
RECONP II USERS' PROGRAM NO. 1033

PROGRAN TITLE: SIGNAL CORPS RECONP ASSEHBLY PROGRAM - SCRAP II

PROGRAH CLASSIFICATION : Executive and Control

AUTHOR: T. J. Tobias
U. S. Army Signal Engineering Agency
Arlington Hall Station
Arlington, Virginia

PURPOSE: SCRAP is an assembly program for the RECOliP II computer.
It is designed to use mnemonic operation codes and symbolic,
absolute, operand, or relative addresses. SCRAP uses all
of the RECOMP II commands, as "Hell as pseudo-operation codes
and macro-instructions. The SCRAP processor requires two
passes to complete the assembly of a program v~itten in the
SCRAP language. The primary worting media of the SCRAP
processor during assembly is paper tape for both input and
output data. Printed output is optional during both the
first and second passes of assembly.

DATE: January 1960

Published by

RECOMP Users' Library

at

AUTONETICS INDUSTRIAL PRODUCTS

A DIVISION OF NORTH ANERICAN AVIATION, INC.
3584 Wilshire Blvd., Los- Angeles 5, Calif.

SIGNAL CORPS RECONP ASSEMBLY PROGRAM

SCRAP II

by

T. J. TOBIAS, U. S. ARHY SIGNAL ENGINEERING AGENCY

INTRODUCTION: SCRAP is an assembly program for the RECONP II computer.
It is designed to use mnemonic operation codes and symbolic, absolute,
operand, or relative addresses. SCRAP uses all of the RECOMP II
commands, as well as pseudo-operation codes and macro-instructions.
The SCRAP processor requires two passes to complete the assembly of
a program written in the SCRAP language. The primary working media
of the SCRAP processor during assembly is paper tape for both input
and output data. Printed output is optional during both the first
and second passes of assembly.

DESCRIPTION:

1. The SCRAP processor allows for an extremely flexible instruc
tion format. Each line of SCRAP programming may have a symbolic
location of up to eight alphabetic characters, a command, and an
address of anyone of six (6) types. For example, if a floating point
number in location 1052 is to be multiplied by the decimal number,
-71.394, and the result stored in a data area, this program might be
written as folIous:

LOCATION CONI-1AND

FCA

FHP

FST

T

N"

F

s

ADDRESS

1052

-71.394

DATA

REMARKS

c(1052,3) to A,R

C(A,R) x (-71.394)

C(A,R) to DATA

These three instructions generally illustrate the major type of
'address' permitted in SCRAP; that is, absolute (N) addresses,
symbolic (S) addresses, and operand (F,D,C,A) addresses. As may be
noted, four (4) types of operand addresses are allowed. These will
provide a means of entry for almost all types of data encountered in
the programming of the RECOHP II computer. The permissible types of
operand addresses are:

F - - Floating Point Numbers

D - - Fixed Point Numbers

C - - Command Format Data

A - - Alphabetic (Baudot) Data

As an illustration of programming using SCRAP, following is a
subroutine for the assemoly of a floating "point number 'Hhere the
C(A) is the integer part at 39 and the C(R) is the fractional part
at O.

LOCATION COMM.~~D T ADDRESS

FIXTOFLO SAX S TEHPSTO

ADD D +1+39

STA S EXIT

XAR N 0

STO S TEHPSTO+l

FCA S CONSTANT

CLA S TEHPSTO

N 0

FAD S TEHPSTO+l

SR

EXIT TRA N 0

TEHPSTO DECIHAL D +0+0

DECIMAL D +0+0

REMARKS

C (A) to Tm-IPSTO

Return address +1 @ 39

store to exit line

C(R) to A

C(A) to TEHPSTO+l

+39 @ 39 to R

Integer Part to A

Integer Part to Normalized FP

Integer + Fractional Part to FP

Set Next Instruction Right

Exit Line

TS for integer part

TS for fractional part

CONSTANT CO}'IH11ND"~:- C +0000000-0000000 Exponent of zero for fractional part

DECIHAL D +39+39 Constant of +39 @ 39

~~Zero in command format is to illustrate the use of the
C type address in this example.

This program contains many of the permissible types of instructions which
may be used when programming in the SCRAP language. Of particular note
in the example is the use of the relative address, 'TD'WSTO+ll, which

2

refers to the location one (1) word beyond the location named
'TEHPSTO I • Relative addressing of both full and half words from
00001 to 77771 is permitted relative to any symbolic address.

