RECOMP II USERS' PROGRAM NO. 1133

PROGRAM TITLE:
PROGRAM CLASSIFICATION:
AUTHOR:

PURPOSE:

DATE:

FLIP-FLOP TMPLEMENTATION FOR RECOMP II
Service
Lt. D. Brown, USASCS, Fort Monmouth, New Jersey

Provides the Recomp with 38 addressable conditional flip-flops. Any one or combination of these can be set or reset by other programs to "remember" the presence or absence of special conditions.

1 March 1962

Published by
RECOMP Users' Library
at

AUTONETICS INDUSTRIAI PRODUCTS

A DIVISION OF NORTH AMERICAN AVIATJON, INC.
3400 East 70th Street, Long Beach 5, California
csent?
 thoun h b a to it tat - Mr an an an
ro. r
in min mat

PROGRAM TITLE: FLIP-FLOP IMPLEMENTATION FOR RECOMP II

1. PURPOSE: Provides the Recomp with 38 addressable conditional flipflops. Any one or combination of these can be set or reset by other programs to "remember" the presence or absence of special conditions.
2. RESTRICTIONS

Flip-flop designations range from 01_{8} to 468 . Attempts to set or interrogate a higher-numbered flip-flop will be ignored.
3. METHOD

Bit positions 2-39 in a memory word are treated as flip-flops. A binary one is placed in a designated bit position to "set" it. Zero in any bit position indicates a "reset" state.
4. USAGE

4. 1 Calling Sequence

The Routine may be called in two ways:
4.1.1 By a direct transfer to location XXX1, where XXX0 is the first location of the routine. See 4.5 , Options available
4.1.2 Through the trapping mode. Whenever the flip-flop designation of the calling instruction is negative, no additional transfer instruction is needed. The computer will trap and go into the routine. See 4.5, Options available
4. 2 Explanation of Symbols

See 4.5, Options available
4. $3 \quad$ Extent of Storage
4. 4 RETURNS
4.4.1 There is no special error return. Addressing nonexistent flip-flop will be ignored, and return will be made to the next instruction after the calling sequence.
4.4.2 Whenever a flip-flop is being unconditionally set or reset, return is made to the next instruction after the calling sequence.
4.4.3 Whenever a flip-flop is interrogated and found to be in the reset state, return is made to the next instruction after the calling sequence.
4.4.4 Whenever a flip-flop is interrogated and found to be in the set state, return is made to the transfer address specified in the calling instruction.
4.5 Options Available

When a direct transfer is made to the routine, the calling instruction must occupy a single full word in memory. The first half of the word is a transfer instruction to XXX1. 0 , where XXX0. 0 is the start location of the routine. The second half of the calling instruction word is a pseudo-operation that may be constructed according to the following options:

$$
+57 \text { XXX1 } 0+2700000
$$

When B designates a flip-flop, C is zero, and A is:
positive: set flip-flop 27 and return to the calling program. negative: reset flip-flop 27 and return to the calling program. A B C +57 XXX1 $0 \quad+27 \quad 37541$

When B designates a flip-flop, C gives a transfer option, and A is:
positive: sense flip-flop 27, but leave as-is. If set, transfer to location 3754. 1 Otherwise, return to calling program.
negative: sense flip-flop 27 and leave in reset state. If initially set, transfer to location 3754. 1. Otherwise, return to the calling program.

```
                                    A B
                                    C
```

+57 XXX1 $0+00 \quad 37541$
When B is zero, A is :
positive: set all flip-flops and, negative: reset all flip-flops
C is:
go to location 3754.1
4.5.4 Whenever the flip-flop designation sign is negative, the +57 XXX1 0 instruction may be used, but it is not needed. If it is not used, a designation such as -2737541 may be placed in either half of an instruction word. It will cause the RECOMP to enter the trapping mode and then enter the flipflop subroutine.
4. 6 Utilization of L \& V Loops High speed Toops are not tied up by this routine.
5. CODING INFORMA TION
5.1 Constants
5.1.1 After relocating the routine to the desired place in memory, the folbowing instruction must be placed in location 0000:

$$
\text { +15 XX56 } 0 \text { +57 XXX3 } 1
$$

(XXX0 is the relocated start of the flip flop routine.)
5.1.2 The flip-flop holding register may be examined at location XX50.
5.2 Execution time

Averages 0.47 seconds.

FLIP - FLOP IMPLEMENTATION SUBROUTINE

FLIP-FLOP IMPLEMENTATION -2-

FLIP-FLOP IMPLEMENTATION - 4-

