
RECOMP II USER'S PROGRAM NO. 1117

FROGRAM TITLE: AFCOR AIDEBRAIC COMPILER MANUAL

PROGjAM CLASSIFICATION: ,Executive and Control'

AUTHOR: BROADVIEW R~SEARCq CORPORATION

PURPOSE: To translate Algebraic and controi
statements into symbolic coding which
can then be assembled into machine
language by AF~R (A Symbolic Assembly Program) ~

DATE: May 1961

Published by

R~OOMP User's Librar,y

at

AUTONETICS INDUSTRIAL PRODUCTS
A DIVISION OF NORTH A~1ERICAN AVIATION, INC.

3400 E. 70th Street, Long Beach 5, Calif •.

DISCLAIMER
Although It Is assumed that all the precautions have been
taken to check out this program thoroughly, no responsibility
is taken by the originator of this program for any erroneous
results, misconceptions, or misrepresentations t~at may (jppear
in this program. Furthermore, no responsibility is taken by

, Autonetics Industrial Products for the correct reproductions of
, this program. No warranty, express or implied, is extended

by."the use or applleo.tion of the program. ,

BRC l6~-lO i

FOREWORD

This manual describes the operation and use of the algebraic

compiler prepared under contract AF 23(601)-2857 for the

Aeronautical Chart and Information Center, U.S.'Air Force, by

Broadview Research Corporation.

The operation and use of the symbolic assembler, which can

be used to produce machine-language programs, is described in BRC

l61-9-Rev., AFAR Symbolic Assembler Manual.

The flow charts and coding for the compiler and assembler

programs appear in the following documents:

BRC 161-11-1, AFAR Symbolic Assembler Flow Charts

BRC 161-11-11, AFAR Symbolic Assembler Coding

BRC 16l~14-1, AFCOR Algebraic Compiler' Flow Charts

BRC 161-14-11, AFCOR Algebraic Compiler Coding

BRC 161-10

Section

I

II

III

IV

V

VI

Appendix

A

B

C

TABLE OF CONTENTS

INTRODUCTION 0 • • • •

ELEMENTS OF THE AFCOR LANGUAGE. . . .

Constants
Variables
Expressions and Formulas
Functions

AFCOR SOURCE LANGUAGE STATEMENTS .

INPUT-OUTPUT AND FORMAT STATEMENTS

Input Statements . .
Output Statements
Format Statements

SAMPLE PROGRAM '

Problem
Method of Solution .

COMPILER OPERATION .

Punching the Source Program
Operation of the Compiler

SAMPLE PROBLEM . . <

COMPILATION ERRORS .

INPUT-OUTPUT ROUTINES

ii

1

2

2
2
4
6

12

21

21
25
26

30

30
30

34

34
35

37

43

49

BRC 161-10

Number

1

2

3

4

LIST.OF TABLES

Symbols Used in Explaining Source
Language Statements . . .

.iA '.

Speci.fication Statements

Control Statements

Inp~t-Output and Form~la Statement
Code Numbers

iii

14

16

17

20

BRC 161-10

Section I

INTRODUCTION

This manua.1 describes the AFCOR compiler designed and pro

grammed by Broadview Research Corporation for the RECOMP II

computer under a contract with the Aeronatuical Chart and

Information Center (ACIC).

With the AFAR assembly program, which was prepared under the

same contract, a complete system is availa.ble to produce object

programs for a variety of scientific computing applications from

an easily written source language.

The source language is patterned after the IBM F'ORTRAN*

compiler language but contains several variations which reflect

the scope and character of the RECOMP II digital computer.

The complete compiler-assemh1y system is desig~ed for use

with the Systematics card-to-paper-tape converter at ACIC.

The over-all system operation consists of the following

steps~

1. Punch source program in cards

2G Convert cards to source program paper tape

3. Generate symboli,c paper tape object program, using the

one-pass AF'COR compi.ler

40 Generate absolute machine language paper tape object

program in two passes of the AFAR*"lc assembly program.

This manual defines and illustrates the source language and

the operation ~f the compiler and object programs.

* FORTRAN, copyrighted by International Business Machines
Corporation, New York, NaY.

** The use and operation of the AFAR assembly program is
described in BRC 161-9 produced under t~e subject contract
in October, 19600

1

BRC 161-10 2

Section II

ELEMENTS OF THE AFCOR LANGUAGE

CONSTANTS

In the AFCOR languBge, fixed point constants are distinguished

by the absence of a decimal point. They have from one to six

decimal digits. Hence, 999999 is the maximum fixed point integer

acceptable to the AFCOR compiler. Every fixed point integer is

stored in a single'full RECOMP word.

Floating point constants always have a decimal point. They

h~ve from on~ to twelve decimal digits. Every floating point

constant is stored in two RECOMP words. Examples of floating point

constants are:

VARIABLES

4302
5701700321
10

.0001 .
0.732168

. 5

Two modes of variables correspond to the two modes of numerical

constants 0 Variables have from one to five alphabetic characters.

The last character must not be F since n~mes ending in Fare

reserved for library functions. The use of all symbolic names

beginning with JJ and RR is restricted to the compiler. The modes

of variables are specified by the first letter of their alphabetic

names. The first letter of a fixed point variable must be one of

'the letters from I through No The·first letter of a floating point

variable mu.st be one of the. letters from 0 throu.gh Z.

BRe 161-10

Apart from the fixed and floating point modes, there are

'two general kinds of variables. These are subscripted and non

subscripted variables.

3

At any given time, a nonsubscripted variable has only one

numerical value, either a fixed point integer or a floating point

value, depending on the first letter of its name. Thus, a non

subscripted variable name defines a storage area (one or two words)

that contains a single numerical value. The contents or value of

such a variable can either be input or computed by means lof q

formula.

A subscripted variable defines an array of several values.

Every subscripted variable must be defined in a DIMENSION state

ment, which must precede all executable source statements,that

contains the maximum value of each subscript. The array can be

one~ or two-dimensional, that is the values can have one or two

subscripts.

A one-dimensional subscripted variable can be defined fo'r many

different purposes, for example:

1. To represent a vector

2. To list individu.al but related elements

3. To define a sequence of numbers, such as a set of points

at which an algebraic expression should be evaluated

A two-dim~nsional subscripted variable can be thought of as

a matrix or an array in two dimensions. It is a convenient way,

for example~ of representing tables of functions of two variables.

For all subscripted variables, the subscript's must always

take positive nonzero values and be either fixed point constants

or nonsubscripted, fixed point variables. Examples of variables

are shown in the following tabulation.

BRe 161-10

.SEecification

KOUNT

KAY(3)

XVAL

Y(I)

X(4,IVAL)

Z (10 , 10)

zz (I,J)

EXPRESSIONS AND FORMULAS

Mode

Fixed point integer

" " "

Floating point
.. ..
.. ..

