PROGRAM TITLE:	RANDOM NUMBER GENERaTOR (2 methods)
PROGRAM CLASSIFICATION:	General
AUTHOR:	H. R. Knitter irny Sisnal Research \& Development Lab. Data Equipment Eranch Fort Monmouth, New Jersey
PURPOSE:	To provide a basis for random choice within a program.
DATE:	I December 1959

Published by
RECOMP Users' Library

at
AUTONETICS INDUSTRIAL PRODUCTS
A DIVISION OF NORTH AMFRICAN AVIATION, INC. 3584 Wilshire Blvd., Los Angeles 5, Calif.

Program Title: Random Number Generator (2 methods).
Purpose: To provide a basis for random choice within a program.
Method 1: A set of transformations are performed on a given number N so that the resultant N ' is sufficiently "unpredictable". A double length number N is formed, then $N^{\prime}=\left(N^{1.5}\right)$ least sig. bits plus ($N^{1.5}$) most sig. bits where overflow is ignored.

Procedure: The following are the necessary orders:
SQR n
MPY n
STO n
XAR -
ADD n
TOV next instr.
STO n
Where n is the name of the location for N and where the resultant N^{\prime} will be found.

Output: The output is a nunber $0<N^{2}<1$ at binary 0 .
Limitations: This method has a reasonably large cycle time for all numbers tested as the original N. Good results were obtained using $+10.4732 .0+24.0461 .0$ which had a cycle greater than 45,000 repetitions. This method degenerates when $N=0$ but this fortunately, seems to generate in only rare cases. This method is not recommended for advanced scientific determinations (e.g. using Monte Carlo methods) since the only test other than cycle length, has been distribution, which was sufficiently square between 0 and 1.

Note: To obtain a random number A such that $0 \leqslant A<B$ where B is a given maximum, miltiply the original random number N (at binary 0) by B. The resultant number A will be random and have the same scaling as B.

Method 2: The method used is the one suggested in the Journal of the Assoc. for Computing Mach., Oct 59, page 527. The method essentially defines a new random number N_{j} as $\left[N_{j-1}+N_{j-k}\right]_{m o o 1}$ at binary 0 .

Procedure: A transfer to the initial location (L_{0}) will initiate the generation of a new random number which will be in the accumulator upon return.

Note: Same note as in method 1 above.

Because of method l's short length and simplicity, a program tape for this method will not be distributed. The number FM-110 refers to method 2.

FM-III Pseudo-Rundom Nam her Genentor pg / of 2
[Journal, Assoc. Comp. Mach., oct 59, pg 527]

$$
\begin{aligned}
& 6740.0+15 \cdot 7760.0 \text { SAX } \\
& +64.6740 .0 \vee \text { CoL } \\
& 6741.0+66.6750 .0 \vee \text { aTV } \\
& \text { +57.7762.0 TRA } \\
& \begin{aligned}
6742.0 & +01.7773 .0 \text { ADD stot39 Return } \\
& +42.7772 .1 \text { STA store Return }
\end{aligned} \\
& \begin{aligned}
6743.0 & +00.7777 .0 \\
& +01.7774 .0
\end{aligned} \text { ADD } \quad \text { no list position } \\
& \begin{aligned}
6744.0 & +42.7771 .0 \\
& +53.0000 .0 \text { STA TOV (La) }
\end{aligned} \\
& \begin{aligned}
6745.0 & +00.7777 .0 & \text { aLA } & n \\
& +01.7776 .0 & \text { ADD } & 1 \text { (f/ } / 8,38
\end{aligned} \\
& \begin{aligned}
6746.0 & +33.7775 .0 \text { EXT } \quad n \operatorname{modg} \\
& +60.6757 .0 \checkmark \text { iTO } n
\end{aligned} \\
& \begin{aligned}
6747.0 & +01.7774 .0 \\
+42.7770 .1 & \text { STA } \\
& \text { STA }
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
6753.0+00.0000 .0 \\
-00.0000 .1
\end{array} \quad \operatorname{lgt} 39 \\
& \begin{aligned}
6754.0 & +00.6760 .0 \\
& -00.6760 .0
\end{aligned} \\
& \begin{array}{r}
6755.0+00.0017 .0-2--\quad \text { Mask } \\
-00.0017 .0
\end{array} \\
& \begin{array}{r}
6756.0+00.0001 .0 \\
-00.0001 .0 \\
-\infty
\end{array} \\
& \begin{aligned}
6757.0 & +00.0004 .0 \\
& -00.0004 .0
\end{aligned}
\end{aligned}
$$

$$
F M-\| / 1
$$

