
.V K)DV

Naval Research Laboratory
Washington, DC 20375,5000

NRL Report 9267

,J.
,qj.

Parallel Access Main Memory (PAMM)N
N User's Manual, Version 1.0

ITODD J. ROSENAU

Integrated Warfare Technology Branch
Information Technology Division

MONA EL-KADI

Locus, Inc.
Alexandria, VA 22303

September 15, 1990

DTIC
S ELECTESoCT2

4 1oU

Approved for public release; distribution unlimited-

go 10) 183

REPO T D CUM NTATON AGEForm Approved

4 .PTI T L ECAN DTSU B T I T L E O M B F No I7N G4 -0U E

Public repolng burden for this collenion of information is estimate to aerqe ; nour er response. including the M m re for reviewing instruitOns. searching existing data sourcesCgathering and maintaining the data needd and completing a no e~e the co lenlon of information Send comments regjarding this burden estimate or any other asp0ect of th s
coller=On o f information. including suggestion% for reluncdng this burden to VWashingtO

n
Headquarter% Servicei. Directorate for information Operations and Reports. 1215 Jefferson

Davis Hig hwa V. Suite 1204. Arlington, VA 22202-43 02. an the O ff ce of Management and Budget Paper'work RedIUCIl Project (0 704.0188). Was~hington. DCS 2050 3

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

Final 6/87- 3/90
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Parallel Access Main Memory (PAMM)PE-623
User's Manual, Version 1.0 PE - 5523C

__ PN - 55-2354-C -0
6. AUTHOR(S) WU - DN155-502

T. J. Rosenau and Mona El-Kadi*

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8, PERFORMING ORGANIZATION
REPORT NUMBER

Naval Research Laboratory
Washington, DC 20375-5000 NRL Report 9267

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Strategic Defense Initiative Organization
Washington, DC 20301-7100

11. SUPPLEMENTARY NOTES

*Locus, Inc, Alexandria, VA 22303

12a. DISTRiBUTION /AVAILABILITY STATEMENT 1 2b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

,. 13. ABSTRACT (Maximum 200 words)

Here we describe the structure and use of the parallel access main memory (PAMM) database
management system (DBMS) interface for C programmers. PAMM is a high-speed, high-throughput
DBMS that allows concurrent access to data stored in a distributed data structure across all of the pro-
cessors in a general-purpose, multiprocessor computer. Concurrency is achieved by allowing several
tasks executing on different processors to access the database at the same time with a minimum of
locking. This allows an application's tasks to proceed with a minimum of delay. Its high speed is
achieved by keeping most of the data and index structures resident in main memory, thus reducing the
number of disk accesses performed. The data structure and storage method for the DBMS are a mul-
tidirectory hashing, distributed lock system that Sakti Pramanik and Charles Severance at Michigan
State University developed for the Naval Research Laboratory (NRL). PAMM has been implemented
on a 32-processor BBN Butterfly GPI000 at NRL. J .. ,- , -"

14. SUBJECT TERMS 15. NUMBER OF PAGES

Parallel processing Hashing 42

Database management systems

17. SECURITY CLASSIFICATION 1B. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT Of THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

'' 1111bid bV "N% %t 1)9

Acoession For

NTIS GRA&I
DTIC TAB 5
Unannounced I
Justification

By
Distribution/

Availability Codes
Avail and/or I4,L

Dist Special

CONTENTS (
1.0 INTRODUCTION ... 1

2.0 SYSTEM OVERVIEW .. 2

2.1 Schem a F iles ... 3

3.0 INTERFACE DESCRIPTION .. 6

3.1 Initialization R outine ... 6
3.2 Database Manipulation ... 6
3.3 Table Manipulation Routines .. 7
3.4 Record Manipulation Routines ... 8

4.0 PROGRAMMING EXAMPLES ... 9

4.1 PAMM Initialization ... 9
4.2 Creating a Database .. 9
4.3 Opening a Database ... 10
4.4 Closing a Database ... 10
4.5 Destroying a Database .. 10
4 .6 C reating a T able .. 11
4 .7 Loading a T able ... 11
4 .8 O pening a T able .. 12
4.9 C losing a T able .. 13
4 .10 Saving a T able .. 13
4.11 Unloading a Table ... 13
4 .12 D eleting a T able .. 14
4.13 Inserting a Record ... 14
4 .14 R eading a R ecord ... 14
4.15 U pdating a R ecord .. 15
4 .16 D eleting a R ecord .. 15
4.17 Initiating R Database Session ... 16

5.0 DEBUGGING PAMM .. 18

6.0 EVENT LOGGER ... 18

7.0 R E FE R E N C E S .. 19

APPENDIX - Parallel Access Main Memory (PAMM) User's Manual,
Command Definition Pages ... 21

iii

-PARALLEL ACCESS MAIN MEMORY (PAMM)

User's Manual, Version 1.0

1.0 INTRODUCTION

Often, when a data-intensive application is running, the need to access all of the data
efficiently and at random can be the most time-consuming portion of the execution time. This can
happen when the computer application is running or has an insufficient amount of main memory or
slow secondary memory. A conventional database management system (DBMS) running on a
typical computer must also share resources with the application for which it is storing data and any
other applications that may be running that may seriously degrade its performance. What is needed
is a DBMS with an abundance of main memory that has enough computing power to keep all of the
memory busy in which to store data[1].

One computer that satisfies these requirements is BBN's Butterfly GP1000 [2,3]. This
computer can have up to 128 processors with a maximum of 512 Mbytes of main memory. Each
processor is a Motorola 68020, with 4 Mbytes of main memory. The Naval Research Laboratory
(NRL) has developed a high-speed, concurrent-access, main memory DBMS that has been
implemented on a 32-processor GP000. Here we describe the interface to the parallel access main
memory (PAMM) DBMS on the GP1000.

PAMM is based on research by Sakti Pramanik and Charles Severance at Michigan State
University. They developed multidirectory hashing [4], which is a data-hashing scheme involving
multiple hash tables instead of just one. This hashing method was then modified [5-8] to allow
concurrent access to the multiple hash tables by multiple processors across distributed, shared
memory. The PAMM DBMS is a working prototype that uses these algorithms; it can be used as
the data manager for an application running on the Butterfly GPIOOO.

2.0 SYSTEM OVERVIEW

PAMM was developed as a high-speed, high-throughput, concurrent-access DBMS for use
on a general-purpose parallel processor such as the GPI000 [9]. It maintains data records in a
dynamic, distributed data structure [10] that allows concurrent access to records within the PAMM
structure with a minimum of locking. Access to data is through a two-phase hashing function to
distributed hash tables (Fig. 1). The first phase of the hash function determines the hash table or
directory in which the data record must be placed and the second phase determines where in this
directory the record must go. The number of directories is much greater than the number of
processors used, so each processor has several different directories resident within its memory.
Once the directory is determined, the record will be hashed into a chain-linked hash table in that
directory. Thus, to determine where a record will be located, two separate hash function
computations must be performed. If a maximum limit can be placed on the time to search a chain,
then the access time to insert, find, update, or delete a record should be upper bounded by some
constant.

