RECOMP II USERS' PROCRAM NO. 1058

PROGRAM TITLE:	EXPANDED RECOMP ALGEBRAIC FORMULA TRANSLATOR (RAFT IV)
FROGRAM CLASSIFICATION:	Executive and Control
AUTHOR:	John W. Camp Autonetics
PURPOSE:	This program is a modified version of RECOMP II Program No. 1054, RAFT III
DATE:	13 February 1961
REISSUED:	19 June 1961

DISCLAIMER
Although it is assumed that all the precautions have been taken to check out this program thoroughly, no responsibility is taken by the originator of this program for any erroneous results, misconceptions, or misrepresentations that may appear in this program. Furthermore, no responsibility is taken by Autonetics Industrial Products for the correct recroductions of this program. No warranty, express or implied, is extended by the use or application of the program.

Published by
RECOMP Users' Library
at
AUTONETICS INDUSTRIAL PRODUCTS
A DIVISION OF NORTH AMERICAN AVIATION, INC. 3400 E. 70th Street, Long Beach 5, California

1. INTRODUCTION

The program interprets a symbolic equation which is written using twenty-seven (27) commands, two-hundred-eighty-six (286) data locations, and an effective accumulator. The commands indicate an operation or a function evaluation which is performed on the contents of the letter location which follows the command. The letter location refers to a two letter sequence, the first of which may be conveniently referred to as the channel and the second letter as the sector. Using this notation the channel may be any letter from B through L, and the sector any letter of the alphabet (A through Z). The accumulator is referred to with AA. Each location is directly addressable with every command.

Each symbolic equation must begin with a command followed by a letter location and this sequence continues through the equation. Both the symbolic equation and the numeric data are entered through the typewriter under the computer control. The program operates in floating point arithmetic with the results output in floating point decimal notation. The number of digits for output is eight (8) unless the user specifies a different number which may vary from two (2) to eleven (ll) digits.
2. PROGRAM USAGE
2.1 Entry of Data

All the numeric data is entered from the typewriter and automatically converted to floating binary. Before the number is entered, the location is specified according to the format described in 2.2.
2.1.1 The input numbers may be composed of many parts.
a. The sign of the number.
b. The integral part of the number.
c. A decimal point followed by the fractional part of the number (if no decimal point is typed, it is assumed to be at the end of the number).
d. The sign and (integral) value of the power of ten by which the number is to be multiplied.
ϵ. A carriage return is used as a termination character.
Not all of these parts are required for every input. The following combinations are acceptable: BE,CE, ABE, ACE, AECD, $B D E, C D E, A B D E, A C D E, E$ (yields plus zero), $A E$ (yields signed zero), ABCDE.
2.1.2 The value of the number must not exceed $2^{39}-1$. The exponent must not exceed 511 in absolute value.
2.1.3 If a character other than $0,1,2,3,4,5,6,7,8,9,+,-, .$, or carriage return is typed, "ERROR" will be printed and the program reset so that a correct entry may be made.
2.2 Program Options

Start	Sense Switch (ON)	Operations
1	B	Enter data into the specified data location. The letter location (e.g. "BC") is entered through the typewriter. The number is then entered as described in 2.1. The Carriage Return is depressed after each number. Use only letter combinations BA thru LZ.
	C	Same as with B ON.
	D	Type out the contents of the 10cation specified by the letter location. The letter location is entered as in the previous options (B or C ON).
	none	Same as with D ON.
2	B	Enter the number of digits for output if other than eight (8) are desired. Any number from two (2) to eleven (11) may be used. The program halts at 10027. Depress N on the console for number fill and enter the number of digits as $+X$. (decimal point), enter key. Press start.
	C	Punch an entire channel on tape. The particular channel which is to be punched (e.g. "B") is entered through the typewriter. Start 2 and repeat the procedure for other channels.
	D	This setting is not used.

Program Options (Cont'd.)

In the following definitions of commands, "AA" refers to the contents of the accumulator and "LL" refers to the contents of any other loca.tion BA through LZ.

3.1 Arithmetic Commands

The arithmetic commands perform operations on the contents of the accumulator and the results always remain in the accumulator.

