a BLooper from the target BHandler, the constructor reports a
B_BAD_HANDLER error. If a looper is specified but the BHandler is associated with
another BLooper object, it registers a B_MI SMATCHED_ VALUES error. If neither a
handler nor a looper is specified, it reports a B_BAD_ VALUE error.

If all goes well, the constructor puts B_OK in the error variable. It's a good idea to
check for an error before asking the new BMessenger to send a message.

A BMessenger can also be constructed as a copy of another BMessenger,

BMessenger newOne(anotherMessenger);

or be assigned from another object:

BMessenger newone = anotherMessenger;

If the construction of a BMessenger fails for any reason, the IsValid () function will
report that the resulting object is not to be trusted:

BMessenger messenger(localHandler);
if (messenger.IsValid()) {

A BMessenger constructed without arguments is invalid until it's initialized with
another BMessenger.

A BMessenger object can send messages to only one destination. Once constructed,
you can cache it and reuse it repeatedly to communicate with that destination. It
should be freed after it's no longer needed (or it becomes invalid). The BRoster
object can provide signature and team information about possible destinations.

See also: the Binvoker, BRoster, and BMessage classes, Target (), IsValid ()

-BMessenger()

-BMessenger(void)

Frees all memory allocated by the BMessenger, if any was allocated at all.

128

Member Functions

lsTargetlocal() see Target()

ls Valid()

bool lsValid(void) const

Chapter 2 • The Application Kit

Returns true if the BMessenger is connected to a destination BLooper, and false if
not. A BMessenger might become disconnected from its target if, for example, the
user quit the destination application or that application destroyed the target BLooper.

This function doesn't check whether the target BHandler is valid; it reports only on
the status of the target BLooper.

LockTarget(}, LockTargetWithTimeout()

bool LockTarget(void) const

status_t LockTargetWithTimeout(bigtime_t timeout) canst

These functions lock the BLooper that the BMessenger targets, but only if the target is
local (only if the BLooper is in the same team as the BMessenger). They work exactly
like the counterpart BLooper Lock () and LockWi thTimeout () functions, and they
return what those functions return, with this additional stipulation: If the target
BLooper isn't local, LockTarget () returns false and LockTargetWi thTimeout ()

returns B_BAD_VALUE.

Each successful lock must be balanced by a call to unlock the BLooper using the
BLooper's Unlock () function. For example:

if (myMessenger.LockTarget()) {
BLooper *myLooper;
BHandler *myHandler = myMessenger.Target(&myLooper);

myLooper->Unlock();

The BMessenger functions have only one advantage over their BLooper counterparts.
If you keep a pointer to a BLooper object and call Lock () through the pointer,

if (myLooper->Lock())

myLooper->Unlock();

it may return true even though it's not locking the object you think it is. This strange
result can happen if the BLooper is deleted and another object, perhaps another
BLooper, is allocated in the same memory space. The pointer won't register the

BMessenger • Member Functions 129

difference. However, the BMessenger is not fooled. If it's target goes away,
LockTarget () will return false and LockTargetWithTimeout () will return
B_BAD_ VALUE.

See also: BLooper: : Lock ()

Send Message()

status_t SendMessage(BMessage *message,
BMessage *reply,
bigtime_t sendTimeout = B_INFINITE_ TIMEOUT,
bigtime_t replyTimeout = B_INFINITE_ TIMEOUT) const

status_t SendMessage(BMessage *message,
BHandler *replyHandler = NULL,
bigtime_t sendTimeout = B_INFINITE_ TIMEOUT) const

status_t SendMessage(uint32 command, BMessage *reply) const
status_t SendMessage(uint32 command, BHandler •replyHandler = NULL) const

Sends a message to the destination that was designated when the BMessenger was
constructed. The caller retains responsibility for the message passed to this function;
the destination thread will receive a copy.

You can ask for a synchronous reply to the message you send or designate a
BHandler for an asynchronous reply:

• Supplying a reply argument requests a message back from the destination. Before
returning, SendMessage () waits for an answer and fills in the reply BMessage
with the information it receives. The caller is responsible for allocating and
deleting the reply message. Typically, the reply BMessage is an empty container
for the reply allocated on the stack:

BMessage message(STAY_THE_COURSE);
BMessage reply;
myMessenger.SendMessage(&message, &reply);

If the destination doesn't send a reply before the message is deleted, the system
sends one with B_NO_REPLY as the what data member. Check the reply message
before proceeding. If there's an error in receiving the reply message,
SendMessage () will return an error, such as B_BAD_PORT_ID, indicating that
something went wrong.

• If a reply isn't requested, SendMessage () returns immediately; any reply to the
message will be received asynchronously. If a replyHandler is specified, the reply
will be directed to that BHandler object. If a handler isn't specified, it will be
directed to the BApplication object.

130 Chapter 2 • The Application Kit

The replyHandler is subject to the same restriction as a target BHandler passed to
the BMessenger constructor: It must be associated with a Blooper object (or be a
Blooper itselD.

By default, SendMessage () doesn't return until it delivers the message. If it can't do
so immediately (for example, if the destination Blooper's port queue is full), it blocks
until it can accomplish its mission.

However, you can limit how long it will block by setting a timeout in microseconds.
The sendTimeout argument is the number of microseconds you give the function to
place the message in the destination Blooper's port. If SendMessage () is unable to
deliver the message in the specified amount of time, it fails and returns an error
(B_TIMED_OUT). Separate sendTimeout and replyTimeout limits can be set for
sending the message and for receiving a synchronous reply. There is no time limit if a
timeout value is set B_INFINITE_TIMEOUT-as it is by default.

If a command is passed instead of a full message, SendMessage () constructs a
BMessage object with command as its what data member and sends it just like any
other message. This is simply a convenience for sending messages that contain no
data. The following line of code

mvMessenger->SendMessage(NEVERMORE);

is roughly equivalent to:

BMessage message(NEVERMORE);
myMessenger->SendMessage(&message);

You cannot set timeouts for the command versions of this function. They block
without a time limit (B_INFINITE_TIMEOUT).

If all goes well, SendMessage () returns B_OK. If not, it returns an error code,
typically B_BAD_PORT_ID or B_TIMED_OUT.

(It's an error for a thread to send a message to itself and expect a synchronous reply.
The thread can't respond to the message and wait for a reply at the same time.)

See also: BMessage:: SendReply ()

Target(), lsTargetlocal()

BHandler *Target(Blooper ** loopef) const

bool lsTargetlocal(void) const

Target () returns a pointer to the BHandler object that's targeted to respond to the
messages that the BMessenger sends. It also places a pointer to the Blooper that
receives its messages in the variable that looper refers to. If the BMessenger is
targeted to the Blooper's preferred handler, Target () returns NULL but identifies
the looper.

BRoster • Overview

Target () can't provide valid pointers to objects that live in other applications.
Therefore, for remote targets, it returns NULL and sets the looper pointer to NULL.

These values could also indicate that the BMessenger hadn't been initialized.
IsTargetLocal () can distinguish between these case. It returns true if the
BMessenger is in the same application as its target, and false if its target is remote
or nonexistent.

Team()

inline team_id Team(void) const

Returns the identifier for the team that receives the messages the BMessenger sends.

Operators
(assignment)

BMessenger &operator =(const BMessenger&)

Assigns one BMessenger to another. After the assignment the two objects are identical
and independent copies of each other, with no shared data.

== (equality)
bool operator ==(const BMessenger&) const

Returns true if the two BMessengers have the same targets for the messages they
send, and false if not.

BRoster
Derived from: none

Declared in: be/app/Roster.h

Library: libbe.so

Overview
The BRoster object represents a service that keeps a roster of all applications
currently running. It can provide information about any of those applications, activate
one of them, add another application to the roster by launching it, or get information
about an application to help you decide whether to launch it.

There's just one roster and it's shared by all applications. When an application starts
up, a BRoster object is constructed and assigned to a global variable, be_roster.

131

132 Chapter 2 • The Application Kit

You always access the roster through this variable; you never have to instantiate a
BRoster in application code.

The BRoster identifies applications in three ways:

• By entry_ref references to the executable files where they reside.

• By their signatures. The signature is a unique identifier for the application
assigned as a file-system attribute or resource at compile time or by the
BApplication constructor at run time. You can obtain signatures for the
applications you develop by contacting Be's developer support staff. They can
also tell you what the signatures of other applications are.

• At run time, by their team_ids. A team is a group of threads sharing an address
space; every application is a team.

If an application is launched more than once, the roster will include one entry for
each instance of the application that's running. These instances will have the same
signature, but different team identifiers.

Constructor and Destructor

BRoster()

BRoster(void)

Sets up the object's connection to the roster service.

When an application constructs its BApplication object, the system constructs a
BRoster object and assigns it to the be_roster global variable. A BRoster is therefore
readily available from the time the application is initialized until the time it quits; you
don't have to construct one. The constructor is public only to give programs that
don't have BApplication objects access to the roster.

-BRoster()

-BRoster(void)

Does nothing.

Member Functions

ActivateApp()

status_t ActivateApp(team_id team) canst

Activates the team application (by bringing one of its windows to the front and
making it the active window). This function works only if the target application has a

BRoster • Member Functions

window on-screen. The newly activated application is notified with a
B_APP _ACTIVATED message.

See also: BApplication: : AppActi vated ()

Broadcast()

133

status_t Broadcast(BMessage *message) const

Sends the message to every running application, except to those applications
(B_ARGV_ONLY) that don't accept messages. The message is sent asynchronously with
a timeout of 0. As is the case for other message-sending functions, the caller retains
ownership of the message.

This function returns immediately after setting up the broadcast operation. It doesn't
wait for the messages to be sent and doesn't report any errors encountered when
they are. It returns an error only if it can't start the broadcast operation. If successful
in getting the operation started, it returns B_OK.

See also: BMessenger: : SendMessage ()

FindApp()

status_t FindApp(const char *type, entry_ref •app) const
status_t FindApp(entry_ref *file, entry_ref •app) const

Finds the application associated with the MIME data type or with the specified file,
and modifies the app entry_ref structure so that it refers to the executable file for
that application. If the type is an application signature, this function finds the
application that has that signature. Otherwise, it finds the preferred application for the
type. If the file is an application executable, Find.App () merely copies the file
reference to the app argument. Otherwise, it finds the preferred application for the
file type.

In other words, this function goes about finding an application in the same way that
Launch () finds the application it will launch.

If it can translate the type or file into a reference to an application executable,
Find.App () returns B_OK. If not, it returns an error code, typically one describing a
file system error.

See also: Launch ()

GetApplnfo{), GetRunningApplnfo{), GetActiveApplnfo()

status_t GetApplnfo(cons char *signature, app_info •app!nfo) const
status_t GetApplnfo(entry_ref *executable, app_info *app!nfo) const

134 Chapter 2 • The Application Kit

status_t GetRunningApplnfo(team_id team, app_info *app!nfo) canst

status_t GetActiveApplnfo(app_info *app!nfo) canst

These functions provide information about the application identified by its signature,
by a reference to its executable file, by its team, or simply by its status as the current
active application. They place the information in the structure referred to by app!nfo.

GetRunningAppinfo () reports on a particular instance of a running application, the
one that was assigned the team identifier at launch. GetActiveAppinfo () similarly
reports on a running application, the one that happens to be the current active
application.

If it can, GetAppinfo () also tries to get information about an application that's
running. If a running application has the signature identifier or was launched from
the executable file, GetAppinfo () queries it for the information. If more than one
instance of the signature application is running, or if more than one instance was
launched from the same executable file, it arbitrarily picks one of the instances to
report on.

Even if the application isn't running-if none of the applications currently in the
roster are identified by signature or were launched from the executable file
GetAppinf o () can still provide some information about it, perhaps enoug~
information for you to call Launch () to get it started.

If they're able to fill in the app_info structure with meaningful values, these
functions return B_OK. However, GetActiveAppinfo () returns B_ERROR if there's
no active application. GetRunningAppinfo () returns B_BAD_TEAM_ID if team isn't,
on the face of it, a valid team identifier for a running application. GetAppinfo ()

returns B_ERROR if the application isn't running.

The app_info structure contains the following fields:

thread_id thread

The identifier for the application's main thread of execution, or -1 if the
application isn't running. (The main thread is the thread in which the application
is launched and in which its main () function runs.)

team_id team

The identifier for the application's team, or -1 if the application isn't running. (This
will be the same as the team passed to GetRunningAppinfo () .)

port_id port

The port where the application's main thread receives messages, or -1 if the
application isn't running.

uint32 flags

A mask that contains information about the behavior of the application.

BRoster • Member Functions

entry _ref ref
A reference to the file that was, or could be, executed to run the application. (This
will be the same as the executable passed to GetAppinfo () .)

char signature[]
The signature of the application. (This will be the same as the signature passed to
GetAppinfo () .)

135

The flags mask can be tested (with the bitwise & operator) against these two
constants:

• B_BACKGROUND_APP. The application won't appear in the DeskBar (because it
doesn't have a user interface or because it can't become the active application).

• B_ARGV_ONLY. The application can't receive messages. Information can be passed
to it at launch only, in an array of argument strings (as on the command line).

The flags mask also contains a value that explains the application's launch
behavior. This value must be filtered out of flags by combining flags with the
B_LAUNCH_MASK constant. For example:

unit32 behavior = theinfo.flags & B_LAUNCH_MASK;

The result will match one of these three constants:

• B_EXCLUSIVE_LAUNCH. The application can be launched only if an application
with the same signature isn't already running.

• B_SINGLE_LAUNCH. The application can be launched only once from the same
executable file. However, an application with the same signature might be
launched from a different executable. For example, if the user copies an
executable file to another directory, a separate instance of the application can be
launched from each copy.

• B_MULTIPLE_LAUNCH. There are no restrictions. The application can be launched
any number of times from the same executable file.

These flags affect BRoster's Launch () function. Launch () can always start up a
B_MULTIPLE_LAUNCH application. However, it can't launch a B_SINGLE_LAUNCH

application if a running application was already launched from the same executable
file. It can't launch a B_EXCLUSIVE_LAUNCH application if an application with the
same signature is already running.

See also: Launch (), BApplication:: GetAppinfo ()

GetAppList()
void GetApplist{BList •teams) canst
void GetApplist(const char *signature, BList *teams) canst

136 Chapter 2 • The Application Kit

Fills in the teams BList with team identifiers for applications in the roster. Each item in
the list will be of type team_id. It must be cast to that type when retrieving it from
the list, as follows:

BList *teams = new BList;
be_roster->GetAppList(teams);
team_id who = (team_id)teams->ItemAt(someindex);

The list will contain one item for each instance of an application that's running. For
example, if the same application has been launched three times, the list will include
the team_ids for all three running instances of that application.

If a signature is passed, the list identifies only applications running under that
signature. If a signature isn't specified, the list identifies all running applications.

See also: TeamFor () , the BMessenger constructor

lsRunning() see TeamFor()

Launch()

status_t Launch(const char •type,
BMessage *message = NULL,

team_id *team= NULL) const
status_t Launch(const char *type,

BList *messages,
team_id *team = NULL) const

status_t Launch(const char *type,
int argc,
char ** argv,
team_id •team = NULL) const

status_t Launch(entry_ref *file,
BMessage *message= NULL,
team_id *team= NULL) const

status_t Launch(entry _ref *file,
BList *messages,
team_id *team= NULL) const

status_t Launch(entry _ref *file,
int argc,
char ** argv,
team_id *team = NULL) const

Launches the application associated with a MIME type or with a particular file. If the
MIME type is an application signature, this function launches the application with that
signature. Otherwise, it launches the preferred application for the type. If the file is an

BRoster • Member Functions

application executable, it launches that application. Otherwise, it launches the
preferred application for the file type and passes the file reference to the application
in a B_REFS_RECEIVED message. In other words, Launch () finds the application to
launch just as FindApp () finds the application for a particular type or file.

If a message is specified, it will be sent to the application on-launch where it will be
received and responded to before the application is notified that it's ready to run.
Similarly, if a list of messages is specified, each one will be delivered on-launch. The
caller retains ownership of the BMessage objects (and the container BList); they won't
be deleted for you.

137

Sending an on-launch message is appropriate if it helps the launched application
configure itself before it starts getting other messages. To launch an application and
send it an ordinary message, call Launch () to get it running, then set up a BMessenger
object for the application and call BMessenger's SendMessage () function.

If the target application is already running, Launch () won't launch it again, unless it
permits multiple instances to run concurrently Cit doesn't wait for the messages to be
sent or report errors encountered when they are). It fails for B_SINGLE_LAUNCH and
B_EXCLUSIVE_LAUNCH applications that have already been launched. Nevertheless,
it assumes that you want the messages to get to the application and so delivers them
to the currently running instance.

Instead of messages, you can launch an application with an array of argument strings
that will be passed to its main () function. argv contains the array and argc counts the
number of strings. If the application accepts messages, this information will also be
packaged in a B_ARGV_RECEIVED message that the application will receive on-launch.

If successful, Launch () places the identifier for the newly launched application in
the variable referred to by team and returns B_OK. If unsuccessful, it sets the team
variable to -1 and returns an error code, typically one of the following:

• B_BAD_ VALUE. The type or file is not valid, or an attempt is being made to send an
on-launch message to an application that doesn't accept messages (that is, to a
B_ARGV_ONLY application).

• B_ALREADY_RUNNING. The application is already running and can't be launched
again (it's a B_SINGLE_LAUNCH or B_EXCLUSIVE_LAUNCH application).

• B_LAUNCH_FAILED. The attempt to launch the application failed for some other
reason, such as insufficient memory.

• A file system error. The file or type can't be matched to an application.

See also: the BMessenger class, GetAppinfo (), FindApp ()

138

TeamFor{), lsRunning()

team_id TeamFor(const char *signature) const
team_id TeamFor(entry_ref *executable) const

bool lsRunning(const char *signature) const
bool lsRunning(entry _ref *executable) const

Chapter 2 • The Application Kit

Both these functions query whether the application identified by its signature or by a
reference to its executable file is running. TeamFor () returns its team identifier if it is,
and B_ERROR if it's not. IsRunning () returns true if it is, and false if it's not.

If the application is running, you probably will want its team identifier (to set up a
BMessenger, for example). Therefore, it's most economical to simply call TeamFor ()
and forego IsRunning ().

If more than one instance of the signature application is running, or if more than one
instance was launched from the same executable file, TeamFor () arbitrarily picks
one of the instances and returns its team_id.

See also: GetAppList ()

Global Variables, Constants, and Defined
Types

This section lists the global variables, constants, and defined types that are defined in
the Application Kit. There are three global variables-be_app, be_roster, and
be_clipboard-just a few defined types, and a handful of constants. Error codes
are documented in Chapter 6, The Support Kit.

Although the Application Kit defines the constants for all system messages (such as
B_REFS_RECEIVED and B_KEY_DOWN), only those that objects in this kit handle are
listed here. Those that designate interface messages are documented in Chapter 4,
The Inteif ace Kit.

Global Variables
be_app

be/app/Application.h

BApplication *be_app

This variable provides global access to the BApplication object. It's initialized by the
BApplication constructor.

See also: the BApplication class

Global Variables, Constants, and Defined Types • Constants 139

be_ clipboard

be/app/Clipboard.h

BClipboard *be_clipboard

This variable gives applications access to the system clipboard-the shared repository
of data for cut, copy, and paste operations. It's initialized at startup.

See also: the BC!ipboard class

be_roster

be/app/Roster.h

canst BRoster *be_roster

This variable points to the application's global BRoster object. The BRoster keeps a
roster of all running applications and can add applications to the roster by launching
them. It's initialized when the application starts up.

See also: the BRoster class

Constants
Application Flags

be/app/Roster.h

Constant

B_BACKGROUND_APP

B_ARGV_ONLY

B_LAUNCH_MASK

These constants are used to get information from the flags field of an app_info

structure.

See also: BRoster: : GetAppinfo (), "Launch Constants" below

Application Mes.sages

be/app/AppDefs.h

Constant

B_QUIT _REQUESTED

B_READY _TO _RUN

B_APP _ACTIVATED

140

Constant

B_ABOUT _REQUESTED

B_QUIT _REQUESTED

B_ARGV _RECEIVED

B_REFS_RECEIVED

B_PULSE

Chapter 2 • The Application Kit

These constants represent the system messages that are recognized and given special
treatment by BApplication and BLooper dispatchers. Application messages concern
the application as a whole, rather than any particular window thread. See the
introduction to this chapter and the BApplication class for details.

See also: "Application Messages" on page 41 of the BApplication class

Cursor Constants

be/app/AppDefs.h

const unsigned char B_HAND_CURSOR[]

const unsigned char B_l_BEAM_CURSOR[]

These constants contain all the data needed to set the cursor to the default hand
image or to the standard I-beam image for text selection.

See also: BApplication: : SetCursor ()

filter _result Constants

be/app/MessageFilter.h

Constant

B_SKIP _MESSAGE

B_DISPATCH_MESSAGE

These constants list the possible return values of a filter function.

See also: BMessageFilter: :Filter ()

Global Variables, Constants, and Defined Types • Constants

Launch Constants

be/app/Roster.h

Constant

B_MUL TIPLE_LAUNCH

B_SINGLE_LAUNCH

B_EXCLUSIVE_LAUNCH

141

These constants explain whether an application can be launched any number of
times, only once from a particular executable file, or only once for a particular
application signature. This information is part of the flags field of an app_info

structure and can be extracted using the B_LAUNCH_MASK constant.

See also: BRoster: : GetAppinfo (), "Application Flags" above

Looper Port Capacity

be/app/Looper.h

Constant

B_LOOPER_PORT _DEFAULT _CAPACITY

This constant records the default capacity of a BLooper's port. The default is 100 slots;
a greater or smaller number can be specified when constructing the BLooper.

See also: the BLooper constructor

Message Constants

be/app/AppDefs.h

Constant

B_REPLY

B_NO_REPLY

B_MESSAGE_NOT _UNDERSTOOD

B_SAVE_REQUESTED

B_CANCEL

B_SIMPLE_DATA

B_MIME_DATA

B_ARCHIVED _OBJECT

B_UPDATE_STA TUS_BAR

B_RESET _ST ATUS_BAR

142

Constant

B_NODE_MONITOR

B_QUERY_UPDATE

B_CUT

B_COPY

B_PASTE

B_SELECT _ALL

B_SET _PROPERTY

B_GET _PROPERTY

B_ CREATE_PROPERTY

B_DELETE_PROPERTY

B_ GET _SUPPORTED _SUITES

Chapter 2 • The Application Kit

These constants mark messages that the system sometimes puts together, but that
aren't dispatched like system messages. See "Standard Messages" in the Message
Protocols appendix for details.

See also: BMessage: : SendReply (), the BTextView class in the Interface Kit

message_delivery Constants
be/app/MessageFilter.h

Constant

B_ANY _DELIVERY

B_DROPPED_DELIVERY

B_PROGRAMMED_DELIVERY

These constants distinguish the delivery criterion for filtering a BMessage.

See also: the BMessageFilter constructor

message_source Constants

be/app/MessageFilter.h

Constant

B_ANY _SOURCE

B_REMOTE_SOURCE

B_LOCAL_SOURCE

Global Variables, Constants, and Defined Types • Defined Types

These constants list the possible constraints that a BMessageFilter might impose on
the source of the messages it filters.

See also: the BMessageFilter constructor

Message Specifiers

be/app/Message.h

Constant

B_NO_SPECIFIER

B_DIRECT _SPECIFIER

B_INDEX_SPECIFIER

B_REVERSE_INDEX_SPECIFIER

B_RANGE_SPECIFIER

B_REVERSE_RANGE_SPECIFIER

B_NAME_SPECIFIER

B_SPECIFIERS_END = 128

143

These constants fill the what slot of specifier BMessages. Each constant indicates
what other information the specifier contains and how it should be interpreted. For
example, a B_REVERSE_INDEX_SPECIFIER message has an "index" field with an
index that counts backwards from the end of a list. A B_NAME_SPECIFIER message
includes a "name" field that names the requested item.

Defined Types
app_info

be/app/Roster.h

typedef struct {
thread_id thread;
team_id team;
port_id port;
uint32 flags;
entry _ref ref;
char signature[B_MIME_ TYPE_LENGTH];
app_info(void);
-app_info(void);

I app_info

144 Chapter 2 • The Application Kit

This structure is used by BRoster's GetAppinfo (), GetRunningAppinfo () , and
GetActiveAppinfo () functions to report information about an application. Its
constructor ensures that its fields are initialized to invalid values. To get meaningful
values for an actual application, you must pass the structure to one of the BRoster
functions. See those functions for a description of the various fields.

See also: BRoster: : GetAppinfo ()

filter _result
be/app/MessageFilter.h

typedef en um { ... } filter _result

This type distinguishes between the B_SKIP_MESSAGE and B_DISPATCH_MESSAGE

return values for a filter function.

See also: BMessageFil ter: : Filter ()

message_ de! ivery
be/app/MessageFilter.h

typedef enum { ... } message_delivery

This type enumerates the delivery criteria for filtering a message.

See also: the BMessageFilter constructor

message_source
be/app/MessageFilter.h

typedef enum (... } message_source

This type enumerates the source criteria for filtering a message.

See also: the BMessageFilter constructor

CHAPTER THREE

The Storage Kit

Introduction

File System Architecture
Hierarchical Organization

File System Layout and the Root File System

Virtual File Systems

File System Handlers

Entries and Nodes
Entries

Nodes

More Facts

Lies

MIME and File Types

BAppFilelnfo
Overview

Constructor and Destructor

Member Functions

BDirectory
Overview

Constructor and Destructor

Member Functions

Operators

C Functions

BEntrylist
Overview

Member Functions

BEntry
Overview

Constructor and Destructor

145

149

150
150
151
153
154

154
154
155
155
156

157

158
158
160
160

166
167
170
170
176
177

178
178
182

183
183

189

146 Chapter 3 • The Storage Kit

Member Functions 189
Operators 194

BFile 194
Overview 194
Constructor and Destructor 195
Member Functions 196
Operators 200

BFilePanel 201
Overview 201
Hook Functions 208
Constructor and Destructor 208
Member Functions 209

BMimeType 213
Overview 213
Constructor and Destructor 214
Member Functions 214

l::tlh.I ~~ """ """""'
Overview 222
Constructor and Destructor 226
Member Functions 227
Operators 231

BNodelnfo 231
Overview 232
Constructor and Destructor 233
Member Functions 233

The Node Monitor 236
Overview 236
Node Monitor Functions 237
Opcode Constants 240

BPath 247
Overview 247
Constructor and Destructor 252
Member Functions 253
BFlattenable Functions 256
Operators 257

Contents 147

BQuery 257
Overview 258
Constructor and Destructor 264
Member Functions 264

BReffilter 269
Overview 269
Hook Functions 269
Member Functions 270

BResources 270
Overview 271
Constructor and Destructor 275
Member Functions 275

BStatable 279
Overview 279
Member Functions 281
The stat Structure 285

BSymLink 286
Overview 286
Constructor and Destructor 287
Member Functions 288

BVolume 289
Overview 289
Constructor and Destructor 290
Member Functions 291
Operators 292

BVolumeRoster 293
Overview 293
Constructor and Destructor 293
Member Functions 294

Global C Functions 295

Attribute C Functions 295
Overview 296
Attribute Functions 297

Index C Functions 301
Overview 302
Index Functions 304

148

Query C Functions
Overview

Query Functions

File System Info C Functions
Overview

C Functions

Global Constants and Defined Types
Constants

Defined Types

Chapter 3 • The Storage Kit

308
308
309

311
311
311

313
314
319

Storage Kit Inheritance Hierarchy

CHAPTER THREE

The Storage Kit

The Storage Kit is a set of C++ classes and C functions that let you access the file
system; in particular, the kit lets you:

• Navigate the file hierarchy
• Read and write files
• Monitor changes to specific files (the Node Monitor)
• Ask for a set of files based on their characteristics (queries and attributes)

The basic functionality of the kit-such as reading and writing files-is also provided
by the Be-supported POSIX functions (open () , read (), write (), close (), and so
on) such that if you don't want to use the Storage Kit, you don't have to. But keep in
mind that the Storage Kit's classes are not covers for POSIX functions. The POSIX
functions and the Storage Kit classes are separate branches that dissolve into the same
implementation-the one isn't implemented in terms of the other. POSIX is straight C,
so it avoids the C++ overhead; but language efficiency aside, the POSIX functions
aren't innately faster than the Storage Kit class functions.

The Storage Kit includes some additional C functions (beyond the standard POSIX
implementation) so that almost everything that can be done from the C++ level can
also be done in C, and vice versa. There are a few exceptions, notably these two:

• You can't create a file system index from the C++ classes.
• You can't create a live query with the C functions.

The next few sections provide some basic Storage Kit concepts, but most of the
interesting stuff is in the class descriptions. The C functions that "imitate" the C++
layer are described at the end of the chapter.

149

150 Chapter 3 • The Storage Kit

NOTE

The standard POSIX functions are not documented in this book Refer to an
authorized POSIX pamphlet if you're interested in learning more about these
functions.

File System Architecture
All file systems that the BeOS recognizes are organized hierarchically. Most file
systems use hierarchical organization naturally; any other type of organization must
be adapted at the "file system handler" level to simulate a hierarchy (in order to be
recognized by the BeOS). The result is that all file systems can be treated similarly in
terms of their organizational architecture.

Hierarchical Organization
The tenets of a Be-recognized hierarchical file system are these:

• Data is organized as a tree of directories and files.

• Directories contain files.

• Each file is a member of only one directory (at a time). The directory is said to be
the file's "parent." Once hard links are supported (as explained below) the one
parent rule will no longer hold.

• Similarly, each directory has a single parent (directory).

• The hierarchy "fans out" from the file system's root directory. The root directory is
the common ancestor for all files and directories in the hierarchy.

• Every file and directory has a "leaf' name; leaf names must be unique within the
containing directory.

• The only illegal character in a leaf name (in the Be File System) is "/". Also, every
directory automatically contains entries named"." and" .. ".

In the BeOS, more than one file system can be mounted at a time. Each distinct file
system is mounted within the root file system (described in the next section). Because
of this, all (non-root) file systems maintain distinct boundaries. However, these
otherwise-tidy boundaries are smudged a bit by symbolic links.

Symbolic Links

The BeOS recognizes symbolic links. A symbolic link (or "symlink") is a file that
"points to" some other entry (another file, directory, or symbolic link). The pointed-to
entry can live anywhere-in some other directory, or even in another file system.

File System Architecture • File System Layout and the Root File System 151

Because of symbolic links, the graph of the hierarchy isn't acyclic: As you follow a
path through the hierarchy, it's possible to get into a loop. (If you leave symbolic
links out of the picture, the graph is acyclic.)

WARNING

Currently, the BeOS does not recognize hard links (although it will in the
future). A hard link associates an entry in the hierarchy with a specific chunk of
data (a node). The attraction of hard links is that more than one entry can be
associated with the same node.

File System Layout and the Root File System
Before looking at the file system layout, let's get one thing clear. The term "file
system" is a heavily loaded monicker:

• At the lowest level, it means a "file system format." Currently, the BeOS recognizes
BFS, HFS (Macintosh), and IS09660 (CD-ROM) file system formats (other file
systems are being ported).

• "File system" can also mean the agent that knows how to turn bytes on a disk (or
even in memory, as described in "Virtual File Systems") into the sort of hierarchy
that the OS wants to see. When you pop in a floppy, for example, a file system
handler must wrangle the disk format to convert its contents into a recognized
hierarchy. When we say that the BeOS recognizes HFS, we're really saying that we
provide an HFS file system handler. See "File System Handlers" for more
information.

• Yet another meaning of "file system" is that part of the OS that manages and lays
out all the file systems that are mounted. It's the iiber-system for all hierarchies.

In the BeOS, this iiber-system is part of the kernel. The first thing it does is mount the
root file system. All other file systems are mounted within the root file system.

The structure of the root file system is a simple, two-level hierarchy:

• The root directory of the root file system is "/". This is the only directory in the
entire hierarchy that doesn't have a parent.

• The nodes in the root file system are directories and symlinks only. In other
words, the root file system contains no real files.

Directories at Root

The directories in the root file system have a prescribed purpose:

• The directories are mount points for other file systems. A mount point becomes
the root directory for the file system that's mounted there. (More accurately, the

152 Chapter 3 • The Storage Kit

name of the mount point becomes the name of the root directory; the mount
point directory itself is "obscured" when a file system is mounted on it.)

• You can create your own directories in the root file system, but they can only be
used as mount points-you can't use them to store files.

Symlinks at Root

The symlinks in the root file system are less restricted. The OS creates some number
of symlinks automatically (as described below), but other than that, you're free to put
whatever symlinks you want in the root file system. However, root level symlinks are
simply a convenience for developers-the user won't be able to see them since the
Tracker doesn't display the root file system.

Default Root Nodes

When BeOS is launched, some number of directories and symlinks are automatically
created in the root file system. The directories are:

• For each "persistent" file system that the OS finds (hard disks, CD-ROM, floppy,
etc.), a mount point directory is created and the file system is mounted. The
mount point for the file system that was used to boot the OS is /boot; the other
mount point names are taken from the storage devices themselves (if you name
your floppy "fido'', the floppy will be mounted at lfido).

• The OS also creates two virtual file systems, mounted at /dev and /pipe. We'll look
at virtual file systems later. Briefly, a virtual file system is one that only exists in
memory-it has no persistent storage. (The root file system itself is a virtual file
system.)

And the symlinks are:

• A link is made from I boot_disk_name to /boot.

• Links are made from !bin, /system, and !etc to similarly named subdirectories of
/boot/beos.

• Links are made from Ivar to /boot/var and from /tmp to /boot/var/tmp.

If you cd to I in a shell and list the files, you'll see something like this (where
"MyDisk" is the name of the boot disk, and "fido" is a floppy):

1--------- 1 users 0 Jun 19 22:11 bin -> /boot/beos/bin
drwx------ 1 users 2048 Jun 19 21:58 boot
drwxr-x--- 1 users 0 Jun 19 22:11 dev

1--------- 1 users 0 Jun 19 22:11 etc -> /boot/beos/etc
drwxr-xr-x 1 users 2048 Jun 19 22:12 fido

1--------- 1 users 0 Jun 19 22 :11 MyDisk -> /boot
drwxrwxrwx 1 users 0 Jun 19 22: 11 pipe

File System Architecture • Virtual File Systems 153

1--------- 1 users
1--------- 1 users
1--------- 1 users

0 Jun 19 22:11 system-> /boot/beos/system
0 Jun 19 22:11 tmp -> /boot/var/tmp
0 Jun 19 22:11 var -> /boot/var

If you invoke df, you'll see the list of mounted file systems:

Mount Type

rootfs
/dev devfs
/pipe pipefs
/boot bfs
/fido bfs

Total

0
0
0

532950
1440

Free Flags Device

0 0
0 0
0 0

395715 70004 /dev/disk/scsi/050/0_2
904 70004 /dev/disk/floppy/raw

All file systems, both persistent and virtual, are displayed by df. The virtual file
systems are the ones that have 0 size.

Navigating the File System

If your application needs to get to a well-defined watering hole (such as the directory
where a user's preference settings are stored, or where apps are kept), use the
symbolic pathname constants to the find_directory () function. The constants are
listed in the "Global Constants and Defined Types" section of this chapter.
find_ directory () is documented at the end of BDirectory description.

Virtual File Systems
A virtual file system has no backing storage. The hierarchy that it represents is
maintained in memory. When you shut down the OS, all virtual file systems
disappear.

Currently, the BeOS provides three virtual file system handlers:

• rootjs handles the root file system (described above). The root file system is
mounted at"/". It's always the first file system to be mounted, and provides mount
points for all other file systems.

• devfs is the handler for the device file system, mounted at /dev. This system
contains entry points for access to hardware devices, including hard disks, CD
ROMs, and so on.

• pipefs is the handler for the pipe file system, mounted at /pipe. A "pipe" is a
location through which the POSIX pipe mechanism reads and writes data.

From the developer's perspective, a virtual file system isn't much different from a
persistent file system: You can create a BVolume object to represent it, you can walk
through it's hierarchy, look at its contents, and so on.

But virtual file systems are hidden from the Tracker user: The Tracker does not display
virtual file systems, nor does it let the user form a query on a virtual file system.

154 Chapter 3 • The Storage Kit

File System Handlers
When the kernel attempts to mount a file system, if must first find a file system
handler that understands the file system's format. In other words, the handler is an
intermediary between the kernel and the bytes on a disk (for example).

All file system handlers are add-ons. The kernel loads the handler add-on that it
needs, and talks to it through a set of well-defined functions. The advantage of this
approach is that the kernel doesn't need to know about specific file systems, it only
needs to know how to talk to the handlers.

Currently, you can't create your own file system handler. The handler API will be
released sometime in the future.

Entries and Nodes
The most important concept that you should keep in mind when you're using the
Storage Kit is that a file is considered both an entry and a node:

• The entry part of a file is its location in the file hierarchy. An entry is similar to a
pathname: It tells you where a file is (or should be), but it doesn't let you look at
its contents.

• The node part of a file is its data. A node is an actual "thing" that's separate from
the file's entry-when you rename a file, for example, all you're doing is tagging
the node with a different pathname (or, in our lingo, you move the node from one
entry to another). Just as entries don't know about data, nodes don't know
anything about entries: A node doesn't know where its entry is located.

This concept really isn't new: If you're familiar with POSIX, then you've already dealt
with entries and nodes, except you called them pathnames and file descriptors.

Entries
In the Storage Kit, entries are represented three ways:

• As pathnames
• As entry_ref structures
• As BEntry objects

Any entry can be given by any of these representations. Furthermore, the
representations are fairly easily converted: Given an entry_ref, it's trivial to get a
BEntry, from which you can easily get a pathname, which can be turned into an
entry_ref. Which representation you use depends on what you're doing:

• You use pathnames or entry_refs to keep track of the entries you're interested in.

Entries and Nodes • More Facts

• You use BEntry objects to query and manipulate the entries. For example, if you
want to know if an entry is a directory or a file, you need a BEntry object.

Nodes
Nodes are represented in two ways:

• As node_ref structures

155

• As BNode objects

Here, again, the representations are easily converted. As for use:

• node_refs are used for purposes that we're going to ignore for now (we're just
covering the basics, here).

• The BNode class is where the action is. If you want to read and write the data in a
file, you need a BNode object-more specifically, you need an instance of the
BFile class, which derives from BNode.

Every node has a type, or flavor. There are three node flavors:

• Plain files
• Directories
• Symbolic links

These flavors are represented by subclasses of BNode: BFile, BDirectory, and
BSymLink. Note that a node_ref doesn't know its node's flavor.

More Facts
Some more facts you should be aware of:

• Every node has an entry; not every entry has a node.

If you've got your hands on a node, then you can assume that there's an entry
somewhere that "contains" that node. (This isn't entirely true, but it's true enough
for now. For the real story, see "Lies.")

The converse isn't true: An entry needn't have any data. Such entries are called
"abstract." Abstract entries are useful for expressing the location of a file before it's
created (for example). But don't be misled: Abstract entries do not exist in the file
hierarchy, they're simply placeholders that your app uses to designate a location.
This leads us to our next fact:

• Every file in the file hierarchy has an entry and a node.

156 Chapter 3 • The Storage Kit

This might seem obvious; if it does, then go to the next fact. For the skeptics,
here's the gospel: The files that "normal" apps work with are real-they actually
exist as bytes on a disk. Such files have a location in the hierarchy, and they
contain data.

• You can convert an entry into a node, but not the other way around.

The BNode class accepts any form of entry representation as an argument to its
constructor. In other words, given a pathname, entry_ref, or BEntry object, you
can create a BNode. But once you've got your BNode, you can't go back: There's
no way to get an entry from a node.

Returning to the BNode constructor: You can only create a BNode by passing the
constructor an entry (in one of its representations). This is an important point that
we'll pick up in the next section.

Lies
Here are some more facts, slight alterations to the near truths spoken above.

A Node Can Lose Its Entry

Consider this scenario: You create a BFile object to some file. While you're reading
and writing the file, the user deletes the file through the Tracker or from a Terminal.
What the user has done is delete the node's entry, not the node itself. The node isn't
destroyed until all references to the node, including your BFile, are deleted (or, more
accurately, "closed"). The twist is that your BFile by itself has no way of knowing that
the entry is gone.

So what are you supposed to do? In general, whenever you free a BFile object, you
should first check to make sure the entry still exists; of course, the BFile itself can't
tell you (remember: A node doesn't know about its entry), so you have to save the
entry that was used to create the BFile. You ask the entry if it still exists, and then do
whatever you have to do if it doesn't, such as alert the user, ask for a new entry
name, and so on.

Unfortunately, this problem has another wrinkle: What if the user moves the entry
while you're using the entry's node? In this case, the node isn't going to be destroyed,
but if you ask the generative entry (the entry that was used to create the BFile object),
it looks like the entry is gone.

There's no generic solution to the entire problem. Not because it's impossible to
implement, but because the "right" solution depends on what the user meant by
deleting or moving the entry. Most applications take this approach: The user knows
files as entries, not as nodes. If a user opens a file through your app, moves the entry

MIME and File Types

(through some other vehicle, such as the Tracker), and then asks your app to save
the file, what the user really want is for you to save the node under the same name
that was used to open the node.

A BDirectory Knows Its Entry

BDirectory is an exception to the "ignorant node" rule: You can ask a BDirectory
object for its entry (through its GetEntry () function).

MIME and File Types

157

MIME (Multipurpose Internet Mail Extensions) is a way to describe the content or
intent of a parcel of data. As the name implies, MIME was invented to make e-mail
smarter: Want to send a GIP image through e-mail? If your mail program understands
MIME, it can encode the image, tag it with a MIME string (in this case, "image/gif"), as
well as some other header information (such as the encoding protocol) before
sending the message out across the wires. Any MIME-savvy recipient program will be
able to properly display the message based (primarily) on the content-type string.

MIME in the BeOS

The Be file system adds a MIME string to every file in the (native) file system, and
tries to figure out an appropriate MIME type for foreign files, as well. MIME types are
used by the Tracker, for example, to figure out what icon it should use to represent a
particular file. Another example: When the user double-clicks a file, the MIME type
(for that file) is used to identify the application that will open the file. Your
application can perform similar deductions: When the user drag-drops a file, your
application can look at the file's MIME type and proceed (or reject) accordingly.

There are two parts to Be's MIME support:

• File Types. The first part is the inclusion of a MIME string as part of every file, as
mentioned above. This is called the file's file type. The MIME string is added as an
attribute-it's not part of the file's data. Every file-whether it's a document, an
application, or even a directory has its own file type attribute. For more on getting
and setting a file's type, see the BNodeinfo class.

• The File Type Database. The second part is the system's File Type database. The
database contains information about the file types that the system recognizes. The
user can get to the database through the FileTypes preferences application.
Programmatically, you access it through the BMimeType and BAppFileinfo classes.

158 Chapter 3 • The Storage Kit

BAppFilelnfo
Derived from: BNodeinfo

Declared in: be/storage/ AppFileinfo.h

Library: libbe.so

Overview
BAppFileinfo lets you get and set information about a specific application
(executable) file. The class knows about:

• The application's signature; this is the MIME type by which the application is
known to the File Type database.

• The file types that the application knows how to deal with (its "supported types").

• The application's icons, for itself as well as its supported types.

• The flags that are applied when the app is launched.

• Version information about the application.

• If you're setting information through a BAppFileinfo object, you must have a
running application object.

Initialization

You initialize a BAppFileinfo object by passing it an open BFile object. The
BAppFileinfo object has its own pointer to the BFile you pass in: It doesn't take
ownership of the BFile, nor does it create a separate file descriptor to the file.

Like BNodeinfo, BAppFileinfo can get information even if the BFile isn't open for
reading. But (unlike its parent), the BFile must be open for writing if you want to set
information (as explained in the next section).

If the BFile that you use to initialize the BAppFileinfo is open for writing, the file will
be locked until you re-initialize (or delete) the BAppFileinfo object. The BFile should
be unlocked when you pass it in.

To initialize a BAppFileinfo to point to the executable of be_app, you do this:

/* To get app file info for be_app. */
app_info ai;
BFile file;
BAppFileinfo afi;

be_app->GetAppinfo(&ai);
file.SetTo(&ai.ref, B_READ_WRITE);
afi.SetTo(&file);

BAppFilelnfo • Overview 159

For any other running app, you have to consult the roster:

/* To get app file info for any app. */
app_info ai;
BFile file;
BAppFileinfo afi;

/* Here we look for the app by its signature; we could also
*call GetRunningAppinfo(), or walk down the app list, etc.
*!

be_roster->GetAppinfo("application/whatever", &ai};
file.SetTo(&ai.ref, B_READ_WRITE};
afi.SetTo(&file};

Attributes and Resources

When you ask a BAppFilelnfo object to get some information, it looks in its file's
attributes. But when you ask to set some information, the info is written to the file's
attributes and it's stored in the resources portion of the file, as well. This explains
why the BFile must be open for writing. Also, because the resources portion must be
open, BAppFilelnfo isn't just a cover for attribute-accessing functions, the way
BNodelnfo is.

The File Type Database and the App's Signature

In some cases, the information that you set through a BAppFilelnfo object is also
recorded in the File Type database (based on the app's signature) and in the app
roster. This only works, however, if the application's signature is recognized by the
database. The BAppFilelnfo class doesn't tell the database about the signature; to do
this, you have to go through a BMimeType object:

char buf[B_MIME_TYPE_LENGTH];
BMimeType mime;

if (afi.GetSignature(buf}
mime.SetTo(buf};
mime.Install(};

Errors

B_NO_ERROR} {

Unlike most of the other Storage Kit classes, when you ask a BAppFilelnfo to retrieve
some information by reference, the object doesn't clear the reference argument if it
fails. Because of this, you should always check the error code that's returned by the
Get ... () functions.

160

Constructor and Destructor

BAppFilelnfo()

BAppFilelnfo(void)
BAppFilelnfo(BFile *file)

Chapter 3 • The Storage Kit

The default constructor creates a new, uninitialized BAppFileinfo object. To initialize
you have to follow this construction with a call to Set To ().

The BFile version initializes the BAppFileinfo by passing the argument to SetTo () .
See Set To () for details (and error codes).

-BAppFilelnfo()

-BAppFilelnfo(void)

Destroys the object. The BFile object that was used to initialize the object isn't
touched.

Member Functions

GetAppFlags(), SetAppFlags()

status_t GetAppFlags(uint32 *flags) canst

status_t SetAppFlags(uint32 flags)

These functions get and set the application's "app flags." These are the constants that
determine whether the app can only be launched once, whether it runs in the
background, and so on. The app flag constants are defined in be/app/Roster.h; an
application's flags must include one of the following ...

B_SINGLE_LAUNCH

B_MULTIPLE_LAUNCH

B_EXCLUSIVE_LAUNC
H

... plus either of these two:

B_BACKGROUND_APP

B_ARGV_ONLY

While an app is running, it records its app flags in the flags field of its app_info

structure. See the BApplication and BRoster classes (in the Application Kit) for details.

BAppFilelnfo • Member Functions 161

Return values:
B_NO_ERROR. The flags were successfully retrieved or set.
B_NO_INIT. The BAppFileinfo is uninitialized.
B_NO_INIT. (Set) The BFile isn't open for writing.
B_ERROR. (Set) The BFile was locked when you initialized this object.
Attribute errors. See the error codes for BNode: : Read.At tr () and
BNode: :WriteAttr ().

BResources errors. See the error codes for BResources: : Wri teResource ().

Getlcon(), Setlcon()

status_t Getlcon(BBitmap *icon, icon_size which) canst
status_t Setlcon(const BBitmap *icon, icon_size which)

Geticon () and Set Icon () get and set the icons that are stored in the app file. You
specify which icon you want (large or small) by passing B_LARGE_ICON or
B_SMALL_ICON as the which argument.

WARNING

The which value does not default the way it does for BNodeinfo.

The icon is passed in or returned through the icon argument:

• If you're getting the icon, the icon argument must be allocated; the icon data is
copied into your BBitmap object.

• If you're setting the icon, the bitmap must be the proper size: 32x32 for the large
icon, 16x16 for the small one. In BRect lingo, that's BRect(O, 0, 31, 31) and
BRect(O, 0, 15, 15). The icons that you set through Seticon () are also recorded
in the File Type database, based on the application's signature.

• You can remove an app's icon by passing NULL as the icon argument to
Seticon ().

Return values:
B_NO_ERROR. The icon was successfully found or set.
B_NO_INIT. The BAppFileinfo is uninitialized.
B_NO_INIT. (Set) The BFile isn't open for writing.
B_ERROR. (Set) The BFile was locked when you initialized this object.
B_BAD_ VALUE. (Get) NULL BBitmap pointer.
B_BAD_ VALUE. (Set) The bitmap data isn't the proper size.
Attribute errors. See the error codes for BNode: : Read.At tr () and
BNode: :WriteAttr ().

BResources errors. See the error codes for BResources: : Wri teResource ().

162

GetlconForType(), SetlconForType()

status_t GetlconForType(const char *file_type,
BBitmap *icon,
icon_size which) const

status_t SetlconForType(const char *file_type,
const BBitmap *icon,
icon_size which)

Chapter 3 • The Storage Kit

These functions get and set the icons that this application uses to display the given
file type.

• file_type must be a valid MIME string.

• The icon and which rules are the same as for Get Icon () /Seticon () .

The icons that you set are recorded in the File Type database, based on the app's
signature.

Return values:
B_NO_ERROR. The icon was found or set.
B_NO_INIT. The BAppFileinfo is uninitialized.
B_NO_INIT. (Set) The BFile isn't open for writing.
B_ERROR. (Set) The BFile was locked when you initialized this object.
B_BAD_VALUE. (Get) NULL BBitmap pointer, or file_type is invalid.
B_BAD_VALUE. (Set) The bitmap data isn't the proper size, or file_type is invalid.
Attribute errors. See the error codes for BNode: : ReadAt tr () and
BNode: :WriteAttr ().

BResources errors. See the error codes for BResources: :WriteResource ().

GetPreferredApp(}, SetPreferredApp()

WARNING

Don't use these functions. An application's preferred app is itself; mucking with
this setting is asking for trouble. These functions are inherited from BNodeinfo.

GetSignature(), SetSignature()

status_t GetSignature(char •signature) const
status_t SetSignature(const char *signature)

These functions get and set the signature (a MIME string) by which this application is
known to the File Type database.

BAppFilelnfo • Member Functions

• The signature buffer that you pass to GetSignature () should be at least
B_MIME_TYPE_LENGTH characters long; the signature is copied into the buffer.

• The length of the signature you pass to SetSignature () must be no longer than
B_MIME_TYPE_LENGTH.

WARNING

SetSignature () does not install the signature (as a file type) in the File Type
database. See "The File Type Database and the App's Signature" for details.

Return values:
B_NO_ERROR. The signature was found or set.
B_NO_INIT. The BAppFilelnfo is uninitialized.
B_NO_INIT. (Set) The BFile isn't open for writing.
B_ERROR. (Set) The BFile was locked when you initialized this object.
B_ENTRY_NOT_FOUND. (Get) The app doesn't have a signature.
B_BAD_ VALUE. (Set) signature is too long.
Attribute errors. See the error codes for BNode: : ReadAt tr () and
BNode: :WriteAttr ().

BResources errors. See the error codes for BResources: :WriteResource ().

GetSupportedTypes(), SetSupportedTypes()

status_t GetSupportedTypes(BMessage *types) const
status_t SetSupportedTypes(const BMessage *types)

These functions get and set the file types that this app understands.

163

• If you're getting the types, you'll find them copied into your BMessage's "types"
field (the BMessage must be allocated). They're given as an indexed array of
strings (B_STRING_TYPE).

• Similarly, you pass in the supported types by adding strings to the message's
"types" field.

• The BMessage's what field is unimportant.

Here we print all the supported types for a particular app:

/* afi is a valid BAppFileinfo object. */
BMessage msg;
uint32 i=O;
char *ptr;

if (afi.GetSupportedTypes(&msg) != B_NO_ERROR)
/* Handle the error. */

while (true)
if (msg. FindString ("types", i++, &ptr)

164

!= B_NO_ERROR)
break;

printf { "> Supported Type: %s\n", ptr);

Chapter 3 • The Storage Kit

The supported types that you set are recorded in the File Type database, based on
the app's signature, and they're recorded by the app roster

When you set a new supported type, the File Type database makes sure that the type
is "installed" (that the type is understood by the database). If the type wasn't
previously installed, the type's preferred app is set to this app's signature.

WARNING

SetSupportedTypes () clobbers an app's existing set of supported types. If
you want to augment an app's supported types, you should retrieve the exist
ing set, add the new ones, and then call SetSupportedTypes () .

Return values:
B_NO_ERROR. The types were found (including no types) or set.
B_NO_INIT. The BAppFileinfo is uninitialized.
B_NO_INIT. (Set) The BFile isn't open for writing.
B_NO_MEMORY. Insufficient memory to copy the types.
B_ERROR. (Set) The BFile was locked when you initialized this object.
Attribute errors. See the error codes for BNode : : ReadAt tr () and
BNode: : Wri teAt tr ().

BResources errors. See the error codes for BResources: : Wri teResource ().

GetType(), SetType()

virtual status_t GetType(char •type) const
virtual status_t SetType(const char *type)

These functions get and set the app's file type. The file type, passed in or returned
through type, is a MIME string.

A Be-native application's default file type is "application/x-be-executable".

Return values:
B_NO_ERROR. The type was found (including no type) or set.
B_NO_INIT. The BAppFileinfo is uninitialized.
B_NO_INIT. (Set) The BFile isn't open for writing.
B_ERROR. (Set) The BFile was locked when you initialized this object.
B_BAD_VALUE. (Set) type is too long.
Attribute errors. See the error codes for BNode: : ReadAt tr () and
BNode: : Wri teAt tr() .

BResources errors. See the error codes for BResources: : Wri teResource () .

BAppFilelnfo • Member Functions

GetVersionlnfo(), SetVersionlnfo(), version_info, version_kind

status_t GetVersionlnfo(version_info *info, version_kind kind) canst
status_t SetVersionlnfo(const version_info *info, version_kind kind)

struct version_info {}

The functions get and set the application's "version info." The information is recorded
in the version_info structure:

struct version_info
uint32 major;

uint32 middle;
uint32 minor;
uint32 variety;
uint32 internal;
char short_info[64];
char long_info[64];

The fields have no prescribed uses: You can stuff whatever information you want in
them. Obviously, the field names (and types) provide suggestions for the type of info
they want to store.

There are two kinds of version info; the kind you want to look at or set is encoded in
the kind argument:

165

• B_APP_VERSION_KIND records information about this specific app.

• B_SYSTEM_VERSION_KIND records information about the "suite," or other
grouping of apps, that this app belongs to.

Again, the uses of the two kinds is up to the app developer-currently, nothing in the
BeOS depends on any information being stored in either version_info structure.

Return values:
B NO ERROR. The version_info was found or set.
B_NO_INIT. The BAppFilelnfo is uninitialized.
B_NO_INIT. (Set) The BFile isn't open for writing.
B_ERROR. (Set) The BFile was locked when you initialized this object.
B_ENTRY_NOT_FOUND. (Get) the app doesn't have the requested version info.
Attribute errors. See the error codes for BNode: : Read.At tr() and
BNode: :WriteAttr ().
BResources errors. See the error codes for BResources: :WriteResource ().

lnitCheck()

status_t lnitCheck(void) const

Returns the status of the most recent initialization.

166

Return values:
B_NO_ERROR. The object was successfully initialized.
B_NO_INIT. The object is uninitialized.
See SetTo () for more error codes.

SetAppFlags() see GetAppFlags()

Seti con() see Get/con()

Seti con For Type() see Get/con For Type()

SetPreferredApp() see GetPreferredApp()

SetSignatu re() see GetSignature()

SetSupportedTypes() see GetSupponedTypes()

Set To()
status_t SetTo(BFile *file)

Chapter 3 ~ The Storage Kit

Initializes the BAppFileinfo object by pointing it to file, which must be a valid
(initialized) BFile object. The BFile is not copied, or re-opened by BAppFileinfo. In
particular, the BAppFileinfo uses files file descriptor.

If the BFile is open for writing, it will be locked by this function. The BFile should be
unlocked when you pass it in.

Return values:
B_NO_ERROR. The object was successfully initialized.
B_BAD_ VALUE. file is uninitialized.

SetType() seeGetTypes()

SetVersionlnfo() seeGetVersionlnfo()

BDirectory
Derived from: BNode, BEntryList

Declared in: be/storage/Directory.h

Library: libbe.so

BDirectory • Overview

Overview
A BDirectory object gives you access to the contents of a directory. A BDirectory's
primary features are:

• It can iteratively retrieve the entries in the directory. The entries are returned as
BEntry objects, entry_refs, or dirent structures (GetNextEntry (),
GetNextRef (), GetNextDirents ()).

• It can find a specific entry. You can ask if the entry exists (Contains ()), and you
can retrieve the entry as a BEntry (FindEntry ()).

• It can create new entries. Through the aptly named CreateFile (),
CreateDirectory () and CreateSymLink () functions.

Unlike the other BNode classes, a BDirectory knows its own entry (GetEntry ()),
and can be initialized with a node_ref structure.

Retrieving Entries

167

The BDirectory functions that let you iterate over a directory's entries are inherited
from BEntryList:

status_t GetNextEntry (BEntry *entry, bool traverse= true);
status_t GetNextRef (entry_ref *ref);
int32 GetNextDirents (dirent *buf, size_t length, int32 count= INT_MAX)

For the basic story on these functions, see the BEntryList class and the function
descriptions below. In addition to the info you'll find there, you should be aware of
the following:

• Entries are returned in "directory order." This is, roughly, the ASCII order of their
names.

• Try not to alter the directory while you're getting its entries. Entries are delivered
on demand. If you do something to change the contents of the directory while
you're iterating through those contents (such as change the name of the file "aaa"
to "zzz") you could end up seeing an entry more than once (technically, you'll see
the same node under the guise of different entries), or you could miss an entry.

• Counting entries uses the same iterator that retrieves entries. You mustn't call
CountEntries () while you're looping over a GetNext ... () function.

Creating New Directories

To create a new directory, you can use BDirectory's CreateDirectory() function.
The function creates a single new directory as identified by its argument. The new
directory will be a subdirectory of the invoked-upon BDirectory's directory.

168 Chapter 3 • The Storage Kit

You can also create an entire path full of new directories through the global
create_directory () function. This convenient function attempts to create all
"missing" directories along the path that you pass in.

Finding a Directory

The find_directory () function gives you the pathnames for pre-defined
directories. These directories, such as those that store Be-supplied applications and
user-defined preferences settings, are represented by directory_which constants.
These constants are not strings; you can't use them directly. You have to pass them
through find_directory ().

Note that the BDirectory class itself doesn't let you find directories on the basis of the
directory_which constants-you have to use the find_directory () function
(which is documented at the end of this class description).

Node Monitoring a Directory

NOTE

The following description is a brief, directory-specific view into the Node Mon
itor. For the full story, see "The Node Monitor" section of this chapter.

You can monitor changes to the contents of a directory by passing a BDirectory's
node_ref and the B_WATCH_DIRECTORY flag to the Node Monitor's watch_node ()

function. As with all invocations of wa tch_node () , you also have to pass a
BMessenger (the "target") that will receive the Node Monitor notifications; here, we
use be_app_rnessenger:

BDirectory dir ("/boot/home");
node_ref nref;
status_t err;

if (dir.InitCheck() == B_OK) {
dir.GetNodeRef(&nref);
err= watch_node(&nref, B_WATCH_DIRECTORY, be_app_messenger);
if (err != B_OK)

/* handle the error */

The following changes to the monitored directory cause BMessages to be sent to the
target. The what field for all Node Monitor messages is B_NODE_MONITOR; the
"opcode" field (an integer code) describes the activity:

• An entry was created (opcode= B_ENTRY_CREATED).

• An entry was moved to a different name in the same directory
(B_ENTRY_RENAMED).

BDirectory • Overview

• An entty was moved from this directoty to a different directoty, or vice versa
(B_ENTRY_MOVED).

• An entty (and the node it represents) was deleted from the file system
(B_ENTRY_REMOVED).

The B_WATCH_DIRECTORY flag (by itselD doesn't monitor changes to the directoiy's
own entty. For example, if you change the name of the directoty that you're
monitoring, the target isn't sent a message. If you want a BDirectoty to watch changes
to itself, you have to throw in one of the other Node Monitor flags (B_WATCH_NAME,

B_WATCH_STAT, or B_WATCH_ATTR).

The other fields in the Node Monitor message describe the entty that changed. The
set of fields depends on the opcode (the following is a summaty of the list given in
"Notification Messages" in the Node Monitor documentation):

B_ENTRY_CREATED

Field

"device"

"directory"

"node"

"name"

Type

B_INT32_TYPE

B_INT64_TYPE

B_INT64_TYPE

B_STRING_TYPE

B ENTRY_MOVED

Description

dev_t of the directory's device.

ino_t (node number) of the directory.

ino_t of the new entry's node.

The name of the new entry.

The "device", "node", and "name" fields are the same as for B_ENTRY_CREATED,
plus ...

Field

"from_ directory"

"to_ directory"

Type

B_INT64_TYPE

B_INT64_TYPE

B_ENTRY_REMOVED

Description

The ino_t number of the old directory.

The ino_t number of the new directory.

The B_ENTRY _REMOVED message takes the same form as B_ENTRY_CREATED, but
without the "name" field. This, obviously, can be a problem-what good is it if you're
told that a file has been removed, but you're not told the file's name? In some cases,
simply being told that a file has been removed actually is good enough: You can
simply re-read the contents of the directoty.

169

170

Constructor and Destructor

BDirectory()

BDirectory(const entry_ref *re./)
BDirectory(const node_ref *nrej)
BDirectory(const BEntry *entry)
BDirectory(const char *path)
BDirectory(const BDirectory *dir, canst chai: •path)

BDirectory(void)
BDirectory(const BDirectory &directory)

Chapter 3 • The Storage Kit

Creates a new BDirectory object that represents the directory as given by the
arguments. See the analogous SetTo () functions for descriptions of the flavorful
constructors.

• The default constructor does nothing; it should be followed by a call to SetTo () .

• The copy constructor points the BDirectory to the same directory as is represented
by the argument. The two objects have their own entry iterators.

To check to see if an initialization was successful, call Ini tCheck () .

-BDirectory()

virtual -BDirectory()

Deletes the object.

Member Functions

Contains()

bool Contains(const char *path, int32 nodeFlags = B_ANY _NODE)
bool Contains(const BEntry *entry, int32 nodeFlags = B_ANY _NODE)

Returns true if path or entry is contained within this directory, or in any of its
subdirectories (no matter how deep). You can use the nodeFlags argument to limit
the search to a particular flavor of node:

• B_FILE_NODE looks for a "plain" file.
• B_DIRECTORY_NODE looks for a directory.
• B_SYMLINK_NODE looks for a symbolic link.
• B_ANY_NODE (the default) doesn't discriminate between flavors.

CountEntries() see GetNextEntry()

BDirectory • Member Functions 171

CreateDirectory() see CreateFile()

CreateFile(), CreateDirectory(), CreateSymlink()

status_t CreateFile(const char •path,
BFile *file,
bool f ailljExists)

status_t CreateDirectory(const char •path, BDirectory *diry

status_t CreateSymlink(const char •path,
const char * linkToPath,
BSymLink *link)

These functions create a new file, directory, or symbolic link. The new node is
located at path, where path must be relative and is reckoned off of the directory
represented by this BDirectory.

• CreateFile () fails if the file already exists and failljExists is true. If the flag is
false (and the file exists), the old file is clobbered and a new one is created. If
successful, the BFile argument that you pass in is opened on the new file in
B_READ_WRITE mode.

• CreateDirectory () and CreateSymLink () fail if path already exists-you
can't clobber an existing directory or link.

• The linkToPath argument (CreateSymLink ()) is the path that the new symbolic
link will be linked to.

In all cases, the object argument (the BDirectory, BFile, or BSymLink) must be
allocated before it's passed in. If the function fails, the argument is Unset ().

Return values:
B_OK. Success.
B_BAD_ VALUE. Illegal path, file, dir, or link specified; may be NULL. path may be
empty.
B_BUSY. A busy node could not be accessed.
B_ENTRY_NOT_FOUND. The specified path does not exist or is an empty string.
B_FILE_ERROR. A file system error prevented the operation.
B_FILE_EXISTS. The file specified by path already exists.
B_LINK_LIMIT. A cyclic loop has been detected in the file system.
B_NAME_TOO_LONG. The path specified is too long.
B_NO_MEMORY. Insufficient memory to perform the operation.
B_NO_MORE_FDS. All file descriptors are in use (too many open files).
B_IS_A_DIRECTORY. Can't replace a directory with a file.
B_NOT_A_DIRECTORY. A component of the path is not a directory.

172 Chapter 3 • The Storage Kit

B_NOT_ALLOWED. The volume is read-only.
B_PERMISSION_DENIED. Create access is denied in the specified path.
E2BIG. linkToPath is too long (CreateSymLink () only).

CreateSymLink() see CreateFile()

Find Entry()

status_t FindEntry(const char *path,
BEntry *entry,
bool traverse = false)

Finds the entry with the given name, and sets the second argument to refer to that
entry.

• path must be a relative pathname. It's reckoned off of the BDirectory's directory.

• You are allowed to look for "." and " .. ". The former represents this directory's
entry. The latter refers to this directory's parent.

• The entry argument must be allocated before it's passed in (it needn't be
initialized).

• The traverse applies to symbolic links: If the flag is true, the link is traversed. If
it's false, you get the BEntry that points to the link itself.

If path isn't found, the second argument is automatically Unset () . To find out why
the lookup failed, invoke Ini tCheck () on the entry argument:

BEntry entry;
status_t err;

if (dir.FindEntry("aFile", &entry} != B_OK} {
err= entry.InitCheck(};

The direct return value is also informative, but it may not be as precise as the
Ini tCheck () value.

Return values:
B_OK. Success.
B_BAD_VALUE. Invalid path specified; it may be NULL or empty.
B_ENTRY_NOT_FOUND. The specified path does not exist.
B_NAME_TOO_LONG. The path specified is too long.
B_LINK_LIMIT. A cyclic loop has been detected in the file system.
B_NO_MEMORY. Insufficient memory to perform the operation.
B_FILE_ERROR. An invalid file prevented the operation.

BDirectory • Member Functions

GetEntry()

status_t GetEntry (BEntry *entry)

Initializes entry to represent this BDirectory. If the initialization fails, entry is
Unset ().

Return values:
B_OK. Success.
B_NAME_TOO_LONG. The path specified by entry is too long.
B_ENTRY_NOT_FOUND. The specified path does not exist.
B_LINK_LIMIT. A cyclic loop has been detected in the file system.
B_BAD_ VALUE. entry is uninitialized.
B_NO_MEMORY. Insufficient memory to perform the operation.
B_BUSY. A busy node could not be accessed.
B_FILE_ERROR. An invalid file prevented the operation.
B_NO_MORE_FDS. All file descriptors are in use (too many open files).
B_NOT_A_DIRECTORY. The path includes non-directory entries.

173

GetNextDirents() see GetNextEntry()

GetNextEntry(), GetNextRef(), GetNextDirents(),
CountEntries(), Rewind()

status_t GetNextEntry(BEntry *entry, bool traverse= false) canst
status_t GetNextRef(entry_ref *re}) canst
int32 GetNextDirents(dirent *buf, size_t bu/size, int32 count= MAX_INT) canst

int32 CountEntries(void) canst

status_t Rewind{void)

The three GetNext ... () functions retrieve the "next" entry that lives in the
BDirectory and returns it as a BEntry, entry_ref, or dirent structure.

• GetNextEntry () returns the entry as a BEntry object. If traverse is true and the
entry is a symbolic link, the link is traversed. In other words, entry could end up
being in a different directory than the one referred to by this. When all entries
have been visited, the function returns B_ENTRY_NOT_FOUND. The entry argument
must be allocated before it's passed in.

• GetNextRef () return the next entry in ref Since an entry_ref doesn't supply
enough information to determine if the entry is a link, there's no question of
traversal: The entry_ref points to exactly the next entry. When all entries have
been visited, the function returns B_ENTRY_NOT_FOUND. The ref argument must
be allocated before it's passed in.

174 Chapter 3 • The Storage Kit

• GetNextDirents () returns some number of dirent structures, either as many
as can be stuffed into buf (where bu/size gives the size of buj), or count
structures, whichever is smaller. The function returns the number of structures that
were stuffed into buf, when all entries have been visited, it returns 0.

WARNING

Currently, GetNextDirents () only reads one dirent at a time, no matter how
many you ask for.

GetNextEntry () and GetNextRef () are reasonably clear; the dirent version
deserves more explanation. You'll find this explanation (and an example) in the
BEntryList class. Also, keep in mind that the set of candidate entries is different for the
dirent version: GetNextDirents () finds all entries, including the entries for "."
and " .. ". The other two versions skip these entries.

When you're done reading the BDirectory's entries, you can rewind the object's entry
iterator by calling Rewind () .

CountEntries () returns the number of entries (not counting
directory.

WARNING

and ''..") in the

Never call CountEntries () while yem're iterating through the directory.
CountEntries () does a rewind, iterates through the entries, and then
rewinds again.

Return values:
B_OK. Success.
B_FILE_ERROR. BDirectory object has not been properly initialized.
B_NOT_A_DIRECTORY. The directory is invalid.
B_NAME_TOO_LONG. The dirent's name is too long.
B_ENTRY_NOT_FOUND. End of directory reached.
B_LINK_LIMIT. A cyclic loop has been detected in the file system.
B_BAD_ VALUE. Invalid input specified, or BDirectory object has not been properly
initialized.
B_NO_MEMORY. Insufficient memory to perform the operation.

GetNextRef() see GetNextEntry()

GetStatFor()

status_t GetStatFor(const char *path, stat *st) canst

BDirectory • Member Functions

Gets the stat structure for the entry designated by path. path must be relative, and is
reckoned off of the BDirectory's directory. This is, primarily, a convenience function;
but it's also provided for efficiency.

Return values:
B_OK. Success.
B_FILE_ERROR. An invalid file prevented the operation.
B_NAME_TOO_LONG. The path specified is too long.
B_ENTRY_NOT_FOUND. The specified path does not exist.
B_LINK_LIMIT. A cyclic loop has been detected in the file system.
B_BAD_VALUE. Invalid input specified; the path may be NULL or empty.
B_NO_MEMORY. Insufficient memory to perform the operation.

lnitCheck()

status_t lnitCheck{void) const

Returns the status of the previous construction, assignment operation, or SetTo ()

call.

Return values:

175

B_OK. The initialization was successful.
B_NO_INIT. The object is uninitialized (this includes Unset ()).

See SetTo () for other errors.

lsRootDirectory()

bool lsRootDirectory(void)

Returns true if this BDirectory represents a root directory. A root directory is the
directory that's at the root of a volume's file hierarchy. Every volume has exactly one
root directory; all other files in the volume's hierarchy descend from the root
directory.

Rewind() see GetNextEntry()

SetTo(), Unset()

status_t SetTo(const entry_ref *ref)
status_t SetTo(const node_ref *nrej)
status_t SetTo{const BEntry •entry1)
status_t SetTo(const char *path)
status_t SetTo(const BDirectory *dir, const char •path)

void Unset(void)

176 Chapter 3 • The Storage Kit

Closes the BDirectory's current directory (if any), and initializes the object to open the
directory as given by the arguments.

• In the path version, path can be absolute or relative, and can contain"." and " .. "
elements. If path is relative, it's reckoned off of the current working directory.

• In the dir/path version, path must be relative. It's reckoned off of the directory
given by dir.

If the specification results in a symbolic link that resolves to a directory, then the
linked-to directory is opened. If the specification is (or resolves to) a regular file, the
initialization fails.

Return values:
B_OK. Success.
B_NAME_TOO_LONG. The path specified is too long.
B_ENTRY_NOT_FOUND. The directory does not exist.
B_LINK_LIMIT. A cyclic loop has been detected in the file system.
B_BAD_VALUE. Invalid input specified.
B_NO_MEMORY. Insufficient memory to perform the operation.
B_BUSY. A busy node could not be accessed.
B_FILE_ERROR. An invalid file prevented the operation.
B_NO_MORE_FDS. All file descriptors are in use (too many open files).

Operators
= (assignment)

BDirectory& operator=(const BDirectory &directory)

In the expression

BDirectory a = b;

BDirectory a is initialized to refer to the same directory as b. To gauge the success of
the assignment, you should call Ini tCheck () immediately afterwards. Assigning a
BDirectory to itself is safe.

Assigning from an uninitialized BDirectory is "successful": The assigned-to BDirectory
will also be uninitialized (B_NO_INIT).

==, != (comparison)

bool operator==(const BDirectory &directory) const
bool operator!=(const BDirectory &directorj) const

Two BDirectory objects are said to be equal if they refer to the same directory, or if
they're both uninitialized.

BDirectory • C Functions

C Functions

create_ directory()

status_t create_directory(const char *path, mode_t mode)

Creates all missing directories along the path specified by path.

177

• The pathname can be absolute or relative. If it's relative, the path is reckoned of
the current working directory. If any symlinks are found in the existing portion of
the path, they're traversed.

• path can contain".", but it may not contain" .. ".

• mode is the permissions setting (typically expressed as an octal number) that's
assigned to all directories that are created. To set the directories to be readable,
writable, and "enterable" by all (for example), you would set the mode to 0777.

Return values:
B_OK. path now fully exists (or did in the first place).
B_BAD_VALUE. path is NULL, is empty, or contains" .. ".
B_NOT_ALLOWED. Read-only volume.
B_NO_MEMORY. Insufficient memory to perform the operation.

find_ directory()

status_t find_ directory(directory_ which which,
dev _t volume,
bool create_it,
char *path_string,
int32 length)

status_t find~directory(directory_ which which,
BPath *path_ob1;
bool create_ it= false,
BVolume *volume= NULL)

NOTE

The first version of this function can be used in either C or C++ code. The sec
ond version is for C++ code only.

Finds the path to the directory symbolized by which and copies it into path_string, or
uses it to initializes path_obj.

• The create_it argument tells the function to create the function if it doesn't already
exist.

178 Chapter 3 • The Storage Kit

• volume identifies the volume (as a dev_t identifier or BVolume object) on which
you want to look. The C++ default (NULL) means to look in the boot volume.

• The length argument (first version only) gives the length of path.

The directory_which constants are described in the "Global Constants and
Defined Types" section at the end of this chapter.

Return values:
B_OK. The directory was found.
Other codes. The directory wasn't found or couldn't be created.

BEntryList
Derived from: none

Declared in: be/storage/EntryList.h

Library: none

Overview
BEntryList is a pure abstract class that defines the protocol for iterating over a set of
file system entries. Each derived class must figure out how to create (or "discover")
the entry list in the first place: BEntryList only supplies functions for getting entries
out of the list, it doesn't let you put them in. The BEntryList class has two derived
classes: BDirectory and BQuery.

At the heart of the BEntryList class are the three GetNEixt ... { } functions, which let
you retrieve the entries as:

• BEntry objects (GetNextEntry {}),
• entry_ref structures (GetNextRef {}),
• or dirent ("directory entry") structures (GetNextDirents {}).

You call these functions iteratively; ·each call gets the "next" entry (or set of entries in
the case of GetNextDirents {)). You check the GetNext ... {} return value to
detect the end of the list:

• For GetNextEntry {} and GetNextRef {}' B_ENTRY_NOT_FOUND indicates that
there are no more entries to get.

• GetNextDirents {} returns 0 when it's at the end of the list.

To get back to the top of an entry list, you call Rewind { } , but note the following:

BEntrylist • Overview 179

WARNING

Rewind () applies to BDirectories only. You can't rewind a BQuery's entry list.

Here's an example of an iteration over all the entries in a BDirectory, retrieved as
BEntry objects:

BDirectory dir("/boot/home/fido");
BEntry entry;

dir. Rewind() ;
while (dir.GetNextEntry(&entry) == B_NO_ERROR)

/* do something with entry here. */

The final BEntryList function, CountEntries (), also only applies to BDirectories;
but even there you shouldn't depend on it. The count is stale as soon as
CountEntries () returns. The user could create a new file or delete a file in the
directory while you're iterating over the entries. Also, CountEntries () shares the
entry list pointer with the GetNext ... () functions. You mustn't intermingle a
CountEntries () call within your GetNext ... () loop.

One more BDirectory wrinkle:

• Entries are retrieved in "directory order". (This is a POSIX term that means,
roughly, ASCII order.) If the user renames a file while you're iterating over the
directory, it's possible that the file won't be seen, or will show up under its old
name and its new name.

The Entry List Pointer

Each BEntryList object has a single iterator pointer that's shared by all three
GetNext ... () formats (and CountEntries ()). Thus, each successive call to a
GetNext ... () function gets the next entry, regardless of the format. For example:

BEntry entry;
entry_ref ref;

dir.GetNextEntry(&entry);
dir.GetNextRef(&ref);

Here, entry represents the first entry in the directory, and ref represents the second
entry.

Multiple Retrieval

GetNextDirents () is different from the other two flavors in that it can retrieve
more than one entry at a time. Or it will, someday; currently GetNextDirents ()
retrieves only one entry at a time, no matter how many you ask for.

180 Chapter 3 • The Storage Kit

Choosing an Iterator

So, which flavor of GetNext ... () should you use? Here's how they compare:

• GetNextDirents () is by far the fastest (even in the current one-struct-at-a-time
version), but it's also the least wieldy-the protocol isn't nearly as nice as the
other two functions. The dirent structure, while jam-packed with fun facts,
usually has to be turned into other structures (node_refs or entry_refs) in
order to be useful.

• GetNextRef () is slower, but the entry_ref structure can be immediately usable
(or, at least, cachable). Nonetheless, you're still a step away from a "real" object.

• GetNextEntry () is the slowest, but at least it hands you an object that you can
sink your teeth into.

The actual timing numbers depend on your machine, the class that you're invoking
the functions through, and some other factors. But the difference is (ahem)
significant: GetNextDirents () is about an order of magnitude faster than
GetNextEntry () , with GetNextRef () right about in the middle.

If, for example, you're simply compiling a list of leaf names, you should certainly use
GetNextDirents () (painful though it may be). But if you plan on actually doing
something with each and every entry that you retrieve, then bite the bullet: Use
GetNextEntry () .

The dirent Structure and GetNextDirentsO

Of the three iterator functions, GetNextDirents () needs some explanation. The
dirent structure, which is what the function returns, describes aspects of the
retrieved entry:

typedef struct dirent
dev_t d_dev;
ino_t d_ino;
dev_t d_pdev;
ino_t d_pino;
unsigned short d_reclen;
char d_name [l] ;

dirent;

The fields are:

• d_dev is a device id that identifies the device (file system) on which this entry lies.
• d_ino is the node number for this entry's node.
• d_pdev and d_pino are the device and inode numbers for the parent directory.
• d_reclen is the length of this dirent structure. The length is variable because ...
• d_name is a buffer that's allocated to hold the (NULL-terminated) name of this

entry.

BEntrylist • Overview

So--let's pretend we've retrieved a dirent and we want to do something with it. In
addition to looking at individual fields, we can combine some of them to make other
structures:

• d_dev + d_ino = node_ref of the entry's node
• d_pdev + d_pino = node_ref of the parent directory
• d_pdev + d_pino + d_name = entry_ref for the entry

In code:

dirent *dent;
entry_ref ref;
node_ref nref;
node_ref pnref;

/*Allocate and fill the dirent here ... */

/*Make a node_ref to this entry's node. */
nref.device = dirent->d_dev;
nref.node = dirent->d_ino;

/*Make a node_ref to this entry's parent. */
pnref.device = dirent->d_pdev;
pnref.node = dirent->d_pino;

/* Make an entry_ref to this entry. */
ref.device = dirent->d_pdev;
ref.directory= dirent->d_pino;
ref.set_name(dirent->d_name);

Where you go from here is a simple matter of programming. Me? I'm going to lunch.

Getting a dirent

Now that we know what to do with a dirent, let's see how to get one. The
GetNextDirents () protocol looks like this:

int32 GetNextDirents (dirent * buf, size_t bufsize, int32 count= INT _MAX)

181

By default, the function stuffs as many dirent structs as it can into the first bu/size
bytes of buf These structures represent the next N entries in the entry list. The count
argument lets you set a limit to the number of structures that you want to be retrieved
at a time. The function returns the number of structures that it actually got.

WARNING

Keep in mind that currently GetNextDirents () can only read one dirent at
a time, regardless of the size of buf, or the value of count.

182 Chapter 3 • The Storage Kit

Let's try it. For the purposes of this example, we'll convert each dirent into an
entry_ref, as described in the previous section.

!* This is the buffer that we'll stuff structures into. */
char buf [4096];
dirent *dent;
entry_ref ref;

!* We'll assume dir is a valid BDirectory object. */
while ((count= dir.GetNextDirents((dirent *)buf, 4096) > 0) {

dent = (dirent *)buf;

/* Now we step through the dirents. */
while (count-- > 0) {

ref.device = dent->d_pdev;
ref.directory= dent->d_pino;
ref.set_name(dent->d_name);

/* Do something with the ref. */

/* Bump the pointer. */
dent = (dirent *) ((char *)dent + dent->d_reclen);

Remember, the structure is variable length-you have to increment the pointer by
hand, as shown here.

Member Functions

CountEntries()

virtual int32 CountEntries(void) = 0

Returns the number of entries that are in the entry list.

WARNING

For BQuery this is a no-op. Also, BDirectory's implementation manipulates the
entry list pointer; thus, you shouldn't call CountEntries () while you're iterat
ing through the directory's entries.

GetNextEntry(), GetNextRef(), GetNextDirents()

virtual status_t GetNextEntry(BEntry *entry)= 0

virtual status_t GetNextRef(entry_ref *ref)= 0

virtual int32 GetNextDirents(dirent * buf, size_t bufsize, int32 count= INT _MAX) = 0

BEntry • Overview

These functions return the "next" entry in the entry list as a BEntry, entry_ref, or
dirent structure. The end of the list is signalled by:

• GetNextEntry () and GetNextRef () return B ENTRY_NOT_FOUND.

• GetNextDirents () returns 0.

See the Overview for more information.

Rewind()

virtual status_t Rewind(void)

Rewinds the entry list pointer so it points to the first element in the list.

For BQuery this is a no-op.

BEntry
Derived from:

Declared in:

Library:

Overview

BStatable

be/storage/Entry.h

libbe.so

WARNING

The BEntry class defines objects that represent "locations" in the file system hierarchy.
Each location (or entry) is given as a name within a directory. For example, when
you create a BEntry thus,

BEntry entry("/boot/horne/fido");

you're telling the BEntry object to represent the location of the file called fido within
the directory "/boot/home".

A BEntry doesn't care whether the entry you tell it to represent is a plain file, a
directory, or a symbolic link-it doesn't even care if the entry even exists (but we'll
get to that later in "Abstract Entries"):

• All the BEntry cares about is a name in a directory.

The most important implication of this is the object's attitude towards data. BEntries
don't know how to operate on data. You can't use a BEntry to read or write a file's
data or attributes. For data operations, you have to turn your BEntry into a BNode.

183

184 Chapter 3 • The Storage Kit

Nonetheless, it's often convenient to speak of a BEntry as having data; for example,
the phrase "the entry's data" really means "the data that lies in the file that's located
by the entry."

Talents and Abilities

A properly initialized BEntry object (we'll get to the rules of initialization later) knows
the following:

• Location info. A BEntry knows its own (leaD name (GetName ()), its full pathname
(GetPath ()), and the identity of its parent directory (GetParent ()).

• BStatable info. As a descendant of BStatable, a BEntry can return statistical
information about the entry's data-its size, creation date, owner, and so on.

• entry_ref identifier. A BEntry can return the entry_ref that globally identifies
the entry (GetRef ()).

A BEntry can do these things:

• Perform hierarchical operations. A BEntry can change the name of its entry
(Rename ()), move it to another directory (Move ()), and remove it from the file
hierarchy (Remove ()).

• Initialize BNode objects. The constructors and Set To () initializers for BNode and
its children (BFile, BDirectory, and BSymLink) accept BEntry arguments.

As mentioned above, the most important thing that a BEntry can't do is access its
own data: A BEntry can't read or write data or attributes. To do these things you need
a BNode object.

(Actually, this isn't entirely true: A BEntry can set the size of its data through the
BStatable: : SetSize () function. The function only works on plain files.)

Initializing and Traversing

To initialize a BEntry, you have to tell it which entry to represent; in other words, you
have to identify a directory and a name. You can initialize a BEntry object directly:

• during construction,
• through the Set To () function,
• or through the assignment operator.

or you can have some other object initialize your BEntry for you, by passing the
BEntry as an argument to one of the following:

• BDirectory's FindEntry () or GetEntry () function

• BEntryList's GetNextEntry () function (implemented by BDirectory and BQuery)

• BEntry's GetParent () function

BEntry • Overview

In all cases (except the assignment operator) you're asked if you want to "traverse"
the entry during initialization. Traversal is used to "resolve" symbolic links:

• If you traverse: The BEntry will point to the entry that the symbolic link is linked
to.

• If you don't traverse: The BEntry will point to the symbolic link itself.

For example, let's say /boot/home(fidoLink is linked to lfido, to wit:

$ cd /boot/home
$ ln -s ./fido fidoLink

Now let's make a traversed BEntry for fidoLink:

!* The second argument is the traversal bool. */
BEntry entry(" /boot/home/fidoLink", true);

If we ask for the entry's pathname,

BPath path;
entry.GetPath(&path);
printf("Pathname: %s\n", path.Path());

we see

Pathname: /boot/home/fido

In other words, the BEntry refers to fido, not fidoLink.

Traversal resolves nested links-it really wants to find a "real" file (or directory). If the
entry that you're initializing to isn't a link, then the traversal flag is ignored.

When to Traverse

When should you traverse, and when not? Here are a few rules of thumbs:

• If somebody hands you a file reference-if your app gets a RefsReceived()

message-then you probably want to traverse the entry.

• If you're pawing over the contents of a directory (through BDirectory's
GetNextEntry ()), then you probably don't want to traverse.

• If you're looking at the result of a query (through BQuery's GetNextEntry ()),

then you almost certainly don't want to traverse. The query finds entries that
satisfy certain criteria; if a symbolic link is in the list, it's because the link itself was
a winner. If the linked-to file is also a winner, it will show up on its own.

Traverso Post Facto

Let's say you create a BEntry (to a symlink) without traversing, but then you decide
that you do want to resolve the link. Unfortunately, you can't resolve in-place;

185

186 Chapter 3 • The Storage Kit

instead, you have to initialize another BEntry using info (entry_ref or pathname)
that you get from the link entry:

BEntry entryl("/boot/home/fidoLink", false);
BEntry entry2;
entry_ref ref;

/* First we check to see if it's a link. */
if (entryl.IsSymLink()) {

/*Get the link's entry_ref ... */
entryl.GetRef (&ref);

/* ... and use it to initialize the other BEntry. */
entry2.SetTo(&ref, true);

Abstract Entries

As we all should know by now, a BEntry identifies a name within a specific directory.
The directory that a BEntry identifies must exist, but the entry that corresponds to the
name doesn't have to. In other words:

• A BEntry can represent a file that doesn't exist. The entry is said to be "abstract."

For example, the following construction creates a BEntry object based on a
BDirectory and a name:

BEntry entry(someDir, "myFile.h");

Let's assume that myFile.h doesn't exist. As long as the directory that's referred to by
someDir does exist, then the construction is legal. Some of the BEntry functions
(those inherited from BStatable, for instance) won't work, but the object itself is valid.

But validity doesn't equal existence:

• Set To () and Ini tCheck () do not tell you if a BEntry's entry actually exists.
Don't be confused; a return value of B_OK simply means the object is valid.

If you want to know if a BEntry's entry actually exists, use the Exists () function.

Creating a File From an Abstract Entry

To turn an abstract BEntry into a real entry (or, more accurately, a real node), you
have to specify the flavor of node that you want. There are two methods for creating
a node; the first is general, the second applies to plain files only.

The General Approach. BDirectory's CreateFile (), CreateDirectory (), and
CreateSymLink () functions create nodes of the designated flavor. The functions
don't take BEntry arguments directly; instead, you invoke the functions on the
BEntry's directory, passing the entry's leaf name as an argument. Here we turn an
abstract entry (entry) into a directory:

BEntry • Overview

BPath path;
char name[B_FILE_NAME_LENGTH]; /*A buffer for the name. */
BDirectory parent; /* The parent of our entry. */
BDirectory target_dir; /* The product of the transformation. */

if (!entry.Exists()) {
entry.GetParent(&path);
entry.GetName(name);
parent.SetTo(&path);
parent.CreateDirectory(name, &dir);

The Plain-File-Only Approach. You can create a plain file by passing the BEntry to
the BFile constructor or Set To () function. To do this, you also have to add
B_CREATE_FILE to the "open mode" flags:

BFile file;

if (!entry.Exists())
file.SetTo(&entry, B_CREATE_FILEIB_READ_WRITE);

Subtleties and Details

The following details understand you should, particularly if you want to participate in
bedevtalk.

File Descriptors

Although it's not intuitively obvious, a BEntry object does consume a file descriptor.
The file descriptor is opened on the entry's directory.

187

Your app has a limited number of file descriptors (currently 128, max), so you may
not want to cache BEntry objects as your primary means for identifying an entry. If
you're going to be dealing with a lot of entries and you want to keep track of them
all, it's better to cache entry_ref structures or BPath objects.

Directories Are Persistent, Names Are Not

One more time: A BEntry identifies an entry as a name in a directory. As described
above, the directory is maintained internally as a file descriptor; the name is simply a
string. This means:

• The directory for a given BEntry is persistent. If you move the directory, the file
descriptor, and so the BEntry, moves with it.

• The name isn't persistent. If the user renames the leaf that a BEntry is pointing to,
the BEntry will become abstract.

For example, take the following BEntry:

BEntry entry ("/boot/home/lbj /footFetish. jpeg");

188

If the user moves the directory:

$ cd /boot/home
$ mv lbj jfk

Chapter 3 • The Storage Kit

The BEntry (entry) "moves" with the directory. If you print the pathname and ask if
the BEntry's entry exists,

BPath path;
entry.GetPath(&path);
printf("> Foot movie: %s\n", path.Path());
printf("> Exists? %s\n", entry.Exists()?"Oui":"Non");

you'll see this:

> Foot movie: /boot/home/jfk/footFetish.jpeg
> Exists? Oui

The same isn't so for the name portion of a BEntry. If the user now moves
footFetish jpeg:

$ cd /boot/home/jfk
$ mv footFetish.jpeg hammerToe.jpeg

your BEntry will not follow the file (it doesn't "follow the data"). The object will still
represent the entry called footFetishjpeg. The BEntry will, in this case, become
abstract.

Don't be confused: The BEntry only "loses track" of a renamed entry if the name
change is made behind the object's back. Manipulating the entry name through the
BEntry object's Rename () function (for example), doesn't baffle the object. For
example:

BPath path;
BEntry entry ("/boot/home/lbj /footFetish. jpeg");

entry. Rename ("hammerToe. jpeg") ;
entry.GetPath(&path);
printf("> Foot movie: %s\n", path.Path());
printf("> Exists? %s\n", entry.Exists()?"Oui":"Non");

and we see:

> Foot movie: /boot/home/lbj/hammerToe.jpeg
> Exists? Oui

BEntries and Locked Nodes

You can't lock an entry, but you can lock the entry's node (through BNode's Lock ()

function). Initializing a BEntry to point to a locked node is permitted, but the entry's
directory must not be locked. If the directory is locked, the BEntry constructor and
Set To() function fail and set InitCheck () to B_BUSY.

BEntry • Member Functions

Furthermore, the destination directories in BEntry's Rename () and MoveTo () must
be unlocked for the functions to succeed. And all directories in the path to the entry
must be unlocked for GetPath () to succeed.

If you get a B_BUSY error, you may want to try again-it's strongly advised that locks
be held as briefly as possible.

Constructor and Destructor

BEntry()
BEntry(const BDirectory *dir, const char •path, bool traverse= FALSE)
BEntry(const entry_ref •ref, boo! traverse= FALSE)
BEntry(const char •path, boo! traverse= FALSE)

BEntry(void)
BEntry(const BEntry &entry)

Creates a new BEntry object that represents the entry described by the arguments.
See the analogous Set To () functions for descriptions of the flavorful constructors.

189

The default constructor does nothing; it should be followed by a call to Set To ().

The copy constructor points the new object to the entry that's represented by the
argument. The two objects themselves maintain separate representation of the entry;
in other words, they each contain their own a) file descriptor and b) string to identify
the entry's a) directory and b) name.

To see if the initialization was successful, call Ini tCheck () .

-BEntry

-BEntry()

Closes the BEntry's file descriptor and destroys the BEntry object.

Member Functions

GetName{), GetPath()

status_t GetName(char • bu.ffery const

status_t GetPath(BPath *path) const

These functions return the leaf name and full pathname of the BEntry's entry. The
arguments must be allocated before they're passed in.

190 Chapter 3 • The Storage Kit

GetName () copies the leaf name into buffer. The buffer must be large enough to
accommodate the name; B_FILE_NAME_LENGTH is a 100% safe bet:

char name[B_FILE_NAME_LENGTH];
entry.GetName(name);

If GetName () fails, *buffer is pointed at NULL.

GetPath () takes the entry's full pathname and initializes the BPath argument with it.
To retrieve the path from the BPath object, call BP a th: : Pa th () :

BPath path;
entry.GetPath(&path);
printf(">Entry pathname: %s\n'', path.Path());

If GetPath () fails, the argument is Unset ().

Return values:
B_NO_ERROR. The information was successfully retrieved.
B_NO_INIT. The BEntry isn't initialized.
B_BUSY (GetPath () only). A directory in the entry's path is locked.

GetParent()

status_t GetParent(BEntry *entry) canst
status_t GetParent(BDirectory * diry canst

Gets the directory, as a BEntry or BDirectory object, in which the object's entry lives.
The argument must be allocated before it's passed in.

If the function is unsuccessful, the argument is Unset () . Because of this, you should
be particularly careful if you're using the BEntry-argument version to destructively get
a BEntry's parent:

if (entry.GetParent(&entry) != B_NO_ERROR) {
/* you just lost 'entry' */

This example is legal; for example, you can use destructive iteration to loop your way
up to the root directory. When you reach the root ("/"), GetParent () returns
B_ENTRY_NOT_FOUND:

BEntry entry(" /boot/home/fido");
status_t err;
char name[B_FILE_NAME_LENGTH];

/* Spit out the path components backwards, one at a time. */

do {
entry.GetName(name);
printf ("> %s\n", name);

while ((err=entry.GetParent(&entry)) B_NO_ERROR) ;

BEntry • Member Functions

/* Complain for reasons other than reaching the top. */
if (err != B_ENTRY_NOT_FOUND)

printf(">> Error: %s\n", strerror(err));

This produces:

> fido
> home
> boot
> I

191

Return values:
B_NO_ERROR. The information was successfully retrieved.
B_NO_INIT. This BEntry isn't initialized.
B_ENTRY_NOT_FOUND. Attempt to get the parent of the root directory.
B_NO_MORE_FDS. Couldn't get another file descriptor.

GetRef()

status_t GetRef(entry _ref *ref) canst

Gets the entry_ref for the object's entry; ref must be allocated before it's passed in.
As with BEntry objects, entry_ref structures can be abstract-getting a valid
entry_ref does not guarantee that the entry actually exists.

If the function isn't successful, ref is unset.

Return values:
B_NO_ERROR. The entry_ref was successfully retrieved.
B_NO_INIT. This object isn't initialized.
B_NO_MEMORY. Storage for the entry_ref's name couldn't be allocated.

GetPath() see GetName()

lnitCheck()

status_t lnitCheck(void) canst

Returns the status of the previous construction, assignment operation, or SetTo ()
call.

Return values:
B_NO_ERROR. The initialization was successful.
B_NO_INIT. The object is uninitialized (this includes Unset ()).
See Set To () for other errors.

Move To() see Rename()

192 Chapter 3 • The Storage Kit

Remove()

status_t Remove(void)

Remove () "unlinks" the entry from its directory. The entry's node isn't destroyed until
all file descriptors that are open on the node are closed. This means that if you create
BFile based on a BEntry, and then Remove () the BEntry, the BFile will still be able
to read and write the file's data-the BFile has no way of knowing that the entry is
gone. When the BFile is deleted, the node will be destroyed as well.

NOTE

Remove () does not invalidate the BEntry. It simply makes it abstract (see
"Abstract Entries").

Return values:
B_NO_ERROR. Success.
B_NO_INIT. The BEntry is not initialized.
B_BUSY. The entry's directory is locked.

Rename(}, Move To()

status_t Rename(const char *path, bool clobber= false)

status_t MoveTo(BDirectory *dir, const char *path= NULL, bool clobber= false)

These functions move the BEntry's entry and node to a new location. In both cases,
the BEntry must not be abstract-you can't rename or move an abstract entry.

Rename () moves the entry to a new name, as given by path. path is usually a simple
leaf name, but it can be a relative path. In the former case (simple leaf) the entry is
renamed within its current directory. In the latter, the entry is moved into a
subdirectory of its current directory, as given by the argument.

MoveTo () moves the entry to a different directory and optionally renames the leaf.
Again, path can be a simple leaf or a relative path; in both cases, path is reckoned off
of dir. If path is NULL, the entry is moved to dir, but retains its old leaf name.

If the entry's new location is already taken, the clobber argument decides whether the
existing entry is removed to make way for yours. If it's true, the existing entry is
removed; if it's false, the Rename () or MoveTo () function fails.

Upon success, this is updated to reflect the change to its entry. For example, when
you invoke Rename () on a BEntry, the name of that specific BEntry object also
changes. If the rename or move-to isn't successful, this isn't altered.

Return values:
B_NO_ERROR. Success.
B_NO_INIT. The BEntry is not initialized.

BEntry • Member Functions

B_ENTRY_NOT_FOUND. A directory to the new location doesn't exist, or this is an
abstract entry.
B_FILE_EXISTS. The new location is already taken (and you're not clobbering).
B_BUSY. The directory that you're moving the entry into is locked.

SetTo{), Unset()

status_t SetTo(const entry_ref *ref, bool traverse= TRUE)

status_t SetTo(const const char *path, bool traverse= TRUE)

status_t SetTo(const BDirectory *dir,

void Unset(void)

const char •path,
bool traverse = TRUE)

193

Frees the BEntry's current entry reference, and initializes it to refer to the entry
identified by the argument(s):

• In the ref version, the BEntry is initialized to refer to the given entry_ref.

• In the path version, path can be absolute or relative, and can contain "." and " .. "
elements. If path is relative, it's reckoned off of the current working directory.

• In the dir/path version, path must be relative. It's reckoned off of the directory
given by dir.

The traverse argument is used to resolve (or not) entries that are symlinks:

• If traverse is true, the link is resolved.
• If traverse is false, the BEntry refers to the link itself.

See "Initializing and Traversing" on page 184 for more information.

When you initialize a BEntry, you're describing a leaf name within a directory. The
directory must exist, but the leaf doesn't have to. This allows you to create a BEntry
to a file that doesn't exist (yet). See "Abstract Entries" on page 186 for more
information.

NOTE

Remember-successfully initializing a BEntry consumes a file descriptor. When
you re-initialize, the old file descriptor is closed.

Unset () removes the object's association with its current entry, and sets
Ini tCheck () to B_NO_INIT.

194 Chapter 3 • The Storage Kit

Return values:
B_NO_ERROR. The BEntry was successfully initialized.
B_BAD_ VALUE. Bad argument value; uninitialized ref or dir.
B_ENTRY_NOT_FOUND. A directory in the path to the entry doesn't exist.
B_BUSY. The entry's directory is locked.

Unset() see Set To()

Operators
= (assignment)

BEntry& operator=(const BEntry &entry)

In the expression

BEntry a = b;

BEntry a is initialized to refer to the same entry as b. To gauge the success of the
assignment, you should call Ini tCheck () immediately afterwards. Assigning a
BEntry to itself is safe.

Assigning from an uninitialized BEntry is "successful": The assigned-to BEntry will
also be uninitialized (B_NO_INIT).

==, != (comparison)

bool operator==(const BEntry &entry) canst
bool operator!=(const BEntry &entry) canst

Two BEntry objects are said to be equal if they refer to the same entry (even if the
entry is abstract), or if they're both uninitialized.

BFile
Derived from: BNode, BPositionIO

Declared in: be/storage/File.h

Library: lib be.so

Overview
A BFile lets you read and write the data portion of a file. It does this by implementing
the Read ()/Write () and Read.At () /Wri teAt () functions that are declared by the
BPositionIO class.

BFile • Constructor and Destructor

Initializing and Opening

When you construct (or otherwise initialize) a BFile, the file is automatically opened.
The file is closed when you re-initialize or destroy the object.

At each initialization, you're asked to supply an "open mode" value. this is a
combination of flags that tells the object whether you want to read and/or write the
file, create it if it doesn't exist, truncate it, and so on.

195

You can also initialize a BFile, and create a new file at the same time, through
BDirectory's CreateFile () function. In this case, you don't have to supply an open
mode-the BFile that's returned to you will automatically be open for reading and
writing. (You are asked if you want the creation to fail if the named file already
exists.)

Access to Directories and Symbolic Links

Although BFiles are meant to be used to access regular files, you aren't prevented
from opening and reading a directory (you won't be able to write the directory,
however). This isn't exactly a feature-there's not much reason to access a directory
this way-you should simply be aware that it's not an error.

Symbolic links, however, can't be opened by a BFile-not because it's illegal, but
because if you ask to open a symbolic link, the link is automatically traversed. The
node that the BFile ends up opening will be the file or directory that the link points
to.

This is a feature; very few applications should ever need to look at a symbolic link. (If
yours is one of the few that does want to, you should go visit the BSymLink class.)

Constructor and Destructor
BFile()

BFile(void)
BFile(const BFile &file)

BFile(const entry_ref •ref, uint32 openMode)
BFile(const BEntry •entry, uint32 openMode)
BFile(const char •path, uint32 openMode)
BFile(BDirectory *dir, const char •path, uint32 openMode)

Creates a new BFile object, initializes it according to the arguments, and sets
Ini tCheck () to return the status of the initialization.

The default constructor does nothing and sets Ini tCheck () to B_NO_INIT. To
initialize the object, call SetTo () .

196 Chapter 3 • The Storage Kit

The copy constructor creates a new BFile that's open on the same file as that of the
argument. Note that the two objects maintain separate data pointers into the same file:

• Separate pointers: Reading and writing through one object does not affect the
position of the data pointer in the other object.

• Same file: If one object writes to the file, the other object will see the written data.

For information on the other constructors, see the analogous SetTo () functions.

-BFile()

virtual -BFile{)

Closes the object's file, frees its file descriptor, and destroys the object.

Member Functions

GetSize(), SetSize()

status_t GetSize(off_t size) canst
status_t SetSize(off_t &size)

These functions get and set the size, in bytes, of the object's file.

GetSize () returns the size of the file's data portion in the size argument; the
measurement doesn't include attributes.

SetSize () sets the size of the data portion to the size given by the argument:

• Enlarging a file adds (uninitialized) bytes to its end.
• Shrinking a file removes bytes from the end.

Return values:
B_NO_ERROR. The file's size was successfully gotten or set.
B_NOT_ALLOWED. (SetSize ()) The file lives on a read-only volume.
B_DEVICE_FULL. (SetSize ()) No more room on the file's device.

lnitCheck()

status_t lnitCheck(void) const

Returns the status of the most recent initialization.

Return values:
B_NO_ERROR. The object is initialized.
B_NO_INIT. The object is uninitialized.
See Set To () for other errors.

BFile • Member Functions

lsReadable(), lsWritable()

boo! lsReadable(void) const
boo! lsWritable(void) const

197

These functions tell you whether the BFile was initialized to read or write its file. If
the object isn't (properly) initialized, they both return false.

Note that these functions don't query the actual file to check permissions, they only
tell you what the access request was when the BFile object was initialized.

Position() seeSeek()

Read(), ReadAt(), Write(), WriteAt()

ssize_t Read(void *buffer, size_t size)
ssize_t ReadAt(off_t location, void *buffer, size_t size)

ssize_t Write(const void *buffer, size_t size)
ssize_t WriteAt(off_t location, const void *buffer, size_t size)

These functions, which are inherited from BPositionIO, read and write the file's data;
note that they don't touch the file's attributes.

The Read () and Read.At () functions read size bytes of data from the file and place
this data in buffer. The buffer that buffer points to must already be allocated, and
must be large enough to accommodate the read data. Note that the read-into buffer is
not null-terminated by the reading functions.

The two functions differ in that:

• Read () reads the data starting at the current location of the file's data pointer, and
increments the file pointer as it reads.

• Read.At () reads the data from the location specified by the location argument,
which is taken as a measure in bytes from the beginning of the file. Read.At ()

does not bump the file's data pointer.

Write () and Wri teAt () write size bytes of data into the file; the data is taken from
the buffer argument. The two functions differ in their use (or non-use) of the file's
data pointer in the same manner as Read () and Read.At () .

All four functions return the number of bytes that were actually read or written;
negative return values indicate an error.

Reading fewer-than-size bytes isn't uncommon-consider the case where the file is
smaller than the size of your buffer. If you want your buffer to be NULL-terminated,
you can use the return value to set the NULL:

198

char buf [1024];
ssize_t amt_read;

if ((amt_read = file.Read((void *)buf, 1024)) < 0)
/* handle errors first */

else
/* otherwise set null */
buf[amt_read] = '\0';

Chapter 3 • The Storage Kit

A successful Write () or Wri teAt () , on the other hand, will always write exactly
the number of bytes you requested. In other words, Write () returns either the size
value that you passed to it, or else it returns a negative (error) value.

Return values:
Positive values (and O). The number of bytes read or written.
B_NOT_ALLOWED. (Write) The file lives on a read-only volume.
B_DEVICE_FULL. (Write) No more room on the file's device.

Seek{), Position()

off_t Seek(off_t offset, int32 seekMode)
off_t Position(void) const

Seek () sets the location of the file's data pointer. The new location is reckoned as
offset bytes from the position given by the seekMode constant:

Constant Meaning

SEEK_SET Seek from the beginning of the file.

SEEK_CUR Seek from the pointer's current position.

SEEK_END Seek from the end of the file.

If you Seek () to a position that's past the end of the file and then do a Write () , the
file will be extended (padded with garbage) from the old end of file to the Seek () 'd
position. If you don't follow the Seek () with a Write (), the file isn't extended.

Seek () returns the new position as measured (in bytes) from the beginning of the
file.

Position () returns the current position as measured (in bytes) from the beginning
of the file. It doesn't move the pointer.

Return values:
B_ERROR. Attempted to Seek () "before" the beginning of the file, or you called
Position () after such a Seek(). You also get B_ERROR if you call Seek () on
an uninitialized file.
B_BAD_FILE. Position () called on an uninitialized file.

BFile • Member Functions

WARNING

If you do a "before the beginning" seek, subsequent Read () and Write ()

calls do not fail. But they almost certainly aren't doing what you want (you
shouldn't be "before the file," anyway). The moral: Always check your Seek ()

return.

SetSize() see GetSize()

SetTo(), Unset()

status_t SetTo(const entry_ref *ref, uint32 openMode)
status_t SetTo(const BEntry *entry, uint32 openMode)
status_t SetTo(const char *path, uint32 openMode)
status_t SetTo(BDirectory *dir, const char •path, uint32 openMode)

void Unset(void)

Closes the BFile's current file (if any), and opens the file specified by the arguments.
If the specified file is a symbolic link, the link is automatically traversed (recursively,
if necessary). Note that you're not prevented from opening a directory as a BFile, but
you are prevented from writing it.

• In the path function, path can be absolute or relative, and can contain"." and" .. "
elements. If path is relative, it's reckoned off of the current working directory.

• In the dir/ path function, path must be relative and is reckoned off of dir.

openMode is a combination of flags that determines how the file is opened and what
this object can do with it once it is open. There are two sets of flags; you must pass
one (and only one) of the following "read/write" constants:

Constant Meaning

B_READ_ONLY

B_WRITE_ONLY

B_READ_WRITE

This object can read, but not write, the file.

This object can write, but not read, the file.

This object can read and write the file.

You can also pass any number of the following (these are optional):

Constant

B_CREATE_FILE

B_FAIL_IF_EXISTS

B_ERASE_FILE

B_OPEN_AT_END

Meaning

Create the file if it doesn't already exist.

If the file already exists, the initialization (of the BFile object) fails.

If the file already exists, erase all its data and attributes.

Sets the data pointer to point to the end of the file.

199

200 Chapter 3 • The Storage Kit

To open a file for reading and writing, for example, you simply pass:

file.SetTo(entry, B_READ_WRITE);

Here we create a new file or erase its data if it already exists:

file.SetTo(entry, B_READ_WRITE I B_CREATE_FILE I B_ERASE_FILE);

And here we create a new file, but only if it doesn't already exist:

file.SetTo(entry, B_READ_WRITE I B_CREATE_FILE I B_FAIL_IF_EXISTS);

Unset () closes the object's file and sets its Ini tCheck () value to B_NO_INIT.

Return values:
B_NO_ERROR. The file was successfully opened.
B_BAD_VALUE. NULL path in dir/path, or some other argument is uninitialized.
B_ENTRY_NOT_FOUND. File not found, or couldn't create the file.
B_FILE_EXISTS. File exists (and you set B_FAIL_IF _EXISTS).

B_PERMISSION_DENIED. Read or write permission request denied.
B_NO_MEMORY. Couldn't allocate necessary memory to complete the operation.

Write() see Read()

WriteAt() see Read()

Operators
=(assignment)

BFile& operator=(const BFile &File)

In the expression

BFile a = b;

BFile a is initialized to refer to the same file as b. To gauge the success of the
assignment, you should call Ini tCheck () immediately afterwards. You can't assign
a BFile to itself (B_BAD_VALUE).

Assigning to an uninitialized BFile is "successful": The assigned-to BFile will also be
uninitialized (B_NO_INIT).

==, != (comparison)

bool operator== (const BFile &file) const
bool operator!= (const BFile &file) const

Two BFile objects are said to be equal if they refer to the same file, or if they both
refer to nothing.

BFilePanel • Overview 201

BFilePanel
Derived from: none

Declared in: be/storage/FilePanel.h

Library: libtracker.so

Overview
BFilePanel knows how to create and display an "Open File" or "Save File" panel, and
provides the means for filtering and responding to the user's actions on the panel.
The Save Pariel looks like this:

Tu•, Jun 24 199'1',

30K Thu, Jun 26 199'1',

~ MyFrl•nde

'.'fl e;u@rlH

ObytH

The Open Panel looks pretty much the same, but without the text view in the lower
left corner.

Creating and Using a BFilePanel

To create and use a BFilePanel, follow these steps:

1. Construct a BFilePanel object in response to the user's request (most likely, a click
on an "Open" or "Save"/"Save As" menu item). When you construct the panel, you
have to specify its "mode" (Open or Save).

2. Fine-tune the panel by telling it which directory to display, whether it allows
multiple selection, whether it can open a directory, which target it should send
notifications to, and so on. (Most of these parameters can also be set in the
constructor.)

202 Chapter 3 • The Storage Kit

3. Invoke Show () on the panel, and then wait for the user to confirm a selection (or
close the panel).

4. Receive a message. When the user confirms a selection (or cancels the panel), the
panel disappears and a notification message (Open, Save, or Cancel) is sent to the
panel's target. The message identifies the confirmed file(s).

5. Delete the BFilePanel object ... or don't. When the user closes a file panel, the
object is not automatically deleted; you have to do it yourself. But you may not
want to. If you don't delete the panel, you can simply call Show () the next time
you want to display it; the state from the previous invocation (the panel's size and
location, the directory it points to) is remembered.

Constructing and Fine-Tuning the Panel

The BFilePanel constructor has about two thousand arguments. They all have default
values, and most of the parameters that they control can be set through individual
functions. The following sections list and describe the constructor arguments and tell
you if there's an analogous function.

Panel Mode

Argument Default Function

file_panel_mode mode B OPEN_PANEL none

There are two file panel modes: B_OPEN_PANEL and B_SAVE_PANEL. You've got to
make up your mind in the constructor.

Target

Argument Default Function

BMessenger *target be_app_messenger SetTarget (}

The target represents the BLooper/BHandler that will receive the Open, Save, and
Cancel messages.

Panel Directory

Argument Default Function

entry_ref *panel_directory cwd SetPanelDirectory(}

When a panel is first displayed, it has to show the contents of some directory; this is
called the "panel directory." The panel directory defaults to the current working
directory.

BFilePanel • Overview 203

Confirmable Node Flavors

Argument Default Function

uint32 node_Jlavors B FILE_NODE none

NOTE

This parameter applies to Open panels only.

There are three node flavors: B_FILE_NODE, B_DIRECTORY_NODE, and
B_SYMLINK_NODE. You combine these constants to declare the flavors that you want
the user to be able to confirm. Before describing the flavor settings, keep this in
mind ...

• Double-clicking a directory in the file list always enters the directory, regardless of
the panel's flavor setting.

If you understand the following, you can save yourself some reading:

• If your app wants to open files only, then stick with the default (B_FILE_NODE);

the user will be able to confirm files and symlinks to files. If you want directories
as well (for example, a compression app might want to work on files and
directories) then add in B_DIRECTORY_NODE (symlinks to directories are okay, as
well). If you only want directories (unusual, but possible), then leave
B_FILE_NODE out of it.

If you're not convinced, read on:

• If the setting includes B_FILE_NODE and the user selects and confirms a file or a
symlink to a file, the file (or symlink) is delivered to your target. If it doesn't
include B_FILE_NODE and the user selects a file (or symlink to a file), the Open
button is disabled.

• If the setting includes B_DIRECTORY_NODE and the user selects and Opens (i.e.
clicks the Open button) a directory or a symlink to a directory, the directory (or
symlink) is delivered to your target. If it doesn't include B_DIRECTORY_NODE and
the user Opens a directory (or symlink to a directory), the directory is entered (the
contents of the directory are displayed in the file list).

• If the setting includes B_SYMLINK_NODE and the user confirms a symlink, the
symlink is delivered to your target. If it doesn't include B_SYMLINK_NODE and the
user selects symlink, the panel's response depends on the inclusion of the other
two flavors. Note that including B_SYMLINK_NODE is an odd thing to do--it only
makes sense if it's not combined with either of the other two flavors, and even
then it doesn't make much sense.

204 Chapter 3 • The Storage Kit

When the user confirms a symlink (regardless of the flavor setting), you always
receive the symlink itself in the Open message-you don't get the file or directory it
points to.

Multiple Selection

Argument Default Function

bool allow_multiple_selection true none

This parameter determines whether the user is allowed to select more. than one item
at a time. Save panels should set this to false.

Notification Message

Argument Default Function

BMessage *message a default BMessage SetMessage ()

By default, the format of the message that's sent to your target when the user
confirms or cancels is defined by the file panel (the default formats are defined later).
You can override the default by specifying your own BMessage. The BMessage is
copied by the BFilePanel object. You can change this message using the
SetMessage () function.

Ref Filter

Argument Default Function

BRefFil ter *filter NULL SetRefFilter ()

When panel directory changes (this includes when the panel is constructed, and
when the panel's Refresh () function is called), or when a new entry is added to the
existing directory, the new entries are passed, one-by-one, to the panel's BRefFilter
object through a BRefFilter hook function. In your implementation of the hook
function, you can reject individual entries; rejected entries won't be displayed in the
file list.

By default, a file panel has no BRefFilter. To supply one, you have to subclass
BRefFilter (in order to implement the hook function) and pass it in.

• Note that the ref filter isn't asked to "re-review" the entry list when the file panel is
Show () 'd after being hidden.

Is Modal?

Argument Default Function

bool •modal false none

BFilePanel • Overview 205

A modal file panel has no window tab, so it can't be closed; to get rid of the panel,
the user has to click a button. By default, file panels are not modal.

Hide When Done

Argument Default Function

bool *hide_when_done true SetHideWhenDone()

By default, a file panel is hidden when the user confirms or Cancels. If you set
hide_when_done to false, the panel remains on the screen. Clicking the panel's
close box always hides the panel.

The Target and the Messages It Sees

When the user confirms a selection or cancels a file panel, a BMessage is constructed
and sent to the target of the BFilePanel object. By default, the target is
be_app_messenger. You can specify a different target (as a BMessenger) through
the BFilePanel constructor, or through the Set Target () function.

The format of the BMessage that the target receives depends on whether the user is
opening, saving, or canceling.

Open Notification

• By default, the what field is B_REFS_RECEIVED. You can override the default by
supplying your own BMessage (SetMessage ()).

• The "refs" field (type B_REF_TYPE) contains entry_ref structures, one for each
entry that the user has confirmed.

• The message may contain other fields, as copied from the BMessage you
(optionally) supplied. The data in these fields won't be changed.

If the target is be_app_messenger and the what field is B_REFS_RECEIVED, the
BMessage shows up in the RefsRecei ved () function. Otherwise it's sent to the
target's MessageRecei ved () .

Keep in mind that the refs that you receive through this message point to the literal
entries that the user confirmed. In other words, if the confirmed selection is a symlink
to a file, you'll receive a ref for the symlink, not the file (and similarly for a link to a
directory). It's up to you to turn the symlink into a file (which is probably what you
want).

If you want a BEntry object, all you have to do is pass true as the traverse argument
to BEntry's constructor or Set To ():

/*We'll assume that 'ref' was just plucked from an open notification. */
BEntry entry(ref, true);

206 Chapter 3 • The Storage Kit

You don't even have to check to see if the ref is a symlink.

If you want to turn a symlink ref into a ref to the pointed-to file, just add this line:

entry.GetRef{&ref);

Save Notification

• By default, the what field is B_SAVE_REQUESTED. You can override the default by
supplying your own BMessage (SetMessage ()).

• The "directory" field (type B_REF _TYPE) contains a single entry_ref structure
that points to the directory in which the user has requested the entry be saved (in
other words, the ref refers to the panel directory).

• The "name" field (B_STRING_TYPE) is the text the user typed in the Save Panel's
text view.

• The message may contain other fields, as copied from the BMessage you
(optionally) supplied. The data in these fields won't be changed.

Save notifications are always sent to the target's MessageRecei ved () function.

Note that if the user confirms a name that collides with an existing file, an alert is
automatically displayed. The user can then back out of the confirmation and return to
the Save Panel, or clobber the existing file. The save notification is sent after (and
only if) the user agrees to clobber the file.

NOTE

The file isn't clobbered by the system; it's up to you (as the receiver of the save
notification) to do the dirty work.

Cancel Notification

A cancel notification is sent whenever the file panel is hidden. This includes the
Cancel button being clicked, the panel being closed, and the panel being hidden after
an open or a save (given that the panel is in hide-when-done mode).

• The what field is always B_CANCEL, even if you supplied your own BMessage.

• The "old_ what" field (B_UINT32_TYPE) recorps the "previous" what value. This is
only useful (and dependable) if you supplied your own BMessage: The what from
your message is moved to the "old_ what" field. If you didn't supply a BMessage,
you should ignore this field (it could contain garbage).

• The "source" (B_POINTER_TYPE) is a pointer to the BFilePanel object that was
closed.

• The message may contain other fields, as copied from the BMessage you
(optionally) supplied. The data in these fields won't be changed.

BFilePanel • Overview 207

Cancel notifications are always sent to the target's MessageRecei ved () function.

Keep in mind that when a file panel is closed-regardless of how it's closed-the
BFilePanel object is not destroyed. It's merely hidden.

Modifying the Look of the File Panel

There are two ways you can modify the look of your BFilePanel object.

• You can do some simple text twiddling by calling the label- and text-setting
functions SetButtonLabel () and SetSaveText ().

• If you need to really change the look, you can get a handle on the panel's
BWindow and BView objects in order to move them around, add your own, or
whatever. You get the window through the Window () function. Finding specific
views within the window is described below.

Finding Views in the Panel

Let's look at that Save Panel again:

Tue, Jun iM 199?,

301< Thu, Jun 26 199?,

0 bytH

Here's how you find the views:

• The background view doesn't have a name; but it's first in the window's list of
views:

BView *background= filepanel->Window()->ChildAt(O);

• The directory popup in the top left corner is named "FileContext".

• The file list in the middle is named "Pose View".

• The Cancel button is named "cancel button".

208 Chapter 3 • The Storage Kit

• The Save (or Open) is named "default button".

• The text view at the bottom left (Save Panel only) is called "text view".

These last five views can be found by name:

BView *fileList = filepanel->Window() ->FindView("PoseView•);

What you do with the views is your business.

The C Functions

You can also display Open and Save Panels through the global C functions
run_open_panel () and run_save_panel () (which are declared in FilePanel.h).
The functions create BFilePanel objects using the default constructor settings (modulo
the file_panel_mode, of course).

The C funetions create a new file panel each time they're called, and delete the panel
when the user is finished with it.

Hook Functions
SelectionChanged()

Invoked whenever the user changes the set of selected entries.

WasHidden ()
Invoked just after the file panel is hidden because of the user's actions (it's not
invoked if you call Hide () yourseID.

Constructor and Destructor

BFilePanelO

BFilePanel(file_panel_mode mode= B_OPEN_PANEL,
BMessenger* target= NULL,
entry_ref *panel_directory= NULL,
uint32 node_Jlavors = 0,
bool allow_multiple_selection =true,
BMessage *message= NULL,
BRefFilter *filter= NULL,
bool modal = false,
bool hide_when_done = true)

The constructor creates a new BFilePanel object and initializes it according to the
arguments. The panel isn't displayed until you invoke Show () . The arguments are
thoroughly described in "Constructing and Fine-Tuning the Panel."

BFilePanel • Member Functions 209

NOTE

You may notice that some of the default arguments shown here don't jibe with
the defaults listed in the section "Constructing and Fine-Tuning the Panel" on
page 202. In particular, the node_flavors argument was described as defaulting
to B_FILE_NODE, but is shown here as 0. The "Constructing ... " descriptions are
correct: The default values shown here are caught and converted by the
BFilePanel constructor.

-BFilePanel()

virtual -BFilePanel(void)

Destroys the BFilePanel. The object's target and BRefFilter are not touched by this
destruction. If the object is currently displaying a file panel, the panel is closed.

Member Functions

GetNextSelectedRef(), Rewind()

status_t GetNextSelectedRef(entry _ref •re})

void Rewind(void)

GetNextSelectedRef () initializes its arguments to point to the "next" ref in the file
panel's set of currently selected items. The function returns B_ENTRY_NOT_FOUND

when it reaches the end of the list. Rewind () gets you back to the top of the list.

Although you can call these functions any time you want, they're intended to be used
in implementations of the SelectionChanged () hook function.

GetPanelDirectory() see SetPanelDirectory()

Hide() see Show()

Hides When Done() see SetHideWhenDone()

lsShowing() see Show()

Messenger() see Set Target()

Panel Mode()

file_panel_mode PanelMode(void) canst

Returns the object's mode, either B_OPEN_PANEL or B_SAVE_PANEL. The mode is set
in the constructor and can't be changed thereafter.

· 21 0 Chapter 3 • The Storage Kit

RefFilter() see SetRefFilter()

Refresh()

void Refresh(void)

Refresh () tells the file panel to re-read the contents of the panel directory, which
causes the directory's entries to be re-run through the ref filter.

You don't have to call Refresh () in order to keep the panel in sync with the
directory's contents-the directory and file panel are kept in sync automatically.

Rewind{) seeGetNextSe/ectedRef()

SelectionChanged()

virtual void SelectionChanged{void)

This hook function is invoked whenever the user changes the set of selected files.
Within your implementation of this function, you iterate over GetNext
SelectedRef () to retrieve refs to the currently selected files.

SetButtonLabel(), SetSaveText()

void SetButtonlabel(file_panel_button which_button, const char *labe~

void SetSave Text(const char •text)

SetButtonLabel () lets you set the label that's displayed in the panel's buttons. The
button that a specific invocation affects depends on the value of which_button:

• B_DEFAULT_BUTTON is the Open button for an Open Panel and the Save button
for a Save Panel.

• B_CANCEL_BUTTON is the "Cancel" button.

SetSaveText () sets the text that's displayed in the Save Panel's text view (the area
in which the user types .and confirms a file name).

SetHideWhenDone{), HidesWhenDone()

void SetHideWhenDone(bool hide_when_done)

bool HidesWhenDone(void) const

By default, a file panel is hidden when the user confirms or Cancels. You can control
this behavior using the SetHideWhenDone () function. If you set hide_when_done to

BFilePanel • Member Functions

false, the panel remains on the screen; if you specify true, the panel hides when
the user confirms or Cancels. Clicking the panel's close box always hides the panel.

HidesWhenDone () returns the current setting of this option: true if the panel hides
when the user is done with it or false if it remains on the screen.

SetMessage()

void SetMessage(BMessage * msg)

SetMessage () allows you to set the format of the file panel's notification messages.
The message can also be set through the constructor. See "The Target and the
Messages It Sees" for more information.

A copy is made of the BMessage, so it is your responsibility to delete msg when you
no longer need it.

SetPanelDirectory(), GetPanelDirectory()

211

void SetPanelDirectory(BEntry *dirEntry)
void SetPanelDirectory(BDirectory * dirObJ)
void SetPanelDirectory(entry _ref * dirRej)

void GetPanelDirectory(entry_ref *ref) const

The SetPanelDirectory () function sets the panel's "panel directory." This is the
directory whose contents are displayed in the panel's file list. You can also set the
panel directory through the constructor. If you don't supply a directory, the current
working directory is used.

GetPanelDirectory () initializes ref to point to the current panel directory. The
argument must be allocated.

SetRefFilter(), RefFilter()

void SetRefFilter(BRefFilter* filter)
BRefFilter *RefFilter(void) const

Whenever the file panel's panel directory is changed or refreshed (Refresh ()), or
when a new entry is added to the current panel directory, the "new" entries are run
through the panel's "ref filter." The BRefFilter class defines a single boolean hook
function called Filter (). The function receives the entries, one-by-one, and can
reject specific entries (because they're the wrong file type, for example). Rejected
entries are not shown in the panel's file list.

212 Chapter 3 • The Storage Kit

The SetRefFilter () function sets the panel's ref filter. You can also set it through
the constructor. Ownership of the filter is not handed to the panel. You mustn't
delete the ref filter while the panel is still extant.

RefFil ter () returns a pointer to the panel's ref filter.

SetSave Text() see SetButtonLabel()

SetTarget(}, Messenger()

void SetTarget(BMessenger bellhop)
BMessenger Messenger(void) const

Set Target () sets the target of the file panel's notification messages. The target can
also be set through the constructor. If you don't set a target, be_app_messenger is
used. See the Blnvoker class (in the Application Kit) for an explanation of how a
BMessenger can be used as a target.

A copy is made of the BMessenger, so it is your responsibility to delete bellhop when
you no longer need it.

Messenger () returns (a copy oD the messenger that's used as the file panel's target.

Show(), Hide(), lsShowing(), WasHidden()

void Show(void)
void Hide(void)
bool lsShowing(void)

virtual void WasHidden(void)

These functions show and hide the file panel, and tell if you the panel is currently
showing.

WasHidden () is a hook function that's invoked whenever the user's actions causes
the file panel to be hidden. If you call Hide () yourself, WasHidden () is not
invoked.

Was Hidden() see Show()

Window()

BWindow *Window(void) const

Returns a pointer to the file panel's window. If you want to mess around with the
window's views, see "Modifying the Look of the File Panel."

BMimeType • Overview

BMimeType
Derived from: none

Declared in: be/storage/Mime.h

Library: libbe.so

Overview
The BMimeType class provides three services:

• It can parse a MIME string. It can tell you whether the string is valid, what its
supertype component is, and whether it has a subtype component. (The MIME
string format is described in "Valid MIME Strings.")

• It gives you access to the File Type database. Given a MIME type, it can look in the
database and retrieve that type's icon(s), "preferred handler" application, the
filename extensions that correspond to it, and so on.

• It can regard a MIME string as an application signature, and so get and set the
executable file, the file types, and the document icons that correspond to that
signature.

All three services operate on MIME strings. In other words, they answer questions
such as "Does this string have a supertype?", "Is this string installed in the database?",
and so on. You can get the MIME strings from anywhere: from a file's file type
attribute, from an application's signature, from the header of an e-mail message, you
can even make them up.

Valid MIME Strings

A valid MIME string takes the form:

supertype/[subtype]

where supertype is one of the seven "media" strings:

• Text
• Application
• Image
• Audio
• Video
• Multipart
• Message

and (the optional) subtype can be just about anything ... Except it can't include spaces
or any of these forbidden characters:

/\<>@,;:"()[)?=

213

214 Chapter 3 • The Storage Kit

When you initialize a BMimeType object (through the constructor or Set To ()

function), you have to tell it what MIME string you want it to represent:

• The string can be supertype-only, or it can be supertype/subtype.

• Currently, the supertype is not restricted to the seven types listed above, but
you're probably making a mistake if you make up a new, unrecognized supertype.

• Neither the supertype nor the subtype can include any of the forbidden characters.

• The entire string must be no longer than B_MIME_TYPE_LENGTH characters long.
(That's about 240 characters. More than enough.)

You can check the validity of a MIME string without constructing a BMimeType
object by calling the static IsValid () function:

BMimeType: : IsValid ("text/qwerty") ;

Constructor and Destructor

BMimeType()

BMime Type(void)
BMimeType(const char *MIME_string)

Constructs a new BMimeType object and initializes its MIME type to a copy of
MIME_string (if the argument is given). The rules of validity apply (see "Valid MIME
Strings," above). To see if the initialization was successful, call Ini tCheck () after
you construct a new BMimeType object.

You can also set the MIME type through the Set To () function.

-Mime Type()

virtual -MimeType(void)

Frees the object's MIME string and destroys the object.

Member Functions

Delete() see Install()

GetAppHint(), SetAppHint()

status_t GetAppHint(entry_ref *app_ref) canst

status_t SetAppHint(const entry _ref * app_ref)

These functions get and set the "app hint" for the object's application signature. The
app hint is an entry_ref that identifies the executable that should be used when

BMimeType • Member Functions 215

launching an application that has this signature. For example, when the Tracker
needs to launch an app of type "application/YourAppHere'', it asks the database for
the entry_ref hint. Of course, the entry_ref may not point to an application, or it
might point to an application with the wrong signature (and so on)-that's why this is
merely a hint.

GetAppHint () function initializes the entry_ref to the hint recorded in the
database; the argument must be allocated before it's passed in.

SetAppHint () copies the entry_ref into the database. app_ref should point to an
executable file that has the same signature as this object's MIME type. Keep in mind
that entry_refs aren't guaranteed to be persistent.

Return values:
B_NO_ERROR. The ref was successfully retrieved or set.
B_NO_INIT. The BMimeType is uninitialized.
B_BAD_ VALUE. (Set) The ref is uninitialized.

GetlconForType(), SetlconForType()
status_t GetlconForType(const char *flle_type,

BBitmap *icon,
icon_size which) canst

status_t SetlconForType(const char *flle_type,
const BBitmap *icon,
icon_size which)

These functions get and set the icons that an application that has this object's MIME
type as a signature uses to display the given file type. flle_type must be a valid MIME
string.

The icon is passed in or returned through the icon argument:

• If you're getting the icon, the BBitmap must be allocated; the icon data is copied
into your BBitmap object.

• If you're setting the icon, the bitmap must be the proper size: 32x32 for the large
icon, 16x16 for the small one. In BRect lingo, that's BRect(O, 0, 31, 31) and
BRect(O, 0, 15, 15).

• You can remove an icon by passing NULL as the icon argument to
SeticonForType().

Return values:
B_NO_ERROR. The icon was found or set.
B_NO_INIT. The BMimeType is uninitialized.
B_BAD_VALUE. (Get) NULL BBitmap pointer, or flle_type is invalid.
B_BAD_VALUE. (Set) The bitmap data isn't the proper size, or flle_type is invalid.

216

GetFileExtensionsQ, SetFileExtensionsQ

status_t GetFileExtensions(BMessage *msg) canst

status_t SetFileExtensions(const BMessage *msg)

Chapter 3 • The Storage Kit

The database associates a list of file extensions (".xxx ... " filename appendages) with
each file type. If a file is otherwise untyped, clients of the database can figure out its
type by matching the file's extension to the lists in the database.

These functions get and set the fil~ extensions that are associated with the object's
MIME type.

• If you're getting the extensions, you'll find them copied into your BMessage's
"extensions" field (the BMessage must be allocated). They're given as an indexed
array of strings (B_STRING_TYPE).

• Similarly, you pass in the extensions by adding strings to the message's
"extensions" field.

• The BMessage's what field is unimportant.

For example, to retrieve all the extensions that correspond to this object's MIME type,
you would do the following:

BMessage msg () ;
uint32 i=O;
char *ptr;

if {mime.GetFileExtensions{&msg) != B_NO_ERROR)
/* Handle the error. */

while {true)
if {msg.FindString{"extensions", i++, &ptr) != B_NO_ERROR)

break;
printf { "> Extension: %s\n", ptr);

A given extension can be associated with more than one MIME type.

A NULL msg to SetFileExtensions () clears the type's extension list.

WARNING

SetFileExtensions () clobbers the existing set of extensions. If you want to
augment a type's extensions, you should retrieve the existing set, add the new
ones, and then call SetFileExtensionsO.

Also, there's no way to ask the database to give you a set of file types that
map to a given extension. To find a type for an extension, you have to get all
the installed types (GetinstalledTypes ()) and ask each one for its set of
extensions.

BMimeType • Member Functions

Return values:
B_NO_ERROR. The extensions were found or set.
B_NO_INIT. The BMimeType is uninitialized.
B_NO_MEMORY. Insufficient memory to copy the extensions.

Getlcon(), Setlcon()

virtual status_t Getlcon(BBitmap *icon, icon_size which) const
virtual status_t Setlcon(const BBitmap *icon, icon_size which)

217

Geticon () and Seticon () get and set the icons that are associated (in the
database) with this object's MIME type. You specify which icon you want (large or
small) by passing B_LARGE_ICON or B_SMALL_ICON as the which argument. The
icon is passed in or returned through the icon argument. The icon data is copied out
of or into the BBitmap object.

If you're setting the icon, the bitmap must be the proper size: 32x32 for the large
icon, 16x16 for the small one. If you want to erase the node's icon, pass NULL as the
icon argument to Set Icon ().

Return values:
B_NO_ERROR. The icon was found or set.
B_NO_INIT. The BMimeType is uninitialized.
B_BAD_VALUE (Set ... only). The bitmap wasn't the proper size.

GetlnstalledTypes(), GetlnstalledSupertypes()

static status_t GetlnstalledTypes(BMessage *types)
static status_t GetlnstalledTypes(const char *supertype, BMessage *subtypes)

static status_t GetlnstalledSupertypes(BMessage * supertypes)

These static functions retrieve all the file types that are currently installed in the
database, all the installed subtypes for a given supertype, and all the installed
supertypes. The types are copied into the "types" field of the passed-in BMessage
(which must be allocated).

Return values:
B_NO_ERROR. The types were found.
B_BAD_ VALUE. The supertype string isn't valid.
B_NO_MEMORY. Insufficient memory to copy the types.

GetlongDescription(), SetlongDescription(),
GetShortDescription(), SetShortDescription()

status_t GetlongDescription(char *description) const
status_t SetlongDescription(const char *description)

218

status_t GetShortDescription(char *description) const
status_t SetShortDescription(const char *description)

Chapter 3 • The Storage Kit

Each file type has a couple of human-readable description strings associated with it.
Neither description string may be longer than B_MIME_TYPE_LENGTH characters.

These functions get and set the long and short description strings. The Get functions
copy the string into the argument (which must be allocated). The Set functions copy
the string that the argument points to.

Return values:
B_NO_ERROR. The description was found or set.
B_NO_INIT. The BMimeType is uninitialized.
B_BAD_ VALUE. (Set) description is too long.
B_NO_MEMORY. Insufficient memory to copy the description.

GetPreferredApp(), SetPreferredApp()

status_t GetPreferredApp(char *signature, app_verb verb= B_OPEN) const
status_t SetPreferredApp(const char *signature, app_verb verb= B_OPEN)

These functions get and set the "preferred app" for this object's MIME type. The
preferred app is the application that's used to access a file when, for example, the
user double-dicks the file in a Tracker window: Unless the file identifies (in its
attributes) a "custom" preferred app, the Tracker will ask the File Type database for
the preferred app that's associated with the file's type.

• The preferred app is identified by signature, a MIME string.

• The app_verb argument specifies the type of access; currently, the only
app_verb is B_OPEN.

Return values:
B_NO_ERROR. The preferred app was found or set.
B_NO_INIT. The BMimeType is uninitialized.
B_BAD_VALUE (Set ... only). The signature argument is too long (greater than
B_MIME_TYPE_LENGTH).

GetShortDescription() see GetLongDescription()

GetSupertype() see Type()

GetSupportingApps(), SetSupportingApps()

status_t GetSupportingApps(BMessage *msg) canst

status_t SetSupportingApps(const BMessage *msg)

BMimeType • Member Functions

These functions get and set the list of the MIME type's "supporting apps." These are
the applications that know how to deal with the type. The apps are identified by their
signatures.

• If you're getting the apps, you'll find their signatures copied into your BMessage's
"applications" field (the BMessage must be allocated). They're given as an indexed
array of strings (B_STRING_TYPE).

• Similarly, you pass in the signatures by adding strings to the message's
"applications" field.

• The BMessage's what field is unimportant.

For example, to retrieve all the application (signatures) that support this object's
MIME type, you would do the following:

BMessage msg();
uint32 i=O;
char *ptr;

if (mime.GetSupportingApps(&msg) != B_NO_ERROR)
/* Handle the error. */

while (true)
if (msg. FindString ("applications", i++, &ptr) ! = B_NO_ERROR)

break;
printf ("> Supporting App: %s\n", ptr);

A given application can be associated with more than one MIME type.

A NULL msg to SetSupportingApps () clears the type's application signature list.

WARNING

SetSupportingApps () clobbers the existing set of signatures. If you want to
augment a type's signatures, you should retrieve the existing set, add the new
ones, and then call SetSupportingApps().

Return values:
B_NO_ERROR. The signatures were found or set.
B_NO_INIT. The BMimeType is uninitialized.
B_NO_MEMORY. Insufficient memory to copy the signatures.

lnitCheck()

status_t lnitCheck(void) canst

Returns the status of the most recent construction or Set To () call.

Return values:
See SetTo () .

219

220

Install{), Delete(), lslnstalled()

status_t lnstall(void)
status_t Delete(void)
bool lslnstalled(void) const

Chapter 3 • The Storage Kit

Install () adds the object's MIME type to the File Type database. Delete ()

removes the type from the database. Isinstalled () tells you if the type is currently
installed.

None of these functions affect the object's copy of the MIME type; for instance,
deleting a MIME type from the database doesn't uninitialize the object.

Return values:
B_NO_ERROR. The type was successfully added or deleted.
B_BAD_VALUE. The object is uninitialized.

WARNING

Currently, Install () may return a random value if the object is already
installed. To avoid confusion, you should call Isinstalled () first:

if (!mime.Islnstalled())
mime.Install();

ls Installed() see Install()

lsValid{), lsSupertypeOnly()

static bool IsValid(const char *MJME_string) canst
bool lsValid(void) const
bool lsSupertypeOnly(void) const

The static IsValid () tests its argument for MIME validity. See "Valid MIME Strings"
for the rules. The non-static version checks the validity of the object's MIME string.

IsSupertypeOnly () returns true if the object's MIME string doesn't include a
subtype.

SetAppHint() seeGetAppHint()

SetFileExtensions() see GetFileExtensions()

Seti con() see Get/con()

SetlconForType() seeGetlconForType()

SetlongDescription() see GetLongDescription()

BMimeType • Member Functions 221

SetPreferredApp() see GetPreferredApp()

SetShortDescription() see GetLongDescription()

SetSupportingApps() see GetSupportingApps()

Set To()

status_t Set To(const char • MIME_string)

Initializes this BMimeType object to represent MIME_string. The object's previous
MIME string is freed; the argument is then copied.

The argument can be a full supertype/subtype string, or simply a supertype. In any
case, it must pass the validity test described in "Valid MIME Strings" on page 213.

Return values:
These return codes are also returned by the Ini tCheck () function.
B_NO_ERROR. The initialization was successful.
B_NO_INIT. MJME_string is NULL or invalid.
B_NO_MEMORY. Not enough memory to allocate a copy of the argument.

Type{), GetSupertype()

const char *Type(void) const
status_t GetSupertype(BMime *supef) canst

Type () returns a pointer to the object's MIME string. If the object isn't initialized, this
returns a pointer to NULL.

GetSupertype () initializes the argument with this object's supertype. (You can then
call Get Type () on the argument to see the supertype.) super must be allocated
before it's passed in. If this object isn't initialized, super is uninitialized.

Return values:
The errors apply to GetSupertype () only.
B_NO_ERROR. Everything's fine.
B_BAD_VALUE. This object isn't initialized.

Unset()

void Unset(void)

Frees the object's current MIME string, and sets the object's status to B_NO_INIT.

222 Chapter 3 • The Storage Kit

BNode
Derived from: BStatable

Declared in: be/storage/Node.h

Library: lib be.so

Overview
The BNode class gives you access to the data that a file system entry (a file, directory,
or symbolic link) contains. There are two parts to this data:

• The "data portion" itself
• The node's attributes

The content of the data portion depends on the node's flavor:

• If it's a regular file, the data is whatever it is that the file is meant to contain: ASCII
text, binary image or sound data, executable code, and so on. Note that resources
(as created by the BResources class) are kept in the data portion.

• If it's a directory, the data is the list of entries that the directory contains.

• If it's a symbolic link, the data is the path of the "linked-to" file. The path can be
absolute or relative.

The content of the attributes, on the other hand, isn't qualified by the node's flavor:
Any node can contain any set of attributes.

Nodes Are Dumb

Keep in mind that the concept of a "node" designates the data parts (data and
attributes) of a file (a file, directory, or link). Contrast this with an "entry," which
designates the entity's location within the file system: For example, you can write to a
"node" (but not an entry), and you can rename an "entry" (but not a node).

This isn't just a conceptual crutch, it's the law: Nodes really don't know where they're
located. For example, you can't ask a node for its name, or for the identity of its
parent. This has some serious implications, the most important of which is:

• If you need to store a reference to a file (or directory, or symbolic link), don't store
the node-in other words, don't cache the BNode object. Instead, store the
information that you used to create the BNode (typically, a pathname or
entry_ref structure).

Now that we've got that straight, we'll relax the rules a bit:

• BDirectory objects are node/entry hybrids. A BDirectory does know its own name
(and parent, and so on).

BNode • Overview 223

This doesn't really change the "store the info" rule. Even if you're dealing exclusively
with BDirectory objects, you should keep the generative information around. The
primary reason for this is described in the following section.

The "Node Pool" Is Limited {File Descriptors)

Every BNode object consumes a "file descriptor." Your application can only maintain
256 file descriptors at a time. Because of this limit, you shouldn't keep BNodes
around that you don't need. Keep in mind that BEntry objects also consume file
descriptors (one per object).

NOTE

The file descriptor limit will probably be lifted, or at least setable, in a subse
quent release. But even then you should be frugal.

Derived Classes and Their Uses

BNode has three derived classes: BFile, BDirectory, and BSymLink. The derived
classes define functions that let you access the node's data portion in the appropriate
style; for example:

• BFile implements Read () and Write () functions that let you retrieve arbitrary
amounts of data from arbitrary positions in the file.

• BDirectory implements functions, such as GetNextEntry () and FindEntry (),

that read entries from the directory.

• BSymLink's ReadLink () returns the pathname that it contains.

If you want to (sensibly) look at a node's data portion, you must create an instance of
the appropriate derived class. In other words, if you want to browse a directory, you
have to create a BDirectory instance; if you want to write to a file, you create a BFile.

Be aware that it's not (always) an error to create an instance of the "wrong" derived
class; setting a BFile to a symbolic link, for example, will traverse the link such that
the BFile opens the file that the symbolic link is linked to. See the individual derived
class specifications for more information.

BNode Instances

In practice, you almost always want to create an instance of one of the BNode
derived classes; but if, for whatever reason, you find yourself holding a BNode
instance, here's what you'll be able to do with it:

• Read and write attributes. The attribute-accessing functions (ReadAttr (),

Wri teAttr (), and so on) are general-they work without regard for the node's

224 Chapter 3 • The Storage Kit

flavor. Thus, you don't need an instance of a specific derived class to read and
write attributes.

• Get stat information. The BStatable functions can be invoked on any flavor of
node.

• Lock the node. This prevents other "agents" (other objects, other apps, the user)
from accessing reading or writing the node's data and attributes. See the section
"Node Locking" later in this chapter.

Converting a BNode to an Instance of a Derived Class

NOTE

This section describes situations and presents solutions to problems that are a
bit esoteric. If you never create direct instances of BNode (and you never have
to), then you should skip this and go to the "Node Locking" section.

There may be times when you find yourself holding on to a BNode (instance) that
you want to convert into a BFile, BDirectory, or BSymLink. However, you can't go
directly from a BNode instance to an instance of BFile, BDirectory, or BSymLink
you can't tell your BNode to "cast itself' as one of its children.

There are solutions, however ...

Converting to BDirectory

Converting from a BNode to a BDirectory, while not transparent, is pretty simple:
Grab the node_ref out of the BNode and pass it to the BDirectory constructor or
SetTo () function. Regard this example function:

void Node2Directory(BNode *node, BDirectory *dir)
{

node_ref nref;

if (!node 11 !dir)
dir.Unset();
return;

node.GetNodeRef(&nref);

/* Set the BDirectory. If nref isn't a directory node,
* the SetTo() will fail.
*!
dir.SetTo(&nref);

BNode • Overview

Converting to BFile or BSymlink

Converting a BNode instance to a BFile or BSymLink isn't as neat as the foregoing.
Instead, you have to cache the information that you used to initialize the BNode in
the first place, and then reuse it to create the BFile or BSymLink.

225

For example, let's say you receive an entry_ref. You turn it into a BNode, but then
decide you need the data-writing power of a BFile. If, in the meantime, you lost the
original entry_ref, you're sunk-there's nothing you can do.

Node Locking

Another feature provided by the BNode class is "node locking": Through BNode's
Lock () function you can restrict access to the node. The lock is removed when
Unlock () is called, or when the BNode object is deleted.

• When you lock a node, you prevent other objects (or agents) from reading or
writing the node's data and attributes. No other agent can even open the node
other BNode constructions and POSIX open () calls (on that node) will fail while
you hold the lock.

• You can only acquire a node lock if there are no file descriptors open on the node
(with one exception). This means that no other BNode may be open on the node
(locked or not), nor may the node be held open because of a POSIX open () (or
opendir ()) call.

The one exception to the no-file descriptors rule has to do with BEntries: Let's say
you lock a directory, and then you initialize a BEntry to point to an entry within that
directory. Even though the BEntry creates a file descriptor to the directory (as
explained in the BEntry class), the initialization will succeed.

Implications

For files (and, less importantly, symlinks), the implications of locking are pretty clear:
No one else can read or write the file. For directories, it's worth a closer look:

• Locking a directory means that the contents of the directory can't change: You
can't create new nodes in the directory, or rename or remove existing ones. (You
can, however, create abstract entries within the directory; see BEntry for more on
abstract entries.)

Locking a node does not lock the node's entry: You can't "lock out" entry operations,
such as rename, move, and remove. Even if you have a node locked, the entry that
acts as the "container" for that node could disappear. If you want to prevent such
operations on a node's entry, lock the entry's parent directory.

226 Chapter 3 • The Storage Kit

In general, you should try to avoid locking your nodes. If you must lock, try to make
it brief. The primary reason (and, pretty much, the only reason) to lock is if separate
elements in the data and/or attributes must be kept in a consistent state. In such a
case, you should hold the lock just long enough to ensure consistency.

WARNING

You shouldn't use locks to "privatize" data. Locking isn't meant to be used as a
heightened permissions bit.

Constructor and Destructor
BNode()

BN ode(const entry _ref *ref)
BNode(const BEntry *entry)
BNode(const char *path)
BNode(const BDirectory *dir, canst char *path)

BNode()
BNode(const BNode &node)

Creates a new BNode object that's initialized to represent a specific file system node.
To retrieve the status of the initialization, call Ini tCheck () immediately after
constructing the object:

BNode node ("/boot/ lbj /FidoOnFire. gif") ;
if (node.InitCheck() != B_NO_ERROR)

/* The object wasn't initialized. */

A successfully initialized BNode object creates a "file descriptor" through which the
object reads and writes the node's data and attributes. You can only have 256 file
descriptors at a time (per application). The object's file descriptor is closed when the
object is deleted, reset (through Set To ()), or unset (Unset ()).

• Default constructor. The object's status will be B_NO_INIT, and the file descriptor
isn't allocated until you actually initialize the object with a call to Set To ().

• Copy constructor. The new BNode is set to the same node as the argument. Each
of the two BNode objects has its own file descriptor.

• Other constructors. See the Set To () functions.

-BNode()

virtual -BNode()

Frees the object's file descriptor, unlocks the node (if it was locked), and destroys the
object.

BNode • Member Functions 227

Member Functions

GetAttrlnfo(), attr _info

status_t GetAttrlnfo(const char *attr, attr_info *info) canst

typedef struct attr _info {}

Gets information about the attribute named by attr. The information is copied into
info, which must be allocated before it's passed in.

The attr_info structure, defined in be/kernellfs_attr.h, is:

typedef struct attr_info
{

uint32 type;
off_t size;

attr_info;

• type is a constant (B_STRING_TYPE, B_INT3 2_TYPE, etc) that describes the type
of data that the attribute holds.

• size is the size of the attribute's data, in bytes.

Return values:
B_NO_ERROR. Success.
B_ENTRY_NOT_FOUND. The node doesn't have an attribute named attr.
B_FILE_ERROR. The object is uninitialized.

GetNextAttrName(), RewindAttrs()

status_t GetNextAttrName(char * bu.ffef)

status_t RewindAttrs(void)

Every BNode maintains a pointer into its list of attributes. GetNextAttrName ()

retrieves the name of the attribute that the pointer is currently pointing to, and then
bumps the pointer to the next attribute. The name is copied into the buffer, which
should be at least B_ATTR_NAME_LENGTH characters long. The copied name is NULL

terminated. When you've asked for every name in the list, GetNextAt trName ()

returns an error.

WARNING

GetNextAttrName () does not clear its argument if it returns an error. This
will be corrected in a subsequent release.

RewindAttrs () resets the BNode's attribute pointer to the first element in the list.

228

To visit every attribute name, you would do something like this:

/* Print every attribute name. */
char buf[B_.ATTR_NAME_LENGTH];

while (node.GetNextAttrName(buf) == B_NO_ERROR)
printf("> Attr name: %s\n", buf);

Chapter 3 • The Storage Kit

The attribute list is not static; when you ask for the next attribute name, you're asking
for the next name in the list as it exists right now.

Furthermore, the ordinal position of an attribute within the list is indeterminate.
"Newer" attributes are not necessarily added to the end of the list: If you alter the list
while you're walking through it, you may get curious results-you may not see the
attribute that you just now added (for example).

In general, it's best to avoid altering the list while you're iterating over it.

Return values:
B_NO_ERROR. Success.
B_ENTRY_NOT_FOUND. You've hit the end of the list.
B_FILE_ERROR. The object is uninitialized.

lnitCheck()

status_t lnitCheck(void) canst

Returns the status of the most recent initialization.

Return values:
B_NO_ERROR. The object was successfully initialized.
B_NO_INIT. The object is uninitialized.
See the SetTo () function for a list other return values.

Lock(), Unlock()

status_t Lock(void)
status_t Unlock(void)

Locks and unlocks the BNode's node. While the node is locked, no other object can
access the node's data or attributes. More precisely, no other agent can create a file
descriptor to the node. If a file descriptor already exists to this node, the Lock ()

function fails.

See "Node Locking" for details.

BNode • Member Functions

Return values:
B_NO_ERROR. The node was successfully locked or unlocked.
B_BUSY. (Lock()) The node can't be locked.
B_BAD_VALUE. (Unlock ())The node isn't locked.
B_FILE_ERROR. The object is uninitialized.

ReadAttr(}, WriteAttr(), RemoveAttr()

ssize_t ReadAttr(const char *name,
type_code type,
off_t offset,
void *buffer,
size_t length)

ssize_t WriteAttr(const char *name,
type_code type,
off_t offset,
const void *buffer,
size_t length)

status_t RemoveAttr(const char *attf)

These functions read, write, and remove the node's attributes. Attributes arc
name/data pairs, where names must be unique (within a given node) and the data
can be of arbitrary length.

229

ReadAttr () reads the data in the attribute named name, and copies it in buffer. The
length of the buffer (the maximum number of bytes to copy) is given by length.
Currently, the t;pe and offset arguments are unused (or unreliable). The function
returns the number of bytes that were actually read.

WriteAttr () erases the data currently held by name (if such an attribute exists) and
replaces it with a copy of the first length bytes of data in buffer. The type argument is
remembered-you can retrieve an attribute's type through GetAttrinfo (), for
example-and you need to specify the correct type when you're forming a query (see
BQuery and the note below). But, as mentioned above, you don't need to match
types when you're reading the attribute. The offset argument is currently unreliable
and shouldn't be used. The functions returns the number of bytes that were written.

NOTE

If you want to use the attribute in a query, its type must be either string,
int32, uint32, int64, uint64, double, or float. (In other words, type
must be B_STRING_TYPE, or B_INT32_TYPE, or B_UINT32_TYPE, and so on.)

RemoveAttr () deletes the attribute given by name.

230 Chapter 3 • The Storage Kit

Return values:
ReadAttr () and Wri teAttr (), if successful, return the number of bytes read or
written.
B_NO_ERROR. (Remove) The attribute was successfully removed.
B_ENTRY_NOT_FOUND. (ReadAttr () and Remove ())The attribute doesn't exist.
B_FILE_ERROR. The object is uninitialized.
B_FILE_ERROR. (Wri teAt tr () and Remove ()) This object is a read-only BFile.
B_NOT_ALLOWED. (WriteAttr () and Remove ()) The node is on a read-only
volume.
B_DEVICE_FULL. (Wri teAttr ()) Out of disk space.
B_NO_MEMORY. (WriteAttr()) Not enough memory to complete the operation.

RemoveAttrQ see ReadAttr()

RenameAttrQ
status_t RenameAttr(const char *name, const char *new_name)

Moves the attribute given by name to new_name. If new_name exists, it's clobbered.

Return values:
B_NO_ERROR. The attribute was successfully renamed.
B_ENTRY_NOT_FOUND. The name attribute doesn't exist.
B_FILE_ERROR. The object is uninitialized.
B_FILE_ERROR. This object is a read-only BFile.
B_NOT_ALLOWED. The node is on a read-only volume.

RewindAttrs see GetNextAttrName()

SetToQ, UnsetQ
status_t SetTo(const entry_ref *ref)
status_t SetT o(const BEntry *entry)
status_t SetTo(const char •path)
status_t SetTo(BDirectory *dir, const char *path)

void Unset(void)

Closes the BNode's current file descriptor and opens it on the node (of the entry)
that's designated by the arguments.

• In the path version, path can be absolute or relative, and can contain "." and " .. "
elements. If path is relative, it's reckoned off of the current working directory.

• In the dir/path version, path must be relative. It's reckoned off of the directory
given by dir.

BNodelnfo 231

BNode instances never traverse symbolic links. If the designated entry is a symbolic
link, the BNode will open the link's node. (Conversely, BFile instances always
traverse symbolic links.)

Unset () closes the BNode's file descriptor and sets Ini tCheck () to B_NO_INIT.

Return values:
B_NO_ERROR. All is well.
B_ENTRY_NOT_FOUND. The designated entry doesn't exist.
B_BAD_VALUE. Uninitialized or malformed argument.
B_BUSY. The node is locked.

Unlock() see Lock()

Unset() see SetTo()

WriteAttr() see ReadAttr()

Operators
= (assignment)

BNode& operator=(const BNode &node)

In the expression

BNode a = b;

BNode a is initialized to refer to the same node as b. To gauge the success of the
assignment, you should call Ini tCheck () immediately afterwards. It's safe to assign
a BNode to itself.

==, != (comparison)

bool operator==(const BNode &node) canst
bool operator!=(const BNode &node) canst

Two BNode objects are said to be equal if they're set to the same node, or if they're
both B_NO_INIT.

BNodelnfo
Derived from: none

Declared in: be/storage/Nodelnfo.h

Library: lib be.so

232 Chapter 3 • The Storage Kit

Overview
BNodelnfo provides file type information about a particular node; specifically:

• The (MIME) file type.

• The node's icons, including the node-specific icon that the Tracker displays.

• The "preferred app"; this is the application that's used to access the node's
contents.

Except for the Tracker icon, all this information can also be set through the
BNodelnfo class. None of the information is passed on to the File Type database; if
you want to record a node's file type information with the database, you have to
create a BMimeType object (based on the node's file type) and go from there.

Initialization

You initialize a BNodelnfo object by passing it a BNode object. Although you can
pass any flavor of node, you typically only care about files; passing a BFile object (or
any subclass of BNode) is, of course, acceptable. The BNodelnfo object maintains its
own pointer to the BNode you pass in. You don't have to avoid touching the BNode
while a BNodelnfo is looking at it (or changing it); the only thing you shouldn't do is
delete the BNode.

BNodeinfo doesn't care if the BNode is locked-there's no particular reason to lock
the BNode before passing it in, but the BNodeinfo won't balk if you do. If you pass
in a BFile object, BNodeinfo does not obey the BFile's read/write flags. For example,
you can set the node info for a BFile even if you've opened it in read-only mode.

Node Info Equals Attributes

The BNodeinfo class does nothing more than look in a node's attributes for the
information it sets or gets. The attribute names for the various information particles
are given in the function descriptions, below. If you want, you can bypass BNodeinfo
and get the node information directly by passing the attribute names to BNode's
ReadAt tr{) and Wri teAt tr{) functions.

The one exception to this is GetTrackericon (} : This function starts by looking in
the node's attributes, but then it goes out hunting if it has to (if the icon isn't found in
the attributes).

BAppFilelnfo

BNodeinfo has a single subclass: BAppFileinfo. You use a BAppFileinfo object to get
more information about a specific executable image (file).

BNodelnfo • Member Functions 233

Errors

Unlike most of the other Storage Kit classes, when you ask a BNodelnfo to retrieve
some information by reference, the object doesn't clear the reference argument if it
fails. Because of this, you should always check the error code that's returned by the
Get. . . functions.

Constructor and Destructor

BNodelnfo()

BNodelnfo(void)
BNodelnfo(BNode *node)

The default constructor creates a new, uninitialized BNodeinfo object. To initialize
you have to follow this construction with a call to SetTo () .

The BNode version initializes the BNodelnfo by passing the argument to Set To ();
see SetTo () for details (and error codes).

-BNodelnfo()

-BNodelnfo(void)

Destroys the object. The BNode object that was used to initialize the object isn't
touched.

Member Functions

Getlcon(}, Setlcon(}, GetTrackerlcon()

virtual status_t Getlcon(BBitmap *icon, icon_size which= B_LARGE_ICON) const
virtual status_t Setlcon(const BBitmap *icon, icon_size which= B_LARGE_ICON)

status_t GetTrackerlcon(BBitmap *icon, icon_size which= B_LARGE_ICON)
static status_t GetTrackerlcon(entry_ref *ref,

BBitmap *icon,
icon_size which = B_LARGE_ICON)

Get Icon () and Seticon () get and set the icon data that's stored in the node's
attributes. You specify which icon you want (large or small) by passing
B_LARGE_ICON or B_SMALL_ICON as the which argument. The icon is passed in or
returned through the icon argument. The icon data is copied out of or into the
BBitmap object.

234 Chapter 3 • The Storage Kit

If you're setting the icon, the bitmap must be the proper size: 32x32 for the large
icon, 16x16 for the small one. If you want to erase the node's icon, pass NULL as the
icon argument to Seticon () .

NOTE

The icon attributes are stored as "BEOS: L:STD_ICON" Oarge icon) and "BEOS:
M:STD_ICON" (small, or "mini" icon).

GetTrackericon () finds the icon that the Tracker uses to display the node. The
static version lets you identify the node as an entry_ref. Both versions follow
the same ordered path in trying to find the icon:

First (1) it looks in the node's attributes. If the attribute doesn't exist, it (2) gets the
node's preferred app (as a signature), and asks the File Type database if that
signature declares an icon for this node's file type. If the node doesn't have a
preferred app, or if the app doesn't designate an icon for the node's type, the
function (3) asks the File Type database for the icon based oh the node's file type. If
still empty-handed, the function (4) asks the File Type database for the preferred app
based on the node's file type, and then asks that app for the icon it uses to display
this node's file type. If still nothing, we (5) quit.

The function doesn't tell you which branch of the path it found the icon in.

Return values:
B_NO_ERROR. The icon was found or set.
B_NO_INIT. The BNodeinfo is uninitialized.
B_BAD_VALUE (Set ... only). The bitmap wasn't the proper size.
Attribute errors. See the error codes for BNode: : ReadAt tr () and
BNode: :WriteAttr().

GetPreferredApp(), SetPreferredApp()
status_t GetPreferredApp(char *signature, app_verb verb= B_OPEN) canst
status_t SetPreferredApp(const char *signature, app_verb verb= B_OPEN)

These functions get and set the node's "preferred app." This is the application that's
used to access the node when, for example, the user double-dicks the node in a
Tracker window.

• The preferred app is identified by signature, a MIME string.

• The app_verb argument specifies the type of access; currently, the only
app_ verb is B_OPEN.

If a node doesn't have a preferred app, the Tracker looks in the File Type database
for an app that can open the node's file type.

BNodelnfo • Member Functions

NOTE

The attribute that stores the preferred app is named "BEOS:PREF _APP".

