
TITLE:

PURPOSE:

AUT 0 NET I C S
A DIVISION OF NORTH A}mRICAN AVIATION, INCo

INDUSTRIAL PRODUCTS
3584 Wilshire Blvdo, Los Angeles 5, Califo

June 1, 1960

RECOHP TECHNICAL BULLETIN NOo 9

REGOMP OPTIMIZATION TABLES A1TD RELATED TIMING CONSIDERATIONS

To present to the programmer tables enabling him to code
optimally, and to utilize the so called "Gray Area" of
memory 0

EFFECTIVE DATE: June 1, 1960

CONTENTS: The following pages contain two tables which will be
useful to the programmer who is interested in coding
optimally, that is, in minimizing the total running
time of a given programo In addition, there is a
discussion of the general timing considerations involved
when coding RECOMP II in machine language 0

TABLE I

R~OMP . II time factors table 0 (A~l npmbers octal)

Instruction k . *** l-

ADD 02 02
AIS en) (02 + n)*
ARS en) (02 + n)*
CFL 42 47
CFV 42 47
CLA 02 01
CLS 02 01
CTL 02 07
CTV 02 07

DIS (Command) 02 0 0 42
(B C D) 02.1 (04 + 2m) Max: 42

DIV 02 .51
DSL 02 .51
DSR 02 .52
DVR 02 52
EXT 02 01
FAD 02 (0.5 + d + n) Max: 54**
FCA 02 01
FCS 02 01
FDV 02 60**
FMP 02 57**
FNM (h) (02 + n)*
FSB 02 (0.5 + d + n) Max: 54**
FSQ 02 .54
FST 42 41
MFR 02 50
MPY 02 50
PNC (j) (j)
PNW 02 (j)
PTC (j) (j)
PTW 02 (j)
RDY (j) (j)
RDZ (j) (j)
SAX 43 40
SQR 02 52
STA (Main memory) 02 40

(L or V loop) 06 00 Max: 15*

ST¢ 43 40
SUB 02 02
TMI 05 03*
T¢V 05 03*
TPL 0.5 03*
TRA 05 00*
TSB 05 02*
TSC 05 02*
TSD 05 02*
TYC (j) (j)
TYW 02 (j)
TZE 05 03*
XAR (h) 02*

For explanation of symbols, (* ,**,.*~**,d,h,i,j ,k,m,n) see following page.

TABLE II

Optimum address for command pair located in word 0000, where right hand
operation is TRAo

OPR ADDRESS OF OPERAND TRA ADDRESS OF NEXT INSTRUCTION

ADD 0002 TRA 0011
ALS OO(n) TRA 00(7+n)
ARS OO(n) TRA 00(7+n)
CFL 0042 TRA 0016
CFV 0042 TRA 0016
CLA 0002 TRA 0010
CLS 0002 TRA 0010
CTL 0002 TRA 0016
OTV 0002 TRA 0016
DIS [0002 0 0 TRA 0051
DIS 000201 TRA 00(13+2m)
DIV 0002 TRA 0060
DSL 0002 TRA 0060
DSR 0002 TRA 0061
DVR 0002 TRA 0061
EXT 0002 TRA 0010
FAD 0002 TRA 0063*
FCA 0002 TRA 0010
FOS 0002 TRA 0010
FDV 0002 TRA 0067*
FNP 0002 TRA 0066*
FNM TRA 0055
FSB 0002 TRA 0063*
FSQ 0002 TRA 0063
FST 0042 TRA 0010
MPR 0002 TRA 0057
MPY 0002 TRA 0057
SAX 0043 TRA 0010
SQR 0002 TRA 0061
STA [0002 TRA 0047
STA 7766 TRA 0013
ST¢ 0043 TRA 0010
SUB 0002 TRA 0011
TMI 0005 TRA 0010
T¢V 0005 TRA 0010
TPL 0005 TRA 0010
TZE 0005 TRA 0010
TSB 0005 TRA 0007
TSC 0005 TRA 0007
TSD 0005 TRA 0007
XAR TRA 0007

* Max for normalized numbersj) may take longer when unnormalized o

n Num~er of shifts, 0 = n ~ 77, (octal)o
m Number of BCD characters (excluding sign) prior to terminate character

o = m ~ 17, (octal)

As an illustration of the use of the ta~e we present a routine which packs the
contents of A and R into A~ the sign and first 26 bits of A retained, and
followed by the last 13 bits of Ro (This routine could be used for example in
saving storage space for floating point numbers) 0

SYMBOLIC

LOC aPR ADD

PAK SAX N

ADD A BIT

STA EXIT 01

XAR

ADD EXCES

STA N

EXIT CLA N

TRA RTN

We might wish to use this with the following instructions (as calling sequence):