" ..
" "

4

Remarks

Nonsubscripted

One-dimensional
subscripted

Nonsubscripted

One-dimensional
subscripted

Two-dimensional
subscripted

.. "
" If

The AFCOR compiler provides the programmer a means of specify

ing computations in a language closely paralleling standard

algebraic n6tation. The four arithmetic operations have the follow

ing symbols:

Addition +
Subtraction

Multiplication *
Division. /

These symbols are used to ~onnect con~tants, variables, and

functions to form expressions 0 Left. and ri.ght .parentheses are

allowed to group subexpressions and to designate the desired

hierarchy or. order of computation. The mode of a formula is deter

mined by the mode of each of its elements 0 Mixed formulas with

both floatipg and fixed poipt elements are strictly prohibited and

are signalled as errors by the compiler 0 Fixed point division, of

course, truncat~s.o

In the AFCOR language,' the general form of a formula statement

(or equation) is:

Variable = Expression

BRC 161-10

Examples of legal formulas are shown in the following

tabulation:

Legal For·mula Statements

ZB = 4.*T(4)

X = 3.l72*Z

Y(K,2) = W + T(K)
VALUE = 1000.0

POINT = ROOTF(X,Y,Z)

U(2) = -.1

SU = 1.4142*(-Q-R*(Q-R»

W = PWERF (10. ,SAM)/(ZB*ZB-l.O)+R

IJKL = 2*IJKL

JKL = IJKL/2

JUMP = (N+M)/4 - INCRF (7,M)*10

K(L) = 3

LA = 3 + 4*(KAY/(1-JAY»,

N(4) = M(l)

5

One exceptional use of the minus sign, called the unary minus,

is allowed. This indicates a change in the sign of the following

variable (or stibexpression) rather than true.subtraction from a

previous number. Unary plus signs are not allowed.

Examples of illegal formulas with an explanation of the errors

involved are sh:own in the following ,tabulation:

Illegal Formula Statements Reasons

l=W

KI = +4

X = 3. (Q)

X = 3*Q

Mixed modes

Unary plus not allowed

Should be 3o*Q

Mixed modes (3 lacks decimal
point required in all float
ing point numbers)

BRC 161-10

Illegal Formula Statements.

2.*ZR = ROOTF(X,Y,Z)

x = P*«Q*(R-T)/V+X)

TEMP = -1400.+/ (.3. -kZAF)

FUNCTIONS

Reasons

The left side may be only a
variable, not an expression

There must be the same number
of left and right parentheses

Two arithmetic operation
symbols in succession

The AFCOR compiler source language provides' the capability

of defining functions that can be added to generated symbolic

coding. In this way, library routines programmed externally can

be used in conjunction with the object program.

The LIBRARY statement is included in the source language to

define the symbolic name of functions (or subroutines) and to

define the kind of calling sequence which the compiler must gen

erate for each appearance of a function in an expression.

6

In a LIBRARY statement, the name of a function is followed

by parentheses enclosing a parameter list and a result indication.

Several functions can be defined in a single LIBRARY statement by

using commas to separate different specifications.

The name of a function can be any combination of from one to

five alphabetic characters, the last of which must be F in order

for the compiler to distinguish between subscripted variables and

functions when translating expressions.

The parameter list must contain from one to eight designators

~onstructed according to the following rule. The parameter list

can contain: either (a) only one element, 0, or (b) any combination

of the digits 1 through 7 and the asterisk, but none may appear more

than once.

The parameter list of a function in the LIBRARY statement

BRC 161-10

designates where the specific arguments shall be placed relative

'to generated transfers to the function subroutine. A typical

function-defining statement' is:

7

LIBRARY, ROOTF(1,2,3,*), DLTAF (*,*), PWERF (*,1,*), INVRF(O,O)

When a function is specified in a source language expression,

that is, when it is an element of the right-hand side of a formula,

the name of the function is written, followed by an argument list

enclosed in parentheses. The argument list contains variables or

constants in one-to-one correspondence with the proper parameter

list of a LIBRARY statement.

If Pl' · · Pk are the nonzero designators of the parameter

list, anda l ... ak are the variables or constants in the

aigument list and k .is equal to or less than 8, and c equals the

number of words required to contain each argument, that is, c equals

1 for fixed point integers and 2 for floating point numbers, then,

in general, the value of the argument, a., is stored in the p.th
"~ ~

group of c word(s) following the transfer, if p. is not an asterisk.
~

It is extremely important to note that all the constants and/

or variables in a particular argument list must be of the same

mode, that is, they must either be all floating point or all fixed

point. There is no restriction within the compiler against using

the same funct~on with an all floating-point-mode argument list in

some instances and with an all fixed-point-mode argument list in

others. Every externally programmed function routine must be able

to differentiate between the two kinds of calling sequences if

both modes are to be used in a Source language program.

Floating Point Arguments

The following are examples of particular specifications using

BRC 161-10

the functions defined in the sample LIBRARY statement above~

ROOTF' (PA,PB,PC)

DLTAF (TIME)

PWERF (10. ,R)

INVRF

8

The first three examples have parameter lists containing float

ing point variables or constants only which satisfy the fundamental

requirement of mode agreement. The fourth example requires no

arguments since its parameter list is zero.

There is one built-'in floating point funct.ion that need n.ot

be defined in a LIBRARY statement. The built-in function, FSQF,

calculates the square root of its floating point argument.

T = FSQF (4.7318631)

ROOT = FSQF (ZBAR)

The following schematic illustrates the fact that if the

argument list is in floating point mode, the transfer that is

generated is made to appear in the left half of a word whose address

is even. 'The next three half words are skipped so that the first

argument's location will always be in the form of XXXE.O, where E

denotes an even octal digit.

If, according to the result indication, the result of a function

is to be stored in one of the seven storages immediately following

the transfer, then such a reservation will be assigned by the com

piler. If numbers are stored following a tran.sfer in the object

program, then the subroutine can pick up the arguments from the

calling sequence by use of the X register which is set by the trans

fer.

When the argument list is in floating point, two words are

reserved for eaJ:::h argument. The first word cont8 ins the norma lized

fraction; the second, the binary exponent or characteristic.

BRC 161-10 9

Schematic

Example: Obj ect Program corresponding to ROOTF (PA,PB,PC)

Loc.ation Contents Parameter No.

XXXE.O TRA ROOTF

· 1 Not used

XXXF.O Not used

· 1 Not used

XXXG.O [storage for PA,

· 1 . fraction portion 1
XXXH.O ~torage for binary

· 1 exponent of PA

XXXI.O ~torage for PB,

~1 fraction portion 2
XXXJ.O ~torage for binary

G 1 xponent 6f PB

XXXK.O ttorage for PC,

.1 fraction portion 3
XXXL.O ~torage for binary

.1 exponent of PC

The numbers (or asterisk) of a parameter list need not be in

any special order, nor is it mandatory not to skip certain numbers.

The latter will merely have the effect of generating enough zero

words to fill the void(s) left by the omitted number(s) of the

argument list.