2. The four fields of data of a SCRAP program, LOCATION, COl1HllND,
T, and ADDRESS, may contain the following information:

a. LOCATION: The location may contain a symbolic 'tag l to
identify a memory location. This field may contain from
one (1) to eight (8) alphabetic characters (A-Z). The
typewriter functions, figures shift, carriage return, tab,
and blank, 02, are not allowed. The letter IC' should not
be used as a location symbol since this character is
reserved as a special address symbol. The location field
may be blank.

b. Cm1}'1jJ~D: The command field must contain a mnemonic opera
tion code, pseudo-operation code, or macro-instruction
vJhich is recognized by SCRAP. In addition to the RECOMP II
operation codes the following are permissible:

CGrlI,'IAND DEFINITION

HALT same as HTR

HLT same as HTR

DISC DIS - Conunand format

DISD DIS - BCD format

TYWC TYW - Command format

TYWD T"T,J - BCD format

PN'VlC PNH - Command format

PM-ill PNW - BCD format

PTWC PTW - Command format

P'ThID PTW - BCD format

Note: DIS, TYVI, PI'l1'[, and PTitl will be assembled
as command format. The complete list pseudo
operation codes is described in paragraph 3,
and the macro-operation codes are discussed in
paragraph 4.

3

c. TYPE OF ADDRESS FIELD, T: This code specifies the type
of address used in the address field. The following
six codes are used:

TYPE CODE TYPE OF ADDRESS

S Symbolic

N Absolute Numeric Address, Octal and half word bit

D Fixed point decimal

F Floating point decimal

C Conunand format

A Alphabetic

The type of address field may be blank; if it is, the
address will be interpreted as symbolic.

d. ADDRESS: The address field may contain anyone of the six
types of data identified above. The required format of
these data is as follows:

(1) SYMBOLIC: A symbolic address may contain from one (1)
to eight (8) alphabetic characters (A-Z). The type
writer functions figures shift, carriage return, tab,
and blank, 02, are not permitted. A symbolic address
may in addition have an increment or decrement applied
to it at assembly time. The increment or decrement
must have the same form as an absolute address. For
example:

ADDRESS REMARKS

EXIT A reference to the location named 'EXIT'

TEMPS TO A reference to the location named 'TEMPSTO'

TEMPS TO+l The location one word beyond 'TEMPSTO'

EXIT-ODOOI One half word back from 'EXIT'

AREA-00021. Two and one half words back from 'AREA'

The special address 'e' may be used to refer to
locations relative to the present instruction.

4

LOCATION

For example:

COHr'L\ND T ADDRESS REHARKS

CLA DATA C(DATA) to A

TPL C+l Are C(DATA) plus?

TRA OUT C(DATA) are not plus

TZE C+1 Are C(DATA) both plus and zero?

TM OUT C(DATA) are plus but not zero

ANYOP C(DATA) are plus and zero

This sequence of instructions illustrates a comparison
operation to determine if the contents of location
DATA are plus zero. The use of the special address
form I C 1 allows for relative addressing to the present
instruction and in this case eliminates the need to
write the two location 'tags 1 which would have been
required without this 1 self-relative' feature.

(2) A.BSOLUTE Nill1ERIC ADDRESS: An absolute numeric address
field may contain from one (~) to five (5) numeric
characters. The first four characters of the field
must be an octal address. The last character of the
field represents the half word bit as in the nOl~al
RECOHP command format. If the field is less than five
(5) characters, it will represent an octal address,
right justified, and with the half word bit of zero.
For example:

ABSOLUTE ADDRESS

7760

3

745

57021

00001

o

EQUIVALENT COHMAND FORMAT

7760.0

0003.0

0000.1

0000.0

5

(3) FIXED POINT DECIMAL: A fixed point decimal number
used in the address field may contain a maximum of
sixteen (16) characters including the sign,
decimal point, and location of the binary point.
In addition, neither the integer nor the fractional
part of the number may contain more than eleven
(11) characters. The location of the binary point
is specified by the use of the suffix !BB. The
general form of a fixed point decimal number is
:!:IIII.FFFF±BB. The leading sign may be omitted
if the number is positive. If the location of the
binary point is omitted, however, the number will
be converted as a floating point decimal number
but will only be allocated one word of storage.
There are no error halts for this situation. Ex
amples of fixed point decimal numbers are as
follows:

ADDRESS MEANING RESULTANT COIvIMAND FORHAT

+1+39 +1 @ 39 +0000000-0000001

1+20 +1 @ 20 +0000000+0000000

-100+38 -100 @ 38 -0000000-0001440

-.1-3 -0.1 @ -3 -6314630-6314630

0.12.5+0 +0.125 @ 0 +1000000-0000000

If the specified binary point would cause the loss
of significant (left hand) bits, the number will
not be converted as specified. There will be no
error halt or error indication.