Return values:
B_NO_ERROR. The preferred app was found or set.
B_NO_INIT. The BNodeinfo is uninitialized.
B_BAD_VALUE (Set ••• only). The signature argument is too long (greater than
B_MIME_TYPE_LENGTH).

Attribute envrs. See the error codes for BNode : : Read.At tr () and
BNode: :WriteAttr().

Get Trackerlcon() see Get/con()

GetType(), SetType()
virtual status_t GetType(char •type) canst
virtual status_t SetType(const char •type)

These functions get and set the node's file type. The file type, passed in or returned
through type, is a MIME string.

NOTE

The attribute that stores the file type is named "BEOS:TYPE".

Return values:
B_NO_ERROR. The type was found or set.
B_NO_INIT. The BNodeinfo is uninitialized.
Attribute envrs. See the error codes for BNode: : Read.At tr() and
BNode::WriteAttr().

lnitCheck()
status_t lnitCheck(void) canst

Returns the status of the most recent initialization.

Return values:
B_NO_ERROR. The object was successfully initialized.
B_NO_INIT. The object is uninitialized.
See SetTo () for more error codes.

Setlcon() see Get/con()

SetPreferredApp() see GetPre(erredApp()

235

236 Chapter 3 • The Storage Kit

Set To()
status_t SetTo(BNode *node)

Initializes the BNodelnfo object by pointing it to node, which must be a valid
(initialized) BNode object. The BNodelnfo maintains its own BNode pointer: You
shouldn't delete node while the BNodelnfo is accessing it; other changes to the
BNode are permitted, but you may want to avoid such antics. Re-initializing a
BNodelnfo doesn't affect the previous BNode object.

Return values:
B_NO_ERROR. The object was successfully initialized.
B_BAD_ VALUE. node is uninitialized.

SetType() seeGetType()

The Node Monitor
Derived from: nonrr--these are C functions

Declared in: be/storage/NodeMonitor.h

Library: libbe.so

Overview
The Node Monitor is a service that lets you ask to be notified of certain file system
changes. You can ask to be told when a change is made to:

• The contents of a specific directory.
• The name of a specific entry.
• Any stat field of a specific entry.
• Any attribute of a specific entry.

You can also ask to be notified when:

• Volumes are mounted and unmounted.

NOTE

Volume monitoring is also provided by the BVolumeRoster class: BVolume
Roster can talk to the Node Monitor for you. The BVolumeRoster volume
watching API is more humane than that which you'll find here.

When something interesting happens, the Node Monitor lets you know by sending a
BMessage to the target of your choice.

The Node Monitor • Node Monitor Functions 237

Node Monitor Functions
There are two Node Monitor functions, watch_node () and stop_watching ().The
names are a wee bit misleading, so before we go on to the full technical descriptions,
let's nip some buds:

• watch_node () tells the Node Monitor to start or stop watching a specific node, or
to watch for volumes being mounted and unmounted. Memorize the emphasized
words.

• stop_watching () tells the Node Monitor to stop sending notifications to a
particular target.

watch_node{)

status_t watch_node(const node_ref *nref,
uint32 flags,
BMessenger messengei')

status_t watch_node(const node_ref *nref,
uint32 flags,
canst BHandler *handler,
canst BLooper *looper= NULL)

watch_node () tells the Node Monitor to:

• Start paying attention to the node specified by the node_ref argument. If you're
watching for volumes (only), nref can be NULL. The easiest way to get a node_ref

is to invoke BStatable: : GetNodeRef () on any BEntry or BNode object.

• The flags argument lists the changes that you want the Monitor to pay attention to.
See below for details.

• The target of the change notification messages is specified either as a BMessenger,
or as a BHandler• /BLooper* pair. (The target specification follows the
Binvoker: : Set Target () protocol; see the Blnvoker class for details.) The
notification shows up as a BMessage in the target's MessageRecei ved () function.

NOTE

You can't tell the Node Monitor to send its notifications to another application.
Currently, the BMessenger that you specify must identify a target in the caller's
team.

Jumping ahead a bit, here's a sample function that tells the Node Monitor to watch for
name and attribute changes to a given entry. The Monitor's notifications will be sent
to the application's main loop:

status_t WatchThis(BEntry *entry)
{

238

node_ref nref;
entry->GetNodeRef(&nref);
return (watch_node(&nref,

Monitor Flags

B_WATCH_NAME I B_WATCH_ATTR,
be_app_messenger));

Chapter 3 • The Storage Kit

watch_node () 's flags argument is a combination of the following:

• B_WATCH_NAME watches for name changes. This includes moving the node to a
different directory, or removing the node altogether.

• B_WATCH_STAT watches for any change to the node's stat structure. This
includes changes to the size, modification date, owner, and so on. See "The stat
Structure" on page 285 in the BStatable class for a description of what's in the
stat structure.

• B_WATCH_ATTR watches for changes to any of the node's attributes. This includes
adding and removing attributes.

• B_WATCH_DIRECTORY only applies to nodes that are directories. The flag tells the
Monitor to watch for changes (new entries, entry deletions, entries being
renamed) to the directory. (You can apply the other flags to a directory, as well).
It's not an error to set B_WATCH_DIRECTORY on a node that isn't a directory-but
it doesn't do anything for you.

• B_WATCH_ALL. This is a convenience that combines all the above.

• B_WATCH_MOUNT watches for volumes being mounted and unmounted. As
mentioned above, the nref argument isn't needed (it can be NULL) if all you're
doing is watching volumes. B_WATCH_MOUNT isn't included in B_WATCH_ALL.

There's one other constant, which lives in a class by itself:

• B_STOP _WATCHING tells the Node Monitor to stop watching the nref argument.

You can't combine B_STOP_WATCHING with any of the others in an attempt to stop
watching a specific category of changes. For example, if you call:

watch_node(&nref, B_WATCH_STAT, be_app.J11essenger);
watch_node(&nref, B_WATCH_ATTR, be_app.J11essenger);

and then call:

watch_node(&nref, B_STOP_WATCHING, be_app_messenger);

both of the previous Monitor calls are stopped.

WARNING

B_STOP _WATCHING does not apply to volume watching. The only way to stop
monitoring volume un/mounts is to call stop_watching ().

The Node Monitor • Node Monitor Functions

Combining Flags and the 4096 Limit

If you can, you should combine as many flags as you're going to need in single calls
to watch_node ().Recall the example used above:

watch_node(&nref,
B_WATCH_NAME I B_WATCH_ATTR,
be_app_messenger);

239

This is better than making separate watch_node () calls (one to pass B_WATCH_NAME
and another to pass B_WATCH_ATTR)-not only because the single call is naturally
more efficient than two, but also because the Node Monitor can only monitor 4096
nodes at a time. Every call to watch_node () consumes a Node Monitor slot, even if
you're already monitoring the requested node.

If you want to watch all aspects of a node, just pass B_WATCH_ALL to every
watch_node () call. This will consume only a single Node Monitor slot.

Notification Messages

A BMessage notification sent by the Node Monitor looks like this:

• The what value is B_NODE_MONITOR.
• The field named "opcode" is an int32 constant that tells you what happened.
• Additional fields give you information (device, node, name, and so on) about the

node (or volume) that it happened to.

The "opcode" constants and additional fields are described in "Opcode Constants." In
general, the opcodes correspond to the flags that you passed to watch_node ();

however, this correspondence isn't always one-to-one.

There are seven opcode constants:

B_ENTRY_CREATED

B_ENTRY_REMOVED

B_ENTRY_MOVED

B_STAT_CHANGED

B_ATTR_CHANGED

B_DEVICE_MOUNTED

B_DEVICE_UNMOUNTED

Return values:
B_NO_ERROR. The Node Monitor is off and running.
B_BAD_VALUE. Bad nref argument (not applicable to mount-only watches), or
poorly formed target.

240 Chapter 3 • The Storage Kit

B_NO_MEMORY. Couldn't allocate resources, or out of Node Monitor slots.
B_ERROR. Some cases of bad nref arguments erroneously return B_ERROR. This
will be fixed.

stop_watchingQ

status_t stop_watching(BMessenger messenger,

status_t stop_watching(const BHandler *handler, canst BLooper *looper,

Tells the Node Monitor to stop sending notifications to the target described by the
arguments. All the Node Monitor "slots" that were allocated to the target are freed.
Keep in mind that are only 4096 slots for the entire system.

Return values:
B_NO_ERROR. The target is now out of the Node Monitor loop.
B_BAD_ VALUE. Badly formed target description.

Opcode Constants
The following sections describe the "opcode" constants; these are the values that
appear in the "opcode" field of the BMessages that are generated by the Node
Monitor. Note that in these descriptions, the use of the terms "entry" and "node" is
sometimes blurred.

B_ENTRY _CREA TED

• A completely new entry was created in a monitored directory. (This doesn't
include entries that are moved into this directory from some other directory-see
B_ENTRY_MOVED.)

You get this notification if you applied B_WATCH_DIRECTORY to the directory in
which the entry was created. The message's fields are:

Field Type code

"opcode" B_INT32_TYPE

"name" B_STRING_TYPE

"directory" B_INT64_TYPE

"device" B_INT32_TYPE

Parsing and Tricks

Description

B_ENTRY_CREATED

The name of the new entry.

The ino_t (node) number for the directory in which the
entry was created.

The dev_t number of the device on which the new entry
resides.

In your code, you would parse a B_ENTRY_CREATED message like this:

The Node Monitor • Opcode Constants

void MyTarget: :MessageReceived(BMessage *msg)
{

int32 opcode;
dev_t device;
ino_t directory;
ino_ t node;
const char *name;

if (msg->what == B_NODE_MONITOR)
if (msg->Findint32 ("opcode", &opcode)

switch (opcode) {
case B_ENTRY_CREATED:

B_OK) {

msg->Findint32 ("device", &device);
msg->Findint64 ("directory", &directory);
msg->Findint64 ("node", &node);
msg->FindString("name", &name);
break;

So, what do you do with these fields?

Create an· entry _ref to the entry. The "device", "directory", and "name" fields can
be used to create an entry _ref to the new entry:

entry_ref ref;
const char *name;

msg->Findint32 ("device", &ref .device);
msg->Findint64 ("directory", &ref. directory) ;
msg->FindString ("name", &name);
ref.set_name(name);

241

Create a node_ref to the entry. If you want to start Node Monitoring the new entry
(or, more accurately, the node of the new entry), you stuff "device" and "directory"
into a node_ref:

node_ref nref;
status_t err;

msg->Findint32 ("device", &nref. device) ;
msg->Findint64 ("node", &nref .node);

err= watch_node(&nref, B_WATCH_ALL, be_app_messenger);

Create a node_ref to the entry's parent. Note that the "directory" field is a node
number. By combining this number with the "device" field, you can create a
node_ref that poirits to the entry's parent. From there, you're a SetTo () away from
a BDirectory object:

node_ref nref;
BDirectory dir;
status_t err;

242

msg->Findint32 ("device", &nref .device);
msg->Findint64 ("directory", &nref .node);
err= dir.SetTo(&nref);

B_ENTRY _REMOVED

• A node was removed (deleted) from a directory.

Chapter 3 • The Storage Kit

You get this if you applied B_WATCH_NAME on the node itself, or
B_WATCH_DIRECTORY on the directory that the node lived in. The message's fields
are:

Field Type code

"opcode" B_INT32_TYPE

"directory" B_INT64_TYPE

"device" B_INT32_TYPE

Description

B_ENTRY_REMOVED

The ino_t (node) number of the directory from which the
entry was removed.

The dev_t number of the device that the removed node used
to live on.

"node" B_INT64_TYPE The ino_t number of the node that was removed.

WARNING

Since this message is telling you that the node was removed, the "node" value
will be invalid. The node number can be useful (and sometimes necessary) for
comparison with cached node numbers (as demonstrated below).

Parsing the message is the same as for B_ENTRY_CREATED, but without the "name"
field. See "Parsing and Tricks," above.

Note that the B_ENTRY_REMOVED message is sent as soon as the node's entry is
"unlinked" from its directory. The node itself may linger for while after that. Follow
this logic:

• When a file (regardless of flavor) is removed, the entry for that file is immediately
removed ("unlinked") from the file hierarchy, and the Node Monitor message is
immediately sent-even if you have an object that has opened the file's node.

• The node isn't actually destroyed until the last open object (to that node) is
destroyed. (In POSIX speak, the node is destroyed when the last file descriptor to
the node is dosed.)

• Until the node is destroyed, the open objects (file descriptors) can still access the
node's data.

You can take advantage of this to warn a user that a file is going to go away, or to
make a backup, or whatever. For example, let's say you have an application that lets

The Node Monitor • Opcode Constants

the user open files; each time a file is opened, your OpenFile () function creates a
BFile object and starts the Node Monitor running:

status_t YourApp::OpenFile(const char *pathname)

BFile *file;
node_ref nref;
status_t err;

file= new BFile(pathname, B_READ_WRITE);
if ((err=file->InitCheck{)) != B_OK)

return err;

file->GetNodeRef(&nref);
err= watch_node(&nref, B_WATCH_NAME, be_app_messenger);

if (err != B_OK)
delete file;
return err;

/* We've got the file and we're monitoring it; now we cache
*the BFile by adding it to a BList (data member).
* function. There's a race condition between the
* watch_node() call above and the following Additem().
*I

return ((FileList->Additem((void *)file)) ? B_OK: B_ERROR);

Now we receive a Node Monitor message telling us the node has been removed. We
stuff the "device" and "node" fields into a node_ref and pass them to a (fictitious)
AlertUser () function:

void YourApp::MessageReceived(BMessage *msg)
{

int32 opcode;
node_ref nref;

if (msg->what == B_NODE_MONITOR)
if (msg->Findint32 ("opcode", &opcode)

switch (opcode) {
case B_ENTRY_REMOVED:

B_OK) {

msg->Findint32 ("device", &nref .device);
msg->Findint64 ("node", &nref .node);
GoodbyeFile(nref);

The implementation of GoodbyeFile () (which we won't show here) would walk
down the BFile list looking for a node_ref that matches the argument:

void YourApp::GoodbyeFile(node_ref nref)
{

BFile *filePtr;

243

244

int32 ktr = O;
node_ref cref;

Chapter 3 • The Storage Kit

while ((*filePtr = (BFile *)FileList->ItemAt(ktr++)))
filePtr->GetNodeRef(&cref);
if (nref == cref) {

/*·We found it. Now we do whatever
* we need to do.
*/

}

If a match is found, your app could then do whatever it needs to do. Remember-the
node's data is still valid until your BFile is destroyed or re-initialized.

B_ENTRY _MOVED

• A node was moved from one directory to a different directory.

You get this if you applied B_WATCH_NAME on the node itself, or
B_WATCH_DIRECTORY on either of the directories. The message's fields are:

Field

"opcode"

"name"

"from directory"

"to directory"

"device"

"node"

Type code

B_INT32_TYPE

B_STRING_TYPE

B_INT64_TYPE

B_INT64_TYPE

B_INT32_TYPE

B_INT64_TYPE

Description

B_ENTRY_MOVED

The name of the entry that moved.

The ino_t (node) number of the directory the node
was removed from.

The ino_t (node) number of the directory that the
node was added to.

The dev_t number of the device that the moved
node entry lives on. (You can't move a file between
devices, so this value will be applied to the file's old
and new locations.)

The ino_t number of the node that moved.

NOTE

Moving a node does not change its ino_t number.

Parsing the message is much the same as for B_ENTRY_CREATED, modulo the
directory field changes. See "Parsing and Tricks."

Moving a node doesn't affect the objects that hold the node open. They (the objects)
can continue to read and write data from the node.

The Node Monitor • Opcode Constants

B __ STAT _CHANGED

• A field in the node's stat structure changed (this doesn't include the stat
structure disappearing because the node was deleted).

You get this if you applied B_WATCH_STAT on the node itself. The message's fields
are:

Field Type code Description

"opcode" B_INT3 2_TYPE B_STAT_CHANGED

"node" B_INT64_TYPE The ino_t number of the node.

"device" B_INT32_TYPE The dev_t number of the node's device.

245

The stat structure is described in "The stat Structure" on page 285 in the BStatable
class. The fields that you can change are:

• Owner (st_uid), group (st_gid), and permissions (low four bytes of st_mode).

• Creation (st_ctime), modification (st_mtime), and access times (st_atime;
currently unused).

• The size of the node's data (st_size). The measurement doesn't include
attributes.

A couple of important points:

• The B_STAT_CHANGED message doesn't give you enough information to construct
an object from which you can get a stat structure. In other words, you can't play
the same games that were described in "Parsing and Tricks."

• The message also doesn't tell you which stat field changed.

In most uses of the B_STAT_CHANGED message, you have to cache the objects that
you're monitoring so you can compare their node_refs to the message fields (an
example of this is given in B_ENTRY_REMOVED). Furthermore, you may want to cache
the objects' stat structures so you can figure out which field changed.

B_ATTR_CHANGED
• An attribute of the node changed.

You get this if you applied B_WATCH_ATTR on the node itself. The message's fields
are:

Field Type code Description

"opcode" B_INT32_TYPE B_ATTR_CHANGED

"node" B_INT64_TYPE The ino_t number of the node.

"device" B_INT32_TYPE The dev_t number of the node's device.

246 Chapter 3 • The Storage Kit

Attributes are key/value pairs that can be "attached" to any file (regardless of flavor).
They're described in the BNode class.

As with B_STAT_CHANGED messages, you may not be able to use the
B_ATTR_CHANGED information directly. Instead, you have to cache references to the
(BNode) objects that you're monitoring so you can compare their node_refs to the
message fields (an example of this is given in B_ENTRY_REMOVED).

B_DEVICE_MOUNTED

• A file system device (in other words, a volume) was mounted.

You get this if you passed B_WATCH_MOUNT to wa tch_node () . The message's fields
are:

Field Type code Description

"opcode" B_INT32_TYPE B_DEVICE_MOUNTED

"new device" B_INT32_TYPE The dev_t number of the newly-mounted device.

"device" B_INT32_TYPE The dev_t number of the device that holds the directory of
the new device's mount point.

"directory" B_INT64_TYPE The ino_t (node) number of the directory that acts as the
new device's mount point.

Obviously, there's no node involved here, so the first argument to the
watch_node () call can be NULL:

watch_node(NULL, B_WATCH_MOUNT, be_app_;messenger);

Unlike with the other "watch flags," the only way to stop the mount-watching is to
call stop_watching () .

B_DEVICE_UNMOUNTED

• A file system device (in other words, a volume) was unmounted.

You get this if you passed B_WATCH_MOUNT to watch_node ().The message's fields
are:

Field Type code Description

"opcode" B_INT3 2_TYPE B_DEVICE_UNMOUNTED

"new device" B_INT32_TYPE The dev_t number of the unmounted device.

Be careful with the device number: dev_ts are quickly recycled. You should only
need this number if you're keeping a list of the dev_ts of all mounted disks and you
want to remove the dev_t for this recently-unmounted volume (keeping in mind that
a device-mounted message bearing this dev.:_t may arrive in the meantime).

BPath • Overview 247

BPath
Derived from: BFlattenable

Declared in: be/storage/Path.h

Library: libbe.so

Overview
A BPath object represents an absolute pathname, and provides some simple path
manipulation and querying functions. The primary features of the class are:

• It allocates storage for you. When you tell your BPath object which pathname you
want it to represent, the object allocates storage for the pathname automatically.
When you delete the object, the storage is freed.

• It always represents an absolute path. The pathname strings that you use to
initialize a BPath can be relative, and they can include references to "." and " .. ".
The BPath "normalizes" the passed-in strings to create an absolute pathname, as
described in "Initializing and Normalizing".

BPaths are handy, but don't expect them to actually do very much: A BPath is just a
pathname. It identifies the location of a file, but it can't manipulate the file, nor can it
change the structure of the file system.

So what do you use BPaths for?

• You can use your BPaths to initialize other, more powerful objects (BEntry, BNode
and its kids). See "Converting a BPath" on page 251.

• BPaths can be passed through BMessages. To add a BPath to a BMessage, you have
to flatten it first: BPath implements BFlattenable for exactly this reason. The
receiver of the BMessage can resurrect the flattened object as a BPath object or as
an entry_ref structure. See "Passing a BPath in a BMessage".

• BPath objects are ideal for caching references to files. BPaths don't consume much
in the way of system resources-they don't contain file descriptors, for example.
So they're great for keeping track of the files that your application is interested in.

In the way that they're used, BPaths and entry _refs are nearly identical. In
particular, entry_refs can do all three of the things listed here. Whether you use
BPaths (pathnames in general) or entry_refs is largely a matter of taste.

Initializing and Normalizing

You initialize a BPath-in other words, you establish the path that the object
represents-by passing a string (or two, or a BDirectory and a string) to the
constructor or to the SetTo () function. Upon initialization, the BPath object

248 Chapter 3 • The Storage Kit

concatenates the strings and then "normalizes" the passed-in strings if it has to (this
emphasis is important, as we'll see in a moment). The following elements trigger
normalization:

• A relative pathname (after concatenation; e.g., "boot/lbj")
• The presence of"." or" .. " ("/boot/lbj/ .. /lbj/./fido")
• Redundant slashes ("/boot//lbj")
• A trailing slash ("/boot/lbj/")

During normalization, BPath conjures up an absolute pathname in the form

I dirl/ dir2/ .. ./ dirN/ leaf

It does this by applying the following rules:

• Relative pathnames are reckoned off of the current working directory.
• "." is ignored (at the head of a path, it's taken as the cwd).
• " .. "bumps up one directory level.
• Redundant slashes are coalesced.
• A trailing slash is removed.

(The one exception to this final rule is "/" as a full pathname.)

There's a subtle side effect that you get with normalization: When you normalize a
pathname, all the elements in the path up to but not including the leaf must exist. In
other words, a normalized BPath object gives you the same guarantee of existence as
does an entry _ref structure. The subtlety, here, is that an unnormalized BPath
needn't exist at all.

For example, here we create a BPath for a pathname that contains a nonexistent
directory:

/*We'll assume that "/abc/def/" doesn't exist. */
BPath path("/abc/def/ghi.jkl");

/* Nonetheless, the BPath is successfully initialized.
* The Path() function returns a pointer to the object's
* pathname string.

*I
printf("Path: %s\n". path.Path());

On the command line we see:

$ Path: /abc/def/ghi.jkl

But if we tickle the normalization machine ...

/* The redundant slash causes a normalization. */
BPath path("/abc/def//ghi.jkl");

.... the object is invalid:

$ Path: (null)

BPath • Overview

Forcing Initialization

Both the constructor and the Set To () function carry an optional argument that lets
you force the passed-in path to be normalized:

/* The trailing bool forces normalization. */
BPath path(" /abc/def/ghi. jkl", true);
printf("Path: %s\n", path.Path());

In this case, the forced normalization nullifies the object:

$Path: (null)

249

Normalization by Default?

Since forcing normalization makes BPath's behavior more consistent and reliable,
why not always normalize? Because normalization can be expensive.

During normalization, the pathname is stat'd and prodded rather heavily. If you're
planning on using your BPath's pathname to initialize a BEnti-y or BNode, this
prodding will happen again. Rather than incur the expense twice, you may want to
live with unnormalized BPath objects, and take the normalization hit during the
subsequent initialization.

Other Normalization Details

• You can't force the BPath constructor or SetToO function to skip the normalization.
If the path needs to be normalized, it will be normalized.

• BPath doesn't let you ask if its pathname was normalized.

The BPath Calling Convention

BPath objects are passed back to you (by reference) by a number of Storage Kit
functions. However, you shouldn't find any functions that ask for a BPath object. This
is a convention of usage:

• If an API element returns a pathname to you, it does so in the form of a BPath. If
it asks for a pathname from you (as an argument), it asks for a const char *.

As an example of a function that returns a BPath to you, recall BEntry's GetPath ()
function:

status_t BEntry::GetPath(BPath *path)

(As an aside, this is where the auto-allocation comes in handy-because BPath
allocates the pathname storage for you, you don't have to mess around with ugly
buffer and length arguments.)

On the other hand, BEntry's SetTo () takes a pathname as a canst char *·

status_t BEntry::SetTo(const char *path)

250 Chapter 3 • The Storage Kit

If you've got a BPath loaded up with a pathname, you would call this function thus:

entry.SetTo(path.Path()) f

The constructors and SetTo () functions in (most oD the Storage Kit classes have
const char *versions that can be called as shown here.

Passing a BPath in a BMessage

Let's say you've got a BPath object that you want to send to some other application.
To do this, you have to add it to a BMessage object through the latter's Add.Flat ()
function. As an inheritor from BFlattenable, the BPath knows how to flatten itself for
just this purpose.

BMessage msg;
BPath path(" /boot/lbj /fido");

/*The check here is important, as we'll describe
* in a moment.
*/

if (msg .AddFlat ("pathname", &path) ! = B_NO_ERROR)
/* handle the error */

The receiver of the message can retrieve the pathname as a BPath object by calling
Find.Flat ():

void MyApp::MessageReceived(BMessage *msg)
{

BPath path;

if (msg->FindFlat ("pathname", &path) ! = B_NO_ERROR)
/* handle the error */

Alternatively, the pathname can be retrieved as an entry_ref through FindRef ():

void MyApp::MessageReceived(BMessage *msg)
{

entry_ref ref;

if (msg->FindRef ("pathname", &ref) != B_NO_ERROR)
/* handle the error */

If you want to skip all the conversion business and simply pass the pathname as a
string, use AddString () . The receiver, of course, would have to call FindString ()
to retrieve your pathname string.

BPath • Overview

What's Really Going On

When you add a flattened BPath to a BMessage, the object's pathname is turned into
an entry_ref. If the message receiver asks for a BPath (through FindFlat ()), the
entry_ref is turned back into a BPath object. Therefore, it's more efficient to
retrieve a flattened BPath as an entry _ref than it is to unflatten it as a BPath object.

251

The BPath to entry_ref conversion has another, more subtle implication: Adding a
BPath through AddFlatO performs an implicit normalization on the data that's added to
the BMessage.

If the normalization fails, the AddFlat () function returns an error and the data isn't
added to the BMessage. The original BPath is untouched, regardless of the result of
the normalization.

Converting a BPath

As mentioned earlier, most of the Storage Kit classes have constructors and SetTo ()

functions that accept const char * arguments. If you want to tum your BPath into
a BFile (for example), you would do this (including error checks):

status_t err;

BFile file(path.Path());
err InitCheck();

or:

err= file.SetTo(path.Path());

To convert a BPath to an entry_ref, pass the pathname to the get_ref_

for_path () function:

entry_ref ref;
status_t err;

err= get_ref_for_path(path.Path(), &ref);

For you Node Monitor users: You can't convert directly to a node_ref structure. The
quickest way from here to there is:

node_ref nref;
status_t err;

/*We'll skip InitCheck() and catch errors in GetNodeRef(). */
BEntry entry(path.Path());
err= entry.GetNodeRef(&nref);

252 Chapter 3 • The Storage Kit

Immutability

Remember, a BPath represents a pathname, not a node. It isn't "updated" when the
file system changes:

• A BPath's pathname string never changes behind your back, even if the entry that
it originally pointed to is renamed, moved, or deleted.

For example:

BEntry entry;
BPath path;

!* Set a BPath, construct a BEntry from it, rename
* the entry, and then print the BPath's pathname.
*/

if (path.SetTo("/boot/lbj/fido") == B_NO_ERROR)
if (entry.SetTo(&path) == B_NO_ERROR)

if (entry.Rename ("rover") == B_NO_ERROR)
printf("Pathname: %s\n", path.Path());

We see:

$ Pathname: /boot/lbj/fido

even though the entry that the BPath was constructed to represent has been renamed.

Constructor and Destructor
BPathO

BPath(const char •path,
const char *leaf= NULL,
bool normalize = false)

BPath(const BDirectory *dir,

BPath(void)

const char *leaf= NULL,
bool normalize= false)

BPath(const BPath &path)

Creates a new BPath object that represents the path that's created from the
arguments. See the analogous SetTo () functions for descriptions of the flavorful
constructors.

• The default constructor does nothing; it should be followed by a call to SetTo () .

• The copy constructor makes a copy of the argument's pathname.

BPath • Member Functions

The constructor automatically allocates memory for the object's stored pathname. The
memory is freed when the object is deleted.

To check to see if an initialization was successful, call Ini tCheck () .

-BPath

virtual -BPathO

Frees the object's pathname storage and extinguishes the object.

Member Functions

Append()
status_t Append(const char •path, bool normalize= false)

Appends the pathname given by path to the object's current pathname. path must be
relative. If normalize is true, the new pathname is normalized; otherwise, it's
normalized only if necessary.

Note that this:

Append("subdir/file")

is the same as (and is implemented as):

path. SetTo (path. Path(), "subdir/file");

The Append () return value is picked up from the Set To () call.

Return values:
B_NO_ERROR. Success.
B_BAD_VALUE. path contained a leading"/", or this is uninitialized.
See SetTo () for other return values.

GetParent()
status_t GetParent(BPath *path) canst

Initializes the argument with the pathname to the parent directory of this.

Destructive parenting is acceptable (sociologically, it's a given):

BPath path("/boot/lbj/fido");

path.GetParent(&path);

Other details ...

• GetParent () makes a call to SetTo () , but it's guaranteed not to tickle the
normalization machine.

• You can't get the parent of "/".

253

254

Return values:
B_NO_ERROR. Hello, mother.
B_ENTRY_NOT_FOUND. You tried to get the parent of "/".
B_BAD_ VALUE. path is NULL.

B_NO_MEMORY. Couldn't allocate storage for the pathname.

Chapter 3 • The Storage Kit

If the initialization isn't successful, the argument's Ini tCheck () is set to B_NO_INIT.

lnitCheck()

status_t lnitCheck(void) const

Returns the status of the most recent construction or SetTo () call.

Return values:
B_NO_ERROR. The initialization was successful.
B_NO_INIT. The object is uninitialized (this includes Unset ()).
See SetTo () for other errors.

Path(), Leaf()

const char *Path(void) const
const char *Leaf(void) const

These functions return the object's full path and leaf name, respectively. For example:

BPath path(" /beet/lbj /fide");
printf("Path: %s\n", path.Path());
printf("Leaf: %s\n", path.Leaf());

produces:

$ Path: /beet/lbj/fide
$ Leaf: fide

In both cases, the returned pointers belong to the BPath object. When the BPath is

deleted, the pointers go with it.

If the BPath isn't initialized, the functions return pointers to NULL.

SetTo(), Unset()

status_t SetTo(const char *path,
const char *leaf= NULL,
bool normalize = false)

status_t SetTo(const BDirectory *dir,
const char *leaf= NULL,
bool normalize = false)

void Unset(void)

BPath • Member Functions

The Set To () function frees the pathname that the object currently holds, and re
initializes the object according to the arguments:

255

• The first version concatenates the path and leaf strings (interposing a "/" if
necessary). If path is relative, the concatenated pathname is appended to the
current working directory. Note that you don't have to split your pathname into
two parts to call this constructor; the optional leaf argument is provided simply as
a convenience.

• The second version performs a similar operation using the path of the BDirectory
as the initial part of the pathname.

Regarding the leaf argument:

• The leaf string can contain directories-it needn't be just a leaf name.
• However, leaf must be a relative pathname (it can't start with"/").

If set to true, the nonnalize argument tells the object to normalize the new
pathname. By default (false), the pathname is normalized only if necessary. Note
that the default doesn't mean that the object absolutely won't normalize, it just won't
do it if it doesn't think it's necessary. See "Initializing and Normalizing" on page 247
for the full story on normalizing a pathname, including the conditions that trigger
default normalization.

Storage for the pathname is allocated by the BPath object and is freed when the
object is deleted (or when you re-initialize through SetTo ()). The path and leaf
arguments are copied into the allocated storage.

Other details ...

• Destructive setting is safe:

/*This works ... */
path.SetTo(path.Path(), ...);

• Currently, Set To () only checks pathname and filename length if it has to
normalize.

Unset () frees the object's pathname storage and sets the Ini tCheck () value to
B_NO_INIT.

Return values:
B_NO_ERROR. Successful initialization.
B_BAD_VALUE. path is NULL, leaf isn't relative (it starts with a "/"), or dir is
uninitialized.
B_BAD_VALUE. A directory in the path doesn't exist (normalization only).
B_NAME_TOO_LONG. A pathname element is too long (normalization only).
B_NO_MEMORY. Couldn't allocate storage for the pathname.

The return value is also recorded in Ini tCheck () .

256 Chapter 3 • The Storage Kit

BFlattenable Functions
The following functions are implemented in accordance with the rules set down by
the BFlattenable class. You never need to invoke these functions directly; they're
implemented so a BPath can added to a BMessage (see "Passing a BPath in a
BMessage" on page 250). But in case you're interested ...

Allows TypeCode()

virtual bool AllowsTypeCode(type_code code) canst

Returns true if code is B_REF _TYPE, and false otherwise.

Flatten()

virtual status_t Flatten(void *buffer, ssize_t size) const

Converts the object's pathname to an entry_ref and writes it into buffer. Currently,
size is ignored.

Return values:
B_NO_ERROR. Peachy.
B_NAME_TOO_LONG. The pathname is too long(> 1024 characters).
B_ENTRY_NOT_FOUND. A directory in the path doesn't exist.

FlattenedSize()

virtual ssize_t FlattenedSize() const

Returns the size of the entry_ref that represents the flattened pathname.

lsFixedSize()

virtual bool lsFixedSize() const

Returns false.

TypeCode()

virtual type_code TypeCode() const

Returns B_REF _TYPE.

Unflatten()

virtual status_t Unflatten(type_code code,
const void *buffer,
ssize_t size)

BQuery

Initializes the BPath with the flattened entry_ref data that's found in buffer. The
type code must be B_REF _TYPE.

Return values:
B_NO_ERROR. Success.
B_BAD_ VALUE. Wrong type code (not B_REF _TYPE).

B_ENTRY_NOT_FOUND. A directory in the entry_ref data doesn't exist.

The Unflatten() return value is recorded in InitCheck().

Operators
= (assignment)

BPath& operator=(const BPath &path)
BPath& operator=(const char *string)

Initializes this with a copy of the pathname that's gotten from the argument. Also
sets Ini tCheck () .

==, != (comparison)

bool operator==(canst BPath &path) canst
bool operator==(const char •string) canst

bool operator!=(const BPath &path) canst
bool operator!=(const char •string) canst

Compares this's pathname with the pathname taken from the argument. The
comparison is a simple s trcmp () ; neither path is normalized or otherwise altered
before the comparison is made. For example:

BPath path{"/boot/lbj/fido");

chdir {"/boot") ;
printf{"Are they equal? %d\n", path== "lbj/fido");

Displays:

$ Are they equal? 0

BQuery
Derived from: BEntryList

Declared in: be/storage/Query.h

Library: lib be.so

257

258 Chapter 3 • The Storage Kit

Overview
A query is a means of asking the file system for a set of entries that satisfy certain
criteria. As examples, you can ask for all the entries with names that start with a
certain letter, or that have nodes that are bigger than a certain size, or that were
modified within the last N days, and so on.

The BQuery class lets you create objects that represent specific queries. To use a
BQuery you have to follow these steps:

1. Initialize. The first thing you have to do is initialize the object; there are two parts
to the initialization: You have to set the volume that you want to query over
(SetVolume {)), and set the query's "criteria formula" (SetPredicate {)).

2. Fetch. After the BQuery has been properly initialized, you invoke Fetch {) . The
function returns immediately while the query executes in the background.

3. Read. As soon as Fetch {) returns, you can start reading the list of winning entries
by making iterative calls to the entry-list functions GetNextRef {) ,
GetNextEntry {), and GetNextDirents {). If you ask for entries faster than the
query can deliver them, your GetNext ... {) call will block until the next entry
arrives. The function returns an error when there are no more entries to retrieve.

The set of entries that the GetNext ... {) calls retrieve (for a given fetch) are called
the query's "static" entries. This distinction will become useful when we speak of
"live" queries, below.

Reusing your BQuery

Want to go around again? You can, but first you have to clear the object:

• Between each "fetching session," you have to invoke Clear {) on your BQuery
object.

Clearing erases the object's predicate, volume, target (which we'll get to later), and
list of static entries-in other words, clearing gets you back to a fresh BQuery object.

And speaking of going around again, be aware that the Rewind {) function, which
BQuery inherits from BEntryList, is implemented to be a no-op: You can't rewind a
BQuery's list of static entries. After you've performed a fetch, you should read the
entry list as quickly as possible and get on with things; you can't tum back or start
over.

CountEntries {) is also a no-op. This function is also defined by BEntryList. It
doesn't apply to BQueries.

BQuery • Overview 259

Live Queries

A live query is the gift that keeps on giving. After you tell a live query to fetch, you
walk through the entry list (as described above), and then you wait for "query
update" messages to be sent to your "target." A query update message describes a
single entry that has changed so that...

• it now satisfies the predicate (where it didn't use to), or
• it no longer satisfies the predicate (where it did before).

Not every BQuery is live; you have to tell it you want it to be live. To do this, all you
have to do is set the object's target, through the SetTarget () function. The target is
a BMessenger that identifies a BHandler/BLooper pair (as described in the
Set Target () function). Also:

• Live query notifications stop when you Clear () or destroy the BQuery object.

Another important point regarding live queries is that you can start receiving updates
before you're done looking at all the static entries (in other words, before you've
reached the end of the GetNext ... () loop). It's possible that your target could
receive an "entry dropped out" update before you retrieve the entry through a
GetNext ... () call. If you're using live queries, you should take care in
synchronizing the GetNext ... () iteration with the target's message processing.

We'll look at the format of the update message in a moment; first, let's fill in some
gaps.

The Predicate, Attributes, and Indices

A BQuery's predicate is a logical expression that evaluates to true or false. The
"atoms" of the expression are comparisons in the form:

attribute op value

where attribute is the name of an existing indexed attribute, op is a constant that
represents a comparison operation (==, <, >, etc), and value is the value that you
want to compare the attribute to.

Attributes

As mentioned above, the attribute part of a query is a name. When you tell the query
to fetch, the file system looks for all nodes that have an attribute with that name and
then compares the attribute's value to the appropriate value in the predicate.
However:

• You can only use attributes that are indexed.

• The query mechanism only knows about attributes that were written after the
index (for that attribute) was created.

260 Chapter 3 • The Storage Kit

To index an attribute, you call the fs_create_index () function. Unfortunately,
there's currently no way to retroactively include existing attributes in a newly created
index. (Such a utility would be simple enough to write, but it would take a long time
to execute since it would have to look at every file in the file system.)

Only string and numeric attributes can be queried. Although an attribute can hold any
type of data (it's stored as raw bytes), the query mechanism can only perform string
and numeric comparisons.

On the bright side, every file gets three attributes for free:

• "name" is the name of the entry.

• "size" is the size of the data portion of the entry's node. The size is a 64-bit integer,
and doesn't include the node's attributes.

• "last_modified" is the time the entry's node was last modified (data and attributes),
measured in seconds since January 1, 1970. The modification time is recorded as a
32-bit integer.

Technically, "name'', "size'', and "last_modified" aren't actually attributes-you can't
get them through BNode: :ReadAttr (), for example. But they're always eligible as
the attribute component in a query.

Values

The value part of the "attribute op value' equation is any expression that can be
evaluated at the time the predicate is set. Once evaluated, the value doesn't change.
For example, you can't specify another attribute as the value component in hopes of
comparing, file by file, the value of one attribute to the value of another. The value is
just data. And data is data.

The type of the value should match the type of the attribute: You compare string
attributes to strings; numeric attributes to numbers. You aren't prevented from
comparing a string to a number (for example), but it may not give you the result you
expect.

Constructing a Predicate

There are two ways to construct a predicate:

• You can set the predicate formula as a string through SetPredicate (),or

• You can construct the predicate by "pushing" the components in Reverse Polish
Notation (or "postfix") order through the PushAt tr() , Push Value() , and
PushOp () functions. There are seven value-pushing functions that push specific
types: string, int32, uint32, int64, uint64, float, and double.

You can't combine the methods: Pushing the predicate always takes precedence over
SetPredicate (), regardless of the order in which the methods are deployed.

BQuery • Overview 261

SetPredicateO features:

• Comparison operators: = < > <= >= !=
• Logical operators: I I &&

• Negation operator: !
• Grouping: 0
• String (value) wildcard: * (prefix and/or postfix only)
• String (value) quoting: ' '

The following are all legitimate strings that you can pass to SetPredicate ():

size< 500

(name = fido) I I (size >= 500)

(! ((name = *id*) I I ('final utterance'
1024563)

Push features:

'pass the salt'))) && (last_modified >

• The -PushOp () function takes operator symbols, such as B_EQ (equals), B_GT

(greater than), B_LT (less than), and so on. The complete list is given in the
PushOp () function description.

• Value strings passed as arguments to PushString () are naturally quoted, so you
don't have to single-quote to embed spaces or other odd characters.

• The "*" wildcard is allowed, or you can use special "contains", "begins with", and
"ends with" operators.

In Reverse Polish Notation, the operator is postfixed. You then push the components
from left to right. For example, this:

size< 500

becomes:

size 500 <

The push sequence is:

query. PushAttr ("size");
query.Pushint32(500);
query.PushOp(B_LT);

Another example; this:

(name = fido) I I (size>= 500)

becomes:

(name fido =) (size 500 >=) I I

262

In code:

query. PushAttr ("name");
query. PushString ("fido");
query.PushOp(B_EQ);
query.PushAttr("size");
query.Pushint32(500);
query.PushOp(B_GE);
query.PushOp(B_OR);

Chapter 3 • The Storage Kit

There are no grouping operators in this notation; they're not needed-grouping is
implied by the order in which the components are pushed.

When you're performing a numeric comparison, the Push ... () function that you
choose doesn't have to exactly match the natural type of the attribute, but you can't
mix integers and floating point. For example, even though "size" is a 64 bit value, you
can compare it to an int32:

query.PushAttr("size");
query.Pushint32(2000);
query.PushOp(B_GE);

But you can't (or shouldn't) compare it to a float:

query.PushAttr("size");
query.Pushint32(2000);
query.PushOp(B_GE);

Query Update Messages

The BMessages that are delivered by a live query have a what field of
B_QUERY_UPDATE. The rest of the message depends on what happened:

• If the update is telling you that an entry has passed the predicate, the message's
"opcode" field will be B_ENTRY_CREATED.

• If the update is telling you that an entry has been eliminated from the query, the
"opcode" field will be B_ENTRY_REMOVED.

Note that the format of the messages that a live query generates are the same as the
similarly-opcoded Node Monitor messages. The only difference is the what field (the
what for Node Monitor messages is B_NODE_MONITOR).

Entry Created

The B_ENTRY_CREATED opcode means an entry has changed so that it now passes
the query's predicate. The message's fields are:

Field

"opcode"

"name"

Type code

B_INT32_TYPE

B_STRING_TYPE

Description

B_ENTRY_CREATED

The name of the new entry.

BQuery • Overview

Field Type code

"directory" B_INT64_TYPE

"device" B_INT32_TYPE

"node" B_INT64_TYPE

Description

The ino_t (node) number for the directory in which the
entry was created.

The dev_t number of the device on which the new entry
resides.

The ino_t number of the new entry itself. (More
accurately, it identifies the node that corresponds to the
entry.)

If you want to cache a reference to the entry, notice that you can create an
entry_ref and a node_ref with the data in the message's fields:

!* Create an entry_ref */
entry _ref ref;
canst char *name;

msg->Findlnt32 ("device", &ref .device);
msg->Findlnt64 ("directory", &ref .directory};
msg->FindString ("name", &name};
ref.set_name(name};

/* Create a node_ref */
node_ref nref;
status t err;

msg->Findlnt32 ("device", &nref .device};
msg->Findlnt64 ("node", &nref .node};

The node_ref is handy because you may want to start monitoring the node (through
a call to the Node Monitor). We'll get back to this point when discussing
B_ENTRY_REMOVED messages.

Entry Removed

The B_ENTRY_REMOVED opcode means an entry used to pass the predicate, but
something has changed (in the entry or the entry's node) so that now it doesn't.

Field

"opcode"

"directory"

"device"

"node"

Type code

B_INT32_TYPE

B_INT64_TYPE

B_INT32_TYPE

B_INT64_TYPE

Description

B_ENTRY_REMOVED

The ino_t (node) number of the directory from which the
entry was removed.

The dev _ t number of the device that the removed node
used to live on.

The ino_t number of the node that was removed.

Notice that the B_ENTRY_REMOVED message doesn't tell you the name of the entry.
This is an unfortunate oversight that will be corrected. In the meantime, if you need
to match the node in this message to an entry from a previous B_ENTRY_CREATED

263

264 Chapter 3 • The Storage Kit

(or that you got from a GetNext ... () invocation), you have to keep track of the
entry/node yourself. However, the location of the entry that "contains" the node may
have changed since the time that the entry passed the predicate. Follow this outline:

1. You set up a live query that asks for entries that have nodes larger than 500 bytes.

2. The query mechanism tells you (either in the static set or through a
B_ENTRY_CREATED message) that "/boot/home/fido/data" satisfies the predicate.

3. You create an entry_ref and a node_ref to the entry, and cache them away
somewhere.

4. The user then renames or moves the entry. The query mechanism doesn't tell you
about this change-it only cares about the size of the node, not its name

5. You get a B_ENTRY_REMOVED message. You create a node_ref from the message
and match it to your cache-and get an out-of-date entry_ref.

To get around the lack of a "name" field, you should monitor the nodes that you
receive in your initial GetNext ... () calls and B_ENTRY_CREATED messages.

Constructor and Destructor

BQuery()

BQuery(void)

Creates a new BQuery object. To use the object, you have to set its predicate and
volume, and then tell it to Fetch () . If you want to fetch again, you have to call
Clear () first (and reset the predicate and volume.)

-BQuery()

virtual -BQuery(void)

Destroys the BQuery. If the query is live, the query is shot dead. You stop receiving
live query updates when you delete the BQuery object.

Member Functions

Clear()

status_t Clear(void)

Erases the BQuery's predicate, sets the volume and target to NULL, and turns off live
query updates (if the query is live). You call Clear () if you want to Fetch () more
than once: You have to Clear () before each Fetch () (except the first).

BQuery • Member Functions 265

Return values:
Clear () always return B_NO_ERROR.

CountEntries(), Rewind()

WARNING

Don't use these functions. They're no-ops for the BQuery class.

Fetch()

status_t Fetch(void)

Tells the BQuery to go fetch the entries that satisfy the predicate. After you've
fetched, you can retrieve the set of "static" entries through calls to GetNextEntry (),
GetNextRef(),orGetNextDirents().

If you've set the BQuery's target, then this query is live. The live query update
messages start rolling in when you tell the object to Fetch () . They stop when you
Clear () or destroy the object.

The fetch fails if the object's predicate or volume isn't set, or if you've already fetched
but haven't Clear () 'd since then.

Return values:
B_NO_ERROR. The fetch is running.
B_NO_INIT. The volume or predicate isn't set.
B_BAD_VALUE. The predicate is improper.
B_NOT_ALLOWED. You've already fetched; Clear () the object and start again.

GetNextEntry(), GetNextRef(), GetNextDirents()

virtual status_t GetNextEntry(BEntry *entry, bool traverse= false)

virtual status_t GetNextRef(entry_ref *ref}

virtual int32 GetNextDirents(dirent *buf,
size_t bufeize,
int32 count= INT _MAX)

These functions return the next entry in the "static" entry list. You can retrieve the
entry as a BEntry, entry_ref, or dirent structure. The static entry list is the set of
entries that initially satisfy the predicate; entries found by the live query mechanism
are not included in this list.

266 Chapter 3 • The Storage Kit

When you reach the end of the entry list, the Get ... () function returns an indicative
value:

• GetNextRef () and GetNextEntry () return B_ENTRY_NOT_FOUND.
• GetNextDirents () returns 0.

You can only cycle over the list once; the Rewind () function is not defined for
BQuery. See the BEntryList class for more information on these functions.

Return values:
GetNextDirents () returns the number of dirents it retrieved (currently, it can
only retrieve one at a time). The other two functions return these codes:
B_NO_ERROR. The entry was retrieved.
B_ENTRY_NOT_FOUND. You're at the end of the list.

GetPredicateQ see SetPredicate()

lsLiveQ seeSetTarget()

PredicatelengthQ see SetPredicate()

PushAttrQ, PushOpQ, PushUlnt32Q, Pushlnt32Q, PushUlnt64Q,
Pushlnt64Q, PushFloatQ, PushDoubleQ, PushStringQ, query_op

void PushAttr(const char *attr_name)

void PushOp(query_op operator,

void PushUlnt32(uint32 value)
void Pushlnt32(int32 value)
void PushUlnt64(uint64 value)
void Pushlnt64(int64 value)
void PushFloat(float value)
void PushDouble(double value)
void PushString(const char *string, bool case_insensitive =false)

You use these functions to construct the BQuery's predicate. They create a predicate
expression by pushing attribute names, operators, and values in Reverse Polish
Notation (post-fix) order.

• PushAttr () pushes an attribute name.
• PushOp () pushes one of the query_op operators listed below.
• The rest of the functions push values of the designated types.

For details on how the push method works, see "Constructing a Predicate."

The predicate that you construct through these functions can be returned as a string
through the GetPredicate () function.

BQuery • Member Functions

The query _op constants are:

Constant

B_EQ

B_NE

B_GT

B_LT

B_GE

B_LE

B_CONTAINS

B_BEGINS_WITH

B_ENDS_WITH

B_AND

B_OR

B_NOT

Operation

!=

>

<

>=

<=

string contains value ("*value'")

string begins with value ("value~')

string ends with value ("*value')

&&

11

Rewind(), CountEntries()

WARNING

Don't use these functions. They're no-ops for the BQuery class.

SetTarget(), lsLive()

status_t SetTarget(BMessenger target)

bool lslive(void) const

Sets the BQuery's target. The target identifies the BLooper/BHandler pair (a la the
Blnvoker target protocol) that will receive subsequent live query update messages.
Calling this function declares the query to be live.

267

If target is NULL, the BQuery is told to be "not live". However, you can only turn off
liveness (in this way) before you Fetch (). In other words, if you set the target, and
then call Fetch () and then call Set Target (NULL), the BQuery will think that it
(itself) is not live, but it really is.

IsLive () tells you if the BQuery is live. The "liveness" needn't be actuated yet-live
queries don't start operating until you tell the BQuery to Fetch () . The live query is
killed when you delete or Clear () the BQuery object.

Return values:
B_NO_ERROR. The target was set (including set to NULL).

B_BAD_ VALUE. target doesn't identify a proper looper/handler pair.
B_NOT_ALLOWED. You've already Fetch () 'd; you need to Clear ().

268 Chapter 3 • The Storage Kit

SetVolume()

status_t SetVolume(const BVolume *volume)

A query can only look in one volume at a time. This is where you set the volume that
you want to look at.

Return values:
B_NO_ERROR. The volume was set.
B_NOT_ALLOWED. You've already fetched, you need to Clear () before you can
reset the volume.

WARNING

Currently, SetVolume () doesn't complain if volume is invalid. However, the
subsequent Fetch () will fail (B_NO_INIT).

SetPredicate(), GetPredicate(), Predicatelength()

status_t SetPredicate(const char •expf)

status_t GetPredicate(char *buf, size_t length)

size_t Predicatelength(void)

Set Predicate () sets the BQuery's predicate as a string. Predicate strings can be
simple, single comparison expressions:

"name = fido 11

Or they can be more complex:

" ((name = fid*) 11 (size > 500)) && (last_modified < 243567)"

For the complete rules on setting the predicate as a string, see "Constructing a
Predicate."

You can also set the predicate through the Push ... () functions. You can't combine
the methods: Pushing the predicate always takes precedence over SetPredicate (),

regardless of the order in which the methods are deployed.

Get Predicate () copies the predicate into buf; length gives the length of buf, in
bytes. If you want to find out how much storage you need to allocate to
accommodate the predicate, call PredicateLength () first.

If you set the predicate through the Push ... () functions, GetPredicate ()

converts the pushed construction into a string, and returns a copy of the string to you.

PredicateLength () returns the length of the predicate string, regardless of how it's
created.

BRefFilter • Hook Functions

WARNING

GetPredicateO and PredicateLengthO both clear the push stack. This is important,
because it means that you can't build up a portion of your predicate, then call
GetPredicate (),build a little more, look again, build some more, etc. When
you call GetPredicate (), you're done. Your next step should be a Fetch ().

Return values:
B_NO_ERROR. The predicate was successfully set or gotten.
B_NO_INIT. (Get) The predicate isn't set.
B_BAD_VALUE. (Get) length is shorter than the predicate's length.
B_NOT_ALLOWED. (Set) You've already Fetch () 'd; you have to Clear ().

B_NO_MEMORY. (Set) Not enough memory to store the predicate string.

BRefFilter
Derived from: (none)

Declared in: be/storage/FilePanel.h

Library: (none)

Overview

269

The BRefFilter class lets you filter the items that a file panel is about to display. This
filtering is performed by the class' only function, Filter(). Filter() is a hook
function; to use a BRefFilter, you have to create a derived class and implement the
Filter () function.

To assign your BRefFilter object to a file panel, you invoke BFilePanel's
SetRefFilter () function. (The BFilePanel constructor also lets you set the filter.) If
you don't specifically assign a filter, the file panel will not have one--there is no
"default" ref filter object. You maintain ownership of the BRefFilter that you assign to
a file panel; the file panel doesn't delete or otherwise change your object.

You can assign the same filter to more than one file panel. However, the Fi 1 ter ()

function isn't told which panel it's being invoked for.

Hook Functions
Filter ()

Look down there.

270

Member Functions

FilterQ
virtual bool Filter(const entry_ref •ref,

BNode *node,
struct stat *st,
const char *filetype)

Chapter 3 • The Storage Kit

Filter() is a hook function that's invoked whenever the file panel to which it's
been assigned reads the entries in its "panel directory." The function is invoked once
for each entry in the directory. All the arguments to the function refer to the entry
currently under consideration. (Note that the function is never sent an abstract entry,
so the node, st, and filetype arguments will always be valid.)

Your implementation of Fi 1 ter () can use any or all of the arguments to figure out
if the entry is a valid candidate for display in the file panel's file list. Simply return
true or false to indicate if the entry is a winner or a loser.

Technically, Filter () is invoked when:

• the file panel's panel directory is set, either through the BFilePanel constructor or
the SetPanelDirectory () , and when

• the file panel's Refresh () function is called.

A BRefFilter can be assigned to more than one BFilePanel object (assignation is
performed through BFilePanel's constructor or SetRefFilter () function). But it's
probably not a great idea to do so: At any particular invocation of Filter (), the
BRefFilter doesn't know which BFilePanel object it's working for.

You maintain ownership of the BRefFilter objects that you create. Assigning a ref filter
to a file panel does not hand ownership of the BRefFilter to the BFilePanel. You
shouldn't delete a BRefFilter while a BFilePanel is still using it; but it's your
responsibility to delete it when it's done.

BResources
Derived from: none

Declared in: be/storage/Resources.h

Library: lib be.so

BResources • Overview 271

Overview
NOTE

You may not want to be here ... The BResources class was designed for a specific
purpose: To provide a means to bundle application "resources" (icons, in par
ticular) within the application executable itself. If you want to add new
resources to your own application (resources that you want to have "stick" to
the executable), then you've come to the right place. But you shouldn't use
BResources to add data to a regular data file-use attributes instead.

The data that a file contains is either "flat," or it's "structured." To read a flat file, you
simply open it (through a BFile object) and start Read () 'ing. Structured data requires
that you understand the structure. Typically, an application understands the structure
either because it's a well-known format, or because the application itself wrote the
file in the first place.

The BResources class defines a simple design for storing structured data. The
structure is a series of "resources," where each resource is key/value pair. A single
"resource file" can hold an unlimited number of resources; a single resource within a
resource file can contain an unlimited amount of data.

Resources are sort of like attributes in that they store chunks of data that are looked
up through the use of a key. But note these differences:

• Resources are stored in the file itself, such that if you copy the file, you copy the
resources, as well.

• Resources can't be queried.

• Only plain files can have resources. (In other words, directories and symbolic
links can't have resources.)

Initializing a BResources Object

The BResources class provides the means for reading and writing a file's resources,
but it doesn't let you access the file directly. Instead, you must initialize the
BResources object by passing it a valid BFile object, either in the constructor or the
SetTo () function. Note the following:

• The BFile that you pass in is copied by the BResources object. Thus, initializing a
BResources object opens a new file descriptor into the file. You can delete the
"original" BFile immediately after you use it to initialize the BResources object.

• If the BFile that you pass in is open with write permission, the file is automatically
locked by the BResources object (the object Lock () 's its copy of the BFile that
you passed in). It's unlocked when you re-initialize or delete the BResources.

272 Chapter 3 • The Storage Kit

• If you want to write resources, the BFile must not be locked when you pass it in.
The BResources needs to be able to lock its copy of your object.

• The BFile must be open for reading (at least).

• Unfortunately, BResources lacks an Ini tCheck () function. If you want to check
initialization errors, you should always initialize through Set To (), rather than
through the constructor.

Identifying and Creating Resource Files

You can't use just any old file as a BResources initializer: The file must be an actual
resource file. Simply initializing a BResources object with an existing non-resource
file will not transform the file into a resource file-unless you tell the initializer to
clobber the existing file.

For example, this initialization fails:

/* "fido" exists, but isn't a resource file. */
BFile file ("/boot/home/fido", B_READ_WRITE);
BResources res;
status_t err;

if ((err= res.SetTo(&file)) != B_NO_ERROR)

And this one succeeds ...

/* The second arg to SetTo() is the "clobber?" flag. */
if ((err= res.SetTo(&file, true)) != B_NO_ERROR)

... but at a price: fido's existing data is destroyed (truncated to 0 bytes), and a new
"resource header" is written to the file. Having gained a resource header, fido can
thereafter be used to initialize a BResources object.

Clobber-setting a resource file is possible, but, as mentioned at the top of this class
description, you'll probably never create resource files directly yourself.

So where do resource files come from if you don't create them yourself? Step right
up ...

Executables as Resource Files

The only files that are naturally resource-fol are application executables. For example,
here we initialize a BResources object with the Icon World executable:

BPath path;
BFile file;
BResources res;

find_directory(B_APPS_DIRECTORY, &path);
path.Append("IconWorld");

BResources • Overview

file.SetTo(&path, B_READ_ONLY);

if (res.SetTo(&file) != B_NO_ERROR)

The BResources object is now primed to look at Icon Worlds resources. But be aware
that an application's "app-like" resources (its icons, signature, app flags) should be
accessed through the BAppFileinfo class.

Resource Data

After you've initialized your BResources object, you use the FiddleResource ()
functions to examine and manipulate the file's resources:

Generative Functions

• AddResource () adds a new resource to the file.
• RemoveResource () removes an existing resource from the file.

Data Functions

• Wri teResource () writes some amount of new data into an existing resource.

273

• ReadResource () reads a range of data from a resource and gives you a copy.
• FindResource () returns a pointer to a resource's data.

Info Functions

• HasResource () tells you if the file contains a specified resource.
• GetResourceinfo () returns information about a resource.

As mentioned earlier, the BFile that you use to initialize a BResources object must be
open for reading. If you also want to modify the resources (by adding, removing, or
writing) the BFile must also be open for writing.

Identifying a Resource Within a Resource File

A single resource within a resource file is tagged with a data type, an ID, and a name:

• The data type is one of the type_code types (B_INT32_TYPE, B_STRING_TYPE,

and so on) that characterize different types of data. The data type that you assign
to a resource doesn't restrict the type of data that the resource can contain, it
simply serves as a way to label the type of data that you're putting into the
resource so you'll know how to cast it when you retrieve it.

• The ID is an arbitrary integer that you invent yourself. It need only be meaningful
to the application that uses the resource file.

• The name is optional, but can be useful: You can look up a resource by its name,
if it has one.

274 Chapter 3 • The Storage Kit

Taken singly, none of these tags needs to be unique: Any number of resources
(within the same file) can have the same data type, ID, or name. It's the combination
of the data type constant and the ID that uniquely identifies a resource within a file.
The name, on the other hand, is more of a convenience; it never needs to be unique
when combined with the data type or with the ID.

Data Format

All resource data is assumed to be "raw": If you want to store a NULL-terminated
string in a resource, for example, you have to write the NULL as part of the string
data, or the application that reads the resource from the resource must apply the
NULL itself. Put more generally, the data in a resource doesn't assume any particular
structure or format, it's simply a vector of bytes.

Data Ownership

The resource-manipulating functions cause data to be read from or written to the
resource file directly and immediately. In other words, the BResources object doesn't
create its own "resource cache" that acts as an intermediary between your application
and the resource file. This has a couple of implications:

• Resource data that you retrieve from or write to a BResources object belongs to
your application. For example, the data that's pointed to by the Find.Resource ()

function is allocated by the object for you-it's your responsibility to free the data
when you're finished with it. Similarly, the data that you pass to Add.Resource ()

(to be added as a resource in the file) must be freed by your application after the
function returns.

• The individual changes that you make to the resources are visible to other
BResources (that are open on the same file) as soon as they are made. You can't,
for example, bundle up a bunch of changes and then "commit" them all at the
same time.

Reading and Writing a Resource File as a Plain File

Just because a file is a resource file, that doesn't mean that you're prevented from
reading and writing it as a plain file (through the BFile object). For example, it's
possible to create a resource file, add some resources to it, and then use a BFile
object to seek to the end of the file and write some flat data. But you have to keep
track of the "data map" yourself-if you go back and add more resources to the file
(or extend the size of the existing ones), your flat data will be overwritten: The
BResources object doesn't preserve non-resource data that lives in the file that it's
operating on.

BResources • Member Functions 275

Constructor and Destructor

BResources()

BResources(void)
BResources(BFile *file, bool clobber= false)

Creates a new BResources object. You can initialize the object by passing a pointer to
a valid BFile; without the argument, the object won't refer to a file until Set To () is
called.

If clobber is true, the file that's referred to by BFile is truncated (its data is erased),
and a new resource file header is written to the file. If clobber is false and the file
doesn't otherwise have a resource header, the initialization fails.

BResources copies the BFile argument; after the constructor returns, you can, for
example, delete the BFile that you passed in.

-BResources()

· virtual -BResources(void)

Destroys the BResources object.

Member Functions

Add Resource()

status_t AddResource(type_code type,
int32 id,
const void *data,
size_t *length,
const char *name= NULL)

Adds a new resource to the file. For this function to have an effect, the file must be
open for writing. The arguments are:

• type is one of the type_code constants defined in be/support/TypeConstants.h.

• id is the ID number that you want to assign to the resource. The value of the ID
has no meaning other than that which your application gives it; the only restriction
on the ID is that the combination of it and the data type constant must be unique
across all resources in this resource file.

• data is a pointer to the data that you want the resource to hold.

• length is the length of the data buffer, in bytes.

• name is optional, and needn't be unique. Or even interesting.

276 Chapter 3 • The Storage Kit

Ownership of the data pointer isn't assigned to the BResources object by this
function; after Add.Resource () returns, your application can free or otherwise
manipulate the buffer that data points to without affecting the data that was written
to the file.

Return values:
B_NO_ERROR. The resource was successfully added.
B_ERROR. The file isn't open for writing, the resource already exists, or the
resource couldn't otherwise be written.

WARNING

Currently, Add.Resource () will write over an existing resource. In this case,
the function returns a positive integer (specifically, it returns the number of
bytes that it just wrote), but it doesn't change the name of the resource. To
work around this bug, you should call RemoveResource () just before calling
Add.Resource () .

Find Resource()

void *FindResource(type_code type,
int32 id,
size_t *length)

void *FindResource(type_code type,
const char *name,
size_t •length)

Finds the resource identified by the first two arguments, and returns a pointer to a
copy of the resource's data. The size of the data, in bytes, is returned by reference in
*length.

It's the caller's responsibility to free the pointer that's returned by this function.

If the first two arguments don't identify an existing resource, NULL is returned.

GetResourcelnfo()

bool GetResourcelnfo(int32 bylndex,
type_code • typeFound,
int32 *idFound,
char **nameFound,
size_t * lengthFound)

bool GetResourcelnfo(type_code byType,
long andlndex,
int32 *idFound,

BResources • Member Functions 277

char ** nameFound,
size_t * lengthFound)

bool GetResourcelnfo(type_code byType,
long andld,
char **nameFound,
size_t *length Found)

boo! GetResourcelnfo(type_code byType,
char • andName,
int32 *idFound,
size_t *lengthFound)

These functions return information about a specific resource, as identified by the first
one or two arguments:

• The first version (bylndex) searches for the bylndexth resource in the file.

• The second (byType/ andlndex) searches for the bylndexth resource that has the
given type.

• The third (byType/ andld) looks for the resource with the unique combination of
type and ID.

• The third (byType/ andName) looks for the first resource that has the given type
and name.

The other arguments return the other statistics about the resource (if found).

The pointer that's returned in *foundName belongs to the BResources. Don't free it.

The functions return true if a resource was found, and false otherwise.

HasResource()

bool HasResource(type_code type, int32 id)

bool HasResource(const char *name, type_code type)

Returns true if the resource file contains a resource as identified by the arguments,
otherwise it returns false.

Keep in mind that there may be more than one resource in the file with the same
name and type combination. The type and id combo, on the other hand, is unique.
See "Identifying a Resource Within a Resource File."

278

Read Resource()

status_t ReadResource(type_code type,
int32 id,
void *data,
off_t offset,
size_t length)

Chapter 3 • The Storage Kit

Reads data from an existing resource (identified by type and id) and copies it into the
data buffer. offset gives the location (measured in bytes from the start of the resource
data) from which the read commences, and length is the number of bytes you want
to read. The data buffer must already be allocated and should be at least length bytes
long.

You can ask for more data than the resource contains; in this case, the buffer is filled
with as much resource data as exists (or from offset to the end of the resource).
However, note that the function doesn't tell you how much data it actually read.

Return values:
B_NO_ERROR. The resource was found and read.
B_ERROR. The resource wasn't found.

RemoveResou rce()

status_t RemoveResource(type_code type, int32 id)

Removes the resource identified by the arguments. See "Identifying a Resource Within
a Resource File."

Return values:
B_NO_ERROR. The resource was removed.
B_ERROR. The resource wasn't found, or the file isn't open for writing.

Set To()
status_t SetTo(BFile *file)

Unlocks and closes the object's previous BFile, and re-initializes it to refer to a copy
of the argument. If the new BFile is open for writing, the BResources' copy of the
BFile is locked.

Return values:
B_NO_ERROR. The resource was removed.
B_BAD_VALUE. The argument BFile is invalid (uninitialized).
B_ERROR. The BResources couldn't be initialized (for whatever reason).

BStatable • Overview 279

Write Resource()

status_t WriteResource(type_code type,
int32 id,
void *data,
off_t offset,
size_t length)

Writes data into an existing resource, possibly overwriting the data that the resource
currently contains.

• The type and id arguments identify the target resource; this resource must already
be present in the file-Wri teResource () doesn't create a new resource if the
type/ id combination fails to identify a winner. See "Identifying a Resource Within a
Resource File."

• data is a pointer to the new data that you want to place in the resource.

• length is the length of the data buffer.

• offset gives the location at which you want the new data to be written; the offset is
taken as the number of bytes from the beginning of the existing resource data.

If the new data is placed such that it exceeds the size of the current resource data, the
resource grows to accommodate the new data.

You can't use this function to "shrink" a resource. To remove a portion of data from a
resource, you have to remove the resource and then re-add it.

Return values:
B_NO_ERROR. The resource was written.
B_ERROR. The resource wasn't found, or the file isn't open for writing.

BStatable
Derived from: none

Declared in: be/storage/Statable.h

Library: lib be.so

Overview
BStatable is a pure abstract class that provides functionality for its two derived classes,
BEntry and BNode. The BStatable functions let you get and set "statistical"
information about a node in the file system. You can:

• Determine whether the node is a file, directory, or symbolic link.
• Get and set a node's owner, group, and permissions.

280 Chapter 3 • The Storage Kit

• Get and set the node's creation, modification, and access times.
• Get the size of the node's data (not counting attributes).
• Get a BVolume object for the node's volume.
• Get the node_ref of the node (and pass it to watch_node (),most likely).

Nodes and Entries

Technically, BStatable information pertains to nodes, not entries. The fact that BEntry
implements the BStatable functions is a (slightly confusing) convenience: When you
invoke a BStatable function on a BEntry object, what you're really doing is asking for
information about the node that corresponds to the object.

. Abstract Entries

As explained in BEntry, it's possible to create "abstract" BEntry objects; in other
words, objects that don't correspond to actual files (nodes) on the disk. You can't get
(or set) BStatable information for abstract entries. The BStatable functions return
B_BAD_ VALUE if the invoked-upon entry is abstract.

Relationship to stat()

The BStatable functions are covers for the POSIX stat () call. stat () retrieves a
file-specific stat structure, which records the statistics listed above (and then some).
Although BStatable was designed to hide stat details, you can get the stat
structure through the GetStat () function. The stat structure is described in "The
stat Structure" at the end of this specification.

stat () is notorious for being expensive. Furthermore, the stat structure is stale as
soon as it gets back from the stat () call. If you're concerned with efficiency, be
aware that every BStatable function (the "setters" as well as the "getters") performs a
stat (). For example, calling GetOwner () and then GetGroup () results in two
stat () calls. If you want to look at lot of fields (within the same stat structure) all
at once, you might consider using BStatable's GetStat () function.

As for integrity, BStatable info-getting functions are obviously in the same boat as the
stat () call itself: The retrieved data isn't guaranteed to be in sync with the actual
state of the stat () 'd item.

The BDirectory class also defines a stat-retrieving function that, in some cases, can
be more efficient than the GetStat () function defined here:

• The BDirectory: :GetStatFor() function retrieves the stat structure for the
node of a named entry within a directory. If you're interested in getting stat
information for a series of nodes within the same directory, you should use this
function. You have to call it iteratively (once for each named entry), but the

BStatable • Member Functions 281

accumulation of the iterated calls will be faster than the GetStat () calls made on
the analogous BEntry objects.

Accessing Unreadable and Unwritable Entries

BStatable isn't thwarted by file permissions: If you can construct a valid BEntry or
BNode to an item, then you can invoke any of the info-getting BStatable functions on
that object:

• The BStatable functions aren't denied even if the node that you're looking at is
read-protected. However, you can only invoke the info-setting functions if the
node allows writing.

• Similarly, you can get stat info for a locked node, but you won't be able to write
the info (through functions such as SetOwner ()) unless your object holds the
lock See BNode for more on locking.

Other Details

You rarely set stat information. In practice, you rarely use BStatable's info-setting
functions. Setting information such as when a file was created, who owns it, or how
big it is, is the responsibility of the system and the privilege of the user. For example,
when you Write () to a BFile object, the system automatically updates the size and
modification date for the file.

Member Functions

GetAccess Time() see GetCreation Time()

GetCreation Time(), SetCreation Time(), GetModification Time(),
SetModification Time{), GetAccess Time{), SetAccess Time()

status_t GetCreationTime(time_t *ctime) const
status_t SetCreationTime(time_t ctime)

status_t GetModificationTime(time_t *mtime) const
status_t SetModificationTime(time_t mtime)

status_t GetAccessTime(time_t *atime) const
status_t SetAccessTime(time_t atime)

WARNING

Access time is currently unused.

282 Chapter 3 • The Storage Kit

These functions let you get and set the time at which the item was created, last
modified, and last accessed (opened). The measure of time is given as seconds since

(the beginning oD January 1, 1970.

NOTE

The time quanta that stat uses is seconds; the rest of the BeOS measures time
in microseconds (bigtime_t).

Return values:
B_NO_ERROR. Success.
B_NOT_ALLOWED. You tried to set a time field for a file on a read-only volume.
B_NO_MEMORY. Couldn't get the necessary resources to complete the transaction.
B_BAD_VALUE. The node doesn't exist (abstract entry).

GetGroup() see GetOwner()

GetNodeRef()

status_t GetNodeRef(node_ref *nrej) canst

Copies the item's node_ref structure into the nref argument, which must be
allocated.

Typically, you use an node's node_ref as a key to the Node Monitor by passing the
node_ref structure to the watch_node () function. The Node Monitor watches the
node for specific changes; see "The Node Monitor" section of this chapter for details.

As a convenience, you can use a node_ref structure to initialize a BDirectory object
(through the constructor or BDirectory:: SetTo () function).

Return values:
B_NO_ERROR. Success.
B_NO_MEMORY. Couldn't get the necessary resources to complete the transaction.
B_BAD_VALUE. The node doesn't exist (abstract entry).

GetModificationTime() seeGetCreationTime()

GetOwner(), SetOwner(), GetGroup(), SetGroup(),
GetPermissions(), SetPermissions()

status_t GetOwner(uid_t * ownef) canst
status_t SetOwner(uid_t ownef)

status_t GetGroup(gid_t *group) canst
status_t SetGroup(gid_t group)

BStatable • Member Functions

status_t GetPermissions(mode_t *perms) const
status_t SetPermissions(mode_t perms)

These functions set and get the owner, group, and read/write/execute permissions
for the node:

• The owner identifier encodes the identity of the user that "owns" the file.

• The group identifier encodes the "group" that is permitted group access to the file
(as declared by the permissions).

• The permissions value records nine "permission facts": Whether the file can be
read, written, and executed by the node's owner, by users in the node's group,
and by everybody else (read/write/execute * owner/group/others = 9 items).

283

The uid_t, gid_t, and mode_t types used here are standard POSIX types. All three
are 32-bit unsigned integers and are defined in posix/sys/types.h.

The owner and group encodings must match values found in the system's user and
group files (which are as currently unimplemented).

The permissions value is a combination of the following bitfield constants (defined in
posix/sys/stat. h):

• S_IRUSR owner's read bit.
• S_IWUSR owner's write bit.
• S_IXUSR owner's execute bit.
• S_IRGRP group's read bit.
• S_IWGRP group's write bit.
• S_IXGRP group's execute bit.
• S_IROTH others' read bit.
• S_IWOTH others' write bit.
• S_IXOTH others' execute bit.

For example:

I* Is a file readable by everybody? *I
mode_t perms;
if (node.GetPermissions(&perms) < B_NO_ERROR)

I* handle the error ... *I

if (perms & S_ISROTH)
II Yes it is

else
II No it isn't

Return values:
B_NO_ERROR. Success.
B_NOT_ALLOWED. You tried to set permissions on a read-only volume.
B_BAD_VALUE. The node doesn't exist (abstract entry).

284 Chapter 3 • The Storage Kit

GetPermissions() see GetOwner()

GetSize()

status_t GetSize(off_t *size) canst

Sets the size of the node's data portion (in bytes). Only the "used" portions of the
node's file blocks are counted; the amount of storage the node actually requires (i.e.,
the number of blocks the node consumes) may be larger than the size given here.

The size measurement doesn't include the node's attributes.

Return values:
B_NO_ERROR. Success.
B_NO_MEMORY. Couldn't get the necessary resources to complete the transaction.
B_BAD_VALUE. The node doesn't exist (abstract entry).

GetStat()

virtual status_t GetStat(struct stat *st) canst

GetStat () returns the stat structure for the node. The structure is copied into the
st argument, which must be allocated. The stat structure is described in "The stat
Structure", below. The BStatable object does not cache the stat structure; every time
you call GetStat (), fresh stat information is retrieved.

Return values:
B_NO_ERROR. Success.
B_NO_MEMORY. Couldn't get the necessary resources to complete the transaction.
B_BAD_VALUE. The node doesn't exist (abstract entry).

SetAccess Ti me() see GetCreation Time()

SetCreation Time() see GetCreation Time()

SetGroup() seeGetOwner()

SetModification Time() see GetCreationTime()

SetOwner() see GetOwner()

SetPermissions() seeGetOwner()

BStatable • The stat Structure

The stat Structure
Declared in: posix/ sys/ stat.h

The stat structure looks like this:

struct stat {
dev_t st_dev;
ino_t st_ino;
mode_tst_mode;
nlink_tst_nlink;
uid_t st_uid;
gid_t st_gid;
off_t st_size;
dev_t st_rdev;
size_tst_blksize;
time_tst_atime;
time_tst_mtime;
time_tst_ctime;

stat;

And the fields are:

• st_dev identifies the node's device.
• st_ino is the node's "inode" number.

By combining st_dev and st_ino you can roll your own node_ref:

node_ref nref;
stat st;

if (file.GetStat(&st) == B_NO_ERROR)
nref.dev = st.st_dev;
nref.node = st.st_ino;

Meanwhile ...

• st_mode describes the node's flavor: plain file, directory or symbolic link. To test
the field, pass it to the S_ISREG ()' S_ISDIR ()' and S_ISLINK () boolean macros:

if (S_ISREG(st.st_mode))
!* it's a "regular" file */
else if (S_ISDIR(st.st_mode))

/* it's a directory*/
else if (S_ISLINK(st.st_mode))

/* it's a symbolic link */

• st_nlink is the number of "hard links" that point to this node.

• st_uid and st_gid are the user (owner) and group ids that were described in
the GetOwner () function.

• st_rdev is, well, no one really knows. It's provided for System V compatibility
(hold your applause), but it's unused.

285

286 Chapter 3 • The Storage Kit

• st_blksize is the "preferred block size" that's used during copying. The cp
command line program and BFile: : CopyTo () functions allocate buffers of this
size when they're copying the file's data.

• st_atime, st_mtime, and st_ctime are the access, modification, and creation
times in seconds since January 1, 1970. Access time (st_atime) is currently
unused.

BSymlink
Derived from: BNode

Declared in: be/storage/SymLink.h

Library: lib be.so

Overview
A "symbolic link" or symlink is a file that "points to" some other entry. The pointed-to
(or, better, "linked-to") entry can be a plain file, directory, or another symlink (which
links to yet another entry, and so on). Furthermore, the entry can be abstract-you
can create a symlink to an entry that doesn't exist.

The data in a symlink is the pathname to the linked-to entry. The pathname can be
absolute or relative. If it's relative, the linked-to entry is found by reckoning the
pathname of off the directory in which the symlink lives. Relative pathnames can
contain"." and" .. " components.

The thing to keep in mind, when dealing with symlinks, is that they link to entries,
not nodes. If you link a symlink to an (existing) entry named "/boot/home/fido" and
then the user moves fido to rover (or deletes fido), the symlink is not updated. It will
still link to "/boot/home/fido".

Furthermore, symlinks that contain relative pathnames have a further "problem": Let's
say you create a symlink in /boot/home that links to "fido". If you move the symlink to
some other directory, it will link to the entry named "fido" in the new directory.

The BSymLink class creates objects that know how to read a symlink's data. The class
does not create new symlinks; to create a symlink, you use BDirectory's
CreateSymLink () function.

NOTE

BSymLink objects are no smarter than the symlinks files themselves. For exam
ple, BSymLinks can't resolve the fido/rover "problem."

BSymlink • Constructor and Destructor

The only really useful BSymLink function is ReadLink () . This function returns the
data that the symlink contains. The other functions are convenient, but they're not
essential.

287

Initialization and File Descriptors

When you initialize a BSymLink object, you pass in a pathname or entry_ref (or
whatever) that refers to an existing symlink. The BSymLink object then represents
that symlink-it doesn't represent the (node of the) linked-to entry. Furthermore, you
can't ask a BSymLink to "resolve itself'-it can't pass you back a BEntry object that
represents the linked-to entry.

If you want the BEntry of the linked-to entry, simply initialize a BEntry object with
the ref (or whatever) to the symlink and tell it to traverse (set the trailing argument to
true).

For example, in the following code, link is a BSymLink to the symlink
"/boot/home/fidoLink" and entry is a BEntry to the entry that the symlink links-to:

BSymLink link ("/boot/home/fidoLink");
BEntry entry(" /boot/home/fidoLink", true);

Like all nodes, BSymLink allocates a file descriptor. Remember, this is a file descriptor
that's open on the symlink node itself, not the (node of the) linked-to entry.

Constructor and Destructor
BSymlink()

BSymlink(void)
BSymlink(const BSymLink &link)

BSymlink(const entry_ref *ref)
BSymlink(const BEntry *entry)
BSymlink(const char •path)
BSymlink(BDirectory *dir, canst char •path)

Creates a new BSymLink object, initializes it according to the arguments, and sets
Ini tCheck () to return the status of the initialization.

• The default constructor does nothing and sets Ini tCheck () to B_NO_INIT. To
initialize the object, call Set To () .

• The copy constructor creates a new BSymLink that's open on the same node as
that of the argument.

• For information on the other constructors, see the analogous Set To () functions
in the BNode class; BSymLink inherits them without change.

288 Chapter 3 • The Storage Kit

-BSymlink()
virtual -BSymlinkQ

Closes the object's file descriptor and destroys the object.

Member Functions

lsAbsolute()
bool lsAbsolute(void)

Returns true if the symlink contains an absolute pathname.

MakelinkedPath()
ssize_t MakelinkedPath(BDirectory * dir, BPath *path) canst

ssize_t MakelinkedPath(const char *dirPath, BPath *path) canst

This function creates an absolute pathname to the linked-to entry and returns it as a
BPath object. For this to work you have to tell the object which directory you want to
reckon off of (in case the symlink specifies a relative path). This should be the
directory in which the symlink itself lives.

• Remember-a BSymLink is a node, and nodes don't know what directory they live
in. That's why you have to tell it here.

If the symlink contains an absolute path, then the dir or dirPath arguments are
ignored. Nonetheless, they must be supplied.

The function returns the length of the pathname that's set in BPath (or an error).

Return values:
B_FILE_ERROR. The object is uninitialized.
B_BAD_VALUE. The object doesn't refer to a symlink, or dir/dirPath is NULL.
B_NAME_TOO_LONG. They concatenated pathname is too long.

ReadL.ink()
ssize_t Readlink(char *buf, size_t length)

Copies the contents of the symlink into buf length is the size of the buffer; to be
perfectly safe, the buffer should be B_PATH_NAME_LENGTH characters long. The
function returns the number of bytes that were copied (or it returns an error).

BVolume • Overview

The symlink's contents is the pathname (relative or absolute) to the linked-to entry.
Note that since the pathname might be relative, ReadLink () can't give you a BPath
object. If you want a BPath to the linked-to entry, see MakeLinkedPath () .

Return values:
B_FILE_ERROR. The object is uninitialized.
B_BAD_ VALUE. The object doesn't refer to a symlink.

BVolume

289

Derived from: none

Declared in: be/storage/Volume.h

Library: libbe.so

Overview
The BVolume class lets you ask questions about specific "volumes," where a volume
is any independent file system. Most applications are usually only interested in
"persistent" volumes, such as hard disks, floppies, or CD-ROMs, but you can also
create BVolumes to virtual file systems, such as /pipe. Here's what a BVolume knows:

• The volume's name, device ID, and "root directory."

• Its storage capacity, and the currently available storage.

• If the volume is on a media that's removable.

• If the volume's storage is persistent (as opposed to the ephemeral storage you get
with virtual file systems).

• If the volume is accessed through the network.

• If the file system uses MIME as file types, if it responds to queries, and if it knows
about attributes.

Initializing a BVolume

There are two ways to initialize a BVolume:

• You can initialize it directly using a device ID (dev_id) that you pass to the
BVolume constructor or SetTo () function. You can get a device ID from the
device field of an entry_ref or node_ref structure. This method is useful if
you have a file and you want to know which volume it lives on.

• If you want to iterate over all the mounted volumes, you can ask a BVolumeRoster
object to get you the "next" volume (BVolumeRoster: : GetNextVolume ()). You

290 Chapter 3 • The Storage Kit

can also ask the BVolumeRoster for the "boot" volume. This is the volume that
was used to boot the computer.

Mount and Unmount

A BVolume object can't tell you directly whether the device that it represents is still
mounted. If you want to ask, you can call a status_t-returning BVolume function; if
the function returns B_BAD_ VALUE, the device is no longer mounted.

Furthermore, you can't ask a BVolume to unmount itself. If you want to be told when
devices are mounted and unmounted, you have to ask the Node Monitor to help you.
Call wa tch_node () thus:

watch_node(NULL, B_WATCH_MOUNT, messenger);

messenger is a BMessenger object that acts as the target of subsequent mount and
unmount notifications. See "The Node Monitor" section of this chapter for details.

Constructor and Destructor
BVolume()

BVolume(void)

BVolume(dev_id device)

BVolume(BVolume &volume)

Creates a new BVolume object and initializes it according to the argument. The status
of the initialization is recorded by the Ini tCheck () function.

• The default constructor does nothing and sets Ini tCheck () to B_NO_INIT.

• The device constructor sets the BVolume to point to the volume represented by
the argument. See the SetTo () function for status codes.

• The copy constructor sets the object to point to the same device as does the
argument.

-BVolume

-BVolume(void)

Destroys the BVolume object.

BVolume • Member Functions

Member Functions

Capacity(), FreeBytes()

291

off_t Capacity(void) canst

off_t FreeBytes(void) canst

Returns the volume's total storage capacity and the amount of storage that's currently
unused. Both measurements are in bytes.

Device()

dev _t Device(void) canst

Returns the object's dev_t number.

GetName()

status_t GetNarne(char *buffer) canst

Copies the name of the volume into buffer.

GetRootDirectory()

status_t GetRootDirectory(BDirectory *dif) canst

Initializes dir (which must be allocated) to refer to the volume's "root directory." The
root directory stands at the "root" of the volume's file hierarchy. Note that this isn't
necessarily the root of the entire file hierarchy.

lsRemovable(), lsReadOnly(), lsPersistent(), lsShared()

bool lsRemovable(void) canst
bool lsReadOnly(void) canst
bool lsPersistent(void) canst
bool lsShared(void) canst

These functions answer media-related questions about the volume:

• IsRemovable (). Can the media be removed?
• IsReadOnly () . Can it be read but not written to?
• IsPersistent (). Is the storage persistent (such as on a floppy or hard disk)?
• Is Shared (). Is it accessed through the network (as opposed to being directly

connected to this computer)?

292

KnowsMime(), KnowsQuery(), KnowsAttr()

bool KnowsMime(void) const
bool KnowsQuery(void) const
bool KnowsAttr(void) const

Chapter 3 • The Storage Kit

These functions answer questions about the file system on the volume:

• KnowsMime () . Does it use MIME to type files?
• KnowsQuery () . Can it respond to queries?
• KnowsAt tr () . Do its files accept attributes?

SetTo(), Unset()

status_t SetTo(dev_t dev)

void Unset(void)

SetTo () initializes the BVolume object to represent the volume (device) identified
by the argument.

Unset () uninitializes the BVolume.

Operators
(assignment)

BVolume& operator=(const BEntry &volume)

In the expression

BVolume a = b;

BVolume a is initialized to refer to the same volume as b. To gauge the success of the
assignment, you should call Ini tCheck () immediately afterwards. Assigning a
BVolume to itself is safe.

Assigning from an uninitialized BVolume is "successful": The assigned-to BVolume
will also be uninitialized (B_NO_INIT).

==,!=(comparison)

bool operator==(const BVolume &volume) const
bool operator!=(const BVolume &volume) const

Two BVolume objects are said to be equal if they refer to the same volume, or if
they're both uninitialized.

BVolumeRoster • Constructor and Destructor 293

BVolumeRoster
Derived from: none

Declared in: be/storage/VolumeRoster.h

Library: lib be.so

Overview
The BVolumeRoster class keeps track of the volumes that are mounted in the file
system hierarchy. It lets you know about volumes in two ways:

• It lists the volumes that are currently mounted. You can step through the list
through iterative calls to the GetNextVolume () function.

• It lets you know when new volumes are mounted, and when existing volumes are
unmounted. (See Startwatching () .)

How you create your BVolumeRoster object depends on what you're going to do
with it:

• If you simply want to step through the volume list, then creating a BVolumeRoster
on the stack is sufficient.

• However, if you want to watch for volumes being mounted and unmounted, then
you must keep your BVolumeRoster object around. The watching stops when the
object is deleted.

A single BVolumeRoster object can perform both functions: You can use it to step
through the volume list at the same time that it's watching volumes.

Constructor and Destructor
BVolumeRoster()

BVolumeRoster(void)

Creates a new BVolumeRoster object. You don't have to "initialize" the object before
using it (as you do with most other Storage Kit classes). You can call
GetNextVolume () (or whatever) immediately after constructing.

-BVolumeRoster()

-BVolumeRoster(void)

Destroys the object. If this BVolumeRoster object was watching volumes, the watch is
called off.

294 Chapter 3 • The Storage Kit

Member Functions

GetBootVolume()

status_t GetBootVolume(BVolume *boot_vo~

Initializes boot_vol to refer to the "boot volume." This is the volume that was used to
boot the computer. boot_vol must be allocated before you pass it in. If the boot
volume can't be found, the argument is uninitialized.

(Currently, this function looks for the volume that's mounted at /boot. The only way
to fool the system into thinking that there isn't a boot volume is to rename /boot-not
a smart thing to do.)

Return values:
B_NO_ERROR. The boot volume was successfully retrieved.
B_ENTRY_NOT_FOUND. The boot volume wasn't found.

GetNextVolume(}, Rewind(}

status_t GetNextVolume(BVolume *volume)
void Rewind(void)

GetNextVolume () retrieves the "next" volume from the volume list and uses it to
initialize the argument (which must be allocated). When the function returns
B_BAD_VALUE, you've reached the end of the list.

Rewind () rewinds the volume list such that the next GetNextVolume () will return
the first element in the list.

Return values:
B_NO_ERROR. The next volume was successfully retrieved.
B_BAD_VALUE. You've reached the end of the volume list.

StartWatching(), StopWatching(}, Messenger()

status_t StartWatching(BMessenger messenger= be_app_messenger)
status_t StopWatching(void)
BMessenger Messenger(void) const

These functions start and stop the BVolumeRoster's volume-watching facility. (This is
actually just a convenient cover for the Node Monitor.)

• StartWatching () registers a request for notifications of volume mounts and
unmounts. The notifications are sent (as BMessages) to the BHandler/BLooper
pair specified by the argument. There are separate messages for mounting and

Attribute C Functions 295

unmounting; their formats are described below. The caller retains possession of
the BHandler/BLooper that the BMessenger represents. The volume watching
continues until this BVolumeRoster object is destroyed, or until you call ...

• StopWatching (). This function tells the volume-watcher to stop watching. In
other words, notifications of volume mounts and unmounts are no longer sent to
the BVolumeRoster's target.

• Messenger () returns a copy of the BMessenger object that was set in the
previous StartWatching () call.

There a.re separate notifications (BMessages) for volume-mounted and volume
unmounted events. See the B_DEVICE_MOUNTED and B_DEVICE_UNMOUNTED
descriptions in "The Node Monitor" section of this chapter.

Return values:
B_NO_ERROR. The volume-watcher was successfully started or stopped.
B_BAD_ VALUE. Poorly formed BMessenger.
B_NO_MEMORY. Couldn't allocate resources.

Global C Functions
The next four sections document the straight C interface to attributes, indices, queries,
and file system information. Technically, these functions are part of the Kernel Kit
their definitions live in header files in be/kernel, and their code is in libroot.so.

These functions use a global error variable (an integer), called errno, to register
errors. You can look at the errno value directly in your code after a file system
function fails. Alternatively, you can use the errno () function which prints, to
standard error, its argument followed by a system-generated string that describes the
current state of errno.

• Each thread maintains its own errno variable.

• errno is only set if there's an error-it never indicates success.

• errno is never cleared. If call A fails, then you call B, C, and D, errno will still
record the error from A.

Attribute C Functions
Declared in: be/kernel/fs_attr.h

Library: libroot.so

296 Chapter 3 • The Storage Kit

Overview
The BeOS supports a powerful system of attributes that can be attached to files. Once
these attributes are attached, you can query the file system for attributes whose values
match certain specifications; this is discussed in the section on the fs_query
functions, and in the section on the BQuery class.

Before you can perform these queries, however, you need to attach attributes to the
file. There are two ways to do this. The typical mechanism for attaching attributes to
files is through the BNode class, which provides a convenient interface for doing this.
This section discusses the lower-level way to do this, by calling the C fs_attr
functions directly.

This collection of functions also lets you look at the attributes attached to a file, get
their names and sizes, and read their contents.

The fs_attr functions make use of directory pointers (DIR *). While these are true
directory pointers, the data they hold aren't useful outside the fs_attr API; they're
basically magic cookies that represent the file's attribute directory. Likewise, the
dirent structures returned by some of these functions are also not useful outside this
API.

An Example

Before dropping straight into the reference on the fs_attr API, let's have a look at a
simple sample of how to use some of its features. The sample code fragment below
opens the attribute directory for a file named /boot/home/dirtylaundry and scans
through all the attributes in the file, fetching their names and values.

DIR *d;
dirent_t *ent;
attr_info info;
int fd;
char *buffer;

d = fs_open_attr_dir("/boot/home/dirtylaundry"};
if (d} {

while (ent = fs_read_attr_dir(d}} {
fd = open ("/boot/home/dirtylaundry", O_RDONLY};
fs_stat_attr(fd, ent->d_name, &info};
buffer= (char*} malloc((size_t} info.size};
if (buffer}

fs_read_attr(fd, ent->d_name, info.type, 0, buffer,
info.size};

close(fd};
fs_close_attr_dir(d};

Attribute C Functions • Attribute Functions 297

This snippet begins by opening the attribute directory for the file, using the
fs_open_attr_dir () function. If this is successful, it returns a pointer to a
directory that contains the list of attributes. A while loop is used to read into ent
each attribute from the attribute directory by calling fs_read_attr_dir (). The
information this call provides includes the size and type of the attribute, as well as its
name.

Once we know the name of the attribute, we can obtain the type and size of the
attribute by calling fs_stat_attr ();now we have all the information needed to get
the value of the attribute. After allocating a buffer to contain the value of the attribute,
we pass the attribute's name (ent->d_name), and the type and size (info.type and
info.size) into the fs_read_attr () function. The value of the attribute is stored in
the buffer we specify.

This sample skimps a bit on error handling; you'll do better, of course.

Attribute Functions

fs_close_attr _dir

int fs_close_attr _dir(DIR * dirp)

Closes the specified attribute directory. You should pass into this function the pointer
returned when you called fs_open_attr_dirO or fs_fopen_attr_dirO.

If successful, this function returns O; otherwise it returns -1 and sets errno to a
descriptive code.

Errno values:
B_FILE_ERROR. Invalid directory reference specified.

fs_fopen_attr _dir() seefs_open_attr_dir()

fs_open_attr _dir(), fs_fopen_attr _dir()

DIR *fs_open_attr _dir(const char •path)

DIR *fs_fopen_attr _dir(int fd)

Opens the attribute directory for the file specified by pathname or file descriptor.

The attribute directory for a file contains a list of the attributes that are attached to the
file. Once the attribute directory is open, you can use the fs_read_attr_dir ()

function to find out which attributes are present.

298 Chapter 3 • The Storage Kit

If the directory is opened successfully, a pointer to the directory structure is returned.
This pointer should be passed to the other fs_attr functions to read entries from
the attribute directory, as well as to close the directory when you're finished with it.

If an error occurs while opening the attribute directory, this function returns NULL

and sets errno to one of the values listed below.

Errno values:
B_FILE_ERROR. Invalid file descriptor, or a file error prevented the operation.
B_ENTRY_NOT_FOUND. No matching attribute was found for the specified file.
B_NAME_TOO_LONG. path is longer than B_PATH_NAME_LENGTH characters.
B_LINK_LIMIT. A loop was detected in the directory structure.
B_NO_MEMORY. Insufficient memory to complete the operation.
B_BUSY. The specified file is currently in use.
B_NO_MORE_FDS. Too many open files; all file descriptors are in use.

fs_read_attr

ssize_t fs_read_attr(int fd,
const char *attribute,
uint32 type,
off_t pos,
void *buffer,
size_t count)

Reads the attribute of the type and name specified by type and attribute from the file
descriptor fd. The attribute's data is read starting at the offset pos and stored in the
buffer. count specifies the maximum number of bytes to be read.

The type can be any of the standard BeOS type definitions, such as B_STRING_TYPE.

See the header file be/support!TypeConstants.h for a complete list of these types. Note
that the type of the attribute is a hint only; there's no reason you can't read a
B_STRING_TYPE attribute as an integer (except that the data would probably not
make any sense if you did).

If the attribute is read successfully, fs_read_attr () returns the actual number of
bytes of data read from the attribute into the buffer. If an error occurs, this function
returns -1 and sets errno to an appropriate value.

Errno values:
B_FILE_ERROR. Invalid file descriptor fd specified.
B_ENTRY_NOT_FOUND. No matching attribute was found for the specified file
descriptor.

Attribute C Functions • Attribute Functions 299

fs_read_attr _dir

struct dirent *fs_read_attr _dir(DIR • ditp)

Reads the current attribute from the specified attribute directory, and bumps the ditp

so it points to the next attribute. The ditp pointer that you pass to this function
should have been retrieved through a previous call to fs_open_attr_dir () or
fs_fopen_attr_dir().

A pointer to a dirent structure is returned. This structure contains information about
the attribute. Do not dispose of or alter the data contained by this pointer; it belongs
to the operating system.

Once a file's attribute directory has been opened, you can loop over this function to
iteratively retrieve the names of all the attributes in the file. An attribute's name is
recorded in the d_name field of the dirent structure; see the example in "An
Example" on page 296.

This function doesn't let you get the type or value of an attribute. For that, use
fs_stat_attr ().

If you're looking for files that have a particular value for one or more attributes,
however, you should try using the fs_query functions, which allow you to more
easily establish complex search operations on the values of one or more attributes.

If an error occurs (including reaching the end of the directory), this function returns
NULL.

Erma values:
B_FILE_ERROR. Invalid directory reference specified.
B_NOT_A_DIRECTORY. The attribute directory is invalid.
B_ENTRY_NOT_FOUND. You've reached the end of the attribute directory.

fs_remove_attr()

int fs_remove_attr(int f d, canst char •attribute)

Deletes the named attribute from the file given by the file descriptor f d.

If the function is successful, fs_remove_attr () returns 0. Otherwise, it returns -1
and sets errno to an appropriate value.

Erma values:
B_FILE_ERROR. fd is invalid, or file opened with read-only access.
B_BAD_ VALUE. Invalid attribute name specified.
B_NOT_ALLOWED. Disk containing the file is read-only.
B_ENTRY_NOT_FOUND. No matching attribute was found.

300 Chapter 3 • The Storage Kit

fs_rewind_attr _dir()

int fs_rewind_attr_dir(DIR *dirp)

Rewinds the attribute directory to the beginning. This lets you start over again at the
top of a file's attribute directory and read your way down toward the bottom.

Returns a result code specifying whether or not the operation was successful.

NOTE

Unlike most of the other file system C functions, fs_rewind_attr_dir ()
doesn't set errno.

Return values:
B_OK. Success.
B_FILE_ERROR. Invalid directory reference specified.

fs_stat_attr

int fs_stat_attr(int f d,
const char *name,
struct attr_info *info)

Returns, in the attr_info structure pointed to by info, the type and size of the
specified attribute on the file whose descriptor is specified by f d.

The attr_info structure is defined as follows:

typedef struct attr_info
{

uint32 type;
off_t size;

type contains a code defining the format of the data contained by the attribute;
standard values for this field are defined in the be/support/TypeConstants.b header
file.

size specifies the size of the data the attribute contains.

Upon success, the function returns 0. Otherwise, it remrns -1 and sets errno to an
appropriate value.

Errno values:
B_ENTRY_NOT_FOUND. The requested attribute was not found for the file.
B_FILE_ERROR. Invalid file descriptor specified.

Index C Functions

fs_ write_attr()

ssize_t fs_write_attr(int fd,
canst char •attribute,
uint32 type,
off_tpos,
canst void *buffer,
size_t count)

301

Sets the value of the named attribute to the data in the specified buffer. The data's
type is specified by type and should be one of the codes defined in
be/support/TypeConstants.h. The length of the data to be written is specified by
count.

NOTE

At this time, writing at an offset within an attribute is not fully supported, so
you should always specify a pos of 0 to write at the beginning of the attribute.

If the attribute already has a value, this function wholly replaces that value with the
new data-even if the new data is smaller than the existing data.

WARNING

Under the Be File System, files have a special attribute storage area which con
tains the smaller attributes. When this space is filled up, or an attribute too
large to fit into the space is added to the file, additional disk blocks are allo
cated for the new attributes. However, only one attribute is written per block in
these additional blocks. The moral of the story is: use attributes wisely. They
can be your friends, but if you overuse them, you'll bloat your files.

Upon success, the function returns the number of bytes that were actually written.
Otherwise, it returns -1 and sets errno to an appropriate value.

Errno values:
B_BAD_ VALUE. The attribute name is too long or is an empty string.
B_NO_MEMORY. Insufficient memory to complete the operation.
B_FILE_ERROR. Invalid file descriptor fd specified, or the file is read-only.

Index C Functions
Declared in: be/kerneVfs_index.h

Library: libroot.so

302 Chapter 3 • The Storage Kit

Overview
Before a query can be performed on a file system, indices need to be established in
which to search. Much like the card catalog in a library, these indices contain a list of
files that can be searched given a particular attribute and the desired value.

An index directory is, essentially, a list of the indices on a particular disk; it keeps
track of the attributes that can be searched upon. Each disk has its own index
directory. For instance, a disk might have the following indices in its index directory:

• MAIL:subject
• MAIL:from
• MAIL:to
• MAIL:priority

Each of these is the name of an index that can be queried using either the fs_query

API or the BQuery class.

For example, if an e-mail program wishes to allow searching on the name of the
sender of a message, it needs to create an index for the "sender" attribute. Once this
index is established, any file that has the "sender" attribute added to it will be added
to the "sender" index.

Files which had the "sender" attribute attached before the "sender" index was created,
however, will not be in the index until their "sender" attribute is updated, at which
time they will be added to the index. For this reason, you should consider installing
your indices when your application is installed, or when it is initially launched.

Since each disk has its own index directory, if you want all disks to have your indices
available, you need to create them on each device. You can do this by using the
functions described here in conjunction with the fs_info functions.

There are three indices that are present on every disk:

Index Meaning

name The name of the file.

size The size, in bytes, of the file.

last_modified The date the file was last changed.

You can always perform queries in these indices. Their names are reserved; you can't
create or remove indices by these names.

Index C Functions • Overview

The Index Directory

The following sample function opens the index directory for a specified device and,
in a loop, reads every entry, printing their names to standard output. This presents a
list of each index available on the disk.

void Listindex(int32 device)
{

DIR *d;
index_info info;
struct dirent *ent;

d = fs_open_index_dir(device);
if (!d) {

fprintf (stderr, "Unable to open index. \n") ;
return;

303

while (ent = fs_read_index_dir(d))
printf("%s\n", ent->d_narne);

fs_close_index_dir(d);

After calling fs_open_index_dir () to open the index directory for the device
passed into the function (and handling the error that might occur if that function
fails), a while loop iterates through all the entries in the directory, calling
fs_read_index_dir () to obtain the desired information, then printing that
information to standard output.

When there are no indices left, fs_read_index_dir () returns NULL and the while
loop exits. At this point, fs_close_index_dir () is called to close the index
directory.

Installing and Removing Indices

If you want query operations to be available for an attribute you attach to your files,
it is first necessary to create an index for that attribute; you can't search for an
attribute that hasn't been indexed.

To install a new index, use the fs_create_index () function. For example, to
create an index for the attribute "GOLF:Handicap" on device 4 you would do this:

fs_create_index(4, "GOLF:Handicap", B_INT16_TYPE, 0);

This creates an empty index for the golf handicap attribute, which is stored as a 16-bit
integer. Once the index has been created, any file that gets a "GOLF:Handicap"
attribute added or changed will be indexed.

304 Chapter 3 • The Storage Kit

(You usually shouldn't hard-code a device number, of course; you can obtain a
device number for a specific disk by using the fs_info functions or stat () .)

If you later need to remove the index, call fs_remove_index () , like this:

fs_remove_index(4, "GOLF:Handicap");

You should be careful when deciding to delete an index. If the user still has files
around that contain indexed attributes that they want to be able to search for-using
the Find panel in the Tracker, for example-they will not be able to do so after the
index has been removed. So you need to decide when it is appropriate to remove
indices; the choice is yours, but choose wisely, or you might annoy users.

Index Functions

fs_close_index_dir()

int fs_close_index_dir(DIR *ditp)

Closes the specified index directory and frees ditp. You should pass into this function
the pointer returned from a previous fs_open_index_dir ().

You should always use this function to close index directories after you finish using
them.

If successful, this function returns O; otherwise it returns -1 and sets errno to one of
the following codes.

Errno values:
B_FILE_ERROR. Invalid directory reference specified.
B_BAD_FILE. Invalid directory reference specified.

fs_create_index()

int fs_create_index(dev _t device,
canst char *name,
int type,
uintflags)

Creates a new index called name on the specified device. Once this has been done,
adding an attribute named name to a file causes the file to be added to the name
index, such that subsequent queries will be able to search for files that contain the
name attribute.

type indicates the kind of data the attribute will contain. Standard types are defined in
the be/support/TypeConstants.h header file.

Index C Functions • Index Functions 305

flags is currently unused and should always be 0.

If successful, this function returns O; otherwise it returns -1 and sets errno to one of
the following codes.

Errno values:
B_BAD_ VALUE. The device does not exist, or name is reserved.
B_NOT_ALLOWED. The device is read-only.
B_NO_MEMORY. Insufficient memory to complete the operation.
B_FILE_EXISTS. The index name already exists.
B_DEVICE_FULL. There's not enough room on the device to create the index.
B_FILE_ERROR. Invalid directory reference.

fs_open_index_dir()

DIR *fs_open_index_dir(dev _t device)

Opens the index directory for the volume identified by device. Once open, you can
retrieve the names of the indices on the volume by calling fs_read_index_dir ().

When you have finished using the index directory, call fs_close_index_dir () to
close it.

If the index directory is opened successfully, a pointer to a directory structure is
returned. This pointer should be passed to the other fs_index functions to read
entries from the index directory, as well as to close the directory when you're finished
with it.

If an error occurs while opening the index directory, this function returns NULL and
sets errno to an appropriate value.

Errno values:
B_FILE_ERROR. A file error prevented the operation.
B_BAD_VALUE. Invalid device number specified.
B_LINK_LIMIT. A cyclic loop was detected in the directory structure.
B_NO_MEMORY. Insufficient memory to complete the operation.
B_BUSY. The specified file is currently in use.
B_NO_MORE_FDS. Too many open files; all file descriptors are in use.

fs_read_index_dir()

struct dirent *fs_read_index_dir(DIR *dirp)

Reads the current entry from the open index directory referenced by dirp, and bumps
the pointer to point to the next entry. dirp should have been obtained through a
previous call to fs_open_index_dir (). The returned dirent pointer contains

306 Chapter 3 • The Storage Kit

information about the index entry, including the name of the attribute represented by
the index. This pointer belongs to the system; you must not delete it.

Through repeated calls to fs_read_index_dir () , you can obtain a list of all the
indices available on the device. When you reach the end of the list, errno is set to
B_ENTRY_NOT_FOUND.

If an error occurs, this function returns NULL and sets errno to an appropriate value.

Erma values:
B_FILE_ERROR. Invalid file descriptor f d specified.
B_NOT_A_DIRECTORY. dirp does not represent a valid index directory.
B_ENTRY_NOT_FOUND. You've reached the end of the list.

fs_remove_indexQ

int fs_remove_index(dev _t device, const char *index_name)

Deletes the index named index_name from the specified device. Once the index is
deleted, it will no longer be possible to use the query system to search for files with
the corresponding attribute.

Use this function to remove an index that you no longer wish or need to be able to
search upon. For example, if your application is being uninstalled by your user
friendly uninstaller program, and it's no longer meaningful to be able to search on a
given attribute, you should use this function to delete the index for that attribute.

You should be careful when deciding whether or not to delete an index, however. If
the user still has files around that they want to be able to search, using the Tracker's
Find panel, for instance, and you've deleted the index for that attribute, they'll be
most displeased. There's a grey area you need to wade through in determining
whether or not to delete your indices; your decision needs to be based on the
specifics of what your application does and how it will be used.

If the index is removed successfully, fs_remove_index () returns 0. Otherwise, it
returns -1 and sets errno to an appropriate value.

Erma values:
B_FILE_ERROR. A file system error prevented the operation.
B_BAD_VALUE. Invalid device number specified.
B_NOT_ALLOWED. Can't remove a system-reserved index ("name,'' "size,"
"last_modified"), or the device is read-only.
B_NO_MEMORY. Insufficient memory to complete the operation.
B_ENTRY_NOT_FOUND. The specified index does not exist.

Index C Functions • Index Functions 307

fs_rewind_index_dir()

int fs_rewind_index_dir(DIR *dirp)

Rewinds the specified index directory to the beginning of its list of indices. This
allows you to start over again at the top of a device's index directory and make your
way down toward the bottom.

Returns a result code specifying whether or not the operation was successful.

NOTE

Unlike the most of the other file system functions, fs_rewind_index_dir ()

doesn't set errno.

Return values:
B_OK. Success.
B_FILE_ERROR. Invalid directory reference specified.

fs_stat_index()

int fs_stat_index(dev_t device,
const char *index_name,
struct index_info *info)

Returns, in the index_info structure pointed to by info, information about the index
named index_name on the specified device.

The index_info structure is defined as follows:

typedef struct index_info
{

uint32 type;
off_t size;
time_t modification_time;
time_t creation_time;
uid_t uid;
gid_t gid;

type contains a code defining the format of the data contained by the attribute
represented by the index; standard values for this field are defined in the
be/support!TypeConstants.h header file.

• size specifies the size of the data the attribute contains.

• modification_time contains the time the index was last changed, in seconds
since January 1, 1970.

• creation_time contains the date and time the index was originally created, in
seconds since January 1, 1970.

308 Chapter 3 • The Storage Kit

• uid contains the user ID of the owner of the index.

• gid contains the group ID of the owner of the index.

If the function is successful, it returns O; otherwise, it returns -1 and sets errno to an
appropriate value

Erma values:
B_ENTRY_NOT_FOUND. The requested index was not found.
B_BAD_VALUE. Invalid device number specified.

Query C Functions
Declared in:

Library:

Overview

be/kernel/fs_query.h

libroot.so

Normally, when you want to perform a file system query, you would use the BQuery
class, which is a nice, clean, object-oriented way to do it. If you have an aversion to
object-oriented programming, however, or you're writing a simple C program and
would rather use C functions instead, then you've come to the right place.

Be aware that, currently, you can't perform "live" queries at the C level. If you want a
live query, you have to use a BQuery object.

Opening, Reading, and Closing a Query

To begin a query, you call fs_open_query (). fs_open_query () performs a "one
shot" query: It lets you ask for all the files that fulfill certain criteria right now. This
criteria is expressed as a "predicate" string. This is a formula that lists the attribute
values that you're interested in. A simple predicate takes the form:

attribute op value

For example, you can look for files that are larger than SK by supplying a string that
looks like this:

"size > 5000"

Simple predicates can be grouped and combined to create more complex predicates.
Here we look for files named "fido" that are greater than SK:

"(name= fido) && (size> 5000)"

For a full description of the predicate format, see "The Predicate, Attributes, and
Indices" in the BQuery class description, but be aware of this difference:

Query C Functions • Query Functions

• The fs_query functions don't let you "push" elements onto the predicate; all
predicates must be expressed as strings.

Once the query has been opened, you can step through the files that fulfill the
predicate through iterated calls to fs_read_query (). When all the winning files
have been visited, fs_read_query() returns NULL.

When you've finished using your query, you must close it by using the
fs_close_query () function.

An Example

The following sample demonstrates very briefly how to perform a simple, non-live
query. In this example, we're searching for all C header files on the device specified
by devnum.

void sample_query(dev_t devnum) {
DIR *q;
dirent_t*d;

q = fs_open_query(devnum, "name=* .h", 0);
if (q) {

while (d = fs_read_query(q)) {

fs_close_query(q);

The code opens the query by calling fs_open_query () and then calls
fs_read_query () in a loop until NULL is returned. Once that happens,
fs_close_query () is used to close the query.

Query Functions

fs_close_query()

int fs_close_query(DIR *di!)

Closes a query which was previously opened using the fs_open_query () function.
You pass in the DIR • returned by either of these functions. The pointer dir is freed
by this function.

If the query closes successfully, fs_close_query () returns O; otherwise, it returns -1

and sets errno to an appropriate value.

Errno values:
B_FILE_ERROR. A file system error prevented the operation from succeeding.

309

310

fs_open_query()

DIR *fs_open_query(dev _t device,
const char •query,
uint32 flags)

Chapter 3 • The Storage Kit

Opens a new query on the specified device. The query string is the criteria or
"predicate" that describes the files that you're looking for. For information on how to
construct the query string, see the BQuery class. Note that you can't use the "push"
method: fs_open_query () only understands predicate strings.

flags is currently unused; pass 0 as its value.

The pointer returned by this function is used to identify your query to the other query
functions; you should not dispose of it yourself-this will be done for you when you
call fs_close_query () . If the query couldn't be opened, the function returns NULL

and sets errno to an appropriate value.

Erma values:
B_ENTRY_NOT_FOUND. path does not exist, or is NULL or an empty string.
B_BAD_VALUE. device does not specify a valid device, query is NULL or an invalid
expression, or a live query was requested without specifying a valid port.
B_NO_MEMORY. Insufficient memory to complete the operation.
B_FILE_ERROR. A file system error prevented the operation from succeeding.
B_BUSY. A busy node could not be accessed.
B_NO_MORE_FDS. All file descriptors are in use (too many open files).
E2BIG. query expression is too big.

fs_read_query()

dirent *fs_read_query(DIR *d)

Returns the next item that matches the specified query. The d argument should have
been gotten from a previous call to fs_open_query (); it identifies the particular
query from which to read.

You mustn't free the pointer returned to you by this function.

If an error occurs while reading the query, this function returns NULL and sets errno
to an appropriate value.

Erma values:
B_FILE_ERROR. A file system error prevented the operation from succeeding.
B_BAD_VALUE. An error occurred processing the query predicate.
B_ENTRY_NOT_FOUND. No more matches.
B_NOT_A_DIRECTORY. A non-directory node was found where a directory was
expected.

File System Info C Functions • C Functions

B_INTERRUPTED. A signal interrupted the read.
E2BIG. Query predicate is too big.

File System Info C Functions
Declared in: be/kernel/fs_info.h

Library: libroot.so

Overview
From time to time, it can be useful to know certain information about the capabilities
of the file system on a device. While the BVolume class provides you easy access to
this information, it can occasionally be helpful to have more direct access to this
information.

This section describes three C functions which can be used to obtain information
about the file system on a device. One of these functions, fs_stat_dev {), returns
this information given a device number. The other two functions, dev_for_path ()

and next_dev () , provide two ways to obtain a device number for use with
fs_stat_dev{).

Note that these functions don't set errno.

C Functions

dev _for _path()

dev _t dev _for _path(const char •path)

Given a pathname, returns the device number of the device on which the path is
located. If the result is negative, it is a return code specifying an error.

Return values:
B_ENTRY_NOT_FOUND. path does not exist, or is NULL or an empty string.
B_BAD_ VALUE. path is null or an empty string.
B_NAME_TOO_LONG. path is too long.
B_NO_MEMORY. Insufficient memory to complete the operation.
B_FILE_ERROR. A file system error prevented the operation from succeeding.

next_dev()

dev _t next_dev(int32 •pas)

The next_dev () function allows you to iterate through all devices, receiving their
device numbers as a result each time. If the result is negative, it is an error code.

311

312 Chapter 3 • The Storage Kit

When the end of the device list is reached, the return value B_BAD_ VALUE is
returned.

You should initially set pos to 0, then call next_dev () in a loop to obtain each
device number until an error occurs. For example:

void ScanDevices(void)
int pos;

pos = O;
while(next_dev(&pos) >=0)

do_something(pos);

Return values:
B_BAD_ VALUE. No matching device found.

fs_stat_dev()

int fs_stat_dev(dev_t dev, fs_info *info)

struct {} fs_info

fs_stat_dev () returns information about the specified device. This can be used in
conjunction with next_dev () to scan all devices and record information your
application requires.

This function returns 0 if the request was successful or -1 if an error occurred. Use the
errno () function to determine what error in particular occurred.

The fs_info structure is defined as:

typedef struct fs_info {
dev_t dev;

};

ino_t root;
uint32 flags;
off_t block_size;
off_t io_size;
off_t total_blocks;
off_t free_blocks;
off_t total_nodes;
off_t free_nodes;
char device_name[128];
char vol urne_name[B_FILE_NAME_LENGTH];
char fsh_name[B_OS_NAME_LENGTH];

Global Constants and Defined Types

The structure's fields are:

• dev. The device number of the device.
• root. The inode of the root of the device.
• flags. Flags describing the device's capabilities.
• block_size. The fundamental block size of the device.
• io_size. Optimal 1/0 size of the device.
• total_blocks. The total number of blocks on the device.
• free_blocks. The number of free (unused) blocks on the device.
• total_nodes. The total number of nodes on the device.
• free_nodes. The number of free (unused) nodes on the device.
• device_name. Name of the device holding the file system.
• volume_name. Name of the volume contained by the device.
• fsh_name. Name of the file system handler for the device.

The flags can be any combination of the following values, which specify the
attributes of the file system on the device:

• B_FS_IS_READONLY. The file system on the device is read-only.
• B_FS_IS_REMOVABLE. The device contains removable media.
• B_FS_IS_PERSISTENT. Data written to the device remains even while the device

is off.
• B_FS_IS_SHARED. The file system is being shared on a network.
• B_FS_HAS_MIME. The file system supports the MIME typing system used by the

BeOS.
• B_FS_HAS_ATTR. The file system supports node attributes.
• B_FS_HAS_QUERY. The file system supports the BeOS query mechanism.

313

The information in the fs_info structure is guaranteed to be internally consistent,
but the structure as a whole should be considered to be out-of-date as soon as you
receive it. It provides a picture of a device as it exists just before the info-retrieving
function returns. In particular, the number of free blocks and of free nodes can easily
change immediately after you receive this information.

Return values:
B_OK. The device was found; info contains valid information.
B_BAD_ VALUE. dev doesn't identify an existing device.

Global Constants and Defined Types
This section lists parts of the Storage Kit that aren't contained in classes.

314 Chapter 3 • The Storage Kit

Constants
Limits Constants

be/storage/StorageDefs.h

Constant

B FILE NAME_LENGTH

B_PATH_NAME_LENGTH

B_ATTR_NAME_LENGTH

B_MIME_TYPE_LENGTH

B_MAX_SYMLINKS

Meaning

Number of characters allowed in a file name.

Number of characters allowed in a path name.

Number of characters allowed in an attribute name.

Number of characters allowed in a MIME type name.

Number of nested symlinks allowed.

These constants define the maximum values for several Storage Kit related items,
including file and path name strings, attribute name strings, and MIME type strings.
B_MAX_SYMLINKS specifies how many symbolic links may be linked through each
other.

File Open Mode Constants

be/storage/StorageDefs.h

Constant

B_READ_ONLY

B_WRITE_ONLY

B_READ_WRITE

B_FAIL_IF_EXISTS

B_CREATE_FILE

B_ERASE_FILE

B_OPEN_AT_END

Meaning

Open the file with read-only access.

Open the file with write-only access.

Open the file for both reading and writing.

Don't open the file if it already exists.

Create the file before opening it.

Erase the previous contents before opening the file.

Open with the pointer at the end of the file.

These constants are used when opening files using either the POSIX open () function
or using the BFile class. They specify the mode in which the file is to be opened. For
instance, if write-only access is desired, and you want the operation to fail if the file
exists, you would do the following:

fd = open("foobar.data", B WRITE_ONLY I B_FAIL_IF_EXISTS);

Global Constants and Defined Types • Constants

Node Flavors

be/storage/StorageDefs.h

Constant

B_FILE_NODE

B_SYMLINK_NODE

B_DIRECTORY_NODE

B_ANY_NODE

Meaning

Files only

Symbolic links only

Directories only

Matches any node

315

These constants are used when making a request that can be qualified based on the
"flavor" of a node-in other words, whenever you wish to perform an operation on
only files, directories, or symbolic links. This is used when opening a file panel, for
instance, so that you can specify what types of items you want the user to be able to
select.

Version Kinds

be/storage/AppFileinfo.h

Constant

B_APP_VERSION_KIND

B_SYSTEM_VERSION_KIND

Meaning

Records information about a specific application.

Records information about a "suite," or other grouping of
applications, that the application belongs to.

These constants are used when setting or retrieving the version information attached
to an application. There are two version information records for each application, and
these two constants select which one you wish to reference. Although there is no
prescribed use for these structures or their constants, it is suggested that
B_APP_VERSION_KIND be used for application-specific version information, and
B_SYSTEM_ VERSION_KIND be used for information about the suite of applications to
which the application belongs.

Directories

be/storage/FindDirectory.h

Constant

B DESKTOP_DIRECTORY

B_TRASH_DIRECTORY

B_APPS_DIRECTORY

B_PREFERENCES_DIRECTORY

B_BEOS_DIRECTORY

Meaning

Desktop directory.

Trash directory.

Applications directory.

Preferences directory.

BeOS directory.

316

Constant

B_BEOS_SYSTEM_DIRECTORY

B_BEOS_ADDONS_DIRECTORY

B_BEOS_BOOT_DIRECTORY

B_BEOS_FONTS_DIRECTORY

B_BEOS_LIB_DIRECTORY

B_BEOS_SERVERS_DIRECTORY

B_BEOS_APPS_DIRECTORY

B_BEOS_BIN_DIRECTORY

B_BEOS_ETC_DIRECTORY

B_BEOS_DOCUMENTATION_DIRECTORY

B_BEOS_PREFERENCES_DIRECTORY

B_COMMON_DIRECTORY

B_COMMON_SYSTEM_DIRECTORY

B_COMMON_ADDONS_DIRECTORY

B_COMMON_BOOT_DIRECTORY

B_COMMON_FONTS_DIRECTORY

B_COMMON_LIB_DIRECTORY

B_COMMON_SERVERS_DIRECTORY

B_COMMON_BIN_DIRECTORY

B_COMMON_ETC_DIRECTORY

B_COMMON_DOCUMENTATION_DIRECTORY

B_COMMON_SETTINGS_DIRECTORY

B_COMMON_DEVELOP_DIRECTORY

B_COMMON_LOG_DIRECTORY

B_COMMON_SPOOL_DIRECTORY

B_COMMON_TEMP_DIRECTORY

B_COMMON_VAR_DIRECTORY

B_USER_DIRECTORY

B_USER_CONFIG_DIRECTORY

B_USER_ADDONS_DIRECTORY

B_USER_BOOT_DIRECTORY

B_USER_FONTS_DIRECTORY

B_USER_LIB_DIRECTORY

B_USER_SETTINGS_DIRECTORY

B_USER_DESKBAR_DIRECTORY

Chapter 3 • The Storage Kit

Meaning

System directory.

BeOS add-ons directory.

Boot volume's root directory.

BeOS fonts directory.

BeOS libraries directory.

BeOS servers directory.

BeOS applications directory.

/bin directory.

/etc directory.

BeOS documentation directory.

BeOS preferences directory.

The common directory, shared by all users.

The shared system directory.

The shared addons directory.

The shared boot directory.

The shared fonts directory.

The shared libraries directory.

The shared servers directory.

The shared /bin directory.

The shared /etc directory.

The shared documentation directory.

The shared settings directory.

The shared develop directory.

The shared log directory.

The shared spool directory.

The shared temporary items directory.

The shared Ivar directory.

The user's home directory.

The user's config directory.

The user's add-ons directory.

The user's !boot directory.

The user's fonts directory.

The user's libraries directory.

The user's settings directory.

The user's Deskbar directory.

Global Constants and Defined Types • Constants 317

These constants are used when calling the find_directory() function to
determine the pathname of a particular directory of interest.

B_DESKTOP _DIRECTORY and B_TRASH_DIRECTORY are per-volume directories; if
you don't specify the volume you wish to locate these directories on,
find_directory () will assume you mean the boot disk.

B_APPS_DIRECTORY and B_PREFERENCES_DIRECTORY are global directories, and
always refer to the standard apps and preferences directories.

The B_BEOS_ * constants refer to BeOS-owned directories, the B_COMMON_ *
constants refer to directories that are common to all users of the system, and the
B_USER_ * constants refer to the current user's directories (currently these are all in a
subtree rooted at /boot/home). By using these constants properly, your code will be
compatible with future generations of the BeOS.

Icon Sizes

be/storage/Mime.h

Constant Meaning

B_LARGE_ICON

B_MINI ICON

Large (32x32) icon.

Small (16x16) icon.

These constants are used when selecting icons from a meta MIME file; they let you
fetch the large and small variations of a file's icon.

watch_node{) Flags

be/storage/NodeMonitor.h

Constant

B_STOP_WATCHING

B_WATCH_NAME

B_WATCH_STAT

B_WATCH_ATTR

B_WATCH_DIRECTORY

B_WATCH_ALL

B_WATCH_MOUNT

Meaning

Stop watching the node.

Watch for changes to the name of the node.

Watch for stat changes.

Watch for attribute changes.

Watch for changes to the directory's contents.

Watch everything (except mounting).

Watch for disk mounts and unmounts.

These constants are used to control what type of monitoring to perform on a node.
B_WATCH_ALL is a convenience constant that allows you to monitor changes to the

318 Chapter 3 • The Storage Kit

name, stat information, attributes, and directory of a node. B_WATCH_MOUNT, which is
not included in B_WATCH_ALL, monitors volumes being mounted and unmounted.

B_WATCH_DIRECTORY applies only to directory nodes.

Node Monitor Opcodes

be/storage/NodeMonitor.h

Constant

B ENTRY_CREATED

B_ENTRY_REMOVED

B_ENTRY_MOVED

B_STAT_CHANGED

B_ATTR_CHANGED

B_DEVICE_MOUNTED

B_DEVICE_UNMOUNTED

Meaning

A new entry has been created.

An entry has been removed.

An entry has been moved.

Stat information has changed.

An attribute has been changed.

A volume has been mounted.

A volume has been unmounted.

These constants are returned by the Node Monitor to let you know what sort of
change has occurred to a node being monitored.

Query Operation Constants

be/storage/Query.h

Constant

B_EQ

B_NE

B_GT

B_LT

B_GE

B_LE

B_CONTAINS

B_BEGINS_WITH

B_ENDS_WITH

B_AND

B_OR

B_NOT

Operation

!=

>

<

>=

<=

string contains value ("*value*")

string begins with value ("value*")

string ends with value ("*value")

&&

11

These constants define the operations that can be used to specify a query. They are
used in conjunction with the push functions for constructing a query.

Global Constants and Defined Types • Defined Types

Defined Types

entry_ref

be/storage/Entry.h

struct entry_ref {
entry_refO;
entry_ref(dev_t device, ino_t dir, canst char *name);
entry_ref(const entry_ref &ref);
-entry_refO;

status_tset_name(const char •name);
boo! operator==(const entry_ref &ref) canst;
boo! operator!=(const entry_ref &ref) canst;
entry_ref &operator=(const entry_ref &ref);

dev _t device;
ino_t directory;
char *name;

The entry_ref structure describes a single entry in a directory.

entry_ref ()
entry_ref(dev_t device, ino_t dir, const char •name)
entry_ref(const entry_ref &ref>

319

The constructor for the entry_ref structure. The first of these creates an empty
entry_ref, the second accepts a device number, directory inode number, and a
file name and constructs an entry_ref referring to that entry, and the last version
of the constructor duplicates an existing entry_ref.

-entry_ref ()

The destructor for entry_ref.

status_t set_name(const char *name)

Lets you change the name of the file referred to by the entry_ref structure.

operator==

Lets you perform comparisons of entry_ref structures to see if they refer to the
same entry.

operator!=

Lets you test to see if two entry_ref structures refer to different entries.

320 Chapter 3 • The Storage Kit

device contains the device number on which the entry's target is located.

directory contains the inode of the directory that contains the entry's target.

name contains the name of the entry.

node_ref

be/storage/Node.h

struct node_ref {
node_refO;
node_ref(const node_ref &ref);
-node_refO;

bool operator==(const node_ref &ref) const;
bool operator!=(const node_ref &ref) canst;
node_ref &operator=(const node_ref &ref);

dev_t device;
ino_t node;

The node_ref structure describes a node in a file system.

node_ref()
node_ref(const node_ref &ref)

The constructor for the node_ref structure. The first of these creates an empty
node_ref, and the second duplicates an existing node_ref.

-node_ref ()

The destructor for node_ref.

operator==

Lets you perform comparisons of node_ref structures to see if they refer to the
same node.

operator!=

Lets you test to see if two node_ref structures refer to different nodes.

device contains the device number on which the node is located.

node contains the inode of the node.

Global Constants and Defined Types • Defined Types

version_info

be/storage/AppFileinfo.h

struct version_info {

uint32 major;
uint32 middle;
uint32 minor;
uint32 variety;
uint32 internal;
char short_info[64];
char long_info[256];

The version_info structure is used to contain version information about an
application. Although none of these fields has prescribed uses, and you can use them
for anything you want, their names do hint at their suggested uses.

321

CHAPTER FOUR

The Interface Kit

Introduction 331
Framework for the User Interface 331

Drawing 334
View Geometry 334
The Mechanics of Drawing 340
Views and the Server 349

Responding to the User 354
Interface Messages 354
The User Interface 361
Character Encoding 365

The Coordinate Space 368
Two-Dimensional Coordinates 368
Mapping Coordinates to Pixels 371

BAie rt 379
Overview 379
Constructor 380
Static Functions 382
Member Functions 382

BBitmap 384
Overview 384
Constructor and Destructor 388
Static Functions 388
Member Functions 389

BBox 392
Overview 393
Constructor and Destructor 393
Static Functions 394
Member Functions 394

323

324 Chapter 4 • The Interface Kit

BButton 396
Overview 396
Hook Functions 396
Constructor and Destructor 397
Static Functions 397
Member Functions 398

BCheckBox 400
Overview 400
Constructor and Destructor 401
Static Functions 401
Member Functions 402

BColorControl 403
Overview 403
Constructor and Destructor 404
Static Functions 405
Member Functions 406

BControl 409
Overview 409
Hook Functions 410
Constructor and Destructor 410
Static Functions 411
Member Functions 411

BDragger 417
Overview 417
Constructor and Destructor 417
Static Functions 418
Member Functions 419

BFont 420
Overview 420
Constructor 422
Member Functions 422
Operators 434

BListltem 434
Overview 434
Hook Functions 435
Constructor and Destructor 435
Member Functions 436

Contents 325

BListView 439
Overview 439
Hook Functions 441
Constructor and Destructor 441
Static Functions 442
Member Functions 442

BMenu 453
Overview 453
Hook Functions 454
Constructor and Destructor 454
Static Functions 456
Member Functions 456

BMenuBar 465
Overview 465
Constructor and Destructor 467
Static Functions 468
Member Functions 468

BMenuField 470
Overview 470
Constructor and Destructor 471
Static Functions 471
Member Functions 472

BMenultem 475
Overview 475
Hook Functions 477
Constructor and Destructor 477
Static Functions 479
Member Functions 479

BOutlineListView 486
Overview 486
Outline Structure 486
Constructor and Destructor 487
Static Functions 488
Member Functions 488

BPicture 492
Overview 492
Constructor and Destructor 493

326 Chapter 4 • The Interface Kit

Static Functions 494
Member Functions 494

BPictureButton 495
Overview 495
Constructor and Destructor 496
Static Functions 497
Member Functions 497

BPoint 500
Overview 500
Data Members 500
Constructor 500
Member Functions 501
Operators 502

BPolygon 504
Overview 504
Constructor and Destructor 504
Member Functions 505
Operators 506

BPopUpMenu 506
Overview 506
Constructor and Destructor 507
Static Functions 508
Member Functions 508

BPrintjob 510
Overview 510
Constructor and Destructor 515
Member Functions 515

BRadioButton 519
Overview 519
Constructor and Destructor 520
Static Functions 521
Member Functions 521

BRect 523
Overview 523
Data Members 524
Constructor 525

Contents 327

Member Functions 525
Operators 529

BRegion 532
Overview 532
Constructor and Destructor 533
Member Functions 533
Operators 535

BScreen 536
Overview 536
Constructor and Destructor 537
Member Functions 537

BScrollBar 542
Overview 542
Hook Functions 545
Constructor and Destructor 545
Static Functions 546
Member Functions 546

BScrollView 550
Overview 550
Constructor and Destructor 550
Static Functions 552
Member Functions 552

BSeparatorltem 554
Overview 554
Constructor and Destructor 554
Static Functions 555
Member Functions 555

BS he If 556
Overview 556
Hook Functions 557
Constructor and Destructor 557
Static Functions 558
Member Functions 558

BStatusBar 561
Overview 561
Constructor and Destructor 562

328 Chapter4 • The Interface Kit

Static Functions 563
Member Functions 563

BStringltem 567
Overview 567
Constructor and Destructor 567
Static Functions 568
Member Functions 568

BStringView 569
Overview 569
Constructor and Destructor 569
Static Functions 570
Member Functions 570

BTextControl 571
Overview 571
Constructor and Destructor 573
Static Functions 574
Member Functions 574

BTextView 578
Overview 578
Hook Functions 582
Constructor and Destructor 583
Static Functions 584
Member Functions 585

BView 606
Overview 606
Hook Functions 609
Constructor and Destructor 611
Static Functions 614
Member Functions 614

BWindow 658
Overview 658
Hook Functions 661
Constructor and Destructor 662
Static Functions 664
Member Functions 665

Global Functions 683

Contents

Global Variables, Constants, and Defined Types
Global Variables

Constants

Defined Types

I BScreen
AA?l.JJ.i4tdh,,

Interface Kit Inheritance Hierarchy

BBitmap

Blistltem , BStringltem .._ __ .
BPicture

BMenultem BSeparatorltem

i;:::::)j -These classes also inherit from the Blnvoker class (in the Support Kit)

BAlert

702
702

703
718

329

CHAPTER FOUR

The Interface Kit

Most applications have an interactive graphic user interface. When an app starts, it
displays a set of windows in which the user can click and type. The application
responds to the user's actions, and updates its window to show the user that it's
listening.

To run this kind of user interface, an application has to:

• Manage a set of windows
• Draw within the windows
• Respond to the users's actions (reported as inteiface messages)

The Interface Kit defines a set of C++ classes that provide a structure for these
operations. This chapter first introduces the conceptual framework for the user
interface, then describes all the classes, functions, types, and constants the kit defines.

Framework for the User Interface
A graphical user interface is organized around windows. In a multitasking
environment, any number of applications might be running at the same time, each
with its own set of windows on-screen. The windows of all running applications must
cooperate in a common interface. The Application Server manages this mess. It's the
conduit for an application's message input and drawing output:

• It monitors the keyboard and mouse and sends messages reporting each user
keystroke and mouse action to the application.

• It receives drawing instructions from the application and interprets them to render
images within windows.

331

332 Chapter 4 • The Interface Kit

BWindow Objects

Every window in an application is represented by a separate BWindow object.
Constructing the BWindow establishes a connection to the Application Server. When
you call BWindow's window-manipulating functions (Show (), MoveTo (),

SetTitle () and so on), the object sends a message to the server, which performs
the actual manipulation.

The BWindow class inherits from Blooper. Every BWindow object spawns a thread
(in the application's address space) where it receives and responds to interface
messages from the server.

All other Interface Kit objects play roles that depend on a BWindow. They draw in a
window, respond to interface messages received by a window, or act in support of
other objects that draw and respond to messages.

BView Objects

A window is divided into smaller rectangular areas called views. Each view
corresponds to one part of what the window displays-a scroll bar, a document, a
list, and so on.

An application sets up a view by constructing a BView object and associating it with
a particular BWindow. The BView object is responsible for drawing within the view
rectangle and for handling interface messages directed at that area.

Drawing in a View

A window can retain and display rendered images, but it can't draw them; for that it
needs a set of BViews. A BView is an agent for drawing, but it can't render the
images it creates; for that it needs a BWindow. The two objects work hand in hand.

Each BView object is an autonomous graphics environment for drawing: It has its
own coordinate system, current colors, drawing mode, clipping region, font, pen
position, and so on. The BView class also defines functions that represent elemental
drawing operations such as line stroking, character drawing, and image blitting.

Handling Messages in a View

When the user acts, system messages that report the resulting events are sent to the
BWindow object, which determines which BView elicited the user action and should
respond to it. For example, a BView that draws typed text can expect to respond to
messages reporting the user's keystrokes. A BView that draws a button gets to handle
the messages that are generated when the button is clicked. The BView class derives
from BHandler, so BView objects are eligible to handle messages dispatched by the
BWindow.

Introduction • Framework for the User Interface

The View Hierarchy

A window typically contains a number of different views-all arranged in a hierarchy
beneath the top view, a view that's exactly the same size as the content area of the
window. The top view is a companion of the window; it's created by the BWindow
object when the BWindow is constructed. When the window is resized, the top view
is resized to match. Unlike other views, the top view doesn't draw or respond to
messages; it serves merely to connect the window to the views that the application
creates and places in the hierarchy.

As illustrated in the following diagram, the view hierarchy can be represented as a
branching tree structure with the top view at its root. All views in the hierarchy
(except the top view) have one, and only one, parent view. Each view (including the
top view) can have any number of child views.

In this diagram, the top view has four children, the container view has three, and the
border view one.

When a new BView object is created, it isn't attached to a window and it has no
parent. It's added to a window by making it a child of a view already in the view
hierarchy. This is done with the AddChild {) function. A view can be made a child
of the window's top view by calling BWindow's version of AddChild () .

Until it's assigned to a window, a BView can't draw and won't receive reports of
events. BViews know how to produce images, but it takes a window to display and
retain the images they create.

Drawing and Message Handling in the View Hierarchy

The view hierarchy determines what's displayed where on-screen, and also how user
actions are associated with the responsible BView object:

• When the views in a window are called on to draw, parents draw before their
children; children draw in front of their ancestors.

• Mouse events are associated with the view where the cursor is located.

333

334 Chapter 4 • The Interface Kit

Overlapping Siblings

Siblings don't draw in any predefined order. If they overlap, it's indeterminate which
view will draw last-that is, which one will draw in front of the other. Similarly, it's
indeterminate which view will be associated with mouse events in the area the
siblings share.

Therefore, it's strongly recommended that sibling views should be arranged so that
they don't overlap.

Drawing
This section discusses the framework in which BViews draw, beginning with the
placement of view rectangles in the coordinate system. Detailed descriptions of the
functions mentioned here can be found in the BView and BWindow class
descriptions.

View Geometry
As a convenience, each view is assigned a coordinate system of its own. By default,
the coordinate origin-(0.0, 0.0)-is located at the left top corner of the view
rectangle. The x-axis extends to the right and the y-axis extends downward;
coordinate units count screen pixels. (For a detailed discussion of the coordinate
systems assumed by the Interface Kit, see "The Coordinate Space" on page 368.)

When a view is added as a child of another view, it's located within the coordinate
system of its parent. A child is considered part of the contents of the parent view. If
the parent moves, the child moves with it; if the parent view scrolls its contents, the
child view is shifted along with everything else in the view.

Since each view retains its own internal coordinate system no matter who its parent
is, where it's located within the parent, or where the parent is located, a BView's
drawing and message-handling code doesn't need to be concerned about anything
exterior to itself. To do its work, a BView need look no farther than the boundaries of
its own view rectangle.

Frame and Bounds Rectangles

Although a BView doesn't have to look outside its own boundaries, it does have to
know where those boundaries are. It can get this information in two forms:

• Since a view is located within the coordinate system of its parent, the view
rectangle is initially defined in terms of the parent's coordinates. This defining
rectangle for a view is known as its frame rectangle. (See the BView constructor
and the Frame () function.)

Drawing • View Geometry

• When translated from the parent's coordinates to the internal coordinates of the
view itself, the same rectangle is known as the bounds rectangle. (See the
Bounds () function.)

The following illustration shows a child view 180.0 units wide and 135.0 units high.
When viewed from the outside, from the perspective of its parent's coordinate
system, it has a frame rectangle with left, top, right, and bottom coordinates at 90.0,
60.0, 270.0, and 195.0, respectively. But when viewed from the inside, in the view's
own coordinate system, it has a bounds rectangle with coordinates at 0.0, 0.0, 180.0,
and 135.0:

90.0 270.0

(90.0, 60.0)

Parent view

Child view

195.0
(270.0, 195.0)

When a view moves to a new location in its parent, its frame rectangle changes but
not its bounds rectangle. When a view scrolls its contents, its bounds rectangle
changes, but not its frame. The frame rectangle positions the view in the world
outside; the bounds rectangle positions the contents inside the view.

Since a BView does its work in its own coordinate system, it refers to the bounds
rectangle more often than to the frame rectangle.

Nonfractional Coordinates

Because views are areas within windows and windows are displayed on-screen, the
edges of a view must line up on rows and columns of screen pixels. It's easy to
achieve this result, since coordinate units correspond to screen pixels; one unit is the
distance from the center of a pixel to the center of an adjacent pixel. Therefore, all
you must do is define the view rectangle with nonfractional coordinates, as in the
illustration above.

335

336 Chapter 4 • The Interface Kit

Pixel and Coordinate Dimensions

It was mentioned that the child view in the illustration above is 180.0 coordinate units
wide and 135.0 units high. However, this view actually covers 181 pixel columns and
136 pixel rows on-screen.

Two facts conspire to determine this result. First, as stated, coordinate units
correspond to screen pixels. Second, in a departure from other systems, the
coordinate axes don't lie between pixels but right in the middle of them. The x-axis
splits a row of pixels and the y-axis runs down the center of a column of pixels; the
coordinate origin where they meet is at the very center of a pixel. Therefore, a view
rectangle covers one more pixel in each direction than its coordinate dimensions
would indicate.

Imagine, for example, an implausibly tiny frame rectangle like the one in the
following diagram:

-+------!··--·-t------1------1---···t······!····--:--

Frame rectangle

: : ' ' : : 11

Since the pixels on the edges of this 2.0 x 3.0 rectangle are treated as being inside the
rectangle, the view covers a 3 pixel x 4 pixel area.

This fact is important when laying out views and drawing in the bounds rectangle (or
drawing any rectangle, for that matter). However, when discussing view coordinates
and rectangles in general, it's easier and more accurate to speak in terms of
coordinate values, not pixels-and that's the practice in this chapter. However, see
"Mapping Coordinates to Pixels" on page 371 for more on how coordinate values
relate to pixels.

Scrolling

A BView scrolls its contents by shifting coordinate values within the view rectangle
that is, by altering the bounds rectangle. If, for example, the top of a view's bounds
rectangle is at 100.0 and its bottom is at 200.0, scrolling downward 50.0 units would
put the top at 150.0 and the bottom at 250.0. Contents of the view with y-coordinate
values of 150.0 to 200.0, originally displayed in the bottom half of the view, would be

Drawing • View Geometry 337

shifted to the top half. Contents with y-coordinate values from 200.0 to 250.0,
previously unseen, would become visible at the bottom of the view, as shown in the
following illustration:

Bounds rectangle

100.0 100.0

150.0 150.0

200.0 200.0

250.0 250.0

300.0 300.0

Scrolling doesn't move the view-it doesn't alter the frame rectangle-it moves only
what's displayed inside the view. In the illustration above, a "data rectangle" encloses
everything the BView is capable of drawing. For example, if the view is able to display
an entire book, the data rectangle would be large enough to enclose all the lines and
pages of the book laid end to end. However, since a BView can draw only within its
bounds rectangle, everything in the data rectangle with coordinates that fall outside
the bounds rectangle would be invisible. To make unseen data visible, the bounds
rectangle must change the coordinates that it encompasses. Scrolling can be thought
of as sliding the view's bounds rectangle to a new position on its data rectangle, as is
shown in the illustration above. However, as it appears to the user, it's moving the
data rectangle under the bounds rectangle. The view doesn't move; the data does.

The Clipping Region

The Application Server clips the images that a BView produces to the region where
it's permitted to draw.

This region is never any larger than the view's bounds rectangle; a view cannot draw
outside its bounds. Furthermore, since a child is considered part of its parent, a view
can't draw outside the bounds rectangle of its parent either-or, for that matter,
outside the bounds rectangle of any ancestor view. In addition, since child views
draw after, and therefore logically in front of, their parents, a view concedes some of
its territory to its children.

338 Chapter 4 • The Interface Kit

Thus, the visible region of a view is the part of its bounds rectangle that's inside the
bounds rectangles of all its ancestors, minus the frame rectangles of its children. This
is illustrated in the following figure. It shows a hierarchy of three views-X, Y, and Z.
The area filled with a crosshatch pattern is the visible region of view X; it omits the
area occupied by its child, view Y. The visible region of view Y is colored dark gray;
it omits the part of the view that lies outside its parent. View Z has no visible region,
for it lies outside the bounds rectangle of its ancestor, view X:

Visible region ~

The visible region of a view might be further restricted if its window is obscured by
another window or if the window it's in lies partially off-screen. The visible region
includes only those areas that are actually visible to the user. For example, if the three
views in the previous illustration were in a window that was partially blocked by
another, their visible regions might be much smaller, as shown in the next figure:

Another window

Note that in this case, view X has a discontinuous visible region.

Drawing • View Geometry 339

The Application Server clips the drawing that a view does to a region that's never any
larger than the visible region. On occasion, it may be smaller. For the sake of
efficiency, while a view is being automatically updated, the clipping region excludes
portions of the visible region that don't need to be redrawn:

• When a view is scrolled, the Application Server may be able to shift some of its
contents from one portion of the visible region to another. The clipping region
excludes any part of the visible region that the server was able to update on its
own; it includes only the part where the BView must produce images that were
not previously visible.

• If a view is resized larger, the clipping region may include only the new areas that
were added to the visible region. (But see the flags argument for the BView
constructor.)

• If only part of a view is invalidated (by the Invalidate () function), the clipping
region is the intersection of the visible region and the invalid rectangle.

An application can also limit the clipping region for a view by passing a BRegion
object to ConstrainClippingRegion (). The clipping region won't include any
areas that aren't in the region passed. The Application Server calculates the clipping
region as it normally would but intersects it with the specified region.

You can obtain the current clipping region for a view by calling
GetClippingRegion (). (See also the BRegion class description.)

The View Color

Every view has a basic, underlying color. It's the color that fills the view rectangle
before the BView does any drawing. The Application Server paints the view with this
color before any view-specific drawing functions are called. The user may catch a
glimpse of the color when the view is first shown on-screen, when it's resized larger,
and when it's erased in preparation for an update. It will also be seen wherever the
BView fails to draw in the visible region.

In a sense, the view color is the canvas on which the BView draws. It doesn't enter
into any of the object's drawing operations except to provide a background. Although
it's one of the BView's graphics parameters, it's not one that any drawing functions
refer to.

The default view color is white. You can assign a different color to a view by calling
BView's SetViewColor () function. If you set the view color to
B_TRANSPARENT_32_BIT, the Application Server won't erase the view's clipping
region before an update. This is appropriate only if the view erases itself by touching
every pixel in the clipping region when it draws.

340 Chapter 4 • The Interface Kit

The Mechanics of Drawing
Views draw through the following set of primitive functions:

• Drawstring () draws a string of characters. DrawChar () is a variant of this
function; it draws just a single character.

• DrawPicture () executes a set of recorded drawing instructions.

• DrawBi tmap () produces an image from a bitmap.

• CopyBi ts () copies an image from one location to another.

• FillEllipse (), FillRegion (), and other Fill ... () functions fill closed
shapes.

• StrokeLine (), StrokeArc (), and other Stroke ... () functions stroke lines
along defined paths.

• BeginLineArray () , AddLine () , and EndLineArray () draw a set of straight
lines, all of the same width, but possibly in different colors.

The way these functions work depends not only on the values that they're passed
the particular string, bitmap, arc, or ellipse that's to be drawn-but on previously set
values in the BView's graphics environment.

Graphics Environment

Each BView object maintains its own graphics environment for drawing. The view
color, coordinate system, and clipping region are fundamental parts of that
environment, but not the only parts. It also includes a number of parameters that can
be set and reset at will to affect the next image drawn. These parameters are:

• Font attributes that determine the appearance of text the BView draws. (See
SetFont () and the BFont class.)

• Two pen parameters-a location and a size. The pen location determines where
the next drawing will occur, and the pen size determines the thickness of stroked
lines. (See MovePenBy () and SetPenSize () .)

• Two current colors-a high color and a low color-that can be used either alone
or in combination to form a pattern or halftone. The high color is used for most
drawing. The low color is sometimes set to the underlying view color so that it can
be used to erase other drawing or, because it matches the view background, make
it appear that drawing has not touched certain pixels.

(The high and low colors roughly match what other systems call the fore and
back, or foreground and background, colors. However, neither color truly
represents the color of the foreground or background. The terminology high and
low is meant to keep the sense of two opposing colors and to match how they're

Drawing • The Mechanics of Drawing 341

defined in a pattern. A pattern bit is turned on for the high color and turned off for
the low color. See the SetHighColor () and SetLowColor () functions in the
BView class description and the "Patterns" section on page 343.)

• A drawing mode that determines how the next image is to be rendered. (See
"Drawing Modes" on page 345 and the SetDrawingMode () function.)

By default, a BView's graphics parameters are set to the following values:

Font

Pen position

Pen size

High color

Low color

Drawing mode

View color

Clipping region

Coordinate system

The system plain font (be_plain_font)

(0.0, 0.0)

1.0 coordinate units

Black (red, green, and blue components all equal to 0)

White (red, green, and blue components all equal to 255)

Copy mode (B_OP _COPY)

White (red, green, and blue components all equal to 255)

The visible region of the view

Origin at the left top corner of the bounds rectangle

However, as "Views and the Server" on page 349 explains, these values have
meaning only when the BView is assigned to a window.

The Pen

The pen is a fiction that encompasses two properties of a view's graphics
environment: the current drawing location and the thickness of stroked lines.

The pen location determines where the next image will be drawn-but only if
another location isn't explicitly passed to the drawing function. Some drawing
functions alter the pen location-as if the pen actually moves as it does the
drawing-but usually it's set by calling MovePenBy () or MovePenTo () .

The pen that draws lines (through the various Stroke ... () functions) has a malleable
tip that can be made broader or narrower by calling the SetPenSize () function.
The larger the pen size, the thicker the line that it draws.

The pen size is expressed in coordinate units, which must be translated to a particular
number of pixels for the display device. This is done by scaling the pen size to a
device-specific value and rounding to the closest integer. For example, pen sizes of
2.6 and 3.3 would both translate to 3 pixels on-screen, but to 7 and 10 pixels
respectively on a 300-dpi printer.

The size is never rounded to O; no matter how small the pen may be, the line never
disappears. If the pen size is set to 0.0, the line will be as thin as possible-it will be

342 Chapter 4 • The Interface Kit

drawn using the fewest possible pixels on the display device. (In other words, it will
be rounded to 1 for all devices.)

If the pen size translates to a tip that's broader than 1 pixel, the line is drawn with the
tip centered on the path of the line. Roughly the same number of pixels are colored
on both sides of the path.

A later section, "Picking Pixels to Stroke and Fill" on page 372, illustrates how pens of
different sizes choose the pixels to be colored.

Colors

The high and low colors are specified as rgb_color values-full 32-bit values with
separate red, green, and blue color components, plus an alpha component for
transparency. Although there may sometimes be limitations on the colors that can be
rendered on-screen, there are no restrictions on the colors that can be specified.

Color Spaces

The way colors are specified for a bitmap depends on the color space in which
they're interpreted. The color space determines the depth of the bitmap data (how
many bits of information are stored for each pixel), the interpretation of the data
(whether it represents shades of gray or true colors, whether it's segmented into color
components, what the components are, and so on), and the arrangement of
components within the data (whether big-endian or little-endian). These five basic
color spaces are recognized:

B_MONOCHROME_l_BIT

B_GRAYSCALE_B_BIT

B_COLOR_S_BIT

B_RGB_l6_BIT

B_RGB_32_BIT

One bit of data per pixel, where 1 is black and 0 is white.

Eight bits of data per pixel, where a value of 255 is black and 0 is
white.

Eight bits of data per pixel, interpreted as an index into a list of 256
colors. The list is part of the system color map and is the same for all
applications.

Four components of data per pixel-alpha, red, green, and blue, in
that order-with 5 bits each for red, green, and blue, and 1 bit for
alpha. (This color space is not currently implemented.)

Four components of data per pixel-alpha, red, green, and blue, in
that order-with 8 bits per component. A component value of 255
yields the maximum amount of red, green, or blue, and a value of 0
indicates the absence of that color. (The alpha component is
currently ignored. It will specify the coverage of the color-how
transparent or opaque it is.)

Drawing • The Mechanics of Drawing 343

The components in the B_RGB_32_BIT and B_RGB_16_BIT color spaces are meshed
rather than separated into distinct planes; all four components are specified for the
first pixel before the four components for the second pixel, and so on. The order of
bytes for these two types is little-endian, which means that for B_RGB_32_BIT data,
the component bytes appear in the order alpha, blue, green, and red.

Two counterpart color spaces are defined for big-endian data. B_BIG_RGB_32_BIT is
equivalent to B_RGB_32_BIT and B_BIG_RGB_16_BIT is the same as
B_RGB_16_BIT-except for the order of bytes. The Be operating system retains data
in the little-endian formats; the big-endian color spaces are defined only to label
noncompatible data that the system must convert and to allow drivers to
communicate precise formats to the operating system.

The Screen

The screen can be configured to display colors in either the B_COLOR_8_BIT color
space or the B_RGB_32_BIT color space. When it's in the B_COLOR_8_BIT color
space, specified rgb_colors are displayed as the closest 8-bit color in the color list.
(See the BBitmap and BScreen classes.)

Patterns

Most functions that stroke a line or fill a closed shape don't draw directly in either the
high or the low color. Rather they take a pattern, an arrangement of one or both
colors that's repeated over the entire surface being drawn. A pattern might consist of
just the high color, just the low color, or some combination of the two.

By combining the low color with the high color, patterns can produce dithered colors
that lie somewhere between two hues in the B_COLOR_8_BIT color space. Patterns
also permit drawing with less than the solid high color (for intermittent or broken
lines, for example) and can take advantage of drawing modes that treat the low color
as if it were transparent, as discussed in the next section.

A pattern is defined as an 8-pixel by 8-pixel square. The pattern type is 8 bytes
long, with 1 byte per row and 1 bit per pixel. Rows are specified from top to bottom
and pixels from left to right. Bits marked 1 designate the high color; those marked 0
designate the low color. For example, a pattern of wide diagonal stripes could be
defined as follows:

pattern stripes= { Oxc7, Ox8f, Oxlf, Ox3e,
Ox7c, Oxf8, Oxfl, Oxe3 };

Patterns repeat themselves across the screen, like tiles laid side by side. The pattern
defined above looks like the following figure.

344 Chapter 4 • The Interface Kit

The dotted lines in this illustration show the separation of the screen into pixels. The
thicker black line outlines one 8 x 8 square that the pattern defines.

The outline of the shape being filled or the width of the line being stroked
determines where the pattern is revealed. It's as if the screen was covered with the
pattern just below the surface, and stroking or filling allowed some of it to show
through. For example, stroking a 1-pixel wide horizontal path in the pattern
illustrated above would result in a dotted line, with the dashes (in the high color)
slightly longer than the spaces between (in the low color):

When stroking a line or filling a shape, the pattern serves as the source image for the
current drawing mode, as explained in "Drawing Modes" next. The nature of the
mode determines how the pattern interacts with the destination image, the image
already in place.

The Interface Kit defines three patterns:

B_SOLID_HIGH

B_SOLID_LOW

B_MIXED_COLORS

Consists only of the high color.

Has only the low color.

Mixes the two colors evenly, like the pattern on a checkerboard.

B_SOLID_HIGH is the default pattern for all drawing functions. Applications can
define as many other patterns as they need.

Drawing • The Mechanics of Drawing 345

Drawing Modes

When a BView draws, it in effect transfers an image to a target location somewhere in
the view rectangle. The drawing mode determines how the image being transferred
interacts with the image already in place at that location. The image being transferred
is known as the source image-, it might be a bitmap or a pattern of some kind. The
image already in place is known as the destination image.

In the simplest and most straightforward kind of drawing, the source image is simply
painted over the destination; the source replaces the destination. However, there are
other possibilities. There are ten different drawing modes-ten distinct ways of
combining the source and destination images. The modes are designated by
drawing_mode constants that can be passed to SetDrawingMode () :

B_OP_COPY

B_OP_OVER

B_OP_ERASE

B_OP_INVERT

B_OP_SELECT

B_OP_ADD

B_OP_SUBTRACT

B_OP_BLEND

B_OP_MIN

B_OP_MAX

B_OP _COPY is the default mode and the simplest. It transfers the source image to the
destination, replacing whatever was there before. The destination is ignored.

In the other modes, however, some of the destination might be preserved, or the
source and destination might be combined to form a result that's different from either
of them. For these modes, it's convenient to think of the source image as an image
that exists somewhere independent of the destination location, even though it's not
actually visible. It's the image that would be rendered at the destination in
B_OP _COPY mode.

Bitmaps and Patterns

The modes work for all BView drawing functions-including those that stroke lines
and fill shapes, those that draw characters, and those that image bitmaps. The way
they work depends foremost on the nature of the source image-whether it's a
pattern or a bitmap. For the Fill ... () and Stroke ... () functions, the source image is
a pattern that has the same shape as the area being filled or the area the pen touches
as it strokes a line. For DrawBi tmap () , the source image is a rectangular bitmap.

In a sense, a pattern is simply a bitmap that's one bit deep. It's a bitmap consisting of
two colors, one which maps to the current high color and another that maps to the

346 Chapter 4 • The Interface Kit

current low color. As we shall see later, a B_MONOCHROME_l_BIT bitmap acts just like
a pattern. However, patterns and bitmaps generally behave differently:

• Only a source pattern has designated high and low colors. Even if a source bitmap
has colors that match the current high and low colors, they're not handled like the
colors in a pattern; they're treated just like any other color in the bitmap.

• On the other hand, only a source bitmap can have transparent pixels. In the
B_COLOR_8_BIT color space, a pixel is made transparent by assigning it the
B_TRANSPARENT_8_BIT value. In the B_RGB_32_BIT color space, a pixel
assigned the B_TRANSPARENT_32_BIT value is considered transparent. These
values have meaning only for source bitmaps, not for source patterns. If the
current high or low color in a pattern happens to have a transparent value, it's still
treated as the high or low color, not like transparency in a bitmap.

Drawing Modes and Color Spaces

The way the drawing modes work also depends on the color space of the source
image and the color space of the destination. The following discussion concentrates
on drawing where the source and destination both contain colors. This is the most
common case, and also the one that's most general.

The source and destination images can have different color spaces. For example, a
source bitmap might be defined in the B_COLOR_8_BIT space while the destination
is displayed in the full color B_RGB_32_BIT color space. The drawing operation
merely combines the colors in the two images in some way. It doesn't transfer the
color space of the source image to the destination. The image that results from the
drawing operation will always be in the color space of the destination image.

Mode Definitions

When applied to colors, the ten drawing modes fall naturally into four groups:

• The B_OP _COPY mode, which copies the source image to the destination .

• The B_OP_OVER, B_OP_ERASE, B_OP_INVERT, and B_OP_SELECT modes,
which-despite their differences-all treat the low color in a pattern as if it were
transparent.

• The B_OP_ADD, B_OP_SUBTRACT, and B_OP_BLEND modes, which combine
colors in the source and destination images.

• The B_OP _MIN and B_OP _MAX modes, which choose between the source and
destination colors.

The following paragraphs describe each of these groups in turn.

Copy mode. In B_OP _COPY mode, the source image replaces the destination. This is
the default drawing mode and the one most commonly used. Because this mode

Drawing • The Mechanics of Drawing

doesn't have to test for particular color values in the source image, look at the colors
in the destination, or compute colors in the result, it's also the fastest of the modes.

347

If the source image contains transparent pixels, their transparency will be retained in
the result; the transparent value is copied just like any other color. However, the
appearance of a transparent pixel when shown on-screen is indeterminate. If a source
image has transparent portions, it's best to transfer it to the screen in B_OP_OVER or
another mode. In all modes other than B_OP_COPY, a transparent pixel in a source
bitmap preserves the color of the corresponding destination pixel.

Transparency modes. Four drawing modes-specifically, B_OP _OVER, B_OP _ERASE,
B_OP_INVERT, and B_OP_SELECT-are designed to make use of transparency in the
source image; they're able to preserve some of the destination image. In these modes
(and only these modes) the low color in a source pattern acts just like transparency in
a source bitmap.

Each of these modes has a different effect on the destination image-but only in
those places where the source image is not transparent. One of the modes,
B_OP _OVER, transfers some of the source image to the destination. The other three
modes play with the destination in some way-erase it, invert it, or select colors in
it-without regard to the source image. For these modes, the only thing that matters
about the source image is where it's transparent and where it's not. Each of the four
modes is described below:

• The B_OP _OVER mode places the source image "over" the destination; the source
provides the foreground and the destination the background. In this mode, the
source image replaces the destination image (just as in the B_OP _COPY mode)
except where a source bitmap has transparent pixels and a source pattern has the
low color. Transparency in a bitmap and the low color in a pattern retain the
destination image in the result.

By masking out the unwanted parts of a rectangular bitmap with transparent
pixels, this mode can place an irregularly shaped source image in front of a
background image. Transparency in the source foreground lets the destination
background show through. The versatility of B_OP _OVER makes it the second
most commonly used mode, after B_OP_COPY.

• The B_OP _ERASE mode doesn't draw the source image at all. Instead, it erases the
destination image. Like B_OP_OVER, it preserves the destination image wherever a
source bitmap is transparent or a source pattern has the low color. But everywhere
else-where the source bitmap isn't transparent and the source pattern has the
high color-it removes the destination image, replacing it with the low color.

Although this mode can be used for selective erasing, it's simpler to erase by filling
an area with the B_SOLID_LOW pattern in B_OP _COPY mode.