Manuscript approved May 22, 1990.

1

ROSENAU AND EL-KADI

Data Reconstruction
Stage

Data DistributionDi.N.1 "

Data Dir. No. 3

Dir. No.N

Fig. 1 - Two-phase hashing method

This method works fine until the number of records within a single directory increases to
the point where searching the linked list of records becomes a major component of the time to find
a record. Once this point is reached, performance begins to degrade unless the size of each
directory is reduced. At a user-specified threshold, PAMM creates a new directory, and the
records from the overfilled directory are redistributed between the old and the new directories.
Statistics for each directory are kept so that memory use and average chain length can be
monitored. Thus, PAMM is a dynamic, concurrent-access DBMS with a user definable upper
bound on the maximum access time.

Since PAMM is a usable DBMS, it has long-term storage mechanisms for maintaining
table structure and table data over multiple sessions. Long-term storage is facilitated by using data
dictionaries to store information about tables and their attributes. When the database is open
(loaded into main memory), the dictionaries and tables are loaded into main memory as PAMM
structures; otherwise, they are stored as Mach 1000 (UNIX) files. Two dictionaries are associated
with each database, where each database is a separate collection of tables and data and has a unique
name. The main dictionary is the table dictionary, which stores necessary, long-term information
about each table. The other dictionary is the attribute dictionary, which stores information about
every attribute in each table. Since each dictionary is also a table, each is described in both
dictionaries. The table and attribute dictionaries are named "db name.td" and "d' name.ad,"
respectively, where "db name" is the name of the current database. Besides the file extensions
".td" and ".ad" for data dictionaries, table names end in ".dat" and table schema files end with
".scm". These are described in more detail.

2.1 Schema Files

For the database to create new tables (including the dicti maries), information about the
structure of the new table must be passed into the system. One method of accomplishing this task
is to pass a list or data structure of table format parameters to the create table routine. This is
awkward and difficult to code into an application program. Instead we have chosen to associate a

2

NRL REPORT 9267

schemafile with every table and data dictionary within a database. A schema file is a separate file
associated with a table and contains instructions specifying the exact structure of the respective
table. This method allows all table formats to be viewed and modified without having to change
any code. Schema files have a uniform, simple layout for easy, fast creation or modification of a
table's format. The syntax of a schema file is as follows:

database db name
attr attributel _name, type field_type, key 1
attr attribute2_name, type field_type, key 0
attr attribute3_name, type field_type, key 0

attr attributeNname, type fieldtype, key 0
end

A schema file consists of several lines of text describing various features of the table. In
the example above, all necessary keywords are shown in bold including commas. The first line in
a schema file specifies the name of the database in which this file belongs. The keyword
database must be the first word in the schema file, followed by the name of the database to which
this table belongs. Following this line are the descriptions of all attributes within this table. For
clarity, each line describes only one attribute. The first word in an attribute description line is the
keyword attr, followed by the name of the attribute. The only restrictions on an attribute's name
are that it can be no longer than 31 characters and cannot contain a comma. The attribute's name is
then followed by a comma and the keyword type. After the keyword, the type of the attribute is
specified, followed by another comma. The last section in the attribute description is signaled by
the keyword key, followed by a number specifying whether or not the attribute is a key field. If
the number is a zero, the attribute is not a key field. Otherwise, the integer value represents the
ranking of the attribute in the key (I is the primary field in the key, 2 is the secondary field in the
key, etc.). Unfortunately, at this point in development, the only valid values for the key priorities
are zero and one, and the key field must be an integer.

TYPE C TYPE SIZE DESCRIPTION
char char 1 byte 8-bit character
short short 2 bytes 16-bit short integer
integer int 4 bytes 32-bit integer
long long 4 bytes 32-bit integer
float float 4 bytes 32-bit, single-precision, floating point
double double 8 bytes 64-bit, double-precision, floating

point
string N char[N] N bytes N-1 byte character string, plus null

terminator

The valid types for an attribute are char, short, integer, long, float, double, and
string N. The type char (C type: char) is for storing a single character (or other 8-bit field), and
occupies one byte of memory. The type short (C type: short) is a 16-bit integer that occupies two
bytes of memory. The type integer (C type: int) is a 32-bit integer field that occupies four bytes
of memory. The type long (C type: long) is also a 32-bit integer field that occupies four bytes of
memory. Although these two fields are the same size, the provision is made to handle both data
types for those applications that use both, or PAMM may be ported to a multiprocessor that does.
The next field is float (C type: float), a single-precision, floating-point variable of length 32-bits

3

ROSENAU AND EL-KADI

(four bytes). The type double (C type: double) is a double precision, floating-point variable of
length 64-bits (8 bytes). Lastly, the type string N (C type: char[]) is a character string of length
N, including a null terminator.

Both data dictionaries are stored as tables and thus have corresponding schema files. The
table dictionary's schema file is listed below as an example and provides a definition of its
attributes:

tabledict.scm - table dictionary schema file

database master
attr table id, type long, key 1
attr table-name, type string 32, key 0
attr num attrs, type short, key 0
attr first attr, type long, key 0
attr rec_length, type short, key 0
attr max chains, type integer, key 0
attr split val, type float, key 0
attr overflow, type float, key 0
attr initial m, type integer, key 0
attr max dirs, type integer, key 0
attr supdups, type short, key 0
attr sortchain, type short, key 0

end

The database name associated with both dictionaries is master, which is ignored when the
dictionaries are created. Instead, the database name is assigned when the application creates a new
database and is stored in the name of both dictionaries (i.e., db name.td and db name.ad, where
db name is the name of the database). Since the table and attribute dictionary scFema files are the
same for all databases, they are named "tabledict.scm" and "attrdict.scm," respectively.

The first attribute of the table dictionary is the key field named table id of type long. At
this stage in PAMM's development, the only key field allowed is a 32-bit integer value that must be
the first four bytes in every record. The second attribute is table name, which is of type string
32. Because of internal PAMM design decisions, database, table, and attribute names can be a
maximum of MAXNAME (32) characters, including file extensions and null terminators. Thus,
database names can be 28 characters plus extension (".td\O" or ".ad\I"); table names can be a
maximum of 27 characters plus extension (".dat\O"); and attributes can be a maximum of 31
characters plus null terminator ('NO"). The third attribute is num attrs of type short. This field
contains the number of attributes in the table being described. The fourth attribute isfirst attr, of
type long. It contains the attribute ID for the first attribute in the attribute dictionary. The attribute
IDs for a particular table are sequentially increasing integers ranging fromfirst attr to (first attr +
num attrs -1), and are disjoint from any other tables' attribute IDs. The fifth attribute is rec length
of type short - the length of the table's record in bytes. The sixth attribute is maxchains of type
integer, and specifies the maximum number of linked lists or chains allowed in each directory.
The seventh attribute is split val of type float; this floating point number specifies the splitting
threshold for a P directory. If the current directory is number P and the average chain length is
greater than or equal to split val, this directory can be split in two. Average chain length is
computed as follows:

4

NRL REPORT 9267

number of records in directory

number of nonempty chains in directory

The eighth attribute is overflow of type float. It also specifies a splitting threshold for a directory
that is not the P directory. The ninth attribute is initial m of type integer. When a table is first
loaded into memory, a default number of empty directories can be created - a number set by the
user ahead of time. The tenth attribute is max dirs of type integer; this specifies the maximum
number of directories allowed for a particulartable. The eleventh attribute is supdups of type
short; this is a Boolean value, which is set to TRUE if duplicate records are to be suppressed and
FALSE if duplicates are allowed. The twelfth and last attribute is sort chain of type short; this is
also a Boolean value, which is TRUE if the chains in each directory are to be kept sorted and
FALSE if the chains are not sorted.