(4) FLOATING POINT DECIMAL: A floating point decimal
number used in the address field may contain a
maximum of sixteen (16) characters including sign
and decimal point. Neither the integer part of
the number nor the fractional part may contain
in excess of eleven (11) characters. The sign may
be omitted if the number is positive. Examples
of floating point decimal addresses are as follows:

ADDRESS MEANING RESULTANT COIvlNAND FORMAT

+1 +1

6

+4000000-0000000

+0000000-0000001

ADDRESS MEANING RESULTANT COMMAND FORMAT

-0.25

100 +100

-4000000-0000000
-0000000-0000001

+6200000-0000000
+0000000-0000031

-10.75 -10.75 -5300000-0000000
+0000000-0000020

(5) COMMAND: A word of conunand format data may be used
in the address field. It will be assembled exactly
as specified. For example:

ADDRESS RESULTANT COlv]1JL'ilin FORMAT

+7766010-1234561

-0000000+7777400

+7766010-1234561

-0000000+7777400

If a non-octal numeric character is entered as command
data, it will be assembled in the command limited to
its three low order bits. That is, eight would be
assembled as zero and nine as one. There are no
error halts or other indications of this condition.

(6) ALPHABETIC: An address field may contain from zero
(0) to eight (8) alphabetic characters. These will
be assembled in the baudot code form with the data
right justified. The characters carriage return,
tab, and blank, 02, are not permitted. Examples
of alphabetic data are as follows:

ADDRESS RESULTANT COl'-lMAND FORMAT

AREA -0000000-O5202~1

z -0000000-0000101

ANYPLACE -1545531+1033401

3. SCRAP contains a number pseudo-operation codes which cause
certain functions to be performed by the SCRAP processor at assembly
time. These functions may also cause some object code to be produced.

7

The following is the SCRAP repertoire of pseudo-ops.

PSEUDO-OPERATION DEFINITION

ORG ORIGIN: This pseudo-operation code will cause
the next instruction to be assembled in the
location specified by the address part of the
ORG pseudo-operation. The address of this
command must be numeric. For example:

LOCATION COMMAND T ADDRESS

ORO N ,00

This will cause the next instruction to be
assembled in 0500.0

DEF DEFINITION:: This cormnand specifies that the
symbolic location in the LOCATION field is
defined to be the absolute address specified
in the address field. For example:

LOCATION COMMAND T ADDRESS

START DEF N 1200

L DEF N 7760

DATA DEF N ,000

The LOCATION field must be symbolic and the
ADDRESS field must be a numeric absolute
address.

EQU EQUIVALENCE: This pseudo-operation code identif
fies two symbols as being equivalent. The two
symbols so identified may be used interchangeably.
For example:

LOCATION COMMAND T ADIEESS

DATAAREA EQU S DATA

TS EQU S TEMPSTO

8

SL

SR

SB

END

PAUSE

ALPHA or ALF

DECIMAL or DEC

COMMAND or COM

The symbol in the LOCATION field should be
identified by the equivalence pseudo-operation
before it is used in the program or it may not
be recognized and assembled correctly.

SET LEFT: This command will cause the next in
struction to be assembled in the 'left hand side
of the word. This command may cause an
ARS 0000.0 to be assembled as a dummy instruction
if required to cause the set left operation.

SET RIGHT: This conunand will cause the next
instruction to be assembled in the right hand
side of the word. As in the case of the SL
pseudo-operation code, this may cause a dummy
of ARS 0000.0 to be generated.

SET BLOCK: This command will cause the next in
struction to be assembled in the left side of the
next modulo eight word. Such dummy instructions
as may be generated will be ARS 0000.0

This pseudo-operation code signifies the end of the
data to be assembled. No other operation may follow
the END pseudo-operation code.

This operation code will cause the SCRAP processor
to stop assembling. Restart is accomplished by
depressing the start button.

ALPHABETIC DATA: This pseudo-operation code indi
cates that the address field contains alphabetic
data. The type code must be A.

DECIMAL DATA: This command indicates that the address
field contains decimal information. The type code
must be either an F or a D.

COMMAND DATA: This pseudo-operation code indicates
that the command field contains conunand format data.
The type code must be Co

4. SCRAP II also allows for the use of macro-instructions. These
may cause the production of several lines of coding for each macro that
is given. The macros are used in the same manner as normal operation
codes. If the macro has several arguments these are listed in successive
address fields. For example:

LOCATION COMMAND

anytag TNZ

T ADDRESS

any permissible Operation code Transfer on
non-zero

9

LOCATION

anytag

anytag

COMMAND

ZMT

SAM

T ADDRESS

any permissible Operation code Zero mode transfer

no. argument Operation code Set A Register
minus

The detailed discussion of the construction of macro instruction is con
tained under the operating procedures for macros.