ADD (+) Add IL to AA
SUB (-) Subtract IL from AA
MOL (.) Multiply IL times AA
DIV (/) Divide AA by L
EXP (1) Raise AA to the power LL

3.2 Function Commands

The function commands compute the indicated operation or function. The commands operate on the contents of "AA" or "LL" with the results remaining in either "AA" or "LL". For example, $3 B R$ takes the square root of $B R$ and $\sqrt{B R}$ remains in BR. "AA" is unaffected by function commands operating on "LL"。

SIN (1) Compute the sine of AA or LL. (The angle mast be in radians)
COS (2) Compute the cosine of AA or LL. (The angle must be in radians)

LOG (4) Compute the logarithm (base 10) of AA or LL
IN (5) Compute the logarithm (base e) of AA or LL
10^{x} (6) Raise 10 to the power AA or LL

SQR (?) Compute the square root of AA or LL
FAC (, Compute the factorial of the positive floating point integer in AA or IL

ASN ()) Compute the arc sine of AA or LL, where $|x| \leq 1$ (result in radians)

ACS (() Compute the arc cosine of AA or LL, where $|x| \leq 1$ (result in radians)
(1) - (7) See Restrictions (Error Stops) on Page 6 and 7

Entry commands are for the purpose of entering data into the accurmulator. The output commands type floating point decimal numbers with a 2-11 digit mantissa followed by the exponent.

| CLA (Space) | Enter $L L$ into $A A$ |
| :--- | :--- | :--- |
| CSU (8) | Enter the negative value of $L L$ into $A A$ |
| CPO (9) | Type AA or LL following a carriage return |
| SPO (;) | Type AA or $L U$ following a space |
| - (:) | Store $A A$ in $L L$ |

3.4 Control Commands

The control commands enable the user to perform logical transfers within the symbolic equation.

RET (\$) Return to the beginning of the symbolic equation the number of times contained (floating point) in IL. Each time a return is made a floating point 1 is subtracted from LL. When $L I$ becomes zero, the program overlooks the command and continues in the symbolic equation.

TPL (H) If AA contains a positive number transfer to the $r^{\text {th }}$ command, where II contains the floating point number r. For example, HBL would trensfer to the 15 th command if $A A$ is positive and BL contains a 15. If AA is not positive, continue in sequence in the symbolic equation.

TMI (S) Transfer on minus in a manner similar to the TPL command.

TZO (0) Transfer on zero in a manner similar to the TPL command.

3.4 Control Commands (Contid.)

INC (\&) Increment the channel address one letter in the alphabet (not to proceed past channel "L") of the rth command. The rth command is determined by the positive number in LL. For example, \&ER, where ER contains a 19, would instruct the program to find the 19 th command and increment its channel address. If the letter location is BA, it becomes CA.

INS (3) Increment the sector address of the rth command one letter in the alphabet. This command is similar to the INC command except the sector address is incremented instead of the channel address. Incrementing sector Z causes the channel to be incremented and the sector becomes an A. For example, if BZ is incremented, it becomes CA.

RPL (:) Replace the letter location of the rth command with the letter location of this command. The rth command is determined from the contents of the accumulator. For example, if the accumulator contains a 10 , and the command is $\mathbb{F A}$, the program would replace the letter location of the 10th command with FA. If the 10th comrand was originally $+B X$, it would now be + FA.

The program contains certain built in error stops which can be useful in debugging if the specific error which caused the stop is known. The following list indicates the location counter setting on the console at the stop and the probable error.

Location Counter

(1) 0125.1 In the 10^{X} subroutine, the floating point exponent of x must not be greater than ${ }^{35} 10$.

Location Counter (Cont'd.)
(2) $0133.1 \quad$ In the e^{x} subroutine, the floating point exponent of x must not be greater than $35_{10}{ }^{\circ}$
(3) 1643.1

In the $\log _{10} x$ subroutine if x is negative, the program halts with x in A and R registers.
(4) 0151.1 In the $\log _{e} x$ subroutine if x is negative, the program halts with x in A and R registers.
(5) 0164.1 In the EXP command, if y in y^{X} is negative, the program halts in the $\log _{10}$ subroutine.
(6) 0167.1

In the FXP command, if y in y^{X} is too large, the program halts in the 10^{x} subroutine.
(7) 0214.1 In the arc sine subroutine, X must meet the conditions $|X| \leq 1$.
5. EXAMPLE

Evaluate X, with T ranging from 0 to 4.5 by increments of 0.5 , in the following equation:
$X=e^{-.2 T} 0.5(\cos 0.5 T-7.6 \sin 0.5 T)$. Number data was entered into the following locations.