Another dictionary schema file is listed for the attribute dictionary, "attr dict.scm:"

attr dict.scm - attribute dictionary schema file

database master
attr attrid, type long, key 1
attr attr name, type string 32, key 0
attr table id, type long, key 0
attr attr type, type short, key 0
attr attr_pos, type short, key 0
attr attroffset, type short, key 0
attr attrlength, type short, key 0
attr attrpriority, type short, key 0

end

The first attribute is attr id of type long; it is the attribute ID for this particular attribute. A unique,
long integer ID exists for all attributes in the tables. The second attribute is attr name of type
string 32; it is a character string of length 32 characters. With the null terminator ('V"), the
maximum length of an attribute name is 31 characters. The third attribute is table id of type long;
this is the table ID for the table to which the attribute belongs. The fourth attribute is attr type of
type short, which specifies the data type of the attribute. The set of possible types are: (char,
short, integer, long, float, double, string N). The fifth attribute is attr.pos of type short;
this specifies the position of the attribute within the record with the first attribute's position set to
one. The sixth attribute is attroffset of type short; this specifies the byte offset of the attribute
within the record relative to the first attribute in the record. The byte offset of the first attribute in a
record is always zero. The seventh attribute is attrlength of type short; this number stores the
size of the attribute in bytes . The eighth and last attribute is keypriority of type short; this
number determines whether or not the attribute is a part of the key. If this value is zero, it is not a
part of the key; otherwise, the value will determine the attribute's ranking within the key (i.e., one
is the major component of the key field, two is the second major component of the key, etc.. At
this point in PAMM's development, the key field can consist of only one attribute, and it must be
an integer field in the first position in the record.

5

ROSEN4AU AND EL-KADI

3.0 INTERFACE DESCRIPTION

PAMM is implemented as a library of routines that is compiled with the application
program. It was written in the C programing language. A simple interface accesses the underlying
data structures. The interface routines to PAMM are divided into four distinct groups:
initialization, database manipulation, table manipulation, and record manipulation. The
initialization routine creates all necessary global data structures and makes them available to all of
the future child tasks. Database manipulation rmutines allow a database to be created, opened,
closed and destroyed. Table routines allow specified tables to be created, opened, loaded,
unloaded, saved, closed, and destroyed. Record routines allow data records to be inserted, read,
updated, and deleted.

Application programs that use the PAMM DBMS must contain the include file "pamm.h"
in all source code modules. For all applications, the command "#define MAIN" must precede the
command "#include <pamm.h>" in one and only one source code module (preferably the module
with the main routine declared in it). If the application has more than one source code module, the
remaining modules must call the command "#undef MAIN" before calling the command "#include
<pamm.h>". All interface routines return an integer value displaying the status of the returning
routine that can be found in the pamm.h include file. The interface routines are described below.

3.1 Initialization Routine

Pinito - This function allocates and initializes all of the global data structures that PAMM uses.
It must be called before any other PAMM routine except P create DBO, PdestroyDBO,
P_createO and P-delete_table(, and it must be called by the parent task of all tasks that will
access the PAMM structures, because this function will set the memory inheritance for all
global memory. It returns the values OK if P initO completed successfully or NOTOK if
an error occurred.

3.2 Database Manipulation

P_createDB("DBname") - This function verifies that a database with the name "DB name"
does not already exist and then makes a new database by creating a data dictionary and an
attribute dictionary named "DB name.td" and "DBname.ad," respectively. It returns the
values OK if P create DBO completed successfully, DBALREADYEXISTED if there
previously existed a database with the same name, or DBCREATEFAILED if an error
occurred.

P-open_DB("DBname") - This function opens the database named "DB name" and loads the
two dictionaries into PAMM tables. P open DBO must be called before any of the table
and record manipulation routines, but after P inito. It returns the values OK if
P openDBO completed successfully, DBDICTIONARYDAMAGED if one of the
dictionaries became corrupted, or DBOPENFAILED if an error occurred.

P_closeDB("DB_name", wait) - This function closes the database named "DB name." It takes
two parameters: DB name and wait. "DB name" is the database to be closed and wait is
of type BOOLEAN that specifies whether 7' close DBO should wait for all tables to close
before closing the database, or, if any tables are still open, return immediately with a code.
P_closeDBO unloads all tables still residing in main memory in PAMM tables into

6

NRL REPORT 9267

secondary storage. Finally, it closes and unloads the two dictionary tables. The routine
P close DB() returns the values OK if it completed successfully,
OPENTABLEBUTCANTWAIT if tables are still open but the wait variable was not
set, or DBCLOSEFAILED if an error occurred.

P_destroyDB("DB name") - This function destroys the two dictionaries and all tables belonging
to the database named "DB name" by physically removing the Mach (UNIX) files from
disk; thus this operation is n-onreversible. The database to be destroyed must not be open
or it will fail. P destroyDBO returns the values OK if it completed successfully,
DBDIDNOTEXIST if the database to be destroyed did not exist, or
DESTROYDBFAILED if an error occurred.

3.3 Table Manipulation Routines

P_create("table name") - This function creates a new table called "table name.dat" according to
the description in the new table's schema file. Every table has a corresponding schema file,
including both dictionaries (see Section 2.1) that tells which database the table belongs in
and the names and descriptions of all the attributes in the table. This routine must be called
before PopenDBO because it will add the new table's description directly into the two
dictionary files in secondary storage - not into the dictionaries' PAMM structures in main
memory. P create() returns the values OK if the routine is completed successfully,
SCHEMA_-NOTFOUND if the table's schema file was not present,
SCHEMASYNTAXERROR if the schema file description had an error,
TABLEALREADYEXISTS if that table already existed, or CREATEFAILED if an
error occurred.

P_load("table name", &new_parameters) - This function loads the records from the file
"tablename.dat" into a PAMM table in main memory. The table's database must already
be open, and the table must already have been created. P_loadO must be called before the
table can be opened (Popeno) for access even if there are no records to be loaded, because
P load() creates the new PAMM data structures in main memory. If it is desired that the
PAMM table parameters be changed from the default values, newparameters will be
passed in with the new set of parameters. New_parameters is of PARMTYPE, which can
be found in pamm.h, along with the default values stored in the variable, initial table.
P_loadO returns OK if it completed successfully, TABLENOTEXIST if that tafle was
not listed in the table dictionary, TOOMANYTABLES if there are too many loaded
tables, (MAXOPENTABLE = 20) or LOAD_FAILED if an error occurred.

