o
=
- =
FER
-
o
=
=

COMPUTER

USERS
GROUP

D17B COMPUTER

DOCUMENTATION

MINUTEMAN COMPUTER

USERS GROUP

D17B COMPUTER
PROGRAMMING MANUAL

Edited By
Charles H. Beck
Professor and Director
SYSTEMS LABORATORY
Department of Electrical Engineering
School of Engineering

- TULANE UNIVERSITY

REPORT MCUG-4-71

* Programming Features
* Instruction Set

* Programming Techniques
* Programming Examples

SEPTEMBER 1971

TABLE OF COHTENTS

Preface
CHAPTER 1
CHAPTER 2

PROGRAMMING FEATURES OF THE
PROGRAMMING THE D17B '« « =«
2.1 Addressing

2.2 Word Formats ’
2.3 Quasi-Octal Notation
2.4 Minimal Delay Coding -
2.5 Store Operations =+ - -
2.6 Fine Countdown Mode

e e o o o o

e e o o o

CHAPTER 3
3.1 Arithmetic Operations

3.2 Shifting Operations and
3.3 Control Operations =« -
3.4 Input/Output Operations
PROGRAMMING EXAMPLES =« « «
4.1 Exp (x)
4.2 Absolute Value =+ « « &
4.3 Unpacking
4.4 Packing « « o = o o o &

CHAPTER 4

*® & & o o o o

® e e o o @

4.5 Subroutine Linkages - -

4.6 Fine Countdown Mode =« -

4.7 D-A and A-D Conversion
4.8 COA Subroutine (8-Octal
CHAPTER 5 - LIST OF INSTRUCTIONS

.

.

THE INSTRUCTION SET AND PROGRAMMING

Masking

.

.

-

.

TECHNIQUES

a e e & s o

*

s o e o &

Characters)

5.1 Arithmetic Operations - - -
5.2 Shifting Operations - « - -

5.3 Control Operations

5.4 Input and Output Operations

Appendix - D17B COMPUTER INSTRUCTION SET

iii

.

>

.

e e & o o o o o

PAGE
ii

o 00 W W w =

12
13
15
15
16
18
19
21
21
23
23
24
24
26

.A27

27

29

29
30
30

31
33

LIST OF FIGURES

_ PAGE
Figure 1 - Instruction and data word formats « « ¢ « o ¢ o « & & & 4
Figure 2 - Quasi-octal instruction coding = = « « « « ¢ « « = - 9
Figure 3 - Steps required for instruction completion =« ¢ « « « « « 10
Figure 4 - Minuteman D17B Symbolic programming form « ¢ « « « « « o 22
LIST OF TABLES
* PAGE

-Table 1 - Flag store codes and memory specifications « « « « + « « 2

Table 2 - D17B Computer instruction Tist « ¢ « ¢ ¢ ¢ ¢ ¢ o o ¢ o o7 33

iv

Chapter 1
PROGRAMMING FEATURES OF THE D17B

The D17B is a small serial-binary general-purpose computer which was
designed as an airbornme control computer. It has several features which
make machine language programming different than for other general~purpose
computers.,

‘The D17B has a disc memory which rotates at 6000 r/min. The disc
contains 21 concentric programmable channels which are addressable by even
octal numbers from 00 through 50. Each channel contains 128 sectors or
words, numbered octally from 00 through 177. Each word contains 24 bits
for the purpose of storing data or instructions. There are a total of 2727
addressable words on the disc. Since the disc rotates through 128 sectors
in 0.01 second, the length of time required to record, write, or pass’over
any one sector is 0.01/128 = 78.2 us. This interval defines one word time.

The serial presentation of information on the rotating disc necessitages
careful coding of a program to insure the minimum access time between instruc-
tioné as-well aé between‘an instruction and the data on which it operates.
&his scheme of coding is referred to as minimal delay coding (MDC).

In addition to an Accumulator (A) and a Lower Accumulator (L), there are
rapid-access storage loops, each of which contains less than 128 words.

These loops (U, F, E, and H)vhave lengths of 1, 4, 8, and 16 words, respec-
tively. Information stored in the U, F, E, and H loops iéravailable after
"1, 4, 4, and 8 word times réspectively, rather than after one entire disc
tevolutioﬁ. Significant characteristics of these loops are tabﬁlated in

Table 1 along with the two input loops, V and R.

