SUBROUTINES • PROGRAMS • USERS' PROGRAMS

FOR

RECOMP III

INDEX

AUTONETICS, DATA SYSTEMS DIVISION
A DIVISION OF NORTH AMERICAN AVIATION, INC.
3370 East Anaheim Road, Anaheim, California, 1964

TABLE OF CONTENTS

PART I - PROGRAM LISTING ACCORDING TO PROGRAM CLASSIFICATION

CARD INPUT/OUTPUT	Page 4
DEMONSTRATIONS	7
ELEMENTARY FUNCTIONS	1
FORTRAN COMPILER	5, 6
INPUT	3
NUCOM COMPILER	7
OPERATIONS ON MATRICES, VECTORS AND SIMULTANEOUS LINEAR EQUATIONS	2
OTHER PROGRAMS	8
OUTPUT	3, 4
PLOTTER OUTPU'T	4
PROGRAM LOADING, PREPARATION AND DEBUGGING ROUTINES	5
PROGRAMMED ARITHMETIC	1
RIP INTERPRETER	6
SPECIAL FUNCTIONS	2
STATISTICAL ANALYSIS AND PROBABILITY	2
ART II - NUMERICAL LISTING OF SUBROUTINES USERS' PROGRAMS	, PROGRAMS AND
SUBROUTINES	Page 10
PROGRAMS	13
USERS! PROGRAMS	28
HOW TO REQUEST PROGRAMS (INTERNAL USERS)	33

PARTI

PROGRAMMED ARITHMETIC

Complex Arithmetic (Floating Point)	R3U-1008
Floating Point Hardware Simulator	R3S-20
Floating Point Instruction Simulator (Relocatable)	R3P-19
ELEMENTARY FUNCTIONS	
Arc Sine and Arc Cosine Subroutine (Floating Point)	R3S-48
Arc Tangent Subroutine (Fixed Point)	R3S-5
Arc Tangent Subroutine (Floating Point)	R3S-14
Exponential Subroutine (2 ^X , e ^X , 10 ^X) (Fixed Point)	R3S-7
Floating Point Exponential Subroutine	R3S-17.1
Gaussian Normal Probability Function Ordinate (Floating Point)	R3S-43
Gaussian Normal Probability Integral Subroutine (Floating Point)	R3S-44
Hyperbolic Sine and Hyperbolic Cosine Subroutine (Floating Point)	R3S-46
Logarithm Subroutine to Base 2, e, 10 (Fixed Point)	R3S-9
Logarithm Subroutine (Floating Point)	R3S-16.1
Relocatable Bessel Function of the First Kind, Order One Subroutine (Floating Point)	R3S-54
Relocatable Bessel Function of the First Kind, Order Zero (Floating Point)	R3S-55
Relocatable Gamma Function Subroutine (Floating Point)	R3S-53
Sine-Cosine Subroutine (Fixed Point)	R3S-3
Sine-Cosine Subroutine (Floating Point)	R3S-15
Square Root Subroutine (Fixed Point)	R3S-4
Square Root Subroutine (Floating Point)	R3S-13
Subroutine Package (Floating Point)	R3P-20

SPECIAL FUNCTIONS

First Order Polynomial Least Squares Curve Fit	R3P-38
Least Squares Polynomial Curve Fit	R3P-58
Roots of Polynomials	R3P-59
OPERATIONS ON MATRICES, VECTORS, AND SIMULTANEOUS LI	NEAR EQUATIONS
Diagonal Scalar Addition & Subtraction Subroutine (Floating Point)	R3S-36
D t Product Multiplication Subroutine (Floating Point)	R3S-34
General Matrix Inversion and Simultaneous Linear Equation Solution Subroutine (Floating Point)	R3S-39
General Matrix Inversion & Simultaneous Linear Equation Solution (Floating Point)	R3P-52
Matrix Addition & Subtraction Subroutine (Floating Point)	R3S-32
Matrix Inversion	R3S-42
Matrix Multiplication Subroutine (Floating Point)	R3S-33
Matrix Transpose (n x n) Subroutine	R3S-51
Matrix Transpose (n x m) Subroutine	R3S-52
Scalar Multiplication or Division Subroutine (Floating Point)	R3S-35
STATISTICAL ANALYSIS AND PROBABILITY	
Mean, Variance, Standard Errors, and Confidence Intervals	R3P-51
Moving Average	R3U-1009
Simple Correlation Coefficient Subroutine (Floating Point)	R3S-45
Simple Correlation Coefficients	R3P-54