P.open("table name", access-mode, &td) - This function opens the table called "table name."
The table must already be loaded before it can be opened. The variable td must be declared
aF a record of type PAMMTYPE in the calling program, and its address is passed into
P_openo. Upon returning from P_openQ, td is a valid table descriptor. The table is
opened with the permission level given by access mode. Valid access types are READ,
WRITE, and READWRITE. P_openO returns OK if the table was opened successfully,
TABLENOTEXIST if the table was not found in the table dictionary,
TABLENOTLOADED if the table was not loaded into main memory, or
INVALIDACCESSTYPE if it was opened with an incorrect access type.

P_close(&td) - This function closes the table referenced by the table descriptor td and invalidates
the table descriptor when it returns. P close() returns OK if the table was closed
successfully or TABLENOTOPEN if the table was not previously open.

7

ROSENAU AND EL-KADI

P_save("tablename", "disk file name") - This function unloads the data in main memory from
the table named table name into a file on disk called "diskfile name"; it does not remove
the table from the main memory database, but it makes a copy of the table onto disk. This
routine saves the contents of a table without having to close the table. We recommend that
"disk jilename" not equal "table name.dat" because the intermediate file will be
overwritten when the table is unloaded. P save() returns OK if it completed successfully,
TABLENOTEXIST if table-name is not in the database, or SAVEFAILED if an error
occurred.

P_unload("table name") - This function unloads the data in main memory from the table named
"table-name" into the file on disk, "table name.dat," and then removes the table from main
memory. A table that is open cannot be unloaded. P unload() will return OK if it
completed successfully, TABLENOTEXIST if "table name" is not in the database,
TABLESTILLOPEN if "table-name" is still open, or UNLOADFAILED if an error
occurred.

Pdelete table("table name") - This function deletes a table with the name "table name.dat." It
requires that a schema file of the correct format exists called "table-name.scm."
P_delete tableO deletes the given table's information from both data dictionaries without
loading the database into main memory and also deletes the data file for the table, which is
called "table name.dat." Thus the P delete table() must be called before P open DBO or
after P close-DBO. P delete table(U returms OK if the table was deleted successfully from
the database, SCHEMANOTFOUND if the schema file named "table name.scm" was
not found, SCHEMASYNTAXERROR if the schema file "table name.scm" was not in
the correct form, TABLENOTEXIST if the table was not in the table dictionary, or
DELETETABLEFAILED if an error occurred.

3.4 Record Manipulation Routines

P_insert(&td, &data rec) - This function inserts a record pointed to by datarec into the table
described by Td. The key for the record is assumed to be the first four bytes of data rec.
P insertO returns OK if the record was inserted successfully, NOWRITEPERM if the
table was not opened with WRITE or READWRITE permission, or DUPLICATEKEY
if a record with that key is already in the table and duplicate suppression is turned off.

P_read(&td, key, &datarec) - This function reads a record from the table described by td with
the key, and key into a buffer pointed to by data rec. Data rec must be the address of a
buffer that exists in the calling program's memory. The table must be open for READ or
READWRITE permission. P read() returns OK if the record was read successfully,
TABLE_NOT_OPEN if the table was not open or the permissions were wrong, or
RECORDNOTFOUND if the record with key, key, is not in the table.

P update(&td, &datarec) - This function replaces a record in the table described by td with the
contents of data rec. The key for the record is assumed to be the first four bytes of
data rec. P updateO returns OK if it completed successfully, NOWRITEPERM if the
table was not opened with WRITE or READWRITE permission, or
RECORDNOTFOUND if the record with the specified key was not found.

8

NRL REPORT 9267

P_delete(&td, key) - This function deletes a record with key, key, from the table described by td.
P_deleteO returns OK if the record was deleted successfully, NO WRITEPERM if the
table was not opened with WRITE or READWRITE permission, or
RECORDNOTFOUND if a record with the specified key is not found.

4.0 PROGRAMMING EXAMPLES

All PAMM interface routines return an integer status variable that can be found in the
include file pamm.h. For the following examples, we use an integer variable named result for
storing all status values.

4.1 PAMM Initialization

Before PAMM can be used, it must be initialized by calling PinitO' this allocaL .and
initializes all global data structures that PAMM needs. Thus, PinitO must be called before any
routine that accesses the PAMM tables (all routines except P create DBO, PdestroyDBO,
P_createQ, and P deletetable()). P intO must also be called in tfhe task that is a common
ancestor to all tasks that access the PAMM tables because only those tasks that are its children
inherit its memory address space. The code for initializing PAMM in an application program is:

if ((result = P inito) != OK)
{

printf("ERROR P init returned %d\n", result);

4.2 Creating a Database

To create a database, two files must exist in the directory of the database, "attrdict.scm"
and "tabledict.scm." These two files come with the PAMM package and can be moved or copied
but must never be altered. The ".scm" suffix on a file name means that the file is a schema file and
that it specifies the structure of a table, such as the number, type, and order of the attributes (see
Section 2.1). The command PcreateDB(database name) creates the attribute and table
dictionaries for the database name passed in the parameter database-name according to the two
schema files. The code for creating a new database is:

char database name[29];

strcpy(databasename, "DB name");
if ((result = P createDB(database name)) != OK)
{

printf ("ERROR P create DB returned %d\n", result);

where "DBname" can be any alphabetic character string no longer than 28 characters. After this
code is run, the files "DBname.td" and "DBname.ad" will exist in the directory, and tables may
then be put in the database.

9

ROSENAU AND EL-KADI

4.3 Opening a Database

To open a database, the command Popen DB(database name) must be called. The
parameter database name specifies the name of the database to be opened. As before, the
maximum length of the name of the database is 28 characters (excluding file extension). This
operation allocates and initializes all global data structures that PAMM needs. P-openDBO then
loads into PAMM tables both data dictionaries (named "DBname.td" and "DB name.ad"), where
"DBname" is the name of our example database. The code for opening a database is:

char database name[29];

strcpy(database name, "DB name");
if ((result = P_open_DB(databasename)) != OK)
{

printf("ERROR P_open_DB returned %d\n", result);I

4.4 Closing a Database

To close a database, the command PcloseDB(database name, wait) must be executed.
This command unloads all tables currently in main memory back to secondary memory that belong
to the database specified by the parameter database name. The wait parameter specifies if
P closeDBO should wait for any open tables to be closed (wait = TRUE) or if it should return
immediately without closing the rest of the database (wait = FALSE). The code for closing a
database is:

int wait;
char database name[29J;

wait = FALSE;
strcpy(databasename, "DB name");
if ((result = P closeDB(database name, wait)) != OK)
{

printf("ERROR P closeDB returned %d\n", result);

4.5 Destroying a Database

To destroy a database and all of its tables, the command is P destroy_DB(databasename).
This command deletes all the .dat files of the tables in the database whose names are specified by
the parameter databasename and also deletes the two data dictionaries, "database name.ad" and
"database name.td." All of the tables and the database must be closed before executing. The code
for destroying a database is:

10

NRL REPORT 9267

char database name[29];

strcpy(databasename, "DB name");
if ((result = PdestroyDB(databasename)) != OK)
{

printf("ERROR Pdestroy_DB returned %d\n", result);
}

4.6 Creating a Table

To create a new table, the command is Pcreate(tablename). A table is created in the same
directory as the database to which it will belong, and its name will be specified in the parameter
table name. The table name must be no longer than 27 characters, excluding the file extension,
".dat0." This command searches in the same directory for a schema file named
"table name.scm," which must be in the correct format (see Section 2.1 for format details).
P create() must be called before Popen DBO or after P closeDBO because it places the
information about the table and its attributes directly into the-two data dictionary files, not into a
PAMM structure. The code to create a new table is:

char table name [28];

strcpy(tablename, "tablel");
if ((result = Pcreate(tablename)) != OK)
{

printf ("ERROR P create returned %d\n", result);]

4.7 Loading a Table

When a database is opened, only the two data dictionaries are loaded into the main memory
data structure. It is up to the application to load into memory whatever database tables it wants to
use. Loading a table into memory is done with the P_load(tablename, &new_parm) function,
which takes two parameters - table-name and new.parm. The name of the table to be loaded is
passed in the character string variable table-name. The parameter new-parm is of type
PARMTYPE, which is defined in pamm.h. It lists the parameters for the table that can be
adjusted at load time to alter database performance. If no changes are desired, the value NULL
should be passed in newparm's position. If the parameters are changed, they replace the default
values for all subsequent table loadings until they are changed again. The parameters are:

max-chains - The maximum number of record chains allowed in each directory block.
DEFAULT = 11

split val - The maximum average nonzero record chain length allowed in the P directory
block before a split must occur.
DEFAULT = 1.0

overflow - The maximum average nonzero record chain length allowed in a non-P
directory block before a split must occur in that block.
DEFAULT = 1.5

11

ROSENAU AND EL-KADI

initial-m - The initial value for M, or the initial number of directories when loading the
table (should be a power of 2).
DEFAULT = 2

maxdirs - The maximum number of directories allowed per open table (should be a
power of 2).
DEFAULT = 2048

supdups - True to suppress duplicate record keys; false to allow duplicate record keys.
DEFAULT = TRUE

sortchain - True if record chains are to be kept sorted; false if record chains are not to be
kept sorted.
DEFAULT = TRUE

The code for loading a table named "tablel" into a previously opened database is:

char table name[28];
PARMTYPE new_parm;

strcpy(table name, "tablel");
if ((result = Pload(tablename, &new_parm)) != OK)
{

printf("IERROR P load returned %d\n", result);
}

4.8 Opening a Table

To open a table that has already been loaded, the command is Popen(tablename,
accessmode, &td), where the name of the table to be opened is passed in the parameter
table-name. The access permission is passed in a variable of type ACCESS-TYPE, and the only
permissible values are READ, WRITE, and READWRITE, which are defined in pamm.h. The
third parameter to P-openO is the address of a table descriptor (&td) that is used for all successive
tabk, accesses for the opening process. The table descriptor is of type PAMMTYPE and must be
allocated before PopenO is called. For successful execution, each process that accesses a PAMM
table must perform its own PopenO on that table. Upon successful completion, PopenO returns
a valid table descriptor, which is used to access the table. The code for opening a table that was
previously loaded is:

char table name[28];
ACCESS TYPE access-mode;
PAMMTYPE td;

strcpy(table name, "tablel");
access mode = READWRITE;
if ((result = P_open(tablename,access mode,&td)) != OK)
{

printf("ERROR P open returned %d\n", result);
1

12

NRL REPORT 9267

4.9 Closing a Table

To close a table, the command is Pclose(&td), where td is a valid table descriptor of the
table to be closed. When P_closeO returns, the table descriptor is no longer valid. Further
accesses with the table descriptor return an error message. P close() does not unload the table but
simply decrements its open count. The code for closing a table is:

PAMMTYPE td;

if ((result = P close(&td)) != OK)
{

printf ("ERROR P close returned %d\n", result);

4.10 Saving a Table

To save an intermediate copy of a loaded table to disk, the command is P save(table name,
savefilename). The maximum length of the table name is 27 characters, excluding file extension
(".dat\"), and the maximum length of the saved file name is 31 characters. It is recommended that
the new saved file name not be the same as the table name plus file extension (".dat") because
when the table is unloaded, it overwrites the intermediate copy. The code to save a table is:

char table name [28];
char save file name[32];

strcpy(table name, "tablel");
strcpy(save filename, "new file name");
if ((result = P save (table name, save file name)) != OK)
{

printf("ERROR P save returned %d\n", result);}

4.11 Unloading a Table

To unload a table that is no longer open, the command is P unload(table name). If the
table is still open by any process, PunloadO fails, immediately returning TABLE_STILLOPEN.
The code to unload a table is:

char table name[28];

strcpy(tablename, "tablel");
if ((result = P unload(table name)) != OK)
{

printf("ERROR P unload returned %d\n", result);
1

13

ROSENAU AND EL-KADI

4.12 Deleting a Table

To delete a table, the command is P delete-table(tablename). This command deletes the
data file table name.dat and removes the information about the table and its attributes from the two
data dictionaries. This command must be called before P open_DB() or after Pclose_DBO
because it strictly alters the disk versions of the data dictionaries, not the PAMM structures. This
operation is nonreversible. The code to delete a table is:

char table name[28];

strcpy(tablename, "tablel");
if ((result = P delete table(table name)) != OK)
{

printf("ERROR P delete table returned %d\n", result);}

4.13 Inserting a Record

To insert a record into a table, the command is P insert(&td, recordfprr), where td is a
table descriptor of type PAMM_TYPE and recordptr is a pointer to the data record being inserted.
Currently the record's key field must be the first four bytes (an integer) of the data record,
however, this restriction may be removed in later versions of PAMM. PinsertO will return the
value OK if the insertion completed successfully, NOWRITE_PERM if the table was not opened
with WRITE or READWRITE permission, or DUPLICATEKEY if a record with that key is
already in the table and duplicate suppression is turned off. The code to insert a record is:

PAMM TYPE td;
char *recordptr;

/* data record is defined and allocated elsewhere */
record-ptr = &datarecord;
if ((result = P_insert(&td, recordptr)) != OK)
{

printf("ERROR Pinsert returned %d\n", result);
I

4.14 Reading a Record

To read a record from a table, the command is P read(&td, key, record_ptr), where td is a
table descriptor of type PAMMTYPE, key is a 32-bit integer key value of the record to be
retrieved, and record ptr is a pointer to a previously allocated buffer where the retrieved record can
be placed. Pread() will return OK if it found the record, TABLENOTOPEN if the table was
not open or the permissions were wrong, or RECORDNOTFOUND if the record was not found
in the table. The code to insert a record is:

int key;
char *record-ptr;
PAMMTYPE td;