The D17B has a "flag store'" mode which provides for simultaneously stér-
ing the previous contents of the Accumulator in certain specified channels
coincident with the execution‘of an instructioﬁ. This feature eliminates the
need for an additional instruction to perform this frequent operation. The
D17B can also be used to perform parallel- or multi-processing such as the
simultaneous execution of two identical single~precision arithmetic operations.
This not only provides for the execution of two operations during‘one word time,
butaalso effectively doubles the memory available for data storage., In single-
precision data storage each word is divided into two 11-bit words at the sacri-

fice of some precision.

WORD LENGTH CHANNEL FLAG CODE DESCRIPTION

(SF)

- - 00 No Flag

4 52 02 ' F~loop

1 - 04 Telemetry
128 ‘ 50 06 Channel 50

8 56 10 E-loop

1 64 12 L-loop

(Lower A;cummulator)

16 54 14 H~loop

1 60 16 | U-loop

4 72 S - | R-loop

4 70 - V-loop

Table 1. Flag store codes and memory specificationé.

- CHAPTER 2

PROGRAMMING THE D178

2.1 Addressing

Each word location on the disc memory is specified by a channel and
sector number denoted (c,s) for channel, sector. For éxample, (10, 113)
;
would specify the word located in sector 113 of channel 10. Twelve bits are
reqﬁired for direct addressing all information stored in memory; five are
used for channel (since chanﬁels are only specified by even octal numbers)
and seven for the sector.

2.2 Word Formats

Fouf word formats are available: double-precision fixed or full-word
data, single-precision fixed or split-word data, unflagged instructions, and
flagged instructions. The formats are shown in Figﬁre 1. -

The full-word format accommodates 23 binary 5its in bit positions T,
through T;3. Bit position T,y contains the sign bit which indicates a nega¥
tive numbe; when equal to 1 and a positive number when equal to 0. When a
negative number is entered into memory, the two's complement of the magnitude

~of the number must be entered iﬁ bit position T; through T;3.

The split-&ord format provides for the storing of two 10~§it'numbers and
a sign bit for each. The "right-half" number is stored in bit pogition Ty
through T;) and the "left-half" numbervinvpositions Tyy through Tyy. Bit posi-
tions T;, and T;3 are unused and their values are not predictaEle. '

The fixed binary point is located between Ty,-Tp3 for the full-word data

.fqrmat; the two fixed binary points for the split-word format are located

between T,,-T;3 and Ty;-Tyg. However, if it is necessary for the programmer

SIGN

WHOLE NUMBER

T |IT T T T T T T T T T T T T T T T T T
244 23 22 21 20 19 18 17 16 15 1% 13 12 11 10 8 7 6 5 b 3
1 1
7 7 7 7 7 7 7
SIGN 10 BIT BINARY FRACTION X X|SIGN 10 BIT BINARY FRACTION
T yT* T T T T T T T T T (T T |T |T T T T T T T
24} 23 22 21 20 19 18 17 16 15 14| 13 122 11| 10 7 6 5 4
1 1 1 1 1 1 1 1 ;21 1 1 X X 1 1 1 1 1
7 7 7 6 3 7 7

Figure 1. Instruction and data word formats. (Sheet 1 of 3)

DECIMAL NUMBER

BINARY REPRESENTATION

OCTAL EQUIV.

+1

*kkdkkk

0.11111----11
0.11111----10

0.00000-«--01
0.00000----00
1.11111-.--11

.
.

1.00000 10
1.00000 01

dkkdokkk

ke kkk

37777777
37777776,

00000001
00000000
77777777

L]
.

L]

40000002
40000001

*kkkk

Note: Numbers with magnitude of +1 to -1 may be represented

in binary as shown in the table above.

A1l negative

numbers are shown in the 2's complement form as they
are represented in the D178B.