	INPUT	
	Floating Point Input-Output Package	R3S-11
	Address Input	R3S-18G
	Angle Input Subroutine (Fixed Point)	R3S-8.1
	Decimal Input Subroutine (Floating Point)	R3S-9
•	Decimal Input Subroutine (Fixed Point)	R3S-1
	Flexible Format Decimal Input Subroutine (Floating Point)	R3S-37
	Flexible Format Decimal Input Subroutine (Floating Point for Flexowriter or cards)	R 3S-3 8
	Floating Decimal Input Subroutine	R3S-47
	Floating Decimal Input Subroutine	R3S-56
	Input of Friden Coded Number	R3U-1015
	Integer Input	R3S-18F
	Recomp II Format Tape Input IBM Code Input Subroutine (Fixed Point)	R3P-8 R3U-1017
	OUTPUT	
	Address Output	R3S-18E
	Angle Output Subroutine	R3S-12
	Command Format Output	R3S-18C
	Decimal Output Subroutine (Floating Point)	R3S-10
	Decimal Output Subroutine (Fixed Point)	R3S-2
	Floating Point Input/Output Package	R3S-11
÷	Floating Point Output	R3S-18B
	Floating Point Output Subroutine (Using Floating Point Hardware)	R3S-49
	Integer Output	R3S-18A
	Integer Output and/or Dollar and Cents Output	R3S-27.1
	Octal Output	R3S-18D
	Output Format Control Subroutine	R3S-50
	IBM Code Output Subroutine (Fixed Point)	R3U-1018

OUTPUT (continued)

Output of Number in Friden Code	R3U-1014
Variable Format Fixed Point Output	R3P-44
PLOTTER OUTPUT	•
Burgmaster Verification Program	R3U-1016
Mark Maker Subroutine (For use with the Recomp III Plotter)	R3S-25
Plotter Subroutine: Line Generator (Fixed Point)	R3S-21
Plotter Subroutine: Line Generator (Floating Point)	R3S-22
Point Plotter Subroutine (Fixed Point)	R3S-23
Point Plotter Subroutine (Floating Point)	R3S-24
Plotter Printer Program	R3P-18
Plotter Coordinate Finder	R3U-1013
Shaded Sine Wave Plot	R3P-29
CARD INPUT/OUTPUT	
Alphanumeric Input Subroutine for Cards	R3S-31
Alphanumeric Output Subroutine for Cards	R3S-30
Card Input/Output Demonstration Program	R3P-46
Command Format Card Output Program	R3P-42
Command Format Card Input and Verify Program	R3P-41
Decimal Integer Input Subroutine for Cards	R3S-29
Decimal Integer Output Subroutine for Cards	R3S-28
Flexible Format Decimal Input Subroutine (Floating Point for Flexowriter or Cards)	R 3S-3 8

PROGRAM LOADING, PREPARATION, AND DEBUGGING ROUTINES

Binary Tape Lister	R3P-53
Breakpoint Program	R3P-26
Bootstrap Memory Dump	R3P-7
Load/Start Routine	R3P-1
Memory Area Search	R3P-25
Memory Block Lister	R3P-27
Non-Zero Memory Dump	R3P-23
Positive Binary Search Subroutine	R3S-26
Program Printer	R3P-5
RAID	R3P-3
Relocatable Tape Generator	R3P-4
Start Program	R3P-6
Sprint Program Loading Routine	R3U-1003
Tape Duplication and Verify Program	R3U-1010
Transfer Trace	R3P-9
Zero Memory	R3P-10
Memory Search	R3U-1021
FORTRAN COMPILER	
RECOMP III FORTRAN	R3P-2
Fortran Inhibit Output Overlay	R3P-2-S1
Fortran Inhibit Punching Overlay	R3P-2-S2
Fortran Inhibit Leading Carriage Return Overlay	R3P-2-S3
Remove Entries From Fortran Assignment Table	R3P-2-S4
Friden (or IBM) Coded Data Tape Input/Output for Recomp III FORTRAN	R3P-2-S5
Fortren Source Tene Spacer	P 2 11 1010

FORTRAN COMPILER (continued)

Baudot (teletype) Coded Data Tape Input/Output for Recomp III FORTRAN	R3P-2-S6
Hollerith Coded Card Input/Output for Recomp III FORTRAN	R3P-2-S7
Recomp III FORTRAN Save Program	R5P-2-S8
Recomp III FORTRAN Trace	R3P-56
Recomp III FORTRAN Plotter Program	R3P-57
Recomp III FORTRAN Floating Point Simulator	R3P-60
Card to Tape Coversion, FORTRAN Source Program	R3P-61
Tape to Card Conversion, FORTRAN Source Program	R3P-62
FORTRAN Source Tape Corrector	R3P-63
ADDING ADDITIONAL SUBROUTINES AND FUNCTIONS TO RECOMP III FORTRAN (R3P-2)	Tech. Bul. No. 13
RIP INTERPRETER	R3P-16
RIP - 3000	R3P-16
RIP - 3000 Quick Check	R3P-21
RIP - 3000 (Floating Point Modified)	R3P-39
Number of Significant Figures in RIP Output	R3U-1000
RTP Subroutine G 8	R3U-1001