348 Chapter 4 • The Interface Kit

• The B_OP_INVERT mode, like B_OP_ERASE, doesn't draw the source image.
Instead, it inverts the colors in the destination image. As in the case of the
B_OP _OVER and B_OP _ERASE modes, where a source bitmap is transparent or a
source pattern has the low color, the destination image remains unchanged in the
result. Everywhere else, the color of the destination image is inverted.

The inversion of an rgb_color is the complement of its color components. For
example, the inversion of a red value of 58 would be 197 (255-58).

• The B_OP _SELECT mode also doesn't draw the source image. It replaces the high
color in the destination image with the low color and the low color with the high
color. As for the other modes in this group, where a source bitmap is transparent
or a source pattern has the low color, the destination image remains unchanged in
the result. Everywhere else, the high and low colors are switched.

This is similar to the B_OP _INVERT mode, except that B_OP _SELECT affects at
most only two colors in the destination image. The destination is preserved not
only where the source is transparent, but also where its colors don't match the
current high and low colors.

These four modes also work for monochrome images. If the source image is
monochrome, the distinction between source bitmaps and source patterns breaks
down. Two rules apply:

• If the source image is a monochrome bitmap, it acts just like a pattern. A value of
1 in the bitmap designates the current high color, and a value of 0 designates the
current low color. Thus, 0, rather than B_TRANSPARENT_32_BIT or
B_TRANSPARENT_B_BIT, becomes the transparent value.

• If the source and destination are both monochrome, the high color is necessarily
black (1), and the low color is necessarily white (O)-but otherwise the drawing
modes work as described. With the possible colors this severely restricted, the
three modes are reduced to boolean operations: B_OP _OVER is the same as a
logical OR, B_OP _INVERT and B_OP _SELECT are the same as logical exclusive OR,

and B_OP _ERASE is the same as an inversion of logical AND.

Blending modes. Three drawing modes-B_OP_ADD, B_OP_SUBTRACT, and
B_OP _BLEND---combine the source and destination images, pixel by pixel, and color
component by color component. As in most of the other modes, transparency in a
source bitmap preserves the destination image in the result. Elsewhere, the result is a
combination of the source and destination. The high and low colors of a source
pattern aren't treated in any special way; they're handled just like other colors.

• B_OP _ADD adds each component of the source color to the corresponding
component of the destination color, with a component value of 255 as the limit.
Colors become brighter, closer to white.

Drawing • Views and the Server

By adding a uniform gray to each pixel in the destination, for example, the whole
destination image can be brightened by a constant amount.

• B_OP _SUBTRACT subtracts each component of the source color from the
corresponding component of the destination color, with a component value of 0
as the limit. Colors become darker, closer to black.

For example, by subtracting a uniform amount from the red component of each
pixel in the destination, the whole image can be made less red.

• B_OP _BLEND averages each component of the source and destination colors (adds
the source and destination components and divides by 2). The two images are
merged into one.

349

These modes work only for color images, not for monochrome ones. If the source or
destination is specified in the B_COLOR_8_BIT color space, the color will be
expanded to a full B_RGB_32_BIT value to compute the result; the result is then
contracted to the closest color in the B_COLOR_8_BIT color space.

Selection modes. Two drawing modes-B_OP _MAX and B_OP _MIN-compare each
pixel in the source image to the corresponding pixel in the destination image and
select one to keep in the result. If the source pixel is transparent, both modes select
the destination pixel. Otherwise, B_OP _MIN selects the darker of the two colors and
B_OP _MAX selects the brighter of the two. If the source image is a uniform shade of
gray, for example, B_OP _MAX would substitute that shade for every pixel in the
destination image that was darker than the gray.

Like the blending modes, B_OP _MIN and B_OP _MAX work only for color images.

Views and the Server
Windows lead a dual life-as on-screen entities provided by the Application Server
and as BWindow objects in the application. BViews have a similar dual existence
each BView object has a shadow counterpart in the server. The server knows the
view's location, its place in the window's hierarchy, its visible area, and the current
state of its graphics parameters. Because it has this information, the server can more
efficiently associate a user action with a particular view and interpret the BView's
drawing instructions.

BWindows become known to the Application Server when they're constructed;
creating a BWindow object causes the server to produce the window that the user
will eventually see on-screen. A BView, on the other hand, has no effect on the
server when it's constructed. It becomes known to the server only when it's attached
to a BWindow. The server must look through the application's windows to see what
views it has.

350 Chapter 4 • The Interface Kit

A BView that's not attached to a window therefore lacks a counterpart in the server.
This restricts what some functions can do. Three groups of functions are affected:

• Drawing functions-DrawBi tmap (), FillRect (), strokeLine (), and so on
don't work for unattached views. A BView can't draw unless it's in a window.

• The scrolling functions-Scroll To () and ScrollBy ()-require the BView to be
in a window. Manipulations of a view's coordinate system are carried out in its
server counterpart.

• Functions that indirectly depend on a BView's graphics parameters-such as
GetMouse () , which reports the cursor location in the BView's coordinates-also
require the BView to belong to a window. These functions need information that
an unattached BView can't provide.

However, the functions that set and return graphics parameters-such as SetFont () ,
SetDrawingMode (), PenLocation (), and SetHighColor ()-are not restricted. A
view's graphic state is kept within the server (where it's needed to carry out drawing
instructions), but also cached by the BView. Therefore, it's possible to assign a value
to a graphics parameter before the server knows about the view. The value is simply
cached until the view becomes part of a window's view hierarchy; the BView then
hands it to the server. The server and the client-side cache are always kept in synch.

Attaching to a Window

Although you can set a BView's graphics parameters before it belongs to a window
and has a counterpart in the Application Server, some of its initialization may need to
wait until the BView receives an At tachedToWindow () notification informing it that
it has been added to a window's view hierarchy. For example, if a view acts like a
chameleon and adapts itself to the background color of its parent, something that's
quiet common for objects defined in the Interface Kit, it can only set the view color in
AttachedToWindow ():

void MyView: :AttachedToWindow(void)
{

if (Parent ())
SetViewColor(Parent()->ViewColor());

AttachedToWindow() is called for each view that's added to a window, beginning
with the root view being attached, followed by each of its children, and so on down
the hierarchy. After all views have been notified with an AttachedToWindow()
function call, they each get an Al lAt tached () notification, but in the reverse order.
A parent view that must adjust itself to calculations made by a child view when it's
attached to a window can wait until AllAttached() to do the work.

Drawing • Views and the Server 351

These two function calls are matched by another pair-DetachedFromWindow ()
and AllDetached ()-which notify BViews that they're about to be removed from
the window.

Preparing to Draw

A BView doesn't have to draw anything within its frame rectangle; it can just be a
container for other BViews that do draw there. However, most views that you
implement will draw, which means that they must do two things:

• Implement a Draw () function. This function is called upon to present the view
on-screen (or, when printing, on a page). It's implemented using the primitive
drawing functions listed above.

• Set the B_WILL_DRAW flag. This flag informs the Application Server that it cannot
overlook the view when updating the window. The update mechanism is
discussed next.

The B_WILL_DRAW flag is set on construction. For example:

MyView *view = new MyView(frameRect, "my view", B_FOLLOW_ALL_SIDES,

B_WILL_DRAW I B_NAVIGIBLE);

This flag must also be set if the BView's background color is anything but whitv (< >r
transparent), even if it's just a container and has no drawing functions of its own.
Drawing a background other than white is a view-specific drawing operation.

The Update Mechanism

The Application Server sends a message to a BWindow whenever any of the views
within the window need to be updated. The BWindow then calls the Draw ()
function of each out-of-date BView so that it can redraw the contents of its on-screen
display.

Update messages can arrive at any time. A BWindow receives one whenever:

• The window is first placed on-screen, or is shown again after having been hidden.

• Any part of the window becomes visible after being obscured.

• The views in the window are rearranged-for example, if a view is resized or a
child is removed from the hierarchy.

• Something happens to alter what a particular view displays. For example, if the
contents of a view are scrolled, the BView must draw any new images that
scrolling makes visible. If one of its children moves, it must fill in the area the
child view vacated.

• The application forces an update by "invalidating" a view, or a portion of a view.

352 Chapter 4 • The Interface Kit

Update messages take precedence over other kinds of messages. To keep the on
screen display as closely synchronized with event handling as possible, the window
acts on update messages as soon as they arrive. They don't need to wait their turn in
the message queue.

Update messages do their work quietly and behind the scenes. You won't find them
in the BWindow's message queue, they aren't handled by BWindow's
DispatchMessage () function, and they aren't returned by BLooper's
CurrentMessage().

Forcing an Update

When a user action or a BView function alters a view in a window-for example,
when a view is resized or its contents are scrolled-the Application Server knows
about it. It makes sure that an update message is sent to the window so the view can
be redrawn.

However, if code that's specific to your application alters a view, you'll need to
inform the server that the view needs updating. This is done by calling the
Invalidate () function. For example, if you write a function that changes the
number of elements a view displays, you might invalidate the view after making the
change, as follows:

void MyView: :SetNumElements(long count)
{

if (numElements == count
return;

numElements = count;
Invalidate();

Invalidate () ensures that the view's Draw () function-which presumably looks at
the new value of the numElements data member-will be called automatically.

At times, the update mechanism may be too slow for your application. Update
messages arrive just like other messages sent to a window thread, including the
interface messages that report events. Although they take precedence over other
messages, update messages must wait their turn. The window thread can respond to
only one message at a time; it will get the update message only after it finishes with
the current one.

Therefore, if your application alters a view and calls Invalidate () while
responding to an interface message, the view won't be updated until the response is
finished and the window thread is free to turn to the next message. Usually, this is
soon enough. But if it's not, if the response to the interface message includes some
time-consuming operations, the application can request an immediate update by
calling BWindow's UpdateifNeeded () function.

Drawing • Views and the Server

Erasing the Clipping Region

Just before sending an update message, the Application Server prepares the clipping
region of each BView that is about to draw by erasing it to the view background
color. Note that only the clipping region is erased, not the entire view, and perhaps
not the entire area where the BView will, in fact, draw.

The server forgoes this step only if the BView's background color is set to the magical
B_TRANSPARENT_3 2_BIT color. See "The View Color" above.

Drawing During an Update

353

While drawing, a BView may set and reset its graphics parameters any number of
times-for example, the pen position and high color might be repeatedly reset so that
whatever is drawn next is in the right place and has the right color. These settings are
temporary. When the update is over, all graphics parameters are reset to their initial
values.

If, for example, Draw () sets the high color to a shade of light blue:

SetHighColor(152, 203, 255);

it doesn't mean that the high color will be blue when Draw () is called next. If this
line of code is executed during an update, light blue would remain the high color
only until the update ends or SetHighColor () is called again, whichever comes
first. When the update ends, the previous graphics state, including the previous high
color, is restored.

Although you can change most graphics parameters during an update-move the pen
around, reset the font, change the high color, and so on-the coordinate system can't
be touched; a view can't be scrolled while it's being updated. If the view's coordinate
system were to change, it would alter the current clipping region and confuse the
update mechanism.

Drawing Outside of an Update

Graphics parameters that are set outside the context of an update are not limited;
they remain in effect until they're explicitly changed. For example, if application code
calls Draw () , perhaps in response to an interface message, the parameter values that
Draw () last sets would persist even after the function returns. They would become
the default values for the view and would be assumed the next time Draw () is called.

Default graphics parameters are typically set as part of initializing the BView once it's
attached to a window-in an At tachedToWindow () function. If you want a Draw ()

function to assume the values set by At tachedToWindow () , it's important to restore
those values after any drawing the BView does that's not the result of an update. For
example, if a BView invokes SetHighColor () while drawing in response to an
interface message, it will need to restore the default high color when done.

354 Chapter 4 • The Interface Kit

If Draw () is called outside of an update, it can't assume that the clipping region will
have been erased to the view color, nor can it assume that default graphics
parameters will be restored when it's finished.

Responding to the User
The BWindow and BView classes together define a structure for responding to user
actions on the keyboard and mouse. These actions generate inteiface messages that
are delivered to BWindow objects. The BWindow distributes responsibility for the
messages it receives to other objects, typically BViews.

Interface Messages
Eighteen interface messages are currently defined. Two of them command the
window to do something in particular:

• A B_ZOOM instruction tells the window to zoom to a larger size-or to return to its
normal size having previously been zoomed larger. The message is typically
caused by the user operating the zoom button in the window's title tab.

• A B_MINIMIZE instruction tells the window to remove itself from the screen so
that only a token is left to represent it-or to restore itself to the screen, having
previously been minimized. This message is typically caused by. the user double
clicking the window tab (or invoking the token).

In the current incarnation of the Be user interface, the window token is a menu
item under the application name in the track bar. Applications don't have access
to the item, which is partially dimmed when the window is minimized.

All other interface messages report events--something that happened, rather than
something that the application must do. In most cases, the message merely reports
what the user did on the keyboard or mouse. However, in some cases, the event may
reflect the way the Application Server interpreted or handled a user action. The server
might respond directly to the user and pass along a message that indicates what it
did-moved a window or changed a value, for example. In a few cases, the message
may even reflect what the application thinks the user intended-that is, an
application might interpret one or more generic user actions as a more specific event.

The following five messages report atomic user actions on the keyboard and mouse:

• A B_KEY_DOWN message reports character input from the keyboard. It's typically
sent when the user presses a character key. After the initial key-down event (and a
brief threshold), most keys generate repeated B_KEY_DOWN messages-as long as
the user continues to hold the key down and doesn't press another key. Only
character keys produce the event; the modifier keys-Shift, Control, Caps Lock,

Responding to the User • Interface Messages

and so on-may affect the character that's reported for another key, but don't
generate keyboard input on their own.

355

If a key is mapped to a string of characters, one B_KEY_DOWN message is
generated for each character. In effect, one event is mapped to a series of
messages.

Similarly, B_KEY_DOWN messages may also report a string of characters
consolidated by an input method. Input methods are used where the keyboard
can't be directly mapped to a full set of characters, even with the Option modifier
and dead keys, either because the full set is too large or because the choice of
character depends on context (or typically both). For example, input methods
permit users to type languages like Japanese and Chinese from a standard
keyboard. As the user types phonetically, the input method translates the typing to
a set of candidate strings. The user picks a string from the list, which is then
reported in a series of B_KEY_DOWN message, one for each character.

• A B_KEY_UP message reports that the user released the character key; a normal
keystroke produces B_KEY_DOWN and B_KEY_UP messages in quick succession. If
the user holds a repeating key down, it produces a series of B_KEY_DOWN

messages, but only one B_KEY_UP. If a key is mapped to a string of characters, it
produces a B_KEY_DOWN message for each character, followed by a matching
series of B_KEY_UP messages, one for each character.

• A B_MOUSE_DOWN message reports that the user pressed one of the mouse buttons
while the cursor was over the content area of a window. The message is
generated only for the first button the user presses-that is, only if no other mouse
buttons are down at the time.

• A B_MOUSE_UP message reports that the user released the mouse button. The
message is produced only for the last button the user releases-that is, only if no
other mouse button remains down.

• A B_MOUSE_MOVED message captures some small portion of the cursor's
movement into, within, or out of a window. If the cursor isn't over a window, it's
movement isn't reported. (All interface messages are associated with windows.)
Repeated messages are generated as the user moves the mouse.

The five messages above are all directed at particular views-the view where the
cursor is located or where typed input appears. Three others also concern views:

• A B_VIEW_MOVED message is sent when a view is moved within its parent's
coordinate system. This can be a consequence of a programmatic action or of the
parent view being automatically resized. If the parent view is being continuously
resized because the user is resizing the window, repeated view-moved events may
be reported.

356 Chapter 4 • The Interface Kit

• A B_VIEW_RESIZED message is delivered when a view is resized, perhaps
because the program resized it or possibly as an automatic consequence of the
window being resized. If the resizing is continuous, because the user is resizing
the window, repeated view-resized events are reported.

• A B_ VALUE_CHANGED message reports that the Application Server changed a value
associated with an object. Currently, a value-changed event occurs only for
BScrollBar objects. Repeated messages are sent as the user manipulates a scroll
bar.

A few messages concern events that affect the window itself:

• A B_WINDOW_ACTIVATED message reports an activation event. This event occurs
when a window becomes the active window and again when it gives up that
status. The single action of clicking a window to make it active might result in four
messages-one for the window that gains active-window status and another for
the window that relinquishes it, plus B_MOUSE_DOWN and B_MOUSE_UP messages.

• A B_QUIT_REQUESTED message is interpreted by a BWindow object as a request
to close the window. Quit-requested events occur when the user clicks a
window's close button, or when the system perceives some other reason to
request the window to quit.

• A B_WINDOW_MOVED message records the new location of a window that has been
moved, either programmatically or by the user. When the user drags a window,
repeated messages are generated, each one capturing a small portion of the
window's continuous movement. Only one window-moved event is reported
when the program moves a window.

• A B_WINDOW_RESIZED message reports that a window has been resized, again
either programmatically or by the user. The message is generated repeatedly as
the user resizes the window, but only once each time the application resizes it.

A few messages report changes to the on-screen environment for a window:

• A B_SCREEN_CHANGED message reports that the configuration of the screen-the
size of the pixel grid it displays or the color space of the frame buffer-has
changed. Such changes may require the window to take compensatory measures.

• A B_WORKSPACE_ACTIVATED message reports that the active workspace (the one
displayed on-screen) has changed. All windows that live in the previously active
workspace and in the one that has been newly activated are notified of the
change.

• A B_WORKSPACES_CHANGED message notifies the window that the set of
workspaces in which it can be displayed has changed.

Responding to the User • Interface Messages 357

Finally, there's one message that doesn't derive from a user action:

• Periodic B_PULSE messages are posted at regularly spaced intervals, like a steady
heartbeat. Pulses don't involve any communication between the application and
the Server. They're generated as long as no other events are pending, but only if
the application asks for them.

An application doesn't have to wait for a message to discover what the user is doing
on the keyboard and mouse. A global function, get_key_info (), takes a snapshot
of the current state of the keyboard. BView's GetMouse () checks on the state of the
mouse buttons and the location of the cursor.

Hook Functions for Interface Messages

Interface messages are generated and delivered to the application as the user acts.
Keyboard messages are delivered to the current active window; mouse messages are
sent to the window where the cursor is located. The BWindow object handles some
of these messages itself, and passes others to the appropriate BView object.

An interface message is dispatched by calling a virtual function that's matched to the
message. The chart below lists the virtual functions, and the base class where each is
declared.

Message type Hook function Class

B_ZOOM Zoom() BWindow

B_MINIMIZE Minimize () BWindow

B_KEY_DOWN KeyDown() BView

B_KEY_UP KeyUp() BView

B_MOUSE_DOWN MouseDown () BView

B_MOUSE_UP MouseUp () BView

B_MOUSE_MOVED MouseMoved () BView

B_VIEW_MOVED FrameMoved () BView

B_VIEW_RESIZED FrameResized () BView

B_VALUE_CHANGED Val ueChanged () BScrollBar

B_WINDOW_ACTIVATED WindowActivated() BWindow and BView

B_QUIT_REQUESTED Qui tReques ted () BLooper

B_WINDOW_MOVED FrameMoved () BWindow

B_WINDOW_RESIZED FrameResized () BWindow

B_SCREEN~CHANGED ScreenChanged () BWindow

B_WORKSPACE_ACTIVATED WorkspaceActivated() BWindow

B_WORKSPACES_CHANGED WorkspacesChanged() BWindow

B_PULSE Pulse () BView

358 Chapter 4 • The Interface Kit

B_MOUSE_UP messages aren't dispatched by calling a virtual function. A BView can
determine when a mouse button goes up by calling GetMouse () from within its
MouseDown () function. As it reports information about the location of the cursor and
the state of the mouse buttons, GetMouse () removes mouse messages from the
BWindow's message queue, so the same information won't be reported twice.

A BWindow reinterprets a B_QUIT_REQUESTED message, originally defined for the
Blooper class in the Application Kit, to mean a user request to close the window.
However, it doesn't redeclare the Qui tReques ted () hook function that it inherits
from Blooper.

Dispatching

Notice, from the chart above, that the BWindow class declares the functions that
handle instructions and events directed at the window itself. FrameMoved () is called
when the user moves the window, FrameResized () when the user resizes it,
WindowActivated () when it becomes, or ceases to be, the active window, Zoom()
when it should zoom larger, and so on.

Although the BWindow handles some interface messages, the most common ones-
those reporting direct user actions on the keyboard and mouse-are handled by
BViews. When the BWindow receives a keyboard or mouse message, it must decide
which view is responsible.

This decision is relatively easy for messages reporting mouse events. The cursor
points to the affected view:

• When the user presses a mouse button, the BWindow calls the MouseDown ()
virtual function of the view under the cursor.

• When the user moves the mouse, it calls the MouseMoved () function of each
view the cursor travels through.

• When the user releases the mouse, it will, in a future release, call the MouseUp ()
function both of the view that was under the cursor when the mouse button went
down and of the view that is currently under the cursor (if it's a different view in
the same window). (MouseUp () is not currently called.)

However, there's no cursor attached to the keyboard, so the BWindow object must
keep track of the view that's responsible for messages reporting key-down and key
up events. That view is known as the focus view.

The Focus View

The focus view is whatever view happens to be displaying the current selection
(possibly an insertion point) within the window, or whatever check box, button, or
other gadget is currently marked to show that it can be operated from the keyboard.

Responding to the User • Interface Messages 359

The focus view is expected to respond to the user's keyboard actions when the
window is the active window. When the user presses a key on the keyboard, the
BWindow calls the focus view's KeyDown () function. If the focus view displays
editable data, it's also expected to handle user actions that target the current
selection, such as commands to cut, copy, or paste data.

The focus typically doesn't stay on one view all the time; it shifts from view to view.
It may change as the user changes the current selection in the window-from text
field to text field, for example. Or it changes when the user navigates from one view
to another by pressing the Tab key. Only one view in the window can be in focus at
a time.

Views put themselves in focus when they're selected by a user action of some kind.
For example, when a BView's MouseDown () function is called, notifying it that the
user has selected the view, it can grab the focus by calling MakeFocus () . When a
BView makes itself the focus view, the previous focus view is notified that it has lost
that status.

A view should become the focus view if it fits one of the following criteria:

• It has a KeyDown () function to display typed characters.
• It has a KeyDown () function so that the user can operate it from the keyboard.
• It can show the current selection, whether or not it has a KeyDown () function.

A view should highlight the current selection only while it's in focus.

BViews make themselves the focus view (with the MakeFocus (} function), but
BWindows report which view is currently in focus (with the CurrentFocus ()

function).

Kinds of Keyboard Messages

The focus view gets most keyboard messages, but not all. Three kinds of
B_KEY_DOWN messages are conscripted for special tasks:

• If the user holds a Command key down while pressing a character key, the
Command-character combination is interpreted as a keyboard shortcut (typically
for a menu item, but possibly for some other control device). Instead of assigning
the message to a view, the BWindow tries to issue the command associated with
the shortcut.

• If the user holds an Option key down while pressing the Tab key, the Option-Tab
combination is interpreted as an instruction to change the focus view. Instead of
assigning the message to a view, the BWindow forces the change. This is done to
enable keyboard navigation in all circumstances.

• If the window has a default button and the user presses the Enter key, the window
assigns the message to the button, so that it can respond to the key-down event as

360 Chapter 4 • The Interface Kit

it would to a click. A "default button" is simply a button that can be operated from
the Enter key on the keyboard.

In all other cases, the BWindow assigns the message to the current focus view and its
KeyDown () function is called.

B_KEY_UP messages have a simpler distribution: They all are assigned to the view
that's in focus when the user releases the key-even if the previous B_KEY_DOWN

message performed a shortcut, forced keyboard navigation, or was assigned to the
default button.

Moreover, a focus view that gets a B_KEY_DOWN message may not also get the
following B_KEY_UP. If the user changes the focus view after pressing the key but
before releasing it, the two messages will go to different views. The B_KEY_UP

message will go to an entirely different window if the user changes the active window.

Message Protocols

The BMessage objects that convey interface messages typically contain various kinds
of data describing the events they report or clarifying the instructions they give. In
most cases, the message contains more information than is passed to the function that
starts the application's response. For example, a MouseDown () function is passed the
point where the cursor was located when the user pressed the mouse button. But a
B_MOUSE_DOWN BMessage also includes information about when the event occurred,
what modifier keys the user was holding down at the time, which mouse button was
pressed, whether the event counts as a solitary mouse-down, the second event of a
double-dick, or the third of a triple-dick, and so on.

A MouseDown () function can get this information by taking it directly from the
BMessage. The BMessage that the window thread is currently responding to can be
obtained by calling the CurrentMessage () function, which the BWindow inherits
from BLooper. For example, a MouseDown () function might check whether the event
is a single-dick or the second of a double-dick as follows:

void MyView: :MouseDown(BPoint point)
{

int32 num;
Window () ->CurrentMessage () ->Findint32 ("clicks", &num) ;
if (num == 1) {

else if num 2) {

Appendix A, Message Protocols, lists the contents of all interface messages.

Responding to the User • The User Interface 361

The User Interface
Since they provide the content that's displayed within windows, BViews carry most of
the burden of implementing an application's user interface. Often this is simply a
matter of how a BView implements a hook function-how Draw () presents the view
or how MouseDown () handles a double-dick.

However, in some cases the Interface Kit provides a mechanism that derived classes
can participate in, if they coordinate with kit-defined code. Two such mechanisms are
described below-keyboard navigation and the drag-and-drop delivery of messages.

Keyboard Navigation

Keyboard navigation is a mechanism for allowing users to manipulate views
especially buttons, check boxes, and other control devices-from the keyboard. It
gives users the ability to:

• Move the focus of keyboard actions from view to view within a window by
pressing the Tab key.

• Operate the view that's currently in focus by pressing the space bar and Enter key
(to invoke it) or the arrow keys (to move around inside it).

The first ability-navigation between views-is implemented by the Interface Kit. The
second-navigation within a view-is up to individual applications (although the
BControl class helps a little), as are most view-specific aspects of the user interface.
The only trick, and it's not a difficult one, is to make the two kinds of navigation
work together.

To participate in the navigation mechanism, a class derived from BView needs to
coordinate three aspects of its code-setting navigation flags, drawing an indication
that the BView is in focus, and responding to keyboard events. The following
sections discuss each of these elements.

Setting Navigation Flags

The B_NAVIGABLE flag marks a BView as an eligible target for keyboard navigation.
It's one flag in a mask that the BView constructor sets, along with other view
attributes. For example:

MyView: :MyView(BRect frame, const char *name,
uint32 resizingMode, uint32 flags)

: BView(frame, name, resizingMode, flagsjB_NAVIGIBLEjB_WILL_DRAW)

362 Chapter 4 • The Interface Kit

When the user presses the Tab key, the focus moves from one B_NAVIGIBLE target
to the next, working first down and then across the view hierarchy. That is, if a
BView has both B_NAVIGIBLE children and B_NAVIGIBLE siblings, the children will
be targeted before the siblings.

The flag should be removed from the mask when the view is disabled or cannot
become the focus view for any reason, and included again when it's re-enabled. The
mask can be altered with the SetFlags () function:

if (/* cannot become the focus view */

SetFlags(Flags(} & -B_NAVIGIBLE};
else

SetFlags(Flags(} B_NAVIGIBLE} ;

Most navigable BViews are control devices and derive from the BControl class. All
BControls are navigable by default and BControl has a SetEnabled () function that
turns the B_NAVIGIBLE flag on and off, so this work is already done for objects that
inherit from BControl.

You may also want to set the B_NAVIGIBLE_JUMP flag to permit larger jumps
between navigable views. Pressing the Control-Tab combination moves the focus
from one group of views to another, where the groups are (hopefully) obvious to the
user from their arrangement in the window.

B_NAVIGIBLE_JUMP marks positions in the view hierarchy for these larger jumps.
When the user presses Control-Tab, the focus lands on the first B_NAVIGIBLE view at
or after the B_NAVIGIBLE_JUMP marker. If a B_NAVIGABLE_JUMP view is not also
flagged B_NAVIGABLE, the system searches for the next available B_NAVIGABLE view
and jumps to it. The search descends the view hierarchy and moves from one sibling
view to another as each branch of the view hierarchy is exhausted. For example, if a
B_NAVIGABLE_JUMP parent view is not navigable itself but has navigable children,
Control-Tab will land on its first B_NAVIGABLE child.

Unlike B_NAVIGABLE, B_NAVIGABLE.c._JUMP should not be turned on and off.

Drawing the Focus Indicator

When the user navigates to a view, the BView needs to draw some sort of visual
indication that it's the current focus for keyboard actions. Guidelines are forthcoming
on what the indication should be. Currently, Be-defined views underline text (for
example, a button label) when the view is in focus, or draw a rectangular outline of
the view. The underline and outline are drawn in the color returned by
keyboard_navigation_color (). Using this color lends consistency to the user
interface.

A BView learns that the focus has changed when its MakeFocus () hook function is
called. It's up to MakeFocus () to ensure that the focus indicator is drawn or erased,

Responding to the User • The User Interface

depending on the BView's new status. It's usually simplest for MakeFocus () to call
Draw () and have it do the work. For example:

void MyView: :MakeFocus(bool focused)
{

if (focused != IsFocus()) {
BView::MakeFocus(focused);
Draw(Bounds());
Flush();

The BControl class has a MakeFocus () function that calls Draw () (though it doesn't
look exactly like the one above), so if your class derives from BControl, all you need
to do is implement Draw () . Draw () can call IsFocus () to test the BView's current
status. Here's a rough example:

void MyView::Draw(BRect updateRect)
{

rbg_color navigationColor = keyboard_navigation_color();
BRect r =Bounds()
r.InsetBy(2.0, 2.0)

rgb_color c = HighColor();
if (IsFocus()) {

/* draw the indicator */

SetHighColor(navigationColor);
StrokeRect(r);
SetHighColor(c);

else {
/* erase the indicator */
SetHighColor(ViewColor());
StrokeRect(r);
SetHighColor(c);

This example is diagrammatic; it may not show an appropriate way for the BViews in
your application to draw. (Note that when MakeFocus () called IsFocus () , it
returned the BView's previous status, but when Draw () called it, it returned the
updated status.)

Handling Keyboard Actions

Finally, your BView may need to override KeyDown () to handle the keystrokes that
are used to operate the view (for view-internal navigation). Always incorporate the
inherited version of KeyDown () so that it can take care of navigation between views.
For example:

363

364

void MyView::KeyDown(const char *bytes, int32 numBytes}
{

switch (bytes[O] } {
case B_ENTER:
case B_SPACE:

/* take action */
break;

case B_UP_ARROW:
case B_DOWN_ARROW:
case B_RIGHT_ARROW:
case B_LEFT_ARROW:

/*move within the view*/
break;

default:
BView: :KeyDown(bytes, numBytes};
break;

Chapter 4 • The Interface Kit

Again, the BControl class implements a KeyDown () function that invokes the control
device when the user presses the space bar or Enter key. If your class derives from
BControl and it doesn't have to do any other view-internal navigation, the BControl
function m;.iy be adequate for your needs.

Drag and Drop

The BView class supports a drag-and-drop user interface. The user can transfer a
parcel of information from one place to another by dragging an image from a source
view and dropping it on a destination view-perhaps a view in a different window in
a different application.

A source BView initiates dragging by calling DragMessage () from within its
MouseDown () function. The BView bundles all information relevant to the dragging
session into a BMessage object and passes it to DragMessage (). It also passes an
image or a rectangle to represent the data package on-screen. For example:

void MyView: :MouseDown(BPoint point}
{

if (aRect.Contains(point} } {
BMessage message(SOME_WORDS_OF_ENCOURAGEMENT};
message. AddString ("words", theEncouragingWords} ;
DragMessage(&message, aRect};

The Application Server then takes charge of the BMessage object and animates the
image as the user drags it on-screen. As the image moves across the screen, the views
it passes over are informed with MouseMoved () function calls. These notifications
give views a chance to show the user whether or not they're willing to accept the

Responding to the User • Character Encoding 365

message being dragged. When the user releases the mouse button, dropping the
dragged message, the message is delivered to the BWindow and targeted to the
destination BView.

A BView is notified that a message has arrived by a MessageRecei ved () function
call. This is the same function that announces the arrival of other messages. By calling
wasDropped () , you can ask the message whether it was dropped on the view or
delivered in some other way. If it was dropped, you can find out where by calling
DropPoint (). For example:

void Anotherview: :MessageReceived(BMessage *message)
{

switch (Message->what) {

case SOME_WORDS_OF_ENCOURAGEMENT:
{

char *words;
if (message->FindString ("words", &words) ! = B_OK

return;
if (message->WasDropped()) {

BPoint where= DropPoint();
ConvertFromScreen(&where);
PleaseinsertTheseWords(words, where);

break;

default:
BView::MessageReceived(message);

Aside from creating a BMessage object and passing it to DragMessage () , or
implementing MouseMoved () and MessageRecei ved () functions to handle any
messages that come its way, there's nothing an application needs to do to support a
drag-and-drop user interface. The bulk of the work is done by the Application Server
and Interface Kit.

Character Encoding
The BeOS encodes characters using the UTF-8 transformation of Unicode character
values. Unicode is a standard encoding scheme for all the major scripts of the
world-including, among others, extended Latin, Cyrillic, Greek, Devanagiri, Telugu,
Hebrew, Arabic, Tibetan, and the various character sets used by Chinese, Japanese,
and Korean. It assigns a unique and unambiguous 16-bit value to each character,
making it possible for characters from various languages to co-exist in the same
document. Unicode makes it simpler to write language-aware software (though it
doesn't solve all the problems). It also makes a wide variety of symbols available to
an application, even if it's not concerned with covering more than one language.

366 Chapter 4 • The Interface Kit

Unicode's one disadvantage is that all characters have a width of 16 bits. Although 16
bits are necessary for a universal encoding system and a fixed width for all characters
is important for the standard, there are many contexts in which byte-sized characters
would be easier to work with and take up less memory (besides being more familiar
and backwards compatible with existing code). UTF-8 is designed to address this
problem.

UTF-8
UTF-8 stands for "UCS Transformation Format, 8-bit form" (and UCS stands for
"Universal Multiple-Octet Character Set," another name for Unicode). UTF-8
transforms 16-bit Unicode values into a variable number of 8-bit units. It takes
advantage of the fact that for values equal to or less than Ox007f, the Unicode
character set matches the 7-bit ASCII character set-in other words, Unicode adopts
the ASCII standard, but encodes each character in 16 bits. UTF-8 strips ASCII values
back to 8 bits and uses two or three bytes to encode Unicode values over Ox007f.

The high bit of each UTF-8 byte indicates the role it plays in the encoding:

• If the high bit is 0, the byte stands alone and encodes an ASCII value.
• If the high bit is 1, the byte is part of a multiple-byte character representation.

In addition, the first byte of a multibyte character indicates how many bytes are in the
encoding: The number of high bits that are set to 1 (before a bit is 0) is the number of
bytes it takes to represent the character. Therefore, the first byte of a multibyte
character will always have at least two high bits set. The other bytes in a multibyte
encoding have just one high bit set.

To illustrate, a character encoded in one UTF-8 byte will look like this (where a "1" or
a "O" indicates a control bit specified by the standard and an "x" is a bit that
contributes to the character value):

Oxxxxxxx

A character encoded in two bytes has the following arrangement of bits:

110xxxxx 10xxxxxx

And a character encoded in three bytes is laid out as follows:

1110xxxx 10xxxxxx 10xxxxxx

Note that any 16-bit value can be encoded in three UTF-8 bytes. However, UTF-8
discards leading zeroes and always uses the fewest possible number of bytes-so it
can encode Unicode values less than Ox0080 in a single byte and values less than
Ox0800 in two bytes.

Responding to the User • Character Encoding

In addition to the codings illustrated above, UTF-8 takes four bytes to translate a
Unicode surrogate pair-two conjoined 16-bit values that together encode a character
that's not part of the standard. Surrogates are extremely rare.

ASCII Compatibility

The UTF-8 encoding scheme has several advantages:

• The single byte that encodes an ASCII value can't be confused with a byte that's
part of a multiple-byte encoding. You can test a UTF-8 byte for an ASCII value
without considering surrounding bytes; if there's a match, you can be sure the
byte is the ASCII character. UTF-8 is fully compatible with ASCII.

• The first (or only) byte of a character can't be confused with a byte inside a
multibyte sequence. It's simple to find where a character begins. For example, this
macro will do it:

#define BEGINS_CHAR(byte) ((byte & OxcO) != Ox80)

367

• The string functions in the standard C library-for example, strcat () and
strlen ()-can operate on a UTF-8 string.

However, it's important to remember that strlen () measures the string in bytes,
not characters. Some Interface Kit functions, like GetEscapements () in the
BFont class, ask for a character count; strlen () can't provide the answer.
Instead, you need to do something like this to count the characters in a string:

int32 count = O;
while (*p != '\0') {

if (BEGINS_CHAR(*p)
count++;

p++;

• UTF-8 preserves the numerical ordering of Unicode character values. String
comparison functions-such as s trcasecmp ()-will put UTF-8 strings in the
correct order.

However, you should be careful when using the string comparison functions to
order a set of UTF-8 strings. Unicode tries for a universal encoding and orders
characters in a way that's generically correct, but it may not be correct for specific
characters in specific languages. (Because it follows ASCII, UTF-8 is correct for
English.)

• For European languages, UTF-8 generally yields more compact data repre
sentations than would Unicode. Most of the characters in a string can be encoded
in a single byte. In many other cases, UTF-8 is no less compact than Unicode.

368 Chapter 4 • The Interface Kit

UTF-8 and the BeOS

The BeOS assumes UTF-8 encoding in most cases. For example, a B_KEY_DOWN

message reports the character that's mapped to the key the user pressed as a UTF-8
value. That value is then passed as a string to KeyDown () along with the byte count:

virtual void KeyDown (const char *bytes, int32 numBytes) ;

You can expect the bytes string to always contain at least one byte. And, of course,
you can test it for an ASCII value without caring whether it's UTF-8:

if (bytes[O] == B_TAB)

Similarly, objects that display text in the user interface-such as window titles and
button labels-expect to be passed UTF-8 encoded strings, and hand you a UTF-8
string if you ask for the title or label. These objects display text using a system font
either the system plain font (be_plain_font) or the bold font (be_bold_font).

The BFont class allows other character encodings, which you may· need to use in
limited circumstances from time to time, but the system fonts are constrained to UTF-
8 (B_UNICODE_UTF8 encoding). The FontPanel preferences application doesn't
permit users to change the encoding of a system font.

Unicode and UTF-8 are documented in The Unicode Standard, Version 2.0, published
by Addison-Wesley. See that book for complete information on Unicode and for a
description of how UTF-8 encodes surrogate pairs.

The Coordinate Space
To locate screens, windows, and views, draw in them, and report where the cursor is
positioned, it's necessary to have some conventional way of talking about the display
surface. The same conventions are used whether the display device is a monitor that
shows images on a screen or a printer that puts them on a page.

Two-Dimensional Coordinates
In Be software, the display surface is described by a standard two-dimensional
coordinate system where the y-axis extends downward and the x-axis extends to the
right, as shown in the next illustration.

The Coordinate Space • Two-Dimensional Coordinates

• (-10.0, l 0.0)

y-axis

(0.0, 0.0)

• (20.0, -5.0)

• (25.0, 15.0)

• (27.5, 5.0)

•
(50.0, 22.5)

369

x-axis

y-coordinate values are greater towards the bottom of the display and smaller towards
the top, x-coordinate values are greater to the right and smaller to the left.

The axes define a continuous coordinate space where distances are measured by
floating-point values of the type float. All quantities in this space-including widths
and heights, x- and y-coordinates, font sizes, angles, and the size of the pen-are
floating-point numbers.

Floating-point coordinates permit precisely stated measurements that can take
advantage of display devices with higher resolutions than the screen. For example, a
vertical line 0.4 units wide would be displayed using a single column of pixels on
screen, the same as a line 1.4 units wide. However, a 300 dpi printer would use two
columns of pixels to print the 0.4-unit line and six to print the 1.4-unit line.

A coordinate unit is 1/72 of an inch, roughly equal to a typographical point.
However, all screens are considered to have a resolution of 72 pixels per inch
(regardless of the actual dimension), so coordinate units count screen pixels. One
unit is the distance between the centers of adjacent pixels on-screen.

Coordinate Systems

Specific coordinate systems are associated with the screen, with windows, and with
the views inside windows. They differ only in where the two axes are located:

• The global or screen coordinate system has its origin, (0.0, 0.0), at the left top
corner of the main screen. It's used for positioning windows on-screen, for
arranging multiple screens connected to the same machine, and for comparing
coordinate values that weren't originally stated in a common coordinate system.
(Multiple screens are not currently supported.)

370 Chapter 4 • The Interface Kit

• A window coordinate system has its origin at the left top corner of the content area
of a window. It's used principally for positioning views within the window. Each
window has its own coordinate system so that locations within the window can be
specified without regard to where the window happens to be on-screen.

• A view coordinate system has its default origin at the left top corner of the view
rectangle. However, scrolling can shift view coordinates and move the origin.
View-specific coordinates are used for all drawing operations and to report the
cursor location in most system messages.

Coordinate Data Types

The Interface Kit defines a handful of basic classes for locating points and areas
within a coordinate system:

• A BPoint object is the simplest way to specify a coordinate location. Each object
stores two values-an x-coordinate and a y-coordinate-that together locate a
specific point, (x, y), within a given coordinate system.

• A BRect object represents a rectangle; it's the simplest way to designate an area
within a coordinate system. The BRect class defines a rectangle as a set of four
coordinate values-corresponding to the rectangle's left, top, right, and bottom
edges, as shown in this illustration:

y-axis

x·axis

Top

Leh Right

Bottom

The sides of the rectangle are therefore parallel to the coordinate axes. The left
and right sides delimit the range of x-coordinate values within the rectangle, and
the top and bottom sides delimit the range of y-coordinate values. For example, if
a rectangle's left top corner is at (0.8, 2.7) and its right bottom corner is at
(11.3, 49.5), all points having x-coordinates ranging from 0.8 through 11.3 and
y-coordinates from 2.7 through 49.5 lie inside the rectangle.

The Coordinate Space • Mapping Coordinates to Pixels 371

If the top of a rectangle is the same as its bottom, or its left the same as its right,
the rectangle defines a straight line. If the top and bottom are the same and also
the left and right, it collapses to a single point. Such rectangles are still valid-they
specify real locations within a coordinate system. However, if the top is greater
than the bottom or the left greater than the right, the rectangle is invalid; it has no
meaning.

• A BPolygon object represents a polygon, a closed figure with an arbitrary number
of sides. The polygon is defined as an ordered set of points. It encloses the area
that would be outlined by connecting the points in order, then connecting the first
and last points to close the figure. Each point is therefore a potential vertex of the
polygon.

• A BRegion object defines a set of points. A region can be any shape and even
include discontinuous areas. It's equivalent to a set of rectangles.

Mapping Coordinates to Pixels
The device-independent coordinate space described above must be mapped to the
pixel grid of a particular display device-the screen, a printer, or some other piece of
hardware that's capable of rendering an image. For example, to display a rectangle,
it's necessary to find the pixel columns that correspond to its right and left sides and
the pixel rows that correspond to its top and bottom.

This depends entirely on the resolution of the device. In essence, each device
independent coordinate value must be translated internally to a device-dependent
value-an integer index to a particular column or row of pixels. In the coordinate
space of the device, one unit equals one pixel.

This translation is easy for the screen, since, as mentioned above, there's a one-to-one
correspondence between coordinate units and pixels. It reduces to rounding floating
point coordinates to integers. For other devices, however, the translation means first
scaling the coordinate value to a device-specific value, then rounding. For example,
the point (12.3, 40.8) would translate to (12, 41) on the screen, but to (51, 170) on a
300 dpi printer.

Screen Pixels

To map coordinate locations to device-specific pixels, you need to know only two
things:

• The resolution of the device
• The location of the coordinate axes relative to pixel boundaries

372 Chapter 4 • The Interface Kit

The axes are located in the same place for all devices: The x-axis runs left to right
along the middle of a row of pixels, and the y-axis runs down the middle of a pixel
column. They meet at the very center of a pixel.

Because coordinate units match pixels on the screen, this means that all integral
coordinate values (those without a fractional part) fall midway across a screen pixel.
The following illustration shows where various x-coordinate values fall on the x-axis.
The broken lines represent the division of the screen into a pixel grid:

y-axis

x-axis

-------·-··--------

. ' ---------------------------·-------

As this illustration shows, it's possible to have coordinate values that lie on the
boundary between two pixels. The next section describes how these values are
mapped to one pixel or the other.

Picking Pixels to Stroke and Fill

This section discusses how the various BView Stroke ... () and Fill... () functions
pick specific pixels to color. (Since pixels are small, this is not a topic that you
necessarily need to be concerned about, especially as you begin programming for the
BeOS.)

Pixels are chosen after the pen size and all coordinate values have been translated to
device-specific units. Device-specific values measure distances by counting pixels; 1
unit equals 1 pixel on the device.

A device-specific value can be derived from a coordinate value using a formula that
takes the size of a coordinate unit and the resolution of the device into account. For
example:

device_value = coordinate_value x (dpi I 72)

dpi is the resolution of the device in dots (pixels) per inch, 72 is the number of
coordinate units in an inch, and device_value is rounded to the closest integer.

The Coordinate Space • Mapping Coordinates to Pixels

To describe where lines and shapes fall on the pixel grid, this section mostly talks
about pixel units rather than coordinate units. The accompanying illustrations
magnify the grid so that pixel boundaries are clear. As a consequence, they can show
only very short lines and small shapes. By blowing up the image, they exaggerate the
phenomena they illustrate.

Stroking Thin Lines

The thinnest possible line is drawn when the pen size translates to 1 pixel on the
device. Setting the size to 0.0 coordinate units guarantees a 1-pixel pen on all devices.

373

A 1-pixel pen follows the path of the line it strokes and makes the line exactly 1 pixel
thick at all points. If the line is perfectly horizontal or vertical, it touches just one row
or one column of pixels, as illustrated below. (The grid of broken lines shows the
separation of the display surface into pixels.)

Only pixels that the line path actually passes through are colored to display the line.
If a path begins or ends on a pixel boundary, as it does for examples (a) and (b) in
the illustration, the pixels at the boundary aren't colored unless the path crosses into
the pixel. The pen touches the fewest possible number of pixels.

A line path that doesn't enter any pixels, but lies entirely on the boundaries between
pixels, colors the pixel row beneath it or the pixel column to its right, as illustrated by
lines (f) and (g). A path that reduces to a single point lying on the corner of four
pixels, as does (h), colors the pixel at its lower right. (However, currently, it's
indeterminate which column or row of adjacent pixels would be used to display
vertical and horizontal lines like (f) and (g). Point (h) would not be visible.)

1-pixel lines that aren't exactly vertical or horizontal touch just one pixel per row or
one per column. If the line is more vertical than horizontal, only one pixel in each

374 Chapter 4 • The Interface Kit

row is used to color the line. If the line is more horizontal than vertical, only one
pixel in each column is used. Some illustrations of slanted 1-pixel thick lines are
given below:

Although a 1-pixel pen touches only pixels that lie on the path it strokes, it won't
touch every pixel that the path crosses if that would mean making the line thicker
than specified. When the path cuts though two pixels in a column or row, but only
one of those pixels can be colored, the one that contains more of the path (the one
that contains the midpoint of the segment cut by the column or row) is chosen. This
is illustrated in the following close-up, which shows where a mostly vertical line
crosses one row of pixels:

' ' ' ' . ' ' --------------·--------------•---

--------------,-----------·--.---

However, before a choice is made as to which pixel in a row or column to color, the
line path is normalized for the device. For example, if a line is defined by two
endpoints, it's first determined which pixels correspond to those endpoints. The line

The Coordinate Space • Mapping Coordinates to Pixels 375

path is then treated as if it connected the centers of those pixels. This may alter which
pixels get colored, as is illustrated below. In this illustration, the solid black line is the
line path as originally specified and the broken line is its normalized version:

Normalized line

This normalization is nothing more than the natural consequence of the rounding that
occurs when coordinate values are translated to device-specific pixel values.

Stroking Curved Lines

Although all the diagrams above show straight lines, the principles they illustrate
apply equally to curved line paths. A curved path can be treated as if it were made up
of a large number of short straight segments.

Filling and Stroking Rectangles

The following illustration shows how some rectangles, represented by the solid black
line, would be filled with a solid color.

··'·······f······f······1······:---··l·····f······f·····r···-<······r····f······1······1······~·······'·······f······1······1""
T.ii.. ······r····T·p·· ················

------·------ .. ·-----

------·-------'·------

------r-----1------

. ' 'q

------·------ .. ·-----

------:-------:------

------·------·--

------•------·--

______ , ______ J __

------\------;--
------··--·--·--

------·------·--

------;---·--:--

376 Chapter 4 • The Interface Kit

A rectangle includes every pixel that it encloses and every pixel that its sides pass
through. However, as rectangle (q) illustrates, it doesn't include pixels that its sides
merely touch at the boundary.

If the pixel grid in this illustration represents the screen, rectangle (q) would have
left, top, right, and bottom coordinates with fractional values of .5. Rectangle (n), on
the other hand, would have coordinates without any fractional parts. Nonfractional
coordinates lie at the center of screen pixels.

Rectangle (n), in fact, is the normalized version of all four of the illustrated rectangles.
It shows how the sides of the four rectangles would be translated to pixel values.
Note that for a rectangle like (q), with edges that fall on pixel boundaries,
normalization means rounding the left and top sides upward and rounding the right
and bottom sides downward. This follows from the principal that the fewest possible
number of pixels should be colored.

Although the four rectangles above differ in size and shape, when filled they all cover
a 6 x 4 pixel area. You can't predict this area from the dimensions of the rectangle.
Because the coordinate space is continuous and x and y values can be located
anywhere, rectangles with different dimensions might have the same rendered size,
as shown above, and rectangles with the same dimensions might have different
rendered sizes, as shown below:

' ' ' ' ' ' ' ' ' ' ' ' . ' ' ' ' ' '

·-r------r·-----r-··---r·--··r···-·r··----r------r .. -·--i·-----r-----~-----r-----l------r-----r---·--r-----r··-·-r-----r

:r:~:::· . . . :::::r:::::::::::r:~::_ ::::::;::::::;::
------1·---··1··-·--r··---- ------:------1--

! T ! TTTr; I f ; , , ,,+: 1:

If a one-pixel pen strokes a rectangular path, it touches only pixels that would be
included if the rectangle were filled. The next illustration shows the same rectangles
that were presented above, but strokes them rather than fills them.

The Coordinate Space • Mapping Coordinates to Pixels

------J------~------ ---·-·r··---·1··

--i--~~-- . 1~ 1 I
---··-r·----r-·-- -----..-----·r

1:::::, ______ , _____ .,.. ____ , _______ , _____ + _____ ,::::::; ______ r_ ____ , ____ +-----:-----+-----i------+----+:::::::-:::r

Each of the rectangles still covers a 6 x 4 pixel area. Note that even though the path
of rectangle (q') lies entirely on pixel boundaries, pixels below it and to its right are
not touched by the pen. The pen touches only pixels that lie within the rectangle.

If a rectangle collapses to a straight line or to a single point, it no longer contains any
area. Stroking or filling such a rectangle is equivalent to stroking the line path with a
one-pixel pen, as was discussed in the previous section.

Filling and Stroking Polygons

The figure below shows a polygon as it would be stroked by a one-pixel pen and as
it would be filled:

377

378 Chapter 4 • The Interface Kit

The same rules apply when stroking each segment of a polygon as would apply if
that segment were an independent line. Therefore, the pen may not touch every pixel
the segment passes through.

When the polygon is filled, no additional pixels around its border are colored. As is
the case for a rectangle, the displayed shape of filled polygon is identical to the shape
of the polygon when stroked with a one-pixel pen. The pen doesn't touch any pixels
when stroking the polygon that aren't colored when the polygon is filled. Conversely,
filling doesn't color any pixels at the border of the polygon that aren't touched by a
one-pixel pen.

Stroking Thick Lines

A pen that's thicker than one pixel touches the same pixels that a one-pixel pen does,
but it adds extra columns and rows adjacent to the line path. A thick pen tip is, in
effect, a linear brush that's held perpendicular to the line path and kept centered on
the line. The illustration below shows two short lines, each five pixels thick:

:., __
-----~-

-~-- --

: : : : :
' ' .. ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

-:-----:-----[----r---r----c:r::r::r:::t:::r::r::r::r:::t:::r::r:::t::::r:::t:
----~-----r·---;-----r----r----r----r----;----y----r--·-1-----r-

. --- -~ -----:- -- --~ -----:---- -~ ----~ ---- -:-- ---~ --- --:- ----~ -
' ' ' ' . ' ' ' ' ' ' ' . ' ' ' ' '

----~-----;. ____ ; _____ ; _____ ;. ____ ~ _____ ;._
' . ' ' -.-----.----- · ·-----~----r-··t··-·t··-!·-

. ' ' '
' ' ' ' ' ' ' ' -·---- ... -----·----~----- ---------~-------' ' ' ' ' ' ' ' ' ' ' ' ' ' . ' ' ' ' ' '

-·-----'-----•----~-----'-----•-----' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' . ' ' ' ' ' ' ' ' ' ' ' '

1liLliTitt11,:i
The thickness or a vertical or horizontal line can be measured in an exact number of
pixels. When the line is slanted, as it is for (t) above, the stroking algorithm tries to
make the line visually approximate the thickness of a vertical or horizontal line. In
this way, lines retain their shape even when rotated.

When a rectangle is stroked with a thick pen, the comers of the rectangle are filled in,
as shown in the next figure.

BAlert • Overview

' ' ' ' ' ' ' ' ' ' ' ' ' ' ' --:- --- ---r- -----;----- -~------1-- ---- -:- -- ----~ ------t .. ----~----- -1- -----:- --- --t- -- --- l-- --- -1. ---- ---:- -- ----!.- ------r. -- ---- f-- -- -1- -

--,------.: i : ' i ' '

--:-------

--:-------

-+------~------~------~------~------+------~------:------~------~------+------~------:------i-

BAie rt
Derived from:

Declared in:

Library:

Overview

public BWindow

be/interface/ Alert.h

lib be.so

---- ~.- --- -- .:.., -- -- --~. ----- _:. :: :: :: :.::

A BA!ert places a modal window on-screen in front of other windows. The window is
an alert panel that has a message for the user to read and one or more buttons the
user can operate. The message might warn the user of something or convey some
information that the application doesn't want the user to overlook. Typically, it asks a
question that the user must answer. Operating a button chooses a course of action
and dismisses the panel (closes the window).

The alert panel stays on-screen until the user operates one of the buttons. As long as
it's on-screen, other parts of the application's user interface are disabled. However,
the user can continue to move windows around and work in other applications.

To use a BAlert object, all you do is:

• Construct the object.

• Call SetShortcut () if you want the user to be able to operate window buttons
from the keyboard. (The button on the right is automatically made the default
button and can be operated by the Enter key.)

379

380

• Call Go () to put the panel on-screen.

For example:

BAlert *alert;
long result;

alert = new BAlert {"", "Do you want to continue?",
11 Cancel 11 , 11 Continue 11 , NULL,

Chapter 4 • The Interface Kit

B_WIDTH_FROM_WIDEST, B_WARNING_ALERT);
alert->SetShortcut{O, B_ESCAPE);
result = alert->Go{);

Like other windows, the alert panel runs in its own thread. Go () can run it
synchronously or asynchronously. If synchronously, Go () doesn't return until the
user operates a button to dismiss the panel. It returns an index to the button the user
picked. If the user clicked the "Cancel" button in the example above or pressed the
Escape key, the return result would be 0. If the user clicked "Continue", the result
would be 1. Since the BAlert sets up the rightmost button as the default button for the
window, the user could also operate the "Continue" button by pressing the Enter key.

If it runs the panel asynchronously, Go () returns immediately with, of course, no
indication of which button the user will choose. If it's important to take some action
when the user acts, a Binvoker object must be passed to the function:

alert->Go{somelnvoker);

The Binvoker will send its message when the user acts. The index of the button the
user chose is stuffed into the message as an int32 under the name "which".

In either case, when the user dismisses the panel, the window thread is killed, and
the BAlert object is deleted.

Constructor
BAie rt()

BAlert(const char *title, canst char *text,
canst char *firstButton,
canst char *secondButton = NULL,
canst char *thirdButton = NULL,
button_width width= B_WIDTH_AS_USUAL,
alert_type type= B_INFO_ALERT)

BAlert(BMessage *archive)

Creates an alert panel as a modal window. The window displays some text for the
user to read, and can have up to three buttons. There must be at least a firstButton;
the others are optional. The BAlert must also have a title, even though the panel
doesn't have a title tab to display it. The title can be NULL or an empty string.

BAlert • Constructor

The buttons are arranged in a row at the bottom of the panel so that one is always in
the right bottom corner. They're placed from left to right in the order specified to the
constructor. If labels for three buttons are provided, firstButton will be on the left,
secondButton in the middle, and thirdButton on the right. If only two labels are
provided, firstButton will come first and secondButton will be in the right bottom
corner. If there's just one label (jirstButton), it will be at the right bottom location.

By default, the user can operate the rightmost button by pressing the Enter key. If a
"Cancel" button is included, it should be assigned the B_ESCAPE character as a
keyboard shortcut. Other buttons can be assigned other shortcut characters. Use
BAlert's SetShortcut () function to set up the shortcuts, rather than BWindow's
AddShortcut (). Shortcuts added by a BWindow require the user to hold down a
Command key, while those set by a BAlert don't.

381

By default, all the buttons have a standard, minimal width (B_WIDTH_AS_USUAL).

This is adequate for most buttons, but may not be wide enough to accommodate an
especially long label. To adjust the width of each button to the width of its label, set
the width parameter to B_WIDTH_FROM_LABEL. To ensure that the buttons are all the
same width, yet wide enough to display the widest label, set the width parameter to
B_WIDTH_FROM_WIDEST.

For more hands-on manipulation of the buttons, you can get the BButton objects that
the BAlert creates by calling the ButtonAt () function. To get the BTextView object
that displays the text string, you can call Textview ().

There are various kinds of alert panels, depending on the content of the textual
message and the nature of the options presented to the user. The type parameter
should classify the BAlert object as one of the following:

B_EMPTY_ALERT

B_INFO_ALERT

B_IDEA_ALERT

B_WARNING_ALERT

B_STOP_ALERT

Currently, the alert type is used only to select a representative icon that's displayed at
the left top corner of the window. A B_EMPTY_ALERT doesn't have an icon.

After the BAlert is constructed, Go () must be called to place it on-screen. The object
is deleted when the user closes the window; you don't need to write code to delete it.

382

Static Functions

Instantiate()

static BAlert *lnstantiate(BMessage *archive)

Chapter 4 • The Interface Kit

Returns a new BAlert object, allocated by new and created with the version of the
constructor that takes a BMessage archive. However, if the archive message doesn't
contain data for a BAlert object, the return value will be NULL.

See also: BArchi vable: : Instantiate (), instantiate_obj ect (), Archive ()

Member Functions

Archive()

virtual status_t Archive(BMessage *archive, bool deep= true) const

Calls the inherited version of Archive (), then adds the BAlert's type, buttons,
keyboard shortcuts, preferred button width, and the text it displays to the BMessage
archive.

See also: BArchivable: :Archive (), Instantiate () static function

ButtonAt()

BButton *ButtonAt(int32 index) canst

Returns a pointer to the BButton object for the button at index. Indices begin at 0 and
count buttons from left to right. The BButton belongs to the BAlert object and should
not be freed.

See also: TextView ()

FrameResized()

virtual void FrameResized(float width, float heigh~

Overrides the BView function to adjust the layout within the panel when its
dimensions change. This function is called as the panel is being resized; there's no
need to call it or override it in application code.

Go()

int32 Go(void)
status_t Go(Blnvoker *invokef)

BAlert • Member Functions

Sets the modal loop for the BAlert in motion and calls the Show () virtual function to
place the panel on-screen. Go () can operate synchronously or asynchronously:

• If called without an argument, Go () returns only when the modal loop has quit
and the window has been closed. The value it returns is the index of the button
that the user operated to close the window. Buttons are indexed from left to right,
beginning with 0.

• If called with an argument, Go () returns immediately (the return value is
invariably B_OK). The panel remains on-screen until the user closes it. This option
frees the calling thread (usually a main window) to keep working while the panel
is on-screen.

383

This version of Go () is passed a Binvoker object, which the BAlert will use to
send a message when the user operates a button to close the panel. The index of
the button the user chooses is added to the message as a 32-bit value under the
name "which". This is in addition to the "when" field added by the Binvoker.

If you don't need to know what action the user takes, invoker can be NULL.

To put an alert panel on-screen, simply construct a BAlert object, set its keyboard
shortcuts, if any, and call this function. See the example code in the "Overview"
section above.

Before returning, this function deletes the BAlert object, and all the objects it created.

Message Received()

virtual void MessageReceived(BMessage *message)

Closes the window in response to messages posted from the window's buttons.
There's no need for your application to call or override this function.

SetShortcut(), Shortcut()

void SetShortcut(int32 index, char shortcu~

char Shortcut(int32 index) canst

These functions set and return a shortcut character that the user can type to operate
the button at index. Buttons are indexed from left to right beginning with 0. By
default, B_ENTER is the shortcut for the rightmost button.

A "Cancel" button should be assigned the B_ESCAPE character as a shortcut.

The shortcut doesn't require the user to hold down a Command key or other modifier
(except for any modifiers normally required to produce the shortcut character).

The shortcut is valid only while the window is on-screen.

384 Chapter 4 • The Interface Kit

TextView()

BTextView *TextView(void) canst

Returns a pointer to the BTextView object that contains the textual information that's
displayed in the panel. The object is created and the text is set when the BAlert is
constructed. The BTextView object belongs to the BAlert and should not be freed.

BBitmap
Derived from: public BArchivable

Declared in: be/interface/Bitmap.h

Library: lib be.so

Overview
A BBitmap object is a container for an image bitmap; it stores pixel data-data that
describes an image pixel by pixel. The class provides a way of specifying a bitmap
from raw data, and also a way of creating the data from scratch using the Interface Kit
graphics mechanism.

BBitmap functions manage the bitmap data and provide information about it.
However, they don't do anything with the data. Placing the image somewhere so that
it can be seen is the province of BView functions-such as DrawBi tmap () and
DragMessage () -not this class.

Bitmap Data

An image bitmap records the color values of pixels within a rectangular area. The
pixels in the rectangle, as on the screen, are arranged in rows and columns. The data
is specified in rows, beginning with the top row of pixels in the image and working
downward to the bottom row. Each row of data is aligned on a long word boundary
and is read from left to right.

New BBitmap objects are constructed with two pieces of information that prepare
them to store bitmap data-a bounds rectangle and a color space. For example, this
code:

BRect rect(O.O, 0.0, 79.0, 39.0);
BBitmap *image= new BBitmap(rect, B_COLOR_8_BIT);

constructs a bitmap of 40 rows and 80 pixels per row. Each pixel is specified by an 8-
bit color value.

BBitmap • Overview 385

The Bounds Rectangle

A BBitmap's bounds rectangle serves two purposes:

• It sets the size of the image. A bitmap covers as many pixels as its bounds
rectangle encloses-under the assumption that one coordinate unit equals one
pixel, as it does when the display device is the screen.

Since a bitmap can't contain a fraction of a pixel, the bounds rectangle shouldn't
contain any fractional coordinates. Without fractional coordinates, each side of the
bounds rectangle will be aligned with a column or a row of pixels. The pixels
around the edge of the rectangle are included in the image, so the bitmap will
contain one more column of pixels than the width of the rectangle and one more
row than the rectangle's height. (See the BRect class for an illustration.)

• It establishes a coordinate system that can be used later by drawing functions,
such as DrawBi trnap () and DragMessage (), to designate particular points or
portions of the image.

For example, if one BBitmap was constructed with this bounds rectangle:

BRect firstRect(O.O, 0.0, 60.0, 100.0);

and another with this rectangle:

BRect secondRect(60.0, 100.0, 120.0, 200.0);

they would both have the same size and shape. However, the coordinates
(60.0, 100.0) would designate the right bottom corner of the first bitmap, but the
left top corner of the second.

If a BBitmap object enlists BViews to create the bitmap data, it must have a bounds
rectangle with (0.0, O.o) at the left top corner.

The Color Space

The color space of a bitmap determines its depth (how many bits of information are
stored for each pixel) and its interpretation (what the data values mean). These five
color spaces are currently defined:

B_MONOCHROME_l_BIT

B_GRAYSCALE_S_BIT

B_COLOR_S_BIT

B_RGB_16_BIT

B_RGB_32_BIT

386 Chapter 4 • The Interface Kit

Currently, bitmap data is stored only in the B_RGB_32_BIT, B_COLOR_S_BIT, and
B_MONOCHROME_l_BIT color spaces. The B_GRAYSCALE_S_BIT and B_RGB_16_BIT

color spaces are not used at the present time.

In the B_RGB_32_BIT color space, the color of each pixel is specified by its red,
green, and blue components. In the B_COLOR_B_BIT color space, colors are
specified as byte indices into the color map. In the B_MONOCHROME_l_BIT color
space, a value of 1 means black and 0 means white. (A more complete description of
the five color spaces can be found under "Colors" in the "Drawing" section of this
chapter.)

Specifying the Image

BBitmap objects begin life empty. When constructed, they allocate sufficient memory
to store an image of the size and color space specified. However, the memory isn't
initialized. The actual image must be set after construction. This can be done by
explicitly assigning pixel values with the SetBi ts () function:

image->SetBits(rawData, nurnBytes, 0, COLOR_8_BIT);

You can also get the Bits () pointer to the memory buffer and copy image data
directly to it:

uchar *bits (uchar *)image->Bits();
memcpy(bits, sourceData, nurnBytes);

In this case, you must make sure the data is written in the internal format of the
BBitmap object.

In addition to these functions, BView objects can be enlisted to produce the bitmap.
Views are assigned to a BBitmap object just as they are to a BWindow (by calling the
AddChild () function). In reality, the BBitmap sets up a private, off-screen window
for the views. When the views draw, the window renders their output into the bitmap
buffer. The rendered image has the same format as the data captured by the
SetBi ts () function. SetBi ts () and BViews can be used in combination to create a
bitmap.

The BViews that construct a bitmap behave a bit differently than the BViews that
draw in regular windows:

• In contrast to BViews attached to an ordinary window, the BViews assigned to a
BBitmap can create an image off-screen. When an ordinary window is hidden, it
doesn't render images; its BViews may draw, but they don't produce image data.
However, the BViews assigned to a BBitmap produce an off-screen bitmap.

• Because they never appear on-screen, the BViews that produce a bitmap image
never handle events and never get update messages telling them to draw. You
must call their drawing functions directly in your own code.

BBitmap • Overview 387

• Because there are no update messages, the output buffer to the Application Server
isn't automatically flushed. You must flush it explicitly in application code. This is
best done by calling Sync (), rather than Flush (), so that you can be sure the
entire image has been rendered before the bitmap is used.

• A BBitmap has no background color against which images are drawn. Your code
must color every pixel within the bounds rectangle.

• Views that are attached to a BWindow normally draw in the window's thread.
However, views attached to a BBitmap don't draw in a separate thread; the
BBitmap doesn't set up an independent thread for its private window.

If BViews are used to produce a static image, one that will not change, you need to
have them draw just once. After creating the image, they can be discarded; they'll
never be called upon to update the image. However, if the bitmap will change
perhaps to reflect decisions the user makes as the program runs-the BViews can be
retained to make the changes. The BBitmap will serve as an offscreen buffer for a
dynamic display.

So that you can manage the BViews that are assigned to a BBitmap, the BBitmap
class duplicates a number of BWindow functions-such as AddChild (),

FindView () , and ChildAt ().

A BBitmap that enlists views to produce the bitmap consumes more system resources
than one that relies solely on SetBi ts () . Therefore, by default, BBitmaps refuse to
accept BViews. If BViews will be used to create bitmap data, the BBitmap constructor
must be informed so that it can set up the off-screen window and prepare the
rendering mechanism.

Transparency

Color bitmaps can have transparent pixels. When the bitmap is imaged in a drawing
mode other than B_OP_COPY, its transparent pixels won't be transferred to the
destination view. The destination image will show through wherever the bitmap is
transparent.

To introduce transparency into a B_COLOR_8_BIT bitmap, a pixel can be assigned a
value of B_TRANSPARENT_8_BIT. In a B_RGB_32_BIT bitmap, a pixel can be
assigned the special value of B_TRANSPARENT_32_BIT. (Or B_TRANS

PARENT_32_BIT can be made the high or low color of the BView drawing the
bitmap.)

Transparency is covered in more detail under "Drawing Modes" on page 345.

See also: system_colors ()

388

Constructor and Destructor
BBitmap()

BBitmap(BRect bounds, color_space space,

Chapter 4 • The Interface Kit

bool accepts Views= false, bool needsContiguousMemory =false)
BBitmap(BMessage *archive)

Initializes the BBitmap to the size and internal coordinate system implied by the
bounds rectangle and to the depth and color interpretation specified by the space
color space.

This function allocates enough memory to store data for an image the size of bounds
at the depth required by space, but does not initialize any of it. All pixel data should
be explicitly set using the SetBi ts () function, by copying it to the address returned
by Bi ts () , or by enlisting BViews to produce the bitmap. If BViews are to be used,
the constructor must be informed by setting the accepts Views flag to true. This
permits it to set up the mechanisms for rendering the image, including an off-screen
window to contain the views.

If the needsContiguousMemory flag is true, the BBitmap will make sure that the
memory it allocates is one contiguous chunk. This should matter only to drivers
doing direct DMA into physical memory. If the flag is false, as it is by default,
allocated memory may or may not be contiguous.

Currently, only B_RGB_32_BIT, B_COLOR_8_BIT, and B_MONOCHROME_l_BIT are
acceptable as the color space mode. B_RGB_16_BIT is not supported for the present
release and B_GRAYSCALE_8_BIT is reinterpreted as B_COLOR_8_BIT.

If the BBitmap accepts BViews, the left and top sides of its bounds rectangle must be
located at 0.0.

-BBitmap()

virtual -BBitmap(void)

Frees all memory allocated to hold image data, deletes any BViews used to create the
image, gets rid of the off-screen window that held the views, and severs the
BBitmap's connection to the Application Server.

Static Functions
Instantiate()

static BBitmap *lnstantiate(BMessage *archive)

BBitmap • Member Functions

Returns a new BBitmap object, allocated by new and created with the version of the
constructor that takes a BMessage archive. However, if the archive doesn't contain
data for a BBitmap object, Instantiate () returns NULL.

See also: BArchivable:: Instantiate (), instantiate_object (),Archive ()

Member Functions

AddChild()

389

virtual void AddChild(BView *a View)

Adds a View to the hierarchy of views associated with the BBitmap, attaching it to an
off-screen window (one created by the BBitmap for just this purpose) by making it a
child of the window's top view. If a View already has a parent, it's removed from that
view hierarchy and adopted into this one. A view can serve only one window at a
time.

Like AddChild () in the BWindow class, this function calls the BView's
At tachedToWindow () function to inform it that it now belongs to a view hierarchy.
Every view that descends from aView also becomes attached to the BBitmap's off
screen window and receives its own AttachedToWindow () notification.

AddChild () fails if the BBitmap was not constructed to accept views.

See also: BWindow: :AddChild (), BView: :AttachedToWindow(),

RemoveChild () , the BBitmap constructor

Archive()

virtual status_t Archive(BMessage *archive, boo! deep= true) const

Archives the BBitmap by recording its bounds rectangle and color space in the
BMessage archive along with the bitmap data. If the deep flag is true and the
BBitmap employs BViews to produce the image, it also archives all the BView
objects.

See also: BArchivable: :Archive (), Instantiate () static function

Bits()
void *Bits(void) const

Returns a pointer to the bitmap data. The data lies in memory shared by the
application and the Application Server. The length of the data can be obtained by
calling Bi tsLength () -or it can be calculated from the height of the bitmap (the
number of rows) and the number of bytes per row.

390 Chapter 4 • The Interface Kit

A B_RGB_32_BIT bitmap holds the data in an internal format that's most natural for
screen display devices. In this format, the color components are ordered BGRA (blue,
green, red, alpha).

See also: Bounds (), BytesPerRow (), Bi tsLength ()

Bits Length()

int32 Bitslength(void) const

Returns the number of bytes that were allocated to store the bitmap data.

See also: Bi ts (), BytesPerRow ()

Bounds()

BRect Bounds(void) const

Returns the bounds rectangle that defines the size and coordinate system of the
bitmap. This should be identical to the rectangle used in constructing the object.

BytesPerRow()

int32 BytesPerRow(void) const

Returns how many bytes of data are required to specify a row of pixels. For example,
a monochrome bitmap (one bit per pixel) 80 pixels wide would require twelve bytes
per row (96 bits). The extra sixteen bits at the end of the twelve bytes are ignored.
Every row of bitmap data is aligned on a long word boundary.

ChildAt(), CountChildren()

BView *ChildAt(int32 index) const

int32 CountChildren(void) const

Child.At () returns the child BView at index, or NULL if there's no child at index.
Indices begin at 0 and count only BViews that were added to the BBitmap (added as
children of the top view of the BBitmap's off-screen window) and not subsequently
removed.

CountChildren () returns the number of BViews the BBitmap currently has. (It
counts only BViews that were added directly to the BBitmap, not BViews farther
down the view hierarchy.)

These functions fail if the BBitmap wasn't constructed to accept views.

BBitmap • Member Functions 391

ColorSpace()

color_space ColorSpace(void) const

Returns the color space of the data being stored (not necessarily the color space of
the data passed to the SetBi ts () function). Once set by the BBitmap constructor,
the color space doesn't change.

CountChildren() see ChildAt()

FindView()

BView *FindView(BPoint poin~ const
BView *FindView(const char *name) const

Returns the BView located at point within the bitmap or the BView tagged with
name. The point must be somewhere within the BBitmap's bounds rectangle, which
must have the coordinate origin, (0.0, 0.0), at its left top corner.

If the BBitmap doesn't accept views, this function fails. If no view draws at the point
given, or no view associated with the BBitmap has the name given, it returns NULL.

ls Valid()

bool lsValid(void) const

Returns true if there's memory for the bitmap (if the address returned by Bi ts () is
valid), and false if not.

Lock(), Unlock()

bool. Lock(void)

void Unlock(void)

These functions lock and unlock the off-screen window where BViews associated
with the BBitmap draw. Locking works for this window and its views just as it does
for ordinary on-screen windows.

Lock () returns false if the BBitmap doesn't accept views or if its off-screen
window is unlockable (and therefore unusable) for some reason. Otherwise, it
doesn't return until it has the window locked and can return true.

RemoveChild()

virtual boo! RemoveChild(BView *a View)

392 Chapter 4 • The Interface Kit

Removes a View from the hierarchy of views associated with the BBitmap, but only if
a View was added to the hierarchy by calling BBitmap's version of the AddChild ()

function.

If a View is successfully removed, RemoveChild () returns true. If not, it returns
false.

SetBits()
void SetBits(const void *data, int32 length, int32 .offset, color_space mode)

Assigns length bytes of data to the BBitmap object. The new data is copied into the
bitmap beginning offset bytes (not pixels) from the start of allocated memory. To set
data beginning with the first (left top) pixel in the image, the offset should be O; to set
data beginning with, for example, the sixth pixel in the first row of a B_RGB_32_BIT

image, the offset should be 20. The offset counts any padding required to align rows
of data.

The source data is specified in the mode color space, which may or may not be the
same as the color space that the BBitmap uses to store the data. If not, the following
conversions are automatically made:

• B_MONOCHROME_l_BIT and B_RGB_32_BIT to B COLOR 8 BIT.

• B_COLOR_8_BIT and B_GRAYSCALE_8_BIT to B_RGB_32_BIT.

Colors may be dithered in a conversion to B_COLOR_8_BIT so that the resulting
image will match the original as closely as possible, despite the lost information.

If the color space mode is B_RGB_32_BIT, the data should be triplets of three 8-bit
components-red, green, and blue, in that order-without an alpha component.
Although stored as 32-bit quantities with the components in BGRA order, the input
data is only 24 bits in RGB order. Rows of source data do not need to be aligned.

However, if the source data is in any mode other than B_RGB_32_BIT, padding must
be added so that each row is aligned on a int32 word boundary.

This function works for all BBitmaps, whether or not BViews are also enlisted to
produce the image.

BBox
Derived from: public BView

Declared in: be/interface/Box.h

Library: libbe.so

BBox • Constructor and Destructor

Overview
A BBox draws a labeled border around other views. It serves only to label those
views and organize them visually. It doesn't respond to messages.

The border is drawn inside the edge of the view's frame rectangle. If the BBox has a
label, the border at the top of box is broken where the label appears (and the border
is inset from the top somewhat to make room for the label).

393

The current pen size of the view determines the width of the border; by default it's
1.0 coordinate unit. This size produces the best results, especially for fancy borders. If
you make the border thicker, it will be inset somewhat so that none of it is clipped by
the BBox's frame rectangle. The label is drawn in the current font, which by default is
the system bold font, and the current high color; the default high color is black.

The views that the box encloses should be made children of the BBox object.

Constructor and Destructor
BBox()

BBox(BRectframe, canst char *name= NULL,

uint32 resizingMode = B_FOLLOW_LEFT I B_FOLLOW_TOP,

uint32 flags = B_ WILL_DRA W I B_FRAME_EVENTS I

B_NAVIGABLEJUMP,

border_style border= B_FANCY _BORDER)

BBox(BMessage •archive)

Initializes the BBox by passing the frame, name, resizingMode, and flags to the
BView constructor, and sets the style of its border to border. The three possible
border styles are shown in the following table.

394 Chapter 4 • The Interface Kit

B_PLAIN_BORDER The border is a simple line, lighter on the left and top than on the right
and bottom so that the box looks raised from the surrounding surface.

B_FANCY_BORDER

B_NO_BORDER

The border is a fancier line that looks like a 3D groove inset into the
surrounding surface of the view.

There is no border. This option is not that useful for a BBox object; it
turns the box into something other than a box.

The constructor also sets the font for displaying the BBox's label to the system bold
font (be_bold_font). However, the new object doesn't have a label; call
SetLabel () to assign it one.

See also: SetLabel ()

-BBox()
virtual -BBox(void)

Frees the label, if the BBox has one.

Static Functions

Instantiate()
static BBox *lnstantiate(BMessage *archive)

Returns a new BBox object, allocated by new and created with the version of the
constructor that takes a BMessage archive. However, if the archive message doesn't
contain data for a Box object, Instantiate () returns NULL.

See also: BArchivable:: Instantiate (), instantiate_object (),Archive ()

Member Functions

Archive()
virtual status_t Archive(BMessage *archive, bool deep= true) const

Archives the BBox by recording its label and border style in the BMessage archive,
after calling the inherited version of the function.

See also: BArchivable: :Archive (), Instantiate () static function

AttachedT o Window()
virtual void AttachedToWindow(void)

Makes the BBox's background view color and its low color match the background
color of its new parent, after calling the inherited version of At tachedToWindow () .

BBox • Member: Functions

Border() see SetBorder()

Draw()

virtual void Draw(BRect updateRec~

Draws the box and its label. This function is called automatically in response to
update messages.

Frame Resized()

virtual void FrameResized(float width, float height)

Makes sure that the parts of the box that change when it's resized are redrawn.

See also: BView: : FrameResized ()

Label() see SetLabel()

SetBorder(), Border()

virtual void SetBorder(border_style bordery

border_style Border(void) const

395

These functions set and return the style of border the BBox draws
B_PLAIN_BORDER, B_FANCY_BORDER, or B_NO_BORDER. The border style is initially
set by the BBox constructor.

SetLabel(), Label()

void Setlabel(const char *string)

const char *Label(void) const

These functions set and return the label that's displayed along the top edge of the
box. SetLabel () copies string and makes it the BBox's label, freeing the previous
label, if any. If string is NULL, it removes the current label and frees it.

Label () returns a pointer to the BBox's current label, or NULL if it doesn't have one.

396 Chapter 4 • The Interface Kit

BButton
Derived from: public BControl

Declared in: be/interface/Button.h

Library: libbe.so

Overview
A BButton object draws a labeled button on-screen and responds when the button is
clicked or when it's operated from the keyboard. If the BButton is the default button
for its window and the window is the active window, the user can operate it by
pressing the Enter key.

BButtons have a single state. Unlike check boxes and radio buttons, the user can't
toggle a button on and off. However, the button's value changes while it's being
operated. During a click (while the user holds the mouse button down and the cursor
points to the button on-screen), the BButton's value is set to 1 (B_CONTROL_ON).
Otherwise, the value is 0 (B_CONTROL_OFF).

This class depends on the control framework defined in the BControl class. In
particular, it calls these BControl functions:

• SetValue () to make each change in the BControl's value. This is a hook function
that you can override to take collateral action when the value changes.

• Invoke () to post a message each time the button is clicked or operated from the
keyboard. You can designate the object that should handle the message by calling
BControl's SetTarget () function. A model for the message is set by the BButton
constructor (or by BControl's SetMessage () function).

• IsEnabled () to determine how the button should be drawn and whether it's
enabled to post a message. You can call BControl's SetEnabled () to enable and
disable the button.

A BButton is an appropriate control device for initiating an action. Use a BCheckBox,
a BPictureButton, or BRadioButtons to set a state.

Hook Functions
MakeDefault()

Makes the BButton the default button for its window or removes that status; can
be augmented by derived classes to take note when the status of the button
changes.

BButton • Static Functions 397

Constructor and Destructor
BButton()

BButton(BRect frame, canst char *name,
canst char *label,
BMessage *message,
uint32 resizingMode = B_FOLLOW_LEFT I B_FOLLOW_TOP,
uint32 flags = B_ WILL_DRA W I B_NAVIGABLE)

BButton(BMessage •archive)

Initializes the BButton by passing all arguments to the BControl constructor. BControl
initializes the button's label and assigns it a model message that identifies the action
that should be carried out when the button is invoked.

The frame, name, resizingMode, and flags arguments are the same as those declared
for the BView class and are passed up the inheritance hierarchy to the BView
constructor without change.

When the button is attached to a window, it will be resized to its preferred height; the
height of BButton's frame rectangle will exactly accommodate the button border and
label, given the BButton's current font.

See also: the BControl and BView constructors, BControl: : Invoke ()

-BButton()

virtual -BButton(void)

Does nothing; a BButton has no data to free.

Static Functions
Instantiate()

static BButton *lnstantiate(BMessage *archive)

Returns a new BButton object-or NULL, if the archive message doesn't contain data
for a BButton object. The new object is allocated by new and created with the version
of the constructor that takes a BMessage archive.

See also: BArchivable:: Instantiate (), instantiate_object (),Archive ()

398

Member Functions

Archive()

Chapter 4 • The Interface Kit

virtual status_t Archive(BMessage *archive, bool deep= true) const

Calls the inherited version of Archive () and records the BButton's label and
whether or not it's the default button for its window in the BMessage archive.

See also: BArchivable: : Archive (), Instantiate () static function

AttachedT o Window()

virtual void AttachedToWindow(void)

Augments the BControl version of this function to set the background color of the
button so that it matches the background color of its parent. This function also resizes
the button vertically so that its height is just adequate to display the label and the
button border. The height of the label depends on the BView's font.

Finally, if MakeDefaul t () had already been called to make the BButton the default
button for its window, this function informs the BWindow of that fact.

See also: BView: : At tachedToWindow (), BControl: : At tachedToWindow (),

MakeDefaul t ()

Draw()

virtual void Draw(BRect updateRecf)

Draws the button and labels it. If the BButton's value is anything but 0, the button is
highlighted. If it's disabled, it drawn in muted shades of gray. Otherwise, it's drawn in
its ordinary, enabled, unhighlighted state.

See also: BView: :Draw()

GetPreferredSize()

virtual void GetPreferredSize(float *width, float *height)

Calculates how big the button needs to be to display its label in the current font, and
writes the results into the variables that the width and height arguments refer to.
ResizeToPreferred(), defined in the BView class, resizes a view's frame rectangle
to the preferred size, keeping its left and top sides constant. A button is automatically
resized to its preferred height (but not to its preferred width) by
At tachedToWindow () .

BButton • Member Functions

ls Default() see MakeDefault

KeyDown()

virtual void KeyDown(const char *bytes, int32 numBytes)

Augments the inherited version of KeyDown () to respond to messages reporting that
the user pressed the Enter key or the space bar. Its response is to:

• Momentarily highlight the button and change its value.
• Call Invoke () to deliver a copy of the model BMessage to the target receiver.

The BButton gets KeyDown () function calls when it's the focus view for the active
window (which results when the user navigates to it) and also when it's the default
button for the window and the character the user types is B_ENTER.

See also: BControl: : Invoke () , BView: : KeyDown () , MakeDefaul t ()

MakeDefault(), lsDefault()

virtual void MakeDefault(bool flag)

bool lsDefault(void) const

MakeDefaul t () makes the BButton the default button for its window when flag is
true, and removes that status when flag is false. The default button is the button
the user can operate by striking the Enter key when the window is the active
window. IsDefaul t () returns whether the BButton is currently the default button.

399

A window can have only one default button at a time. Setting a new default button,
therefore, may deprive another button of that status. When MakeDefaul t () is called
with an argument of true, it generates a MakeDefaul t () call with an argument of
false for previous default button. Both buttons are redisplayed so that the user can
see which one is currently the default.

The default button can also be set by calling BWindow's SetDefaul tButton ()

function. That function makes sure that the button that's forced to give up default
status and the button that obtains it are both notified through MakeDefaul t ()

function calls.

MakeDefaul t () is therefore a hook function that can be augmented to take note
each time the default status of the button changes. It's called once for each change in
status, no matter which function initiated the change.

See also: BWindow:: SetDefaultButton ()

400 Chapter 4 • The Interface Kit

MouseDown()

virtual void MouseDown(BPoint point)

Overrides the BView version of MouseDown () to track the cursor while the user
holds the mouse button down. As the cursor moves in and out of the button, the
BButton's value is reset accordingly. The SetValue () virtual function is called to
make the change each time.

If the cursor is inside the BButton's bounds rectangle when the user releases the
mouse button, this function posts a copy of the model message so that it will be
dispatched to the target object.

See also: BView: :MouseDown (), BControl:: Invoke (),
BControl: :SetTarget()

Setlabel()

virtual void Setlabel(const char *string)

Overrides the BControl version of this function to make sure that calculations based
on the width of the label won't assume cached results for the previous label.

See also: BControl: : SetLabel ()

BCheckBox
Derived from: public BControl

Declared in: be/interface/CheckBox.h

Library: lib be.so

Overview
A BCheckBox object draws a labeled check box on-screen and responds to a
keyboard action or a click by changing the state of the device. A check box has two
states: An "X" is displayed in the box when the object's value is 1 (B_CONTROL_ON),
and is absent when the value is 0 (B_CONTROL_OFF). The BCheckBox is invoked (it
posts a message to the target receiver) whenever its value changes in either
direction-when it's turned on and when it's turned off.

A check box is an appropriate control device for setting a state-turning a value on
and off. Use menu items or buttons to initiate actions within the application.

BCheckBox • Static Functions

Constructor and Destructor
BCheckBox()

BCheckBox(BRect frame, const char •name,
const char *label,
BMessage *message,
uint32 resizingMode = B_FOLLOW_LEFT I B_FOLLOW_TOP,
uint32 flags= B_WILL_DRAW I B_NAVIGABLE)

BCheckBox(BMessage •archive)

401

Initializes the BCheckBox by passing all arguments to the BControl constructor.
BControl initializes the label of the check box and assigns it a message that
encapsulates the action that should be taken when the state of the check box
changes.

The frame, name, resizingMode, and flags arguments are the same as those declared
for the BView class and are passed unchanged to the BView constructor.

When the BCheckBox is attached to a window, the height of its frame rectangle will
be adjusted so that it has exactly the right amount of room to display the check box
icon and the label, given its current font. The object draws at the vertical center of its
frame rectangle beginning at the left side.

See also: the BControl and BView constructors, At tachedToWindow ()

-CheckBox()

virtual -CheckBox(void)

Does nothing; a BCheckBox doesn't require any cleanup when it's deleted.

Static Functions
Instantiate()

static BCheckBox *lnstantiate(BMessage *archive)

Returns a new BCheckBox object, allocated by new and created with the version of
the constructor that takes a BMessage archive. However, if the archive doesn't
contain data for a BCheckBox object, this function returns NULL.

See also: BArchi vable: : Instantiate (), instantiate_obj ect (), Archive ()

402

Member Functions

Archive()

Chapter 4 • The Interface Kit

virtual status_t Archive(BMessage *archive, bool deep= true) const

Calls the inherited version of Archive () , then adds the BCheckBox class name to
the archive BMessage.

See also: BArchivable: :Archive (), Instantiate () static function

AttachedT o Window()

virtual void AttachedToWindow(void)

Augments the BControl version of At tachedToWindow () to set the view and low
colors of the BCheckbox to the match its parent's view color, and to resize the view
vertically to fit the height of the label it displays. The height of the label depends on
the BCheckBox's font, which the BControl constructor sets to system plain font
(be__plain_font).

See also: BControl: :AttachedToWindow()

Draw()

virtual void Draw(BRect updateRecf)

Draws the check box and its label. If the current value of the BCheckBox is 1
(B_CONTROL_ON), it's marked with a'n "X". If the value is 0 (B_CONTROL_OFF), it's
empty.

See also: BView: : Draw ()

GetPreferredSize()

virtual void GetPreferredSize(float *width, float *height)

Calculates the most optimal size for the check box to display the icon and the label in
the current font; and reports the results in the variables that the width and height
arguments refer to. ResizeToPreferred (), defined in the BView class, resizes a
view's frame rectangle to the preferred size, keeping its left and top sides constant.
At tachedToWindow () automatically resizes a check box to its preferred height, but
doesn't modify its width.

See also: BView: : GetPreferredSize (), AttachedToWindow ()

BColorControl • Overview

Mouse Down()

virtual void MouseDown(BPoint pain~

Responds to a mouse-down event within the check box by tracking the cursor while
the user holds the mouse button down. If the cursor is inside the bounds rectangle
when the user releases the mouse button, this function toggles the value of the
BCheckBox and calls Draw () to redisplay it.

403

When the value of the BCheckBox changes, a copy of the model BMessage is
delivered to the object's target handler. See Binvoker's Invoke () and Set Target ()
functions for more information. The message is dispatched by calling the target's
MessageRecei ved () virtual function.

The target object can get a pointer to the source BCheckBox from the message, and
use it to discover the object's new value. For example:

void MyHandler: :MessageReceived(BMessage *message)
{

BHandler *handler;
if (message->FindPointer("source", &handler)) {

BCheckBox *box= cast_as(handler, BCheckBox);
if (box)

BColorControl
Derived from: public BControl

Declared in: be/interface/ColorControl.h

Library: lib be.so

Overview
A BColorControl object displays an on-screen device that permits users to pick a
color. It reports the color as its current value-an rgb_color data structure stored as
a 32-bit integer. If a model message is provided, it announces each change in value
by sending a copy of the message to a designated target.

When the screen is 8 bits deep, the BColorControl object presents users with a matrix
of the 256 available colors. The user chooses a color by pressing the primary mouse
button while the cursor is over one of the cells in the matrix. Dragging from cell to
cell changes the selected color. The arrow keys can similarly change the selection

404 Chapter 4 • The Interface Kit

when the object is the focus view. The BColorControl's value changes each time the
selection does.

When the screen is 32 bits deep, the BColorControl object displays ramps for each
color component. The user changes the current color by modifying a red, green, or
blue component value.

Red:

[~-"" Green: 15~ :

Blue: §]

In addition to the color matrix and ramp, a BColorControl has three text fields where
the user can set a color by typing in its red, green, and blue component values. The
text fields (BTextControl objects) are children of the BColorControl.

Constructor and Destructor
BColorControl()

BColorControl(BPoint leftTop, color_control_layout matrix, float cel!Side,
canst char *name, BMessage *message= NULL,
bool bufferedDrawing = false)

BColorControl(BMessage •archive)

Initializes the BColorControl so that the left top corner of its frame rectangle will be
located at the stated leftTop point in the coordinate system of its parent view. The
frame rectangle will be large enough to display 256 color cells arranged ·in the
specified matrix, which can be any of the following constants:

B_CELLS_4x64

B_CELLS_64x4

B_CELLS_8x32

B_CELLS_32x8

B_CELLS_16x16

BColorControl • Static Functions 405

For example, B_CELLS_4x64 lays out a matrix with four cell columns and 64 rows;
B_CELLS_32x8 specifies 32 columns and 8 rows. Each cell is a square cellSide
coordinate units on a side; since the number of units translates directly to screen
pixels, cellSide should be a whole number.

When the screen is 32 bits deep, the same frame rectangle will display four color
ramps, one each for the red, green, and blue components, plus a disabled ramp for
the alpha component. You might choose matrix and cellSize values with a view
toward how the resulting bounds rectangle would be divided into four horizontal
rows.

The name argument assigns a name to the object as a BHandler. It's the same as the
argument declared by the BView constructor.

If a model message is supplied, the BColorControl will announce every change in
color value by calling Invoke () (defined in the BControl class) to post a copy of the
message to a designated target.

If the bu.fferedDrawing flag is true, all changes to the on-screen display will first be
made in an off-screen bitmap and then copied to the screen. This makes the drawing
smoother, but it requires more memory.

The initial value of the new object is 0, which when translated to an rgb_color
structure, means black.

See also: BHandler: : SetName (), BControl: : Invoke ()

-BColorControl()

virtual -BColorControl(void)

Gets rid of the off-screen bitmap, if one was requested when the object was
constructed.

Static Functions

Instantiate()

static BColorControl *lnstantiate(BMessage *archive)

Returns a new BColorControl object, allocated by new and created with the version of
the constructor that takes a BMessage archive. However, if the archive doesn't
contain data for a BColorControl object, this function returns NULL.

See also: BArchivable:: Instantiate(), instantiate_object (),Archive ()

406

Member Functions

Archive()

Chapter 4 • The Interface Kit

virtual status_t Archive(BMessage *archive, bool deep= true) const

Calls the inherited version of Archive () , then adds the layout, cell size, and whether
the object uses buffered drawing to the BMessage archive.

See also: BArchi vable: : Archive () , Instantiate () static function

AttachedT o Window()

virtual void AttachedToWindow(void)

Augments the BControl version of this function to set the BColorControl's view color
and low color to be the same as its parent's view color and to set up the
BTextControl objects where the user can type red, green, and blue color values. If the
object uses buffered drawing, this function makes sure the offscreen images are
displayed on-screen.

See also: BControl: :AttachedToWindow (), BView:: SetViewColor ()

Cell Size() see SetCel/Size()

Draw()

virtual void Draw(BRect updateRed)

Overrides the BView version of this function to draw the color control.

See also: BVi ew: : Draw ()

GetPreferredSize()

virtual void GetPreferredSize(float *width, float *heigh~

Calculates how large the color control needs to be given its layout, cell size, and
current font; the results are reported in the variables that the width and height
arguments refer to.

See also: BView: :GetPreferredSize ()

KeyDown()

virtual void KeyDown(const char *bytes, int32 numBytes)

BColorControl • Member Functions

Augments the BControl version of KeyDown () to allow the user to navigate within
the color control using the arrow keys.

See also: BControl: : KeyDown ()

Layout() see SetLayout()

Message Received()

virtual void MessageReceived(BMessage message)

Responds to internal messages that change the color.

See also: BHandler: : MessageRecei ved ()

MouseDown()

virtual void MouseDown(BPoint point)

407

Overrides the BView version of MouseDown () to allow the user to operate the color
control with the mouse.

See also: BView: :MouseDown ()

SetCellSize(), CellSize()

virtual void SetCellSize(float cel!Side)

float CellSize(void) const

These functions set and return the size of a single cell in the BColorControl's matrix
of 256 colors. A cell is a square cel!Side coordinate units on a side. The size is first set
by the BColorControl constructor.

See also: the BColorControl constructor

SetEnabled()

virtual void SetEnabled(bool enabled)

Augments the BControl version of SetEnabled () to disable and re-enable the text
fields for setting the color components as the BColorControl is disabled and re
enabled. The inherited IsEnabled () function doesn't need augmenting and
therefore isn't reimplemented.

See also: BControl: : SetEnabled ()

408

SetlayoutQ, LayoutO

virtual void Setlayout(color_control_layout layou~

color_control_layout Layout(void) const

Chapter 4 • The Interface Kit

These functions set and return the layout of the matrix of 256 color cells. The matrix
is first arranged by the constructor. See the constructor for permissible layout values.

See also: the BColorControl constructor

SetValueQ, ValueAsColorO

virtual void SetValue(int32 col01)
inline void SetValue(rgb_color colof)

rgb_color ValueAsColor(void)

These functions set and return the BColorControl's current value-the last color that
the user selected.

The virtual version of SetValue () takes an int32 argument and is essentially the
same as the BControl version of the function, which it modifies only to take care of
class-internal housekeeping details. The inline version, on the other hand, takes an
rgb_color argument and is unique to this class. It packs color information from the
structure into a 32-bit integer and passes it to the virtual version of the function. Like
all other objects that derive from BControl, a BColorControl stores its current value as
an int32; no information is lost in the translation from an rgb_color structure to an
integer.

SetValue () is called to make every change to the BControl's value. If you override
this function to be notified of the changes, you should override the virtual version.
(However, due to the peculiarities of C++, overriding any version of an overloaded
function hides all versions of the function. For continued access to the rgb_color

version of SetValue () without explicitly specifying the "BColorControl::" prefix,
copy the inline code from inteiface/ColorControl.h to the derived class.)

ValueAsColor () is an alternative to the Value () function inherited from the
BControl class. It returns the object's current value as an rgb_color; Value ()

returns it as an int32.

See also: BControl:: SetValue ()

BControl • Overview

BControl
Derived from:

Declared in:

Library:

Overview

public BView, public Blnvoker

be/interface/Control.h

lib be.so

409

BControl is an abstract class for views that draw control devices on the screen.
Objects that inherit from BControl emulate, in software, real-world control devices
like the switches and levers on a machine, the check lists and blank lines on a form
to fill out, or the dials and knobs on a home appliance.

Controls translate the messages that report generic mouse and keyboard events into
other messages with more specific instructions for the application. A BControl object
can be customized by setting the message it posts when invoked and the target object
that should handle the message.

Controls also register a current value, stored as an int32 integer that's typically set to
B_CONTROL_ON or B_CONTROL_OFF. The value is changed only by calling
SetValue (), a virtual function that derived classes can implement to be notified of
the change.

Derived Classes

The Interface Kit currently includes six classes derived from BControl-BButton,
BPictureButton, BRadioButton, BCheckBox, BColorControl, and BTextControl. In
addition, it has two classes-BListView and BMenultem-that implement control
devices but are not derived from this class. BListView and its subclass,
BOutlineListView, share an interface with the BList class (of the Support Kit) and
BMenultem is designed to work with the other classes in the menu system. Like
BControl, BListView and BMenultem inherit from the Application Kit's Binvoker class.

As BListView and BMenultem demonstrate, it's possible to implement a control
device that's not a BControl. However, it's simpler to take advantage of the code
that's already provided by the BControl class. That way you can keep a simple
programming interface and avoid reimplementing functions that BControl has defined
for you. If your application defines its own control devices-dials, sliders, selection
lists, and the like-they should be derived from BControl.

410 Chapter 4 • The Interface Kit

Scripting Support

The BControl class implements the suite called "suite/vnd.Be-control" consisting of
the following messages:

Property name: "Label" for the label on the control device
Specifiers: B_DIRECT_SPECIFIER only
Messages: B_SET_PROPERTY and B_GET_PROPERTY

Data type: A null-terminated character string (char *).

Property name: "Value" for the current value of the object
Specifiers: B_DIRECT_SPECIFIER only
Messages: B_SET_PROPERTY and B_GET_PROPERTY

Data type: int32

See "Scripting" in Chapter 2, 1be Application Kit, for more on scripting and message
suites.

Hook Functions
SetEnabled ()

Enables and disables the control device; can be augmented by derived classes to
note when the state of the object has changed.

SetValue ()

Changes the value of the control device; can be augmented to take collateral
action when the change is made.

Constructor and Destructor
BControl()

BControl(BRect frame, const char *name,
const char *label, BMessage *message,
uint32 resizingMode, uint32 flags)

BControl(BMessage *archive)

Initializes the BControl by setting its initial value to 0 (B_CONTROL_OFF), assigning it
a label, and registering a model message that captures what the control does-the
command it gives when it's invoked and the information that accompanies the
command. The label and the message can each be NULL.

The label is copied, but the message is not. The BMessage object becomes the
property of the BControl; it should not be deleted, posted, assigned to another object,
or otherwise used in application code. The label and message can be altered after
construction with the SetLabel () and SetMessage () functions.

BControl • Member Functions

The BControl class doesn't define a Draw () function to draw the label or a
MouseDown () function to post the message. (It does define KeyDown () , but only to
enable keyboard navigation between controls.) It's up to derived classes to determine
how the label is drawn and how the message is to be used. Typically, when a
BControl object needs to take action (in response to a click, for example), it calls the
Invoke () function, which copies the model message and delivers the copy to the
designated target. By default, the target is the window where the control is located,
but Set Target () can designate another handler.

Before delivering the message, Invoke () adds two data field to it, under the names
"when" and "source". These names should not be used for data items in the model.

The frame, name, resizingMode, and flags arguments are identical to those declared
for the BView class and are passed unchanged to the BView constructor.

411

The BControl begins life enabled, and the system plain font is made the default font
for all control devices.

See also: the BView constructor, BLooper: : PostMessage () in the Application Kit,
SetLabel(), SetMessage(), SetTarget(}, Invoke()

-BControl()

virtual -BControl(void)

Frees the model message and all memory allocated by the BControl.

Static Functions

Instantiate()

static BControl *lnstantiate(BMessage *archive)

Returns a new BControl object, allocated by new and created with the version of the
constructor that takes a BMessage archive. However, if the archive doesn't contain
data for a BControl object, Instantiate () returns NULL.

See also: BArchivable: : Instantiate(), instantiate_object (),Archive ()

Member Functions

Archive()

virtual status_t Archive(BMessage *archive, boo! deep= true) const

Archives the BControl by recording its label, current value, model message, and
whether or not it's disabled in the BMessage archive.

See also: BArchivable: :Archive (), Instantiate () static function

412 Chapter 4 • The Interface Kit

AttachedT o Window()

virtual void AttachedToWindow(void)

Overrides BView's version of this function to set the BControl's low color and view
color so that it matches the view color of its new parent. It also makes the BWindow
to which the BControl has become attached the default target for the Invoke ()
function, provided that another target hasn't already been set.

At tachedToWindow () is called for you when the BControl becomes a child of a
view already associated with the window.

See also: BView: : At tachedToWindow () , BView: : Set Fon tName () , Invoke () ,
Set Target ()

GetSupportedSuites()

virtual status_t GetSupportedSuites(BMessage *message)

Adds the name "suite/vnd.Be-control" to the message. See "Scripting Support" in the
class overview and "Scripting" in Chapter 2 for more information.

See also: BHandler: : GetSupportedSui tes ()

Invoke()

virtual status_t lnvoke(BMessage *message= NULL)

Copies the BControl's model BMessage and sends the copy so that it will be
dispatched to the designated target (which may be a Blooper's preferred handler).
The following two pieces of information are added to the copy before it's delivered:

Data name Type code

"when" B_INT64_TYPE

"source" B_OBJECT_TYPE

Description

When the control was invoked, as measured in the number
of milliseconds since 12:00:00 AM January 1, 1970.

A pointer to the BControl object. This permits the message
handler to request more information from the source of the
message.

These two· names shouldn't be used for data fields in the model.

BControl's version of Invoke () overrides the version that the Blnvoker class defines.
It's designed to be called by derived classes in their MouseDown () and KeyDown ()
functions; it's not called for you in BControl code. It's up to each derived class to
define what user actions trigger the call to Invoke () -what activity constitutes
"invoking" the control.

BControl • Member Functions 413

This function doesn't check to make sure the BControl is currently enabled. Derived
classes should make that determination before calling Invoke () .

See also: Binvoker: : Invoke () , SetEnabled ()

lsEnabled() see SetEnab/ed()

lsFocusChanging()

protected:
bool lsFocusChanging(void) canst

Returns true if the BControl is being asked to draw because the focus changed, and
false if not. If the return value is true, either the BControl has just become the
focus view or it has just lost that status and the Draw () function has been called to
update the on-screen display.

This function can be called from inside Draw () to learn whether it's necessary to
draw or erase the visible indication that the BControl is the focus view. IsFocus ()
will return the new status of the view.

See also: MakeFocus ()

KeyDown()

virtual void KeyDown(canst char *bytes, int32 numBytes)

Augments the BView version of KeyDown () to toggle the BControl's value and call
Invoke () when the character encoded in bytes is either B_SPACE or B_ENTER. This
is done to facilitate keyboard navigation and make all derived control devices
operable from the keyboard. Some derived classes-BCheckBox in particular-find
this version of the function to be adequate. Others, like BRadioButton, reimplement it.

KeyDown () is called only when the BControl is the focus view in the active window.
(However, if the window has a default button, B_ENTER events will be passed to that
object and won't be dispatched to the focus view.)

See also: BView: : KeyDown () , MakeFocus ()

Label() see SetLabel()

Make Focus()

virtual void MakeFocus(bool focused= true)

Augments the BView version of this function to call the BControl's Draw () function
when the focus changes. This is done to aid keyboard navigation among control

414 Chapter 4 • The Interface Kit

devices. If the Draw () function of a derived class has a section of code that checks
whether the object is in focus an<:i marks the on-screen display to show that it is (and
removes any such marking when it isn't), the visual part of keyboard navigation will
be taken care of. The derived class doesn't have to reimplement MakeFocus () . Most
of the derived classes implemented in the Interface Kit depend on this version of the
function.

When Draw () is called from this function, IsFocusChanging () returns true.

See also: BView: : MakeFocus (), KeyDown (), IsFocusChanging ()

Message Received()

virtual void MessageReceived(BMessage *message)

Handles scripting messages for the BControl. See "Scripting Support" on page 410 for
a description of the messages.

See also: BHandler: : MessageRecei ved ()

ResolveSpecifier()

virtual BHandler *ResolveSpecifier(BMessage *message, int32 index,
BMessage *specifier, int32 command, const char *property)

Resolves specifiers for the "Label" and "Value" properties. See "Scripting Support" in
the class overview and "Scripting" in Chapter 2 for more information.

See also: BHandler: : Resol veSpecifier ()

SetEnabled(), lsEnabled()

virtual void SetEnabled(bool enabled)

bool lsEnabled(void) const

SetEnabled () enables the BControl if the enabled flag is true, and disables it if
enabled is false. IsEnabled () returns whether or not the object is currently
enabled. BControls are enabled by default.

While disabled, a BControl won't let the user navigate to it; the B_NAVIGABLE flag is
turned off if enabled is false and turned on again if enabled is true.

Typically, a disabled BControl also won't post messages or respond visually to mouse
and keyboard manipulation. To indicate this nonfunctional state, the control device is
displayed on-screen in subdued colors. However, it's left to each derived class to
carry out this strategy in a way that's appropriate for the kind of control it

BControl • Member Functions

implements. The BControl class merely marks an object as being enabled or disabled;
none of its functions take the enabled state of the device into account.

Derived classes can augment SetEnabled () (override it) to take action when the
control device becomes enabled or disabled. To be sure that SetEnabled () has
been called to actually make a change, its current state should be checked before
calling the inherited version of the function. For example:

void MyControl::SetEnabled(bool enabled)
{

415

if (enabled== IsEnabled()
return;

BControl::SetEnabled(enabled);
/* Code that responds to the change in state goes here. *I

Note, however, that you don't have to override SetEnabled () just to update the on
screen display when the control becomes enabled or disabled. If the BControl is
attached to a window, the kit's version of SetEnabled () always calls the Draw ()

function. Therefore, the device on-screen will be updated automatically-as long as
Draw () has been implemented to take the enabled state into account.

See also: the BControl constructor

Setlabel(), Label()

virtual void Setlabel(const char *string)

const char *Label(void) const

These functions set and return the label on a control device-the text that's displayed,
for example, on top of a button or alongside a check box or radio button. The label
is a null-terminated string.

SetLabel () frees the old label, replaces it with a copy of string, and updates the
control on-screen so the new label will be displayed to the user-but only if the
string that's passed differs from the current label. The label is first set by the
constructor and can be modified thereafter by this function.

Label () returns the current label. The string it returns belongs to the BControl and
may be altered or freed in due course.

See also: the BControl constructor, BView: :AttachedToWindow(),

BView::SetFontName()

416

SetValueQ, ValueQ

virtual void SetValue(int32 value)

int32 Value(void) const

Chapter 4 • The Interface Kit

These functions set and return the value of the BControl object.

SetValue () assigns the object a new value. If the value passed is in fact different
from the BControl's current value, this function calls the object's Draw () function so
that the new value will be reflected in what the user sees on-screen; otherwise it does
nothing.

Value () returns the current value.

Classes derived ,from BControl should call SetValue () to change the value of the
control device in response to user actions. The derived classes defined in the Be
software kits change values only by calling this function.

Since SetValue () is a virtual function, you can override it to take note whenever a
control's value changes. However, if you want your code to act only when the value
actually changes, you must check to be sure the new value doesn't match the old
before calling the inherited version of the function. For example:

void MyControl::SetValue(int32 value)
{

if (value != Value()) {
BControl::SetValue(value);
/* MyControl's additions to SetValue() go here*/

Remember that the BControl version of SetValue () does nothing unless the new
value differs from the old.

ValueQ see SetValue()

WindowActivatedQ
virtual void WindowActivated(bool active)

Makes sure that the BControl, if it's the focus view, is redrawn when the window is
activated or deactivated.

See also: BView: :WindowActivated()

BDragger • Constructor and Destructor 417

BDragger
Derived from: public BView

Declared in: be/interface/Dragger.h

Library: libbe.so

Overview
A BDragger is a view that lets users drag and drop some other view. The other view
is the target of the BDragger and its immediate relative-a sibling, a parent, or an
only child. The BDragger draws a handle, usually at the corner of the target view, that
the user can grab. When the user drags the handle the target view appears to move
with the handle.

When dragged in this way, the target view itself doesn't actually move. Instead, the
view is archived in a BMessage object and the BMessage is dragged. When the
BMessage is dropped, the target BView can be reconstructed from the archive (along
with the BDragger). The new object is a duplicate-a replicant-of the target view.

This class works closely with the BShelf class. A BShelf object accepts dragged
BViews, reconstructs them from their archives, and installs them in another view
hierarchy.

BDraggers are under the control of DeskBar's "Show Replicants" I "Hide Replicants"
menu item. Showing replicants means that the BDragger handles are visible on
screen; hiding replicants means that the handles are hidden.

Constructor and Destructor
BDragger()

BDragger(BRectframe, BView *target, uint32 resizingMode = B_FOLLOW_NONE,
uint32 flags = B_ WILL_DRA W)

BDragger(BMessage *archive)

Creates a new BDragger and sets its target view. The BDragger and the target BView
must be directly related in the view hierarchy (as parent-child or as siblings); but,
note well, the constructor doesn't establish this relationship for you. After you
construct your BDragger, you have to do one of three things:

• Add the target as a child of the dragger
• Add the dragger as a child of the target
• Add the dragger as a sibling of the target

418 Chapter 4 • The Interface Kit

If you add the target as a child of BDragger, it should be the only child that the
BDragger has.

A BDragger draws in the right bottom corner of its frame rectangle. If the target view
is a parent or a sibling of the BDragger, that rectangle needs to be no larger than the
image the BDragger draws (the handle). However, if the target is the BDragger's
child, the dragger's frame rectangle must enclose the target's frame (so that the
dragger doesn't clip the target).

A BDragger is fully functional once it has been constructed and attached to the view
hierarchy of its target. You don't need to call any other functions. However, the
whole endeavor fails if the target BView can't be archived.

-BDragger()

virtual -BDragger(void)

Frees all memory the BDragger allocated (principally for the bitmap image it draws).

Static Functions

HideAllDraggers{), ShowAllDraggers{), AreDraggersDrawn()
static status_t HideAllDraggers(void)

static status_t ShowAllDraggers(void)

static bool AreDraggersDrawn(void)

These functions communicate with all BDragger objects in all applications (provided
they're attached to a window). HideAllDraggers () hides the BDragger objects so
that they're not visible on-screen. ShowAl lDraggers () undoes the effect of
HideAllDraggers () and causes all BDragger objects to draw their handles. The
Show Replicants I Hide Replicants menu item does its work through these functions.

HideAllDraggers () may or may not hide the BDragger view in the way that
BView's Hide () function does. The BDragger may still be visible, although it won't
draw anything until ShowAllDraggers () is called. Therefore, if the target BView is
the BDragger's child, it will not be hidden when HideAllDraggers () erases its
parent.

AreDraggersDrawn () returns true when the BDraggers are shown and false

when they're hidden.

Instantiate()

static BDragger *lnstantiate(BMessage *archive)

BDragger • Member Functions 419

Returns a new BDragger object, allocated by new and created with the version of the
constructor that takes a BMessage archive. If the archive message doesn't contain and
archived BDragger, Instantiate () returns NULL.

ShowAllDraggers() see HideAl/Draggers()

Member Functions

Archive()

virtual status_t Archive(BMessage •archive, bool deep = true) const

Records the BDragger's hierarchical relationship to the target view and then calls
BView: : Archive () . The deep flag has no significance for BDragger itself, but note
that the flag is passed on to the BView version.

AttachedToWindow(), DetachedFromWindow()

virtual void AttachedToWindow(void)

virtual void DetachedFromWindow(void)

AttachedToWindow() makes sure that the BDragger is under the control of the
HideAllDraggers () and ShowAllDraggers () functions, makes its low and
background view colors match the view color of its parent, and determines the
BDragger's precise relationship to its target view. To make this determination, the
target must be in the view hierarchy; it can't be added to the window after the
BDragger is. For example, if the target is the BDragger's child, it should be added to
the BDragger and then the BDragger added to the window.

DetachedFromWindow () removes the BDragger from the control of the
HideAllDraggers () and ShowAllDraggers () functions.

Draw()

virtual void Draw(BRect updateRec~

Draws the handle-or fails to draw it and has the parent view draw in that area
instead, if all BDraggers are hidden.

lsVisibilityChanging()

protected:
bool lsVisibilityChanging(void) canst

420 Chapter 4 • The Interface Kit

Returns true if two things are true:

• The BDragger is the parent of its target.

• The BDragger handle was visible but now should not be, or it wasn't visible and
now should be.

Otherwise, this function returns false.

What's this function for? It's in the API so derived classes can implement their own
versions of Draw {) . If the BDragger isn't the parent of its target, the visibility of the
BDragger view can be controlled by the Hide () and Show {) functions rather than
Draw().

MessageReceived()

virtual void MessageReceived(BMessage *message)

Responds to messages that regulate the visibility of the BDragger handle.

MouseDown()

virtual void MouseDown(BPoint where)

Responds to a B_MOUSE_DOWN message by archiving the target view (and the
BDragger) and initiating a drag-and-drop operation, or by taking other appropriate
action.

BFont
Derived from: none

Declared in: be/interface/Font.h

Library: libbe.so

Overview
A BFont object records a set of font attributes, such as the font's family, style, size,
and so on. You can set most of these attributes to modify the font and then use the
object to set the font of a BView. A BView's font determines how the characters that
it draws (with the Drawstring {) and DrawChar {) functions) will be rendered.

A BFont object can perform calculations based on the metrics of the particular font it
represents. For example, it can tell you how much screen real estate it needs to
display a given line of text.

BFont • Overview

To find which fonts are currently installed on the system, call get_font_family ()

and get_font_style ().

421

Using a BFont Object

A BFont object by itself doesn't do anything. To be able to draw characters in the
font, the object must be passed to BView's SetFont () function (or BTextView's
SetFontAndColor ()).

A BFont object is always a full representation of a font; all attributes are always set.
However, you can choose which of these attributes will modify a BView's current
font by passing a mask to SetFont () (or SetFontAndColor ()). For example, this
code sets only the font shear and spacing:

BFont font;
font.SetShear(60.0);
font.SetSpacing(B_CHAR_SPACING);
myView->SetFont(&font, B_FONT_SHEAR J B_FONT_SPACING);

Alternatively, the BView's font could have been modified and reset as follows:

BFont font;
myView->GetFont(&font);
font.SetShear(60.0);
font.SetSpacing(B_CHAR_SPACING);
myView->SetFont(&font);

Notice that we had to explicitly reset the view's font (through SetFont ()) after
changing the font's attributes.

System Fonts

The Interface Kit constructs three BFont objects (plain, bold, and fixed)for each
application when the application starts up. The values of these fonts are set by the
user through the FontPanel preferences application. You can get to these objects
through global pointers:

const BFont *be_plain_font

The font that's used to display most gadgets in the user interface, such as check
box labels and menu items. All BControl objects use this font.

const BFont *be_bold_font

The font that's used to display window titles and BBox labels.

const BFont *be_fixed_font

The font that's used to display fixed-width characters.

The global fonts are const objects that can't be modified by your application, and
aren't updated by the system, even if the user changes their definitions while your

422 Chapter 4 • The Interface Kit

app is running. The new values take effect the next time your application is
launched.

To use a system font in a view, simply call SetFont () :

myView->SetFont{be_bold_font);

If you want to modify some attributes of a system font, you have to make a copy of it
first (and modify the copy):

BFont font{be_bold_font);
font.SetSize{13.0);
myView->SetFont{&font);

Applications should respect the user's choices and base all font choices on these
three system fonts, rather than hard-code font names into the application. You should
not try to predict the fonts that will be installed on the user's machine.

Constructor

BFont()

BFont(const BFont &Joni)
BFont(const BFont *Joni)
BFont(void)

Initializes the new BFont object as a copy of another font. If no font is specified,
be_plain_font is used.

The system BFont objects, including be_plain_font, are initialized only when you
create a BApplication object for your application. Therefore, the default settings of
BFont objects constructed before the BApplication object will be invalid.

See also: BView: : SetFont (), BTextView: : SetFontAndColor ()

Member Functions

CountTuned() seeGetTunedlnfo()

Direction()

font_direction Direction(void) const

Returns B_FONT_LEFT_TO_RIGHT if the font displays text that's read from left to
right, and B_FONT_RIGHT_TO_LEFT if it displays text that's read from right to left.
This is an inherent property of the font and cannot be set.

BFont • Member Functions

The direction of the font affects the direction in which Drawstring () draws the
characters in a string, but not the direction in which it moves the pen.

See also: BView: :Drawstring ()

Encoding() see SetEncoding()

Face() see SetFace()

FamilyAndStyle() see SetFamilyAndStyle()

Flags() see SetF/ags()

GetEscapements(), GetEdges()

void GetEscapements(const char charArray[], int32 numChars,
float escapementArra_y[]) canst

void GetEscapements(const char charArray[], int32 numChars,
escapement_delta *delta, float escapementArray[]) canst

void GetEdges(const char charArray[], int32 numChars,
edge_info edgeArray[]) canst

423

These two functions provide the information required to precisely position characters
on the screen or printed page. For each character passed in the charArray, they write
information about the horizontal dimension of the character into the
escapementArray or the edgeArray. Both functions provide this information in
"escapement units" that yield standard coordinate units (72.0 per inch) when
multiplied by the font size.

GetEscapernents () and GetEdges () expect the character array they're passed to
contain at least numChar characters; neither function checks the char Array for a null
terminator. Because the array may hold multibyte characters (in B_UNICODE_UTF8

encoding), the number of bytes in the array may be greater than the number of
characters specified. The escapementArray and edgeArray should be long enough to
hold an output value for every input character.

Escapements

A character's escapement measures the amount of horizontal space it requires. It

includes the space needed to display the character itself, plus some extra room on the
left and right edges to separate the character from its neighbors. The illustration
below shows the approximate escapements for the letters "l" and "p"; the escapement
for each character is the distance between the vertical lines.

424 Chapter 4 • The Interface Kit

Escapement Escapement

GetEscapements () measures the same space that functions such as
StringWidth () and BTextView's LineWidth () do, but it measures each character
individually and records its width in per-point-size escapement units. To translate the
escapement value to the width of the character, you must multiply by the point size
of the font:

float width= escapementArray(iJ *font.Size();

Because of rounding errors, there may be some difference between the value
returned by StringWidth () and the width calculated from the individual
escapements of the characters in the string.

The escapement value is scalable if the spacing mode of the font is
B_CHAR_SPACING. In other words, given B_CHAR_SPACING and the same set of font
characteristics, GetEscapements () will report the same measurement for a character
regardless of the font size. You can cache one value per character and use it for all
font sizes. For the other spacing modes, the reported escapement depends on the
font size and therefore can't be scaled.

For most spacing modes, a character has a constant escapement in all contexts; it
depends only on the font. However, for B_STRING_SPACING, each character's
escapement is also contextually dependent on the string it's in. To find the
escapement of a character within a particular string, you must pass the entire string in
the input charArray.

In the B_BITMAP _SPACING and B_FIXED_SPACING modes, all characters have
integral widths (without a fractional part). For these modes, multiplying an
escapement by the font size should yield an integral value. In B_FIXED_SPACING

mode, all characters have the same escapement.

BFont • Member Functions 425

If a delta argument is provided, GetEscapements () will adjust the escapements it
reports so that, after multiplying by the font size, the character widths will include the
specified increments. An escapement_delta structure contains two values:

float nonspace

The amount to add to the width of each character with a visible glyph.

float space

The amount to add to each whitespace character (characters like B_TAB and
B_SPACE with an escapement but no visible glyph).

A similar argument can be passed to BView's Drawstring () to adjust the spacing of
the characters as they're drawn.

Edges

Edge values measure how far a character outline is inset from its left and right
escapement boundaries. GetEdges () putss the edge values in an array of edge_info

structures. Each structure has a left and a right data member, as follows:

typedef struct {
float left;

float right;

} edge_info

Edge values, like escapements, are stated in per-point-size units that need to be
multiplied by the font size.

The illustration below shows typical character edges. As in the illustration above, the
solid vertical lines mark escapement boundaries. The dotted lines mark off the part of
each escapement that's an edge, the distance between the character outline and the
escapement boundary:

Escapement
boundary

426 Chapter 4 • The Interface Kit

This is the normal case. The left edge is a positive value measured rightward from the
left escapement boundary. The right edge is a negative value measured leftward from
the right escapement boundary.

However, if the characters of a font overlap, the left edge can be a negative value and
the right edge can be positive. This is illustrated below:

Escapement
boundary

Negative edge ----4

Note that the italic "l" extends beyond its escapement to the right, and that the "JI'
begins before its escapement to the left. In this case, instead of separating the
adjacent characters, the edges determine how much they overlap.

Edge values are specific to each character and depend on nothing but the character
and the font. They don't take into account any contextual information; for example,
the right edge for italic "l" would be the same no matter what letter followed. Edge
values therefore aren't sufficient to decide how character pairs can be kerned.
Kerning is contextually dependent on the combination of two particular characters.

See also: StringWidth (), SetSpacing ()

GetFamilyAndStyle() see SetFamilyAndStyle()

GetHeight()

void GetHeight(font_height *height) const

Writes the three components that determine the height of the font into the structure
that the height argument refers to. A font_height structure has the following fields:

BFont • Member Functions

float ascent

How far characters can ascend above the baseline.

float descent

How far characters can descend below the baseline:

float leading

How much space separates lines (the distance between the descent of the line
above and the ascent of the line below).

427

If you need to round the font height, or any of its components, to an integral value
(to figure the spacing between lines of text on-screen, for example), you should
always round them up to reduce the amount of vertical character overlap.

See also: BView: : GetFontHeight ()

GetStringWidths() see StringWidth()

Get TruncatedStrings()

void GetTruncatedStrings(const char *inputStringArraJ{], int32 numStrings,
uint32 mode, float max Width,
char • truncatedStringArraJ{]) const

Truncates a set of strings so that each one (and an ellipsis to show where the string
was cut) will fit into the maxWidth horizontal space. This function is useful for
shortening long strings that are displayed to the user-for showing path names in a
list, for example.

The numStrings argument states how many strings in the inputStringArray should be
shortened. The mode argument states where the string should be cut. It can be:

----------------~~--··---~,----------------

B_TRUNCATE_BEGINNING Cut from the beginning of the string until it fits within the
specified width.

B_TRUNCATE_MIDDLE Cut from the middle of the string.

B_TRUNCATE_END Cut from the end of the string.

B_TRUNCATE_SMART Cut anywhere, but do so intelligently, so that all the strings remain
different after being cut. For example, if a set of similar path
names are passed in the inputStringArray, this mode would
attempt to cut from the identical parts of the path names and
preserve the parts that are different. This mode also pays attention
to word boundaries, separators, punctuation, and the like.
However, it's not implemented for the current release.

Each output string is written to the truncatedStringArra~into memory that the caller
must provide-at an index that matches the index of the full string in the
inputStringArray. The truncatedStringArray is a list of pointers to string buffers. Each

428 Chapter 4 • The Interface Kit

buffer should be allocated separately and should be at least 3 bytes longer than the
matching input string. The 3 bytes allow for the worst-case scenario:
GetTruncatedStrings () cuts a one-byte character from the input string and
replaces it with an ellipsis character, which takes three bytes in UTF-8 encoding, for a
net gain of 2 bytes. It then adds a null terminator for the third byte.

The output strings are null-terminated. The input strings should likewise be null
terminated.

See also: StringWidth ()

GetTunedlnfo(}, CountTuned()

void GetTunedlnfo(int32 *index, tuned_font_info *info) const

int32 CountTuned(void) const

These functions are used to get information about fonts that have been "tuned" to
look good when displayed on-screen. A tuned font is a set of character bitmaps,
originally produced from the standard outline font and then modified so that the
characters are well proportioned and spaced when displayed at the low resolution of
the screen (1 pixel per point).

Because it's a bitmap font, a tuned font captures a specific configuration of font
attributes, including size, style, shear, and rotation. A tuned font is a counterpart to an
outline font with the same settings. If a BView's current font has a tuned counterpart,
Drawstring () automatically chooses it when drawing on-screen. Tuned fonts are
not used for printing.

CountTuned () returns how many tuned fonts there are for the family and style
represented by the BFont object. GetTunedinfo () writes information about the
tuned font at index into the structure the info argument refers to. Indices begin at 0
and count only tuned fonts for the BFont's family and style. A tuned_font_info

structure has fields for five properties of the font:

typedef struct {
float size;

float shear;

float rotation;

uint32 flags;

uint16 face;

)tuned_font_info

With this information, you can set the BFont to values that match those of a tuned
font. When a BView draws to the screen, it picks a tuned font if there's one that
corresponds to its current font in all respects.

See also: get_font_family ()

BFont • Member Functions

PrintToStream()

void PrintToStream(void) const

Writes the following information about the font to the standard output:

family
style
size (in points)
shear (in degrees)
rotation (in degrees)
ascent
descent
leading

However, the information in printed on a single line rather than arranged vertically.

Rotation() see SetRotation()

SetEncoding(), Encoding()

void SetEncoding(uint8 encoding)

uint8 Encoding(void) canst

These functions set and return the encoding that maps character values to characters.
The following encodings are supported:

B_UNICODE_UTF8 (UTF-8)

B_IS0_8859_1 (Latin 1)

B_IS0_8859_2 (Latin 2)

B_IS0_8859_3 (Latin 3)

B_IS0_8859_4 (Latin 4)

B_IS0_8859_5 (Latin/Cyrillic)

B_IS0_8859_6 (Latin/Arabic)

B_IS0_8859_7 (Latin/Greek)

B_IS0_8859_8 (Latin/Hebrew)

B_IS0_8859_9 (Latin 5)

B_IS0_8859_10 (Latin 6)

B_MACINTOSH_ROMAN

UTF-8 is an 8-bit encoding for Unicode and is part of the Unicode standard. It matches
ASCII values for all 7-bit character codes, but uses multibyte characters for values over
127. The other encodings take only a single byte to represent a character; they
therefore necessarily encompass a far smaller set of characters. Most of them represent
standards in the ISO/IEC 8859 family of character codes that extend the ASCII set.
B_MACINTOSH_ROMAN stands for the standard encoding used by the Mac OS.

The encoding affects both input and output functions of the BView. It determines
how Drawstring () interprets the character values it's passed and also how
KeyDown () encodes character values for the keys the user pressed.

429

430 Chapter 4 • The Interface Kit

UTF-8 is the preferred encoding and the one that's most compatible with objects
defined in the software kits. For example, a BTextView expects all text it takes from
the clipboard or from a dragged and dropped message to be UTF-8 encoded. If it
isn't, the results are not defined. The more that applications stick with UTF-8
encoding, the more freely they'll be able to exchange data.

See also: "Character Encoding" on page 365 of this chapter, convert_to_utf8 (),
BView::DrawString(),BView::KeyDown()

SetFace(), Face()

void SetFace(uint16 face)

uintl 6 Face(void) const

These functions set and return a mask that record secondary characteristics of the
font, such as whether characters are underlined or drawn in outline. The values that
form the face mask have not been defined for this release.

SetFam ily AndStyle(), GetFam ily AndStyle(), Family AndStyle()

void SetFamilyAndStyle(const font_family family, canst font_style style)
void SetFamilyAndStyle(uint32 code)

void GetFamilyAndStyle(font_family *family, font_style •style) canst

uint32 FamilyAndStyle(void) const

SetFamilyAndStyle () sets the family and style of the font. The family passed to
this function must be one of the families enumerated by the get_font_family()
global function and style must be one of the styles associated with that family, as
reported by get_font_style (). If the family is NULL, SetFamilyAndStyle () sets
only the style; if style is NULL, it sets only the family.

GetFamilyAndStyle () writes the names of the current family and style into the
font_value and font_style variables provided.

Internally, the BFont class encodes each family and style combination as a unique
integer. FamilyAndStyle () returns that code, which can then be passed to
SetFamilyAndStyle () to set another BFont object. The integer code is not
persistent; its meaning may change when the list of installed fonts changes and when
the machine is rebooted.

See also: get_font_family ()

BFont • Member Functions 431

SetFlags(), Flags()

void SetFlags(uint32 flags)

uint32 Flags(void) canst

These functions set and return a mask that records various behaviors of the font.
Currently, there's just one flag, B_DISABLE_ANTIALIASING, which turns off all
antialiasing for characters displayed in the font. The default mask has antialiasing
turned on.

SetRotation(), Rotation()

void SetRotation(float rotation)

float Rotation(void) canst

These functions set and return the rotation of the baseline for characters displayed in
the font. The baseline rotates counterclockwise from an axis on the left side of the
character. The default (horizontal) baseline is at 0°. For example, this code:

BFont font;
font.SetRotation(45.0);
myView->SetFont(&font, B_FONT_ROTATION);
myView->DrawString("to the northeast");

would draw a string that extended upwards and to the right.

Rotation is not supported by some Interface Kit classes, including BTextView.

SetShear(), Shear()

void SetShear(float sheaf)

float Shear(void) canst

These functions set and return the angle at which characters are drawn relative to the
baseline. The default (perpendicular) shear for all font styles, including oblique and
italic ones, is 90.0°. The shear is measured counterclockwise and can be adjusted
within the range 45.0° (slanted to the right) through 135.0° (slanted to the left). If the
shear passed falls outside this range, it will be adjusted to the closest value within
range.

SetSize(), Size()

void SetSize(float size)

float Size(void) canst

432 Chapter 4 • The Interface Kit

These functions set and return the size of the font in points. Valid sizes range from
less than 1.0 point through 10,000 points.

See also: BView: : SetSize ()

SetSpacing(}, Spacing()
void SetSpacing(uint8 spacing)

uint8 Spacing(void) canst

These functions set and return the mode that determines how characters are
horizontally spaced relative to each other when they're drawn. The mode also affects
the width or "escapement" of each character as reported by GetEscapements ().

There are four spacing modes:

B_CHAR_SPACING

Positions each character according to its own inherent width, without adjustment.
This produces good results on high-resolution devices like printers, and is the best
mode to use for printing. However, when character widths are rounded for the
screen, the results are generally poor. Characters are not well-separated and can
collide or overlap at small font sizes.

B_STRING_SPACING

Keeps the string at the same width as it would have for B_CHAR_SPACING, but
optimizes the position of each character within that space. The position of a
character depends on the surrounding characters and the overall width of the
string. Collisions are unlikely in this mode, but because the width of the string
constrains what can be done, characters may touch each other.

This mode is preferred when it's important to have the screen match the printed
page-for example, to have lines break on-screen where they will break when the
display is printed. As the user types new characters into a line of text, the
application must redraw the entire line to add each character. The characters in
the line may therefore appear to "jiggle" or jump around as new ones are added.
New optimal positions are calculated for each character as the width and
composition of the string changes.

B_BITMAP_SPACING

Calculates the width of each character according to its bitmap appearance on
screen. The widths are chosen for optimal spacing, so that characters never collide
and rarely touch. This mode increases the B_CHAR_SPACING width of a string if
necessary to keep characters separated. (For a small-sized bold font, it may
increase the string width substantially.)

BFont • Member Functions 433

In this mode, the spacing between characters is regular and not contextually
dependent. Character widths are integral values. This is the best mode for drawing
small amounts of text in the user interface; it's the mode that BTextView objects
use and it works for both proportional and fixed-width fonts. However, the
spacing of text shown on-screen won't correspond to the spacing when the text is
printed in B_CHAR_SPACING mode.

B_FIXED_SPACING

Positions characters according to a constant, integral width. This mode can be
used for both proportional and fixed-width fonts, though it treats proportional
fonts as if they were fixed-width. All characters have the same escapement.

The B_CHAR_SPACING mode is the preferred mode for printing. It's also somewhat
faster than B_STRING_SPACING or B_BITMAP _SPACING. In all modes other than
B_STRING_SPACING, it's possible to change the character displayed at the end of a
string by erasing it and drawing a new character. However, in B_STRING_SPACING

mode, it's necessary to erase the entire string and redraw it. The longer the string, the
better the results.

The B_STRING_SPACING and B_BITMAP_SPACING modes are relevant only for font
sizes in a range of about 7.0 points to 18.0 points. Above that range,
B_CHAR_SPACING achieves reasonable results on-screen and may be used even
where one of the other two modes is specified. Below that range, the screen
resolution isn't great enough for the different modes to produce significantly different
results, so again B_CHAR_SPACING is used.

In addition, B_CHAR_SPACING is always used for rotated or sheared text and when
antialiasing is disabled.

See also: BView: :Drawstring (), GetEscapements ()

Shear() see SetShear()

Size() see SetSize()

Spacing() see SetSpacing()

StringWidth(), GetStringWidths()

float StringWidth(const char *string) const
float StringWidth(const char *string, int32 length) canst

void GetStringWidths(const char *stringAn-aJ{], canst int32 lengthArraJ{],

uint32 numStrings, float widthAn-aJ{]) canst

434 Chapter 4 • The Interface Kit

StringWidth () returns how much room is required to draw a string in the font. It
measures the characters encoded in length bytes of the string-or, if no length is
specified, the entire string up to the null character, "\O", which terminates it. The
return value totals the width of all the characters in coordinate units; it's the length of
the baseline required to draw the string.

GetStringWidth () provides the same information for a group of strings. It works
its way through the stringArray looking at a total of numStrings. For each string, it
gets the length at the corresponding index from the lengthArray and places the width
of the string in the widthArray at the same index.

These functions take all the attributes of the font-including family, style, size, and
spacing-into account.

See also: BView: : StringWidth ()

Operators
=(assignment)

BFont& operator =(canst BFont&)

Assigns one BFont object to another. After the assignment, the two objects are
identical to each other and do not share any data.

== (equality), != {inequality)

bool operator ==(canst BFont&) canst

bool operator !=(canst BFont&) canst

These operators test whether two BFont objects are identical in all respects. If all
settable font attributes are the same in both objects, they're equal. If not, they're
unequal.

BListltem
Derived from: public BArchivable

Declared in: be/interface/Listltem.h

Library: lib be.so

Overview
A BListltem is an object that can cooperate with a BListView, including a
BOutlineListView, to display one item in a list. The BListltem draws the item and

Blistltem • Constructor and Destructor 435

keeps track of its current state. The BListView manages the list, responds to messages,
provides its items with the graphics environment they need to draw, and calls upon
them to draw when needed.

BListltem is an abstract class; derived classes must implement a Drawitem () function
to draw the item. The BStringltem class is the only implementation of a BListitem
available in the Interface Kit. It draws the item as a line of text.

A BListltem records some properties that are relevant only if it's part of a
BOutlineListView-in particular, the level of the item in the outline and whether it's
expanded Cits subitems are displayable) or collapsed (its subitems are not
displayable). Other properties apply to all lists-for example, whether or not the item
is selected and whether it's enabled or disabled.

The class provides functions to set and return these properties. However, setting a
BListltem property doesn't by itself alter the display or inform the container BView.
The view communicates with the BListitem, but the item doesn't reciprocate and
communicate with the BListView. Therefore, once a BListitem has been added to a
list, it's generally best to manipulate it through BListView (and BOutlineListView)
functions, rather than directly through its own functions.

Hook Functions
Drawitem()

Must be implemented to draw the item.

Updateinfo ()

Can be implemented to update cached information.

Constructor and Destructor

Blistltem()

Blistltem(uint32 level= 0, bool expanded= true)
BListltem(BMessage *archive)

Marks the BListltem as being at the specified outline level and as controlling an
expanded section of the outline if the expanded flag is true or a collapsed section if
expanded is false. Outline levels are indicated by an index, with 0 as the outer
level, 1 for one level of indentation, 2 for two levels of indentation, and so on.

Initially, the item has a width and height of 0.0 coordinate units, is enabled, and is not
selected.

436

-BListltem()

virtual -BListltem(void)

Does nothing.

Member Functions

Archive()

Chapter 4 • The Interface Kit

virtual status_t Archive(BMessage •archive, bool deep= true) const

Calls the inherited version of Archive () , then adds four pieces of information to the
archive BMessage:

• The outline level of the item
• Whether the item controls a collapsed or an expanded part of the list
• Whether the item is currently selected or not
• Whether or not the item is currently enabled

See also: BArchi vable: : Archive () , Instantiate () static function

Deselect() see Se/ea()

Drawltem()

virtual void Drawltem(BView •owner, BRect itemRect, bool complete= false) = 0

Implemented by derived classes to draw the item in the itemRect portion of the
owner BView. If the complete flag is true, this function should touch every pixel in
the itemRect rectangle. If the flag is false, it can assume that background pixels are
already the correct color.

To draw the item, this function should call the graphic functions of the owner BView.
For example:

void Myitem:Drawitem(BView * owner, BRect itemRect, bool complete)
{

if (complete) {
rgb_color color;
if (Is Selected()) {

color = my_highlight_color;
else

color= owner->ViewColor();
owner->SetHighColor(color);
owner->FillRect(itemRect);

Blistltem • Member Functions 437

Drawitem () should be implemented to visually reflect the state of the item,
highlighting it if it's selected, dimming it if it's disabled, and so on. However, it should
not consider the outline level. If the level is important, the owner BView will have
already taken it into account in calculating the itemRect rectangle.

See also: BL is tView: : Draw ()

Height() see SetHeight()

lsEnabled() see SetEnab/ed()

lsExpanded() see SetExpanded()

lsSelected() see Select()

OutlineLevel()

uint32 Outlinelevel(void) const

Returns the outline level of the item. The greater the return value, the deeper the
level. The outermost level is 0.

See also: the BOutlineListView class

Select(), Deselect(), lsSelected()

void Select(void)

void Deselect(void)

bool lsSelected(void) const

Select () and Deselect () mark the item as being selected or unselected.
However, these functions don't inform the BListView of the change. To select and
deselect items that have been added to a view, call the container BListView's
Select () and Deselect () functions instead. Those functions update the display
on-screen and mark the BListltem accordingly.

IsSelected () returns true if the item is selected and false if not.

See also: BListView: : Select (), BListView: : Deselect ()

SetEnabled(}, lsEnabled()

void SetEnabled{bool enabled)

bool lsEnabled(void) const

438 Chapter 4 • The Interface Kit

SetEnabled () marks the BListltem as being enabled if the enabled flag is true, or
disabled if it is false. IsEnabled () returns the current enabled state of the item.

SetEnabled () doesn't alter how the item is displayed; you must take steps to
invalidate the region of the BView where the item is displayed so that Drawitem ()

will be called.

See also: BListView:: Invalidateitem()

SetExpanded(), lsExpanded()

void SetExpanded(bool expanded)

bool lsExpanded(void) const

SetExpanded () marks the item as controlling an expanded section of the list if the
expanded flag is true, or as controlling a collapsed section if expanded is false.

IsExpanded () returns the current state of the BListltem.

SetExpanded () doesn't affect the on-screen display. If the item is in a
BOutlineListView in a window, it's better to call that view's Collapse () and
Expand () functions so that the changes can take effect immediately.

See also: BOutlineListView: :Collapse ()

SetHeight(), SetWidth(), Height(), Width()

void SetHeight(float height)

void SetWidth(float width)

float Height(void) const

float Width(void) const

These functions set and return the width and height of the item. The item's
dimensions are adjusted when Update () is called.

See also: Update ()

Update()

virtual void Update(BView *owner, const BFont *fonf)

Modifies the width of the BListltem to match the width of the owner BView where it
will draw and modifies the item's height to fit the height of the BView's current font.
This function is called whenever an item is assigned to a BListView (including a
BOutlineListVIew) and when the owning object undergoes a change that might affect
the item.

BListView • Overview 439

Derived classes can augment this function to record the owner BView, cache the font,
query the owner about other aspects of the graphics environment, or take any other
action that's required to keep the item up to date.

Width{) see SetHeight()

BListView
Derived from: public BView, public Blnvoker

Declared in: be/interface/ListView.h

Library: libbe.so

Overview
A BListView displays a list of items the user can select and invoke. Each item is a kind
of BListitem object-typically a BStringltem, which simply draws a line of text. The
BListView manages the layout of the list and the interaction with the user; it leaves
the display of each item to the BListitem object. A BListitem is not a view and draws
only when called upon by the BListView.

A derived class, BOutlineListView, can arrange items in a hierarchical outline, indent
items to show the level of the hierarchy they occupy, and collapse and expand
sections of the hierarchy. A BListView, on the other hand, displays all items
unindented at a single level.

Lists and List Views

This class is based on the BList class of the Support Kit. It implements counterparts
for all BList member functions, so you can treat a BListView object just like a BList.
BListView simply makes the list visible.

BListView functions work identically to their BList counterparts, except for two things:

• A BListView assumes that the list contains pointers to BListitem objects, not void*
pointers.

• A BListView makes sure that the on-screen display is properly updated whenever
the items in the list change.

In both classes, the list keeps track of data pointers-void* pointers in the case of
BList and pointers to BListitems in the case of BListView. Adding an item to the list
adds only the pointer; the pointed-to object isn't copied.

440 Chapter 4 • The Interface Kit

Updating the List

When the contents of the list change, the BListView makes sure the visible list on
screen is updated. However, since it records only pointers to data, it can know that
something changed only when a BListltem is added or removed. If an item pointer
remains the same but the data the item displays is altered, the BListView won't know
about it. In this case, you must force the list to be redrawn (by calling the
Invalidateitem () function or BView's Invalidate ()).

Selecting and Invoking Items

The user can click an item in the list to select it and double-dick an item to both
select and invoke it. The user can also select and invoke items from the keyboard.
The navigation keys (such as Down Arrow, Home, and Page Up) select items; Enter
and the space bar invoke them.

By default, a BListView permits only one item to be selected at a time. However, at
construction and with the SetListType () function, you can set it up to allow
multiple selections. The user can make contiguous extensions to the current selection
by holding down a Shift key, and discontiguous extensions by holding down an
Option key.

The BListView highlights items as they're selected, but otherwise it doesn't define
what, if anything, should take place when the selection changes. You can determine
that yourself either by implementing a SelectionChanged () function in a derived
class or by registering a selection message (a BMessage object) with the BListView.
The function is called and the message is delivered to a target destination whenever
the user modifies the selection.

Similarly, the BListView doesn't define what it means to "invoke" an item. You can
register a separate invocation message that's sent whenever the user double-dicks an
item or presses Enter or the space bar while items are selected. For example, if the
user double-dicks an item in a list of file names, the message might tell the
BApplication object to open that file.

A BListView doesn't have default selection and invocation messages. Messages are
sent only if registered with the SetSelectionMessage () and Setinvoca

tionMessage () functions. Before sending either type of message, the BListView
adds information to it identifying itself and the items that are currently selected. See
the Invoke () function for details.

See also: the BList class in the Support Kit, the BOutlineListView and BListltem classes

BListView • Constructor and Destructor 441

Hook Functions
Ini tiateDrag ()

Can be implemented to permit users to drag items-for example, to reorder items
in the list.

SelectionChanged()

Can be implemented to take collateral action each time the selection changes.

Constructor and Destructor
BlistView()

BListView(BRect frame, const char •name,
list_view_type type= B_SINGLE_SELECTION_LIST,
uint32 resizingMode = B_FOLLOW _LEFT I B_FOLLOW _TOP,
uint32 flags = B_ WILL_DRA W I B_NAVIGABLE I
B_FRAM E_EVENTS)

BListView(BMessage •archive)

Initializes the new BListView. The frame, name, resizingMode, and flags arguments
are identical to those declared for the BView class and are passed unchanged to the
BView constructor.

The list type can be either:

B_SINGLE_SELECTION_LIST

B_MULTIPLE_SELECTION_LIST

The user can select only one item in the list at a time.
This is the default setting.

The user can select any number of items by holding
down an Option key (for discontiguous selections) or a
Shift key (for contiguous selections).

The list begins life empty. Call Additem () or AddList () to put items in the list. Call
Select () to select one of the items so that it's highlighted when the list is initially
displayed to the user.

See also: the BView constructor, Additem ()

-BlistView()

virtual -BListView(void)

Frees the selection and invocation messages, if any, and any memory allocated to
hold the list of items, but not the items themselves.

442

Static Functions

lnstantiateO

static BListView *lnstantiate(BMessage *archive)

Chapter 4 • The Interface Kit

Returns a new BListView object, allocated by new and created with the version of the
constructor that takes a BMessage archive. However, if the archive message doesn't
contain data for a BListView object, this function returns NULL.

See also: BArchi vable: : Instantiate (), instantiate_obj ect (), Archive ()

Member Functions

AddltemO

virtual bool Addltem(BListltem *item, int32 indeX)
virtual bool Addltem(BListltem *item)

Adds an item to the BListView at index-or, if no index is supplied, at the end of the
list. If necessary, additional memory is allocated to accommodate the new item.

Adding an item never removes an item already in the list. If the item is added at an
index that's already occupied, items currently in the list are bumped down one slot to
make room.

If index is out of range (greater than the current item count, or less than zero), this
function fails and returns false. Otherwise, it returns true.

See also: BList: :Additem()

AddListO

virtual bool Addlist(BList *list, int32 indeX)
virtual bool AddList(BList *list)

Adds the contents of another list to this BListView. The items from the BList are
inserted at index-or, if no index is given, they're appended to the end of the list. If
the index is out of range, the function fails and returns false. If successful, it returns
true.

The BListView doesn't check to be sure that all the items it adds from the list are
pointers to BListltem objects. It assumes that they are; if the assumption is false,
subsequent BListView operations will fail.

See also: Additem(), BList: :AddList ()

BListView • Member Functions 443

Archive()

virtual status_t Archive(BMessage *archive, bool deep= true) canst

Calls the inherited version of Archive (} , then adds the BListView's type
(B_SINGLE_SELECTION_LIST or B_MULTIPLE_SELECTION_LIST) and model
invocation and selection messages, if any, to the BMessage archive. If the deep flag is
true, all the items are also archived.

See also: BArchi vable: : Archive (), Instantiate () static function

AttachedT o Window()

virtual void AttachedToWindow(void)

Sets up the BListView and makes the BWindow to which it has become attached the
target for the messages it sends when items are selected or invoked-provided
another target hasn't already been set. In addition, this function calls Update () for
each item in the list to give it a chance to adjust its layout. The BListView's vertical
scroll bar is also adjusted.

This function is called for you when the BListView becomes part of a window's view
hierarchy.

See also: BView: : At tachedToWindow (} , Binvoker: : Set Target (} ,

BListitem::Update(}

Countltems()

int32 Countltems(void) canst

Returns the number of BListitems currently in the list.

See also: BList: : Count Items ()

CurrentSelection()

int32 CurrentSelection(int32 index = 0) canst

Returns the index of a currently selected item in the list, or a negative number if no
item is selected. The domain of the index passed as an argument is the current set of
selected items; the first selected item is at index 0, the second at index l, and so on,
even if the selection is not contiguous. The domain of the returned index is the set of
all items in the list.

444 Chapter 4 • The Interface Kit

To get all currently selected items, increment the passed index until the function
returns a negative number:

BListitem *item;
int32 selected;
while ((selected= myListView->CurrentSelection(i)) >= 0) {

item= ItemAt(selected);

See also: Select (}

DeselectQ, DeselectAllQ, DeselectExceptQ
void Deselect(int32 inde:x!'j

void DeselectAll(void)

void DeselectExcept(int32 start, int32 finish)

These functions deselect the item at index, all the items, or all the items except those
from index start through index finish.

See also: Select ()

DoForEach()

void DoForEach(bool (*June)(BListltem *))
void DoForEach(bool (*June)(BListltem •,void*), void *arg2)

Calls the June function once for each item in the BListView. BListltems are visited in
order, beginning with the first one in the list (index 0) and ending with the last. If a
call to June returns true, the iteration is stopped, even if some items have not yet
been visited.

June must be a function that takes one or two arguments. The first argument is a
pointer to the BListltem; the second argument, if June requires one, is passed to
DoForEach (} as arg2.

See also: BList: : DoForEach (}

DrawQ

virtual void Draw(BRect updateReef)

Calls upon every item in the updateReet area of the view to draw itself.

Draw () is called for you whenever the list view is to be updated or redisplayed; you
don't need to call it yourself. You also don't need to reimplement it; to change the

BListView • Member Functions 445

way items are drawn, define a new version of Drawitem () in a class derived from
BListitem.

See also: BView: :Draw(), BListitem: :Drawitem()

Firstltem() see ltemAt()

Frame Resized()

virtual void FrameResized(float width, float height)

Updates the on-screen display in response to a notification that the BListView's frame
rectangle has been resized. In particular, this function looks for a vertical scroll bar
that's a sibling of the BListView. It adjusts this scroll bar to reflect the way the list
view was resized, under the assumption that it must have the BListView as its target.

FrameResized () is called automatically at the appropriate times; you shouldn't call
it yourself.

See also: BView: :FrameResized()

Has Item()

bool Hasltem(BListltem *item) const

Returns true if item is in the list, and false if not.

See also: BList: :Hasitem()

lndexOf()

int32 lndexOf(BListltem *item) const
int32 lndexOf(BPoint *point) const

Returns the index where a particular item-or the item whose display rectangle
includes a particular point-is located in the list. If the item is in the list more than
once, the index returned will be the position of its first occurrence. To determine
whether an item lies at the specified point, only the y-coordinate value of the point is
considered.

If the item isn't in the list or the y-coordinate of the point doesn't intersect with the
data rectangle of the BListView, the return value will be a negative number.

See also: BList:: IndexOf ()

446 Chapter 4 • The Interface Kit

lnitiateDrag()

virtual bool lnitiateDrag(BPoint point, int32 index, bool wasSelected)

Implemented by derived classes to permit users to drag items. This function is called
from the BListView's MouseDown () function; it should initiate the drag-and-drop
operation and return true, or refuse to do so and return false. By default, it always
returns false.

The point that's passed to Ini tiateDrag () is the same as the point passed to
MouseDown () ; it's where the cursor was located when the user pressed the mouse
button. The index of the item under the cursor (the item that would be dragged) is
passed as the second argument, and the wasSelected flag indicates whether or not the
item was selected before the mouse button went down.

A BListView allows users to autoscroll the list by holding the mouse button down and
dragging outside its frame rectangle. If a derived class implements Ini tia teDrag ()

to drag an item each time the user moves the mouse with a button down, it will hide
this autoscrolling behavior. Therefore, derived classes typically permit users to drag
items only if they're already selected (if wasSelected is true). In other words, it takes
two mouse-down events to drag an item-one to select it and one to begin dragging
it.

See also: BView: : DragMessage ()

lnvalidateltem()

void lnvalidateltem(int32 index)

Invalidates the item at index so that an update message will be sent forcing the
BListView to redraw it.

See also: BView:: Invalidate ()

Invoke()

virtual status_t lnvoke(BMessage *message= NULL) const

Augments the Binvoker version of Invoke () to add three pieces of information to
each message the BListView sends:

Data name Type code

"when" B_INT64_TYPE

"source" B_POINTER_TYPE

"index" B_INT32_TYPE

Description

When the message is sent, as measured by the number of
microseconds since 12:00:00 AM 1970.

A pointer to the BListView object.

An array containing the index of every selected item.

BListView • Member Functions 447

This function is called to send both the selection message and the invocation
message. It can also be called from application code. The default target of the
message (established by AttachedToWindow{)) is the BWindow where the
BListView is located.

What it means to "invoke" selected items depends entirely on the invocaUon
BMessage and the receiver's response to it. This function does nothing but send the
message.

See also: Select (), SetinvocationMessage (), Binvoker: : SetTarget ()

lsEmptyQ
bool lsEmpty(void) canst

Returns true if the list is empty (if it contains no items), and false otherwise.

See also: MakeEmpty (), BList: : IsEmpty ()

lsltemSelectedQ

bool lsltemSelected(int32 index) canst

Returns true if the item at index is currently selected, and false if it's not.

See also: CurrentSelection ()

ltemAtQ, FirstltemQ, LastltemQ

BListltem *ltemAt(int32 index) canst

BListltem *Firstltem(void) canst

BListltem *Lastltem(void) canst

The first of these functions returns the BListltem at index, or NULL if the index is out
of range. The other two functions return the very first and very last items in the list, or
NULL if the list is empty. None of the functions alters the contents of the list-they
don't remove the returned item.

See also: Items (), BList: : Firstitem (), BList: : Last Item (),
BList: : ItemAt ()

ltemFrameQ

BRect ltemFrame(int32 index)

448 Chapter 4 • The Interface Kit

Returns the frame rectangle of the BListltem at index. The rectangle is stated in the
coordinate system of the BListView and defines the area where the item is drawn.
Items can differ in height, but all have the same width.

See also: Drawitem ()

Items()

const BListltem **ltems(void) const

Returns a pointer to the BListView's list of BListltems. You can index directly into the
list of items if you're certain that the index is in range:

BListitem *item= Items() [index];

Although the practice is discouraged, you can also step through the list of items by
incrementing the list pointer that Items () returns. Be aware that the list isn't null
terminated-you have to detect the end ofthe list by some other means. The simplest
method is to count items:

BListitem **ptr = myListView->Items();

for long i = myListView->Countitems(); i > O; i-
{

*ptr++;

You should never use the item's pointer to alter the contents of the list.

See also: DoForEach (), Sortitems (), BList: : Items ()

KeyDown()

virtual void KeyDown(const char *bytes, int32 numBytes)

Permits the user to operate the list using the following keys:

Keys

Up Arrow and Down Arrow

Page Up and Page Down

Home and End

Enter and the space bar

Perform Action

Select the items that are immediately before and immediately
after the currently selected item.

Select the items that are one viewful above and below the
currently selected item--or the first and last items if there's no
item a viewful away.

Select the first and last items in the list.

Invoke the current selection.

This function also incorporates the inherited BView version so that the Tab key can
navigate to another view.

BListView • Member Functions 449

KeyDown () is called to report B_KEY_DOWN messages when the BListView is the
focus view of the active window; you shouldn't call it yourself.

See also: BView: : KeyDown () , Select () , Invoke ()

Lastltem() see ltemAt()

Make Empty()

virtual void MakeEmpty(void)

Empties the BListView of all its items, without freeing the BListitem objects.

See also: IsEmpty (), Removeitem (), BList: : MakeEmpty ()

Make Focus()

virtual void MakeFocus(bool focused= true)

Overrides the BView version of MakeFocus () to draw an indication that the
BListView has become the focus for keyboard events when the focused flag is true,

and to remove that indication when the flag is false.

See also: BView: : MakeFocus ()

MouseDown()

virtual void MouseDown(BPoint poin~

Responds to B_MOUSE_DOWN messages by selecting items, invoking them (if the
mouse-down event is the second of a double-dick), and autoscrolling the list (when
the user drags with a mouse button down). This function also calls Ini tia teDrag ()

to give derived classes the opportunity to drag items. You can implement that
function; you shouldn't override (or call) this one.

See also: BView: :MouseDown (), Select (), Invoke (), InitiateDrag ()

Removeltem(), Removeltems()

virtual BListitem *Removeltem(int32 index)
virtual boo! Removeltem(BListitem *item)

virtual boo! Removeltems(int32 index, int32 coun~

Removeitem () removes a single item from the BListView. If passed an index, it
removes the item at that index and returns it. If there's no item at the index, it returns
NULL. If passed an item, this function looks for that particular item in the list, removes

450 Chapter 4 • The Interface Kit

it, and returns true. If it can't find the item, it returns false. If the item is in the list
more than once, this function removes only its first occurrence.

Removeitems () removes count number of items from the BListView, beginning with
the item at index. If the list doesn't contain count items between index and the end
of the list, this function removes as many items as there are.

The list is compacted after an item is removed. Therefore, you shouldn't try to empty
a list (or a range within a list) by removing items incrementing indices. You should
either start with the highest index and move towards the head of the list, or remove at
the same index (the lowest in the range) some number of times. As an example of the
latter, the following code removes the first five items in the list:

for (int32 i = O; i <= 4; i++)
myListView->Removeitem(O);

See also: MakeEmpty (), BList: : Removeitem ()

ScrollTo()

virtual void ScrollT o(BPoint point)
inline void ScrollT o(float x, float y)

Augments the BView version of Scroll To () to do some class-internal housekeeping
when the list is scrolled. For all practical purposes, these functions are identical to
their BView counterparts.

See also: BView: : Scroll To ()

ScrollT oSelection()

void ScrollT oSelection(void)

Scrolls the list so that the first item in the current selection is visible.

Select()

void Select(int32 index, bool extend= false)

void Select(int32 start, int32 finish, bool extend = false)

Selects the item located at index-or all the items from the start index through the
finish index-provided that none of the indices are out of range. If the extend flag is
false, as it is by default, this function removes the highlighting from the previously
selected item(s) and highlights the new selection, scrolling the list, if necessary, so
that at least one selected item is visible. However, if the extend flag is true, the
newly selected items are added to the current selection.

BListView • Member Functions 451

Select () can be called to set an initial selection in the list or change the current
selection. It permits the program to select a number of items, even for a
B_SINGLE_SELECTION_LIST list.

If this function succeeds in changing the selection, it calls SelectionChanged () to
notify the BListView. If a model selection message has been registered with the
BListView, it also calls Invoke () to send the message. If a message hasn't been
registered and SelectionChanged () hasn't been implemented, "selecting" items
simply means to highlight them and mark them as being selected for other functions,
such as CurrentSelection ().

Typically, BListViews are set up to send a message when items are invoked, but not
when they're selected.

See also: SetSelectionMessage (), Invoke (), SelectionChanged ()

SelectionChanged()

virtual void SelectionChanged(void)

Implemented by derived classes to do whatever they please when the selection
changes.

See also: Select ()

SetlnvocationMessage(), lnvocationMessage(),
lnvocationCommand()

virtual void SetlnvocationMessage(BMessage •message)

BMessage *lnvocationMessage(void) canst

uint32 lnvocationCommand(void) canst

These functions set and return information about the BMessage that the BListView
sends when currently selected items are invoked.

SetinvocationMessage () assigns message to the BListView, freeing any message
previously assigned. The message becomes the responsibility of the BListView object
and will be freed only when it's replaced by another message or the BListView is
freed; you shouldn't free it yourself. Passing a NULL pointer to this function deletes
the current message without replacing it.

When sending the message, the Invoke () function makes a copy of it and adds two
pieces of relevant information-"when" the message is sent and the "source"
BListView. These names should not be used for any data that you add to the
invocation message.

452 Chapter 4 • The Interface Kit

InvocationMessage () returns a pointer to the BMessage and
InvocationCommand () returns its what data member. The message belongs to the
BListView; it can be altered by adding or removing data, but it shouldn't be deleted.
To get rid of the current message, pass a NULL pointer to Setinvoca
tionMessage ().

See also: Invoke () , the BMessage class

SetlistType(), ListType()

virtual void SetListType(list_ view _type type)

list_ view _type List Type(void) const

These functions set and return the list type-whether or not it permits multiple
selections. The list_view_type must be either B_SINGLE_SELECTION_LIST or
B_MULTIPLE_SELECTION_LIST. The type is first set when the BListView is
constructed.

See also: the BListView constructor

SetSelectionMessage{), SelectionMessage(), SelectionCommand()

virtual void SetSelectionMessage(BMessage *message)

BMessage *SelectionMessage(void) const

uint32 SelectionCommand(void) const

These functions set, and return information about, the message that a BListView
sends whenever a new item is selected. They're exact counterparts to the functions
described above under SetinvocationMessage (), except that the selection
message is sent whenever an item in the list is selected, rather than when invoked.
It's more common to take action (to initiate a message) when invoking an item than
when selecting one.

See also: Select (), SetinvocationMessage (), Invoke (),the BMessage class

Sortltems()

void *Sortltems(int (*compareFunc)(const void*, const void*))

Rearranges the items in the list. The items are sorted using the compareFunc
comparison function passed as an argument. This function should return a negative
number if the first item is ordered before the second, a positive number if the second
comes before the first, and 0 if the two items are ordered equivalently.