Figure 1. Instruction and data word formats. (Sheet 2 of 3)

UNFLAGGED INSTRUCTION (T o = 0)
2

T T T T T T

T T

T T T T. T T T T T T
24 23 22 21 20 19 18 17 16 15 1% 13 12 11 10 5
'OPERATION |FLAG NEXT INSTRUCTION CHANNEL SECTOR
CODE SECTOR ADDRESS NUMBER NUMBER
op F | 5; C S
FLAGGED INSTRUCTION (T = 1)
T T T T T T T T T T T T T T T T T T
24 23 22 21 20 19 18 17 16 15 1% 13 ‘12 ‘11 10 9 5 gy
FLAG : SECTOR
OPERATION [FLAG| STORAGE |, OF NEXT CHANNEL SECTOR
CODE © | LOCATION | INSTRUCTION NUMBER NUMBER
|
l
oP F S r Sp c S

Figure 1. Instruction and data word formats. (Sheet 3 of 3)

to assume a location for the binary point he must apprcpriately allow for it
in programming and in interpreting results.

| The unflagged instruction format consists of four parts: a 4-bit opera-
tion code (OP), a l-bit flag (F), the 7-bit sector address (Sp) of the next
instruction within the active memory channel, and the 12-bit channel and
sector address (c,s) of the operand. Operation codes are two-digit quad-
octal numbers which determine the iﬁstruction type. A complete explanation
of available instructions is given in Chapter 5.

For an unflagged instruction, F is always 0. Since Sp contains no
channel specification, the next instruction must always be located in the
same channel as the one preceeding it. This restriction does not apply to
the transfer (TRA) and transfer on minus (TMI) instructions which have
different formats. The rightmost twelve bits of these transfer instructicns
indicate the address of the next specified instruction which may be located
in any channel and sector of memory.

A flagged instruction is identical to an unflagged instruction except
that the flag bit is 1 and Sp is reduced from seven to four bits. The re-
maining three bits are used for the flag store code (Sf). Whenvthe flag bit
1is i, the contents of tge Accumulator will be stored in the channel specified
\by Sf during the first word time of execution of the imstruction. Determina-
tion of the storage location 1s explained in section 4 of this‘chapter.
Channel 50, the L, U, E, F, apd H loops, and the telemetry output channel are ‘
available as flag storage locations.. The channel addresses and flag store
codes are listed in Table 1, Because Sp is limited to only four bits for
specification of the sector address of the next iﬁstruction, the next instruc-

tion after a flagged instruction will come from one of the next 16 sectors

after operand agreement (beginning of execution). Therefore, Sp is used to
indicate only the four least significant bits of the sector address of the
next instruction.

2.3 Quasi-Octal Notation

Although words are represented internally by 24 binary bits, for pro-
gramming convenience an octal representation is used és input to reduce the
number of digits which need to be punched. However, since the instruction
wo;d formats are not compatible with the eight 3-bit groupings of bits needed
for octal notation, an inggrmediate or "quasi-octal" notation is used,
Figure 2 shows the quasi-octal grouping of bits for the two instruction
formats. Pseudo~-zero bits are inserted as shown and the quasi-octal repre-
sentation may then be found by grouping each set of three bits and finding
the octal equivalents. The octal representation may then be found by
grouping and adding the quasi~-octal numbers as shown. Since it is easier to
work with octal digits than with binary when writing programs, all numbers
which refer to the contents of parts of the two instruction formats will be
represeﬂﬁéd in quasi-octal notation so that the total word may then be

conveniently converted to an 8-digit octal number.

. 2.4 Minimal Delay Coding

Because information on the memcry disc is tiansferred sef}ally, the
location of successive instructions and their operands on the disc is
extremely important. Five steps are necessary t6 complete an iﬁstruction;
Figure 3 shows how the D17B can simultaneousiy complete certain steps of
successive instructions, With minimal delay coding an.instruction can be
coppleted in the number of word times equal to the execution time of that

instruction. Therefore, to execute a number of sequential instructions in

the minimum number of word times, the instructions should be separated by

UNFLAGGED INSTRUCTION

OP CODE F | NEXT INSTRUCTION SECTOR OPERAND
T T T T |T |[T T T T T T T T T T T |T T
24 23 22 21| 20§ 19 18 17 16 15 .14 13} 12 11 10 9 8 7 6
0P 3 5, C
1 1 1 o (1 1 1 1 1 1 1 1 1 1 |1 1
7 0o |1 7 7 7 6 1
7 5 7 7 7 7 |
FLAGGED INSTRUCTION
OP CODE F NEXT INSTRUCTION SECTOR OPERAND
T T T T T T T T T T T T . T T T T T T
24 23 22 21} 20f 19 18 17! 16 15 14 13| 12 11 10 9 8 7 6
0P Sp ! 5p C
T 1 1 1 |1 1 1 1 1 1 1 T 1 1 1|1 1
1
I
7 2 |1 6 |1 7 7 6 1
1
7 7 7 7 7 7

Figure 2. Quasi-octal instruction coding.