NUCOM COMPILER

NUCOM (Numerical Control Compiler)	R3P-24
NUCOM Line Trace Program	R3P-30
NUCOM Tape Measure Program	R3P-31
NUCAP - 1	R3U-1011
Conversion Program	R3U-1012
Burgmaster Verification Program	R3U-1016
DEMONSTRATIONS	
Logic Demonstration Package	R3P=11
Blackjack with the Recomp III	R3P=12
Number Factorer (Prime Numbers)	R3P-13
Alphanumeric Visual Punch Program	R3P-14
Roman Numeralizer	R3P-15
Simulating a Desk Calculator	R3P-17
Drum Music Demonstration	R3P-19
Mortgage Amortization Program	R3P-22
Perpetual Calendar	R3P-37

Card Input/Output Demonstration

R3P-46

OTHER PROGRAMS

Schedule Critical Path	R3P-40
Internal Sort	R3P-43
Optics Package	R3P-45
Conversion of Baudot Code to Binary Code	R3P-47
Conversion of Binary Code to Baudot Code	R3P-48
Transformer Design	R3P-49
Filter Design	R3P-50
Sine Wave Response	R3P-55
Pressure Drop in Circular Pipes	R3U-1002
Program for Equilibrium Flash Calculations	R3U-1004
Design of Structural Steel Floor Systems	R3U-1005
Vibration Analysis for Structural Floor Systems	R3U-1006
Binary Distillation	R3U-1007
Tape Translator	R3U-1020

PART II

INDEX OF SUBROUTINES

RECOMP III PROGRAMS

and

RECOMP USERS' PROGRAMS

NUMERICAL LISTING OF SUBROUTINES
PROGRAMS AND USERS' PROGRAMS

INDEX OF SUBROUTINES

- 1. Decimal Input Subroutine (Fixed Point)
- 2. Decimal Output Subroutine (Fixed Point)
- Sine-Cosine Subroutine (Fixed Point)
- 4. Square Root Subroutine (Fixed Point)
- 5. Arc Tangent Subroutine (Fixed Point)
- 6. Logarithm Subroutine to Base 2, e, or 10 (Fixed Point)
- 7. Exponential Subroutine to Base 2, e, or 10 (Fixed Point)
- 8. Angle Input Subroutine
- 9. Decimal Input Subroutine (Floating Point)
- 10. Decimal Output Subroutine (Floating Point)
- 11. Floating Point Input/Output Package
- 12. Angle Output Subroutine
- 13. Square Root Subroutine (Floating Point)
- 14. Arc Tangent Subroutine (Floating Point)
- 15. Sine-Cosine Subroutine (Floating Point)
- 16. Logarithm Subroutine (Floating Point)
- 17. Exponential Subroutine (Floating Point)
- 18. Basic Utility Input/Output Subroutines
 - 18A Integer Output
 - 18B Floating Point Output
 - 18C Command Format Output
 - 18D Octal Output
 - 18E Address Output

INDEX OF SUBROUTINES

- 18. (continued)
 - 18F Integer Input
 - 18G Address Input
- 19. Floating Point Instruction Simulator
- 20. Floating Point Hardware Simulator
- 21. Plotter Subroutine: Line Generator (Fixed Point)
- 22. Plotter Subroutine: Line Generator (Floating Point)
- 23. Point Plotter Subroutine (Fixed Point)
- 24. Point Plotter Subroutine (Floating Point)
- 25. Plotter Mark Maker Subroutine
- 26. Positive Binary Search Subroutine
- 27. Integer Output and/or Dollar and Cents Output
- 28. Decimal-Integer Output Subroutine for Cards
- 29. Decimal Integer Input Subroutine for Cards
- 30. Alphanumeric Output Subroutine for Cards
- 31. Alphanumeric Input Subroutine for Cards
- 32. Matrix Addition and Subtraction Subroutine
- 33. Matrix Multiplication Subroutine (Floating Point)
- 34. Dot Product Multiplication Subroutine (Floating Point)
- 35. Scalar Multiplication or Division Subroutine (Floating Point)
- 36. Diagonal Scalar Addition and Subtraction Subroutine (Floating Point)
- 37. Flexible Format Decimal Input Subroutine (Floating Poing)
- 38. Flexible Format Decimal Input Subroutine (Floating Point for Flexowriter or cards)
- 39. General Matrix Inversion and Simultaneous Linear Equation Solution Subroutine (Floating Point)
- 40. e-X (FLOATING POINT)