BMenu • Overview 453

Although the comparison function is, in the usual manner for such functions,
declared to take two void* arguments, each argument should be a pointer to an item
in the list-in other words, a pointer to a BListltem pointer:

int compare_func(BListitem **firstArg, BListitem **secondArg);

See also: Items (), BList: : Sortitems ()

TargetedByScrollView()

virtual void T argetedByScrollView(BScrollView * vieu4

Notes the fact that the BListView is the target of a BScrollView and arranges for the
border of the BScrollView to be highlighted when the BListView is the current focus
view of the active window.

See also: BScroll View: : SetBorderHighlighted ()

Window Activated()

virtual void WindowActivated(bool active)

Makes sure that the BScrollView that targets the BListView is redrawn when the
window is activated and deactivated, if the BListView is the current focus view. This
gives the BScrollView a chance to highlight or unhighlight its border, as appropriate.

See also: BView: :WindowActivated ()

BMenu
Derived from: public BView

Declared in: be/interface/Menu.h

Library: lib be.so

Overview
A BMenu object displays a pull-down or pop-up list of menu items. Menus organize
the features of an application-the common ones as well as the more obscure-and
provide users with points of entry for most everything the application can do. The
arrangement of menus presents an outline of how the various parts of the application
fit together.

454 Chapter 4 • The Interface Kit

Menu Hierarchy

Menus are hierarchically arranged; an item in one menu can control another menu.
The controlled menu is a submenu; the menu that contains the item that controls it is
its supermenu. A submenu remains hidden until the user operates the item that
controls it; it becomes hidden again when the user is finished with it. A submenu can
have its own submenus, and those submenus can have submenus of their own, and
so on-although it becomes hard for users to find their way in a menu hierarchy that
becomes too deep.

The menu at the root of the hierarchy is displayed in a window as a list-perhaps a
list of just one item. Since it, unlike other menus, doesn't have a controlling item, it
must remain visible. A root menu is therefore a special kind of menu in that it
behaves more like an ordinary view than do other menus, which stay hidden. Root
menus should belong to the BMenuBar class, which is derived from BMenu. The
typical root menu is a menu bar displayed across the top of a window (hence the
name of the class).

Menu Items

Each item in a menu is a kind of BMenultem object. An item can be marked
(displayed with a check mark to its left), assigned a keyboard shortcut, enabled and
disabled, and given a "trigger" character that the user can type to invoke the item
when its menu is open on-screen.

Every item has a particular job to do. If an item controls a submenu, its job is to show
the submenu on-screen and hide it again. All other items give instructions to the
application. When invoked by the user, they deliver a BMessage to a target BHandler.
What the item does depends on the content of the BMessage and the BHandler's
response to it.

Hook Functions
ScreenLocation ()Can be implemented to have the menu appear on-screen at

some location other than the default.

Constructor and Destructor

BMenu()

BMenu(const char •name, menu_layout layout= B_ITEMS_IN_COLUMN)
BMenu(const char *name, float width, float height)
BMenu(BMessage *archive)

BMenu • Constructor and Destructor 455

protected:
BMenu(BRect frame, canst char •name, uint32 resizingMode, uint32 flags,

menu_layout layout, bool resizeToFi~

Initializes the BMenu object. The name of the object becomes the initial label of the
supermenu item that controls the menu and brings it to the screen. (It's also the name
that can be passed to BView's FindView () function.)

A new BMenu object doesn't contain any items; you need to call Additem () to set
up its contents.

A menu can arrange its items in any of three ways:

B_ITEMS_IN_COLUMN

The items are stacked vertically in a column, one on top of the other, as in a
typical menu.

B_ITEMS_IN_ROW

The items are laid out horizontally in a row, from end to end, as in a typical menu
bar.

B_ITEMS_IN MATRIX

The items are arranged in a custom fashion, such as a matrix.

Either B_ITEMS_IN_ROW or the default B_ITEMS_IN_COLUMN can be passed as the
layout argument to the public constructor. (A column is the default for ordinary
menus; a row is the default for BMenuBars.) This version of the constructor isn't
designed for B_ITEMS_IN_MATRIX layouts.

A BMenu object can arrange items that are laid out in a column or a row entirely on
its own. The menu will be resized to exactly fit the items that are added to it.

However, when items are laid out in a custom matrix, the menu needs more help.
First, the constructor must be informed of the exact width and height of the menu
rectangle. The version of the constructor that takes these two parameters is designed
just for matrix menus-it sets the layout to B_ITEMS_IN_MATRIX. Then, when items
are added to the menu, the BMenu object expects to be informed of their precise
positions within the specified area. The menu is not resized to fit the items that are
added. Finally, when items in the matrix change, you must take care of any required
adjustments in the layout yourself.

The protected version of the constructor is supplied for derived classes that don't
simply devise different sorts of menu items or arrange them in a different way, but
invent a different kind of menu. If the resizeToFit flag is true, it's expected that the
layout will be B_ITEMS_IN_COLUMN or B_ITEMS_IN_ROW. The menu will resize
itself to fit the items that are added to it. If the layout is B_ITEMS_IN_MATRIX, the
resizeToFit flag should be false.

456 Chapter 4 • The Interface Kit

-BMenu()

virtual -BMenu(void)

Deletes all the items that were added to the menu and frees all memory allocated by
the BMenu object. Deleting the items serves also to delete any submenus those items
control and, thus, the whole branch of the menu hierarchy.

Static Functions

Instantiate()

static BMenu *lnstantiate(BMessage *archive)

Returns a new BMenu object, allocated by new and created with the version of the
constructor that takes a BMessage archive. However, if the archive message doesn't
contain data for a BMenu object, Instantiate () returns NULL.

See also: BArchivable:: Instantiate (), instantiate_object (),Archive ()

Member Functions

Add Item()

bool Addltem(BMenultem *item)
bool Addltem(BMenuitem *item, int32 index)
bool Addltem(BMenultem *item, BRect frame)
bool Addltem(BMenu *submenu)
bool Addltem(BMenu * submenu, int32 index)
bool Addltem(BMenu * submenu, BRect frame)

Adds an item to the menu list at index-or, if no index is mentioned, to the end of
the list. If items are arranged in a matrix rather than a list, it's necessary to specify the
item's frame rectangle-the exact position where it should be located in the menu
view. Assume a coordinate system for the menu that has the origin, (0.0, 0.0), at the
left top corner of the view rectangle. The rectangle will have the width and height
that were specified when the menu was constructed.

The versions of this function that take an index (even an implicit one) can be used
only if the menu arranges items in a column or row (B_ITEMS_IN_COLUMN or
B_ITEMS_IN_ROW); it's an error to use them for items arranged in a matrix.
Conversely, the versions of this function that take a frame rectangle can be used only
if the menu arranges items in a matrix (B_ITEMS_IN_MATRIX); it's an error to use
them for items arranged in a list.

BMenu • Member Functions 457

If a submenu is specified rather than an item, Additem () constructs a controlling
BMenultem for the submenu and adds the item to the menu.

If it's unable to add the item to the menu-for example, if the index is out-of-range or
the wrong version of the function has been called-Additem () returns false. If
successful, it returns true.

See also: the BMenu constructor, the BMenultem class, Removeitem ()

AddSeparatorltem()

bool AddSeparatorltem(void)

Creates an instance of the BSeparatoritem class and adds it to the end of the menu
list, returning true if successful and false if not (a very unlikely possibility). This
function is a shorthand for:

BSeparatoritem *separator = new BSeparatoritem;
Additem(separator);

A separator serves only to separate other items in the list. It counts as an item and has
an indexed position in the list, but it doesn't do anything. It's drawn as a horizontal
line across the menu. Therefore, it's appropriately added only to menus where the
items are laid out in a column.

See also: Additem (), the BSeparatoritem class

Archive()

virtual status_t Archive(BMessage *archive, bool deep= true) canst

Calls the inherited version of Archive () , then archives the BMenu by recording its
layout and all current settings in the BMessage archive. If the deep flag is true, all of
the menu items are also archived.

See also: BArchivable: :Archive (), Instantiate () static function

Are TriggersEnabled() see SetTriggersEnabled()

AttachedT o Window()

virtual void AttachedToWindow(void)

Finishes initializing the BMenu object by laying out its items and resizing the BMenu
view to fit. This function is called for you each time the BMenu is assigned to a
window. For a submenu, that means each time the menu is shown on-screen.

See also: BView: :AttachedToWindow()

458 Chapter 4 • The Interface Kit

Countltems()
int32 Countltems(void) const

Returns the total number of items in the menu, including separator items.

Draw()
virtual void Draw(BRect updateRect)

Draws the menu. This function is called for you whenever the menu is placed on
screen or is updated while on-screen. It's not a function you need to call yourself.

See also: BView: : Draw ()

Find Item()
BMenultem *Findltem(const char *labe4 const
BMenultem *Findltem(uint32 command) const

Returns the item with the specified label-or the one that sends a message with the
specified command. If there's more than one item in the menu hierarchy with that
particular label or associated with that particular command, this function returns the
first one it finds. It recursively searches the menu by working down the list of items in
order. If an item controls a submenu, it searches the submenu before returning to
check any remaining items in the menu.

If none of the items in the menu hierarchy meet the stated criterion, Finditem ()

returns NULL.

Find Marked()
BMenultem *FindMarked(void)

Returns the first marked item in the menu list (the one with the lowest index), or
NULL if no item is marked.

See also: SetRadioMode (), BMenuitem:: SetMarked()

GetMaxContentWidth() see SetMaxContentWidth()

Hide(), Show()
protected:

void Hide(void)

void Show(bool selectFirst)
virtual void Show(void)

BMenu • Member Functions 459

These functions hide the menu (remove the BMenu view from the window it's in and
remove the window from the screen) and show it (attach the BMenu to a window
and place the window on-screen). If the selectFirst flag passed to Show () is true, the
first item in the menu will be selected when it's shown. If selectFirst is false, the
menu is shown without a selected item.

The version of Show () that doesn't take an argument simply calls the version that
does and passes it a selectFirst value of false.

These functions are not ones that you'd ordinarily call, even when implementing a
derived class. You'd need them only if you're implementing a nonstandard menu of
some kind and want to control when the menu appears on-screen.

See also: BView: : Show () , Track ()

lndexOf()

int32 lndexOf(BMenuitem *item) canst
int32 lndexOf(BMenu * submenu) canst

Returns the index of the specified menu item--or the item that controls the specified
submenu. Indices record the position of the item in the menu list. They begin at 0 for
the item at the top of a column or at the left of a row and include separator items.

If the menu doesn't contain the specified item, or the item that controls submenu, the
return value will be B_ERROR.

See also: Additem ()

I nvalidatelayout()
void lnvalidatelayout(void)

Forces the BMenu to recalculate the layout of all menu items and, consequently, its
own size. It can do this only if the items are arranged in a row or a column. If the
items are arranged in a matrix, it's up to you to keep their layout up-to-date.

All BMenu and BMenultem functions that change an item in a way that might affect
the overall menu automatically invalidate the menu's layout so it will be recalculated.
For example, changing the label of an item might cause the menu to become wider
(if it needs more room to accommodate the longer label) or narrower (if it no longer
needs as much room as before).

Therefore, you don't need to call InvalidateLayout () after using a kit function to
change a menu or menu item; it's called for you. You'd call it only when making
some other change to a menu.

See also: the BMenu constructor

460 Chapter 4 • The Interface Kit

ls Enabled() see SetEnabled()

lslabelFromMarked{) see SetLabe/FromMarked()

lsRadioMode() see SetRadioMode()

ltemAt(), SubmenuAt()

BMenultem *ltemAt(int32 indeX} const

BMenu *SubmenuAt(int32 indeX) const

These functions return the item at index-or the submenu controlled by the item at
index. If there's no item at the index, they return NULL. SubmenuAt () is a shorthand
for:

ItemAt(index)->Submenu()

It returns NULL if the item at index doesn't control a submenu.

See also: Additem ()

KeyDown()

virtual void KeyDown(const char *bytes, int32 numBytes)

Handles keyboard navigation through the menu. This function is called to respond to
messages reporting key-down events. It should not be called from application code.

See also: BView: : KeyDown ()

Layout()

protected:
menu_layout Layout(void) const

Returns B_ITEMS_IN_COLUMN if the items in the menu are stacked in a column from
top to bottom, B_ITEMS_IN_ROW if they're stretched out in a row from left to right, or
B_ITEMS_IN_MATRIX if they're arranged in some custom fashion. By default BMenu
items are arranged in a column and BMenuBar items in a row.

The layout is established by the constructor.

See also: the BMenu and BMenuBar constructors

MaxContentWidth() see SetMaxContentWidth()

BMenu • Member Functions 461

Removeltem()

BMenultem *Removeltem(int32 index)
bool Removeltem(BMenultem *item)
bool Removeltem(BMenu * submenu)

Removes the item at index, or the specified item, or the item that controls the
specified submenu. Removing the item doesn't free it.

• If passed an index, this function returns a pointer to the item so you can free it. It
returns a NULL pointer if the item couldn't be removed (for example, if the index
is out-of-range).

• If passed an item, it returns true if the item was in the list and could be removed,
and false if not.

• If passed a submenu, it returns true if the submenu is controlled by an item in
the menu and that item could be removed, and false otherwise.

When an item is removed from a menu, it loses its target; the cached value is set to
NULL. If the item controls a submenu, it remains attached to the submenu even after
being removed.

See also: Additem ()

Resize T oPreferred () see GetPreferredSize()

Screen Location()

protected:
virtual BPoint Screenlocation(void)

Returns the point where the left top corner of the menu should appear when the
menu is shown on-screen. The point is specified in the screen coordinate system.

This function is called each time a hidden menu (a submenu of another menu) is
brought to the screen. It can be overridden in a derived class to change where the
menu appears. For example, the BPopUpMenu class overrides it so that a pop-up
menu pops up over the controlling item.

See also: the BPopUpMenu class

SetEnabled(), lsEnabled()

virtual void SetEnabled(bool enabled)

bool lsEnabled(void) const

462 Chapter 4 • The Interface Kit

SetEnabled () enables the BMenu if the enabled flag is true, and disables it if
enabled is false. If the menu is a submenu, this enables or disables its controlling
item1 just as if SetEnabled () were called for that item. The controlling item is
updated so that it displays its new state, if it happens to be visible on-sc~een.

Disabling a menu disables its entire branch of the menu hierarchy. All items in the
menu, including those that control other menus, are disabled.

IsEnabled () returns true if the BMenu, and every BMenu above it in the menu
hierarchy, is enabled. It returns false if the BMenu, or any BMenu above it in the
menu hierarchy, is disabled.

See also: BMenuitem: : SetEnabled ()

SetltemMarginsQ, GetltemMarginsO

protected:
void SetltemMargins(float left, float top, float right, float bottom)

void GetltemMargins(float *left, float *top, float *right, float *bottom)

These functions set and get the margins around each item in the BMenu. For the
purposes of this function, you should assume that all items are enclosed in a
rectangle of the same size, one big enough for the largest item. Keyboard shortcuts
are displayed in the right margin and check marks in the left.

See also: SetMaxContentWidth ()

SetlabelFromMarkedQ, lslabelFromMarkedO
protected:

void SetlabelFromMarked(bool flag)

bool lslabelFromMarked(void)

SetLabelFromMarked () determines whether the label of the item that controls the
· menu (the label of the superitem) should be taken from the currently marked item

within the menu. If flag is true, the menu is placed in radio mode and the
superitem's label is reset each time the user selects a different item. If flag is false,
the setting for radio mode doesn't change and the label of the superitem isn't
automatically reset.

IsLabelFromMarked () returns whether the superitem's label is taken from the
marked item (but not necessarily whether the BMenu is in radio mode).

See also: SetRadioMode ()

BMenu • Member Functions

SetMaxContentWidth(), MaxContentWidth()

virtual void SetMaxContentWidth(float width)

float MaxContentWidth(void) const

463

These functions set and return the maximum width of an item's content area. The
content area is where the item label is drawn; it excludes the margin on the left
where a check mark might be placed and the margin on the right where a shortcut
character or a submenu symbol might appear. The content area is the same size for
all items in the menu.

Normally, a menu will be wide enough to accommodate its longest item. However,
items wider than the maximum set by SetMaxContentWidth () are truncated to fit.

See also: SetitemMargins (), BMenuitem: :TruncateLabel ()

SetRadioMode{), lsRadioMode()

virtual void SetRadioMode(bool flag)

bool lsRadioMode(void)

SetRadioMode () puts the BMenu in radio mode if flag is true and takes it out of
radio mode if flag is false. In radio mode, only one item in the menu can be
marked at a time. If the user selects an item, a check mark is placed in front of it
automatically (you don't need to call BMenuitem's SetMarked () function; it's called
for you). If another item was marked at the time, its mark is removed. Selecting a
currently marked item retains the mark.

IsRadioMode () returns whether the BMenu is currently in radio mode. The default
radio mode is false for ordinary BMenus, but true for BPopUpMenus.

SetRadioMode () doesn't change any of the items in the menu. If you want an initial
item to be marked when the menu is put into radio mode, you must mark it yourself.

When SetRadioMode () turns radio mode off, it calls SetLabelFromMarked () and
passes it an argument of false-turning off the feature that changes the label of the
menu's superitem each time the marked item changes. Similarly, when
SetLabelFromMarked () turns on this feature, it calls SetRadioMode () and passes
it an argument of true-turning radio mode on.

See also: BMenuitem: : SetMarked () , SetLabelFromMarked ()

Set TargetForltems()

virtual status_t SetT argetForltems(BHandler * handlery
virtual status_t SetT argetForltems(BMessenger * messengery

464 Chapter 4 • The Interface Kit

Assigns the same target handler or messenger to all the items in the menu. This
function is simply a convenient way to call SetTarget () for all of a menu's items
when they share the same target. It works through the list of BMenuitems in order,
calling SetTarget () for each one and passing it the specified BHandler or
BMessenger object. The proposed target is therefore subject to the restrictions
imposed by the SetTarget () function that BMenultem inherits from Binvoker in the
Application Kit. See that function for further information.

If it's unable to set the target of any item, SetTargetForitems () aborts and returns
the error it encountered. If successful in setting the target of all items, it returns B_OK.

This function doesn't work recursively; it acts only on items currently in the BMenu,
not on items in submenus nor on items that might be added later.

See also: Binvoker: : SetTarget ()

Set TriggersEnabled(), Are TriggersEnabled()
virtual void SetT riggersEnabled(bool flag)

bool Are T riggersEnabled{void) canst

SetTriggersEnabled () enables the triggers for all items in the menu if flag is
true and disables them if flag is false. AreTriggersEnabled () returns whether
the triggers are currently enabled or disabled. They're enabled by default.

Triggers are displayed to the user only if they're enabled, and only when keyboard
actions can operate the menu.

Triggers are appropriate for some menus, but not for others. SetTriggers

Enabled () is typically called to initialize the BMenu when it's constructed, not to
enable and disable triggers as the application is running. If triggers are ever enabled
for a menu, they should always be enabled; if they're ever disabled, they should
always be disabled.

See also: BMenuitem:: Set Trigger ()

Show() see Hide()

SubmenuAt() see ltemAt()

Superitem(), Supermenu()
BMenultem *Superitem(void) canst

BMenu *Supermenu(void) canst

BMenuBar • Overview 465

These functions return the supermenu item that controls the BMenu and the
supermenu where that item is located. The supermenu could be a BMenuBar object.
If the BMenu hasn't been made the submenu of another menu, both functions return
NULL.

See also: Additem ()

Track()
protected:

BMenultem *Track(bool openAnyway =false, BRect *clickToOpenRect = NULL)

Initiates tracking of the cursor within the menu. This function passes tracking control
to submenus (and submenus of submenus) depending on where the user moves the
mouse. If the user ends tracking by invoking an item, Track () returns the item. If
the user didn't invoke any item, it returns NULL. The item doesn't have to be located
in the BMenu; it could, for example, belong to a submenu of the BMenu.

If the openAnyway flag is true, Track () opens the menu and leaves it open even
though a mouse button isn't held down. This enables menu navigation from the
keyboard. If a clickToOpenRect is specified and the user has set the click-to-open
preference, Track () will leave the menu open if the user releases the mouse button
while the cursor is inside the rectangle. The rectangle should be stated in the screen
coordinate system.

Track() is called by the BMenu to initiate tracking in the menu hierarchy. You
would need to call it yourself only if you're implementing a different kind of menu
that starts to track the cursor under nonstandard circumstances.

BMenuBar
Derived from: public BMenu

Declared in: be/interface/MenuBar.h

Library: lib be.so

Overview
A BMenuBar is a menu that can stand at the root of a menu hierarchy. Rather than
appear on-screen when commanded to do so by a user action, a BMenuBar object
has a settled location in a window's view hierarchy, just like other views. Typically,
the root menu is the menu bar that's drawn across the top of the window. It's from
this use that the class gets its name.

466 Chapter 4 • The Interface Kit

However, instances of this class can also be used in other ways. A BMenuBar might
simply display a list of items arranged in a column somewhere in a window. Or it
might contain just one item, where that item controls a pop-up menu (a
BPopUpMenu object). Rather than look like a "menu bar," the BMenuBar object
would look something like a button.

The Key Menu Bar

The "real" menu bar at the top of the window usually represents an extensive menu
hierarchy; each of its items typically controls a submenu.

The user should be able to operate this menu bar from the keyboard (using the arrow
keys and Enter). There are two ways that the user can put the BMenuBar and its
hierarchy in focus for keyboard events:

• Clicking an item in the menu bar. If the "click to open" preference is not turned.
off, this opens the submenu the item controls so that it stays visible on-screen and
puts the submenu in focus.

• Pressing the Menu key or Command-Escape. This puts the BMenuBar in focus and
selects its first item.

Either method opens the entire menu hierarchy to keyboard navigation.

If a window's view hierarchy includes more than one BMenuBar object, the Menu
key (or Command-Escape) must choose one of them to put in focus. By default, it
picks the last one that was attached to the window. However, the SetKeyMenuBar ()
function defined in the BWindow class can be called to designate a different
BMenuBar object as the "key" menu bar for the window.

A Kind of BMenu

BMenuBar inherits most of its functions from the BMenu class. It reimplements the
At tachedToWindow () , Draw () , and MouseDown () functions that set up the object
and respond to messages, but these aren't functions that you'd call from application
code; they're called for you.

The only real function (other than the constructor) that the BMenuBar class adds to
those it inherits is SetBorder (),which determines how the list of items is bordered.

Therefore, for most BMenuBar operations-adding submenus, finding items,
temporarily disabling the menu bar, and so on-you must call inherited functions and
treat the object like the BMenu that it is.

See also: the BMenu class

BMenuBar • Constructor and Destructor

Constructor and Destructor
BMenuBar()

BMenuBar(BRect frame, canst char *name,
uint32 resizingMode = B_FOLLOW _LEFT _RIGHT
B_FOLLOW _TOP,
menu_layout layout= B_ITEMS_IN_ROW,
boo! resizeToFit = true)

BMenuBar(BMessage *archive)

467

Initializes the BMenuBar by assigning it a frame rectangle, a name, and a resiztng
Mode, just like other BViews. These values are passed up the inheritance hierarchy to
the BView constructor. The default resizing mode (B_FOLLOW_LEFT_RIGHT plus
B_FOLLOW_TOP) is designed for a true menu bar (one that's displayed along the top
edge of a window). It permits the menu bar to adjust itself to changes in the
window's width, while keeping it glued to the top of the window frame.

The layout argument determines how items are arranged in the menu bar. By default,
they're arranged in a row as befits a true menu bar. If an instance of this class is being
used to implement something other than a horizontal menu, items can be laid out in
a column (B_ITEMS_IN_COLUMN) or in a matrix (B_ITEMS_IN_MATRIX).

If the resizeToFit flag is turned on, as it is by default, the frame rectangle of the
BMenuBar will be automatically resized to fit the items it displays. This is generally a
good idea, since it relieves you of the responsibility of testing user preferences to
determine what size the menu bar should be. Because the font and font size for menu
items are user preferences, items can vary in size from user to user.

When resizeToFit is true, the frame rectangle determines only where the menu bar
is located, not how large it will be. The rectangle's left and top data members are
respected, but the right and bottom sides are adjusted to accommodate the items
that are added to the menu bar.

Two kinds of adjustments are made if the layout is B_ITEMS_IN_ROW, as it typically
is for a menu bar:

• The height of the menu bar is adjusted to the height of a single item.

• If the resizingMode includes B_FOLLOW_LEFT_RIGHT, the width of the menu bar is
adjusted to match the width of its parent view. This means that a true menu bar
(one that's a child of the window's top view) will always be as wide as the window.

Two similar adjustments are made if the menu bar layout is B_ITEMS_IN_COLUMN:

• The width of the menu bar is adjusted to the width of the widest item.

• If the resizingMode includes B_FOLLOW_TOP _BOTTOM, the height of the menu bar
is adjusted to match the height of its parent view.

468 Chapter 4 • The Interface Kit

After setting up the key menu bar and adding items to it, you may want to set the
minimum width of the window so that certain items won't be hidden when the
window is resized smaller.

Change the resizingMode, the layout, and the resizeToFit flag as needed for
BMenuBars that are used for a purpose other than to implement a true menu bar.

See also: the BMenu constructor, BWindow: : SetSi zeLimi ts ()

-BMenuBar()

virtual -BMenuBar(void)

Frees all the items and submenus in the entire menu hierarchy, and all memory
allocated by the BMenuBar.

Static Functions

Instantiate()

static BMenuBar *lnstantiate(BMessage •archive)

Returns a new BMenuBar object, allocated by new and created with the version of the
constructor that takes a BMessage archive. However, if the archive message doesn't
contain data for a BMenuBar object, this function returns NULL.

See also: BArchivable:: Instantiate (), instantiate_object (),Archive ()

Member Functions

Archive()

virtual status_t Archive(BMessage *archive, bool deep= true) const

Calls the inherited version of Archive () , which serves to archive the BMenuBar's
current state and, if the deep flag is true, all its menu items. This function then adds
the BMenuBar's border style to the BMessage archive.

Seealso:BArchivable: :Archive(), BMenu: :Archive(), Instantiate() static
function

AttachedT o Window()

virtual void AttachedToWindow(void)

Finishes the initialization of the BMenuBar by setting up the whole hierarchy of
menus that it controls, and by making the BWindow to which it has become attached

BMenuBar • Member Functions 469

the target handler for all items in the menu hierarchy, except for those items for
which a target has already been set.

This function also makes the BMenuBar the key menu bar, the BMenuBar object
whose menu hierarchy the user can navigate from the keyboard. If a window
contains more than one BMenuBar in its view hierarchy, the last one that's added to
the window gets to keep this designation. However, the key menu bar should always
be the real menu bar at the top of the window. It can be explicitly set with
BWindow's SetKeyMenuBar () function.

See also: BWindow: : SetKeyMenuBar ()

Border() see SetBorder()

Draw()

virtual void Draw(BRect updateRec~

Draws the menu-whether as a true menu bar, as some other kind of menu list, or as
a single item that controls a pop-up menu. This function is called as the result of
update messages; you don't need to call it yourself.

See also: BView: : Draw ()

Hide{), Show()

virtual void Hide(void)

virtual void Show(void)

These functions override their BMenu counterparts to restore the normal behavior for
views when they're hidden and unhidden. When an ordinary BMenu is hidden, the
window that displays it is also removed from the screen. But it would be a mistake to
remove the window that displays a . BMenuBar. Hiding a BMenuBar is like hiding a
typical view; only the view is hidden, not the window.

See also: BView: :Hide ()

MouseDown()

virtual void MouseDown(BPoint pain~

Initiates mouse tracking and keyboard navigation of the menu hierarchy. This
function is called to notify the BMenuBar of a mouse-down event.

See also: BView: : MouseDown ()

470

SetBorder(), Border()

void SetBorder(menu_bar_border bordef)

menu_bar_border Border(void) const

Chapter 4 • The Interface Kit

SetBorder () determines how the menu list is bordered. The border argument can
be any of three values:

B_BORDER_FRAME

B_BORDER_CONTENTS

B_BORDER_EACH_ITEM

The border is drawn around the entire frame rectangle.

The border is drawn around just the list of items.

A border is drawn around each item.

Border () returns the current setting. The default is B_BORDER_FRAME.

BMenuField
Derived from: public BView

Declared in: be/interface/MenuField.h

Library: lib be.so

Overview
A BMenuField object displays a labeled pop-up menu. It's a simple object that
employs a BMenuBar object to control a BMenu. All it adds to what a BMenuBar can
do on its own is a label and a more control-like user interface that includes keyboard
navigation.

""\ (BMenu (in a BMenuBar}

Violin:

Cello:

Pia.no:

The functions defined in this class resemble those of a BControl (SetLabel () ,

IsEnabled ()), especially a BTextControl (SetDi vider (), Alignment ()).

However, unlike a real BControl object, a BMenuField doesn't maintain a current

BMenuField • Static Functions 471

value and it can't be invoked to send a message. All the control work is done by
items in the BMenu.

Constructor and Destructor
BMenuField()

BMenuField(BRect frame, canst char *name,
canst char *label,
BMenu *menu,
uint32 resizingMode = B_FOLLOW _LEFT I B_FOLLOW _TOP,
uint32flags = B_WILL_DRAW I B_NAVIGABLE)

BMenuField(BMessage •archive)

Initializes the BMenuField object with the specified frame rectangle, name,
resizingMode, and flags. These arguments are the same as for any BView object and
are passed unchanged to the BView constructor. When the object is attached to a
window, the height of its frame rectangle will be adjusted to fit the height .of the text
it displays, which depends on the user's preferred font for menus.

By default, the frame rectangle is divided horizontally in half, with the label displayed
on the left and the menu on the right. This division can be changed with the
SetDi vider () function. The menu is assigned to a BMenuBar object and will pop
up under the user's control. For most uses, the menu should be a BPopUpMenu
object.

-BMenuField()

virtual -BMenuField(void)

Frees the label, the BMenuBar object, and other memory allocated by the
BMenuField.

Static Functions
Instantiate()

static BMenuField *lnstantiate(BMessage *archive)

Returns a new BMenuField object, allocated by new and created with the version of
the constructor that takes a BMessage archive. However, if the archive message
doesn't contain data for a BMenuField object, this function returns NULL.

See also: BArchi vable: : Instantiate (), instantiate_obj ect (), Archive ()

472 Chapter 4 • The Interface Kit

Member Functions

Alignment() see SetAlignment()

Archive()

virtual status_t Archive(BMessage *archive, bool deep= true) const

Calls the inherited version of Archive () , which will, in the normal course of things,
archive the child BMenuBar and the BMenu it displays, provided the deep flag is
true. This function then adds the label, divider, and current state of the BMenuField
to the BMessage archive.

See also: BArchivable: :Archive (), Instantiate () static function

AttachedToWindow(), AllAttached()

virtual void AttachedToWindow(void)

virtual void AllAttached(void)

These functions override their BView counterparts to make the BMenuField's
background color match the color of its parent view and to adjust the height of the
view to the height of the BMenuBar child it contains. The height of the child depends
on the size of the user's preferred font for menus.

See also: BView: : At tachedToWindow ()

Divider() see SetDivider()

Draw()

virtual void Draw(BRect updateRect)

Overrides the BView version of this function to draw the view's border and label. The
way the menu field is drawn depends on whether it's enabled or disabled and
whether or not it's the current focus for keyboard actions.

See also: BView: : Draw ()

ls Enabled() see SetEnabled()

Key Down()

virtual void KeyDown(const char *bytes, int32 numBytes)

BMenuField • Member Functions

Augments the BView version of KeyDown () to permit keyboard navigation to and
from the view and to allow users to open the menu by pressing the space bar.

See also: BView: : KeyDown ()

Label() see SetLabel()

473

Make Focus()

virtual void MakeFocus(bool focused)

Augments the BView version of MakeFocus () to enable keyboard navigation. This
function calls Draw () when the BMenuField becomes the focus view and when it
loses that status.

See also: BView: : MakeFocus ()

Menu{), MenuBar()

BMenu *Menu(void) const

BMenuBar *MenuBar(void) const

Menu () returns the BMenu object that pops up when the user operates the
BMenuField; MenuBar () returns the BMenuBar object that contains the menu. The
BMenuBar is created by the BMenuField; the menu is assigned to it during
construction.

See also: the BMenuField constructor

MouseDown()

virtual void MouseDown(BPoint point)

Overrides the BView version of MouseDown () to enable users to pop up the menu
using the mouse, even if the cursor isn't directly over the menu portion of the bounds
rectangle.

See also: BView: :MouseDown ()

SetAlignment{), Alignment()

virtual void SetAlignment(alignment labe4

alignment Alignment(void) const

These functions set and return the alignment of the label in its portion of the frame
rectangle.

474 Chapter 4 • The Interface Kit

B_ALIGN_LEFT

B_ALIGN_RIGHT

The label is aligned at the left side of the bounds rectangle.

B_ALIGN_CENTER

The label is aligned at the right boundary of its portion of the bounds
rectangle.

The label is centered in its portion of the bounds rectangle.

The default is B_ALIGN_LEFT.

SetDivider(), Divider()

virtual void SetDivider(float xCoordinate)

float Divider(void) const

These functions set and return the x coordinate value that divides the bounds
rectangle between the label's portion on the left and the portion that holds the menu
on the right. The coordinate is expressed in the BMenuField's coordinate system.

The default divider splits the bounds rectangle in two equal sections. By resetting it,
you can provide more or less room for the label or the menu.

SetEnabled(), lsEnabled()

virtual void SetEnabled(bool enabled)

bool lsEnabled(void) const

SetEnabled () enables the BMenuField if the enabled flag is true, and disables it if
the flag is false. IsEnabled () returns whether or not the object is currently
enabled. When disabled, the BMenuField doesn't respond to mouse and keyboard
manipulations.

If the enabled flag changes the current state of the object, SetEnabled () causes the
view to be redrawn, so that its new state can be displayed to the user.

SetLabel(), Label()

virtual void Setlabel(const char *string)

const char *Label(void) const

SetLabel () frees the current label and, if the argument it's passed is not NULL,
replaces it with a copy of string. Label () returns the current label. The string it
returns belongs to the BMenuField object.

See also: the BMenuField constructor

BMenultem • Overview 475

Window Activated()

virtual void WindowActivated(bool active)

Makes sure that the BMenuField is redrawn when the window is activated and
deactivated, provided that it's the current focus view.

See also: BView: :WindowActivated()

BMenultem
Derived from: public Blnvoker, public BArchivable

Declared in: be/interface/Menultem.h

Library: lib be.so

Overview
A BMenultem object displays one item within a menu and contains the state
associated with the item. By default, menu items are displayed simply as textual
labels, like "Format" or "Save As ... ". Derived classes can be defined to draw
something other than a label-or something in addition to the label.

Kinds of Items

Some menu items set up the menu hierarchy by giving users access to submenus. A
submenu remains hidden until the user operates the item that controls it.

Other items accomplish specific actions. When the user invokes the item, it sends a
message to a target BLooper and BHandler, usually the window where the menu at
the root of the hierarchy (a BMenuBar object) is displayed. The action that the item
initiates, or the state that it sets, depends entirely on the message and the target's
response to it.

The message and the target can be customized for every item. BMenultem derives in
part from the Blnvoker class, so each item retains a model for the BMessage it sends
and can have a target that's different from other items in the same menu.

Items can also have a visual presence, but do nothing. Instances of the
BSeparatorltem class, which is derived from BMenultem, serve only to visually
separate groups of items in the menu.

476 Chapter 4 • The Interface Kit

Shortcuts and Triggers

Any menu item (except for those that control submenus) can be associated with a
keyboard shortcut, a character the user can type in combination with a Command key
(and possibly other modifiers) to invoke the item. The shortcut character is displayed
in the item to the right of the label. All shortcuts for menu items require the user to
hold down the Command key.

A shortcut works even when the item it invokes isn't visible on-screen. It, therefore,
has to be unique within the window (within the entire menu hierarchy).

Every menu item is also associated with a trigger, a character that the user can type
(without the Command key) to invoke the item. The trigger works only while the
menu is both open on-screen and can be operated using the keyboard. It therefore
must be unique only within a particular branch of the menu hierarchy (within the
menu).

The trigger is one of the characters that's displayed within the item-either the
keyboard shortcut or a character in the label. When it's possible for the trigger to
invoke the item, the character is underlined. Like shortcuts, triggers are case
insensitive.

For an item to have a keyboard shortcut, the application must explicitly assign one.
However, by default, the Interface Kit chooses and assigns triggers for all items. The
default choice can be altered by the SetTrigger () function.

Marked Items

An item can also be marked (with a check mark drawn to the left of the label) in
order to indicate that the state it sets is currently in effect. Items are marked by the
SetMarked () function. A menu can be set up so that items are automatically marked
when they're selected and exactly one item is marked at all times. (See
SetRadioMode () in the BMenu class.)

Disabled Items

Items can also be enabled or disabled (by the SetEnabled () function). A disabled
item is drawn in muted tones to indicate that it doesn't work. It can't be selected or
invoked. If the item controls a specific action, it won't post the message that initiates
the action. If it controls a submenu, it will still bring the submenu to the screen, but
all the items in submenu will be disabled. If an item in the submenu brings its own
submenu to the screen, items in that submenu will also be disabled. Disabling the
superitem for a submenu in effect disables a whole branch of the menu hierarchy.

See also: the BMenu class, the BSeparatorltem class

BMenultem • Constructor and Destructor 477

Hook Functions
All BMenuitem hook functions are protected. They should be implemented only if you
design a special type of menu item that displays something other than a textual label.

Draw()

Draws the entire item; can be reimplemented to draw the item in a different way.

DrawContents ()

Draws the item label; can be reimplemented to draw something other than a label.

GetContentSize ()

Provides the width and height of the item's content area, which is based on the
length of the label and the current font; can be reimplemented to provide the size
required to draw something other than a label.

Highlight ()

Highlights the item when it's selected; can be reimplemented to do highlighting in
some way other than the default.

TruncateLabel ()

Cuts characters from the item's label so the item will fit in the space provided; can
be reimplemented to cut intelligently taking the content of the label into account.

Constructor and Destructor
BMenultem()

BMenultem(const char *label, BMessage *message,
char shortcut= NULL, uint32 modifiers= NULL)

BMenultem(BMenu *submenu, BMessage *message= NULL)

BMenultem(BMessage *archive)

Initializes the BMenuitem to display label (which can be NULL if the item belongs to
a derived class that's designed to display something other than text) and assigns it a
model message (which also can be NULL).

Whenever the user invokes the item, the model message is copied and the copy is
posted and marked for delivery to the target handler. Three pieces of information are
added to the copy before it's posted:

Data name

"when"

"source"

"index"

Type code

B_INT64_TYPE

B_POINTER_TYPE

B_INT32_TYPE

Description

The time the item was invoked, as measured by the number
of microseconds since 12:00:00 AM January 1, 1970.

A pointer to the BMenuitem object.

The index of the item, its ordinal position in the menu.
Indices begin at 0.

478 Chapter 4 • The Interface Kit

These names should not be used for any data that you place in the message.

By default, the target of the message is the window associated with the item's menu
hierarchy-the window where the BMenuBar at the root of the hierarchy is located.
Another target can be designated by calling the SetTarget () function.

The constructor can also optionally set a keyboard shortcut for the item. The
character that's passed as the shortcut parameter will be displayed to the right of the
item's label. It's the accepted practice to display uppercase shortcut characters only,
even though the actual character the user types may not be uppercase.

The modifiers mask, not the shortcut character, determines which modifier keys the
user must hold down for the shortcut to work-including whether the Shift key must
be down. The mask can be formed by combining any of the modifiers constants,
especially these:

B_SHIFT_KEY

B_CONTROL_KEY

B_OPTION_KEY

B_COMMAND_KEY

However, B_COMMAND_KEY is required for all keyboard shortcuts; it doesn't have to
be explicitly included in the mask. For example, setting the shortcut to 'U' with no
modifiers would mean that the letter 'U' would be displayed alongside the item label
and Command-u would invoke the item. The same shortcut with a B_SHIFT_KEY

modifiers mask would mean that the uppercase character (Command-Shift-[}) would
invoke the item.

If the BMenultem is constructed to control a submenu, it can't take a shortcut and it
typically doesn't post messages'-its role is to bring up the submenu. However, it can
be assigned a model message if the application must take some collateral action when
the submenu is opened. The item's initial label will be taken from the name of the
submenu. It can be changed after construction by calling SetLabel () .

See also: Binvoker: : Set Target (), Binvoker: : SetMessage (), SetLabel ()

-BMenultem()

virtual -BMenultem(void)

Frees the item's label and its model BMessage object. If the item controls a submenu,
that menu and all its items are also freed. Deleting a BMenultem destroys the entire
menu hierarchy under that item.

BMenultem • Member Functions 479

Static Functions

Instantiate()

static BMenultem *lnstantiate(BMessage *archive)

Returns a new BMenultem object, allocated by new and created with the version of
the constructor that takes a BMessage archive. However, if the archive message
doesn't contain data for a BMenultem object, Instantiate () returns NULL.

See also: BArchi vable: : Instantiate (), instantiate_obj ect (), Archive ()

Member Functions

Archive()

virtual status_t Archive(BMessage *archive, bool deep = true) const

Calls the inherited version of Archive () , then adds a complete description of the
item to the BMessage archive, including its label, shortcut, trigger, and whether it's
marked or not. If the deep flag is true and the BMenultem controls a submenu, this
function also adds the submenu to the archive.

See also: BArchivable: :Archive (),Instantiate () static function

Contentlocation()

protected:
BPoint Contentlocation(void) const

Returns the left top corner of the content area of the item, in the coordinate system of
the BMenu to which it belongs. The content area of an item is the area where it
displays its label (or whatever graphic substitutes for the label). It doesn't include the
part of the item where a check mark or a keyboard shortcut could be displayed, nor
the border and background around the content area.

You would need to call this function only if you're implementing a DrawContent ()
function to draw the contents of the menu item (likely something other than a label).
The content rectangle can be calculated from the point returned by this function and
the size specified by GetContentSize ().

If the item isn't part of a menu, the return value is indeterminate.

See also: GetContentSize (), DrawContent ()

480 Chapter 4 • The Interface Kit

Draw(}, DrawContent()

protected:
virtual void Draw(void)

virtual void DrawContent(void)

These functions draw the menu item and highlight it if it's currently selected. They're
called by the Draw () function of the BMenu where the item is located whenever the
menu is required to display itself; they don't need to be called from within
application code.

However, they can both be overridden by derived classes that display something
other than a textual label. The Draw () function is called first. It draws the
background for the entire item, then calls DrawContent () to draw the label within
the item's content area. After DrawContent () returns, it draws the check mark (if the
item is currently marked) and the keyboard shortcut (if any). It finishes by calling
Highlight () if the item is currently selected.

Both functions draw by calling functions of the BMenu in which the item is located.
For example:

void Myitem::DrawContent()
{

Menu()->DrawBitmap(image);

A derived class can override either Draw () , if it needs to draw the entire item, or
DrawContent (), if it needs to draw only within the content area. A Draw () function
can find the frame rectangle it should draw within by calling the BMenultem's
Frame () function; a DrawContent () function can calculate the content area from
the point returned by ContentLocation () and the dimensions provided by
GetContentSize().

When DrawContent () is called, the pen is positioned to draw the item's label and
the high color is appropriately set. The high color may be a shade of gray, if the item
is disabled, or black if it's enabled. If some other distinction is used to distinguish
disabled from enabled items, DrawContent () should check the item's current state
by calling IsEnabled ().

NOTE

If a derived class implements its own DrawContent () function, but still wants
to draw a textual string, it should do so by assigning the string as the BMenu
Item's label and calling the inherited version of DraWContent (), not by calling

BMenultem • Member Functions

Drawstring () . This preserves the BMenultem's ability to display a trigger
character in the string.

See also: Highlight (), Frame (), ContentLocation (), GetContentSize ()

Frame()

BRect Frame(void) const

481

Returns the rectangle that frames the entire menu item, in the coordinate system of
the BMenu to which the item belongs. If the item hasn't been added to a menu, the
return value is indeterminate.

See also: BMenu: :Additem ()

GetContentSize()

protected:
virtual void GetContentSize(float *width, float *height)

Writes the size of the item's content area into the variables referred to by width and
height. The content area of an item is the area where its label (or whatever substitutes
for the label) is drawn.

A BMenu calls GetContentSize () for each of its items as it arranges them in a
column or a row; the function is not called for items in a matrix. The information it
provides helps determine where each item is located and the overall size of the menu.

GetContentSize () must report a size that's large enough to display the content of
the item (and separate one item from another). By default, it reports an area just large
enough to display the item's label. This area is calculated from the label and the
BMenu's current font.

If you design a class derived from BMenultem and implement your own Draw () or
DrawContent () function, you should also implement a GetContentSize ()
function to report how much room will be needed to draw the item's contents.

See also: DrawContent (), ContentLocation ()

Highlight()

protected:
virtual void Highlight(bool flag)

Highlights the menu item when flag is true, and removes the highlighting when flag
is false. Highlighting simply inverts all the colors in the item's frame rectangle
(except for the check mark).

482 Chapter 4 • The Interface Kit

This function is called by the Draw () function whenever the item is selected and
needs to be drawn in its highlighted state. There's no reason to call it yourself, unless
you define your own version of Draw () . However, it can be reimplemented in a
derived class, if items belonging to that class need to be highlighted in some way
other than simple inversion.

See also: Draw ()

Invoke()

private:
virtual status_t lnvoke(BMessage *message= NULL)

Augments the Binvoker version of Invoke () to ensure that only enabled menu items
that are attached to a menu hierarchy can be invoked. This function appropriately
marks items when the user invokes them. Before sending a message, it adds "when",
"source", and "index" field to it, as explained under the BMenultem constructor.

See also: Binvoker : : Invoke ()

lsEnabled() see SetEnab/ed()

is Marked() see SetMarked()

lsSelected()

protected:
bool lsSelected(void) const

Returns true if the menu item is currently selected, and false if not. Selected items
are highlighted.

Label() see SetLabel()

Menu()

BMenu *Menu(void) const

Returns the menu where the item is located, or NULL if the item hasn't yet been
added to a menu.

See also: BMenu: : AddI tern ()

BMenultem • Member Functions

SetEnabled(), lsEnabled()

virtual void SetEnabled(bool enabled)

bool lsEnabled(void) const

483

SetEnabled () enables the BMenuitem if the enabled flag is true, disables it if
enabled is false, and updates the item if it's visible on-screen. If the item controls a
submenu, this function calls the submenu's SetEnabled () virtual function, passing
it the same flag. This ensures that the submenu is enabled or disabled as well.

IsEnabled () returns true if the BMenuitem is enabled, its menu is enabled, and all
menus above it in the hierarchy are enabled. It returns false if the item is disabled
or any objects above it in the menu hierarchy are disabled.

Items and menus are enabled by default.

When using these functions, keep in mind that:

• Disabling a BMenuitem that controls a submenu serves to disable the entire menu
hierarchy under the item.

• Passing an argument of true to SetEnabled () is not sufficient to enable the
item if it's located in a disabled branch of the menu hierarchy. It can only undo a
previous SetEnabled () call (with an argument of false) on the same item.

See also: BMenu: : SetEnabled ()

SetLabel(), Label()

virtual void Setlabel(const char *string)

const char *Label(void) const

SetLabel () frees the item's current label and copies string to replace it. If the menu
is visible on-screen, it will be redisplayed with the item's new label. If necessary, the
menu will become wider (or narrower) so that it fits the new label.

The Interface Kit calls this virtual function to:

• Set the initial label of an item that controls a submenu to the name of the
submenu, and

• Subsequently set the item's label to match the marked item in the submenu, if the
submenu was set up to have this feature.

Label () returns a pointer to the current label.

See also: BMenu: : SetLabelFromMarked (), the BMenuitem constructor

484

SetMarked(}, lsMarked()

virtual void SetMarked(bool flag)

bool lsMarked(void) const

Chapter 4 • The Interface Kit

SetMarked () adds a check mark to the left of the item label if flag is true, or
removes an existing mark if flag is false. If the menu is visible on-screen. it's
redisplayed with or without the mark.

IsMarked () returns whether the item is currently marked.

See also: BMenu: : SetLabelFrornMarked (), BMenu: : FindMarked ()

SetShortcut(), Shortcut()

virtual void SetShortcut(char shortcut, uint32 modifiers)

char Shortcut(uint32 *modifiers= NULL) const

SetShortcut () sets the shortcut character that's displayed at the right edge of the
menu item and the set of modifiers that are associated with the character. These two
arguments work just like the arguments passed to the BMenultem constructor. See
the constructor for a more complete description.

Shortcut () returns the character that's used as the keyboard shortcut for invoking
the item, and writes a mask of all the modifier keys the shortcut requires to the
variable referred to by modifiers. Since the Command key is required to operate the
keyboard shortcut for any menu item, B_COMMAND_KEY will always be part of the
modifiers mask. The mask can also be tested against the B_CONTROL_KEY,

B_OPTION_KEY, and B_SHIFT_KEY constants.

The shortcut is initially set by the BMenultem constructor.

See also: the BMenuitem constructor

SetTrigger(), Trigger()

virtual void SetTrigger(char trigget')

char Trigger(void) const

SetTrigger () sets the trigger character that the user can type to invoke the item
while the item's menu is open on-screen. If a trigger is not set, the Interface Kit will
select one for the item, so it's not necessary to call Set Trigger ().

The character passed to this function has to match a character displayed in the item
either the keyboard shortcut or a character in the label. The case of the character
doesn't matter; lowercase arguments will match uppercase characters in the item and

BMenultem • Member Functions 485

uppercase arguments will match lowercase characters. When the item can be invoked
by its trigger, the trigger character is underlined.

If more than one character in the item matches the character passed, SetTrigger ()

tries first to mark the keyboard shortcut. Failing that, it tries to mark an uppercase
letter at the beginning of a word. Failing that, it marks the first instance of the
character in the label.

If the trigger doesn't match any characters in the item, the item won't have a trigger,
not even one selected by the system.

Trigger () returns the character set by Set Trigger (), or NULL if SetTrigger ()

didn't succeed or if Set Trigger () was never called and the trigger is selected
automatically.

See also: BMenu: : SetTriggersEnabled ()

Shortcut() see SetShortcut()

Submenu()
BMenu *Submenu(void) canst

Returns the BMenu object that the item controls, or NULL if the item doesn't control a
submenu.

See also: the BMenuitem constructor, the BMenu class

Trigger{) see Set Trigger()

Truncatelabel()
protected:

virtual void Truncatelabel(float maxWidth, char *newLabe~

Removes characters from the middle of the item label and replaces them with an
ellipsis. This is done so that the label will fit within maxWidth coordinate units. The
shortened string is copied into the newLabel buffer.

This function is called by the. BMenultem when it draws the item's label, but only if
it's necessary to fit a long item into a smaller space. It can be reimplemented by
derived classes to do a better job of shortening the string based on the actual content
of the label.

Your version of TruncateLabel () should be careful to not cut the trigger character
from the string.

See also: BFont: : GetTrunctatedStrings ()

486 Chapter 4 • The Interface Kit

BOutlinelistView
Derived from: public BListView

Declared in: be/interface/OutlineListView.h

Library: lib be.so

Overview
A BOutlineListView displays a list of items that can be structured like an outline, with
items grouped under other items. The levels of the outline are indicated by successive
levels of indentation.

collopsed item

Baked G1aods ----__ ~--_ -_ _,-t----- level 0
..,. Cookies

..,. Drop cookies
chocola. te chip
ginger snaps
oatmeal
Melina's delight

fl- Cake cookies

--+---- level I
__1.--- level2

expanded item ~----11---+T Log cookies
icebox
butterscotch-cinnamon

..,. Cakes

fl- Layer cakes

"' Sponge cakes
"II"' Pies

..,. Fruit pies

fl- apple
fl- cherry
fl- pea.ch
Pumpkin
Lemon-Meringue

..,. Custa.rd pies
ba.na.na.
vanilla.

Rhubarb
fl- Bread

Outline Structure
If an item has other items under it-that is, if the immediately following item in the
list is at a deeper level of the outline-it is a superitem; the items grouped under it are
its subitems. Superitems are marked by a triangular icon or latch, in the usual
interface for hypertext lists.

BOutlinelistView • Constructor and Destructor

The user can collapse or expand sections of the outline by manipulating the latch.
When a section is collapsed, only the superitem for that section is visible (and the
latch points to the superitem). All items that follow the superitem are hidden, up to
the next item that's not at a deeper outline level. When a section is expanded,
subitems are visible (and the latch points downward).

Inherited Functions

487

The BOutlineListView class inherits most of its functionality from the BListView class.
However, inherited functions are concerned only with the expanded sections of the
list, not with sections that are hidden because they're collapsed. If an inherited
function returns an index or takes an index as an argument, the index counts just the
items that are shown on-screen (or could be shown on-screen if they were scrolled
into the visible region of the view). DoForEach () skips items that can't be displayed.
Countitems () counts items only in the expanded sections of the list.

However, the functions that the BOutlineListView class itself defines are concerned
with all sections of the list, expanded or collapsed. For its functions, an index counts
all items in the list, whether visible or not.

The class defines some functions that match those it inherits, but its versions prefix
FullList ... to the function name and don't ignore any items. For example,
FullListCountitems () counts every item in the list and FullListDoForEach ()
doesn't skip items in collapsed sections.

In some cases, BOutlineListView simply overrides an inherited function without
adding the FullList ... prefix. You should always use the BOutlineListView versions
of these functions, not the BListView versions. For example, BOutlineListView's
version of MakeEmpty () truly empties the list; BListView's version would remove
items from the screen, but not from the real list.

Constructor and Destructor
BOutlinelistView()

BOutlinelistView(BRectframe, const char *name,
list_view_type type= B_SINGLE_SELECTION_LIST,
uint32 resizingMode = B_FOLLOW_LEFT I B_FOLLOW_TOP,
uint32 flags = B_ WILL_DRA W I B_FRAME_EVENTS I
B_NAVIGABLE)

BOutlinelistView(BMessage *archive)

Initializes the BOutlineListView. This constructor matches the BListView constructor
in every detail, including default arguments. All argument values are passed to the

488 Chapter 4 • The Interface Kit

BListView constructor without change. The BOutlineListView class doesn't do any
initialization of its own.

See also: the BListView constructor

-BOutlinelistView()

virtual -BOutlinelistView(void)

Does nothing; this class relies on the BListView destructor.

Static Functions

Instantiate()

static BOutlineListView *I nstantiate(BMessage *archive)

Returns a new BOutlineListView object, allocated by new and created with the version
of the constructor that takes a BMessage archive. However, this function returns NULL

if the specified archive doesn't contain data for a BOutlineListView object.

See also: BArchi vable: : Instantiate (), instantiate_obj ect (), Archive ()

Member Functions

Addltem(}, AddUnder()

virtual bool Addltem(BListltem *item)
virtual bool Addltem(BListltem *item, int32 index)

virtual bool AddUnder(BListitem *item, BListitem *superitem)

These functions add an item to the list. Additem () adds the item at index-where
the index counts all items assigned to the BOutlineListView-or, if an index isn't
specified, at the end of the list. The two versions of this function override their
BListView counterparts to ensure that the item is correctly entered into the outline. If
the item is added to a portion of the list that is collapsed, it won't be visible.

AddUnder () adds an item immediately after another item in the list and at one
outline level deeper. The level of the item is modified accordingly. Thus, the item
already in the list becomes the superitem for the newly added item. If its new
superitem is collapsed or is in a collapsed part of the list, the item will not be visible.

Unlike AddUnder () , Additem () respects the outline level of the item. By setting the
item's level before calling Additem (), you can add it as a subitem to an item at a
higher outline level or insert it as a superitem to items at a lower level.

See also: the BListltem class

BOutlinelistView • Member Functions 489

Add list()

virtual boo! Addlist(BList *newltems)
virtual boo! Addlist(BList *newltems, int32 index)

Adds a group of items to the list just as Additem () adds a single item. The index
counts all items assigned to the BOutlineListView. The newltems BList must contain
pointers to BListitem objects.

See also: BListView: :AddList ()

AddUnder() seeAddltem()

Archive()

virtual status_t Archive(BMessage *archive, boo! deep= true) const

Archives the BOutlineListView object much as the Archive () function in the
BListView class does, but makes sure that all items are archived, including items in
collapsed sections of the list, when the deep flag is true.

See also: BListView: :Archive (), Instantiate () static function

Collapse(}, Expand()

void Collapse(BListitem *item)

void Expand(BListitem *item)

These functions collapse and expand the section of the list controlled by the item
superitem. If item isn't a superitem, it is nevertheless flagged as expanded or
collapsed so that it will behave appropriately in case it does become a superitem.

See also: BListitem:: SetExpanded ()

FulllistCountltems(), FulllistCurrentSelection(),
Fulllistfirstltem(}, Fulllistlastltem(}, FulllistlndexOf(),
FulllistltemAt(), FulllistHasltem(), FulllistlsEmpty(),
FulllistDoForEach()

int32 FulllistCountltems(void) const

int32 FulllistCurrentSelection(int32 index= 0) const

BListitem *FulllistFirstltem(void) const

BListitem *Fulllistlastltem(void) const

490

int32 FulllistlndexOf(BPoint poin~ canst
int32 FulllistlndexOf(BListltem *item) canst

BListitem *FulllistltemAt(int32 index) canst

bool FulllistHasltem(BListitem *item) canst

bool FulllistlsEmpty(void) const

void FulllistDoForEach(bool (*junc)(BListitem *))

Chapter 4 • The Interface Kit

void FulllistDoForEach(bool (*func)(BListltem *, void*), void*)

These functions parallel a similar set of functions defined in the BListView class. The
BListView functions have identical names, but without the FullList ... prefix. When
applied to a BOutlineListView object, the inherited functions consider only items in
sections of the outline that can be displayed on-screen-that is, they skip over items
in collapsed portions of the list.

These BOutlineListView functions, on the other hand, consider all items in the list.
For example, IndexOf () and FullListindexOf () both return an index to a given
item. However, for IndexOf () the index is to the position of the item in the list that
can be currently displayed, but for FullListindexOf () it's to the item's position in
the full list, including collapsed sections.

lsExpanded{)

bool lsExpanded(int32 index)

Returns true if the item at index is marked as controlling an expanded section of the
list, and false if it's marked as controlling a collapsed section or if there's no item at
that index. If a superitem is expanded, the BOutlineListView can display its subitems;
if not, the subitems are hidden.

The index passed to this function is to the full list of items assigned to the
BOutlineListView.

See also: BListitem:: IsExpanded()

KeyDown()

virtual void KeyDown(const char *bytes, int32 numBytes)

Augments the inherited version of KeyDown () to allow users to navigate the outline
hierarchy using the arrow keys and to expand or collapse sections of the outline
using Control-arrow key combinations.

See also: BListView: : KeyDown ()

BOutlinelistView • Member Functions 491

Make Empty()

virtual void MakeEmpty(void)

Overrides the BListView version of MakeEmpty () to remove all items from the list.
The BListView version of this function won't work as advertised on a
BOutlineListView.

See also: BListView: :MakeEmpty ()

MouseDown()

virtual void MouseDown(BPoint poin~

Augments the inherited version of MouseDown () to permit users to expand and
collapse sections of the outline by clicking on an item's latch.

See also: BView: :MouseDown ()

Removeltem(), Removeltems()

virtual bool Removeltem(BListitem *item)
virtual BListltem *Removeltem(int32 index)

virtual boo! Removeltems(int32 index, int32 coun~

These functions work like their BListView counterparts, except that:

• They can remove items from any part of the list, including collapsed sections. The
index counts all items assigned to the BOutlineListView; the specified item can be
hidden.

• If the item being removed is a superitem, they also remove all of its subitems.

NOTE

The BListView versions of these functions will not produce reliable results
when applied to a BOutlineListView, even if the item being removed is in an
expanded section of the list and is not a superitem.

See also: BListView:: Removeitem()

Superitem()

BListltem *Superitem(const BListltem *item)

Returns the superitem for the item passed as an argument-that is, the item under
which the argument item is grouped-or NULL if the item is at the outermost level of
the outline (level O) or isn't in the list.

492 Chapter 4 • The Interface Kit

BPicture
Derived from: public BArchivable

Declared in: be/interface/Picture.h

Library: libbe.so

Overview
A BPicture object holds a set of drawing instructions in the Application Server, where
they can be reused over and over again simply by passing the object to BView's
DrawPicture () function. Because it contains instructions for producing an image,
not the rendered result of those instructions, a picture (unlike a bitmap) is
independent of the resolution of the display device.

Recording a Picture

Drawing instructions are captured by bracketing them with calls to a BView's
BeginPicture () and EndPicture () functions. An empty BPicture object is passed
to BeginPicture (); EndPicture () returns the same object, fully initialized. For
example:

BPicture *myPict;
someView->BeginPicture(new BPicture);
/* drawing code goes here *I
myPict = someView->EndPicture();

The BPicture object records all of the drawing instructions given to the BView
following the BeginPicture () call and preceding the EndPicture () call. Only
drawing that the BView does is recorded; drawing done by children and other views
attached to the window is ignored, as is everything except drawing code.

Drawing instructions that are captured between BeginPicture () and
EndPicture () do not also produce a rendered image; ignored instructions may be
rendered if they draw into the visible region of an on-screen window.

If the BPicture object passed to BeginPicture () isn't empty, the new drawing is
appended to the code that's already in place.

The Picture Definition

The picture captures everything that affects the image that's drawn. It takes a
snapshot of the BView's graphics parameters-the pen size, high and low colors, font
size, and so on-at the time BeginPicture () is called. It then captures all
subsequent modifications to those parameters, such as calls to MovePenTo () ,

BPicture • Constructor and Destructor 493

SetLowColor (), and SetFontSize (). However, changes to the coordinate system
(ScrollBy () and Scroll To ()) are ignored.

The picture records all primitive drawing instructions-such as, DrawBi tmap () ,

StrokeEllipse (), FillRect (), and Drawstring (). It can even include a call to
DrawPicture () ; one picture can incorporate another.

The BPicture traces exactly what the BView would draw if the drawing code were not
bracketed by BeginPicture () and EndPicture () calls, and reproduces it
precisely. For example, whatever pen size happens to be in effect when a line is
stroked will be the pen size that the picture records, whether it was explicitly set
while the BPicture was being recorded or assumed from the BView's graphics
environment.

The picture makes its own copy of any data that's passed during the recording
session. For example, it copies the bitmap passed to DrawBi tmap () and the picture
passed to DrawPicture (). If that bitmap or picture later changes, it won't affect
what was recorded.

See also: BView: : BeginPicture () , BView: : DrawPicture (), the BPictureButton
class

Constructor and Destructor
BPicture()

BPicture(void)
BPicture(const BPicture &picture)
BPicture(void *data, int32 size)
BPicture(BMessage *archive)

Initializes the BPicture object by ensuring that it's empty, by copying data from
another picture, or by copying size bytes of picture data. The data should be taken,
directly or indirectly, from another BPicture object.

-BPicture()

virtual -BPicture(void)

Destroys the Application Server's record of the BPicture object and deletes all its
picture data.

494 Chapter 4 • The Interface Kit

Static Functions

Instantiate()

static BPicture *lnstantiate(BMessage *archive)

Returns a new BPicture object, allocated by new and created with the version of the
constructor that takes a BMessage archive. However, if the archive message doesn't
contain BPicture data, this function returns NULL.

See also: BArchivable:: Instantiate (), instantiate_object (),Archive()

Member Functions

.Archive()

virtual status_t Archive(BMessage *archive, bool deep= true) const

Calls the inherited version of Archive () , then adds the picture data to the BMessage
archive.

See also: BArchi vable: :Archive (), Instantiate() static function

Data()

const void *Data(void) const

Returns a pointer to the data contained in the BPicture. The data can be copied from
the object, stored on disk (perhaps as a resource), and later used to initialize another
BPicture object.

See also: the BPicture constructor

DataSize()

int32 DataSize(void) const

Returns how many bytes of data the BPicture object contains.

See also: Data ()

BPictureButton • Overview 495

BPictureButton
Derived from:

Declared in:

Library:

Overview

public BControl

be/interface/PictureButton.h

libbe.so

A BPictureButton object draws a button with a graphic image on its face, rather than
a textual label. The image is set by a BPicture object.

Like other BControl objects, BPictureButtons can have two values, B_CONTROL_OFF

and B_CONTROL_ON. A separate BPicture object is associated with each value. How
the BPictureButton displays these pictures depends on its behavior-whether it's set
to remain in one state or to toggle between two states:

• A one-state BPictureButton usually has a value of 0 (B_CONTROL_OFF), and it
displays the BPicture associated with that value. However, while it's being
operated (while the cursor is over the button on-screen and the user keeps the
mouse button down), its value is set to 1 (B_CONTROL_ON) and it displays the
alternate picture. That picture should be a highlighted version of the picture that's
normally shown.

This behavior is exactly like an ordinary, labeled BButton object. Just as a BButton
displays the same label, a one-state BPictureButton shows the same picture. Both
kinds of objects are appropriate devices for initiating an action of some kind.

• A two-state BPictureButton toggles between the B_CONTROL_OFF and
B_CONTROL_ON values. Each time the user operates the button, it's value changes.
The picture that's displayed changes with the value. The two BPictures are
alternatives to each other. The B_CONTROL_ON picture might be a highlighted
version of the B_CONTROL_OFF picture, but it doesn't need to be. The value of the
object changes only after it has been toggled to the other state, not while it's being
operated.

This behavior is exactly like a BCheckBox or an individual BRadioButton. Like
those objects, a two-state BPictureButton is an appropriate device for setting a
state.

Every BPictureButton must be assigned at least two BPictures. If it's a one-state
button, one picture will be the one that's normally shown and another will be shown
while the button is being operated. If it's a two-state button, one picture is shown
when the button is turned on and one when it's off.

496 Chapter 4 • The Interface Kit

If a one-state button can be disabled, it also needs to be assigned an image that can
be shown while it's disabled. If a two-state button can be disabled, it needs two
additional images-one in case it's disabled while in the B_CONTROL_OFF state and
another if it's disabled in the B_CONTROL_ON state.

Often the BPictures that are assigned to a BPictureButton simply wrap around a
bitmap image. For example:

BPicture *myPict;
someView->BeginPicture(new BPicture);
someView->DrawBitmap(&buttonBitmap);
myPict = someView->EndPicture();

See also: the BPicture class

Constructor and Destructor
BPictureButton()

BPictureButton(BRect frame, const char* name,
BPicture *off,
BPicture *on,
BMessage *message,
uint32 behavior= B_ONE_STATE_BUTTON,
uint32 resizingMode = B_FOLLOW _LEFT I B_FOLLOW _TOP,
uint32flags = B_WILL_DRAW I B_NAVIGABLE)

BPictureButton(BMessage *archive)

Initializes the BPictureButton by assigning it two images-an off picture that will be
displayed when the object's value is B_CONTROL_OFF and an on picture that's
displayed when the value is B_CONTROL_ON-and by setting its behavior to either
B_ONE_STATE_BUTTON or B_TWO_STATE_BUTTON. A one-state button displays the
off image normally and the on image to highlight the button as it's being operated by
the user. A two-state button toggles between the off image and the on image
(between the B_CONTROL_OFF and B_CONTROL_ON values). The initial value is set to
B_CONTROL_OFF.

If the BPictureButton can be disabled, it will need additional BPicture images that
indicate its disabled state. They can be set by calling SetDisabledOff () and
SetDisabledOn () .

All the BPictures assigned to the BPictureButton object become its property. It takes
responsibility for deleting them when they're no longer needed.

The message parameter is the same as the one declared for the BControl constructor.
It establishes a model for the messages the BPictureButton sends to a target object
each time it's invoked.

BPictureButton • Member Functions

The frame, name, resizingMode, and flags parameters are the same as those declared
for the BView constructor. They're passed up the inheritance hierarchy to the BView
class unchanged. See the BView constructor for details.

See also: the BControl and BView constructors, SetEnabledOff (),

BControl::Invoke(), Binvoker::SetMessage(), Binvoker::SetTarget()

-BPictureButton()

virtual -BPictureButton(void)

Deletes the model message and the BPicture objects that have been assigned to the
BPictureButton.

Static Functions

Instantiate()

static BPictureButton *lnstantiate(BMessage *archive)

497

Returns a new BPictureButton object, allocated by new and created with the version
of the constructor that takes a BMessage archive. However, if the archive message
doesn't contain data for a BPictureButton object, the return value will be NULL.

See also: BArchivable: : Instantiate (), instantiate_object (),Archive ()

Member Functions

Archive()

virtual status_t Archive(BMessage *archive, bool deep= true) canst

Calls the inherited version of Archive () , then adds the behavior flag
(B_ONE_STATE_BUTTON or B_TWO_STATE_BUTTON) to the BMessage archive. If the
deep flag is true, all the BPictures the object displays are also archived.

See also: BArchivable: :Archive (),Instantiate () static function

Behavior() see SetBehavior()

Draw()

virtual void Draw(BRect updateRec~

498 Chapter4 • The Interface Kit

Draws the BPictureButton. This function is called as the result of an update message
to draw the button in its current appearance; it's also called from the MouseDown ()
function to draw the button in its highlighted state.

See also: BView: : Draw ()

KeyDown()

virtual void KeyDown(const char *bytes, int32 numBytes)

Augments the inherited version of KeyDown () so that users can correctly operate
both one-state and two-state buttons by pressing the Enter key or the space bar
(B_ENTER or B_SPACE).

See also: BView:: KeyDown (), BControl:: Invoke ()

Mouse Down()

virtual void MouseDown(BPoint point)

Responds to a mouse-down event in the button by tracking the cursor while the user
holds the mouse button down. If the BPictureButton is a one-state object, this
function resets its value as the cursor moves in and out of the button on-screen. The
SetValue () virtual function is called to make the change each time. If it's a two
state object, the value is not reset. (However, the picture corresponding to the
B_CONTROL_ON value is shown while the cursor is in the button on-screen and the
mouse button remains down.)

If the cursor is inside the BPictureButton's bounds rectangle when the user releases
the mouse button, this function posts a copy of the model message so that it will be
dispatched to the target handler. If it's a one-state object, it's value is reset to
B_CONTROL_OFF. If it's a two-state object, its value is toggled on or off and the
corresponding picture is displayed.

See also: BView: :MouseDown(), BControl:: Invoke (), SetBehavior ()

SetBehavior(), Behavior()

virtual void SetBehavior(uint32 behaviof')

uint32 Behavior(void) const

These functions set and return whether the BPictureButton is a
B_ONE_STATE_BUTTON or a B_TWO_STATE_BUTTON. If it's a one~state button, its
value is normally set to B_CONTROL_OFF and it displays a fixed image (the off picture
passed to the constructor or the one passed to SetEnabledOff ()). Its value is reset

BPictureButton • Member Functions

as its being operated and it displays the alternate image (the on picture passed to the
constructor or the one passed to SetEnabledOn ()).

499

If it's a two-state button, its value toggles between B_CONTROL_OFF and
B_CONTROL_ON each time the user operates it. The image the button displays
similarly toggles between two pictures (the off and on images passed to the
constructor or the ones passed to SetEnabledOff () and SetEnabledOn ()).

See also: the BPictureButton constructor

SetEnabledOff(), SetEnabledOn(}, SetDisabledOff(},
SetDisabledOn(}, EnabledOff(}, EnabledOn(}, DisabledOff(},
DisabledOn

virtual void SetEnabledOff(BPicture *picture)

virtual void SetEnabledOn(BPicture *picture)

virtual void SetDisabledOff(BPicture *picture)

virtual void SetDisabledOn(BPicture *picture)

BPicture *EnabledOff(void) const

BPicture *EnabledOn(void) const

BPicture *DisabledOff(void) const

BPicture *DisabledOn(void) const

These functions set and return the images the BPictureButton displays. Each
BPictureButton object needs to be assigned at least two BPicture objects-one
corresponding to the B_CONTROL_OFF value and another corresponding to the
B_CONTROL_ON value. These are the images that are displayed when the
BPictureButton is enabled, as it is by default. They're initially set when the object is
constructed and can be replaced by calling the SetEnabledOff () and
SetEnabledOn () functions.

If a BPictureButton can be disabled, it needs to display an image that indicates its
disabled condition. A two-state button might be disabled when its value is either
B_CONTROL_OFF or B_CONTROL_ON, so it needs two BPictures to indicate disabling,
one corresponding to each value. They can be set by calling SetDisabledOff ()

and SetDisabledOn () .

The value of a one-state button is always B_CONTROL_OFF (except when it's being
operated), so it needs only a single BPicture to indicate disabling; you can set it by
calling SetDisabledOff ().

500 Chapter 4 • The Interface Kit

All four of the Set ... () functions free the image previously set, if any, and replace it
with picture. The picture belongs to the BPictureButton; it should not be freed or
assigned to any other object.

The last four functions listed above return the BPictureButton's four images, or NULL

if it hasn't been assigned a BPicture object in the requested category.

BPoint
Derived from: none

Declared in: be/interface/Point.h

Library: lib be.so

Overview
BPoint objects represent points on a two-dimensional coordinate grid. Each object
holds an x coordinate value and a y coordinate value declared as public data members.
These values locate a specific point, (x, y), relative to a given coordinate system.

Because the BPoint class defines a basic data type for graphic operations, its data
members are publicly accessible and it declares no virtual functions. It's a simple class
that doesn't inherit from BArchivable or any other class and doesn't have any virtual
functions, not even a destructor. In the Interface Kit, BPoint objects are typically
passed and returned by value, not through pointers.

For an overview of coordinate geometry for the BeOS, see "The Coordinate Space"
on page 368.

Data Members
float x

The coordinate value measured horizontally along the x-axis.

floaty
The coordinate value measured vertically along the y-axis.

Constructor
BPoint()

inline BPoint(float x, float y)
inline BPoint(const BPoint& point)
inline BPoint(void)

BPoint • Member Functions

Initializes a new BPoint object to (x, y), or to the same values as point. For example:

BPoint somePoint(155.7, 336.0);
BPoint anotherPoint(somePoint);

Here, both somePoint and anotherPoint are initialized to (155.7, 336.0).

If no coordinate values are assigned to the BPoint when it's declared:

BPoint emptyPoint;

its initial values are indeterminate.

BPoint objects can also be initialized or modified using the Set () function:

emptyPoint.Set(155.7, 336.0);
anotherPoint.Set(221.5, 67.8);

or the assignment operator:

somePoint = anotherPoint;

See also: Set () , the assignment operator

Member Functions

Constrain To()

void ConstrainTo(BRect rec~

501

Constrains the point so that it lies inside the rect rectangle. If the point is already
contained in the rectangle, it remains unchanged. However, if it falls outside the
rectangle, it's moved to the nearest edge. For example, this code:

BPoint point(54.9, 76.3);
BRect rect(lO.O, 20.0, 40.0, 80.0);
point.Constrain(rect);

modifies the point to (40.0, 76.3).

See also: BRect: : Contains ()

Print T oStream ()

void PrintT oStream(void) const

Prints the contents of the BPoint object to the standard output stream (stdout) in the
form:

"BPoint(x, y)"

where x and y stand for the current values of the BPoint's data members.

502 Chapter 4 • The Interface Kit

Set()

inline void Set(float x, float y)

Assigns the coordinate values x and y to the BPoint object. For example, this code

BPoint point;
point.Set(27.0, 53.4);

is equivalent to:

BPoint point;
point.x = 27.0;
point.y = 53 .4;

See also: the BPoint constructor

Operators
(assignment)

inline BPoint& operator =(const BPoint&)

Assigns the x and y values of one BPoint object to another BPoint:

BPoint a, b;
a. Set (21 . 5, 1 7 . 0) ;
b = a;

Point b, like point a, is set to (21.5, 17.0).

== (equality)

bool operator ==(const BPoint&) const

Compares the data members of two BPoint objects and returns true if each one
exactly matches its counterpart in the other object, and false if not. In the following
example, the equality operator would return false:

BPoint a(21.5, 17.0);
BPoint b(17.5, 21.0);
if (a b)

!= (inequality)

bool operator !=(const BPoint&) const

Compares two BPoint objects and returns true unless their data members match
exactly (the two points are the same), in which case it returns false. This operator is
the inverse of the == (equality) operator.

BPoint • Operators

+ (addition)

BPoint operator +(const BPoint&) const

Combines two BPoint objects by adding the x coordinate of the second to the
x coordinate of the first and the y coordinate of the second to the y coordinate of the
first, and returns a BPoint object that holds the result. For example:

BPoint a(77.0, 11.0);
BPoint b(55.0, 33.0);
BPoint c = a + b;

Point c is initialized to (132.0, 44.0).

+= (addition and assignment)

BPoint& operator +=(const BPoint&)

Modifies a BPoint object by adding another point to it. As in the case of the +
(addition) operator, the members of the second point are added to their counterparts
in the first point:

BPoint a(77.0, 11.0);
BPoint b(55.0, 33.0);
a += b;

Point a is modified to (132.0, 44.0).

(subtraction)

BPoint operator -(const BPoint&) const

Subtracts one BPoint object from another by subtracting the x coordinate of the
second from the x coordinate of the first and the y coordinate of the second from the
y coordinate of the first, and returns a BPoint object that holds the result. For example:

BPoint a(99.0, 66.0);
BPoint b(44.0, 88.0);
BPoint c = a - b;

Point c is initialized to (55.0, -22.0).

-= (subtraction and assignment)

BPoint& operator -=(const BPoint&)

Modifies a BPoint object by subtracting another point from it. As in the case of the
- (subtraction) operator, the members of the second point are subtracted from their
counterparts in the first point. For example:

503

504

BPoint a(99.0, 66.0);
BPoint b(44.0, 88.0);
a -= b;

Point a is modified to (55.0, -22.0).

Chapter 4 • The Interface Kit

BPolygon
Derived from: none

Declared in: be/interface/Polygon.h

Library: lib be.so

Overview
A BPolygon object represents a polygon-a closed, many-sided figure that describes
an area within a two-dimensional coordinate system. It differs from a BRect object in
that it can have any number of sides and the sides don't have to be aligned with the
coordinate axes.

A BPolygon is defined as a series of connected points. Each point is a potential vertex
in the polygon. An outline of the polygon could be constructed by tracing a straight
line from the first point to the second, from the second point to the third, and so on
through the whole series, then by connecting the first and last points if they're not
identical.

The BView functions that draw a polygon-StrokePolygon () and
FillPolygon ()-take BPolygon objects as arguments. StrokePolygon () offers
the option of leaving the polygon open-of not stroking the line that connects the
first and last points in the list. The polygon therefore won't look like a polygon, but
like an chain of lines fastened at their endpoints.

Constructor and Destructor
BPolygon()

BPolygon(const BPoint *pointlist, int32 numPoints)
BPolygon(const BPolygon *polygon)
BPolygon(void)

Initializes the BPolygon by copying numPoints from pointlist, or by copying the list
of points from another polygon. If one polygon is constructed from another, the
original and the copy won't share any data; independent memory is allocated for the
copy to hold a duplicate list of points.

BPolygon • Member Functions

If a BPolygon is constructed without a point list, points must be set with the
AddPoints () function.

See also: AddPoints ()

-BPolygon()

virtual -BPolygon(void)

Frees all the memory allocated to hold the list of points.

Member Functions

Add Points()

void AddPoints(const BPoint *pointList, int32 numPoints)

Appends numPoints from pointList to the list of points that already define the polygon.

See also: the BPolygon constructor

CountPoints()

int32 CountPoints(void) const

Returns the number of points that define the polygon.

Frame()
BRect Frame(void) const

sos

Returns the polygon's frame rectangle-the smallest rectangle that encloses the entire
polygon.

Map To()

void MapTo(BRect source, BRect destination)

Modifies the polygon so that it fits the destination rectangle exactly as it originally fit
the source rectangle. Each vertex of the polygon is modified so that it has the same
proportional position relative to the sides of the destination rectangle as it originally
had to the sides of the source rectangle.

The polygon doesn't have to be contained in either rectangle. However, to modify a
polygon so that it's exactly inscribed in the destination rectangle, you should pass its
frame rectangle as the source:

BRect frame= myPolygon->Frame();
myPolygon->MapTo(frame, anotherRect);

506 Chapter 4 • The Interface Kit

Print T oStream ()

void PrintToStream(void) const

Prints the BPolygon's point list to the standard output stream (stdout). The BPoint
version of this function is called to report each point as a string in the form

"BPoint {x, y)"

where x and y stand for the coordinate values of the point in question.

See also: BPoint: : PrintToStream ()

Operators
(assignment)

BPolygon& operator =(const BPolygon&)

Copies the point list of one BPolygon object and assigns it to another BPolygon. After
the assignment, the two objects describe the same polygon, but are independent of
each other. Destroying one of the objects won't affect the other.

BPopUpMenu
Derived from: public BMenu

Declared in: be/interface/PopUpMenu.h

Library: libbe.so

Overview
A BPopUpMenu is a specialized menu that's typically used in isolation, rather than as
part of an extensive menu hierarchy. By default, it operates in radio mode-the last
item selected by the user, and only that item, is marked in the menu.

A menu of this kind can be used to choose one from among a limited set of mutually
exclusive states-to pick a paper size or paragraph style, for example, or to select a
category of information. It should not be used to group different kinds of choices (as
other menus may), nor should it include items that initiate actions rather than set
states, except in certain well-defined cases.

A pop-up menu can be used in any of three ways:

• It can be controlled by a BMenuBar object, often one that contains just a single
item. The BMenuBar, in effect, functions as a button that pops up a list. The label

BPopUpMenu • Constructor and Destructor 507

of the marked item in the list can be displayed as the label of the controlling item
in the BMenuBar. In this way, the BMenuBar is able to show the current state of
the hidden menu. When this is the case, the menu pops up so its marked item is
directly over the controlling item.

• A BPopUpMenu can also be controlled by a view other than a BMenuBar. It might
be associated with a particular image the view displays, for example, and appear
over the image when the user moves the cursor there and presses the mouse
button. Or it might be associated with the view as a whole and come up under the
cursor wherever the cursor happens to be. When the view is notified of a mouse
down event, it calls BPopUpMenu's Go () function to show the menu on-screen.

• The BPopUpMenu might also be controlled by a particular mouse button, typically
the secondary mouse button. When the user presses the button, the menu appears
at the location of the cursor. Instead of passing responsibility for the mouse-down
event to a BView, the BWindow would intercept it and place the menu on-screen.

Other than Go () (and the constructor), this class implements no functions that you
ever need to call from application code. In all other respects, a BPopUpMenu can be
treated like any other BMenu.

Constructor and Destructor
BPopUpMenu()

BPopUpMenu(const char *name, bool radioMode =true,
bool labelFromMarked = true,
menu_layout layout= B_ITEMS_IN_COLUMN)

BPopUpMenu(BMessage *archive)

Initializes the BPopUpMenu object. If the object is added to a BMenuBar, its name
also becomes the initial label of its controlling item (just as for other BMenus).

If the labelFromMarked flag is true (as it is by default), the label of the controlling
item will change to reflect the label of the item that the user last selected. In addition,
the menu will operate in radio mode (regardless of the value passed as the
radioMode flag). When the menu pops up, it will position itself so that the marked
item appears directly over the controlling item in the BMenuBar.

If labelFromMarked is false, the menu pops up so that its first item is over the
controlling item.

If the radioMode flag is true (as it is by default), the last item selected by the user
will always be marked. In this mode, one and only one item within the menu can be
marked at a time. If radioMode is false, items aren't automatically marked or
unmarked.

508 Chapter 4 • The Interface Kit

However, the radioMode flag has no effect unless the labe!FromMarked flag is
false. As long as labe!FromMarked is true, radio mode will also be true.

The layout of the items in a BPopUpMenu can be either B_ITEMS_IN_ROW or the
default B_ITEMS_IN_COLUMN. It should never be B_ITEMS_IN_MATRIX. The menu
is resized so that it exactly fits the items that are added to it.

The new BPopUpMenu is empty; you add items to it by calling BMenu's Additem ()

function.

See also: BMenu: : SetRadioMode (), BMenu: : SetLabelFromMarked ()

-BPopUpMenu()

virtual -BPopUpMenu(void)

Does nothing. The BMenu destructor is sufficient to clean up after a BPopUpMenu.

Static Functions

Instantiate()

static BPopUpMenu *lnstantiate(BMessage *archive)

Returns a new BPopUpMenu object, allocated by new and created with the version of
the constructor that takes a BMessage archive. However, if the archive message
doesn't contain data for a BPopUpMenu, this function returns NULL.

See also: BArchi vable: : Instantiate (), instantiate_obj ect (),

BMenu : : Archive ()

Member Functions

Go()

BMenultem *Go(BPoint screenPoint,
bool deliversMessage = false,
bool openAnyway = false,
bool asynchronous = false)

BMenultem *Go(BPoint screenPoint,
bool deliversMessage,
bool openAnyway,
BRect clickToOpenRect,
bool asynchronous = false)

BPopUpMenu • Member Functions 509

Places the pop-up menu on-screen so that its left top corner is located at screenPoint
in the screen coordinate system. If the asynchronous flag is true, Go () returns right
away; the return value is NULL. Otherwise, it doesn't return until the user dismisses
the menu from the screen. If the user invoked an item in the menu, it returns a
pointer to the item. If no item was invoked, it returns NULL.

Go () is typically called from within the MouseDown () function of a BView. For
example:

void MyView::MouseDown(BPoint point)
{

BMenuitem *selected;
BMessage *copy;

ConvertToScreen(&point);
selected= myPopUp->Go(point);

if (selected) {
BLooper *looper;
BHandler *target= selected->Target(&looper);
looper->PostMessage(selected->Message(), target);

Go () operates in two modes:

• If the deliversMessage flag is true, the BPopUpMenu works just like a menu that's
controlled by a BMenuBar. When the user invokes an item in the menu, the item
posts a message to its target.

• If the deliversMessage flag is false, a message is not posted. Invoking an item
doesn't automatically accomplish anything. It's up to the application to look at the
returned BMenuitem and decide what to do. It can mimic the behavior of other
menus and post the message-as shown in the example above-or it can take
some other course of action.

Go () always puts the pop-up menu on-screen, but ordinarily keeps it there only as
long as the user holds a mouse button down. When the user releases the button, the
menu is hidden and Go () returns. However, the openAnyway flag and the
clickToOpenRect arguments can alter this behavior so that the menu will stay open
even when the user releases the mouse button (or even if a mouse button was never
down). It will take another user action-such as invoking an item in the menu or
clicking elsewhere-to dismiss the menu.

If the openAnyway flag is true, Go () keeps the menu on-screen even if no mouse
buttons are held down. This permits a user to open and operate a pop-up menu from
the keyboard. If openAnyway is false, mouse actions determine whether the menu
stays on-screen.

510 Chapter 4 • The Interface Kit

If the user has the click-to-open menu preference turned on and releases the mouse
button while the cursor lies inside the clickToOpenRect rectangle, Go {) interprets the
action as clicking to open the menu and keeps it on-screen. If the cursor is outside
the rectangle when the mouse button goes up, the menu is removed from the screen
and Go {) returns. The rectangle should be stated in the screen coordinate system.

See also: BMenuitem: : SetMessage {)

ScreenlocationQ

protected:
virtual BPoint Screenlocation(void)

Determines where the pop-up menu should appear on-screen (when it's being run
automatically, not by Go {)). As explained in the description of the class constructor,
this largely depends on whether the label of the superitem changes to reflect the item
that's currently marked in the menu. The point returned is stated in the screen
coordinate system.

This function is called only for BPopUpMenus that have been added to a menu
hierarchy (a BMenuBar). You should not call it to determine the point to pass to
Go {) . However, you can override it to change where a customized pop-up menu
defined in a derived class appears on-screen when it's controlled by a BMenuBar.

See also: BMenu: : SetLabelFromMarked {), BMenu: : ScreenLocation {), the
BPopUpMenu constructor

BPrintjob
Derived from: none

Declared in: be/interface/PrintJob.h

Library: libbe.so

Overview
A BPrint]ob object runs a printing session. It negotiates everything after the user's
initial request to print-from engaging the Print Server to calling upon BViews to
draw and spooling the results to the printer. It also handles a secondary and
somewhat separate matter related to printing-configuring the page layout.

Setting Up the Page Layout

Users typically don't decide how a document fits on a page-the size of the paper,
the width of the margins, the orientation of the image, and so on-each time they

BPrintJob • Overview

print. These decisions are usually made when setting up the document, perhaps from
a Page Layout menu item, rather than Print.

To set up the page parameters for a document, an application should create a
BPrintJob object, assign it a name, and call ConfigPage ():

status_t MyDocumentManager: :SetUpPage()
{

BPrintJob job ("document") ;
return job.ConfigPage();

511

ConfigPage () has the Print Server interact with the user to set up the page
configuration. Configuration settings are stored in a BMessage object that will be
handed to the server when the document is printed. The BMessage is important to
the server, but it contains nothing that an application needs to look at. However, you
may want to get the object and store it with the document so that the configuration
can be reused whenever the document is printed-and so that the user's previous
choices can be the default settings when ConfigPage () is called again.
Settings () returns the page configuration the user set up; SetSettings ()

initializes the configuration that's presented to the user. For example:

BMessage *setup;

status t MyDocumentManager::SetUpPage()

BPrintJob job("document");
status_t err;

if (setup)
job.SetSettings(new BMessage(setup));

if ((err= job.ConfigPage()) B_OK) {
delete setup;
setup= job.Settings();

return err;

In this example, the setup BMessage presumably is flattened and saved with the
document whenever the document is saved, and unflattened whenever the document
is open and the page settings are needed.

Printing

To print a document, an application must go through several ordered steps:

• Engaging the Print Server and setting parameters for the job
• Setting up a spool file to hold image data
• Asking BViews to draw each page

512 Chapter 4 • The Interface Kit

• After each page is drawn, putting the data for the page in the spool file
• Committing the spool file to the Print Server

A BPrint]ob object has member functions that assist with each step.

Setting Up a Print Job

A print job begins when the user requests the application to print something. In
response, the application should create a BPrintJob object, assign the job a name, and
call Conf igJob () to initialize the printing environment. For example:

BMessage *setup;

status_t MyDocumentManager::Print()
{

BPrintJob job("document");
status_t err;

if (setup)
job.SetSettings(new BMessage(setup));

if ((err= job.ConfigJob()) B_OK) {
delete setup;
setup= job.Settings();

So far, this looks much like the code for configuring the page presented in the
previous "Setting Up the Page Layout" section. The idea is the same. ConfigJob ()

gets the Print Server ready for a new printing session and has it interact with the user
to set up the parameters for the job-which pages, how many copies, and so on. It
uses the same settings BMessage to record the user's choices as ConfigPage () did,
though it records information that's more immediate to the particular printing session.

Again, you may want to store the user's choices with the document so that they can
be used to set the initial configuration for the job when the document is next printed.
By calling Settings (), you can get the job configuration the user set up;
SetSettings () initializes the configuration that's presented to the user.

Information about the page layout will be required while printing. If that information
isn't available in the Settings () BMessage, ConfigJob () will begin, in essence, by
calling ConfigPage () so that the server can ask the user to supply it.

To discover which pages the user wants to print, you can call the FirstPage () and
LastPage () functions after ConfigJob () returns:

int32 pageCount = job.LastPage() - job.FirstPage() + 1;

BPrintjob • Overview

The Spool File

The next step after configuring the job is to call BeginJob () to set up a spool file
and begin the production of pages. After all the pages are produced, Commi tJob () is
called to commit them to the printer.

job. BeginJob () ;
/* draw pages here *I
job.CommitJob();

BeginJob () and CommitJob () bracket all the drawing that's done during the job.

Cancellation

513

A number of things can happen to derail a print job after it has started-most
significantly, the user can cancel it at any time. To be sure that the job hasn't been
canceled or something else hasn't happened to defeat it, you can call
CanContinue () at critical junctures in your code. This function will tell you whether
it's sensible to continue with the job. In the following example, CanContinue ()

checks before each page is drawn:

job. BeginJob () ;
for (int32 i = O; i < pageCount; i++) {

if (!job.CanContinue())
break;

/* draw each page here *I
job.CommitJob();

Drawing on the Page

A page is produced by asking one or more BViews to draw within a rectangle that
can be mapped to a sheet of paper (excluding the margins at the edge of the paper).
DrawView () requests one BView to draw some portion of its data and specifies
where the data should appear on the page. You can call DrawView () any number of
times for a single page to ask any number of BViews to contribute to the page. After
all views have drawn, Spool Page () spools the data to the file that will eventually be
committed to the printer. Spool Page () is called just once for each page. For
example:

for (inti= job.FirstPage(); i <= job.LastPage(); i++) {
if (job.CanContinue()) {

else

job.DrawView(someView, viewRect, pointOnPage);
job.Drawview(anotherView, anotherRect, differentPoint);

job. Spool Page() ;

break;

514 Chapter 4 • The Interface Kit

DrawView () calls the BView's Draw () function. That function must be prepared to
draw either for the screen or on the printed page. It can test the destination of its
output by calling the BView IsPrinting () function.

Drawing Coordinates

When a BView draws for the printer, it draws within the printable rectangle of a
page-a rectangle that matches the size of a sheet of paper minus the unprinted
margin around the paper's edge. The PaperRect () function returns a rectangle that
measures a sheet of paper and PrintableRect () returns the printable rectangle, as
illustrated in this diagram:

Paper rectangle
Printable rectangle

Both rectangles are stated in a coordinate system that has its origin at the left top
corner of the page. Thus, the left and top sides of the rectangle returned by
PaperRect () are always 0.0. PrintableRect () locates the printable rectangle on
the paper rectangle. However, DrawView () assumes coordinates that are local to the
printable rectangle-that is, an origin at the left top comer of the printable rectangle
rather than the paper rectangle.

The diagram below shows the left top coordinates of the printable rectangle as
PrintableRect () would report them and as Drawview() would assume them,
given a half-inch margin.

BPrintjob • Member Functions

(36.0, 36.0)

Coordinates returned by
PrintableRect(}

Coordinates of the printable rectangle
assumed by DrawView(}

Draw () always draws in the BView's own coordinate system. Those coordinates are
mapped to locations in the printable rectangle as specified by the arguments passed
to DrawView () .

See also: BView:: IsPrinting ()

Constructor and Destructor

BPrintJob()

BPrintJob(const char *name)

Initializes the BPrintJob object and assigns the job a name. The Print Server isn't
contacted until ConfigPage () or ConfigJob () is called. The spool file isn't created
until BeginJob () prepares for the production of pages.

See also: ConfigJob (), BeginJob ()

-BPrintJob()

virtual -BPrintJob(void)

Frees all memory allocated by the object.

Member Functions

Begin Job()

void Beginjob(void)

515

516 Chapter 4 • The Interface Kit

Opens a spool file for the job and prepares for the production of a series of pages.
Call this function only once per printing session-just after initializing the job and just
before drawing the first page.

See also: Commi tJob () , "The Spool File" in the class overview

CancelJob()

void CancelJob(void)

Cancels the print job programmatically and gets rid of the spool file. The job cannot
be restarted; you must destroy the BPrint]ob object. Create a new object to renew
printing.

CanContinue()

bool CanContinue(void)

Returns true if there's no impediment to continuing with the print job, and false if
the user has canceled the job, the spool file has grown too big, or something else has
happened to terminate printing. It's a good idea to liberally sprinkle CanContinue ()
queries throughout your printing code to make sure that the work you're about to do
won't be wasted.

See also: "Cancellation" in the clas's overview

CommitJob()

void CommitJob(void)

Commits all spooled pages to the printer. This ends the print job; when
Commi tJob () returns, the BPrintJob object can be deleted. Commi tJob () can be
called only once per job.

See also: BeginJob (), "The Spool File" in the class overview

ConfigPage(), ConfigJob()

int32 ConfigPage(void)

int32 ConfigJob(void)

These functions contact the Print Server and have the server interact with the user to
lay out the document on a page (in the case of ConfigPage ()) or to define a print
job (in the case of ConfigJob ()). The page layout includes such things as the
orientation of the image (portrait or landscape), the dimensions of the paper on

BPrintJob • Member Functions

which the document will be printed, and the size of the margins. The job definition
includes such things as which pages are to be printed and the number of copies.

Both functions record the user's choices in a BMessage object that Settings ()

returns.

If SetSettings () has been called to establish a default configuration for the page
layout or the job, these functions will pass it to the Print Server so the server can
present it to the user. Otherwise, the server will choose a default configuration to
show the user.

These two functions return status_t error codes, despite having return values that
are declared int32. They return B_ERROR if they have trouble communicating with
the server or if the job can't be established for any reason. They return B_OK if all
goes well.

See also: Sets et tings (), "Setting Up the Page Layout" and "Setting Up a Print]ob"
in the class overview

DrawView(), SpoolPage()

517

virtual void DrawView(BView *view, BRect rect, BPoint poin~

void SpoolPage(void)

DrawView () calls upon a view to draw the rect portion of its display at point on the
page. As a result, the vieuJs Draw () function will be called with rect passed as the
update rectangle. The rectangle should be stated in the BView's coordinate system.
The point should be stated in a coordinate system that has the origin at the top left
corner of the printable rectangle. Together the rect and point should be fashioned so
that the entire rectangle lies within the boundaries of the page's printable area.

The view must be attached to a window; that is, it must be known to the Application
Server. However, when printing, a BView can be asked to draw portions of its display
that are not visible on-screen. Its drawing is not limited by the clipping region, its
bounds rectangle, or the frame rectangles of ancestor views.

DrawView () doesn't look down the view hierarchy; it asks only the named view to
draw, not any of its children. However, any number of BViews can draw on a page if
they are subjects of separate DrawView () calls.

After all views have drawn and the page is complete, Spool Page () adds it to the
spool file. Spool Page () must be called once to terminate each page.

See also: PrintableRect (), BView: : Draw (), "Drawing on the Page" in the class
overview

518

FirstPage(), LastPage()

int32 FirstPage(void)

int32 LastPage(void)

Chapter 4 • The Interface Kit

These functions return the first and last pages that should be printed as part of the
current job. If the pages are not set (for example, if the current job has been
canceled), FirstPage () returns 0 and LastPage () returns a very large number
(LONG_MAX).

LastPage() see FirstPage()

PaperRect(), PrintableRect()

BRect PaperRect{void)

BRect PrintableRect{void)

PaperRect () returns a rectangle that records the presumed size of the paper that
the printer will use. Its left and top sides are at 0.0, so its right and bottom
coordinates reflect the size of a sheet of paper. The size depends on choices made by
the user when setting up the page layout.

PrintableRect () returns a rectangle that encloses the portion of a page where
printing can appear. It's stated in the same coordinate system as the rectangle
returned by PaperRect () , but excludes the margins around the edge of the paper.
When drawing on the printed page, the left top corner of this rectangle is taken to be
the coordinate origin, (0.0, O.o).

The "Drawing Coordinates" section in the class overview illustrates these rectangles
and their coordinate systems.

See also: DrawView ()

SetSettings(), Settings()

void SetSettings(BMessage •configuration)

BMessage *Settings(void)

These functions set and return the group of parameters that define how a document
should be printed. The parameters include some that capture the page layout of the
document and some that define the current job. They're recorded in a BMessage
object that can be regarded as a black box; the data in the message are interpreted by
the Print Server and will be documented where the print driver API is documented.

BRadioButton • Overview

Instead of looking in the Settings () BMessage, rely on BPrint]ob functions to
provide specific information about the layout and the print job. Currently, there are
only two functions-FirstPage () and LastPage (),which return the first and last
pages that need to be printed.

Settings () can be called to get the current configuration message, which can then
be flattened and stored with the document. You can retrieve it later and pass it to
SetSettings () to set initial configuration values the next time the document is
printed, as discussed in the "Setting Up the Page Layout" and "Setting Up a Print Job"
sections of the class overview.

SetSettings () assumes ownership of the object it's passed. If your application
needs to retain the object, pass a copy to SetSettings ():

print_job_object.SetSettings(new BMessage(settings_message));

On the other hand, Settings () transfers ownership of the object it returns to the
caller; you don't need to make a copy.

See also: ConfigPage ()

Spool Page() see DrawView()

BRadioButton
Derived from: public BControl

Declared in: be/interface/RadioButton.h

Library: libbe.so

Overview
A BRadioButton object draws a labeled, two-state button that's displayed in a group
along with other similar buttons. The button itself is a round icon that has a filled
center when the BRadioButton is turned on, and is empty when it's off. The label
appears next to the icon.

Only one radio button in the group can be on at a time; when the user clicks a button
to tum it on, the button that's currently on is turned off. One button in the group
must be on at all times; the user can tum a button off only by turning another one on.
The button that's on has a value of 1 (B_CONTROL_ON); the others have a value of 0
(B_CONTROL_OFF).

The BRadioButton class handles the interaction between radio buttons in the
following way: A direct user action can only tum on a radio button, not tum it off.

519

520 Chapter 4 • The Interface Kit

However, when the user turns a button on, the BRadioButton object turns off all
sibling BRadioButtons-that is, all BRadioButtons that have the same parent as the
one that was turned on.

This means that a parent view should have no more than one group of radio buttons
among its children. Each set of radio buttons should be assigned a separate parent
perhaps an empty BView that simply contains the radio buttons and does no drawing
of its own.

Constructor and Destructor
BRadioButton()

BRadioButton(BRect frame, const char *name,
const char *label,
BMessage *message,
uint32 resizingMode = B_FOLLOW _LEFT I B_FOLLOW _TOP,
uint32 flags = B_ WILL_DRA W I B_NAVIGABLE)

BRadioButton(BMessage •archive)

Initializes the BRadioButton by passing all arguments to the BControl constructor
without change. BControl initializes the radio button's label and assigns it a model
message that identifies the action that should be taken when the radio button is
turned on. When the user turns the button on, the BRadioButton posts a copy of the
message so that it can be delivered to the target handler.

The frame, name, resizingMode, and flags arguments are the same as those declared
for the BView class and are passed without change from BControl to the BView
constructor.

The BRadioButton draws at the bottom of its frame rectangle beginning at the left
side. It ignores any extra space at the top or on the right. (However, the user can
click anywhere within the frame rectangle to tum on the radio button.) When the
object is attached to a window, the height of the rectangle will be adjusted so that
there is exactly the right amount of room to accommodate the label.

See also: the BControl and BView constructors, AttachedToWindow{)

-BRadioButton()

virtual -BRadioButton(void)

Does nothing; a BRadioButton doesn't need to clean up after itself when it's deleted.

BRadioButton • Member Functions

Static Functions

Instantiate()

static BRadioButton *lnstantiate(BMessage •archive)

521

Returns a new BRadioButton object, allocated by new and created with the version of
the constructor that takes a BMessage archive. However, if the message doesn't
contain data for an archived BRadioButton object, this function returns NULL.

See also: BArchi vable: : Instantiate (), instantiate_obj ect (), Archive ()

Member Functions

Archive()

virtual status_t Archive(BMessage •archive, bool deep= true) const

Calls the inherited version of Archive () and doesn't add anything specific to the
BRadioButton class to the BMessage archive.

See also: BArchi vable: : Archive () , Instantiate () static function

AttachedT o Window()

virtual void AttachedToWindow(void)

Augments the BControl version of AttachedToWindow() to set the view and low
colors of the BRadioButton to the match its parent's view color, and to resize the
radio button vertically to fit the height of the label it displays. The height of the label
depends on the BRadioButton's font.

See also: BControl: : At tachedToWindow ()

Draw()

virtual void Draw(BRect updateRecf)

Draws the radio button-the circular icon-and its label. The center of the icon is
filled when the BRadioButton's value is 1 (B_CONTROL_ON); it's left empty when the
value is 0 (B_CONTROL_OFF).

See also: BView: : Draw ()

522 Chapter 4 • The Interface Kit

GetPreferredSize()

virtual void GetPreferredSize(float *width, float *height)

Calculates the optimal size for the radio button to display the icon and the label in the
current font, and places the result in the variables that the width and height
arguments refer to. ResizeToPreferred (), defined in the BView class, resizes a
view's frame rectangle to the preferred size, keeping its left and top sides constant.
At tachedToWindow () automatically resizes a radio button to its preferred height,
but doesn't modify its width.

See also: BView: :GetPreferredSize (), AttachedToWindow()

KeyDown()

virtual void KeyDown(const char *bytes, int32 numBytes)

Augments the inherited versions of KeyDown () to tum the radio button on and
deliver a message to the target BHandler when the character passed in bytes is
B_SPACE or B_ENTER.

See also: BView: : KeyDown () , SetVal ue ()

Mouse Down()

virtual void MouseDown(BPoint point)

Responds to a mouse-down event in the radio button by tracking the cursor while the
user holds the mouse button down. If the cursor is pointing to the radio button when
the user releases the mouse button, this function turns the button on (and
consequently turns all sibling BRadioButtons off), calls the BRadioButton's Draw ()
function, and posts a message that will be delivered to the target BHandler. Unlike a
BCheckBox, a BRadioButton posts the message-it's "invoked"-only when it's
turned on, not when it's turned off.

See also: BControl: : Invoke (), BControl: : Set Target (), SetValue ()

SetValue()

virtual void SetValue(int32 value)

Augments the BControl version of SetValue () to tum all sibling BRadioButtons off
(set their values to O) when this BRadioButton is turned on (when the value passed is
anything but 0).

See also: BControl: : SetValue ()

BRect • Overview 523

BRect
Derived from: none

Declared in: be/interface/Rect.h

Library: lib be.so

Overview
A BRect object represents a rectangle, one with sides that parallel the x and y
coordinate axes. The rectangle is defined by its left, top, right, and bottom
coordinates, as illustrated below:

y-axis

x-axis
(0.0, 0.0)

Top

1------ Leh

In a valid rectangle, the top y coordinate value is never greater than the bottom
y coordinate, and the left x coordinate value is never greater than the right.

A BRect is the simplest, most basic way of specifying an area in a two-dimensional
coordinate system. Windows, scroll bars, buttons, text fields, and the screen itself are
all specified as rectangles.

When used to define the frame of a window or a view, or the bounds of a bitmap,
the sides of the rectangle must line up on screen pixels. For this reason, the rectangle
can't have any fractional coordinates. Coordinate units have a one-to-one
correspondence with screen pixels.

Integral coordinates fall at the center of screen pixels, so frame rectangles cover a
larger area than their coordinate values would indicate. Just as the number of
elements in an array is one greater than the largest index, a frame rectangle covers
one more column of pixels than its width and one more row than its height.

524 Chapter 4 • The Interface Kit

The figure below illustrates why this is the case. It shows a rectangle with a right side
8.0 units from its left (62.0-54.0) and a bottom 4.0 units below its top (17 .0-13.0).
Because the pixels that lie on all four sides of the rectangle are considered to be
inside it, there's an extra pixel in each direction. When the rectangle is filled on
screen, it covers a 9-pixel-by-5-pixel area.

(54.0, 13.0)

D ~ M ~ Y ff ~ H ~ ~ ~ ~ M H
--~------~------+------{------~-------~------~------~------{------~-------~------~------i------~------~--

: : : : : : : : : : : : : : : 12
--:------+------' · · · · · · · · '------t·----r·--t 13

--~------~------ -----·r·-·---r···--r- 14

--~------~------ ------;·----·r··-·r 1s

:_-_-:',·,,,::_-__ :_:_:_:_r,,·,,,:_:_:_:_:_- ------:------:------:-- 16 -----r---r----r 11
r···•··•··----,--···-,--

-+-----+------;------,------i------+------;-----+----+----i------+--- -L-----l------1------~-- 18

(62.0, 17.0)

Because the BRect structure is a basic data type for graphic operations, it's
constructed more simply than most other Interface Kit classes: All its data members
are publicly accessible, it doesn't have virtual functions, and it doesn't inherit from
BArchivable or any other class. Within the Interface Kit, BRect objects are passed and
returned by value.

Data Members
float left

The coordinate value of the rectangle's leftmost side (the smallest x coordinate in
a valid rectangle).

float top
The coordinate value of the rectangle's top (the smallest y coordinate in a valid
rectangle).

float right

The coordinate value of the rectangle's rightmost side (the largest x coordinate in
a valid rectangle).

float bottom
The coordinate value of the rectangle's bottom (the largest y coordinate in a valid
rectangle).

BRect • Member Functions

Constructor

BRect()
inline BRect(float left, float top, float right, float bottom)
inline BRect(BPoint leftTop, BPoint rightBottom)
inline BRect(const BRect& rec~
inline BRect(void)

525

Initializes a BRect with its four coordinate values-left, top, right, and bottom. The
four values can be directly stated:

BRect rect(ll.O, 24.7, 301.5, 99.0);

or they can be taken from two points designating the rectangle's left top and right
bottom corners:

BPoint leftTop(ll.O, 24.7);
BPoint rightBottom(301.5, 99.0);
BRect rect(leftTop, rightBottom);

or they can be copied from another rectangle:

BRect anotherRect(ll.0, 24.7, 301.5, 99.0);
BRect rect(anotherRect);

A rectangle that's not assigned any initial values:

BRect rect;

is constructed to be invalid (its top and left are greater than its right and bottom),
until a specific assignment is made, typically with the Set () function:

rect.Set(77.0, 2.25, 510.8, 393.0);

See also: Set ()

Member Functions

Contains()

bool Contains(BPoint point) const
boo! Contains(BRect rec~ canst

Returns true if point-or rect-lies inside the area the BRect defines, and false if
not. A rectangle contains a point even if the point coincides with one of the
rectangle's corners or lies on one of its edges.

One rectangle contains another if their union is the same as the first rectangle and
their intersection is the same as the second-that is, if the second rectangle lies
entirely within the first. A rectangle is considered to be inside another rectangle even

526 Chapter 4 • The Interface Kit

if they have one or more sides in common. Two identical rectangles contain each
other.

See also: Intersects (), the & (intersection) and I (union) operators,
BPoint::ConstrainTo()

Height{) see Width()

lnsetBy()

void lnsetBy(float horizontal, float vertica4
void lnsetBy(BPoint point)

Modifies the BRect by insetting its left and right sides by horizontal units and its top
and bottom sides by vertical units. (If a point is passed, its x coordinate value
substitutes for horizontal and its y coordinate value substitutes for vertical.)

For example, this code:

BRect rect(10.0, 40.0, 100.0, 140.0);
rect.InsetBy(20.0, 30.0);

produces a rectangle identical to one that could be constructed as follows:

BRect rect(30.0, 70.0, 80.0, 110.0);

If horizontal or vertical is negative, the rectangle becomes larger in that dimension,
rather than smaller.

See also: OffsetBy ()

lntegerWidth(), lntegerHeight()

inline int32 lntegerWidth(void) canst

inline int32 lntegerHeight(void) canst

These functions return the width and height of the rectangle expressed as integers.
Fractional widths and heights are rounded up to the next whole number.

See also: Width ()

Intersects()

bool lntersects(BRect reef) canst

Returns true if the BRect has any area-even a corner or part of a side-in common
with rect, and false if it doesn't.

See also: the & (intersection) operator

BRect • Member Functions

ls Valid(}

inline bool lsValid(void) const

Returns true if the BRect's right side is greater than or equal to its left and its bottom
is greater than or equal to its top, and false otherwise. An invalid rectangle doesn't
designate any area, not even a line or a point.

LeftBottom() see SetLe~Bottom()

Left Top() see SetLe~Top()

OffsetBy(}, OffsetTo()

void OffsetBy(float horizontal, float vertica~
void OffsetBy(BPoint pain~

void OffsetTo(BPoint pain~
void OffsetTo(float x, floaty)

These functions reposition the rectangle in its coordinate system, without altering its
size or shape.

OffsetBy () adds horizontal to the left and right coordinate values of the rectangle
and vertical to its top and bottom coordinates. (If a point is passed, point.x substitutes
for horizontal and point.y for vertical.)

OffsetTo () moves the rectangle so that its left top corner is at point-or at (x, y).
The coordinate values of all its sides are adjusted accordingly.

See also: InsetBy ()

Print T oStream ()

void PrintT oStream(void) canst

Prints the contents of the BRect object to the standard output stream (stdout) in the
form:

"BRect(left, top, right, bottom)"

where left, top, right, and bottom stand for the current values of the BRect's data
members.

RightBottom() see SetRightBottom()

Right Top(} see SetRightTop()

527

528 Chapter 4 • The Interface Kit

Set()

inline void Set(float left, float top, float right, float bottom)

Assigns the values left, top, right, and bottom to the BRect's corresponding data
members. The following code:

BRect rect;
rect.Set(O.O, 25.0, 50.0, 75.0);

is equivalent to:

BRect rect;
rect.left = 0.0;
rect.top = 25.0;
rect.right = 50.0;
rect.bottom = 75.0;

See also: the BRect constructor

SetleftBottom(), LeftBottom()

void SetleftBottom(const BPoint point)

inline BPoint LeftBottom(void) const

These functions set and return the left bottom comer of the rectangle.
SetLeftBottom () alters the BRect so that its left bottom corner is at point, and
LeftBottom () returns its current left and bottom coordinates as a BPoint object.

See also: SetLeftTop (), SetRightBottom (), SetRightTop ()

SetleftTop(), LeftTop()

void SetleftTop(const BPoint point)

inline BPoint LeftTop(void) const

These functions set and return the left top corner of the rectangle. SetLeftTop ()

alters the BRect so that its left top corner is at point, and LeftTop () returns its
current left and top coordinates as a BPoint object.

See also: SetLeftBottom(), SetRightTop (), SetRightBottom()

SetRightBottom(), RightBottom()

void SetRightBottom(const BPoint point)

inline BPoint RightBottom(void) const

BRect • Operators

These functions set and return the right bottom corner of the rectangle.
SetRightBot tom () alters the BRect so that its right bottom corner is at point, and
RightBot tom () returns its current right and bottom coordinates as a BPoint object.

See also: SetRightTop (), SetLeftBottom (), SetLeftTop ()

SetRightTop(), RightTop()

529

void SetRightTop(const BPoint pain~

inline BPoint RightTop(void) canst

These functions set and return the right top corner of the rectangle. SetRightTop ()

alters the BRect so that its right top corner is at point, and Right Top () returns its
current right and top coordinates as a BPoint object.

See also: SetRightBottom(), SetLeftTop (), SetLeftBottom()

Width(), Height()

inline float Width(void) const

inline float Height(void) const

These functions return the width of the rectangle (the difference between the
coordinates of its left and right sides) and its height (the difference between its top
and bottom coordinates). If either value is negative, the rectangle is invalid.

The width and height of a rectangle are not accurate guides to the number of pixels it
covers on-screen. As illustrated in the "Overview" to this class, a rectangle without
fractional coordinates covers an area that's one pixel broader than its coordinate
width and one pixel taller than its coordinate height.

See also: IntegerWidth ()

Operators
(assignment)

inline BRect& operator =(canst BRect&)

Assigns the data members of one BRect object to another BRect:

BRect a(27.2, 36.8, 230.0, 359.1);
BRect b;
b = a;

Rectangle b is made identical to rectangle a.

530 Chapter 4 • The Interface Kit

== (equality)

bool operator ==(BRect) const

Compares the data members of two BRect objects and returns true if each one
exactly matches its counterpart in the other object, and false if any of the members
don't match. In the following example, the equality operator would return false,
since the two objects have different right boundaries:

BRect a(ll.5, 22.5, 66.5, 88.5);
BRect b(ll.5, 22.5, 46.5, 88.5);
if (a == b)

•= (inequality)

char operator !=(BRect) const

Compares two BRect objects and returns true unless their data members match
exactly (the two rectangles are identical), in which case it returns false. This
operator is the inverse of the == (equality) operator.

& (intersection)

BRect operator &(BRect) const

Returns the intersection of two rectangles-a rectangle enclosing the area they have
in common. The shaded area below shows where the two outlined rectangles
intersect.

BRect • Operators 531

The intersection is computed by taking the greatest left and top coordinate values of
the two rectangles, and the smallest right and bottom values. In the following
example,

BRect a(lO.O, 40.0, 80.0, 100.0);
BRect b(35.0, 15.0, 95.0, 65.0);
BRect c = a & b;

rectangle c will be identical to one constructed as follows:

BRect c(35.0, 40.0, 80.0, 65.0);

If the two rectangles don't actually intersect, the result will be invalid. You can test for
this by calling the Intersects () function on the original rectangles, or by calling
IsValid () on the result.

See also: Intersects () , IsValid (), the I (union) operator

(union)

BRect operator l(BRect) canst

Returns the union of two rectangles-the smallest rectangle that encloses them both.
The shaded area below illustrates the union of the two outlined rectangles. Note that
it includes areas not in either of them.

The union is computed by selecting the smallest left and top coordinate values from
the two rectangles, and the greatest right and bottom coordinate values. In the
following example,

BRect a(l0.0, 40.0, 80.0, 100.0);
BRect b(35.0, 15.0, 95.0, 65.0);
BRect c = a I b;

532 Chapter 4 • The Interface Kit

rectangle c will be identical to one constructed as follows:

BRect c(lO.O, 15.0, 95.0, 100.0);

Note that two rectangles will have a valid union even if they don't intersect.

See also: the & (intersection) operator

BRegion
Derived from: none

Declared in: be/interface/Region.h

Library: lib be.so

Overview
A BRegion object describes an arbitrary area within a two-dimensional coordinate
system. The area can have irregular boundaries, contain holes, or be discontinuous.
It's often convenient to think of a region as a set of locations or points, rather than as
a closed shape like a rectangle or a polygon.

The points that a region includes can be described by a set of rectangles. Any point
that lies within at least one of the rectangles belongs to the region. You can define a
region incrementally by passing rectangles to functions like Set (), Include (), and
Exclude (). By calling CountRects () and RectAt (), you can also look at the
rectangles the BRegion object keeps to define the region. Since the object optimizes
its description of the region, these rectangles may differ from the ones you passed to
it.

BView's GetClippingRegion () function modifies a BRegion object so that it
represents the current clipping region of the view. A BView can pass
GetClippingRegion () a pointer to an empty BRegion,

BRegion temp;
GetClippingRegion(&temp);

then call BRegion's Intersects () and Contains () functions to test whether the
potential drawing it might do falls within the region:

if (temp.Intersects(someRect))

BView's FillRegion () fills a region with a specified pattern. This is equivalent to
filling all the rectangles that define the region.

BRegion • Member Functions

Constructor and Destructor

BRegion()

533

BRegion(const BRegion& region)
BRegion(void)

Initializes the BRegion object to have the same area as another region-or, if no other
region is specified, to an empty region.

The original BRegion object and the newly constructed one each have their own
copies of the data describing the region. Altering or freeing one of the objects will not
affect the other.

BRegion objects can be allocated on the stack and assigned to other objects:

BRegion regionOne(anotherRegion);
BRegion regionTwo = regionOne;

However, due to their size, it's more efficient to pass them by pointer than by value.

-BRegion

virtual -BRegion(void)

Frees any memory that was allocated to hold data describing the region.

Member Functions

Contains()

bool Contains(BPoint point) canst

Returns true if point lies within the region, and false if not.

CountRects() see RectAt()

Exclude()

void Exclude(BRect reef)
void Exclude(const BRegion *region)

Modifies the region so that it excludes all points contained within rector region that it
might have included before.

See also: Include (), IntersectWith ()

534 Chapter 4 • The Interface Kit

Frame()
BRect Frame(void) const

Returns the frame rectangle of the BRegion-the smallest rectangle that encloses all
the points within the region.

If the region is empty, the rectangle returned won't be valid.

See also: BRect: : IsValid ()

Include()
void lnclude(BRect reef)

void lnclude(const BRegion *region)

Modifies the region so that it includes all points contained within the rect or region
passed as an argument.

See also: Exe 1 ude ()

lntersectWith ()
void lntersectWith(const BRegion *region)

Modifies the region so that it includes only those points that it has in common with
another region.

See also: Include ()

Intersects()
bool lntersects(BRect reef) canst

Returns true if the BRegion has any area in common with rect, and false if not.

Make Empty()
void MakeEmpty(void)

Empties the BRegion of all its points. It will no longer designate any area and its
frame rectangle won't be valid.

See also: the BRegion constructor

OffsetBy()
void OffsetBy(int32 horizontal, int32 vertica~

Offsets all points contained within the region by adding hoSrizontal to each x
coordinate value and vertical to each y coordinate value.

BRegion • Operators 535

Print T oStream()

void PrintToStream(void) const

Prints the contents of the BRegion to the standard output stream Cs tdou t) as an array
of strings. Each string describes a rectangle in the form:

"BRect (left, top, right, bottom)"

where left, top, right, and bottom are the coordinate values that define the rectangle.

The first string in the array describes the BRegion's frame rectangle. Each subsequent
string describes one portion of the area included in the BRegion.

See also: BRect: : PrintToStream () , Frame ()

RectAt(), CountRects()

BRect RectAt(int32 index)

int32 CountRects(void)

These functions provide access to the array of rectangles that define the region. Each
coordinate point or pixel that's included within a rectangle is part of the region;
points or pixels not inside a rectangle are not in the region.

CountRects () returns the total number of rectangles in the array; RectAt () returns
the rectangle at a particular index in the array.

Set()

void Set(BRect rec~

Modifies the BRegion so that it describes an area identical to rect. A subsequent call
to Frame () should return the same rectangle (unless some other change was made
to the region in the interim).

See also: Include (), Exclude ()

Operators
(assignment)

BRegion& operator =(canst BRegion&)

Assigns the region described by one BRegion object to another BRegion:

BRegion region = anotherRegion;

After the assignment, the two regions will be identical, but independent, copies of one
another. Each object allocates its own memory to store the description of the region.

536 Chapter 4 • The Interface Kit

BScreen
Derived from: none

Declared in: be/interface/Screen.h

Library: lib be.so

Overview
A BScreen object represents a screen, a monitor that's connected to the computer and
the graphics card that serves the monitor. The object's main purpose is to provide
information about the screen-its pixel dimensions, depth, color map, color space,
and so on. However, it can also set one screen parameter, the background "desktop"
color. Nevertheless, the configuration of the screen (including the desktop color)
should be left to users and a preferences application; most applications should be
content just to get information from the BScreen object.

Multiple Screens

Currently, the BeOS supports only one screen. However, in the future, it will allow
you to hook up more than one monitor to your computer. One of the screens, the
main screen, will have the origin of the screen coordinate system at its left top corner.
Other screens will be located elsewhere in the same coordinate system. If there's just
one screen, it's the main screen.

A BScreen object represents just one screen. An application can have more than one
object referring to the same screen, but you'll need a different BScreen object for each
screen you want to query.

When multiple screens are supported, a screen_id identifier will be assigned to
each one. Currently, B_MAIN_SCREEN_ID is the only identifier.

Locking and Allocation

When a BScreen object is constructed, it locks the screen in its current configuration,
preventing all changes (except to the desktop color). The screen is unlocked when
the object is destroyed, unless another BScreen object still has it locked. Therefore,
you should keep a BScreen object for as short a period as possible, only until it has
finished revealing the information you need. BScreen objects should not be cached or
dynamically allocated. Allocate one on the stack each time you need information
about the screen and make sure it's in a block of code that won't linger for long.

BScreen • Member Functions 537

If a BScreen object is being used to get just one piece of information about the
screen, it can be constructed anonymously (without assigning it to a variable). For
example:

BRect screenRect = BScreen{myWindow) .Frame{);

However, anonymous construction doesn't mean that the object goes away after its
single use. The normal rules of engagement for static construction apply-the object
will be destroyed when 'the flow of execution leaves the braces that enclose the block
of code it's in.

Constructor and Destructor

BScreen()

BScreen(BWindow *window)
BScreen(screen_id id= B_MAIN_SCREEN_ID)

Initializes the BScreen object so that it represents the screen where window is
displayed or the screen identified by id. If window is NULL, the window is hidden, or
the id is invalid, the BScreen will represent the main screen (which is currently the
only possibility anyway).

Since multiple monitors are not currently supported, there's no API for getting screen
identifiers other than for the main screen.

Constructing a BScreen object locks the screen configuration; the user won't be able
to change its depth or resolution until the object is destroyed. Therefore, you should
keep the object for only as brief a time as possible. It's best to construct it statically in
a block of code that will be executed quickly.

To be sure the new object was correctly constructed, call IsValid ().

See also: IsValid()

-BScreen()

-BScreen(void)

Unlocks the screen and invalidates the BScreen object.

Member Functions

BaseAddress(), BytesPerRow()

void *BaseAddress(void)

uint32 BytesPerRow(void)

538 Chapter 4 • The Interface Kit

BaseAddress () returns the base address for the frame buffer for the screen and
BytesPerRow() returns the number of bytes in the frame buffer for each row of
pixel data. The count includes bytes that hold pixel values and possibly bytes at the
end of each row to make sure the next row is aligned on an appropriate boundary.

These are dangerous functions. Although the BScreen object locks the current
configuration of the screen, the screen itself is not locked. You cannot safely read
from the frame buffer or write to it. Use the BWindowScreen· class in the Game Kit to
get direct access to the frame buffer.

ColorForlndex() see lndexForColor()

ColorMap()

const color_map *ColorMap (void)

Returns a pointer to the color map for the screen. The color map defines the set of
256 colors that can be displayed in the B_COLOR_S_BIT color space. A single set of
colors is shared by all applications that display on the screen.

The color_map structure is defined in inteiface/GraphicsDefs.h and contains the
following fields:

int32 id
An identifier that the Application Server uses to distinguish one color map from
another.

rgb_color color _list[256]
A list of the 256 colors, expressed as rgb_color structures. Indices into the list
can be used to specify colors in the B_COLOR_8_BIT color space. See
IndexForColor () .

uint8 inversion_map[256]
A mapping of each color in the color_list to its opposite color. Indices are
mapped to indices. An example of how this map might be used is given below.

uint8 index_map[32768]
An array that maps RGB colors-specified using 5 bits per component-to their
nearest counterparts in the color list. An example of how to use this map is also
given below.

The inversion_map is a list of indices into the color_list where each index
locates the "inversion" of the original color. The inversion of the nth color in
color_list would be found as follows:

BScreen screen;
const color_map *map= screen.ColorMap();

BScreen • Member Functions 539

uint8 inversionindex = map->inversion_map[n];
rgb_color inversionColor = map->color_list[inversionindex];

Inverting an inverted index returns the original index, so this code:

uint8 color= map->inversion_map[inversionindex];

would return n. The Invertindex () function is an alternative to indexing into the
inversion_map in this way, though it carries the overhead of a function call for
each operation.

Inverted colors are used, primarily, for highlighting. Given a color, its highlight
complement is its inversion.

The index_map maps every RGB combination that can be expressed in 15 bits (5
bits per component) to a single color_list index that best approximates the
original RGB data. The following example demonstrates how to squeeze 24-bit RGB
data into a 15-bit number that can be used as an index into the index_map:

long rgbl5 = (((red & Oxf8) << 7) I
((green & Oxf8) << 2) I
((blue & Oxf8) >> 3));

Most applications won't need to use the index map directly; the IndexForColor ()
function performs the same conversion with less fuss (no masking and shifting
required). However, applications that implement repetitive graphic operations, such
as dithering, may want to access the index map themselves, and thus avoid the
overhead of an additional function call.

You should never modify or free the color_map structure returned by this function;
it belongs to the BScreen object.

See also: IndexForColor (), system_colors ()

ColorSpace()

color_space ColorSpace(void)

Returns the color space of the screen display-typically B_COLOR_B_BIT or
B_RGB_32_BIT-or B_NO_COLOR_SPACE if the BScreen object is invalid. The color
space is under the control of the user and the Screen preferences application.

See also: "Colors" near the beginning of this chapter for an explanation of the various
color spaces

DesktopColor() see SetDesktopCo/or()

540 Chapter 4 • The Interface Kit

Frame()

BRect Frame(void)

Returns the rectangle that locates the screen in the screen's coordinate system and
defines its dimensions. For example, a screen with a resolution of 1,024 pixels x 768
pixels would have a frame rectangle with both its left and top sides at 0.0 (assuming
it's the main screen), its right side at 1,023.0, and its bottom at 767.0.

If the BScreen object is invalid, all sides of the rectangle are set to 0.0.

See also: the BRect class

ID()

screen_id ID(void)

Returns the identifier for the screen, which for the main screen (currently the only
screen) should be B_MAIN_SCREEN_ID.

The screen_id is not persistent. A new one may be assigned each time the machine
is rebooted or a monitor is disconnected then reconnected.

This function currently returns B_MAIN_SCREEN_ID even if the BScreen object is
invalid.

lndexForColor(), ColorForlndex()
inline uint8 lndexForColor(rgb_color colory
uint8 lndexForColor(uint8 red, uint8 green, uint8 blue, uint8 alpha = 0)

rgb_color ColorForlndex(const uint8 index)

IndexForColor () returns an index into the list of 256 colors that comprise the 8-bit
color space for the screen. The value returned picks out the listed color that most
closely matches a full 32-bit color-specified either as an rgb_color value or by its
red, green, and blue components. (The alpha component is currently ignored.)

The returned index identifies a color in the B_COLOR_8_BIT color space. It can, for
example, be passed to BBitmap's SetBi ts () function to set the color of a bitmap
pixel. If the color is B_TRANSPARENT_32_BIT, the return value will be
B_TRANSPARENT_8_BIT.

To find the fully specified color that an index picks out, you can call
ColorForindex () or you can get the color list for the screen and find the color
directly. For example, if you first obtain the index for the "best fit" color that most
closely matches an arbitrary color,

BScreen screen;
uintB index= screen.IndexForColor(134, 210, 6);

BScreen • Member Functions 541

you can then pass the index to ColorForindex (),

rgb_color bestFit = screen.ColorForindex(index);

or you can use the index to locate that color in the color list:

rgb_color bestFit = screen.ColorMap()->color_list[index];

Neither method will correctly translate B_TRANSPARENT_8_BIT to B_TRANSPARENT_

32_BIT.

See also: ColorMap () , the BBitmap class

lnvertlndex()

uint8 lnvertlndex(uint8 index)

Returns the index to the color that's the inversion (or exact opposite) of the index

color passed as an argument. Both the return value and the argument specify colors
in the B_COLOR_8_BIT color space. Inverting an inverted color returns the original
color. For example:

uintB inversion= Invertindex(colorindex);
uintB inversionOfinversion = Invertindex(inversion);
ASSERT(inversionOfinversion == colorindex);

This function is an alternative to getting the color map and looking at the
inversion_map yourself.

See also: ColorMap ()

ls Valid()

boo! lsValid(void)

Returns true if the BScreen object is valid (if it represents a real screen connected to
the computer), and false if not (for example, if the screen has been disconnected).

SetDesktopColor(), DesktopColor()

void SetDesktopColor(rgb_color color, boo! makeDefault = true)

rgb_color DesktopColor(void)

These functions set and return the color of the "desktop"-the backdrop against which
windows are displayed on the screen. SetDesktopColor () makes an immediate
change in the desktop color displayed on-screen; DesktopColor () returns the color
currently displayed. If the makeDefault flag is true, the color that's set becomes the
default color for the screen; it's the color that will be shown the next time the machine
is booted. If the flag is false, the color is set only for the current session.

542 Chapter 4 • The Interface Kit

Typically, users choose the desktop color with the Screen preferences application.
Other applications can look at the desktop color, but should not set it.

WaitForRetrace()
status_t WaitForRetrace(void)

Blocks until the monitor has finished the current vertical retrace, then returns B_OK.

There are a few milliseconds available before it begins another retrace. Drawing done
(changes made to the frame buffer) in this period won't cause any "flicker" on-screen.

For some graphics card drivers, this function will wait for vertical sync; for others it
will wait until vertical blank, providing a few extra milliseconds. (However, it's
currently not implemented and always returns B_ERROR without blocking.)

BScrollBar
Derived from: public BView

Declared in: be/interface/ScrollBar.h

Library: lib be.so

Overview
A BScrollBar object displays a vertical or horizontal scroll bar that users can operate to
scroll the contents of another view, a target view. Scroll bars usually are grouped as
siblings of the target view under a common parent. Then, when the parent is resized,
the target and scroll bars can be automatically resized to match. (A companion class,
BScrollView, defines just such a container view; a BScrollView object sets up the scroll
bars for a target view and makes itself the parent of the target and the scroll bars.)

The Update Mechanism
BScrollBars are different from other views in one important respect: All their drawing
and event handling is carried out within the Application Server, not in the
application. A BScrollBar object doesn't receive Draw () or MouseDown ()

notifications; the server intercepts updates and interface messages that would
otherwise be reported to the BScrollBar and handles them itself. As the user moves
the knob on a scroll bar or presses a scroll arrow, the Application Server continuously
refreshes the scroll bar's image on-screen and informs the application with a steady
stream of B_ VALUE_CHANGED messages.

The window dispatches these messages by calling the BScrollBar's ValueChanged()

function. Each function call notifies the BScrollBar of a change in its value and,
consequently, of a need to scroll the target view.

BScrollBar • Overview

Confining the update mechanism for scroll bars to the Application Server limits the
volume of communication between the application and server and enhances the
efficiency of scrolling. The application's messages to the server can concentrate on
updating the target view as its contents are being scrolled, rather than on updating
the scroll bars themselves.

Value and Range

543

A scroll bar's value determines what the target view displays. The assumption is that
the left coordinate value of the target view's bounds rectangle should match the value
of the horizontal scroll bar, and the top of the target view's bounds rectangle should
match the value of the vertical scroll bar. When a BScrollBar is notified of a change of
value (through ValueChanged ()), it calls the target view's Scroll To () function to
put the new value at the left or top of the bounds rectangle.

The value reported in a ValueChanged () notification and passed to Scroll To ()

depends on where the user moves the scroll bar's knob and on the range of values
the scroll bar represents. The range is first set in the BScrollBar constructor and can
be modified by the SetRange () function.

The range must be large enough to bring all the coordinate values where the target
view can draw into its bounds rectangle. If everything the target view can draw is
conceived as being enclosed in a "data rectangle," the range of a horizontal scroll bar
must extend from a minimum that makes the left side of the target's bounds rectangle
coincide with the left side of its data rectangle, to a maximum that puts the right side
of the bounds rectangle at the right side of the data rectangle. This is illustrated in
part below:

544 Chapter 4 • The Interface Kit

As this illustration helps demonstrate, the maximum value of a horizontal scroll bar
can be no less than· the right coordinate value of the data rectangle minus the width
of the bounds rectangle. Similarly, for a vertical scroll bar, the maximum value can be
no less than the bottom coordinate of the data rectangle minus the height of the
bounds rectangle. The range of a scroll bar subtracts the dimensions of the target's
bounds rectangle from its data rectangle. (The minimum values of horizontal and
vertical scroll bars can be no greater than the left and top sides of the data rectangle.)

What the target view can draw may change from time to time as the user adds or
deletes data. As this happens, the range of the scroll bar should be updated with the
SetRange () function. The range may also need to be recalculated when the target
view is resized.

Coordination

Scroll bars control the target view, but a target can also be scrolled without the
intervention of its scroll bars (by calling Scroll To () or ScrollBy () directly).
Therefore, not only must a scroll bar know about its target, but a target view must
know about its scroll bars. When a BScrollBar sets its target, the target BView is
notified and records the identity of the BScrollBar.

The two objects communicate whenever the display changes: When the scroll bar is
the instrument that initiates scrolling, ValueChanged () calls the target view's
Scroll To () function. To cover cases of target-initiated scrolling, Scroll To () calls
the BScrollBar's SetValue () function so that the scroll bars can be updated on
screen. SetValue () in turn calls ValueChanged (), which makes sure the exchange
of function calls doesn't get too circular.

Scroll Bar Options

Users have control over some aspects of how scroll bars look and behave. With the
ScrollBar preferences application, they can choose:

• Whether the knob should be a fixed size, or whether it should grow and shrink to
proportionally represent how much of a document (how much of the data
rectangle) is visible within the target view. A proportional knob is the default.

• Whether double, bidirectional scroll arrows should appear on each end of the
scroll bar, or whether each end should have only a single, unidirectional arrow.
Double arrows are the default.

• Which of three patterns should appear on the knob.

• What the size of the knob should be-the minimum length of a proportional knob
or the fixed length of a knob that's not proportional. The default length is 15
pixels.

BScrollBar • Constructor and Destructor

When this class constructs a new BScrollBar, it conforms the object to the choices the
user has made.

See also: set_scroll_bar_info (), BView:: ScrollBar (), the BScrollView class

Hook Functions
Val ueChanged ()

Scrolls the target view when the BScrollBar is informed that its value has changed;
can be augmented to coordinate other activities with the change in value.

Constructor and Destructor
BScrollBar()

BScrollBar(BRectframe, const char *name, BView •target,
float min, float max, orientation posture)

545

BScrollBar(BMessage *archive)

Initializes the BScrollBar and connects it to the target view that it will scroll. It will be
a horizontal scroll bar if posture is B_HORIZONTAL and a vertical scroll bar if posture
is B_ VERTICAL.

The range of values that the scroll bar can represent at the outset is set by min and
max. These values should be calculated from the boundaries of a rectangle that
encloses the entire contents of the target view-everything that it can draw. If min
and max are both 0, the scroll bar is disabled and the knob is not drawn.

The object's initial value is 0 even if that falls outside the range set for the scroll bar.

The other arguments, frame and name, are the same as for other BViews:

• The frame rectangle locates the scroll bar within its parent view. For consistency
in the user interface, a horizontal scroll bar should be B_H_SCROLL_BAR_HEIGHT

coordinate units high, and a vertical scroll bar should be
B_ V _SCROLL_BAR_WIDTH units wide.

• The BScrollBar's name identifies it and permits it to be located by the
FindView () function. It can be NULL.

Unlike other BViews, the BScrollBar constructor doesn't set an automatic res1zmg
mode. By default, scroll bars have the resizing behavior that befits their posture
horizontal scroll bars resize themselves horizontally (as if they had a resizing mode
that combined B_FOLLOW_LEFT_RIGHT with B_FOLLOW_BOTTOM) and vertical scroll
bars resize themselves vertically (as if their resizing mode combined
B_FOLLOW_TOP _BOTTOM with B_FOLLOW_RIGHT).

546 Chapter 4 • The Interface Kit

-BSc ro II Bar()

virtual -BScrollBar(void)

Disconnects the scroll bar from its target.

Static Functions

Instantiate()

static BScrollBar *lnstantiate(BMessage *archive)

Returns a new BScrollBar object, allocated by new and created with the version of the
constructor that takes a BMessage archive. However, if the archive message doesn't
contain data for a BScrollBar object, the return value will be NULL.

See also: BArchivable:: Instantiate (), instantiate_object (),Archive ()

Member Functions

Archive()

virtual status_t Archive(BMessage *archive, bool deep= true) const

Calls the inherited version of Archive () , then adds the BScrollBar's range,
orientation, current value and proportion, and the size of its big and little steps to the
BMessage archive.

See also: BArchivable: :Archive (), Instantiate () static function

AttachedT o Window()

virtual void AttachedToWindow(void)

Makes sure that the Application Server is cognizant of the BScrollBar's value, if a
value was set before the object was attached to a window.

See also: BHandler: : At tachedToWindow ()

GetRange() see SetRange()

GetSteps() see SetSteps()

Orientation()

orientation Orientation(void) canst

BScrollBar • Member Functions

Returns B_HORIZONTAL if the object represents a horizontal scroll bar and
B_VERTICAL if it represents a vertical scroll bar.

See also: the BScrollBar constructor

SetProportion(}, Proportion()

547

void SetProportion(float ratio)

float Proportion(void) const

These functions set and return a value between 0.0 and 1.0 that represents the
proportion of the entire document that can be displayed within the target view-the
ratio of the width (or height) of the target's bounds rectangle to the width (or height)
of its data rectangle. This ratio determines the size of a proportional scroll knob
relative to the whole scroll bar. It's not adjusted to take into account the minimum
size of the knob.

The proportion should be reset as the size of the data rectangle changes (as data is
entered and removed from the document) and when the target view is resized.

SetRange(}, GetRange()

void SetRange(float min, float max)

void GetRange(float *min, float •max) const

These functions modify and return the range of the scroll bar. SetRange () sets the
minimum and maximum values of the scroll bar to min and max. GetRange ()

places the current minimum and maximum in the variables that min and max refer
to.

If the scroll bar's current value falls outside the new range, it will be reset to the
closest value-either min or max-within range. ValueChanged () is called to
inform the BScrollBar of the change whether or not it's attached to a window.

If the BScrollBar is attached to a window, any change in its range will be immediately
reflected on-screen. The knob will move to the appropriate position to reflect the
current value.

Setting both the minimum and maximum to 0 disables the scroll bar. It will be drawn
without a knob.

See also: the BScrollBar constructor

548 Chapter 4 • The Interface Kit

SetSteps(), GetSteps()

void SetSteps(float smallStep, float bigStep)

void GetSteps(float * smallStep, float * bigStep) const

SetSteps () sets how much a single user action should change the value of the
scroll bar-and therefore how far the target view should scroll. GetSteps () provides
the current settings.

When the user presses one of the scroll arrows at either end of the scroll bar, its value
changes by a smallStep coordinate units. When the user clicks in the bar itself (other
than on the knob), it changes by a bigStep units. For an application that displays text,
the small step of a vertical scroll bar should be large enough to bring another line of
text into view.

The default small step is 1.0, which should be too small for most purposes; the
default large step is 10.0, which is also probably too small.

Currently, a BScrollBar's steps can be successfully set only after it's attached to a
window.

See also: ValueChanged ()

SetTarget(), Target()

void SetTarget(BView *view)
void SetTarget(const char *name)

BView *Target(void) const

These functions set and return the target of the BScrollBar, the view that the scroll bar
scrolls. SetTarget () sets the target to view, or to the BView identified by name.
Target () returns the current target view. The target can also be set when the
BScrollBar is constructed.

Set Target () can be called either before or after the BScrollBar is attached to a
window. If the target is set by name, the named view must eventually be found
within the same window as the scroll bar. Typically, the target and its scroll bars are
children of a container view that serves to bind them together as a unit.

When the target is successfully set, a pointer to the BScrollBar object is passed to the
target view. This lets the target update its scroll bars when its contents are scrolled.

See also: the BScrollBar constructor, ValueChanged (), BView: : ScrollBar ()

BScrollBar • Member Functions

SetValue(), Value()

void SetValue(float value)

float Value(void) const

549

These functions modify and return the value of the scroll bar. The value is usually set
as the result of user actions; SetValue () provides a way to do it programmatically.
Value () returns the current value, whether set by SetValue () or by the user.

SetValue () assigns a new value to the scroll bar and calls the ValueChanged ()

hook function, whether or not the new value is really a change from the old. If the
value passed lies outside the range of the scroll bar, the BScrollBar is reset to the
closest value within range-that is, to either the minimum or the maximum value
previously specified.

If the scroll bar is attached to a window, changing its value updates its on-screen
display. The call to ValueChanged () enables the object to scroll the target view so
that it too is updated to conform to the new value.

The initial value of a scroll bar is 0.

See also: ValueChanged (), SetRange ()

Target() see SetT arget()

Value() see SetVa/ue()

ValueChanged()

virtual void ValueChanged(float newValue)

Responds to a notification that the value of the scroll bar has changed to newValue.
For a horizontal scroll bar, this function interprets newValue as the coordinate value
that should be at the left side of the target view's bounds rectangle. For a vertical
scroll bar, it interprets newValue as the coordinate value that should be at the top of
the rectangle. It calls Scroll To () to scroll the target's contents into position, unless
they have already been scrolled.

valueChanged () is called as the result both of user actions (B_VALUE_CHANGED

messages received from the Application Server) and of programmatic ones.
Programmatically, scrolling can be initiated by the target view (calling Scroll To ())

or by the BScrollBar (calling SetValue () or SetRange ()).

In all these cases, the target view and the scroll bars need to be kept in synch. This is
done by a chain of function calls: ValueChanged () calls Scroll To (),which in turn
calls SetValue (), which then calls ValueChanged () again. It's up to

550 Chapter 4 • The Interface Kit

Val ueChanged () to get off this merry-go-round, which it does by checking the
target view's bounds rectangle.' If new Value already matches the left or top side of the
bounds rectangle, if forgoes calling Scroll To () .

ValueChanged () does nothing if a target BView hasn't been set-or if the target has
been set by name, but the name doesn't correspond to an actual BView within the
scroll bar's window.

Derived classes can override this function to interpret newValue differently, or to do
something in addition to scrolling the target view.

See also: SetTarget (), SetValue (), BView:: Scroll To ()

BScrollView
Derived from: public BView

Declared in: be/interface/ScrollView.h

Library: lib be.so

Overview
A BScrollView object is a container for another view, a target view, typically a view
that can be scrolled. The BScrollView creates and positions the scroll bars the target
view needs and makes itself the parent of the scroll bars and the target view. It's a
convenient way to set up scroll bars for another view.

If requested, the BScrollView draws a border around its children. Otherwise, it does
no drawing and simply contains the family of views it set up.

The ScrollBar () function provides access to the scroll bars the BScrollView
creates, so you can set their ranges and values as needed.

Constructor and Destructor
BScrollView()

BScrollView(const char *name, BView *target,
uint32 resizingMode = B_FOLLOW _LEFT I B_FOLLOW _TOP,
uint32 flags = 0,
bool horizontal = false,
bool vertical = false,
border_style border = B_FANCY _BORDER)

BScrollView(BMessage *archive)

BScrollView • Constructor and Destructor

Initializes the BScrollView. It will have a frame rectangle large enough to contain the
target view and any scroll bars that are requested. If horizontal is true, there will be
a horizontal scroll bar. If vertical is true, there will be a vertical scroll bar. Scroll bars
are not provided unless you ask for them.

The border argument can be set to one of three values:

B_PLAIN_BORDER

B_FANCY_BORDER

B_NO_BORDER

Draw a border consisting of just a simple line around the target view and
scroll bars.

Draw a fancier border that looks like a 3D groove inset into the surface of
the view.

Don't draw a border.

551

A BScrollView can be used without scroll bars to simply contain and border the target
view.

The BScrollView adapts its frame rectangle from the frame rectangle of the target
view. It makes its frame just big enough to hold the target, scroll bars, and border. It
positions itself so that the target view doesn't move within the window: If there's no
border, its left and top sides are exactly where the left and top sides of the target view
originally were. If there is a border, its sides are adjusted to make room for it while
keeping the target view constant.

The target view is notified that it has become the target of a BScrollView with a
TargetedByScrollView() function call. The BScrollView then adds the target view
as its child along with any requested scroll bars. In the process, it modifies the target
view's frame rectangle (but not its bounds rectangle) so that it will fit within its new
parent.

If the resize mode of the target view is B_FOLLOW_ALL_SIDES, it and the scroll bars
will be automatically resized to fill the container view whenever the container view is
resized.

The scroll bars created by the BScrollView have an initial range extending from a
minimum of 0 to a maximum of 1000. You'll generally need to ask for the scroll bars
(using the ScrollBar () function) and set their ranges to more appropriate values.

The name, resizingMode, and flags arguments are identical to those declared in the
BView class and are passed to the BView constructor. If a border is requested,
B_WILL_DRAW is automatically added to the flags mask. The other two arguments are
passed to the BView class unchanged.

See also: the BView constructor, BView: TargetedByScroll View ()

552

-BScrollView()

virtual -BScrollView(void)

Does nothing.

Static Functions

Instantiate()

static BScrollView *lnstantiate(BMessage *archive)

Chapter 4 • The Interface Kit

Returns a new BScrollView object, allocated by new and created with the version of
the constructor that takes a BMessage archive. However, if the message doesn't
contain data for an archived BScrollView object, Instantiate () returns NULL.

See also: BArchivable:: Instantiate (), instantiate_object {),Archive{)

Member Functions

Archive()

virtual status_t Archive(BMessage *archive, bool deep = true) const

Calls the inherited version of Archive () , which will archive the target view and
scroll bars if the deep flag is true. This function then adds the BScrollView's border
style to the archive message.

See also: BArchi vable: : Archive (), Instantiate () static function

AttachedT o Window()

virtual void AttachedToWindow(void)

Resizes scroll bars belonging to BScrollViews that occupy the right bottom corner of a
document window (B_DOCUMENT_WINDOW) so that room is left for the resize knob.
This function assumes that vertical scroll bars are B_ V _SCOLL_BAR_WIDTH units wide
and horizontal scroll bars are B_H_SCROLL_BAR_HEIGHT units high. It doesn't check
to make sure the window is actually resizable.

This function also sets the default high color to a medium shade of gray.

See also: BView: : At tachedToWindow ()

Border() see SetBorder()

BScrollView • Member Functions

Draw()

virtual void Draw(BRect updateRect)

Draws the border around the target view and scroll views, provided a border was
requested when the BScrollView was constructed.

See also: the BScrollView constructor, BView: : Draw ()

lsBorderHighlighted() see SetBorderHighlighted()

Scroll Bar()

BScrollBar *ScrollBar(orientation posture) canst

553

Returns the horizontal scroll bar if posture is B_HORIZONTAL and the vertical scroll
bar if posture is B_ VERTICAL. If the BScrollView doesn't contain a scroll bar with the
requested orientation, this function returns NULL.

See also: the BScrollBar class

SetBorder{), Border()

virtual void SetBorder(border_style bordef)

border_style Border(void) canst

These functions set and return the style of the BScrollView's border, which may be
B_PLAIN_BORDER, B_FANCY_BORDER, or B_NO_BORDER. The border is originally set
by the constructor. The three constants and the border's effect on the BScrollView are
discussed there.

See also: the BScrollView constructor

SetBorderHighlighted{), lsBorderHighlighted()

virtual status_t SetBorderHighlighted(bool highlighted)

bool lsBorderHighlighted(void) canst

SetBorderHighlighted () highlights the border of the BScrollView when the
highlighted flag is true, and removes the highlighting when the flag is false. This
function works by calling Draw () . However, it works only for a border in the
B_FANCY_BORDER style. If successful, it returns B_OK. Otherwise, it returns B_ERROR.

IsBorderHighlighted () returns whether the border is currently highlighted. The
return value is always false for a BScrollView that doesn't have a border or has only
a "plain" one.

554 Chapter 4 • The Interface Kit

Highlighting a BScrollView's border shows that the target view is the current focus
view for the window. Typically, the target view calls SetBorderHighlighted ()

from its MakeFocus () function when the focus changes. (The target knows that it's
inside a BScrollView because of the TargetedByScroll View () notification it
received.) In the Interface Kit, only BListViews take the opportunity these functions
afford to highlight a parent BScrollView's border.

BSeparatorltem
Derived from: public BMenultem

Declared in: be/interface/Menultem.h

Library: lib be.so

Overview
A BSeparatoritem is a menu item that serves only to separate the items that precede it
in the menu list from the items that follow it. It's drawn as a horizontal line across the
menu from the left border to the right. Although it has an indexed position in the
menu list just like other items, it doesn't have a label, can't be selected, sends no
messages, and is permanently disabled.

Since the separator is drawn horizontally, it's assumed that items in the menu are
arranged in a column, as they are by default. It's inappropriate to use a separator in a
menu bar or another menu where the items are arranged in a row.

A separator can be added to a BMenu by constructing an object of this class and
calling BMenu's Additem () function. As a shorthand, you can simply call BMenu's
AddSeparatoritem () function, which constructs the object for you and adds it to
the list.

A BSeparatorltem that's returned to you (by BMenu's ItemAt () function, for
example) will always respond NULL to Message () , Command () , and Submenu ()

queries and false to IsEnabled ().

See also: BMenu: : AddSeparatoritem ()

Constructor and Destructor
BSeparatorltem ()

BSeparatorltem(void)
BSeparatorltem(BMessage *archive)

Initializes the BSeparatoritem and disables it.

BSeparatorltem • Member Functions

-BSeparatorltem()

virtual -BSeparatorltem(void)

Does nothing.

Static Functions

Instantiate()

SSS

static BSeparatorltem *lnstantiate(BMessage •archive)

Returns a new BSeparatorltem object, allocated by new and created with the version
of the constructor that takes a BMessage archive. However, if the archive message
doesn't contain data for a BSeparatorltem object, the return value is NULL.

See also: BArchi vable: : Instantiate (), instantiate_obj ect (),
BMenuitem::Archive()

Member Functions

Draw()

protected:
virtual void Draw(void)

Draws the item as a horizontal line across the width of the menu.

GetContentSize()

protected:
virtual void GetContentSize(float •width, float •height)

Provides a minimal size for the item so that it won't constrain the size of the menu.

Instantiate() see Archive()

SetEnabled()

virtual void SetEnabled(bool flag)

Does nothing. A BSeparatoritem is disabled when it's constructed and must stay that
way.

556 Chapter 4 • The Interface Kit

BShelf
Derived from: public BHandler

Declared in: be/interface/Shelf.h

Library: lib be.so

Overview
A BShelf is an object that you "attach" to a view in order to make the view accept
dropped BDragger objects (and the views that they serve). In user-talk, a shelf
receives and displays replicants. Attaching a BShelf to a view (called the "container"
view) is remarkably simple:

BShelf *shelf= new BShelf{some_view);

That's all there is to it: With this single line of code, some_view is primed to accept
and (automatically) display dropped replicants. A dropped replicant becomes a child
of the container view. The container view itself can be any BView object; you don't
have to prime the view or otherwise alter it in any way.

A rule you should remember:

• Attaching a shelf to a view is performed by the BShelf constructor only. You can't
create a BShelf and then decide which view you want it to serve.

Other BShelf features:

• A BShelf can configure itself from a "settings" file, and can write its contents to that
file. Your only chance to associate a BShelf with a settings file is during
construction. You can save the contents at any time through the Save () function.

• A BShelf can reject dropped replicants, and can adjust the position of the
replicants that it accepts. These features are provided through hook functions
(CanAccept ... and AdjustReplicantBy ()).

• A BShelf has a name. When a replicant message is dropped on the shelf, the
shelfs name is compared to the dropped message's "shelf_name" field (if it has
one). If the two don't match, the replicant is rejected. In this way, individual views
can be picky about the shelves that they want to be displayed on.

Dropping into the View Hierarchy

When the user drops a replicant on a container view, the thing that the view actually
receives is a B_ARCHIVED_OBJECT message that contains a BDragger and the
dragger's target (a BView). These two objects (the BDragger and its target) are
directly related as parent-child, child-parent, or as siblings (as explained in the

BShelf • Constructor and Destructor

BDragger class). The "more elderly" of the two objects is added as a child of the
container view; if they're siblings, the two objects are both added as children.

You can also send or post B_ARCHIVED_OBJECT messages to a BShelf to simulate a
drag and drop.

Hook Functions

557

CanAcceptReplicantMessage()

Invoked when a replicant BMessage is received by the BShelf. A return value of
false rejects the replicant.

CanAcceptReplicantView()

Invoked after the message has been accepted (by the above); this is the shelf's
chance to reject on the basis of the view that the message contains. A return value
of false rejects the replicant.

AdjustReplicantBy()

Invoked after the replicant has been accepted, but before it's displayed. The
function can return a BPoint that offsets the replicant's frame.

Constructor and Destructor
BS he If()

BShelf(BView *view,
bool allowsDragging = true,
canst char *name= NULL)

BShelf(canst entry _ref *ref,
BView *view,
bool allowsDragging = true,
canst char *name= NULL)

BShelf(BDataIO *stream,
BView *view,
bool allowsDragging = true,
canst char *name= NULL)

Initializes the BShelf object so that it serves a container view. The versions that accept
an entry_ref or BDataIO argument prime the shelf so that it (initially) contains the
rep Ii cants that are archived in the referred to file or stream. The ref! stream argument
is also used as the archival repository when you tell your BShelf to Save () itself.

If the allowsDragging flag is true, the user will be able to drag replicant view within
the container's bounds. If the flag is false, dropped views stay where they're first put.

558 Chapter 4 • The Interface Kit

name is the BShelf's handler name. The name can be important: It's compared to the
replicant's "shelf_name" field, as explained in AddReplicant () .

WARNING

There's an archive-accepting version of the BShelf constructor declared in
Shelf.h. Don't use it.

-BShelf()
virtual -BShelf(void)

The destructor calls Save () , and then frees the object.

Static Functions

Instantiate()
static BShelf *lnstantiate(BMessage *archive)

Returns a new BShelf object, allocated by new and created with the version of the
constructor that takes a BMessage archive. If the archive message doesn't contain
data for a BShelf object, a new object isn't created and the function returns NULL.

See also: BArchivable:: Instantiate(), instantiate_object (),Archive()

Member Functions

AddReplicant()
filter_result AddReplicant(BMessage *archive, BPoint poin~

This function is invoked automatically when a replicant is dropped on the BShelf.
The archive message contains the BDragger archive that's being dropped; point is
where, within the container view's bounds, the message was dropped. The function
goes through these steps to reject and adjust the replicant:

• First, it invokes the CanAcceptReplicantMessage () hook function. If the hook
returns false, then AddReplicant () doesn't add the replicant.

• Next, it looks for a "shelf_name" string field in the BMessage. If it finds one and
the value of the field doesn't match the BShelfs name, the replicant is rejected.

There's no specific API for adding, the "shelf_name" field to a view. If you want to
configure your views to accept only certain BShelf objects, you have to add the
field directly as part of the view's Archive () implementation.

BShelf • Member Functions 559

• The archive message is then unarchived (the replicant is instantiated). If the
archive doesn't contain a BView, the message is passed on to another handler
(B_DISPATCH_MESSAGE is returned).

• CanAcceptReplicantView () hook function is called next (with a return of
false meaning rejection).

• Finally, AdjustReplicantBy () is called, and the replicant is drawn in the
container view.

Except in the case of a no-view archive, AddReplicant () returns
B_SKIP _MESSAGE.

It's possible to archive a BDragger and call this function yourself, although that's not
its expected use.

Adj ustRepl icantBy()

protected:
virtual BPoint AdjustReplicantBy(BRect destRect, BMessage *archive) const

This hook function is invoked automatically when a replicant is dropped on the
BShelf. It gives the shelf a chance to fine-tune the placement of the BDragger and its
target view.

destRect is the rectangle (in the container view's coordinates) in which the dropped
replicant is about to be drawn. Exactly what the rectangle means depends on the
relationship between the dragger and its target:

• If the dragger is the target's parent, then destRect encloses the BDragger's frame.

• Otherwise (if the target is the parent, or if the two views are siblings), destRect
encloses the target's frame. Note that in the case of siblings, the BDragger's frame
isn't included in the rectangle.

archive is the archive message that was dropped on the shelf.

The BPoint that this function returns offsets (is added into) the location of the
replicant. If you don't want to move the replicant, return BPoint(O, O). Note that the
BDragger and the view are both moved by this offset, even in the case where destRect
doesn't include the dragger's frame.

This function ignores the "allows dragging" flag given in the BShelf constructor. In
other words, you can adjust a replicant's placement through this function even if the
BShelf doesn't otherwise allow dragging.

560 Chapter 4 • The Interface Kit

Allows Dragging()

bool AllowsDragging(void)

Does this BShelf let the user drag existing replicants within the container view's frame
(as specified through an argument to the constructor)?

Archive()

WARNING

Archive () is currently a no-op that returns B_ERROR. You can't archive a
BShelf. If you want to archive something, archive the shelf's contents by calling
Save ().

CanAcceptReplicantMessage(), CanAcceptReplicantView()

protected:
virtual bool CanAcceptReplicantMessage(BMessage *archive) canst
virtual bool CanAcceptReplicantView(BRect destRect,

BView *view,
BMessage *archive) canst

These hook function are invoked from within AddReplicant () whenever a
replicant is dropped on the BShelf. You can implement these functions to reject
unwanted replicants.

CanAcceptReplicantMessage () is called first; the argument is the archive that
(should) contain the replicated view. If you don't like the look of the archive, return
false and the message will be thrown away. Note that you shouldn't return false if
the archive doesn't seem to be in the correct form (specifically, if it doesn't contain
any views). Rejection of such messages is handled more elegantly (and after this
function is invoked) by the AddReplicant () function.

CanAcceptReplicantView() is invoked after the message has been unarchived. destRect is
the rectangle that the replicant will occupy in the BShelf's container view's
coordinates. view is the replicated view itself. archive is the original message.

If either function returns false, the replicant is rejected and the message is thrown
away (it isn't passed on to another handler). A return of true does the obvious thing.

ls Dirty() see Save()

BStatusBar • Overview

Save(), SetDirty(), lsDirty()

status_t Save(void)

virtual void SetDirty(bool flag)

bool lsDirty(void)

561

Writes the shelf's contents (the replicants that it contains) as an archive to the
entry_ref or BDataIO object that was specified in the constructor.

By default, the save is only performed if the object's "dirty" flag is set-in other
words, if it has changed since it was last written. You can force set the dirty flag by
calling SetDirty () .

IsDirty () returns the current state of the "dirty" flag.

BStatusBar
Derived from: public BView

Declared in: be/interface/StatusBar.h

Library: lib be.so

Overview
A BStatusBar object draws a status bar, also called a progress bar, that indicates the
progression and pace of a time-consuming operation. It gives the user something to
look at while the operation is taking place and provides some indication of how long
it will take. The bar is filled with color from left to right as more and more of the
operation is completed.

text

I

trailing label
trailing text I

r:S,il'.i ''t . . I
<::.; 1 ems remaining

A BStatusBar can display a label on the far left above the bar itself and some text
immediately to the right of the label. It can also display a trailing label on the far right
and trailing text immediately to its left. The label and text are aligned at the left of the
bar; the trailing text and trailing label are aligned at the right of the bar. In neither
case is there any space between the label and text; to separate words you must add
space characters to one string or the other.

562 Chapter 4 • The Interface Kit

The text and trailing text can change each time the bar is updated-that is, each time
a bit more of the bar is filled. The label and trailing label, on the other hand, are set
when the BStatusBar is constructed and remain constant throughout the display, or
until the object is reset for another operation.

For example, a status bar that's displayed while a large file is being downloaded
might have the file name as the label and no text. It could have the percentage
completed as the trailing text and something like "% done" as the trailing label. A
BStatusBar that tracks the processing of, say, 40 employee records could have
"Employee: " as the label, the employee's name as the text, the number of the record
being processed as the trailing text, and " of 40" as the trailing label.

The value of a BStatusBar determines how much of the bar is filled with color. The
minimum value (none of the bar is filled) is 0.0; the maximum value (all of the bar is
filled) is 100.0 by default, but can be set to another positive number. For example, if
the maximum value is 400.0 and current value is 86.0, 21.5% (86/400) of the bar will
be filled.