5. The SCRAP processor requires two passes to complete the assembly
of the program. During the first pass an assignment table is accumulated
in which all the symbolic references are listed. If the symbol has also
been used as a location tag then an absolute assignment for that symbol
is stored. If a symbolic address is not also used in the program as a
location, no specific assignment may be made. These symbols will be
referred to as unassigned symbols. ~lso during the first pass a table
of equivalences is constructed for use during both the first and second
passes. During the first pass all operand addresses are replaced by
names. That is, the first fixed point constant encountered in the program
is assigned the name 'FIXeNOI'. This name is also substituted on the
output tape for this constant. The floating point constants are a~signed
the name 'FLOCNnn I, the alphabetic constants the name I AlFCNnn', and the
command format constants the name 'COMCNnn'. Each different constant is
only named once and becomes a part of a constant pool. The macro in
structions are also expanded to their full representation. At the end
of the first pass all of the constants used as operand addresses are
assigned locations immediately after the end of the program locations.
The assignment table is then printed out. All unassigned symbols may
be assigned absolute locations at this time (during the printing opera
tion) or the assignment table may be printed a second time with
assignment of all unassigned symbols taking place at that time. This
feature of assignment of unassigned symbols or non-assignment at the
programmer's option allows for cheCking of mispelling, omissions, or
other errors which may not be obvious if all unassigned symbols are
assigned. A good procedure is to obtain a listing of the assignment
table first without assignment of the unassigned symbols, and then a
second listing with assignment if desired. A listing of all operand
addresses and the corresponding names is also printed out for cross
reference and checking purposes.

6. During the second pass all instructions and data are converted
to the correct command format. The assignment table is used to obtain
the corresponding absolute address for all symbolic addresses.
Absolute addresses and data are converted to the proper command' format
words. An output listing of the assembly is optional during this
pass. The object program is punched ipto paper tape in command
format.

1. Insertions and deletions may be made during the first pass.
This is accomplished by use of a preset stop to the beginning of the
first pass program and by inputing the necessary corrections, additions.

10

or deletions from the typewriter. This allows for the reassembly of
a pror.:;ram, requiring minor chanEes, without having to re-keypunch the
entire input tape.

8. i;t the end of either the first or second pass a copy of all
significant tables and other data may be obtained on paper tape. This
Hill allow for the continua.tion of assembly at some later time begin
ning at the point where the previous program ended, or will allow the
first and second passes of assembly to be accomplished on a non
continuous basis.

SUHH1\RY: The SCHAr processor provides for an extremely flexible instruction
format, incJ.uding provisions for symbolic, absolute, operand, and
relative addresses. The SCRAP processor also provides for corrections,
insertions, and deletions during the first pass of assembly and for
assembly of a program in sections. This assembly proGram also provides
for the use of macro-instructions which may, if desired, be constructed
for only one time use. These features make the SCRAP assembly program
an extremely flexible aid to programminr, a.nd provides a base for even
more complex automati.c programming systems.

11

SIGNAL CORPS RECOMP ASSE~rnLY PROGRAM, SCRAP II

APPENDIX I

SCRAP OPERATING INSTRUCTIONS

1. GENERAL: The SCRAP processor has several modes of operation
and also provides for a number of options during (or after) processing.
These operating procedures contain information regarding the following:

a. "Key Punching" paper tape with SCRAP.

b. Procedures for the First Pass.

c. Procedure for the Second Pass.

d. Insertions, Deletions, and Corrections during the First Pass.

e. Dumping of the Assignment Table and other Data.

f. Construction of Macro-Instructions.

g. Restrictions and Program Halts.

2. KEY-PUNCHING SCRAP INPUT TAPE: The SCRAP program may be used to
process input from the typewriter and produce a paper tape in the proper
format for later assembly. The SCRAP processor reads and edits the input
information from typewriter, performs a cursory check for errors, and
produces the properly formated paper tape.

a. Key Punching

(1) Clear locations 0500-4277 to negative zero.

(2) Load SCRAP II Program.

(3) Set sense switch B and C on; Sense Doff.

(4) Set typewriter margin at 10; tabs at 20, 29, and 32.

(5) Depress START 1 to begin.

(6) Type command field and tab (or tab if blank).

(7) Type command field and tab.

(S) Type "T" field and tab (or tab if blank).

(9) Type address field and a carriage return. The output
paper tape will be punched at the completion of the
carriage return.

(lq) Repeat steps 6 through 9.

(11) If an error is made and detected before the carriage
return at the end of the line, it may be deleted by
depressing the blank key immediately to the right of
the "M" Key. The line is then retyped.

(12) No error may be corrected after the carriage return
as the data is already on tape.

(13) If, as a result of typing too quickly, an output error
is caused, this condition may be corrected by:

(a) Depressing error reset; then

(b) Depressing START 1, and then

(c) Depressing the blank key next to the "Mit Key.
The line may now be retyped by following steps 6
through 9.

b. Termination Key Punching

(1) If the last entry on tape is the pseudo-operation END,
the tape may be terminated by:

(a) Tabbing blank fields until the end of group ter
mination occurs (Output is grouped on tape 16
lines of coding per group).

(b) Or, by setting the punch to manual and punching 9
blanks (00), L 77000, carriage return, 3 blanks
(00), and an "S".