14

NRL REPORT 9267

/* data record is defined and allocated elsewhere */
recordptr = &data-record;
key = *((int *) record_ptr);
if ((result = P_read(&td, key, record_ptr)) != OK)
{

printf ("ERROR P read returned %d\n", result);}

4.15 Updating a Record

To update a record in a table, the command is Pupdate(&td, record_ptr), where td is a
table descriptor of type PAMMTYPE and record_ptr is a pointer to a record whose contents will
replace the record in the table with the same key field. The key of the record to be updated is found
in the first four bytes of the record pointed to by recordptr. If there is no record with that key in
the table, an error message will be printed and the value RECORDNOTFOUND will be
returned. The code to update a record is:

char *record_ptr;
PAMMTYPE td;

/* data record is defined and allocated elsewhere */
recordptr = &data-record;
if ((result P_update(&td, record_ptr)) != OK)
{

printf("ERROR P_update returned %d\n", result);}

4.16 Deleting a Record

To delete a record from a table, the command is P delete(&td, key), where td is a table
descriptor of type PAMMTYPE and key is a four-byte integer whose value is the key of the
record to be deleted. PdeleteO removes the record from the table, but it does not release the
memory back to the system for reuse until the database is closed (P_close_DB(). The code to
delete a record is:

int key;
char *recordptr;
PAMMTYPE td;

/* data record is defined and allocated elsewhere */
record-ptr = &data-record;
key = *((int *) recordptr);
if ((result = P delete(&td, key)) != OK)
{

printf("ERROR Pdelete returned %d\n", result);
}

15

ROSENAU AND EL-KADI

4.17 Initiating a Database Session

As an example, we show a portion of a C program that opens a previously created database
named "DBname" and then loads two tables named "tablel" and "table2" into PAMM structures.
At this point, it copies 1000 records from "table 1" into "table2" by forking 10 processes and letting
each process copy a block of 100 records. Then it unloads both tables and closes the database."table 1" will have its PAMM structure parameters modified for different performance. The code is
as follows:

int result;
char database name [29];
char table namel[28];
char table name2[28];
PARMTYPE newparm;

/* PAMM is initialized just once in a program, */
/* before any other PAMM calls are made. */
if ((result = P init()) != OK)
{

printf("ERROR Pinit returned %d\n", result);

/* Open the database */
/* The name of our example database is "DB name" */
strcpy(databasename, "DB name");
if ((result = PopenDB(databasename)) != OK)
{

printf("ERROR Popen_DB returned %d\n", result);I

/* Load "tablel" and change its PAMM table parameters */
strcpy(table namel, "tablel");
newparm.max chains = 512;
new parm.split val = 3.01;
new_parm.overflow = 5.01;
newparm.initial m = 32;
new_parm.max dirs = 27;
newparm.sup-dups = TRUE;
newparm.sortchain = FALSE;

if ((result = Pload(tablename, &new_parm)) != OK)
{

printf("ERROR P load returned %d\n", result);

/* Load "table2" but don't alter PAMM table parameters*/
strcpy(table name2, "table2");
if ((result = P load(table name, NULL)) != OK)

printf("ERROR P load returned %d\n", result);

/* Fork some processes to do concurrent database work */

16

NRL REPORT 9267

/* and wait for them to finish */
for (i=O; i < 10; i++)
{

if (fork() == 0)
{

task (i);

}

for (i=0; i < N tasks; i++)
{

wait (;

/* Unload the tables with their new or altered data */
if ((result = Punload(tablenamel)) != OK)
(

printf ("ERROR Punload returned %d\n", result);
I
if ((result = P unload(tablename2)) != OK)
{

printf ("ERROR Punload returned %d\n", result);

/* And close the database */
if ((result = PcloseDB(databasename, FALSE)) != OK)
{

printf ("ERROR P closeDB returned %d\n", result);

Each task opens both tables; "tablel" is opened with read permission and "table2" is
opened with write permission. Records are read from "table 1" into a buffer named buf[] and then
written into "table2" from that buffer. Record keys are computed by allocating each process a
block of 100 records. Thus, process I copies records with keys in the range of 0 to 99, and
process 2 copies records with keys in the range of 100 to 199, etc. Then both tables will be
closed. The code for each task is:

task (no)
int no;

int key
PAMM TYPE tdl;
PAMMTYPE td2;
char buf[1000];

/* Open both tables */
if ((result = Popen("tablel", READ, &tdl)) != OK)

printf("ERROR Popen returned %d\n", result);

if ((result = P open("table2", WRITE, &td2)) != OK)
{

printf ("ERROR P_open returned %d\n", result);

17

ROSENAU AND EL-KADI

/* Copy 100 records from tablel to table2 */
for (i=0; i < 100; i++)
{

key = (no * 100) + i;
if ((result = Pread(&tdl, key, buf)) != OK){

printf("ERROR P read returned %d\n",result);
}
if ((result = P insert(&td2, buf) != OK){

printf("ERROR P insert returned %d\n",result);

}
I

/* Close both tables */
if ((result = P close(&tdl)).= OK)
{

printf("ERROR P close returned %d\n", result);
I
if ((result =P close(&td2)) != OK)
{

printf("1ERROR P close returned %d\n", result);

5.0 DEBUGGING PAMM

In the unlikely occurrence that PAMM contains software bugs, debugging messages have
been included throughout the PAMM source code. They are turned off by default but are easily
activated by editing pamm.h and removing the character 'X' (capital X) from in front of any
debug macros (they are all in one debug section). Each debug macro corresponds with a particular
PAMM source code module (except for one macro: DEBUG, which is a catchall for some lower
level routines) and are easily correlated. The application program and the PAMM must then be
recompiled (PAMM using the make file). To turn the debug messages off again, place the 'X' in
front of the debug macros that had been activated and recompile the source code. When they are
turned off, they do not affect the performance of PAMM because they are not compiled into the
code.

When the debugging messages are activated, they will be printed on the screen. If that is
undesirable, they may be printed to a file named "PAMM.debug-messages" by editing pamm.h
and removing the 'X' from in front of the macro "DEBUGFILEON" and recompiling PAMM
and the application source code. If the application is executed a second time, the contents of the
debug messages file from the previous execution will be lost if not saved.

6.0. EVENT LOGGER

The GP1000 can log histories of events that occur during a program's execution. We have
included this facility for monitoring and optimizing PAMM's performance. Macro calls are
inserted into the code at specific locations to record the time that a process executes that command.

18

NRL REPORT 9267

The time stamps are saved in a file that is later viewed on an X terminal by using the "gist"
command. (See the Mach 1000 operating system manuals for using the event logger and gist.)

Events have been inserted into the PAMM source code for recording events. To turn this
feature on, uncomment (or define) the macro ELOG in pamm.h and recompile (using the make
file) the PAMM code and the application program. If events are desired in the application code,
they may be added also. For each forked process that wants to log events, two macros must be
called: TASKSTARTUP and TASKCLEANUP. Both macros can be found in pamm.h.

This feature is useful for finding performance bottlenecks in the application code. The
event logging facilities are turned off by default and, when turned off, do not affect the
performance of PAMM because they are not compiled into the code. When the event logging
facilities are turned on, the overhead incurred is minimal, so performance should not be altered
significantly.