A BStatusBar is controlled synchronously by calling its Update () and Reset ()

functions. Update () fills a bit more of the bar each time it's called and can change
the text and trailing text. Reset () resets the current value to 0.0 so the bar can show
the progress of another operation; it can change the label and trailing label.

You can also control a BStatusBar asynchronously by making it the target of
B_UPDATE_STATUS_BAR and B_RESET_STATUS_BAR messages, which indirectly call
Update () and Reset (). These messages are described under the corresponding
functions.

See also: Update (), Reset ()

Constructor and Destructor
BStatusBar()

BStatusBar(BRect/rame, const char *name,
canst char *label = NULL, const char • trailingLabel = NULL)

BStatusBar(BMessage •archive)

Initializes the BStatusBar with a label and a trailing label, which can both be NULL.

The frame and name arguments are the same as those declared for the BView
constructor and are passed to the BView class unchanged along with the
B_WILL_DRAW flag and a resizing mode that will keep the BStatusBar glued to the left
and top sides of its parent.

BStatusBar • Member Functions

Regardless of the frame rectangle, however, when the BStatusBar is attached to a
window, it will be resized to a height that precisely accommodates the bar, the labels,
and the text given the current font.

563

The default font of the BStatusBar is the system plain font, and the default color of
the bar is blue (50, 150, 255). Its initial value is 0.0, the minimum, and its default
maximum value is 100.0.

See also: SetMaxValue (), SetBarColor ()

-BStatusBar()

virtual -BStatusBar(void)

Frees the labels and the text.

Static Functions

Instantiate()

static BStatusBar *lnstantiate(BMessage *archive)

Returns a new BStatusBar object, allocated by new and created with the version of the
constructor that takes a BMessage archive. However, if the archive doesn't contain
data for an BStatusBar object, this function returns NULL.

See also: BArchi vable: : Instantiate (), instantiate_obj ect (), Archive ()

Member Functions

Archive()

virtual status_t Archive(BMessage •archive, bool deep = true) const

Calls the inherited version of Archive () , then adds the bar color, bar height, current
value, and maximum value to the BMessage archive, along with the current text,
trailing text, label, and trailing label.

See also: BArchi vable: : Archive (), Instantiate () static function

AttachedToWindow()

virtual void AttachedToWindow(void)

Resizes the frame rectangle to the optimal height for displaying the bar, labels, and
text. If the height of the bar has not been set yet, a default height is chosen for it.

564 Chapter 4 • The Interface Kit

This function also sets the view and low colors of the BStatusBar to match the
background view color of its new parent. The low color fills the status bar when it's
empty.

See also: BView: :AttachedToWindow()

BarColor() see SetBarColor()

BarHeight() see SetBarHeight()

CurrentValue() see SetMaxValue()

Draw()

virtual void Draw(BRect updateRect)

Draws the bar, labels, and text.

See also: BView: : Draw ()

Label(), Trailinglabel()

const char *Label(void) const

const char *Trailinglabel(void) const

These functions return the current label and trailing label of the BStatusBar. The
returned strings belong to the BStatusBar object and should not be altered. They can
be set only on construction or when all values are reset.

See also: Reset ()

MaxValue() see SetMaxVa/ue()

Message Received()

virtual void MessageReceived(BMessage *message)

Responds to B_UPDATE_STATUS_BAR and B_RESET_STATUS_BAR messages by
calling the Update () and Reset () functions. Each message contains data that can
be passed as arguments to the functions.

See also: BView: : MessageRecei ved (), Update (), Reset (), "BStatusBar
Messages" Appendix A, Message Protocols

BStatusBar • Member Functions 565

Reset()

virtual void Reset(const char *label= NULL, const char *trailinglabel = NULL)

Empties the status bar, sets its current value to 0.0 and its maximum value to 100.0,
\deletes and erases the text and trailing text, and replaces the label and trailing label
with copies of the strings passed as arguments. If either argument is NULL, the label
or trailing label will also be deleted and erased.

This gets the BStatusBar ready to be reused for another operation. For example, if
several large files are being downloaded, the BStatusBar could be reset for each one.

You can call this function indirectly (and asynchronously) through a
B_RESET_STATUS_BAR message. If the message has an entry named "label"
containing a string (B_STRING_TYPE), the string will be passed to the function as the
first argument. If there's a string in an entry named "trailing_label", it will be passed
as the second argument. If either entry is absent, the value for the corresponding
argument will be NULL.

See also: Set Text (),Update ()

SetBarColor(}, BarColor()

virtual void SetBarColor(rgb_color color')

rgb_color BarColor(void) const

These functions set and return the color that fills the bar to show how much of an
operation has been completed. The default bar color is blue (50, 150, 255).

SetBarHeight(), BarHeight()

virtual void SetBarHeight(float height)

float BarHeight(void) const

These functions set and return the height of the bar itself, minus the text and labels.
The default height is 16.0 coordinate units. When the BStatusBar is attached to a
window, its frame rectangle is resized to a height that fits the bar height and the
height of the current font for displaying the text and labels. Therefore, if you want a
bar that's taller or shorter than the default height, you should call SetBarHeight ()

before adding the BStatusBar to a view hierarchy.

See also: At tachedToWindow ()

566

SetMaxValue(}, MaxValue(), CurrentValue()

virtual void SetMaxValue(float max)

float MaxValue(void) const

float CurrentValue(void) const

Chapter 4 • The Interface Kit

SetMaxValue () sets the maximum value of the BStatusBar, which by default is
100.0. Maxvalue () returns the current maximum. The minimum value is 0.0 and
cannot be changed.

CurrentValue () returns the current value of the BStatusBar, which determines how
much of the bar is filled with the bar color. For example, if the maximum is 300.0 and
the current value is 120.0, the bar color will fill 40% of the bar. The current value is
set by Update () and reset to 0.0 by Reset ().

See also: Update (),Reset ()

SetText(), SetTrailingText(), Text(), TrailingText()

virtual void SetText(const char *string)

virtual void SetTrailingText(const char *string)

const char *T ext(void) const

const char *TrailingText(void) const

These functions set and return the text and the trailing text of the BStatusBar. The
Set ... () functions free the previous text and replace it with a copy of the string that's
passed. The string can be NULL. Both functions erase the previous text and redraw
the view to display the new text. The text and trailing text can also be replaced by
calling Update () .

Text () and TrailingText () return pointers to the current text strings.

See also: Update ()

Text() see SetText()

Trailinglabel() seeLabel()

Trailing Text() see SetT ext()

BStringltem • Constructor and Destructor 567

Update()

virtual void Update(float delta, canst char *text = NULL,
canst char *trailingText = NULL)

Updates the BStatusBar by adding a delta increment to its current value and resetting
its text and trailing text. For example, if the current value is 50.0 and delta is 8.0, the
new value will be 58.0. The change in value is immediately reflected on-screen in a
corresponding increment in how much of the bar is filled with color. Passing NULL

for the text or trailingText argument retains the previous text or trailing text string.

You can call this function indirectly through a B_UPDATE_STATUS_BAR message. The
message must have a B_FLOAT_TYPE entry named "delta" containing the value that
should be passed to the function as the delta argument. If it also has a string in an
entry named "text", the string will be passed as the text argument. And if it has a
string entry named "trailing_ text", that string will be passed as the trailingText
argument. If either string entry is omitted, the corresponding argument will be NULL.

See also: Reset (), CurrentValue (), Set Text ()

BStri ngltem
Derived from: public BListltem

Declared in: be/interface/Listltem.h

Library: libbe.so

Overview
A BStringltem is an item of text that can appear in a BListView, including a
BOutlineListView. It's the only concrete representative of the abstract BListltem class
that the Interface Kit defines. It simply draws the item as a string of text.

Constructor and Destructor
BStri ngltem ()

BStringltem(const char *text, uint32 level= 0, bool expanded= true)
BStringltem(BMessage *archive)

Initializes the BStringltem by making a copy of the text string passed as an argument.
This is the string the item will display. The level and expanded arguments are passed
unchanged to the BListltem constructor; see that function for an explanation.

568

-BStringltem()

virtual -BStringltem(void)

Frees the text the item displays.

Static Functions

Instantiate()

static BStringltem *lnstantiate(BMessage *archive)

Chapter 4 • The Interface Kit

Returns a new BStringltem object, allocated by new and created with the version of
the constructor that takes a BMessage archive. However, if the archive message
doesn't contain archived data for a BStringltem, Instantiate () returns NULL.

See also: BArchivable:: Instantiate (), instantiate_object (),Archive ()

Member Functions

Archive()

virtual status_t Archive(BMessage *archive, bool deep= true) const

Calls the inherited version of Archive () , then adds the text string to the BMessage
archive.

See also: BArchivable: :Archive (), Instantiate () static function

Drawltem()

virtual void Drawltem(BView *owner, BRectframe, bool complete= false)

Draws the text string, dimming it if the item is disabled and highlighting it if the item
is selected.

See also: BListitem: :Drawitem()

Set Text(), Text()

virtual void SetText(const char *text)

const char *T ext(void) const

These functions set and return the text that the BStringltem draws. Set Text () copies
the string it's passed. Text () returns a pointer to the string owned by the
BStringltem.

BStringView • Constructor and Destructor 569

Update()

virtual void Update(BView *owner, canst BFont *Jon~

Overrides the BListltem version of Update () to recalculate the width and height of
the BStringltem and the placement of the text. The width of the item is based on the
width of the owner BView. The height and text placement are based on the owner's
font. The item must be tall enough to display the string in the current font.

See also: BListitem: :Update ()

BStringView
Derived from: public BView

Declared in: be/interface/StringView.h

Library: libbe.so

Overview
A BStringView object draws a static character string. The user can't select the string or
edit it; a BStringView doesn't respond to user actions. An instance of this class can be
used to draw a label or other text that simply delivers a message of some kind to the
user. Use a BTextView object for selectable and editable text.

You can also draw strings by calling BView's Drawstring () function. However,
assigning a string to a BStringView object locates it in the view hierarchy. The string
will be updated automatically, just like other views. And, by setting the resizing mode
of the object, you can make sure that it will be positioned properly when the window
or the view it's in (the parent of the BStringView) is resized.

Constructor and Destructor
BStringView()

BStringView(BRect/rame, canst char *name, canst char *text,
uint32 resizingMode = B_FOLLOW _LEFT I B_FOLLOW _TOP,
uint32 flags = B_ WILL_DRA W)

BStringView(BMessage *archive)

Initializes the BStringView by assigning it a text string and the system plain font
(be__plain_font). The frame, name, resizingMode, and flags arguments are the
same as those declared for the BView class. They're passed unchanged to the BView
constructor.

570 Chapter 4 • The Interface Kit

The frame rectangle needs to be large enough to display the entire string in the
current font. The string is drawn at the bottom of the frame rectangle and, by default,
is aligned to the left side. A different horizontal alignment can be set by calling
SetAlignment () .

See also: SetAlignment ()

-BStringView()

virtual -BStringView(void)

Frees the text string.

Static Functions

Instantiate()

static BStringView *lnstantiate(BMessage *archive)

Returns a new BStringView object, allocated by new and created with the version of
the constructor that takes a BMessage archive. However, if the archive message
doesn't contain data for a BStringView, Instantiate () returns NULL.

See also: BArchivable:: Instantiate (), instantiate_object (),Archive ()

Member Functions

Alignment() see SetAlignment()

Archive()

virtual status_t Archive{BMessage *archive, bool deep= true) const

Calls the inherited version of Archive () , then adds the string and its alignment to
the BMessage archive.

See also: BArchivable: :Archive (), Instantiate () static function

AttachedT o Window()

virtual void AttachedToWindow(void)

Sets the BStringView's low color and its background view color to match the
background color of its new parent view.

See also: BView: :AttachedToWindow()

BTextControl • Overview 571

Draw()
virtual void Draw(BRect updateRecf)

Draws the string along the bottom of the BStringView's frame rectangle in the current
high color.

SetAlignment(), Alignment()

void SetAlignment(alignment flag)

alignment Alignment(void) const

These functions align the string within the BStringView's frame rectangle and return
the current alignment. The alignment flag can be:

B_ALIGN_LEFT

B_ALIGN_RIGHT

B_ALIGN_CENTER

The string is aligned at the left side of the frame rectangle.

The string is aligned at the right side of the frame rectangle.

The string is aligned so that the center of the string falls midway
between the left and right sides of the frame rectangle.

The default is B_ALIGN LEFT.

Set Text(), Text()

void SetText(const char *string)

const char *T ext(void) const

These functions set and return the text string that the BStringView draws. SetText ()
frees the previous string and copies string to replace it. Text () returns the null
terminated string.

BT extControl
Derived from: public BControl

Declared in: be/interface/TextControl.h

Library: lib be.so

Overview
A BTextControl object displays a labeled text field that behaves like other control
devices. When the user presses certain keys after modifying the text in the field, it
delivers a message to a designated target.

572 Chapter 4 • The Interface Kit

There are two parts to the view: A static label on the left, which the user cannot
modify, and an editable field on the right, which behaves just like a one-line
BTextView. In fact, the BTextControl installs a BTextView object as its child to handle
editing chores within this part of the view. It's this child view that responds to
keyboard events for the BTextControl rather than the control object itself.

Architect:

The child BTextView must become the focus view for the window before the user
can enter or edit text in the field. If the user modifies the contents of the field and
then causes the child to cease being the focus view, the BTextControl delivers a
message to its target, just like any other BControl object when it's invoked. The
message notifies the target that the user has finished making changes to the text. (It
doesn't matter what causes the change in focus-a click in another text field, for
example, or a B_TAB character that navigates to another view.)

The BTextControl is also invoked when the user types a B_ENTER character, though
this doesn't change the focus view. It selects all the text in the field.

You can arrange for another message-a "modification message"-to be sent when
the user makes the first change to the text after the child BTextView has become the
focus view (or after B_ENTER caused all the text to be selected). This message notifies
the target that editing has begun.

Because the label is drawn by the BTextControl itself and the editable text is drawn
by its child BTextView, you can assign different properties (color or font, for
example) to each string. The BTextControl has only one child; ChildAt () returns it
when passed an index of 0.

Scripting Support

A BTextControl object supports the following scripting requests, but doesn't assign
them a suite name:

Property name:
Specifiers:
Messages:
Data type:

"Text" or "Value" for all the text assigned to the object
B_DIRECT_SPECIFIER only
B_SET_PROPERTY and B_GET_PROPERTY

a null-terminated character string (char *)

In other words, it interprets the "Value" property declared by the BControl class to
mean the text string (not the label) that the object displays. Its type is therefore

BT extControl • Constructor and Destructor

B_STRING_TYPE, rather than B_INT3 2_TYPE as it is for other control devices. The
same data can be specified using "Text" as the property name.

See "Scripting" in Chapter 2 for more on scripting and message suites.

Constructor and Destructor
BT extControl ()

BTextControl(BRect/rame, canst char *name,
canst char • tabel, canst char *text,
BMessage •message,
uint32 resizingMode = B_FOLLOW_LEFT I B_FOLLOW_TOP,
uint32 flags = B_ WILL_DRA W I B_NAVIGABLE)

BTextControl(BMessage •archive)

573

Initializes the BTextControl by assigning it a label and some text, both of which can
be NULL. If the label is NULL, the entire bounds rectangle is assigned to the text.
Otherwise, half the view is assigned to the label and half to the text, though the exact
proportion can be changed by the SetDi vider () function. The label always is on
the left and the text always on the right. By default, both label and text are aligned at
the left margins of their respective sections; call SetAligrunent () to alter the
alignment.

The message parameter is the same as the one declared for the BControl constructor.
It establishes a model for the messages the BTextControl will send when it's invoked.
It can be NULL. See SetMessage () and SetTarget () in the Binvoker class and
Invoke () in the BControl class for more information.

The frame, name, resizingMode, and flags arguments are the same as those declared
for the BView class and are passed up the inheritance hierarchy to the BView
constructor without change. When the BTextControl is attached to a window, it will
be resized to the optimal height for displaying the label and text.

See also: SetDi vider (), SetAligrunent (), Binvoker: : SetMessage (),

Binvoker::SetTarget(),BControl::Invoke()

-BTextControl()

virtual -BT extControl(void)

Frees memory allocated by the BTextControl and its BTextView child.

574

Static Functions

Instantiate()
static BTextControl *lnstantiate(BMessage *archive)

Chapter 4 • The Interface Kit

Returns a new BTextControl object, allocated by new and created with the version of
the constructor that takes a BMessage archive. However, if the archive message
doesn't contain data for a BTextControl object, Instantiate () returns NULL.

See also: BArchivable:: Instantiate(), instantiate_object (),Archive ()

Member Functions

Archive()
virtual status_t Archive(BMessage *archive, bool deep= true) const

Calls the inherited version of Archive () , which will archive the child BTextView if
the deep flag is true, then adds the alignment of the label and the text, the
modification message, and the divider to the BMessage archive.

See also: BArchivable: :Archive (), Instantiate () static function

AttachedT o Window()
virtual void AttachedToWindow(void)

Augments the BControl version of At tachedToWindow () to set up its child
BTextView and to make the view and low colors of the BTextControl the same as the
background view color of its new parent. This function also adjusts the height of the
BTextControl to fit the height of the label and text, given the fonts used to display
them.

See also: BView: :AttachedToWindow(), BControl: :AttachedToWindow()

Divider() see SetDivider()

Draw()

virtual void Draw(BRect updateRect)

Draws the label. (The BTextControl defers to its child BTextView to draw the editable
text string.)

See also: BView: : Draw ()

BT extControl • Member Functions 575

GetAlignment() see SetA/ignment()

GetPreferredSize(), Resize Ta Preferred()

virtual void GetPreferredSize(float *width, float •height)

virtual void Resize T oPreferred(void)

GetPreferredSize () calculates the optimal size for the BTextControl to display the
label and the text, given its current font and the current font of its BTextView child; it
places the result in the variables that the width and height arguments refer to.
ResizeToPreferred () resizes the BTextControl to its preferred size, keeping its left
and top sides constant, and adjusts the size of the BTextView to fit.

See also: BView: : GetPreferredSize ()

Make Focus()

virtual void MakeFocus(bool flag = true)

Passes the MakeFocus () instruction on to the child BTextView. If the flag is true,
this function selects all the text in the child BTextView, which becomes the new focus
view for the window. If the flag is false, the child will no longer be the focus view.
If the text has changed when the child ceases to be the focus view, the BTextControl
is considered to have been invoked; a copy of its model message is posted so that it
will be delivered to the target handler.

Note that the BTextControl itself never becomes the focus view, so will return false
to all IsFocus () queries.

See also: BView: :MakeFocus ()

Message Received()

virtual void MessageReceived(BMessage *message)

Handles scripting requests for the BTextControl.

See also: BHandler: : MessageRecei ved ()

Modification Message() see SetModiflcationMessage()

Mouse Down()

virtual void MouseDown(BPoint point)

576 Chapter 4 • The Interface Kit

Makes the child BTextView the focus view when the user clicks in the BTextControl
but outside the text.

See also: BTextView: :MouseDown ()

Resize ToPreferred() see GetPreferredSize()

ResolveSpecifier()

virtual BHandler *ResolveSpecifier(BMessage *message, int32 index,
BMessage •specifier, int32 command, canst char •property)

Resolves specifiers for the "Text" and "Value" properties. See "Scripting Support" in
the class overview and "Scripting" in Chapter 2 for more information.

See also: BHandler:: ResolveSpecifier ()

SetAlignment(), GetAlignment()

virtual void SetAlignment(alignment forLabel, alignment forTexf)

void GetAlignment(alignment *forLabel, alignment *forTexf) canst

These functions set and report the alignment of the label and the text within their
respective portions of the view. Three settings are possible:

B_ALIGN_LEFT

B_ALIGN_RIGHT

B_ALIGN_CENTER

The label or text is aligned at the left boundary of its part of the view
rectangle.

The label or text is aligned at the right boundary of its part of the view
rectangle.

The label or text is centered within its part of the view rectangle.

The default alignment is B_ALIGN_LEFT for both label and text.

See also: SetDi vider ()

SetDivider(), Divider()

virtual void SetDivider(float xCoordinate)

float Divider(void) const

These functions set and return the x coordinate value that marks the division between
the label portion of the view rectangle on the left and the text portion on the right.
It's stated in the coordinate system of the BTextControl.

See also: the BTextControl constructor

BT extControl • Member Functions

SetEnabled()

virtual void SetEnabled(bool enabled)

Disables the BTextControl if the enabled flag is false, and reenables it if enabled is
true. BTextControls are enabled by default.

577

This function augments the BControl version of SetEnabled () . When the control is
disabled, it makes the text unselectable (and therefore uneditable) and draws it in a
way that displays its disabled state. When the control is re-enabled, it makes the text
editable (and therefore selectable) and draws it as normal text.

See also: BControl: : SetEnabled ()

SetModificationMessage(), ModificationMessage()

virtual void SetModificationMessage(BMessage *message)

BMessage *ModificationMessage(void) const

These functions set and return the message that the BTextControl sends to its target
when the user begins to enter or edit text.

SetModificationMessage () assigns message to the BTextControl, freeing the
message previously assigned, if any. The message becomes the responsibility of the
BTextControl object and will be freed only when it's replaced by another message or
the BTextControl is freed; you shouldn't free it yourself. Passing a NULL pointer to
this function deletes the current modification message without replacing it.

The assigned BMessage becomes the model for the message that the BTextControl
sends when the user first modifies the text after the child BTextView has become the
focus view (or after the user pressed the Enter key). The message is sent only for the
first character the user types, pastes, or deletes. Subsequent changes don't invoke the
message, until after the user presses the Enter key to select all the text or after the
child BTextView loses focus view status and regains it again.

Before sending the message, the BTextControl adds these two pieces of information
to it:

Data name Type code Description

"when" B_INT64_TYPE When the user modified the text, as measured by the
number of microseconds since 12:00:00 AM January 1, 1970.

"source" B_POINTER_TYPE A pointer to the BTextControl object.

These names should not be used for any data that you place in the model message.

ModificationMessage () returns the model message.

578

SetText(), Text()

virtual void Set Text(const char *text)

const char *T ext(void) const

Chapter 4 • The Interface Kit

These functions set and return the text displayed by the BTextControl-or rather by
its child BTextView. The text is first set by the constructor.

TextView()

BTextView *TextView(void) const

Returns the child BTextView object that handles the BTextControl's editing chores.

See also: the BTextView class

Window Activated()

virtual void WindowActivated(bool active)

Makes sure that the BTextControl is redrawn when the window is activated and
deactivated, if its child BTextView is the current focus view. This gives the
BTextControl a chance to draw or erase the indication that it's the current focus for
keyboard navigation.

BTextView
Derived from: public BView

Declared in: be/interface/TextView.h

Library: Iibbe.so

Overview
A BTextView object displays formatted text on-screen. It implements a standard user
interface for entering, selecting, and editing text from the keyboard and mouse; it also
supports the principal editing commands-Cut, Copy, Paste, Delete, and Select All.
BTextView objects are suitable for displaying small amounts of text in the user
interface and for moderate text-editing tasks. Full-scale text editors and word
processors will need to define their own objects to handle richer data formats.

By default, a BTextView displays all its text in a single font and color. However, if
you call SetStylable () to turn on support for multiple character formats, you can
apply different fonts and colors to different groups of characters. For example, some

BT extView • Overview

words might be bold or italic, some displayed in a different color or font size, and
others using an entirely different font family.

On the other hand, paragraph formats-such as alignment and tab widths-are
uniform for all text the BTextView displays. These properties can be set, but the
setting always applies to the entire text.

579

Offsets

The BTextView locates particular characters in its text buffer by offsets from the
beginning of the data. The offsets count bytes, not characters, and begin at 0. A single
character is identified by the offset of the first byte of the character. A group of
characters-the current selection, for example-is delimited by the offsets that bound
its first and last characters; all characters beginning with the first offset up to, but not
including, the last offset are part of the group.

For example, suppose the BTextView contains the following text in Unicode UTF-8
encoding,

The BeOS™ is . . .

and "BeOS™" is selected. GetSelection () would return 4 and 11 as the offsets that
enclose the selection. The character "B" occupies the fourth byte of text and the
space following the trademark symbol is the eleventh byte of text. The characters in
"BeOS" are each encoded in one byte, but "™" takes up three bytes in UTF-8. Thus
the five-character selection occupies 7 bytes (and offsets) of text.

Although offsets count bytes, they can also be thought of as designating positions
between characters. The position at the beginning of the text is offset 0, the position
between the space and the "B" in the example above is at offset 4, the position
between the"™" and the space is at offset 11, and so on. Thus, even if no characters
are selected, the insertion point (and location of the caret) can still be designated by
an offset.

Most BTextView functions expect the offsets they're passed to mark positions
between characters; the results are not defined if a character-internal offset is
specified instead.

Graphics Primitives

The BTextView's mechanism for formatting and drawing text uses the graphics
primitives it inherits from the BView class. However, it largely presents its own API
for determining the appearance of the text it draws. You should not attempt to affect
the BTextView by calling primitive BView functions like MovePen (), SetFont (), or
SetHighColor (). Instead, use BTextView functions like SetFontAndColor () and
let the object take care of formatting and drawing the text.

580 Chapter 4 • The Interface Kit

The one inherited function that can influence the BTextView is SetViewColor () .

This function determines the background against which the text is drawn and the
color that is used in antialiasing calculations.

Resizing

A BTextView can be made to resize itself to exactly fit the text that the user enters.
This is sometimes appropriate for small one-line text fields. See the
MakeResizable () function.

Shortcuts and Menu Items

When a BTextView is the focus view for its window, it responds to these standard
keyboard shortcuts for cutting, copying, pasting, and selecting text:

• Command-x to cut text and copy it to the clipboard,
• Command-c to copy text to the clipboard without cutting it,
• Command-v to paste text taken from the clipboard, and
• Comniand-a to select all of the text in the BTextView.

These shortcuts work even in the absence of Cut, Copy, Paste, and Select All menu
items; they're implemented by the BWindow for any view that might be the focus
view. All the focus view has to do is cooperate, as a BTextView does, by handling the
messages the shortcuts generate.

The only trick is to make sure that the menu items you set up are compatible with the
shortcuts. Follow these guidelines if you put a menu with editing commands in . a
window that has a BTextView:

• Create Cut, Copy, Paste, and Select All menu items and assign them the
Command-x, Command-c, Command-v, and Command-a shortcuts .

• Assign the items model B_CUT, B_COPY, B_PASTE, and B_SELECT_ALL messages.
These messages don't need to contain any information (other than a what data
member initialized to the proper constant).

• Target the messages to the BWindow's focus view (or directly to the BTextView).
No changes to the BTextView are necessary. When it gets these messages, the
BTextView calls its Cut (), Copy (), Paste (), and SelectAll () functions.

You can also set up menu items that trigger calls to other BTextView editing and
layout functions. Simply create menu items like Align at Left that are targeted to the
focus view of the window where the BTextView is located, or to the BTextView itself.
The messages assigned to these items can be structured with whatever command
constants and data entries you wish; the BTextView class imposes no constraints.

BTextView • Overview 581

Then, in a class derived from BTextView, implement a MessageRecei ved (}
function that responds to messages posted from the menu items by calling BTextView
functions like SetAlignment (}. For example:

void myText::MessageReceived(BMessage *message)
{

switch (message->what) {
case ALIGN_AT_LEFT:

SetAlignment(B_ALIGN_LEFT);
break;

case ALIGN_AT_RIGHT:
SetAlignment(B_ALIGN_RIGHT);
break;

default:
BTextView::MessageReceived(message);
break;

The MessageRecei ved (} function you implement should be sure to call
BTextView's version of the function, which already handles B_CUT, B_COPY,

B_PASTE, and B_SELECT_ALL messages.

Scripting Support
The BTextView class responds to the following scripting messages, though it doesn't
give them a suite name:

Property name: "Text" for the text assigned to the BTextView
Specifiers: B_RANGE_SPECIFIER and B_REVERSE_RANGE_SPECIFIER

Messages: B_SET_PROPERTY and B_GET_PROPERTY

Data type: A null-terminated character string (B_STRING_TYPE)

Property name: "text_run_array" for character formats in a range of text
Specifiers: B_RANGE_SPECIFIER and B_REVERSE_RANGE_SPECIFIER

Messages: B_SET_PROPERTY and B_GET_PROPERTY

Data type: A text_run_array structure

Property name: "selection" for the text that's currently selected
Specifiers: B_DIRECT_SPECIFIER

Messages: B_SET_PROPERTY and B_GET_PROPERTY

Data type: int32 offsets to the beginning and end of the selection

The "index" in a specifier for the "Text" and "text_run_array" properties is a byte
offset to the first byte of a character. The "range" similarly counts bytes, not
characters.

582 Chapter 4 • The Interface Kit

The "range" for both B_RANGE_SPECIFIER and B_REVERSE_RANGE_SPECIFIER

specifiers counts bytes from the "index" toward the end of the list-even if the index
counts in reverse from the end of the list forward.

If a B_SET_PROPERTY message for the "Text" property lacks a "data" entry, the
BTextView deletes the range of bytes specified. However, if "data" is provided, the
BTextView inserts the number of bytes specified. In other words, for a deletion, the
"range" entry in the specifier counts bytes in the BTextView beginning at the
specified index; for an insertion the "range" entry counts bytes in the "data" entry
beginning with the first byte.

See "Scripting" in Chapter 2 for more on scripting messages.

Hook Functions
AcceptsDrop ()

Determines whether a BMessage that's dragged to the BTextView has data that the
object can insert; can be reimplemented to prevent the BTextView from accepting
dropped text or to allow it to accept data it currently doesn't understand.

Accepts Paste ()

Determines whether the BTextView can take data from the clipboard; can be
reimplemented to prevent text from being pasted or to make the BTextView
accept data it currently doesn't understand.

CanEndLine ()

Determines where a line can end; can be overridden to follow a different criterion
than the default.

DeleteText()

Deletes characters from the text; can be augmented to preview the deletions and
accept or reject them before the text is removed from the display. This function is
called to carry out all deletions.

FindWord()

Finds the boundaries of a word when the user double-dicks; can be overridden to
redefine what a word is or to provide a definition of a word for other languages.

InsertText()

Inserts new characters into the text; can be augmented to preview the characters
the user types, pastes, or drops and accept or reject them before they're added to
the display. All insertions pass through this function.

BTextView • Constructor and Destructor

Constructor and Destructor
BTextView()

BTextView(BRectframe, const char •name, BRect textRect,
uint32 resizingMode, uint32 flags)

BTextView(BRect frame, canst char *name, BRect textRect,
const BFont *font, const rgb_color •color,
uint32 resizingMode, uint32 flags)

BTextView(BMessage *archive)

583

Initializes the BTextView to the frame rectangle, stated in its eventual parent's
coordinate system, assigns it an identifying name, sets its resizing behavior to
resizingMode and its drawing behavior with flags. These four arguments-frame,
name, resizingMode, and flags-are identical to those declared for the BView class
and are passed to the BView constructor. The frame, name, and resizingMode
arguments are passed to the BView class unchanged, but two flags are added to the
flags argument-B_FRAME_EVENTS, so that the BTextView can reformat the text
when it's resized, and B_PULSE_NEEDED, so that the caret marking the insertion point
can "blink" in time with B_PULSE messages. Later, AttachedToWindow () will set
the window's pulse rate to 500,000 microseconds.

The text rectangle, textRect, is stated in the BTextView's coordinate system. It

determines where text in placed within the view's bounds rectangle:

• The first line of text is placed at the top of the text rectangle. As additional lines of
text are entered into the view, the text grows downward and may actually extend
beyond the bottom of the rectangle.

• The left and right sides of the text rectangle determine where lines of text are
placed within the view. Lines can be aligned to either side of the rectangle, or they
can be centered between the two sides. See the SetAlignment () function.

• When lines wrap on word boundaries, the width of the text rectangle determines
the maximum length of a line; each line of text can be as long as the rectangle is
wide. When word wrapping isn't turned on, lines can extend beyond the
boundaries of the text rectangle. See the SetWordWrap () function.

The bottom of the text rectangle is ignored; it doesn't limit the amount of text the
view can contain. The text can be limited by the number of characters, but not by the
number of lines.

If a default font is provided, the BTextView will display its text in that font, unless
another font is later set. Similarly, if a default color is specified, the text will be
displayed in that color, unless the color is subsequently changed. If the font is NULL
or not specified, the BTextView uses the system plain font, be__plain_font. If the
color pointer is NULL or not specified, the text is drawn in black.

584 Chapter 4 • The Interface Kit

The constructor establishes the following default properties for a new BTextView:

• The text is selectable and editable. (See MakeSelectable () and Make-

Edi table () .)

• Multiple character formats are not permitted. (See SetStylable () .)

• The text is left-aligned. (See SetAlignment () .)

• The tab width is 28.0 coordinate units. (See SetTabWidth () .)

• Word wrapping is turned on. (See SetWordWrap () .)

• Automatic indenting is turned off. (See SetAutoindent () .)

• The maximum amount of data is permitted. (See SetMaxBytes () .)

• The view doesn't grow to accommodate more characters. (See Make

Resizable () .)

• All characters the user may type are acceptable. (See DisallowChar () .)

See also: AttachedToWindow(), SetFontAndColor (),the BView constructor

-BTextView()
virtual -BTextView(void)

Frees the memory the BTextView allocated to hold the text and to store information
about it.

Static Functions

Flatten Ru nArray(}, Unflatten Ru nArray()

static void *FlattenRunArray(const text_run_array *runs, int32 *numBytes = NULL)

static text_run_array *UnflattenRunArray(const void *data, int32 *numBytes = NULL)

These functions flatten and unflatten a text_run_array structure so that it can be
treated as an untyped stream of bytes. A text_run_array that's saved on-disk will
be valid when the user reboots the machine only if it's saved as flat data. Both
functions return pointers to memory they allocate (with malloc ()). The caller is
responsible for freeing the memory when it's no longer needed.

FlattenRunArray() flattens the runs text_run_array and returns the flat data.
UnflattenRunArray () reconstructs a text_run_array from previously flattened
data and returns a pointer to the structure.

If a numBytes argument is provided, both functions place the number of bytes they
allocated for the data in the variable that numBytes refers to.

See also: SetRunArray ()

BTextView • Member Functions 585

Instantiate()

static BTextView *lnstantiate(BMessage *archive)

Returns a new BTextView object, allocated by new and created by the version of the
constructor that takes a BMessage archive. However, if the archive doesn't contain
data for a BTextView object, the return value will be NULL.

See also: BArchi vable: : Instantiate () , Archive ()

UnflattenRunArray() see FlattenRunArray()

Member Functions

AcceptsDrop(), AcceptsPaste()

virtual bool AcceptsDrop(const BMessage *message)

virtual bool AcceptsPaste(BClipboard *clipboard)

These functions test a dragged message and a clipboard for data that can be inserted
into the text. As implemented, they return true if the BTextView is editable and the
message or clipboard contains data they recognize as text-B_MIME_TYPE data
stored under the name "text/plain". They return false if the BTextView either is not
editable or they can't find "text/plain" data in the message or clipboard. A return of
false aborts the drag-and-drop and paste operations; nothing will be inserted into
the text unless the return value is true.

AcceptsDrop () is called when the user drags a message into the text view and
again when the message is dropped. Accepts Paste () is called when a B_PASTE
message is received. They can be augmented by derived classes to expand or restrict
the range of data formats the object recognizes. Note, however, that simply modifying
these functions is not enough to teach the BTextView about data it doesn't currently
understand. You'll also need to augment the MessageRecei ved () and Paste ()
functions to take the data from the message and clipboard and insert it.

See also: Paste () , MessageRecei ved () , the BClipboard and BMessage classes in
the Application Kit

Alignment() see SetAlignment()

AllowChar() see DisallowChar()

586 Chapter 4 • The Interface Kit

Archive()

virtual status_t Archive(BMessage *archive, bool deep= true) const

Calls the inherited version of Archive () , then adds the BTextView's text to the
BMessage archive along with all current settings.

See also: BArchivable: :Archive (), Instantiate () static function

AttachedToWindow()

virtual void AttachedToWindow(void)

Completes the initialization of the BTextView object after it becomes attached to a
window. This function sets up the object so that it can correctly format text and
display it. Among other things, it sets the drawing mode to B_OP _COPY. If the
BTextView is targeted by scroll bars, it adjusts them so that they're accurately set up
for scrolling the text.

Because the BTextView uses pulses to animate (or "blink") the caret, the vertical line
that marks the current insertion point, this function also enables pulsing in the
window and fixes the pulse rate at 2 per second (once every 500,000 microseconds).

At tachedToWindow () is called for you when the BTextView becomes part a
window's view hierarchy; you shouldn't call it yourself, though you can override it. A
function that's implemented by a derived class should begin by incorporating the
BTextView version:

void MyText::AttachedToWindow()
{

BTextView::AttachedToWindow()

If it doesn't, the BTextView won't be able to properly display the text.

See also: BVi ew: : At tachedToWindow () , SetFon tName ()

ByteAt() see Text()

Can End Line()

virtual bool CanEndline(int32 ojfse~

Returns true if the character at offset can be the last character in a line of text, and
false if not. Sometimes this depends on whether the next character (if there is one)
can begin a line. This function is called as the BTextView figures out where to break
lines, but only if word wrapping is turned on.

BTextView • Member Functions 587

As implemented, CanEndLine () allows the following ASCII characters to end a line
regardless of the context:

B_SPACE

B_TAB

B_ENTER

< I &

+ >

I\ '\O'

The default implementation also understands the line-ending conventions for Chinese
and Japanese. Because these languages are written without the spaces that typically
end lines in other languages, lines can potentially break anywhere. However, certain
characters are prohibited from ending a line and others are prohibited from
beginning a new line. CanEndLine () prevents lines from ending either on a
prohibited ending character or on the character before a prohibited beginning
character.

Derived classes can override this function to apply different criteria for where lines
end, possibly looking at the context of the offset character. You can also augment the
current implementation so that it understands the conventions for other languages.

If you override this function to look to the left or right of the character at offset, be
sure to check that you haven't stepped beyond the range of the text. For example,
this version of the function makes sure that the first hyphen of a pair doesn't break a
line:

bool MyTextView::CanEndLine(int32 offset)
{

if (ByteAt [offset] == ' - ') {

if (TextLength() - offset > 1) {
if (ByteAt[offset + 1] == '-'

return false;

return BTextView::CanEndLine(offset);

See also: SetWordWrap ()

ColorSpace() see SetCo/orSpace()

Copy() see Cut()

Countlines() see Go Toline()

Currentline() seeGoToLine()

588

Cut(), Copy(), Paste()

virtual void Cut(BClipboard *clipboard)

virtual void Copy(BClipboard •clipboard)

virtual void Paste(BClipboard •clipboard)

Chapter 4 • The Interface Kit

These functions implement the standard cut, copy, and paste editing commands.
Cut () and Copy () both copy the current selection to the specified clipboard; Cut ()

also deletes the text from the BTextView and removes it from the display. The text is
entered in the clipboard as B_MIME_TYPE data under the name "text/plain". Paste ()

looks in the clipboard for just this type of data and pastes it into the text-but only if
Accepts Paste () returns true. The new text replaces the current selection, or is
placed at the site of the current insertion point.

If the BTextView supports multiple character formats, Cut () and Copy () also place
a text_run_array structure describing the formats of the copied text in the
clipboard-as B_MIME_TYPE data under the name "application/x-vnd.Be
text_run_array". If the BTextView that takes text from the clipboard supports multiple
formats, Paste () looks for the text_run_array in the clipboard and sets the
formats of the pasted text accordingly.

In most cases, the clipboard argument will be identical to the global be_clipboard

object.

See also: AcceptsPaste (), "Shortcuts and Menu Items" in the overview

Delete() see Insert()

DeleteText() seelnsertText()

Detached From Window()

virtual void DetachedFromWindow(void)

Resets the cursor to the standard hand image (B_HAND_CURSOR) if it's above the
BTextView when the BTextView is removed from the window.

See also: BView: : DetachedFromWindow ()

DisallowChar(), AllowChar()

void DisallowChar(uint32 aChaf)

void AllowChar(uint32 aChaf)

These functions inform the BTextView whether the user should be allowed to enter
aChar into the text. By default, all characters are allowed. Call DisallowChar () for

BT extView • Member Functions

each character you want to prevent the BTextView from accepting, preferably when
first setting up the object. Although declared as uint32, aChar must be a character
encoded in a single byte; it can't be a 16-bit Unicode value or a multibyte UTF-8 string.

AllowChar () reverses the effect of DisallowChar ().

Alternatively, and for more control over the context in which characters are accepted
or rejected, you can implement an Insert Text () function for the BTextView.
InsertText () is called for all insertions, including each character the user types, all
text the user drags to the BTextView, and all attempts to paste from the clipboard.

See also: AcceptsChar ()

DoesAutoindent() see SetAutoindent()

DoesWordWrap() see SetWordWrap()

Draw()

virtual void Draw(BRect updateRec~

Draws the text on-screen. The Interface Kit calls this function for you whenever the
text display needs to be updated-for example, whenever the user edits the text,
enters new characters, or scrolls the contents of the BTextView.

See also: BView: :Draw()

FindWord()

virtual void FindWord(int32 offset, int32 *start, int32 *finish)

589

Looks for a sequence of characters that qualifies as a word-that is, a sequence that
the user can double-click to select-that includes the character at offset. This function
places the offset of the word's first character in the variable that start refers to and the
offset following the last character in the word in the variable that finish refers to. If
the offset character can't be part of a word, the start and finish offsets will be
identical.

As implemented, this function allows the user to select a group of similar characters
with a double-click. For example, in the following line of malformed text,

"You what!!?"

it would allow the user to select the words "You" and "what," the group of spaces
between the words, and the group of punctuation marks at the end.

The function also defines similar groups of Japanese characters that can be selected
together.

590 Chapter 4 • The Interface Kit

FrameResized()

virtual void FrameResized(float width, float heigh~

Overrides the BView version of this function to reset the ranges of the BTextView's
scroll bars and to update the sizes of their proportional knobs whenever the size of
the BTextView changes.

See also: BView:: FrameResized ()

GetSelection()

void GetSelection(int32 *start, int32 *finish)

Provides the current selection by writing the offset before the first selected character
into the variable referred to by start and the offset after the last selected character into

, the variable referred to by finish. If no characters are selected, both offsets will record
the position of the current insertion point.

If the text isn't selectable, both offsets will be 0.

See also: Select ()

GetText() see Text()

Get TextRegion()

void GetTextRegion(int32 start, int32 finish, BRegion *region) const

Calculates the region where the run of characters beginning at the start offset and
ending at the finish offset would be displayed within the BTextView's coordinate
system, and modifies the BRegion object passed as the third argument, region, so that
it represents that region.

See also: TextHeight ()

Go Toline(}, Countlines(}, Currentline()

void GoToline(int32 index)

int32 Currentline(void) const

int32 Countlines(void) const

GoToLine () moves the insertion point to the beginning of the line at index. The first
line has an index of 0, the second line an index of 1, and so on. If the index is out-of
range, the insertion point is moved to the beginning of the line with the nearest in
range index-that is, to either the first or the last line.

BTextView • Member Functions 591

CurrentLine () returns the index of the line where the first character of the
selection-or the character following the insertion point-is currently located.

CountLines () returns how many lines of text the BTextView currently contains.

Like other functions that change the selection, GoToLine () doesn't automatically
scroll the display to make the new selection visible. Call Scroll ToSelection () to
be sure that the user can see the start of the selection.

See also: Scroll ToSelection ()

Highlight()

inline void Highlight(int32 start, int32 finish)

Highlights (or unhighlights) the characters between the start and finish offsets. This is
the function that the BTextView calls to highlight and unhighlight the current
selection. You don't need to call it yourself for this purpose. It's in the public API just
in case you may need to highlight a range of text in some other circumstance.

If the text is not currently highlighted, this function highlights it. But if the text is
already highlighted, it unhighlights it. If you highlight some text, be sure to
unhighlight it before the next editorial change; the BTextView will not do it for you.

See also: Select (), TextRegion ()

Insert(), Delete()

void lnsert(const char *text, const text_run_array *runs= NULL)

void lnsert(const char *text, int32 length, const text_run_array *runs= NULL)
void lnsert(int32 offset, const char *text, int32 length,

const text_run_array *runs= NULL)

void Delete(void)
void Delete(int32 start, int32 finish)

Insert () adds length bytes of text to the BTextView-or if a length isn't specified,
all the characters of the text string up to the null character that terminates it. The text
is inserted at offset-or at the beginning of the current selection if an offset isn't
specified. The current selection is not deleted and the insertion is not selected.

The inserted characters are displayed in the fonts and colors specified in the
accompanying runs array, provided the BTextView allows multiple character formats.
If multiple formats aren't allowed, the runs array is ignored. If multiple formats are
allowed but a runs array isn't provided, the insertion is displayed in the font and
color in force at the point of insertion. This generally means the font and color of the

592 Chapter 4 • The Interface Kit

first character of the selection, or of the character immediately preceding the offset
character.

Offsets in the runs array should describe the text being inserted; in other words, the
first offset should be 0. See SetRunArray () for a description of the
text_run_array structure.

Insert () doesn't assume responsibility for the text data or the runs array. It copies
the information it needs.

Delete () removes the characters bounded by the start and finish offsets from the
display and deletes them from the BTextView's text, without copying them to the
clipboard. If the start and finish offsets are the same, nothing is deleted. If offsets are
not provided, Delete () deletes the current selection.

See also: SetText (), Cut (), SetRunArray ()

lnsertText(), DeleteText()

protected:
virtual void lnsertText(const char *text, int32 length, int32 offset,

text_run_array *runs)

virtual void DeleteText(int32 start, int32 finish)

These protected functions are the vehicles through which the BTextView performs
every insertion and deletion of text (with one exception). They can be augmented in
derived classes to take note of pending editorial changes to the text and perhaps
modify them or prevent them from taking place. For example, a derived class might
implement Insert Text () to screen incoming characters for B_ENTER to prevent the
user from typing more than one line of text.

You can implement these two functions to be notified of pending insertions and
deletions, but do not call them to insert and delete text; call Insert () and
Delete () instead.

Insert Text () adds length bytes of text to the BTextView, inserting it at offset within
the text buffer. The font and color of the inserted characters may be described by an
accompanying runs array. If the BTextView doesn't support multiple character
formats, the runs array is ignored. If multiple formats are supported but the runs
array is NULL, the text is displayed in the font and color of the character preceding
offset (or of the first character, if offset is 0).

The offsets in the runs data structure are relative to the inserted text; that is, the first
offset in the array is 0, not offset.

BT extView • Member Functions

InsertText () is called for every insertion, except one. The exception occurs when
Set Text () takes text from a file; in this case the text goes directly from the file to
the BTextView; it's not stored in a temporary buffer while InsertText () is called.

DeleteText () removes the text bounded by the start and finish offsets. It fails if the
offsets don't differ, or if the finish offset isn't greater than the start offset. This
function is called for every deletion, without exception.

See also: Insert () , Delete ()

lsEditable() see MakeEditab/e()

lsSelectable{) see MakeSeleaable()

KeyDown()

virtual void KeyDown(const char *bytes, int32 numBytes)

593

Enters text at the current selection in response to the user's typing. This function is
called from the window's message loop for every report of a key-down event
typically once for every character the user types. However, it does nothing unless the
BTextView is' the focus view and the text it contains is editable.

If the character encoded in the bytes string is an editing instruction, KeyDown () takes
the appropriate action:

• If the character is from one of the arrow keys (B_UP _ARROW, B_LEFT_ARROW,
B_DOWN_ARROW, or B_RIGHT_ARROW), it extends the selection or moves the
insertion point in the appropriate direction, depending on the modifiers

• If the character is B_BACKSPACE or B_DELETE, it deletes the current selection-or
the character preceding or following the current insertion point.

• If the character comes from one of the paging keys (B_HOME, B_END, B_PAGE_UP,
or B_PAGE_DOWN), it scrolls the display.

Otherwise, it checks whether the character was registered as unacceptable (by
DisallowChar ()). If not disallowed, it calls the InsertText () hook function to
enter the character into the text and display it. Derived classes can preview about-to
be-inserted characters by overriding Insert Text ().

See also: BView: : KeyDown (), InsertText (), DisallowChar ()

LineAt(), PointAt(), OffsetAt()

int32 LineAt(int32 offset) const
int32 LlneAt(BPoint point) const

594

BPoint PointAt(int32 offset, float *height = NULL) canst

int32 OffsetAt(BPoint point) canst
int32 OffsetAt(int32 indeX) canst

Chapter 4 • The Interface Kit

These functions translate between coordinate values, text offsets, and line indices.
LineAt {) returns the index of the line containing the character at offset in the text,
or the line located at the specified point in the BTextView's coordinate system. Line
indices begin at 0.

PointAt {) returns the coordinate location of the character at offset. The point is the
left top comer of a rectangle enclosing the character and is stated in the BTextView's
coordinate system. The x-coordinate of the point is the position on the baseline
where the character is (or would be) drawn; its y-coordinate is the top of the line
where the offset character is located. If a height argument is provided, PointAt ()
returns the height of the line by reference.

OffsetAt {) returns the offset to the character that begins the index line, or to the
character displayed at point.

LineHeightQ, TextHeightO

float LineHeight(int32 index = 0) canst

float TextHeight(int32 first!ndex, int32 lastlndeX) canst

LineHeight () returns the height of the line of text at index, or the first line if an
index isn't specified. Line indices begin at 0. The height is stated in coordinate units
and depends on the font. It's the sum of how far characters can ascend above and
descend below the baseline, plus the amount of leading that separates lines. If more
than one font is used on the line, the ascent is taken from the tallest font and the
descent and leading from the deepest.

TextHeight () returns the height of the set of lines from first!ndex through
last!ndex.

Both functions reset out-of-range indices to be in-range-that is, to the index of the
first or last line.

See also: BFont: : GetHeight ()

LineWidthO

float LineWidth(int32 index = 0) canst

Returns the width of the line at index--or, if no index is given, the width of the first
line. The value returned is the sum of the widths (in coordinate units) of all the

BTextView • Member Functions

characters in the line, from the first through the last, including tabs and spaces. Line
indices begin at 0.

If the index passed is out-of-range, it's reinterpreted to be the nearest in-range
index-that is, as the index to the first or the last line.

See also: BFont: : StringWidth ()

595

MakeEditable(}, lsEditable()

void MakeEditable(bool flag = true)

bool lsEditable(void) canst

The first of these functions sets whether the user can edit the text displayed by the
BTextView; the second returns whether or not the text is currently editable. Text is
editable by default.

When text is editable but not selectable, the user can enter and delete text at the
insertion point, but can't select text to make changes to more than one character at a
time.

See also: MakeSelectable ()

Make Focus()

virtual void MakeFocus(bool flag = true)

Overrides the BView version of MakeFocus () to highlight the current selection when
the BTextView becomes the focus view (when flag is true) and to unhighlight it
when the BTextView no longer is the focus view (when.flag is false). However, the
current selection is highlighted only if the BTextView's window is the current active
window.

This function is called for you whenever the user's actions make the BTextView
become the focus view, or force it to give up that status.

See also: BView: :MakeFocus (), MouseDown ()

MakeResizable(}, lsResizable()

void MakeResizable(bool resizable, BView •containerView =NULL)

bool lsResizable(void) canst

MakeResizable () gives the BTextView the ability to automatically resize itself to fit
its contents if the resizable flag is true, and takes away that ability if the flag is
false. IsResizable () returns whether the BTextView is currently resizable.

596 Chapter 4 • The Interface Kit

The frame rectangle and text rectangle of a resizable BTextView automatically grow
and shrink to exactly enclose all the characters entered by the user. The object should
display just a single line of text (the resizing is horizontal); if the resizable flag is
true, MakeResizable () turns off line wrapping. The text can be aligned to the left,
right, or center of the text rectangle.

The containerView is a view that draws a border around the text (like a BScrollView
object) and is the parent of the BTextView; it's the view that's resized to fit the text.
The BTextView's resizing mode should be such that it will be resized in tandem with
the container (for example, B_FOLLOW_LEFT_RIGHT or B_FOLLOW_ALL_SIDES).

However, if the containerView is NULL, as it is by default, the BTextView itself is
resized to fit the text.

If the resizable flag is false, the containerView argument is ignored.

This resizing mechanism is an alternative to the automatic resizing behavior provided
in the BView class. It triggers resizing on the user's entry of text, not on a change in
the parent view's size. The two schemes are incompatible; the container view (or the
BTextView, if there is no container) should not automatically resize itself when its
parent is resized.

See also: SetAlignment ()

MakeSelectable(), lsSelectable()

void MakeSelectable{bool flag= true)

bool lsSelectable(void) canst

The first of these functions sets whether it's possible for the user to select text
displayed by the BTextView; the second returns whether or not the text is currently
selectable. Text is selectable by default.

When text is selectable but not editable, the user can select one or more characters to
copy to the clipboard, but can't position the insertion point (an empty selection),
enter characters from the keyboard, or paste new text into the view.

See also: MakeEdi table ()

MaxBytes() see SetMaxBytes()

Message Received()

virtual void MessageReceived(BMessage *message)

BT extView • Member Functions 597

Augments the BView version of MessageRecei ved () to handle scripting requests,
dropped data, and four editing messages-B_CUT, B_COPY, B_PASTE, and
B_SELECT_ALL.

If the message was dragged and dropped on the BTextView and it contains
B_MIME_TYPE data under the name "text/plain'', this function inserts the new text at
the point where it was dropped-but only if AcceptsDrop () returns true for the
message.

This function handles B_CUT, B_COPY, B_PASTE, and B_SELECT_ALL messages by
calling the Cut (), Copy (), Paste (), and SelectAll () functions. A BTextView will
get these messages, even if the application doesn't send them, when it's the focus
view and the user uses the Command-x, Command-c, Command-v, and Command-a
shortcuts. See "Shortcuts and Menu Items" in the class overview for information on
how to set up compatible Cut, Copy, Paste, and Select All menu items.

To inherit this functionality, MessageReceived() functions implemented by derived
classes should be sure to call the BTextView version.

See also: BView: :MessageReceived(), AcceptsPaste (),
Binvoker::SetMessage(),Binvoker::SetTarget(), InsertText()

Mouse Down()

virtual void MouseDown(BPoint point)

Selects text, drags text, and positions the insertion point in response to the user's
mouse actions. If the BTextView isn't already the focus view for its window, this
function calls MakeFocus () to make it the focus view.

MouseDown () is called for each mouse-down event that occurs inside the
BTextView's frame rectangle.

See also: BView: :MouseDown (), MakeFocus ()

MouseMoved()

virtual void MouseMoved(BPoint point, uint32 transit, BMessage •message)

Responds to B_MOUSE_MOVED messages by changing the cursor to the standard I
beam image for editing text whenever the cursor enters the view and by resetting it to
the standard hand image when the cursor exits the view. The cursor is changed to an
I-beam for text that is selectable or editable, but only if the BTextView is the current
focus view in the active window. However, when the cursor moves over the current
selection, this function changes it from the I-beam back to the standard hand image.
This is done to indicate that it's possible to drag and drop the current selection.

598 Chapter 4 • The Interface Kit

If a message is being dragged to the BTextView, this function tests it see whether it
contains textual data and tracks it to its destination.

See also: BView: : MouseMoved () , AcceptsDrop ()

OffsetAt() see LineAt()

PointAt() see LineAt()

Paste() see Cut()

Pulse()

virtual void Pulse(void)

Tums the caret marking the current insertion point on and off when the BTextView is
the focus view in the active window. Pulse () is called by the system at regular
intervals.

This function is first declared in the BView class.

See also: BView: : Pulse ()

ResolveSpecifier()

virtual BHandler *ResolveSpecifier{BMessage •message, int32 index,
BMessage *specifier, int32 command, const char *propert)l'J

Resolves specifiers for the "Text", "text_run_array", and "selection" properties. See
"Scripting Support" in the class overview and "Scripting" in Chapter 2 for more
information.

See also: BHandler: : ResolveSpecifier ()

ScrollToOffset(), ScrollToSelection()

virtual void ScrollT o0ffset(int32 offeetJ

void ScrollT oSelection(void)

These functions scroll the text so that the character at offeet-or the character that
begins the current selection-is within the visible region of the view. If the
BTextView is equipped with scroll bars, the BScrollBar objects are informed so they
can update themselves.

See also: BView:: Scroll To ()

BT extView • Member Functions 599

Select()

virtual void Select(int32 start, int32 finish)

Selects the characters from start up to finish, where start and finish are offsets into
the BTextView's text. If start and finish are the same, the selection will be empty (an
insertion point). See "Offsets" in the class overview for a discussion of the constraints
on the offset arguments.

Normally, the selection is changed by the user. This function provides a way to
change it programmatically.

If the BTextView is the current focus view in the active window, Select () highlights
the new selection (or displays a blinking caret at the insertion point). However, it
doesn't automatically scroll the contents of the BTextView to make the new selection
visible. Call Scroll ToSelection () to be sure that the user can see the start of the
selection.

See also: Text (), GetSelection (), Scroll ToSelection (), GoToLine (),
MouseDown ()

SelectAll()

void SelectAll(void)

Selects the entire text of the BTextView, and highlights it if the BTextView is the
current focus view in the active window.

See also: Select ()

SetAlignment(), Alignment()

void SetAlignment(alignment where)

alignment Alignment(void) canst

These functions set the way text is aligned within the text rectangle and return the
current alignment. Three settings are possible:

B_ALIGN_LEFT

B_ALIGN_RIGHT

B_ALIGN_CENTER

Each line is aligned at the left boundary of the text rectangle.

Each line is aligned at the right boundary of the text rectangle.

Each line is centered between the left and right boundaries of the text
rectangle.

The default is B_ALIGN LEFT.

600

SetAutoindent(), DoesAutoindent()

void SetAutoindent(bool flag)

bool DoesAutoindent(void) const

Chapter 4 • The Interface Kit

These functions set and return whether a new line of text is automatically indented
the same as the preceding line. When set to true and the user types Return at the
end of a line that begins with tabs or spaces, the new line will automatically indent
past those tabs and spaces to the position of the first visible character.

The default value is false.

SetColorSpace(), ColorSpace()

void SetColorSpace(color_space space)

color_space ColorSpace(void) const

These functions set and return the color space of the offscreen bitmap that buffers the
drawing the BTextView does. The default color space is B_COLOR_B_BIT.

See also: the BBitmap class

SetFontAndColor(), GetFontAndColor()

void SetFontAndColor(int32 start, int32 finish,
const BFont *font, uint32 properties = B_FONT _ALL,
rgb_color *color= NULL)

void SetFontAndColor(const BFont *font, uint32 properties= B_FONT_ALL,
rgb_color *color= NULL)

void GetFontAndColor(int32 offset, BFont *font, rgb_color *color= NULL) const
void GetFontAndColor(BFont *font, uint32 *sameProperties,

rgb_color *color= NULL, bool *sameColor = NULL) const

These functions set and get the font and color used to display the text. If the
BTextView supports multiple character formats, SetFontAndColor () sets the font
and color of the characters bounded by the start and finish offsets. If no offsets are
given, it sets the font and color of the current selection. However, if multiple
character formats are not supported, SetFontAndColor () ignores the offsets and
formats the entire text. ·

SetFontAndColor () works like BView's SetFont () function. It sets the font to the
attributes of the font BFont object that are enumerated by the properties mask. The
mask is formed by combining the following constants:

BT extView • Member Functions

B_FONT_FAMILY_AND_STYLE

B_FONT_SIZE

B_FONT_SHEAR

B_FONT_ROTATION

B_FONT_SPACING

B_FONT_ENCODING

B_FONT_FACE

B_FONT_FLAGS

In addition, B_FONT_ALL is a shorthand for all properties of the specified font.
However, the BTextView modifies the font to ensure that:

• Characters are not rotated.
• Antialiasing is not disabled.
• The spacing mode is B_BITMAP _SPACING.

• The character encoding is UTF-8 (B_UNICODE_UTF8).

601

If the font argument is NULL, the font is not set and the properties mask is ignored.

The color of the characters is set by a pointer to an rgb_color structure. If the
pointer is NULL, as it is by default, the color is not set.

GetFontAndColor () gets the font and color used to display the character at c>jf\·et. It

modifies the font BFont object and the color rgb_color structure so that they
describe the font and color of the character.

If an offset isn't specified, GetFontAndColor () looks at the current selection. It

provides a font and color description of the first character of the selection-or the
character at the insertion point if the selection is empty. It also modifies that variable
that the sameProperties argument refers to so that it lists all the font properties that
are uniform for all characters in the selection. Similarly, it indicates, in the variable
that sameColor refers to, whether all the characters in the selection are displayed in
the same color.

See also: BView:: SetFont ()

SetMaxBytes(), MaxBytes()

void SetMaxBytes(int32 maX')

int32 MaxBytes(void) const

These functions set and return the maximum number of bytes that the BTextView can
accept. The default is the maximum number of bytes that can be designated by a
signed 32-bit integer, a number sufficiently large to accommodate all uses of a

602 Chapter 4 • The Interface Kit

BTextView. Use this function only if you need to restrict the number of characters
that the user can enter in a text field.

Note that these functions count bytes, not characters.

SetRunArray(), RunArray()

void SetRunArray(int32 start, int32 finish, const text_run_array *runs)

text_run_array *RunArray(int32 start, int32 finish, int32 *length = NULL)

These functions set and return the font and color formats of all the characters
bounded by the start and finish offsets. The formats are described by a
text_run_array structure, which has the following fields:

int32 count
The number of text_run structures in the array.

text_run runs[l]
A structure describing the font and color formats in effect at a particular offset in
the BTextView's text.

The text_run structure describes a run of characters that share the same font and
color formats. It has three fields:

int32 offset
An offset to the first byte of a character in the text buffer. The text run begins with
this character; it continues until another run begins.

BFont font
The font that's used to display the run of characters beginning at the specified
offset.

rgb_color color
The color that's used to display the run of characters beginning at the specified
offset.

The first offset of the first text_run in the array passed to SetRunArray () should
be O; the array returned by RunArray () also begins at offset 0.

If the BTextView doesn't support multiple character formats, SetRunArray ()
ignores the start and finish offsets and sets the entire text to the font and color of the
first text_run in the array. Similarly, RunArray () returns a text_run_array with
one text_run describing the entire text.

RunArray () returns a pointer to memory that it allocated (using malloc ()). It puts
the number of bytes that it allocated in the variable that the length argument points
to. Although RunArray () allocated the memory, the caller is responsible for freeing
it when the returned text_run_array is no longer needed.

BT extView • Member Functions 603

SetRunArray () doesn't assume responsibility for the runs data it's passed; it's up to
the caller to free it.

See also: SetFontAndColor ()

SetStylable(), lsStylable()
void SetStylable(bool sty/able)

bool lsStylable(void) const

SetStylable () sets whether the BTextView permits multiple character formats. If
the sty/able flag is true, the functions that set the font and color of the text can apply
to particular characters in the text buffer. If the flag is false, those functions apply
only to the entire text. When SetStylable () is called to tum off support for
multiple formats, all the text is reformatted in the font and color of the first character.

IsStylable () returns whether multiple formats are permitted. By default, they're
not.

See also: SetFontAndColor () , SetRunArray ()

SetTabWidth(), TabWidth()
void SetTabWidth(float width)

float TabWidth(void) canst

These functions set the distance between tab stops to width coordinate units and
return the current tab width. Tabs cannot be removed nor can they be individually
set; all tabs have a uniform width. The default tab width is 28.0 coordinate units.

Set Text()
void SetText(const char *text, int32 length, canst text_run_array *runs= NULL)
void Set Text(canst char *text, canst text_run_array •runs= NULL)
void SetText(BFile *file, int32 offset, int32 length,

canst text_run_array *runs= NULL)

Removes any text currently in the BTextView and copies new text from a text buffer
or from a file to replace it. This function copies length bytes of text from the buffer
or all the bytes in the buffer, up to the null character, if a length isn't specified. Or it
copies length bytes from the file beginning at the offset byte. If the text or file is NULL

or length is 0, it empties the BTextView without replacing the text.

604 Chapter 4 • The Interface Kit

If a runs text_run_array is provided, it will be used to set the font and color
formats of the new text-provided that the BTextView permits multiple character
formats. If not, the runs array is ignored.

The BTextView doesn't assume ownership of the text buffer, the file, or the runs
array; you can delete them when SetText () returns.

Text taken from a file is inserted directly into the text, bypassing the InsertText ()
function. In other words, you won't receive an InsertText () notification for text
taken from a file.

This function is typically used to set the text initially displayed in the view. If the
BTextView is already attached to a window, it's updated to show its new contents.

See also: Text () , TextLength ()

SetTextRect(), TextRect()
void SetT extRect(BRect reef)

BRect T extRect(void) const

SetTextRect () makes rect the BTextView's text rectangle-the rectangle that
locates where text is placed within the view. This replaces the text rectangle
originally set in the BTextView constructor. The layout of the text is recalculated to fit
the new rectangle, and the text is redisplayed.

TextRect () returns the current text rectangle.

See also: the BTextView constructor

SetWordWrap(), DoesWordWrap()
void SetWordWrap(bool jla~

bool DoesWordWrap(void) const

These functions set and return whether the BTextView wraps lines on word
boundaries, dropping entire words that don't fit at the end of a line to the next line.
When word wrapping is turned on, the BTextView calls CanEndLine () to determine
exactly where a line can break. If word wrapping is off, lines break only on a newline
character (where the user types Return).

By default, word wrapping is turned on (DoesWordWrap () returns true).

Seealso:SetTextRect(),CanEndLine()

TabWidth() seeSetTabWidth()

BTextView • Member Functions

Text(}, GetText(}, ByteAt()

const char *T ext(void) const

void GetText(int32 offset, int32 length, char •buffer) const

uchar ByteAt(int32 offset) const

These functions reveal the text contained in the BTextView.

605

Text () returns a pointer to the text, which may be a pointer to an empty string if the
BTextView is empty. The returned pointer can be used to read the text, but not to
alter it (use SetText () , Insert () , Delete () , and other BTextView functions to do
that).

GetText () copies up to length bytes of the text into buffer, beginning with the byte
at offset, and adds a null terminator ("\O"). Fewer than length bytes are copied ifthere
aren't that many between the specified offset and the end of the text. This function
doesn't make any attempt to ensure that only full character specifications are copied;
it's up to the caller to make sure that a character begins at offset and that the last byte
copied isn't in the middle of a multibyte character. The results won't be reliable if the
offset is out-of-range.

ByteAt () returns the byte located at offset. The offset doesn't have to be to the first
byte of a character.

The pointer that Text () returns is to the BTextView's internal representation of the
text. When it returns, the text string is guaranteed to be null-terminated and without
gaps. However, the BTextView may have had to manipulate the text to get it in that
condition. Therefore, there may be a performance price to pay if Text () is called
frequently. If you're going to copy the text, it's more efficient to have GetText () do
it for you. If you're going to index into the text, it may be more efficient to call
ByteAt ().

The pointer that Text () returns may no longer be valid after the user or the program
next changes the text. Even if valid, the string may no longer be null-terminated and
gaps may appear.

See also: TextLength ()

TextHeight() see LJneHeight()

Textlength(}

int32 Textlength(void) const

606 Chapter 4 • The Interface Kit

Returns the number of bytes of text data the BTextView currently contains-the
number of bytes in the string that Text () returns (not counting the null terminator).

Seea~o:Text(),SetMaxBytes()

T extRectQ see SetT extRect()

WindowActivatedQ
virtual void WindowActivated(bool flag)

Highlights the current selection when the BTextView's window becomes the active
window (when flag is true)-provided that the BTextView is the current focus
view-and removes the highlighting when the window ceases to be the active
window (when.flag is false).

If the current selection is empty (if it's an insertion point), it's highlighted by turning
the caret on and off (blinking it).

The Interface Kit calls this function for you whenever the BTextView's window
becomes the active window or it loses that status.

Seea~o: BView: :WindowActivated(), MakeFocus ()

BView
Derived from: public BHandler

Declared in: be/interfaceNiew.h

Library: libbe.so

Overview
BView objects are the agents for drawing and message handling within windows.
Each object sets up and takes responsibility for a particular view, a rectangular area
that's associated with at most one window at a time. The object draws within the
view rectangle and responds to reports of events elicited by the images drawn.

Classes derived from BView implement the actual functions that draw and handle
messages; BView merely provides the framework. For example, a BTextView object
draws and edits text in response to the user's activity on the keyboard and mouse. A
BButton draws the image of a button on-screen and responds when the button is
clicked. BTextView and BButton inherit from the BView class-as do most classes in
the Interface Kit.

BView • Overview

Views and Windows

For a BView to do its work, you must attach it to a window. The views in a window
are arranged in a hierarchy-there can be views within views-with those that are
most directly responsible for drawing and message handling located at the terminal
branches of the hierarchy and those that contain and organize other views situated
closer to its trunk and root. A BView begins life unattached. You can add it to a
hierarchy by calling the AddChi ld () function of the BWindow or of another BView.

Within the hierarchy, a BView object plays two roles:

• It's a BHandler for messages delivered to the window thread. BViews implement
the functions that respond to the most common system messages-including those
that report keyboard and mouse events. They can also be targeted to handle
application-defined messages that affect what the view displays.

607

• It's an agent for drawing. Adding a BView to a window gives it an independent
graphics environment. A BView draws on the initiative of the BWindow and the
Application Server, whenever they determine that the appearance of any part of
the view rectangle needs to be "updated." It also draws on its own initiative in
response to events.

The relationship of BViews to BWindows and the framework for drawing and
responding to the user were discussed in the opening sections of this chapter. The
concepts and terminology presented there are assumed in this class description.

BViews can also be called upon to create bitmap images. See the BBitmap class for
details.

Locking the Window

If a BView is attached to a window, any operation that affects the view might also
affect the window and the BView's shadow counterpart in the Application Server. For
this reason, any code that calls a BView function should first lock the window-so
that one thread can't modify essential data structures while another thread is using
them. A window can be locked by only one thread at a time.

Locking is accomplished through the BLooper Lock () and Unlock () functions
inherited by BWindow:

if (Window()->Lock()

Window()->Unlock();

Before they do anything else, almost all BView functions check to be sure the caller
has the window locked. If the window isn't properly locked, they print warning
messages and fail.

608 Chapter 4 • The Interface Kit

Of course, a BView function can require the window to be locked only if the view
has a window to lock; the requirement can't be enforced if the BView isn't attached
to a window. However, as discussed in "Views and the Server" in the "Drawing"
section of this chapter, some BView functions don't work at all unless the view is
attached-in which case the window must be locked.

Whenever the system calls a BView function to notify it of something-whenever it
calls WindowActivated(), Draw(), MessageReceived() or another hook
function-it first locks the window thread. The application doesn't have to explicitly
lock the window when responding to an update, an interface message, or some other
notification; the window is already locked.

Scripting Support

The BView class implements a suite named "suite/vnd.Be-view" that opens three of
its properties to scripting requests. The suite includes the following messages:

Property name: "Frame" for the frame rectangle of the BView
Specifiers: B_DIRECT_SPECIFIER only
Messages: B_SET_PROPERTY and B_GET_PROPERTY
Data type: BRect

Property name: "Hidden" for whether or not the BView is hidden
Specifiers: B_DIRECT_SPECIFIER only
Messages: B_SET_PROPERTY and B_GET_PROPERTY
Data type: bool

The suite also includes the ability to resolve the following specifiers by designating
the specified BView as the new target of the message, regardless of what the message
is:

Property name:
Specifiers:

"View" for a descendant BView object
B_NAME_SPECIFIER, B_INDEX_SPECIFIER,

orB_REVERSE_INDEX_SPECIFIER

For B_NAME_SPECIFIER, the BView may descend the view hierarchy to find the
named view. However, an index specifier picks only an immediate child of the
BView.

See "Scripting" in Chapter 2 for more on scripting and suites.

Derived Classes

When it comes time for a BView to draw, its Draw () virtual function is called
automatically. When it needs to respond to an event, a virtual function named after
the kind of event is called-MouseMoved () , KeyDown () , and so on. Classes derived

BView • Hook Functions

from BView implement these hook functions to do the particular kind of drawing and
message handling characteristic of the derived class.

• Some classes derived from BView implement control devices-buttons, dials,
selection lists, check boxes, and so on-that translate user actions on the
keyboard and mouse into more explicit instructions for the application. In the
Interface Kit, BMenu, BListView, BButton, BCheckBox, and BRadioButton are
examples of control devices.

609

• Other BViews visually organize the display-for example, a view that draws a
border around and arranges other views, or one that splits a window into two or
more resizable panels. The BBox, BScrollBar, and BScrollView classes fall into this
category.

• Some BViews implement highly organized displays the user can manipulate, such
as a game board or a scientific simulation.

• Perhaps the most important BViews are those that permit the user to create,
organize, and edit data. These views display the current selection and are the
focus of most user actions. They carry out the main work of an application.
BTextView is the only Interface Kit example of such a view.

Almost all the BView classes defined in the Interface Kit fall into the first two of these
groups. Control devices and organizational views can serve a variety of different
kinds of applications, and therefore can be implemented in a kit that's common to all
applications.

However, the BViews that will be central to most applications fall into the last two
groups. Of particular importance are the BViews that manage editable data.
Unfortunately, these are not views that can be easily implemented in a common kit.
Just as most applications devise their own data formats, most applications will need
to define their own data-handling views.

Nevertheless, the BView class structures and simplifies the task of developing
application-specific objects that draw in windows and interact with the user. It takes
care of the lower-level details and manages the view's relationship to the window
and other views in the hierarchy. You should make yourself familiar with this class
before implementing your own application-specific BViews.

Hook Functions
AllAt tached (}

Can be implemented to finish initializing the BView after it's attached to a
window, where the initialization depends on a descendant view's
AttachedToWindow(} function having been called.

610 Chapter 4 • The Interface Kit

AllDetached ()
Can be implemented to prepare the BView for being detached from a window,
where the preparations depend on a descendant view's DetachedFromWindow ()
function having been called.

AttachedToWindow()
Can be implemented to finish initializing the BView after it becomes part of a
window's view hierarchy.

DetachedFromWindow()
Can be implemented to prepare the BView for its impending removal from a
window's view hierarchy.

Draw()
Can be implemented to draw the view.

FrameMoved ()
Can be implemented to respond to a message notifying the BView that it has
moved in its parent's coordinate system.

FrameResized ()
Can be implemented to respond to a message informing the BView that its frame
rectangle has been resized.

GetPreferredSize()
Can be implemented to calculate the optimal size of the view.

KeyDown()
Can be implemented to respond to a message reporting character input from the
keyboard (a key-down event).

KeyUp()
Can be implemented to respond to a message reporting a key-up event.

MakeFocus ()
Makes the BView the focus view, or causes it to give up being the focus view; can
be augmented to take any action the change in status may require.

MouseDown ()
Can be implemented to respond to a message reporting a mouse-down event.

MouseMoved ()
Can be implemented to respond to a notification that the cursor has entered the
view's visible region, moved within the visible region, or exited from the view.

Pulse()
Can be implemented to do something at regular intervals. This function is called
repeatedly when no other messages are pending.

BView • Constructor and Destructor

TargetedByScrollView()

Can be implemented to react when the BView becomes the target of a
BScrollView.

WindowActivated()

Can be implemented to respond to a notification that the BView's window has
become the active window, or has lost that status.

Constructor and Destructor
BView()

BView(BRect frame, const char *name, uint32 resizingMode, uint32 flags)
BView(BMessage •archive)

611

Sets up a view with the frame rectangle, which is specified in the coordinate system of
its eventual parent, and assigns the BView an identifying name, which can be NULL.

When it's created, a BView doesn't belong to a window and has no parent. It's
assigned a parent by having another BView adopt it with the AddChild () function.
If the other view is in a window, the BView becomes part of that window's view
hierarchy. A BView can be made a child of the window's top view by calling
BWindow's version of the AddChild () function.

When the BView gains a parent, the values in frame are interpreted in the parent's
coordinate system. The sides of the view must be aligned on screen pixels. Therefore,
the frame rectangle should not contain coordinates with fractional values. Fractional
coordinates will be rounded to the nearest whole number.

The resizingMode mask determines the behavior of the view when its parent is
resized. It should combine one constant for horizontal resizing:

B_FOLLOW_LEFT

B_FOLLOW_RIGHT

B_FOLLOW_LEFT_RIGHT

B_FOLLOW_H_CENTER

with one for vertical resizing:

B_FOLLOW_TOP

B_FOLLOW_BOTTOM

B_FOLLOW_TOP_BOTTOM

B_FOLLOW_V_CENTER

612 Chapter 4 • The Interface Kit

For example, if B_FOLLOW_LEFT is chosen, the margin between the left side of the
view and the left side of its parent will remain constant-the view will "follow" the
parent's left side. Similarly, if B_FOLLOW_RIGHT is chosen, the view will follow the
parent's right side. If B_FOLLOW_H_CENTER is chosen, the view will maintain a
constant relationship to the horizontal center of the parent.

If the constants name opposite sides of the view rectangle-left and right, or top and
bottom-the view will necessarily be resized in that dimension when the parent is.
For example, B_FOLLOW_LEFT_RIGHT means that the margin between the left side of
the view and left side of the parent will remain constant, as will the margin between
the right side of the view and the right side of the parent. As the parent is resized
horizontally, the child will be resized with it. Note that B_FOLLOW_LEFT_RIGHT is
not the same as combining B_FOLLOW_LEFT and B_FOLLOW_RIGHT, an illegal
move. The resizingMode mask can contain only one horizontal constant and one
vertical constant.

If a side is not mentioned in the mask, the distance between that side of the view and
the corresponding side of the parent is free to fluctuate. This may mean that the view
will move within its parent's coordinate system when the parent is resized.
B_FOLLOW_RIGHT plus B_FOLLOW_BOTTOM, for example, would keep a view from
being resized, but the view will move to follow the right bottom comer of its parent
whenever th~ parent is resized. B_FOLLOW_LEFT plus B_FOLLOW_TOP prevents a
view from being resized and from being moved.

In addition to the constants listed above, there are two other possibilities:

B_FOLLOW_ALL_SIDES

B_FOLLOW_NONE

B_FOLLOW_ALL_SIDES IB a shorthand for B_FOLLOW_LEFT_RIGHT and
B_FOLLOW_TOP_BOTTOM. It means that the view will be resized in tandem with its
parent, both horizontally and vertically.

B_FOLLOW_NONE keeps the view at its absolute position on-screen; the parent view is
resized around it. (Nevertheless, because the parent is resized, the view may wind up
being moved in its parent's coordinate system.)

Typically, a parent view is resized because the user resizes the window it's in. When
the window is resized, the top view is too. Depending on how the resizingMode flag
is set for the top view's children and for the descendants of its children, automatic
resizing can cascade down the view hierarchy. A view can also be resized
programmatically by the ResizeTo () and ResizeBy () functions.

The resizing mode can be changed after construction with the SetResizingMode ()
function.

BView • Constructor and Destructor

The flags mask determines what kinds of notifications the BView will receive. It can
be any combination of the following constants:

B_WILL_DRAW

Indicates that the BView does some drawing of its own and therefore can't be
ignored when the window is updated. If this flag isn't set, the BView won't receive
update notifications-its Draw () function won't be called-and it won't be erased
to its background view color if the color is other than white.

B_PULSE_NEEDED

Indicates that the BView should receive Pulse () . notifications.

B_FRAME_EVENTS

613

Indicates that the BView should receive FrameResized () and FrameMoved ()

notifications when its frame rectangle changes-typically as a result of the
automatic resizing behavior described above. FrameResized () is called when
the dimensions of the view change; FrameMoved () is called when the position of
its left top corner in its parent's coordinate system changes.

B_FULL_UPDATE_ON_RESIZE

Indicates that the entire view should be updated when it's resized. If this flag isn't
set, only the portions that resizing adds to the view will be included in the
clipping region.

B_NAVIGABLE

Indicates that the BView can become the focus view for keyboard actions. This
flag makes it possible for the user to navigate to the view and put it in focus by
pressing the Tab key. See "Keyboard Navigation" at the beginning of this chapter.

B_NAVIGABLE_JUMP

Marks the position of a group of views for keyboard navigation. By pressing
Control-Tab, the user can jump from group to group. The focus lands on the first
BView in the group that has the B_NAVIGABLE flag set. This may be the same
BView that has the B_NAVIGABLE_JUMP marker, or the B_NAVIGABLE_JUMP

BView may be the parent of a group of B_NAVIGABLE views.

If none of these constants applies, flags can be NULL. The flags can be reset after
construction with the SetFlags () function.

See also: SetResizingMode (), SetFlags (), BHandler:: SetName ()

-BView()

virtual -BView(void)

Frees all memory the BView allocated, and ensures that each of the BView's
descendants in the view hierarchy is also destroyed.

614 Chapter 4 • The Interface Kit

It's an error to delete a BView while it remains attached to a window. Call
RemoveChild () or RemoveSelf () before using the delete operator.

See also: RemoveChild ()

Static Functions

Instantiate()

static BView *lnstantiate(BMessage *archive)

Returns a new BView object, allocated by new and created with the version of the
constructor that takes a BMessage archive. However, if the message doesn't contain
archived data for a BView, Instantiate () returns NULL.

See also: BArchivable:: Instantiate (), instantiate_object (),Archive ()

Member Functions

AddChild(), RemoveChild()

void AddChild(BView *aView, BView *sibling= NULL)

bool RemoveChild(BView *aView)

AddChild () makes a View a child of the BView, provided that a View doesn't already
have a parent. The new child is added to the BView's list of children immediately
before the named sibling BView. If the sibling is NULL (as it is by default), a View isn't
added in front of any other view-in other words, it's added to the end of the list. If
the BView is attached to a window, a View and all its descendants become attached to
the same window. Each of them is notified of this change through
AttachedToWindow () and AllAttached () function calls.

AddChild () fails if a View already belongs to a view hierarchy. A view can live with
only one parent at a time. It also fails if sibling is not already a child of the BView.

RemoveChild () severs the link between the BView and a View, so that a View is no
longer a child of the BView; a View retains all its own children and descendants, but
they become an isolated fragment of a view hierarchy, unattached to a window. Each
removed view is notified of this change through DetachedFromWindow () and
AllDetached () function calls.

A BView must be removed from a window before it can be destroyed.

If it succeeds in removing a View, RemoveChild () returns true. If it fails, it returns
false. It will fail if a View is not, in fact, a current child of the BView.

BView • Member Functions

When a BView object becomes attached to a BWindow, two other connections are
automatically established for it:

• The view is added to the BWindow's flat list of BHandler objects, making it an
eligible target for messages the BWindow dispatches.

615

• The BView's parent view becomes its next handler. Messages that the BView
doesn't recognize will be passed to its parent.

Removing a BView from a window's view hierarchy also removes it from the
BWindow's flat list of Bl;Iandler objects; the BView will no longer be eligible to
handle messages dispatched by the BWindow.

See also: BWindow: : AddChi ld () , BLooper: : Add.Handler () ,

BHandler::SetNextHandler(),RemoveSelf(),AttachedToWindow(),

DetachedFromWindow()

Add line() see BeginLineArray()

AllAttached() see AttachedToWindow()

All Detached() see DetachedFromWindow()

Archive()
virtual status_t Archive(BMessage *archive, bool deep= true) const

Calls the inherited version of Archive () , then records the following BView attributes
in the BMessage archive-.

• The frame rectangle

• The resizing mode

• The flags mask

• All aspects of its current graphics state (font, high and low color, and so on)

If the deep flag is true, all of the BView's descendants in the view hierarchy are also
archived. If deep is false, only the BView itself is archived.

See also: BArchi vable: : Archive () , Instantiate () static function

AttachedTo Window(), AllAttached()
virtual void AttachedToWindow(void)

virtual void AllAttached(void)

616 Chapter 4 • The Interface Kit

Implemented by derived classes to complete the initialization of the BView when it's
assigned to a window. A BView is assigned to a window when it, or one of its
ancestors in the view hierarchy, becomes a child of a view already attached to a
window.

At tachedToWindow () is called immediately after the BView is formally made a part
of the window's view hierarchy and after it has become known to the Application
Server and its graphics parameters are set. The Window () function can identify which
BWindow the BView belongs to.

All of the BView's children, if it has any, also become attached to the window and
receive their own At tachedToWindow () notifications. Parents receive the
notification before their children, but only after all views have become attached to the
window and recognized as part of the window's view hierarchy. This function can
therefore depend on all ancestor and descendant views being in place.

For example, At tachedToWindow () can be implemented to set a view's background
color to the same color as its parent, something that can't be done before the view
belongs to a window and knows who its parent is.

void MyView::AttachedToWindow()
{

if (Parent())
SetViewColor(Parent()->ViewColor());

BView::AttachedToWindow();

The AllAttached() notification follows on the heels of AttachedToWindow(), but
works its way up the view hierarchy rather than down. When AllAttached() is
called for a BView, all its descendants have received both At tachedToWindow ()

and AllAttached () notifications. Therefore, parent views can depend on any
calculations that their children make in either function. For example, a parent can
resize itself to fit the size of its children, where their sizes depend on calculations
done in AttachedToWindow().

The default (BView) version of both these functions are empty.

See also: AddChild () , Window ()

BeginLineArrayQ, AddLineQ, EndLineArrayQ

void BeginlineArray(int32 count)

void Addline(BPoint start, BPoint end, rgb_color c<;>lof)

void EndlineArray(void)

These functions provide a more efficient way of drawing a large number of lines than
repeated calls to StrokeLine () . BeginLineArray () signals the beginning of a

BView • Member Functions 617

series of up to count AddLine () calls; EndLineArray () signals the end of the
series. Each AddLine () call defines a line from the start point to the end point,
associates it with a particular color, and adds it to the array. The lines can each be a
different color; they don't have to be contiguous. When EndLineArray () is called,
all the lines are drawn-using the then current pen size-in the order that they were
added to the array.

These functions don't change any graphics parameters. For example, they don't move
the pen or change the current high and low colors. Parameter values that are in effect
when EndLineArray () is called are the ones used to draw the lines. The high and
low colors are ignored in favor of the color specified for each line.

The count passed to BeginLineArray () is an upper limit on the number of lines
that can be drawn. Keeping the count close to accurate and within reasonable
bounds helps the efficiency of the line-array mechanism. It's a good idea to keep it
less than 256; above that number, memory requirements begin to impinge on
performance.

See also: StrokeLine ()

BeginPicture{), EndPicture()

void BeginPicture(BPicture *picture)

BPicture *EndPicture(void)

BeginPicture () instructs the Application Server to begin recording a set of drawing
instructions for a picture. EndPicture () instructs the server to end the recording
session; it returns the same object that was passed to BeginPicture ().

The BPicture records exactly what the BView would draw-and only what the BView
would draw-were the instructions not bracketed by BeginPicture () and
EndPicture () calls. The drawing of other views is ignored, as are function calls that
don't draw or affect graphics parameters. The picture captures only primitive graphics
operations-that is, functions defined in this class, such as Drawstring (),

FillArc (), and SetFont (). If a complex drawing function (such as Draw()) is
called, only the primitive operations that it contains are recorded.

A BPicture can be recorded only if the BView is attached to a window. The window
can be off-screen and the view itself can be hidden or reside outside the current
clipping region. However, the drawing the BView does will not be seen even if the
window is on-screen and the view is visible-it's captured in the picture rather than
rendered in the window.

See also: the BPicture class, DrawPicture ()

618 Chapter 4 • The Interface Kit

BeginRectTracking(), EndRectTracking()

void BeginRectTracking(BRect rect, uint32 how= B_ TRACK_ WHOLE_RECT)

void EndRectTracking(void)

These functions instruct the Application Server to display a rectangular outline that
will track the movement of the cursor. BeginRectTracking () puts the rectangle
on-screen and initiates tracking; EndRectTracking () terminates tracking and
removes the rectangle. The initial rectangle, rect, is specified in the BView's
coordinate system.

This function supports two kinds of tracking, depending on the constant passed as
the how argument:

B_TRACK_WHOLE_RECT

B_TRACK_RECT_CORNER

The whole rectangle moves with the cursor. Its position
changes, but its size remains fixed.

The left top corner of the rectangle remains fixed within the
view while its right and bottom edges move with the cursor.

Tracking is typically initiated from within a BView's MouseDown () function and is
allowed to continue as long as a mouse button is held down. For example:

void MyView::MouseDown(BPoint point)
{

unit32 buttons;

BRect rect(point, point);
BeginRectTracking(rect, B_TRACK_RECT_CORNER);
do {

snooze(30 * 1000);
GetMouse(&point, &buttons);

while (buttons);
EndRectTracking();

rect.SetRightBottom(point);

This example uses BeginRectTracking () to drag out a rectangle from the point
recorded for a mouse-down event. It sets up a modal loop to periodically check on
the state of the mouse buttons. Tracking ends when the user releases all buttons. The
right and bottom sides of the rectangle are then updated from the cursor location last
reported by the GetMouse () function.

See also: ConvertToScreen (), GetMouse ()

BView • Member Functions

Bounds()

BRect Bounds(void) canst

Returns the BView's bounds rectangle. If the BView is attached to a window, this
function returns the rectangle kept by the Application Server. If not, it returns a
rectangle the same size as the BView's frame rectangle, but with the left and top sides
at 0.0.

If Bounds () is called during an update, the BView is already aware of the current
rectangle (the update message included it); it can therefore return it directly without
communicating with the Application Server. However, if called at other times,
Bounds () must get the latest rectangle from the server, an interaction that has a
certain amount of overhead.

See also: Frame ()

ChildAt() see Parent()

619

ConstrainClippingRegion()

virtual void ConstrainClippingRegion(BRegion *region)

Restricts the drawing that the BView can do to region.

The Application Server keeps track of a clipping region for each BView that's
attached to a window. It clips all drawing the BView does to that region; the BView
can't draw outside of it.

By default, the clipping region contains only the visible area of the view and, during
an update, only the area that actually needs to be drawn. By passing a region to this
function, an application can further restrict the clipping region. When calculating the
clipping region, the server intersects it with the region provided. The BView can draw
only in areas common to the region passed and the clipping region as the server
would otherwise calculate it. The region passed can't expand the clipping region
beyond what it otherwise would be.

If called during an update, ConstrainClippingRegion () restricts the clipping
region only for the duration of the update.

Calls to ConstrainClippingRegion () are not additive; each region that's passed
replaces the one that was passed in the previous call. Passing a NULL pointer removes
the previous region without replacing it. The function works only for BViews that are
attached to a window.

See also: GetClippingRegion (), Draw ()

620

Convert ToParent(), ConvertFromParent()

BPoint ConvertToParent(BPoint loca!Poinf) canst
void ConvertToParent(BPoint *loca!Poin"f) canst

BRect ConvertToParent(BRect loca!Recf) canst
void Convert T oParent(BRect * localRecf) canst

BPoint ConvertFromParent(BPoint parentPoinf) canst
void ConvertFromParent(BPoint •parentPoinf) canst

BRect ConvertFromParent(BRect parentRecf) canst
void ConvertFromParent(BRect •parentRecf) canst

Chapter 4 • The Interface Kit

These functions convert points and rectangles to and from the coordinate system of
the BView's parent. ConvertToParent () converts loca!Point or localRect from the
BView's coordinate system to the coordinate system of its parent BView.
ConvertFromParent () does the opposite; it converts parentPoint or parentRect
from the coordinate system of the BView's parent to the BView's own coordinate
system.

If the point or rectangle is passed by value, the function returns the converted value.
If a pointer is passed, the conversion is done in place.

Both functions fail if the BView isn't attached to a window.

See also: ConvertToScreen ()

Convert T oScreen (), ConvertFromScreen ()

BPoint Convert T oScreen(BPoint loca!Point) canst
void Convert T oScreen(BPoint * localPoinf) canst

BRect ConvertToScreen(BRect localRecf) canst
void Convert T oScreen(BRect * loca!Recf) canst

BPoint ConvertFromScreen(BPoint screenPoinf) canst
void ConvertFromScreen(BPoint *screenPoinf) canst

BRect ConvertFromScreen(BRect screenRecf) canst
void ConvertFromScreen(BRect *screenRecf) canst

ConvertToScreen () converts localPoint or loca!Rect from the BView's coordinate
system to the global screen coordinate system. ConvertFromScreen () makes the
opposite conversion; it converts screenPoint or screenRect from the screen coordinate
system to the BView's local coordinate system.

If the point or rectangle is passed by value, the function returns the converted value.
If a pointer is passed, the conversion is done in place.

BView • Member Functions

The screen coordinate system has its origin, (0.0, 0.0), at the left top comer of the
main screen.

Neither function will work if the BView isn't attached to a window.

See also: BWindow: : ConvertToScreen (}, ConvertToParent ()

CopyBits()

void CopyBits(BRect source, BRect destination)

Copies the image displayed in the source rectangle to the destination rectangle, where
both rectangles lie within the view and are stated in the BView's coordinate system.

If the two rectangles aren't the same size, the source image is scaled to fit.

If not all of the destination rectangle lies within the BView's visible region, the source
image is clipped rather than scaled.

If not all of the source rectangle lies within the BView's visible region, only the visible
portion is copied. It's mapped to the corresponding portion of the destination
rectangle. The BView is then invalidated so its Draw () function will be called to
update the part of the destination rectangle that can't be filled with the source image.

The BView must be attached to a window.

CountChildren() seeParent()

DetachedFromWindow(), AllDetached()

virtual void DetachedFromWindow(void)

virtual void AllDetached(void)

621

Implemented by derived classes to make any adjustments necessary when the BView
is about to be removed from a window's view hierarchy. These two functions parallel
the more commonly implemented AttachedToWindow() and AllAttached()
functions.

DetachedFromWindow () notifications work their way down the hierarchy of views
being detached, followed by AllDetached () notifications, which work their way up
the hierarchy. The second function call permits an ancestor view to take actions that
depend on calculations a descendant might have to make when it's first notified of
being detached.

The BView is still attached to the window when both functions are called.

See also: At tachedToWindow ()

622 Chapter 4 • The Interface Kit

DragMessage()

void DragMessage(BMessage *message, BBitmap *image, BPoint point,
BHandler *replyTarget = NULL)

void DragMessage(BMessage *message, BRect rect,
BHandler *replyTarget = NULL)

Initiates a drag-and-drop session. The first argument, message, is a BMessage object
that bundles the information that will be dragged and dropped on the destination
view. The caller retains responsibility for this object and can delete it after
DragMessage () returns; the BView makes a copy.

The second argument, image, represents the message on-screen; it's the visible image
that the user drags. Unlike the BMessage, this BBitmap object becomes the
responsibility of the system; it will be freed when the message is dropped. If you
want to keep the image yourself, make a copy to pass to DragMessage () . The
image isn't dropped on the destination BView; if you want the destination to have the
image, you must add it to the message as well as pass it as the image argument.

The third argument, point, locates the point within the image that's aligned with the
hot spot of the cursor-that is, the point that's aligned with the location passed to
MouseDown () or returned by GetMouse () . It's stated within the coordinate system
of the source image and should lie somewhere within its bounds rectangle. The
bounds rectangle and coordinate system of a BBitmap are set when the object is
constructed.

Alternatively, you can specify that an outline of a rectangle, rect, should be dragged
instead of an image. The rectangle is stated in the BView's coordinate system.
(Therefore, a point argument isn't needed to align it with the cursor.)

The final argument, replyTarget, names the object that you want to handle a message
that might be sent in reply to the dragged message. If replyTarget is NULL, as it is by
default, any reply that's received will be directed to the BView object that initiated the
drag-and-drop session.

This function works only for BViews that are attached to a window.

See also: BMessage: : Was Dropped () , the BBitmap class

Draw()

virtual void Draw(BRect updateRec'f)

Implemented by derived classes to draw the updateRect portion of the view. The
update rectangle is stated in the BView's coordinate system.

BView • Member Functions

Draw () is called as the result of update messages whenever the view needs to
present itself on-screen. This may happen when:

• The window the view is in is first shown on-screen, or shown after being hidden
(see the BWindow version of the Hide () function).

• The view is made visible after being hidden (see BView's Hide () function).

• Obscured parts of the view are revealed, as when a window is moved from in
front of the view or an image is dragged across it.

• The view is resized.

• The contents of the view are scrolled (see ScrollBy ()).

• A child view is added, removed, or resized.

• A rectangle has been invalidated that includes at least some of the view (see

623

Invalidate ()).

• CopyBi ts () can't completely fill a destination rectangle within the view.

Draw () is also called from a BPrin1Job object's DrawView () function to draw the
view on a printed page. IsPrinting () returns true when the BView is drawing for
the printer and false when it's drawing to the screen. When printing, you may want
to recalculate layouts, substitute fonts, turn antialiasing off, scale the size of a
coordinate unit, or make other adjustments to ensure the quality of the printed image.

When drawing to the screen, the updateRect is the smallest rectangle that encloses
the current clipping region for the view. Since the Application Server won't render
anything on-screen that's outside the clipping region, an application will be more
efficient if it avoids producing drawing instructions for images that don't intersect
with the rectangle. For still more efficiency and precision, you can ask for the
clipping region itself (by calling GetClippingRegion ()) and confine drawing to
images that intersect with it.

When printing, the updateRect matches the rectangle passed to DrawView () and
may lie outside the clipping region. The clipping region is not enforced for printing,
but the Print Server clips the BView's drawing to the specified rectangle.

See also: BWindow: :UpdateifNeeded (),Invalidate (), GetClippingRegion (),

BPrintJob::DrawView(), IsPrinting()

DrawBitmap(), DrawBitmapAsync()

void DrawBitmap(const BBitmap *image)
void DrawBitmap(const BBitmap *image, BPoint point)
void DrawBitmap(const BBitmap *image, BRect destination)
void DrawBitmap(const BBitmap *image, BRect source, BRect destination)

624 Chapter 4 • The Interface Kit

void DrawBitmapAsync(const BBitmap *image)
void DrawBitmapAsync(const BBitmap *image, BPoint point)
void DrawBitmapAsync(const BBitmap *image, BRect destination)
void DrawBitmapAsync(const BBitmap *image, BRect source, BRect destination)

These functions place a bitmap image in the view at the current pen position, at the
point specified, or within the designated destination rectangle. The point and the
destination rectangle are stated in the BView's coordinate system.

If a source rectangle is given, only that part of the bitmap image is drawn. Otherwise,
the entire bitmap is placed in the view. The source rectangle is stated in the internal
coordinates of the BBitmap object.

If the source image is bigger than the destination rectangle, it's scaled to fit.

The two functions differ in only one respect: DrawBi trnap () waits for the
Application Server to finish rendering the image before it returns.
DrawBi trnapAsync () doesn't wait; it passes the image to the server and returns
immediately. The latter function can be more efficient in some cases-for example,
you might use an asynchronous function to draw several bitmaps and then call
Sync () to wait for them all to finish rather than wait for each one individually:

DrawBitmapAsync(bitmapOne, firstPoint);
DrawBitmapAsync(bitmapTwo, secondPoint);
DrawBitmapAsync(bitmapThree, thirdPoint);
Sync();

Or, if you can cram some useful work between the time you send the bitmap to the
Application Server and the time you need to be sure that it has appeared on-screen,
DrawBi trnapAsync () will free your thread to do that work immediately:

DrawBitmapAsync(someBitmap, somePoint);
/* do something else */
Sync();

See also: the "Drawing" section near the beginning of this chapter, the BBitmap class,
Sync ()

DrawChar()

void DrawChar(char c)
void DrawChar(char c, BPoint poin~

Draws the character c at the current pen position-or at the point specified-and
moves the pen to a position immediately to the right of the character. This function is
equivalent to passing a string of one character to Drawstring (). The point is
specified in the BView's coordinate system.

See also: Drawstring ()

BView • Member Functions 625

D rawi ngM ode() see SetDrawingMode()

DrawPicture()

void DrawPicture(const BPicture *picture)
void DrawPicture(const BPicture *picture, BPoint point)

Draws the previously recorded picture at the current pen position-or at the specified
point in the BView's coordinate system. The point or pen position is taken as the
coordinate origin for all the drawing instructions recorded in the BPicture.

Nothing that's done in the BPicture can affect anything in the BView's graphics
state-for example, the BPicture can't reset the current high color or the pen position.
Conversely, nothing in the BView's current graphics state affects the drawing
instructions captured in the picture. The graphics parameters that were in effect when
the picture was recorded determine what the picture looks like.

See also: BeginPicture (), the BPicture class

DrawString()

void DrawString(const char *string,
escapement_delta *delta= NULL)

void DrawString(const char *string, int32 length,
escapement_delta *delta= NULL)

void DrawString(const char *string, BPoint point,
escapement_delta *delta= NULL)

void DrawString(const char *string, int32 length, BPoint point,
escapement_delta *delta= NULL)

Draws the characters encoded in length bytes of strinfr-or, if the number of bytes
isn't specified, all the characters in the string, up to the null terminator ("\O").
Characters are drawn in the BView's current font. The font's direction determines
whether the string is drawn left-to-right or right-to-left. Its rotation determines the
angle of the baseline (horizontal for an unrotated font). The spacing mode of the font
determines how characters are positioned within the string and the string width.

This function places the characters on a baseline that begins at the current pen
position-or at the specified point in the BView's coordinate system. It draws the
characters to the right (assuming an unrotated font) and moves the pen to the
baseline immediately past the characters drawn. For a left-to-right font, the pen will
be in position to draw the next character, as shown in the following diagram.

626 Chapter 4 • The Interface Kit

Font direction

abc
Pen moves

The characters are drawn in the opposite direction for a right-to-left font, but the pen
still moves left-to-right:

Font direction

~ds
Pen moves

For a font that's read from left-to-right, a series of simple Drawstring () calls (with
no point specified) will produce a continuous string. For example, these two lines of
code:

Drawstring ("tog") ;
Drawstring ("ether") ;

will produce the same result as this one:

DrawString("together");

except if the spacing mode is B_STRING_SPACING. Under B_STRING_SPACING,

character placements are adjusted keeping the string width constant. The adjustments
are contextually dependent on the string and may therefore differ depending on
whether there are two strings ("tog" and "ether") or just one ("together").

If a delta argument is provided, Drawstring () adds the additional amounts
specified in the escapement_del ta structure to the width of each character. This
structure has two fields:

float nonspace
The amount to add to the width of characters that have visible glyphs (that put ink
on the printed page).

float space
The amount to add to the width of characters that have escapements, but don't
have visible glyphs (characters that affect the position of surrounding characters
but don't put ink on the page).

BView • Member Functions

When drawing to the screen, Drawstring () uses antialiasing-unless the BView's
font disables it or the font size is large enough (over 1,000.0 points) so that its
benefits aren't required. Antialiasing produces colors at the margins of character
outlines that are intermediate between the color of the text (the BView's high color)
and the color of the background against which the text is drawn. When drawing in
B_OP _COPY mode, antialiasing requires the BView's low color to match the
background color.

It's much faster to draw a string in B_OP_COPY mode than in any other mode. If you
draw the same string repeatedly in the same location in B_OP _OVER mode without
erasing, antialiasing will produce different, and worse, results each time as the
intermediate color it previously produced is treated as the new background each
time. Antialiasing doesn't produce pleasing results in B_OP_SELECT mode.

This is a graphical drawing function, so any character that doesn't have an
escapement or a visible representation (including white space) is replaced by an
undefined character that can be drawn (currently an empty box). This includes all
control characters (those with values less than B_SPACE, Ox20).

Drawstring () doesn't erase before drawing.

See also: MovePenBy (), SetFontName (), the BFont class

EndLineArray() see BeginLineArry()

End Picture() see BeginPicture()

EndRectTracking() see BeginRectTracking()

FillArc() see StrokeArc()

Fill Ellipse() see StrokeEllipse()

Fill Polygon() see StrokePolygon()

Fill Re ct() see StrokeRect()

Fill Region()

void FillRegion(BRegion •region, pattern aPattern = B_SOLID_HIGH) const

Fills the region with the pattern specified by aPattern-or, if no pattern is specified,
with the current high color. Filling a region is equivalent to filling all the rectangles
that define the region.

See also: the BRegion class

627

628

FillRoundRect() see StrokeRoundRea()

FillT riangle() see Stroke Triangle()

FindView()

BView *FindView(const char *name) const

Chapter 4 • The Interface Kit

Returns the BView identified by name, or NULL if the view can't be found. Names are
assigned by the BView constructor and can be modified by the SetName () function
inherited from BHandler.

FindView () begins the search by checking whether the BView's name matches
name. If not, it continues to search down the view hierarchy, among the BView's
children and more distant descendants. To search the entire view hierarchy, use the
BWindow version of this function.

See also: BWindow: : FindView (), BHandler: : SetName ()

Flags() see SetFlags()

Flush(), Sync()

void Flush(void) const

void Sync(void) const

These functions flush the window's connection to the Application Server. If the
BView isn't attached to a window, neither function has an effect.

For reasons of efficiency, the window's connection to the Application Server is
buffered. Drawing instructions destined for the server are placed in the buffer and
dispatched as a group when the buffer becomes full. Flushing empties the buffer,
sending whatever it contains to the server, even if it's not yet full.

The buffer is automatically flushed on every update. However, if you do any drawing
outside the update mechanism-in response to interface messages, for example-you
need to explicitly flush the connection so that drawing instructions won't languish in
the buffer while waiting for it to fill up or for the next update. You should also flush
it if you call any drawing functions from outside the window's thread.

Flush () simply flushes the buffer and returns. It does the same work as BWindow's
function of the same name.

Sync () flushes the connection, then waits until the server has executed the last
instruction that was in the buffer before returning. This alternative to Flush ()

BView • Member Functions

prevents the application from getting ahead of the server (ahead of what the user
sees on-screen) and keeps both processes synchronized.

It's a good idea, for example, to call Sync () , rather than Flush () , after employing
BViews to produce a bitmap image (a BBitmap object). Sync () is the only way you
can be sure the image has been completely rendered before you attempt to draw
with it.

(Note that all BViews attached to a window share the same connection to the
Application Server. Calling Flush () or Sync () for any one of them flushes the
buffer for all of them.)

See also: BWindow: : Flush (), the BBitmap class

Frame()

BRect Frame(void) canst

629

Returns the BView's frame rectangle. The frame rectangle is first set by the BView
constructor and is altered only when the view is moved or resized. It's stated in the
coordinate system of the BView's parent.

If the BView is not attached to a window, Frame () reports the object's own cached
conception of its frame rectangle. If it is attached, Frame () reports the Application
Server's conception of the rectangle. When a BView is added to a window, its cached
rectangle is communicated to the server. While it remains attached, the functions that
move and resize the frame rectangle affect the server's conception of the view, but
don't alter the rectangle kept by the object. Therefore, if the BView is removed from
the window, Frame () will again report the frame rectangle that it had before it was
attached, no matter how much it was moved and resized while it belonged to the
window.

See also: MoveBy (), ResizeBy (), the BView constructor

FrameMoved()

virtual void FrameMoved(BPoint parentPoint)

Implemented by derived classes to respond to a notification that the view has moved
within its parent's coordinate system. parentPoint gives the new location of the left
top corner of the BView's frame rectangle.

FrameMoved () is called only if the B_FRAME_EVENTS flag is set and the BView is
attached to a window.

If the view is both moved and resized, FrameMoved () is called before
FrameResized (). This might happen, for example, if the BView's automatic resizing

630 Chapter 4 • The Interface Kit

mode is a combination of B_FOLLOW_TOP_BOTTOM and B_FOLLOW RIGHT and its
parent is resized both horizontally and vertically.

The default (BView) version of this function is empty.

WARNING

Currently, FrameMoved () is also called when a hidden window is shown on
screen.

See also: MoveBy () , BWindow: : FrameMoved () , SetFlags ()

Frame Resized()

virtual void FrameResized(float width, float height)

Implemented by derived classes to respond to a notification that the view has been
resized. The arguments state the new width and height of the view. The resizing
could have been the result of a user action (resizing the window) or of a
programmatic one (calling ResizeTo () or ResizeBy ()).

FrameResized() is called only if the B_FRAME_EVENTS flag is set and the BView is
attached to a window.

BView's version of this function is empty.

See also: ResizeBy (), BWindow:: FrameResized(), SetFlags ()

GetClippingRegion()

void GetClippingRegion(BRegion *region) canst

Modifies the BRegion object passed as an argument so that it describes the current
clipping region of the BView, the region where the BView is allowed to draw. It's
most efficient to allocate temporary BRegions on the stack:

BRegion clipper;
GetClippingRegion(&clipper);

Ordinarily, the clipping region is the same as the visible region of the view, the part
of the view currently visible on-screen. The visible region is equal to the view's
bounds rectangle minus:

• The frame rectangles of its children,

• Any areas that are clipped because the view doesn't lie wholly within the frame
rectangles of all its ancestors in the view hierarchy, and

• Any areas that are obscured by other windows or that lie in a part of the window
that's off-screen.

BView • Member Functions

The clipping region can be smaller than the visible region if the program restricted it
by calling ConstrainClippingRegion (). It will exclude any area that doesn't
intersect with the region passed to ConstrainClippingRegion ().

631

While the BView is being updated, the clipping region contains just those parts of the
view that need to be redrawn. This may be smaller than the visible region, or the
region restricted by ConstrainClippingRegion (), if:

• The update occurs during scrolling. The clipping region will exclude any of the
view's visible contents that the Application Server is able to shift to their new
location and redraw automatically.

• The view rectangle has grown (because, for example, the user resized the window
larger) and the update is needed only to draw the new parts of the view.

• The update was caused by Invalidate () and the rectangle passed to
Invalidate () didn't cover all of the visible region.

• The update was necessary because CopyBits () couldn't fill all of a destination
rectangle.

This function works only if the BView is attached to a window. Unattached BViews
can't draw and therefore have no clipping region.

See also: ConstrainClippingRegion (), Draw (), Invalidate ()

GetFont() see SetFont()

GetFontHeight()

void GetFontHeight(font_height *fontHeigbt) const

Gets the height of the BView's font. This function provides the same information as
BFont's GetHeight () . The following code:

font_height height;
myView->GetFontHeight(&height);

is equivalent to:

font_height height;
BFont font;
myView->GetFont(&font);
font.GetHeight(&height);

See the BFont class for more information.

See also: BFont: : GetHeight ()

632 Chapter 4 • The Interface Kit

GetMouse()

void GetMouse(BPoint *cursor, uint32 *buttons, bool checkQueue =true)

Provides the location of the cursor and the state of the mouse buttons. The position
of the cursor is recorded in the variable referred to by cursor, it's provided in the
BView's own coordinates. A bit is set in the variable referred to by buttons for each
mouse button that's down. This mask may be 0 (if no buttons are down) or it may
contain one or more of the following constants:

B_PRIMARY_MOUSE_BUTTON

B_SECONDARY_MOUSE_BUTTON

B_TERTIARY_MOUSE_BUTTON

The cursor doesn't have to be located within the view for this function to work; it can
be anywhere on-screen. However, the BView must be attached to a window.

If the checkQueue flag is set to false, GetMouse () provides information about the
current state of the mouse buttons and the current location of the cursor.

If checkQueue is true, as it is by default, this function first looks in the message
queue for any pending reports of mouse-moved or mouse-up events. If it finds any, it
takes the one that has been in the queue the longest (the oldest message), removes it
from the queue, and reports the cursor location and button states that were recorded
in the message. Each GetMouse () call removes another message from the queue. If
the queue doesn't hold any B_MOUSE_MOVED or B_MOUSE_UP messages,
GetMouse () reports the current state of the mouse and cursor, just as if checkQueue
were false.

This function is typically called from within a MouseDown () function to track the
location of the cursor and wait for the mouse button to go up. By having it check the
message queue, you can be sure that you haven't overlooked any of the cursor's
movement or missed a mouse-up event (quickly followed by another mouse-down)
that might have occurred before the first GetMouse () call.

See also: modifiers ()

GetPreferredSize(), Resize To Preferred()

virtual void GetPreferredSize(float •width, float *height)

virtual void ResizeToPreferred(void)

GetPreferredSize () is implemented by derived classes to write the preferred
width and height of the view into the variables the width and height arguments refer

BView • Member Functions

to. Derived classes generally make this calculation based on the view's contents. For
example, a BButton object reports the optimal size for displaying the button border
and label given the current font.

ResizeToPreferred () resizes the BView's frame rectangle to the preferred size,
keeping its left and top sides constant.

See also: ResizeTo ()

GetStringWidths() see StringWidth()

GetSupportedSuites()

virtual status_t GetSupportedSuites(BMessage •message)

Adds the name "suite/vnd.Be-view" to the message. See "Scripting Support" in the
class overview for more information.

See also: BHandler: : GetSupportedSui tes ()

Hide(), Show()

virtual void Hide(void)

virtual void Show(void)

These functions hide a view and show it again.

Hide () makes the view invisible without removing it from the view hierarchy. The
visible region of the view will be empty and the BView won't receive update
messages. If the BView has children, they also are hidden.

Show () unhides a view that had been hidden. This function doesn't guarantee that
the view will be visible to the user; it merely undoes the effects of Hide () . If the
view didn't have any visible area before being hidden, it won't have any after being
shown again (given the same conditions).

Calls to Hide () and Show () can be nested. For a hidden view to become visible
again, the number of Hide () calls must be matched by an equal number of Show ()
calls.

However, Show () can only undo a previous Hide () call on the same view. If the
view became hidden when Hide () was called to hide the window it's in or to hide
one of its ancestors in the view hierarchy, calling Show () on the view will have no
effect. For a view to come out of hiding, its window and all its ancestor views must
be unhidden.

633

634 Chapter 4 • The Interface Kit

Hide () and Show () can affect a view before it's attached to a window. The view will
reflect its proper state (hidden or not) when it becomes attached. Views are created
in an unhidden state.

See also: BWindow: : Hide () , IsHidden ()

High Color() see SetHighColor()

Invalidate()

void lnvalidate(BRect reef)

void lnvalidate(void)

Invalidates the rect portion of the view, causing update messages-and consequently
Draw () notifications-to be generated for the BView and all descendants that lie
wholly or partially within the rectangle. The rectangle is stated in the BView's
coordinate system.

If no rectangle is specified, the BView's entire bounds rectangle is invalidated.

Since only BViews that are attached to a window can draw, only attached BViews can
be invalidated.

See also: Draw(), GetClippingRegion(), BWindow: :UpdateifNeeded()

lnvertRect()

void lnvertRect(BRect reef)

Inverts all the colors displayed within the reet rectangle. A subsequent
InvertRect () call on the same rectangle restores the original colors.

The rectangle is stated in the BView's coordinate system.

See also: BScreen: : ColorMap

lsFocus()

boo! lsFocus(void) const

Returns true if the BView is the current focus view for its window, and false if it's
not. The focus view changes as the user chooses one view to work in and then
another-for example, as the user moves from one text field to another when filling
out an on-screen form. The change is made programmatically through the
MakeFocus () function.

See also: BWindow: : CurrentFocus () , MakeFocus ()

BView • Member Functions

ls Hidden()

bool lsHidden(void) const

Returns true if the view has been hidden by the Hide () function, and false

otherwise.

This function returns true whether Hide () was called to hide the BView itself, to
hide an ancestor view, or to hide the BView's window. When a window is hidden, all
its views are hidden with it. When a BView is hidden, all its descendants are hidden
with it.

If the view has no visible region-perhaps because it lies outside its parent's frame
rectangle or is obscured by a window in front-this function may nevertheless return
false. It reports only whether the Hide () function has been called to hide the view,
hide one of the view's ancestors in the view hierarchy, or hide the window where the
view is located.

If the BView isn't attached to a window, IsHidden () returns the state that it will
assume when it becomes attached. By default, views are not hidden.

See also: Hide ()

lsPrinting()

635

boo! lsPrinting(void) const

Returns true if the BView is being asked to draw for the printer, and false if the
drawing it produces will be rendered on-screen (or if the BView isn't being asked to
draw at all).

This function is typically called from within Draw () to determine whether the
drawing it does is destined for the printer or the screen. When drawing to the printer,
the BView may choose different parameters-such as fonts, bitmap images, or
colors-than when drawing to the screen.

See also: the BPrintJob class, Draw ()

KeyDown()

virtual void KeyDown(const char *bytes, int32 numBytes)

Implemented by derived classes to respond to a B_KEY_DOWN message reporting
keyboard input. Whenevera BView is the focus view of the active window, it receives
a KeyDown () notification for each character the user types, except for those that:

• Are produced while a Command key is held down. Command key events are
interpreted as keyboard shortcuts.

636 Chapter 4 • The Interface Kit

• Are produced by the Tab key when an Option key is held down. Option-Tab
events are invariably interpreted as instructions to change the focus view (for
keyboard navigation); they work even where Tab alone does not.

• Can operate the default button in a window. The BButton object's KeyDown ()

function is called, rather than the focus view's.

The first argument, bytes, is an array that encodes the character mapped to the key
the user pressed. The second argument, numBytes, tells how many bytes are in the
array; there will always be at least one. The bytes value follows the character
encoding of the BView's font. Typically, the encoding is Unicode UTF-8
(B_UNICODE_UTF8), so there may be more than one byte per character. The bytes
array is not null-terminated; "\O" is a valid character value.

The character value takes into account any modifier keys that were held down or
keyboard locks that were on at the time of the keystroke. For example, Shift-i is
reported as uppercase "I" (Ox49) and Control-i is reported as a B_TAB (Ox09).

Single-byte characters can be tested against ASCII codes and these constants:

B_BACKSPACE B_LEFT_ARROW B_INSERT

B_ENTER B_RIGHT_ARROW B_DELETE

B_RETURN B_UP_ARROW B_HOME

B - SPACE B_DOWN_ARROW B_END

B_TAB B_PAGE_UP

B_ESCAPE B_FUNCTION_KEY B_PAGE_DOWN

B_ENTER and B_RETURN are the same character, a newline ("\n").

Only keys that generate characters produce key-down events; the modifier keys on
their own do not.

You can determine which modifier keys were being held down at the time of the
event by calling BLooper's CurrentMessage () function and looking up the
"modifiers" entry in the BMessage it returns. If the bytes character is
B_FUNCTION_KEY and you want to know which key produced the character, you can
look up the "key" entry in the BMessage and test it against these constants:

B_Fl_KEY B_F6 - KEY B_Fll_KEY

B_F2 - KEY B_F7 _KEY B_F12 _KEY

B_F3_KEY B_FB_KEY B_PRINT_KEY (Print Screen)

B_F4 _KEY B_F9 _KEY B_SCROLL_KEY (Scroll Lock)

B_F5 - KEY B_FlO_KEY B_PAUSE_KEY

BView • Member Functions

For example:

if (bytes[O] == B_FUNCTION_KEY) {
BMessage *msg = Window()->CurrentMessage();
if (msg) {

int32 key;
msg->Findint32 ("key", &key);
switch (key) {
case B_Fl_KEY:

break;
case B_F2_KEY:

break;

637

The BView version of KeyDown () handles keyboard navigation from view to view
through B_TAB characters. If the view you define is navigable, its KeyDown ()

function should permit B_SPACE characters to operate the object and perhaps allow
the arrow keys to navigate inside the view. It should also call the inherited version of
KeyDown () to enable between-view navigation. For example:

void MyView: :KeyDown(const char *bytes, int32 numBytes)
{

if (numBytes == 1) {
switch (bytes[O])
case B_SPACE:

/* mimic a click in the view *I
break;

case B_RIGHT_ARROW:
/* move one position to the right in the view *I
break;

case B_LEFT_ARROW:
/* move one position to the left in the view*/
break;

default:
BView::KeyDown(bytes, numBytes);
break;

If your BView is navigable but needs to respond to B_TAB characters-for example, if
it permits users to insert tabs in a text string-its KeyDown () function should simply
grab the characters and not pass them to the inherited function. Users will have to
rely on the Option-Tab combination to navigate from your view.

See also: Appendix B, Keyboard Information; "B_KEY _DOWN" in Appendix A,
Message Protocols; BWindow:: SetDefaultButton (),modifiers (}

638 Chapter 4 • The Interface Kit

KeyUp()

virtual void KeyUp(const char *bytes, int32 numBytes)

Implemented by derived classes to respond to a B_KEY_UP message reporting that
the user released a key on the keyboard. The same set of keys that produce
B_KEY_DOWN messages when they're pressed produce B_KEY_UP messages when
they're released. The bytes and numBytes arguments encode the character mapped to
the key the user released; they work exactly like the same arguments passed to
KeyDown().

Some B_KEY_DOWN messages are swallowed by the system and are never dispatched
by calling KeyDown () ; others are dispatched, but not to the focus view. In contrast,
all B_KEY_UP messages are dispatched by calling KeyUp () for the focus view of the
active window. Since the focus view and active window can change between the
time a key is pressed and the time it's released, this may or may not be the same
BView that was notified of the B_KEY_DOWN message.

See also: KeyDown () , "B_KEY _DOWN" in Appendix A, Message Protocols

Left Top()

BPoint LeftTop(void) const

Returns the coordinates of the left top comer of the view-the smallest x and y
coordinate values within the bounds rectangle.

See also: BRect: : Left Top (), Bounds ()

LowColor() see SetHighColor()

Make Focus()

virtual void MakeFocus(bool focused= true)

Makes the BView the current focus view for its window (if the focused flag is true),
or causes it to give up that status (if focused is false). The focus view is the view
that displays the current selection and is expected to handle reports of key-down
events when the window is the active window. There can be no more than one focus
view per window at a time.

When called to make a BView the focus view, this function invokes MakeFocus ()
for the previous focus view, passing it an argument of false. It's thus called twice
once for the new and once for the old focus view.

Calling MakeFocus () is the only way to make a view the focus view; the focus
doesn't automatically change on mouse-down events. BViews that can display the

BView • Member Functions

current selection (including an insertion poiht) or that can accept pasted data should
call MakeFocus () in their MouseDown () functions.

639

A derived class can override MakeFocus () to add code that takes note of the change
in status. For example, a BView that displays selectable data may want to highlight
the current selection when it becomes the focus view, and remove the highlighting
when it's no longer the focus view. A BView that participates in the keyboard
navigation system should visually indicate that it can be operated from the keyboard
when it becomes the focus view, and remove that indication when the user navigates
to another view and it's notified that it's no longer the focus view.

If the BView isn't attached to a window, this function has no effect.

See also: BWindow: : CurrentFocus () , Is Focus ()

Message Received()

virtual void MessageReceived(BMessage *message)

Augments the BHandler version of MessageRecei ved () · to handle scripting
messages for the BView.

See also: BHandler: : MessageRecei ved ()

MouseDown()

virtual void MouseDown(BPoint point)

Implemented by derived classes to respond to a message reporting a mouse-down
event within the view. The location of the cursor at the time of the event is given by
point in the BView's coordinates.

MouseDown () functions are often implemented to track the cursor while the user
holds the mouse button down and then respond when the button goes up. You can
call the GetMouse () function to learn the current location of the cursor and the state
of the mouse buttons. For example:

void MyView::MouseDown(BPoint point)
{

uint32 buttons = O;

Window() ->CurrentMessage () ->Findint32 ("buttons", &buttons);
while (buttons) {

snooze(20 * 1000);
GetMouse(&point, &buttons, true);

640 Chapter 4 • The Interface Kit

It's important to snooze between GetMouse () calls so that the loop doesn't
monopolize system resources; 20,000 microseconds is a minimum time to wait.

To get complete information about the mouse-down event, look inside the BMessage
object returned by BLooper's CurrentMessage () function. The "clicks" entry in the
message can tell you if this mouse-down is a solitary event or the latest in a series
constituting a multiple click.

The BView version of MouseDown () is empty.

See also: "B_MOUSE_DOWN" in Appendix A, Message Protocols, GetMouse ()

MouseMoved()

virtual void MouseMoved(BPoint point, uint32 transit, canst BMessage *message)

Implemented by derived classes to respond to reports of mouse-moved events
associated with the view. As the user moves the cursor over a window, the
Application Server generates a continuous stream of messages reporting where the
cursor is located.

The first argument, point, gives the cursor's new location in the BView's coordinate
system. The second argument, transit, is one of three constants:

B_ENTERED_VIEW

B_INSIDE_VIEW

B_EXITED_VIEW

which explains whether the cursor has just entered the visible region of the view, is

now inside the visible region having previously entered, or has just exited from the
view. When the cursor crosses a boundary separating the visible regions of two views
(perhaps moving from a parent to a child view, or from a child to a parent),
MouseMoved () is called for each of the BViews, once with a transit code of
B_EXITED_ VIEW and once with a code of B_ENTERED_ VIEW.

If the user is dragging a bundle of information from one location to another, the final
argument, message, is a pointer to the BMessage object that holds the information. If
a message isn't being dragged, message is NULL.

A MouseMoved() function might be implemented to ignore the B_INSIDE_VIEW

case and respond only when the cursor enters or exits the view. For example, a
BView might alter its display to indicate whether or not it can accept a message that
has been dragged to it. Or it might be implemented to change the cursor image when
it's over the view.

BView • Member Functions

MouseMoved () notifications should not be used to track the cursor inside a view.
Use the GetMouse () function instead. GetMouse () provides the current cursor
location plus information on whether any of the mouse buttons are being held down.

The default version of MouseMoved () is empty.

See also: "B_MOUSE_MOVED" in Appendix A, Message Protocols; DragMessage ()

MouseUp()

virtual void MouseUp(BPoint point)

This function is a placeholder for future releases; it isn't currently called. Although
B_MOUSE_UP messages are generated, a virtual function is not now called to handle
them.

See also: GetMouse ()

Move By(), Move To()

void MoveBy(float horizontal, float vertica~

void MoveTo(BPoint point)
void Move T o(float x, float y)

These functions move the view in its parent's coordinate system without altering its
size.

641

MoveBy () adds horizontal coordinate units to the left and right components of the
frame rectangle and vertical units to the top and bottom components. If horizontal
and vertical are positive, the view moves downward and to the right. If they're
negative, it moves upward and to the left.

MoveTo () moves the upper left corner of the view to point-or to (x, y)-in the
parent view's coordinate system and adjusts all coordinates in the frame rectangle
accordingly.

Neither function alters the BView's bounds rectangle or coordinate system.

None of the values passed to these functions should specify fractional coordinates;
the sides of a view must line up on screen pixels. Fractional values will be rounded to
the closest whole number.

If the BView is attached to a window, these functions cause its parent view to be
updated, so the BView is immediately displayed in its new location. If it doesn't have
a parent or isn't attached to a window, these functions merely alter its frame
rectangle.

See also: FrameMoved (), ResizeBy (), Frame ()

642

MovePenBy(), MovePenTo(), Penlocation()

void MovePenBy(float horizontal, float vertica4

void MovePenTo(BPoint pain~
void MovePenTo(float x, floaty)

BPoint Penlocation(void) const

Chapter 4 • The Interface Kit

These functions move the pen (without drawing a line) and report the current pen
location.

MovePenBy () moves the pen horizontal coordinate units to the right and vertical
units downward. If horizontal or vertical are negative, the pen moves in the opposite
direction. MovePenTo () moves the pen to point-or to (x, y)-in the BView's
coordinate system.

Some drawing functions also move the pen-to the end of whatever they draw. In
particular, this is true of StrokeLine () , Drawstring () , and DrawChar () .

Functions that stroke a closed shape (such as StrokeEllipse ()) don't move the
pen.

The pen location is a parameter of the BView's graphics environment, which is
maintained by both the Application Server and the BView. If the BView doesn't
belong to a window, MovePenTo () and MovePenBy () cache the location, so that
later, when the BView becomes attached to a window, it can be handed to the server
to become the operable pen location for the BView. If the BView belongs to a
window, these functions alter both the server parameter and the client-side cache.

PenLocation () returns the point where the pen is currently positioned in the
BView's coordinate system. Because of the cache, this shouldn't entail contacting the
server. The default pen position is (0.0, O.o).

See also: SetPenSize ()

Move To() see MoveBy()

NextSibling() see Parent()

Parent(), NextSibling(), PreviousSibling(), ChildAt(),
CountChildren()

BView *Parent(void) const

BView *NextSibling(void) const

BView *PreviousSibling(void) const

BYiew • Member Functions 643

BView *ChildAt(int32 index) canst

int32 CountChildren(void) const

These functions provide various ways of navigating the view hierarchy. Parent ()

returns the BView's parent view, unless the parent is the top view of the window, in
which case it returns NULL. It also returns NULL if the BView doesn't belong to a view
hierarchy and has no parent.

All the children of the same parent are arranged in a linked list. NextSibling ()

returns the next sibling of the BView in the list, or NULL if the BView is the last child
of its parent. PreviousSibling () returns the previous sibling of the BView, or
NULL if the BView is the first child of its parent.

ChildAt () returns the view at index in the list of the BView's children, or NULL if
the BView has no such child. Indices begin at 0 and there are no gaps in the list.
CountChildren () returns the number of children the BView has. If the BView has
no children, CountChildren () returns NULL, as will ChildAt () for all indices,
including 0.

To scan the list of a BView's children, you can increment the index passed to
ChildAt () until it returns NULL. However, it's more efficient to ask for the first child
and then use NextSibling () to walk down the sibling list. For example:

BView *child;
if (child= myView->ChildAt(O)) {

while (child) {

child= child->NextSibling();

See also: AddChild ()

Penlocation() seeMovePenBy()

PenSize() see SetPenSize()

PreviousSibling() see Parent()

Pulse()

virtual void Pulse(void)

Implemented by derived classes to do something at regular intervals. Pulses are
regularly timed events, like the tick of a clock or the beat of a steady pulse. A BView
receives Pulse () notifications when no other messages are pending, but only if it
asks for them with the B_PULSE_NEEDED flag.

644 Chapter 4 • The Interface Kit

The interval between Pulse () calls can be set with BWindow's SetPulseRate ()

function. The default interval is around 500 milliseconds. The pulse rate is the same
for all views within a window, but can vary between windows.

Derived classes can implement a Pulse () function to do something that must be
repeated continuously. However, for time-critical actions, you should implement your
own timing mechanism.

The BView version of this function is empty.

See also: SetFlags (),the BView constructor, BWindow:: SetPulseRate ()

RemoveChild() see AddChild()

RemoveSelf()

bool RemoveSelf(void)

Removes the BView from its parent and returns true, or returns false if the BView
doesn't have a parent or for some reason can't be removed from the view hierarchy.

This function acts just like RemoveChild (), except that it removes the BView itself
rather than one of its children.

See also: AddChild ()

Resize By(), Resize To()

void ResizeBy(float horizontal, float vertica~

void ResizeTo(float width, float height)

These functions resize the view, without moving its left and top sides. ResizeBy ()

adds horizontal coordinate units to the width of the view and vertical units to the
height. ResizeTo () makes the view width units wide and height units high. Both
functions adjust the right and bottom components of the frame rectangle accordingly.

Since a BView's frame rectangle must be aligned on screen pixels, only integral
values should be passed to these functions. Values with fractional components will
be rounded to the nearest whole integer.

If the BView is attached to a window, these functions cause its parent view to be
updated, so the BView is immediately displayed in its new size. If it doesn't have a
parent or isn't attached to a window, these functions merely alter its frame and
bounds rectangles.

See also: FrameResized (), MoveBy () , BRect: : Width (), Frame ()

BView • Member Functions

Resize To Preferred() see GetPreferredSize()

ResizingMode() see SetResizingMode()

ResolveSpecifier()

virtual BHandler *ResolveSpecifier(BMessage *message, int32 index,
BMessage *specifier, int32 command, canst char *property)

Resolves specifiers for the "Frame", "Hidden", and "View" properties. See "Scripting
Support" in the class overview and "Scripting" in Chapter 2 for more information.

See also: BHandler: :ResolveSpecifier ()

Scroll Bar()

BScrollBar *ScrollBar(orientation posture) canst

645

Returns a BScrollBar object that scrolls the BView (that has the BView as its target).
The requested scroll bar has the posture orientation-B_VERTICAL or
B_HORIZONTAL. If the BView isn't the target of a scroll bar with the specified
orientation, this function returns NULL.

See also: ScrollBar: : Set Target ()

ScrollBy(), ScrollTo()

void ScrollBy(float horizontal, float vertica~

virtual void ScrollT o(BPoint poin~
inline void ScrollT o(float x, float y)

These functions scroll the contents of the view, provided that the BView is attached
to a window.

ScrollBy () adds horizontal to the left and right components of the BView's bounds
rectangle, and vertical to the top and bottom components. This serves to shift the
display horizontal coordinate units to the left and vertical units upward. If horizontal
and vertical are negative, the display shifts in the opposite direction.

Scroll To () shifts the contents of the view as much as necessary to put point-or (x,
y)-at the upper left corner of its bounds rectangle. The point is specified in the
BView's coordinate system.

Anything in the view that was visible before scrolling and also visible afterwards is
automatically redisplayed at its new location. The remainder of the view is
invalidated, so the BView's Draw () function will be called to fill in those parts of the

646 Chapter 4 • The Interface Kit

display that were previously invisible. The update rectangle passed to Draw () will be
the smallest possible rectangle that encloses just these new areas. If the view is
scrolled in only one direction, the update rectangle will be exactly the area that needs
to be drawn.

If the BView is the target of scroll bars, Scroll By() and Scroll To() notify the
BScrollBar objects of the change in the display so they can update themselves to
match. If the contents were scrolled horizontally, they call the horizontal BScrollBar's
SetValue () function and pass it the new value of the left side of the bounds
rectangle. If they were scrolled vertically, they call SetValue () for the vertical
BScrollBar and pass it the new value of the top of the bounds rectangle.

The inline version of Scroll To () works by creating a BPoint object and passing it to
the version that's declared virtual. Therefore, if you want to override either
function, you should override the virtual version. (However, due to the peculiarities
of C++, overriding any version of an overloaded function hides all versions of the
function. For continued access to the nonvirtual version without explicitly specifying
the "BView::" prefix, simply copy the inline code from inteiface/View.h into the
derived class.)

See also: GetClippingRegion (), BScrollBar: : SetValue ()

SetDrawingMode(), DrawingMode()

virtual void SetDrawingMode(drawing_mode mode)

drawing_mode DrawingMode(void) const

These functions set and return the BView's drawing mode, which can be any of the
following ten constants:

B_OP_COPY

B_OP_OVER

B_OP_ERASE

B_OP_INVERT

B_OP_SELECT

B_OP_MIN

B_OP_MAX

B_OP_ADD

B_OP_SUBTRACT

B_OP_BLEND

The drawing mode is an element of the BView's graphics environment, which both
the Application Server and the BView keep track of. If the BView isn't attached to a
window, SetDrawingMode () caches the mode. When the BView is placed in a
window and becomes known to the server, the cached value is automatically set as
the current drawing mode. If the BView belongs to a window, SetDrawingMode ()

makes the change in both the server and the cache.

BView • Member Functions 647

DrawingMode () returns the current mode. Because of the cache, this generally
doesn't entail a trip to the server.

The default drawing mode is B_OP_COPY. It and the other modes are explained
under "Drawing Modes" in the "Drawing" section of this chapter.

SetFlags(), Flags()

virtual void SetFlags(uint32 mask)

uint32 Flags(void) canst

These functions set and return the flags that inform the Application Server about the
kinds of notifications the BView should receive. The mask set by SetFlags () and
the return value of Flags () is formed from combinations of the following constants:

B_WILL_DRAW

B FULL UPDATE_ON_RESIZE

B_FRAME_EVENTS

B_PULSE_NEEDED

B_NAVIGABLE

B NAVIGABLE_JUMP

The flags are first set when the BView is constructed; they're explained in the
description of the BView constructor. The mask can be 0.

To set just one of the flags, combine it with the current setting:

myView->SetFlags(Flags() I B_FRAME_EVENTS);

See also: the BView constructor, SetResizingMode ()

SetFont(), GetFont()

virtual void SetFont(const BFont *font, uint32 properties= B_FONT_ALL)

void GetFont(BFont *Jon~

SetFont () sets the BView's current font so that it matches the specified properties of
the font BFont object. The properties mask is formed by combining the following
constants:

B_FONT_FAMILY_AND_STYLE

B_FONT_SIZE

B_FONT_SHEAR

B_FONT_ROTATION

B_FONT_SPACING

B_FONT_ENCODING

B_FONT_FACE

B_FONT_FLAGS

648 Chapter 4 • The Interface Kit

Each constant corresponds to a settable property of the BFont object. The default
mask, B_FONT_ALL, is a shorthand for all the properties (including any that might be
added in future releases). If the mask is 0, SetFont () won't set the BView's font.

GetFont () copies the BView's current font to the BFont object passed as an
argument. Modifying this copy doesn't modify the BView's font; it takes an explicit
SetFont () call to affect the BView.

For example, this code changes the size of a BView's font and turns antialiasing off:

BFont font;
myView->GetFont(&font);
font.SetSize(67.0);
font.SetFlags(B_DISABLE_ANTIALIASING);
myView->SetFont(&font, B_FONT_SIZE I B_FONT_FLAGS);

Since the BFont object that this example code alters is a copy of the BView's current
font, it's not strictly necessary to name the properties that are different when calling
SetFont (). However, it's more efficient and better practice to do so.

The font is part of the BView's graphic environment. Like other elements in the
environment, it can be set whether or not the BView is attached to the window.
Graphics parameters are kept by the Application Server and also cached by the
BView object.

See also: the BFont class, get_font_family ()

SetFontSize()

void SetFontSize(float points)

Sets the size of the BView's font to points. This function is a shorthand for a
SetFont () call that just alters the font size. For example, this line of code:

myView->SetFontSize(l2.5);

does the same thing as:

BFont font;
font.SetSize(l2.5);
myView->SetFont(&font, B_FONT_SIZE);

See also: the BFont class, SetFont ()

SetHighColor(), HighColor(), SetlowColor(), LowColor()

virtual void SetHighColor(rgb_color col01)
inline void SetHighColor(uchar red, uchar green, uchar blue, uchar alpha = 0)

rgb_color HighColor(void) const

BView • Member Functions 649

virtual void SetLowColor(rgb_color col01)
inline void SetLowColor(uchar red, uchar green, uchar blue, uchar alpha = 0)

rgb_color LowColor(void) const

These functions set and return the current high and low colors of the BView. These
colors combine to form a pattern that's passed as an argument to the Stroke ... () and
Fill... () drawing functions. The B_SOLID_HIGH pattern is the high color alone, and
B_SOLID_LOW is the low color alone.

The default high color is black-red, green, and blue values all equal to 0. The default
low color is white-red, green, and blue values all equal to 255.

NOTE

The alpha component of the color is currently ignored.

The inline versions of SetHighColor () and SetLowColor () take separate
arguments for the red, blue, and green color components; they work by creating an
rgb_color data structure and passing it to the corresponding function that's
declared virtual. Therefore, if you want to override either function, you should
override the virtual version. (However, due to the peculiarities of C++, overriding any
version of an overloaded function hides all versions of the function. For continued
access to the nonvirtual version without explicitly specifying the "BView::" prefix,
simply copy the inline code from inteif ace/View.h into the derived class.)

The high and low colors are parameters of the BView's graphics environment, which
is kept in the BView's shadow counterpart in the Application Server and cached in
the BView. If the BView isn't attached to a window, SetHighColor () and
SetLowColor () cache the color value so that later, when the BView is placed in a
window and becomes known to the server, the cached value can automatically be
registered as the current high or low color for the view. If the BView belongs to a
window, these functions alter both the client-side and the server-side values.

HighColor () and LowColor () return the BView's current high and low colors.
Because of the cache, this shouldn't entail contacting the Application Server.

See also: "Patterns" in the "Drawing" section of this chapter, SetViewColor ()

SetPenSize(), PenSize()

virtual void SetPenSize(float size)

float PenSize(void) const

SetPenSize () sets the size of the BView's pen-the graphics parameter that
determines the thickness of stroked lines-and PenSize () returns the current pen

650 Chapter 4 • The Interface Kit

size. The pen size is stated in coordinate units, but is translated to a device-specific
number of pixels for each output device.

The pen tip can be thought of as a brush that's centered on the line path and held
perpendicular to it. If the brush is broader than one pixel, it paints roughly the same
number of pixels on both sides of the path.

The default pen size is 1.0 coordinate unit. It can be set to any nonnegative value,
including 0.0. If set to 0.0, the size is translated to one pixel for all devices. This
guarantees that it will always draw the thinnest possible line no matter what the
resolution of the device.

Thus, lines drawn with pen sizes of 1.0 and 0.0 will look alike on the screen (one
pixel thick), but the line drawn with a pen size of 1.0 will be 1/72 of an inch thick
when printed, however many printer pixels that takes, while the line drawn with a
0.0 pen size will be just one pixel thick.

The pen size is a parameter of the BView's graphics environment maintained by the
Application Server and cached by the BView. If the BView isn't attached to a window,
SetPenSize () records the size so that later, when the BView is added to a window
and becomes known to the server, the cached value can automatically be established
as the operable pen size for the BView. If the BView belongs to a window, this
function changes both the server and the cache.

See also: "The Pen" in the "Drawing" section of this chapter, StrokeArc () ,
MovePenBy ()

SetResizingMode(), ResizingMode()

virtual void SetResizingMode{uint32 mode)

uint32 ResizingMode{void) canst

These functions set and return the BView's automatic resizing mode. The resizing
mode is first set when the BView is constructed. The various possible modes are
explained where the constructor is described.

See also: the BView constructor, SetFlags ()

SetScale()

void SetScale(float percent)

Sets the scale of the BView's coordinate system. By default, each coordinate unit
translates to one typographical point, about 1/72 of an inch. The percent argument
scales the internal coordinate system of the view (not its frame rectangle) to a
percentage of the default. For example, at a percent of 200.0, each coordinate unit

BView • Member Functions 651

will translate to 2 typographical points, 36 units per inch, and at a percent of 50.0,
each unit will translate to a half point, 144 per inch.

See also: the BPrintJob class

SetViewColor(), ViewColor()

virtual void SetViewColor(rgb_color co/of)
inline void SetViewColor(uchar red, uchar green, uchar blue, uchar alpha = 0)

rgb_color ViewColor(void) const

These functions set and return the background color that's shown in all areas of the
view rectangle that the BView doesn't cover with its own drawing. When the clipping
region is erased prior to an update, it's erased to the view color. When a view is
resized to expose new areas, the new areas are first displayed in the view color. The
default color is white, which matches the background of the window's content area.

If you know that a BView will cover every pixel in the clipping region when it draws,
you may want to avoid having the region erased to a color that will immediately be
obliterated. If you set the view color to B_TRANSPARENT_32_BIT, the Application
Server will not draw its background color before updates nor fill new areas with the
background color. (Note that, despite the name, this doesn't make the view
transparent-you can't see through it to what the view behind it would draw in that
region.)

If you set the view color to anything but white (or B_TRANSPARENT_32_BIT), you
must also set the B_WILL_DRAW flag. The flag informs the Application Server that
there are specific drawing operations associated with the view. If it isn't set, the
BView won't get update messages. Even if the BView does no other drawing-for
example, if it doesn't implement a Draw () function-it must be updated to draw a
background color other than white.

The version of SetViewColor () that takes separate arguments for the red, blue, and
green color components works by creating an rgb_color data structure and passing
it to the corresponding function that's declared virtual. Therefore, overriding only
the virtual version will affect how both versions work. (However, due to the
peculiarities of C++, overriding any version of an overloaded function hides all
versions of the function. For continued access to the nonvirtual version without
explicitly specifying the "BView::" prefix, simply copy the inline code from
interface/View.h into the derived class.)

NOTE

The alpha color component is currently ignored.

It's best to set the view color before the window is shown on-screen.

652 Chapter 4 • The Interface Kit

The view color is a parameter of the BView's graphics environment, which both the
Application Server and the BView maintain. If the · BView doesn't belong to a
window, SetViewColor () caches the color it's passed so that later, when the BView
is attached to a window, it can automatically be handed to the server. If the BVieV'.'."
belongs to a window, SetViewColor () alters both the server parameter and the
client-side cache.

ViewColor () returns the current background color, which, because of the cache,
doesn't normally entail contacting the Application Server.

See also: "The View Color" in the "Drawing" section of this chapter,
SetHighColor ()

Show() see Hide()

StringWidth(), GetStringWidths()

float StringWidth(const char *string) const
float StringWidth(const char *string, int32 length) const

void GetStringWidths(char *stringArray, int32 lengthArra;{J, int32 numStrings,
float widthArra;{J) const

These functions measure how much room is required to draw a string, or a group of
strings, in the BView's current font. They're equivalent to the identically named set of
functions defined in the BFont class, except that they assume the BView's font. For
example, this excerpt of code:

float width;
width = myView->StringWidth ("Be"B_UTF8_REGISTERED);

produces the same result as:

float width;
BFont font;
myView->GetFont(&font);
width = font.StringWidth("Be"B_UTF8_REGISTERED);

See the BFont class for details.

See also: BF'ont: : StringWidth (), BFont: : GetEscapements ()

StrokeArc(), FillArc()

void StrokeArc(BRect rect, float angle, float span,
pattern aPattern = B_SOLID_HIGH)

void StrokeArc(BPoint center, float xRadius, float yRadius, float angle, float span,
pattern aPattern = B_SOLID_HIGH)

BView • Member Functions 653

void FillArc(BRect rect, float angle, float span,
pattern aPattern = B_SOLID_HIGH)

void FillArc(BPoint center, float xRadius, float yRadius, float angle, float span,
pattern aPattern = B_SOLID_HIGH)

These functions draw an arc, a portion of an ellipse. StrokeArc () strokes a line
along the path of the arc. FillArc () fills the wedge defined by straight lines
stretching from the center of the ellipse of which the arc is a part to the end points of
the arc itself. For example:

"··..... ..···· ···... . .. ···

StrokeArc() FillArc()

The arc is a section of the ellipse inscribed in rect-or the ellipse located at center,
where the horizontal distance from the center to the edge of the ellipse is measured
by xRadius and the vertical distance from the center to the edge is measured by
yRadius.

The arc starts at angle and stretches along the ellipse for span degrees, where angular
coordinates are measured counterclockwise with 0° on the right, as shown below:

90.0°

270.0°

654 Chapter 4 • The Interface Kit

For example, if angle is 180.0° and span is 90.0°, the arc would be the lower left
quarter of the ellipse. The same arc would be drawn if angle were 270.0° and span
were -90.0°.

WARNING

Currently, angle and span measurements in fractions of a degree are not sup
ported.

The width of the line drawn by StrokeArc () is determined by the current pen size.
Both functions draw using aPattern-or, if no pattern is specified, using the current
high color. Neither function alters the current pen position.

See also: StrokeEllipse ()

StrokeEllipse(), FillEllipse()

void StrokeEllipse(BRect rect, pattern aPattern = B_SOLID_HIGH)
void StrokeEllipse(BPoint center, float xRadius, float yRadius,

pattern aPattern = B_SOLID_HIGH)

void FillEllipse(BRect rect, pattern aPattern = B_SOLID_HIGH)
void FillEllipse(BPoint center, float xRadius, float yRadius,

pattern aPattern = B_SOLID_HIGH)

These functions draw an ellipse. StrokeEllipse () strokes a line around the
perimeter of the ellipse and FillEllipse () fills the area the ellipse encloses.

The ellipse has its center at center. The horizontal distance from the center to the
edge of the ellipse is measured by xRadius and the vertical distance from the center
to the edge is measured by yRadius. If xRadius and yRadius are the same, the ellipse
will be a circle.

Alternatively, the ellipse can be described as one that's inscribed in rect. If the
rectangle is a square, the ellipse will be a circle.

The width of the line drawn by StrokeEllipse () is determined by the current pen
size. Both functions draw using aPattern-or, if no pattern is specified, using the
current high color. Neither function alters the current pen position.

See also: SetPenSize ()

Strokeline()

void StrokeLine(BPoint start, BPoint end, pattern aPattern = B_SOLID_HIGH)
void StrokeLine(BPoint end, pattern aPattern = B_SOLID_HIGH)

BView • Member Functions

Draws a straight line between the start and end points-or, if no starting point is
given, between the current pen position and end point-and leaves the pen at the
end point.

This function draws the line using the current pen size and the specified pattern. If no
pattern is specified, the line is drawn in the current high color. The points are
specified in the BView's coordinate system.

See also: SetPenSize (), BeginLineArray ()

StrokePolygon(), FillPolygon()

void StrokePolygon(BPolygon •polygon,
bool isClosed = true, pattern aPattern = B_SOLID_HIGH)

void StrokePolygon(BPoint •pointList, int32 numPoints,
bool isClosed = true, pattern aPattern = B_SOLID_HIGH)

void StrokePolygon(BPoint •pointList, int32 numPoints, BRect rect,
bool isClosed = true, pattern aPattern = B_SOLID_HIGH)

void FillPolygon(BPolygon *aPolygon,
pattern aPattern = B_SOLID_HIGH)

void FillPolygon(BPoint *pointList, int32 numPoints,
pattern aPattern = B_SOLID_HIGH)

void FillPolygon(BPoint •pointList, int32 numPoints, BRect rect,
pattern aPattern = B_SOLID_HIGH)

655

These functions draw a polygon with an arbitrary number of sides.
StrokePolygon () strokes a line around the edge of the polygon using the current
pen size. If a pointList is specified rather than a BPolygon object, this function strokes
a line from point to point, connecting the first and last points if they aren't identical.
However, if the isClosed flag is false, StrokePolygon () won't stroke the line
connecting the first and last points that define the BPolygon (or the first and last
points in the pointList). This leaves the polygon open-making it not appear to be a
polygon at all, but rather a series of straight lines connected at their end points. If
isC!osed is true, as it is by default, the polygon will appear to be a polygon, a closed
figure.

FillPolygon () is a simpler function; it fills in the entire area enclosed by the
polygon.

Both functions must calculate the frame rectangle of a polygon constructed from a
point list-that is, the smallest rectangle that contains all the points in the polygon. If
you know what this rectangle is, you can make the function somewhat more efficient
by passing it as the rect parameter.

656 Chapter 4 • The Interface Kit

Both functions draw using the specified pattern-or, if no pattern is specified, in the
current high color. Neither function alters the current pen position.

See also: SetPenSize (), the BPolygon class

StrokeRectQ, FillRectQ

void StrokeRect(BRect rect, pattern aPattern = B_SOLID_HIGH)

void FillRect(BRect rect, pattern aPattern = B_SOLID_HIGH)

These functions draw a rectangle. StrokeRect () strokes a line around the edge of
the rectangle; the width of the line is determined by the current pen size.
FillRect () fills in the entire rectangle.

Both functions draw using the pattern specified by aPattern-or, if no pattern is
specified, in the current high color. Neither function alters the current pen position.

See also: SetPenSize (), StrokeRoundRect ()

StrokeRoundRectQ, FillRoundRectQ

void StrokeRoundRect(BRect rect, float xRadius, float yRadius,
pattern aPattern = B_SOLID_HIGH)

void FillRoundRect(BRect rect, float xRadius, float yRadius,
pattern aPattern = B_SOLID_HIGH)

These functions draw a rectangle with rounded comers. The comer arc is one-quarter
of an ellipse, where the ellipse would have a horizontal radius equal to xRadius and
a vertical radius equal to yRadius.

Except for the rounded corners of the rectangle, these functions work exactly like
StrokeRect () and FillRect ().

Both functions draw using the pattern specified by aPattern-or, if no pattern is
specified, in the current high color. Neither function alters the current pen position.

See also: StrokeRect (), StrokeEllipse ()

Stroke TriangleQ, FillTriangleQ

void StrokeTriangle(BPointfirstPoint, BPoint secondPoint, BPoint tbirdPoint,
pattern aPattern = B_SOLID_HIGH)

void StrokeTriangle(BPointfirstPoint, BPoint secondPoint, BPoint tbirdPoint, BRect
rect, pattern aPattern = B_SOLID_HIGH)

BView • Member Functions

void FillTriangle(BPoint firstPoint, BPoint secondPoint, BPoint thirdPoint,
pattern aPattern = B_SOLID_HIGH)

void FillTriangle(BPoint firstPoint, BPoint secondPoint, BPoint thirdPoint,
BRect rect, pattern aPattern = B_SOLID_HIGH)

These functions draw a triangle, a three-sided polygon. StrokeTriangle () strokes
a line the width of the current pen size from the first point to the second, from the
second point to the third, then back to the first point. Fill Triangle () fills in the
area that the three points enclose.

657

Each function must calculate the smallest rectangle that contains the triangle. If you
know what this rectangle is, you can make the function marginally more efficient by
passing it as the rect parameter.

Both functions do their drawing using the pattern specified by aPattern-or, if no
pattern is specified, in the current high color. Neither function alters the current pen
position.

See also: SetPenSize ()

Sync() see Flush()

Targeted ByScrollView()

virtual void T argetedByScrollView(BScrollView * scrollel)

Implemented by derived classes to respond to a notification that the BView has
become the target of the scroller BScrollView object. This function is called when the
BScrollView sets its target, which it does on construction. The target is the object
whose contents will be scrolled.

BView's implementation of this function is empty.

See also: the BScrollView class

Window()

BWindow *Window(void) const

Returns the BWindow to which the BView belongs, or NULL if the BView isn't
attached to a window. This function returns the same object that Looper () (inherited
from the BHandler class) does-except that Window () returns it more specifically as
a pointer to a BWindow and Looper () returns it more generally as a pointer to a
BLooper.

See also: BHandler: : Looper () in the Application Kit, AddChild (),
BWindow::AddChild(),AttachedToWindow()

658 Chapter 4 • The Interface Kit

Window Activated()

virtual void WindowActivated(bool active)

Implemented by derived classes to take whatever steps are necessary when the
BView's window becomes the active window, or when the window gives up that
status. If active is true, the window has become active. If active is false, it no
longer is the active window.

All objects in the view hierarchy receive WindowActivated () notifications when the
status of the window changes.

BView's version of this function is empty.

See also: BWindow: : WindowAc ti va ted ()

BWindow
Derived from: public Blooper

Declared in: be/interface/Window.h

Library: libbe.so

Overview
The BWindow class defines an application interface to windows. Each BWindow
object corresponds to one window in the user interface.

It's the Application Server's responsibility to provide an application with the windows
it needs. The server allocates the memory each window requires, renders images in
the window on instructions from the application, and manages the user interface. It
equips windows with all the accouterments that let users activate, move, resize,
reorder, hide, and close them. These user actions are not mediated by the
application; they're handled within the Application Server alone. However, the server
sends the application messages notifying it of user actions that affect the window. A
class derived from BWindow can implement virtual functions such as
FrameResized(), QuitRequested(), and WindowActivated() to respond to
these messages.

A BWindow object is the application's interface to a server window. Creating the
object instructs the server to produce a window that can be displayed to the user. The
BWindow constructor determines what kind of window it will be and how it will
behave. The window is initially hidden; the Show () function makes it visible on
screen.

BWindow • Overview

BWindow objects communicate directly with the Application Server. However, before
this communication can take place, the constructor for the BApplication object must
establish an initial connection to the server. You must construct the BApplication
object before the first BWindow.

659

View Hierarchy

A window can display images, but it can't produce them. To draw within a window,
an application needs a collection of various BView objects. For example, a window
might have several check boxes or radio buttons, a list of names, some scroll bars,
and a scrollable display of pictures or text-all provided by objects that inherit from
the BView class.

These BViews are created by the application and are associated with the BWindow
by arranging them in a hierarchy under a top view, a view that fills the entire content
area of the window. Views are added to the hierarchy by making them children of
views already in the hierarchy, which at the outset means children of the top view.

A BWindow doesn't reveal the identity of its top view, but it does have functions that
act on the top view's behalf. For example, AddChild () adds a view to the hierarchy
as a child of the top view; FindView () searches the view hierarchy beginning with
the top view.

Window Threads

Every window runs in its own thread. A BWindow object is a kind of BLooper; it
spawns a window thread where it runs a message loop. You don't have to call Run ()
to get the message loop going, as you do for other BLoopers; it's called for you when
you first call Show () to put the window on-screen.

The window's message loop receives messages reporting user actions associated with
the window. Typically, those actions are directed at something that's drawn within
the content area of the window-so the object responsible for responding is usually
one of the BViews in the window's view hierarchy. Views are notified of user actions
through MouseDown () , KeyDown () , MouseMoved () and other virtual function calls.
However, sometimes the responsible object is the BWindow itself. It handles
FrameMoved () , Qui tReques ted () , WindowAc ti va ted () and other notifications.

Since all these functions are called from the window thread, that thread will execute
the application's responses to user activity centering on the window. This, of course,
includes operations spun off from the original message. For example, if the user
clicks a button in a window and this initiates a series of calculations involving a
variety of objects, those calculations will be executed in the thread of the window
where the button is located (unless the calculation explicitly spawns other threads or
sends messages to other BLoopers).

660 Chapter 4 • The Interface Kit

lbe message loop continues running until the window is told to quit and the
BWindow object is deleted. Everything the window thread does is initiated by a
message of some kind.

Quitting

To "close" a window is to remove the window from the screen, quit the message
loop, kill the window thread, and delete the BWindow object. As is the case for other
Bloopers, this process is initiated by a request to quit-a B_QUIT_REQUESTED
message.

For a BWindow, a request to quit is an event that might be reported from the
Application Server (as when the user clicks a window's close button) or from within
the application (as when the user operates a Close menu item).

To respond to quit-requested messages, classes derived from BWindow implement
Qui tReques ted () functions. Qui tReques ted () can prevent the window from
closing, or take whatever action is appropriate before the window is destroyed. It
typically interacts with the user, asking, for example, whether recent changes to a
document should be saved.

QuitRequested() is a hook function declared in the Blooper class; it's not
documented here. See the Blooper class in the Application Kit for information on the
function and on how classes derived from BWindow might implement it.

Scripting Support

BWindow objects can respond to the "suite/vnd.Be-window" suite of scripting
requests. The suite includes these messages:

Property name: "Frame" for the frame rectangle of the window
Specifiers: B_DIRECT_SPECIFIER only
Messages: B_SET_PROPERTY and B_GET_PROPERTY
Data type: BRect (B_RECT_TYPE)

Property name: "Title" for the window title
Specifiers: B_DIRECT_SPECIFIER only
Messages: B_SET_PROPERTY and B_GET_PROPERTY
Data type: A null-terminated character string (B_STRING_TYPE)

The suite also includes the ability to resolve the following specifier, regardless of
what the message may be:

Property name: "View" for a descendant BView object
Specifiers: B_NAME_SPECIFIER, B_INDEX_SPECIFIER,

orB_REVERSE_INDEX_SPECIFIER

BWindow • Hook Functions

The specified BView replaces the BWindow as the designated handler for the
message. For B_NAME_SPECIFIER, the BWindow searches the entire view hierarchy
for the named view. For B_INDEX_SPECIFIER and B_REVERSE_INDEX_SPECIFIER,

it uses the index to pick an immediate child of its top view.

See "Scripting" in Chapter 2 for more information.

Hook Functions
FrameMoved ()

Can be implemented to take note of the fact that the window has moved.

661

FrameResized ()

Can be implemented to take note of the fact that the window has been resized.

MenusBeginning ()

Can be implemented to make sure menu data structures are up-to-date before the
menus are displayed to the user.

MenusEnded ()

Can be implemented to note that menus are no longer being displayed. The
BWindow will receive a MenusBeginning () notification before they're displayed
again.

Minimize()

Removes the window from the screen and replaces it with its minimized
representation, or restores the window if it was previously minimized; can be
reimplemented to provide a different representation for a minimized window.

ScreenChanged ()

Makes sure the window stays visible on-screen when the size of the pixel grid
changes; can be implemented to make other adjustments when the screen
changes its depth or dimensions.

WindowActivated()

Can be implemented to take whatever action is necessary when the window
becomes the active window, or when it loses that status.

WorkspaceActivated()

Can be implemented to take remedial steps when the workspace where the
window lives becomes the active workspace, or when it loses that status.

WorkspacesChanged()

Can be implemented to respond when the set of workspaces where the window
can be displayed changes.

Zoom()

Zooms the window to a larger size, or from the larger size to its previous state; can
be reimplemented to modify the target window size or make other adjustments.

662

Constructor and Destructor
BWindow()

Chapter 4 • The Interface Kit

BWindow(BRect frame, const char *title, window _type type, uint32 flags,
uint32 workspaces= B_CURRENT_WORKSPACE)

BWindow(BMessage *archive)

Produces a new window with the frame content area, assigns it a title and a type, sets
its behavioral flags, and determines the workspaces where it can be displayed.
However, the constructor does not spawn a new thread of execution for the window
or begin running a message loop in that thread. The thread will be created and the
loop begun when Show () is called to put the window on-screen for the first time.

The first argument, frame, determines where the window will be located on-screen
and the size of its content area; it excludes the border and the title tab at the top. The
window's top view will be exactly the same size and shape as its frame rectangle
though the top view is located in the window's coordinate system and the window's
frame rectangle is specified in the screen coordinate system. The width and height of
frame must both be greater than 0.0.

For the window to become visible on-screen, the frame rectangle you assign it must
lie within the frame rectangle of the screen. You can get this information by
constructing a BScreen object and asking for its Frame () :

BScreen screen(B_MAIN_SCREEN_ID);
BRect r =screen.Frame();

Since a window is always aligned on screen pixels, the sides of its frame rectangle
must have integral coordinate values. Any fractional coordinates that are passed in
frame will be rounded to the nearest whole number.

The second argument, title, does two things: It sets the title the window will display if
it has a tab, and it determines the name assigned to the window thread (when
Show () is called). The thread name is a string that prefixes "w>" to the title in the
following format:

11 w>title 11

If the title is long, only as many characters will be used as will fit within the limited
length of a thread name. (Only the thread name is limited, not the window title.) The
title (and thread name) can be changed with the Set Title () function.

The title can be NULL or an empty string.

BWindow • Constructor and Destructor

The type of window is set by one of the following constants:

B_MODAL_WINDOW

B_BORDERED_WINDOW

B_TITLED_WINDOW

B DOCUMENT_WINDOW

A modal window, one that disables other activity in the
application until the user dismisses it. It has a border but no tab to
display a title.

An ordinary (nonmodal) window with a border but no title tab.

A window with a tab that displays its title and a border that's the
same on all sides.