INDEX OF SUBROUTINES

- 41. SIN X (FLOATING POINT)
- 42. Floating to Fixed Point Decimal Output Subroutine
- 43. Gaussian Normal Probability Subroutine
- 44. Gaussian Normal Probability Integral Subroutine (Floating Point)
- 45. Simple Correlation Coefficient Subroutine (Floating Point)
- 46. Hyperbolic Sine and Hyperbolic Cosine Subroutine (Floating Point)
- 47. Floating Decimal Input Subroutine
- 48. Arc Sine and Arc Cosine Subroutine (Floating Point)
- 49. Floating Point Output Subroutine (Using Floating Point Hardware)
- 50. Output Format Control Subroutine
- 51. Matrix Transpose (n x n) Subroutine
- 52. Matrix Transpose (n x m) Subro tine
- 53. Relocatable Gamma Function Subroutine (Floating Point)
- 54. Relocatable Bessel Function of the First Kind, Order One Subroutine (Floating Point)
- 55. Relocatable Bessel Function of the First Kind, Order Zero (Floating Point)
- 56. Floating Decimal Input Subroutine

NO.	TITLE	DESCRIPTION	AUTHOR .	CLASSIFICATION
1	LOAD/START	To provide means for starting a program, for loading of command format, alphanumeric format, or relocatable format program tapes, for output of command format, for alphanumeric information on tapes, and for basic debugging aids.	L. H. Halprin	General Utility
2	RECOMP III FORTRAN	A one-pass arithmetic compiler using the FORTRAN II language. The output of this compiler consists of a machine language program.	R. A. Mailander, L. H. Halprin, and Programming Staff	Compiler
3	RAID (RECOMP AID IN DEBUGGING) FOR RECOMP III	Raid will furnish the RECOMP III programmer with a tool for isolating program errors with the help of the computer. This program will trace and print selected pertinent information about the logical flow of a RECOMP III program.	L. H. Halprin	Utility
4	RELOCATABLE TAPE GENERATOR	To provide a means for generating a relocatable tape of a program stored in memory and to provide a means of verifying this tape.	L. H. Halprin	General Utility
5	PROGRAM PRINTER	To list RECOMP III programs and data in a symbolic instruction format more nearly resembling programming sheet formats.	L. H. Halprin	Utility

	NO.	TITLE	DESCRIPTION	AUTHOR	CLASSIFICATION
	6	START PROGRAM	To be able to transfer or halt and transfer to any desired memory location. This program is useful when the load/start program (R3P-1) is not in memory and only bootstrap tapes are being used.	L. H. Halprin	General Utility
	7	BOOTSTRAP MEMORY DUMP	To provide a means of dumping a portion of memory in alphanumeric format (with checksum included) that is to be later entered by the computer's bootstrap procedure and to provide a means of verifying these tapes.	L. H. Halprin	General Utility
-	8	RECOMP II FORMAT TAPE INPUT	To allow the RECOMP III to read directly the 5-channel Baudot coded tapes that are prepared by the RECOMP II computer, the Versatape, or the RECOMP II off-line Flexowriter.	L. H. Halprin	Utility
	9	TRANSFER TRACE	This program is intended as a debugging aid. It will execute each instruction in the program being debugged and will list the contents of each register including the location counter, command register and overflow alarm after each transfer instruction is executed.	L. H. Halprin	General Utility

NO.	TITLE	DESCRIPTION	AUTHOR	LASSIFICATION
10	ZERO MEMORY	To set selected areas of memory to minus zero.	L. H. Halprin	General Utility
11	LOGIC DEMONSTRATION PACKAGE	 To provide a convenient compilation of several game-type demonstrations with a single calling sequence. 	L. H. Halprin	Demonstration
		2. To provide for a choice of several automatic demonstrations of the RECOMP III for use at computer demonstrations where an operator is not always present.		
		 To provide a choice of several demon- strations of the RECOMP III that allows for active participation by any non- programmer/operator. 		
12	BLACKJACK WITH THE RECOMP III	To demonstrate the RECOMP III's logical ability by playing the game of Blackjack against many players at once.	L. H. Halprin	Demonstration
13	NUMBER FACTORER (PRIME NUMBERS)	To demonstrate the logical capability of the RECOMP III by factoring a given number into its prime multiples. The number may be manually entered or gen- erated automatically in a random pattern.	L. H. Halprin T. M. Hertz	Demonstration