If an asterisk appears in a parameter list or the result indi

cation, the corresponding value from the argument list will be

placed in:

1. A and R' registers if the mode of the argument list is

floating point

2. A register if the mode is fixed point

BRe 161-10 10

Fixed Point Arguments

In dealin g with functions of floating point argu.ments, two

full computer words are reserved in the calling sequence for each

argument and result except when the corresponding element of the

parameter list is ° or an asterisk.

When the argument list in a function specification is in fixed

point integer mode, Qnly one full word is reserved for each fixed

point constant or variable. Therefore, the compiler generates the

transfer instruction in the next left half word.

In general practice, each function subroutine will be pro

grammed externally (as opposed to being generated by AFCOR) to

h~ndle only one kind of calling sequence, that is, either all float

ing point or all fixed point. Special subroutines that can accept

either type of calling sequence will generally be constructed so

that by examining the value of a calling sequence argument, the

mode can be distinguished, for example:

.LIBRARY, POLYF (*,1,2,3,4,5,6,7,*)

KAPPA = POLYF (-5,KX,KA,KB,KC,KD,KE,KF)

ZEE = POLY~ (4. ,ZX,ZA,ZB,ZC,ZD,ZE,O.)

As a subroutine POLYF would require the.following abilities·

in order for all three of the above statements to appear in one

source program:

1. The first argument always appears in the A register.

If its sign is minus, it is taken to mean that the

arguments are all fixed point integers; hence the

absolute value of the integer in the A register is

regarded as the degree of a polynomial to b;~valuated.

The w6rd following the transfer, corresponding to the

designator in the parameter list having the value 1, is

the value of the independent variable, ~ in this

BRC 161-10 11

example. The remaining values are coefficients of a

fifth degree polynomial; each occupies one word of the

calling sequence. In this case, the routine performs the

calculations. in fixed point arithmetic and returns with

the answer in the A register.

2. If the sign 'of the A register is plus, then A and R, in

floating point, specify the degree of the polynomial

desired. The subroutine then obtains the floating point

independent variable, ZX, from the two words following

the transfer. The remaining values are floating point

coefficients of a fourth degree polynomial; each occupies

two words. Since this example specifies only a fourth

degree polynomial, the coefficient of zx5 , which normally

occupies the seventh pair of words after the transfer, is

not used by the subroutine," However, the mistake of

writing an argument list shorter than the parameter list

must not be made. Therefore, a dummy value of zero

(floating point: 0.). is given.

BRC 161-10

Section III

AFCOR SOURCE LANGUAGE STATEMENTS

Ihe statements of a source program can be classified into

the following categories:

10 Formulas

2. Specification

3. Control

4. Input-output

12

This section deals with specification and control statements.

Formula statements were discussed in the previous section, and

input-output statements are discussed in the next section.

The AFCOR language has six different kinds of specification

statements. They provide for the definition of subscripted

variables, the definition of functions, the generation of an end

stop for the object program~ the setting of the STARTl and START2

buttons, and a signal to the compiler indicating the end of the

'source language.

There are eight different kin~s of control statements, provid

ing for testing, branching, transferring, looping, and intermediate

program stops.

There~e seven different kinds of inp4t-output statements pro

viding for input from Baudot paper tape, typewriter, or console

and for output via paper tape punch, typewriter (or both), or by

decimal display in the Nixie tubes.

As shown in Table 1, standard mnemonics are used to define

the general form of each kind of statement. A two digit integer

code is associated with each kind of statement. These code numbers

BRC 161 .. 10

never appear in the source lang~age but are generated internally

by the com~iler and are used for display purposes if an error in

compilation necessitates a stop. With these numbers and another

·setof "kind of error" codes which are also displayed, any error

in a sour~e program can be located.

13

In defining the general form of statements, those parts which

are not required are underlined; all other parts are mandatory.

Generic Symbol

n

v

i

k

rn

w

j

s

x

Table 1

SYMBOLS USED IN EXPLAINING SOURCE LANGUAGE STATEMENTS

Definition

Statement number

Variable

Fixed point
variable, non
subscripted

Fixed point
constant

i or k

Sense switch

Display digit

Subscripted
variable

Floating point
variable

Restrictions

1-5 digits written continuously
with no embedded blanks; unsigned

Fixed pt. integer or floating pt.
·mode. Subscripted or not. Name
1-5 characters not ending with F

Name begins with I-N, does not
end with F; not subscripted

1-6 digits; no embedded blanks;
unsigned (positive)

Should only assume positive
nonzero values

One of the letters B,C, or D

Unsigned single digit (0-9)

Fixed or floating pt. mod~

Subscripted or not

Examples

15
1000

00088

PVAL
K(3)
X(I,30)

J
NUMBER

99703
318

o

V(K)
Z(14,11)

V(K)
QINC
P(2)

Baudot Mode

fs

Is
(Name)

Is

fs

Is

fs

Is

Is

I-'
0'\
I-'
I
I-'
o

Generic Symbol

fn

p

r

a

q

Table 1

SYMBOLS USED IN EXPLAINING SOURCE LANGUAGE STATEMENTS
(Cont inued)

Definition

Function

Parameter
list

Result
indication

Argument
list

n or i

Restrictions

Name 1-5 characters, ending in F.
Must be followed by parentheses
enclosing ?arameter 1.l.st and result
indication

Up to 7 number~~ not including
last, enclosed in parentheses; indi
cating where to place arguments with
respect to transfer to function
rnutine

Indicates where (1-7 or *) to store
answer in calling sequence (if r =
0, no answer is obtained from the
function routine); always follows
parameter list

Variables or constants listed, in
1-1 correspondence to parameter lis4
as arguments or "inputs" for a
function subroutine

Examples

FSQRF(a,r)l/
DLTAF (a ,r)
ROOTF(a,r)

(1,2,*)
(*,*)
(3,1,4,3)
(0,0)

See above ex
ample; the last
character before
right parenthesis
is "r"

(X, Y ,Z)
(17.4. Y)
(KAY,2)

Baudot Mode

Is
(Name)

fs

fs

Is or fs

fs or Is

1/ (a,r) . indicates argument list and result indication which must be enclosed in parentheses following
functl.on name.

1/ In addition, the asterisk (*) symbol may be used to indicate that an argument or a ~esult is to be
placed in tile A register (or A and R regtsters in the case Qf floating point va~tables). The
numbers must be In the range 1-7. Zero denotes the vacuous state tno argument Ilst or no result).

Statement
Code No.

General
Form

Table 2

SPECIFICATION STATEMENTS

Examples

18 DIMENSION, Sl (Kl ,K2), . . . DIMENSION, U(2), T(4,8), K(lO), PqINT(12,13)

20

19

15

17

Remarks': Every' one-dimensional variabie. must ·be listed by name, followed by the maxi
maxi.mum value of the subscript, enclosed in parentheses .. Every two-dimensional
variable must contain the maximum values·of the two subscr.ipts, enclosed in paren
theses and separated by a comma. Values assumed by subscripts must not exceed
their respective maxima during execution of an object program. Such an excess
results in an incorrect data address. No testing for this type of error is per-

. formed. Similarly, subscripts must not take on a value less than or equal to O.
Dimension statement must precede all executable statements.