BB. 5
CC. 2

DD +. 5
$\mathrm{EE}+7.6$
JJ 09+1
BT 0

5. EXAMPIE (CONT'D.)

The symbolic equation and results are shown below. Results are shown in floating point format with 8 places accuracy.

RAFT SYMBOLIC EQUATION
BT.DD:FFIAA.EE:GG2FF FF-GG.DD:GG8CC.BT7AA.GG:BX 9BT;BX BT+BB:BT\$JJ

EXPLANATION OF THE ABOVE SYMBOLIC EQUATION
(sp) BT BT to accumulator
.DD Multiply by DD
: FF Store result in FF
JAA Take sine of AA

- EE Multiply by EE
:GG Store result in GG
$2 F F \quad$ Take cosine of FF
(sp) FF FF to accurnilator
-GG Subtract GG
.DD Multiply result by DD
:GG Store result in GG
8CC -CC to accumulator
.PT Nultiply by BT
7AA Raise e to power of number in AA
-GG Multiply by GG
:BX Store result in BX
9BT Carriage return and print BT
;BX Space and print BX
(sp) BT BT to accumulator
$+B B \quad$ Add BB
:BT Store result in BT
\$JJ Return JJ times
PRINTOUT

```
BT 00000000 0 BX 50000000 0
BT 50000000 0 BX-41231526 0
BT 10000000 1 BX-11323257 1
BT 15000000 1 BX-16478633 1
BT 20000000 l BX-19623208 1
```

PROGRAM TITLE: EXPANDED RECOMP ALGEBRAIC FORMULA TRANSLATOR (RAFT IV) Page 9

5.	EXAMPLE (CONT'D.)		
	PRINTOUT (CONT'D.)		
	BT 25000000	1 BX-20916091	1
	BT 30000000	1 BX-20608494	1
	BT 35000000	1 BX-19010624	1
	BT 40000000	1 BX-16460734	1
	BT 45000000	1 BX-13297938	1

6. GENERAL DICTIONARY
6.1 Commands

ADD	$(+)$
SUB	$(-)$
MUL	(0)
DIV	$(/)$
EXP	(1)
SIN	(1)
COS	(2)
LOG	(4)
LN	(5)
10^{x}	(6)
ex	(7)
SQR	$(?)$
FAC	$()$,
$A S N$	()$)$
ACS	$(()$

Start	Sense Switch (ON)	Operation
1	B	Enter data
	C	Enter data
2	D	Type data
	B	Type data
	C	Enter number of digits for output
	D	Punch channels on tape
	None used	
		Enter symbolic equation

PROGRAM TITIE: EXPANDED RECOMP ALGEBRAIC FORMULA TRANSLATOR (RAFT IV) Page 11
6. GENERAL DICTIONARY (CONTID.)
6.2 Options (Cont'd.)

Start Sense Switch (ON) Operation
3

B	Verify symbolic equation
C	Correct mistake in sym- bolic equation
D	Punch symbolic equation on tape
None	Begin calculation

Contents:

I* General Computer Concepts p. 1 II. RAFT IV
A. Definition of RAFT IV p. 3
B. General Definitions p. 3
C. Commands \& Examples p. 4
D. Machine Operation p. 12
I. GENERAL COMPUTER CONCEPTS
A. There are two general types of computers.
(1) An Analos computer simulates the problem; all numbers read in (and answers read out) are measured in some way. Therefore, an Analog computer can only be as accurate as the measuring device. An example of a simple Analog computer is the slide rule.
(2) A Digital computer actually calculates the answer, with the numbers read in (and the answers read out) all being true decimal numbers. Digital computers carry numbers and calculate results much as a hand calculator does; each number has a given number of digits. (The RECOMP II Computer is a digital computer.)
B. Many people think of computers as being mysterious machines. Actually, they are capable of performing only very simple operations, such as adding, subtracting, dividing, or mul tiplying numbers. They can also make simple tests, such as determining if a number is equal to zero or not. Computers are very powerful tools because of their speed and the arount of information that they can store (and operate on) and because of their testing ability.
C. Any digital computer, large or small, is made up of four types of devices. (These devices may be packaged separately or together.)
(1) Input-Output units provide the means for getting information into or out of the computer. Examples of Input-Cutput units are paper tape reader, paper tape punch, typewriter (for input or output), magnetic tape, punched cards, etc.
(2) Storage units are devices that can store information for the computer. (They are quite often called "Memory" devices.) A computer can store three basic types of information - instructions, numbers, and alphabetic characters. Common types of "Memory" devices are Core, Drum, and Disk Storage. (The RECOMP II uses a Disk Memory device.)
(3) Arithmetic units are registers where the actual computation takes place. The dials of a hand calculator which hold one number could be thought of as being a register.
(4) Control units are devices that control the overall actions of a computer. They coordinate the operations of all the units.
D. The Memory of any computer contains a number of locations where information can be stored. (Every location holds a standard amount of information.) Each location in memory has a unique "address" permanently associated with it. A number put into the computer is always referred to by its "address" - actually
the address of the location where the number is stored. (An analogy here is a Post Office with 26 boxes that are labeled A - Z. If the number " 12.5 " is written on a slip of paper, the number could be stored by placing it into Box C. Likewise the number "4. 4 " could be written on a slip of paper and placed in Box D. Then the instruction "add the number stored in C to the number stored in D " might be given, followed by "store the result in E". The answer, " 16.9 ", would be left in Box E.)
E. Most computers have a register where the computation takes place and where the results are left. The rait: register is usually called the Accumulator. It normally heids one number such as could be stored in one location in memory.
F. Computers actually perform individual "instructions". An instruction must state (1) what operation to perform and (2) what data to operate on. One common form of an instruction is an Operation (or Operation Code) plus an Address. (As an example, the instruction "Add G " might mean to take the number already in the Accumulator, add the number stored in memory location G to it, and leave the result in the Accumulator.)
G. A "Frogram" is a complete set of instructions to solve a giver: problem. All modern digital computers are "Internally Stored Program" computers. This simply means that the program that the computer will follow is itself stored in the computer in some of the available locations in memory.
H. In order to have a computer perform a Frogram, the computer is told the location (in memory) of the first instruction. In a "sequential" computer, the computer then proceeds to perform the instructions in the same sequence as they are stored in memory.
I. All computers have some form of "transfier" instruction. A transfer instruction tells the computer to take its next instruction from a specified location in memory, rather than from the next location as it nomally would do.
II. RECOMP ALGEBRAIC FORMULAR TRANSLATOR (RAFT IV)
A. RAFT IV is an "Interpretive Routine" (or a General Purpose Program) that has been written for the RECOMP II computer. The RAFT Interpretive Routine allows the user to write his program in a simpler form. This simpler RAFT Program is then put in the computer along with the RAFT Interpretive Routine, which then translates the simpler RAFT Program into a standard program that the computer can understand and perform.
B. GENERAL

1. An Operation (or "Command") is represented by a symbol. (e.g. Add is "+", Subtract is "-", Divide is "/", etc.) There are 27 Operations available.
2. Each number is stored in a data location and is referred to by an Address. An address consists of some 2 letter combination from BA to LZ . (e.g. $\mathrm{BA}, \mathrm{BB}, \mathrm{BC}, \ldots \mathrm{BZ}, \mathrm{CA}$, $C B, \ldots \mathrm{CZ}, \mathrm{DA}, \ldots \mathrm{DZ}, \mathrm{EA}, \ldots \mathrm{LZ}$.) There are a total. of 286 data locations available. (The first letter is called the "channel" and the second letter the "sector" portion of the address.)
3. The Accumulator (which holds one number) normally contains the results of an operation and is referred to by the address AA.
4. An Instruction consists of one operation and one address. ($\mathrm{e}_{\mathrm{o}} \mathrm{g}_{\mathrm{g}} \mathrm{IN}+\mathrm{BA}^{\prime \prime}$)
5. A Symbolic Equation (or "Program") consists of the instructions necessary to solve a given problem. There may be up to 1024 instructions in one Program.
6. Instructions are always performed in the same sequence as they occur in the Symbolic Equation unless a transfer command is given. A transfer command causes some other instruction to be performed next - rather than the next instruction in sequence.
C. LIST OF OCMAANDS