NO.	TITLE	DESCRIPTION	AUTHOR	CLASSIFICATION
14	ALPHANUMERIC VISUAL PUNCH PROGRAM	 To demonstrate the computer's logical ability and the Facit punching equipment by punching visually read- able characters on tape. 	H. Halprin	Demonstration
		To enable a tape to be labeled with a visual pattern of punches.		
	· · · · · · · · · · · · · · · · · · ·	3. To serve as an Alphanumeric Visual Punch output subroutine.		
15	ROMAN NUMERALIZER	To demonstrate the logical ability of the RECOMP III by converting binary numbers to Roman Numerals. Numbers may be manually entered, entered by a subroutine calling sequence, or auto- matically and randomly generated.	L. H. Halprin	Demonstration
16	RIP-3000	To provide the scientist and engineer with a programming tool which will enable him to utilize the RECOMP III effectively with a minimum of instruction.	G. Howell	Interpreter
17	RECOMP III SIMULATING A DESK CALCULATOR	To demonstrate the RECOMP III's ability to quickly and easily solve problems like those which would be run on a calculator.	L. Laubscher	Demonstration

•

NO.	TITLE	DESCRIPTION	AUTHOR '	CLASSIFICATION
18	PLOTTER PRINTER PROGRAM	To demonstrate the RECOMP III's ability to print letters and characters on the plotter.	L. Laubscher	Demonstration
19	D. M. DEMONSTRATION	To present an unique demonstration of the RECOMP III Flexowriter.	L. H. Halprin	Demonstration
20	RECOMP III SUBROUTINE PACKAGE (FLOATING POINT)	In order to assist programmers in using the RECOMP III as efficiently as possible, the RECOMP III Subroutine Package is provided. It consists of a tape containing the most frequently used subroutines placed in fixed locations in memory as well as several other features to facilitate programming.	L. Laubscher	Service
21	RIP-3000 QUICK CHECK	To provide a rapid means of determining whether or not RIP-3000 (R3P-16) is in the computer.	G. Howell	Service
22	MORTGAGE AMORTIZA- TION PROGRAM	To demonstrate the RECOMP III's ability to solve problems in practical economics.	L. Laubscher	Demonstration
23	NON-ZERO MEMORY DUMP	To selectively punch or print from designated areas of memory only those words which are not -0.	L. Laubscher	C neral Utility

NO.	TITLE	DESCRIPTION	AUTHOR	CLASSIFICATION
27	MEMORY BLOCK LISTER	To aid in listing or verifying large areas of memory by listing this area in command format in addressed blocks of 8 words each.	L. H. Halprin	Utility
28	QUADRATIC EQUATION SOLUTION	To find the roots of the general quadratic equation: ax ² +bx+c=0	G. Howell	Demonstration
29	SHADED SINE WAVE PLOT	To demonstrate the RECOMP III's ability to plot accurately over the entire range of the plotter at maximum speed.	G. Howell	Demonstration
30	NUCOM LINE TRACE PROGRAM	To aid in debugging logical flow of symbolic part programs written in NUCOM's symbolic language.	L. H. Halprin	NUCOM/Utility
31	NUCOM TAPE MEASURE PROGRAM	To give timing information necessary to optimize a part program generated for the Milwaukee-Matic numerically controlled machine tool.	L. H. Halprin	NUCOM/Utility

NO.	TITLE	DESCRIPTION	AUTHOR	CLASSIFICATION
*32	NUCOM PLOTTER DEMONSTRATION	To demonstrate the potential usefulness of using the plotter in support of a NUCOM installation by having the plotter produce a 2-view working drawing for the part programs given in examples 1, 4, 5, and 6 of the NUCOM write-up. (R3P-24)	L. H. Halprin	Demonstration
*33	NUCOM SYMBOLIC TAPE CORRECTOR	To provide a means of correcting errors in a NUCOM symbolic language program tape by specifying the appropriate line number(s) and the type of correction (insertion, replacement, or deletion).	L. H. Halprin	NUCOM/Utility
*34	TAPE PARITY CHECKER	To check any width paper tape (5, 6, 7, or 8 channels) for proper parity. Either odd or even parity may be checked for.	L. H. Halprin	Utility
*35	RECOMP III TO STANDARD FLEXOWRITER PAPER TAI CODE CONVERSION	•	L. H. Halprin	Utility
*36	STANDARD FLEXOWRITER TO RECOMP III PAPER TAPE CODE CONVERSION	To convert a tape punched in standard Flexowriter codes to its equivalent RECOMP III codes and to either type or punch these converted codes.	L. H. Halprin	Utility

^{*} These programs are contained in R3P-24 NUCOM program.