A window with a title tab, a border, and a resize button in the
bottom right corner. The border on the right and bottom sides is
designed to look good next to vertical and horizontal scroll bars.
The tab and border are drawn around the window's frame
rectangle, but the resize button is located inside the content area
of the window, in the corner where the scroll bars meet. It's
drawn last and obscures whatever the application might draw in
that corner.

The fourth argument, flags, is a mask that determines the behavior of the window. It's
formed by combining constants from the following set:

B_NOT_MOVABLE Prevents the user from being able to move the window. By
default, a window with a tab at the top is movable.

B_NOT_H_RESIZABLE Prevents the user from resizing the window horizontally. A
window is horizontally resizable by default.

B_NOT_V_RESIZABLE Prevents the user from resizing the window vertically. A
window is vertically resizable by default.

B_NOT_RESIZABLE Prevents the user from resizing the window in any direction.
This constant is a shorthand that you can substitute for the
combination of B_NOT_H_RESIZABLE and
B_NOT_V_RESIZABLE. A window is resizable by default.

B_NOT_CLOSABLE Prevents the user from closing the window (eliminates the
close button from its tab). Windows with title tabs have a
close button by default.

B_NOT_ZOOMABLE Prevents the user from zooming the window larger or
smaller (eliminates the zoom button from the window tab).
Windows with tabs are zoomable by default.

B_NOT_MINIMIZABLE Prevents the user from collapsing the window to its
minimized form. Windows can be minimized by default.

B_WILL_ACCEPT_FIRST_CLICK Enables the BWindow to receive mouse-down and mouse
up messages even when it isn't the active window. By
default, a click in a window that isn't the active window
brings the win-dow to the front and makes it active, but
doesn't get reported to the application. If a BWindow
accepts the first click, the event gets reported to the
application, but it doesn't make the window active. The
BView that responds to the mouse-down message must
take responsibility for activating the window.

B_WILL_FLOAT Not implemented for the current release.

663

664 Chapter 4 • The Interface Kit

If flags is 0, the window will be one the user can move, resize, close, and zoom. It
won't float or accept the first click.

The final argument, workspaces, associates the window with a set of one or more
workspaces. Each workspace is identified by a specific bit in a 32-bit integer; the
workspaces mask can name up to 32 workspaces. The mask can include workspaces
that don't yet exist. The window will live in those workspaces when and if the user
creates them.

Two special values can be passed as the workspaces parameter:

B_CURRENT_WORKSPACE

B_ALL_WORKSPACES

Associates the window with the workspace that's currently
displayed on-screen (the active workspace), whatever
workspace that happens to be. This is the default choice.

Associates the window with all workspaces. The window will
show up in all workspaces the user has created and in all future
workspaces that will be created.

When created, the window is hidden and the BWindow object is locked; it must be
locked when Show () is called for the first time.

See also: Hide(), SetFlags (), Set Title()

-BWindow()

virtual -BWindow(void)

Frees all memory that the BWindow allocated for itself.

Call the Quit () function to destroy the BWindow object; don't use the delete

operator. Quit () does everything that's necessary to shut down the window-such
as remove its connection to the Application Server and get rid of its views-and
invokes delete at the appropriate time.

See also: Quit ()

Static Functions
Instantiate()

static BWindow *lnstantiate(BMessage *archive)

Returns a new BWindow object, allocated by new and created with the version of the
constructor that takes a BMessage archive. However, if the archive message doesn't
contain data for a BWindow object, the return value will be NULL.

See also: BArchivable:: Instantiate (), instantiate_object (),Archive ()

BWindow • Member Functions

Member Functions

Activate()

void Activate(bool flag = true)

665

Makes the BWindow the active window (if flag is true), or causes it to relinquish
that status (if flag is false). When this function activates a window, it reorders the
window to the front, highlights its tab, and makes it the window responsible for
handling subsequent keyboard messages. When it deactivates a window, it undoes all
these things. It reorders the window to the back and removes the highlighting from
its tab. Another window (the new active window) becomes the target for keyboard
messages.

When a BWindow is activated or deactivated (whether programmatically through this
function or by the user), it and all the BViews in its view hierarchy receive
WindowActi vated () notifications.

This function will not activate a window that's hidden.

See also: WindowActivated(), BView: :WindowActivated()

AddChild(), RemoveChild()

void AddChild(BView *aView, BView *sibling= NULL)

boo! RemoveChild(BView *aView)

AddChild () adds a View to the hierarchy of views associated with the window,
making it a child of the window's top view, and assigns the BWindow object as
aVieuJs next handler for unrecognized messages. The new child is inserted before
the named sibling BView in the top view's list of children. If the sibling is NULL (as it
is by default), a View is added to the end of the list.

However, AddChild () fails if sibling isn't a child of the top view. Moreover, if a View
already has a parent, it won't be forcibly removed from that family and adopted into
this one. A view can live with but one parent at a time.

If successful in adopting aView, AddChild() calls its AttachedToWindow() and
AllAt tached () functions to inform it that it now belongs to the BWindow. Every
BView that descends from aView also becomes attached to the window and receives
its own AttachedToWindow() and AllAttached() notifications. In addition, each
newly attached BView is added to the BWindow's list of BHandler objects, making it
eligible to receive messages the BWindow dispatches.

RemoveChild () removes a View from the BWindow's view hierarchy, but only if it
was added to the hierarchy as a child of the window's top view (by calling the

666 Chapter4 • The Interface Kit

BWindow version of AddChild ()). If it succeeds in removing a View,
RemoveChild () returns true. If not, it returns false.

When a BView is removed from a window, all its descendant views are removed with
it. Every removed BView receives a DetachedFromWindow () and an
AllDetached () function call to notify it of the change and it's crossed off the
BWindow's list of eligible message handlers.

See also: BView: :AddChild(), BLooper: :AddHandler(),

BView::AttachedToWindow(),BView::DetachedFromWindow(),

BHandler: : SetNextHandler ()

AddFloater(), RemoveFloater()

void AddFloater(BWindow *floatingWindow)

void RemoveFloater(BWindow *floatingWindow)

These functions are not implemented for the current release.

AddShortcut(), RemoveShortcut()

void AddShortcut(uint32 aChar, uint32 modifiers, BMessage *message)
void AddShortcut(uint32 aChar, uint32 modifiers, BMessage *message,

BHandler * handlei)

void RemoveShortcut(uint32 aChar, uint32 modifiers)

These functions set up, and tear down, keyboard shortcuts for the window. A
shortcut is a character (aChar) that the user can type, in combination with the
Command key and possibly one or more other modifiers to issue an instruction to the
application. For example, Command-r might rotate what's displayed within a
particular view. The instruction is issued by posting a message to the window thread.

Keyboard shortcuts are commonly associated with menu items. However, do not use
these functions to set up shortcuts for menus; use the BMenultem constructor instead.
These BWindow functions are for shortcuts that aren't associated with a menu.

BWindows come with five built-in shortcuts:

Shortcut Message Target handler

Command-x B_CUT the focus view

Command-c B_COPY the focus view

Command-v B_PASTE the focus view

Command-a B_SELECT_ALL the focus view

Command-w B_QUIT_REQUESTED the BWindow

BWindow • Member Functions 667

(In addition, Command-q sends a B_QUIT_REQUESTED message to the BApplication
object.)

AddShortcu t () registers a new window-specific keyboard shortcut. The first two
arguments, aChar and modifiers, specify the character and the modifier states that
together will issue the instruction. modifiers is a mask that combines any of the usual
modifier constants (see the modifiers () function for the full list). Typically, it's one
or more of these four (or it's O):

B_SHIFT_KEY

B_CONTROL_KEY

B_OPTION_KEY

B_COMMAND_KEY

B_COMMAND_KEY is assumed; it doesn't have to be specified. The character value
that's passed as an argument should reflect the modifier keys that are required. For
example, if the shortcut is Command-Shift-C, aChar should be "C", not "c".

The instruction that the shortcut issues is embodied in a model message that the
BWindow will copy and post to itself whenever it's notified of a key-down event
matching the combination of aChar and modifiers (including B_COMMAND_KEY).

Before posting the message, it adds one data field to the copy:

Field name Type code

"when" B_INT64_TYPE

Description

When the key-down event occurred, as measured by the
number of microseconds from 12:00:00 AM January 1, 1970.

The model message shouldn't contain an entry of the same name.

If a target handler is specified, the BWindow will dispatch the message to that
BHandler object; the handler must be in the BWindow's list of eligible BHandlers. If
the handler is NULL, the BWindow will dispatch the message to its preferred handler
at the time, the view that's in focus when it gets the message (or to itself if no view is
in focus). If a handler isn't specified at all, not even NULL, the BWindow will handle
the message.

RemoveShortcut () unregisters a keyboard shortcut that was previously added.

See also: MessageRecei ved () , the BMenuitem constructor

Archive()

virtual status_t Archive(BMessage *archive, boo! deep= true) const

668 Chapter4 • The Interface Kit

Archives the BWindow by recording its frame rectangle, title, type, and flags in the
BMessage archive. If the deep flag is true, this function also archives all the views in
the window's view hierarchy. If the flag is false, only the BWindow is archived.

See also: BArchivable: :Archive {), Instantiate {) static function

BoundsQ
BRect Bounds(void) canst

Returns the current bounds rectangle of the window. The bounds rectangle encloses
the content area of the window and is stated in the window's coordinate system. It's
exactly the same size as the frame rectangle, but its left and top sides are always 0.0.

See also: Frame {)

ChildAtQ, CountChildrenQ

BView *ChildAt(int32 index) canst

int32 CountChildren(void) canst

The first of these functions returns the child BView at index, or NULL if there's no
such child of the BWindow's top view. Indices begin at 0 and there are no gaps in the
list. The second function returns how many children the top view has.

See also: BView:: Parent {)

CloseQ see Quit()

Convert ToScreenQ, ConvertFromScreenQ
BPoint ConvertToScreen(BPoint windowPoinf) canst
void ConvertToScreen(BPoint *windowPoinf) canst

BRect ConvertToScreen(BRect windowRecf) canst
void Convert ToScreen(BRect *windowRecf) canst

BPoint ConvertFromScreen(BPoint screenPoinf) canst
void ConvertFromScreen(BPoint • screenPoinf) canst

BRect ConvertFromScreen(BRect screenRecf) canst
void ConvertFromScreen(BRect * screenRecf) canst

These functions convert points and rectangles to and from the global screen
coordinate system. ConvertToScreen {) converts windowPoint or windowRect from
the window coordinate system to the screen coordinate system. Convert-

BWindow • Member Functions 669

FromScreen () makes the opposite conversion; it converts screenPoint or screenRect
from the screen coordinate system to the window coordinate system.

If the point or rectangle is passed by value, the function returns the converted value.
If a pointer is passed, the conversion is done in place.

The window coordinate system has its origin, (0.0, 0.0), at the left top corner of the
window's content area. The origin of the screen coordinate system is at the left top
corner of the main screen.

See also: BView: : ConvertToScreen ()

CurrentFocus()

BView *CurrentFocus(void) const

Returns the current focus view for the BWindow, or NULL if no view is currently in
focus. The focus view is the BView that's responsible for showing the current
selection and handling keyboard messages when the window is the active window.

The BWindow sets its preferred handler to be the focus view, so the inherited
Preferred.Handler () function will return the same object. CurrentFocus ()
returns the focus view as a BView object; Preferred.Handler () returns it as a
BHandler.

See also: BView: :MakeFocus (), Binvoker: : Set Target (),
BLooper::SetPreferred.Handler()

DefaultButton() see SetDefaultButton()

DisableUpdates(}, EnableUpdates()

void DisableUpdates(void)

void EnableUpdates(void)

These functions disable automatic updating within the window, and re-enable it
again. Updating is enabled by default, so every user action that changes a view and
every program action that invalidates a view's contents causes the view to be
automatically redrawn.

This may be inefficient when there are a number of changes to a view, or to a group
of views within a window. In this case, you can temporarily disable the updating
mechanism by calling DisableUpdates (), make the changes, then call Enable
Updates () to re-enable updating and have all the changes displayed at once.

See also: BView:: Invalidate (), UpdateifNeeded ()

670 Chapter 4 • The Interface Kit

Dispatch Message()
virtual void DispatchMessage(BMessage *message, BHandler • handlery

Overrides the BLooper function to dispatch messages as they're received by the
window thread. This function is called for you each time the BWindow takes a
message from its queue. It dispatches the message by calling the virtual function
that's designated to begin the application's response.

• It dispatches system messages by calling a message-specific virtual function
implemented for the BWindow or the responsible BView. See "Hook Functions for
Interface Messages" in the "Responding to the User" section of this chapter for a
list of these functions.

• It defers to the BLooper version of this function to dispatch B_QUIT_REQUESTED

messages.

• It dispatches other messages by calling the targeted handler's Message

Recei ved () function.

Derived classes can override this function to make it dispatch specific kinds of
messages in other ways. For example:

void MyWindow::DispatchMessage(BMessage *message)
{

if (message->what == MAKE_PREDICTIONS
predictor->GuessAbout(message);

else
BWindow: :DispatchMessage(message);

However, much of the user interface depends on how the BWindow processes
system messages. For example, for keyboard shortcuts and keyboard navigation to
work, the BWindow object needs to get its hands on B_KEY_DOWN messages. You
shouldn't implement a version of DispatchMessage () that denies these messages
to the BWindow version. (Nor should you filter these messages so they never reach
DispatchMessage () .)

The BWindow is locked before DispatchMessage () is called. The lock remains in
place until the window thread's response to the message is complete and
DispatchMessage () returns. When it returns, the message loop deletes the
message. You should not delete it in application code (unless
DetachCurrentMessage () is first called to detach it from the message loop).

See also: the BMessage class, the BMessageFilter class,
BLooper::DispatchMessage(),BLooper::CurrentMessage()

EnableUpdates() see DisableUpdates()

BWindow • Member Functions

FindView()

BView *FindView(BPoint point) const
BView *FindView(const char *name) const

Returns the view located at point within the window, or the view tagged with name.
The point is specified in the window's coordinate system (the coordinate system of its
top view), which has the origin at the upper left corner of the window's content area.

If no view is located at the point given, or no view within the window has the name
given, this function returns NULL.

See also: BView: : FindView ()

Flush()

void Flush(void) const

671

Flushes the window's connection to the Application Server, sending whatever
happens to be in the output buffer to the server. The buffer is automatically flushed
on every update and after each message.

This function has the same effect as the Flush () function defined for the BView
class.

See also: BView:: Flush

Frame()

BRect Frame(void) const

Asks the Application Server for the current frame rectangle for the window and
returns it. The frame rectangle encloses the content area of the window and is stated
in the screen coordinate system. It's first set by the BWindow constructor and is
modified as the window is resized and moved.

See also: MoveBy (), ResizeBy (), the BWindow constructor

Frame Moved{)

virtual void FrameMoved(BPoint screenPoin~

Implemented by derived classes to respond to a notification that the window has
moved. The move-which placed the left top corner of the window's content area at
screenPoint in the screen coordinate system-could be the result of the user dragging
the window or of the program calling MoveBy () or MoveTo () . If the user drags the

672 Chapter 4 • The Interface Kit

window, FrameMoved () is called repeatedly as the window moves. If the program
moves the window, it's called just once to report the new location.

The default version of this function does nothing.

See also: MoveBy () , "B_WINDOW_MOVED" in Appendix A, Message Protocols

Frame Resized()

virtual void FrameResized(float width, float heigh~

Implemented by derived classes to respond to a notification that the window's
content area has been resized to a new width and height. The resizing could be the
result of the program calling ResizeTo (), ResizeBy(), or Zoom()-in which case
FrameResized () is called just once to report the window's new size. It could also
be the result of a user action-in which case it's called repeatedly as the user drags a
corner of the window to resize it.

The default version of this function does nothing.

See also: ResizeBy (), "B_WINDOW_RESIZED" in Appendix A, Message Protocols

GetSizeLimits() see SetSizeLimits()

GetSupportedSuites()

virtual status_t GetSupportedSuites(BMessage *message)

Adds the name "suite/vnd.Be-window" to the message. See "Scripting Support" in the
class overview for more information.

See also: BHandler: : GetSupportedSui tes ()

Hide{), Show()

virtual void Hide(void)

virtual void Show(void)

These functions hide the window so it won't be visible on-screen, and show it again.

Hide () removes the window from the screen. If it happens to be the active window,
Hide () also deactivates it. Hiding a window hides all the views attached to the
window. While the window is hidden, its BViews respond true to IsHidden ()
queries.

Show () puts the window back on-screen. It places the window in front of other
windows and makes it the active window. Since a window is hidden when it's

BWindow • Member Functions

constructed, you must call Show () to bring it to life. That first call unlocks the
window, spawns the window thread, and begins the message loop.

Calls to Hide () and Show () can be nested; if Hide () is called more than once,
you'll need to call Show () an equal number of times for the window to become
visible again.

A window begins life hidden (as if Hide () had been called once); it takes an initial
call to Show () to display it on-screen.

See also: IsHidden ()

lsActive()

bool lsActive(void) canst

Returns true if the window is currently the active window, and false if it's not.

See also: Activate ()

ls Front()

673

bool lsFront(void) canst

Returns true if the window is currently the frontmost window on-screen, and false

if it's not.

lsHidden()

boo! lsHidden(void) canst

Returns true if the window is currently hidden, and false if it isn't.

Windows are hidden at the outset. The Show () function puts them on-screen, and
Hide () can be called to hide them again.

If Show () has been called to unhide the window, but the window is totally obscured
by other windows or occupies coordinates that don't intersect with the physical
screen, IsHidden () will nevertheless return false, even though the window isn't
visible.

See also: Hide ()

KeyMenuBar() see SetKeyMenuBar()

674

MenusBeginning(), MenusEnded()

virtual void MenusBeginning(void)

virtual void MenusEnded(void)

Chapter 4 • The Interface Kit

These functions are implemented by derived classes to make sure menus are up-to
date when shown on-screen. MenusBeginning () is called just before menus
belonging to the window are about to be shown to the user. It gives the BWindow a
chance to make any required alterations-for example, disabling or enabling
particular items-so that the menus accurately reflect the current state of the window.
MenusEnded () is called when menus have been put away; the system will call
MenusBeginning () before they're displayed again.

See also: the BMenu and BMenultem classes

Message Received()

virtual void MessageReceived(BMessage *message)

Augments the BHandler version of MessageRecei ved () to ensure that B_KEY_DOWN
messages that find their way to the BWindow object (in the absence of a focus view,
for example), are not lost and can contribute to keyboard navigation.

This function also handles scripting messages for the window.

See also: BHandler: : MessageRecei ved ()

Minimize()

virtual void Minimize(bool minimize)

Removes the window from the screen and replaces it with a token representation, if
the minimize flag is true-or restores the window to the screen and removes the
token, if minimize is false.

This function can be called to minimize or unminimize the window. It's also called by
the BWindow to respond to B_MINIMIZE messages, which are posted automatically
when the user double-dicks the window tab to minimize the window, and when the
user double-dicks the token to restore the window. It can be reimplemented to
provide a different minimal representation for the window.

The token representation is currently an item in the menu of windows associated
with the application in the desk bar. The item remains in the menu as long as the
BWindow exists, but its icon is dimmed when the window is minimized.

See also: "B_MINIMIZE" in the Message Protocols appendix, zoom ()

BWindow • Member Functions

MoveBy(), MoveTo()

void MoveBy(float horizontal, float vertica4

void MoveTo(BPoint point)
void Move T o(float x, float y)

675

These functions move the window without resizing it. MoveBy () adds horizontal
coordinate units to the left and right components of the window's frame rectangle
and vertical units to the frame's top and bottom. If horizontal and vertical are
negative, the window moves upward and to the left. If they're positive, it moves
downward and to the right. MoveTo () moves the left top corner of the window's
content area to point-or (x, y)-in the screen coordinate system; it adjusts all
coordinates in the frame rectangle accordingly.

None of the values passed to these functions should specify fractional coordinates; a
window must be aligned on screen pixels. Fractional values will be rounded to the
closest whole number.

Neither function alters the BWindow's coordinate system or bounds rectangle.

When these functions move a window, a window-moved event is reported to the
window. This results in the BWindow's FrameMoved () function being called.

See also: FrameMoved ()

NeedsUpdate()

bool NeedsUpdate(void) const

Returns true if any of the views within the window need to be updated, and false

if they're all up-to-date.

See also: UpdateifNeeded()

Preferred Handler() see CurrentFocus()

PulseRate() see SetPulseRate()

Quit(), Close()

virtual void Quit(void)

inline void Close(void)

Quit () gets rid of the window and all its views. This function removes the window
from the screen, deletes all the BViews in its view hierarchy, destroys the window

676 Chapter 4 • The Interface Kit

thread, removes the window's connection to the Application Server, and, finally,
deletes the BWindow object.

Use this function, rather than the delete operator, to destroy a window. Quit (}
applies the operator after it empties the BWindow of views and severs its connection
to the application and server. It's dangerous to apply delete while these
connections remain intact.

BWindow's Quit (} works much like the BLooper function it overrides. When called
from the BWindow's thread, it doesn't return. When called from another thread, it
returns after all previously posted messages have been responded to and the
BWindow and its thread have been destroyed.

Close (} is a synonym of Quit (} . It simply calls Quit (} so if you override Quit (} ,
you'll affect how both functions work.

See also: BLooper : : Qui tReques ted () , BLooper : : Quit () ,
BApplication::QuitRequested(}

RemoveChildQ seeAddChild()

RemoveShortcutQ see AddShortcut()

ResizeByQ, ResizeToQ

void ResizeBy(float horizontal, float vertica~

void ResizeTo(float width, float height)

These functions resize the window, without moving its left and top sides.
ResizeBy () adds horizontal coordinate units to the width of the window and
vertical units to its height. ResizeTo (} makes the content area of the window width
units wide and height units high. Both functions adjust the right and bottom
components of the frame rectangle accordingly.

Since a BWindow's frame rectangle must line up with screen pixels, only integral
values should be passed to these functions. Values with fractional components will
be rounded to the nearest whole number.

When a window is resized, either programmatically by these functions or by the user,
the BWindow's FrameResized (} virtual function is called to notify it of the change.

See also: FrameResized (}

BWindow • Member Functions

ResolveSpecifier()

virtual BHandler *ResolveSpecifier(BMessage *message, int32 index,
BMessage *specifier, int32 command, canst char *propert~

Resolves specifiers for the "Frame", "Title", and "View" properties. See "Scripting
Support" in the class overview for more information.

677

See also: BHandler: :ResolveSpecifier ()

ScreenChanged()

virtual void ScreenChanged(BRect frame, color_space mode)

Implemented by derived classes to respond to a notification that the screen
configuration has changed. This function is called for all affected windows when:

• The number of pixels the screen displays (the size of the pixel grid) is altered.
• The screen changes its location in the screen coordinate system.
• The color mode of the screen changes.

frame is the new frame rectangle of the screen, and mode is its new color space.

(Currently, there can be only one monitor per machine, so the screen can't change
where it's located in the screen coordinate system.)

See also: BScreen: : Frame () , "B_SCREEN_CHANGED" in Appendix A, Message
Protocols

SetDefaultButton(), Defau ltButton()

void SetDefaultButton(BButton *button)

BButton *DefaultButton(void) canst

SetDefaul tButton () makes button the default button for the window-the button
that the user can operate by pressing the Enter key even if another BView is the focus
view. DefaultButton () returns the button that currently has that status, or NULL if
there is no default button.

At any given time, only one button in the window can be the default.
SetDefaultButton() may, therefore, affect two buttons: the one that's forced to
give up its status as the default button, and the one that acquires that status. Both
buttons are redisplayed, so that the user can see which one is currently the default,
and both are notified of their change in status through MakeDefaul t () virtual
function calls.

678 Chapter4 • The Interface Kit

If the argument passed to SetDefaultButton{) is NULL, there will be no default
button for the window. The current default button loses its status and is appropriately
notified with a MakeDefaul t () function call.

The Enter key can operate the default button only while the window is the active
window. However, the BButton doesn't have to be the focus view. Normally, the
focus view is notified of key-down messages the window receives. But if the
character reported is B_ENTER, the default button is notified instead (provided there
is a default button).

See also: BButton: :MakeDefault {)

SetKeyMenuBarQ, KeyMenuBarQ

void SetKeyMenuBar(BMenuBar *menuBai)

BMenuBar *KeyMenuBar(void) const

SetKeyMenuBar () makes the specified BMenuBar object the "key" menu bar for the
window-the object that's at the root of the menu hierarchy that users can navigate
using the keyboard. KeyMenuBar () returns the object with key status, or NULL if the
window doesn't have a BMenuBar object in its view hierarchy.

If a window contains only one BMenuBar view, it's automatically designated the key
menu bar. If there's more than one BMenuBar in the window, the last one added to
the window's view hierarchy is considered to be the key one.

If there's a "true" menu bar displayed along the top of the window, its menu
hierarchy is the one that users should be able to navigate with the keyboard.
SetKeyMenuBar () can be called to make sure that the BMenuBar object at the root
of that hierarchy is the "key" menu bar.

See also: the BMenuBar class

SetPulseRateQ, PulseRateQ

void SetPulseRate(bigtime_t microseconds)

bigtime_t PulseRate(void)

These functions set and return how often Pulse () is called for the BWindow's views
(how often B_PULSE messages are posted to the window). All BViews attached to the
same window share the same pulse rate.

By turning on the B_PULSE_NEEDED flag, a BView can request periodic Pulse{)

notifications. By default, B_PULSE messages are posted every 500,000 microseconds,
as long as no other messages are pending. Each message causes Pulse () to be

BWindow • Member Functions

called once for every BView that requested the notification. There are no pulses if no
BViews request them.

679

SetPulseRate () permits you to set a different interval. The interval set should not
be less than 100,000 microseconds; differences less than 50,000 microseconds may
not be noticeable. A finer granularity can't be guaranteed.

Setting the pulse rate to 0 disables pulsing for all views in the window.

See also: BView: : Pulse (), the BView constructor

SetSizeLimits(}, GetSizeLimits(), SetZoomLimits()

void SetSizelimits(float minWidth, float maxWidth,
float minHeight, float maxHeigh~

void GetSizelimits(float *minWidth, float *maxWidth,
float *minHeight, float *maxHeigh~

void SetZoomlimits(float maxWidth, float maxHeigh~

These functions set and report limits on the size of the window. The user won't be
able to resize the window beyond the limits set by SetSizeLimits ()-to make it
have a width less than minWidth or greater than maxWidth, nor a height less than
minHeight or greater than maxHeight. By default, the minimums are sufficiently small
and the maximums sufficiently large to accommodate any window within reason.

SetSizeLimits () constrains the user, not the programmer. It's legal for an
application to set a window size that falls outside the permitted range. The limits are
imposed only when the user attempts to resize the window; at that time, the window
will jump to a size that's within range.

GetSizeLimits () writes the current limits to the variables provided.

SetZoomLimits () sets the maximum size that the window will zoom to (when the
Zoom() function is called). The maximums set by SetSizeLimits () also apply to
zooming; the window will zoom to the screen size or to the smaller of the maximums
set by these two functions.

Since the sides of a window must line up on screen pixels, the values passed to both
SetSizeLimits () and SetZoomLimits () should be whole numbers.

See also: the BWindow constructor, zoom ()

SetTitle(), Title()

void SetTitle(const char *newTitle)

const char *Title(void) const

680 Chapter 4 • The Interface Kit

These functions set and return the window's title. Set Title (} replaces the current
title with newTitle. It also renames the window thread in the following format:

"w>newTitle"

where as many characters of the newTitle are included in the thread name as will fit.

Title (} returns a pointer to the current title. The returned string is null-terminated.
It belongs to the BWindow object, which may alter the string or free the memory
where it resides without notice. Applications should ask for the title each time it's
needed and make a copy for their own purposes.

A window's title and thread name are originally set by an argument passed to the
BWindow constructor.

See also: the BWindow constructor

SetWorkspaces(}, Workspaces()

void SetWorkspaces(uint32 workspaces)

uint32 Workspaces(void) const

These functions set and return the set of workspaces where the window can be
displayed. The workspaces argument passed to SetWorkspaces () and the value
returned by Workspaces () is a bitfield with one bit set for each workspace in which
the window can appear. Usually a window appears in just one workspace.

SetWorkspaces () can associate a window with workspaces that don't exist yet. The
window will appear in those workspaces if and when the user creates them.

You can pass B_CURRENT_WORKSPACE as the workspaces argument to place the
window in the workspace that's currently displayed (the active workspace) and
remove it from all others, or B_ALL_WORKSPACES to make sure the window shows
up in all workspaces, including any new ones that the user might create.
Workspaces () may return B_ALL_WORKSPACES, but will identify the current
workspace rather than return B_CURRENT_WORKSPACE.

Changing a BWindow's set of workspaces causes it to be notified with a
WorkspacesChanged () function call.

See also: the BWindow constructor, WorkspacesChanged ()

SetZoomlimits() see SetSizeLimits()

BWindow • Member Functions

Show() see Hide()

Title() see Set Title()

UpdatelfNeeded()

void UpdatelfNeeded(void)

681

Causes the Draw () virtual function to be called immediately for each BView object
that needs updating. If no views in the window's hierarchy need to be updated, this
function does nothing.

BView's Invalidate () function generates an update message that the BWindow
receives just as it receives other messages. Although update messages take
precedence over other kinds of messages the BWindow receives, the window thread
can respond to only one message at a time. It will update the invalidated view as
soon as possible, but it must finish responding to the current message before it can
get the update message.

This may not be soon enough for a BView that's engaged in a time-consuming
response to the current message. UpdateifNeeded() forces an immediate update,
without waiting to return the BWindow's message loop. However, it works only if
called from within the BWindow's thread.

(Because the message loop expedites the handling of update messages, they're never
considered the current message and are never returned by BLooper's
CurrentMessage () function.)

Seealso:BView: :Draw(), BView: :Invalidate(), NeedsUpdate()

Window Activated()

virtual void WindowActivated(bool active)

Implemented by derived classes to make any changes necessary when the window
becomes the active window, or when it ceases being the active window. If active is
true, the window has just become the new active window, and if active is false,

it's about to give up that status to another window.

The BWindow receives a WindowActivated() notification whenever its status as
the active window changes. Each of its BViews is also notified.

See also: BView: :WindowActivated()

682 Chapter 4 • The Interface Kit

WindowTypeQ
window_type WindowType(void) canst

Returns what type of window it is. The type is set at construction as one of the
following constants:

B_MODAL_WINDOW

B_BORDERED_WINDOW

B_TITLED_WINDOW

B_DOCUMENT_WINDOW

See also: the BWindow constructor

WorkspacesQ see SetWorkspaces()

WorkspaceActivatedQ

virtual void WorkspaceActivated(int32 workspace, bool active)

Implemented by derived classes to respond to a notification that the workspace
displayed on the screen has changed. All windows in the newly activated workspace
as well as those in the one that was just deactivated get this notification.

The workspace argument is an index to the workspace in question and the active flag
conveys its current status. If active is true, the workspace has just become the active
workspace. If active is false, it has just stopped being the active workspace.

The default (BWindow) version of this function is empty.

See also: "B_WORKSPACE_ACTIVATED" in Appendix A, Message Protocols,
activate_workspace{)

WorkspacesChangedQ
virtual void WorkspacesChanged(uint32 oldWorkspaces, uint32 newWorkspaces)

Implemented by derived classes to respond to a notification the window has just
changed the set of workspaces in which it can be displayed from oldWorkspaces to
newWorkspaces. This typically happens when the user moves a window from one
workspace to another, but it may also happen when a programmatic change is made
to the set of permitted workspaces. Each workspace is represented by a
corresponding bit in the oldWorkspaces and newWorkspaces masks.

Global Functions 683

The default (BWindow) version of this function is empty.

See also: "B_WORKSPACES_CHANGED" in Appendix A, Message Protocols,
SetWorkspaces ()

Zoom()

void Zoom(void)
virtual void Zoom(BPoint leftTop, float width, float height)

Zooms the window to a larger size-or, if already zoomed larger, restores it to its
previous size.

The simple version of this function can be called to simulate the user operating the
zoom button in the window tab. It resizes the window to the full size of the screen, or
to the size previously set by SetSizeLimits () and SetzoomLimits ().However, if
the width and height of the window are both within five coordinate units of the fully
zoomed size, it restores the window to the size it had before being zoomed.

To actually change the window's size, the simple version of Zoom () calls the virtual
version. The virtual version is also called by the system in response to a B_ZOOM
system message. The system generates this message when the user clicks the zoom
button in the window's title tab.

The arguments to the virtual version propose a width and height for the window and
a location for the left top corner of its content area in the screen coordinate system. It
can be overridden to change these dimensions or to resize the window differently.

Zoom () may both move and resize the window, resulting in FrameMoved () and
FrameResized () notifications.

See also: SetSizeLimi ts (), ResizeBy ()

Global Functions
Library: lib be.so

This section describes the global (nonmember) functions defined in the Interface Kit.
All these functions deal with aspects of the systemwide environment for the user
interface-the keyboard and mouse, the screen, workspaces, installed fonts, the list
of possible colors, and various user preferences.

With just a few exceptions, the Application Server maintains this environment.
Therefore, for a global Interface Kit function to work, your application must be
connected to the server. The connection these functions depend on is the one that's
established when the BApplication object is constructed. Consequently, none of them
should be called before a BApplication object is present in your application.

684

activate_ workspace(), current_ workspace()

be/interface/InterfaceDefs.h

void activate_workspace(int32 workspace)

int32 current_ workspace(void)

Chapter 4 • The Interface Kit

These functions set and return the active workspace, the one that's currently
displayed on-screen. For both functions, the workspace is identified by an index. The
indices follow the function keys, at least for the first nine workspaces: Command-Fl
switches to the workspace at index 0, Command-F2 to the workspace at index 1, and
so on.

See also: BWindow: :WorkspaceActivated ()

count_font_families() see get_font_family()

count_font_styles() see get_font_style()

count_ workspaces() see set_workspace_count()

current_ workspace() see aaivate_workspaces()

get_click_speed() seeset_click_speed()

get_font_family(), count_font_families(), get_font_style(),
count_font_styles()

be/interface/Font.h

status_t get_font_family(int32 index, font_family *family,
uint32 *flags = NULL)

int32 count_font_families(void)

status_t get_font_style(font_family family, int32 index, font_style *style,
uint32 *flags = NULL)

int32 count_font_styles(font_family f amity)

These functions are used in combination to get the names of the families and styles of
all installed fonts. For example:

int32 numFamilies = count_font_families();
for (int32 i = O; i < numFamilies; i++) {

font_family family;
uin t3 2 flags;
if (get_font_family(i, &family, &flags) == B_OK) {

int32 numStyles = count_font_styles(family);

Global Functions 685

for (int32 j = O; j < nurnStyles; j++) {

font_style style;
if (get_font_style(family, j, &style, &flags)

B_OK) {

get_font_family () reads one family name from the list of installed fonts, the
name at index, and copies it into the family buffer; count_font_families ()

returns the number of font families currently installed. Similarly, get_font_style ()

reads the name of the style at index and copies into the style buffer. Since each family
can have a different set of styles, a f amity name must be passed to
get_font_style (); count_font_styles () returns the number of styles for the
particular family. Family and style names can be up to 64 bytes long including a null
terminator. Indices begin at 0.

The names of installed font families and styles are not indexed in any particular
order. You might want to alphabetize them before displaying them to the user in a
menu or list.

If you pass a flags argument to get_font_family () and get_font_style (),they
will place a mask with useful information about the particular family or style in the
variable that the argument refers to. Currently there are just two flags:

B_IS_FIXED

B_HAS_TUNED_FONT

Indicates that the font is a nonproportional, or fixed-width, font-one
for which all characters have the same width.

Indicates that the family or style has versions of the font especially
adapted or "tuned" for on-screen display.

If neither flag applies, the variable that flags points to will be set to 0.

If you find a family and style that has a tuned font, you can set a BFont object to that
family and style, then call the object's GetTunedinfo () function to get details about
exactly which combination of font properties (for example, which font sizes) have
tuned counterparts. If you set a BFont so it has those properties and make it a BView's
current font, the tuned version will be used when the BView draws to the screen.

It's possible for the user to install or remove fonts while the application is running.
However, unless update_font_families () has been called to get the updated list,
get_font_family () will provide information on the same set of fonts each time it's
called. The list isn't automatically updated.

See also: update_font_families (), BView: : SetFont (),

BFont::SetFamilyAndStyle()

686 Chapter 4 • The Interface Kit

get_key _infoQ
be/interface/InterfaceDefs.h

status_t get_key_info(key _info * keyinfo)

Writes information about the state of the keyboard into the key_info structure
referred to by keyinfo. This function permits you to get information about the
keyboard in the absence of B_KEY_DOWN messages. The key_info structure has just
two fields:

uint32 modifiers
A mask indicating which modifier keys are down and which keyboard locks are
on.

uint8 key_states[l6]
A bit array that records the state of all the keys on the keyboard, and all the
keyboard locks. This array works identically to the "states" array passed in a key
down message. See Appendix B, Keyboard Information, appendix for information
on how to read information from the array.

get_key_info {) returns B_OK if it was able to get the requested information, and
B_ERROR if the return results are unreliable.

See also: BView: :KeyDown{); Appendix B, Keyboard Information; modifiers {)

get_key _mapQ
be/interface/InterfaceDefs.h

void get_key_map(key_map **keys, char **chars)

Provides a pointer to the system key map-the structure that describes the role of
each key on the keyboard. The key map is shared by all applications; you can read
from this structure, but should not alter it.

Through the Keymap preferences application, users can configure the keyboard to
their liking. The user's preferences are stored in a file (/system/settings/Key_map).
When the machine reboots, the key map is read from this file. If the file doesn't exist,
the original map encoded in the Application Server is used.

The key _map structure contains a large number of fields, but it can be broken down
into these six parts:

• A version number.

• A series of fields that determine which keys will function as modifier keys-such
as Shift, Control, or Num Lock.

• A field that sets the initial state of the keyboard locks in the default key map.

Global Functions

• A series of ordered tables that assign character values to keys. Except for a handful
of modifier keys, all keys are mapped to characters, though they may not be
mapped for all modifier combinations.

687

• A series of tables that locate the dead keys for diacritical marks and determine
how a combination of a dead key plus another key is mapped to a particular
character.

• A set of masks that determine which modifier keys are required for a key to be
considered dead.

The following sections describe the parts of the key_map structure.

Version. The first field of the key map is a version number:

uint32 version

An internal identifier for the key map.

The version number doesn't change when the user configures the keyboard, and
shouldn't be changed programmatically either. You can ignore it.

Modifiers. Modifier keys set states that affect other user actions on the keyboard and
mouse. Eight modifier states are defined-Shift, Control, Option, Command, Menu,
Caps Lock, Num Lock, and Scroll Lock. These states are discussed under "Modifier
Keys" in Appendix B, Keyboard Information. They fairly closely match the keys caps
found on a Macintosh keyboard, but only partially match those on a standard PC
keyboard-which generally has a set of Alt(ernate) keys, rarely Option keys, and only
sometimes Command and Menu keys. Because of these differences, the mapping of
keys to modifiers is the area of the key map most open to the user's personal
judgement and taste, and consequently to changes in the default configuration.

Since two keys, one on the left and one on the right, can be mapped to the Shift,
Control, Option, and Command modifiers, the keyboard can have as many as twelve
modifier keys. The key_map structure has one field for each key:

uint32 caps_key

The key that functions as the Caps Lock key; by default, this is the key labeled
"Caps Lock," key Ox3b.

uint32 scroll_key

The key that functions as the Scroll Lock key; by default, this is the key labeled
"Scroll Lock," key OxOf.

uint32 num_key

The key that functions as the Num Lock key; by default, this is the key labeled
"Num Lock," key Ox22.

688 Chapter 4 • The Interface Kit

uint32 left_shift_key

A key that functions as a Shift key; by default, this is the key on the left labeled
"Shift," key Ox4b.

uint32 right_shift_key

Another key that functions as a Shift key; by default, this is the key on the right
labeled "Shift," key Ox56.

uint32 left_command_key

A key that functions as a Command key; by default, this is key OxSd, sometimes
labeled "Alt."

uint32 right_command_key

Another key that functions as a Command key; by default, this is key OxSf,
sometimes labeled "Alt."

uint32 left_control_key

A key that functions as a Control key; by default, this is the key labeled "Control"
on the left, key OxSc.

uint32 right_control_key

Another key that functions as a Control key; by default on keyboards that have
Option keys, this key is the key labeled "Control" on the right, key Ox60. For
keyboards that don't have Option keys, this field is unmapped (its value is O); key
Ox60 is used as an Option key.

uint32 left_option_key

A key that functions as an Option key; by default, this is key Ox66, which has
different labels on different keyboards-"Option," "Command," or a Windows
symbol. This key doesn't exist on, and therefore isn't mapped for, a standard 101-
key keyboard.

uint32 right_option_key

A key that functions as an Option key; by default, this is key Ox67, which has
different labels on different keyboards-"Option," "Command," or a Windows
symbol. For keyboards without this key, the field is mapped to the key labeled
"Control" on the right, key Ox60.

uint32 menu_key

A key that initiates keyboard navigation of the menu hierarchy; by default, this is
the key labeled with a menu symbol, key Ox68. This key doesn't exist on, and
therefore isn't mapped for, a standard 101-key keyboard.

Each field names the key that functions as that modifier. For example, when the user
holds down the key whose code is set in the right_option_key field, the
B_OPTION_KEY and B_RIGHT_OPTION_KEY bits are turned on in the modifiers mask

Global Functions

that the modifiers () function returns. When the user then strikes a character key,
the B_OPTION_KEY state influences the character that's generated.

If a modifier field is set to a value that doesn't correspond to an actual key on the
keyboard (including 0), that field is not mapped. No key fills that particular modifier
role.

Keyboard locks. One field of the key map sets initial modifier states:

uint32 lock_settings
A mask that determines which keyboard locks are turned on when the machine
reboots or when the default key map is restored.

689

The mask can be 0 or may contain any combination of these three constants:

B_CAPS_LOCK

B_SCROLL_LOCK

B_NUM_LOCK

It's 0 by default; there are no initial locks.

Altering the lock_settings field has no effect unless the altered key map is made
the default (by writing it to a file that replaces /system/settings/Key_map).

Character maps. The principal job of the key map is to assign character values to
keys. This is done in a series of nine tables:

int32 control_map[128]
The characters that are produced when a Control key is down but both Command
keys are up.

int32 option_caps_shift_map[128]
The characters that are produced when Caps Lock is on and both a Shift key and
an Option key are down.

int32 option_caps_map[128]
The characters that are produced when Caps Lock is on and an Option key is
down.

int32 option_shift_map[128]
The characters that are produced when both a Shift key and an Option key are
down.

int32 option_map[128]
The characters that are produced when an Option key is down.

690 Chapter 4 • The Interface Kit

int32 caps_shift_map[128]
The characters that are produced when Caps Lock is on and a Shift key is down.

int32 caps_map[128]
The characters that are produced when Caps Lock is on.

int32 shift_map[128]
The characters that are produced when a Shift key is down.

int32 normal_map[128]
The characters that are produced when none of the other tables apply.

Each of these tables is an array of 128 offsets into another array, the chars array of
Unicode UTF-8 character encodings. get_key_map () provides a pointer to the chars
array as its second argument.

Key codes are used as indices into the character tables. The offset stored at any
particular index maps a character to that key. For example, the code assigned to the
M key is Ox52; at index Ox52 in the option_caps_map is an offset; at that offset in
the chars array, you'll find the character that's mapped to the M key when an Option
key is held down and Caps Lock is on.

This indirection-an index to an offset to a character-is required because characters
are encoded as Unicode UTF-8 strings. Character values of 127 or less (7-bit ASCII)
are just a single byte, but UTF-8 takes two, three, or (rarely) four bytes to encodes
values over 127.

The chars array represents each character as a P.ascal string-the first byte in the
string tells how many other bytes the string contains. For example, the string for the
trademark symbol (™) looks like this:

\x03\xE2\x84\xA2

The first byte (\x03) indicates that Unicode UTF-8 takes 3 bytes to represent the
trademark symbol, and those bytes follow (\xE2\x84\xA2). Pascal strings are not
null-terminated.

The character map tables are ordered. Values from the first applicable table are used,
even if another table might also seem to apply. For example, if Caps Lock is on and a
Control key is down (and both Command keys are up), the control_map array is
used, not caps_map. If a Shift key is down and Caps Lock is on, the
caps_shift_map is used, not shift_map or caps_map.

Notice that the last eight tables (all except control_map) are paired, with a table that
names the Shift key (... _shift_map) preceding an equivalent table without Shift:

• option_caps_shift_map is paired with option_caps_map,
• option_shift_map with option_map,

Global Functions

• caps_shift_map with caps_map, and
• shift_map with normal_map.

These pairings are important for a special rule that applies to keys on the numerical
keypad when Num Lock is on:

• If the Shift key is down, the non-Shift table is used.
• However, if the Shift key is not down, the Shift table is used.

In other words, Num Lock inverts the Shift and non-Shift tables for keys on the
numerical keypad.

691

Not every key needs to be mapped to a character. If the chars array has a 0-length
string for a key, the key is not mapped to a character (given the particular modifier
states the table represents). Generally, modifier keys are not mapped to characters,
but all other keys are, at least for some tables. Key-down events are not generated for
unmapped keys.

Dead keys. Next are the tables that map combinations of keys to single characters.
The first key in the combination is "dead"-it doesn't produce a key-down event until
the user strikes another character key. When the user hits the second key, one of two
things will happen: If the second key is one that can be used in combination with the
dead key, a single key-down event reports the combination character. If the second
key doesn't combine with the dead key, two key-down events occur, one reporting
the dead-key character and one reporting the second character.

There are five dead-key tables:

int32 acute_dead_key[32]

The table for combining an acute accent (') with other characters.

int32 grave_dead_key[32]

The table for combining a grave accent (') with other characters.

int32 circumflex_dead_key[32]

The table for combining a circumflex C) with other characters.

int32 dieresis_dead_key[32]

The table for combining a dieresis (') with other characters.

int32 tilde_dead_key[32]

The table for combining a tilde C) with other characters

The tables are named after diacritical marks that can be placed on more than one
character. However, the name is just a mnemonic; it means nothing. The contents of
the table determine what the dead key is and how it combines with other characters.
It would be possible, for example, to remap the tilde_dead_key table so that it had
nothing to do with a tilde.

692 Chapter 4 • The Interface Kit

Each table consists of a series of up to 16 offset pairs-where, as in the case of the
character maps, each offset picks a character from the chars character array. The first
character in the pair is the one that must be typed immediately after the dead key.
The second character is the resulting character, the character that's produced by the
combination of the dead key plus the first character in the pair. For example, if the
first character is "o", the second might be "6"-meaning that the combination of a
dead key plus the character "o" produces a circumflexed "6".

The character pairs for the default grave_dead_key array look something like this:

'
'A', rA,1 I

'E' I IE: I I
'I I I r!•'
'0', 1Q1,

1 U 1 I 1tJ1 I

la! I la.I I

lel I ,e,'
Ii 1 I •J..r,
'Q' I IQI I

'U' I 1u.1 I

By convention, the first offset in each array is to the B_SPACE character and the
second is to the dead-key character itself. This pair does double duty: It states that the
dead key plus a space yields the dead-key character, and it also names the dead key.
The system understands what the dead key is from the second offset in the array.

Character tables for dead keys. As mentioned above, for a key to be dead, it must be
mapped to the character picked by the second offset in a dead-key array. However,
it's not typical for every key that's mapped to the character to be dead. Usually,
there's a requirement that the user must hold down certain modifier keys (often the
Option key). In other words, a key is dead only if selected character-map tables map
it to the requisite character.

Five additional fields of the key _map structure specify what those character-map
tables are-which modifiers are required for each of the dead keys:

uint32 acute_tables

The character tables that cause a key to be dead when they map it to the second
character in the acute_dead_key array.

uint32 grave_tables

The character tables that cause a key to be dead when they map it to the second
character in the grave_dead_key array.

uint32 circumflex_tables

The character tables that cause a key to be dead when they map it to the second
character in the circumflex_dead_key array.

Global Functions

uint32 dieresis_tables

The character tables that cause a key to be dead when they map it to the second
character in the dieresis_dead_key array.

uint32 tilde_tables

The character tables that cause a key to be dead when they map it to the second
character in the tilde_dead_key array.

Each of these fields contains a mask formed from the following constants:

B_CONTROL_TABLE

B_OPTION_CAPS_SHIFT_TABLE

B_OPTION_CAPS_TABLE

B_OPTION_SHIFT_TABLE

B_OPTION_TABLE

B_CAPS_SHIFT_TABLE

B_CAPS_TABLE

B_SHIFT_TABLE

B_NORMAL_TABLE

693

The mask designates the character-map tables that permit a key to be dead. For
example, if the mask for the grave_ tables field is,

B_OPTION_TABLE I B_OPTION_CAPS_SHIFT_TABLE

a key would be dead whenever either of those tables mapped the key to the
character of the second offset in the grave_dead_key array ("'" in the example
above). A key mapped to the same character by another table would not be dead.

See also: get_key_info (),modifiers ();Appendix B, Keyboard Information,
set_modifier_key()

get_key _repeat_ delay() see set_key _repeat_rate()

get_key _repeat_rate() see set_key _repeat_rate()

get_keyboard_id()
be/interface/InterfaceDefs.h

status_t get_keyboard_id(uintl6 *id)

Obtains the keyboard identifier from the Application Server and device driver and
writes it into the variable referred to by id. This number reveals what kind of
keyboard is currently attached to the computer.

The identifier for the standard 101-key PC keyboard-and for keyboards with a
similar set of keys-is Ox83ab.

If unsuccessful for any reason, get_keyboard_id () returns B_ERROR. If successful,
it returns B_OK.

694 Chapter 4 • The Interface Kit

get_menu_infoQ see set_menu_info()

get_mouse_mapQ see set_mouse_map()

get_mouse_speedQ see set_mouse_map()

get_mouse_typeQ see set_mouse_map()

get_scroll_bar _infoQ see set_scroll_bar _info()

idle_timeQ
be/interface/InterfaceDefs.h

bigtime_t idle_time(void) const

Returns the number of microseconds since the user last manipulated the mouse or
keyboard. This information isn't specific to a particular application; idle_ time ()

tells you when the user last directed an action at any application, not just yours.

keyboard_navigation_colorQ
be/interface/InterfaceDefs.h

rgb_color keyboard_navigation_color(void)

Returns the color that should be used to mark the BView that's currently in focus,
when the user can change the focus from the keyboard. The keyboard navigation
color is typically used to underline the labels of control devices and to outline. text
fields where the user can type.

See also: the BView class

modifiersQ
be/interface/InterfaceDefs.h

uint32 modifiers(void)

Returns a mask that has a bit set for each modifier key the user is holding down and
for each keyboard lock that's set. The mask can be tested against these constants:

B_SHIFT_KEY

B_CONTROL_KEY

B_OPTION_KEY

B_COMMAND_KEY

B_MENU_KEY

B_CAPS_LOCK

B_SCROLL_LOCK

B_NUM_LOCK

No bits are set (the mask is O) if no locks are on and none of the modifiers keys are
down.

Global Functions

If it's important to know which physical key the user is holding down, the one on the
right or the one on the left, the mask can be further tested against these constants:

B_LEFT_SHIFT_KEY

B_LEFT_CONTROL_KEY

B_LEFT_OPTION_KEY

B_LEFT_COMMAND_KEY

B_RIGHT_SHIFT_KEY

B_RIGHT_CONTROL_KEY

B_RIGHT_OPTION_KEY

B_RIGHT_COMMAND_KEY

695

By default, the keys closes to the space bar function as Command keys, no matter
what their labels on particular keyboards. If a keyboard doesn't have Option keys (for
example, a standard 101-key keyboard), the key on the right labeled "Control"
functions as the right Option key, and only the left "Control" key is available to
function as a Control modifier. However, users can change this configuration with the
Keymap application.

See also: "Modifier Keys" in Appendix B, Keyboard Information; get_key_map (),
get_key _info ()

run_add_printer _panelQ, run_select_printer _panelQ

be/interface/InterfaceDefs.h

void run_add_printer _panel{void)

void run_select_printer _panel(void)

These two functions have the Print Server place panels on-screen where the user can
set up a printer and choose which printer to use. run_add_printer_panel ()
displays a panel that informs the server about a new printer.
run_select_printer_panel () displays a panel that lists all known printers and
lets the user select one.

See also: the BPrintJ ob class

set_click_speedQ, get_click_speedQ
be/interface/InterfaceDefs.h

status_t set_click_speed{bigtime_t interva~

status_t get_click_speed{bigtime_t *interva~

These functions set and report the timing for multiple-clicks. For successive mouse
down events to count as a multiple-click, they must occur within the interval set by
set_click_speed () and provided by get_click_speed (). The interval is

696 Chapter 4 • The Interface Kit

measured in microseconds; it's usually set by the user in the Mouse preferences
application. The smallest possible interval is 100,000 microseconds (0.1 second).

If successful, these functions return B_OK; if unsuccessful, they return an error code,
which may be just B_ERROR.

See also: set_mouse_map ()

set_key _repeat_rate(), get_key _repeat_rate(),
set_key _repeat_delay(), get_key _repeat_delay()

be/interface/InterfaceDefs.h

status_t set_key_repeat_rate(int32 rate)

status_t get_key_repeat_rate(int32 *rate)

status_t set_key _repeat_delay(bigtime_t delay)

status_t get_key_repeat_delay(bigtime_t *delay)

These functions set and report the timing of repeating keys. When the user presses a
character key on the keyboard, it produces an immediate B_KEY_DOWN message. If
the user continues to hold the key down, it will, after an initial delay, continue to
produce messages at regularly spaced intervals-until the user releases the key or
presses another key. The delay and the spacing between messages are both
preferences the user can set with the Keyboard application.

set_key_repeat_rate () sets the number of messages repeating keys produce per
second. For a standard PC keyboard, the rate can be as low as 2 and as high as 30;
get_key_repeat_rate () writes the current setting into the integer rate refers to.

set_key _repea t_delay () sets the length of the initial delay before the key begins
repeating. Acceptable values are 250,000, 500,000, 750,000 and 1,000,000
microseconds (.25, .5, .75, and 1.0 second); get_key_repeat_delay() writes the
current setting into the variable that delay points to.

All four functions return B_OK if they successfully communicate with the Application
Server, and B_ERROR if not. It's possible for the set ... () functions to communicate
with the server but not succeed in setting the rate or delay (for example, if the delay
isn't one of the listed four values).

set_keyboard_locks()
be/interface/InterfaceDefs.h

void set_keyboard_locks(uint32 modifiers)

Tums the keyboard locks-Caps Lock, Num Lock, and Scroll Lock-on and off. The
keyboard locks that are listed in the modifiers mask passed as an argument are turned

Global Functions

on; those not listed are turned off. The mask can be 0 (to turn off all locks) or it can
contain any combination of the following constants:

B_CAPS_LOCK

B_NUM_LOCK

B_SCROLL_LOCK

See also: get_key_map (),modifiers ()

set_menu_info{), get_menu_info()

be/interface/Menu.h

status_t set_menu_info(menu_info *info)

status_t get_menu_info{menu_info *info)

697

These functions set and get the user's preferences for how menus should look and
work. User's express their preferences with the Menu application, which calls
setJ11enu_info (). get_menu_info () writes the current preferences into the
menu_info structure that into refers to. This structure contains the following fields:

float font_size
The size of the font that will be used to display menu items.

font_name font
The name of the font that's used to display menu items.

rgb_color background_color
The background color of the menu.

int32 separator
The style of horizontal line that separates groups of items in a menu. The value is
an index ranging from 0 through 2; there are three possible separators.

bool click_to_open
Whether it's possible to open a menu by clicking in the item that controls it. The
default value is true.

bool triggers_always_shown
Whether trigger characters are always marked in menus and menu bars, regardless
of whether the menu hierarchy is the target for keyboard actions. The default
value is false.

At present, both functions always return B_OK.

See also: the BMenu class

698 Chapter 4 • The Interface Kit

set_modifier _keyO

be/interface/InterfaceDefs.h

void set_modifier _key(uint32 modifier, uint32 key)

Maps a modifier role to a particular key on the keyboard, where key is a key identifier
and modifier is one of the these constants:

B_CAPS_LOCK

B_NUM_LOCK

B_SCROLL_LOCK

B_MENU_KEY

B_LEFT_SHIFT_KEY

B_LEFT_CONTROL_KEY

B_LEFT_OPTION_KEY

B_LEFT_COMMAND_KEY

B_RIGHT_SHIFT_KEY

B_RIGHT_CONTROL_KEY

B_RIGHT_OPTION_KEY

B_RIGHT_COMMAND_KEY

The key in question serves as the named modifier key, unmapping any key that
previously played that role. The change remains in effect until the default key map is
restored. In general, the user's preferences for modifier keys-expressed in the
Keymap application-should be respected.

Modifier keys can also be mapped by calling get_key_map {) and altering the
key _map structure directly. This function is merely a convenient alternative for
accomplishing the same thing. (It's currently not possible to alter the key map;
get_key_map () looks at a copy.)

See also: get_key _map ()

set_mouse_mapO, get_mouse_mapO, set_mouse_typeO,
get_mouse_typeO, set_mouse_speedO, get_mouse_speedO

be/interface/InterfaceDefs.h

status_t set_mouse_map(mouse_map *map)

status_t get_mouse_map(mouse_map *map)

status_t set_mouse_type(int32 numButtons)

status_t get_mouse_type(int32 *numButtons)

status_t set_mouse_speed(int32 acceleration)

status_t get_mouse_speed(int32 *acceleration)

These functions configure the mouse and supply information about the current
configuration. The configuration should usually be left to the user and the Mouse
preferences application.

Global Functions

set_mouse_map () maps the buttons of the mouse to their roles in the user interface,
and get_mouse_map () writes the current map into the variable referred to by map.
The mouse_map structure has a field for each button on a three-button mouse:

uint32 left
The button on the left of the mouse

uint32 right

The button on the right of the mouse

uint32 middle
The button in the middle, between the other two buttons

Each field is set to one of the following constants:

B_PRIMARY_MOUSE_BUTTON

B_SECONDARY_MOUSE_BUTTON

B_TERTIARY_MOUSE_BUTTON

The same role can be assigned to more than one physical button. If all three buttons
are set to B_PRIMARY_MOUSE_BUTTON, they all function as the primary button; if two
of them are set to B_SECONDARY_MOUSE_BUTTON, they both function as the
secondary button; and so on.

set_mouse_type () informs the system of how many buttons the mouse actually
has. If it has two buttons, only the left and right fields of the mouse_map are
operative. If it has just one button, only the left field is operative.
set_mouse_type () writes the current number of buttons into the variable referred
to by numButtons.

set_mouse_speed () sets the speed of the mouse-the acceleration of the cursor
image on-screen relative to the actual speed at which the user moves the mouse on
its pad. An acceleration value of 0 means no acceleration. The maximum acceleration
is 20, though even 10 is too fast for most users. set_mouse_speed () writes the
current acceleration into the variable referred to by acceleration.

All six functions return B_OK if successful, and an error code, typically B_ERROR, if not.

set_screen_space()

be/interface/InterfaceDefs.h

status_t set_screen_space(int32 index, uint32 space, bool makeDefault = true)

Changes the configuration of the screen-its depth and dimensions-to match the
values specified in the space constant, which can be any of the following:

699

700

B_8_BIT_640x400

B_8_BIT_640x480

B_8_BIT_800x600

B_8_BIT_1024x768

B_8_BIT_1152x900

B_8_BIT_l280x1024

B_8_BIT_1600x1200

B_16_BIT_640x480

B_l6_BIT_800x600

B_16_BIT_1024x768

B_l6_BIT_ll52x900

B_16_BIT_1280x1024

B_l6_BIT_1600x1200

Chapter 4 • The Interface Kit

B_32_BIT_640x480

B_32_BIT_800x600

B_32_BIT_l024x768

B_32_BIT_ll52x900

B_32_BIT_1280x1024

B_32_BIT_l600x1200

The first part of the constant designates the screen depth and color space. B_8_BIT ...

refers to the B_COLOR_8_BIT color space and B_32_BIT... refers to the
B_RGB_32_BIT color space. Although constants are defined for 16-bit depths, the
operating system currently doesn't support them. The second part of the constant
designates the pixel resolution of the screen. For example, B_32_BIT_1280x1024

means that the frame buffer is 32 bits deep (B_RGB_32_BIT) while the screen grid is
1,280 pixels wide and 1,024 pixels high.

This function affects the screen at index. Since the BeOS currently doesn't support
more than one screen, the only index that makes sense is 0.

The change to the screen takes effect immediately. If the makeDefault flag is true,

the new configuration also becomes the default and will be used the next time the
machine is turned on. If makeDefault is false, the configuration is in effect for the
current session only.

Since not all configurations are possible for all graphics cards, set_screen_

space () can fail. It returns B_OK if successful, and B_ERROR if not.

This function is designed for preferences applications-like the Screen application
that permit users to make system-wide choices about the screen. Other applications
should respect those choices and refrain from modifying them.

The current screen configuration can be obtained from the BScreen object.

See also: the BScreen class, BWindow: : ScreenChanged ()

set_scroll_bar _info(), get_scroll_bar _info()

be/interface/InterfaceDefs.h

status_t set_scroll_bar _info(scroll_bar_info *info)

status_t get_scroll_bar _info(scroll_bar_info *info)

These functions set and report preferences that the BScrollBar class uses when it
creates a new scroll bar. set_scroll_bar_info () reads the values contained in
the scroll_bar_info structure that info refers to and sets the system-wide

Global Functions

preferences accordingly; get_scroll_bar_info (} writes the current preferences
into the structure provided.

The scroll_bar_info structure contains the following fields:

bool proportional

701

true if scroll bars should have a knob that grows and shrinks to show what
proportion of the document is currently visible on-screen, and false if not. Scroll
knobs are proportional by default.

bool double_arrows
true if a set of double arrows (for scrolling in both directions) should appear at
each end of the scroll bar, or false if only single arrows (for scrolling in one
direction only) should be used. Double arrows are the default.

int32 knob
An index that picks the pattern for the knob. Only values of 0, 1, and 2 are
currently valid. The patterns can be seen in the ScrollBar preferences application.
The pattern at index 1 is the default.

int32 min_knob_size
The length of the scroll knob, in pixels. This is the mimmum size for a
proportional knob and the fixed size for one that's not proportional. The default
is 15.

The user can set these preferences with the ScrollBar application. Applications can
call get_scroll_bar_info (} to find out what choices the user made, but should
refrain from calling set_scroll_bar_info (}. That function is designed for utilities,
like the ScrollBar application, that enable users to set preferences that are respected
system-wide.

If successful, these functions return B_OK; if not, they return B_ERROR.

See also: the BScrollBar class

set_ workspace_count(), count_ workspaces()
be/interface/InterfaceDefs.h

void set_workspace_count(int32 num Workspaces}

int32 count_workspaces(void}

These functions set and return the number of workspaces the user has available.
There can be as many as 32 workspaces and as few as 1. The choice of how many
there should be is usually left to the user and the Workspaces application.

See also: activate_workspace (}

702 Chapter 4 • The Interface Kit

system_ colors()

be/interface/InterfaceDefs.h

const color_map *system_colors(void)

Returns a pointer to the system color map. This function duplicates the BScreen
ColorMap () function, but it permits software that isn't concerned about the on
screen display to get the color map without referring to a particular screen. (Actually
it returns the color map for the main screen.)

The color_m.ap structure returned by this function belongs to the operating system.

See also: BScreen: : ColorMap ()

update_font_families()

be/interface/Font.h

bool update_fc:int_families(bool checkOnlYJ

Updates the list of installed fonts, so that it reflects any that have been added or
removed since the last time the list was updated. Until the list is updated,
get_font_family () operates assuming the set of fonts that were installed when the
application started up. If the list is unchanged since the last update (or since startup),
this function returns false; if a font has been installed or an installed font has been
removed, it returns true.

If the checkOnly flag is true, get_font_family () only reports whether the list has
changed; it doesn't modify the current list.· If the flag is false, it contacts the
Application Server to get the updated list, a much more expensive operation.

See also: get_font_family ()

Global Variables, Constants, and D_efined Types
This section lists the various· global variables, constants, and types that the Interface
Kit defines to support the work done by its principal classes.

Global Variables
System Fonts

be/interface/Font.h

canst BFont *be_plain_font
canst BFont *be_bold_font
canst BFont *be_fixed_font

Global Variables, Constants, and Defined Types • Constants 703

These global BFont objects are created when the BApplication object is constructed.
They encapsulate the three system fonts-the plain font which is used for labels and
small stretches of text in the user interface, the bold font which is used for window
and group titles, and the fixed font which is used in Terminal windows and other
places where a fixed-width font is required.

These objects are const and cannot be modified, nor will they be modified behind
your back when the user redefines a system font. The user's changed preferences
don't affect applications already running.

See also: the BFont class

Constants
alert_type Constants

be/interface/Alert.h

Constant

B_EMPTY _ALERT

B_INFO_ALERT

B_IDEA_ALERT

B_WARNING_ALERT

B_STOP _ALERT

These constants designate the various types of alert panels that are recognized by the
system. The type corresponds to an icon that's displayed in the alert window.

See also: the BAlert constructor

alignment Constants

be/interface/InterfaceDefs.h

Constant

B_ALIGN_LEFT

B_ALIGN_RIGHT

B_ALIGN_CENTER

These constants define the alignment data type. They determine how lines of text
and labels are aligned by BTextView, BStringView, and BMenuField objects.

See also: BTextView:: SetAlignment ()

704

button_ width Constants
be/interface/Alert.h

Constant

B_ WIDTH_AS_USUAL

B_ WIDTH_FROM_LABEL

B_ WIDTH_FROM_ WIDEST

Chapter 4 • The Interface Kit

These constants define the button_width type. They determine how the width of
the buttons in an a.lert panel will be set-whether they're set to an standard (minimal)
width, a width just sufficient to accommodate the button's own label, or a width
sufficient to accommodate the widest label of all the buttons.

See also: the BAlert constructor

border _style Constants
be/interface/InterfaceDefs.h

Constant

B_PLAIN_BORDER

B_FANCY _BORDER

B_NO_BORDER

These constants define how BBox objects and BScrollViews are bordered.

See also: the BScrollView and BBox classes

Character Constants
be/interface/InterfaceDefs.h

Constant

B_BACKSPACE

B_ENTER

B_RETURN

B_SPACE

B_TAB

B_ESCAPE

B_LEFT _ARROW

B_RIGHT _ARROW

B_UP_ARROW

Character value

Ox08 (same as "\b")

OxOa (same as "\n")

OxOa (synonym for B~ENTER)

Ox20 (same as " ")

Ox09 (same as "\t")

Oxlb

Oxlc

Oxld

Ox le

Global Variables, Constants, and Defined Types • Constants 705

Constant Character value

B_DOWN_ARROW Oxlf

B_INSERT Ox05

B_DELETE Ox7f

B_HOME OxOl

B_END Ox04

B_PAGE_UP Ox Ob

B_PAGE_DOWN OxOc

B_FUNCTION_KEY OxlO

B_UTFS_ELLIPSIS "\xE2\x80\xA6"

B_UTFS_OPEN_QUOTE "\xE2\x80\x9C"

B_UTFS_CLOSE_QUOTE "\xE2\x80\x9D"

B_UTFS_COPYRIGHT "\xC2\xA9"

B_UTFS_REGISTERED "\xC2\xAE"

B_UTF8_ TRADEMARK· "\xE2\x84\xA2"

B_UTFS_SMILING_FACE "\xE2\x98\xBB"

B_UTFS_HIROSHI "\xE5\xBC\x98"

Constants in the first group stand for the ASCII characters they name. They're defined
only for characters that normally don't have visible symbols.

Constants in the second group are Unicode UTF-8 encodings of common characters
that have multibyte representations. These constants are strings that can be concat
enated with other strings-for example, to set a button label that ends in an ellipsis:

myButton->SetLablel("Options"B_UTF_ELLIPSIS);

See also: "Function Key Constants" below

color _space Constants

be/interface/GraphicDefs.h

Constant

B_MONOCHROME_ 1_BIT

B_ GRA YSCALE_S_BIT

B_COLOR_S_BIT

B_RGB_ 16_BIT

B_RGB_32_BIT

B_BIG_RGB_ 16_BIT

B_BIG_RGB_32_BIT

B_NO_COLOR_SPACE

706 Chapter 4 • The Interface Kit

These constants define the color_space data type. A color space describes three
properties of screens and bitmap images:

• How many bits of information there are per pixel (the depth of the image)

• How those bits are to be interpreted (whether as colors or on a grayscale, what
the color components are, and so on).

• How are components are arranged

See the "Color Spaces" section in the "Drawing" section of this chapter for a fuller
explanation of the color spaces currently defined for this type, particularly
B_RGB_32_BIT.

See also: "Colors" in the "Drawing" section of this chapter, the BBitmap and BScreen
classes

Control Values

be/interface/Control.h

Constant Value

B_CONTROL_ON 1

B_CONTROL_OFF 0

These constants define the bipolar states of a typical control device.

See also: BControl: : SetValue ()

Cursor Transit Constants

be/interface/View.h

Constant

B_ENTERED_ VIEW

B_INSIDE_ VIEW

B_EXITED_ VIEW

Meaning

The cursor has just entered a view.

The cursor has moved within the view.

The cursor has left the view.

These constants describe the cursor's transit through a view. Each MouseMoved ()

notification includes one of these constants as an argument, to inform the BView
whether the cursor has entered the view, moved while inside the view, or exited the
view.

See also: BView: : MouseMoved ()

Global Variables, Constants, and Defined Types • Constants 707

Dead-Key Mapping

be/interface/InterfaceDefs.h

Constant

B_ CONTROL_ TABLE

B_ OPTION_CAPS_SHIFT _TABLE

B_OPTION_CAPS_ TABLE

B_ OPTION_SHIFT _TABLE

B_OPTION_ TABLE

B_CAPS_SHIFT _TABLE

B_CAPS_TABLE

B_SHIFT _TABLE

B_NORMAL_ TABLE

These constants determine which combinations of modifiers can cause a key to be
the "dead" member of a two-key combination.

See also: get_key_m.ap ()

drawing_mode Constants

be/interface/GraphicsDefs.h

Constant Constant

B_OP_COPY B_OP_ADD

B_OP_OVER B_OP _SUBTRACT

B_OP_ERASE B_OP_BLEND

B_OP _INVERT B_OP_MIN

B_OP_SELECT B_OP_MAX

These constants define the drawing_mode data type. The drawing mode is a BView
graphics parameter that determines how the image being drawn interacts with the
image already in place in the area where it's drawn. The various modes are explained
under "Drawing Modes" in the "Drawing" section of this chapter.

See also: "Drawing Modes" in the "Drawing" section of this chapter,
BView::SetDrawingMode()

708

font_direction Constants

be/interface/Font.h

Constant

B_FONT _LEFT_ TO_RIGHT

B_FONT _RIGHT_ TO_LEFT

Chapter 4 • The Interface Kit

These constants tell whether a font is used for text that's read left-to-right or right-to
left Thus is an inherent property of the font.

See also: BFont: : Direction ()

Font Encodings

be/interface/Font.h

Constant

B_UNICODE_UTFS

B_IS0_8859_1

B_IS0_8859_2

B_IS0 _8859 _3

B_IS0_8859_ 4

B_IS0_8859_5

B_IS0_8859_6

B_IS0_8859_7

B_IS0_8859_8

B_IS0_8859_9

B_IS0_8859_10

B_MACINTOSH_ROMAN

The constants name the various character encodings that the BeOS supports.
B_UNICODE_UTF8 is the default encoding. It matches ASCII values for 7-bit character
codes but uses multiple bytes to encode other values in the Unicode standard.

See also: BFont: : SetEncoding (), "Character Encoding" in the "Responding to the
User" section of this chapter

Global Variables, Constants, and Defined Types • Constants

Font Flags

be/interface/Font.h

Constant

B_DISABLE_ANTIALIASING

B_IS_FIXED

709

B_HAS_ TUNED_FONT

The first flag, B_DISABLE_ANTIALIASING, is passed to a BFont object to turn
antialiasing off. Antialiasing should be turned off when printing, but should generally
be left on when drawing to the screen.

The other two flags enable get_font_farnily () and get_font_style () to give
information about a font. B_IS_FIXED indicates that the font is nonproportional.
B_HAS_TUNED_FONT indicates that the family or style has one or more tuned fonts
bitmap fonts that have been adjusted to look good on the screen-for some set of
font properties (such as size and shear).

See also: BFont: : SetFlags (), get_font_farnily ()

Font Name Lengths

be/interface/Font.h

Constant Value

B_FONT _FAMILY _NAME_LENGTH 63

B_FONT _STYLE_NAME_LENGTH 63

These constants define the maximum length of names for font families and styles,
exclusive of a null terminator. They're used in the definition of the font_farnily and
font_style types.

See also: font_farnily under "Defined Types" below

Font Properties

be/interface/View.h

Constant

B_FONT _FAMILY _AND_STYLE

B_FONT _SIZE

B_FONT_SHEAR

B_FONT _ROTATION

710

Constant

B_FONT _SPACING

B_FONT _ENCODING

B_FONT _FACE

B_FONT _FLAGS

B_FONT_ALL

Chapter 4 • The Interface Kit

These constants list the font properties that can be set for a BView individually or in
combination. The constants form a mask that's passed, along with a BFont object, to
BView's SetFont () and BTextView's SetFontAndColor () functions. For example:

myView->SetFont(theFont, B_FONT_SIZE I B_FONT_ENCODING);

B_FONT_ALL stands for all properties of the BFont.

See also: BView: : SetFont ()

Font Spacing Modes

be/interface/Font.h

Constant

B_CHAR_SPACING

B_STRING_SPACING

B_BITMAP _SPACING

B_FIXED_SPACING

These constants enumerate the four modes for positioning characters in a line of text.

See also: BFont:: SetSpacing ()

Function Key Constants

be/interface/InterfaceDefs.h

Constant

B_F1_KEY

B_F2_KEY

B_F3_KEY

B_F4_KEY

B_FS_KEY

B_F6_KEY

B_F?_KEY

B_FB_KEY

Constant

B_F9_KEY

B_F10_KEY

B_F11_KEY

B_F12_KEY

B_PRINT _KEY (the "Print Screen" key)

B_SCROLL_KEY (the "Scroll Lock" key)

B_PAUSE_KEY

Global Variables, Constants, and Defined Types • Constants 711

These constants stand for the various keys that are mapped to the B_FUNCTION_KEY

character. When the B_FUNCTION_KEY character is reported in a key-down event, the
application can determine which key produced the character by testing the key code
against these constants. (Control-p also produces the B_FUNCTION_KEY character.)

See also: "Character Mapping" in Appendix B, Keyboard Information

Interface Messages

be/app/AppDefs.h

Constant

B_ZOOM

B_MINIMIZE

B_ WINDOW _RESIZED

B_ WINDOW _MOVED

B_ WINDOW _ACTIVATED

B_QUIT _REQUESTED

B_SCREEN_CHANGED

B_ WORKSPACE_ACTIVATED

B_ WORKSPACES_CHANGED

Constant

B_KEY_DOWN

B_KEY_UP

B_MOUSE_DOWN

B_MOUSE_UP

B_MOUSE_MOVED

B_ VIEW _RESIZED

B_ VIEW _MOVED

B_VALUE_CHANGED

B_PULSE

These constants identify interface messages-system messages that are delivered to
BWindow objects. Each constant conveys an instruction to do something in particular
(B_ZOOM) or names a type of event (B_KEY_DOWN).

See also: "Interface Messages" in the "Responding to the User" section of this chapter

list_view_type Constants

be/interface/ListView.h

Constant

B_SINGLE_SELECTION_LIST

B_MUL TIPLE_SELECTION_LIST

These constants distinguish between lists that permit the user to select only one item
at a time and those that allow multiple items to be selected.

See also: the BListView class

712 Chapter 4 • The Interface Kit

Main Screen

be/interface/Screen.h

const screen_id B_MAIN_SCREEN_ID

This constant stands for the main screen, the screen that has the origin of the screen
coordinate system at its left top corner. (Currently only one screen can be attached to
the computer and it is the main screen.)

See also: screen_id

menu_bar _border Constants

be/interface/MenuBar.h

Constant

B_BORDER_FRAME

B_BORDER_CONTENTS

B_BORDER_EACH_ITEM

Meaning

Put a border inside the entire frame rectangle.

Put a border around the group of items only.

Put a border around each item.

These constants can be passed as an argument to BMenuBar's SetBorder ()
function.

See also: BMenuBar: : SetBorder ()

menu_layout Constants

be/interface/Menu.h

Constant

B_ITEMS_IN_ROW

B_ITEMS_IN_COLUMN

B_ITEMS_IN_MATRIX

Meaning

Menu items are arranged horizontally, in a row.

Menu items are arranged vertically, in a column.

Menu items are arranged in a custom fashion.

These constants define the menu_layout data type. They distinguish the ways that
items can be arranged in a menu or menu bar-they can be laid out from end to end
in a row like a typical menu bar, stacked from top to bottom in a column like a
typical menu, or arranged in some custom fashion like a matrix.

See also: the BMenu and BMenuBar constructors

Global Variables, Constants, and Defined Types • Constants 713

Modifier States

be/interface/InterfaceDef.h

Constant

B_SHIFT _KEY

B_LEFT _SHIFT _KEY

B_RIGHT _SHIFT _KEY

B_ CONTROL_KEY

B_LEFT _CONTROL_KEY

B_RIGHT _CONTROL_KEY

B_CAPS_LOCK

B_SCROLL_LOCK

B_NUM_LOCK

Constant

B_OPTION_KEY

B_LEFT _OPTION_KEY

B_RIGHT _OPTION_KEY

B_COMMAND_KEY

B_LEFT _COMMAND_KEY

B_RIGHT _COMMAND_KEY

B_MENU_KEY

These constants designate the Shift, Option, Control, Command, and Menu modifier
keys and the lock states set by the Caps Lock, Scroll Lock, and Num Lock keys.
They're typically used to form a mask that describes the current, or required, modifier
states.

For each variety of modifier key, there are constants that distinguish between the
keys that appear at the left and right of the keyboard, as well as one that lumps both
together. For example, if the user is holding the left Control key down, both
B_CONTROL_KEY and B_LEFT_CONTROL_KEY will be set in the mask.

See also: modifiers () , BWindow: : AddShortcu t () , the BMenu constructor

Mouse Buttons

be/interface/View.h

Constant

B_PRIMARY _MOUSE_BUTTON

B_SECONDARY _MOUSE_BUTTON

B_ TERTIARY _MOUSE_BUTTON

These constants name the mouse buttons. Buttons are identified, not by their physical
positions on the mouse, but by their roles in the user interface.

See also: BView: : GetMouse () , set_mouse_map ()

714

Orientation Constants

be/interface/InterfaceDef.h

Constant

B_HORIZONT AL

B_VERTICAL

Chapter 4 • The Interface Kit

These constants define the orientation data type that distinguishes between the
vertical and horizontal orientation of graphic objects. It's currently used only to
differentiate scroll bars.

See also: the BScrollBar and BScrollView classes

Pattern Constants

be/interface/GraphicsDef.h

canst pattern B_SOLID_HIGH = { Oxff, Oxff, Oxff, Oxff, Oxff,Oxff, Oxff, Oxff}

canst pattern B_SOLID_LOW = { OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO }

canst pattern B_MIXED_COLORS

= { Oxaa, Ox55, Oxaa, Ox55, Oxaa, Ox55, Oxaa, Ox55 }

These constants name the three standard patterns defined in the Interface Kit.

B_SOLID_HIGH is a pattern that consists of the high color only. It's the default pattern
for all BView drawing functions that stroke lines and fill shapes.

B_SOLID_LOW is a pattern with only the low color. It's used mainly to erase images
(to replace them with the background color).

B_MIXED_COLORS alternates pixels between the high and low colors in a
checkerboard pattern. The result is a halftone midway between the two colors. This
pattern can produce fine gradations of color, especially when the high and low colors
are set to two colors that are already quite similar.

See also: "Patterns" in the "Drawing" section of this chapter

Resizing Modes

be/interface/View.h

Constants

B_FOLLOW _LEFT

B_FOLLOW _RIGHT

B_FOLLOW _LEFT _RIGHT

Global Variables, Constants, and Defined Types • Constants 715

Constants

B_FOLLOW _H_ CENTER

B_FOLLOW _TOP

B_FOLLOW _BOTTOM

B_FOLLOW _TOP _BOTTOM

B_FOLLOW _ V _CENTER

B_FOLLOW _ALL

B_FOLLOW _:._NONE

These constants are used to set the behavior of a view when its parent is resized.
They're explained under the BView constructor.

See also: the BView constructor, BView:: SetResizingMode ()

Screen Spaces
be/interface/GraphicsDef.h

Constant

B_8_BIT _640x480

B_B_BIT _800x600

B_B_BIT_1024x768

B_8_BIT _ 1152x900

B_8_BIT_1280x1024

B_B_BIT_1600x1200

B_16_BIT_640x480

B_ 16_BIT _800x600

B_16_BIT_1024x768

B_ 16_BIT _ 1152x900

B_ 16_BIT _ 1280x1024

B_ 16_BIT _ 1600x1200

Constant

B_32_BIT _640x480

B_32_BIT_800x600

B_32_BIT _ 1024x768

B_32_BIT _ 1152x900

B_32_BIT _ 1280x1024

B_32_BIT_1600x1200

B_8_BIT _640x400

These constants are currently used to configure the screen-to set its depth and the
size of the pixel grid it displays--as well as to report which configurations are
possible. However, they may not be supported in the future. 16-bit depths are not
currently supported

See also: set_screen_space () , get_screen_info ()

716

Scroll Bar Constants
be/interface/ScrollBar.h

Constant

B_H_SCROLL_BAR_HEIGHT

B_ V _SCROLL_BAR_ WIDTH

Chapter 4 • The Interface Kit

These constants record the recommended thickness of scroll bars. They should be
used to help define the frame rectangles passed to the BScrollBar constructor.

See also: the BScrollBar class

String Truncation Constants
be/interface/Font.h

Constant

B_ TRUNCATE_END

B_TRUNCATE_BEGINNING

B_ TRUNCATE_MIDDLE

B_ TRUNCATE_SMART

These constants instruct a BFont where it should remove characters from a set of
strings to shorten them.

See also: BFont: : GetTruncatedStrings ()

Transparency Constants
be/interface/GraphicsDefs.h

const uint8 B_ TRANSPARENT _S_BIT

const rgb_color B_ TRANSPARENT _32_BIT

These constants set transparent pixel values in a bitmap image.
B_TRANSPARENT_8_BIT designates a transparent pixel in the B_COLOR_8_BIT color
space, and B_TRANSPARENT_32_BIT designates a transparent pixel in the
B_RGB_32_BIT color space.

Transparency is explained in the "Drawing Modes;' part of the "Drawing" section of
this chapter. Drawing modes other than B_OP _COPY preserve the destination image
where a source bitmap is transparent.

See also: "Drawing Modes" in the "Drawing" section of this chapter, the BBitmap
class, BView: : SetVieWColor ()

Global Variables, Constants, and Defined Types • Constants 717

View Flags

be/interface/View.h

Constant

B_FULL_UPDATE_ ON_RESIZE

B_WILL_DRAW

B_PULSE_NEEDED

B_FRAME_EVENTS

B_NAVIGABLE

B_NAVIGABLEJUMP

Meaning

Include the entire view in the clipping region.

Allow the BView to draw.

Report pulse events to the BView.

Report view-resized and view-moved events.

Let users navigate to the view with the Tab key.

Mark the view for Control-Tab navigation.

These constants can be combined to form a mask that sets the behavior of a BView
object. They're explained in more detail under the class constructor. The mask is
passed to the constructor, or to the SetFlags () function.

See also: the BView constructor, BView:: SetFlags ()

Window Flags

be/interface/Window.h

Constant

B_NOT _MOVABLE

B_NOT _H_RESIZABLE

B_NOT _ V _RESIZABLE

B_NOT _RESIZABLE

B_ WILL_ACCEPT _FIRST _CLICK

Constant

B_NOT _CLOSABLE

B_NOT _ZOOMABLE

B_NOT _MINIMIZABLE

B_ WILL_FLOAT

These constants set the behavior of a window. They can be combined to form a mask
that's passed to the BWindow constructor.

See also: the BWindow constructor

window _type Constants

be/interface/Window.h

Constant

B_MODAL_ WINDOW

B_BORDERED_ WINDOW

Meaning

The window is a modal window.

The window has a border but no title tab.

718

Constant

B_ TITLED_ WINDOW

B_DOCUMENT _WINDOW

Chapter 4 • The Interface Kit

Meaning

The window has a border and a title tab.

The window has a border, tab and resize knob.

These constants describe the various kinds of windows that can be requested from
the Application Server.

See also: the BWindow constructor

Workspace Constants
be/interface/Window.h ·

Constant

B_CURRENT _WORKSPACE

B_ALL_ WORKSPACES

These constants are used--along with designations of specific workspaces-to
associate a set of one or more workspaces with a BWindow.

See also: the BWindow constructor, BWindow: : SetWorkspaces ()

Defined Types
alert_ type

be/interface/Alert.h

typedef enum {. . .} alert_type

These constants name the various types of alert panel.

See also: "alert_ type Constants", the BAlert constructor

alignment
be/interface/InterfaceDefs.h

typedef enum {. .. } alignment

Alignment constants determine where lines of text are placed in a view.

See also: "alignment Constants", BTextView: : SetAlignment ()

Global Variables, Constants, and Defined Types • Defined Types

button_ width

be/interface/Alert.h

typedef enum {. .. } button_width

These constants name the methods that can be used to determine how wide to make
the buttons in an alert panel.

See also: "button_width Constants", the BAlert constructor

color_map

be/interface/GraphicsDefs.h

typedef struct {
int32 id;
rgb_color color _list[256];
uint8 inversion_map[256];
uint8 index_map[32768];

} color_map

719

This structure contains information about the 8-bit color context for a particular
screen. All applications that display on the screen share the same color map.

See also: BScreen: : ColorMap ()

color _space

be/interface/GraphicsDefs.h

typedef enum {. .. } color_space

Color space constants determine the depth and interpretation of bitmap images.
They're described under "Colors" in the "Drawing" section of this chapter.

See also: "color_space Constants"

drawing_mode

be/interface/GraphicsDefs.h

typedef enum {. .. } drawing_mode

The drawing mode determines how source and destination images interact.

See also: "Drawing Modes" in the "Drawing" section of this chapter, "drawing_mode

Constants"

720

edge_info
be/interface/Font.h

typedef struct {
float left;

float right;
} edge_info

Chapter 4 • The Interface Kit

This structure records information about the location of a character outline within the
horizontal space allotted to the character. Edges separate one character from adjacent
characters on the left and right. They're explained under the GetEdges () function in
the BFont class.

See also: BFont: : GetEscapements ()

escapement_ delta
be/interface/Font.h·

typedef struct {
float nonspace;

float space;
} escapement_delta

This structure contains values that should be added to the width of each character in
a string when the string is drawn.

See also: BView: :Drawstring (), BFont: :GetEscapements ()

font_ direction
be/interface/Font.h

typedef enum { .. .} font_direction

This type distinguishes between fonts that are read left-to-right (B_FONT_LEFT_

TO_RIGHT) and those that are read right-to-left (B_FONT_RIGHT_TO_LEFT).

See also: BFont: : Direction ()

font_family
be/interface/InterfaceDefs.h

typedef char font_family[B_FONT _FAMILY _LENGTH + 1]

This type defines a string long enough to hold the name of a font family-64
characters including the null terminator.

See also: get_font_family ()

Global Variables, Constants, and Defined Types • Defined Types

font_height

be/interface/Font.h

typedef struct {
float ascent;
float descent;
float leading;

} font_height

This type combines the three vertical measurements that determine the height of a
line of text.

See also: BFont: : GetHeight ()

font_style

be/interface/InterfaceDefs.h

typedef char font_style[B_FONT _STYLE_LENGTH + 1]

721

This type defines a string long enough to hold the name of a font style-64 characters
including the null terminator.

See also: get_font_style ()

key_info

be/interface/View.h

typedef struct {
uint32 modifiers;
uint8 key_states[16];

} key_info

This structure is used to get information about the current state of the keyboard in the
absence of B_KEY_DOWN messages.

See also: get_key _info ()

key_map

be/interface/InterfaceDefs.h

typedef struct {
uint32 version;
uint32 caps_key;
uint32 scroll_key;

722

uint32 num:__key;
uint32 left_shift_key;
uint32 right_shift_key;
uint32 left_command_key;
uint32 right_command_key;.
uint32 left_control_key;
uint32 right_control_key;
uint32 left_option_key;
uint32 right_option_key;
uint32 menu_key;
uint32 lock_settings;
int32 control_map[128];
int32 option_caps_shift_map[128];

int32 option_caps_map[128];
int32 option_shift_map[128];
int32 option_map[128];
int32 caps_shift_map[l28];
int32 caps_map[128];
int32 shift_map[128];
int32 normal_map[128];
int32 acute_dead_key[32];
int32 grave_dead_key[32];
int32 circumflex_dead_key[32];
int32 dieresis_dead_key[32];
int32 tilde_dead_key[32];
uint32 acute_tables;
uint32 grave_tables;
uint32 circumflex_tables;
uint32 dieresis_tables;

uint32 tilde_tables;
} key_map

Chapter 4 • The Interface Kit

This structure maps the physical keys on the keyboard to their functions in the user

interface. It holds the tables that assign characters to key codes, set up dead keys, and
determine which keys function as modifiers. There's just one key map shared by all
applications running on the same machine.

See also: get_key _map ()

menu_bar _border

be/interface/MenuBar.h

typedef en um {. . .} menu_bar _border

Global Variables, Constants, and Defined Types • Defined Types

This type enumerates the ways that a menu bar can be bordered.

See also: BMenuBar: : SetBorder () , "menu_bar_border Constants" above

menu_info

be/interface/Menu.h

typedef struct {
float font_size;

font_name font;

rgb_color background_color;

int32 separator;

bool click_to_open;

bool triggers_always_shown;

} menu_info

This structure records the user's menu preferences.

See also: set_menu_info (), the BMenu class

menu_layout

be/interface/Menu.h

typedef enum {. . .} menu_layout

This type distinguishes the various ways that items can arranged in a menu or menu
bar.

See also: the BMenu class, "menu_layout Constants" above

mouse_map

be/interface/InterfaceDefs.h

typedef struct {
uint32 left;

uint32 right;

uint32 middle;

} mouse_map

This structure maps mouse buttons to their roles as the B_PRIMARY_MOUSE_BUTTON,
B_SECONDARY_MOUSE_BUTTON, orB_TERTIARY_MOUSE_BUTTON.

See also: set_mouse_map ()

723

724 Chapter 4 • The Interface Kit

orientation

be/interface/InterfaceDefs.h

typedef enum (. . .} orientation

This type distinguishes between the B_VERTICAL and B_HORIZONTAL orientation of
scroll bars.

See also: the BScrollBar and BScrollView classes

pattern

be/interface/GraphicsDefs.h

typedef struct {
uchar data[8];

} pattern

A pattern is a arrangement of two. colors-the high color and the low color-in an 8-
pixel by 8-pixel square. Pixels are specified in rows, with one byte per row and one
bit per pixel. Bits marked 1 designate the high color; those marked 0 designate the
low color. An example and an illustration are given under "Patterns" in the "Drawing
section of this chapter.

See also: "Pattern Constants" above

print_file_header

be/interface/PrintJob.h

typedef struct {
long version;
long page_count;
long _reserved_ 1_;
long _reserved_2_;
long _reserved_3_;
long _reserved_ 4_;
long _reserved_S_;

} print_file_header

This structure defines the header information for a print job. Although declared
publicly, it currently is used only internally by the BPrintJob class.

Global Variables, Constants, and Defined Types • Defined Types

rgb_color

be/interface/GraphicsDefs.h

typedef struct {
uint8 red;

uint8 green;

uint8 blue;

uint8 alpha;

} rgb_color

725

This type specifies a full 32-bit color. Each component can have a value ranging from
a minimum of 0 to a maximum of 255.

The alpha component, which is designed to specify the coverage of the color (how
transparent or opaque it is), is currently ignored. However, an rgb_color can be
made completely transparent by assigning it the special value,
B_TRANSPARENT_32_BIT.

See also: BView: : SetHighColor ()

screen_id

be/interface/Screen.h

typedef struct {
int32 id;

} screen_id

This type is a unique identifier for a screen. The constant B_MAIN_SCREEN_ID is a
screen_id that identifies the main screen.

See also: the BScreen class

screen_info

be/interface/InterfaceDefs.h

typedef struct {
color_space mode;

BRect frame;

uint32 spaces;

float min_refresh_rate;

float max_refresh_rate;

float refresh_rate;

uchar h_position;

uchar v_position;

726

uchar h_size;

uchar v_size;

} screen_info

Chapter 4 • The Interface Kit

This structure holds information about a screen. Its fields are explained under the
get_screen_info () global function.

See also: get_screen_info ()

scroll_bar _info

be/interface/InterfaceDefs.h

typedef struct {
bool proportional;

bool double_arrows;

int32 knob;

int32 min_knob_size;

} scroll_bar _info

This structure captures the user's preferences for how scroll bars should behave and
appear.

See also: set_scroll_bar_info (), the BScrollBar class

text_ run

be/interface/TextView.h

typedef struct {
int32 offset;

BFont font;

rgb_color color;

} text_run

The BTextView class uses this structure to keep track of a sequence of characters that
are displayed in the same font and color.

See also: BTextView:: SetRunArray()

text_ru n_array

be/interface/TextView.h

typedef struct {
int32 count;

text_run runs[];

} text_run_array

Global Variables, Constants, and Defined Types • Defined Types

The BTextView class uses this structure to associate character formats with the text it
displays.

See also: BTextView: : SetRunArray ()

tuned_font_info

be/interface/Font.h

typedef struct {
float size;

float shear;

float rotation;

int32 flags;

int16 face;

} tuned_font_info

This structure lists the properties of a font that has a counterpart that's been tuned to
improve its appearance on-screen. The tuned counterpart will be used whenever the
font is the BView's current font and Drawstring () draws to the screen.

See also: BFont: : GetTunedinfo (), get_font_family ()

window_type

be/interface/Window.h

typedef enum {. .. } window_type

This type describes the various kinds of windows that can be requested from the
Application Server.

See also: the BWindow constructor, "window_ type Constants"

727

CHAPTER FIVE

The Kernel Kit

Introduction

Threads and Teams
Overview

Thread Functions

Ports
Overview

Port Functions

Semaphores
Overview

The Full Story

Example 1: Using a Semaphore as a Lock

Example 2: Using Semaphores to Impose an Execution Order

Semaphore Functions

Areas
Overview
Example 1: Creating and Writing into an Area

Example 2: Reading a File into an Area

Example 3: Accessing a Designated Area

Example 4: Cloning and Sharing an Area

Example 5: Cloning Addresses

Area Functions

Images
Overview

Image Functions

System and Time Information
System Info Functions and Structures

Time Functions

729

731

732
732
742

752
752
755

761
761
762
765
767
768

773
773
777
778
779
780
782
782

789
789
795

799
800
802

730

Miscellaneous Functions and Constants
Miscellaneous Functions
Constants

Chapter 5 • The Kernel Kit

803
803
804

CHAPTER FIVE

The Kernel Kit

The Kernel Kit is a collection of C functions that let you define and control the
contexts in which your application operates. There are five main topics in the Kit:

• "Threads and Teams." A thread is a synchronous computer process. By creating
multiple threads, you can make your application perform different tasks at (vir

tually) the same time. A team is the collection of threads your application creates.

• "Ports." A port can be thought of as a mailbox for threads: A thread can write a
message to a port, and some other thread (or, less usefully, the same thread) can
then retrieve the message.

• "Semaphores." A semaphore is a system-wide counting variable that can be used
as a lock that protects a piece of code. Before a thread is allowed to execute the
code, it must acquire the semaphore that guards it. Semaphores can also be used
to synchronize the execution of two or more threads.

• "Areas." The area functions let you allocate large chunks of virtual memory. The
two primary features of areas are: They can be locked into the CPU's on-chip
memory, and the data they hold can be shared between applications.

• "Images." An image is compiled code that can be dynamically linked into a
running application. By loading and unloading images you can make run-time
decisions about the resources that your application has access to. Images are of
particular interest to driver designers.

The rest of the chapter describes these topics in detail. The final sections, "System
and Time Information" and "Miscellaneous Functions and Constants," fill in the gaps.

NOTE

The Kernel Kit also includes some straight C file system functions (declared in
the fs_ *.h header files), which are described in Chapter 3, Tbe Storage Kit.

731

732

Threads and Teams
Declared in:

Library:

Overview

be/kerneVOS.h

lib be.so

Chapter 5 • The.Kernel Kit

A thread is a synchronous process that executes a series of program instructions.
Every application has at least one thread: When you launch an application, an initial
thread-the main thread-is automatically created (or spawned) and told to run. The
main thread executes the ubiquitous main () function, winds through the functions
that are called from main () , and is automatically. deleted (or killed) when main ()

exits.

The Be operating system is multi-threaded: From the main thread you can spawn and
run additional threads; from each. of these threads you can spawn and run more
threads, and so on. All the threads in all applications run concurrently and
asynchronously with each other.

Threads -are independent of each other. Most notably, a given thread doesn't own the
other threads it has spawned. For example, if thread A spawns thread B, and thread A
dies (for whatever reason), thread B will continue to run. (But before you get carried
away with the idea of leap-frogging threads, you should take note of the caveat in
"Death and the Main Thread.")

WARNING

Threads and the POSIX fork() function are not compatible. You can't mix calls
to spawn_ thread () (the function that creates a new thread) and fork () in
the same application: If you call spawn_ thread () and then try to call fork () ,

the fork () call will fail. And vice versa.

Teams

Although threads are independent, they do fall into groups called teams. A team
consists of a main thread and all other threads that "descend" from it (that are
spawned by the main thread directly or by any thread that was spawned by the main
thread, and so on). Viewed from a higher level, a team is the group of threads that
are created by a single application. You can't "transfer" threads from one team to
another. The team is set when the thread is spawned; it remains the same throughout
the thread's life.

All the threads in a particular team share the same address space: Global variables
that are declared by one thread will be visible to all other threads in that team.

Threads and T earns • Overview 733

Spawning a Thread

You spawn a thread by calling the spawn_thread () function. The function assigns
and returns a system-wide thread_id number that you use to identify the new
thread in subsequent function calls. Valid thread_id numbers are positive integers;
you can check the success of a spawn thus:

thread_id my_thread = spawn_thread(...);

if ((my_thread) < B_NO_ERROR)
/* failure */

else
/* success */

The arguments to spawn_ thread (), which are examined throughout this
description, supply information such as what the thread is supposed to do, the
urgency of its operation, and so on.

Threads and App Images

A conceptual neighbor of spawning a thread is the act of loading an executable (or
loading an app image). This is performed by calling the load_image () function.
Loading an image causes a separate program, identified as a file, to be launched by
the system. For more information on the load_image () function, see "Images."

Telling a Thread to Run

Spawning a thread isn't enough to make it run. To tell a thread to start running, you
must pass its thread id number to either the resume_thread () or
wai t_for_thread () function:

• resume_ thread () starts the new thread running and immediately returns. The
new thread runs concurrently and asynchronously with the thread in which
resume_ thread () was called.

• wait_for_thread() starts the thread running but doesn't return until the thread
has finished. (You can also call wait_for_thread() on a thread that's already
running.)

Of these two functions, resume_ thread () is the more common means for starting a
thread that was created through spawn_ thread () . wai t~for_thread () is
typically used to start the thread that was created through load_image () .

The Thread Function

When you call spawn_ thread () , you must identify the new thread's thread
function. This is a global C function (or a static C++ member function) that the new

734 Chapter 5 • The Kernel Kit

thread will execute when it's told to run. When the thread function exits, the thread is
automatically killed.

The thread_func type represents a pointer to a thread function:

typedef int32 (*thread_func) (void*);

• The function accepts a pointer to a buffer of arbitrarily-typed data. What the
function does with the data is up to your application. (See "The Thread Function's
Argument" for more information and caveats.)

• The return value is a 32-bit integer value that's typically interpreted as an error
code. To whom the value is returned is explored in "Thread Function Return
Values".

• The function's name isn't prescribed by the protocol; in other words, a thread
function doesn't have to be named "thread_func".

You specify a thread function by passing a thread_func as the first argument to
spawn_ thread () ; the last argument to spawn_ thread () is forwarded as the thread
function's data argument. Since data is delivered as a void *, you have to cast the
value to the appropriate type within your implementation of the thread function. For
example, let's say you define a thread function called lister () that takes a pointer
to a BList object as an argument:

int32 lister(void *data)
{

/* Cast the argument. */
BList *listObj = (BList *)data;

To create and run a thread that would execute the lister () function, you call
spawn_ thread () and resume_ thread () thus (excluding error checks):

BList *listObj =new BList();
thread_id my_thread;

my_thread = spawn_thread(lister, ... , (void *)listObj);
resume_thread(my_thread);

The Thread Function's Argument

The spawn_thread () function .doesn't copy the data that data points to. It simply
passes the pointer through. Because of this, you should never pass a pointer that's
allocated locally (on the stack).

The reason for this restriction is that there's no guarantee that the thread function will
receive any CPU attention before the stack frame from which spawn_ thread () was
called is destroyed. Thus, the thread function won't necessarily have a chance to copy
the pointed-to data before the data pointer is freed. There are ways around this

Threads and T earns • Overview

restriction-for example, you could use a semaphore to ensure that the thread
function has copied the data before the calling frame exits. A better solution is to
forego the data argument and use the send_data () function (which does copy its
data). See "Passing Data to a Thread."

Using a C++ Thread Function

735

If you're up in C++ territory, you'll probably want to define a class member function
that you can use as a thread function. Unfortunately, you can't pass a normal (non
static) member function directly as the thread function argument to
spawn_ thread ()-the system won't know which object it's supposed to invoke the
function on (it won't have a this pointer). To get from here to there, you have to
declare two member functions:

• A static member function that is, literally, the thread function.

• A non-static member function that the static function can invoke. This non-static
function will perform the intended work of the thread function.

To "connect" the two functions, you pass an object of the appropriate class (through
the data argument) to the static function, and then allow the static function to invoke
the non-static function upon that object. An example is called for:

Here we define a class that contains a static function called thread_fune () , and a
non-static function called thread.Fune (). By convention, these two are private. In
addition, the class declares a public Go () function, and a private thread_id variable:

class MyClass {
public:

status_t Go(void);

private:

} ;

static int32 thread_func(void *arg);
int32 threadFunc(void);
thread_id my_thread;

thread_fune () is the literal thread function. It doesn't really do anything-it simply
casts its argument as a MyClass object, and then invokes thread.Fune () on the
object:

int32 MyClass::thread_func(void *arg)
{

MyClass *obj = (MyClass *)arg;
return (obj->threadFunc());

threadFune () performs the actual work:

int32 MyClass::threadFunc(void)
{

/* do something here */

736 Chapter 5 • The Kernel Kit

return (whatever);

The Go () function contains the spawn_ thread () call that starts the whole thing
going:

status_t MyClass: :Go(void)
{

my_thread = spawn_thread(thread_func, ... , this);
return (resume_thread(my_thread));

If you aren't familiar with static member functions, you should consult a qualified
C++ textbook. Briefly, the only thing you need to know for the purposes of the
technique shown here, is that a static function's implementation can't call (non-static)
member functions nor can it refer to member data. Maintain the form demonstrated
above and you'll be rewarded in heaven.

Thread Function Return Values

The thread function's protocol declares that the function should return a int32 value
when it exits. This value can be captured by sitting in a wai t_for_thread () call
until the thread function exits. wai t_for~tJ:iread () takes two arguments:

• The thread_id of the thread that you're waiting for.
• A pointer to an int32 that captures the thread function's return value.

For example:

thread_id other_thread;
status_t result;

other_thread = spawn_thread(...);
resume_thread(other_thread);

wait_for_thread(other_thread, &result);

If the target thread is already dead, wai t_for _thread() returns immediately (with
an error code as described in the function's full description), and the second
argument will be set to an invalid value. If you're late for the train, you'll miss the
boat.

WARNING

You must pass a valid pointer as the second argument to wait_for_thread(). You
mustn't pass NULL even if you're not interested in the return value.

Threads and T earns • Overview 737

Thread Names

A thread can be given a name which you assign through the second argument to
spawn_ thread () . The name can be 32 characters long (as represented by the
B_OS_NAME_LENGTH constant) and needn't be unique-more than one thread can
have the same name.

You can look for a thread based on its name by passing the name to the
find_ thread () function; the function returns the thread_id of the so-named
thread. If two or more threads bear the same name, the find_thread () function
returns the first of these threads that it finds.

You can retrieve the thread_id of the calling thread by passing NULL to
find_thread ():

thread_id this_thread = find_thread(NULL);

To retrieve a thread's name, you must look in the thread's thread_info structure.
This structure is described in the get_thread_info () function description.

Dissatisfied with a thread's name? Use the rename_ thread () function to change it.
Fool your friends.

Thread Priority

In a multi-threaded environment, the CPUs must divide their attention between the
candidate threads, executing a few instructions from this thread, then a few from that
thread,. and so on. But the division of attention isn't always equal: You can assign a
higher or lower priority to a thread and so declare it to be more or less important
than other threads.

You assign a thread's priority (an integer) as the third argument to spawn_ thread () .

There are two categories of priorities: "time-sharing" and "real-time."

• Time-sharing (values from 1to99). A time-sharing thread is executed only if there
are no real-time threads in the ready queue. In the absence of real-time threads, a
time-sharing thread is elected to run once every "scheduler quantum" (currently,
every three milliseconds). The higher the time-sharing thread's priority value, the
greater the chance that it will be the next thread to run.

• Real-time (100 and greater). A real-time thread is executed as soon as it's ready. If
more than one real-time thread is ready at the same time, the thread with the
highest priority is executed first. The thread is allowed to run without being
preempted (except by a real-time thread with a higher priority) until it blocks,
snoozes, is suspended, or otherwise gives up .its plea for attention.

738 Chapter 5 • The Kernel Kit

The Kernel Kit defines seven priority constants. Although you can use other, "in
between" values as the priority argument to spawn_ thread () , it's suggested that
you stick with these:

Time-Sharing Priority Value

B_LOW_PRIORITY 5

B_NORMAL_PRIORITY 10

B_DISPLAY_PRIORITY 15

B_URGENT_DISPLAY_PRIORITY 20

Real-Time Priority Value

B_REAL_TIME_DISPLAY_PRIORITY 100

B_URGENT_PRIORITY 110

B_REAL_TIME_PRIORITY 120

Synchronizing Threads

There are times when you may want a particular thread to pause at a designated
point until some other (known) thread finishes some task. Here are three ways to
effect this sort of synchronization:

• The most general means for synchronizing threads is to use a semaphore. The
semaphore mechanism is described in great detail in "Semaphores."

• Synchronization is sometimes a side-effect of sending data between threads. This
is explained in "Passing Data to a Thread," and in "Ports."

• Finally, you can tell a thread to wait for some other thread to die by calling
wai t_for_thread () , as described earlier.

Controlling a Thread

There are four ways to control a thread while it's running:

• You can put a thread to sleep for some number of microseconds through the
snooze () function. After the thread has been asleep for the requested time, it
automatically resumes execution with its next instruction. snooze () only works
on the calling thread: The function doesn't let you identify an arbitrary thread as
the subject of its operation. In other words, whichever thread calls snooze () is
the thread that's put to sleep.

• You can suspend the execution of any thread through the suspend_thread()
function. The function takes a single thread_id argument that identifies the
thread you wish to suspend. The thread remains suspended until you "unsuspend"
it through a call to resume_ thread () or wai t_for_thread () .

Threads and T earns • Overview 739

• You can send a POSIX "signal" to a thread through the send_signal () function.
The SIGCONT signal tries to unblock a blocked or sleeping thread without killing
it; all other signals kill the thread. To override this behavior, you can install your
own signal handlers.

• You can kill the calling thread through exit_ thread () . The function takes a
single (int32) argument that's used as the thread's exit status (to make
wai t_for_thread () happy). More generally, you can kill any thread by passing
its thread_id to the kill_ thread () function. kill_ thread () doesn't let you
set the exit status.

Feeling itchy? Try killing an entire team of threads: The ki 11_ team () function is
more than a system call. It's therapy.

Death and the Main Thread

As mentioned earlier, the control that's imposed upon a particular thread isn't visited
upon the "children" that have been spawned from that thread. However, the death of
an application's main thread can affect the other threads:

WARNING

When a main thread dies, the game is pretty much over. The main thread takes
the team's heap, its statically allocated objects, and other team-wide
resources-such as access to standard IO-with it. This may seriously cripple
any threads that linger beyond the death of the main thread.

It's possible to create an application in which the main thread sets up one or more
other threads, gets them running, and then dies. But such applications should be rare.
In general, you should try to keep your main thread around until all other threads in
the team are dead.

Passing Data to a Thread

There are three ways to pass data to a thread:

• Through the data argument to the thread function, as described in "The Thread
Function's Argument."

• By using a port or, at a higher level, by sending a BMessage. Ports are described in
the major section "Ports"; BMessages are part of the Application Kit.

• By sending data to the thread's message cache through the send_data () and
receive_data () functions, as described below.

The send_data () function sends data from one thread to another. With each
send_data () call, you can send two packets of information:

740

• A single four-byte value (this is called the code)

• An arbitrarily long buffer of arbitrarily-typed data

The function's protocol is shown below:

status_t send_data(thread_id thread,
int32 code,
void *buffer,
size_t buffer_size)

The arguments are:

• thread is the thread that you want to send the data to
• code is the four-byte code
• buffer is a pointer to the buffer of data
• bu.ffer_size is the size of the data buffer, in bytes

Chapter 5 • The Kernel Kit

In the following example, the main thread spawns a thread, sends it some data, and
then tells the thread to run:

main()
{

thread_id other_thread;
int32 code = 63;
char *buf = "Hello";

other_thread = spawn_thread(thread_func, ...);
send_data(other_thread, code, (void *)buf, strlen(buf));
resurne_thread(other_thread);

The send_data () call copies the code and the buffer (the second and third
arguments) into the target thread's message cache and then (usually) returns
immediately. In some cases, the four-byte code is all you need to send; in such cases,
the buffer pointer can be NULL and the buffer size set to 0.

To retrieve the data that's been sent to it, the target thread (having been told to run)
calls recei ve_data () :

status_t receive_data(thread_id *sender,
void *buffer,
size_t buffer_size)

This function returns the four-byte code directly, and copies the data from the
message cache into its second argument. It also returns, by reference in its first
argument, the thread_id of the thread that sent the data:

int32 thread_func(void *data)
{

thread_id sender;
int32 code;
char buf[512];

Threads and Teams • Overview 741

code receive_data(&sender, (void *)buf, sizeof(buf));

Keep in mind that the message data is copied into the second argument; you must
allocate adequate storage for the data, and pass, as the final argument to
receive_data (}, the size of the buffer that you allocated. A slightly annoying
aspect of this mechanism is ...

WARNING

There isn't any way for the data-receiving thread to determine how much data is
in the message cache. It can't tell, before it receives the data, what an "ade
quate" size for its buffer is. If the buffer isn't big enough to accommodate all
the data, the left-over portion is simply thrown away. (But at least you don't get
a segmentation fault.)

As shown in the example, send_data (} is called before the target thread is running.
This feature of the system is essential in situations where you want the target thread
to receive some data as its first act (as demonstrated above). However, send_data {)
isn't limited to this use-you can also send data to a thread that's already running.

Blocking When Sending and Receiving

A thread's message cache isn't a queue; it can only hold one message at a time. If you
call send_data {) twice with the same target thread, the second call will block until
the target reads the first transmission through a call to recei ve_da ta {) .
Analogously, receive_data () will block if there isn't (yet) any data to receive.

If you want to make sure that you won't block when receiving data, you should call
has_data (} before calling receive_data {). has_data () takes a thread_id

argument, and returns true if that thread has a message waiting to be read:

if (has_data(find_thread(NULL)))
code= receive_data(...);

You can also use has_da ta () to query the target thread before sending it data. This,
you hope, will ensure that the send_data (} call won't block:

if (!has_data(target_thread))
send_data(target_thread, ...);

This usually works, but be aware that there's a race . condition between the
has_data () and send_data () calls. If yet another thread sends a message to the
same target in that time interval, your sei:ld_da ta () (might) block.

742

Thread Functions
exit_threadQ, kill_threadQ, kill_teamQ

void exit_thread{status_t return_value)

status_t kill_thread(thread_id thread)

status_t kill_team(team_id team)

Chapter 5 • The Kernel Kit

These functions command one or more threads to halt execution:

• exi t_thread {) tells the calling thread to exit with a return value as given by the
argument. Declaring the return value is only useful if some other thread is sitting
in a wai t_for_thread {) call on this thread. exi t_thread {) sends a signal to
the thread (after caching the return value in a known place).

• kill_thread {) kills the thread given by the argument. The value that the thread
will return to wai t_for_thread {) is undefined and can't be relied upon.
kill_thread {) is the same as sending a SIGKILLTHR signal to the thread.

• kill_team {) kills all the threads within the given team. Again, the threads'
return values are random. kill_team {) is the same as sending a SIGKILL signal
to any thread in the team. Each of the threads in the team is then handed a
SIGKILLTHR signal.

Exiting a thread is a fairly safe thing to do-since a thread can only exit itself, it's
assumed that the thread knows what it's doing. Killing some other thread or an entire
team is more drastic since the death certificate(s) will be delivered at an indeterminate
time. In every case (exiting or killing) the system reclaims the resources that the thread
(or team) had claimed. So killing a thread shouldn't cause a memory leak.

NOTE

Keep in mind that threads die automatically (and their resources are reclaimed)
if they're allowed to exit naturally. You should only need to kill a thread if
something has gone screwy.

Return values:
B_NO_ERROR. The thread or team was successfully killed.
B_BAD_THREAD_ID. Invalid thread value.
B_BAD_TEAM_ID. Invalid team value.

find_threadQ

thread_id find_thread{const char *name)

Finds and returns the thread with the given name. A name argument of NULL returns
the calling thread.

Threads and T earns • Thread Functions

A thread's name is assigned when the thread is spawned. The name can be changed
thereafter through the rename_ thread () function. Keep in mind that thread names
needn't be unique: If two (or more) threads boast the same name, a find_ thread ()

call on that name returns the first so-named thread that it finds. There's no way to
iterate through identically-named threads.

Return values:
B_NAME_NOT_FOUND. name doesn't identify a valid thread.

get_team_info(), get_next_team_info(), team_info

status_t get_team_info(team_id team, team_info *info)
status_t get_next_team_info(int32 •cookie, team_info *info)

typedef struct {} team_info

743

The functions copy, into the info argument, the tearn_info structure for a particular
team. The get_tearn_info () function retrieves information for the team identified
by team.

The get_next_tearn_info () version lets you step through the list of all teams. The
cookie argument is a placemark; you set it to 0 on your first call, and let the function
do the rest. The function returns B_BAD_ VALUE when there are no more areas to visit:

I* Get the team_info for every team. */

team_info info;
int32 cookie = O;

while (get_next_team_info(O, &cookie, &info)

The team_info structure is defined as:

typedef struct {
team_id team;

int32 thread_count;

int32 image_count;

int32 area_count;
thread_id debugger_nub_thread;
port_id debugger _nub_port;

int32 argc;

char args[64l;

uid_t uid;
gid_t gid;

} tearn_info

B_NO_ERROR)

744 Chapter 5 · • The Kernel Kit

The first field is obvious; the next three reasonably so: They give the number of
threads that have been spawned, images that have been loaded, and areas that have
been created or cloned within this team.

The debugger fields are used by the, uhm, the ... debugger?

The argc field is the number of command line arguments that were used to launch
the team; args is a copy of the first 64 characters from the command line invocation.
If this team is an application that was launched through the user interface (by double
clicking, or by accepting a dropped icon), then argc is 1 and args is the name of the
application's executable file.

uid and gid identify the user and group that "owns" the team. You can use these
values to play permission games.

Return values:
B_NO_ERROR. The desired team information was found.
B_BAD_TEAM_ID. team doesn't identify an existing team, or there are no more
areas to visit.

get_thread_infoQ, get_next_thread_infoQ, thread_info

status_t get_thread_info(thread_id thread, thread_info *info)
status_t get_next_thread_info(team_id team,

int32 *cookie,
thread_info *info)

typedef struct {} thread_info

These functions copy, into the info argument, the thread_info structure for a
particular thread:

The get_thread_info () function gets the information for the thread identified by
thread.

The get_next_thread_info () function lets you step through the list of a team's
threads through iterated calls. The team argument identifies the team you want to
look at; a team value of 0 means the team of the calling thread. The cookie argument
is a placemark; you set it to 0 on your first call, and let the function do the rest. The.
function returns B_BAD_ VALUE when there are no more threads to visit:

/* Get the thread_info for every thread in this team. */
thread_info info;
int32 cookie = O;

while (get_next_thread_info(O, &cookie, &info) == B_OK)

Threads and T earns • Thread Functions

The thread_info structure is defined as:

typedef struct {
thread_id thread;

team_id team;

char name[B_OS_NAME_LENGTH];

thread_state state;

int32 priority;

sem_id sem;

bigtime_t user_time;

bigtime_t kernel_time;

void *stack_base;

void *stack_end;

} thread_info

The fields in the structure are:

• thread. The thread_id number of the thread.
• team. The team_id of the thread's team.
• name. The name assigned to the thread.
• state. What the thread is currently doing (see the thread state constants, below).
• priority. The level of attention the thread gets (see the priority constants,

below).
• sem. If the thread is waiting to acquire a semaphore, this is that semaphore.
• user_time. The time, in microseconds, the thread has spent executing user code.
• kernel_time. The amount of time the kernel has run on the thread's behalf.
• stack_base. A pointer to the first byte in the thread's execution stack.
• stack_end. A pointer to the last byte in the thread's execution stack.

The last two fields are only meaningful if you understand the execution stack format.
Currently, the stack size is fixed at around 256k.

WARNING

The two stack pointers are currently inverted such that stack_base is less than
stack_end. (In a stack-grows-down world, the base should be greater than
the end.)

The value of the state field is one of following thread_state constants:

Constant

B THREAD_RUNNING

B_THREAD_READY

B_THREAD_SUSPENDED

Meaning

The thread is currently receiving attention from a CPU.

The thread is waiting for its turn to receive attention.

The thread has been suspended or is freshly-spawned and is
waiting to start.

745

746

Constant

B_THREAD_WAITING

B_THREAD_RECEIVING

B_THREAD_ASLEEP

Chapter 5 • The Kernel Kit

Meaning

The thread is waiting to acquire a semaphore. When in this state,
the sem fidd of the thread_info structure is set to the sem_id
number of the semaphore the thread is attempting to acquire. (Note
that when a thread is blocked in wai t_for_thread () ,
read_port (),or write_port (),it's actually waiting to acquire
a semaphore.)

The thread is sitting in a recei ve_data () function call.

The thread is sitting in a snooze () call.

The value of the priority field describes the thread's "urgency"; the higher the
value, the more urgent the thread. The more urgent the thread, the more attention it
gets from the CPU. Expected priority values fall between 0 and 120. See "Thread
Priority" for the full story.

NOTE

Thread info is provided primarily as a debugging aid. None of the values that
you find in a thread_info structure are guaranteed to be valid-the thread's
state, for example, will almost certainly have changed by the time
get_thread_info () returns.

Return values:
B_NO_ERROR. The thread was found; info contains valid information.
B_BAD_ VALUE. thread doesn't identify an existing thread, team doesn't identify an
existing team, or there are no more threads to visit.

has_ data()

bool has_data(thread_id thread)

Returns true if the given thread has an unread message in its message cache,
otherwise returns false. Messages are sent to a thread's message cache through the
send_data () call. To retrieve a message, you call receive_data ().

kill_ team() see exit_thread()

kill_ thread() see exit_thread()

receive_ data()

int32 receive_data(thread_id *sender,
void • buffer,
size_t bu.ffer_size)

Threads and T earns • Thread Functions

Retrieves a message from the thread's message cache. The message will have been
placed there through a previous send_data () function call. If the cache is empty,
receive_data () blocks until one shows up--it never returns empty-handed.

The thread_id of the thread that called send_data () is returned by reference in
the sender argument. Note that there's no guarantee that the sender will still be alive
by the time you get its ID. Also, the value of sender going into the function is
ignored-you can't ask for a message from a particular sender.

The send_data () function copies two pieces of data into a thread's message cache:

• A single four-byte code that's delivered as receive_data () 's return value,

747

• and an arbitrarily long data buffer that's copied into receive_data () 's buffer
argument (you must allocate and free buffer yourselD. The buffer_size argument
tells the function how many bytes of data to copy. If you don't need the data
buffer-if the code value returned directly by the function is sufficient-you set
buffer to NULL and buffer_size to 0.

Unfortunately, there's no way to tell how much data is in the cache before you call
receive_data ():

• If there's more data than buffer can accommodate, the unaccommodated portion
is discarded-a second recei ve_da ta() call will not read the rest of the
message.

• Conversely, if receive_data () asks for more data than was sent, the function
returns with the excess portion of buffer unmodified-receive_data () doesn't
wait for another send_data () call to provide more data with which to fill up the
buffer.

Each recei ve_data () corresponds to exactly one send_data (). Lacking a
previous invocation of its mate, receive_data () will block until send_data () is
called. If you don't want to block, you should call has_data () before calling
receive_data () (and proceed to receive_data () only if has_data () returns
true).

Return values:
If successful, the function returns the message's four-byte code.
B_INTERRUPTED. A blocked receive_data () call was interrupted by a signal.

rename_thread()

status_t rename_thread(thread_id thread, canst char *name)

Changes the name of the given thread to name. Keep in mind that the maximum
length of a thread name is B_OS_NAME_LENGTH (32 characters).

748 Chapter 5 • The Kernel Kit

Return values:
B_NO_ERROR. The thread was successfully named.
B_BAD_THREAD_ID. thread argument isn't a valid thread_id number.

resume_thread()

status_t resume_thread(thread_id thread)

Tells a new or suspended thread to begin executing instructions.

• If the thread has just been spawned, its execution begins with the thread function
(keep in mind that a freshly spawned thread doesn't run until told to do so
through this function).

• If the thread was previously suspended (through suspend_ thread ()), it
continues from where it was suspended.

This function only works on threads that have a status of B THREAD SUSPENDED

(newly spawned threads are born with this state). You can't use this function to wake
up a sleeping thread (B_THREAD_ASLEEP), or to unblock a thread that's waiting to
acquire a semaphore (B_THREAD_WAITING) or waiting in a receive_data () call
(B_THREAD_RECEIVING).

However, you can unblock a thread by suspending it and then resuming it. Blocked
threads that are resumed return B_INTERRUPTED.

resume_ thread () is the same as sending a SIGCONT signal to the thread.

Return values:
B_NO_ERROR. The thread was successfully resumed.
B_BAD_THREAD_ID. thread argument isn't a valid thread_id number.
B_BAD_THREAD_STATE. The thread isn't suspended.

send_ data()

status_t send_data(thread_id thread,
int32 code,
void *buffer,
size_t buffer_size)

Copies data into thread's message cache. The target thread can then retrieve the data
from the cache by calling receive_data ().There are two parts to the data that you
send:

• A single four-byte "code" given by the code argument.

• An arbitrarily long buffer of data that's pointed to by buffer. The length of the
buffer, in bytes, is given by buffer_size.

Threads and Teams • Thread Functions

If you only need to send the code, you should set bufferto NULL and buffer_sizeto 0.
After send_data () returns you can free the buffer argument.

Normally, send_data () returns immediately-it doesn't wait for the target to call
receive_data (). However, send_data () will block if the target has an unread
message from a previous send_data ()-keep in mind that a thread's message cache
is only one message deep. A thread that's blocked in send_data () assumes
B_THREAD_WAITING status.

Return values:
B_NO_ERROR. The data was successfully sent.
BAD_THREAD_ID. thread doesn't identify a valid thread.
B_NO_MEMORY. The target couldn't allocate enough memory for its copy of buffer.
B_INTERRUPTED. The function blocked, but a signal unblocked it.

set_thread_priority()

status_t set_thread_priority(thread_id thread, int32 new_priority)

Resets the given thread's priority to new_priority.

749

The value of the new_priority can be any positive integer, but it's recommended that
you stick with the following constants (the difference between "time-sharing"
priorities and "real-time" priorities is explained in "Thread Priority"):

Time-Sharing Priority Value

B_LOW_PRIORITY 5

B_NORMAL_PRIORITY 10

B_DISPLAY_PRIORITY 15

B_URGENT_DISPLAY_PRIORITY 20

Real-Time Priority Value

B_REAL_TIME_DISPLAY_PRIORITY 100

B_URGENT_PRIORITY 110

B_REAL_TIME_PRIORITY 120

Return values:
Positive integers. If the function is successful, the previous priority is returned.
B_BAD_THREAD_ID. thread doesn't identify a valid thread.

750 Chapter 5 • The Kernel Kit

snooze()

status_t snooze(bigtime_t microseconds)

Pauses the calling thread for the given number of microseconds (the function blocks
until then). The thread's state is set to B_THREAD_ASLEEP while it's snoozing.

To wake up a thread prematurely, suspend the thread and then resume it:

thread_info tinfo;

get_thread_info(thread, &tinfo);
if (tinfo.state == B_THREAD_ASLEEP)

suspend_thread(thread);
/*Just to be sure ... */
snooze(lOOO);
resume_thread(thread);

WARNING

The snooze () in the "controlling" thread is a precaution; if you're pulling this
sort of stunt in your own code, you should also snooze for a bit between the
suspend and resume-signals are funny that way.

There is, of course, a race condition in this example-the thread could wake up just
after the get_thread_info () call. But, as with all signalling operations, the
suspend/resume trick is indeterminate and wee bit dangerous. (Actually, the only
situation where the race could cause trouble is if the thread wakes up, blocks on a
semaphore, is then suspended/resumed AND it doesn't check the acguire_sem ()

return value.)

Return values:
B_NO_ERROR. The thread went to sleep and is now awake.
B_ERROR. Illegal microseconds value (less than O).
B_INTERRUPTED. The thread received a signal while it was sleeping.

spawn_ thread()

thread_id spawn_thread(thread_func June,
canst char *name,
int32 priority,
void *data)

Creates a new thread and returns its thread_id identifier (a positive integer). The
arguments are:

• June is a pointer to a thread function. This is the function that the thread will
execute when it's told to run.

Threads and T earns • Thread Functions

• name is the name that you wish to give the thread. It can be, at most,
B_OS_NAME_LENGTH (32) characters long.

• priority is the CPU priority level of the thread. The higher the priority, the more
attention the thread gets. The value can be any positive integer, but you should
stick with the constants listed about four seconds from now.

• data is forwarded as the argument to the thread function.

Time-Sharing Priority Value

B_LOW_PRIORITY 5

B_NORMAL_PRIORITY 10

B_DISPLAY_PRIORITY 15

B_URGENT_DISPLAY_PRIORITY 20

Real-Time Priority Value

B_REAL_TIME_DISPLAY_PRIORITY 100

B_URGENT_PRIORITY 110

B_REAL_TIME_PRIORITY 120

For a complete explanation of these constants, see "Thread Priority."

751

A newly spawned thread is in a suspended state (B_THREAD_SUSPENDED). To tell the
thread to run, you pass its thread_id to the resume_thread () function. The
thread will continue to run until the thread function exits, or until the thread is
explicitly killed (through a signal or a call to exi t_thread () , kill_ thread () , or
kill_ team ()).

Return values:
B_NO_MORE_THREADS. All thread_id numbers are currently in use.
B_NO_MEMORY. Not enough memory to allocate the resources for another thread.

suspend_ th read()

status_t suspend_thread{thread_id thread)

Halts the execution of the given thread, but doesn't kill the thread entirely. ,The
thread remains suspended (suspend_ thread () blocks) until it's told to run through
the resume_ thread () function. Nothing prevents you from suspending your own
thread, i.e.:

suspend_thread(find_thread(NULL));

Of course, this is only smart if you have some other thread that will resume you later.

752 Chapter 5 • The Kernel Kit

You can suspend any thread, regardless of its current state. But be careful: If the
thread is blocked on a semaphore (for example), the subsequent resume_ thread ()

call will "hop over" the semaphore acquisition.

Suspensions don't nest. A single resume_ thread () unsuspends a thread regardless
of the number of suspend_ thread () calls it has received.

suspend_thread () is the same as sending a SIGSTOP signal to the thread.

Return values:
B_NO_ERROR. The thread is now suspended.
B_BAD_THREAD_ID. thread isn't a valid thread_id number.

wait_for _thread(}
status_t wait_for _thread(thread_id thread, status_t *exit_ value)

This function causes the calling thread to wait until thread (the "target thread") has
died. If thread is suspended, the wai t_for_thread () call will cause it to resume.
Thus, you can use wait_for_thread() to tell a newly-spawned thread to start
running.

When the target thread is dead, the value that was returned by its thread function (or
that's imposed by exi t_thread (), if such was called) is returned by reference in
exit_value. If the target thread was killed (by kill_ thread () or kill_team()), or
if the thread function doesn't return a value, the value returned in exit_value is
unreliable.

Return values:
B_NO_ERROR. The target is now dead.
B_BAD_THREAD_ID. thread isn't a valid thread_id number.
B_INTERRUPTED. The target was killed by a signal. This includes
kill_ thread (), kill_ team (), and exi t_thread () .

Ports
Declared in: be/kerneVOS.h

Library: libroot.so

Overview
A port is a system-wide message repository into which a thread can copy a buffer of
data, and from which some other thread can then retrieve the buffer. This repository
is implemented as a first-in/first-out message queue: A port stores its messages in the

Ports • Overview

order in which they're received, and it relinquishes them in the order in which they're
stored. Each port has its own message queue.

There are other ways to send data between threads. Most notably, the data-sending
and -receiving mechanism provided by the send_da ta () and recei ve_da ta ()
functions can also transmit data between threads. But note these differences between
using a port and using the send_data () /receive_data () functions:

753

• A port can hold more than one message at a time. A thread can only hold one at a
time. Because of this, the function that writes data to a port (wri te_port ())
rarely blocks. Sending data to a thread will block if the thread has a previous,
unread message.

• The messages that are transmitted through a port aren't directed at a specific
recipient-they're not addressed to a specific thread. A message that's been
written to a port can be read by any thread. send_data (), by definition, has a
specific thread as its target.

Ports are largely subsumed by the Application Kit's BMessage class (and relatives).
The two features of ports that you can't get at the BMessage level are:

• Ports let you set the length of the message queue.

• Ports can be used in C code (as opposed to C++).

For most applications, these are inessential additions.

Creating a Port

A port is represented by a unique, system-wide port_id number (a positive 32-bit
integer). The create_port () function creates a new port and assigns it a port_id
number. Although ports are accessible to all threads, the port_id numbers aren't
disseminated by the operating system; if you create a port and want some other
thread to be able to write to or read from it, you have to broadcast the port_id
number to that thread. Typically, ports are used within a single team. The easiest way
to broadcast a port_id number to the threads in a team is to declare it as a global
variable.

A port is owned by the team in which it was created. When a team dies (when all its
threads are killed, by whatever hand), the ports that belong to the team are deleted. A
team can bestow ownership of its ports to some other team through the
set_port_owner () function.

If you want to explicitly get rid of a port, you can call delete_port (). You can
delete any port, not just those that are owned by the team of the calling thread.

754 Chapter 5 • The Kernel Kit

The Message Queue: Reading and Writing Port Messages

The length of a port's message queue-the number of messages that it can hold at a
time-is set when the port is created. The B_MAX_PORT_COUNT constant provides a
reasonable queue length.

The functions write_port () and read_port () manipulate a port's message
queue: wri te_port () places a message at the tail of the port's message queue;
read_port () removes the message at the head of the queue and returns it the
caller. wri te_port () blocks if the queue is full; it returns when room is made in
the queue by an invocation of read_port () . Similarly, if the queue is empty,
read_port () blocks until wri te_port () is called. When a thread is waiting in a
wri te_port () or read_port () call, its state is B_THREAD_SEM_WAIT (it's waiting
to acquire a system-defined, port-specific semaphore).

You can provide a timeout for your port-writing and port-reading operations by using
the "full-blown" functions write_port_etc () and read_port_etc (). By
supplying a timeout, you can ensure that your port operations won't block forever.

Although each port has its own message queue, all ports share a global "queue slot"
pool-there are only so many message queue slots that cap be used by all ports
taken cumulatively. If too many port queues are allowed to fill up, the slot pool will
drain, which will cause write_port () calls on less-than-full ports to block. To avoid
this situation, you should make sure that your wri te_port () and read_port ()

calls are reasonably balanced.

The wri te_port () and read_port () functions are the only way to traverse a
port's message queue. There's no notion of "peeking" at the queue's unread
messages, or of erasing messages that are in the queue.

Port Messages

A port message-the data that's sent through a port-consists of a "message code"
and a "message buffer." Either of these elements can be used however you like, but
they're intended to fit these purposes:

• The message code (a single four-byte value) should be a mask, flag, or other
predictable value that gives a general representation of the flavor or import of the
message. For this to work, the sender and receiver of the message must agree on
the meanings of the values that the code can take.

• The data in the message buffer can elaborate upon the code, identify the sender of
the message, or otherwise supply additional information. The length of the buffer
isn't restricted. To get the length of the message buffer that's at the head of a port's
queue, you call the port_buffer_size () function.

Ports • Port Functions 755

The message that you pass to wri te_port () is copied into the port. After
wri te_port () returns, you may free the message data without affecting the copy
that the port holds.

When you read a port, you have to supply a buffer into which the port mechanism
can copy the message. If the buffer that you supply isn't large enough to
accommodate the message, the unread portion will be lost-the next call to
read_port () won't finish reading the message.

You typically allocate the buffer that you pass to read_port () by first calling
port_buffer_size (), as shown below:

char *buf = NULL;
ssize_t size;
int32 code;

/* We'll assume that my_port is valid.
* port_buffer_size() will block until a message shows up.
*/

if ((size= port_buffer_size(my_port)) < B_NO_ERROR)
/* Handle the error */

if (size > 0)
buf = (char *)malloc(size);

if (buf)
/* Now we can read the buffer. */
if (read_port(my_port, &code, (void *)buf, size) < B_OK)
/* Handle the error */

Obviously, there's a race condition (in the example) between port_buffer_size ()

and the subsequent read_port () call-some other thread could read the port in the
interim. If you're going to use port_buffer_size () as shown in the example, you
shouldn't have more than one thread reading the port at a time.

As stated in the example, port_buffer_size () blocks until a message shows up. If
you don't want to (potentially) block forever, you should use the
port_buffer_size_etc () version of the function. As with the other ... etc ()

functions, port_buffer_size_etc () provides a timeout option.

Port Functions

create_port()

port_id create_port(int32 queue_length, const char *name)

Creates a new port and returns its port_id number. The port's name is set to name
and the length of its message queue is set to queue_length. Neither the name nor the
queue length can be changed once they're set. The name shouldn't exceed
B_OS_NAME_LENGTH (32) characters.

756 Chapter 5 • The Kernel Kit

In setting the length of a port's message queue, you're telling it how many messages
it can hold at a time. When the queue is filled-when it's holding queue_length
messages-subsequent invocations of wri te__port () (on that port) block until room
is made in the queue (through calls to read__port ()) for the additional messages. As
a convenience, you can use the B_MAX_PORT_COUNT constant as the queue_length
value; this constant represents the (ostensible) maximum port queue length. Once the
queue length is set by create__port (), it can't be changed.

This function sets the owner of the port to be the team of the calling thread.
Ownership can subsequently be transferred through the set__port_owner ()
function. When a port's owner dies (when all the threads in the team are dead), the
port is automatically deleted. If you want to delete a port prior to its owner's death,
use the delete__port () function.

Return values:
B_BAD_ VALUE. queue_length is too big or less than zero.
B_NO_MORE_PORTS. The system couldn't allocate another port.

delete_port()

status_t delete_port(port_id port)

Deletes the given port. The port's message queue doesn't have to be empty-you can
delete a port that's holding unread messages. Threads that are blocked in
read__port () or wri te__port () calls on the port are automatically unblocked (and
return B_BAD_SEM_ID).

The thread that calls delete__port () doesn't have to be a member of the team that
owns the port; any thread can delete any port.

Return values:
B_NO_ERROR. The port was deleted.
B_BAD_PORT_ID. port isn't a valid port.

find_port()

port_id find_port(const char *port_name)

Returns the port_id of the named port. port_name should be no longer than 32
characters (B_OS_NAME_LENGTH).

Return values:
B_NAME_NOT_FOUND. port_name doesn't name an existing port.

Ports • Port Functions 757

get_port_info(), get_next_port_info(), port_info

status_t get_port_info(port_id port, port_info "info)
status_t get_next_port_info(team_id team,

uint32 *cookie,
port_info *info)

struct {} port_info

Copies information about a particular port into the port_info structure designated
by info. The first version of the function designates the port directly, by port_id.

The get_next_port_info () version lets you step through the list of a team's ports
through iterated calls on the function. The team argument identifies the team you
want to look at; a team value of 0 means the team of the calling thread. The cookie
argument is a placemark; you set it to 0 on your first call, and let the function do the
rest. The function returns B_BAD_ VALUE when there are no more ports to visit:

/* Get the port_info for every port in this team. */
port_info info;
int32 cookie = O;

while (get_next_port_info(O, &cookie, &info)

The port_info structure is defined as:

typedef struct port_info {
port_id port;

team_id team;
char name[B_OS_NAME_LENGTH];

int32 capacity;
int32 queue_count;
int32 total_count;

} port_info

The structure's fields are:

• port. The port_id number of the port.
• team. The team_id of the port's owner.
• name. The name assigned to the port.

B_OK)

• capacity. The length of the port's message queue.
• queue_count. The number of messages currently in the queue.
• total_count. The total number of message that have been read from the port.

Note that the total_count number doesn't include the messages that are currently
in the queue.

758 Chapter 5 • The Kernel Kit

The information in the port_info structure is guaranteed to be internally consistent,
but the structure as a whole should be considered out-of-date as soon as you receive
it. It provides a picture of a port as it exists just before the info-retrieving function
returns.

Return values:
B_NO_ERROR. The port was found; info contains valid information.
B_BAD_ VALUE. port doesn't identify an existing port, team doesn't identify an
existing team, or there are no more ports to visit.

port_buffer _size(), port_buffer _size_ etc()

ssize_t port_buffer _size(port_id port)

ssize_t port_buffer _size_etc(port_id port,
uint32 flags,
bigtime_t timeout)

These functions return the length (in bytes) of the message buffer that's at the head of
porfs message queue. You call this function in order to allocate a sufficiently large
buffer in which to retrieve the message data.

The port_buffer_size () function blocks if the port is currently empty. It unblocks
when a wri te_port () call gives this function a buffer to measure (even if the
buffer is 0 bytes long), or when the port is deleted.

The port_buffer_size_etc () function lets you set a limit on the amount of time
the function will wait for a message to show up. To set the limit, you pass
B_TIMEOUT as the flags argument, and set timeout to the amount of time, in
microseconds, that you're willing to wait.

Return values:
B_BAD_PORT_ID. port doesn't identify an existing port, or the port was deleted
while the function was blocked.
B_TIMED_OUT. The timeout limit expired.
B_WOULD_BLOCK. You asked for a timeout of 0, but there are no messages in the
queue.

See also: read_port ()

port_ count()

int32 port_count(port_id port)

Returns the number of messages that are currently in porfs message queue. This is
the number of messages that have been written to the port through calls to

Ports • Port Functions

wri te__port () but that haven't yet been picked up through corresponding
read__port () calls.

NOTE

This function is provided mostly as a convenience and a semi-accurate debug
ging tool. The value that it returns is inherently undependable: There's no guar
antee that additional read__port () or write__port () calls won't change the
count as this function is returning.

Return values:
B_BAD_PORT_ID. port doesn't identify an existing port.

See also: get__port_info ()

read_port(), read_port_etc()

ssize_t read_port(port_id port,
int32 *msg_code,
void *msg_bu.ffer,
size_t bu.ffer_size)

ssize_t read_port_etc(port_id port,
int32 *msg_code,
void *msg_bu.ffer,
size_t bu.ffer_size,
uint32 flags,
bigtime_t timeout)

759

These functions remove the message at the head of ports message queue and copy
the messages's contents into the msg_code and msg_bu.ffer arguments. The size of the
msg_bu.ffer buffer, in bytes, is given by bu.ffer_size. It's up to the caller to ensure that
the message buffer is large enough to accommodate the message that's being read. If
you want a hint about the message's size, you should call port_buffer_size ()

before calling this function.

If ports message queue is empty when you call read_portO, the function will block. It
returns when some other thread writes a message to the port through
wri te__port () . A blocked read is also unblocked if the port is deleted.

The read__port_etc () function lets you set a limit on the amount of time the
function will wait for a message to show up. To set the limit, you pass B_TIMEOUT as
the flags argument, and set timeout to the amount of time, in microseconds, that
you're willing to wait.

760 Chapter 5 • The Kernel Kit

Return values:
A successful call returns the number of bytes that were written into the msg_buffer
argument.
B_BAD_PORT_ID. port doesn't identify an existing port, or the port was deleted
while the function was blocked.
B_TIMED_OUT. The timeout limit expired.
B_WOULD_BLOCK. You asked for a timeout of 0, but there are no messages in the
queue.

See also: wri te_port (), port_buffer_size ()

set_port_owner()

status_t set_port_owner(port_id port, team_id team)

Transfers ownership of the designated port to team. A port can only be owned by
one team at a time; by setting a port's owner, you remove it from its current owner.

There are no restrictions on who can own a port, or on who can transfer ownership.
In other words, the thread that calls set_port_owner () needn't be part of the team
that currently owns the port, nor must you only assign ports to the team that owns
the calling thread (although these two are the most likely scenarios).

Port ownership is meaningful for one reason: When a team dies (when all its threads
are dead), the ports that are owned by that team are freed. Ownership, otherwise, has
no significance-it carries no special privileges or obligations.

To discover a port's owner, use the get_port_info () function.

Return values:
B_NO_ERROR. Ownership was successfully transferred.
B_BAD_PORT_ID. port doesn't identify a valid port.
B_BAD_TEAM_ID. team doesn't identify a valid team.

See also: get_port_info ()

write_port{), write_port_etc()

status_t write_port(port_id port,
int32 msg_code,
void •msg_buffer,
size_t buffer_size)

status_t write_port_etc(port_id port,
int32 msg_code,
void *msg_buffer,

Semaphores • Overview 761

size_t buffer_size,
uint32 flags,
bigtime_t timeout)

These functions place a message at the tail of ports message queue. The message
consists of msg_code and msg_buffer.

• msg_code holds the "message code." This is a mask, flag, or other predictable
value that gives a general representation of the message.

• msg_buffer is a pointer to a buffer that can be used to supply additional
information. You pass the length of the buffer, in bytes, as the value of the
buffer_size argument. The buffer can be arbitrarily long.

If the port's queue is full when you call wri te_port () , the function will block. It
returns when a read_port () call frees a slot in the queue for the new message. A
blocked write_port () will also return if the target port is deleted.

The wri te_port_etc () function lets you set a limit on the amount of time the
function will wait for a free queue slot. To set the limit, you pass B_TIMEOUT as the
flags argument, and set timeout to the amount of time, in microseconds, that you're
willing to wait.

Return values:
B_NO_ERROR. The port was successfully written to.
B_BAD_PORT_ID. port doesn't identify an existing port, or the port was deleted
while the function was blocked.
B_TIMED_OUT. The timeout limit expired.
B_WOULD_BLOCK. You asked for a timeout of 0, but there are no free slots in the
message queue.

See also: read__port ()

Semaphores
Declared in: be/kernel/OS.h

Library: libroot.so

Overview
A semaphore is a token that's used to synchronize multiple threads, usually for one of
these reasons:

• Locking. The most common use of a semaphore is to create a mutually exclusive
lock: It ensures that only one thread can execute a "protected" section of code at a
time. See "Example 1: Using a Semaphore as a Lock."

762 Chapter 5 • The Kernel Kit

• Execution Oder. Semaphores can also be used to impose an order in which a
series of dependent operations are performed by two or more threads. See
"Example 2: Using Semaphores to Impose an Execution Order."

The semaphore concept is simple: To enter into a semaphore-protected "critical
section," a thread must first "acquire" the semaphore, through the acguire_sem ()
function. When it passes out of the critical section, the thread "releases" the
semaphore through release_sem () .

The advantage of the semaphore system is that if a thread can't acquire a semaphore
(because the semaphore is yet to be released by the previous acquirer), the thread
blocks in the acguire_sem () call. While it's blocked, the thread doesn't waste any
cycles.

The full story about semaphores is a wee bit more complicated than this quick
description, but if all you want to do is create a mutually exclusive lock or impose an
execution order, you'll probably learn all you need to know by visiting the examples
in the sections referred to above.

The Full Story
A semaphore acts as a key that a thread must acquire in order to continue execution.
Any thread that can identify a particular semaphore can attempt to acquire it by
passing its sem_id identifier-a system-wide number that's assigned when the
semaphore is created-to the acguire_sem () function. The function blocks until
the semaphore is actually acquired.

NOTE

An alternate function, acguire_sem_etc () lets you specify the amount of
time you're willing to wait for the semaphore to be acquired. Unless otherwise
noted, characteristics ascribed to acguire_sem () apply to
acguire_sem_etc () as well.

When a thread acquires a semaphore, that semaphore (typically) becomes
unavailable for acquisition by other threads (less typically, more than one thread is
allowed to acquire the semaphore at a time; the precise determination of availability
is explained in "The Thread Count"). The semaphore remains unavailable until it's
passed in a call to the release_sem () function.

The code that a semaphore "protects" lies between the calls to acguire_sem () and
release_sem () . The dispositi.on of these functions in your code usually follows this
pattern:

if (acquire_sem(my_semaphore) == B_NO_ERROR)
/* Protected code goes here. */

Semaphores • The Full Story 763

release_sem(my_semaphore);

Keep in mind that:

• The calls to the acquire and release functions needn't be locally balanced
(although this is by far the most common use). A semaphore can be acquired
within one function and released in another. Acquisition and release of the same
semaphore can even be performed by two different threads.

• Checking the value returned by acquire_sem () is extremely important. If an
acquire-blocked thread is unblocked by a signal (a return of B_INTERRUPTED),

the thread shouldn't proceed to the critical section.

The Thread Queue

Every semaphore has its own thread queue. This is a list that identifies the threads
that are waiting to acquire the semaphore. A thread that attempts to acquire an
unavailable semaphore is placed at the tail of the semaphore's thread queue where it
sits blocked in the acquire_sem() call. Each call to release_sem() unblocks the
thread at the head of that semaphore's queue, thus allowing the thread to return from
its call to acquire_sem () .

Semaphores don't discriminate between acquisitive threads-they don't prioritize or
otherwise reorder the threads in their queues-the oldest waiting thread is always the
next to acquire the semaphore.

The Thread Count

To assess availability, a semaphore looks at its thread count. This is a counting
variable that's initialized when the semaphore is created. Ostensibly, a thread count's
initial value (which is passed as the first argument to create_sem()) is the number
of threads that can acquire the semaphore at a time. (As we'll see later, this isn't the
entire story, but it's good enough for now.) For example, a semaphore that's used as
a mutually exclusive lock takes an initial thread count of 1-in other words, only one
thread can acquire the semaphore at a time.

NOTE

An initial thread count of 1 is by far the most common use; a thread count of 0
is also useful. Other counts are much less common.

Calls to acquire_sem () and release_sem () alter the semaphore's thread count:
acquire_sem () decrements the count, and release_sem () increments it. When

764 Chapter 5 • The Kernel Kit

you call acquire_sem () , the function looks at the thread count (before
decrementing it) to determine if the semaphore is available:

• If the count is greater than zero, the semaphore is available for acquisition, so the
function returns immediately.

• If the count is zero or less, the semaphore is unavailable, and the thread is placed
in the semaphore's thread queue.

The initial thread count isn't an inviolable limit on the number of threads that can
acquire a given semaphore-it's simply the initial value for the sempahore's thread
count variable. For example, if you create a semaphore with an initial thread count of
1 and then immediately call release_sem () five times, the semaphore's thread
count will increase to 6. Furthermore, although you can't initialize the thread count to
less-than-zero, an initial value of zero itself is common-it's an integral part of using
semaphores to impose an execution order (as demonstrated later).

Summarizing the description above, there are three significant thread count value
ranges:

• A positive thread count (n) means that there are no threads in the semaphore's
queue, and the next n acquire_sem () calls will return without blocking.

• If the count is 0, there are no queued threads, but the next acquire_sem () call
will block.

• A negative count (-n) means there are n threads in the semaphore's thread queue,
and the next call to acquire_sem () will block.

Although it's possible to retrieve the value of a semaphore's thread count (by looking
at a field in the semaphore's sem_info structure, as described later), you should only
do so for amusement-while you're debugging, for example.

WARNING

You should never predicate your code on the basis of a semaphore's thread
count.

Deleting a Semaphore

Every semaphore is owned by a team (the team of the thread that called
create_sem ()). When the last thread in a team dies, it takes the team's semaphores
with it.

Prior to the death of a team, you can explicitly delete a semaphore through the
delete_sem () call. Note, however, that delete_sem () must be called from a
thread that's a member of the team that owns the semaphore-you can't delete
another team's semaphores.

Semaphores • Example 1: Using a Semaphore as a Lock 765

You're allowed to delete a semaphore even if it still has threads in its queue.
However, you usually want to avoid this, so deleting a semaphore may require some
thought: When you delete a semaphore (or when it dies naturally), all its queued
threads are immediately allowed to continue~they all return from acquire_sem ()
at once. You can distinguish between a "normal" acquisition and a "semaphore
deleted" acquisition by the value that's returned by acquire_sem () (the specific
return values are listed in the function descriptions, below).

Broadcasting Semaphores

The sem_id number that identifies a semaphore is a system-wide token-the sem_id
values that you create in your application will identify your semaphores in all other
applications as well. It's possible, therefore, to broadcast the sem_id numbers of the
semaphores that you create and so allow other applications to acquire and release
them-but it's not a very good idea.

WARNING

A semaphore is best controlled if it's created, acquired, released, and deleted
within the same team.

If you want to provide a protected service or resource to other applications, you
should accept messages from other applications and then spawn threads that acquire
and release the appropriate semaphores.

Example 1: Using a Semaphore as a Lock
The most typical use of a semaphore is to protect a "critical section": This is a chunk
of code that needs to be executed without interruption. The semaphore acts as a
lock; acquire_sem () locks the code, release_sem () releases it. Semaphores that
are used as locks are (almost always) created with a thread count of 1.

As a simple example, let's say you keep track of a maximum value like this:

/* max_val is a global. */
uint32 max_val = O;

/* bump_max() resets the max value, if necessary. */
void bump_max(uint32 new_value)
{

if (new_value > max_value)
max_value = new_value;

766 Chapter 5 • The Kernel Kit

bump_max () isn't thread safe; there's a race condition between the comparison and
the assignment. So we protect it with a semaphore:

sem_id max_sem;
uint32 max_val O;

/* Initialize the semaphore during a setup routine. */
status_t init {)
{

if { {max_sem = create_sem{l, "max_sem")) < B_NO_ERROR)
return B_ERROR;

void bump_max{uint32 new_value)
{

if {acquire_sem{max_sem) != B_NO_ERROR)
return;

if {new_value > max_value)
max_value = new_value;

release_sem{);

Benaphores

A "benaphore" is a combination of an atomic variable and a semaphore that can
improve locking efficiency. If you're using a semaphore as shown in the previous
example, you almost certainly want to use the benaphore mechanism instead (if you
can).

Here's the example re-written to use a benaphore:

sem_id max_sem;.
uint32 max_val = O;
int32 ben_val = O;

/* Initialize as before */

void bump_max{uint32 new_value)

int32 previous = atomic_add{&ben_val, 1);
if (previous >= 1)

if (acquire_sem(max_sem) != B_NO_ERROR)
goto get_out;

if (new_value > max_value)
max_value = new_value;

get_out:
previous= atomic_add(&ben_val, -1);
if {previous > 1)

release_sem{max_sem);

Semaphores • Example 2: Using Semaphores to Impose an Execution Order 767

The point here is that acquire_sem () is called only if it's known (by checkipg the
previous value of hen_ val) that some other thread is in the middle of the critical
section. On the releasing end, the release_sem () is called only if some other thread
has since entered the function (and is now blocked in the acquire_sem () call).

Example 2: Using Semaphores to Impose
an Execution Order
Semaphores can also be used to coordinate threads that are performing separate
operations, but that need to perform these operations in a particular order. In the
following example, we have a global buffer that's accessed through separate reading
and writing functions. Furthermore, we want writes and reads to alternate, with a
write going first.

We can lock the entire buffer with a single semaphore, but to enforce alternation we
need two semaphores:

sem_id write_sem, read_sem;
char buffer[1024];

/* Initialize the semaphores */
status_t init ()
{

if ((write_sem = create_sem(l, "write")) < B_NO_ERROR)
return;

if ((read_sem = create_sem(O, "read")) < B_NO_ERROR) {
delete_sem(write_sem);
return;

status_t write_buffer(const char *src)
{

if (acquire_sem(write_sem) != B_NO_ERROR)
return B_ERROR;

strncpy(buffer, src, 1024);

release_sem(read_sem);

status_t read_buffer(char *dest, size_t len)
{

if (acquire_sem(read_sem) != B_NO_ERROR)
return B_ERROR;

strncpy(dest, buffer, len);

release_sem(write_sem);

768 Chapter 5 • The Kernel Kit

The initial thread counts ensure that the buffer will be written to before it's read: If a
reader arrives before a writer, the reader will block until the writer releases the
read_sem semaphore.

Semaphore Functions

acquire_sem(), acquire_sem_etc()

status_t acquire_sem(sem_id sem)
status_t acquire_sem_etc(sem_id sem,

uint32 count,
uint32 flags,
bigtime_t timeout)

These functions attempt to acquire the semaphore identified by the sem argument.
Except in the case of an error, acquire_sem () doesn't return until the semaphore
has actually been acquired.

acquire_sem_etc () is the full-blown acquisition version: It's essentially the same
as acquire_sem () , but, in addition, it lets you acquire a semaphore more than once,
and also provides a timeout facility:

• The count argument lets you specify that you want the semaphore to be acquired
count times. This means that the semaphore's thread count is decremented by the
specified amount. It's illegal to specify a count that's less than 1.

• To enable the timeout, you pass B_TIMEOUT as the flags argument, and set
timeout to the amount of time, in microseconds, that you're willing to wait for the
semaphore to be acquired. If the semaphore hasn't been acquired within timeout
microseconds, the function returns anyway (B_TIMED_OUT). If you specify a
timeout of 0.0 and the semaphore isn't immediately available, the function
immediately returns (B_WOULD_BLOCK).

WARNING

In addition to B_TIMEOUT, the Kernel Kit defines two other semaphore-acqui
sition flag constants (B_CAN_INTERRUPT and B_CHECK_PERMISSION). These
additional flags are used by device drivers-adding these flags into a "normal"
(or "user-level") acquisition has no effect. However, you should be aware that
the B_CHECK_PERMISSION flag is always added in to user-level semaphore
acquisition in order to protect system-defined semaphores.

Other than the timeout and the acquisition count, there's no difference between the
two acquisition functions. Specifically, any semaphore can be acquired through either
of these functions; you always release a semaphore through release_sem () (or
release_sem_etc ()) regardless of which function you used to acquire it.

Semaphores • Semaphore Functions

To determine if the semaphore is available, the function looks at the semaphore's
thread count (before decrementing it):

• If the thread count is positive, the semaphore is available and the current
acquisition succeeds. The acquire_sem () (or acquire_sem_etc ()) function
returns immediately upon acquisition.

• If the thread count is zero or less, the calling thread is placed in the semaphore's
thread queue where it waits for a corresponding release_sem () call to de
queue it (or for the timeout to expire).

Return values:
B_NO_ERROR. The semaphore was successfully acquired.

769

B_BAD_SEM_ID. The sem argument doesn't identify a valid semaphore. It's
possible for a semaphore to become invalid while an acquisitive thread is waiting
in the semaphore's queue. For example, if your thread calls acquire_sem () on a
valid (but unavailable) semaphore, and then some other thread deletes the
semaphore, your thread will return B_BAD_SEM_ID from its call to
acquire_sem () .

The other return values apply to acquire_sem_etc () only:

• B_BAD_ VALUE. Illegal count value (less than 1).
• B_WOULD_BLOCK. You specified a timeout of 0 and the semaphore isn't available.
• B_TIMED_OUT. The timeout expired (for all values of timeout other than O).

create_sem()

sem_id create_sem(uint32 thread_count, canst char *name)

Creates a new semaphore and returns a system-wide sem_id number that identifies
it. The arguments are:

• thread_ count initializes the semaphore's thread count, the counting variable that's
decremented and incremented as the semaphore is acquired and released
(respectively). You can pass any non-negative number as the count, but you
typically pass either 1 or 0, as demonstrated in the examples above.

• name is an optional string name that you can assign to the semaphore. The name
is meant to be used only for debugging. A semaphore's name needn't be unique
any number of semaphores can have the same name.

Valid sem_id numbers are positive integers. You should always check the validity of
a new semaphore through a construction such as:

if ((my_sem = create_sem(l, "My Semaphore")) < B_NO_ERROR)
/* If it's less than B_NO_ERROR, my_sem is invalid. */

770 Chapter 5 • The Kernel Kit

create_sem() sets the new semaphore's owner to the team of the calling thread.
Ownership may be reassigned through the set_sem_owner () function. When the
owner dies (when all the threads in the team are dead), the semaphore is
automatically deleted. The owner is also significant in a delete_sem () call: Only
those threads that belong to a semaphore's owner are allowed to delete that
semaphore.

Return values:
B_BAD_VALUE. Invalid tbread_countvalue (less than 0).

B_NO_MEMORY. Not enough memory to allocate the semaphore's name.
B_NO_MORE_SEMS. All valid sem_id numbers are being used.

delete_sem()

status_t delete_sem(sem_id sem)

Deletes the semaphore identified by the argument. If there are any threads waiting in
the semaphore's thread queue, they're immediately unblocked.

WARNING

This function may only be called from a thread that belongs to the semaphore's
owner.

Return values:
B_NO_ERROR. The semaphore was successfully deleted.
B_BAD_SEM_ID. sem is invalid, or the calling thread doesn't belong to the team
that owns the semaphore.

get_sem_count()

status_t get_sem_count(sem_id sem, int32 *thread_ count)

WARNING

For amusement purposes only; never predicate your code on this function.

Returns, by reference in thread_count, the value of the semaphore's thread count
variable:

• A positive thread count (n) means that there are no threads in the semaphore's
queue, and the next n acquire_sem () calls will return without blocking.

• If the count is zero, there are no queued threads, but the next acquire_sem ()

call will block.

• A negative count (-n) means there are n threads in the semaphore's thread queue
and the next call to acquire_sem () will block.

Semaphores • Semaphore Functions 771

By the time this function returns and you get a chance to look at the thread_count
value, the semaphore's thread count may have changed. Although watching the
thread count might help you while you're debugging your program, this function
shouldn't be an integral part of the design of your application.

Return values:
B_NO_ERROR. Success.
B_BAD_SEM_ID. semis invalid (thread_count isn't changed).

get_sem_info(), get_next_sem_info(), sem_info

status_t get_sem_info(sem_id sem, sem_info "'info)
status_t get_next_sem_info(team_id team,

uint32 *cookie,
sem_info *info)

struct {} sem_info

Copies information about a particular semaphore into the sem_info structure
designated by info. The first version of the function designates the semaphore
directly, by sem_id.

The get_next_sem_info () version lets you step through the list of a team's
semaphores through iterated calls on the function. The team argument identifies the
team you want to look at; a team value of 0 means the team of the calling thread. The
cookie argument is a placemark; you set it to 0 on your first call, and let the function
do the rest. The function returns B_BAD_ VALUE when there are no more semaphores
to visit:

/* Get the sem_info for every semaphore in this team. */
sem_info info;
int32 cookie = O;

while (get_next_sem_info(O, &cookie, &info)

The sem_info structure is:

typedef struct sem_info {
sem_id sem;
team_id team;
char name[B_OS_NAME_LENGTH];
int32 count;
thread_id latest_holder;

} sem_info

B_OK)

772 Chapter 5 • The Kernel Kit

The structure's fields are:

• sem. The sem_id number of the semaphore.
• team. The team_id of the semaphore's owner.
• name. The name assigned to the semaphore.
• count. The semaphore's thread count.
• latest_holder. The thread that most recently acquired the semaphore.

WARNING

The latest_holder field is highly undependable; in some cases, the kernel
doesn't even record the semaphore acquirer. Although you can use this field as
a hint while debugging, you shouldn't take it too seriously. Love, Mom.

The information in the sem,_info structure is guaranteed to be internally consistent,
but the structure as a whole should be considered out-of-date as soon as you receive
it. It provides a picture of a semaphore as it exists just before the info-retrieving
function returns.

Return values:
B_NO_ERROR. Success.
B_BAD_SEM_ID. Invalid sem value.
B_BAD_TEAM_ID. Invalid team value.

release_sem(), release_sem_etc()

status_t release_sem(sem_id sem)

status_t release_sem_etc(sem_id sem, int32 count, uint32 flags)

The release_sem () function de-queues the thread that's waiting at the head of the
semaphore's thread queue (if any), and increments the semaphore's thread count.
release_sem_etc () does the same, but for count threads.

Normally, releasing a semaphore automatically invokes the kernel's scheduler. In
other words, when your thread calls release_sem () , you're pretty much guaranteed
that some other thread will be switched in immediately afterwards, even if your
thread hasn't gotten its fair share of CPU time. If you want to subvert this automatism,
call release_sem_etc (} with a flags value of B_DO_NOT_RESCHEDULE. Preventing
the automatic rescheduling is particularly useful if you're releasing a number of
different semaphores all in a row: By avoiding the rescheduling you can prevent
some unnecessary context switching.