In the following definitions, $A A$ refers to the Accumulator and (AA) refers to the contents of the Accumulator. LL refers to an address (BA thru I.Z) and (LL) refers to the contents of that address.

Operation	Operation Abbreviation Symbol	

1. Move Data Commands - Move data between the Accumulator and any data location.

CLA (Space) (Clear and add.) Flace (LL) into AA after clearire $A A$ to zero.

CSU

STO
: Store (AA) into LL.
2. Arithmetic Commands - Performs an operation and places the result in the Accumulator.

ADD	+	Add (LL) to (AA)
SUB	-	Subtract (LL) from (AA)
MUL	-	Multiply (LL) times (AA)
DIV	/	Divide (AA) by (LL)
EXP	,	Raise (AA) to the Power (LL)

3. Function Commands - May operate on the contents of AA with the result remaining in AA or may operate on the cortents of $L L$ with the result remaining in $L L$. ($A A$ is not affected by function commands operating on LL)

SIN	1	Compute sine of (AA) or (LL)
COS	2	Compute cosine of (AA) or (LL)
ASN)	Compute the arc sine of (AA) or (LL)
ACS	$\left(\begin{array}{l}\text { Compute the arc cosine of } \\ (\mathrm{AA}) \text { or (LL) }\end{array}\right.$	

(1) In y^{x}, y cannot be negative
(2) All angles are in radians
(3) The sin or cos of any angle ≤ 1

LOG	4	Compute the logarithm (base 10) of (AA) or (LL)
LN	5	Compute the logarithm (base e) of (AA) or (LL)
\mathbf{e}^{X}	6	Raise 10 to the power (AA) or (LL)
SQR	7	Raise e to the power (AA) or (LL)
FAC	$?$	Compute the square root of (AA) or (LL) Compute the factorial of the positive number (AA) or (LL)

4. Output Commands - Will output number on typewriter in decimal "floating point" form. A floating point printout is in the following form: "LL XXXXXXXX YY" - where LL is the address of the number, $X X X X X X X X$ is the decimal number (no leading zeros) with the decimal point assumed to be before the first digit, and $Y Y$ is the power of ten the number is to be multiplied by. The decimal number that is printed out may be from 2-11 digits long.

Example:

Printed out

CE 465200001

FA 64231509-2

HE -5329 3

Operation
Abbreviation
CPO

SPO
Operation
Abbreviation

means

The number stored in address $C E=40552\left(0.4652 \times 10^{1}\right)$

The number stored in address
$F A=0.0064233 .509\left(=.64231509 \times 10^{-2}\right)$
The number stored in address $\mathrm{HE}=$ $-532.9\left(=-.5329 \times 10^{3}\right)$

Definition Symbol

9
;

Carriage Feturn, then print out (AA) or (LL)

Space, then print out (AA) or (II)
(The instruction "9 CE" would cause the contents of $C E$ to be printed out - see above.)
(4) The number must be positive
(5) The floating point exponent of X must be ≤ 35

R, MFT IV CODIVG SHEET
for
RECOMP Automatic Formula Translator iv

1. IST OF COMMANDS

Explanation of Example 1

```
Instruction 1. Put \(X\) intc AA (Accumulator)
    2. Add \(X\) to \(Y\); result is in \(A A\)
    3. Faise \((X+Y)\) to power 2.0; result is in AA
    4. Store \((X+Y)^{2}\) into data location BZ
    5. Carriage return, then print out contents of \(B Z\left(=(X+Y)^{2}\right)\)
```

Operation	Operation Abbreviation\quad Definition

5. Transfer Commands - Permit transfers within the Symbolic Equation.

RET $\$$

Return to the beginning of the Symbolic Equation the number of times contained in LL. Each time a return is made, a " 1 " is subtracted from (LL). When (LL) becomes " O ", the return command is skipped.
(Example: If $(F B)=9$, the instruction "FB" vould cause all instructions from the beginning down to the "RET" cormand to be performed a total of 10 times.)

