PROGRAM TITIE: ROOT LOCUS
PHCGFIAN CLASSIFICATION: General
AUTHOR:

PURPOSE:

DATE:

Robert Fi. Chandos, Autonetics

To produce a point by point root locus in the s-plane, when given a set of open loop poles and zeros. Up to 20 poles and 20 zeros may be accommodated. August, 1961

Published by

RECOMP User's Library

at
aUTONETICS INDUSTRIAL PFODUCTS
A DIVISION OF NORTH ANERICAN AVIATION, INC. 3400 E. 70th Street, Long Beach 5, Calif.

DISCLAIMER

Although it is assumed that all the precautions have been taken to check nut this program thoroughly, no responsibility is taken by the originater of this program for any erroneous results, misconespions, or misrepresentations that may appear in this progrem. Furthermore, no responsibility is taken by Autonstic Froustria! Products for the correct reproductions of this program. Nio warranty, express or implied, is extended by the use or application of the program.
1.0 INTRODUCTION

In the design of the control systems, a method frequently used to determine system parameters and performance is the root locus method of W. R. Evans (1). This method produces closed loop transfer functions when open loop functions are given (in Laplace transform notation).
2.0 METHOD

The assumed form of the closed loop is the following:

Any linear loop or series of loops may be reduced to a form similar to this. Solution for closed loop roots involves the solution of the equation

$$
K \frac{N(s)}{D(s)}=-1 .
$$

This equation is solved directly by the root locus program, where $K, N(s)$, and $D(s)$ are entered by the operator.
3.0 RESTRICTIONS
(a) The order of the numerator polynomial, $N(s)$, must be less than or equal to the order of the denominator polynomial, $D(s)$.
(b) The order of the denominator polynomial, $D(s)$, must be less than 21 , i.e. the open-loop system must have fewer than 21 poles.
(c) Limitations imposed by $A N-007.1$ and $A N-014$.
4.0 USAGE
4.1 Read in the "Root Locus" tape.
H. 2 If all open loop poles and zeros are expressed in quadratic form, press "Start 1 " and proceed to 4.3 below. If not, proceed at 4.12 below.
L. 3 The computer will ask for the order of the numerator and denominator. Type these orders as they are asked for as two digit numbers (e.g. 07)。
(1) Ref. Evans, W.R. "Control System Synthesis by Locus Methods" AIFE Prenrint, 50-51, January 1050 Also see "Root Locus" in any recent servomechanisms text.
4.4 The computer will then ask for the coefficients in the numerator. The assumed form of the numerator is as follows:

$$
\left(A_{1} s^{2}+B_{1} s+C_{1}\right)\left(A_{2} s^{2}+B_{2} s+C_{2}\right) \text { etc. }
$$

Therefore, the polynomial should be expressed as the product of quadratics, except that if one zero is left over, it may be entered as a linear factor, i.e. $A=0$. The coefficients may be entered on the typewriter as the computer asks for them, in a number of formats. For example,
26.91 becomes

(a)	+26.91	(carriage return)
(b)	26.91	(carriage return)
(c)	$+02691+2$	(carriage return)
(d)	$+2691-2$	(carriage return)
(e)	$+0.0691+3$	(carriage return)
	etc.	

The carriage return may be replaced by a space or tab, if desired. A space, tab, or carriage return given by itself will yield a + zero.
4.5 The computer will then ask for the coefficients in the denominator. Type these as in 4.4 above.
4.6 The computer will ask for the initial value of K, the open loop gain and the value of the increment in gain, dK. Type these in the same format as in 404 above.
4.7 The computer will ask "ERKOR?". If ycu have made an error in typing in the numerator coefficients, type an N followed by a two digit number representing the number of the coefficient in error. (For example, B_{2} would be 05). After this, retype the coefficient as in 4.4 above. If the error is in the denominator, type a D, then contime as above. If no error has been made, type either a space or a carilage return.