LIBRARY, fn(a,r), ..• LIBRARY, ROOTF(1,2,3,*), INVRF (1,0)

Remarks: See "Functions". Must precede all executable statements.

.!! STOP i 1313 STOP 9

Remarks: The computer comes to a final halt with J displayed in the Nixie tubes.
Execution of the object program cannot be resumed by pressing START. If no j
part is specified, the display in the Nixie tubes is not·altered by the execu
tion of this statement.

START 1 (20)

Remarks: Transfers to the statement numbers enclosed in parentheses can be compiled
in either locations 0001.0 or 0002.0 or both. By th~s means, multiple start or

.. restart paths can be selected by pressing the STARTI or START2 buttons. The
START3 button cannot be set by the source program. The START statement must pre
cede all executable statements.

END END
Remarks: Signals end of source program input to compiler. No executable object in

structions corresponding to this statement are compiled. All statements
must precede the END statement.

.....
0'\
I
o

.....
0'\

Statement
Code No.

16

14

03

General
Form

.!! PAUSE i

Table 3

CONTROL STATEMENTS

Examples

III PAUSE 7

Remarks: The computer comes to a halt in the execution of the object program, dis
playing the digit j preceded by 3 decimal points. If j is not present, no dis
play is given, so that any previous displayed information remains in the Nixie·
tubes. Pressing START will cause control to proceed to the next executable
statement.

n ASSIGN (i) n ASSIGN (ISW) 111

Remarks: Statement number n is assigned to the nonsubscripted fixed point variable
enclosed in parentheses. Used in conjunction with an "assigned" GO TO control
statement.

.!! GO TO q 17 GO TO lNSW)
GO TOl304)

Remarks: Causes transfer of control to the statement number indicated by the value
of q. If· q is not fixed point constant, it must be a nonsubscr~pted fixed point
variable preset by an ASSIGN statement.

04 n IF (v) n l , n2 , n3 IF (WB{K») 401,402,402

Remarks: The value ~f the variable in parentheses, which can be subscripted, is
tested_ If it is zero, control is transferred to statement n2 - If v is not zero,
then control is transferred to nl for negative values or n3 for positive values.

13 .!!. ~F SENSE w, nl , n2 937 IF SENSE (B) l 940,950

Remarks: If the sense switch designated by w, a single letter, is ON, co~trol is
transferred to statement number n l . Otherwise (OFF), control is transferred to
statement n2 -

Statement
Code No.

01

General
Form

Table 3

CONTROL STATEMENTS (Continued)

Examples

60 DO 65 1M : 1,JMAX

Remarks: - This statement sets up a fixed point counter which controls the repeated
execution of all statements between the DO statement and s-tatement n 2 , which must
be a CONTINUE statement appearing later in the source program. The number of .
times the "loop" is executed is determined by the following. If m3 is not
present, a value of 1 is used for ffi

3
.

(1) The loop is executed for i = m
l

(2)

(3)

(4)

ml = ml + m3

If m
l

is now greater than m
2

, control proceeds to the next executable
statement following statement number n2 Otherwise, the loop is again executed: repeat from step 2

Statements between the DO and the continue can supersede the nominal loop
control outlined above. The counter i is normally but not necessarily a sub
script of variables in formulas that are evaluated in the loop. At any given
time, the va lue of i is ava ilable, in the same sense as a- fixed point integer
variable, for testing or computation. It is possible to construct "nests" of
DO l.oops, provided each DO statement is paired with its own unique CONTINUE
statement. It is the responsibility of the programmer to design source pro
grams so that ml , m2 , and m3 have meaningful values, since the object program
cannot check for errors. Incorrect m-values could cause the program to "hang
up" in an unending loop or to malfunction in some other \.Jayduring execution.

Statement
Code No.

02

General
Form

n CONTINUE

Table 3

CONTROL STATEMENTS (Continued)

Examples

65 CONTINUE

Remarks: This statement causes the compiler to generate the object instructions
that compute the next value of i and test whether to execute the DO loop aga~n
or"to continue to the next executable statement. Each DO must have a unique
CONTINUE associated with it; there is no other legal use of this statement.

Table _ 4-

INPUT-OUTPUT AND FORMULA STATEMENT CODE NUMBERS

Statement
Code No.

05

06

07

08

09

10

11

12

00

General Form

n READ TAPE, input list

n PUNCH~, output list

n TYPE n, output list

n DISPLAY, v

n- PUNCH AND TYPE n, output list

n READ TYPER, input list

n READ CONSOLE, input list

n FORMAT (. . •)

n v = expression

N
o

BR'C 161-10

Section IV

INPUT-OUTPUT AND FORMAT STATEMENTS

INPUT STATEMENTS

There ~re three sources of data input for the RECOMP II:

1. Paper tape
2. Typewriter
3. Console

There are three corresponding source language statements:

1. READ TAPE
2 . R~AD TYPER
3. READ CONSOLE

21

Each of the above statements is followed by a list that indi

cates which variables are to be read from the specified input unit.

Elements of the input list ar.e separated by commas. Except

for HEDnnn:k, which is allowed only in the READ TAPE statement, the

following list illustrates every possible form of the elements of

inp\1t lists:

x
X(2)
XCI)
X(I,J)
X(2,J)
X(I,6)
X{3,4)
X(I,J), I:2,6,J:l,lO
X(J) ,J:12,15

HEDnnn:k specifies that words in the RECOMP II alphanumeric

(F) mode (8 Baudot characters per word) are to be read in and

storedo These alphanumeric words are available for print-output

if their label, HEDnnn:k, is included in an output list. Some

typical alphanumeric labels·are:

BRC 161-10

HEDOOO : 2
HEDS : 3
HED12 : 4
HED775 : S

22

A discussion of the method of storing two-dimensional variables

is necessary to understand the restrictions on elements of an input

or output list. If X is a two-dimensional variable whose dimensions

are defi ned in a DIMENSION statement as (5,7), the following array

is defined:

Row 1 2

1 XII X12
2 X21 X22
3 X3l X32
4 X41 X42
5 XSI X52

Column
345

X13 X14 X15
X23 X24 X25

X33 X34 X35
X43 X44 X45
XS3 X54 X5S

6

X16
X

26

X36
X46

XS6

7

X17
X27
X37
X

47
X

S7

An individual element of the array is specified by writing

'X(I,J), where:

l' I· ~ I = 5 max
l~J~J =7 max

In general, the (I,J)th element X(I,J) is stored beginning with the

word whose address is:

X + 2 * [(I - 1) * J max + (J - l)J
Since elements of a rectangular array (two-dimensional variable or

matrix) are sto~ed by rows, X(l,2) is in X + 2. That is, all the

values constituting the first row are stored consecutively, be

ginning with the first storage reserved for the array. This fact

is a derivative of the general AFCOR rule that the second (rightmost)

subscript is varied.while holding the first subscript (leftmost)

fixed at its initial value; after the left subscript advances to

BRC 161-10

the next value, .the right subscript again varies over the entire

range (from 1 to J) as defined in the DIMENSION statement.
'", max

23

The simplest way to input a two-dimensional array completely

and continuously is to write only the name of the variable without

subscriptse For example:

READ TAPE, X

would bring into memory 5X7 or 35 floating point numbers from paper

tape. The thirty-five numbers constitute a single group punched

on tape by rows. The whole group is preceded by an N control

character and followed by:

L00030
S

The same result would be obtained by writing:

READ TAPE, X(I,J), I:I,5,J~I,7

For each element of an input list, one transfer to the input

routine is generated. If an element requires more than one value

to be input, all the values denoted by the element must occupy con

secutive storages since the RECOMP II reads into consecutive

memory locations. On tape, there must be a new location setting

(L00030) and a start code (8) following each number or set of

numbers corresponding ,to individual elements 'of an input list.

However, after each group of header words, called in by the appear

ance in the list of an element of the form HEDnnn~k, the location

setting must be L00031.

It is not legal to write:

READ TAPE, X(I,J),J~I,7,I~1,5

because the subscripts are varied in reverse order. It is also

not legal to write:

READ TAPE, X(I, J) ,1:1,5

BRC 161-10 24

READ TYPER, X(I,J) ,J~1,7

because the variation of both subscripts must be stated, and it can

be stated only by specifying constants. Thus, the following state

ment is illegal:

READ CONSOLE, X(I~J),I:l,N~J:l,M

Since reading of a group of numbers is accomplished by auto

-matica11y storing successive numbers in consecutive words in memory,

it is never possible'to specify a range of the rightmost subscript

other than the complete range (1 to J). Thus, where X has max
dimensions (5,7), the statement:

READ TAPE, X(I,J);I:2,4,J:1,4

is illegal, but the statement:

READ TAPE X(I,J),I:2,4,J:l,7

is legal, because an input statement can generally specify any sub ..

set of consecutive full rows of a two-dimensional array.

Examples of input statements are:

READ TAPE, KAY(K),K~1,14
READ CONSOLE, Z,Y,WW(I),I~1,7
READ TYPER, TA, TB, TC, TD
REA~ TAPE, HED47~3, HED48~5, PARAM(I,J) ,I:2,7,J:l,S
READ CONSOLE, MOP, MIP~ MAP, ZOP, ZIP, ZAP
READ TYPER VALUE ,(3, INDEX), INDEX: 1,7~ VALUE (1,1),

VALUE (2,1), LA, LB", LC, T(I), 1: 1,4
QAK(13), QAK(S), WRN

The u.sual RECOMP II format letter codes, N or F, must appear on the

tape before each such number or set of numbers. Details of Baudot

paper tapes, such as the above, and spacing requirements must con

form to the rules set down in the Recomp II 9peratingManual

published by Autonetics I.ndustrial Productse After the numbers

are input from either the typewriter or the console, the START3

button must be pressed to transfer control to the input ,routine.

This is done automatically when input is read from paper tape by

BRC 161-10 25

means of a new location setting after each number or set of numbers.

OUTPUT STATEMENTS

There are four posstble output statements:

10 TYPE n, ~ . .
2. PUNCH n, 0 • •

3. PUNCH AND TYPE n, . 0 8

4. DISPLAY, v

All the above statements, except DlSPlAY, are follow~d by an

output list, indicated by the ellipses above. ':'rhe rules for output

lists are the same as those for input lists. The DISPLAY statement,

however, is followed by only a single variable.

It it possible to input or output an ~ntire arra'y without

specifying the subscript range. Assume, that subscripted variables'

are defined by the following:

DIMENSION, XVAL(4,10), KSET(17)

Then, the statement :

TYPE 909, KSET, XVAL

will type seventeen floating point numbers from the seventeenworcl

storage area KSET, followed by forty floating point numbers from

the eighty word storage area XVAL. The format ,of the ty:pednumbers

is determ ined by the configuration of, the FORMAT statement number

909~

The FORMAT statement enables the design of a variety of out~

put formats. The TYPE statement must always haveap.associated

FORMAT statement number. The'PUNCH statement, when used in associ

ation with a format, produces a paper ,tape suitable for listing on

a Flexowritero Without a format number, a paper tape acceptable

as a subsequent input tape in'the RECOMP II N or F modes 'is punched.

In the PUNCH and TYPE statement, a format numb~r which is

BRC 161-10 26

applicable to typing only, is required. The punching from such a

'Statement willalw~ysf;'bein the N' or' F modeo Hence, this statement

does not correspond to a simultaneous punch-and~type operation.

,F(JRMATSTATEMENTS

Every format statemertt must have a statement ,number. The

specifications are enclosed in parenthe~es an~ can be any combina

tion of the following four kinds:
; ~ .. " -

I format,

1. klw
2.' kEw. d
3. kFw. d
4. kH. . .

The I format provides a means of outputting fixed point integer

viriables. Each 1 specification is followed by w, an integer of one

or two digits specifying the width of the desired field; k denotes

, the number of such I fields. ,The field prints with a decimal

point 'in ~he rightmost printposieion, preceded by the'decimal

digits, to, which the value is converted and by a leading minus sign

'if ~pplicable.: ' E~tra print positions in the field to the left of

the valu~ print as spac~s.

E format

The E format provides a means of outputting floating point

variables in "scientific notation" in the form of a fraction < 1.0 . . -. '

and, a~~eci~al expo~ent. This format is preferred to the F format

When the:magnitude o~ the ntlmbers ,requires 'an excessive number of

point .Posttions.a.nd ipreve.nts. ~J;1e,follow~ng restriction from'

being sat.1sf.~e4.

,.The paratne~ers :,w and- d.must be chosen so that two inequalities
• ," ' " • ' . I ~ • ~

are'satisfied:

BRC 161-10 27

1 ~ d =::; 12.
w ~ d + 6

The value prints a plus or minus sign, a decimal point, d places of

significant figures, a space, another sign, and two digits indicating

by what power of ten the preceding value should be multiplied.

F format

The F format provides a means of outputting floating point

variables to the desired number of decimal places. The general form

of F format specifications is kFw.d, and where w specifies the width

of the field, d specifies the number of places to the right of the

decimal point, and k states the number of such F fields.

If e represents the decimal exponent of a value x to be

printed, that is:
e

x = c "Ir. 10 , c < 1. 0

then two inequalities must be satisfied~

W >,;. d+ e' + 2

d + e' + 2 ~ 16

where e' = e if e ~ 0, otherwise e' - O.