7.0 References

[1] T. Rosenau and S. Jajodia, "Basic Database Operations on the Butterfly Parallel Processor:
Experiment Results," NRL Memorandum Report 6173, Mar. 1988.

[21 BBN Advanced Computers Inc., Butterfly GPIO00 Overview, November 10, 1988 (sales
brochure).

[31 BBN Advanced Computers Inc., Butterfly GPIO00 Switch Tutorial, 1989 (sales
brochure).

[4] S. Pramanik and H. Davies, "Multi-Directory Hashing," Technical Report, Department of
Computer Science, Michigan State University, Aug. 1988.

[5] S. Pramanik, "Key-Based, Distributed Locked RAM File System for Butterfly Machine
Using Multi-Directory Hashing," Michigan State University, 1987.

[6] S. Pramanik and M. H. Kim, "Generalized Parallel Processing Models for Database
Systems," 1988 International Conference on Parallel Processing, St. Charles, IL, Aug.
1988.

[71 S. Pramanik, C. Severance, and T. Rosenau, "A High Speed KDL-RAM File System for
Parallel Computers," Proceedings of PARBASE-90, Miami Beach, Florida, Mar. 1990.

[8] C. Severance, T. Rosenau, and S. Pramanik, "A High Speed KDL-RAM File System for
Parallel Computers," NRL Report 9259, Nov. 1989.

[9] T. Rosenau and M. El-Kadi, "The Design of a Parallel Access Main Memory (PAMM)
DBMS on a Butterfly GP1000," NRL Report 9266 (in process).

110] R. Rettberg and R. Thomas, "Contention is no Obstacle to Shared-Memory
Multiprocessing," Commun. ACM, 29(12), 1202-1212 (1986).

19

Appendix

PARALLEL ACCESS MAIN MEMORY (PAMM) User's Manual,
Command Definitions
(Alphabetically Sorted)

21

ROSENAU AND EL-KADI

PAMM Command Definitions

NAME

P close

SYNOPSIS
#include <pamm.h>

ret = P close(td);
int ret;
PAMM-TYPE *td;

DESCRIPTION
P_close() closes the table referenced by the table descriptor td decrementing the
table's open count. It also invalidates td for later use in the calling program.

RETURN VALUES
OK table was closed successfully
TABLENOTOPEN td is not a valid table descriptor

22

NRL REPORT 9267

PAMM Command Definitions

NAME

P closeDB

SYNOPSIS
#include <pamm.h>

ret = P closeDB(dbname, wait);
int ret;
char db name[];
BOOLEAN wait;

DESCRIPTION

P_closeDBO closes the database called db name. It unloads all the tables
currently residing in the main memory data structure onto the disk and unloads the
data dictionaries. The database cannot be closed while tables remain open. If one
or more tables remain open, the wait parameter allows the calling program to
specify whether P close DBO should wait for all tables to be closed before closing
the database ur fail and return an error message. If wait = TRUE (1),
P_closeDBO will wait, but if wait = FALSE (0), PcloseDBO will fail, returning
the code OPENTABLEBUT_CANTWAIT.

RETURN VALUES
OK database was closed successfully
DBCLOSEFAILED a fatal error occurred
OPENTABLEBUT_CANTWAIT tables are still open and wait was set

to FALSE (no wait)

23

ROSENAU AND EL-KADI

PAMM Command Definitions
NAME

P create

SYNOPSIS
#include <pamm.h>

ret = P create(tablename);
int ret;
char table-namef];

DESCRIPTION
P create() creates a table called table name. A file called "table name.scm" must
exist in the current director), which must be the schema file for the requested table,
and it must be of the format described in NOTES below. P create() adds the new
table's information to the data dictionaries without loading the database into main
memory. P_createO also creates an empty data file for the table named"table name.dat". P create() must be called before P_openDBO, i.e., the
database cannot be already loaded into main memory.

NOTES
The schema file format is as follows, where the reserved words are in bold and the
user-supplied variables are in plain text:

database dbname
attr attrlname, type attrl-type, key 1
attr attr2_name, type attr2_type, key 2
attr attr3_name, type attr3_type, key 0

etc

attr attrNname, type attrN-type, key 0
end

Allowable values for type are:
TYPE C TYPE SIZE DESCRIPTION
char char 1 byte 8-bit character
short short 2 bytes 16-bit, short integer
integer int 4 bytes 32-bit integer
long long 4 bytes 32-bit integer
float float 4 bytes 32-bit, single-precision floating point
double double 8 bytes 64-bit, double-precision floating point
string N char[N] N bytes N-1 byte character string plus null

terminator

In the current version, the values for key have no meaning and the first attribute
must always be of type integer.

24

NRL REPORT 9267

RETURN VALUES
OK the table was created successfully
SCHEMANOTFOUND "table name.scm" does not exist
SCHEMASYNTAXERROR schema file is not in correct format
TABLEALREADYEXISTS table already created in the database
CREATEFAILED a fatal error occurred

25

ROSENAU AND EL-KADI

PAMM Command Definitions

NAME

P createDB

SYNOPSIS
#include <pamm.h>

ret = P createDB(dbname);
int ret;
char db name[];

DESCRIPTION
P_createDB() creates a new database with the name passed in dbname. If the
database already exists, Pcreate DBO fails and prints an error message. It creates
and initializes the data dictionaries for the new database. It does not involve the
main memory data structure.

RETURN VALUES
OK database was created successfully
DBALREADYEXISTS dictionaries for db name already exist
DBCREATEFAILED a fatal error occurred

26

NRL REPORT 9267

PAMM Command Definitions

NAME

P delete

SYNOPSIS
#include <pamm.h>

ret = P delete(td, key);
int ret;
PAMM TYPE *td;
int key;

DESCRIPTION

P-deleteO deletes a record with integer key, key, from the table described by td.

RETURN VALUES
OK record was deleted successfully
NO_WRITE_PERM table is not open with write permission
RECORD_NOTFOUND key does not exist in table td

27

ROSENAU AND EL-KADI

PAMM Command Definitions

NAME

P delete table

SYNOPSIS
#include <pamm.h>

ret = P delete table(table name);
int ret;
char table-name[];

DESCRIPTION
P delete tableO deletes a table with the name table name. It requires that a schema
file of the correct format (see P create() exists caled "table name.scm". It deletes
the given table's information from the dictionaries without loading the database into
main memory. It also deletes the data file for the table, which is named
"table name.dat". It must be called before Popen_DBO, i.e., the database cannot
be already loaded in main memory.

RETURN VALUES
OK table was deleted successfully
SCHEMANOTFOUND "table nane.scm" does not exist
SCHEMASYNTAXERROR "table-nane.scm" is not in the correct format
TABLENOT_EXIST table name was not found in the dictionaries
DELETETABLEFAILED a fatal error occurred

28

NRL REPORT 9267

PAMM Command Definitions

NAME

P_destroy_DB

SYNOPSIS
#include <pamm.h>

ret = PdestroyDB(db_name);
int ret;
char db name[;

DESCRIPTION
P destroy_DBO destroys the database called db name. It removes the data
dictionaries and all data files belonging to its tables. It is not called on an open
database.