LaC

START

END

OPR

FCA

TRA

ST¢

TRA

ADD

X

PAK

X

M¢RE

Our hope in optimizing then becomes this: to arrange the routine "PAKtJ so that
it can be completed in time to pick up the instruction pair at END without
delay 0 For this we assume that the routine, npAKrt, to be used,is in the V 100po

The optimum machine language coding for this then is found through use of
Table I to be: (Assume we start at Loc 0004 0 0)

RlroOMP TECHNICAL BULLETIN NO 0 9 (Cont 0) ,
~ ~ - - - - ~ - ~ - - - - - - - - - - ~ - - ~ - ~ - ~ - - - - - - - - - - - ~ ~ -

STImOLIC MACHINE
err

LOC OPR ADD LOC LOC OPR ADD

START FCA X 0004 0004 +30 00060

TRA PAK 0007 +57 77700

END ST¢ x 0005 0005 +60 00500

TRA ~10RE 0010 +57 00150

PAK SAX V 0014 7770 +15 77770
ADD A BIT 0017 +01 77710

STA EXIT .1 0025 7771 +42 77731
XAR 0033 +43 00001

ADD EXCES 0042 7772 +01 77740
STA v 0050 +42 77770

EXIT CLA V 0063 7773 +00 77770
TRA RTN 0070 +57 00050

EXCES const 7774 +00 00000

-00 40000

Thus we see that the packing takes place within one drum revolution and hence
is what we wanto

d Difference in size of exponents 0 !: d ~ 46 (octal) o.

h Any address o

i Factor to be added (octal) to address of operand in left half command in
order to determine effective address for right half instructiono If
factor in this column has an * then it is to be added to address of
instruction, not address of operando (Same for absolute value commandso)

j Not optimizableo

k Factor to be added (octal) to address (or effective address) of instruction
in order to select optilnum address for operando

m Number of BCD characters (excluding sign) prior to terminate character;
o ~ m ~ 17 (octal) 0

n Number of shifts; 0 ~ n ~ 77 (octal) •

* Factor to be added (octal) to left half instruction address rather than
operand address to determine effective right half instruction address.

** These factors indicate maximum for normalized numbers, may take longer
when unnormalizedo

*** If the instruction under consideration is in a right half word then we
cannot optimize the reading of the ne~t instruction} however, the earliest
it can be read (its effective address) is 02 greater than the effective
address in the case of a left half wordo

HOW TO USE TABLE I

Table I may be used both for optimizing and for computing expected running times
of programso It may be used both for programming outside of and wi thin the
high speed loopso

When using Table I for coding where loop addresses are involved, code just as
in the case of main memory but replace addresses by their loop equivalents 0

When the computer is in continuous mode of operation~ the pressing of the Start
button after the halt and transfer to 0003 has the following effect~ The word
at 0014 is picked up at sector time 0014~ the transfer is made and instruction
OOlOoO(L) is picked up at sector time 24 and put into the C registero The
store then takes place at sector time 0030 when the write head for Channel 77
is at 7770 0 Similarly, the store at OOlOol(L) takes place at Sector time 360
Thus, in continuous mode we are assured that both main memory locations 7770
and 7776 are changedo The program tests for this and when it is the case~
types out the letter "C"o

However, if the machine is now set to single step mode, the following sequence
occurs beginning at 000301, (The word at 0014 is in the accumulator)o The
transfer is executed and the instruction at 0010 is placed in the C register,
the machine haltso As soon as the start button is pressed the machine begins
to execute the store into 7770 0 The probability is only one in eight that this
store will occur at sector time 30, since it depends on the sector time when we
release the start button o Similarly, the store at OOlOol(L) will probably not
occur at sector time 360 Then we test to see if one of the above stores failed
to occur and if so, we type out the letter lfS"o Thus, with a probability of
63/64 the machine can tell whether or not is is in single step modeo By adding
further stores of this kind we can increase this probability to any level,
(less than 1)0

REFERENCES: Operating Nanual for RECOMP IIo

INFORMA TION TO: All concerned

WRITTEN BY: Harry Lo Nelson
Applied }lathema tics

As a final example of the use of the tables we present the following routine~
which, in its explanation, will show how the programmer may make use of the
so-called gray-area, that is, main memory locations 7760 to 77770*

Information may be entered directly into these locations by use of either tape~
typewriter or co.,nsoleo Information contained therein may be observed by
setting the dials to the desired location and pressing a readout buttono How
ever, information contained therein may not be typed or punched out**o