H format

While the I, E, and F formats control the method of printing

numerical values" it is possible t.o include alphanumeric data in a

format. If k characters of alphanumeric format are desired, they

are included in the format, preceded by kHo Variable alphanumeric

information, such as for headings, may be output by specifying the

HEDnnn:k label in the appropriate output listo In other words, the

H format is used only to output permanent built-in alphanumeric

information.

Each typing output statement may specify only I line of print

ing unless the FORMAT contains T and the typewriter switch is set

to interpret the tab character as a carriage return. A carriage

BRC 161-10 28

return is given automatically as the first operation of an output

statement. Thus, the progr~mmer must take care not to specify, in

an output FORMAT, more print positions than are actually available.

If a field is too small for the listed value, the entire field

will be printed with asterisks (*) rather than with a truncated

value.

Provision for Tabulating

Any of the four output format specifications can be written

with provision for tabbing before printing by preceding the 1, E, F,

or H character by the letter T. By setting the T-CR switch on the

typewriter to CR, multiple lines of output may be printed from a

single format statement.

Lorm of Displayed Numbers

The general form for a floating point value is:

+ XXXXXXXXXX S yy

Ten significant decimal places are given, preceded by.a sign. This

is tO,be regarded 8S a fraction, i.e. a decimal point between the

, leading sign and the leftmost digit is understood. A sign expressed

as 0 (negative) or I (positive) follows set off by a blank Nixie

tube on each side. The.last two Nixie tubes (YY) express the magni

tude of the power of ten by which the preceding decimal fraction is

to be multiplied. If YY ;::> 99, two decimal points are displayed in

the YY positions.

The general form for a fixed point value is:

+ XXXXXXXXXXXXXX

The sign precedes 14 decimal places, and a decimal point is at the

far right.

BRC 161-10 29

Example of Formats of Floating Point Numbers

Assume that the variable X is stored in the RECOMP II at,

locations 1220.0 and 1221.0. Assume that these storage words con

tain the following numbers written in command format:

Format

where

C(1220.0) = +4701011-0000000

C(122l.0) = +0000000-0000031

Specification Printout of Value

F14.10 b78.931799.3164
F14.4 bbbbbbb78.0318
Fll.9 o](*'I,ok-l('/('/('/(***
F7.0 bbbb78.

E14.8 b.78031799b+02
E12.2 bbbbb.78b+02
E13.9 ****'1,******-1(*

b represents a blank space.

Example of Format of Fixed Point Integers

of X

Assume that the variable I is stored in location 1734.0;

C(1734) = -0000000-0000061

Format Specification Printout of Value of I

14 b-13
II *

BRC 161-10 30

Section V

SAMPLE PROGRAM

PROBLEM

To find the roots of f(x) , where f(x) is a function* computed

by the PVALF subroutine that requires four arguments:

x in A and R registers

t in the two words following the tran~fer

s in the next two words

r in the following two words'

The result i~ in the A and R registers on return from the subroutine.

Assuming that roots are desired in a variety of neighborhoods,

a set of up to twenty-five starting points for the Newton-Raphson

method is to be input. If less than twenty-five starting guesses

are desired, the remaining values are input as +0.00 On finding a

starting guess equal to +0.0, the program is to stop, displaying 9.

Several sets of twenty-five initial guesses can be input in

successive runs through the program.

METHOD OF SOLUTION

The Newton-Raphson method should be employed to iterate for

a'root based on each starting guess. The i-th root x. is computed
1.

by using:

x.
1.

= f(x. l) x. 1 - 1.-
1.-

f' (Xi_I)

*Note that the exact nature of ,the ~unction f(x) is.not at stake
here. The discussion in this section is applicable for any func
tion. All that is needed is some specific subroutines to evaluate
it and its derivative in any particular applicationo In this
example, these subroutines have been arbitrarily named PVALF and
DRIVFo

BRC 161-10 31

where x is the starting guess and £t(x) represents the derivative
a

'0 f the func t ion f (x) e

The derivative is computed by the DRIV subroutine which re-

quires three arguments:

x in A and R registers

t in the two words following the transfer

r in the next two words

The result is in the A and R registers on return from the subroutine.

If convergence to a root is not obtained after ten iterations,

computations are abandonsd, and a suitable message is typed. The

criterion for convergence is that successive roots agree within
10- 5 .

When testing the difference between successive roots, the

absolute value is required. Thus~ if:

I xi - x i - 1 I .(10.
5

convergence has been obtained. For this purpose, an absolute value

function, ABSF, must be used .

. SOURCE PROGRAM

DIMENSION, XARG (25)
LIBRARY, PVALF (*,1,3,2, *), DRIVF (* , 1 ,2, ,,() ,ABSF (* , *)

3 READ CONSOLE, T,S,R
5 READ TAP$, XARG

DO 10 1.: 1,25
XR = .XARG(I)
IF (XR) 4,9,4

4 DO 6 INDEX 1,10
XROOT = XR - PVALF (XR,T,R,S)/DRIVF(XR,T,R)
TEMP = XROOT - XR
TEMP = ABSF (TEMP) - .00001
IF (TEMP) 8,7,7

7 XR = XROOT
6 CONTINUE

TYPE 19, XARG(I)
10 CONTINUE .

BRC 161-10 32

9 PAUSE 9
IF SENSE D, 3, 5

8 TYPE 17, XARG (I) , XROOT
GO TO 10

17 FORMAT (2 TE 20.5)
19 FORMAT (1 TE 20.5, 20H NO CONVERGENCE)

END

Notes on Running This Particular Source Program

When the compiled and assembled object program has been loaded

into the RECOMP II, the START button is pressedo The computer will

then stop in order to input the values of T, Sand Ro This is

done as fol1ows~

1. Press KEYBOARD FILL button.

2. Press N (number button).

3. Enter inputs (3 mixed numbers). Each number must be input
in the following form: + XXX.XXX ENTER. The number of
digits before and after the decimal point must be at least
one·. After each number, the ENTER button must be pressed.

4. After entering the third number, namely R, it must be
made certain that the paper tape is ready in the photo
electric reader. Then the START3 button is pressed.*

The program then proceeds. to read 25 (or less) numbers into the

XARG blocko The set of numbers must be followed on tape by L00030

arid an S code in order. to cause the proper conversion process to be

performed. Recall also, from the earlier discussion of the

approach to this solution of this problem that the last of the XARG

block of numbers must be +0.0 if there is to be less than twenty

five numbers in any particular set. this type of consideration is,

of course, known to the program designer or programmer and is

covered in his operating instructions for his particular problem.

For each of the nonzero numbers of a set of starting points

*Equivalent to the appearance of L00030 followed by Start Code S
after data on paper tapeo

BRC 161-10 33

(ioe., the XARG block) a line of output is typed, showing the root

unless convergence was not attained within 10 iterations. After

using up a set of XARG points or finding a zero value, the machine

stops with the digit nine displayed in the Nixie tubes. At that

time sense switch D may be set:

ON, to require new coefficients T, S, and R to be

input via console

OFF, to use the same coefficients

In either case, if the START button is pressed, the program will

continue, beginning a new series of computations.

