A U T O \underline{N} E \underline{T} I \underline{C} S

A DIVISION OF NORTH AMERICAN AVIATION, INC.
INDUSTRIAL PRODUCTS
3584 Wilshire Blvd., Los Angeles 5, Calif.

October 3, 1960

RECOMP TECHNICAL BULLETIN NO. 15

TITIE: RUNGE-KUTTA INTEGRATION
PURPOSE: To give a brief description of the Runge-Kutta process for point-wise integration of systems of differential equations.

EFFECTIVE DATE: October 3, 1960
CONTENTS:
This survey has 9 parts:
I Purpose of Method
II Geometric Principle
III Derivation for One Equation
IV Ease of Computation
V Generalization to More Equations
VI Modification by S. Gill
VII Accuracy
VIII Recommendation
IX Bibliography

RECOMP TECHNICAL BULLETIN NO. 15 Page One

I Purpose of Method
To solve a simultaneous set of n first order differential equations $y_{i}^{\prime}=f\left(x, y_{1}, y_{2}, \cdots y_{n}\right)$, given only one initial value for each y_{i} at x_{0}.
II Geometric Principle
Consider the equation $y^{\prime}=f(x, y)$, where $\left(x_{0}, y_{0}\right)$ is known. Given h, find k such that $\left(x_{0}+h, y_{0}+k\right)$ is on the curve. The first approximation to k is given by drawing a line from (x_{0}, y_{0}) with slope $\left.\frac{d y}{d x}\right|_{x=x_{0}}$ and finding $\left(x_{0}+h, y_{0}+k_{1}\right)$ on this line. k_{2} is
found by picking an intermediate point x_{1}, finding $y_{1_{d y}}$ on the line, then creating a new line through $\left(x_{0}, y_{0}\right)$ with slope $\left.\frac{d y}{d x}\right|_{x=x_{1}}$, then
finding ($x_{0}+h, y_{0}+k_{2}$) on the new line. This process is repeated successively until a predetermined number of k_{i} have been found.
Then k is taken as a weighted average of these k_{i}.
III Derivation for One Equation
Given $y_{0}^{\prime}=f\left(x_{0}, y_{0}\right)$, find y such that $y^{\prime}=f(x, y)$.

$$
\begin{aligned}
y^{\prime \prime} & =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} \frac{d y}{d x}=f_{x}+f_{y} f \\
y^{\prime \prime \prime} & =\frac{\partial y^{\prime \prime}}{\partial x}+\frac{\partial y^{\prime \prime}}{\partial y} \frac{d y}{d x}=f_{x x}+2 f_{x y} f+f_{y y^{\prime}} f^{2}+\left(f_{x}+f_{y^{\prime}} f\right) f_{y}
\end{aligned}
$$

The Taylor Series about x_{0} is:

$$
y=y_{0}+\left(x-x_{0}\right) y_{0}^{\prime}+\frac{1}{2}!\left(x-x_{0}\right)^{2} y_{0}^{\prime \prime}+\frac{1}{3}!\left(x-x_{0}\right)^{3} y_{0}^{\prime \prime}+\cdots
$$

Let $h=x-x_{0}, \Delta y=y-y_{0}$,

$$
\begin{aligned}
\Delta y=f_{0} h & +\left.\frac{1}{2} h^{2}\left(f_{x}+f_{y} f\right)\right|_{\left(x_{0}, y_{0}\right)}
\end{aligned} \quad+\frac{1}{6} h^{3}\left[f_{x x}+2 f_{x y} f+f_{y y} f^{2} .\right.
$$

RECOMP TECHNICAL_BULIETIN NO. 15. Page Two

Let $k_{1}=h f\left(x_{0}, y_{0}\right)$

$$
\begin{aligned}
& k_{2}=h f\left(x_{0}+m h, y_{0}+m k_{1}\right) \\
& k_{3}=h f\left(x_{0}+\lambda h, y_{0}+\rho k_{2}+(\lambda-\rho) k_{1}\right)
\end{aligned}
$$