NO.	TITLE	DESCRIPTION	AUTHOR	CLASSIFICATION
37	PERPETUAL CALENDAR	To demonstrate the logical ability of the RECOMP III.	F. D. Murray	Demonstration
38	FIRST ORDER POLY- NOMIAL LEAST SQUARES CURVE FIT	To compute the coefficients of the function y=ax+b which best describe a series of X and Y coordinates by the method of least squares and to print the original coordinates, a new Y coordinate for each X, and the variance between the original Y and the "best fit" Y.	F. D. Murray	General
39	RIP-3000 (FLOATING POINT MODIFIED)	To provide the scientist and engineer with a programming tool which will enable him to utilize the RECOMP III effectively with a minimum of instruction.	G. Howell	Interpreter
40	SCHEDULE CRITICAL PATH	Given the estimated times to complete individual tasks within a work schedule, to compute the total time required for each phase of the job and as a result, for the entire job. To also provide an indication of the latest time that individual tasks or phases may be completed without affecting the schedule. The Critical Path is the sequence of Events which determine the total time for the job.	F. D. Murray	General

NO.	TITLE	DESCRIPTION	AUTHOR	CLASSIFICATION
41	COMMAND FORMAT CARD INPUT AND VERIFY PROGRAM	To read or verify decks of RECOMP III command format cards which have been punched in the format described by RECOMP III, Technical Bulletin No. 9. The cards may be punched manually off line or by the computer through the use of R3P-42.	L. Laubscher	Service
42	COMMAND FORMAT CARD OUTPUT PROGRAM	To produce RECOMP III command format cards punched from specified memory locations in the format described by RECOMP III, Technical Bulletin No. 9. These cards may then be read into the computer through the use of R3P-41.	L. Laubscher	Service
43	RECOMP III INTERNAL SORT	To demonstrate the ability of the RECOMP III to re-arrange alphabetic and/or numeric data in ascending sequence.	F. D. Murray	Demonstration
44	VARIABLE FORMAT FIXED POINT OUTPUT G FUNCTION FOR RIP	To provide a program for use with RIP-3000 to output a number in variable fixed point format using Standard Rip Commands.	L. Laubscher	Service

NO.	TITLE	DESCRIPTION	AUTHOR (CLASSIFICATION
46	CARD INPUT/OUTPUT DEMONSTRATION PROGRAM	To demonstrate card input/output capabilities of the RECOMP III, either by punching characters input through the Flexowriter on cards, and/or by reading cards and typing the information contained on them.	L. Laubscher I	Demonstration
47	CONVERSION OF BAUDOT CODE TO BINARY CODE	This program is to convert a RIP-3000 program sent over teletype (Baudot Code) for use in RECOMP III (Binary Code). This program will also convert a command format tape sent over teletype (Baudot Code) to a command format tape for use in RECOMP III (Binary Code).	M. VonEhrensman	n Utility
48	CONVERSION OF BINARY CODE TO BAUDOT CODE	This program is to allow numerical answers in either fixed or floating point to be converted from a RECOMP tape (Binary Code) to a teletype tape (Baudot Code).	M. VonEhrensman	n Utility
49	TRANSFORMER DESIGN	To demonstrate RECOMP III's ability to do transformer design computations. (Using RIP-3000.)	M. Von Ehrensma	nn Demonstration

NO.	TITLE	DESCRIPTION	AUTHOR	CLASSIFICATION
50	FILTER DESIGN	To demonstrate RECOMP III's ability to do filter design computations (using RIP-3000).	M Von Ehrensmann	Demonstration
51	MEAN, VARIANCE, STANDARD ERRORS, AND CONFIDENCE INTERVALS	To compute statistics necessary for testing hypotheses about the universe of values from which the sample was drawn.	Young C. Lim	General
52	GENERAL MATRIX INVERSION AND SIMULTANEOUS LINEAR EQUATION SOLUTION	This program allows the operator to invert given matrices and to obtain solutions to given sets of simultaneous equations. It relieves the operator of the bookkeeping associated with the input and output of matrices. A flexible input procedure simplifies the entry of the matrices and a flexible output procedure allows the output of the result in an easily read fixed or floating point form.	L. Laubscher	General

25

NO.	TITLE	DESCRIPTION	AUTHOR	C! ASSIFICATION
53	BINARY TAPE LISTER	To obtain a command format listing with octal locations of any binary fixed location format tape. This is most helpful in obtaining a listing of a correction tape which may have a lot of non-sequential data on the tape. To obtain a command format listing with relocation data of any binary relocatable format tape. An option is available which will generate a relocation matrix tape while typing a listing.	L. H. Halprin	General
54	SIMPLE CORRELATION COEFFICIENTS	Given: a set of m variates, each having n values. Compute the simple correlation coefficients relative to each pair of variates.	Young J. Lee	General
55	SINE WAVE RESPONSE	To compute the frequency response of an optical system with incoherent light from a knowledge of the pupil function of the system.	Young J. Lee	
56	RECOMP III FORTRAN TRACE	To help the FORTRAN programmer find errors in his logic by typing the decimal contents of the accumulator after each store instruction (one per arithmetic statement executed), or by typing the decimal contents of any variable or constant storage location.	L. H. Halprin	