(2) If the program is to be key-punched in sections, each
section may be terminated as follows:

(a) Type a line of coding with the pseudo-op PAUSE.

(b) Tab at least one blank line of coding (no command
or T field data).

(0) Terminate by either one of methods outlined in (1)
above.

(d) Clear location 5013 to +zero before restarting.

It should be noted that the PAUSE line is not essential but is a useful
means of stopping assembly while the next section of paper tape is
placed in the photo reader. The blank line is ne cessary in that the
absence of a command field causes the reading of a new group from paper

2

tape. During assembly the PAUS~ causes a temporar.y stop and after
the loading of the photo reader, assembly is restarted by depressing
the start button.

,. FIRST PASS: The first pass of the SCRAP assembly allows for
optional input and output methods as well as the optional assignment of
unassigned symbols. Insertions, corrections, and deletions may also be
made during the first pass. These changes are discussed in greater
detail in paragraph 5 below. The setting of the sense switches de
termines the choice of options in the first pass as follows:

B C
a. Paper tape Input Only. off off

b. Typewriter Input Only off on

c. Paper tape Input and Typewriter on off
Output.

d. Key Punch only (No Assembly) on on

Paper tape output occurs for all forms of input. Option (d) above is
included in the list of sense switch settings for comparison purposes
only since no assembly occurs when using this option. The assignment
of unassigned symbols will occur only after the pseudo-operation END
and only if sense D is on. In practice it may be preferable to obtain
a copy of the unmodified assignment table first, and then to exercise
the assignment of unassigned symbols option. The first pass operating
procedure is as follows:

(1) Clear locations 0500-4277 to negative zero.

(2) Load SCRAP program.

(3) Set sense switches, typewriter margin and t,abs and
load tape into photo reader.

(4) Depress START 1 to begin assembly.

(5) When the pseudo-op E1ID occurs the SCRAP processor
will perform the following actions:

(6)

(a) Print a list of all constants, then

(b) Print the assignment table

(c) Print END FIRST PASS and halt.

A second copy of the assignment table may be obtained
by depressing the start button (or starting at 4513).
The position of Sense D may be changed if desired.

3

4. SECOND PASS: The second pass completes the assembly operation.
The input to this pass is the output tape from the first pass. The
output from the second pass is a copy of the object program on paper
tape in command format. The Second Pass Procedure is as follows:

a. Load SCRAP program and assignment table (this is necessary
only if the first and second passes have not been run
continuously).

b. Load photo reader with output tape from the first pass.

c. Set typewriter tabs and sense switches (Sense C off and
B either on or off.)

d. Depress START 2 to begin.

e. Assembly will proceed until the END pseudo-op occurs.

5. INSERTIONS, DELETIONS, AND CORRECTIONS: Changes may be made
to the program during the first pass of original assembly or during a
reassembly of the program. It requires that the input media be punched
paper tape and that the optional printed listing of assembly be
allowed (at least partly). Procedures for these changes are as
follows:

a. Set Sense Switch B on and C off •

. b. Set Read Out Knobs to location 4600.

c. For a deletion:

(1) Set Preset stop to 4600.1.

(2) After the line to be deleted has been printed and
the computer stops, depress START 1 to cause a
deletion. Repeat if necessary.

(3) Set Preset stop to neutral and depress START to resume
assembly.

d. For an Insertion:

(1) Set preset stop to 4600.0.

(2) When the computer stops at the point of the insertion;

(a) Set preset stop to neutral.

(b) Set sense switch B off and Con.

4

(c) Depress START.

(3) Type insertion(s) from t.ypewriter.

(4) Terminate the insertion operation by a PAUSE pseudo
operation.

(5) Set sense switch B on and C off and then depress START 1
to resume assembly.

e. For a Correction:

(1) Set Preset stop to 4600.1.

(2) After the line to be corrected is printed and the
computer stops;

(a) Set Sense Switch B off and Con.

(b) Set Preset stop to neutral.

(c) Depress START 1.

(3) Type correction from typewriter.

(4) Terminate the correction operation by use of the PAUSE
pseudo-operation.

(5) Set Sense Switch B on and C off and then Depress
START 1 to resume assembly.

f. Changes may also be made to the assignment table at the end
of the first pass. For example, a mispe1ling might cause
the following entries in the printout of the assignment table:

SCAN B

SYMBLOIC

GETPAREN

SYNBOLIC

GET ITEM

+0000000-0035620

-0000000-0000000

+0000000-0036120

+0000000-0036000

+0000000-0036701

The second entry above, "SYMBLOIC", is the result of mis
pelling the word nSDIBOLIC". Since the two are equivalent
names, the command format word, +0000000-0036000, may be
entered in place of the - zero word. The assignment table

5

begins in location 0500 and contains two word items for each
symbol, the first word being the name of the symbol and the
second word the assignment. Thus, a manual search of memor,y
will uncover the location of the particular unassigned symbol
and the correction may be entered from the console. This pro
cedure will save reassembly time for relatively minor errors
of mispelling or omission.

