PROGRAM TITTLE:	FLOATING POINT TO PLOTTER INCREMENT CONVERSION SUBROUTINE
PROGRAM CLASSIFICATION:	Subroutine
AUTHOR:	R. Doyle
PURPOSE:	Given the coordinates of a point (X, Y) as a pair of floating point numbers, compute the number of x and y plotter increments necessary to move the pen from its present position to the given point. This subroutine is to be used in conjunction with the "Line Plotter", "Point Plotter", and "Plot X then Y" subroutines.
DATE:	28 November 1962

Published by
RECOMP Users' Library
at
AUTONETICS INDUSTRIAL PRODUCTS
A DIVISION OF NORTH AMBRICAN AVIATION, INC.
3400 East 70th Street, Long Beach 5, California

DISCLAIMER

Although if is assumed that all the precautions have been taken to check out this program thoroughly, no responsibility is taken by the originztar of this program for ony orroneou: results, misconesptions, or mi-representetions thet may asinap
 Autonotic: Industrial Products for th: corr.ic: pappaductitite of this program. Nc warrianty, express ur impllod, lo exfended by the use or application of the program.

1. Purpose: Given the coordinates of a point (X,Y) as a pair of floatiniu point numbers, compute the number of x and y plotter increments necessary to move the pen from its present position to the given point. This subroutine is to be used in conjunction with the "Line Plotter," "Point Plotter," and "Plot X then Y" subroutines.
2. Restrictions: The coordinates of the point must be nomnalized floatinc point numbers, and should be consistent with scale factor and available plotting space.
3. Method
3.1 Let
$X=$ the value of the x coordinate of the point to which the pen is to be moved
$X_{s}=$ scale factor, defined to be the number of units per inch, for the x coordinate
x - the value of the x coordinate of the point to winch the pen is to be moved in units of plotter increments ($1 / 100$ inch)
$x_{P}=$ the value of the x coordinate of the present position of the pen in units of plotter increments Y, Y_{s}, y, and y_{P} are similariy defined
3.2 The floating point value X is divided by $X_{s} / 100$, and converted to a fixed point rounded integer to give $x ; y$ is similarly computed. The differences

$$
\begin{aligned}
& \Delta X=x-x_{P} \\
& \Delta Y=y-y_{P}
\end{aligned}
$$

are the required number of plotter increments. Finally, x and y replace x_{p} and y_{P} respectively.
3.3 The subroutine must be initialized by supplying the two scale factors, X_{s} and Y_{s}, and the initial position of the pen.
4. Use: This subroutine is intended to convert floating point data to the form required by the "Line Plotter," Point Plotter," and "Plot X then Y " subroutines. Thus, calling this routine will be followed by calling one of the above mentioned routines.
4.1 Initialization:

Before plotting, the pen should be positioned manually and the following values supplied to the subroutine. This is to be accomplished by storing them in the V-loop and transferring to $L_{0}+30$.

X, Y (and X_{o}, Y_{0}) are given in arbitrary units of the users choice; the scale factors X_{s}, Y_{s} are the desired number of these arbitrary units per inch of pen motion.
4.2 Calling Sequence: Transfer to the origin of the subroutine (L_{0}) with the following word in the accumulator:
$+\infty X X X X O+00$ YYYY 0

Return to the next location with ΔX in the A-register and ΔY in the R-register as fixed point integers at $b=39 . \Delta X$ and $\triangle Y$ are the number of plotter increments necessary to move the pen from its present position, to the position specified by the coordinate values X and Y. Note that the output of this subroutine in the exact form required by "Line Plotter," "Point Plotter," and "Plot X then Y" subroutines.
4.3 Applications
4.3.1 In what follows it is assumed that initialization has been accomplished in accordance with 4.1.

Let
$I_{o}=\begin{aligned} & \text { origin of "Floating Point to Plotter Increment Conversion" } \\ & \text { subroutine }\end{aligned}$
LP = origin of "Line Plotter" subroutine
PP = origin of "Point Plotter" subroutine
PXY = origin of"Plot X then Y "subroutine
$K W=+\infty X X X X 0+\infty$ YYYY 0
4.3.2 To plot straight line from present pen position to point (X,Y):

CLA KW
TRA L_{0}
TRA LP
RETURN
4.3.3 To move the pen, in the raised position, to the point (X, Y) :

> CLA KW
> TRA L
> TRA PP
> RETURN
4.3.4. To plot a straight line from present position (X_{P}, Y_{P}) to point $\left(X, Y_{P}\right)$, followed by a straight line to (X, Y); i.e., to plot a step in a bar graph:

CLA KW
TRA L
TRA PXY
RETURN
4.4 Reset:

At anytime the pen may be returned to the initial position (X_{0}, Y_{0}) by

CLA $\mathrm{L}_{\mathrm{O}}+56$
TRA L_{0}
TRA PP
RETURN
5. Coding Information:
5.1 Locations used:

This routine occupies 57_{8} locations (i.e., L_{o} to $L_{o}+56$). It destroys both loops and all registers. All locations are used and none are erasable.
5.2 Constants

$$
\begin{aligned}
& L_{0}+42,430.5 \text { (floating point) } \\
& L_{0}+54,55100.0 \text { (floating point) }
\end{aligned}
$$

5.3 Variables

$$
\begin{aligned}
& L_{0}+40 \quad X_{p} \quad \text { (fixed point, binary scale of } 39 \text {) } \\
& 41 \quad Y_{p}\left({ }^{2} \quad " \quad " \quad " \quad " 1\right) \\
& L_{o}+44,45 \quad X_{s} / 100 \quad \text { (floating point) } \\
& +46,47 Y_{s} / 100 \text { (" ") } \\
& +50,51 \mathrm{X}_{\mathrm{o}} \quad \text { (floating point) } \\
& +52,53 \mathrm{Y}_{0} \quad(\quad 1 \quad n)
\end{aligned}
$$

5.4 This subroutine is relocatable by method of AN-076
6. Remark

Sometimes it is desired to make a decision based on the value of the x and/or y coordinate in units of plotter increments. For example, if one is plotting a function $Y(x)>0$ such that $Y \rightarrow 0$ as $x \cdots$. he may wish to terminate the plot when Y becomes less than the resolution of the plotter, i.e., when $Y=$ zero plotter increments. For this purpose it is to be noted that upon return from this subroutine the value of x and y, in units of plotter increments, is contained in locations $L_{0}+40$ and $L_{0}+41$ respectively (fixed point at $b=39$).

```
0000.0
    + CTL 0000.0 + SAX 7760.0
    + CTV 0040.0 + TPA }7763.
    + XAR 0000.0 + TRA 0000.1
    + ADD 7762.0 + STO 0027.0
    + CLA 7760.0 + STA 0016.1
    + STA 7766.0 + 70 0000.0
    + FCA 0000.0 + FDV 7774.0
    + CTL 0010.0 + TF2A 7760.0
0010.0
    + TPL 7761.1 + FSB 7772.0
    + TRA 7762.0 + FAD 7772.0
    + XAR 0000.0 + alS 0001.0
    + SUB 7764.0 + STA 7704.1
    + XAR 0000.0 + ARS 0047.0
    + STO OOHO.O + SU3 7770.0
    + STO 7770.0 + FCA 1252.0
    + CTL OOCO.O + TRA 77EO.O
```

0020.0
+ FD: 7776.0 + TPL 7762.0
+ FSB 7772.0 + TRA 7762.1
+ FAD $7772.0+$ XAR OOCO.C
+ ALS OOD1.0 + SUE 7765.0
+ STA 7765.1 + CLA 7770.0
+ xar 0000.0 + aPS 0047.0
+ STO OCLi. $0+$ SUB 7771.0
0030.0
+ SAX 7700.0 + ACD OCCE. 0
+ STA 0037.1 + FCA 7770.0
+ FST 0050.0 + FCA 7172.0
+ FST 00う2.0 + FCA 77.7. . 0
+ FDV 0054.0 + FST CC:! ! 0
+ FCA 7776.0 + FCOOC5!. 0
+ FET OC46.0 + CLA OO56.0
+ TRA $0000.0+$ TPA $30+1.0$
0040.0

- CLA 0000.0 - CLA 0?C5.1
- CLA 0C00.0 - CLA 0210.0
+ ARS 0000.0 - CLA OODC. 0
+ CLA 0000.0 - CLA 0000.0
+75 3412.0-75 3412.0
- CLA OOOC. 0 - CLA OOCO3.1
+ TZE 7534.0 - TZE 7534.0
$-\quad$ CLA $00000-$ CLA
0050.0
- ARS 0000.0 - CLA 0000.0
+ CLA 0000.0 - CLA 0001.0
- ARS 0000.0 - CLA 1000.0
+ CLA 0000.0 - CLA 0001.0
+620000.0 - CLA 0000.0
+ CLA 0000.0 - CLA 0003.1
+ CLA 0050.0 + CLA 00\%2. 0