If co?vergence is not obtained, the starting guess is printed,

followed by a NO CONVERGENCE comment. If convergence is obtained,

the computed root prints to the right of the starting guess.

A listing of the generated object program appears in

Appendix A.

BRC 161-10 .34

Section VI

COMPILER OPERATION

The following steps summarize the solution of a problem by an AFCOR

program~

1. Analyze problem and method of solt,ltion.

2. Code AFCOR source program

3. Punch program on EAM cards

4. Convert program to paper tape via Systematics converter

5. Compile symbolic object program (AFCOR)

6. Assemble object program, including necessary function sub

routines and input-output routines (AFAR)

7. Read assembled object program tape into RECOMP II

8. Ready paper tape input, if any, and set appropriate sense

switches and tab settings

9. START

PUNCHING THE SOURCE PROGRAM

The format of punched cards acceptable to the compiler is free

form. Punching can begin or end in any card column from 1. to 68.

Spacing between characters can be specified in any form that makes

the source program easily readable.

Each statement must begin on a new card, but can extend to

more than one card. No more than 180 card columns can be used for

one statement. The end of a statement is indicated by punching ~

consecutive dollar signs (3-8-11 punch) 0

In arranging the source deck for conversion to paper tape via

the Systematics converter, the LIBRARY statement, all DIMENSION

statements, and the START statement must precede any executable

BRC l6l~lO 35

source statements. The last card must be an END statement.

OPERATION OF THE COMPILER

Sense switch settings are made according to one of the alterna

tives shown in the following tabulation:

UP (off)

DOWN (on)

B
Produce symbolic
object program
according to setting
of sense switch D

Do not punch, and do
not type the symbolic
object program

C
Type each
source
statement

D
Punch symbolic
object program
cape for assembly

Do not Punch and type
type source symbolic object
statements program

Read compiler into computer; ready source program tape in reader;

press STARTI button; compilation will proceed.

If no errors have been detected upon completion of the genera

tion of the symbolic object program, the compiler halts at L00020.

Assembling the Object Program

The compiler does not generate~

1. Symbolic input-output routines

2. Function subroutines

Generally, the input-output routine~ will be preassembled at some

locations ip high memory. The symbolic referenc~to locations in

the 1-0 routines can be defined by SYN cards to avoid the unneces

sary process of reassembling them for each 'particular object

program.

Similarly, preassembled function subroutines can be defined in

the symbolic object program by using SYN cardse In either case,

however, it is permissible to add the symbolic tapes to the symbolic

object program at the time of assemblyo The last i.nstruction

assembled should be HAL +8 so that the object program tape will

BRC 161-10 36

transfer control to L00040, the beginning location of all object pro

grams.

Running the Object Program

The following general procedure summarizes the running of

all object programs.

1. Set T-CR switch to appropriate position

2. Set. tab~lar stops on typewriter if required

3. Set sense switches appropriately

4. Load object program tape (stops at L00040)

5. Ready data tape in reader, if required

6. Press START

BRC 161-10 37

APPENDIX A

The following is an example of the typed listing from a compila

tion run. The source program is the one explained in Section V.

Note that both the source statements and the corresponding symbolic

coding is listed. In addition to the inclusion of the symbols de

fined by the source l~nguage (variable and function names and state

ment numbers) there are internally generated symbols (beginning with

DD, JJ and RR) and certain symbolic addresses associated with the

1-0 routines. (AF, AA, etc.) If other symbolic coding is to be

assembled along with an object program, care must be taken to avoid

duplication of the symbols beginning with DD and A; source symbols

beginning with JJ and RR must always be avoided.

OCT
TRA
NOP
TRA
NOP
TRAL
TRAL

7700003760001
GA

GB

+2
+11

DIMENSION, XARG (25)

LIBRARY, PVALF (*,1,3,2,*), DRIVF (*,1,2,*), ABSF (*,*)

3 READ CONSOLE, T, S, R

3 BSS BSS
NOP
TRA AC
CLA T
STO +1
NOP
TRA AC
CLA S
STO +1
NOP

BRC 161-10 38

TRA AC
CLA R
STO +1

5 READ TAPE, XARG

5 BSS BSS,
NOP
TRA AA
CLA XARG
STO +1

DO 10 I: 1,25

NOP
CLA DDDDR -2
STA 10
CLA JJDDJ
STO I
TRA DDDDR +6
CLA DDDDR
CLA DDDDR

DDDDR CLA I
ADD JJDDJ
STO I
SUB JJDDN
TZE DDDD~ +6
TPL 10 +1

XR == XARG (I)

CLA I
. ALS 22

ADD DDDDF
TRA DDDDF +2

DDDDF CLA XARG -1
CLA +0
STA nDDDC
NOP

DDDDC FCA
FST XR

BRC 161-10 39

IF (XR) 4, 9, 4

CLA . XR
TZE 9
TPL 4
TMI 4

4 DO 6 INDEX: 1, 10

4 BSS BSS
NOP
CLA DDDDK --2
STA 6
CLA JJDDJ
STO INDEX
TRA DDDDK +6
CLA DDDDK
CLA DDDDK

DDDDK CIA· INDEX
ADD JJOOJ
STO INDEX
SUB JJDDT
TZE DDDDK +6
TPL 10 +1

XROOT = XR - PVALF (XR, T, R, S) / DRIVF (XR, T, R)

FCA T
FST DODDZ +1
FCA R
FST DDDDZ +3
FCA 5
FST DDDDZ +2
FCA XR
TRA DDDDZ
BSS T

DDDDZ TRA PVALF
BSS T 3

·FST RRDDL +0
FCA T
FST DDDDW +1
FCA R

BRC 161-10 40

FST DDDDW +2
FCA XR
TRA 'DDDDW
BSS T

DDDDW TRA DRIVF
BSS T 2
FST RRDDL +1
FCA RRDDL +0
FDV RRDDL +1
FCA XR
FSB RRDDL +0
FST XROOT

TEMP = XROOT - XR

FCA XROOT
FSB XR
FST TEMP

TEMP = ABSF (TEMP) - .00001

FCA TEMP
TRA DDDDH
BSS T

DDDDH TRA ABSF
FSB RRDDY
FST TEMP

IF (TEMP) 8, 7, 7

FCA TEMP
TZE 7
TPL 7
TMI 8

7 XR = XROOT

7 BSS BSS
FCA XROOT
FST XR
TRA 6 +1

BRG 161-10 41

TYPE 19, XARG (I)

