
TITLE:

PURPOSE:

EFFECTIVE DATE:

CONTENTS:

AUT 0 NET I C S

A DIVISION OF NORTH M1ERICAN AVIATION, INC.

INDUSTRIAL PRODUCTS
3584 Wilshire Blvd., Los Angeles 5, Calif.

May 4, 1960

REC OMP TECHNICAL BULLETIN NO. 10

Translation of FORTRAN to SALT

To indicate h::)'tv 0ertain FORTRAN programs may be converted to
SALT language.

May 4, 1960

1. Constants, variables, ~subscripts

1.1 Fixed point constants in FORTRAN are represented by
floating point words in SALT in',fixed point format.
Since SALT permits more digits than does FORTRlG'J,
no conversion is required.

1.2 Floating point constants without exponents in FORT~J
may have any number of digits. Numbers of this type
must be truncated to at most 15 symbols, including
decimal point and must not contain more than 11 digits
in either the integer or fraction.

1.3 Floating point constants with exponents in FORTRhl~
have general form

n E .t"X

where n is a floating pOint constant without an
exponent, E is the letter "E", and x is an integer.
To convert to SALT write

t & 10' (:I:'X)

where t equals n truncated as per 1.2.

1.4 FORTRAN differentiates between fixed and floating
point variables. SALT does not make this distinction,
and hence no conversion is required.

1.5 If a FORTRAN identifier contains the letter "0",
another letter must be chosen to replace it such
that the identifier remains uniqueo

PAGE TWO

1.6 FORTRA~'~ programs involving three dimensional arrays
must be entirely recoded to include at most two
dimensional arrays.

1.7 SALT subscripts must not contain any arithmetic
operations. If a FORTRAN subscript involves
arithmetic operations, a new unique subscript must
be defined equal to the aritrunetic function. This
definition nlust precede the use of the new subscript.

2 • Arithmetic statetlents

2.1 The following is a conversion table for the
arithmetic operations.

Operation FOHTRAN SALT

Addition + +

Subtraction

Hultiplication ~~ &

Division / /
Exponentiation ~h~

3. Control Statements

3.1 Unconditional IIG¢ T¢ nff

The FORTRA.N IIG¢ T¢ nIT where n is a statement number
requires no conversiono

3.2 Assigned G¢ T¢ cannot be converted to SALT.

3.3 .ASSIGN ca~1not be converted to S~\.LT co

3.4 Computed G¢ T¢ cannot be converted to SALT.

3.5 IF requires no conversion.

3.6 smrSE LIGHT and IF (SENSE LIGHT) cannot be converted
to SALT. A numerical sWot tch, hmr1ever, can be
sl.Ibstituted for the sense light, in which case 3.5
Flay be used.

3.7 The FORTRAN statement IF (SENSE S'VJITCH i) nl , n2
must be replaced by IF (SENSE j) nl , n2, where

i=l, 0", 6 and j=B, C, or Do

3.8 IF ACCUHULAT¢R ¢VEJFL¢W and IF ~JU¢TIENT ¢VEilFL¢W
cannot be converted to SALT.

3.9 IF DIVIDE CHECK cannot be 'convert.Ad to SALT.

RECONP TECHNICAL BULLETIN NO. 10 PAGE THREE --. - - -- -- - ~ - - - - - - - - - - - ~ - - ~ - - - - - - - - - - - - -
3.10 PAUSE requires no conversion. PAUSE n should be

translated as PAUSE.

3.11 ST¢P requires no conversion. ST¢P n should be
translated as ST¢P.

3.12 The FORTRAN statement n¢ n i=nl , n2 should be
translated as n¢ n F¢R i ~ (1) m2• The FORTRAN

statement D¢ n i=ml , m2, m3 should be translated

as D¢ n F¢R i l~ (m2) m3•

3.13 C¢NTINUE requires no conversion

3.14 EXITF, G¢, and G¢G¢ are examples of exit instructions
which vary from company to company; they should be
translated as END.

4. Input - output instructions: There are no analogies
among the FORTRRJl and SALT input-output instructions.
Input-output regions should be entirely recoded~.