Return values:
B_NO_ERROR. The semaphore was successfully released.
B_BAD_SEM_ID. Invalid sem value.
B_BAD_VALUE. Invalid count value (less than zero; release_sem_etc (} only).

See also: acquire_sem (}

Areas • Overview 773

set_sem_ owner()

status_t set_sem_owner(sem_id sem, team_id team)

Transfers ownership of the designated semaphore to team. A semaphore can only be
owned by one team at a time; by setting a semaphore's owner, you remove it from its
current owner.

There are no restrictions on who can own a semaphore, or on who can transfer
ownership. In practice, however, the only reason you should ever transfer ownership
is if you're writing a device driver and you need to bequeath a semaphore to the
kernel (the team of which is known, for this purpose, as B_SYSTEM_TEAM).

Semaphore ownership is meaningful for two reason:

• When a team dies (when all its threads are dead), the semaphores that are owned
by that team are deleted.

• Threads can only be deleted by threads that belong to a semaphore's owner.

To discover a semaphore's owner, use the get_sem_info () function.

Return values:
B_NO_ERROR. Ownership was successfully transferred.
B_BAD_SEM_ID. Invalid sem value.
B_BAD_TEAM_ID. Invalid team value.

Areas
Declared in: be/kernel/OS.h

Library: libroot.so

Overview
An area is a chunk of virtual memory. As such, it has all the expected properties of
virtual memory: It has a starting address, a size, the addresses it comprises are
contiguous, and it maps to (possibly non-contiguous) physical memory. The features
that an area provides that you don't get with "standard" memory are these:

• Areas can be shared. Different areas can refer to the same physical memory. Put
another way, different virtual memory addresses can map to the same physical
locations. Furthermore, the different areas needn't belong to the same application.
By creating and "cloning" areas, applications can easily share the same data.

• Areas can be locked into RAM. You can specify that the area's physical memory be
locked into RAM when it's created, locked on a page-by-page basis as pages are
swapped in, or that it be swapped in and out as needed.

774 Chapter 5 • The Kernel Kit

• Areas can be read- and write-protected.

• Areas are page-aligned. Areas always start on a page boundary, and are allocated in
integer multiples of the size of a page. (A page is 4096 bytes, as represented by
the B_PAGE_SIZE constant.)

• You can specify the starting address of the area's virtual memory. The specification
can require that the area start precisely at a certain address, anywhere above a
certain address, or anywhere at all.

Because areas are large-one page, minimum-you don't create them arbitrarily. The
two most compelling reasons to create an area are the two first points listed above:
To share data among different applications, and to lock memory into RAM.

In all particulars (but one) you treat the memory that an area gives you exactly as you
would treat any allocated memory: You can read and write it through pointer
manipulation, or through standard functions such as memcpy () and strcpy () . The
one difference is between areas and malloc'd memory is ...

• You never free () the memory that an area allocates for you. If you want to get
rid of an area, use the delete_area () function, instead.

Area I Os and Area Names

Each area that you create is tagged with an area_id number:

• An area:._id number is a positive integer that's global and unique within the
scope of the computer. They're not unique across the network, nor are they
persistent across boots.

• The area_id numbers are generated and assigned automatically by the
create_area () and clone_area () functions. The other area functions operate
on these area_id numbers (they're required as arguments).

• Although they are global, area_id numbers have little meaning outside of the
address space (application) in which they were created.

• Once assigned, the area_id number doesn't change; the number is invalidated
when delete_area () is called or when the application (team) that created it dies.

• Don't worry about recycled area_id numbers. When an area is deleted, it's
area_id goes with it. (area_id values are recycled, but the turnover is at 2/\31.)

Areas can also be (loosely) identified by name:

• When you create an area (through create_area () or clone_area ()), you get
to name it.

• Area names are not unique-any number of areas can be assigned the same name.

• To look up an area by name, use the FindArea () function.

Areas • Overview 775

Sharing an Area Between Applications

For multiple applications to share a common area, one of the applications has to
create the area, and the other applications clone the area. You clone an area by
calling clone_area () . The function takes, as its last argument, the area_id of the
source area and returns a new (unique) area_id number. All further references to
the cloned area (in the cloning application) must be based on the area_id that's
returned by clone_area ().

So how does a cloner find a source area_id in the first place?

• The source application can pass the "original" area_id number to the cloners.
• The cloners can find the area by name, by calling find_area ().

Keep in mind that area names are not forced to be unique, so the find_area ()
method has some amount of uncertainty. But this can be minimized through clever
name creation.

Cloned Memory

The physical memory that lies beneath an area is never implicitly copied-for
example, the area mechanism doesn't perform a "copy-on-write." If two areas refer to
the same memory because of cloning, a data modification that's affected through one
area will be seen by the other area. ·

Locking an Area

When you're working with moderately large amounts of data, it's often the case that
you would prefer that the data remain in RAM, even if the rest of your application
needs to be swapped out. An argument to create_area () lets you declare, through
the use of one of the following constants, the locking scheme that you wish to apply
to your area:

Constant

B_FULL_LOCK

B_CONTIGUOUS

B_LAZY_LOCK

B_NO_LOCK

Meaning

The area's memory is locked into RAM when the area is created, and won't
be swapped out.

Not only is the area's memory locked into RAM, it's also guaranteed to be
contiguous. This is particularly-and perhaps exclusively-useful to
designers of certain types of device drivers.

Allows individual pages of memory to be brought into RAM through the
natural order of things and then locks them.

Pages are never locked, they're swapped in and out as needed.

776 Chapter 5 • The Kernel Kit

Keep in mind that locking an area essentially reduces the amount of RAM that can be
used by other applications, and so increases the likelihood of swapping. So you
shouldn't lock simply because you're greedy. But if the area that you're locking is
going to be shared among some number of other applications, or if you're writing a
real-time application that processes large chunks of data, then locking can be a
justifiable excess.

The locking scheme is set by the create_area () function and is thereafter
immutable. You can't re-declare the lock when you clone an area.

Area Info

Ultimately, you use an area for the virtual memory that it represents: You create an
area because you want some memory to which you can write and from which you
can read data. These acts are performed in the usual manner, through references to
specific addresses. Setting a pointer to a location within the area, and checking that
you haven't exceeded the area's memory bounds as you increment the pointer (while
reading or writing) are your own responsibility. To do this properly, you need to
know the area's starting address and its extent:

• An area's starting address is maintained as the address field in its area_info
structure; you retrieve the area_info for a particular area through the
get_area_info () function.

• The size of the area (in bytes) is given as the size field of its area_info
structure.

An important point, with regard to area_info, is that the address field is only valid
for the application that created or cloned the area (in other words, the application
that created the area_id that was passed to get_area_info ()). Although the
memory that underlies an area is global, the address that you get from an area_info
structure refers to a specific address space.

If there's any question about whether a particular area_id is "local" or "foreign," you
can compare the area_info. team field to your thread's team.

Deleting an Area

When your application quits, the areas (the area_id numbers) that it created
through create_area () or clone_area () are automatically rendered invalid. The
memory underlying these areas, however, isn't necessarily freed. An area's memory is
freed only when (and as soon as) there are no more areas that refer to it.

You can force the invalidation of an area_id by passing it to the delete_area ()
function. Again, the underlying memory is only freed if yours is the last area to refer
to the memory.

Areas • Example 1: Creating and Writing into an Area 777

Deleting an area, whether explicitly through delete_area () , or because your
application quit, never affects the status of other areas that were cloned from it.

Example 1: Creating and Writing into an Area
As a simple example of area creation and usage, here we create a ten-page area and
fill half of it (with nonsense) by bumping a pointer:

area_id my_area;
char *area_addr, *ptr;

/* Create an area. */
my_area = create_area("my area", /* name you give to the area */

(void *)&area_addr, /* returns the starting addr */
B_ANY_ADDRESS, /* area can start anywhere */
B_PAGE_SIZE*lO, /* size in bytes */
B_NO_LOCK, /* Lock in RAM? No. */
B_READ_AREA I B_WRITE_AREA); /*permissions*/

/* All the errors you're likely to see. */
switch(my_area) {

case B_NO_ERROR:
break;

case B_NO_MEMORY:
printf ("Not enough swap space (or RAM if locked). \n");
return;

case B_BAD_VALUE:
printf ("Argument to create_area () was invalid. \n") ;
return;

case B_ERROR:
default:

printf("Something bad happened\n");
return;

/* Set ptr to the beginning of the area. */
ptr = area_addr;

/*Fill half the area (with random-ish data). */
for (int i; i < B_PAGE_SIZE*S; i++)

*ptr++ = system_time()%256;

You can also memcpy () and s trcpy () into the area:

/* Copy the first half of the area into the second half. */
memcpy(ptr, area_addr, B_PAGE_SIZE*S);

/* Overwrite the beginning of the area. */
strcpy(area_addr, "Hey, look where I am.");

When we're all done, we delete the area:

delete_area(my_area);

778 Chapter 5 • The Kernel Kit

Example 2: Reading a File into an Area
Here's a function that finds a file, opens it (implicit in the BFile constructor), and
copies its contents into RAM:

#include <File.h>

area_id file_area;

status_t file_reader(const char *pathname)
{

status_t err;
char *area_addr;

BFile file(pathname, B_READ_ONLY);
if ((err=file.InitCheck()) != B_NO_ERROR) {

printf("%s: Can't find or open.\n", pathname);
return err;

err= file.GetSize(&file_size);
if (err != B_NO_ERROR I I file_size == 0) {

printf("%s: Disappeared? Empty?\n", pathname);
return err;

/* Round the size up to the nearest page. */
file_size = (((file_size-1)%B_PAGE_SIZE)+l)*B_PAGE_SIZE;

/* Make sure the size won't overflow a size_t spec. */
if (file_size >= ((1«32)-1)) {

printf("%s: What'd you do? Read Montana?\n");
return B_NO_MEMORY;

file_area = create_area("File area", (void *)&area_addr,
B_ANY_ADDRESS, file_size, B_FULL_LOCK,
B_READ_AREA I B_WRITE_AREA);

/* Check create_area() errors, as in the last example. */

/* Read the file; delete the area if there's an error. */
if ((err=file.Read(area_addr, file_size)) < B_NO_ERROR) {

printf ("%s: File read error. \n") ;
delete_area(file_area);
return err;

/* The file is automatically closed when the stack-based
* BFile is destroyed.
*/

return B_NO_ERROR;

Areas • Example 3: Accessing a Designated Area 779

Example 3: Accessing a Designated Area
In the previous example, a local variable (area_addr) was used to capture the
starting address of the newly-created area. If some other function wants to access the
area, it must "re-find" the starting address (and the length of the area, for boundary
checking). To do this, you call get_area_info () .

In the following example, an area is passed in by name; the function, which will
write its argument buffer to the area, calls get_area_info () to determine the start
and extent of the area, and also to make sure that the area is part of this team. If the
area was created by some other team, the function could still write to it, but it would
have to clone the area first (cloning is demonstrated in the next example).

status_t write_to_area(const char *area_name,
const void *buf,
size_t len)

area_id area;
area_info ai;
thread_id thread;
thread_info ti;
status_t err;

if (! area_name)
return B_BAD_VALUE;

area= find_area(area_name);

/* Did we find it? */
if (area < B_NO_ERROR)

printf ("Couldn't find area %s. \n", area_name) ;
return err;

/* Get the info. */
err= get_area_info(area, &ai);

if (err < B_NO_ERROR) {
printf ("Couldri' t get area info. \n");
return err;

/* Get the team of the calling thread; to do this, we have
* to look in the thread_info structure.
*I

err= get_thread_info(find_thread(NULL), &ti);

if (err < B_NO_ERROR) {
printf("Couldn't get thread info.\n");
return err;

780

/*Compare this team to the.area's team. */
if (ai.team != ti.team)

printf ("Foreign area. \n");
· return B_NOT_ALLOWED;

!* Make sure we're not going to overflow the area,
* and make sure this area can be written to.
*/

if (len > ai.size) {
printf ("Buffer bigger than area. \n");
return B_BAD_VALUE;

if (! (ai.protection & B_WRITE_AREA))
printf("Can't write to this area.\n");
return B_NOT_ALLOWED;

/* Now we can write. */
memcpy(ai.address, buf, len);
return B_NO_ERROR;

Chapter 5 • The Kernel Kit

It's important that you only write to areas that were created or cloned within the
calling team. The starting address of a "foreign" area is usually meaningless within
your own address space.

You don't have to check the area's protection before writing to it (or reading from it).
The memory-accessing functions (memcpy () , in this example) will simply fail if an
invalid read or write is requested.

However, you do have to do your own boundary checking. None of the memory
accessing functions know anything about area boundaries: memcpy () will gladly
write beyond the end of the area (and possibly seg fault) if you that's what you ask
for.

Example 4: Cloning and Sharing an Area
In the following example, a server and a client are set up to share a common area.
Here's the server:

!* Server side */
class AServer

} ;

status_t make_shared_area(size_t size);
area_id the_area;
char *area_addr;

status_t AServer::make_shared_area(size_t size)
{

/* The size must be rounded to a page. */

Areas • Example 4: Cloning and Sharing an Area 781

size= ((size% B_PAGE_SIZE)+l) * B_PAGE_SIZE;
the_area = create_area("server area", (void *)&area_addr

B_ANY_ADDRESS, size, B_NO_LOCK,
B_READ_AREA I B_WRITE_AREA) ;

if (the_area < B_NO_ERROR) {
printf("Couldn't create server area\n");
return the_area;

return B_NO_ERROR;

And here's the client:

/* Client side */
class AClient

} ;

status_t make_shared_clone();
area_id the_area;
char *area_addr;

status_t AClient::make_shared_clone()
{

area_id src_area;

src_area = find_area("server area");
if (src_area < B_ERROR) {

printf("Couldn't find server area.\n");
return src_area;

the_area clone_area ("client area",
(void *)&area_addr,
B_ANY_ADDRESS,
B_READ_AREA I B_WRITE_AREA,
src_area);

if (the_area < B_NO_ERROR)
printf ("Couldn't create clone area\n");
return the_area;

return B_NO_ERROR;

Notice that the area creator (the server in the example) doesn't have to designate the
created area as sharable. All areas are candidates for cloning.

After it creates the cloned area, the client's area_id value (AClient: : the_area)
will be different from the server's (AServer: : the_area). Even though area_id
numbers are global, the client should only refer to the server's area_id number in
order to clone it. After the clone, the client talks to the area through its own area_id

(the value passed backed by clone_area ()).

782 Chapter 5 • The Kernel Kit

Example 5: Cloning Addresses
It's sometimes useful for shared areas (in other words, a "source" and a clone) to
begin at the same starting address. For example, if a client's clone area starts at the
same address as the server's original area, then the client and server can pass area
accessing pointers back and forth without having to translate the addresses. Here we
modify the previous example to do this:

status_t AClient::make_shared_clone()
{

area_id src_area;

src_area = find_area("server area");

if (src_area < B_ERROR) {
printf("Couldn't find server area. \n");
return B_BAD_VALUE;

/* This time, we specify the address that we want the
* clone to start at. The B_CLONE_ADDRESS constant
* does this for us.
*I

area_addr = src_info.address;
the_area clone_area ("client area",

(void *)&area_addr,
B_CLONE_ADDRESS,
B_READ_AREA I B_WRITE_AREA,
src_area);

if (the_area < B_NO_ERROR)
printf("Couldn't create clone area\n");
return the_area;

return B_NO_ERROR;

Of course, demanding that an area begin at a specific address can be too restrictive; if
any of the memory within [area_addr, area_addr + src_info. size] is already
allocated, the clone will fail.

Area Functions
area_forQ

area_id area_for(void • addr)

Returns the area that contains the given address (within your own team's address
space). The argument needn't be the starting address of an area, nor must it start on a
page boundary: If the address lies anywhere within one of your application's areas,
the ID of that area is returned.

Areas • Area Functions 783

Since the address is taken to be in the local address space, the area that's returned
will also be local-it will have been created or cloned by your application.

Return values:
B_ERROR. The address doesn't lie within an area.

See also: find_area ()

clone_area()

area_id clone_area(const char *clone_name,
void **clone_addr,
uint32 clone_addr_spec,
uint32 clone_protection,
area_id source_area)

Creates a new area (the clone area) that maps to the same physical memory as an
existing area (the source area).

• clone_name is the name that you wish to assign to the clone area. Area names are,
at most, B_OS_NAME_LENGTH characters long.

• clone_addr points to a value that gives the address at which you want the clone
area to start; the pointed-to value must be a multiple of B_PAGE_SIZE (4096). The
function sets the value pointed to by clone_addr to the area's actual starting
address-it may be different from the one you requested. The constancy of
*clone_addr depends on the value of clone_addr_spec, as explained next.

• clone_addr_spec is one of four constants that describes how clone_addr is to be
interpreted. The first three constants, B_EXACT_ADDRESS, B_BASE_ADDRESS, and
B_ANY_ADDRESS, have meanings as explained under create_area () .

The fourth constant, B_CLONE_ADDRESS, specifies that the address of the cloned
area should be the same as the address of the source area. Cloning the address is
convenient if you have two (or more) applications that want to pass pointers to
each other-by using cloned addresses, the applications won't have to offset the
pointers that they receive. For both the B_ANY_ADDRESS and B_CLONE_,ADDRESS

specifications, the value that's pointed to by the clone_addr argument is ignored.

• clone_protection is one or both of B_READ_AREA and B_WRITE_AREA. These have
the same meaning as in create_ar~a ();keep in mind, as described there, that a
cloned area can have a protection that's different from that of its source.

• source_area is the area_id of the area that you wish to clone. You usually supply
this value by passing an area name to the find_area () function.

The cloned area inherits the source area's locking scheme (B_FULL_LOCK,

B_CONTIGUOUS, B_LAZY_LOCK, or B_NO_LOCK).

784 Chapter 5 • The Kernel Kit

Usually, the source area and clone area are in two different applications. It's possible
to clone an area from a source that's in the same application, but there's not much
reason to do so unless you want the areas to have different protections.

If clone_area {) clone is successful, the clone's area_id is returned. Otherwise, it
returns a descriptive error code, listed below.

Return values:
B~BAD_VALUE. Bad argument value; you passed an unrecognized constant for
addr_spec or lock, the addr value isn't a multiple of B_PAGE_SIZE, you set
addr_spec to B_EXACT_,ADDRESS or B_CLONE_,ADDRESS but the address request
couldn't be fulfilled, or source_area doesn't identify an existing area.
B_NO_MEMORY. Not enough memory to allocate the system structures that support
this area (unlikely).
B_ERROR. Some other system error prevented the area from being created.

See also: create_area {)

create_area()

area_id create_area(const char *name,
void ** addr,
uint32 addr_spec,
uint32 size,
uint32 lock,
uint32 protection)

Creates a new area and returns its area_id.

• name is the name that you wish to assign to the area. It needn't be unique. Area
names are, at most, B_OS_NAME_LENGTH (32) characters long.

• addr points to the address at which you want the area to start. The value of "addr
must signify a page boundary; in other words, it must be an integer ·multiple of
B_PAGE_SIZE (4096). Note that this is a pointer to a pointer: *addr-not addr
should be set to the desired address; you then pass the address of addr as the
argument, as shown below:

/* Set the address to a page boundary. */
char *addr = (char*) (B_PAGE_SIZE * 100);

/* Pass the address of addr as the second argument. */
create_area("my area", &addr, ...) ;

The function sets the value of "addr to the area's actual starting address-it may
be different from the one you requested. The constancy of * addr depends on the
value of addr_spec, as explained next.

Areas • Area Functions

• addr_spec is a constant that tells the function how the *addr value should be
applied. There are three useful address specification constants, and one that
doesn't apply here:

Constant

B EXACT_ADDRESS

B_BASE_ADDRESS

B_ANY_ADDRESS

B_CLONE_ADDRESS

Meaning

You want the value of *addrto be taken literally and strictly. If the area
can't be allocated at that location, the function fails.

The area can start at a location equal to or greater than *addr.

The starting address is determined by the system. In this case, the
value that's pointed to by addr is ignored (going into the function).

This is only meaningful to the clone_area () function.

785

• size is the size, in bytes, of the area. The size must be an integer multiple of
B_PAGE_SIZE (4096). The upper limit of size depends on the available swap
space (or RAM, if the area is to be locked).

• lock describes how the physical memory should be treated with regard to
swapping. There are four locking constants:

Constant

B_FULL_LOCK

B_CONTIGUOUS

B_LAZY_LOCK

B_NO_LOCK

Meaning

The area's memory is locked into RAM when the area is created, and won't
be swapped out.

Not only is the area's memory locked into RAM, it's also guaranteed to be
contiguous. This is particularly-and perhaps exclusively-useful to
designers of certain types of device drivers.

Allows individual pages of memory to be brought into RAM through the
natural order of things and then locks them.

Pages are never locked, they're swapped in and out as needed.

• protection is a mask that describes whether the memory can be written and read.
You form the mask by adding the constants B_READ_AREA (the area can be read)
and B_WRITE_AREA (it can be written). The protection you describe applies only
to this area. If your area is cloned, the clone can specify a different protection.

If create_area () is successful, the new area_id number is returned. If it's
unsuccessful, one of the following error constants is returned.

Return values:
B_BAD_VALUE. Bad argument value. You passed an unrecognized constant for
addr_spec or lock, the addr or size value isn't a multiple of B_PAGE_SIZE, or you
set addr_spec to B_EXACT_ADDRESS but the address request couldn't be fulfilled.
B_NO_MEMORY. Not enough memory to allocate the system structures that support
this area (unlikely), not enough physical memory to support a locked area, or not
enough swap space to allocate virtual memory (in other words, size is too big).
B_ERROR. Some other system error prevented the area from being created.

See also: clone_area ()

786 Chapter 5 • The Kernel Kit

delete_area()

status_t delete_area(area_id area)

Deletes the designated area. If no one other area maps to the physical memory that
this area represents, the memory is freed. After being deleted, the area value is
invalid as an area identifier.

WARNING

Currently, anybody can delete any area-the act isn't denied if, for example,
the area_id argument was created by another application. This freedom will
be rescinded in a later release. Until then, try to avoid deleting other applica
tion's areas.

Return values:
B_NO_ERROR. The area was deleted; area is now invalid.
B_ERROR. area doesn't designate an actual area.

find_ area()

area_id find_area(const char *name)

Returns an area that has a name that matches the argument. Area names needn't be
unique-successive calls to this function with the same argument value may not
return the same area_id.

What you do with the area you've found depends on where it came from:

• If you're finding an area that your own application created or cloned, you can use
the returned ID directly.

• If the area was created or cloned by some other application, you should
immediately clone the area (unless you're doing something truly innocuous, such
as simply examining the area's info structure).

Return values:
B_NAME_NOT_FOUND. The argument doesn't identify an existing area.

See also: area_for ()

get_area_info(), get_next_area_info(), area_info

status_t get_area_info(area_id area, area_info *info)
status_t get_next_area_info(team_id team, uint32 *cookie, area_info *info)

struct {} area_info

Copies information about a particular area into the area_info structure designated
by info. The first version of the function designates the area directly, by area_id.

Areas • Area Functions 787

The get_next_area_info () version lets you step through the list of a team's areas
through iterated calls on the function. The team argument identifies the team you
want to look at; a team value of 0 means the team of the calling thread. The cookie
argument is a placemark; you set it to 0 on your first call, and let the function do the
rest. The function returns B_BAD_ VALUE when there are no more areas to visit:

/* Get the area_info for every area in this team. */

area_info info;
int32 cookie = O;

while (get_next_area_info(O, &cookie, &info)

The area_info structure is:

typedef struct area_info {

area_id area;

char name[B_OS_NAME_LENGTH];

size_t size;

uint32 lock;

uint32 protection;

team_id team;

size_t ram_size;

uint32 copy_count;

uint32 in_count;

uint32 out_count;

void *address;

} area_info;

The fields are:

• area is the area_id that identifies the area.

B_OK)

• name is the name that was assigned to the area when it was created or cloned.

• size is the (virtual) size of the area, in bytes.

• lock is a constant that represents the area's locking scheme. This will be one of
B_FULL_LOCK,B_CONTIGUOUS, B_LAZY_LOCK, orB_NO_LOCK.

• protection specifies whether the area's memory can be read or written. It's a
combination of B_READ_AREA and B_WRITE_AREA.

• team is the team_id of the team that created or cloned this area.

• address is a pointer to the area's starting address. Keep in mind that this address
is only meaningful to the team that created (or cloned) the area.

788 Chapter 5 • The Kernel Kit

The final four fields give information about the area that's useful in diagnosing system
use. The fields are particularly valuable if you're hunting for memory leaks:

• ram_size gives the amount of the area, in bytes, that's currently swapped in.

• copy_count is a "copy-on-write" count that can be ignored-it doesn't apply to
the areas that you create. The system can create copy-on-write areas (it does so
when it loads the data section of an executable, for example), but you can't.

• in_count is a count of the total number of times any of the pages in the area
have been swapped in.

• out_count is a count of the total number of times any of the pages in the area
have been swapped out.

Return values:
B_NO_ERROR. The area was found; info contains valid information.
B_BAD_ VALUE. area doesn't identify an existing area, team doesn't identify an
existing team, or there are no more areas to visit.

resize_area()

status_t resize_area(area_id area, size_t new_size)

Sets the size of the designated area to new_size, measured in bytes. The new_size
argument must be a multiple of B_PAGE_SIZE (4096).

Size modifications affect the end of the area's existing memory allocation: If you're
increasing the size of the area, the new memory is added to the end of area; if you're
shrinking the area, end pages are released and freed. In neither case does the area's
starting address change, nor is existing data modified (except, of course, for data
that's lost due to shrinkage).

Resizing affects all areas that refer to this area's physical memory. For example, if B is
a clone of A, and you resize A, B will be automatically resized (if possible).

Return values:
B_NO_ERROR. The area was successfully resized.
B_BAD_VALUK area doesn't signify a valid area, or new_size isn't a multiple of
B_PAGE_SIZE.

B_NO_MEMORY. Not enough memory to support the new portion of the area. This
should only happen if you're increasing the size of the area.
B_ERROR. Some other system error prevented the area from being created.

set_area_protection ()

status_t set_area_protection(area_id area, uint32 new_protection)

Images • Overview 789

Sets the given area's read and write protection. The new_protection argument is a
mask that specifies one or both of the values B_READ_AREA and B_WRITE_AREA. The
former means that the area can be read; the latter, that it can be written to. An area's
protection only applies to access to the underlying memory through that specific
area. Different area clones that refer to the same memory may have different
protections.

Return values:
B_NO_ERROR. The protection was changed.
B_BAD_ VALUE. area doesn't identify a valid area.

Images
Declared in:

Library:

Overview

be/kernel/image .h

libroot.so

This isn't about graphics. An image is compiled code. There are three types of
images:

• An app image is an application. Every application has a single app image.

• A library image is a dynamically linked library (a "shared library"). Most
applications link against the system libraries (libroot.so, libbe.so, and so on) that
Be provides.

• An add-on image is an image that you load into your application as it's running.
Symbols from the add-on image are linked and references are resolved when the
image is loaded. An add-on image provides a sort of "heightened dynamic linking"
beyond that of a DLL.

The following sections explain how to load and run an app image, how to create a
shared library, and how to create and load an add-on image.

Loading an App Image

Loading an app image is like running a "sub-program." The image that you load is
launched in much the same way as had you double-clicked it in the Browser, or
launched it from the command line. It runs in its own team-it doesn't share the
address space of the application from which it was launched-and, generally, leads
its own life.

790 Chapter 5 • The Kernel Kit

Any application can be loaded as an app image; you don't need to issue special
compile instructions or otherwise manipulate the binary. The one requirement of an
app image is that it must have a main () function; hardly a restrictive request.

To load an app image, you call the load_image () function, the protocol for which
is:

thread_id load_image (int32 argc,
const char ** argv,
const char **env)

The function's first two arguments identify the app image (file) that you want to
launch-we'll return to this in a moment. Having located the file, the function creates
a new team, spawns a main thread in that team, and then returns the thread_id of
that thread to you. The thread that's returned is the executable's main thread. It won't
be running: To make it run you pass the thread_id to resume_ thread () or
wai t_for_thread () (as explained in the major section "Threads and Teams").

The argc/ argv argument pair is copied and forwarded to the new thread's main ()
function:

• The first string in the argv array must be the name of the image file that you want
to launch; load_image () uses this string to find the file. You then install any
other arguments you want in the array, and terminate the array with a NULL entry.
argc is set to the number of entries in the argv array (not counting the terminating
NU+.L). It's the caller's responsibility to free the argv array after load_image ()
returns (remember-the array is copied before it's passed to the new thread).

• envp is an array of environment variables that are also passed to main () .
Typically, you use the global environ pointer (which you must declare as an
extern-see the example, below). You can, of course, create your own
environment variable array: As with the argv array, the envp array should be
terminated with a NULL entry, and you must free the array when load_image ()
returns (that is, if you allocated it yourself-don't try to free environ).

The following example demonstrates a typical use of load_image () . First, we
include the appropriate files and declare the necessary variables:

#include <image.h> /* load_executable() */
#include <OS.h> /* wait_for_thread() */
#include <stdlib.h> /* malloc() */

/* Declare the environ array. */
extern char **environ;

char **arg_v; /* choose a name that doesn't collide with argv */
int32 arg_c; /* same here vis a vis argc */
thread_id exec_thread;
int32 return_value;

Images • Overview 791

Install, in the arg_ v array, the "command line" arguments. Let's pretend we're
launching a program found in /boot/home/apps/adder that takes two integers, adds
them together, and returns the result as main () 's exit code. Thus, there are three
arguments: The name of the program, and the values of the two addends converted
to strings. Since there are three arguments, we allocate arg_v to hold four pointers
(to accommodate the final NULL). Then we allocate and copy the arguments.

arg_c 3;
arg_v = (char **)malloc(sizeof(char *) * (arg_c + 1));

arg_v[O]
arg_v[l]
arg_v[2]
arg_v[3]

strdup("/boot/home/apps/adder");
strdup("5");
strdup{"3");
NULL;

Now that everything is properly set up, we call load_image (). After the function
returns, it's safe to free the allocated arg_v array:

exec_thread = load_image(arg_c, arg_v, environ);
free (arg_v);

At this point, exec_thread is suspended (the natural state of a newly-spawned
thread). In order to retrieve its return value, we use wai t_for_thread () to tell the
thread to run:

wait_for_thread(exec_thread, &return_value); ,

After wai t_for_thread () returns, the value of return_ value should be 8 (i.e.,
5 + 3).

Creating a Shared Library

The primary documentation for creating a shared library is provided by Metrowerks
in their CodeWarrior manual. Beyond the information that you find there, you should
be aware of the following amendments and caveats:

• You mustn't export your library's symbols through the -export all compiler
flag. Instead, you should either use -export pragma or -@export filename
(which is the same as -f filename). See the Metrowerks manual for details on
how to use these flags.

• The loader looks for libraries by following the LIBRARY_PATH environment
variable.

The default library path looks like this:

$ echo $LIBRARY_PATH
%A/lib:/boot/home/config/lib:/boot/beos/system/lib

where "%A" means the directory that contains the app that the user is launching.

792 Chapter 5 • The Kernel Kit

Creating and Using an Add-on Image

An add-on image is indistinguishable from a shared library image. Creating an add-on
is exactly like creating a shared library, a topic that we breezed through immediately
above. The one difference is where the loader looks for add-ons: The loader follows
the trail given by the ADDON_PATH environment variable.

The default ADDON_PATH looks like this:

$ echo $ADDON_PATH
%A/add-ons:/boot/home/config/add-ons:/boot/beos/system/add-ons

Loading an Add-on Image

To load an add-on into your application, you call the load_add_on () function. The
function takes a pathname (absolute or relative to the current working directory) to
the add-on file, and returns an image_id number that uniquely identifies the image
across the entire system.

For .example, let's say you've created an add-on image that's stored in the file
/boot!home/add-ons!adder. The code that loads the add-on would look like this:

/* For brevity, we won't check errors. */
image_id addon_image;

/* Load the add-on. */
addon_image = load_add_on("/boot/home/add-ons/adder");

Unlike loading an executable, loading an add-on doesn't create a separate team, nor
does it spawn another thread. The whole point of loading an add-on is to bring the
image into your application's address space so you can call the functions and fiddle
with the variables that the add-on defines.

Symbols

After you've loaded an add-on into your application, you'll want to examine the
symbols (variables and functions) that it has brought with it. To get information about
a symbol, you call the get_image_symbol () function:

status_t get_image_symbol (image_id image,
char • symbol_name,
int32 symbol_type,
void **location)

The function's first three arguments identify the symbol that you want to get:

• The first argument is the image_id of the add-on that owns the symbol.

• The second argument is the symbol's name. This assumes, of course, that you
know the name. In general, using an add-on implies just this sort of cooperation.

Images • Overview

• The third is a constant that gives the symbol's symbol type. The only types you
need to care about are B_SYMBOL_TYPE_DATA which you use for variables, and
B_SYMBOL_TYPE_TEXT which you use for functions.

The function returns, by reference in its final argument, a pointer to the symbol's
address. For example, let's say the adder add-on code looks like this:

int32 al O;
int32 a2 O;

int32 adder(void)
{

return (al+ a2);

To examine the variables (addendl and addend2), you would call
get_image_symbol () thus:

int32 *var_al, *var_a2;

get_image_symbol(addon_image, "al", B_SYMBOL_TYPE_DATA, &var_al);
get_image_symbol(addon_image, "a2", B_SYMBOL_TYPE_DATA, &var_a2);

793

To get the symbol for the adder () function is a bit more complicated. The compiler
mangles a function's name to encode the data types of the function's arguments. The
encoding scheme is explained in the next section; to continue with the example, we'll
simply accept that the adder () function's symbol is:

adder_Fv

And so ...

int32 (*func_add) ();
get_image_symbol(addon_image, "adder_Fv", B_SYMBOL_TYPE_TEXT, &func_add);

Now that we've retrieved all the symbols, we can set the values of the two addends
and call the function:

*var_al = 5;
*var_a2 = 3;
int32 return_value = (*func_add) ();

Function Symbol Encoding

The compiler encodes function symbols according to this format:

function_ <Nclass>F<argl><arg2><arg3>

function is the name of the function; some C++ names are special:

• Class constructors are always named "_ct".
• Destructors are "_dt".

794 Chapter 5 • The Kernel Kit

The <Nclass> symbol is used only if the function is a member of a class; N is the
length (in characters) of the class name and class is the name itself.

The optional <argN> symbols encode the argument types:

Code Type

i int

s short

1 long

f float

d double

c char

v void

In addition, if the argument is declared as unsigned, the type code character is
preceded by "U". If it's a pointer, the type code (and, potentially, the "U") is preceded
by "P"; a pointer to a pointer is preceded by "PP". For example, a function that's
declared as

void Func(int32, unsigned char**, float* double);

would have the following symbol name:

Func_FlUPPcPfd

Note that typedef's are translated to their natural types. So, for example, this:

void dump_thread(thread_id, bool);

becomes

dump_thread__FlUc

But There's an Easier Way

There's actually an easier, if less elegant, way to find a function's compiler-mangled
name: Use pefdump.

pefdump the add-on that you want to use, and then copy the function name from the
"export symbol table:" section. As an example, let's pefdump the Device Kit library,
libdevice.so:

$ cd /system/lib
$ pefdump libdevice.so

/*A LOT of output; and then, at the end ... */

export symbol table:
class
TVECT

name value
Close_4BA2DFv 10002260

Images • Image Functions 795

TVECT
TVECT
TVECT
TVECT
TVECT
TVECT
TVECT

Close_9BJoystickFv 10002220
_dt_llBSerialPortFv 10002180

IsDSR_llBSerialPortFv 100020c0
_ct_4BA2DFv 10002280
_dt_4BA2DFv 10002278

Close_12BDigitalPortFv 100021d8
ParityMode_llBSerialPortFv 10002110

So, for example, BSerialPort's Pari tyMode () function is mangled as
"ParityMode_llBSerialPortFv".

Image Functions

get_image_info(), get_next_image_info(), image_info

status_t get_image_info(image_id image, image_info *info)

status_t get_next_image_info(team_id team,
int32 *cookie,
image_info *info)

struct {} image_info

These functions copy, into the info argument, the image_info structure for a
particular image. The get_image_info () function gets the information for the
image identified by image.

The get_next_image_info () function lets you step through the list of a team's
images through iterated calls. The team argument identifies the team you want to
look at; a team value of 0 means· the team of the calling thread. The cookie argument
is a placemark; you set it to 0 on your first call, and let the function do the rest. The
function returns B_BAD_ VALUE when there are no more images to visit:

/* Get the image_info for every image in this team. */
image_info info;
int32 cookie = O;

while (get_next_image_info(O, &cookie, &info)

The image_info structure is defined as:

typedef struct {
image_id id;

image_type type;

int32 sequence;

int32 ini t_order;

B_PFV init_routine;

B_OK)

796

B_PFV term_routine;
dev _t device;
ino_t node;
char name[MAXPATHLEN];
void *text;
void *data;
int32 text_size;
int32 data_size;

} image~info

The fields are:

• id. The image's image_id number.

Chapter 5 • The Kernel Kit

• type. A constant (listed below) that tells whether this is an app, library, or add-on
image.

• sequence and ini t_order. These are zero-based ordinal numbers that give the
order in which the image was loaded and initialized, compared to all the other
images in this team.

• ini t_routine and term_routine. These are pointers to the functions that are
used to initialize and terminate the image (more specifically, the image's main
thread). The B_PFV type is a cover for a pointer to a (void*) function.

• device. The device that the image file lives on.

• node. The node number of the image file.

• name. The full pathname of the file whence sprang the image.

• text and text_size. The address and the size (in bytes) of the image's text
segment.

• data and data_size. The address and size of the image's data segment.

The self-explanatory image_type constants are:

Constant

B_APP_IMAGE

B_LIBRARY_IMAGE

B_ADD_ON_IMAGE

Return values:
B_NO_ERROR. The image was found; info contains valid information.
B_BAD_VALUE. image doesn't identify an existing image, team doesn't identify an
existing team, or there are no more images to visit.

Images • Image Functions

get_image_symbol{), get_nth_image_symbol()

status_t get_image_symbol(image_id image,
char *symbol_name,
int32 symbol_type,
void **location)

status_t get_nth_image_symbol(image_id image,
int32 n,
char *name,
int32 *name_length,
int32 *symbol_type,
void **location)

797

get_image_syrobol () returns, in location, a pointer to the address of the symbol
that's identified by the image, symbol_name, and symbol_type arguments. An
example demonstrating the use of this function is given in "Symbols."

get_nth_image_syrobol () returns information about the nth symbol in the given
image. The information is returned in the arguments:

• name is the name of the symbol. You have to allocate the name buffer before you
pass it in-the function copies the name into the buffer.

• You point name_length to an integer that gives the length of the name buffer that
you're passing in. The function uses this value to truncate the string that it copies
into name. The function then resets name_length to the full (untruncated) length
of the symbol's name (plus one byte to accommodate a terminating NULL). To
ensure that you've gotten the symbol's full name, you should compare the in
going value of name_length with the value that the function sets it to. If the in
going value is less than the full length, you can then re-invoke
get_nth_image_syrobol () with an adequately lengthened name buffer, and an
increased name_length value.

WARNING

Keep in mind that name_length is reset each time you call
get_nth_image_syrobol (). If you're calling the function iteratively (to
retrieve all the symbols in an image), you need to reset the name_length value
between calls.

• The function sets symbol_type to B_SYMBOL_TYPE_DATA if the symbol is a
variable, or B_SYMBOL_TYPE_TEXT if the symbol is a function. The argument's
value going into the function is of no consequence.

• The function sets location to point to the symbol's address.

798 Chapter 5 • The Kernel Kit

To retrieve image_id numbers on which these functions can act, use the
get_next_image_info () function. Such numbers are also returned directly when
you load an add-on image through the load_add_on () function.

Return values:
B_NO_ERROR. The symbol was found.
B_BAD_IMAGE_ID. image doesn't identify an existing image.
B_BAD_INDEX. n is out-of-bounds.

load_add_on(}, unload_add_on()

image_id load_add_on(const char *pathname)
status_t unload_add_on(image_id image)

load_add_on () loads an add-on image, identified by pathname, into your
application's address space.

• pathname can be absolute or relative; if it's relative, it's reckoned off of the current
working directory.

• The function returns an image_id (a positive integer) that represents the loaded
image. Image ID numbers are unique across the system.

An example that demonstrates the use of load_add_on () is given in "Loading an
Add-on Image."

You can load the same add-on image twice; each time you load the add-on a new,
unique image_id is created and returned.

unload_add_on () removes the add-on image identified by the argument. The
image's symbols are removed, and the memory that they represent is freed. If the
argument doesn't identify a valid image, the function returns B_ERROR. Otherwise, it
returns B_NO_ERROR.

Return values:
Positive image_id value (load) or B_NO_ERROR (unload). Success.
B_ERROR. The image couldn't be loaded (for whatever reason), or image isn't a
valid image ID.

load_image()

thread_id load_image(int argc,

const char ** argv,
const char ** env)

Loads an app image into the system (it doesn't load the image into the caller's address
space), creates a separate team for the new application, and spawns and returns the

System and Time Information

ID of the team's main thread. The image is identified by the pathname given in
m;gv[O].

The arguments are passed to the image's main () function (they show up there as the
function's similarly named arguments):

• argc gives the number of entries that are in the argv array.

799

• The first string in the argv array must be the name of the image file. You then
install any other arguments you want in the array, and terminate the array with a
NULL entry. Note that the value of argc shouldn't count argtJs terminating NULL.

• envp is an array of environment variables that are also passed to main () .

Typically, you use the global environ pointer:

extern char **environ;

load_image(... , environ);

The argv and envp arrays are copied into the new thread's address space. If you
allocated either of these arrays, it's safe to free them immediately after
load_image () returns.

The thread that's returned by load_image () is in a suspended state. To start the
thread running, you pass the thread_id to resume_ thread () or
wait_for_thread().

An example that demonstrates the use of load_image () is given in "Loading an App
Image."

Return values:
Positive integers. Success.
B_ERROR. Failure, for whatever reason.

System and Time Information
Declared in: be/kerneVOS.h

Library: libroot.so

The following functions, types, and structures are used to convey basic information
about the system, such as the number of CPUs, when the kernel was built, what time
it is now, and whether your computer is on fire.

800 Chapter 5 • The Kernel Kit

System Info Functions and Structures
get_system_info(), system_info, cpu_info, cpu_type,
platform_ type

status_t get_system_info(system_info *info)

struct {} system_info

struct {} cpu_info

enum cpu_type

enum platform_type

The get_system_info () function tells you more than you want to know about the
physical capacities and other statistics of your operating system. The function takes a
pointer to an allocated system_info structure and fills it in.

typedef struct {
machine_id id;
bigtime_t boot_time;
int32 cpu_count;
cpu_type cpu_type;
int32 cpu_revision;
cpu_info cpu_infos[B_MAX_CPU_NUM];
int64 cpu_clock_speed;
int64 bus_clock_speed;
platform_type platform_type;
int32 max_pages;
int32 used_pages;
int32 page_faults;
int32 max_sems;
int32 used_sems;
int32 max_ports;
int32 used_ports;
int32 max_threads;
int32 used_threads;
int32 max_teams;
int32 used_teams;
char kernel_name[B_FILE_NAME_LENGTH];
char kernel_build_date[B_OS_NAME_LENGTH];
char kernel_build_time[B_OS_NAME_LENGTH];
int64 kernel_version;

system_info

The system_info structure holds information about the machine and the state of the
kernel. The structure's fields are:

• id. The 64-bit number (encoded as two int32s) that uniquely identifies this
machine.

• boot_time. The time at which the computer was last booted, measured in
microseconds since January 1st, 1970.

System and Time Information • System Info Functions and Structures

• cpu_count. The number of CPUs.

• cpu_type and cpu_revision. The type constant and revision number of the
CPUs.

• cpu_infos. An array of cpu_info structures, one for each CPU.

801

• cpu_clock_speed. The speed (in Hz) at which the CPUs operate.

• bus_clock_speed. The speed (in Hz) at which the bus operates.

• platform_type. One of the platform type constants.

• max_resources and used_resources. The five pairs of max/used fields give the
total number of RAM pages, semaphores, and so on, that the system can create,
and the number that are currently in use.

• page_faul ts. The number of times the system has read a page of memory into
RAM due to a page fault.

• kernel_name. The (leaf) name of the kernel.

• kernel_build_date and kernel_build_time. Human-readable strings that
tell you when the kernel was built.

• kernel_ version. A number that identifies the kernel version.

The cpu_info structure is:

typedef struct {
bigtime_t active_time;

cpu_info;

• active_time is the number of microseconds spent doing useful work since the
machine was booted.

Relatedly, B_MAX_CPU_COUNT is currently 8.

The machine_id type is:

typedef int32 machine_id[2];

The cpu_type constants are:

typedef enum {
B_CPU_PPC_601 = 1,
B_CPU_PPC_603 = 2,
B_CPU_PPC_603e = 3,
B_CPU_PPC_604 = 4,
B_CPU_PPC_604e = 5,
B_CPU_PPC_686 = 13,
B_CPU_AMD_29K,
B_CPU_X86,
B_CPU_MC6502,
B_CPU_ZBO,
B_CPU_ALPHA,
B_CPU_MIPS,

802

B_CPU_HPPA,
B_CPU_M68K,
B_CPU_ARM,
B_CPU_SH,
B_CPU_SPARC

cpu_type;

The platform_type constants are:

typedef enum {
B_BEBOX_PLATFORM = 0,
B_MAC_PLATFORM,
B_AT_CLONE_PLATFORM,
B_ENIAC_PLATFORM,
B_APPLE_II_PLATFORM,
B_CRAY_PLATFORM,
B_LISA_PLATFORM,
B_TI_994A_PLATFORM,
B_TIMEX_SINCLAIR_PLATFORM,
B_ORAC_l_PLATFORM,
B_HAL_PLATFORM

platform_type;

Chapter 5 • The Kernel Kit

I haven't tried it, but I really don't think the BeOS would work at all well on a Timex
Sinclair (see is_computer_on_fire ()).

is_computer _on()

int32 is_ computer _on(void)

Returns 1 if the computer is on. If the computer isn't on, the value returned by this
function is undefined.

is_ computer _on_fire()

double is_ computer _on_fire(void)

Returns the temperature of the motherboard if the computer is currently on fire.
Smoldering doesn't count. If the computer isn't on fire, the function returns some
other value.

Time Functions

real_time_clock(), real_time_clock_usecs(),
set_real_time_clock()

uint32 real_time_clock (void)

bigtime_t real_time_clock_usecs (void)

void set_real_time_clock (int32 secs_since_jan1_1970)

Miscellaneous Functions and Constants • Miscellaneous Functions

real_time_clock () returns the number of seconds that have elapsed since January
1, 1970.

real_time_clock_usecs () measures the same time span in microseconds.

set_real_time_clock () sets the value that the other two functions refer to.

system_ time()

803

bigtime_t system_time(void)

Returns the number of microseconds that have elapsed since the computer was
booted.

Miscellaneous Functions and Constants

Miscellaneous Functions

clear _caches()
be/kernel/image.h

void clear _caches(void • addr, size_t !en, uint32 flags)

This function clears or invalidates the instruction and data caches. You should only
need this function if you're generating code on the fly, or if you're performing a
timing loop and you want to start with fresh caches (to get a "worst case" estimate).

The arguments are:

• addr is the starting address of a section of memory that corresponds to a section
of one of the caches.

• !en is the length, in bytes, of the instruction or data segment that you want to clear
or invalidate.

• flags is one or both of B_INVALIDATE_ICACHE and B_FLUSH_DCACHE.

By invalidating a section of the instruction cache, you cause the instructions in that
section to be reloaded next time they're needed. Flushing the data cache causes the
in-memory copy of the data to be written out to the cache.

debugger()
be/kernel/OS.h

void debugger(const char *string)

Throws the calling thread into the debugger. The string argument becomes the
debugger's first utterance.

804 Chapter 5 • The Kernel Kit

Constants

B_INFINITE_ TIMEOUT
be/kernel/OS.h

#define B_INFINITE_ TIMEOUT (922337203685477580711);

The infinite timeout value can be used to specify, to timeout-accepting functions, that
you're willing to wait forever.

B_OS_NAME_LENGTH
be/kernel/OS.h

#define B_OS_NAME_LENGTH 32

This constant gives the maximum length of the name of a thread, semaphore, port,
area, or other operating system bauble.

B_PAGE_SIZE
be/kernel/OS.h

#define B_PAGE_SIZE 4096

The B_PAGE_SIZE constant gives the size, in bytes, of a page of RAM.

CHAPTER SIX

The Support Kit

Introduction 807

BArchivable 808
Overview 808
Constructor and Destructor 811
Static Functions 811
Member Functions 812

BAutolock 812
Overview 812
Constructor and Destructor 813
Member Functions 813

BDatalO and BPositionlO 813
Overview 813
Constructor and Destructor 814
Member Functions 814

BFlattenable 816
Overview 816
Member Functions 817

Blist 818
Overview 818
Constructor and Destructor 818
Member Functions 819
Operators 823

Blocker 823
Overview 823
Constructor and Destructor 825
Member Functions 825

BMemorylO and BMalloclO 827
Overview 827
Constructor and Destructor 827
Member Functions 828

805

806

BStopWatch
Overview

Constructor and Destructor

Member Functions

Functions and Macros

Constants and Defined Types
Constants

Defined Types

Error Codes
General Error Codes

File System Error Codes

Application Kit Error Codes

Kernel Kit Error Codes

Media Kit Error Codes

Mail Errors

Device Kit Errors

Chapter 6 • The Support Kit

830
830
831
832

833

841
841
844

846
847
848
848
849
849
849
850

Support Kit Inheritance Hierarchy

BAr<hivable

CHAPTER SIX

The Support Kit

The Support Kit contains classes and utilities that any application can take advantage
of-regardless of what kind of application it is or what it does. Among other things, it
includes:

• The BArchivable protocol for objects that can archive themselves and be
instantiated from their archives.

• The BList class, a container for keeping track of a number of data items, typically
object pointers.

• The BLocker and BAutolock classes for implementing locking mechanisms.

• The BDataIO and BPositionIO protocols for objects that can be read and written,
and the BMemoryIO and BMallocIO classes that implement the protocols.

• The BFlattenable protocol for objects that can write themselves to a flattened
representation.

• Debugging tools, including the BStopWatch class.

• Common defined types and constants, such as int32 and int64.

• The error codes for all the software kits.

• Type codes for identifying data types in messages, attributes, and resources.

• Utility functions such as atomic_add (), wri te_16_swap (), and
convert_to_utf8().

807

808 Chapter 6 • The Support Kit

BArchivable
Derived from: none

Declared in: be/support/ Archivable.h

Overview
BArchivable is a protocol for archiving and unarchiving objects. When you archive
an object, you copy it to a static form that can be handed to another application,
saved to a file, cached in memory, and so on. Unarchiving does the opposite: It takes
a static archive and turns it into a functioning object.

Archiving an object entails capturing its current state in a package of some kind. The
package that the BeOS uses is a BMessage object. The BMessage can be sent or
posted just like any other message, and it can be flattened to a file or other data
repository. An object is unarchived by reconstructing it from the values stored in the
BMessage archive.

Archiving

To archive an object, you create a BMessage and pass it to the object's Archive ()
function:

BMessage message;
theObject->Archive(&message);

The message becomes the archive-it will contain all the information necessary to re
create the object.

It's the job of the Archive () implementation to write a description of the object into
the message. Each class is responsible for archiving the parts of the object that it
defines. To incorporate properties archived by its base classes, it should begin its
implementation of the function by calling the version of Archive () that it inherits
from its base class.

The chain of calls to inherited functions ends at the BArchivable root class. Its version
of Archive () puts the object's class name into the archive under the field named
"class". This information is used later when instantiating objects from the archive. It's
good practice for derived classes to put their own class names in the "class" array as
well, provided that instances of the class can be initialized from the archive: An
abstract class should not put its name in the array. (See validate_instan
tiation () for more on this issue.)

BArchivable • Overview 809

If an object doesn't want or need to include inherited archival, it should at least
include the BArchivable functionality by putting the name of the object's class in the
"class" array:

archive->AddString("class", class_name(this));

If a class doesn't have any data to add to the BMessage archive, it doesn't need to
implement an Archive () function; it can rely on the version it inherits. However, it
must implement the constructor and static Instantiate () function for its objects to
be successfully unarchived.

Deep and Shallow Archives

Archive () 's second argument, a bool flag, indicates whether the archive should be
deep or shallow. By default the flag is true (deep).

For a deep archive, a class should include in its archive any other objects that it
"owns." For a shallow archive, it should exclude these objects. For example a BView
object archives its children for a deep archive, but not for a shallow one.

To perform a deep archive, an object invokes Archive () on the objects it owns, and
adds the resulting archives to its own archive. For example:

status_t TheClass: :Archive(BMessage *archive, bool deep)
{

inherited: :Archive(archive, deep);
archive->AddString ("class", "TheClass");

if (deep) {
BMessage cronyArchive;
if (crony~>Archive(&cronyArchive, deep) == B_OK

archive->AddMessage ("crony", &cronyArchive);

Neither a deep nor a shallow archive should include objects that the target object is
associated with but doesn't own. For example, a BView doesn't archive its parent or
the BWindow to which it's attached.

Names

Name collisions in an archive are not automatically detected and corrected. For
example, if both class A and subclass B add fields named "dog", the unarchiving
mechanism will get confused.

To try to avoid collisions, all the Archive () functions implemented in the Be kits
use names beginning with an underbar ("_name"). Use a different convention for
naming archived data in the classes you define.

810 Chapter 6 • The Support Kit

Instantiation

To be unarchivable, a class must implement a constructor that takes a BMessage
archive as an argument. The constructor is a counterpart to the Archive () function:
It begins by calling the constructor for its immediate base class, and then looks in the
BMessage for the fields that it knows about (in other words, fields that were added in
the Archive() function).

But there's a problem: A constructor is named for its class. This forces you to know at
compile time the class of the object being unarchived. To get around this, every
archivable class must implement the static Instantiate () function (declared in
BArchivable) that doesn't do much more than call the archive-accepting constructor.
For example:

TheClass *TheClass::Instantiate(BMessage *archive)

if (validate_instantiation(archive, "TheClass"))
return new TheClass(archive);

return NULL;

(The validate_instantiation () function, provided by the Support Kit, is a
safety check that makes sure the BMessage object is, in fact, an archive for the named
class.)

But we're not through yet: Because the Instantiate () function is static, you need
an instance of its class to call it. To get around this difficulty, the Support Kit provides
the instantiate_object () function. When passed a BMessage archive,
instantiate_object () looks for the first name in the "class" array, finds the
Instantiate () function for that class, and calls it. Failing that, it picks another
name from the "class" array (working up the inheritance hierarchy) and tries again.

instantiate_object () returns a BArchivable instance. You then use cast_as ()
to cast the object to a more interesting class. A typical unarchiving session looks
something like this:

/* archive is the BMessage that we want to turn into an object.
* In this case, we want to turn it into a BView.

*I
BArchivable *unarchived= instantiate_object(archive);
if (unarchived) {

BView *view cast_as(unarchived, BView);
if (view) {

BArchivable • Static Functions

Dynamic Loading

As described so far, an application can only unarchive objects that it knows about-it
can't unarchive an object that it doesn't have the code to run.

An additional convention gets around this restriction: A BMessage archive can include
a B_STRING_TYPE field named "add-on" that contains the signature of an add-on that
defines the archived object. If instantiate_obj ect () fails to unarchive an object
on its first try, it will look for the add-on image, load it, and try again.

811

It's not defined how a host will interact with an unarchived instance of a previously
unknown class. It's up to the parties to define entry points and protocols, just as it is
for any other add-on module.

Constructor and Destructor
BArchivable()

BArchivable(void)
BArchivable(BMessage •archive)

Does nothing.

-BArchivable()

virtual -BArchivable(void)

Does nothing.

Static Functions
Instantiate()

static BArchivable *lnstantiate(BMessage *archive)

Returns NULL. You can't sreate BArchivable instances.

Derived classes should implement Instantiate() to return a new instance of the class
constructed from the BMessage archive. For example:

TheClass *TheClass::Instantiate{BMessage *archive)

if { !validate_instantiation (archive, "TheClass")
return NULL;

return new TheClass{archive);

This function depends on a constructor that can initialize the new object from the
archive BMessage. See the previous section "Instantiation" for more information.

812 Chapter 6 • The Support Kit

Member Functions

Archive()
virtual status_t Archive(BMessage *archive, bool deep= true) const

The default implementation adds the name of the object's class to archives "class"
field. Derived classes must override Archive () to augment this implementation by
adding, to the BMessage, data that describes the current state of the object. Each
implementation of this function should begin by incorporating the inherited version:

/* We'll assume that MyView inherits from BView. */
status_t MyView::Archive(BMessage *archive, bool deep)
{

BView: :Archive(archive, deep);

If the class can be instantiated, it should also add its name to the "class" array:

archive->AddString ("class", "MyView");

The deep flag declares whether Archive () should include objects that "belong" to the
archiving object. For example, a deep BView archive would include archived forms of
the view's children. An example is given under "Deep and Shallow Archives"
previously in this chapter.

Archive () should return B_OK if it's successful; otherwise, it should return B_ERROR

or a more descriptive error code.

BAutolock
Derived from: none

Declared in: be/support/ Autolock.h

Library: libbe.so

Overview
The BAutolock class provides an easy mechanism for automatically locking and
unlocking a BLocker object or, more typically, a BLooper. All you need to do is
statically allocate a BAutolock object (put it on the stack) and pass it a target BLocker
or BLooper. You may want to make sure the lock is in place before proceeding:

BAutolock autolocker(myWindow);
if (autolocker.IsLocked()) {

BDatalO and BPositionlO • Overview

When the BAutolock object is destroyed (when its stack exits), it unlocks the target
object.

Constructor and Destructor

BAutolock()

inline BAutolock(BLooper *looper)
inline BAutolock(BLocker *locker)
inline BAutolock(BLocker &locker)

Locks the target looper or locker object.

-BAutolock()

inline -BAutolock(void)

Unlocks the target BLooper or BLocker.

Member Functions

ls Locked()

inline bool lslocked(void)

Returns true if the target BLooper or BLocker is locked, and false if not.

BDatalO and BPositionlO
Derived from: BDataIO: none

BPositionIO: public BDataIO

Declared in: be/support/DataIO.h

Library: libbe.so

Overview

813

BDataIO and BPositionIO are abstract classes that define protocols for performing
input/output operations. Classes derived from them represent the various kinds of
things that can be treated as sources of input data or as repositories for output data.
For example, the BFile class, defined in the Storage Kit, represents a file. BMallocIO
and BMemoryIO, defined in this kit, represent a dynamically allocated memory
buffer.

814 Chapter 6 • The Support Kit

BDataIO declares only the basic I/0 functions Read () and Write () . BPositionIO
declares an additional set of functions (ReadAt () , Wri teAt () , Seek () , and
Position ()) for objects that can keep track of the current position in the I/0 buffer;
it implements Read () and Write () in terms of these other functions.

Neither class declares any data members, nor do they implement the functions in the
protocols they declare. It's up to derived classes to implement them based on the
properties of the particular kinds of data sources/repositories they represent.

Constructor and Destructor

BDatalO(), BPositionlO()

BDataIO (void)

BPositionIO (void)

These constructors have nothing to do. Constructors in derived classes should
initialize the object to default values-for example, set the current position to the
beginning of the data.

-BDatalO(), -BPositionlO()

virtual -BDatalO(void)

virtual -BPositionlO(void)

These destructors do nothing. Destructors in derived classes should free the memory
used, if appropriate.

Member Functions

Position() see Seek()

Read(), ReadAt()

BDataIO:
virtual ssize_t Read(void *buffer, size_t numBytes) = 0

BPositionIO:
virtual ssize_t Read(void *buffer, size_t numBytes)

virtual ssize_t ReadAt(off_t position, void *buffer, size_t numBytes) = 0

Read () is implemented by derived classes to copy numBytes bytes of data from the
object to the buffer. It should return the number of bytes actually read, which may be
0, or an error code if something goes wrong.

BDatalO and BPositionlO • Member Functions 815

Similarly, Read.At () is implemented by derived classes to read numBytes bytes of
data beginning at position in the data source, and to place them in the buffer. Like
Read () , it should return the number of bytes actually read, or an error code if
something goes wrong.

The BPositionIO class implements Read () in terms of Read.At () , Seek () , and
Position ()-so that it will always read starting at the current position and move the
current position beyond the data it has read. However, it leaves these latter functions
for derived classes to implement.

Seek(), Position()

BPositionlO:
virtual off_t Seek(off_t position, int32 mode) = 0

virtual off_t Position(void) const = 0

Seek () is implemented by derived classes to modify the current position maintained
by the object. The current position is an offset in bytes from the beginning of the
object's data. How the position argument is interpreted will depend on the mode flag.
Three possible modes should be supported:

• SEEK_SET. The position passed is an offset from the beginning of allocated
memory; in other words, the current position should be set to position.

• SEEK_CUR. The position argument is an offset from the current position; the
current position should be incremented by position.

• SEEK_END. The position argument is an offset from the end of the data; the current
position should be the sum of position plus the number of bytes in the data.

For the SEEK_SET mode, position should be a positive value. The other modes
permit negative offsets.

Seek () should return the new current position, as should Position () .

SetSize()

BPositionl 0:
virtual status_t SetSize(off_t numBytes)

Returns B_ERROR to indicate that, in general, BPositionIO objects can't set the amount
of memory in the repositories they represent. However, the BMallocIO class in this kit
and BFile in the Storage Kit implement SetSize () functions that override this
default.

See also: BFile: : SetSize (), BMallocIO: : SetSize ()

816

Write(), WriteAt()

BDataIO:
virtual ssize_t Write(const void *buffer, size_t numBytes) = 0

BPositionIO:
virtual ssize_t Write(const void *buffer, size_t numBytes)

Chapter 6 • The Support Kit

virtual ssize_t WriteAt(off_t position, const void *buffer, size_t numBytes) = 0

Write () is implemented by derived classes to copy numBytes bytes of data from the
buffer to the object. It should return the number of bytes actually written, which may
be 0, or an error code if the operation fails.

Similarly, Wri teAt () is implemented by derived classes to copy numBytes bytes of
data from the buffer to the position offset in the object's data repository. Like
Write () it should return the number of bytes it succeeds in writing, or an error code.

The BPositionIO class implements Write () in terms of Wri teAt (), Seek (), and
Position() -so that it always writes to the current position and moves the position
marker past the data it has written.

BFlattenable
Derived from: none

Declared in: be/support/Flattenable.h

Library: lib be.so

Overview
As its name implies, the BFlattenable class declares a protocol for objects that can be
flattened-written to an untyped buffer of bytes-and unflattened from the buffer. By
implementing this protocol, a class gives others the ability to manipulate its objects in
a flexible manner. Currently, only the BMessage class, through its AddFlat () and
FindFlat () functions, declares an API that can deal with BFlattenable objects. The
BPath class in the Storage Kit derives from BFlattenable.

As this class merely declares a protocol for other classes to implement, it doesn't
include a constructor or destructor.

BFlattenable • Member Functions

Member Functions

AllowsTypeCode() see TypeCode()

Flatten(), Unflatten()
virtual status_t Flatten(void •buffer, ssize_t numBytes) canst = 0

817

virtual status_t Unflatten(type_code code, canst void *buffer, ssize_t numBytes) = 0

Flatten () is implemented by derived classes to write the object into the buffer.
There are numBytes bytes of memory available at the buffer address. If this isn't at
least as much memory as the FlattenedSize () function says is necessary,
Flatten () should return an error. If successful, it should return B_OK.

Unflatten () is implemented by derived classes to set object values from numBytes
bytes of data taken from the buffer. However, it should read the data only if the type
code it's passed indicates that the data is a type that it supports-that is, only if its
AllowsTypeCode () function returns true for the code. If successful in
reconstructing the object from the flattened data, Unflatten () should return B_OK.

If not, it should return B_ERROR or a more descriptive error code.

FlattenedSize()
virtual ssize_t FlattenedSize(void) const = 0

Implemented by derived classes to return the amount of memory needed to hold the
flattened object. This is the minimal amount that must be allocated and passed to
Flatten ().

lsFixedSize()
virtual boo! lsFixedSize(void) canst = 0

Implemented by derived classes to return true if all instances of the class take up the
same amount of memory when they're flattened, and false if their flattened sizes
can differ. The sizes will differ, for example, if a variable-length string is part of the
flattened data.

TypeCode(), Allows TypeCode()

virtual type_code TypeCode(void) const = 0

virtual bool AllowsTypeCode(type_code code) const

TypeCode () is implemented by derived classes to return the type code that identifies
the class type. The code is used to identify an instance of the class in its flattened
state, for example when it's added to a BMessage.

818 Chapter 6 • The Support Kit

AllowsType () returns true if the code it's passed matches the code returned by
TypeCode () and false if not. If can be modified in derived classes to apply a more
liberal standard-to allow more than one type code to identify the object.

See also: BMes sage : : AddDa ta ()

Unflatten() see Flatten()

Blist
Derived from: none

Declared in: be/support/List.h

Library: lib be.so

Overview
A BList object is a compact, ordered list of data pointers. BList objects can contain
pointers to any type of data, including-and especially-objects.

An item assigned to a BList is identified by an index to its position in the list. Indices
start at 0 and are neither arbitrary nor permanent. If, for example, you insert an item
into the middle of a list, the indices of the items at the tail of the list are incremented
(by one). Similarly, removing an item decrements the indices of the following items.

A BList stores its items as type void *, so it's necessary to cast an item to the correct
type when you retrieve it. For example, items retrieved from a list of BBitmap objects
must be cast as BBitmap pointers:

BBitmap *theimage = (BBitmap *)myList->ItemAt(anindex);

WARNING

There's nothing to prevent you from adding a NULL pointer to a BList. How
ever, functions that retrieve items from the list (such as ItemAt ())return NULL

when the requested item can't be found. Thus, you can't distinguish between a
valid NULL item and an invalid attempt to access an item that isn't there.

Constructor and Destructor
BList()

Blist(int32 count = 20)
Blist(const BList& anotherlist)

Blist • Member Functions

Initializes the BList by allocating enough memory to hold count items. As the list
grows and shrinks, additional memory is allocated and freed in blocks of the same
size.

819

The copy constructor creates an independent list of data pointers, but it doesn't copy
the pointed-to data. For example:

BList *newList =new BList(oldList);

Here, the contents of oldList and newList-the actual data pointers-are separate and
independent. Adding, removing, or reordering items in oldList won't affect the
number or order of items in newList. But if you modify the data that an item in oldList
points to, the modification will be seen through the analogous item in newList.

The block size of a BList that's created through the copy constructor is the same as
that of the original BList.

-Blist()
virtual -Blist(void)

Frees the list of data pointers, but doesn't free the data that they point to. To destroy
the data, you need to free each item in an appropriate manner. For example, objects
that were allocated with the new operator should be freed with delete:

void *anitem;
for (long i = O; anitem = myList->ItemAt(i); i++)

delete anitem;
delete myList;

See also: MakeEmpty ()

Member Functions

Add Item()

bool Addltem(void *item, int32 index)
bool Addltem(void *item)

Adds an item to the BList at index-or, if no index is supplied, at the end of the list.
If necessary, additional memory is allocated to accommodate the new item.

Adding an item never removes an item already in the list. If the item is added at an
index that's already occupied, items currently in the list are bumped down one slot to
make room.

If index is out of range (greater than the current item count, or less than zero), the
function fails and returns false. Otherwise it returns true.

820

Add List()
bool AddList(BList *list, int32 index)
bool AddList(BList * lis'f)

Chapter 6 • The Support Kit

Adds the contents of another BList to this BList. The items from the other BList are
inserted at index-or, if no index is given, they're appended to the end of the list. If
the index is out of range, the function fails and returns false. If successful, it returns
true.

See also: Additem ()

Countltems()

int32 Countltems(void) const

Returns the number of items currently in the list.

DoForEach()

void DoForEach{bool (*June)(void *))
void DoForEach{bool (*June)(void *, void*), void •arg2)

Calls the June function once for each item in the BList. Items are visited in order,
beginning with the first one in the list (index O) and ending with the last. If a call to
June returns true, the iteration is stopped, even if some items have not yet been
visited.

June must be a function that takes one or two arguments. The first argument is the
currently-considered item from the list; the second argument, if June requires one, is
passed to DoForEach () as arg2.

Firstltem()
void *Firstltem(void) const

Returns the first item in the list, or NULL if the list is empty. This function doesn't
remove the item from the list.

See also: Lastitem () , ItemAt ()

Has Item()
bool Hasltem(void *item) canst

Returns true if item is in the list, and false if not.

Blist • Member Functions 821

lndexOf()

int32 lndexOf(void *item) const

Returns the index where a particular item is located in the list, or a negative number
if the item isn't in the list. If the item is in the list more than once, the index returned
will be the position of its first occurrence.

ls Empty()

bool lsEmpty(void) const

Returns true if the list is empty (if it contains no items), and false otherwise.

See also: MakeEmpty ()

ltemAt()

void *ltemAt(int32 index) const

Returns the item at index, or NULL if the index is out of range. This function doesn't
remove the item from the list.

See also: Items (), Firstitem (), Lastitem ()

Items()

void *ltems(void) const

Returns a pointer to the BList's list. You can index directly into the list if you're certain
that the index is in range:

myType *item= (myType *)Items() [index];

Although the practice is discouraged, you can also step through the list of items by
incrementing the list pointer that's returned by Items (). B~ aware that the list isn't
null-terminated-you have to detect the end of the list by some other means. The
simplest method is to count items:

void *ptr = myList->Items();

for long i = myList->Countitems(); i > O; i--

*ptr++;

You should never use the list pointer to change the number of items in the list.

822 Chapter 6 • The Support Kit

LastltemO

void *Lastltem(void) const

Returns the last item in the list without removing it. If the list is empty, this function
returns NULL.

See also: RemoveLastitem {) , Firstitem {)

MakeEmptyO

void MakeEmpty(void)

Empties the BList of all its items, without freeing the data that they point to.

See also: IsEmpty {), Removeitem {)

RemoveltemO, RemoveltemsO

bool Removeltem(void *item)
void *Removeltem(int32 indeX'j

bool Removeltems(int32 index, int32 count)

Removeitem {) removes an item from the list. If passed an item, the function looks
for the item in the list, removes it, and returns true. If it can't find the item, it returns
false. If the item is in the list more than once, this function removes only its first
occurrence.

If passed an index, Removeitem{) removes the item at that index and returns it. If
there's no item at the index, it returns NULL.

Removeitems {) removes a group of count items from the list, beginning with the
item at index. If the index is out of range, it fails and returns false. Otherwise, it
removes the items, without checking to be sure that the list actually holds that many
items at the index, and returns true.

The list is compacted after an item is removed. Because of this, you mustn't try to
empty a list (or a range within a list) by removing items at monotonically increasing
indices. You should either start with the highest index and move towards the head of
the list, or remove at the same index (the lowest in the range) some number of times.
As an example of the latter, the following code removes the first five items in the list:

for (long i = O; i <= 4; i++
myList->Removeitem(O);

See also: MakeEmpty {)

Blocker • Overview 823

Sortltems()

void *Sortltems{int (*compareFunc)(const void*, const void*)}

Rearranges the items in the list. The items are sorted using the compareFunc
comparison function passed as an argument. This function should return a negative
number if the first item is ordered before the second, a positive number if the second
is ordered before the first, and 0 if the two items are ordered equivalently.

The arguments passed to the comparison function are declared to be void*;

however, they should be regarded as pointers to the items in the list-in other words,
as pointers to pointers.

Operators
(assignment)

BList& operator ={const Blist&)

Copies the contents of one BList object into another:

BList newList = old.List;

After the assignment, each object has its own independent copy of list data;
destroying one of the objects won't affect the other.

Only the items in the list are copied, not the data they point to.

Blocker
Derived from: none

Declared in: be/support/locker.h

Library: lib be.so

Overview
The Blocker class provides a locking mechanism that can be used to protect a
section of critical code. The code that you want to protect should be placed between
Blocker's Lock () and Unlock () calls:

BLocker *aLock =new BLocker();

aLock->Lock();
/* Protected code goes here. */

aLock->Unlock(J;

824 Chapter 6 • The Support Kit

This guarantees that only one thread at a time will pass through the lock. After a
thread has locked the Blocker object, subsequent attempts to lock by other threads
are blocked until the first thread calls Unlock () .

Blocker keeps track of the locking thread-the thread that's currently between
Lock () and Unlock () calls. It lets the thread make nested calls to Lock () without
blocking. Because of this, you can wrap a Blocker's lock around a series of functions
that might, themselves, lock the same Blocker object.

For example, let's say you have a class called BadDog that's declared thus:

class BadDog : public BArchivable
{

public:
void DoThis();
void DoThat();
void DoThisAndThat();

private:
BLocker lock;

} ;

And let's implement the member functions as follows:

void BadDog::DoThis()
{

lock.Lock();
/* Do this here. */
lock.Unlock();

void BadDog::DoThat()
{

lock.Lock();
/* Do that here. */
lock. Unlock () ;

void BadDog::DoThisAndThat()
{

lock.Lock();
DoThis();
DoThat();
lock.Unlock();

Notice that DoThisAndThat () wraps the lock around its calls to DoThis () and
DoTha t () , both of which contain locks as well. A thread that gets past the Lock ()

call in DoThisAndThat () won't block when it calls the nested Lock () calls that it
runs into in DoThis () and DoThat ().

Blocker • Member Functions

Keep in mind that nested Lock () calls must be balanced by equally-nested Unlock ()
calls.

See also: the BAutolock class

Constructor and Destructor

Blocker()
Blocker(void)
Blocker(const char •name)

Sets up the object. The optional name is purely for diagnostics and debugging.

-Blocker()
virtual -Blocker(void)

825

Destroys the lock. If there are any threads blocked waiting to lock the object, they're
immediately unblocked.

Member Functions

Countlocks() see Locking Thread()

CountLockRequests() see Locking Thread()

ls Locked() see Locking Thread()

Lock{), LockWithTimeout{), Unlock()

bool lock(void)

status_t lockWith Timeout(bigtime_t timeout)

void Unlock(void)

These functions lock and unlock the Blocker.

Lock () attempts to lock the Blocker. It waits without time limit until it can succeed
and return true. It returns false only under exceptional circumstances-for
example, if the Blocker and its lock have been destroyed. While a thread has the
Blocker is locked, calls to Lock () by other threads will block. The locking thread,
on the other hand, can make additional, nested calls to Lock () without blocking.

LockWi thTimeou t () is an alternative to Lock () that permits you to limit how long
it should block waiting for the lock. The timeout is specified in microseconds. If

826 Chapter 6 • The Support Kit

LockWi thTimeout () can't acquire the lock before the time limit expires, it returns
B_TIMED_OUT. If the timeout is 0, this function doesn't block but immediately returns
B_OK (if it locked the BLooper) or B_ERROR (if it failed to obtain the lock). If the
timeout is B_INFINITE_TIMEOUT, it blocks without limit, just as Lock () does. Note
that if Lock () returns 0 (false), it has failed to lock the BLooper, but if
LockWi thTimeout () returns 0 (B_OK), it has succeeded.

Unlock () releases one level of nested locks and returns immediately. When the
BLocker is completely unlocked-when all nested Lock () (or
LockWi thTimeout ()) calls have been matched by calls to Unlock ()-the locking
thread is "unset", allowing some other thread to obtain the lock. If there are threads
blocked waiting for the lock when the lock is released, the thread that's been waiting
the longest acquires the lock.

Although you're not prevented from doing so, it's not good form to call Unlock ()
from a thread that doesn't own the lock. For debugging purposes, you can call
IsLocked () before calling Unlock () to make sure this doesn't happen in your
code.

LockingThread(), lsLocked(), CountLocks(),
CountLockRequests(), Sem()

thread_id LockingThread(void) canst

bool lslocked{void) const

int32 Countlocks(void) const

int32 CountlockRequests(void) const

sem_id Sem(void) const

These functions provide information that may be useful for debugging purposes.

LockingThread () returns the thread that currently has the BLocker locked, or -1 if
the BLocker isn't locked.

IsLocked () returns true if the calling thread currently has the BLocker locked (if
it's the locking thread) and false if not (if some other thread is the locking thread or
the BLocker isn't locked).

CountLocks () returns the number of times the locking thread has locked the
BLocker-the number of Lock () (or LockWi thTimeout ()) calls that have not yet
been balanced by matching Unlock () calls.

CountLockRequests () returns the number of threads currently trying to lock the
BLocker. The count includes the thread that currently has the lock plus all threads
currently waiting to acquire it.

BMemorylO and BMalloclO • Constructor and Destructor

Sero () returns the sem_id for the semaphore that the BLocker uses to implement the
locking mechanism.

827

LockingThread () returns the thread that currently has the BLooper locked, or -1 if
the BLooper isn't locked.

IsLocked () returns true if the calling thread has the BLooper locked (if it's the lock
owner) and false if not (if some other thread is the owner or the BLooper isn't
locked).

BMemorylO and BMalloclO
Derived from: public BPositionIO

Declared in: be/support/DataIO.h

Library: libbe.so

Overview
BMallocIO and BMemoryIO objects represent a buffer of dynamically allocated
memory. You assign the buffer to a BMemoryIO object on construction, but a
BMallocIO object allocates the buffer when you first call Write () or WriteAt ().On
subsequent calls, it makes sure that enough memory is allocated to hold all the data
you intend to write, reallocating it if necessary. Memory is allocated in multiples of a
block size that you can set.

Both classes implement the BPositionIO protocol. They inherit the Read () and
Write () functions that BPositionIO implements.

Constructor and Destructor
BMemorylO(}, BMalloclO()

BMemoryIO (void *buffer size_t numBytes)
BMemoryIO (const void *buffer size_t numBytes)

BMallocIO (void)

The BMemoryIO constructor assigns the object a buffer with at least numBytes of
available memory. If the buffer is declared canst, the object is read-only; calls to
Write () and Wri teAt () will fail. Otherwise, the buffer can be both read and
written. In either case, the caller retains responsibility for the buffer; the BMemoryIO
object won't free it.

828 Chapter 6 • The Support Kit

The BMallocIO constructor makes sure that the new object is empty and sets the
default block size to 256 bytes. The constructor doesn't allocate any memory;
memory is allocated when you first write to the object or when you call SetSize ()

to set the amount of memory.

-BMemorylO(), -BMalloclO()

virtual -BMemorylO(void)

virtual -BMalloclO(void)

The BMemoryIO destructor does nothing; the BMallocIO destructor frees all memory
that was allocated by the object.

Member Functions

Buffer{), Bufferlength()
BMallocIO:

const void *Buffer(void) const

size_t Bufferlength(void) const

Buffer () returns a pointer to the memory that the BMallocIO object has allocated,
or NULL if it hasn't yet had occasion to allocate any memory. BufferLength ()

returns the number of data bytes in the buffer (not necessarily the full number of
bytes that were allocated).

Position() see Seek()

ReadAt()

virtual ssize_t ReadAt(off_t position, void *buffer, size_t numBytes)

Copies up to numBytes bytes of data from the object to the buffer and returns the
actual number of bytes placed in the buffer. The data is read beginning at the position
offset.

This function doesn't read beyond the end of the data. If there are fewer than
numBytes of data available at the position offset, it reads only through the last data
byte and returns a smaller number than numBytes. If position is out of range, it
returns 0.

Both classes define essentially the same Read.At () function.

BMemorylO and BMalloclO • Member Functions 829

Seek(), Position()

virtual off_t Seek(off_t position, int32 mode)

virtual off_t Position(void) canst

Seek() sets the position in the data buffer where the Read() and Write()

functions (inherited from BPositionIO) begin reading and writing. How the position
argument is understood depends on the mode flag. There are three possible modes:

• SEEK_SET. The position passed is an offset from the beginning of allocated
memory; in other words, the current position is set to position. For this mode,
position should be a positive value.

• SEEK_CUR. The position argument is an offset from the current position; the value
of the argument is added to the current position.

• SEEK_END. The position argument is an offset from the end of the buffer for a
BMemoryIO object and an offset from the end of the data for a BMallocIO object
(not necessarily from the end of allocated memory). Positive values seek beyond
the end of the buffer or data; negative values seek backwards into the data.

For BMallocIO, attempts to seek beyond the end of the data and the end of allocated
memory are successful. When Write () is subsequently called, the object updates its
conception of where the data ends to bring the current position within range. If
necessary, enough memory will be allocated to accommodate any data added at the
current position. However, Write () will fail for a BMemoryIO object if the current
position is beyond the end of assigned memory.

Both Seek () and Position () return the current position as an offset in bytes from
the beginning of allocated memory.

SetBlockSize(), SetSize()

BMallocIO:
void SetBlockSize(size_t blockSize)
virtual status_t SetSize(off_t numBytes)

SetBlockSize () sets the size of the memory blocks that the BMallocIO object
deals with. The object allocates memory in multiples of the block size. The default is
256 bytes.

SetSize () sets the size of allocated memory to numBytes (modulo the block size).
Shrinking the buffer should always be successful (B_OK); if the buffer can't be grown,
B_NO_MEMORY is returned.

830 Chapter 6 • The Support Kit

WriteAt()

virtual ssize_t WriteAt(off_t position, canst void *buffer, size_t numBytes)

Copies numBytes bytes of data from buffer into allocated memory beginning at
position, and returns the number of bytes written.

For BMallocIO, a successful WriteAt () always return numByte~WriteAt ()
reallocates the buffer (in multiples of the block size) if it needs more room. If the
reallocation fails, this function returns B_NO_MEMORY.

However, the BMemoryIO version of Wri teAt () won't write outside the memory
buffer. If position is beyond the end of the buffer, it returns 0. If the object is read
only, it returns B_NOT_ALLOWED.

BStopWatch
Derived from: (nada)

Declared in: be/support/StopWatch.h

Library: lib be.so

Overview
The BStopWatch class is a debugging tool that you can use to time the execution of
portions of your code. When a BStopWatch object is constructed, it starts its internal
timer. When it's deleted, it stops the timer and prints the elapsed time to standard out
in this format:

Stop Watch "name': f usecs.

Where name is the name that you gave to the object when you constructed it, and f
is the elapsed time in microseconds.

Look at all these other things you can do:

• Suspend, resume, and reset the timer (Suspend () , Resume () , Reset ()).
• Ask for the current elapsed time without stopping the timer (ElapsedTime ()).
• Record "lap points" that are printed out at the end of the run (Lap ()).

Using a BStopWatch is simple; this ...

BStopWatch *watch = new BStopWatch("Timer 0");
/* The code you want to time goes here. */
delete watch;

... will produce, on standard out, a message that goes something like this:

Stopwatch "Timer 0": 492416 usecs.

BStopWatch • Constructor and Destructor

This would indicate that the timed code took about half a second to execute
remember, you're looking at microseconds.

If you want to time an entire function, just toss a Stop Watch on the stack:

void MyFunc ()
{

BStopWatch watch ("Timer 0");

When the function returns, the BStopWatch prints its message.

WARNING

BStopWatch objects are useful if you want to get an idea of where your cycles
are going. But you shouldn't rely on them for painfully accurate measurements.

There's no run-time toggle to control a BStopWatch. Make sure you remove
your BStopWatch objects after you're done debugging your code.

Constructor and Destructor
BStopWatch()

BStopWatch (const char *name, bool silent= false)

831

Creates a BStopWatch object, names it, and starts its timer. If silent is false (the
default), the object will print its elapsed time when its destroyed; if it's true, the
message isn't printed. To get the elapsed time from a silent BStopWatch, call
ElapsedTime () .

-BStopWatch()

-BStopWatch (void)

Stops the object's timer, spits out a timing message to standard out (unless it's
running silently), and then destroys the object and everything it believes in. By
default the timing message looks like this:

Stopwatch "name': fusees.

If you've recorded some lap points (through the Lap () function), you'll also see the
lap times as well:

Stop Watch "name': fusees.
[lap#: soFar#thisLap] [lap#-. soFar#thisLap] [lap#-. soFar#thisLap] ...

... where lap# is the number of the lap, soFar is the total elapsed time at that lap, and
thisLap is the time it took to complete the lap.

832 Chapter 6 • The Support Kit

Member Functions

ElapsedTime()

bigtime_t ElapsedTime (void) const

Returns the elapsed time, in microseconds, since the object was created or was last
Reset () . This function doesn't print the time message, nor does it touch the timer
(the timer keeps running-unless it's paused).

BStopWatch watch ("Timer 0");

printf("Elapsed time: %Ld\n", watch.ElapsedTime());

Lap()

bigtime_t Lap ()

Records a "lap point" and returns the total elapsed time so far. When the object is
destroyed, the lap point times are printed individually. You can record as many as
eight lap points; if you ask for a ninth lap point, the lap isn't recorded and this
function returns 0. See -BStopWatch () for a description of what the lap points look
like when they're printed.

WARNING

The only way to get the lap times after they've been recorded is by destroying
the object. If the object is silent, calling Lap () is effectively the same as calling
ElapsedTime ().

Name()

const char *Name (void) const

Returns the name of the object, as set in the constructor.

Reset() see Suspend()

Resume() see Suspend()

Suspend(), Resume{), Reset()

void Suspend (void)
void Resume (void)
void Reset (void)

These functions affect the object's timer.

Functions and Macros 833

Suspend () stops the timer but doesn't reset it.

Resume () start the timer running again.

Reset () sets the elapsed time to 0, but doesn't stop the timer. You can call Reset ()

at any time, regardless of whether the object is running or suspended.

Functions and Macros
Library: lib be.so

This section lists the Support Kit's general-purpose functions and macros. These
functions can be called by programs using any part of the Be operating system.

atomic_add(), atomic_and(), atomic_or()

be/support/SupportDefs.h

int32 atomic_add (int32 •atomicVariable, int32 addValue)
int32 atomic_and (int32 •atomicVariable, int32 andValue)
int32 atomic_or (int32 *atomic Variable, int32 orValue)

These functions perform the named operations (addition, bitwise AND, or bitwise
OR) on the 32-bit value found in atomicVariable, thus:

*atomicVariable += addValue
*atomicVariable &= andValue
*atomicVariable I= orValue

Each function returns the previous value of the int32 variable that atomicVariable
points to (in other words, they each return the value that was in •atomicVariable
before the operation was performed).

The significance of these functions is that they're guaranteed to be atomic: If two
threads attempt to access the same atomic variable at the same time (through these
functions), one of the two threads will be made to wait until the other thread has
completed the operation and updated the atomic Variable value.

beep()
be/support/Beep.h

status_t beep(void)

Produces the system beep. This function engages the Audio Server, but doesn't wait
for the sound to play. If it can't contact the server to play the beep, it returns
B_ERROR. If it can make contact but can't get a satisfactory reply back from the
server, it returns B_BAD_REPLY. Otherwise, it returns B_OK.

See also: play _sound () in the Media Kit

834 Chapter 6 • The Support Kit

cast_as() see class_name()

class_name(), is_instance_of(), is_kind_of(), cast_as()
be/support/Classinfo.h

const char *class_name(object)

bool is_instance_of(object, class)

bool is_kind_of(object, class)

class *cast_as(object, class)

These macros deliver information about an object's type, including the name of its
class and its standing in the class hierarchy. In each case, the object argument is a
pointer to an object; it can be an object of any type (it doesn't have to descend from
any particular class). The class argument is a class name-not a string such as
"BApplication", but the type name itself (literally BApplication).

class_name () returns a pointer to the name of objects class.

is_instance_of () returns true if object is an instance of class, and false
otherwise.

is_kind_of () returns true if object is an instance of class or an instance of any
class that inherits from class, and false if not.

cast_as () returns a pointer to object cast as a pointer to an object of class, but only
if object is a kind of class. If not, object cannot be safely cast as a pointer to class, so
cast_as () returns NULL.

For example, given this slice of the inheritance hierarchy from the Interface Kit,

BView

BPictureButton

and code like this that creates an instance of the BPictureButton class,

BButton *anObject =new BPictureButton(...);

the first three macros would work as follows:

• The class_name () macro would return a pointer to the string "BPictureButton":

const char *s = class_narne(anObject);

• The is_instance_of () macro would return true only if the class passed to it is
BPictureButton. In the following example, it would return false, and the

Functions and Macros 835

message would not be printed. Even though BPictureButton inherits from BView,
the object is an instance of the BPictureButton class, not BView:

if (is_instance_of(anObject, BView))
printf ("The object is an instance of BView. \n");

• The is_kind_of () macro would return true if class is BPictureButton or any
class that BPictureButton inherits from. In the following example, it would return
true and the message would be printed. A BPictureButton is a kind of BView:

if (is_kind_of(anObject, BView))
printf ("The object is a kind of BView. \n");

Note that class names are not passed as strings, but class_name () returns the name
as a string.

The cas t_as () macro is most useful when you want to treat a generic object as an
instance of a more specific class. Suppose, for example, that the BPictureButton
mentioned above becomes the focus view for a window and you retrieve it by calling
the BWindow's CurrentFocus () function:

BView *focus = myWindow->CurrentFocus();

Since the focus view might be any type of view, CurrentFocus () returns a pointer
to an object of the base BView class. Unless you know otherwise, you cannot treat
the object as anything more specific than a BView instance. However, you can ask
the object if it's a kind of BPictureButton and, if it is, cast it to the BPictureButton
type:

if (is_kind_of(focus, BPictureButton)) {
BPictureButton *picbutton = (BPictureButton *)focus);
if (picbutton->Behavior() B_TWO_STATE_BUTTON

The cast_as () macro does the same thing, but more efficiently. It casts the object to
the target class if it is safe to do so--if the object is an instance of a class that inherits
from the target class or an instance of the target class itself-and returns NULL if not.

BPictureButton *picbutton = cast_as(focus, BPictureButton);
if (picbutton) {

if (picbutton->Behavior() B_TWO_STATE_BUTTON

cast_as () is often used in place of the cast operator to assure code safety even
where an expected result is anticipated and there's no need for an intermediate
variable (like focus):

BPictureButton *picbutton
cast_as(myWindow->CurrentFocus(), BPictureButton);

if picbutton) {

836 Chapter 6 • The Support Kit

The cast_as () and is_kind_of () macros work alike; they're both based on the
C++ dynamic_cast operator and they reflect its behavior. To describe that behavior
more precisely, let's adopt the following shorthand terms for an object's type:

• The real type of an object is its type on construction. For example, if you construct
an instance of the BButton class, as shown above, BButton is its real type.

• The declared type of an object is the class label it currently bears. For example,
CurrentFocus () returns an object whose declared class is BView.

Either of these types can be compared to a target type, the type you want to cast the
object to or test it against. The target type is the class argument passed to the macros.

In the best of all possible worlds, you'd want to ignore the declared type of an object
and compare only the real type to the target type. However, the dynamic_cast
operator-and by extension cast_as () and is_kind_of ()-considers the real
type only if it has to. It first compares the object's declared type to the target type. It
assumes that the declared type is accurate (that the object is truly the kind of object
it's represented to be) and it summarily handles the obvious cases: If the target type is
the same as the declared type or if it's a class that the declared type inherits from, the
operation will succeed. Consequently, cast_as () will cast the object to the target
type and is_kind_of () will return true, regardless of the object's real type. In
other words, if the target class is above or at the same level as the declared class in
the inheritance hierarchy, the real class is ignored.

However, if the declared type doesn't match or derive from the target type,
dynamic_cast and the macros look at the real type: If the target class is identical to
the real type, or if it's a class that the real type derives from, the operation succeeds.
If not, it fails.

Therefore, the is_kind_of () and cast_as () macros will produce reliable results
as long as objects are not arbitrarily cast to types that may not be accurate. For
example, you should not cast an object to a target type and then attempt to use
is_kind_of () to determine if the cast was correct. This code is unreliable:

BPictureButton *picbutton =
(BPictureButton *}myWindow->CurrentFocus(};

if is_kind_of(picbutton, BPictureButton} } {

In this example, is_kind_of () will always return true, no matter what the class of
the current focus view. The general rule is that the declared type of an object must
always be accurate; an object should be typed only to its own class or to a class that
it inherits from. The macros cannot rescue you from an inaccurate cast.

Functions and Macros

convert_to_utf8(), convert_from_utf8()

be/support/UTF8.h

status_t convert_to_utf8(uint32 sourceEncoding,
const char *source,
int32 • sourceLength,
char •destination,
int32 *destinationLength)

status_t convert_from_utf8(uint32 destinationEncoding,
const char •source,
int32 • sourceLength,
char •destination,
int32 • destinationLength)

837

These functions convert text to and from the Unicode UTF-8 encoding that's standard
for the Be operating system and is assumed in most contexts. UTF-8 is described
under "Character Encoding" in the section "Responding to the User" of Chapter 4, Tbe
Inteif ace Kit.

convert_to_utf8 () permits you to take text that's encoded according to another
standard and convert it to UTF-8 for the BeOS. convert_from_utf8 () lets you
convert text from UTF-8 to other encodings for other venues (for example, to the
encodings commonly used for displaying text on the World Wide Web).

The first argument passed to these functions names the other encoding-the source
encoding for convert_to_utf8 () and the destination encoding for
convert_from_utf8 ().It can be any of the following constants:

B_ISOl_CONVERSION

B_IS02_CONVERSION

B_IS03_CONVERSION

B_IS04_CONVERSION

B_IS05_CONVERSION

B_IS06_CONVERSION

B_IS07_CONVERSION

B_IS08_CONVERSION

B_IS09_CONVERSION

B_ISOlO_CONVERSION

B_MAC_ROMAN_CONVERSION

B_SJIS_CONVERSION

B_EUC_CONVERSION

838 Chapter 6 • The Support Kit

Most of these constants designate encoding schemes that are supported by the BFont
class in the Interface Kit and its SetEncoding () function. They parallel the constants
that are passed to that function. For example, B_ISOl_CONVERSION (for these
functions) and B_IS0_8859_1 (for SetEncoding ()) both designate the extended
ASCII encoding defined in part one of ISO 8859 (Latin 1). Similarly,
B_IS02_CONVERSION matches B_IS0_8859_2, B_IS03_CONVERSION matches
B_IS0_8859_3, and so on. B_MAC_ROMAN_CONVERSION matches B_MACINTOSH_
ROMAN. (B_ISOlO_CONVERSION is not implemented for this release.)

B_SJIS_CONVERSION stands for the Shift-JIS (Japanese Industrial Standard) encoding
of Japanese and B_EUC_CONVERSION stands for the EUC (Extended UNIX Code)
encoding of Japanese in packed format.

Both functions convert up to sourcelength bytes of text from the source buffer. They
write up to destinationlength bytes of converted text into the destination buffer. The
amount of text that they actually convert is therefore constrained both by the amount
of source text (sourceLength) and the capacity of the output buffer
(destinationlength). Neither function stops at a null terminator ('\O') when reading
the input buffer nor adds one to the text in the output buffer; they depend only on
sourceLength and destinationLength for guidance.

When finished, these functions modify the variable that sourceLength refers to so that
it reports the number of bytes of source text actually converted. They also modify the
variable that destinationlength refers to so that it reports the number of bytes actually
written to the destination buffer. Neither function will stop in the middle of a
multibyte source character; they're guaranteed to convert only full characters.

If either function encounters a character in the source that the destination format
doesn't allow, it puts a question mark ("?") in its place in the output text. This is much
more likely to occur when converting from UTF-8 than when converting to it, since
Unicode represents a very large number of characters.

If successful in converting at least one source character, both functions return B_OK.
If unsuccessful, for example, if they don't recognize the source or destination
encoding, they return B_ERROR. If there's an error, you should not trust any of the
output arguments.

See also: BFont: : SetEncoding (),"Character Encoding" in the section "Responding
to the User" of Chapter 4, Tbe Inteiface Kit

find_instantiation_func()

be/support/Archivable.h

instantiation_func find_instantiation_func(const char * className)
instantiation_func find_instantiation_func(BMessage *archive)

Functions and Macros

Returns a pointer to the Instantiate () function that can create instances of the
className class, or NULL if the function can't be found. If passed a BMessage
archive, find_instantiation_func () gets the name of the class from a
B_STRING_TYPE field called "class" in the BMessage.

The instantiation_func type is defined as follows:

839

BArchivable *(*instantiation_func) (BMessage *)

In other words, the function has the same syntax as the Instantiate () function
declared in the BArchivable class and replicated in derived classes (with class-specific
return values).

The function that's returned can be called like any C function; you don't need the
class name or another object of the class. For example:

instantiation_func func;
if (func = find_instantiation_func(arhiveMessage)) {

BArchivable *object= func(archiveMessage);

instantiate_object () will do this work for you.

See also: BArchivable:: Instantiate (), instantiate_object ()

instantiate_ object()

be/support/Archivable.h

BArchivable *instantiate_object(BMessage *archive)

Creates and returns a new instance of an archived object, or returns NULL if the object
can't be constructed. The object is created by calling the Instantiate () function
for the class of the object recorded in the archive BMessage.

To find the Instantiate() function it should call, instantiate_object () gets
the class name of the archived object from the BMessage archive. It takes the first
name it finds in a field called "class". If the class is not part of the loaded image, it
looks for a B_STRING_TYPE field named "add_on" for the signature of an add-on
image it can load. If the signature is found and the file exists, it will load the image
and again look for the class definition and Instantiate () function in the new
code. If it still can't find the function, instantiate_obj ect () tries other class
names in the "class" array, working its way up the class hierarchy. If, after exhausting
the class list, it cannot match the archive to an Instantiate () function, it returns
NULL.

840 Chapter 6 • The Support Kit

When successful, instantiate_object () returns the object that Instantiate ()
created, but typed to the base BArchivable class. The cast_as () macro can type it
to a more capable class.

BArchivable *base= instantiate_object(archive);
if (base) {

TheClass *object= cast_as(base, TheClass);
if (object) {

Because instantiate_obj ect () will look for and load the code needed to run the
archived object, it's possible to package an object and deliver it to an application that,
until the package arrived, knew nothing of the object or its class.

See also: the BArchivable class, find_instantiation_func ()

is_i nstance_ of() see c/ass_name()

is_kind_of() seeclass_name()

min(}, max(}, min_c(), max_c()

be/support/SupportDefs.h

min(a, b)
min_c(a, b)

max(a, b)
max_c(a, b)

These macros compare two integers or floating-point numbers. min () and min_c ()
return the lesser of the two (or b if they're equal); max () and max_c () return the
greater of the two (or a if they're equal). min () and max () are not defined for C++
(that is, if _cplusplus is defined), since C++ uses those two names for another
purpose. Their identical counterparts, min_c () and max_c () , are defined for all
programs.

read_ 16_swap(), read_32_swap(), write_ 16_swap(),
write_32_swap()

be/support/SupportDefs.h

int16 read_16_swap (int16 *address)
int32 read_3 2_swap (int32 *address)

void wri te_l 6_swap (int16 *address, int16 value)
void write_32_swap (int32 *address, int32 value)

Constants and Defined Types • Constants 841

The read ... () functions read a 16- or 32-bit value from address, reverse the order of
the bytes in the value, and return the swapped value directly.

The write ... () functions swap the bytes in the value passed and write the swapped
value to address.

validate_instantiation()

be/support/Archivable.h

bool validate_instantiation(BMessage •archive, const char • className)

Returns true if the archive BMessage contains data for an object belonging to the
className class, and false if not. The determination is made by looking for the
class name in a "class" array in the archive. If the class name appears anywhere in the
array, this function returns true. If not, it returns false.

write_ 16_swap() see read_ 16_swap()

write_32_swap() seeread_16_swap()

Constants and Defined Types
This section lists the constants and types defined by the Support Kit and used
throughout the entire Be operating system. Not included here are constants used as
status_t values (error codes). They're listed in "Error Codes" on page 846.

Constants
Boolean Constants

be/support/SupportDefs.h

Constant Value

false 0

true 1

These constants are defined as values for the bool type (described in the next
section). The BeOS defines them for C code only. Because they match the boolean
symbols that are part of the C++ language, they let you use the same bool type and
true and false values when programming in both languages.

See also: bool

842

Encoding Conversion Constants

be/support/UTF8.h

Constant

B_IS01_CONVERSION

B_IS02_ CONVERSION

B_IS03_CONVERSION

B_IS04_ CONVERSION

B_ISOS_ CONVERSION

B_IS06_CONVERSION

B_IS07 _CONVERSION

B_ISOS_ CONVERSION

B_IS09 _CONVERSION

B_IS01 O_CONVERSION

B_MAC_ROMAN_CONVERSION

B_SJIS_CONVERSION

B_EUC_ CONVERSION

Chapter 6 • The Support Kit

These constants identify character encodings to the convert_to_utf8 () and
convert_from_utf8 () functions, which convert text to and from the standard
UTF-8 character encoding assumed by the BeOS. They identify the source encoding
for a conversion to UTF-8 and the destination encoding for a conversion from UTF-8.

See also: convert_to_utf8 (), the BFont class in the Interface Kit

Empty String

be/support/SupportDefs.h

const char *B_EMPTY _STRING

This constant provides a global pointer to an empty string("").

NULL and NIL
be/support/SupportDefs.h

Constant Value

NIL 0

NULL 0

These constants represent "empty" values. They're synonyms that can be used
interchangeably.

Constants and Defined Types • Constants

Type Codes
be/support/TypeConstants.h

Constant

B_CHAR_ TYPE

B_INT8_ TYPE

B_INT16_ TYPE

B_INT32_ TYPE

B_INT64_ TYPE

B_UINT8_ TYPE

B_UINT16_ TYPE

B_UINT32_ TYPE

B_UINT64_ TYPE

B_FLOAT _TYPE

B_DOUBLE_ TYPE

B_BOOL_ TYPE

B_OFF _ T _TYPE

B_SIZE_ T _TYPE

B_SSIZE_ T _TYPE

B_POINTER_ TYPE

B_ OBJECT_ TYPE

B-'-MESSAGE_ TYPE

B_MESSENGER_ TYPE

B_POINT _TYPE

B_RECT _TYPE

B_PATH_TYPE

B_REF_TYPE

B_RGB_COLOR_ TYPE

B_PA TTERN_ TYPE

B_ASCll_ TYPE

B_STRING_ TYPE

B_MONOCHROME_ 1_BIT _TYPE

B_ GRA YSCALE_S_BIT _TYPE

B_ COLOR_S_BIT _TYPE

B_RGB_32_BIT _TYPE

B_ TIME_ TYPE

Meaning

A single character

An 8-bit integer

A 16-bit integer

A 32-bit integer

A 64-bit integer

An unsigned 8-bit integer

An unsigned 16-bit integer

An unsigned 32-bit integer

An unsigned 64-bit integer

A float

A double

A boolean value (the bool type)

An off_t value

A size_t value

An ssize_t value

A pointer of some kind (including void *)

An object pointer (such as BMessage *)

A BMessage object (not BMessage *)

A BMessenger object

A BPoint object

A BRect object

A BPath object

An entry_ref structure

An rgb_color structure

A pattern structure

Text in ASCII format

A null-terminated character string

Raw data for a monochrome bitmap (1 bit/pixel)

Raw data for a grayscale bitmap (8 bits per pixel)

Raw bitmap data in the B_COLOR_B_BIT color space

Raw bitmap data in the B_RGB_32_BIT color space

A representation of the time

843

844

Constant

B_RAW_TYPE

B_MIME_ TYPE

B_ANY_TYPE

Chapter 6 • The Support Kit

Meaning

Raw, untyped data-a stream of bytes

The type is specified by a MIME string

The type can be any type

These constants describe the types of data held by BMessage objects (the Application
Kit) and as resources and file system attributes (the Storage Kit). B_ANY_TYPE refers
to all types; it indicates that the exact type doesn't matter. B_MIME_TYPE indicates
that the name of the data in the BMessage is a MIME string that specifies its true data
type. The other constants refer only to a particular type. The type_code defined type
marks where these constants are used in the APL

Applications can define their own type codes for data types not found on this list. All
the codes the BeOS defines, or will define in the future, have values formed by
concatenating four uppercase letters into a multicharacter constant. For example,
B_MESSENGER_TYPE is "MSNG" and B_SIZE_T_TYPE is "SIZT".

To prevent clashes, the type codes you define should use a different convention. For
example, you might include at least one lowercase letter in all multicharacter
constants or you might choose a range of values that doesn't intersect with the range
Ox414 l 4141 through Ox5a5a5a5a.

See also: type_code

Defined Types
bigtime_t

be/support/SupportDefs.h

typedef int64 bigtime_t

This type records the time in microseconds as a 64-bit integer. Typically, a
bigtime_t variable measures the system time, the number of microseconds since
12:00:00 AM January 1, 1970, UTC (Coordinated Universal Time).

See also: system_ time ()

boo I
be/support/SupportDefs.h

typedef unsigned char bool

The C++ language defines bool as its basic boolean type. The BeOs extends the
definition to C code, so you can use the same type in both languages. The true and
false constants (listed above) are defined as boolean values.

Constants and Defined Types • Defined Types

Function Pointers

be/support/SupportDefs.h

typedef int (*B_PFl)O

typedef long (*B_PFL)()

typedef void (*B_PFV)O

These types are pointers to functions that return int, long, and void values
respectively.

instantiation_func

845

be/support/Archivable.h

typedef BArchivable *(*instantiation_func) (BMessage *)

This type is a pointer to a function that can instantiate an object from a BMessage
archive and return a pointer to the new object. The member Instantiate ()

function that's part of the archiving protocol is such a function.

See also: the BArchivable class, find_instantiation_func ()

Integer Types

be/support/SupportDefs.h

typedef unsigned char uchar

typedef signed char int8

typedef unsigned char uint8

typedef volatile signed char vint8

typedef volatile unsigned char vuint8

typedef short int16

typedef unsigned short uint16

typedef volatile short vint16

typedef volatile unsigned short vuint16

typedef long int32

typedef unsigned long uint32

typedef volatile long vint32

typedef volatile unsigned long vuint32

typedef long long int64

typedef unsigned long long uint64

typedef volatile long long vint64

typedef volatile unsigned long long vuint64

846 Chapter 6 • The Support Kit

These type names are defined as shorthands for standard integers of various sizes.
They're used in place of int, short, and long throughout the BeOS APL

The number at the end of the type name indicates the size of the integer. For
example, a uint32 is an unsigned 32-bit value. The type is guaranteed to be defined
to its stated size for all platforms (thus their exact definitions may vary from platform
to platform).

Using these types will make the code you write more portable. They'll help avoid
problems as the operating system and your application move to other platforms.

status_t

be/support/SupportDefs.h

typedef int32 status_t

This type indicates an error code; it's used mainly for function return values.

See also: "Error Codes"

type_ code

be/support/SupportDefs.h

typedef uint32 type_code

This type is used for the integer codes that indicate a particular data type. The
codes-such as B_UINT32_TYPE and B_MIME_TYPE-mark the type of data added to
a message or stored as a resource and also appear in other contexts.

See also: the BMessage class in the Application Kit, the BResource class in the Storage
Kit

Error Codes
Declared in: be/support/Errors .h

Error codes are returned by various functions to indicate the success or to describe
the failure of a requested operation.

All Be error constants except for B_OK (B_NO_ERROR) are negative integers; any
function that returns an error code can thus be lazily tested for success or failure by
the following:

if (funcCall(} < B_NO_ERROR
/* failure *I

else
/* success *!

Error Codes • General Error Codes 847

All constants (except B_NO_ERROR and B_ERROR) are less than or equal to the value
of the .B_ERRORS_END constant. If you want to define your own negative-valued
error codes, you should begin with the value (B_ERRORS_END + 1) and work your
way toward 0.

POSIX Errors
The BeOS supports the POSIX error code constants (these constants start with the
letter "E'', as in EBADF or ENOENT). A number of Be-defined constants are synonyms
for the POSIX constants; for example, the Be equivalent for ENOENT is
B_ENTRY_NOT_FOUND.

Most of the General Error Codes, and all the File System Error Codes are covers for
POSIX errors. The POSIX equivalents are listed where applicable.

The POSIX constants, and the Be synonyms, can be passed to the POSIX
strerror {) function. The function, defined in posix/string.h, returns a human
readable description of the error:

char *strerror(int error_code)

General Error Codes

Code POSIX Description

B_NO_MEMORY ENOMEM There's not enough memory for the operation

B_IO_ERROR EIO A general input/output error occurred

B~PERMISSION_DENIED EACCESS Illegal access

B_BAD_INDEX The index is out of range

B_BAD_VALUE EINVAL An illegal value was passed to the function

B_MISMATCHED_VALUES Conflicting values were passed to the function

B_BAD_TYPE An illegal argument type was named or passed

B NAME NOT_FOUND There's no match for the specified name

B_NAME_IN_USE The requested (unique) name is already used

B_BUSY EBUSY A device is busy, or a file is locked

B_NOT_ALLOWED EPERM Operation not allowed

B_NO_INIT An object or structure isn't properly initialized

B_TIMED_OUT ETIMEDOUT Time expired before the operation was
finished

B_INTERRUPTED EINTR A signal interrupted the operation

B_WOULD_BLOCK EAGAIN But you don't want to block

B_WOULD_BLOCK EWOULDBLOCK Same as the above

848 Chapter 6 • The Support Kit

Code POSIX Description

B_ERROR = -1

B_NO_ERROR

B_OK

0

A convenient catchall for general errors

Everything's OK

Same as B_NO_ERROR

File System Error Codes

Code POSIX Description

B_FILE_ERROR EBADF A file error occurred

B_FILE_EXISTS EEXIST And you don't want to clobber it

B_ENTRY _NOT _FOUND ENO ENT The requested entry doesn't exist

B_NAME_ TOO_LONG ENAMETOOLONG Leaf or pathname too long

B_NO_MORE_FDS EMF ILE No more file descriptors

B_NOT _A_DIRECTORY ENOTDIR When it should have been

B_IS_A_DIRECTORY EISDIR When it shouldn't be

B_DIRECTORY _NOT _EMPTY ENOTEMPTY Attempt to delete a non-empty directory

B_DEVICE_FULL ENOS PC Full disk

B_READ_ONLY _DEVICE EROFS Write request on a read-only file system

B_CROSS_DEVICE_LINK EXDEV Hard link across devices not allowed

B_LINK_LIMIT ELOOP Nested links too deep

B_BUSTED_PIPE EPIPE Pipe no longer functional

Application Kit Error Codes

Code

B_DUPLICATE_REPL Y

B_BAD_REPLY

B_BAD_HANDLER

B_MESSAGE_ TO _SELF

B_ALREADY _RUNNING

B_LAUNCH_FAILED

B_AMBIGUOUS_APP _LAUNCH

B_UNKOWN_MIME_ TYPE

B_BAD_SCRIPT _SYNTAX

Description

A reply message has already been sent

The reply message is inappropriate and can't be sent

The designated message handler isn't valid

A thread is trying to send a message to itself

The application can't be launched again

The attempt to launch the application failed

Odd things happening in app land

Application signature unknown

Script syntax malformed

Error Codes • Mail Errors

Kernel Kit Error Codes

Code

B_BAD_THREAD_ID

B_BAD_THREAD_STATE

B_NO_MORE_ THREADS

B_BAD _ TEAM_ID

B_NO_MORE_ TEAMS

B_BAD _PORT _ID

B_NO_MORE_PORTS

B_BAD_SEM_ID

B_NO _MORE_SEMS

B_BAD_IMAGE_ID

B_NOT _AN_EXECUTABLE

B_BAD _ADDRESS

Description

Specified thread identifier (thread_id) is invalid

The thread is in the wrong state for the operation

All thread identifiers are currently taken

Specified team identifier (team_id) is invalid

All team identifiers are currently taken

Specified port identifier (port_id) is invalid

All port identifiers have been taken

Semaphore identifier (sem_id) is invalid

All semaphores are currently taken

Specified image identifier (image_id)is invalid

An executable image was expected

Illegal address

Media Kit Error Codes

Code

B_STREAM_NOT _FOUND

B_SERVER_NOT _FOUND

B_RESOURCE_NOT _FOUND

B_RESOURCE_UNAVAILABLE

B_BAD_SUBSCRIBER

B_SUBSCRIBER_NOT _ENTERED

B_BUFFER_NOT _AVAILABLE

Mail Errors

Code

B_MAIL_NO_DAEMON

B_MAIL_UNKNOWN_USER

B_MAIL_ WRONG_PASSWORD

B_MAIL_UNKNOWN_HOST

B_MAIL_ACCESS_ERROR

B_MAIL_UNKNOWN_FIELD

B_MAIL_NO_RECIPIENT

B_MAIL_INVALID_MAIL

Description

The attempt to locate the stream failed

The attempt to locate the server failed

The attempt to locate the resource failed

Permission to access the resource was denied

The BSubscriber is invalid

The BSubscriber hasn't entered the stream

The attempt to acquire the buffer failed

Description

mail_daemon not running

User unknown

Password doesn't match user

POP or SMTP host unrecognized

Couldn't access host

Unrecognized message field name

Return to sender, address unknown

Invalid mail invalid mail invalid

849

850

Device Kit Errors

Code

B_DEV _INVALID_IOCTL

B_DEV _NO_MEMORY

B_DEV _BAD_DRIVE_NUM

B_DEV _NO_MEDIA

B_DEV _UNREADABLE

B_DEV _FORMAT _ERROR

B_DEV _TIMEOUT

B_DEV _RECALIBRA TE_ERROR

B_DEV _SEEK_ERROR

B_DEV _ID_ERROR

B_DEV _READ_ERROR

B_DEV _ WRITE_ERROR

B_DEV _NOT _READY

B_DEV _MEDIA_CHANGED

Chapter 6 • The Support Kit

APPENDIX A

Message Protocols

This appendix describes the formats for messages that are recognized by Be system
software. The list includes every system message and every kind of message that you
can deliver to a Be application or a Be-defined class.

For information on the messaging system, see "Messaging''. in Chapter 2, Tbe
Application Kit.

System Messages
Messages that are dispatched and handled in a message-specific manner are known
as system messages. For the most part, these are messages that the system produces
and that applications are expected to respond to (by implementing hook functions
matched to the messages), but some are messages that applications must produce
themselves. They can be grouped into two categories, based on the scope of the
message and the kind of object that's expected to respond:

• Application messages are delivered to the BApplication object.

• Inteiface messages are reported to BWindow objects and handled by BWindows
and their BView.

Application Messages

Application messages concern the application as a whole, rather than one specific
window or thread. They're all received and handled by the BApplication object. See
BApplication class description for information on when they're produced and how
they should be handled.

851

852 Appendix A • Message Protocols

B_ABOUT _REQUESTED

This message requests the BApplication object to put a window on-screen with
information about the application. Every application should set up an "About..."
menu item that will send the message to the BApplication object. The BApplication
object dispatches the message by calling its own AboutRequested () function.

As defined, this message contains no data. However, since each application must
initiate the message on its own and respond to it by implementing
AboutRequested (), you can add information to it if it suits your purposes.

B_APP _ACTIVATED

This message informs the application that it has become the active application, or that
it has relinquished that status to another application. The BApplication object
dispatches the message by calling AppActivated ().

It contains one data field:

Field Type code

"active" B_BOOL_TYPE

B_ARGV _RECEIVED

Description

true if the application has just become the active application,
and false if it just gave up that status.

This message passes the BApplication object command-line strings, typically ones the
user typed in a shell. The BApplication object dispatches it by calling
ArgvRecei ved () .

The message has the two expected data fields for command-line arguments:

Field Type code

"argc" B_INT32_TYPE

Description

The number of items in the "argv" array. This will be the same
number that BMessage: : Get Info () for "argv" would
report.

"argv" B_STRING_TYPE The command-line strings. Each argument is stored as an
independent item under the "argv" name-that is, there's an
array of data items, each of type char *, rather than a single
item of type char * *.

"cwd" B_STRING_TYPE The full path name of the current working directory of the
source of the message.

The path name might be important for interpreting some arguments in the "argv"
array. If the message reports what the user typed in a command-line shell, "cwd" is
the current working directory of that shell. If the message reports arguments passed

Message Protocols • System Messages 853

to BRoster's Launch () function, "cwd" is the current working directory of the thread
in which Launch () was called.

When launching an application, the Tracker sets the current working directory of its
main thread to the user's home directory. Spawned threads inherit the current
working directory of their parent threads.

B_PULSE

This message contains no data. It's posted at regular intervals as a timing mechanism.
The BApplication object dispatches it by calling the Pulse () function declared in the
BApplication class.

B_QUIT _REQUESTED

This message asks a BLooper object to quit its message loop and destroy itself. The
BLooper dispatches it by calling its own Qui tReques ted () function. In other words,
the dispatching of B_QUIT_REQUESTED messages is defined in the BLooper class.

When it gets the message, the BApplication object interprets it to be a request to shut
the entire application down, not just one thread. BApplication's QuitRequested()

implementation forwards the message to each of its BWindow objects.

A B_QUIT_REQUESTED message usually contains no data. However, if the source of
the message is the Command-q shortcut, it will have one data field:

Field Type code

"shortcut" B_BOOL_TYPE

B_READY _ TO_RUN

Description

true, to indicate thatthe system produced the message when
the user typed Command-q. If the message isn't the result of a
shortcut, this field will be absent, not false.

This message contains no data fields. It's delivered to the BApplication object to mark
the application's readiness to accept message input after being launched. The
BApplication object dispatches it by calling ReadyToRun () .

B_REFS_RECEIVED

This message passes the application one or more references to entries in the file
system. It's typically produced by the Tracker when the user chooses some files for
the application to open. The BApplication object dispatches it by calling
RefsReceived().

854 Appendix A . • Message Protocols

The message has one data field, which might be an array of more than one item:

Field Type code Description

"refs" B_REF_TYPE One or more entry_ref items referring to files or directories.
Typically, they're documents the application is expected to open.

If a B_REFS_RECEIVED message is dropped on a Tracker window, the Tracker will
deliver it to the preferred application for the documents in the "refs" array.

Interface Messages

Interface messages inform BWindow objects and their BViews about activity in the
user interface. Unlike application messages, most of which consist only of a
command constant, almost all interface messages contain data fields describing an
event. They're all delivered to a BWindow object, which dispatches some to itself but
most to its BViews.

See "Interface Messages" under "Responding to the User" in Chapter 4, Tbe Inteiface
Kit, for a discussion of the events these messages report.

B_KEY_DOWN

This message reports that the user pressed a character key on the keyboard. It's
dispatched by calling the KeyDown () function of the target BView, generally the
window's focus view. However, if a Command key is held down, the message
performs a keyboard shortcut and is not dispatched. Most keys produce repeated
B_KEY_DOWN messages-as long as the user keeps holding the key down and doesn't
press another key.

Each message contains the following data fields:

Field Type code

"when" B_INT64_TYPE

"key" B_INT3 2_TYPE

"modifiers" B_INT32_TYPE

"byte" B_INT8_TYPE

Description

When the key went down, given as the number of
microseconds since 12:00:00 AM January 1, 1970.

The code for the key that was pressed.

A uint32 mask that identifies which modifier keys the user
was holding down and which keyboard locks were on at the
time of the event.

The character that's generated by the combination of the key
and modifiers. The character encoding is Unicode UTF-8,
which may take from 1 to 3 bytes to represent the character.
There's one uint8 item in the "byte" array for each byte in
the representation.

Message Protocols • System Messages

Field Type code

"raw_char" B_INT32_TYPE

"states" B_UINT8_TYPE

Description

A raw code for the character that's mapped to the key; it
equals the ASCII code for the character, minus the effect of
the modifier keys.

A bitfield that records the state of all keys and keyboard locks
at the time of the event. Although declared as
B_UINT8_TYPE, this is actually an array of 16 bytes
entered into the message as a single item.

855

For most applications, the "byte" character is sufficient to distinguish one sort of user
action on the keyboard from another. It reflects both the key that was pressed and
the effect that the modifiers have on the resulting character. For example, if the Shift
key is down when the user presses the A key, or if Caps Lock is on, the "byte"
produced will be uppercase "A" rather than lowercase "a". If the Control key is down,
it will be the B_HOME character. Appendix B discusses the mapping of keys to
characters in greater detail.

Although the character is recorded as a UTF-8 array in the B_KEY_DOWN message, it's
translated to the encoding of the BView's current font when passed to the
KeyDown () function.

The "modifiers" mask explicitly identifies which modifier keys the user is holding
down and which keyboard locks are on at the time of the event. The mask is formed
from the following constants, which are explained under "Modifier Keys" in
Appendix B.

B_SHIFT_KEY B_COMMAND_KEY B_SCROLL_LOCK

B_LEFT_SHIFT_KEY B_LEFT_COMMAND_KEY B_CAPS_LOCK

B_RIGHT_SHIFT_KEY B_RIGHT_COMMAND_KEY B_JIDM_LOCK

B_OPTION_KEY B_CONTROL_KEY B_MENU_KEY

B_LEFT_OPTION_KEY B_LEFT_CONTROL_KEY

B_RIGHT_OPTION_KEY B_RIGHT_CONTROL_KEY

The mask is empty if no keyboard locks are on and none of the modifiers keys are
being held down.

The "key" code is an arbitrarily assigned number that identifies which character key
the user pressed. All keys on the keyboard, including modifier keys, have key codes
(but only character keys produce key-down events). The codes for the keys on a
standard keyboard are shown in the "Key Codes" section of Appendix B.

856 Appendix A • Message Protocols

The "states" bitfield captures the state of all keys and keyboard locks at the time of
the key-down event. (At other times, you can obtain the same information through
the Interface Kit's get_key _info () function.)

Although it's declared as B_UINTS_TYPE, the bitfield is really an array of 16 bytes,

uintB states[16);

with one bit standing for each key on the keyboard. For most keys, the bit records
whether the key is up or down. However, the bits corresponding to keys that toggle
keyboard locks record the current state of the lock. To learn how to read the "states;,
array, see "Key States" in Appendix B.

B_KEY_UP

This message reports that the user released a key on the keyboard. It's an. exact
reflection of a B_KEY_DOWN message. It has the same data fields as B_KEY_DOWN and
is dispatched by calling the KeyUp () function of the BWindow's focus view. In most
cases this will be the same BView that got the B_KEY_DOWN message, but not always.
See "Handling Keyboard Actions" under "Responding to the User" in Chapter 4 for
more detailed information on how both keyboard messages are dispatched.

B_MINIMIZE

This message instructs a BWindow to "minimize" itself-to remove the window from
the screen so that it has only a minimal representation as an item in the application's
desk bar menu-or to restore the full window to the screen. The message is
produced when the user double-dicks the window tab or operates the menu item.
It's dispatched by calling the BWindow's Minimize () function.

It contains the following data:

Field Type code Description

"when" B_INT64_TYPE When the user acted, given as the number of microseconds
since 12.:00:00 AM January 1, 1970.

"minimize" B_BOOL_TYPE A flag that's true if the window should be removed from
the screen, and false if it should be restored to the screen
from its minimized state.

B_MOUSE_DOWN

This message reports that the user pressed a mouse button while the cursor was over
the content area of a window. It's produced only for the first button the user
presses-that is, only if no other mouse buttons are down at the time. The BWindow
dispatches it by calling the target BView's MouseDown () function.

Message Protocols • System Messages 857

The message contains the following information:

Field Type code

"when" B - INT64 _TYPE

"where" B - POINT_TYPE

"modifiers" B_ INT32 _TYPE

"buttons" B_INT32_TYPE

"clicks" B_ INT32 _TYPE

Description

When the mouse button went down, given as the number of
microseconcb since 12:00:00 AM January 1, 1970.

Where the cursor was located when the user pressed the
mouse button, expressed in the coordinate system of the
target BView.

A mask that identifies which modifier keys were down and
which keyboard locks were on when the user pressed the
mouse button.

A mask that identifies which mouse button went down.

An integer that counts the sequence of mouse-down events
for multiple clicks. It will be 1 for a single-click, 2 for the
second of a double-click, 3 for the third of a triple-click, and
so on.

The "modifiers" mask is the same as for key-down events and is described under
"Modifier Keys" in Appendix B.

The "buttons" mask is one or more of the following constants:

B_PRIMARY_MOUSE_BUTTON

B_SECONDARY_MOUSE_BUTTON

B_TERTIARY_MOUSE_BUTTON

Because a mouse-down event is reported only for the first button that goes down, the
mask will usually contain just one constant.

The "dicks" integer counts dicks. It's incremented each ti~e the user presses the
mouse button within a specified interval of the previous mouse-down event, and is
reset to 1 if the event falls outside that interval. The interval is a user preference that
can be set with the Mouse preferences application.

Note that the only test for a multiple-dick is one of timing between mouse-down
events. There is no position test-whether the cursor is still in the vicinity of where it
was at the time of the previous event. It's left to applications to impose such a test
where appropriate.

B_MOUSE_MOVED

This message is produced when the user moves the cursor into, within, or out of a
window. Each message captures a small portion of that movement. Messages aren't
produced if the cursor isn't over a window or isn't moving. The BWindow dispatches

858 Appendix A • Message Protocols

each message by calling the MouseMoved (} function of every BView the cursor
touched in its path from its last reported location.

The message contains the following data fields:

Field Type code

"when" B_INT64_TYPE

"where" B_POINT_TYPE

"buttons" B_INT32_TYPE

Description

When the event occurred, given as the number of
microseconds since 12:00:00 AM January 1, 1970.

The new location of the cursor, where it has moved to,
expressed in window coordinates.

Which mouse buttons, if any, are down.

The "buttons" mask is formed from one or tnore of the following constants:

B_PRIMARY_MOUSE_BUTTON

B_SECONDARY_MOUSE_BUTTON

B_TERTIARY_MOUSE_BUTTON

If no buttons are down, the mask is 0.

B_MOUSE_UP

This message reports that the user released a mouse button. It's produced only for the
last button the user releases-that is, only if no other mouse button remains down.
The BWindow does not dispatch this message. However, you can look at it from a
filter function or, indirectly, by calling BView's GetMouse (} .

The message contains the following data fields:

Field Type code .

"when" B_INT64_TYPE

"where" B_POINT_TYPE

"modifiers" B_INT32_TYPE

Description

When the mouse button went up again, given as the number
of microseconds since 12:00:00 AM January 1, 1970.

Where the cursor was located when the user released the
mouse button, expressed in the coordinate system of the
target BView.

A mask that identifies which of the modifier keys were down
and which keyboard locks were in effect when the user
released the mouse button.

The "modifiers" mask is the same as for key-down events and is described under
"Modifier Keys" in Appendix B.

Message Protocols • System Messages 859

B_PULSE

This message serves as a simple timing mechanism. It's posted at regularly spaced
intervals and is dispatched by calling the Pulse () function of every BView that
wants to participate.

The message typically lacks any data fields, but may contain this one:

Field Type code

"when" B_INT64_TYPE

B_QUIT _REQUESTED

Description

When the event occurred, given as the number of microseconds
since 12:00:00 AM January 1, 1970.

This message is interpreted by a BWindow object as a request to close the window.
It's dispatched by calling Qui tRequested (), which is generally implemented by
classes derived from BWindow.

When the Application Server produces the message (for example, when the user
clicks the window's close button), it adds the following data field:

Field Type code

"when" B_INT64_TYPE

Description

When the event occurred, given as the number of microseconds
since 12:00:00 AM January 1, 1970.

However, this information is not crucial to the interpretation of the event. You don't
need to add it to B_QUIT_REQUESTED messages that are posted in application code.

B_SCREEN_CHANGED

This message reports that the screen configuration has changed. The BWindow
dispatches it by calling its own ScreenChanged () function.

The message contains these data fields:

Field Type code

"when" B_INT64_TYPE

"frame" B_RECT_TYPE

"mode" B_INT32_TYPE

Description

When the screen changed, given as the number of microseconds
since 12:00:00 AM January 1, 1970.

A rectangle that gives the dimensions of the pixel grid the screen
displays.

The color· space of the screen-currently B_COLOR_B_BIT or
B_RGB_32_BIT.

860 Appendix A • . Message Protocols

B_ VALUE_CHANGED

This message reports that the Application Server changed a value associated with a
scroll bar-something that will happen repeatedly as the user drags the scroll knob
and presses the scroll buttons. The BWindow dispatches it by calling the BScrollBar
object's Val ueChanged () function.

The message has these data fields:

Field Type code

"when" B_INT64_TYPE

"value" B_INT32_TYPE

B_ VIEW _MOVED

Description

When the value changed, given as the number of microseconds
since 12:00:00 AM January 1, 1970.

The new value of the object. For a horizontal scroll bar, this is
the coordinate value that should be at the left side of the target
view's bounds rectangle. For a vertical scroll bar, it's the value
that should be at the top of the target's bounds rectangle.

This message reports that a view moved within its parent's coordinate system.
Repeated messages may be produced if the view is moving because its parent is
being resized as a consequence of the user resizing the window. The BWindow
dispatches each message by calling its FrameMoved () function.

The message contains the following data:

Field Type code

"when" B_INT64_TYPE

"where" B_POINT_TYPE

Description

When the view moved, given as the number of microseconds
since 12:00:00 AM January 1, 1970.

The new location of the left top corner of the view's frame
rectangle, expressed in the coordinate system of its parent.

A BView receives. B VIEW MOVED notifications only if it asks for them with the
B_FRAME_EVENTS flag.

B_ VIEW _RESIZED

This message reports that a view has been resized. Repeated messages are produced
if the resizing is an automatic consequence of the window being resized. The
BWindow dispatches each one by calling its FrameResized () function.

The message holds the following data:

Field . Type code

"when" B_INT64_TYPE

"width" B_INT32_TYPE

Description

When the view was resized, given as the number of
microseconds since 12:00:00 AM January 1, 1970.

The new width of the view's frame rectangle.

Message Protocols • System Messages

Field Type code

"height" B_INT32_TYPE

"where" B_POINT_TYPE

Description

The new height of the view's frame rectangle.

The new location of the left top corner of the view's frame
rectangle, expressed in the coordinate system of its parent. (The
message has a "where" field only if resizing the view also served
to move it. The new location of the view would first be reported
in a B_ VIEW_MOVED BMessage.)

A BView receives B_VIEW_RESIZED notifications only if it asks for them with the
B_FRAME_EVENTS flag.

B_ WINDOW_ACTIVATED

This message reports that the window has become the active window or has
relinquished that status. The BWindow dispatches the message by calling its
WindowActivated() function, which notifies every BView with a similar function
call.

The message contains two data fields:

Field Type code

"when'' B_INT64_TYPE

"active" B_BOOL_TYPE

B_ WINDOW_MOVED

Description

When the window's status changed, given as the number of
microseconds since 12:00:00 AM January 1, 1970.

A flag that records the new status of the window. It's true if the
window has become the active window, and false if it is
giving up that status.

This message reports that the window has been moved in the screen coordinate
system. Repeated messages are generated when the user drags a window. The
BWindow dispatches each one by calling its WindowMoved () function.

The message has the following fields:

Field Type code

"when" B_INT64_TYPE

"where" B_POINT_TYPE

B_ WINDOW _RESIZED

Description

When the window moved, given as the number of microseconds
since 12:00:00 AM January 1, 1970.

The new location of the left top corner of the window's content
area, expressed in screen coordinates.

This message reports that the window has been resized. It's generated repeatedly as
the user moves a window border. The BWindow dispatches each message by calling
WindowResized().

861

862 Appendix A • Message Protocols

The message holds these data fields:

Field Type code

"when" B_INT64_TYPE

"width" B_INT32_TYPE

"height" B_INT32_TYPE

Description

When the window was resized, given as the number of
microseconds since 12:00:00 AM January 1, 1970.

The new width of the window's content area.

The new height of the window's content area.

B_ WORKSPACE_ACTIVATED

This message reports that the active workspace has changed. It's delivered to all
BWindow objects associated with the workspace that was previously active and with
the one just activated. Each BWindow dispatches the message by calling its own
WorkspaceActi vated () function.

The message contains the following data:

Field Type code Description

"when" B_INT64_TYPE When the workspace was activated or deactivated, given as
the number of microseconds since 12:00:00 AM January 1,
1970.

"workspace"

"active"

B_INT32_TYPE

B_BOOL_TYPE

An index to the workspace that's the subject of the message.

A flag that records the new status of the workspace-true
if it has become the active workspace, and false if it has
ceased being the active workspace.

B_ WORKSPACES_CHANGED

This message informs a BWindow object that the set of workspaces with which it is
associated has changed. The BWindow dispatches the message by calling its own
WorkspacesChanged () function.

The message has three data fields:

Field Type code

"when" B_INT64_TYPE

"old" B_INT32_TYPE

"new" B_INT32_TYPE

Description

When the set of workspaces associated with the window
changed, given as the number of microseconds since 12:00:00 AM
January 1, 1970.

The set of workspaces where the window could appear before
the change.

The set of workspaces where the window can appear after the
change.

For this message, each workspace is identified by a bit in a 32-bit mask.

Message Protocols • Standard Messages 863

B_ZOOM

This message instructs the BWindow object to zoom the on-screen window to a
larger size-or to return it to its normal size. The message is produced when the user
operates the zoom button in the window's title tab. The BWindow dispatches it by
calling Zoom () , declared in the BWindow class.

The message has just one data field:

Field Type code

"when" B_INT64_TYPE

Description

When the zoom button was clicked, given as the number of
microseconds since 12:00:00 AM January 1, 1970.

Standard Messages
The operating system produces or understands a few standard messages that aren't
system messages-that aren't matched to a specific hook function. They fall into
several groups:

• Messages that are sent as replies, sometimes automatically, to other messages
• Messages that convey editing instructions
• Messages that act, principally, as data containers
• Messages that control a BStatusBar object
• Messages that report a change in the file system
• Messages that are part of the scripting system
• Messages from a file panel
• Messages from the Node Monitor
• Messages from a live query

Reply Messages

The following three messages are sent as replies to other messages.

B_MESSAGE_NOT _UNDERSTOOD

This message doesn't contain any data. The system sends it as a reply to a message
that the receiving thread's chain of BHandlers does not recognize. See
MessageReceived() and ResolveSpecifier() in the BHandler class of the
Application Kit.

B_NO_REPLY

This message doesn't contain any data. It's sent as a default reply to another message
when the original message is about to be deleted. The default reply is sent only if a
synchronous reply is expected and none has been sent. See the SendReply ()

function in the BMessage class of the Application Kit.

864 Appendix A • Message Protocols

B_REPLY

This constant identifies a message as being a reply to a previous message. The data in
the reply depends on the circumstances and, particularly, on the original message.
For replies to scripting messages, it generally has a "result" field with requested data
and an "error" field with an error code reporting the success or failure of the scripted
request.

Editing Messages

A handful of messages pass instructions to edit currently selected data or to alter _the
selection. Because BTextViews are the only kit-defined objects that know how to
display editable data, they're the only ones that are set up to respond to these
messages.

B_CUT, B_COPY, B_PASTE, and B_SELECT _ALL

A BWindow posts these messages to its focus view (or to itself, if none of its views is
currently in focus) when the user presses the Command-x, Command-c, Command-v,
and Command-a shortcuts. It puts only one data field in the message:

Field Type code

"when" B_INT64_TYPE

Description

When the user pressed the keyboard shortcut, given as the
number of microseconds since 12:00:00 AM January 1, 1970.

BTextView objects respond to these messages. See the BTextView class in the
Interface Kit for details.

Data Containers

A few constants identify messages as data containers. The system currently uses these
constants to mark the containers it constructs for drag-and-drop operations.

B_ARCHIVED _OBJECT

This message constant indicates that the message is an object archive. It contains data
that captures the object's state at a particular time and that can be used to reconstruct
the object. Among the data fields, there are two that system functions rely on:

Field Type code

"class" B_STRING_TYPE

"add_on" B_STRING_TYPE

Description

An array of class names, beginning with the name of the
archived object's class. This information must be present in
every archive.

The signature for an add-on executable containing code that
defines the class of the archived object. This field is optional.

Message Protocols • Standard Messages

Note, however, that the Archive () functions that produce object archives don't set
the what constant to B_ARCHIVED_OBJECT (or to anything at all). It's up to the caller
to identify the archive message as appropriate. For example:

BMessage message{B_ARCHIVED_OBJECT);
someObject->Archive{&message);

865

Typically, B_ARCHIVED_OBJECT is used when the message might be dragged and
dropped. For example, when the BDragger and BShelf classes in the Interface Kit
archive an object so that a "replicant" of it can be dragged, they add the
B_ARCHIVED_OBJECT identifier.

See the Archive() function and the BArchivable class in the Support Kit for more
information on archiving.

B_MIME_DATA.

This message constant indicates that all the data in the message is identified by MIME
type names. The type code of every data field is B_MIME_TYPE and the name of each
field is the MIME type string.

As an example, a BTextView object puts together a B_MIME_DATA message for drag
and-drop operations. The message has the text itself in a field named "text/plain"; the
text_run_array structure that describes the character formats of the text is in a
field named "application/x-vnd.Be-text_run_array".

B_SIMPLE_DATA

This message is a package for a single data element. If there are multiple data fields
in the message, they present the same data in various formats.

For example, when the user drags selected files and directories from a Tracker
window, the Tracker packages entry_ref references to them in a B_SIMPLE_DATA

message. The references are in a "refs" array with a type code of B_REF _TYPE. In
other words, the message has the same structure as a B_REFS_RECEIVED message,
but a different what constant.

BStatusBar Messages

A BStatusBar object can be controlled synchronously by calling its Reset () and
Update () functions. It can also be controlled asynchronously by sending it messages
corresponding to the two functions; the object calls the function when it receives the
message. Each message contains fields for the arguments passed to the function.

866

B_RESET _STATUS_BAR

Field Type code

"label" B_STRING_TYPE

"trailing_label" B_STRING_TYPE

B_UPDATE_STATUS_BAR

Field Type code

"delta" B_FLOAT_TYPE

"text" B_STRING_TYPE

"trailing_ text" B_STRING_TYPE

Node Monitor·Messages

Appendix A • Message Protocols

Description

A null-terminated string for the label displayed on the
left. If this field is omitted, a NULL label is passed to
Reset().

A null-terminated string for the label displayed on the
right. If this field is omitted, a NULL trailing label is
passed to Reset () .

Description

An increment to add to the current value of the object.
The current value determines how much of the status bar
is filled with the bar color.

A null-terminated string for the text displayed on the left.
If this field is omitted, NULL is passed to Update () for
the text.

A null-terminated string for the text displayed on the
right. If this field is omitted, NULL is passed to
Update () for the trailing text.

The Node Monitor is a mechanism that lets you watch for changes to a particular file
or directory (or "node"). You ask the Node Monitor to start or stop watching a given
node by calling the watch_node () function; you can stop all monitoring through the
stop_watching () function.

When you call watch_node (), you tell the Node Monitor which aspects of the node
you want to track-changes to its name, to its size, its attributes, and so on. Each of
these "trackable" elements corresponds to a particular type of message (identified by

· the message's "opcode" field) that's sent back to your application when that element
actually changes (when the file is renamed, changes size, gains an attribute, and so
on).

All BMessage notifications sent by the Node Monitor look like this:

• The what value is always B_NODE_MONITOR.

• The field named "opcode" is an int32 constant that tells you what happened.
• Additional fields give you information (device, node, name, and so on) about the

node (or volume) that it happened to.

There are seven "opcode" constants, as described in separate sections, below. For the
full story on the Node Monitor, see "The Node Monitor" in Chapter 3, Tbe Storage Kit.

Message Protocols • Standard Messages

B_ENTRY _CREA TED

Field

"opcode"

"name"

"directory"

"device"

"node"

Type code

B_INT32_TYPE

B_STRING_TYPE

B_INT64_TYPE

B_INT32_TYPE

B_INT64_TYPE

Description

B_ENTRY_CREATED indicates that a new entry was
created.

The name of the new entry.

The ino_t (node) number for the directory in which
the entry was created.

The dev_t number of the device on which the new
entry resides.

The ino_t number of the new entry itself. (More
accurately, it identifies the node that corresponds to the
entry.)

B_ENTRY _REMOVED

Field

"opcode"

"directory"

"device"

"node"

Type code

B_INT32_TYPE

B_INT64_TYPE

B_INT32_TYPE

B_INT64_TYPE

Description

B_ENTRY_REMOVED indicates that an entry was removed.

The ino_t (node) number of the directory from which the
entry was removed.

The dev _ t number of the device that the removed node
used to live on.

The ino_t number of the node that was removed.

B_ENTRY _MOVED

Field

"opcode"

"name"

"from directory"

"to directory"

"device"

"node"

Type code

B_INT32_TYPE

B_STRING_TYPE

B_INT64_TYPE

B_INT64_TYPE

B_INT32_TYPE

B_INT64_TYPE

Description

B_ENTRY_MOVED indicates that an existing entry
moved from one directory to another.

The name of the entry that moved.

The ino_t (node) number of the directory that
the node was removed from.

The ino_t (node) number of the directory that
the node was added to.

The dev_t number of the device that the moved
node entry lives on. (You can't move a file between
devices, so this value will be apply to the file's old
and new locations.)

The ino_ t number of the node that was removed.

867

868

B_STAT_CHANGED

Field Type code

"opcode" B_INT32_TYPE

Appendix A • Message Protocols

Description

B_STAT_CHANGED indicates that some statistic of a node (as
recorded in its stat structure) changed.

"node" B_INT64_TYPE The ino_t number of the node.

"device" B_INT32_TYPE The dev_t number of the node's device.

B_ATTR_CHANGED

Field Type code

"opcode" B_INT32_TYPE

Description

B_ATTR_CHANGED indicates that some attribute of a node
changed.

"node" B_INT64_TYPE The ino_t number of the node.

"device" B_INT32_TYPE The dev_t number of the node's device.

B_DEVICE_MOUNTED

Field

"opcode"

"new device"

"device"

"directory"

Type code

B_INT32_TYPE

B_INT32_TYPE

B_INT32_TYPE

B_INT64_TYPE

B_DEVICE_UNMOUNTED

Field Type code

"opcode" B_INT32_TYPE

"new device" B_INT32_TYPE

Live Query Messages

Description

B_DEVICE_MOUNTED indicates that a new device (or
file system volume) has been mounted.

The dev _t number of the newly-mounted device.

The dev _ t number of the device that holds the directory
of the new device's mount point.

The ino_ t (node) number of the directory that acts as the
new device's mount point.

Description

B_DEVICE_UNMOUNTED indicates that a device has
been unmounted.

The dev _t number of the unmounted device.

As explained in the BQuery section of the Storage Kit chapter, the query mechanism
lets you ask for the set of files that pass certain criteria (or "predicate"). The initial (or
"static") winners are retrieved by your application through iterated (synchronous)
function calls to BQuery's GetNextEntry (} function (or its siblings,
GetNextDirent (} and GetNextRef (}). If you make a "live" query, the mechanism
continues to monitor the file system, sending you messages to let you know when a
file is admitted into the winner's circle, and when a file drops out.

Message Protocols • Standard Messages

Except for the what field, the form of the BMessage notifications sent from a live
query are identical to those from the Node Monitor:

• The what value is always B_QUERY_UPDATE.

• The field named "opcode" is an int32 constant that tells you what happened.
• Additional fields give you information (device, node, name, and so on) about the

node (or volume) that it happened to.

869

Live queries messages only use two "opcode" values: B_ENTRY_CREATED and
B_ENTRY_REMOVED. The former indicates that an entry now passes the predicate; the
latter tells you that an entry no longer does. For the rest of these messages' fields, see
their descriptions in the Node Monitor section, immediately above.

File Panel Messages

The file panel produces three messages: B_REFS_RECEIVED, B_SAVE_REQUESTED,

and B_CANCEL. The first of these was discussed under "Application Messages" above.
It's produced when the user picks files to open from the panel. The other two
messages are described below.

B_SAVE_REQUESTED

The file panel produces this message when the user asks the application to save a
document. It has two data fields:

Field Type code

"directory" B_REF _TYPE

"name" B_STRING_TYPE

B_CANCEL

Description

An entry_ref referring to the directory where the
document should be saved.

The file name under which the document should be saved.

A cancel notification is sent whenever a file panel is hidden. This includes the Cancel
button being clicked, the panel being closed, and the panel being hidden after an
open or a save.

Field Type code

"old_ what" B_INT32_TYPE

"source" B_POINTER_TYPE

Description

The "previous" what value. This is only useful (and
dependable) if you supplied the BFilePanel with your own
BMessage: The what from your message is moved to the
"old_ what" field. If you didn't supply a BMessage, you
should ignore this field (it could contain garbage).

A pointer to the BFilePanel object.

See the BFilePanel class in Chapter 3 for more information.

870 Appendix A • Message Protocols

Scripting Messages

The scripting system defines four generic messages that can operate on the specific
properties of an object and one meta~message that queries an object about the
messages it can handle. See "Scripting" in Chapter 2 for a full explanation.

B_SET_PROPERTY, B_GET_PROPERTY, B_CREATE_PROPERTY, and B_DELETE_PROPERTY

These messages-as their names state-target a particular property under the control
of the target handler. They have the following data fields:

Field Type code

"specifiers" B_MESSAGE_TYPE

"data" variable

Description

An array of one or more BMessages that specify the
targeted property. See AddSpecifier () in the
BMessage class of the Application Kit for details on the
contents of a specifier.

For B_SET_PROPERTY messages only, the data that
should be set. The data type depends on the targeted
property.

A class can choose to respond to these messages, in any combination, for any .set of
self-declared properties.

B_GET _SUPPORTED_SUITES

This message requests the names of all message suites that the receiver supports. It
doesn't contain any data, but the message that's sent in reply has one field:

Field Type code Description

"suites" B_STRING_TYPE An array of suite names.

A suite is a named set of messages and specifi_ers. A BHandler supports the suite if it
can respond to the messages and resolve the specifiers.

lnterapplication Messages
The messages that a user drags and drops on a view might have their source in any
application, including applications (and objects) that come with the Be operating
system. Currently, there are three sources for public, published messages that the user
might drop on your application:

• The Tracker puts together B_SIMPLE_DATA messages with references to files and
directories. See "B_SIMPLE_DATA" on page 865.

Message Protocols • lnterapplication Messages

• The BTextView object puts text in B_MIME_DATA messages. See "B_MIME_DATA"
on page 865.

• The BDragger and BShelf classes put archived BViews in B_ARCHIVED_OBJECT

messages. See "B_ARCHIVED_OBJECT" on page 864.

871

APPENDIX B

Keyboard Information

Applications find out what the user is doing on the keyboard through messages
reporting key-down events. An application can usually determine what the user's
intent was in pressing a key by looking at the character recorded in the message. But,
as discussed under "B_KEY_DOWN" in the Message Protocols appendix, the message
carries other keyboard information in addition to the character: the key the user
pressed, the modifiers that were in effect at the time, and the current state of all keys
on the keyboard.

Some of this information can be obtained in the absence of key-down messages
through two global functions:

• modifiers () returns the current modifier states
• get_key_info () reports the current state of all the keys, modifiers, and locks

This section discusses the kinds of information that you can get about the keyboard
through interface messages and these functions.

Key Codes
To talk about the keys on the keyboard, it's necessary first to have a standard way of
identifying them. For this purpose, each key is arbitrarily assigned a numerical code.

The illustrations on the next few pages show the key identifiers for typical keyboards.
The codes for the main part of a standard 101-key keyboard are shown in the
following figure. Other keyboards differ primarily in having additional keys in the
bottom row. These differences are illustrated the next two figures. The codes for the
numerical keypad and for the keys between it and the main keyboard are shown in
the fourth and fifth figures.

873

874 Appendix B • Keyboard Information

OxOl Ox02 Ox03 Ox04 OxOS Ox06 Ox07 OxOB Ox09 OxOa OxOb OxOc OxOd

Oxll Ox12 Ox13 Ox14 OxlS Ox16 Ox17 Ox18 Ox19 . Oxlo Oxlb Oxlc Oxld Ox33 Oxle

Ox3b Ox3c Ox3d Ox3e Ox31 Ox40 Ox41 Ox42 Ox43 Ox44 Ox45 Ox46 Ox47

Ox4b Ox4c Ox4d Ox4e Ox41 OxSO Ox51 Ox52 Ox53 Ox54 OxSS Ox56

OxSc OxSd OxSe OxSI Ox60

Different keyboards locate keys in slightly different positions. The function keys may
be to the left of the main keyboard, for example, rather than along the top. The
backslash key (Ox33) shows up iri various places-sometimes above the Enter key,
sometimes next to Shift, and sometimes in the top row (as shown here). No matter
where these keys are located, they have the codes indicated in the illustration above.

Some keyboards have additional keys, mainly in the bottom row. The keys at the
bottom of a Microsoft natural keyboard are coded as follows:

OxSc Ox66 OxSd OxSe OxSI Ox67 Ox68 Ox60

The keys on the bottom row of a 105-key extended keyboard for the Macintosh have
these codes:

OxSc Ox66 OxSd OxSe OxSI Ox67 Ox60

The keys on the right of the keyboard are assigned the following codes:

Keyboard Information • Kinds of Keys 875

Ox7e Ox71

OxOe Ox Of Ox l 0

Ox7e OxOI Ox71 Ox22 Ox23 Ox24 Ox25

~(I] ~ p
OxOe OxOI OxlO Ox37 Ox38 Ox39

~(l] ::->:,"<;: [!] .

Ox48 Ox49 Ox4a Ox3a

~ .
Ox57

Ox61 Ox62 Ox63 Ox64 Ox65 OxSb

Some of the keys on a Macintosh keyboard have different labels from those shown
above, but they have the same key codes. The Macintosh also adds a Power key and
an"=" key on the keypad, as shown in the figure on the next page.

The "Euro" key on some European keyboards is coded Ox69.

The BMessage that reports a key-down event contains an field named "key" for the
code of the key that was pressed.

Kinds of Keys
Keys on the keyboard can be distinguished by the way they behave and by the kinds
of information they provide. A principal distinction is between character keys and
modifier keys:

• Character keys are mapped to particular characters; when pressed and released
they generate keyboard events (and B_KEY_DOWN and B_KEY_UP messages). Keys
not mapped to characters don't generate events.

876 Appendix B • Keyboard Information

Ox6b

Ox 11 Ox20 Ox21 Ox22 Ox23 Ox24 Ox25

Ox34 Ox35 Ox36 Ox37 Ox38 Ox39 Ox25

Ox48 Ox49 Ox4a Ox3a

Ox57

Ox61 Ox62 Ox63 Ox64 Ox65 Ox5b

• Modifier keys set states that can be discerned independently of keyboard events
(through the modifiers () and get_key_info () functions). Some modifier
keys-like Caps Lock and Num Lock-toggle in and out of a locked modifier state.
Others-like Shift and Control-set the state only while the key is being held down.

If a key doesn't fall into one of these two categories, there's nothing for it to do; it has
no role to play in the interface. For most keys, the categories are mutually exclusive.
Modifier keys are typically not mapped to characters, and character keys don't set
modifier states. However, the Scroll Lock key is an exception. It both sets a modifier
state and generates a character.

Keys can be distinguished on two other grounds as well:

• Repeating keys produce a continuous series of key-down events, as long as the
user holds the key down and doesn't press another key. After the initial event,
there's a slight delay before the key begins repeating, but then events are
generated in rapid succession. Each event is reported in a separate B_KEY_DOWN

message.

All keys are repeating keys except for Pause, Break, and the three that set locks
(Caps Lock, Num Lock, and Scroll Lock). Even modifier keys like Shift and Control
would repeat if they were mapped to characters.

• Dead keys are keys that don't produce characters until the user strikes another key
(or the key repeats). If the key the user strikes after the dead key belongs to a

Keyboard Information • Kinds of Keys

particular set, the two keys together produce one character (one key-down event).
If not, each produces a separate character. The key-down event for the dead key
is delayed until it can be determined whether it will be combined with another
key to produce just one event.

Dead keys are dead only when certain prescribed modifiers (by default, just the
Option key) are held down. They're most appropriate for situations where the
user can imagine a character being composed of two distinguishable parts-such
as "a" and "e" combining to form "a:".

877

The system permits up to five dead keys. By default, they're reserved for
combining diacritical marks with other characters. The diacritical marks are the
acute(') and grave (') accents, dieresis("), circumflex C), and tilde C-).

The system key map determines the role that each key plays-whether it's a character
key or a modifier key, which modifier states it sets, which characters it produces,
whether it's dead or not, how it combines with other keys, and so on. The map is
shared by all applications.

Users can modify the key map with the Keymap utility. Applications can look at it by
calling the get_key _map() global function. See that function in Chapter 4, Tbe
Interface Kit, for details on the structure of the map. The discussion here assumes the
default key map that comes with the computer.

Modifier Keys

The role of a modifier key is to set a temporary, modal state. There are eight modifier
states-eight different kinds of modifier key-defined functionally. Three of them
affect the character that's reported in a key-down event:

• The Shift key maps alphabetic keys to the uppercase version of the character, ;md
other keys to alternative symbols.

• The Control key maps alphabetic keys to Control characters-those with character
values below Ox20.

• The Option key maps keys to alternative characters, typically characters in an
extended set-those with values above Ox7f.

Two modifier keys permit users to give the application instructions from the
keyboard:

• When the Command key is held down, the character keys perform keyboard
shortcuts.

• The Menu key initiates keyboard navigation of menus. Command-Esc
accomplishes the same thing.

878 Appendix B • Keyboard Information

Three modifiers toggle in and out of locked states:

• The Caps Lock key reverses the effect of the Shift key for alphabetic characters.
With Caps Lock on, the uppercase version of the character is produced without
the Shift key, and the lowercase version with the Shift key.

• The Num Lock key similarly reverses the effect of the Shift key for keys on the
numeric keypad.

• The Scroll Lock key temporarily prevents the display from updating. (It's up to
applications to implement this behavior.)

There are two things to note about these eight modifier states. First, since applications
can read the modifiers directly from the messages that report key-down events and
obtain them at other times by calling the modifiers() and get_key_info ()
functions, they are free to interpret the modifier states in any way they desire. You're
not tied to the narrow interpretation of, say, the Control key given above. Control,
Option, and Shift, for example, often modify the meaning of a mouse event or are
used to set other temporary modes of behavior.

Second, the set of modifier states listed above doesn't quite match the keys that are
marked on a typical keyboard. A standard 101-key keyboard has left and right
"Alt(ernate)" keys, but lacks those labeled "Command," "Option," or "Menu."

The key map must, therefore, bend the standard 101-key keyboard to the required
modifier states. The default key map does this in three ways:

• Because the "Alt(ernate)" keys are close to the space bar and are easily accessible,
the default key map assigns them the role of Command keys.

• It turns the right "Control" key into an Option key. Therefore, there's just one
functional Control key (on the left) and one Option key (on the right).

• It leaves the Menu key unmapped. It relies on the Command-Esc combination as
an adequate alternative for initiating keyboard navigation of menus.

The illustration below shows the modifier keys on the main keyboard, with labels
that match their functional roles. Users can, of course, remap these keys with the
Keymap utility. Applications can remap them by calling set_modifier_key().

Keyboard Information • Kinds of Keys

The extended Macintosh and Microsoft keyboards are mapped to closely match the
key caps; all the modifier keys work as you'd expect:

• The keys closest to the space bar are Command modifiers.
• The keys immediately outside the Command keys are Option modifiers.
• The keys on the outside of the bottom row are Control keys.

Current modifier states are reported in a mask that can be tested against these
constants:

B_SHIFT_KEY

B_COMMAND_KEY

B_CONTROL_KEY

B_MENU_KEY

B_OPTION_KEY

B_NUM_LOCK

B_CAPS_LOCK

B_SCROLL_LOCK

879

The ... _KEY modifiers are set if the user is holding the key down. The ... _LOCK
modifiers are set only if the lock is on-regardless of whether the key that sets the
lock happens to be up or down at the time.

If it's important to know which physical key the user is holding down, the one on the
right or the one on the left, the mask can be more specifically tested against these
constants:

B_LEFT_SHIFT_KEY B_RIGHT_SHIFT_KEY

B_LEFT_CONTROL_KEY B_RIGHT_CONTROL_KEY

B_LEFT~OPTION_KEY B_RIGHT_OPTION_KEY

B_LEFT_COMMAND_KEY B_RIGHT_COMMAND_KEY

If no keyboard locks are on and the user isn't holding a modifier key down, the
modifiers mask will be 0.

The modifiers mask is returned by the modifiers () function and, along with the
state of all the keys, by get_key _info () . It's also included as a "modifiers" field in
every BMessage that reports a keyboard or mouse event.

880 Appendix B • Keyboard Information

Character Mapping

The key map records character values using the UTF-8 encoding of the Unicode
Standard, making it possible to map keys to characters in any of the world's scripts.
UTF-8 encodes 16-bit Unicode values in a variable number of bytes (from one to
four).

A B_KEY_DOWN message holds the character mapped to the key the user pressed as
an array of bytes named, simply, "byte". The array is passed as a string to KeyDown ()

along with a count of the number of bytes in the string:

virtual void KeyDown (const char •bytes, int32 numBytes)

See "Character Encoding" in the "Responding to the User" section of the Interface Kit
for a description of UTF-8 encoding and get_key _map () for an explanation of the
key map.

Most keys are mapped to more than one character. The precise character that the key
produces depends on which modifier keys are being held down and which lock
states the keyboard is in at the time the key is pressed.

A few examples are given in the table below:

Key

Ox15

OxlS

Ox26

Ox2e

Ox40

Ox43

Ox51

Ox55

Ox64

No modifiers

4

7

B_TAB

g

k

n

I

B_ INSERT

Shift alone

$

&

B_TAB

G

K

N

0

Option alone

¢

9f

B_TAB

©

* ii

+

B_ INSERT

Shift & Option

B_TAB

N

0

The mapping follows some fixed rules, including these:

Control

4

7

B_TAB

B_TAB

Ox07

B_PAGE_UP

OxOe

I

B_INSERT

• If a Command key is held down, the Control keys are ignored. Command trumps
Control. Otherwise, Command doesn't affect the character that's reported for the
key. If only Command is held down, the character that's reported is the same as if
no modifiers were down; if Command and Option are held down, the character
that's reported is the same as for Option alone; and so on.

• If a Control key is held down (without a Command key), Shift, Option, and all
keyboard locks are ignored. Control trumps the other modifiers (except for
Command).

Keyboard Information • Kinds of Keys

• Num Lock applies only to keys on the numerical keypad. While this lock is on, the
effect of the Shift key is inverted. Num Lock alone yields the same character that's
produced when a Shift key is down (and Num Lock is off). Num Lock plus Shift
yields the same character that's produced without either Shift or the lock.

• Menu and Scroll Lock play no role in determining how keys are mapped to
characters.

The default key map also follows the conventional rules for Caps Lock and Control:

881

• Caps Lock applies only to the 26 alphabetic keys on the main keyboard. It serves
to map the key to the same character as Shift. Using Shift while the lock is on
undoes the effect of the lock; the chara~ter that's reported is the same as if neither
Shift nor Caps Lock applied. For example, Shift-G and Caps Lock-G both are
mapped to uppercase "G", but Shift-Caps Lock-Gis mapped to lowercase "g".

However, if the lock doesn't affect the character, Shift plus the lock is the same as
Shift alone. For example, Caps Lock- 7 produces "7" (the lock is ignored) and
Shift- 7 produces "&" (Shift has an effect), so Shift-Caps Lock- 7 also produces "&"
(only Shift has an effect).

• When Control is used with a key that otherwise produces an alphabetic character,
the character that's reported has a value Ox40 less than the value of the uppercase
version of the character (Ox60 less than the lowercase version of the character).
This often results in a character that is produced independently by another key.
For example, Control-/ produces the B_TAB character and Control-L produces
B_PAGE_DOWN.

When Control is used with a key that doesn't produce an alphabetic character, the
character that's reported is the same as if no modifiers were on. For example,
Control- 7produces a "7".

Character Constants

The Interface Kit defines constants for characters that aren't normally represented by
a visible symbol. This includes the usual space and backspace characters, but most
invisible characters are produced by the function keys and the navigation keys
located between the main keyboard and· the numeric keypad. The character values
associated with these keys are more or less arbitrary, so you should always use the
constant in your code rather than the actual character value. Many of these characters
are also produced by alphabetic keys when a Control key is held down ..

882 Appendix B • Keyboard Information

The table below lists character constants defined in the kit and the keys they're
associated with:

Key label Key code Character reported

Backspace Ox le B_BACKSPACE

Tab Ox26 B_TAB

Enter Ox47 B_ENTER

(space bar) Ox5e B_SPACE

Escape OxOl B_ESCAPE

Fl-F12 Ox02 through OxOd B_FUNCTION_KEY

Print Screen OxOe B_FUNCTION_KEY

Scroll Lock OxOf B_FUNCTION_KEY

Pause OxlO B_FUNCTION_KEY

System Request Ox7e Oxes

Break Ox7f Ox ca

Insert Oxlf B_INSERT

Home Ox20 B_HOME

Page Up Ox21 B_PAGE_UP

Delete Ox34 B_DELETE

End Ox35 B_END

Page Down Ox36 B PAGE_DOWN

(uparrow). Ox57 B_UP_ARROW

(left arrow) Ox61 B_LEFT_ARROW

(down arrow) Ox62 B_DOWN_ARROW

(right arrow) Ox63 B_RIGHT_ARROW

Several keys are mapped to the B_FUNCTION_KEY character. An application can
determine which function key was pressed to produce· the character by testing the
key code against these constants:

B_Fl_KEY B_F9_KEY B_Fll_KEY

B_F2 _KEY B_F7_KEY B_F12 _KEY

B_F3 _KEY B_F8_KEY B_PRINT_KEY (the "Print-Screen" key)

B_F4_KEY B_F9_KEY B_SCROLL_KEY (the "Scroll Lock" key)

B_FS_KEY B_FlO_KEY B_PAUSE_KEY

Note th~t key Ox30 (P) is also mapped to B_FL"?-JCTIO~~-KEY vvhcn the Control key ls
held down.