NO.	TITLE	DESCRIPTION	AUTHOR	CLASSIFICATION
57	RECOMP III FORTRAN PLOTTER PROGRAM	To provide the RECOMP III FORTRAN compiler with the capability of plotting computed data directly on the Calcomp Plotter attached to the RECOMP III computer.	L. H. Halprin	
58	LEAST SQUARES POLYNOMIAL CURVE FIT	This program permits the fitting of polynomials of order 15 or less through a maximum of 617 ₁₀ points in the X-Y plane by the method of least squares with weights.	C. Heru	
59	ROOTS OF POLYNOMIALS	This program uses the "down hill" method to find the roots of a given polynomial of order 127 with real coefficients.	Catherine Hsu	
60	RECOMP III FORTRAN FLOATING POINT SIMULATOR AND TRACE	The RECOMP III FORTRAN User who does not have floating point hardware and wishes to obtain a trace of his object program may use this trace instead of R3S-020.1 to run the FORTRAN generated object program.	L. H. Halprin R. Mailander	

NO.	TITLE	DESCRIPTION	AUTHOR	CLASSIFICATION
61	CARD TO TAPE CONVERSION FORTRAN SOURCE PROGRAM	To convert a FORTRAN source program from Hollerith Card format to punched tape.	W. Yackey,III	[
62	TAPE TO CARD CONVERSION FORTRAN	To convert a FORTRAN source program from tape to Hollerwith card format.	W. Yackey, II	II
63	FOR TRAIN SOURCE TAPE CORRECTOR	Automatically make corrections to a FORTRAN source tape when given a list of the desired changes or additions.	₩. Yackey, II	II.

NO.	TITLE	DESCRIPTION	AUTHOR	CLASSIFICATION
1000	NUMBER OF SIGNIFICANT FIGURES IN RIP OUTPUT	This program allows the operator to specify, by typing only one character, the number of significant digits output by any RIP program. The program changes the checksum word in the RIP Quick-Check so that the operator can use the quick-check, no matter how many output digits are specified.	Alex S. Zachor Mithras, Inc.	Executive Routine
1001	RIP SUBROUTINE G 8	This RIP subroutine computes the compressibility z, the dimensionless entholpy $\frac{ZH}{RT}$, and the dimensionless entropy $\frac{ZS}{R}$, for a given pressure p and temperature T.	Alex S. Zachor Mithras, Inc.	Executive Routine
1002	PRESSURE DROP IN CIRCULAR PIPES	To calculate the pressure drop of flowing non-compressible fluids in circular pipes. Both turbulent and laminar flow are considered. The normal input data are fluid density, viscosity, pipe roughness, flow rate, and pipe inside diameter. Output is velocity and pressure drop. This program may be used for compressible fluids where the pressure drop in the section of pipe considered does not exceed 20% of the total pressure.	Robert L. Johns The Dow Chemic Midland, Michig	al Co.

28

INDEX OF RECOMP III USERS' PROGRAMS

NO.	TITLE	DESCRIPTION	AUTHOR	CLASSIFICATION
1002	(continued)	A variation has been programmed which calculates the flow rates and		
-	. •	pressure drops for a series of velocities		
_		(1100.0 ft. /sec.) at the given pipe		
		size.		
		Language Used: RIP-3000		
1003	SPRINT PROGRAM-	To provide a means to load verified	D P Peterse	en Executive &/Control
1003	LOADING ROUTINE	instruction lists, numerical data, and	Chemical Res	
	Londina Roo III.	alphanumeric information directly into	The Dow Chen	
	and the second second	the RECOMP III.	Midland, Mich	·
1004	RECOMP III PROGRAM	This program will calculate the amount	R. L. Johnson	General
	FOR EQUILIBRIUM FLASH	vaporized, compositions of both liquid	Dow Chemical	Co.
	CALCULATIONS	and vapor phases, and the pounds of		
		each component in each phase from a		
		given feed composition, mol weights,		
		and equilibrium K values.	•	
1005	DESIGN OF STRUCTURAL	This program will design simple beams	D. A. Fulty	
1003	STEEL FLOOR SYSTEM	subjected to any combination of concen-	The Dow Chen	nical Co.
		trated and uniform loading. The number	Bldg. 47, Mid	
		designed will conform to the applicable		• • •
-		provisions of the latest revision of the		
		AISC specification for type and construction	on.	
		-	•	

NO.	TITLE	DESCRIPTION	AUTHOR	CLASSIFICATION
1006	VIBRATION ANALYSIS FOR STRUCTURAL FLOOR SYSTEMS	This program provides the structural engineer a means of eliminating harmonic resonance in floor systems due to vibrating machinery. The beam frequency, frequency safety factor, and the undamped dynamic deflection are calculated for individual beams in a floor system.	D. A. Fulty The Dow Chemic Bldg. 47 - Midla	
·.		The method used is presented in A. S. C. E., Structural Division, Journal No. ST7, Vol. 87, October, 1961 by L. R. Burkhardt.		·
1007	BINARY DISTILLATION	Given the compositions of feed, distillate and bottoms streams, relative volatility data, and feed quality to: 1. Find feed stage and total stages for a given reflux ratio.	Robert L. Johns Engineering & C The Dow Chemic Midland, Mich.	onstruction Dept.
		2. Find the minimum stages and "minimum reflux required for the separation and calculate the number of stages for a series of reflux ratios based on the "minimum".	ii.	
		 Find the reflux required and optimum feed location for a given number of total stages. 		