BINARY

QUASI-
OCTAL

MAXIMUM
OCTAL
VALUE

BINARY

QUASI-
OCTAL

MAXIMUM
OCTAL
VALUE

FIRST INSTRUCTION §

SECOND INSTRUCTION

THIRD INSTRUCTION

WORD TIMES
'3 4 . 5 6

Figure 3. Steps required for instruction completion.

KEY:

IS
IR
0S
QR

EX

Instruction
Search

Instruction
Read

Operand
Search

Operand
Read

Execute

01

11

n-1 secto¥s where n is the execution time, measured in word times, of the
first instruction of each pair of instructions considered. However, it is
permissible to locate an instruction in a sector which is alloted for the
execution of the previous instruction.

For exémple, if a CLA instruction is followed by an ADD instruction, the
ADD instruction should be located in the sector following the CLA instruction,
since the execution time of the CLA instruction is one word time. If a MPY
inStruction is followed by an ADD instruction, the ADD instruction should be
locéted 13 sectors after the MPY instruction since the execution time of the
MPY instruction is 13 word times. However, if the 13 sectors following the
MPY instruction are used for the next instruction of the program, a delay of
one disg‘revolution will take place between the end of execution of the MPY
instruction and the next instruction.

Figure 3 also shows that, fér a given instruction, the operand can be
read during the word time immediately following the reading of the igstruc-
tion. Therefore, when writing a program, the operand of each instruction
should be. located in the sector following the sector location of the inst;uc-
tion. In order to maintain the desired instruction locations, éhe operands
' shcﬁld be located in otﬁer channels in the correct sector since corresponding
‘sectors in all channels are available during the same word time.)It is

usually cénvenient to locate all operaﬁds in the same channel.

If it is ﬁecessary to write on (or read from) a seétqr which is not
located éptimally in relation to the instruction, the next insgructioﬁ should
be located a sufficient number of sectors later so that, wﬁen the word is
stored (or read), the operand sector or some later séctar will contain the
néxtriﬁstruction. If this is not done the disc may have ﬁo rofate almost an

2

entire revolution to reach the sector of the next instruction. For example,

12

if an ADD instruction is located in secfor 71 and specifies that the number
to be added is in sector 75, then the next instruction should be 1ocatéd in
sector 75.

The E and H loops each have an intermediaté read head in addition to the
normal read head to enable more rapid access to stored information. For
gxample, if a word was stored in sector 3‘of.the H-loop, which has 16 sectors,
it would not be available for 16 word times with the normal read head. How-
ever, the intermediate read head makes‘tﬁe word available after 8 word times
in éector 13.

2.5 Store Operations

Words may be stored in any channel except one word loops using the STO
instructions if the Enable Write switch is ON. If it is OFF, only‘channel 50
and the F, E, and H loops may be written on. When a STO instruction is
encountered, the sector storage address is compared with the addressgs
recorded on the sector track of the disc. When the two addresses agree, the
contents of the Accumulator ére stored in the word which has a sector address
of two less than that specified since the write head is located ;wo sector
addresses behind the read head.

Thérefore, for STO instruction to be executed in éne word time the
‘éddress to be stored should be specified at one sector greater th;n the
sector location of the instruction. The word will then be stored i;‘tﬁe
sector location preceding thewinstruction. The channel éelected for storage
should be different from the channel in which the instructions are located in
order not to interfere &ith their optimal location. However, the channel
éelected for storage may be the same as the channel where the instructions
‘are located so~that instruction modification may be perfo?med under program

_ control. For a flag store to channel 50, the word stored will be automat-

ically placed in sector s-2, where s is the sector address of the operand.

13

Flag‘storing to the rapid—-access loops is done in a -different manner.

In # flagged instruction, if the flag-code of one of the rapid-access loops
is placed in Sf, then the previous contents of the Accumulator will be stored
in the sector of the designated loop which curreéponds to the least signifi-
cant bits of the operand sector address.