Where m, λ, P are constants.
Taylor's Formula is:

$$
\begin{aligned}
& f\left(x_{0}+p, y_{0}+q\right)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right) p+f_{y}\left(x_{0}, y_{0}\right) q \\
& +\frac{1}{2}\left[f_{x x}\left(x_{0}, y_{0}\right) p^{2}+2 f_{x y}\left(x_{0}, y_{0}\right) p q+f_{y y}\left(x_{0}, y_{0}\right) q^{2}\right]+\ldots
\end{aligned}
$$

Expanding k_{2}, k_{3} by Taylor's Formula,

$$
\begin{array}{rl}
k_{1}=h & f\left(x_{0}, y_{0}\right) \\
k_{2}=h\left\{f\left(x_{0}, y_{0}\right)+m h f_{x}\left(x_{0}, y_{0}\right)+m k_{1} f_{y}\left(x_{0}, y_{0}\right)\right. \\
& +\frac{1}{2}\left[(m h)^{2} f_{x x}\left(x_{0}, y_{0}\right)+2 m^{2} h k_{1} f_{x y}\left(x_{0}, y_{0}\right)\right. \\
& \left.\left.+\left(m k_{1}\right)^{2} f_{y y}\left(x_{0}, y_{0}\right)\right]+\cdots\right\} \\
k_{3}=h & \left\{f\left(x_{0}, y_{0}\right)+\lambda h f\left(x_{0}, y_{0}\right)+\left[\rho k_{2}+(\lambda-\rho) k_{1}\right] f_{y}\left(x_{0}, y_{0}\right)\right. \\
& +\frac{1}{2}\left\{(\lambda h)^{2} f_{x x}\left(x_{0}, y_{0}\right)+2 \lambda h\left[\rho k_{2}+(\lambda-\rho) k_{1}\right] f_{x y}\left(x_{0}, y_{0}\right)\right. \\
& \left.\left.+\left[\rho k_{2}+(\lambda-\rho) k_{1}\right]^{2} f_{y y}\left(x_{0}, y_{0}\right)\right\}+\cdots\right\}
\end{array}
$$

By substituting for k_{1}, k_{2} and truncating to h^{3}, get:

$$
\begin{aligned}
& k_{1}=h f\left(x_{0}, y_{0}\right) \\
& k_{2}= h f\left(x_{0}, y_{0}\right)+h^{2} m\left(f_{x}+f_{y} f\right)_{\left(x_{0}, y_{0}\right)} \\
&+\left.\frac{1}{2} m^{2} h^{3}\left(f_{x x}+2 f_{x y} f+f_{y y} f^{2}\right)\right|_{\left(x_{0}, y_{0}\right)} \\
& k_{3}=h f\left(x_{0}, y_{0}\right)+\left.\lambda h^{2}\left(f_{x}+f_{y} f\right)\right|_{\left(x_{0}, y_{0}\right)}+\frac{1}{2} h^{3}\left[\lambda ^ { 2 } \left(f_{x x}+2 f_{x y} f\right.\right. \\
&\left.\left.+f_{y y} f^{2}\right)+2 m \rho\left(f_{x}+f_{y} f\right) f_{y}\right]\left.\right|_{\left(x_{0}, y_{0}\right)}
\end{aligned}
$$

```
RECOMP TECHNICAL BULIETIN NO. 15

Form the weighted mean:
(**) \(\quad \bar{K}=a k_{1}+b k_{2}+c k_{3}\)
where \(a, b, c\) are arbitrary constants.
Forming this sum and setting \(\bar{K}=\Delta y\), ie, equating coefficients in (*) and ( \(* *\) ), one gets:
\[
\begin{aligned}
a+b+c & =1 \\
b m+c \lambda & =\frac{1}{2} \\
b m^{2}+c \lambda^{2} & =1 / 3 \\
c p m & =1 / 6
\end{aligned}
\]

We now have four equations in six unknowns.
Upon solving this system for \(a, b, c, m, \lambda, \rho\), get \(\Delta y=a k_{1}+b k_{2}+c k_{3} \cdot\) This agrees with the Taylor expansion of \(\Delta y\) as far as the \(h^{3}\) term. The error is on the order of \(\mathrm{h}^{4}\).

Ease of Computation
Four equations in six unknowns gives 2 degrees of freedom. By assigning 2 values appropriately, one can get particularly simple formulas. A widely used set of four k's is:
\[
\begin{aligned}
& k_{1}=h f\left(x_{0}, y_{0}\right) \\
& k_{2}=h f\left(x+\frac{1}{2} h, y+\frac{1}{2} k_{1}\right) \\
& k_{3}=h f\left(x+\frac{1}{2} h, y+\frac{1}{2} k_{2}\right) \\
& k_{4}=h f\left(x+h, y+k_{3}\right) \\
& \Delta y=1 / 6\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)
\end{aligned}
\]

For other simple formulas, see [4], P. 186.
V Generalization to More Equations
Consider the generalization to n simultaneous differential equations:
\[
\frac{d y_{i}}{d x}=f_{i}\left(x, y_{1}, y_{2}, \cdots, y_{n}\right)(i=1, \cdots, n)
\]

RECOMP_TECHNICAL_BULETIN NO. \(\mathbf{1 5}^{15}\)

Using the simple formula described above, we get:
1. \(k_{i l}=h f_{i}\left(x_{0}, y_{1_{0}}, y_{2_{0}}, \cdots, y_{n_{0}}\right)\)
2. \(k_{i 2}=h f_{i}\left(x_{0}+\frac{1}{2} h, y_{1_{0}}+\frac{1}{2} k_{11}, y_{2}+\frac{1}{2} k_{21}, \cdots\right)\)
3. \(k_{i 3}=h f_{i}\left(x_{0}+\frac{1}{2} h, y_{1_{0}}+\frac{1}{2} k_{12}, y_{2}+\frac{1}{2} k_{22}, \cdot \bullet\right)\)
4. \(k_{i l_{4}}=h f_{i}\left(x_{0}+h, y_{1_{0}}+k_{13}, y_{2_{0}}+k_{23}, \cdots\right)\)
then \(\quad \Delta y_{i}=1 / 6\left(k_{i 1}+2 k_{i 2}+2 k_{i 3}+k_{i 4}\right) \quad(i=1, \ldots n)\)
VI Modification by S. Gill
In [2], S. Gill uses the 2 degrees of freedom to minimize the amount of storage required for intermediate computations. If there are \(n\) equations, Gill succeeds in reducing the order of the number of storage registers from 4 n to 3 n (from 8 n to 6 n for floating point computations).

\section*{VII Accuracy}

To get higher orders of accuracy, one needs to use a larger number of k's in forming the average \(\bar{K}\). Four \(\mathrm{k}^{\prime}\) s will give fourth-order accuracy, but fifth-order accuracy requires six k's. Every additional k greatly increases the number of computations since an additional term in Taylor's Formula is required, plus an additional substitution into each \(f_{i}\).

VIII Recommendation
This method is particularly useful in obtaining starting values, since only one initial condition is required; more sensitive methods can then be used to get successive points to greater accuracy. Furthermore, the large number of computations makes this method unwieldy for many points.

The modification by S. Gill is widely used and is recommended.
IX Bibliography
1. Berman, Martin, Numerical Methods for Differential Equations,
class notes, 1956.

RECOMP TECHNICAL_BULLETIN NO. 15 . . . . . . . . . . . . . . . . . Page_Five
2. Gill, S., A Process for the Step-by-Step Integration Of Differential Equations in an Automatic Digital Computing Machine, 3 June 1950.
3. Kopal, Zdenek, Numerical Analysis, PP. 195-214, 1955
4. Kunz, Kaiser S., Numerical Analysis, PP. 183-189, 1957

REFERENCES: See Bibliography
INFORMATION TO: All Concerned
WRITTEN BY: L. A. Raphael Applied Mathematics```