TPL	H	If AA contains a positive number, transfer to Instruction number n, where LL contains the number $\mathrm{n}_{\text {. If }}$ AA does not contain a positive number, skip this instruction.
(Example: If (AA) is positive and (DA) $=16$, an inst muction "H TA" would cause instruction number 15 to be performet rej \dagger)		
TWI	S	If $A A$ contat ns a negative number, transfer as above (in TFI).
TZO	$\begin{gathered} 0 \\ \text { (letter) } \end{gathered}$	If AA contains a zero (+ or -), transfer as above (in TPL). (NOTE: $+100-100$ would $=+0$; $-100+100$ would $=-0$)

6. Modify Address Commands

INC \&
\&
Increment the Channel (lst letter) portion of the address of instruction number n by letter in the alphabet. (Do not proceed past channel "L"). IL contains the number n.
(Example: Instruction " $\&$ DF", where data location DF contains the number 19, would cause the channel address of the 19th instruction to be incremented - as say from BA to CA.)

INS 3 Increment the Sector portion (2nd letter) of the Address of instruction number n by one letter in the alphabet. LI cont,ains the number n. (See INC above) (If CA is incremented, it becomes $C B$; if $E Z$ is incremented, it becomes FA)

EXAMPLE 2

1. IST OF COMMANDS

ARITHMETIC				FUNCTIONS				FUNCTIONS/OUTPUT				CONTROL				
	Clat enter L to AA			?	SQRoot		L or AA	6	10^{x} Raise 10 to AA or L			\$	RETurn to beginning			
8	CLS	- L to AA		1	SINe		L or AA	7	e^{x} Raise e to AA or L			H	TPLus			
+	ADD	L to AA		2	cosine		L or AA	,	EXP AA to power L			s	TMInus			
-	SUBtract	1 from AA)	ASN $\sin ^{-1}$		L or AA	,	FACtorial of AA or L			0	TZEro			
-	MULtiply	AA by L		$($	$\mathrm{ACS} \cos { }^{-1}$		L or dA					\&	INChannel by 1			
/	DIVide	AA by L		4	LOG_{10}		L or AA	9	CRT CR and type			3	INSector by 1			
:	Store	$A A$ in L		5	LNatural (e)		L or $A A$:	SPT Space and type			RPlace address				
PROBLEM STATEMENT: Solve: $X=\sqrt{B^{2}+C D-\sin \theta}$ (Print out value of ς° and X $\text { NOTE: } \quad \theta_{\text {radi ans }}=\theta^{\circ}\left(\frac{\pi}{180}\right)$												C_{H}.	${ }^{S_{E}}$	DATA		
												B	B	B		
												B	C	C		
												B	D	D		
												B	Q	豆 0		
												B	F	f radia		
												B	X	$\sqrt{B^{2}+C D}$		
												C	4	180		
CODE:												C	B	π		
S / E	$\begin{array}{l\|l} \hline \mathrm{C} & \mathrm{~B} \\ \hline \end{array}$				$1 \\|_{4}$		$A \leq S /$		D. $\square^{\text {B }}$	$B \cdot \\|$	18	D	A	$\sin \theta$		
1												1	B	B^{2}		
S/D\\| $\mathrm{S}_{9} \mathrm{C}$				B	- \mid D A	A	A :	B	$X \quad$ O B	Q1:11	X					
93010																