Internally, main memory locations 7760-7777 are addressable (by the reading
heads) for the purpose of picking up ,information stored therein, only through
the use of the commands CT1 and eTV oiH~ However, for commands inyolving
storage of information, the situation is differento The commands CF1 and eFV
always store information in main memory--never in the 10opso~H** The commands
ST¢, SAX, STA, and FST, when used with addresses 7760 to 7777, always store
information in the loop area j and sometimes may also store information into
main memory area 7760 to 77770 Moreover the. instruction FST 7777 may store
information into location 77000

The circumstances which cause information being stored into the loops to be
stored also into main memory will now be explained 0 When a command which
specifies that information is to be written into memory is encountered, circuitry
is set up to allow this to be done o For this purpose the section of main memory
7760-7777 is treated exactly the same as the'last 16 words of any channel o

HOlrJ'ever, when the proper instruction is given, in addition to preparing the
circuits to write information into mai!l memory locations 7760-7777 by use of
the write head for channel 77, circuitry is also set up to write information into
the corresponding loop area by use of the appropriate loop write heado As soon
as the writing has been accomplished, tnese circuits are disengaged and the
next command is performedo It may happen that the information is written into
the l09P at the same time that the ma1n memory location bearing that address
is under the main memory write-heado When this happens information is
simultaneously recorded in both main memory and loop areas 0 By careful programming
one can assure that this simultaneous writing will or will not happeno Thus
the so-called gray area can~be utilized by the programmer as neededo

* As we shall see location 7700 should also be included in the gray area o
p.

** The commands P~~, TYW, PTW, address of 775701, use main memory locations
7757 & 7760 rather than loop 77600

*** The commands FCA, FeS, B~, FDV, FAD, FSB, and FSQ with the address of
7757, also use main memory 7760 0 ~

**** The commands eFL 776x and CFV 777X cause all words in the 1 and V loops,
respectively, to be cleared·to - zero; however, the former contents
of L (or V) are transferred to main memoryo

RECOMP TECHNICAL BULLETIN NO o 9 _____ _ ... __________ tal c-. _______ _______ c., _ .. aD"_

In, fact, this unusual property makes possible some strange effects. Programs
may be written which will do the following: Allow the machine to decide
whether the computer is in continuous or single step mode, allow the machine
to decide whether or not the transfer stop switch is set, or to decide whether
the preset stop switch is set, and if so, whether it is in position "1st" or
"2ndtt

0 Programs whose output depends on the rapidity with which the start
button is pressedo

LOCATION COMMAND

0001 +64
+00

0002 +57
+00

0003 +00
+57

0010 +60
+60

0012 +03
+52

0013 +00
+03

0014 +52
+72

0015 +57
-00

0016 +72
+57

0021 +60
+60

0022 +77
-00

ADDRESS

00100
77610

00210
00000

00140
77600

77700
77700

77600
77660

77760
77600

77660
00160

00011
00000

00050
00011

77700
77760

00030
00000

COMMENTS

To get proper timing

Thus contents of 0011 are
put in main memor.y 7770 &
7776

RECOMP TECHNICAL BULLETIN NO o 9 (Conto)
~ - - - ~ - ~ - ~ ~ ~ ~ ~ - -

HOW TO USE TABLE II

This table presents the data of Table I in a somewhat different form for the
case in which the right half command is a transfero

10 What to do if instruction pair is not in sector 00 0

In this case add actual sector number to each address o

20 What to do if operand address not optimizedo

Here, add difference between actual address and optimum (table) operand
address to next instruction addresso

Example: (Optimum program) 0

Loo OPR ADD OPR ADD

0001 + CLA 00030 + TRA 01110
0111 + }1PY 00130 + TRA 35700
3570 + SUB 60720 + TRA 01010

0101 + STA 77651 + TRA 60220

6022 + ST¢ 00130 + TRA 00600 *non-optimized since
we wish to replace
former multipliero
(optimum address is
X(65) 0

0060 + DIS 23620 + TRA 01110 *non-optimized since
we wish to loopo
(Optimum address is
XX3l) 0

Other instructions not considered in Table II for which partial optimization is
possible are TYW, PTW, and PNWo For each of these we can optimize the address
of the operand, but not the address of the next instructiono This is due to
the fact that here we have a mechanical function, which is not connected with
the internal clocking of the computero The correct optimization for the
operand is the same as for DIS in each of these caseso

Another case in which optimization may be accomplished is in the use of trapping
mode (negative commands)o For negative cown~~ds in the left half of the command
pair the optimum sector is 730 For right half negative commands the situation
is the same as for TRAo Thus for example in location 0073~ -CLA 0045 + TRA 0022
will trap to 0000 0 0 in 1035 mso, while in 0074, -CLA 0076 + TRA 0004 takes 17043
mso to trap to zeroo