Keyboard Information • Key States 883

Each of the character constants listed above is a one-byte value falling in the range of
values where ASCII and Unicode overlap. For convenience, the Interface Kit also
defines some constants for common characters that fall outside that range. These
characters have multibyte representations in UTF-8, so the constant is defined as a
character string. For example:

#define B_UTF8_0PEN_QUOTE "\xE2\x80\x9C"
#define B_UTF8_CLOSE_QUOTE "\xE2\x80\x9D"
#define B_UTF8_COPYRIGHT "\xC2\xA9"

See "Character Constants" in the "Global Variables, Constants, and Defined Types"
section of Chapter 4, Tbe Interface Kit, for a full list of these constants.

Key States
You can look at the state of all the keys on the keyboard at a given moment in time.
This information is captured and reported in two ways:

• As the "states" field in every B_KEY_DOWN message, and
• As the key_states bitfield reported by get_key_info ().

In both cases, the bitfield is an array of 16 bytes,

uintB states[16];

with one bit standing for each key on the keyboard. Bits are numbered from left to
right, beginning with the first byte in the array, as illustrated below:

OxOl
Ox06

Ox05
Ox04

Ox03
Ox02

OxOI l
oi°° l
00000000

Ox Ob
OxOa

Ox09 j
01°8 l

OxOe
OxOd

OxOc

Ox Of

11111111

Ox12

Oxll j
0i'° l
000

Bit numbers start with 0 and match key codes. For example, bit Ox3c corresponds to
the A key, Ox3d to the S key, Ox3e to the D key, and so on. The first bit is OxOO, which
doesn't correspond to any key. The first meaningful bit is OxOl, which corresponds to
the Escape key.

884 Appendix B • Keyboard Information

When a key is down, the bit corresponding to its key code is set to 1. Otherwise, the
bit is 0. However, for the three keys that toggle keyboard locks-Caps Lock (key
Ox3b), Num Lock (key Ox22), and Scroll Lock (key OxOf)-the bit is set to 1 if the lock
is on and set to 0 if the lock is off, regardless of the state of the key itself.

To test the bitfield against a particular key,

• Select the byte in the states array that contains the bit for that key,
• Form a mask for the key that can be compared to that byte, and
• Compare the byte to the mask.

For example:

if (states[keyCode>>3] & (1 << (7 - (keyCode%8))))

Here, on the left, the key code is divided by 8 to obtain an index into the states
array. This selects the byte (the uint8) in the array that contains the bit for that key.
On the right, the part of the key code that remains after dividing by 8 is used to
calculate how far a bit needs to be shifted to the left so that it's in the same position
as the bit corresponding to the key. This mask is compared to the states byte with
the bitwise & operator.

Index

Symbols

, (acute accent) 691
& (intersection) operator (BRect) 530-531
!= (comparison) operator

BDirectory class 176
BEntry class 194
BFile class 200
BFont class 434
BNode class 231
BPath class 257
BPoint class 502
BRect class 530
BVolume class 292

A (circumflex) 691
·· (dieresis) 691
= (assignment) operator

BDirectory class 176
BEntry class 194
BFile class 200
BFont class 434
BList class 823
BMessage class 116
BMessageFilter class 122
BMessenger class 131
BNode class 231
BPath class 257
BPoint class 502
BPolygon class 506
BRect class 529
BRegion class 535
BVolume class 292

== (comparison) operator
BDirectory class 176
BEntry class 194
BFile class 200
BFont class 434
BMessenger class 131
BNode class 231
BPath class 257
BPoint class 502
BRect class 530
BVolume class 292

' (grave accent) 691

885

- (subtraction) operator (BPoint) 503
-= (subtraction and assignment) operator

(BPoint) 503
+ (addition) operator (BPoint) 503
+= (addition and assignment) operator

(BPoint) 503
? when converting UTF-8 838
I (slash) (see root file system)
- (tilde) 691
I (union) operator (BRect) 531-532

Numerics

8-bit color 342
16-bit color 342
32-bit color 342, 405

A

About. .. menu item 41, 47, 852
AboutRequested() (BApplication) 46-47,

852
absolute pathnames (see BPath objects)
abstract BEntries 186-187, 280
accent characters 691
AcceptsDrop() (BTextView) 585
AcceptsPaste() (BTextView) 585
access

to areas 779-780, 785, 788--789
BApplication objects 45
file permissions

BStatable class and 281
managing 282-283
testing 197

S_I. .. bitfield constants for 283
times of 281-282
(see also ownership)

acquire_sem() 762, 768--769
thread count and 763-764

acquire_sem_etc() 762, 768--769
acquiring semaphores 768--769
Activate() (BWindow) 665
activate_ workspace() (Interface Kit) 684
ActivateApp() (BRoster) 132

886

activating/ deactivating
applications 41, 48, 132, 852
BMenuFields 475
windows 658, 665, 673, 681, 861

BControls and 416
BlistViews and 453

workspaces 682, 684, 862
acute accent (') 691
AddBool() (BMessage) 95-98
AddChild()

BBitmap class 389
BView class 614-615
BWindow class 333, 665-666

AddCommonFilter() (BHandler) 25
AddCommonFilter() (Blooper) 90
AddData() (BMessage) 95-98
AddDouble() (BMessage) 95-98
AddFilter() (BHandler) 25, 68-69
AddFlat() (BMessage) 95-98, 250-251
AddFloat() (BMessage) 95-98
AddFloater() (BWindow) 666
AddHandler()

BHandler class 25, 62
Blooper class 77, 79-80

Addlnt8() (BMessage) 95-98
Addlnt16() (BMessage) 95-98
Addlnt32() (BMessage) 95-98
Addlnt64() (BMessage) 95-98
Addltem()

BList class 819
BListView class 442
BMenu class 456-457, 554
BOutlineListView class 488

addition (+) operator (BPoint) 503
addition and assignment (+=) operator

(BPoint) 503
addition operation 833
AddLine() (BView) 616-617
AddList()

Blist class 820
BOutlineListView class 489

AddMessage()
BMessage class 95-98
BMessageQueue class 123

AddMessenger() (BMessage) 95-98
add-on images 792-795

loading/unloading 792, 798
symbols 792-793, 797-798

ADDON_PATH environment variable 792
AddPoint() (BMessage) 95-98
AddPointer() (BMessage) 95-98
AddPoints() (BPolygon) 505
AddKect() (HMessage) 95-98
AddRef() (BMessage) 95-98

Index

AddReplicant() (BShelf) 558-559
AddResource() (BResources) 273, 275-276
addresses, area 782, 785
AddSeparatorltem() (BMenu) 457, 554
AddShortcut()

BAlert's SetShortcut() vs. 381
BWindow class 666-667

AddSpecifier() (BMessage) 34, 98-99
AddString() (BMessage) 95-98
AddUnder() (BOutlinelistView) 488
AdjustReplicantBy() (BShelf) 559
alert panels (BAlert objects) 379-384

buttons 381, 704
shortcuts for 383

icons for 381
resizing 382
types of 381, 703

alert_type data type 703, 718
alignment

BTextControl objects 576
BTextView text 599
constants for 703
menus 473-474
string views 571

Alignment()
BMenuField class 473-474
BStringView class 571
BTextView class 599

alignment data type 718
Al!Attached()

BMenuField class 472
BView class 350, 615-616

Al!Detached() (BView) 621
allocating

memory (see memory)
objects 13

AllowChar() (BTextView) 588-589
AllowsDragging() (BShelf) 560
AllowsTypeCode()

BFlattenable class 817
BPath class 256

& (intersection) operator (BRect) 530-531
AND (bitwise operation) 833
animation for drag-and-drop 364
antialiasing 431, 709
app flags 135, 160-161
app hints 214
app images, loading 733, 789-791, 798-799

as resource files 272
app_info structure 50, 134-135, 139, 143

app flags and 160
AppActivated() (BApplication) 46. 852
Append() (BPath) 253
application (MIME media type) 12

Index

Application Kit 5, 19-20
class reference 39-138
global variables and constants 138-143
messaging system 20-32
scripting 32-39
types defined in 143-144

application messages 28-32, 139, 851-854
BApplication class and 41-42
interapplication messages 870-871

Application Server 4
drag-and-drop 364
pictures for 492-494
views and 349-354
windows and 349, 628-629, 671

applications (BApplication objects) 40-57
access to 45
activating/deactivating 41, 48, 132, 852
add-on images (see add-on images)
app flags 135, 141, 160-161
app hints 214
app images (app images, loading)
command-line strings to 41, 49, 852
defining message specifiers 35
dropping messages into 30, 116
executables (see app images)
file system references to 42, 853
file types of 164
icons for 161
information on 41, 47, 50, 134-135, 852

BAppFileinfo objects for 158-166,
232

version information 165, 315
initialization status 165
launching 46, 51, 136-137

behavior constants for 135, 141,
160-161

configuration messages for 44
restricted launches 45

locking message loops and 84
message loop of 26, 43-45, 55
messages (see application messages)
messages between (see BMessenger

objects)
preferred

for applications 162
for MIME types 218
for nodes 234

printing from, steps for 511-515
quitting 41, 44, 47, 52-53, 88, 853
rosters of (BRosters) 131-138
scripting support 45
searching for 133
sharing areas between 775, 780-784

signatures 126
File Type database and 159
managing 162-163

supported file types 163-164
supporting 218-219
testing if running 138
version information 165, 315
window positions 56-57

Archive() 865
BAlert class 382
BApplication class 48
BArchivable class 808, 812
BBitmap class 389
BBox class 394
BButton class 398
BCheckBox class 402
BColorControl class 406
BControl class 411
BDragger class 419
BHandler class 64
BListltem class 436
BListView class 443
BLooper class 80
BMenu class 457
BMenuBar class 468
BMenuField class 472
BMenultem class 479
BOutlineListView class 489
BPicture class 494
BPictureButton class 497
BRadioButton class 521
BScrollBar class 546
BScrollView class 552
BStatusBar class 563
BStringltem class 568
BStringView class 570
BTextControl class 574
BTextView class 586
BView class 615
BWindow class 667-668

archives, object 864
archiving/unarchiving

BArchivable protocol for 808-812
deep vs. shallow archives 809
instantiate_object() with 839-840
name collisions and 809

arcs, filling/stroking 652-654
area_for() 782-783
area_info structure 776, 786-788
areas 773-789

accessing 779-780, 785, 788-789
deleting 776-777, 786
functions for managing 782-789

887

888

areas (continued)
information on 776, 786-788
locking 775-776, 785
names and IDs for 774
searching for 786
sharing between applications 775,

780-784
size of 776, 788
writing into 777-778

AreDraggersDrawn() (BDragger) 418
AreTriggersEnabled() (BMenu) 464
arg_v array 791
arguments, command-line 791
ArgvReceived() (BApplication) 44, 46, 48,

852
arrays of data, adding to BMessages 97
arrow keys, BTextViews and 593
arrows on scroll bars 544
ascent, font 427
ASCII, UTF-8 encoding and 367
assigned memory responsibility 13
assignment (=) operator

BDirectory class 176
BEntry class 194
BFile class 200
BFont class 434
BList class 823
BMessage class 116
BMessageFilter class 122
BMessenger class 131
BNode class 231
BPath class 257
BPoint class 502
BPolygon class 506
BRect class 529
BRegion class 535
BVolume class 292

asynchronous message replies 31, 129
atomic_add() (Support Kit) 833
atomic_and() (Support Kit) 833
atomic_or() (Support Kit) 833
AttachedToWindow() 350

BBox class 394
BButton class 398
BCheckBox class. 402
BColorControl class 406
BControl class 412
BDragger class 419
BListView class 443
BMenu class 457
BMenuBar class 468-469
BMenuField class 472
BRad10Button class 521

BScrol!Bar class 546
BScrol!View class 552
BStatusBar class 563-564
BStringView class 570
BTextControl class 574
BTextView class 586
BView class 615-616

attaching views to windows 350
(see also AttachedToWindow())

attr_info structure 227
attributes, file 868

BAppFileinfo objects and 159
C functions for 296-301
deleting 299
getting information on 300
opening/closing directory of 297-298
query indices 260
reading 298-299
resources versus 271
writing 301

attributes, font
printing 429
setting 421
tuned fonts and 428

attributes, node
BNodeinfo objects 231-236
editing 245-246
managing 229-230
monitoring changes to 238
obtaining 227-228
renaming 230

attributes, query 259
audio (MIME media type) 12
axes, coordinate 368-369, 372

B

B_8_BIT_ screen constants 700, 715
B_16_BIT_ screen constants 700, 715
B_32_BIT_ screen constants 700, 715
B_ABOUT_REQUESTED message 41, 48,

140,852
B_ALIGN_ constants 474, 703
B_ALL_WORKSPACES constant 664, 718
B_ANY_ADDRESS constant 785
B_ANY_DELIVERY constant 119, 142
B_ANY_SOURCE constant 119, 142
B_APP _ACTIVATED message 41, 139, 852
B_APP _ VERSION_KIND constant 165, 315
B_APPS_DIRECTORY constant 315
B_ARCHIVED_OBJECT message 556, 864
B_ARGV_ONLY flag 135, 139, 160
B_ARGV_RECEIVED message 41, 49, 140,

852

Index

Index

B_A1TR_CHANGED message 245-246,
318, 868

B_BACKGROUND_APP flag 135, 139, 160
B_BAD_PORT_ID error code 114
B_BAD_REPLY error code 114
B_BAD_THREAD_ID error code 114
B_BASE_ADDRESS constant 785
B_BEOS_ directory constants 316
B_BITMAP _SPACING mode 432-433, 710
B_BORDER_ menu bar constants 712
B_BORDERED_ WINDOW constant 663, 717
B_CANCEL message 869
B_CAPS_ character tables 693
B_CAPS_LOCK constant 689
B_CHAR_SPACING mode 432, 710
B_CLONE_ADDRESS constant 783, 785
B_COLOR_8_BIT color space 342
B_COMMAND_KEY command

keyboard shortcuts and 478
B_COMMON_ directory constants 316
B_CONTIGUOUS constant 775
B_CONTROL_ constants 706
B_CONTROL_TABLE character table 693
B_COPY message 666, 864

BTextViews and 580-581
B_CPU_ constants 801-802
B_CREATE_FILE constant 314
B_CREATE_PROPERTY message 32, 870
B_CURRENT_WORKSPACE constant 664,

718
B_CUT message 666, 864

BTextViews and 580-581
B_DELETE_PROPERTY message 32, 870
B_DESKTOP _DIRECTORY constant 315
B_DEVICE_MOUNTED message 246, 318,

868
B_DEVICE_UNMOUNTED message 246,

318, 868
B_DIRECT_SPECIFIER constant 34, 99
B_DISABLE_ANTIALIASING flag 431, 709
B_DISPATCH_MESSAGE constant 121, 140
B_DISPLAY_PRIORITY constant 78, 738
B_DOCUMENT_ WINDOW constant 663,

718
B_DROPPED_DELIVERY constant 118, 142
B_DUPLICATE_REPLY error code 114
B_EMPTY _ALERT constant 703
B_EMPTY _STRING constant 842
B_ENTERED_ VIEW constant 640, 706
B_ENTRY _ messages

B_ENTRY_CREATED 867, 869
live query updates and 262-263
Node Monitor and 168-169, 240-242

B_ENTRY _MOVED 867
Node Monitor and 169, 244

B_ENTRY_REMOVED 867, 869
live query updates and 263
Node Monitor and 169, 242-244

Node Monitor and 239, 318
B_ERASE_FILE constant 314
B_EUC_CONVERSION encoding constant

838, 842
B_EXACT_ADDRESS constant 785
B_EXCLUSIVE_LAUNCH flag 135, 141, 160
B_EXITED_ VIEW constant 640, 706
B_FAIL_IF_EXISTS constant 314
B_FANCY_BORDER constant 704
B_FIXED_SPACING mode 433, 710
B_FOLLOW _constants 611-612

B_FOLLOW_ALL_SIDES 551, 612
B_FONT_ constants

for font direction 422-423, 708, 720
for font properties 647-648, 709-710
for name length 709

B_FRAME_EVENTS flag 613, 647, 717
B_FS_ flags 313
B_FULL_LOCK constant 775
B_FULL_UPDATE_ON_RESIZE flag 613,

647, 717
B_FUNCTION_KEY character 882
B_GET_PROPERTY message 32, 870

message protocols and 38
B_GET_SUPPORTED_SUITES message 38,

64, 870
B_GRAYSCALE_8_BIT color space 342
B_H_SCROLL_BAR_HEIGHT constant 716
B_HAND_CURSOR constant 140
B_HAS_TUNED_FONT flag 685, 709
B_HORIZONAL constant 714
B_I_BEAM_CURSOR constant 140
B_IDEA_ALERT constant 703
B_INDEX_SPECIFIER constant 34, 98
B_INFINITE_TIMEOUT constant 804
B_INFO_ALERT constant 703
B_INSIDE_ VIEW constant 640, 706
B_IS_FIXED flag 685, 709
B_ISO_ font encoding constants 708
B_ISO#_CONVERSION constants 837-838,

842
B_ITEMS_IN_ menu layout constants 455,

712
B_KEY_ event messages 354-355, 359-360

B_KEY _DOWN 854-856, 880
(see also KeyDown())

B_KEY_UP 856
(see also KeyUp())

889

890

B_LARGE_ICON constant 317
B_LAUNCH_MASK flag 135, 139, 141
B_LAZY _LOCK constant 775
B_LEFT_ modifier key constants 695, 879
B_LOCAL_SOURCE constant 119, 142
B_LOOPER_PORT_DEFAULT_CAPACITY

constant 141
B_LOW _PRIORITY constant 78, 738
B_MAC_ROMAN_CONVERSION encoding

constant 838, 842
B_MACINTOSH_ROMAN constant 708
B_MAIN_SCREEN_ID constant 540, 712
B_MAX_PORT_COUNT constant 754
B_MESSAGE_NOT_UNDERSTOOD

message 863
B_MIME_DATA message 865
B_MIME_TYPE code 22
B_MINI_ICON constant 317
B_MINIMIZE message 354, 856
B_MIXED_COLORS pattern 344, 714
B_MODAL_ WINDOW constant 663, 717
B_MONOCHROME_l_BIT color space 342
B_MOUSE_ messages 355

B....:MOUSE_DOWN 856-857
B_MOUSE_MOVED 857-858
B_MOUSE_UP 858

B_MULTIPLE_LAUNCH flag 135, 141, 160
B_MULTIPLE_SELECTION_LIST constant

441, 452, 711
B_NAME_SPECIFIER constant 34, 99
B_NAVIGABLE flag 361-362, 613, 647, 717
B_NAVIGABLE_JUMP flag 362, 613, 647,

717
B_NO_BORDER constant 704
B_NO_LOCK constant 775
B_NO_REPLY message 863
B_NORMAL_PRIORITY constant 78, 738
B_NORMAL_TABLE character table 693
B_NOT_CLOSABLE constant 663
B_NOT_H_RESIZABLE constant 663
B_NOT_MINIMIZABLE constant 663
B_NOT_MOVABLE constant 663
B_NOT_RESIZABLE constant 663
B_NOT_ V _RESIZABLE constant 663
B_NOT_ZOOMABLE constant 663
B_NUM_LOCK constant 689
B_ONE_STATE_BUTTON type 498-499
B_OP _drawing modes 345-349, 646, 707
B_OPEN_AT_END constant 314
B_OPTION_ character tables 693
B_OS_NAME_LENGTH constant 804
B_PAGE_SIZE constant 783, 804
B_PASTE message 666, 864

BTextViews and 580-581

Index

B_PFI type 845
B_PFL type 845
B_PFV type 845
B_PLAIN_BORDER constant 704
B_PREFERENCES_DIRECTORY constant 315
B_PRIMARY _MOUSE_BUTTON constant

713
B_PROGRAMMED_DELIVERY constant 119,

142
B_PULSE message 42, 140, 357, 853, 859
B_PULSE_NEEDED flag 613, 647, 717
B_QUERY_UPDATE messages 259,

262-264, 868-869
B_QUIT_REQUESTED message 26, 41, 44,

139, 140, 358, 660, 666, 853, 859
dispatching from Bloopers 82

B_RANGE_SPECIFIER constant 34, 98
B_READ_ONLY constant 314
B_READ_ WRITE constant 314
B_READY_TO_RUN message 41, 44, 53,

139, 853
B_REAL_ TIME_DISPLA Y _PRIORITY

constant 78, 738
B_REAL_TIME_PRIORITY constant 78, 738
B_REFS_RECEIVED message 42, 140, 853
B_REMOTE_SOURCE constant119, 142
B_REPL Y message 864
B_RESET_STATUS_BAR message 562,

564-565, 866
B_REVERSE_INDEX_SPECIFIER constant 34,

98
B_REVERSE_RANGE_SPECIFIER constant

34, 99
B_RGB_16_BIT color space 342
B_RGB_32_BIT color space 342
B_RIGHT_ modifier key constants 695, 879
B_SA VE_REQUESTED message 869
B_SCREEN_CHANGED message 859
B_SCROLL_LOCK constant 689
B_SECONDARY _MOUSE_BUTTON

constant 713
B_SELECT_ALL message 666, 864

BTextViews and 580-581
B_SET_PROPERTY message 32, 582, 870

message protocols and 37
B_SHIFT_TABLE character table 693
B_SIMPLE_DATA message 865

clipboard data as 58
B_SINGLE_LAUNCH flag 141, 160
B_SINGLE_SELECTION_LIST constant 441,

452, 711
B_SHS_CONVERSION encoding mn.~t;cint

838, 842

Index

B_SKIP _MESSAGE constant 121, 140
B_SOLID_HIGH pattern 344, 714
B_SOLID_LOW pattern 344, 714
B_STAT_CHANGED message 245, 318, 868
B_STOP _ALERT constant 703
B_STOP_WATCHING flag 238, 317
B_STRING_SPACING mode 432, 710
B_SYMBOL_ types 793
B_SYSTEM_ VERSION_KIND constant 165,

315
B_TAB constant (see Tab key)
B_ TERTIARY _MOUSE_BUTTON constant

713
B_THREAD_ state constants 745-746
B_TIMED_OUT error code 114
B_TITLED_ WINDOW constant 663, 718
B_TRANSPARENT_ constants 716
B_TRASH_DIRECTORY constant 315
B_TRUNCATE_ constants 427, 716
B_TWO_STATE_BUTTON type 498--499
B_UNICODE_UTF8 constant 708
B_UPDATE_STATUS_BAR message 562,

564, 567, 866
B_URGENT_DISPLA Y _PRIORITY constant

78, 738
B_URGENT_PRIORITY constant 78, 738
B_USER_ directory constants 316-317
B_UTF8_ character constants 705
B_ V _SCROLL_BAR_ WIDTH constant 716
B_VALUE_CHANGED message 860

scroll bars and 542
B_ VERTICAL constant 714
B_ VIEW_ messages 355, 860
B_WARNING_ALERT constant 703
B_WATCH_ flags (Node Monitor) 238, 317

B_WATCH_DIRECTORY flag 169
B_ WIDTH_ button constants 704
B_ WILL_ACCEPT_FIRST_CLICK constant

663
B_WILL_DRAW flag 351, 613, 647, 651, 717
B_ WILL_FLOAT constant 663
B_ WINDOW_ event messages 356, 861
B_ WORKSP ACE_ACTIVATED message 862
B_WORKSPACE_CHANGED message 862
B_WRITE_ONLY constant 314
B_ZOOM message 354, 863
BAlert objects 379-384

buttons 381, 704
shortcuts for 383

icons for 381
resizing 382
types of 381, 703

!=(comparison) operator
BDirectory class 176
BEntry class 194
BFile class 200
BFont class 434
BNode class 231
BPath class 257
BPoint class 502
BRect class 530
BVolume class 292

BAppFileinfo objects 158-166, 232
initializing 158-159, 166
(see also BNodeinfo objects)

BApplication objects 40-57
access to 45
activating/deactivating 41, 48, 132, 852
add-on images (see add-on images)
app flags 135, 141, 160-161
app hints 214
app images (see app images, loading)
BRosters of 131-138
command-line strings to 41, 49, 852
defining message specifiers 35
dropping messages into 30, 116
executables (see app images)
file system references to 42, 853
file types of 164
icons for 161
information on 41, 47, 50, 134-135, 852

BAppFileinfo objects for 158-166,
232

version information 165, 315
initialization status 165
launching 46, 51, 136-137

behavior constants for 135, 141,
160-161

configuring messages 44
restricted launches 45

locking message loops and 84
message loop of 26, 43-45, 55
messages (see application messages)
messages between (see BMessenger

objects)
preferred applications

for applications 162
for MIME types 218
for nodes 234

printing from, steps for 511-515
quitting 41, 44, 47, 52-53, 88, 853
scripting support 45
searching for 133
sharing areas between 775, 780-784

891

892

BApplication objects (continued)
signatures 126

File Type database and 159
managing 162-163

supported file types 163-164
supporting 218-219
testing if running 138
version information 165, 315
window positions 56-57

BArchivable protocol 808-812
BarColor() (BStatusBar) 565
BarHeight() (BStatusBar) 565
BaseAddress() (BScreen) 537-538
BAutolock class 812-813

(see also Blocker class)
BBitmap objects 384-392

bitmap depth 342
color spaces 385-386, 391
for cursors 55
drawing in views 623-624
drawing modes 345
for icons 161
managing view hierarchy 389-392
size and boundaries 385, 390
specifying image of 386-387, 392
tuned fonts 428

BBox objects 392-395
BButton objects 396-400

on alert panels 381, 383
colors of 398
default

defining 399, 677-678
Enter key and 359, 381, 396

labels for (see labels)
one-state vs. two-state 495, 498-499
for pictures 495-500
radio buttons (see radio buttons)
size of 398

BCheckBox objects 400-403
BClipboard objects 57-61

BMessage objects for data 58
BColorControl objects 403-408
BControl objects 409-416

BColorControl objects 403-408
BTextControl objects 571-578
colors of 412
focus and 413-414
keyboard navigation and 362, 413
labels on 415
value constants for 706

BDataIO class 813-816
BDirectory objects 166-178

converting 8Nodes to 224
counting BEntries/BNodes 174, 179

creating new 167, 171-172, 186
deleting BNodes from 242-244
knowledge of BEntry 157
locking and unlocking 225
monitoring 168-169, 238, 866-868
parent, obtaining 190-191, 253-254
root 175, 291
searching for 168, 172, 177-178
searching in 170
unlinking BEntries from 192
(see also BEntryList objects; BEntry

objects; BNode objects)
BDragger objects 417-420

shelves for (see BShelf objects)
be_app variable 43, 47, 138
be_bold_font constant 421
be_clipboard variable 58, 139
be_fixed_font constant 421
be_plain_font constant 421
be_roster variable 131, 139
beep() (Support Kit) 833
Begin]ob() (BPrint]ob) 513, 515-516
BeginLineArray() (BView) 616-617
BeginPicture() (BView) 492, 617
BeginRectTracking() (BView) 618
Behavior() (BPictureButton) 498-499
benaphores 766-767
BEntry objects 154-157, 183-194

abstract 186-187, 280
converting into BNodes 156
counting 174, 179, 182
creating new 240-242
deleting 156-157

live query messages for 263
directory order 179
file descriptors and 187
getting names/pathnames of 189-190
initializing 173, 184-185
iterating through 173-174, 178, 182

choosing iterator 180
links to (see BSymLink objects)
list of (see BEntryList objects)
locking BNodes and 188, 225, 228
monitoring, live queries and 262-264

(see also Node Monitor)
obtaining parent of 190-191
querying (see BQuery objects)
renaming or moving 192
searching for 170-172
stat structure (see stat structure)
structure of (see entry_ref structure)
traversing 184-186
unlinking from BDirectories 192

BEntryList objects 178-183

Index

Index

BeOS software 3
software kits 5-6

BFile objects 194-200
accessing directories with 195
attributes (see attributes, file)
closing 195, 199-200
converting to 225, 251
creating new 171-172, 186, 867
deleting 867
entries (see BEntry objects)
file descriptors (see file descriptors)
initializing and opening 195
initializing BAppFileinfo objects 158-159
locking and unlocking 225
MIME strings for 157
monitoring 866-868
moving 867
nodes (see BNode objects)
nonexistent, BEntries to 186-187, 280
Open and Save BFilePanels 201-212
open mode constants 314
reading into areas 778
reading/writing to 197-198
resource files (see resource files)
resources of (see resources, file)
saving 869
searching for 170-172
size of 196
(see also BEntry objects; BNode objects)

BFilePanel objects 201-212
BWindows of 212
C functions for 208
event/notification messages 204-207,

211, 869
filtering items in 204, 211-212, 269-270
hiding/showing 205, 210-212, 869
locking and unlocking 207-208
modal 204
multiple selection 204
panel directory 202, 211
panel modes 202, 209
updating 210

BFlattenable class 816-818
BFont objects 420-434

antialiasing 431, 709
BTextViews and 583, 600-603
in BViews 647-648
characters of (see characters)
direction of 422-423, 708, 720
encodings 708
escapements and edges 423-426
family (see family, font)
flags for 431, 709

installed, updating list of 702
Interface Kit functions for 684-685
name lengths 709
property constants 709-710
size 426-427, 431-432, 648
spacing modes 432-433, 710

escapement values and 424
system fonts 421-422, 702-703
tuned 428, 685

BHandler objects 61-70
assigning BMessageFilters to 117
B_MESSAGE_NOT_UNDERSTOOD

message 863
as BFilePanel targets 202
for Binvoker objects 72
BLoopers and 62, 65, 76-77, 79-80
as BMessage targets 24-25, 28-29, 62,

76-77
determining 66-68

as BMessenger targets 130-131, 126
as BQuery targets 267
preferred handlers (see preferred

handlers for messages)
scripting and 62
for system messages 27-28

big-endian color data 342
bigtime_t type 844
Binvoker objects 70-74

alert panels and 380
assigning BMessages to 73
BHandlers for 72

bitmaps (BBitmap objects) 384-392
bitmap depth 342
color spaces 385-386, 391
for cursors 55
drawing in views 623-624
drawing modes 345
for icons 161
managing view hierarchy 389-392
size and boundaries 385, 390
specifying image of 386-387, 392
tuned fonts 428

Bits() (BBitmap) 386, 389-390
BitsLength() (BBitmap) 390
bitwise AND operation 833
bitwise OR operation 833
blending modes (drawing) 348
blinking of BTextView insert point 598
BList objects 818-823

adding to BListViews 442
entry lists (see BEntryList objects)
items in (see BListltem objects)
outline-style (see outline lists)

893

894

BList objects (continued)
pop-up/pull-down (see menus)
separator items (s€e BSeparatorltem

objects)
user interface (see BListView objects)

BListltem objects 434--439
adding/removing from lists 442,

449-450, 488-489, 491
counting in lists 443
expanding/collapsing 438
iterating through 444
outline line levels 437
sorting 452-453
(see also BList objects; BListView

objects)
BListView objects 439-453

adding items/lists to 442
as BScrollView target 453
counting BListitems in 443
items in (see BListltem objects)
outline-style (see BOutlineListView

objects)
scrolling in 446, 450
single vs. multiple selection 441, 452,

711
strings in (see BStringltem objects)
(see also BList objects)

BLocker class 823-827
(see also BAutolock class)

BLooper objects 23-25, 75-91
for applications 43-45, 55

(see also BApplication objects)
assigning BMessageFilters to 117
as BFilePanel targets 202
BHandlers and 62, 65, 76-77, 79-80
as BMessage targets 76
as BMessenger targets 126, 130-131
as BQuery targets 267
debugging 85
deleting 87-89
delivering BMessages to 86-87
detaching BMessages from 81
dispatching BMessages from 82-83
locking and unlocking 83-85

as BMessenger target 128-129
BAutolock class for 812-813

port capacity 141
preferred handlers 76, 91
priority 77
system messages and 26-28
of windows 659-660

BMallocIO class 827-830
BMemoryIO class 827-830

Index

BMenu objects 453-465
adding/removing items of 456-457, 461
alignment 473-474
arranging BMenuitems of 455
BMenuFields 470-475
configuring preferences 697
counting BMenultems in 458
items in (see BMenultem objects)
keyboard navigation of 688
layout constants 712
menu bars (see BMenuBar objects)
menu hierarchy 454
pop-up (see BPopUpMenu objects)
radio mode 463
separator items (see BSeparatorltem

objects)
tracking cursor in 465
updating 674

BMenuBar objects 465-470
borders 712
BPopUpMenus of 506-507
keyboard navigation of 466
layout constants 712
window's root 678

BMenuField objects 470-475
BMenuitem objects 454, 475-485

adding/removing from menus 456-457,
461

arranging in menus 455
BTextViews and 580-581
highlighting 480-482
keyboard shortcuts 476, 478, 484
kinds of 475
margins around 462
marked 476, 484

finding 458
managing labels from 462

same target for all 463-464
separators (see BSeparatoritem objects)
tracking cursor and 465
triggers 464, 476, 484--485
updating 674

BMessage objects 20-23, 91-117
adding to queue 123
adding/deleting/replacing data of 95-98,

109-112
alert (see BAlert objects)
application configuration messages 44
application-related (see application

messages)
BFilePanel notification 204-207, 211,

869
BHandlers for 24-25, 28-29, 62, 66-68,

76-77

Index

BMessage objects (continued)
Blnvokers, assigning to 73
BPaths, passing in 250-251
buffering for threads (see ports)
command constants (see what data

member)
copying 94
counting data fields of 99
data containers 92, 864-865

for clipboard data 58
detaching from message loop 81
dropping into applications/windows 30,

116
for editing 864
filtering 25, 62, 68-69

BLoopers and 90
what data member and 119
(see also BMessageFilter objects)

handling in views 332-333
information on 106-107
inspecting contents of 107-108
interface (see interface messages)
invocation messages 440, 451-452
message protocols 22, 31, 37-38, 360,

851-871
messaging system 20-32
modification, from BTextControls 577
Node Monitor messages 239, 866-868
notification (see notification messages)
as object archives 808-811
opcode constants (see under specific

constant)
ownership of 23
port messages 754-755
printing server settings 512, 518--519
printing to stdout 109
query update messages 259, 262-264,

868-869
queue (see BMessageQueue objects)
replying to 30-31, 87, 113-115, 863-864

(see also BHandler objects; two-way
message communication)

retrieving data from 100-104
scripting (see scripting)
selection messages 440, 452
sending/ delivering

at application launch 137
to/from BLoopers 27, 75, 82-83,

86-87
broadcasting to all applications 133
to remote destinations (see

BMessenger objects)
specifiers 34-37, 143

adding 98--99

retrieving 105-106
stacks of 35-36
type constants for 34, 98

standard messages 141, 863-870
status bar messages 865-866
suites 12, 38--39, 64
to threads 739-741, 746-749
type codes 21-22, 843-844
view update messages 351
(see also under specific message name)

BMessageFilter objects 25, 117-122
managing 68-69
(see also filtering messages)

BMessageQueue objects 76, 122-125
accessing from BLoopers 86
adding messages to 123
locking and unlocking 124
of port messages 754, 758--759

BMessenger objects 29-30, 125-131
clipboards and 60
sending messages to all applications 133

BMimeType objects 213-221
BNode objects 154-157, 222-231

attributes (see attributes, node)
converting 224
converting BEntries into 156
counting in directories 17 4, 179
creating new 171-172
deleting 242-244
directory order 179
file descriptors and 223
flavors (types) of 155, 315

BFilePanels and 203-204
getting information on 279-286

access/edit times 281-282
icons for 233-234
locking and unlocking 188, 225, 228
managing file type of 235
moving 244
searching for 170-172
size of 284
stat structure (see stat structure)
structure of (see node_ref structure)
(see also BEntry objects)

BNodelnfo objects 231-236
boo! type 844
Boolean constants 841
/boot mount point 152
boot volume 294
Border()

BBox class 395
BMenuBar class 470
BScrollView class 553

border_style constants 704

895

896

bordered windows 663, 717
borders

BScrollViews 551, 553
menu bars 712
menu lists 470
style constants for 704
view 392-395

boundary
bitmaps 385, 390
character edge values 425-426
clipping region 337-339, 532, 619,

630-631
erasing 353

view 334-336, 619
(see also BBox objects)

visible region 338
window 668

bounds rectangle
bitmaps 385, 390
view 335, 619

Bounds()
BBitmap class 390
BView class 619
BWindow class 668

BOutlinelistView objects 486-491
item levels 437
iterating through 489-490
strings in (see BStringitem objects)

BPath objects 247-257
absolute, testing BSymlinks for 288
calling convention 249-250
converting 251
creating new 171-172, 288
device numbers of 311
flattening 250, 256-257
initializing and normalizing 247-249
obtaining 189-190, 254
parent of 253-254
passing in BMessages 250-251
renaming 192
searching for 168, 170-172, 177-178
stat structure (see stat structure)

BPicture objects 492-494
drawing in views 625
recording 492, 617

BPictureButton objects 495-500
BPoint objects 500-504

adding to BPolygons 505
coordinates of 370, 620-621, 668-669
including in/excluding from regions

533-534
testing for enclosure of 525-526, 533

BPolygon objects 504-506
for coordinates areas 371
filling/stroking 377-378, 655-656

BPopUpMenu objects 506-510
(see also menus)

BPositionIO class 813-816
BPrint]ob objects 510-519

cancelling 513, 516
creating new 512, 516-517

BQuery objects 257-269
attributes 259
BEntrylists 178-183
C functions for 308-311
elements of 259-262
indices 260, 303
indices, C functions for 302-308

getting query information 307-308
live queries 259, 267

update messages 259, 262-264,
868-869

opening and closing 309
operation constants 318
reusing 258
setting volume for 268

BRadioButton objects 519-522
BRect objects 523-532

accessing in regions 535
assigning to BTextViews 604
constraining BPoints to 501
coordinates of 370-371, 620-621,

668-669
copying in views 621
filling/stroking 375-377, 656
inscribing polygons in 505
intersection/union of 526, 530-532
moving 527
printable 514, 518
rounded corners 656
size of 526, 528-529
tracking cursor with 618

BRefFilter objects 204, 211-212, 269-270
BRegion objects 532-535

accessing BRects in 535
in BTextViews 590
for coordinate areas 371
filling with patterns 532, 627
including/excluding points 533-534

BResources objects 270-279
BAppFileinfo objects and 159
deleting 278
file attributes vs. 271
finding in resource files 273, 276

Index

Index

BResources objects (continued)
getting information on 276-277
initializing 271-273
managing 273

Broadcast() (BRoster) 133
broadcasting

messages to all applications 133
semaphores 765

BRoster objects 131-138
BScreen objects 343, 536-542

color map/space for 538--541
configuring 699-700, 715
coordinates (see coordinates)
event messages 536, 677, 859
frame buffer for 537-538
inverting colors of 541
locking and allocating for 536-537
main screen 712
mapping coordinates to pixels 371-372
placement on (see position)

BScrollBar objects 542-550
changing values of 860
configuring preferences 700-701
managing in views 645--646
orientation of 546-547
proportional knobs 544, 547
size 716
target views of 542, 544, 548, 550
user preferences for 544-545
values of 543-544, 547, 549, 551

BScrollView objects 550-554
BListViews as targets of 453
BViews as targets of 657

BSeparatorltem objects 457, 554-555
BShelf objects 556-561
BStatable class 279-286
BStatusBar objects 561-567

colors of 562, 565
messages for 86~66

BStopWatch class 830--833
BStringltem objects 567-569
BStringView objects 569-571

editable (see BTextView objects)
BSymLink objects 150-151, 286-289

converting BNodes to 225
creating new 171-172, 186
initializing 287
as nodes 223
opening 195
resolving 185-186
in root file system 152
searching for 170-172
testing for absolute pathnames 288

BTextControl objects 571-578
BTextViews and 572, 578
scripting support 572-573

BTextView objects 578--606
adding/deleting text in 591-593
alignment of text 599
in BA!erts 384
BTextControl objects and 572, 578
colors in 600-603
fonts in 583, 600--603
graphics primitives 579-580
navigating 590-591, 598
offsets 579
scripting support 581-582
selecting text 580, 590, 596, 599
shortcuts and menu items 580-581
static (BStringViews) 569-571
static (see BStringView objects)
(see also BTextControl objects)

Buffer() (BMallocIO) 828
BufferLength() (BMallocIO) 828
button_ width type 704, 719
ButtonAt() (BA!ert) 382
buttons (BButton objects) 396-400

on alert panels 381, 383
colors of 398
default

defining 399, 677--678
Enter key and 359, 381, 396

labels for (see labels)
one-state vs. two-state 495, 498--499
for pictures 495-500
radio buttons (see radio buttons)
size of 398

buttons, mouse (see mouse)
BView objects 332-334, 606--658

Application Server and 349-354
attaching to BWindows

(see also AttachedToWindow())
BDragger shelves (see BShelf objects)
in BFilePanels 207-208
bitmaps, drawing 623--624
BMessages, handling in 332-333
borders around (see BBox objects)
as BScrollView targets 657
BWindows and 350, 607--608, 615--616,

621, 657, 659
clipping region 337-339, 532, 619,

630-631
erasing 353

colors in 339, 634, 648--649, 651--652
converting coordinates of 620-621
coordinates (see coordinates)

897

898

BView objects (continued)
creating new 333
cursor transit constants 640, 706
derived BView classes 608-609
dispatching interface messages 358-360
drag-and-drop (see drag-and-drop)
drawing in 332-354

updates and 353
drawing instructions (see BPicture

objects)
drawing modes 345-349, 646-647
event messages 355, 860
flags for 613, 647, 717
focus view 358-359, 634, 638-639

focus indicators for 362-363
fonts in 647-648
geometry of 334-339
graphics environment 340
hiding/showing 633-635
hierarchy of (see view hierarchy)
interface messages 854-863
keyboard events and 635-638
manipulating from keyboard 361-364
mapping to paper 513-514
mouse events and 639-641
moving 629-630, 641

boundaries and 335
navigating between 637
obtaining mouse position 632
overlapping 334
pen of (see pen)
producing bitmaps with 386-387
scripting support 608
scroll bar targets 542, 544, 548, 550
scrolling (see scrolling)
searching for 628, 671
size of 611-612, 630, 632-633, 644, 860

boundaries 334-336, 619
resizing modes 650, 714-715

top view 333
tracking cursor 618
updating 351-354, 623, 681

forcefully 352
recognizing need for 675

visible region 338
BVolume objects 289-292

boot volume 294
initializing 289
monitoring 238, 246, 294
mounting/unmounting 238, 246, 290
setting for queries 268

BVolumeRoster objects 293-295

BWindow objects 332, 658-683
activating/deactivating 416, 453, 658,

665, 673, 681, 861
alert panels (see alert panels)
Application Server and 349
attaching to BWindows

(see also AttachedToWindow())
attaching views to 350
for BFilePanels 212

Index

BViews and 607-608, 615-616, 621, 657,
659

closing windows 859
converting coordinates of 668-669
coordinates (see coordinates)
counting number of 49
default button 359, 381, 396, 399,

677-678
dropping messages into 30
editing messages 864
event messages 861
file panels (see file panels)
flags for 717
flushing connection to Application

Server 628-629, 671
hiding/showing 672-673
interface messages 356, 854-863
keyboard shortcuts for 666-667
locking 607-608
locking message loops and 84
message loops of 26
moving 663, 671-672, 675, 861
positions of 56-57
quitting (closing) 88, 675-676
quitting applications and 47, 52
scripting support 660-661
size of 663, 671-672, 676, 679, 861
threads of 659-660
titles for 662, 679-680
types of 663, 682, 717-718
updating views 351-354, 623, 675, 681
zooming (maximizing)/minimizing 354,

663, 674, 683, 856,863
limits for 679

BWindow objects)flags for 663
ByteAt() (BTextView) 605
BytesPerRow()

c

BBitmap class 390
BScreen class 537-538

C functions
for files panels 208
global 295-313

Index

C++ thread functions 735-736
caches, clearing 803
CanAcceptReplicantMessage() (BShelf) 560
CanAcceptReplicantView() (BShelf) 560
Cancel button (alert panel) 381
cancel notification (BFilePanel) 206
Cancel]ob() (BPrint]ob) 516
cancelling (see exiting)
CanContinue() (BPrintJob) 513, 516
CanEndLine() (BTextView) 586-587
Capacity() (BVolume) 291
capitalization (see case)
Caps Lock key 687, 689, 878, 881
case (capitalization)

Caps Lock key 878, 881
Shift key 877

cast_as()
BArchivable class 810
Support Kit 834-836

casting objects 835-836
CellSize() (BColorControl) 407
character encoding

conversion constants 837-838, 842
converting between encodings 837-838
font encoding constants 708
mapping keyboard keys 365-368,

429-430, 689-691,880-881
character keys 875

character constants and 881-883
constants for 704-705
mapping 365-368, 429-430, 689-691,

880-881
(see also keyboard)

characters
allowing in BTextViews 588-589
constants for 636, 704-705
with diacritical marks 691--693
drawing in views 624--627
edge values 425-426
escapements 423-425
keyboard (see keyboard)
positioning 423-426
rotating 431
spacing modes 424, 432-433, 710
text line wrapping and 586-587, 604

check boxes (BCheckBox objects) 400-403
ChildAt()

BBitmap class 390
BView class 642--643
BWindow class 668

circumflex n 691
class_name() (Support Kit) 834-836

classes
allocating memory 13
determining for objects 834-836
naming conventions 9
unarchivable 810

clear (see transparency)
Clear()

BClipboard class 59--60
BQuery class 264

clear_caches() 803
clicking mouse (see mouse)
clients sharing areas with server (example)

780-781
clipboards (BClipboard objects) 57--61

BMessage objects for data 58
clipping region, view 337-339, 532, 619,

630--631
erasing 353

clock information 802-803
clone_area() 775, 783-784
cloning areas (memory) 775, 780-784
Close() (BWindow) 675--676
closing

attribute directories 297
directories 175-176
files 195, 199-200
queries 308, 309
query index directory 304
windows 859

closing windows 660, 675--676
code

compiled (see images)
locking critical sections

Blockers for 823-825
semaphores for 761, 765-767
(see also Blocker class)

timing execution of 830--833
Collapse() (BOutlineListView) 489
color map

BScreens 538
system 702

color_map structure 702, 719
color_space type 705-706, 719
color spaces 342-343

bitmaps 385-386, 391
BScreens 540-541
BTextViews 600
constants for 705-706
drawing modes and 346
for screens 539
source and destination images 346

ColorForlndex() (BScreen) 540-541
ColorMap() (BScreen) 538-539

899

900

colors 342-344
in BTextViews 600--603
buttons 398
choice panels (BColorControls) 403-408
desktop 541-542
dithered (see patterns)
filling with (see filling)
high and low colors 340
inverting 634
for keyboard navigation focus 362
matching with window's (see

AttachedToWindow())
one-pixel lines and 373-375
patterns 343-344

constants for 714
rgb_color structure 725
screen 538-542
to signify focus 694
in status bars (see status bars)
stroking with (see stroking)
system color map 702
transparency (see transparency)
in views 339, 634, 648--649, 651--652

ColorSpace()
BBitmap class 391
BScreen class 539
BTextView class 600

Command()
Binvoker class 72
BMessageFilter class 120

command constant, BMessage (see what
data member)

Command key 359, 688, 877, 880
command-line arguments/strings 791

passing to BApplications 41, 49, 852
Commit() (BClipboard) :59--60
Commit]ob() (BPrint]ob) 513, 516
CommonFilterList() (Blooper) 90
comparing

numbers 840
(see also comparison operators)

comparison (!=) operator
BDirectory class 176
BEntry class 194
BFile class 200
BFont class 434
BNode class 231
BPath class 257
BPoint class 502
BRect class 530
BVolume class 292

comparison (==) operator
BDirectory class 176
BEntry class 194

BFile class 200
BFont class 434
BMessenger class 131
BNode class 231
BPath class 257
BPoint class 502
BRect class 530
BVolume class 292

compiled code (see images)
ConfigJob() (BPrint]ob) 512, 516-517
ConfigPage() (BPrint]ob) 511, 516-517
configuration messages, application 44
configuring

keyboard 686--693
keyboard repeat rates 696
menu preferences 697
mouse 698--699
mouse clicking 695--696

Index

page layout (printing) 510-511, 516-517
screens 677, 699-700, 715
scroll bars 544-545, 700-701

constants
alignment 703
in Application Kit 139-143
Be error codes 846
Boolean 841
character constants 636
for characters 881-883
cursor-related 140
defining 22-23
Interface Kit 703-718
naming conventions 10
POSIX error codes 847
Storage Kit 313-321

ConstrainClippingRegion() (BView) 339,
619

constraining points to rectangles 501
ConstrainTo() (BPoint) 501
constructors (see under specific object

name)
Contains()

BDirectory class 170
BRect class 525-526
BRegion class 532, 533

ContentLocation() (BMenultem) 479
control devices (BControl objects) 409-416

color (BColorControls) 403-408
colors of 412
focus and 413-414
keyboard navigation and 362, 413
labels on 415
value constants for 706

Control key 688, 877, 880, 881
Control-Tab combination 362

Index

control values 706
convert_from_utf8() (Support Kit) 837-838
convert_to_utf8() (Support Kit) 837-838
ConvertFromParent() (BView) 620
ConvertFromScreen()

BView class 620-621
BWindow class 668-669

converting
BEntries to BNodes 156
BNodes into BFiles 224
BPaths to BFiles 251
character encodings 837-838, 842
to/from UTF-8 encoding 837-838
view coordinates 620-621
window coordinates 668-669

ConvertToParent() (BView) 620
ConvertToScreen()

BView class 620-621
BWindow class 668-669

coordinates 368-378, 611
axes 368-369, 372
of BTextView text 593-595
data types for 370-371
mapping to pixels 371-378
points (see points)
printing and 514-515, 518
scale of (BViews) 650-651
scrolling and (see scrolling)
systems of 334, 369-370
units of 369, 650-651
unitsofr 335
in views 620-621, 638
in windows 668-669

copy mode (drawing) 346
Copy() (BTextView) 588
CopyBits() (BView) 621
copying

into allocated memory 830
areas (cloning) 775, 780-784
BList contents 823
BTextViews and 580-581, 588
to clipboards (see clipboards)
keyboard shortcuts for 580
messages 94
rectangles in views 621
(see also cut and paste)

count_font_families() (Interface Kit)
684-685

count_font_styles() (Interface Kit) 684-685
count_ workspaces() (Interface Kit) 701
CountChildren()

BBitmap class 390
BView class 642-643
BWindow class 668

CountEntries()
BDirectory class 173-17 4
BEntrylist class 179, 182
BQuery class 265

CountHandlers() (Blooper) 79-80
Countltems()

BList class 820
BListView class 443
BMenu class 458

CountLines() (BTextView) 590-591
CountlockRequests()

Blocker class 826
Blooper class 85

Countlocks()
Blocker class 826
Blooper class 85

CountMessages() (BMessageQueue) 123
CountNames() (BMessage) 99
CountPoints() (BPolygon) 505
CountRects() (BRegion) 535
CountTuned() (BFont) 428
CountWindows() (BApplication) 49
cpu_info structure 801
cpu_type constants 801-802
create_area() 784-785
create_directory() 168, 177
create_port() 753, 755-756
create_sem() 769-770
CreateDirectory() (BDirectory) 167,

171-172, 186
CreateFile() (BDirectory) 171-172, 186, 195
CreateSymLink() (BDirectory) 171-172, 186
creating times 281-282
current_ workspace() (Interface Kit) 684
CurrentFocus() (BWindow) 669
Currentline() (BTextView) 590-591
CurrentMessage()

Blooper class 80
BWindow class 360

CurrentSelection() (BlistView) 443-444
CurrentValue() (BStatusBar) 566
cursor

blinking (BTextView) 598
constants for 140
defining 55-56
hiding/showing 50-51
tracking in menus 465
(see also mouse)

cut and paste
BTextViews and 580-581, 585, 588
clipboard for (see clipboards)
keyboard shortcuts for 580
messages for 864

Cut() (BTextView) 588

901

902

D

Data()
BC!ipboard class 58, 60
BPicture class 494

data containers, BMessages as 92, 864-865
for clipboard data 58

data members, naming conventions 9
data types

for coordinates 370-371
Interface Kit 718-727
symbols 793
type codes (see type codes)

DataSize() (BPicture) 494
DataSource() (BClipboard) 60
date (see time/timing)
dead keys 691-693, 876

mapping 707
debugger() 803
debugging

Bloopers 85
thread information for 744-746
timing code execution 830-833

deep archives 809
default

button
defining 399, 677-678
Enter key and 359, 381, 396

reply messages 863
DefaultButton() (BWindow) 677-678
delay before key repeat 696
delete_area() 786
delete operator (BMessage) 117
delete_port() 753, 756
delete_sem() 764-765, 770
Delete()

BMimeType class 220
BTextView class 591-593

DeleteText() (BTextView) 592-593
deleting

areas (memory) 776-777, 786
bitmap views 391-392
clearing caches 803
clipping region contents 353
entries 156-157, 263
file attributes 299
file resources 278
File Type database data 220
files 867
icons for applications 161
items from lists 442, 449-450, 488-489,

491, 822
•. /F-<

r11e11u 1Le111::, <±\J.l

message content 109

message loops 87-89
message queue contents 123
node attributes 229-230
nodes 242-244
ports 753, 756
query indices 303, 306
semaphores 764-765, 770
text from BTextViews 591-593
threads (see killing threads)
view children 614-615, 665-666
views 392, 644
(see also under specific object name)

delivering messages (see messages,
sending/ delivering)

Index

delivery method constants (BMessageFilter)
118, 142

depth
archives 809
bitmap 342
cursor image 55
screen 699-700, 715

descent, font 427
descriptions, file type 217
Deselect()

BListltem class 437
BListView class 444

DeselectAll() (BlistView) 444
DeselectExcept() (BListView) 444
deselecting list items 444
desktop color 541-542
DesktopColor() (BScreen) 541-542
destination image 345

color space of 346
(see also drawing modes)

destructors (see under specific object name)
DetachCurrentMessage() (Blooper) 81
DetachedFromWindow()

BDragger class 419
BTextView class 588
BView class 621

/dev (see device file system)
dev_for_path() 311
devfs handler 153
Device() (BVolume) 291
device file system (/dev) 153
Device Kit 6
device numbers 291, 311
devices

display, resolution of 371
getting information on 312-313
iterating through 311
monitoring 238, 246
mountmg/unmountmg 258, 246, 868
(see also volumes)

Index

diacritical marks 691-693
dieresis ('") 691
dimensions (see size)
direct structure

GetNextDirents() and 180-182
Direction() (BFont) 422-423
direction, font 422-423, 708, 720
directories

BDirectory objects 166-178
closing 175-176
constants for 315-317
converting BNodes to 224
counting entries/nodes in 174, 179
creating new 167, 171-172, 186
deleting nodes from 242-244
directory order 179
of file attributes (see attributes, file)
iterating through contents of 167
knowledge of entry 157
locking and unlocking 225
monitoring 168-169, 238
node monitoring 866-868

(see also Node Monitor)
opening 195
panel directories 202, 211
parent, obtaining 190--191, 253-254
query indices (see indices, query)
root 175, 291
in root file system 151-152
searching for 168, 172, 177-178
searching in 170
unlinking entries from 192
(see also entries; entry lists; nodes)

DisabledOff() (BPictureButton) 499-500
DisabledOn() (BPictureButton) 499-500
DisableUpdates() (BWindow) 669
disabling (see enabling/disabling)
DisallowChar()

BTextView class 588-589
dispatching messages (see messages,

sending/ delivering)
DispatchMessage()

BApplication class 49
Blooper class 24, 76-77, 82-83
BWindow class 670
overriding 82

dithered colors (see patterns)
Divider()

BMenuField class 474
BTextControl class 576

Dils (dynamically linked libraries) 6-7
images for 791

document windows 663, 718

documentation
message suites 39
publishing message protocols 31

DoesAutoindent() (BTextView) 600
DoesWordWrap() (BTextView) 604
DoForEach()

BList class 820
BListView class 444

double-clicking (see mouse)
drag-and-drop 364-366, 622, 640

BDragger objects 417-420
BTextViews and 585
data container messages 864-865
dropping messages 30, 116
scrolling lists by dragging 446
shelves for (see BShelf objects)
into view hierarchy 556-557

DragMessage() (BView) 364, 622
Draw()

BBox class 395
BButton class 398
BCheckBox class 402
BColorControl class 406
BDragger class 419
BListView class 444-445
BMenu class 458
BMenuBar class 469
BMenuField class 472
BMenuitem class 480-481
BPictureButton class 497-498
BRadioButton class 521
BScrollView class 553
BSeparatorltem class 555
BStatusBar class 564
BStringView class 571
BTextControl class 574
BTextView class 589
BView class 514, 622-623

DrawBitmap() (BView) 623-624
DrawBitmapAsync() (BView) 623-624
DrawChar() (BView) 624
DrawContent() (BMenultem) 480-481
drawing in views 332-354

bitmaps 623-624
BPictures 492-494
clipping region 337-339, 532, 619,

630-631
erasing 353

control devices for (see BControl
objects)

coordinates (see coordinates)
filling (see filling)
focus indicators 362-363

903

904

drawing in views (continued)
graphics environment 340
lines 616-617
pictures for (see pictures)
stroking (see stroking)
translating to printed pages 513-514
updates and 353
view geometry 334-339
visible region 338

drawing_mode constants 345-349
drawing modes 345-349, 646-647

blending modes 348
color spaces and 346
constants for 707
copy mode 346
selection modes 349
transparency modes 347-348

drawing_mode type 707, 719
DrawingMode() (BView) 646-647
Drawltem()

BListltem class 436-437
BStringitem class 568

DrawPicture() (BView) 625
DrawString() (BView) 569, 625-627
DrawView() (BPrintJob) 513, 517
dropped messages 30, 116
DropPoint()

BMessage class 30, 116
BView class 365

dynamic object archiving/unarchiving 811
dynamically linked libraries 6-7

E

edge values, character 425-426
edge_info structure 720
editing

messages for 864
node attributes 245-246
screen (see screen)
scroll bar values 860
shapes (see shapes)
system keymap 877
workspaces 862

8-bit color 342
ElapsedTime()

BStopWatch class 832
ellipses, filling/stroking 654
emabling/ disabling

menus 461-462
empty

BList objects 821, 822
iists 44;, 44~

message queues 124
messages 109
outline lists 491
regions 534
string, constant for 842

EnabledOff() (BPictureButton) 499-500
EnabledOn() (BPictureButton) 499-500
EnableUpdates() (BWindow) 669
enabling/ disabling

BColorControl text fields 407
BTextControls 577
control devices 414-415
list items 437-438
menu fields 474
menu items 476, 483
picture buttons 499-500
separator items 555
updated in windows 669
(see also IsEnabled(); SetEnabled())

encoding
characters (see character encoding)
fonts 708
function symbols 793-795

Encoding() (BFont) 429-430
EndLineArray() (BView) 616-617
EndPicture() (BView) 492, 617
EndRectTracking() (BView) 618
Enter key, buttons and 359, 381, 396
entries (BEntry objects) 154-157, 183-194

abstract 186-.-187, 280
converting into nodes 156
counting 174, 179, 182
creating new 240-242
deleting 156-157

live query messages for 263
directory order 179
file descriptors and 187
getting names/pathnames of 189-190
initializing 173, 184-185
iterating through 173-174, 178, 182

choosing iterator 180
links to (see symbolic links)
list of (see entry lists)
locked nodes and 188, 225, 228
monitoring, live queries and 262-264

(see also Node Monitor)
obtaining parent of 190-191
querying (see queries)
renaming or moving 192
searching for 170-172
stat structure (see stat structure)
structure of (see entry_ref structure)

Index

Index

entries (BEntry objects) (continued)
traversing 184-186
unlinking from directories 192

entry lists (BEntryList objects) 178-183
entry_ref structure 154, 319-320

BPaths as 250-251
converting BPath to 251
obtaining for entries 191

environ pointer 790
environment variables in app images 790
= (assignment) operator

BDirectory class 176
BEntry class 194
BFile class 200
BFont class 434
BList class 823
BMessage class 116
BMessageFilter class 122
BMessenger class 131
BNode class 231
BPath class 257
BPoint class 502
BPolygon class 506
BRect class 529
BRegion class 535
BVolume class 292

==(comparison) operator
BDirectory class 176
BEntry class 194
BFile class 200
BFont class 434
BMessenger class 131
BNode class 231
BPath class 257
BPoint class 502
BRect class 530
BVolume class 292

equality (==) operator
BDirectory class 176
BEntry class 194
BFile class 200
BFont class 434
BMessenger class 131
BNode class 231
BPath class 257
BPoint class 502
BRect class 530
BVolume class 292

erasing (see deleting)
error messages (see alert panels)
errors

BNodelnfo objects and 233
file system-related 848
general, list of 847

replying to messages 114
Support Kit 846-850
values for error constants 846

escapement_delta structure 425, 720
escapements, character 423-425
EUC character encoding 838
European keyboards 875
events

Blnvoker objects 70-74
drawing, handling (see BControl

objects)
idle time 694
keyboard (see keyboard)
messages for (see messages)
mouse (see mouse)

Exclude() (BRegion) 533
executables (see app images)
execute permission, managing 282-283
Exists() (BEntry) 186
exit_thread() 739, 742
exiting

applications 41, 44, 47, 52-53, 853
BLoopers and 88

print jobs 513, 516
windows 88, 660, 675-676

Expand() (BOutlineListView) 489
expanding list item text 438
export flag, library symbols and 791
Extended UNIX Code encoding 838
extensions, filename, for MIME types

216-217

F

F# keys (see function keys)
Face() (BFont) 430
face, font 430
false constant 841
family, font 430

Interface functions for 684-685
names 709
updating 702

FamilyAndStyle() (BFont) 430
Fetch() (BQuery) 265
file descriptors

BEntries and 187
BNodes and 223
symbolic links and 287

file panels (BFilePanel objects)
C functions for 208
event/notification messages 204-207,

211, 869
filtering items in 204, 211-212, 269-270

file panels (BFilePanel objects) (continued)

905

906

hiding/showing 205, 210-212, 869
locking and unlocking 207-208
modal 204
multiple selection 204
panel directory 202, 211
panel modes 202, 209
updating 210
windows of 212

file permissions (see access, file
permissions)

file system
error codes for 848
passing references to applications 42,

853
file system handlers 153-154
file systems

architecture of 150-154
C functions for information on 311-313
devices (see devices)
entries (see entries)
iterating functions over 178-183
monitoring (see Node Monitor)
mount points 151
navigating 153
nodes (see nodes)
queries (see queries)
root 151-152
virtual 152-153

/dev (see device file system)
/pipe (see pipe file system)

File Type database 157
application signatures and 159
managing types in 220

file types 157
for applications 164
description strings for 217
filename extensions for 216-217
icons for 162
managing in File Type database 220
node (see BNodeinfo objects)
obtaining 217
preferred applications for 218
supported by specific applications

163-164
supporting applications for 218-219

filename extensions for MIME types
216-217

files (BFile objects) 194-200
accessing directories with 195
attributes (see attributes, file)
closing 195, 199-200
converting BEntries/BNodes to 225, 251
creatmg new 171-172, 186, 1:$6!
deleting 867

entries (see entries)
initializing and opening 195

Index

initializing BAppFileinfo objects 158-159
locking and unlocking 225
MIME strings for 157
moving 867
node monitoring 866-868
nodes (see nodes)
nonexistent, entries to 186-187, 280
Open and Save BFilePanels 201-212
open mode constants 314
reading into areas 778
reading/writing to 197-198
resource files (see resource files)
resources of (see resources, file)
saving 869
searching for 170-172
size of 196
(see also entries; nodes)

FillArc() (BView) 652-654
FillEllipse() (BView) 654
filling

BView functions for 652-657
pixels and 372-378
polygons 377-378, 655-656
rectangles 375-377, 656
regions 532, 627

FillPolygon() (BView) 655-656
FillRect() (BView) 656
FillRegion() (BView) 532, 627
FillRoundRect() (BView) 656
FillTriangle() (BView) 656-657
Filter()

BMessageFilter class 118, 120-121
BRefFilter class 270

filter_hook function type 117
filter_result type 140, 144
filtering BFilePanel items 204, 211-212,

269-270
filtering messages 25, 62

Bloopers and 90
managing BMessageFilters 68-69
what data member (BMessage) and 119
(see also BMessageFilter objects)

FilterList() (BHandler) 68-69
FiltersAnyCommand() (BMessageFilter) 120
find_area() 786
find_directory() 153, 168, 177-178

directory constants for 315-317
find_instantiation_func() (Support Kit) 838
find_port() 756
find_thread() 737, 742-743
rmdApp() (tlKoster) 155
FindBool() (BMessage) 100-104

Index

FindData() (BMessage) 100-104
FindDouble() (BMessage) 100-104
FindEntry() (BDirectory) 172
FindFlat() (BMessage) 100-104, 250
FindFloat() (BMessage) 100-104
finding (see searching)
Findlnt8() (BMessage) 100-104
Findlnt16() (BMessage) 100-104
Findlnt32() (BMessage) 100-104
Findlnt64() (BMessage) 100-104
Findltem() (BMenu) 458
FindMarked() (BMenu) 458
FindMessage()

BMessage class 100-104
BMessageQueue class 123

FindMessenger() (BMessage) 100-104
FindPoint() (BMessage) 100-104
FindPointer() (BMessage) 100-104
FindRect() (BMessage) 100-104
FindRef() (BMessage) 100-104
FindResource() (BResources) 273, 276
FindString() (BMessage) 100-104
FindView()

BBitmap class 391
BView class 628
BWindow class 671

FindWord() (BTextView) 589
Firstltem()

BList class 820
BListView class 447

FirstPage() (BPrint]ob) 512, 518
Flags()

BFont class 431
BView class 647

Flatten()
BFlattenable class 817
BMessage class 104-105
BPath class 256

FlattenedSize()
BFlattenable class 817
BMessage class 104-105
BPath class 256

flattening objects 816-818
BPaths 250, 256-257
text_run_array structure 584

FlattenRunArray() (BTextView) 584
floating-point numbers

comparing 840
for coordinates 369

Flush()
BView class 628-629
BWindow class 671

focus
BControl objects and 413-414
changing (see MakeFocus())
checking for (see IsFocus())
color for 694
determining for window 669

focus view 358-359, 634, 638-639
indicator for 362-363

folders (see directories)
font_direction type 422-423, 708, 720
font_family type 720
font_height structure 426-427, 721
font_style type 721
fonts (BFont objects) 420-434

antialiasing 431, 709
in BTextViews 583, 600-603
characters of (see characters)
direction of 422-423, 708, 720
encodings 708
escapements and edges 423-426
family (see family, font)
flags for 431, 709
installed, updating list of 702
Interface Kit functions for 684-685
name lengths 709
property constants 709-710
size 426-427, 431-432, 631, 648
spacing modes 432-433, 710

escapement values and 424
system fonts 421-422, 702-703
tuned 428, 685
in views 647-648

fork() (POSIX) 732
format

menu layout constants 712
page layout (printing) 510-511, 516-517

frame rectangle, view 334, 629
Frame()

BMenultem class 481
BPolygon class 505
BRegion class 534
BScreen class 540
BView class 629
BWindow class 671

FrameMoved()
BView class 629-630
BWindow class 671-672, 860

FrameResized()
BA!ert class 382
BBox class 395
BListView class 445
BTextView class 590
BView class 630
BWindow class 672, 860

907

908

FreeBytes() (BVolume) 291
freeing allocated memory (see memory)
front window, testing for 673
fs_attr functions 296-301
fs_close_attr_dir() 297
fs_close_index_dir() 304
fs_close_query() 309
fs_create_index() 260, 304
fs_fopen_attr_dir() 297
fs_index functions 303-308
fs_info structure 312-313
fs_open_attr_dir() 297
fs_open_index_dir() 305
fs_open_query() 308, 310
fs_query functions 309-311
fs_read_attr() 298
fs_read_attr_dir() 299
fs_read_index_dir() 305
fs_read_query() 309, 310
fs_remove_attr() 299
fs_remove_index() 306
fs_rewind_attr_dir() 300
fs_rewind_index_dir() 307
fs_stat_attr() 300
fs_stat_dev() 312-313
fs_stat_index() 307-308
fs_write_attr() 301
FullList...() (BOutlineListView) 489-490
function keys 710-711, 874

BViews and 636
workspace indices and 684

function pointers 845
functions symbols 793-795

G

Game Kit 6
geometry, view 334-339
get_area_info() 776, 779, 786-788
get_click_speed() (Interface Kit) 695-696
get_font_family() (Interface Kit) 684-685
get_font_style() (Interface Kit) 684-685
get_image_info() 795-796
get_image_symbol() 792, 797-798
get_key _info()

Interface Kit 686
get_key _map()

Interface Kit 686-693
get_key_repeat_delay() (Interface Kit) 696
get_key _repeat_rate() (Interface Kit) 696
get_keyboard_id()

Interface Kit 693
get_menu_info() (Interface Kir) 697

Index

get_mouse_map() (Interface Kit) 698-699
get_mouse_speed() (Interface Kit) 698-699
get_mouse_type() (Interface Kit) 698-699
get_next_area_info() 786-788
get_next_image_info() 795-796
get_next_port_info() 757-758
get_next_sem_info() 771-772
get_next_team_info() 743-744
get_next_thread_info() 744-746
get_nth_image_symbol() 797-798
get_port_info() 757-758
get_ref_for_path() 251
get_scroll_bar_info() (Interface Kit)

700-701
get_sem_count() 770-771
get_sem_info() 771-772
get_system_info() 800
get_team_info() 743-744
get_thread_info() 744-746
GetAccessTime() (BStatable) 281-282
GetActiveAppinfo() (BRoster) 133-135
GetAlignment() (BTextControl) 576
GetAppFlags() (BAppFileinfo) 160-161
GetAppHint() (BMimeType) 214
GetAppinfo()

BApplication class 50
BRoster class 133-135

GetAppList() (BRoster) 135
GetAttrlnfo() (BNode) 227
GetBootVolume() (BVolumeRoster) 294
GetC!ippingRegion()

BRegion class 339
BView class 532, 630-631

GetContentSize()
BMenultem class 481
BSeparatoritem class 555

GetCreationTime() (BStatable) 281-282
GetCurrentSpecifier()

BHandler class 36
BMessage class 105-106

GetEdges() (BFont) 423-426
GetEntry() (BDirectory) 173
GetEscapements() (BFont) 423-426
GetFamilyAndStyle() (BFont) 430
GetFileExtensions() (BMimeType) 216-217
GetFont() (BView) 647-648
GetFontAndColor() (BTextView) 600-601
GetFontHeight() (BView) 631
GetGroup() (BStatable) 282-283
GetHeight() (BFont) 426-427
Getlcon()

BAppFileinfo class 161
BiviimeType da::,::, 217
BNodeinfo class 233-234

Index

GeticonForType()
BAppFilelnfo class 162
BMimeType class 215

Getlnfo() (BMessage) 106-107
GetlnstalledSupertypes() (BMimeType) 217
GetlnstalledTypes() (BMimeType) 217
GetltemMargins() (BMenu) 462
GetLabe!FromMarked() (BMenu) 462
GetLongDescription() (BMimeType) 217
GetModificationTime() (BStatable) 281-282
GetMouse() (BView) 632
GetName()

BEntry class 189-190
BVolume class 291

GetNextAttrName() (BNode) 227-228
GetNextDirent() (BQuery) 868
GetNextDirents()

BDirectory class 173-17 4
BEntryList class 178, 179-180, 182
BQuery class 265
direct structure and 180-182

GetNextEntry()
BDirectory class 173-174
BEntryList class 178, 180, 182
BQuery class 265, 868

GetNextRef()
BDirectory class 173-17 4
BEntryList class 178, 180, 182
BQuery class 265, 868

GetNextSelectedRef() (BFilePanel) 209
GetNextVolume() (BVolumeRoster) 294
GetNodeRef() (BStatable) 282
GetOwner() (BStatable) 282-283
GetPane!Directory() (BFilePanel) 211
GetParent()

BEntry class 190-191
BPath class 253-254

GetPath() (BEntry) 189-190, 249
GetPermissions() (BStatable) 282-283
GetPredicate() (BQuery) 268--269
GetPreferredApp()

BAppFilelnfo class 162
BMimeType class 218
BNodelnfo class 234

GetPreferredSize()
BButton class 398
BCheckBox class 402
BColorControl class 406
BRadioButton class 522
BTextControl class 575
BView class 632-633

GetRange() (BScrol!Bar) 547
GetRef() (BEntry) 191

GetResourceinfo() (BResources) 273,
276-277

GetRootDirectory() (BVolume) 291
GetRunningAppinfo() (BRoster) 133-135
GetSelection() (BTextView) 590
GetShortDescription() (BMimeType) 217
GetSignature() (BAppFileinfo) 162-163
GetSize()

BFile class 196
BStatable class 284

GetSizeLimits() (BWindow) 679
GetStat()

BDirectory class 280
BStatable class 284

GetStatFor() (BDirectory) 174
GetSteps() (BScrol!Bar) 548
GetStringWidth() (BView) 652
GetStringWidths() (BFont) 433-434
GetSupertype() (BMimeType) 221
GetSupportedSuites()

BControl class 412
BHandler class 38, 64
BView class 633
BWindow class 672

GetSupportedTypes() (BAppFileinfo)
163-164

GetSupportingApps() (BMimeType)
218--219

GetText() (BTextView) 605
GetTextRegion() (BTextView) 590
GetTrackericon() (BNodeinfo) 232-234
GetTruncatedStrings() (BFont) 427-428
GetTunedinfo() (BFont) 428, 685
GetType()

BAppFileinfo class 164
BNodeinfo class 235

GetVersioninfo() (BAppFileinfo) 165
global

Application Kit variables 138
BFont objects 702-703
C functions 295-313
constants, Storage Kit 313-321
coordinate system 369
environ pointer 790
Interface Kit constants 703-718
Interface Kit data types 718-727
Interface Kit functions 683-702
Interface Kit variables 702-703
(see also system)

Go()
BAlert class 382-383
BPopUpMenu class 508-510

GoToLine() (BTextView) 590-591

909

910

granularity, scroll bar 548
graphical user interface (see user interface)
graphics environment, view 340
grave accent (') 691
grayscale color space 342
group permissions, managing 282-283
GUI (see user interface)

H

halting threads (see suspending threads)
hand cursor 140
HandlerAt() (BLooper) 79-80
HandlerForReply() (Binvoker) 72
handling

B_MESSAGE_NOT_UNDERSTOOD
message 863

messages (see BHandler objects)
hard links 151
has_data() 741, 746-747
HasBool() (BMessage) 107-108
HasData() (BMessage) 107-108
HasDouble() (BMessage) 107-108
HasFloat() (BMessage) 107-108
Haslnt8() (BMessage) 107-108
Haslnt16() (BMessage) 107-108
Haslnt32() (BMessage) 107-108
I-Iaslnt64C) (BMessage) 107-108
Hasltem()

BList class 820
BListView class 445

HasMessage() (BMessage) 107-108
HasMessenger() (BMessage) 107-108
HasPoint() (BMessage) 107-108
HasPointer() (BMessage) 107-108
HasRect() (BMessage) 107-108
HasRef() (BMessage) 107-108
HasResource()

BResources class 273, 277
HasSpecifiers() (BMessage) 108
HasString() (BMessage) 107-108
Height()

BListltem class 438
BRect class 529

Hide()
BFilePanel class 212
BMenu class 458-459
BMenuBar class 469
BView class 633-635
BWindow class 672-673

HideAllDraggers() (BDragger) 418
HideCursor() (BApplication) 50
HldeWhenDone() (BFilePanei) 210-211

hiding/ showing
BDraggers 418
cursor 50-51
file panel 869
file panels 205, 210-212
menu bars 469
menus 458-459
views 633-635
windows 672-673

hierarchy
file system organization 150-151
menu 454
view (see view hierarchy)

high color 340, 343-344
HighColor() (BView) 648-649
Highlight()

BMenultem class 481-482
BTextView class 591

highlighting
BScrollView borders 553-554
menu items 480-482
text in BTextViews 591

horizontal orientation (see orientation)
horizontal scroll bars (see scroll bars)
hot spot, cursor 55
- (subtraction) operator (BPoint) 503
-= (subtraction and assignment) operator

(BPoint) 503

I-beam cursor 140
icons

for alert panels 381
for applications 161
bitmaps for 161
for file types 162
by MIME type 215-217
for nodes 233-234
size constants 317

ID() (BScreen) 540
idle_time() (Interface Kit) 694
image (MIME media type) 11
image, cursor 55
image_info structure 795-796
images 789-799

add-on (see add-on images)
functions for managing 795-799
loading 798-799
symbols 792-795, 797-798
types of 789

Include() (BRegion) 534
indenting BTexlView lexl 600

Index

Index

index, query (see indices, query)
IndexForColor() (BScreen) 540-541
IndexOf()

Blist class 821
BListView class 445
Blooper class 79-80
BMenu class 459

indices
into character tables (see keyboard, key

codes)
query 260, 302-308
screen color space 540-541
workspace 684

inequality operator (see comparison (!=)
operator)

infinite timeout 804
information, obtaining

for applications 50, 134-135
for messages 106-107

printing 109
InitCheck()

BAppFileinfo class 165
BDirectory class 175
BEntry class 191
BFile class 196
BMimeType class 219
BNode class 228
BNodeinfo class 235
BPath class 254

initializing
BAppFileinfo objects 158-159, 166
BEntries 173, 184-185
BFiles 195
BMimeType objects 221
BNodeinfo objects 232, 236
BPaths 247-249
BResources objects 271-273
BSymLinks 287
BVolumes 289
root directory 291
status of, obtaining 165

InitiateDrag() (BListView) 446
input/output

BDataIO and BPositionIO classes for
813-816

BMallocIO and BMemoryIO classes
827-830

Insert() (BTextView) 591-593
InsertText() (BTextView) 592-593
InsetBy() (BRect) 526
Install() (BMimeType) 220
installing

fonts 702
query indices 303

Instantiate()
BA!ert class 382
BApplication class 47
BArchivable class 810, 811
BBitmap class 388-389
BBox class 394
BButton class 397
BCheckBox class 401
BColorControl class 405
BControl class 411
BDragger class 418-419
BHandler class 63
BListView class 442
Blooper class 79
BMenu class 456
BMenuBar class 468
BMenuField class 471
BMenuitem class 479
BOutlinelistView class 488
BPicture class 494
BPictureButton class 497
BPopUpMenu class 508
BRadioButton class 521
BScrollBar class 546
BScrollView class 552
BSeparatorltem class 555
BShelf class 558
BStatusBar class 563
BStringitem class 568
BStringView class 570
BTextControl class 574
BTextView class 585
BView class 614
BWindow class 664
find_instantiation_func() and 838
instantiate_object() with 839-840

instantiate_object()
BArchivable class 810
Support Kit 839-840

instantiation_func type 845
int# types 845-846
IntegerHeight() (BRect) 526
integers

comparing 840
type codes for 843
types for 845-846

IntegerWidth() (BRect) 526
interapplicaton messages 870-871
Interface Kit 5, 331-727

character constants 881-883
data types of 718-727
global constants 703-718
global functions of 683-702
global variables 702-703

911

912

interface messages 354-360, 711, 854-863
dispatching 358-360
hook functions for 357
keyboard-related 354-355, 359-360,

854-856
mouse-related 856-858
view-related 355
window-related 356

intersection
BRects 526, 530-531
regions 534

intersection(&) operator (BRect) 530-531
Intersects()

BRect class 526
BRegion class 532, 534

IntersectWith() (BRegion) 534
Invalidate() (BView) 352, 634
Invalidateltem() (BListView) 446
Invalidatelayout() (BMenu) 459
Invertindex() (BScreen) 541
inverting colors

of screen 541
of view rectangles 634

InvertRect() (BView) 634
invocation messages 440, 451-452
InvocationCommand() (BlistView)

451-452
InvocationMessage() (BListView) 451-452
Invoke()

BControl class 412-413
Binvoker class 71
BListView class 446-447
BMenultem class 482

I/O (see input/output)
is_computer_on() 802
is_computer_on_fire() 802
is_instance_of() (Support Kit) 834-836
is_kind_of() (Support Kit) 834-836
IsAbsolute() (BSymLink) 288
IsActive() (BWindow) 673
IsBorderHighlighted() (BScrollView)

553-554
IsCursorHidden() (BApplication) 51
IsDefault() (BButton) 399
IsDirty() (BShelt) 561
IsEditable() (BTextView) 595
IsEmpty()

Blist class 821
BlistView class 447
BMessage class 109
BMessageQueue class 124

IsEnabled()
BComroi dass 414-415
BListltem class 437-438

BMenu class 461-462
BMenuField class 474
BMenuitem class 483

IsExpanded() (BListltem) 438
IsExpanded() (BOutlineListView) 490
IsFixedSize()

BFlattenable class 817
BPath class 256

IsFocus() (BView) 634
IsFocusChanging() (BControl) 413
IsFront() (BWindow) 673
IsHidden()

BView class 635
BWindow class 673

Islnstalled() (BMimeType) 220
IsltemSelected() (BlistView) 447
Islaunching() (BApplication) 44, 51
Islive() (BQuery) 267
Islocked()

BAutolock class 813
Blocker class 826
Blooper class 85

IsMarked() (BMenultem) 484
IsPersistent() (BVolume) 291
IsPrinting() (BView) 514, 635
IsRadioMode() (BMenu) 463
IsReadable() (BFile) 197
IsReadOnly() (BVolume) 291
IsRemovable() (BVolume) 291
IsReply() (BMessage) 115-116
IsResizable() (BTextView) 595-596
IsRootDirectory() (BDirectory) 175
IsRunning() (BRoster) 138
IsSelectable() (BTextView) 596
IsSelected()

BListitem class 437
BMenultem class 482

IsShared() (BVolume) 291

Index

IsShowing() (BFilePanel) 212
IsSourceRemote() (BMessage) 115-116
IsSourceWaiting() (BMessage) 31, 115-116
IsSupertypeOnly() (BMimeType) 220
IsSystem() (BMessage) 109
IsTargetlocal()

Binvoker class 73-74
BMessenger class 130-131

IsValid()
BBitmap class 391
BMessenger class 128
BMimeType class 220
BRect class 527
BScreen class 541

T .,..,., •1 •1•, .-.1 o /'\ /T°'o~ '/.-!/""\ 1.,....,..,.
lt;V1:;iuuJLy1_,uaugn1g1_) 1_ouragger) 'H/-ct<.v
IsWritable() (BFile) 197

Index

ltemAt()
BList class 821
BListView class 447
BMenu class 460
returning BSeparatorltems 554

ItemFrame() (BListView) 447-448
Items()

BList class 821
BListView class 448

Japanese Industrial Standard encoding 838
]IS character encoding 838

K

kernel
information on 800
messaging system 20-32

Kernel Kit 6, 731-804
key map 686--693
key_info structure 686, 721
key_map structure 686--693, 721-722
keyboard 873-884

arrow keys 593
character constants 636, 704-705

(see also character keys; characters)
configuring 686--693
dead keys 691-693, 707
editing system key map 877
event messages 354-355, 359-360,

854-856
events 363-364

BButtons and 399
BColorControls and 406-407
BControl objects 412-413
BTextViews and 593
BViews and 635-638

function keys 684, 710-711
getting information on 686
identifier for 693
idle time 694
key codes 690, 855, 873-875
key states 856, 883-884
key types 875-877
locking 689, 696--697
modifier key masks 478, 855
modifier keys 694-695, 876-879

BViews and 636
character key mappings and 689-690
key_map sturcture fields for 687-689
left vs. right 688, 695
mapping 698

shortcuts and 478
states of 713
UTF-8 encoding 880
window shortcuts and 667

navigation 361-364
BControl objects 362, 413
color for 362, 694
list item selection 440, 448-449
menu bars 466
menu item selection 460
menus 472-473, 688
outline lists 490
picture buttons 498
radio buttons 522

repeating keys 696, 876
shortcuts

adding/removing in windows
666--667

BTextViews and 580-581
cut/copy/paste 580
menu items and 476, 478, 484

keyboard_navigation_color() (Interface Kit)
362, 694

KeyDown() 880
BButton class 399
BColorControl class 406-407
BControl class 413
BListView class 448-449
BMenu class 460
BMenuField class 472-473
BOutlineListView class 490
BPictureButton class 498
BRadioButton class 522
BTextView class 593
BView class 635-637, 854-856
overriding 363-364

Keymap utility 877
KeyMenuBar() (BWindow) 678
keys (see keyboard)
KeyUp() (BView) 638, 856
kill_team() 739, 742
kill_thread() 739, 742
killing threads 739, 742
kits (BeOS), list of 5-6
knob, scroll bar (see scroll bars)
KnowsAttr() (BVolume) 292
KnowsMime() (BVolume) 292
KnowsQuery() (BVolume) 292

L

Label()
BBox class 395
BControl class 415

913

914

Label() (continued)
BMenuField class 474
BMenultem class 483
BStatusBar class 564

labels
BBox (view borders) 395
BMenuFields 474
buttons 400
on control devices 415
file panel buttons 210
menu items 462, 483, 485
on status bars 561-562, 564

Lap() (BStopWatch) 832
Lastltem()

BList class 822
BListView class 447

LastPage() (BPrint]ob) 512, 518
Launch() (BRoster) 136-137
launching applications 46, 51, 136-137

behavor constants 135, 141, 160-161
configuration messages for 44
restricted launches 45

Layout()
BColorControl class 408
BMenu class 460

leading (font) 427
Leaf() (BPath) 254
leafs (see paths)
left modifier keys 688, 695
LeftBottom() (BRect) 528
LeftTop()

BRect class 528
BView class 638

length (see size)
lettering (see characters; fonts)
libraries 6-7

images for 791
LIBRARY _p A TI-I environment variable 791
limits constants (Storage Kit) 314
LineAt() (BTextView) 593-595
LineHeight() (BTextView) 594
lines (pixels)

drawing several in views 616-617
stroking 373-375, 378, 654-655

lines (text)
in BTextViews 590-591
position of, in BTextViews 594-595
wrapping 586-587, 604

LineWidth() (BTextView) 594-595
links, symbols (see symbolic links)
list items (BListltem objects) 434-439

adding/removing from lists 442,
/./on /.CA /.oo /.o~ /.n1
--:c--:c ... r---:c_,1v, --:cvv----rv/, -x7.i.

counting in lists 443

expanding/ collapsing 438
iterating through 444
outline line levels 437
sorting 452-453
(see also list views; lists)

list_ view _type constants 711
list views (BListView objects) 439-453

adding items/lists to 442
as BScrollView target 453
counting items in 443
items in (see list items)
outline-style (see outline lists)
scrolling in 446, 450
single vs. multiple selection 441, 452,

711
strings in (see BStringltem objects)
(see also lists)

lists (BList objects) 818-823
adding to BListViews 442
entry lists (see entry lists)
items in (see list items)
outline-style (see outline lists)
pop-up/pull-down (see menus)
separator items (see separator items)
user interface (see list views)

lists of pointers (see BList objects)
ListType() (BListView) 452
little-endian color data 342
live queries 259, 267

Index

update messages 259, 262-264, 868-869
load_add_on() 792, 798
load_image() 733, 790-791, 798-799
loading/unloading

add-on images 792, 798
app images 733, 789-791, 798-799

location (see position)
Lock()

BBitmap class 391
BClipboard class 58, 61
Blocker class 825-826
Blooper class 83-85, 128
BMessageQueue class 124
BNode class 228

locking/unlocking
areas (memory) 775-776, 785
BApplication object access 45
BAutolock class for 812-813
BClipboards 61
BDirectories 225
BFilePanels 207-208
BFiles 225
bitmap views 391
DT~~-~-~ O? o~ 1~0 1~n
.LJLVV}Jl...-1.:) VJ-U..J, .1.""0-..l""7

Index

locking/unlocking (continued)
BMessageQueues 124
BMessenger targets 128--129
BNodes 188, 225, 228
BScreens 536-537
BWindows 607-608
critical code sections

BLocker class for 823-825
semaphores for 761, 765-767

keyboard 689, 696-697
LockingThread()

BLocker class 826
BLooper class 85

LockTarget() (BMessenger) 128--129
LockTargetWithTimeout() (BMessenger)

128--129
LockWithTimeout()

BLocker class 825-826
BLooper class 83-85

Looper()
BHandler class 62, 65
BMessageFilter class 121

LooperForThread() (BLooper) 79
loops, message (see message loops)
low color 340, 343-344
LowColor() (BView) 648-649

M

machine_id type 801
Macintosh

B_MAC_ROMAN_CONVERSION
constant 838

keyboards 874-876, 879
macros (see functions)
main screen 712
main thread, death of 739
main() (BApplication) 43
MakeDefault() (BButton) 399
MakeEditable() (BTextView) 595
MakeEmpty()

BList class 822
BListView class 449
BMessage class 109
BOutlineListView class 491
BRegion class 534

MakeFocus()
BControl class 363, 413
BListView class 449
BMenuField class 473
BTextControl class 575
BTextView class 595
BView class 362-363, 638-639

MakeLinkedPath() (BSymLink) 288
MakeResizable() (BTextView) 595-596
MakeSelectable() (BTextView) 596
mapping

character keys 365-368, 429-430,
689-691

coordinates to pixels 335, 371-378
dead keys 707
modifier keys 698
mouse buttons 698-699
polygons to rectangles 505
view contents to paper 513-514

MapTo() (BPolygon) 505
margins around menu items 462
marked menu items 476, 484

finding 458
managing labels from 462

masks
cursor 56
modifier keys 478, 857

matrix, color choice (see colors, choosing)
max() (Support Kit) 840
max_c() (Support Kit) 840
MaxBytes() (BTextView) 601-602
MaxContentWidth() (BMenu) 463
maximizing (see zooming)
MaxValue() (BStatusBar) 566
Media Kit 6
media types (see MIME data)
member functions, naming conventions 9
memory

accessing designated areas 779-780
allocating 12-13, 536-537, 776-777, 786
areas (see areas)
BMallocIO and BMemoryIO classes

827-830
cloning 775, 780-784
locking into RAM 775-776, 785
page size 783, 804
reading files into RAM 778
volume, obtaining size of 291
(see also size)

Menu()
BMenuField class 473
BMenultem class 482

menu_bar_border type 722-723
menu bars (BMenuBar objects) 465-470

borders 712
keyboard navigation of 466
layout constants 712
pop-up menus of 506-507
window's root 678

menu_info structure 723

915

916

menu items (BMenultem objects) 454,
475-485

adding/removing from menus 456-457,
461

arranging in menus 455
BTextViews and 580-581
counting in menus 458
highlighting 480-482
keyboard shortcuts 476, 478, 484
kinds of 475
margins around 462
marked 476, 484

finding 458
managing labels from 462

same target for all 463-464
separators (see separator items)
tracking cursor and 465
triggers 464, 476, 484-485
updating 674

Menu key 877, 881
menu_layout type 712, 723
MenuBar() (BMenuField) 473
menus (BMenu objects) 453-465

adding/removing items of 456-457, 461
alignment 473-474
arranging items of 455
BMenuFields 470-475
configuring preferences 697
counting items in 458
items in (see menu items)
keyboard navigation of 688
layout constants 712
menu bars (see menu bars)
menu hierarchy 454
pop-up (see pop-up menus)
radio mode 463
separator items (see separator items)
tracking cursor in 465
updating 674

MenusBeginning() (BWindow) 674
MenusEnding() (BWindow) 674
message (MIME media type) 12
Message() (Blnvoker class) 72
message_delivery type 142, 144
message filters (BMessageFilter objects)

117-122
managing 68-69
(see also filtering messages)

message loops (Blooper objects) 23-25,
75-91

for applications 43-45, 55
(see also applications)

,--, ,..,,....; ,.........,,; ,.... Dl\ If,,...~,.,,.,~,.,. D!l+. -~ 1 1-,
Q.00.15.lH.l.lfS .LJ.l.V.l"-~~a,51....L Hll..-1,:) lV .1. .1. /

as BFilePanel targets 202

BHandlers and 62, 65, 76-77, 79-80
as BMessage targets 76
as BMessenger targets 126, 130-131
as BQuery targets 267
debugging 85
deleting 87-89
delivering messages to 86-87
detaching BMessages from 81
dispatching messages from 82-83
locking and unlocking 83-85

as BMessenger target 128-129
BAutolock class for 812-813

post capacity 141
preferred handlers 76, 91
priority 77
system messages and 26-28
of windows 659-660

message protocols 360, 851-871

Index

message queues (BMessageQueue objects)
122-125

accessing from Bloopers 86
adding messages to 123
locking and unlocking 124
of port messages 754, 758-759

message_source type 142, 144
MessageDelivery() (BMessageFilter) 121
MessageQueue() (Blooper) 86
MessageReceived()

BAlert class 383
BApplication class 51
BColorControl class 407
BControl class 414
BDragger class 420
BHandler class 24, 28, 33, 39, 61, 65-66
Blooper class 86
BStatusBar class 564
BTextControl class 575
BTextView class 596-597
BView class 639
BWindow class 674

·messages (BMessage objects) 20-23, 91-117
adding to queue 123
adding/deleting/replacing data of95-98,

109-112
alert (see alert panels)
application configuration messages 44
application-related (see application

messages)
BHandlers for 24-25, 28-29, 62, 66-68,

76-77
Blnvokers, assigning to 73
BPaths, passing in 250-251
L,,CC-·-~--- £_._ L. ___ ...]_ / _____ ._'\
LJUllC:lHlg lUl LlllC:dU~ \~t:t: }JUlU'>)

copying 94

Index

messages (BMessage objects) (continued)
counting data fields of 99
data containers 92, 864-865

for clipboard data 58
detaching from message loop 81
dropping into applications/windows 30,

116
for editing 864
for events (see events)
file panel messages 204-207, 211, 869
filtering 25, 62, 68-69

BLoopers and 90
what data member and 119
(see also message filters)

handling in views 332-333
information on 106-107
inspecting contents of 107-108
interface (see interface messages)
invocation messages 440, 451-452
message constant (see what data

member)
message protocols 22, 31, 37-38, 360,

851--871
modification, from BTextControls 577
Node Monitor messages 239, 866--868
notification (see notification messages)
as object archives 808--811
opcode constants (see under specific

constant)
ownership of 23
port message 754-755
printing server settings 512, 518--519
printing to stdout 109
query update messages 259, 262-264,

868--869
queue (see message queues)
replying to 30-31, 87, 113-115, 863--864

(see also BHandler objects; two-way
message communication)

retrieving data from 100-104
scripting (see scripting)
selection messages 440, 452
sending/ delivering

at application launch 137
broadcasting to all applications 133
to/from message loops 27, 75, 82--83,

86--87
to remote destinations (see

BMessenger objects)
specifiers 34-37, 143

adding 98--99
retrieving 105-106
stacks of 35-36
type constants for 34, 98

standard messages 141, 863-870
status bar messages 865--866
suites 12, 38--39, 64
system (see system messages)
to threads 739-741, 746-749
type codes 21-22, 843-844
view update messages 351
(see also under specific message name)

MessageSource() (BMessageFilter) 121
messaging system 20-32
Messenger()

BFilePanel class 212
Blnvoker class 73-74
BVolumeRoster class 294

Microsoft keyboards 874, 879
Midi Kit 6
MIME data 157

B_MIME_DATA message 865
B_MIME_TYPE code for 22
BMimeType objects 213-221
filename extensions for 216-217
finding applications associated with 133
getting type/supertype 221
icons for 215-217
media types for 11-12
MIME string syntax 213-214
nodes types (see BNodeinfo objects)
preferred applications for 218
supporting applications for 218--219
volumes and 292

min() (Support Kit) 840
min_c() (Support Kit) 840
Minimize() (BWindow) 674, 856
minimizing windows 354, 663, 674, 856
- (subtraction) operator (BPoint) 503
-= (subtraction and assignment) operator

(BPoint) 503
modal file panels 204
modal windows 663, 717
modes

character spacing 432-433, 710
escapement values and 424

drawing 345-349, 646-647
blending 348
selection 349
transparency 347-348

radio mode (BMenu) 463
resizing 650, 714-715

modification messages from BTextControl
577

modification times 281-282
ModificationMessage() (BTextControl) 577
modifier key masks 478, 855, 857

917

918

modifier keys 694-695, 876-879
BViews and 636
character key mappings and 689-690
key_map structure fields for 687-689
keyboard locks 689, 696-697
left vs. right 688, 695
mapping 698
shortcuts and 478
states of 713
UTF-8 encoding 880
window shortcuts and 667

modifiers() (Interface Kit) 694-695
monitor (see screens)
monochrome color space 342

transparency drawing modes 348
mount points 151
mounting/unmounting

devices 868
volumes 238, 246, 290

mouse
button constants 713
button states, obtaining 632
calling pop-up menus 507
clicking speed 695-696
configuring 698-699
cursor transit constants 640, 706
event messages 355, 856-858
events

BButtons and 400
BCheckBoxes and 403
BColorControls and 407
BControl objects 412-413
BDraggers and 420
BListViews and 449
BOutlineListViews and 491
BTextViews and 597-598
BViews and 639-641

idle time 694
menu bar navigation 469
menu navigation 473
modifier keys and 857
multiple-clicking 857
obtaining position of 632
picture button operation 498
radio button operation 522
tracking cursor 618
(see also cursor)

mouse_map structure 723
MouseDown()

BButton class 400
BCheckBox class 403
BColorControl class 407
T'>'O"\. -- - - - _1 ___ /.,,r.,
DLJidggc:1 \...li::i~~ Lf"'V

BListView class 449

BMenuBar class 469
BMenuField class 473
BOutlineListView class 491
BPictureButton class 498
BRadioButton class 522
BTextControl class 575-576
BTextView class 597
BView class 639-640, 856-857
calling pop-up menus 509
drag-and-drop and 364

MouseMoved()
BTextView class 597
BView class 640-641, 857-858
drag-and-drop and 364

MouseUp() (BView) 641
MoveBy()

BView class 641
BWindow class 675

MovePenBy() (BView) 642
MovePenTo() (BView) 642
MoveTo()

BEntry class 192
BView class 641
BWindow class 675

moving
entries 192
files 867
mouse cursor 857-858
nodes 244
pen 341, 642
rectangles 527
scroll bar values 860
scrolling (see scrolling)
views 629-630, 641, 860

boundaries and 335
windows 663, 671-672, 675, 861
within BTextViews 590-591

multipart (MIME media type) 12
multiple-clicking (see mouse)
multiple selection

file panels 204
list views 441, 452, 711

multi-threading 732
(see also threads)

N

Name()
BC!ipboard class 61
BHandler class 69
BStopWatch class 832

names
1. 1 ,....,.,.,.,.

a1uuve:; auu OV';/

areas 774

Index

Index

names (continued)
BEntries 189-190
BShelf objects 556
constants 22-23
conventions for 9-11
entries 192
entry paths 189-190, 192
filename extensions 216-217
font families/styles 684-685, 709
maximum length of 804
mouse buttons 713
node attributes 230
threads 737, 747-748
volumes 291
window titles 662, 679-680

navigating
between BViews 637
BTextViews 590-591, 598
file system 153
focus color 694
by keyboard (see keyboard, navigation
by mouse (see mouse, events)
traversing BEntries 184-186

NeedsUpdate() (BWindow) 675
Network Kit 6
new operator 13
new() (BMessage) 116
next_dev() 311
NextHandler() (BHandler) 69
NextMessage() (BMessageQueue) 124
NextSibling() (BView) 642-643
NIL constant 842
Node Monitor 236-246

BMessage opcode constants 240-246,
318

directories and 168-169
monitoring volumes (BVolumeRoster)

294
notification messages 239, 866-868

node_ref structure 155, 320
converting BPath to 251

nodes (BNode objects) 154-157, 222-231
attributes (see attributes, node)
BNodeinfo objects 231-236
converting entries into 156
converting into BFiles 224
counting in directories 17 4, 179
creating new 171-172
deleting 242-244
directory order 179
file descriptors and 223
flavors (types) of 155, 315

file panels and 203-204

getting information on 279-286
access/edit times 281-282

icons for 233-234
locking and unlocking 188, 225, 228
managing file type of 235
moving 244
searching for 170-172
size of 284
stat structure (see stat structure)
structure of (see node_ref structure)
(see also entries)

normalizing BPaths 247-249
notification messages

live query updates 259, 262-264,
868-869

Node Monitor 239, 866-868
NULL constant 842
Num Lock key 687, 689, 878, 881
numbers

0

comparing 840
integer types 845-846
type codes for 843

object archives 864
BMessages as 808-811

objects
allocating 13
archiving (see archiving/unarchiving)
casting 835-836
determining classes of 834-836
flattening (see flattening objects)
obtaining paths for 254
properties of 33
type determination macros 834-836
writing into untyped buffers (see

flattening objects)
ObscureCursor() (BApplication) 50
OffsetAt() (BTextView) 593-595
OffsetBy()

BRect class 527
BRegion class 534

offsets, BTextView 579
OffsetTo() (BRect) 527
one-state buttons 495, 498-499
on-launch messages 137
opcode constants (see under specific

constant)
open() (POSIX) 314
open mode constants 314
OpenGL Kit 6

919

920

opening
BFilePanel notificaton for 205
directories 195
files 195
Open BFilePanel 201-212
queries 308, 310
query index directory 305
symbolic links 195

Option key 688, 877
Option-Tab combination 359

OR (bitwise operation) 833
order

directory order 179
editing (see sorting)
reading/writing in reverse 841
thread execution 762, 767-768

orientation
data type for 714, 724
scroll bar 546-547

Orientation() (BScrollBar) 546-547
origin, coordinate system 334, 369
outline lists (BOutlineListView objects)

486-491
item levels 437
iterating through 489-490
strings in (see BStringltem objects)

OutlineLevel() (BListltem) 437
output (see input/output)
overlapping

characters 426
views 334

ownership

p

BMessages 23, 87, 94
BNodes, managing 282-283
BRefFilters 270
deep vs. shallow archives and 809
ports 753, 760
resource data 27 4
semaphores 770, 773
(see also access)

page layout (printing) 510-511, 516-517
page size (memory) 783, 804
pages (document), printing 512, 518
panel directory 202, 211
panel modes 202, 209
PanelMode() (BFilePanel) 209
panels

alert (see alert panels)
files (see file panels)
f',..,. ... n ~ c ~...-.- t::nc
.lVJ. ..L.l.l.l.J.l. U"-.lV1...-.l V/__,J

PaperRect() (BPrintJob) 514, 518

parent directories, obtaining 190-191,
253-254

Parent() (BView) 642-643

Index

parsing Node Monitor messages (see Node
Monitor, message opcode
constants)

Paste() (BTextView) 588
pasting (see cut and paste)
Path() (BPath) 254
pathnames (see paths)
paths (BPath objects) 247-257

absolute, testing BSymLinks for 288
calling convention 249-250
converting 251
creating new 171-172, 288
device numbers of 311
flattening 250, 256-257
initializing and normalizing 247-249
obtaining 189-190, 254
parent of 253-254
passing in messages 250-251
renaming 192
searching for 168, 170-172, 177-178
stat structure (see stat structure)

pattern data structure 724
patterns 343-344

constants for 714
defined in Interface Kit 344
drawing modes and 345

pausing/resuming threads 733, 738, 748,
750

pefdump for function symbols 794
pen 341

managing in views 642
one-pixel (thin lines) 373-375
size of 341, 649-650

PenLocation() (BView) 642
PenSize() (BView) 649-650
performance

benaphores vs. semaphores 766-767
BMessage contents size and 98
BPath normalization and 249
forceful view updates 352
POSIX's stat() 280

permissions (see access)
persistency of volume data 291
picture buttons (BPictureButton objects)

495-500
enabling/ disabling 499-500

pictures (BPicture objects) 492-494
drawing in views 625
recording 492, 617

-!-~ C!l- ____ ._ ___ //_:. __ '\ '1~'>

p1-p1..... 1111..... ;:,y;:,u::111 \I pipe:; .l__J:.J

pipefs handler 153

Index

pixels
assigning to bitmaps 386-387, 392
dimensions in 336
mapping coordinates to 335, 371-378
stroking/filling and 372-378

platform_type constants 802
+ (addition) operator (BPoint) 503
+= (addition and assignment) operator

(BPoint) 503
PointAt() (BTextView) 593-595
pointer lists (see BList objects)
points (BPoint objects) 500-504

adding to polygons 505
coordinates of 370, 620-621, 668-669
including in/excluding from regions

533-534
testing for enclosure of 525-526, 533

polygons (BPolygon objects) 504-506
for coordinates areas 371
filling/stroking 377-378, 655-656

PopSpecifier()
BHandler class 67
BMessage class 105-106

pop-up menus (BPopUpMenu objects)
506-510

(see also menus)
port messages 754-755

counting in queue 758-759
queue of 754
reading/writing 759-761

port_buffer_size() 755, 758
port_buffer_size_etc() 758
port_count() 758-759
port_info structure 757-758
ports 752-761

functions for managing 755-761
getting information on 757-758

position
in BTextView objects 593-595
changing (see moving)
characters 423-426, 432-433, 710

escapement values and 424
coordinates of (see coordinates)
menu items 479
menus 461
mouse, obtaining 632
pen (see pen)
pop-up menus 510
rotating (see rotating)

Position()
BFile class 198-199
BMallocIO class 829
BMemoryIO class 829
BPositionIO class 815

PO SIX
error code constants 847
signals, sending to threads 739

posting messages (see messages)
PostMessage() (BLooper) 28-29, 75-76,

86-87
PredicateLength() (BQuery) 268-269
predicates, query 259-262, 268-269
preferred applications 162, 218, 234
preferred handlers for messages 29, 76, 91
PreferredHandler() (BLooper) 90
pressing keys (see keyboard)
Previous() (BMessage) 115-116
PreviousSibling() (BView) 642-643
print_file_header structure 724
print jobs (BPrintjob objects) 510-519

cancelling 513, 516
creating new 512, 516-517

printable rectangle 514, 518
PrintableRect() (BPrintjob) 514, 518
printing

BMessage information 109
BPoints 501
BRect contents 527
character spacing modes and 433
checking if BView is printing 635
font attribute information 429
functions for managing 515-519
polygon point list 506
spool file 513, 517
steps for 511-515
user panels for 695

PrintToStream()
BFont class 429
BMessage class 109
BPoint class 501
BPolygon class 506
BRect class 527
BRegion class 535

priority
message loops 77
thread 737-738, 749

progress bars (see status bars)
properties, font 709-710
properties, object 33
Proportion() (BScrollBar) 547
protection (see access)
protocols, message 22, 31, 360, 851-871

scripting and 37-38
publishing message protocols 31
pull-down lists (see menus)
Pulse()

BApplication class 46, 51, 853
BTextView class 598

921

922

Pulse() (continued)
BView class 643-644, 859
setting rate for 678-679

PulseRate() (BWindow) 678-679
Push ... () (BQuery) 260-262, 266

Q

queries (BQuery objects) 257-269
attributes 259
C functions for 308-311
elements of 259-262
entry lists 178-183
indices 260, 303

C functions for 302-308
live queries 259, 267

update messages 259, 262-264,
868-869

opening and closing 309
operation constants 318
reusing 258
setting volume for 268

query_op() (BQuery) 266-267
? when converting UTF-8 838
queues, message (see message queues)
queues, thread (see thread queues)
Quit()

BApplication class 44, 52
BLooper class 87
BWindow class 675-676

QuitRequested() 660
BApplication class 42, 45, 52-53
BLooper class 77, 82, 88-89

quitting

R

applications 41, 44, 47, 52-53, 853
BLoopers and 88

print jobs 513, 516
windows 88, 660, 675-676, 859

radio buttons (BRadioButton objects)
519-522

radio mode (BMenu) 463
RAM

locking memory into 775-776, 785
page size 783, 804
reading files into 778

range, scroll bar values 543-544, 547, 549,
551

Read()
BDataIO class 814
T'\T".''1 - _ 1 - - - ... "''""' ... r..r.
DI' llC t..ld~~ .l)' /- .1)10

BPositionIO class 814

read_16_swap() (Support Kit) 840
read_32_swap() (Support Kit) 840
read_port() 754, 759-760
read_port_etc() 759-760
ReadAt()

BFile class 197-198
BMallocIO class 828
BMemoryIO class 828
BPositionIO class 814

ReadAttr() (BNode) 229-230
reading 814

file attributes 298-299
from files 197-198
files into areas 778
node attributes 229-230
permissions

areas 785, 788-789
BStatable class and 281
testing 197
for volume 291

port messages 754, 759-760
queries 308, 310
query indices 305
from resource files 274, 278
in reverse order 841

ReadLink() (BSymLink) 288
ReadResource() (BResources) 273, 278
ReadyToRun() (BApplication) 44, 46, 53,

853
real_time_clock() 802-803
real_time_clock_usecs() 802-803
real-time thread priorities 737
rearranging (see sorting)
receive_data() 740-741, 746-747
receiving messages (see messages)
recording pictures 492, 617
rectangles (BRect objects) 523-532

accessing in regions 535
assigning to BTextViews 604
constraining points to 501
coordinates of 370-371, 620-621,

668-669
copying in views 621
filling/stroking 375-377, 656
inscribing polygons in 505
intersection/union of 526, 530-532
moving 527
printable 514, 518
rounded corners 656
size of 526, 528-529
tracking cursor with 618

RectAt() (BRegion) 535
RefFilter() (BFiiePanei) 211-212
Refresh() (BFilePanel) 210

Index

Index

refreshing (see updating)
RefsReceived() (BApplication) 46, 53-54,

853
regions (BRegion objects) 532-535

accessing BRects in 535
in BTextViews 590
for coordinate areas 371
filling with patterns 532, 627
including/excluding points 533-534

release_sem() 762, 772
thread count and 763-764

release_sem_etc() 772
releasing keys (see keyboard)
releasing locks (see locking/unlocking)
releasing mouse button (see mouse)
removability of volumes 291
Remove() (BEntry) 192
RemoveAttr() (BNode) 229-230
RemoveChild()

BBitmap class 391-392
BView class 614-615
BWindow class 665-666

RemoveCommonFilter() (BLooper) 90
RemoveData() (BMessage) 109
RemoveFilter() (BHandler) 68-69
RemoveFloater() (BWindow) 666
RemoveHandler() (BLooper) 77, 79-80
Removeitem()

BList class 822
BListView class 449-450
BMenu class 461
BOutlineListView class 491

Removeltems()
BList class 822
BListView class 449-450
BOutlineListView class 491

RemoveMessage() (BMessageQueue) 124
RemoveName() (BMessage) 109
RemoveResource() (BResources) 273, 278
RemoveSelf() (BView) 644
RemoveShortcut() (BWindow) 666-667
Rename() (BEntry) 192
rename_thread() 747-748
RenameAttr() (BNode) 230
repeating keys 696, 876
Replace ... () (BMessage) 110-112
replicants, managing (see BShelf objects)
replying to messages 30-31, 87, 113-115,

863-864
(see also two-way message

communication)
repositioning (see moving)

Reset()
BStatusBar class 565, 865
BStopWatch class 832-833

resetting status bar 565, 866
resize_area() 788
ResizeBy()

BView class 644
BWindow class 676

ResizeTo() (BWindow) 676
ResizeToPreferred()

BTextControl class 575
BView class 632-633

ResizeToy() (BView) 644
resizing (see size)
resizing modes 650, 714-715
ResizingMode() (BView) 650
resolution, display device 371
ResolveSpecifier()

BApplication class 54
BControl class 414
BHandler class 36-37, 39, 66-68

BMessage functions with 105
BTextControl class 576
BTextView class 598
BView class 645
BWindow class 677

resolving symlinks 185-186
resource files

adding/deleting resources 275-276
executables as 272
finding resources in 273, 276
identifying and creating 272
reading and writing to 274, 278-279

923

resources, file (BResources objects) 270-279
BAppFilelnfo objects and 159
deleting 278
file attributes vs. 271
finding in resource files 273, 276
getting information on 276-277
initializing 271-273
managing 273

responding
to messages (see messages, replying to)
to user (see user interface, responding

to user)
restricted launches 45
Resume() (BStopWatch) 832
resume_thread() 733, 748
resuming threads (see pausing/resuming

threads)
ReturnAddress() (BMessage) 113
reusing queries 258
Reverse Polish Notation 260-261

924

Rewind()
BDirectory class 173-17 4
BEntryList class 178, 183
BFilePanel class 209
BNode class 227-228
BQuery class 265
BVolumeRoster class 294

rgb_color structure 725
right modifier keys 688, 695
RightBottom() (BRect) 528-529
RightTop() (BRect) 529
root directory 175, 291
root file system

directories in 151-152
rootfs handler for 153
symbolic links in 152

rootfs handler 153
roster, volume (see BVolumeRoster objects)
rosters, application (BRoster objects)

131-138
rotating characters 431
Rotation() (BFont) 431
Run()

BApplication class 43-45, 55
BLooper class 75, 77, 89

Quit() and 87
run_add_printer_panel() (Interface Kit) 695
run_open_panel() 208
run_save_panel() 208
run_select_printer_panel() (Interface Kit)

695
RunArray() (BTextView) 602-603
running threads 733

s
S_I. .. permission bitfield constants 283
Save() (BShelO 561
saving

BFilePanel notification for 206
BShelf contents 561
files 869
messages (see message queues)
Save BFilePanel 201-212

scale, coordinate 650-651
screen_id structure 725
screen_info structure 725-726
ScreenChanged() (BWindow) 677, 859
ScreenLocation()

BMenu class 461
BPopUpMenu class 510

screens (BScreen objects) 343, 536-542
culur maµ/~µace fur 538--541

configuring 699-700, 715
coordinates (see coordinates)
event messages 536, 677, 859
frame buffer for 537-538
inverting colors of 541
locking and allocating for 536-537
main screen 712

Index

mapping coordinates to pixels 371-372
placement on (see position)

scripting 32-39
BApplication objects and 45
BControl objects and 410
BHandlers and 62
BMessages for 870
BTextControl objects and 572-573
BTextViews and 581-582
BViews and 608
BWindows and 660-661
message suites (see suites, message)

scroll_bar_info structure 700-701, 726
scroll bars (BScrollBar objects) 542-550

changing values of 860
configuring preferences 700-701
managing in views 645-646
orientation of 546-547
proportional knobs 544, 547
size 716
target views of 542, 544, 548, 550
user preferences for 544-545
values of 543-544, 547, 549, 551

Scroll Lock key 687, 689, 878, 881
scroll views (BScrollView objects) 550-554

BListViews as targets of 453
BViews as targets of 657

ScrollBar()
BScrollView class 553
BView class 645

ScrollBy() (BView) 645-646
scrolling 336

bars (see scroll bars)
in BTextViews 598
functions for managing 645-646
in list views 446, 450
scroll bar preferences 700-701
views (scroll views)

ScrollTo()
BListView class 450
BScrollBar class 543
BView class 645-646

ScrollToOffset() (BTextView) 598
ScrollToSelection()

BListView class 450
BTex(View class 598

Index

searching
for applications 133
for areas 786
for bitmap views 391
BTextViews for words 589
for directories 168, 177-178
in directories 170
for file resources 276
for files 170--172
for menu items 458
message queue 123
for nodes/ entries 170--172
for ports 756
for threads 737, 742-743
for views 628, 671

Seek()
BFile class 198-199
BMallocIO class 829
BMemoryIO class 829
BPositionIO class 815

SEEK_ modes 815, 829
Select()

BListitem class 437
BListView class 450--451
BTextView class 580, 590, 596, 599

SelectA!l() (BTextView) 599
selecting text in BTextViews (see

BTextView objects)
selection lists (see list views; lists; menus)
selection messages 440, 452
selection modes (drawing) 349
selection panels (see file panels)
SelectionChanged()

BFilePanel class 208, 210
BListView class 440, 451

SelectionCommand() (BListView) 452
SelectionMessage() (BListView) 452
Sem()

BLocker class 826
BLooper class 85

sem_info structure 771-772
semaphores 761-773

acquiring 762, 768-769
benaphores 766-767
broadcasting 765
deleting 764-765, 770
functions for managing 768-773
getting information on 771-772
locking critical code 761, 765-767
ordering thread execution 762, 767-768
thread count 763-764, 770--771
thread queues 763

send_data() 739-741, 747-749

send_signal() 739
sending messages (see messages,

sending/ delivering)
SendMessage() (BMessenger) 30--31, 76,

129-130
SendReply() (BMessage) 30--31, 76,

113-115
separator items (BSeparatorltem objects)

457, 554-555
servers 4-5

print (see printing)
sharing areas with clients (example)

780--781
(see also Application Server)

Set()
BPoint class 502
BRect class 528
BRegion class 535
BScrollBar class 549
BTextView class 600, 604

set_area_protection() 788-789
set_click_speed() (Interface Kit) 695--696
set_key_repeat_delay() (Interface Kit) 696
set_key _repeat_rate() (Interface Kit) 696
set_keyboard_locks() (Interface Kit)

696--697
set_menu_info() (Interface Kit) 697
set_modifier_key() (Interface Kit) 698
set_mouse_map() (Interface Kit) 698--699
set_mouse_speed() (Interface Kit) 698--699
set_mouse_type() (Interface Kit) 698--699
set_port_owner() 753, 760
set_real_time_clock() 802-803
set_screen_space() (Interface Kit) 699-700
set_scroll_bar_info() (Interface Kit)

700--701
set_sem_owner() 773
set_thread_priority() 749
set_workspace_count() (Interface Kit) 701
SetAccessTime() (BStatable) 281-282
SetAlignment()

BMenuField class 473-47 4
BStringView class 571
BTextControl class 576
BTextView class 599

SetAppFlags() (BAppFileinfo) 160--161
SetAppHint() (BMimeType) 214
SetAutoindent() (BTextView) 600
SetBarHeight() (BStatusBar) 565
SetBehavior() (BPictureButton) 498-499
SetBits() (BBitmap) 386, 392
SetBlockSize() (BMallocIO) 829

925

926

SetBorder()
BBox class 395
BMenuBar class 470
BScrollView class 553

SetBorderHighlighted() (BScrollView)
553-554

SetButtonlabel() (BFilePanel) 210
SetCellSize() (BColorControl) 407
SetCommonFilterlist() (Blooper) 90
SetCreationTime() (BStatable) 281-282
SetCursor() (BApplication) 55-56
SetDefaultButton() (BWindow) 399,

677--678
SetDesktopColor() (BScreen) 541-542
SetDirty() (BShelt) 561
SetDisabledOff() (BPictureButton) 499-500
SetDisabledOn() (BPictureButton) 499-500
SetDivider()

BMenuField class 474
BTextControl class 576

SetDrawingMode() (BView) 646--647
SetEnabled()

BColorControl class 407
BControl class 362, 414-415
Blistltem class 437-438
BMenu class 461-462
BMenuField class 474
BMenultem class 483
BSeparatorltem class 555
BTextControl class 577

SetEnabledOff() (BPictureButton) 499-500
SetEnabledOn() (BPictureButton) 499-500
SetEncoding() (BFont) 429-430
SetExpanded() (BListltem) 438
SetFace() (BFont) 430
SetFamilyAndStyle() (BFont) 430
SetFileExtensions() (BMimeType) 216-217
SetFilterlist() (BHandler) 68--69
SetF!ags()

BFont class 431
BView class 647

SetFont() (BView) 647--648
SetFontAndColor() (BTextView) 600--601
SetFontSize() (BView) 648
SetGroup() (BStatable) 282-283
SetHandlerForReply() (Blnvoker) 72
SetHeight() (BListltem) 438
SetHideWhenDone() (BFilePanel) 210-211
SetHighColor() (BView) 648--649
Setlcon()

BAppFilelnfo class 161
BMimeType class 217
I3l'~odeinfo class 233-234

SetlconForType()
BAppFilelnfo class 162
BMimeType class 215

SetlnvocationMessage() (BListView) 440,
451-452

SetltemMargins() (BMenu) 462
SetKeyMenuBar() (BWindow) 678
Setlabel()

BBox class 395
BButton class 400
BControl class 415
BMenuField class 474
BMenultem class 483

SetLabe!FromMarked() (BMenu) 462
Setlayout() (BColorControl) 408
SetleftBottom() (BRect) 528
SetLeftTop() (BRect) 528
SetListType() (BListView) 452
SetlongDescription() (BMimeType) 217
SetLowColor() (BView) 648--649
SetMarked() (BMenultem) 484
SetMaxBytes() (BTextView) 601--602
SetMaxContentWidth() (BMenu) 463
SetMaxValue() (BStatusBar) 566
SetMessage()

BFilePanel class 211
Blnvoker class 72

SetModificationMessage() (BTextControi)
577

Index

SetModificationTime() (BStatable) 281-282
SetName() (BHandler) 69
SetNextHandler() (BHandler) 25, 62, 69
SetOwner() (BStatable) 282-283
SetPane!Directory() (BFilePanel) 211
SetPenSize() (BView) 649--650
SetPermissions() (BStatable) 282-283
SetPredicate() (BQuery) 260, 268-269
SetPreferredApp()

BAppFilelnfo class !62
BMimeType class 218
BNodelnfo class 234

SetPreferredHandler() (Blooper) 90
SetProportion() (BScrollBar) 547
SetPulseRate()

BApplication class 51, 56
BWindow class 678--679

SetRadioMode() (BMenu) 463
SetRange() (BScrollBar) 543, 547
SetRefFilter() (BFilePanel) 211-212, 269
SetResizingMode() (BView) 650
SetRightBottom() (BRect) 528-529
SetRightTop() (BRect) 529
Sei:Rmation() (BFom) 43i

Index

SetRunArray() (BTextView) 602--603
SetSaveText() (BFilePanel) 210
SetScale() (BView) 650--651
SetSelectionMessage() (BListView) 440, 452
SetSettings() (BPrintJob) 511, 518-519
SetShear() (BFont) 431
SetShortcut()

BAlert class 381, 383
BMenultem class 484

SetShortDescription() (BMimeType) 217
SetSignature() (BAppFilelnfo) 162-163
SetSize()

BFile class 196
BMallocIO class 829
BPositionIO class 815

SetSize() (BFont) 431-432
SetSizeLimits() (BWindow) 679
SetSpacing() (BFont) 432-433
SetSteps() (BScrollBar) 548
SetSupportedTypes() (BAppFilelnfo)

163-164
SetSupportingApps() (BMimeType)

218-219
SetTabWidth() (BTextView) 603
SetTarget()

BFilePanel class 212
Blnvoker class 73-74
BQuery class 267
BScrollBar class 548

SetTargetForltems() (BMenu) 463-464
SetText()

BStatusBar class 566
BStringltem class 568
BStringView class 571
BTextControl class 578
BTextView class 603--604

Settings() (BPrint]ob) 511, 518-519
SetTitle() (BWindow) 679--680
SetTo()

BAppFilelnfo class 160, 166
BDirectory class 175-176, 187
BEntry class 193, 249
BFile class 199-200
BMimeType class 221
BNode class 230-231
BNodelnfo class 236
BPath class 254-255
BResources class 278
BVolume class 292

SetTrailingText() (BStatusBar) 566
SetTrigger() (BMenultem) 484-485
SetTriggersEnabled() (BMenu) 464

SetType()
BAppFilelnfo class 164
BNodelnfo class 235

SetValue()
BColorControl class 408
BControl class 416
BRadioButton class 522

SetVersionlnfo() (BAppFileinfo) 165
SetViewColor() (BView) 339, 651--652
SetVolume() (BQuery) 268
SetWidth() (BListltem) 438
SetWordWrap() (BTextView) 604
SetWorkspaces() (BWindow) 680
SetZoomLimits() (BWindow) 679
shallow archives 809
shapes

arbitrary (see regions)
polygons (see polygons)
rectangles (see rectangles)
triangles 656--657

shared libraries 6-7
images for 791

shared volumes 291
sharing areas between applications 775,

780-784
Shear() (BFont) 431
shear, character 431
shelves (BShelf objects) 556-561
Shift key 688, 877
Shift-JIS encoding 838
Shortcut()

BAlert class 383
BMenultem class 484

shortcuts, alert panel buttons 383
shortcuts, keyboard

adding/removing in windows 666--667
BTextViews and 580-581
cut/copy/paste 580
menu items and 476, 478, 484

Show()
BFilePanel class 212
BMenu class 458-459
BMenuBar class 469
BView class 633--635
BWindow class 672--673

ShowAllDraggers() (BDragger) 418
ShowCursor() (BApplication) 50
showing (see hiding/showing)
signals, sending to threads 739
signatures, application 126

File Type database and 159
managing 162-163

single-selection lists 441, 452, 711

927

928

16-bit color 342
size

alert panels 382
allocated memory buffers 829
application signatures 163
areas (memory) 776, 788
BBoxes (view borders) 395
BColorControls and cells 406-407
bitmaps 385
BMessage contents 98
BTextControl objects 575
buttons 398

on alert panel 381, 704
check boxes 402
cursor 55
file size 196
flattened objects 817
flattened pathnames 256
font names 709
fonts 426-427, 431-432, 631, 648
icons 161, 317
input/output buffers 815
limits constants (Storage Kit) 314
list items 438-439
list views 445
maximum name length 804
memory page 783, 804
menus 459, 463

menu item arrangement and 455
menu item contents 481

names (see names)
node data 284
pen 341, 649-650
port message queue/buffer 754, 758
query predicates 268-269
radio buttons 522
rectangles (see rectangles, size of)
resizing modes 650, 714-715
in screen pixels 336
screens, configuring 699-700, 715
scroll bar knobs 544
scroll bars 716
separator items 555
status bar 565
strings 652

determining 433-434
truncating to make fit 427-428, 716

tab stops (BTextViews) 603
text views 580, 590, 595-596, 604

in bytes 601-602
in characters 605-606

views 611-612, 630, 632-633, 644, 650,
714-715,860

volume 291

window titles 662
windows 663, 671-672, 676, 679, 861
(see also memory)

Size() (BFont) 431-432
I (slash) (see root file system)
snooze() 738, 750
.so filename suffix 7
software, BeOS 3

software kits 5-6
sorting

BList items 823
list items 452-453
reading/writing in reverse order 841
thread execution order 762, 767-768

Sortltems()
BList class 823
BListView class 452-453

Index

source constants (BMessageFilter) 119, 142
source image 345

color space of 346
(see also drawing modes)

spacing modes, character 432-433, 710
escapement values and 424

Spacing() (BFont) 432-433
spawn_thread() 733, 750-751

fork() (POSIX) and 732
(see also thread functions)

spawning threads 733, 750-751
(see also thread functions)

specifiers, message 34-37, 143
adding 98-99
retrieving 105-106
stacks of 35-36
type constants for 34, 98

speed, mouse clicking 695-696
speed, mouse navigation 698-699
spool file, printing 513, 517
SpoolPage() (BPrintJob) 513, 517
stacks of message specifier 35-36
standard messages 141, 863-870
StartWatching() (BVolumeRoster) 294
stat() (POSIX) 280
stat structure 285-286

B_STAT_CHANGED message 245
editing 245
monitoring changes to 238
obtaining 174, 280, 284
POSIX's stat() for 280

state, key 856
state, thread 745-746
states, key 883-884
status bars (BStatusBar objects) 561-567

coiors of 562, 565
messages for 865-866

Index

status_t type 846
StatusBarColor() (BStatusBar) 565
steps, scroll bar 548
stop_ watching() (Node Monitor) 237, 240,

866
stopping threads (see suspending threads)
stopwatches (BStopWatch objects) 830-833
Stop Watching() (BVolumeRoster) 294
Storage Kit 5, 149-157

class reference 158-295
global C functions 295-313
global constants, defined types 313-321

storing (see saving)
strings

BStringitem objects 567-569
BStringView objects 569-571
drawing in views 625-627
editable (see BTextView objects)
empty, constant for 842
file type descriptions 217
MIME (see MIME data)
query predicate (see predicates, query;

queries)
size of 433-434, 652
truncating to make fit 427-428, 716

StringWidth()
BFont class 433-434
BView class 652

StrokeArc() (BView) 652-654
StrokeEllipse() (BView) 654
StrokeLine() (BView) 654-655
StrokePolyon() (BView) 655-656
StrokeRect() (BView) 656
StrokeRoundRect() (BView) 656
StrokeTriangle() (BView) 656-657
stroking

BView functions for 652-657
lines 373-375, 378, 654-655
pixels and 372-378
polygons 377-378, 655-656
rectangles 375-377, 656

style, font (see fonts)
subitems (see outline lists)
Submenu() (BMenultem) 485
SubmenuAt() (BMenu) 460
submenus (see menus, menu hierarchy)
subtraction(-) operator (BPoint) 503
subtraction and assignment (-=) operator

(BPoint) 503
suites, message 12, 38-39

obtaining with BHandlers 64
Superitem()

BMenu class 464-465
BOutlineListView class 491

superitems (see outline lists)
Supermenu() (BMenu) 464-465
supermenus (see menus, menu hierarchy)
supertypes (see MIME data)
Support Kit 6, 807-850

class reference 808-833
constants and defined types 841-846
error codes 846-850
functions and macros of 833-841

supporting applications 218-219
Suspend() (BStopWatch) 832
suspend_thread() 738, 751-752
suspending threads 738
symbol types 793
symbolic links (BSymLink objects)

150-151, 286-289
converting nodes to 225
creating new 171-172, 186
initializing 287
as nodes 223
opening 195
resolving 185-186
in root file system 152
searching for 170-172
testing for absolute pathnames 288

symbols
function, encoding 793-795
image 792-795, 797-798

Sync() (BView) 628-629
synchronizing threads 738, 761-773
synchronous message replies 30, 129
system

beep 833
clock information 802-803
color map 702
fonts of 421-422, 702-703
information 799-802
key map 686-693, 877
time after booting 803

system_colors() (Interface Kit) 702
system_info structure 800-801
system messages 25-28, 851-863

dispatching 27, 49, 670
identifying messages as 109
(see also messages)

system_time() 803

T

Tab key 362
Control-Tab combination 362
Option-Tab combination 359
view navigation 637

tab stop widths (BTextView) 603

929

930

Tab Width() (BTextView) 603
target handlers (see BHandler objects, as

BMessage targets)
Target()

Blnvoker class 73-74
BMessenger class 130-131
BScrollBar class 548

TargetedByScrollView()
BListView class 453
BScrollView class 551
BView class 657

Team()
Blooper class 91
BMessenger class 131

team_info() 743-744
team_info structure 743-744
TeamFor() (BRoster) 138
teams, application 126, 138
teams, thread 732

getting information on 743-744
killing 739, 742
semaphores (see semaphores)

testing
applications if running 138
if directory is root 175
file permissions 197
file type validity 220
(see also Has .. () and Is ... () functions)

text
in alert panels 384
BTextControl objects 571-578

BTextViews and 572, 578
scripting support 572-573

BTextView objects 578-606
adding/deleting text in 591-593
alignment of text 599
BTextControl objects and 572, 578
colors in 600-603
fonts in 583, 60o-603
graphics primitives 579-580
navigating 590-591, 598
offsets 579
scripting support 581-582
shortcuts and menu items 580-581

drawing in views 624-627
font direction 422-423, 708, 720
fonts (see fonts)
highlighting (see highlighting)
indenting in BTextViews 600
in list views (BStringitems) 567-569
searching for words 589
selecting 580, 590, 596, 599
spacmg modes 432-433, 710

escapement values and 424

static (BStringViews) 569-571
on status bars 561-562, 566
tab stops 603
wrapping lines 586-587, 604

text (MIME media type) 11
Text()

BStatusBar class 566
BStringitem class 568
BStringView class 571
BTextControl class 578
BTextView class 605

text_run structure 726
text_run_array structure 584, 602-603,

726-727
TextHeight() (BTextView) 594
Textlength() (BTextView) 605-606
TextRect() (BTextView) 604
TextView()

BAlert class 384
BTextControl class 578

32-bit color 342, 405

Index

thread count, semaphore 763-764, 770-771
(see also semaphores)

thread_func type 734
thread functions 733-736

C++ for 735-736
return values of 736

thread_info() 744-746
thread info structure 7 45
thread queue, semaphore 763
thread_state constants 745-746
Thread() (Blooper) 91
threads 732-741

buffering data (see ports)
communicating between (see message

loops; messages)
execution order of 762, 767-768
functions for (see thread functions)
getting information on 744-746
groups of (see teams, thread)
killing 739, 742
locking critical code

Blockers for 823-825
semaphores for 761, 765-767

main thread, death of 739
managing (controlling) 738-739

functions for 742-752
messages to 739-741, 746-749
names for 737, 747-748
passing data to 739-741
pausing/resuming 733, 738, 748, 750
priority of 737-738, 749
running 733
searching for 737, 742-743

Index

threads (continued)
sending signals to 739
spawning 733, 750-751
suspending 738, 751-752
synchronizing 738

semaphores for (see semaphores)
window threads 659-660

tilde n 691
time/timing

of access 281-282
B_PULSE messages 42, 853, 859
BTextView blinking insertion point 598
code execution 830-833
determining idle time 694
key repeat rates 696
mouse clicking speed 695-696
mouse speed 698-699
Pulse() (see Pulse())
SetPulseRate() 51, 56
setting pulse 678-679
status bar for (see status bars)
synchronizing threads 738
time information 802-803

timeouts
acquiring semaphores 768
Blocker objects with 825-826
for Blooper lockout 83
infinite 804
port reading/writing operations 754
for sending messages 130

time-sharing thread priorities 737
Title() (BWindow) 679-680
titles, window 662, 679-680
top view 333
Track() (BMenu) 465
Tracker, node icons and 234
tracking cursor 465, 618
Trailinglabel() (BStatusBar) 564
TrailingText() (BStatusBar) 566
transparency 716

in bitmaps 387
(see also colors)

transparency modes (drawing) 347-348
triangles, filling/stroking 656-657
Trigger() (BMenultem) 484-485
triggers, menu items 464, 476, 484-485
true constant 841
Truncatelabel() (BMenultem) 485
truncating strings 427-428, 716
tuned fonts 428, 685
tuned_font_info structure 727
two-state buttons 495, 498-499

radio buttons (see radio buttons)

two-way message communication 30-31,
115-116

type_code type 846
type codes

BMessage objects 21-22
data 843-844
defining 22-23
identifying flattened objects by 817

Type() (BMimeType) 221
TypeCode()

BFlattenable class 817
BPath class 256

types

u

defined in Application Kit 143-144
macros for determining 834-836
symbol 793

uint# types 845-846
unarchiving (see archiving)
unequality, testing (see comparison

operator)
Untlatten()

BFlattenable class 817
BMessage class 104-105
BPath class 256

UnflattenRunArray() (BTextView) 584
Unicode character encoding 365-368,

429-430, 689-691, 880-881
character constants for 705
font encoding constants 708

union (I) operator (BRect) 531-532
union of BRects 531-532
unload_add_on() 798
unloading (see loading/unloading)
Unlock()

BBitmap class 391
BClipboard class 58, 61
Blocker class 825-826
Blooper class 83-85, 128
BMessageQueue class 124
BNode class 228

unlocking (see locking/unlocking)
unmounting (see mounting/unmounting)
unresolved message specifiers 37
Unset()

BDirectory class 175-176
BEntry class 193
BFile class 199-200
BMimeType class 221
BNode class 230-231
BPath class 254-255
BVolume class 292

931

932

Update()
BListitem class 438-439
BStatusBar class 567, 865
BStringltem class 569

update_font_families() (Interface Kit) 702
UpdateltNeeded() (BWindow) 681
updating

enabling/diabling in windows 669
font families 702
lists 438-439, 440
menus 674
scroll bars 542-543, 549-550
status bars 567, 866
views 351-354, 623, 681

forcefully 352
recognizing need for 675

user interface
drag-and-drop (see drag-and-drop)
keyboard navigation 361-364
messages to (see interface messages)
responding to user 354-368

UTF-8 character encoding 365-368,

v

429-430, 689--691, 880--881
character constants for 705
conversion constants 837--838, 842
converting to/from 837--838
font encoding constants 708

validate_instantiation() (Support Kit) 841
validity (see testing)
Value()

BControl class 416
BScrol!Bar class 549

ValueAsColor() (BColorControl) 408
ValueChanged() (BScrol!Bar) 542, 549-550,

860
variables

Application Kit 138
environment, in app images 790
Interface Kit 702-703

version
application 165, 315
key map 687

version_info structure 165, 321
I (union) operator (BRect) 531-532
vertical orientation (see orientation)
video (MIME media type) 12
view hierarchy 333-334, 607, 659

adding/deleting view children 614--615,
665-666

dropping into 556-557

functions for managing 642--643, 668
managing for bitmaps 389-392

ViewColor() (BView) 651--652
views (BView objects) 332-334, 606--658

Application Server and 349-354
BDragger shelves (see BShelf objects)
bitmaps, drawing 623--624
borders around (see BBox objects)

. as BScrol!View targets 657
clipping region 337-339, 532, 619,

630--631
erasing 353

colors in 339, 634, 648--649, 651--652
converting coordinates of 620--621
coordinates (see coordinates)
creating new 333

Index

cursor transit constants 640, 706
derived BView classes 608--609
dispatching interface messages 358-360
drag-and-drop (see drag-and-drop)
drawing in 332-354

instructions for (see pictures)
updates and 353

drawing modes 345-349, 646--647
event messages 355, 860
in file panels 207-208
flags for 613, 647, 717
focus view 358-359, 634, 638--639

focus indicators for 362-363
fonts in 647--648
geometry of 334-339
graphics environment 340
handling messages in 332-333
hiding/showing 633--635
hierarchy of (see view hierarchy)
interface messages 854--863
keyboard events and 635--638
manipulating from keyboard 361-364
mapping to paper 513-514
mouse events and 639--641
moving 629--630, 641

boundaries and 335
navigating between 637
obtaining mouse position 632
overlapping 334
pen of (see pen)
producing bitmaps with 386-387
scripting support 608
scroll bar targets 542, 544, 548, 550
scrolling (see scrolling)
searching for 628, 671
size of 611--612, 630, 632--633, 644, 860

boundaries 334-336, 619
resizing modes 650, 714-715

Index

views (BView objects) (continued)
top view 333
tracking cursor 618
updating 351-354, 623, 681

forcefully 352
recognizing need for 675

visible region 338
windows and 350, 607--608, 615--616,

621, 657, 659
vint# types 845--846
virtual file systems 152-153

I dev (see device file system)
handlers (see file system handlers)
/pipe (see pipe file system)

virtual memory (see areas)
visibility (see hiding/showing)
visible region, view 338
volumes (BVolume objects) 289-292

boot volume 294
initializing 289
monitoring 238, 246, 294
mounting/unmounting 238, 246, 290
rosters of (BVolumeRosters) 293-295
setting for queries 268

vuint# types 845--846

w
wait_for_thread() 733, 736, 752
warning messages (see alert panels)
WasDelivered() (BMessage) 115-116
WasDropped()

BMessage class 30, 116
BView class 365

WasHidden() (BFilePanel) 208, 212
watch_node() (Node Monitor) 168,

237-240, 866
flags for 317

what data member (BMessage) 21, 93
clipboard data and 58
defining 22-23
filtering messages by 119
obtaining 120

Width()
BListltem class 438
BRect class 529

Window()
BFilePanel class 212
BView class 657

window _type structure 727
WindowActivated()

BControl class 416
BListView class 453
BMenuField class 475

BTextControl class 578
BTextView class 606
BView class 658
BWindow class 681, 861

WindowAt() (BApplication) 56-57
WindowMoved() (BWindow) 861
windows (BWindow objects) 332, 658--683

activating/deactivating 416, 453, 658,
665, 673, 681,861

alert panels (see alert panels)
Application Server and 349
attaching views to 350
for BFilePanels 212
converting coordinates of 668--669
coordinates (see coordinates)
counting number of 49
default button 359, 381, 396, 399,

677--678
dropping messages into 30
editing messages 864
event messages 861
file panels (see file panels)
flags for 663, 717
flushing connection to Application

Server 628--629, 671
hiding/showing 672--673
interface messages 356, 854--863
keyboard shortcuts for 666--667
locking 607--608
locking message loops and 84
message loops of 26
moving 663, 671--672, 675, 861
positions of 56-57
quitting (closing) 88, 660, 675--676, 859
quitting applications and 47, 52

· scripting support 660--661
size of 663, 671--672, 676, 679, 861
threads of 659--660
titles for 662, 679--680
types of 663, 682, 717-718
updating views 351-354, 623, 675, 681
views and 607--608, 615--616, 621, 657,

659
zooming (maximizing)/minimizing 354,

663, 674, 683, 856, 863
limits for 679

WindowType() (BWindow) 682
words

searching BTextViews for 589
wrapping 586-587, 604

WorkspaceActivated() (BWindow) 682, 862
workspaces

activating/deactivating 682, 684, 862
constants for 664, 718

933

934

workspaces (continued)
event messages 862
managing 680, 682--683
number of, functions for 701

Workspaces() (BWindow class) 680
WorkspacesChanged() (BWindow) 862
wrapping text lines 586-587, 604
Write()

BDataIO class 816
BFile class 197-198
BPositionIO class 816

write_16_swap() (Support Kit) 840
write_32_swap() (Support Kit) 840
write_port() 754, 760-761
write_port_etc() 760-761
WriteAt()

BFile class 197-198
BMallocIO class 830
BMemoryIO class 830
BPositionIO class 816

WriteAttr() (BNode) 229-230

WriteResource() (BResources) 273, 279
writing 816

z

into areas 777-778
file attributes 301
to files 197-198
flattening (see flattening objects)
node attributes 229-230
permissions

areas 785, 788-789
BStatable class and 281
testing 197

port messages 754, 760-761
to resource files 274, 279
in reverse order 841

Zoom() (BWindow) 683, 863
zooming windows 354, 663, 683, 863

limits for 679

Index

blJll More Titles from O'Reilly '4fl I
Developing Web Content

WebMaster in a Nutshell, Deluxe Edition
By 0 'Reilly & Associates, Inc.
1st Edition September 1997 (est.)
356 pages (est.), includes CD-ROM
ISBN 1-56592-305-7

WEBMASTER The Deluxe Edition of WebMaster in a Nut
Ml*Mlf.111HM shell is a complete library for web pro-
511esiselling WtbBooks 011 w-RoM grammers. The main resource is the Web
''"~'"""""°'"''"""''~,_""''""'-"1'"'"" Developer's library, a CD-ROM, containing

the electronic text of five popular O'Reilly
titles: HTML: The Definitive Guide, 2nd Edition; JavaScript: The
Definitive Guide, 2nd Edition; CG! Programming on the World
Wide Web; Programming Perl, 2nd Edition-the classic "camel
book," written by Larry Wall (the inventor of Perl) with Tom
Christiansen and Randal Schwartz; and WebMaster in a Nutshell.
The Deluxe Edition also includes a printed copy of WebMaster in
a Nutshell.

WebMaster in a Nutshell, Deluxe Edition, makes it easy to find the
information you need with all of the convenience you'd expect
from the Web. You'll have access to information webmasters and
programmers use most for development-complete with global
searching and a master index to all five volumes-all on a single
CD-ROM. It's incredibly portable. Just slip it into your laptop case
as you commute or take off on your next trip and you'll find
everything at your fingertips with no books to carry.

The CD-ROM is readable on all hardware platforms. All files
except Java code example files are in 8.3 file format and, there
fore, are readable by older systems. A web browser that supports
HTML 3.2 (such as Netscape 3.0 or Internet Explorer 3.0) is
required to view the text. The browser must support Java if
searching is desired.

The Web Developer's Library is also available by subscription on
the World Wide Web. See http://www.ora.com/catalog/webrlw for
details.

WebMaster in a Nutshell
By Stephen Spainhour & Valerie Quercia
1st Edition October 1996
374pages, ISBN 1-56592-229-8

Web content providers and administrators
have many sources for information, both in
print and online. WebMaster in a Nutshell puts
it all together in one slim volume for easy
desktop access. This quick reference covers
HTML, CGI, JavaScript, Perl, HTTP, and server
configuration.

HTML: The Definitive Guide, 2nd Edition
By Chuck Musciano & Bill Kennedy
2nd Edition May 1997
552 pages, ISBN 1-56592-235-2

This complete guide is chock full of exam
ples, sample code, and practical, hands-on
advice to help you create truly effective web
pages and master advanced features. Learn
how to insert images and other multimedia
elements, create useful links and searchable

documents, use Netscape extensions, design great forms, and lots
more. The second edition covers the most up-to-date vetsion of the
HTML standard (HTML version 3.2), Netscape 4.0 and Internet
Explorer 3.0, plus all the common extensions.

JavaScript: The Definitive Guide, 2nd Edition
By David Flanagan
2nd Edition January 1997
664 page;~ ISBN 1-56592-234-4

This second edition of the definitive reference
guide to JavaScript, the HTML extension that
gives web pages programming language capa
bilities, covers JavaScript as it is used in
Netscape 3.0 and 2.0 and in Microsoft Inter
net Explorer 3.0. Learn how JavaScript really
works (and when it doesn't). Use JavaScript

to control web browser behavior, add dynamically created text to web
pages, interact with users through HTML forms, and even control and
interact with Java applets and Navigator plugins. By the author of the
bestsellingjava in a Nutshell.

CG/ Programming on the World Wide Web
By Shishir Gundavaram
1st Edition March 1996
450 pages, ISBN: 1-56592-168-2

This book offers a comprehensive explanation
of CG! and related techuiques for people who
hold on to the dream of providing their own
information servers on the Web. It starts at
the beginning, explaining the value of CG! and
how it works, then moves swiftly into the sub

tle details of programming.

O'REILLY™
TO ORDER: 800-998-9938 • order@oreilly.com • http://www.oreilly.com/

OUR PRODUCTS ARE AVAILABLE AT A BOOKSTORE OR SOFTWARE STORE NEAR YOU.

FOR INFORMATION. 800-998-9938 • 707-829-0515 • info@oreilly.com

Developing Web Content continued
Information Architecture for the World Wide Web

By Louis Rosenfeld & Peter Marville
1st Edition November 1997 (est.)
200 pages (est.), ISBN 1-56592-282-4

Information Architecture for the World Wtde
Web is about applying the principles of archi
tecture and library science to web site design.

fi' "' w'''" w.,, Wro With this book, you learn how to design web
sites and intranets that support growth, man
agement, and ease of use. This book is for

webmasters, designers, and anyone else involved in building a web site.

learning VBScript
By Paul Lomax
1st Edition July 1997
616 pages, includes CD-ROM
ISBN 1-56592-247-6

This definitive guide shows web developers
how to take full advantage of client-side
scripting with the VBScript language. In addi
tion to basic language features, it covers the
Internet Explorer object model and discusses
techniques for client-side scripting, like

adding ActiveX controls to a web page or validating data before send
ing it to the server. Includes CD-ROM with over 170 code samples.

Web Client Programming with Perl

l.
with Perl

By Clinton Wong
1st Edition March 1997
228pages, ISBN 1-56592-214-X

Web Client Programming with Perl shows you
how to extend scripting skills to the Web.
This book teaches you the basics of how
browsers communicate with servers and how
to write your own customized web clients to
automate common tasks. It is intended for
those who are motivated to develop software

that offers a more flexible and dynamic response than a standard web
browser.

Building Your Own WebSite

BUILDING
YOUR OWN
WEBSITE

AUDIENC:I!: Ott THE WBB

By Susan B. Peck & Stephen Arrants
1st Edition July 1996
514pages, ISBN 1-56592-232-8

This is a hands-on reference for Windows®
95 and Windows NT'" users who want to host
a site on the Web or on a corporate intranet.
This step-by-step guide will have you creating
live web pages in minutes. You'll also learn
how to connect your web to information in
other Windows applications, such as word

processing documents and databases. The book is packed with exam
ples and tutorials on every aspect of web management, and it includes
the highly acclaimed WebSite'" 1.1 server software on CD-ROM.

Designing for the Web:
Getting Started in a New Medium

By Jennifer Niederst
with Edie Freedman
1st Edition April 1996
180 pages, ISBN 1-56592-165-8

Designing for the Web gives you the
basics you need to hit the ground run
ning. Although geared toward design

ers, it covers information and techniques useful to anyone who wants
to put graphics online. It explains how to work with HTML documents
from a designer's point of view, outlines special problems with pre
senting information online, and walks through incorporating images
into web pages, with emphasis on resolution and improving efficienc

O'REILLY™
TO ORDER: 800-998-9938 • order@oreilly.com • http://www.oreilly.com/

OUR PRODUCTS ARE AVAILABLE AT A BOOKSTORE OR SOFTWARE STORE NEAR YOU.

FOR INFORMATION: 800-998-9938 • 707-829-0515 • info@oreilly.com

How to stay in touch with O'Reilly

1. Visit Our Award-Winning Web Site
http://www. ore illy. com/

*"Top 100 Sites on the Web" -PC Magazine
*"Top 5% Web sites" -Point Communications
*"3-Star site" -The McKinley Group

Our web site contains a library of comprehensiveproduct
information (including book excerpts and tables of
contents), downloadable software, background articles,
interviews with technology leaders, links to relevant sites,
book cover art, and more. File us in your Bookmarks or
Hotlist!

2. Join Our Email Mailing lists
New Product Releases
To receive automatic email with brief descriptions of all
new O'Reilly products as they are released, send email to:
listproc@online.oreilly.com
Put the following information in the first line of your
message (not in the Subject field):
subscribe ora-news "Your Name" of "Your Organi
:zation" (for example: subscribe oreilly-news Kris Web
ber of Fine Enterprises)

O'Reilly Events
H you'd also like us to send information about trade show
events, special promotions, and other O'Reilly events,
send email to: listproc@online.oreilly.com
Put the following information in the first line of your
message (not in the Subject field):
subscribe ora-events ''Your Name" of ''Your Orga
nization"

3. Get Examples from Our Books
via FTP
There are two ways to access an archive of example files
from our books:

Regular FTP
• ftp to:

ftp.oreilly.com
(login: anonymous
password: your email address)

• Point your web browser to:
ftp://ftp.oreilly.com/

FTPMA/l
• Send an email message to:

ftpmail@online.oreilly.com
(Write "help" in the message body)

4. Contact Us via Email
order@oreilly.com

To place a book or software order online. Good for North
American and international customers.

subscriptions@oreilly.com
To place an order for any of our newsletters or
periodicals.

books@oreilly.com
General questions about any of our books.

software@oreilly.com
For general questions and product information about our
software. Check out O'Reilly Software Online at
http://software.oreilly.com/ for software and technical
support information. Registered O'Reilly software users
send your questions to: website-support@oreilly.com

cs@oreilly.com
For answers to problems regarding your order or our
products.

booktech@oreilly.com
For book content technical questions or corrections.

proposals@oreilly.com
To submit new book or software proposals to our
editors and product managers.

international@oreilly.com
For information about our international distributors
or translation queries. For a list of our distributors
outside of North America check out:
http://www.oreilly.com/www/order/country.html

O'Reilly & Associates, Inc.
101 Morris Street, Sebastopol, CA 95472 USA
TEL 707-829-0515 or 800-998-9938

(6am to 5pm PST)
FAX 707-829-0104

O'REILLY'"
TO ORDER: 800-998-9938 • order@oreilly.com • http://www.oreilly.com/

OUR PRODUCTS ARE AVAILABLE AT A BOOKSTORE OR SOFTWARE STORE NEAR YOU.

FOR INFORMATION: 800-998-9938 • 707-829-0515 • info@oreilly.com

Titles from O'Reilly
Please note that upcoming titles are displayed in italic.

WEB PROGRAMMING SYSTEM ADMINISTRATION WEB REVIEW STUDIO BERKELEY 4.4 SOFTWARE
Apache: The Definitive Guide Building Internet Firewalls SERIES DISTRIBUTION
Building Your Own Web Confer- Computer Crime: A Crimefight- Gif Animation Studio 4.4BSD System Manager's Manu-

ences er's Handbook Shock.wave Studio al
Building Your Own Website Computer Security Basics

WINDOWS
4.4BSD User's Reference Manual

CGI Programming for the World DNS and BIND, 2nd Ed. 4.4BSD User's Supplementary
Wide Web Essential System Admiuistration,

Dictionary of PC Hardware and Documents
Data Communications Terms

Designing for the Web 2nd Ed. Inside the Windows 95 Registry
4. 4BSD Progranuuer's Reference

HTML: The Definitive Guide, Getting Connected: The Internet Manual
2nd Ed. at 56Kand Up Inside the Windows 95 File Sys- 4. 4BSD Progranuuer's Supple-

JavaScript: The Definitive Guide, Llnux Network Admiuistrator's tern mentary Documents
2nd Ed. Guide Windows Annoyances X Programming

Learning Perl Managing Internet Information Windows NT File System Inter- Vol. 0: X Protocol Reference
Programming Perl, 2nd Ed. Services nals Manual
Mastering Regular Expressions Managing NFS and NIS Windows NT in a Nutshell Vol. 1: Xlib Programming Manual
WebMaster in a Nutshell Networking Personal Computers PROGRAMMING Vol. 2: Xlib Reference Manual
Web Security & Commerce with TCP/IP Advanced Oracle PI/SQL Pro- Vol. 3M: X Window System User's
Web Client Progranuuing with Practical UNIX & Internet Securi- gramming Guide, Motif Edition

Perl ty, 2nd Ed. Applying RCS and SCCS Vol. 4M: X Toolkit Intrinsics Pro-
World Wide Web Journal PGP: Pretty Good Privacy C+ +: The Core Language gramming Manual, Motif Edi-

USING THE INTERNET
sendmail, 2nd Ed. Checking C Programs with lint ti on
sendmail Desktop Reference DCE Security Programming Vol. 5: X Toolkit Intrinsics Refer-

Smileys System Performance Tuning Distributing Applications Across ence Manual
The Future Does Not Compute TCP/IP Network Admiuistration DCE & Windows NT Vol. 6A: Motif Programming
The Whole Internet User's Guide termcap & terminfo Encyclopedia of Graphics File Manual

& Catalog
Using & Managing UUCP Formats, 2nd Ed. Vol. 6B: Motif Reference Manual

The Whole Internet for Win 95
Volume 8: X Window System Guide to Writing DCE Applica- Vol. 6C: Motif Tools

Using Email Effectively Admiuistrator's Guide lions Vol. 8 : X Window System Admin-
Bandits on the Information Web Security & Commerce lex &yacc istrator's Guide

Superhighway Managing Projects with make Progranuuer's Supplement for

JAVA SERIES UNIX Mastering Oracle Power Objects Release 6

Exploring Java
Exploring Expect

Oracle Design: The Definitive X User Tools

Java AWT Reference Learning VBScript Guide The X Window System in a Nut-

Java Fundamental Classes Refer-
Learning GNU Emacs, 2nd Ed. Oracle Performance Tuning, 2nd shell

ence Learning the bash Shell Ed. CAREER & BUSINESS
Java in a Nutshell Learning the Korn Shell Oracle PI/SQL Programming Building a Successful Software
Java Language Reference, 2nd Learning the UNIX Operating Sys- Porting UNIX Software Business

Edition tern POSIX Programmer's Guide The Computer User's Survival
Java Network Programming Learning the vi Editor POSIX.4: Programming for the Guide
Java Threads Llnux in a Nutshell Real World Love Your Job!
Java Virtual Machine Making TeX Work Power Programming with RPC Electronic Publishing on CD-

SOFTWARE
Linux Multimedia Guide Practical C Programming ROM

WebSite™l.1
Running Linux, 2nd Ed. Practical C+ + Programming TRAVEL SCO UNIX in a Nutshell Programming Python WebSite Professional™ sed & awk, 2nd Edition Travelers' Tales: Brazil

Building Your Own Web Confer- Tcl/fk Tools
Programming with curses Travelers' Tales: Food

ences UNIX in a Nutshell: System V Edi-
Programming with GNU Software Travelers' Tales: France

WebBoard™ ti on
Pthreads Programming Travelers' Tales: Gutsy Women

PolyForm™ UNIX Power Tools
Software Portability with imake, Travelers' Tales: India

2nd Ed. Statisphere ™ Using csh & tsch Understanding DCE
Travelers' Tales: Mexico

SONGLINE GUIDES When You Can't Find Your UNIX Understanding Japanese Infor-
Travelers' Tales: Paris

NetActivism NetResearch System Administrator mation Processing Travelers' Tales: San Francisco

Net Law NetSuccess Writing GNU Emacs Extensions UNIX Systems Programming for Travelers' Tales: Spain

NetLearning NetTravel SVR4 Travelers' Tales: Thailand

Net Lessons Travelers' Tales: A Woman's
World

O'REILLY'"
TO OROER: 800-998-9938 • order@oreilly.com • http:/Jwww.oreilly.com/

OUR PRODUCTS ARE AVAILABLE AT A BOOKSTORE OR SOFTWARE STORE NEAR YOU.

FOR INFORMATION: 800-998-9938 • 707-829-0515 • info@oreilly.com

International Distributors
UK, Europe, Middle East
and Northern Africa (except
France, Germany, Switzerland, &
Austria)
INQUIRIES
International Thomson Publishing
Europe
Berkshire House
168-173 High Holborn
London WClV 7AA, United Kingdom
Telephone: 44-171-497-1422
Fax: 44-171-497-1426
Email: itpint@itps.co.uk

ORDERS
International Thomson Publishing Ser
vices, Ltd.
Cheriton House, North Way
Andover, Hampshire SPlO 5BE,
United Kingdom
Telephone: 44-264-342-832

(UK orders)
Telephone: 44-264-342-806

(outside UK)
Fax: 44-264-364418 (UK orders)
Fax: 44-264-342761 (outside UK)
UK & Eire orders: itpuk@itps.co.uk
International orders: itpint@itps.co.uk

France
Editions Eyrolles
61 bd Saint-Germain
75240 Paris Cedex 05
France
Fax: 33-01-44-41-11-44

FRENCH LANGUAGE BOOKS
All countries except Canada
Phone: 33-01-44-41-46-16
Email: geodif@eyrolles.com

ENGLISH LANGUAGE BOOKS
Phone: 33-01-44-41-11-87
Email: distribution@eyrolles.com

Australia
WoodsLane Pty. Ltd.
715 Vuko Place, Warriewood NSW 2102
P.O. Box 935, Mona Vale NSW 2103
Australia
Telephone: 61-2-9970-5111
Fax: 61-2-9970-5002
Email: info@woodslane.com.au

Germany, Switzerland,
and Austria
INQUIRIES
O'Reilly Verlag
Balthasarstr. 81
D-50670 Koln
Germany
Telephone: 49-221-97-31-60-0
Fax: 49-221-97-31-60-8
Email: anfragen@oreilly.de

ORDERS
International Thomson Publishing
Konigswinterer StraBe 418
53227 Bonn, Germany
Telephone: 49-228-97024 0
Fax: 49-228-441342
Email: order@oreilly.de

Asia (except Japan & India)
INQUIRIES
International Thomson Publishing Asia
60 Albert Street # 15-01
Albert Complex
Singapore 189969
Telephone: 65-336-6411
Fax: 65-336-7411
ORDERS
Telephone: 65-336-6411
Fax: 65-334-1617
thomson@signet.com.sg

O'REILLYm

New Zealand
WoodsLane New Zealand Ltd.
21 Cooks Street (P.O. Box 575)
Wanganui, New Zealand
Telephone: 64-6-347-6543
Fax: 64-6-345-4840
Email: info@woodslane.com.au

Japan
O'Reilly Japan, Inc.
Kiyoshige Building 2F
12-Banchi, Sanei-cho
Shinjuku-ku
Tokyo 160 Japan
Telephone: 81-3-3356-5227
Fax: 81-3-3356-5261
Email: kenji@oreilly.com

India
Computer Bookshop (India) PVT. LTD.
190 Dr. D.N. Road, Fort
Bombay 400 001
India
Telephone: 91-22-207-0989
Fax: 91-22-262-3551
Email: cbsbom@giasbmOl.vsnl.net.in

The Americas
O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472 U.S.A.
Telephone: 707-829-0515
Telephone: 800-998-9938 (U.S. &
Canada)
Fax: 707-829-0104
Email: order@oreilly.com

Southern Africa
International Thomson Publishing
Southern Africa
Building 18, Constantia Park
138 Sixteenth Road
P.O. Box 2459
Halfway House, 1685 South Africa
Telephone: 27-11-805-4819
Fax: 27-11-805-3648

TO ORDER: 800-998-9938 • order@oreilly.com • http://Www.oreilly.com/
OUR PRODUCTS ARE AVAILABLE AT A BOOKSTORE OR SOFTWARE STORE NEAR YOU.

FOR INFORMATION: 800-998-9938 • 707-829-0515 • info@oreilly.com

The Official Documentation for the BeOS™

Be™ DEVELOPER'S GUIDE
Just as Linux quickly established itself as the OS of choice for the independent
UNIX developer community, the BeOS, available for both PowerPCs and Intel
systems, provides exciting new features for independent multimedia developers.
Anyone who has seen the BeOS in action experiences immediate techno-lust.
Here is an operating system that speaks multimedia, threading, and multipro
cessing as one who was raised speaking them from birth rather than as
languages painfully acquired through second-rate schooling. This is the ideal
platform for high-end graphics and multimedia, featuring Silicon Graphics per
formance and more on commodity desktop hardware.

Be Developer's Guide is the official programmer's reference manual to this
revolutionary new operating system. Much as Inside Macintosh galvanized the
Mac developer community nearly fifteen years ago with its under-the-hood
access to the new art of GUI programming, Be Developer's Guide provides
developers with access to the internals of the first really new operating system
in many years. Describing all the foundation kits in the operating system and
how to use them, this book is necessary reading for anyone who wants to
design runnable applications for the BeOS.

Topics covered in this book include:

• The Application Kit: the kit that gets you started

• The Storage Kit: an interface to the file system

• The Interface Kit: includes windows, buttons, controls--everything you need
to design a graphical user interface

• The Kernel Kit: provides access to the lowest programmable level of the
BeOS

• The Support Kit: a catchall for common functionality and definitions

Also included in the Be Developer's Guide is a CD-ROM containing the entire Be
operating system.

us $49.95
I SB N 1-565 9 2-28 7- 5 CAN $70.95

90000

11
6 36920 92287 2

O'REILLY™

Printed on Recycled Paper