Explanation of Example 2
Instruction 2. Put Π into $A A$ (after clearing $A A$)
2. Divide Π by 180; result is in AA
3. Multiply ($\pi / 180$) by θ°; result is in $A A$
4. Find the sin of \rightarrow; result in $A A$
5. Store $\sin 丹$ into data location $D A$
6. Put B into $A A$ (after clearing $A A$)
7. Multiply B times B; result in $A A$
8. Store B^{2} into data location $D B$
9. Put C into $A A$ (after clearing AA)
10. Multiply C times D; result in $A A$
11. Add $C D$ to B^{2}; result in $A A$
12. Subtract sin \rightarrow from $\left(B^{2}+C D\right)$; result in $A A$
13. Find the square root of $\left(B^{2}+C D-\sin \theta\right)$; result in $A A$
14. Store $\left(B^{2}+C D-\sin \theta\right)$ into data location $B X$.
15. Carriage Return, then print out $<^{\circ}$
16. Space, then print out X
II. RECOMP ALGEBRAIC FORMULAR TFANSLATOR (FAF'T IV) (cont'd)

RPL !
Replace the Address of Instruction number n with the Address of this instruction. AA contains the number n.
(Example: If AA contains a number 10, and the instruction "! FA" is given, the Address of the 10th instruction will be placed with "FA".)
II. RECOMP ALGEBRAIC FORMULAR TRANSLATOR (RAFT IV) (cont'd)

FAFT EXAMPLE 3 (Illustrates "Return to Beginning" Command)
Solve $\quad Z=\sqrt{B^{2}+2 C}$
Print each value of C and 2 and value of B once
Where: $B=5$
C goes from 0 to 100 by increments of $\Delta C=5$

EXAMPLE 3

RAFTIV CODING SHEET

RECOMP Automatie Formula Translator IV

LIST OF COMMANDS

Explanation of Example 3

Instruction
 1. Put $B(=5)$ into $A A$

2. Multiply B by B; result in $A A$
3. Store B^{2} into data location $C B$
4. Put value of $C(=0$ initially) into $A A$ (after clearing $A A$)
5. Multiply C by 2 ; result in $A A$
6. Add B to $2 C$; result in $A A$
7. Find square root of $(B+2 C)$; result in $A A$
8. Store $\sqrt{B+2 C}$ into data location $B Z$
9. Carriage return, print out value of C
10. Space, print out value of Z
11. Put current value of C into $A A$
12. Add increment C to C; result in $A A$
13. Store new value of C into data location $B C$
14. Feturn to the beginning of the equation 20 times (for 9 total of 21 results)
15. Carriage return, print out value of B
D. MACHINE OPERATION
16. Ioad the F.AFT IV Program tape (\#1058) into the tape reader and press the tape "FILL" button to read it into the computer.
17. Input the Symbolic Equation into the computer as follows:
a. Turn all Sense Switches (on console) OFF (UP).
b. Press the "Start 2" Button.
c. Using the typewriter, type in the Symbolic Equation. Type exactly the symbols or letters in the Equation. (Do not type Letter Shift, Figure Shitt, Tab, etc.; type only the characters in the Equation) Note that "Space" means the Space Ear.
d. An automatic Carriage Return occurs after every 16 Instructions.
e. Terminate entry of the Symbolic Equation by pressing the Carriage Return.
18. Input Data and Constants necessary to solve problem.
a. Turn Sense Switch B ON (others OFF).
b. Press the "Start 1" button.
c. Using typewriter, type in each number as follows (Letter or Figure Shifts not necessary):
(1) Type address of number (e.g. "BC")
(2) Type in number itself by some combination of the following (see (3) below for examples):
(a) Sign of number (+ or -)
(b) Integral part of number
(c) Decimal point followed by fraction
(d) The sign and integral value of the power of 10 by which the number is to he multiplied
(e) A carriage return enters the number
(3) Examples of (2) (ahove) are:
(a) 26.4 may be typed in as

$$
+26.4 \quad(C / R)
$$

$$
26.4(\mathrm{C} / \mathrm{R})
$$

II. RECCMP ALGERRAIC FCRMLLAR TRAASLATOR (FAFT IV) (cont'd)
(b) 105,000 may be typed as
$+105000(\mathrm{c} / \mathrm{K})$
$105000.0(\mathrm{c} / \mathrm{k})$
$105+3(\mathrm{C} / \mathrm{R}) \quad$ (same as 105×10^{3})
(c) +105 may be typed as
$+105.0(\mathrm{C} / \mathrm{R})$
105 (C / R)
(d) 0.65 may be typed as

$$
\begin{array}{ll}
+0.65 & (\mathrm{C} / \mathrm{R}) \\
0.65 & (\mathrm{C} / \mathrm{R}) \\
.65 & (\mathrm{C} / \mathrm{R}) \\
+65-2 & (\mathrm{C} / \mathrm{R}) \quad\left(\text { same as } 65 \times 10^{-2}\right)
\end{array}
$$