For example, flag storing in the E-loop which contains eigﬂt words by an
instruction located in secﬁor 116, whose operand is located in sector 117,
will cause the previous contents of the Accumulator to be stored in word
sefén'of the E-loop.

2.6 Fine Countdown

In real-time programming, timing control 1is an important factor. The
execution time of some particular part of a program may vary for different
situations., The fine countdown mode, one of the special features of the D17B
‘computer, can be utilized for program timing control when it is necessary.
Once the program transfers to a certain subroutine, the fine countdown moée
can be initiated simultaneously. Fine countdown is performed independently
of the program in memory.

When the fine countdown mode is entered, thé 0, +1, and -1 incremental
‘ inpﬁts to V, instead of‘accumulating in their respective sectors of V, cause
" the product of the input and the contents of their sector to bg algebraically
‘added to the contents of the U-loop. The U-loop, assuming that it contained
a positive number by flag storage originally, is'counted down at a rate
depending upon the sign and ﬁégnitude of the numbers placed in the V-loop énd
upon the sign and ffeqﬁency of the inputs.. When ‘the contents §f ﬁhe U-loop
become negative, D5 is turned on independentiy by 1D5 = Fe Ux Tzq’ and a
discrgteJoutpdt signal (Dle) is issued.automatiéally. The diséretg register

must be set to zero prior to entering the fine countdownamode, and the third

A

14

bit of phase register, P3, must be set to 0. During fine countdown (Fc = 1),
the V-loop recirculates or receives new information via the STO instructionm.
The special discrete output indicates a solution of the equation:

0= Ku + (Ko + KZ) I1 + KlIZ + K313

where Ku is the contents of the U-loop before fine countdown. K° through K3

are the constants in the V-loop, and I, through I_ are the incremental inputs.

1 3

I1 will be sampled once every two word times whereas 12 and 13 will be sampled

once every four word times.

CIf K, through K, are stored as 1 and I, through I,

setting Vk equal to 1 and Vs equal to 1, the fine countdown mode will last

are made to be -1 by .

Ku + 2 word times until a discrete signal is generated. If the execution of

A the subroutine is completed before the fine countdown terminates, the computer
can be made to idle until the discrete signal transfers the program to an
appropriate location. In this fashion, the programmer can assure that the
computer will require equal execution time, Ku + 2 word times, for a certain
subroutine and gain the ability of timing control. A typical example utilizing

fine countdown mode can be found in Sec. 4.6.

15

Chapter 3
THE INSTRUCTION SET AND PROGRAMMING TECHNIQUES

Included at the end of this manual is a list aﬁd-a brief explanation of
‘all the available instructions, their mnemonics, quad-octél codes, execution
times, and other pertinent data. It is the purpose of this chaﬁter to
explain the uses and limitations of this instruction set as well as the
,spgéial features of the D17B (i.e. flag storing, rapid-access loops, and

split-word operations).

3.1 Arithmetic Operations

Instructions for adding, subtracting, multiplying, complementing, and
storing are available., Separate instructions are used for adding, subtracting,
1and multiplying with split-word formats. These instructions are basigally
‘the same as in other general-purpose machines, with the exception of the
Multiply Modified (MMP) and Split Multiply Modified (SMM) imstructions which
may have their operand addresses modified as determined‘by the exclusive-OR
of the three least significant bits of the operand»and the contents of the

phase register.,

Addition, subtractibn, and complementation each require one word time

for execution. Multiplication requires 13 word times and split multiplication
7 word times. When storage space and time are at a premium itiis often
desirable to use the split-word instructions, esﬁecially when high precision
1is not needed. Split words are accurate to a tenth of one per éent.
Noticeably absent from this set is a division instruction. fhe D17B
does not have a hardware division capability since it is a relatively time
consnming process, To divide by é constant, the reciprocal of the number is
stored and multiplication may then be used. To divide by a power of.two,

right shifting is used.

16

It i; often necessary to use the appropriate Taylor series expansion to
~compu£e functions such as SIN, EXP, etc. These expansions contain sums of
terms which are very similar. To program these expansions with the minimum
number of operations needed, a technique called "nesting'" is used.

