PROGRAM TITLE:	AFIT O23 MATRIX ROW AND COLUMN ADDIPION
PROGRAM CLASSIFICATION:	Service Routine
AUTHOR:	Lt. J. F. Heye Institute of Technology Air University United States Air Force Wright-Patterson AFB, Ohio
PURPOSE:	To form and to type out the sum of each row and the sum of each column of an $m \times n$ matrix, together with the total of the row sums, and, as a check, the total of the column sums.
DATE:	December 1959

Published by RECOMP Users' Library
at

AUTONETICS INDUSTRIAL PRODUCTS
A DIVISION OF NORTH AMERICAN AVIATION, INC. 3584 Wilshire Blvd., Los Angeles 5, Calif.

```
            r:%%%%
```



```
taken to c:I:
is taken b;
results,
in this r
```



```
this presmon,
```


Matrix Row and Column Addition (contd)

OPERATION: 9. contd.
where $n \mathrm{n}$ is a two digit octal number which specifies the number of digits to be typed in the characteristic of each summation. This number may be as large as desired but will have little significance if it exceeds 1110°
10. Press photoreader FIIL button. The machine will compute, and type its results in the following format:

Sum of elements in Column 1
Sum of elements in Column 2

Sum of elements in Last Column
Sum of the Column Sums
Sum of Elements in Row 1
Sum of Elements in Row 2

Sum of the Row Sums.
Each answer is typed as a floating decimal number, that is, a characteristic followed by an exponent. AFIT 019 is used for output.

LOCATIONS OCCUPIED:
0000
0007-0134
0400-0430
0434-0765
6715-6717
7000-7012
1000 --- for storage of matrix elements.

PURPOSE: To form and to type out the sum of each row and the sum of each column of an m x n matrix, together with the total of the row sums, and, as a check, the total of the column sums.

The matrix may have any number of elements up to 832 , and may range in size from 2×416 to 416×2.

OPERAITION: 1. Set typewriter spacing, and left margin, as desired. Place the TAB DEFEAT SWITCH (under the typewriter cover) in the forward position (toward operator).
2. Place the tape in the photoreader and press the photoreader FIIL button. The tape will stop with the Location Counter set at 0024.0.
3. On the console, enter m, the number of rows in the matrix, in the form:

$$
\text { (N) }(+)(m) \underset{\text { (Point) })}{\text { (Decimal) }} \text { (ENTIER) }
$$

4. The location counter now reads 0025.0. Enter n, the number of columns in the matrix, in the same manner as in step (4).
5. Press photoreader FIIL button. The tape will stop with the Location Counter set at 1000.0.
6. Press N on the console, and enter the first matrix element into locations 1000, 1001, in the form
(Sign) (Integer Digits) (Decimal) (Fractional digits) (ENTIRR). or zero (Point) (or zero)
7. Continue to enter the matrix elements in the same manner, taking them in order from top to bottom of the leftmost column, then from top to bottom of the second column, and so on until all are entered.
8. Press photoreader FIIL button. The tape will stop with the Iocation Counter set at 0022. If the desired number of digits in the typed sumations is different from eight, proceed to step 9. If eight digits is satisfactory, proceed to step 10 .
9. On the console, press C, and enter the command word

$$
+\infty 00000+\infty 00 \mathrm{n} \text { n } 0
$$

PURPOSE: To form and to type out the sum of each row and the sum of each column of an m x n matrix, together with the total of the row sums, and, as a check, the total of the column sums.

The matrix may have any number of elements up to 832 , and may range in size from 2×416 to 416×2.

OPERAITON: 1. Set typewriter spacing, and left margin, as desired. Place the TAB DEFEAT SWITCH (under the typewriter cover) in the forward position (toward operator).
2. Place the tape in the photoreader and press the photoreader FIIJ button. The tape will stop with the Iocation Counter set at 0024.0.
3. On the console, enter m, the number of rows in the matrix, in the form:

$$
\text { (N) }(+)(\mathrm{m}) \underset{\text { (Point) })}{\text { (Decimal) }} \text { (ENIER) }
$$

4. The location counter now reads 0025.0. Enter n, the number of columns in the matrix, in the same manner as in step (4).
5. Press photoreader FIIL button. The tape will stop with the Location Counter set at 1000.0.
6. Press N on the console, and enter the first matrix element into locations 1000, 1001, in the form

$$
\begin{aligned}
& \text { (Sign) (Integer Digits) (Decimal) (Fractional digits) (ENTIER). } \\
& \text { or zero (Point) (or zero) }
\end{aligned}
$$

7. Continue to enter the matrix elements in the same manner, taking them in order from top to bottom of the leftmost column, then from top to bottom of the second colum, and so on until all are entered.
8. Press photoreader FIIL button. The tape will stop with the Location Counter set at 0022. If the desired number of digits in the typed summations is different from eight, prom ceed to step 9. If eight digits is satisfactory, proceed to step 10 .
9. On the console, press C, and enter the comand word

$$
+\infty 00000+\infty 00 \text { n n } 0
$$

Matrix Row and Column Addition (contd)

OPERATION: 9. contd.
where $n \mathrm{n}$ is a two digit octal number which specifies the number of digits to be typed in the characteristic of each summation. This number may be as large as desired but will have little significance if it exceeds $11{ }_{10^{\circ}}$
10. Press photoreader FIIL button. The machine will compute, and type its results in the following format:

Sum of elements in Column 1
Sum of elements in Column 2

Sum of elements in Last Column
Sum of the Column Sums
Sum of Elements in Row 1
Sum of Elements in Row 2

Sum of the Row Sums.
Each answer is typed as a floating decimal number, that is, a characteristic followed by an exponent. AFIT 019 is used for output.

LOCATIONS OCCUPIED:

```
0 0 0 0
0007-0134
0400-0430
0434-0765
6715-6717
7000-7012
1000 --- for storage of matrix elements.
```