Le 8 Upon typing a space or carriage return in 4.7 above, the computer will halt in location 0003. You then have two options. You may:
(a) Press "Start 3", thereby starting the computations, or
(b) Turn sense switch D on and press "Start 1" to punch out the coefficients you have entered on a tape. Leader and tail are punched automatically. After punching, you may press "Start 3" and proceed as in 4.8 (a) above. See 4.13.
4.9 Ifs during computations, you desire to change K or $d K$, turn sense switch B on. The computer will ask for the new value of K and $d K$ which you may enter as in 4.6 above.
4.10 The format of the output is as follows:
(a) K is typed out.
(b) The closed loop roots at that value of K are typed out. If two numbers are typed in one row, the roots are complex conjugates, the real part being typed flirst.
(c) K is incremented by dK and the cycle is repeated.
4.11 To stop the program, push "Stop". To begin a new locus, proceed as in 4.2 above.
4.12 If the factors in numerator or denominator are available, not as quadratics, but as linear or complex conjugate forms, these may be expanded by subroutines built into this program.
(a) Complex pairs. Turn sense switch C on and press "Start 1". The assumed form of the complex pair is

$$
(s+A+j B)(s+A-j B)
$$

Type in A and B as the computer asks for them. (For format of type-in, see 4.4 above). The computer will type out two numbers, M and N, which will be the coefficients in ($s^{2}+M_{s}+N$), the expansion of the complex pair. This may be repeated for each complex pair without pressing "start l" again.
(b) Real pairs. Turn sense switch C on and press "Start 2". The assumed form of the linear pair is

$$
(s+A)(s+B)
$$

Type in A and B as the computer asks for them. (For format of type-in, see 4.4 above). The computer will type out two numbers, M and N, which will be the coefficients in ($s^{2+M s}+N$), the expansion of the real pair. This may be repeated for each real pair without pressing "Start 2" again.

When all real and complex pairs have been converted to quadratics (except for a possible single linear factor left over), proceed as in 4.2 above.
4.13 To use previously punched coefficients (see 4.8.(b)), perform steps 4.1, 4.2, and 4.3 above. Following this, press "error reset" and read in the previously punched tape. Proceed from step 4.8 (a) above.
4. If During the root extraction routine, an overflow hal.t may indicate a zero root which will be output if "error reset" and "start" are pressed in sequence. Incorrect order of denominator will also cause an overflow halt.

EXPLANATION
ROOT LOCUS
ORDER OF NUMERATOR OI
ORDER OF DENOMINATOR OH MODERATOR COEFFICIENTS
AOB1C2
DENOMINATOR COEFFICIENTS

| A | B | 3 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| A | B | 4 | 6 |

$\begin{array}{ll}\text { K } & 0 \\ \text { OK } & 1.75\end{array}$
ERROR D 064.008
ERROR?
$\left.\begin{array}{c}k+0000000+0 \\ 0.200000+i \quad+036628-8 \\ 0.150000+i \quad+086602+0\end{array}\right\}$
$K \quad$ to $875000+1$
$\infty_{0} 200057+1$
$-275299+i+0124629+1$
$K \quad+350000+8$
$0.200029+1$
$0.307863+1$
$0.360542+0+0147078+1$
$\begin{array}{ll}\mathrm{K} & 80 \\ \text { DK } & 85\end{array}$
$K \quad+800000 \div 2$
$0.373713+8$
$-06338+0+897051+0$
$0.20008+0$

$$
\left\{\begin{array}{l}
\text { Transfer function is } \\
K \frac{(s+2)}{\left(s^{2}+3 s+3\right)\left(s^{2}+4 s+5\right)}
\end{array}\right.
$$

\int Initial K and $d K$
Change C_{2} in denominator from 5 to 4,001
for $k=0$, roots are

$$
(5+2 \neq j, 0316)
$$

$$
(5+1.5 \pm j \cdot 866)
$$

for $k=1.75$, roots are

$$
\begin{aligned}
& (5+2)(5+2.75) \\
& (5+1.12 t j 1.25)
\end{aligned}
$$

for $K=3.5$, roes are

$$
\begin{aligned}
& (s+2)(s \div 3.08) \\
& (s+061 \pm j 1.47)
\end{aligned}
$$

Sense switrk B on: Change k and dK
for $k=10$, roots are $(s+3.74)(5+6312 j 1.9 \%)$ $(s+2)$
$K \quad+0250000+2$
6.0 CODING INFORMATION

Subroutines utilized

AN-007.1 Floating point input in 3000-3177 AN-014	Floating point output in 3200-3437
Data	storage
Frogram storage (including constants and subroutines)	$6000-5400$

Root extraction routine is taken from one written by W. Beykirch of Autonetics.