For example, the expansion of EXP (x) is:

3 <l

2
EXP(X)=1+x+32{—:-+33{—.,—+ZT+ e

After nesting, the first five terms are:

Exp(x) = K1 + x(K1 + x(K2 + x(K3 + x(Ké))))
where: K1 =1
K, = 1/2! = 0.5000
K3 = 1/3] = 0.1666
K& = 1/4! = 0.0416

The programs for this and other functions are given in Chapter 4.

3.2 Shifting Operations and Masking

Shifting instructions are available to move the contents of the
Accumulator either to the left or right. There are séparate instructions
available for the full-word format and for each word of the spli;-word
format.

. These instructioﬁs are briefly described in the list of inst;uctions in
Chapter 5. Uéing a ieft—shift instru;tion causes the contents of the
Accumulator to be shifted to the left the specified number of bits. The most
significant bits are lost and zeros fill the vacated positions of the least
significant bits. In performing a right-éhift the least significant bits ara2
lost and zeros fili theﬂvacéfed positions of the most significant bits,
except whéﬁ thg number is negative; in this case ones fill the vacated bit

poéitionsc

A shift instruction requires a minimum of two word times to be executed,

17

specifically for a zero- and a one-bit shift. Otherwise; it rgquires one
word time mgre than the number of shifts desired (n + 1 word times).

An instruction which is commonly used in conjunction with shifting
operations is the ANA instruction or "logical AND to Accumulator.'" The ANA
instruction replaces the contents of the Accumulator with the "logical AND"
between corresponding bits of the Accumulator and the Lower Accumulator. The
ANA instruction can be used to perform masking, and in conjunction with-
shifcing operations it may be used to perform packihg and unpacking of words
of iess than 24 bits (e.g. 11-bit split-words).

In large general-purpose machines, a "logical OR to Accumulator" is
available and is used primarily for packing while the ANA instruction is used
for unpacking. It is therefore appropriate to consider how the ANA instruc-
tion may be used for both operations and, at the same time, demonstrate how

jflag storing méy be used to reduce execution time.

To unpack, for example, suppose that three 8-bit words are stored in a
word in‘memory, and the middle word is to be right justified in the Accumu;ator,
as is usually required. A '"mask" containing 1's in bits 9 through 16 and
zeros in all other bit Positions is first élaced in the Aceumul#tor (using

\ CLA). The entire word to be unpacked is then placed in the Accumulator (using
>CLA), and at the same time the "mask" is flag-stored in the LoweriAccumulator.
The ANA instruction is then used, leaving the bits in bit positions 9 through
16 unchanged and all cther bits zero. A right-shift of eight bits will then
right-justify the 8-bit word. | ’ ’ o

‘Packing requires two more word times. For example, if it is desired to
repack the 8-bi@ word which was unpacked in the previous ekamp;e, the word is
ffrsi ﬁlaced in-the Accumulator and then shifted left éight bit positions. A

word containing zeros in bits 9 through 16 and ones in allﬂothe: bit positions

18

is then added to the Accumulator, resulting in the word to be packed to be
located in bits 9-16 and ones in all other bit positions. -The word containing
the other two 8-bit words is then placed in the Accumulator, while simulta-
neously flag-storing the previous contents of the Accumulator in the Lower
Accumulator. Assuming bits 9-16 of the Accumulator are zero (if they are

not they must be masked to zero), a word.containing ones in bits 9-16 and
zeros in all other bit positions is added to the Accumulator, resulting in all
one;.in bits 9-16. Use of the ANA operation will then produce the original
word (containing three 8-bit words) in the Accumulator.

3.3 Control Operations

The basic control operations available are Unconditional Transfer (TRA),
Transfer on Minus (TMI), and Halt and Proceed (HPR). Now, although this is
a small set compared to those of larger general-purpose computers, it can be
used to effect all other control operations.

To achieve a transfer on plus, the two's complement of the word is taken
before téstiug it with the TMI instruction. A transfer on zero may be
achieved 59 first using the MIM instruction to make the number negative.
Then, by using the TMIrinstruction, the contents of Sp will specify the next
Anstruction if the Accumulator is zero.

Another way to change the use of the TMI instruction is by subtracting
a one from the word to be tested in the least significant bit position. This
has the effect of changing the use of the TMI instruction to transfer on
minus or zero to onme location and plus to another, rather than on ﬁinus to one :‘
location and on plué or zero to another. Making this change, rather than
simply complémenting‘the word and then testing it, allows freedom of channel
loéation if the contents of the Accumulator are zero. The MIM and COM

instructions may be used together to obtain the absolute value of a number.