6. DUMPING OF ASSIGNMENT TABLE: The assignment table and other
significant data may be dumped on paper tape by use of a SAVE program.
This will allow sectional processing of the first pass or interrupted
processing of the first and second passes. The SAVE program is started
by use of the START 3 button. Restart of assembly may be accomplished
at some later time by filling the SAVE tape after loading the SCRAP
probrram tape, thus restoring the program to its previous state.

7 • CONSTRUCTION OF MACRO-INSTRUCTIONS: Macro-instructions may be
added to the SCRAP II list of operation codes by adding an appropriate
definition of the macro to the SCRAP II processor. In general, a macro
consists of a name and a list of arguments as follows:

tag MACRONAME AHI

AH2

A#3

•

A#n

This generates a list of instructions of the following form:

tag MACHlNECODE ~

MACHINECODE X#n2

MACHlNECODE X#n m

Where, the X#nls are either from the list of arguments A#n or from
the list of possible machine (assembly) addresses. The macro, transfer
on non-zero, TNZ, might be written as follows:

MACRO: tag TNZ A#l; and produce

6

OBJECT CODE: tag TZE C+l

TRA AHI

This would generate the following code for various definitions of A#l;

TNZ N 7770 would generate TZE

TEST TNZ

TRA N 7770

NODATA would generate TEST TZE

TRA NODATA

b. The interpretation of the macro-instruction depends upon
the definition coding of the macro. This skeleton coding
is entered into the SCRAP II processor in the format used
for instructions in SCRAP. In addition, a new instruction
form for the Arguments (A#n's).is added for use in the
skeleton coding (This address form never appears externally
from the processor). In addition to the definition (skel
eton coding) of the macro, the name and limits of the macro
must be added to the list of operation codes of SCRAP. A
macro-instruction, therefore, must be added to -the list of
operation codes and the definition coding of the macro
must be available to the SCRAP II processor.

c. The operation code table entry must have the following form:

First Word MAC RONAME

Second Word +aa67l00+ppssssO

(7 character maximum)

(command format)

where, aa number of arguments

pp number of resulting instructions

ssss location of definition

The entry requires two words. The first word is in alpha
betic form and contains the name of the macro. The second
word defines the limits of the macro and the location of
macro definition. Locations 0330-0475 are the available
for op table entries referring to macros. This table must
be extended continuously and the two words after the last
entry must be negative zero.

7

d. The macro definition coding consists of three word entries
in the following form:

First Word AbbbbRRR

Second Word ()

Third Word
~ addreSS~

where, A is an appropriate code corresponding, in function,
to the type of address code; and, RRR is a RECOMP II opera
tion code. (b is used here to represent a blank, 00).

The six SCRAP II address forms are permitted in the
address part, as well as a special address form for the
argument numbers. The format for macro definition coding
is as follows:

TYPE OF ADDRESS CODE A ADDRESS roRMAT

Symbolic B SYMBOLIC
* bbbbbbbb

Numeric E +bbnnnnn
bbbbbbbb

Command H ±ccccccc
+ccccccc

Fixed Point Decimal 0 fnumber~

Floating Point Decimal D ~number~.

Alphabetic L AAAAAAAA
bbbbbbbb

Argument b +5400000-00000nO
bbbbbbbb

*This second word may be an increment or decrement
of the form +bbnnmm.

Locations 7000 to 7577 are available for storage of macro
definitions. This allows for a maximum of 192 lines of
macro coding definitions.

8

LOCATION

e. The TNZ macro could be written in the following form:

~ OBJECT CODE

ts€; TNZ ADl tag TZE C+l

TRA ADl

COMMAND T ADDRESS REMARKS

ORG N 0030

ALF A TNZ MAC RONAME

COM C +0167100+02700000 OF TABLE CODE WORD

ORG N 7000

ALF A TZE

J ALF A C TZE C+l

ALF A +bbbbbib

ALF A
Tll]

COM C +5400000-0000010 . Tll AlII

ALF A

END

This definition of the macro TNZ may be keypunched using
SCRAP; and, in the above form (only data (ALF, DEC, or
COM) or location, ORG, pseudops), it may be translated
to an object tape by using pass two only of SCRAP.

f. A macro to set the A register minus, SAM, might be
written as follows:

OBJECT CODE

tag SAM tag EXT C-777777l+777777l

9

LOCATION COMMAND ! ADDRESS REMARKS

ORG N 0332

ALF A SAM MAC RONAME

COM C +0167100+0170060 OP TABLE CODE WORD

ORG N 7006

AEF A HbbbbEXT

ALF A -7777771 EXT C-77777 •••

ALF A +7777771

g. A macro to move a block (8 words) to the L loop and
to transfer to 7760 (ZMT) might be written as
follows:

MACRO OBJECT CODE

tag ZMT A#I TAG CTL ADI

TRA 7760

SB

LOCATION COfwlMAND T ADDRESS REMARKS

ORG N 0334

ALF A ZMT MACRONAME

COM C +0167100+0370110 OP TABLE CODE WORD

ORG N 7711

ALF A
CTL]

-COM C :~~OOOOOlO .. CTL AlII
ALF A

ALF A EbbbbTRA J TRA N 7760 ALF A +bb7760b

ALF A -------

10

LOCATION COMMAND T ADDRESS REMARKS

ALF A SB

ALF A SB

ALF A

h. A macro to increment a counter (COUNT) might be
written as follows:

11!Q!!Q. OBJECT CODE

tag COUNT A#1 tag CLA AU1

A#2 ADD A#2

STO A#1

LOCATION COMMAND T ADDRESS REMARKS

ORG N 0336

ALF A COUNT MACRONAME

COM C +0267100+0370220 OP TABLE CODE WORD

ORG N 7022

ALF A
eLA J

COM C +5400000-0000010 CLAA#l

ALF A

ALF A ~D]
COM C +5400000-0000020 ADD A#2

.ALF A

ALF A STO

COM C +5400000-0000010 STO A#l

.ALF A

11

i. The macro instructions written for SCRAP II must observe
the following restrictions:

(1) No macro may use another macro in its definition
coding.

(2) A macro may have a maximum of 12 arguments.

(3) A macro must produce at least one line of output
coding.

(4) If a macro may have a location tag, the definition
coding may not begin with SR, SL, SB, PAUSE, or
ORG.

j. If it is desired, pseudo-ops may be added to SCRAP II
which will cause a minus op code to be produced in the
object code. These will require only an entry in the
op code table in one of the following forms:

(1)

(2)

(3)

First Word OPNAME

Second Word +0046360+cc65l20

In this form the half word bit will be preserved
as is required for THA, TZE, STA, etc.

First Word OPNAME

Second Word +0046360+oc65060

In this form the half word bit will al ways be set
to zero.

First Word OPNAME

Second word +0046360+oc65160

In this form the half word bit will always be set
to one. Where, ±cc is the minus op code. For
example, if a long right shift, LRS, is to be
added to the repertoire with an op code of -40.
This could be written as follows (in SCRAP nota
tion) :

ORG N 0330

ALF A LRS

COM c +0046360-4065060

12

LOCATION

4334.0

(Assuming locations 0330-0331 are available in
the op table)
The address parts of the minus op codes will be
handled in exactly the same manner as a normal
RECOMP II op code. A minus op which requires a
full word may need to be prefaced with a SL
pseudo-oPe Also, the configuration of the
"address" of the minus op must necessarily cor
respond to at least one of six of the permissible
SCRAP II address forms. The name given to the op
code may not exceed seven characters. The name
may include a figures shift. The name of a pseudo
op or macro may, therefore, be anyone of the
following forms:

TNZ

SET3

7X2

ARS+

-00

Thus, the pseudo-op named -00 could be defined
to have the absolute value of -00. The value
assigned to any op code is determined solely by
the entry in the op code table

8. RESTRICTIONS AND PROGRAMMED HALTS:

a. The following are the restrictions referring to the number
items. Each of these has a related Error Halt. These
restrictions are as follows:

(1) Maximum of 512 Symbolic Names

(2) Maximum of 256 constants and no more than 99 of
anyone type (A, D, F and C).

(3) Maximum of 64 Equivalences.

b. The SCRAP II programmed halts are as follows:

INDICATION ERROR CONDITION

(••• 01 ••)* More than 512 Symbols

13

CORRECTIVE ACTION

No immediate action;
segment program

LOCATION

7777.0

7777.0

4423.1

7777.0

7777.0

4600.0

4720.0

6540.1

6545.1

0000.0

INDICATION

(••• 02 ••)

(••• 03 ••)

(••• 04 ••)

(••• 05 ••)

(••• 06 ••)

"ILLEGAL
OP CODEII

None

None

None

None

* Displayed on Console

ERROR CONDITION

Search Error of Constant
Pool

More than 256 Constants

Location Counter greater
than 7757.1

Search error of equi
valence Table

More than 64 Equivalences

No find OF CODE

More than 99 Constants

Location not in
Assignment Table

Address not in
Assignment Table

Possible paper tape
read error

c. The SCRAP II normal halts are as follows:

LOCATION

4513.0

7777.0

INDICATION

IIEND FIRST PASS"

Punching of Leader

CORRECTIVE ACTION

C lear memory?
Restart at 4345.1 to
try again.

No immediate action;
segment program.

No immediate action;
Charge ORG or
segment program.