INDEX OF RECOMP III USERS' PROGRAMS

NO.	TITLE	DESCRIPTION	AUTHOR . CLASSIFICATION	
1008	COMPLEX ARITHMETIC (FLOATING POINT)	To perform the four basic arithmetic operations with complex numbers.	Dr. Herbert C. Kranzer Adelphi College	
1009	MOVING AVERAGE	To smooth time incremented data for plotting on X-Y coordinates.	L. V. Parent Trunkline Gas Co.	
1010	TAPE DUPLICATION AND VERIFY PROGRAM	To duplicate and verify tape with the RECOMP III.	F. E. Wilder Autonetics, Inertial Navigation T.E.	
1011	NUMERICAL COMPILER AND ASSORTER FOR PROGRAMMATIC-1	To facilitate programming for the Program-Matic Drilling Machine by implementing a floating zero, assorting coordinates in most logical order, and making a physical verification on the plotter for inspection purposes.	F. E. wilder Autonetics, Inertial Navigation, T.E.	
1012	CONVERSION PROGRAM	(1) To modify tool code numbers and "Z" motion of a Milwaukee-Matic machine tape (Friden coded).	F. E. Wilder Autonetics, Inertial Navigation, T.E.	
		(2) To make a listing (Friden coded) of all tool code numbers changed with difference in set length.		
1013	PLOTTER COORDINATE FINDER	To move the plotter pen to an X & Y coordinate given as a (3) place decimal multiplied by 1000 and at a binary point of 39.	F. E. Wilder Autonetics, Inertial Navigation, T. E.	

2

INDEX OF RECOMP III USERS! PROGRAMS

NO.	TITLE	DESCRIPTION	AUTHOR	CLASSIFICATION
1014	OUTPUT OF NUMBER IN FRIDEN CODE	To output a number to the punch in Friden code.	F. E. Wilder Inertial Nav	, Autonetics igation, T. E.
1015	INPUT OF FRIDEN CODED NUMBER	To allow input from tape reader of Friden coded numbers.	F. E. Wilder Inertial Nav	, Autonetics igation, T. E.
1016	BURGMASTER VERIFICATION PROGRAM	To facilitate the checking of a Burgmaster 2 BHT or 2 BHTL program by simulating the machine tool movements to the extent of plotting the coordinates in the machine language tape on the RECOMP Plotter.	F. E. Wilder, Autonetics Inertial Navigation, T. E.	

FOR INTERNAL USERS' ONLY

MAIL THIS REQUEST FOR PROGRAMS TO: RECOMP CENTER, BLDG. 221 - LOBBY ANAHEIM, OR CALL EXT. 2678	MAIL THIS REQUEST FOR PROGRAMS TO: RECOMP CENTER, BLDG. 221 - LOBBY ANAHEIM, OR CALL EXT. 2678
DATE	DATE
NAME	NAME
DEPT.	DEPT.
BLDG.	BLDG.
PROGRAM NO. (NOS.)	PROGRAM NO. (NOS.)
MAIL THIS REQUEST FOR PROGRAMS TO: RECOMP CENTER, BLDG. 221 - LOBBY ANAHEIM, OR CALL EXT. 2678	MAIL THIS REQUEST FOR PROGRAMS TO: RECOMP CENTER, BLDG. 221 - LOBBY ANAHEIM, OR CALL EXT. 2678
DATE	DATE
NAME	NAME
DEPT.	DEPT.
BLDG.	BLDG.
PROGRAM NO. (NOS.)	PROGRAM NO. (NOS.)
MAIL THIS REQUEST FOR PROGRAMS TO: RECOMP CENTER, BLDG. 221 - LOBBY ANAHEIM, OR CALL EXT. 2678	MAIL THIS REQUEST FOR PROGRAMS TO: RECOMP CENTER, BLDG. 221 - LOBBY ANAHEIM, OR CALL EXT. 2678
DATE	DATE
NAME	N AME
DEPT.	DEPT.
BLDG.	BLDG.
PROGRAM NO. (NOS.)	PROGRAM NO.(NOS.)