(4) If a character other than a $0,1,2,3,4,5,4$. $7,8,9,+,-$, ., or carriage return is type, the typewriter will type out "EFirRR" and reset, the computer so that the correct number may be entered.
d. After the last number has been entered, press the "FTLL" button on the console.
4. After the Symbolic Equation and the Data have been enterer, the nroblem is ready to run. To min,
(1) Turn all Sense Switches OFF
(-2) Press "Start 3" button
Your program should now run.
5. The $\angle A F T$ IV frogram allows other very useful machine operations other than those rentioned above. The complete list is as follows:

SENSE

SWI TCH	PHLSS
ON	START

B locations (use locations BA - LZ only). See D 3 above.
(2) Type out a number already in D the computer. Enter Address (e.g. "EC") of number through typewriter.
(3) Change the number of digits in each number to be output (if other than 8 is desired). See D 6.
(4) Punch one entire channel of C Data on tape. Enter channel (e.g. "E") through typewriter. Repeat for other channel.
(5) Enter Symbolic Equation. None See D 2.
(6) Verify the Symbolic Equation B by havine the typewriter type it out.
(7) Correct a mistake in the C 3 Symbolic Equation. See D7.
(8) Punch the Symholic Equation D out on tape.
(9) Run the problem None

NOTF: The above 9 Machine Operations are all independent and may be performed in any sequence desired.
6. Normally 8 decimal digits are typed out for each number
(in floating point form). This can be varied from
2-Il digits by doing the following (on the console):
(1) Put Sense Switch B ON (others CFF).
(2) Press the "Start 2" button
(3) Press "N" key
(l^{\prime}) Press " C " key
(5) Press "X" where $X=$ the number of digits (2-11)
(6) Press the "." (decimal point)
(7) Press "Enter" key
(8) Press the "Start" buttton
7. To correct a mistake in the Symbolic Equation, do the following (on the console):
(1) Put Sense Switch C ON (others OFF).
(2) Press "Start 3" (the computer will halt with "0033.0" in the "location counter" lights on tee console).
(3) Press "N" key
(4) Press "+" key
(5) Press " X " where $\mathrm{X}=$ the number of correct instructions preceding the incorrect entry.
(6) Press "." (decimal point)
(7) Press "Enter" key
(8) Press "Start" key
(9) Re-enter the correct instruction (put in complete instruction, even if only the address is being changed) through the typewriter.

EXAMPLE IV

Solve: $\quad Z=X+Y$

Where: X goes from $100 \rightarrow 200$ by $\Delta X=50$ and I goes from $400 \rightarrow 700$ by $\Delta Y=100$
(let Y go through its range of values for each value of X)

II. RECOMP ALGERRAIC FORMULAR THANSLA'IOR (RAFT IV) (cont'd) RAFT IV CODING SHEET

EXAMPIE IV (cont'd)
RECOMP Automatic Formula Translator IV

EXAMPLE: V
Solve: $X_{n}=C_{n} \cdot D_{n}$ for $n=1 \longrightarrow 10$

There is a table of 10 values of $C\left(C_{1}, C_{2}, \ldots . C_{10}\right)$ and also 10 values of $D\left(D_{1}, D_{2}, \ldots D_{10}\right)$. Solve for the 10 corresponding values of X.

$$
\text { e.g. } \begin{aligned}
x_{1} & =C_{1} \cdot D_{1} \\
x_{2} & =C_{2} \cdot D_{2} \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
x_{10} & =C_{10} \cdot D_{10}
\end{aligned}
$$

Flow Diagram

$$
\text { Reset Count }=9
$$

Set Addresses
Back to Origin
II. RECOMP ALGEBRAIC FORMULAR TRANSLATOK (RAFT IV) (cont'd)

RAFT IV CODING SHEET
EXAMPLE V (onnt'd)
for
RECOMP Automatic Formula Translator IV