CLA 19
TRA AFZ
CLA I
ALS 22
ADD DDDDP
TRA DDDDP +2

DDDDP CLA XARG -1
CLA +0
STA DDDDP +4
TR.A. AF
CLA
STO +1

10 CONTINUE

10 BSS BSS '
TRA 10 +1

9 PAUSE 9

DSD DDDDQ
HTR DDDDQ +2

DDDDQ OCT +6314476000000

IF SENSE D, 3, 5

TSD 3
TRA 5

8 TYPE 17, XARG (I), XROOT

8 BSS BSS
CLA 17
TRA AFZ
CLA I
ALS 22
ADD DDDDQ •
TRA DDDDQ +2

DDDDO CLA XARG -1
CLA +0

BRC 161 ... 10 42

STA DDDDQ +4
TRA AF
CIA
STO' +1
NOP
TRA AF
CLA XROOT
STO +1

GO TO].0

TRA 10

l.7 FORMAT (2TE 20.5)

17 OCT +6004001200013

19 FORMAT (ITE20.5, 20 H . NO CONVERGENCE)

19 OCT +6002001200012
OCT -7620410204116
OCT -3140435414756
OCT -0253202616037

END

XAR BSS XARG +25
RRDDL BSS . R.RDDL +2
T BSS T +1
S BSS S +1
R BSS R +1
XR BSS XR +1
XROOT BSS XROOT +1
TEMP BSS TEMP +1
JJDDJ DEC 1
JJDDN DEC 2~
JJDDT DEC 30
RRDDY FLD .00001
GA TRA
GB TRA

BRC 161-10 43

APPENDIX B

COMPILATION ERRORS

During compilation, any of a number of errors in the source

progam may be detected. As each error is encountered, a unique

code is displayed in the Nixie tubes and compilation is temporarily

stopped. Each code is keyed below to a specific error.

Error Code

00 001

00 002

00 '003

00 004

00 005

00 006

00 007

00 008

00 009

01 001

01 002

01 003

Formula Translator

Do

Nature of Error

Mixed mode in formula

Illegal variable name (A through H)

Undefined function name

Improper function list

Illegal delimiter

Illegal consecutive delimiters

Improper number of delimiters

Incomplete expression

Function or expression to left of
equal sign

Missing colon

Missing comma

Improper terminating statement

BRC 161-10

Error Code

02 001

03 001

03 002

04 001

04 002

04 003

08 001

08 002

12 001

12 002

12 003

12 004

Continue

Assigned Go To

If

Oisplay

Format

Nature of Error

No' statement number

Missing right parenthesis

Improper variable

Missing left parenthesis

Missing right parenthesis

Missing comma

Missing comma

44

Missing left parenthesis for subscript

No statement number

Missing left parenthesis at beginning
of list

Illegal element

Illegal conversion: Not E, F, I,
H or T

BRC 161-10

Error Code

12 005

12 006

12 007

12 008

12 009

12 010

12 011

12 012

13 001

13 002

14 001

14 002

14 003

15 001

15 002

15 003

15 004

If Sense

Assign

Start

45

Nature of Error

No character specification before H

Zero before H

Repeated tabs (i.eo nT) not followed
by I, E or F

Element does not end with comma, right
parenthesis or period

Illegal element or comma missing be
tween two elements

I.mproper period

Missing right parenthesis at end of
list

Constants larger than 999999

Missing comma

Improper transfer specification

Missing left parenthesis

Missing right parenthesis

Improper variable or constant

Specified start location not 1 or 2

Missing left parenthesis

Missing right parenthesis

Improper transfer specification

BRC 161-10

Error Code

18 001

18 002

18 003

18 004

18 005

18 006

18 007

20 001

20 002

20 003

20 004

20 005

20 006

Dimension

Library

Input-Output, Variables

22 001

22 002

22 003

22 004

46

Nature of Error

Missing comma

Improper variable

Missing left parenthesis

Improper dimension, singly sub
scripted variable'

Improper dimension, doubly sub
scripted variable

Missing between major and minor
dimens ions'

Dimension table full

More than one LIBRARY statement in
program

Improper list element

Incomplete list,

List too long

Statement improperly constructed

Too many functions defined

No comma between elements

Improper element

Missing right parenthesis after
subscript

Undefined subscripted variable

BRC 161-10

Error Code

22 005

22 006

22 007

22 008

22 009·

22 010

22 all

22 012

22 013

23 001

23 002

23 003

23 004

24 001

25 001

26 000

Input-Output, Heading!

Miscellaneous

47

Nature of Error

Missing comma in singly subscripted
element

Improper delimiter after singly sub
scripted element

Improper limits on doubly subscripted
element

Ambiguous range on subscripts

Missirig right parenth~sis after doubly
subscripted element

Improper major dummy variable

Missing comma in doubly subscripted
element

Improper minor dummy variable

Doubly subscripted, singly dimensioned
variable

Missing colon

Identifier larger than 100

Illegal I/O statement for heading

Header storage table full

Binary to baudot conversion attempted
on number larger than 999999

Non-numeric character found in baudot
constant

Illegal subscript in dimensioned
variable

BRC 161-10

Error Code

Statement Scanner

30 000

-30 001

30 002

30 003

30 004

30 005

30 006

30 007

30 '008

30 009

30 010

30 011

30 012

48

Nature of Error

Improper character

More than 5 characters in name

Subscripted variable not defined
in DIMENSION statement

More than 13 characters in floating
constant

Two decimal points in floating
c;:!onstant

More than 6 characters in fixed
constant

More than 4 characters in statement
number

Improper first letter for name

Function not in arithmetic on
LIBRARY statement

Variable table full

Two equal signs in statement

Constant table full

Il~egal statement type

BRC 161-10 49

APPENDIX C

INPUT-OUTPUT ROUTINES

Since the compiler must be capable of handling a variety of

input and output ~unctions. i~ would be ineffiecient to generate

a specialized symbolic routine for each input or output specifi

cation. Instead, the burden of these procedures can be shifted

by compiling only the necessary linkages in object programs to a

set of generalized subroutines existing apart from the compiler.

These routines are termed the input-output package.

The linkages produced by the compiler are transfer instruct

ions (with and without parameter words) to symbolic locations de

fined in the input-output package. These locations must also be

defined when the object program is assembled. There are two ways

to accomplish this definition:

Assemble a symbolic version of the input-output package

along with the object program

Define those critical locations when assembling the ob

ject progtam by a set of SYN* cards referring to a preassemb

led version of the package.

The latter method is clearly the more desirable.

Therefore, it is advised that the input-output package be

assembled previously at the extreme high end of memory to allow

*See BRC l6l-9-Rev., the AFAR Assembly Manual, pages 20 and 21, for
'a description of the SYN pseudo operation.

BRC 161-10 50

object programs as much area as possible (object programs always

begin at location 0). Using the assembly listing of the package,

a set of SYN cards can be specified by defining the following

location symbols: AA, AB, AC, AD, AE, AEZ, AF, AFZ, AG, AGZ,

BCH, BEH and BFH. The SYN cards can·be converted to paper tape

via the Systematics converter. This tape should be used when

ever any object program is assembled. Finally, before running

any object program, the assembled package should be read into

the computer.

If it is desirable to assemble the input-output package

from its symbolic form with the object program, the SYN tape

must not be used, however, nor should any other assembled ver

sion of the package be used when running that object program.