5. Specification Statements

5.1 DIHENSI¢N Vl , V2, V
3

, '00, V~, where the Vi are
subscripted variables, should be translated as n
statements of the form A.RRAY V. 0

~

5.2 EQUIVALENCE, FREQUENCE, and C¢NN¢N cannot be
translated, but may in general be deleted.

6. Subroutines

6.1 Function definition formula. In FORTRAN, expressions
of the type A(X)=B where A is an identifier with last
letter flF", X is a set of arguments, and B is an
arithmetic eX;:Jression bas ed on the arguments, define
subroutines in the main program. SALT" permits functions
of this form only if the function identifier is defined
in both the SALT and the SCRAP II macro list. X may
involve exactly one argument.

6.2 Function subprograms in FORTRAN are similar to routines
in SALT except for nomenclature and one restriction:

FORTRAN ---
CALL NANE
SUBR¢UTINE NANE
RETURN

SALT

G¢ T¢ NANE
R¢UTINE NAHE
RETURN NANE

REnOMP TECHNICAL BULLETIN NO. 10 PAGE FOUR ------- --- ---- ------_ .. --- -- ------------

6.2.1 The SALT routinepresumes that the arguments have
been stored in fixed locations prior to execution.

REFERENC ES :

1. "Signal Corps REC01-1P Algebraic Translatern Program
No. 1034, T. J. Tobias, U.S. Army Signal Engineering
Agency, Arlington, Virginia.

2. "FORTRAN1I, International Business Machines.

INFOR}mTION TO: SALT Users.

WRITTEN BY: M. F. Berman
Applied Mathematics
Autonetics Industrial Products

APPENDIX

EXAMPLE 1.

Find the approximate numerical solution of the ordinary differential equation

~. xy+l
dx

in the interval O~ x~l given that y (0) - y -0
o

~y - ~xA(xo Yo +1)

Print at intervals of 0.01

FORTRAN

READ I, DELTAX

PRINT 1, DELTAX

XPRINT II 0.01

X - 0.0
Y • 0.0

Y2 - Y (at x1+Ax) Yl+~x (X:t Yl + 1)

Y1+1-Y1+ ~ x (xi Yi + 1)

SALT

READ DELTAX $

PRINT DELTAX $

XPRINT: 0.01 $

X : 0 $
Y : 0 $

3 Y - Y + DELTAX * (X*Y+1.0)

X • X + DELTAX

3, Y: Y+DELTAX & (X&Y+l.0) $

X: X+ DELTAX $
IF (X-XPRINT) 3, 4, 4

4 PRINT 2, X, Y,

XPRINT • XPRINT + 0.01
IF (X-l.0) 3, 5, 5

5 ST9$P
G~ G9$

IF (X-XPRINT) 3, 4, 4, $
4, PRINT X $

PRINT Y $

XPRINT : XPRINT + 0.01 $

IF (X-l.O) 3, 5, 5 $

5, ST9JP $

E~m $

EXANPLE 2.

Nultiply t10J0 matrices A and B together and leave the result in memory at
C • A and B have order N by N J where N may not exceed 15.

FORTRAN

DIMENSI~N A(15,15), B(15,15), e(15,15)

D~ 2 I == 1, N
nr6 2 J • 1, N
C(I,J) == 0.0
D~ 2 K == 1, N
C(IJ) = C(I,J) + A(I,K)*B(K,J)
ST~P

G¢O¢

EXAHPLE 3.

Write a subprogram to compute

y=xA+z

Y = zA + X

if X :> Z

'f X .¢;,' •. 7 ~ '''1 ,!".,1

SALT

SALT

ARRAY A(15, 15) $

ARRAY B(15, 15) $
ARRAY D(15, 15) $

D~ 2 F¢.R I 1(1) N $
D~ 2 F~R J 1(1) N $
D(I,J) : 0 $
D~ 2 F¢.R K 1(1) N $

2, D (I,J):D(I,J-)+A(I,K)&B(K,J) $
ST~P $
END $

FORTRAN

SUBR~UTINE FINDY

IF (X-z) 4, 4, 5
4Y-Z**A+X

ROUTINE FINDY $

IF (X-Z) 4, 4, 5 $
4, Y: Z' A + X $

G~ T¢ 10
$Y-X**A+Z

10 RETURN

Enter subpr()gramby~

CALL FINDY

o¢ T~ 10 $
5, Y: x' A + Z $

10, RETURN FINDY $

Enter subprogram by~

G¢ TO FINDY $