RETURN VALUES
OK database was destroyed successfully
DB DIDNOT EXIST db name does not exist
DESTROY_DBFAILED a fatal error occurred

29

ROSENAU AND EL-KADI

PAMM Command Definitions

NAME

Pinit

SYNOPSIS
#include <pamm.h>

ret = P inito;
int ret;

DESCRIPTION
PinitO allocates and initializes all of the global data structures that PAMM uses. It
must be called before any other PAMM routine except PcreateDB(),
P_desroyDBO, P_create(, and P delete table(). It must be called by the parent
task of all tasks that access the PAMM structures because this function sets the
memory inheritance for all global memory. It returns the values OK if PinitO
completed successfully or NOTOK if there was an error.

RETURN VALUES
OK PAMM was initialized successfully
NOT_OK a fatal error occurred

30

NRL REPORT 9267

PAMM Command Definitions

NAME

P insert

SYNOPSIS
#include <pamm.h>

ret = P insert(td, data rec);
int ret;
PAMM TYPE *td;
char data rec[];

DESCRIPTION

PinsertO inserts a record, datarec, into the table described by td. The key for the

record is assumed to be an integer in the first four bytes of data-rec.

RETURN VALUES
OK record was inserted successfully
NOWRITEPERM table is not open or only open with read permission
DUPLICATEKEY key already exists and duplicates are suppressed

31

ROSENAU AND EL-KADI

PAMM Command Definitions

NAME

P load

SYNOPSIS
#include <pamm.h>

ret = P load(tablename, new_parm);

int ret ;
char table name[];
PARMTYPE *new parm;

DESCRIPTION
P_loadO loads the data from the table on disk, table name.dat, into the main
memory PAMM data structure. It then makes table name available to be opened for
use. The parameter new_parm specifies many different parameters for the control
of the table. It is described in NOTES below. PloadO must be called before
Popen(), even if the table is empty because it creates the table's directory structure.

NOTES
The type PARMTYPE is defined in pamm.h. These parameters can be adjusted

to improve the efficiency of the database.

typedef struct parmtype_x
{

int max chains;
float split_val;
float overflow;
int initial m;
int max dirs;
BOOLEAN supdups;
BOOLEAN sort-chain;

PARMTYPE;

max chains - The maximum number of record chains allowed in a directory
block. DEFAULT = 11

split val - The maximum average nonzero record chain length allowed in the P
directory block before a split must occur. DEFAULT = 1.0

overflow - The maximum average nonzero record chain length allowed in a non-
P directory block before a split must occur in that block. DEFAULT = 1.5

initial m - The initial value for M at the opening of the database (should be a
power of 2). DEFAULT = 2

32

NRL REPORT 9267

max dirs - The maximum number of directories allowed per open table (should be
a power of 2). DEFAULT = 2048

supdups - TRUE to suppress duplicate keys, FALSE if duplicates keys are
allowed. DEFAULT = TRUE

sort chain - TRUE if record chains are to be sorted, FALSE if record chains are
kept unsorted. DEFAULT = TRUE

RETURN VALUES
OK table name was loaded successfully
TABLENOTEXIST table-name does not exist in this database
TOOMANYTABLES too many tables are currently open (20)
LOADFAILED a fatal error occurred

33

ROSENAU AND EL-KADI

PAMM Command Definitions

NAME

P_open

SYNOPSIS
#include <pamm.h>

ret = P open(tablename, access, td);
int ret;
char table name[];
ACCESS TYPE access;
PAMMTYPE *td;

DESCRIPTION
PopenO opens the table called table name. A table must be loaded before it can be
opened. The variable td must be declared as a structure of type PAMMTYPE in
the calling program and its address be passed into Popeno. Upon return from
P_openo, td will be a valid table descriptor. The table is opened with the
permission level given by access.

NOTES
The type ACCESSTYPE is defined in pamm.h. The three values allowed are

READ, WRITE, and READWRITE.

RETURN VALUES
OK table name was opened successfully
TABLENOT_EXIST table name does not exist in this database
TABLENOTLOADED table-name is not loaded in main memory
INVALID_ACCESSTYPE valid access types are READ, WRITE, READWRITE

34

NRL REPORT 9267

PAMM Command Definitions

NAME

P_openDB

SYNOPSIS
#include <pamm.h>

ret = P openDB(dbname);
int ret;
char db name[];

DESCRIPTION
PopenDBO opens the database called db name. It initializes the PAMM structure
for the database in main memory and loads-the data dictionaries.

RETURN VALUES
OK database was opened successfully
DBDICTIONARYDAMAGED an error exists in the data dictionaries
DBOPENFAILED a fatal error occurred

35

ROSENAU AND EL.KADI

PAMM Command Definitions

NAME

P read

SYNOPSIS
#include <pamm.h>

ret = P read(td, key, datarec);
int ret;
PAMM TYPE *td;
int key;
char data rec[];

DESCRIPTION
P read() reads a record from the table described by td with the integer key, key,
into the buffer called data rec. data rec must be the address of a buffer that exists
in the calling program's memory. The table must be open for READ or
READWRITE permission.

RETURN VALUES
OK record was read successfully
TABLENOTOPEN the table is not open or read permission is rot given
RECORDNOTFOUND record with key was not in table

36

NRL REPORT 9267

PAMM Command Definitions

NAME

P save

SYNOPSIS
#include <pamm.h>

ret = P save(tablename, disk file name);
int ret;
char table name[];
char disk file-name[];

DESCRIPTION
PsaveO saves the data in main memory from the table called table name into a file
on disk called diskfilename. It does not remove the table from tffe main memory
database, but just makes a copy of it onto disk. It is advised that disk filename
not equal "table name.dat" because when the table is unloaded, the intermediate file
will be overwritten.

RETURN VALUES
OK table was saved successfully
TABLENOT_EXIST table name does not exist in this database
SAVEFAILED a fatal error occurred

37

ROSENAU AND EL-KADI

PAMM Command Definitions

NAME

P unload

SYNOPSIS
#include <pamm.h>

ret = P unload(tablename);
int ret;
char table-name[];

DESCRIPTION
P unloadO unloads the data in main memory from the table called table name into
the file on disk, "table name.dat". It then removes the table from the main
memory database. A table that is still open cannot be unloaded.

RETURN VALUES
OK table was unloaded successfully
TABLENOTEXIST table name does not exist in this database
TABLESTILLOPEN table-name is still open
UNLOAD_FAILED a fatal error occurred

38

NRL REPORT 9267

PAMM Command Definitions

NAME

P_update

SYNOPSIS
#include <pamm.h>

ret = P update(td, datarec);
int ret;
PAMM TYPE *td;
char data rec[];

DESCRIPTION
P_updateO replaces a record in the table described by td with the contents of
data rec. The key for the record is assumed to be an integer in the first four bytes
of data rec.

RETURN VALUES
OK record was updated successfully
NOWRITEPERM table is not open or not open with write permission
RECORDNOTFOUND record with key was not found

39