Clear memory?
Restart at 4h52.l to
try again.

No immediate action;
Reduce equivalences.

Deletion or correction
action.

No immediate action;
Restart at 4724.1 will
ignore Constant but
will cause Halt in
Second Pass to 6545.1

To ignore, use START.

To ignore, use START
(address of assembled
instruction will be
0000.0).

See following para
graph.

MEANING

Same

End of Second Pass

LOCATION Il~DICATION Iv1EANING

0000.0 None End of SAVE

d. Paper Tape may be re-read if necessary by moving the tape
back to the last gap and then restarting at 5311.0. The
gap has the following punching:

--------------~. Direction of tape movement

••• data F bbbbbbbbbbb S bbb c/R 00077L bbb
Gap of 11

blanks

Such incomplete reads are occasionally caused by shiny
spots on tape. A shiny spot which will cause a misread
of a carriage return will cause a branch to zero (and
a halt to zero). The cause of the halt may be checked
by examining the tape in the reader to determine if it
has stopped on a gap, if not a shiny spot may have caused
the halt. The possibility of restart and re-read after
blackening the shiny spot allows for the salvaging of
the assembly operation. Further minor correction of the
program may be necessary and may be accomplished by use
of the correction, insertion, and deletion provisions
detailed in paragraph 5.

15

SIGNAL CORPS RECOMP ASSEMBLY PROGRAM, SCRAP 11

APPEND I X 11

KEYPUNCHING

ORG N 1000
CU3EROOT SAX X

ADD 0 +1+39
STA ERROR
ADD 0 +1+3g
STA NORMAL
XAR N 0
STO X+1
FCA F +1.0
FST RESULT
SL

LOOP FSQ X
ERROR TOV N 0

FST X
FSQ X
FST X
FMP RESULT
FST RESULT
FCA X
FSB F +100
EXT C -7777771+777777 1
FAD F +0.0000000001
TMI LOOP
SL
FCA RESULT

~~ORlv1AL TRA N 0
RESULT DEC H~AL F -0
, I DEC I tv1AL F -0 /\

END

~77000
.p

LOCATION

CUBEROOT

LOOP
ERROR

NORMAL
RESULT
X

FIXCNOI
FLOCNOI
COMCNOI
FLOCN02

CUBEROOT
X
ERROR
NORMAL
RESULT
LOOP
FIXCNOI
FLOCNOI
COMCNOI
FLOCN02
ENDTABLE

END FIRST PASS

APPEND IX II

FIRST PASS OF ASSEMBLY

COMMAND

ORG
SAX
ADD
STA
ADD
STA
XAR
STO
FCA
FST
SL
FSQ
TOV
FST
FSQ
FST
FMP
FST
FCA
FSB
EXT
FAD
TMI
SL
FCA
TRA
DECIMAL
DECIMAL
END
+1+39
+1.0

ADDRESS

+1000
X
(+1+39)
ERROR
(+1+39)
NORMAL
+0
X+l
(+1.0)
RESULT

X
+0
X
X
X
RESULT
RESULT
X

~
+1 00)
-7777771+7777171)
+0.0000000001

LOOP

RESULT
+0

~:g~

-7777771+7777771
+0.0000000001

+0000000-0010000
+0000000-0010160
+0000000-0010051
+0000000-0010131
+OOOOOOO-00101~0
+0000000-0010050
+0000000-0010200
+0000000-0010210
+0000000-0010230
+OOOOOOO-00102~0
+0000000-0010260

2

APPEND I X II

SECOND PASS OF ASSEMBLY

LOCATION COMMAND ADDRESS

ORG +1000 L10000
CUBEROOT SAX X

ADD FIXCN01 +15 10160+0110200
STA ERROR
ADD FIXCN01 +4210051+0110200
STA NORMAL
XAR ro +4210131+4300000
STO X+1
FCA FLOCN01 +6010170+3010210
FST RESULT
SL +3510140+4000000

LOOP FSQ X
ERROR TOV +0 +4410160+5300000

FST X
FSQ X +35 101601-4410160
FST X
FMP RESULT +35 10160+0710140
FST RESULT
FCA X +3510140+3010160
FSB FLOCNOl
EXT COMCN01 +0610210+3310230
FAD FLOCN02
TMI LOOP +0410240+5110050
FCA RESULT

NORMAL TRA +0 +3010140+5700000
RESULT DECIMAL (-0) -0000000-0000000

-0000000-0000000
X DECIMAL (-0) -0000000-0000000

-0000000-0000000
FIXCNOI DECIMAL ~+1+35) +0000000-0000001
FLOCN01 DECIMAL +1.0 +4000000-0000000

+0000000-0000001
COMCN01 CO~AND ~-6777771+6661171) -l777771 +7777771
FLOCN02 DECIMAL + .000000 + 700000-0000000

-0000000-0000201

END

3