19

This is illustrated in Chapter 4 as a programming example.

3.4 Input/Output Operations

The program, composed of instruction and data words, is entered into:
memory either through the manual control board, flexowriter, teletypewriter,
paper.tape reader, card reader, or magnetic tape reader., Instruction and
data characters can be read in during the load/verify mode; sequential memory
locations are assumed unless a location control character is preseént.

The main instruction which causes the D17B to output the contents of the
Accﬁmulator to an external source is character output (COA). To effect trans-

- mission of a single character the four MSB's from the Accumulator are loaded
into a spécial register. As this register is loaded, a parity bit is gen-
erated, After loading the register and generating the parity bit, a timing
pulse is available, and the four bits plus the parity bit are transmitted out
in parallel. Continuing in this fashion it would require six COA instructions
to transmit an entire computer word.' |

By'properly shifting right once and then using COA, the full octal
contents of the Accumulator can be transmitted by using eight COA instructions.,
Outpgt devices currently being used are the light display, flexowriter,
teletypewriter, and paper tape punch.

There are several additional instructions which enable the programmer to
enter or extract data from the D17B under program control. Discrete input
lines (Xlc thru X24c and Ylc thru Y24c) are available for entering 24-bit data
words. Among them X20c thru X24c aré inputs derived from Fc, Dr, P3, Pl, and
P2 flip~flops fespectively. The true level for the discrete iﬁput lines is
=10V, and 0 V represents the false level.

biécrete output instructions provide for outputting a level on one of 28

discrete output lines. Only one line can be energized at a time with the

20

execption of DO1l, D02, D03, and DO4. DO4 can be activateé with onea of D01,
D02, or DO3;mthus allowing for two lines at most to be energized at a time.
Furthermore, D10 and D21 are ANDed with Dr, the gyro bottoming detector. True
and false output level for DOA are =25V and +10V respectivel&. Under program
control three voltage outputs can be updated one at a time from the computer.
The analog voltage outputs are proportional to the digital information held in
buffer registers which are associated with the D/A converters. Split word data
is JSed to originate the analog signal. The eight MSB's of either the right
or léft'half word are fed into one of the three buffer regiéters. The total
voltage swing is approximately *20QV.

Three binary outputs are available on two lines for each output from the
(G)l__3 flip-flops and are of a pulse nature. Execution of a BOA, BOB, «r BOC
will cause the eight MSB's of the Accumulator to be increased or decreased by
oﬁe depending on the existing state of the associated G flip-flop. At the
completion of the instruction the sign positiqn of the Accumulator will deter-

mine the new setting of the associated G flip-flop. The true output level is

-10V, and the false level is -1V.

Chapter-4

PROGRAMMING EXAMPLES

4.1 Exp (x)

This program computes e* for any given value of x, using the following

~algorithm:

P-4

2 .3
L+x+5, +3 +7

Exp (x) 2

Wl

K +.x(1<1 + x(K2 + x(K3 + x(K4))))

1

Where K, = 1.0, K, = 0.16666,

1

K2 = 0.5, K

3
0.04167

4

Symbols such as Kl’ K2, etc, are used to represent the constants and
designations U, L, etc. to represent the rapid-access loops to providé more
flexibility in application and better understanding. These programs are
written using MDC; therefore, a programming shéet has been included as an
example, for the first program, to show actual memory locations for a program
which starts in sector 000 of channel 2.

It is assumed that X is in the U-loop and Exp(x) will be placed in the
Accuﬁulaﬁor(A—loop).

SECTOR

LOCATION ~ OP S, s, c,s COMMENTS
000 CLA 001 K, (R,) — (&)
001 MPY 016 U x(K,)
016 ADD - 017 Ky Ky + x(K,)
017 MPY 034 U x(Ky + x(K,))
034 ADD 035 K, R, + x(Ky + x(K,))
035 , - MPY- 052 U x(K2 + x(K3 + x(Ka)))
052 ~ ADD 053 K, K, + x(K, + x(Ky + x(K;)))
053 MPY 070 U x(K, + x(K, + x(K; + x(K,))))
070 ADD 071 K, R, + x(K1 + x(K2 + x(K3 + x(K4))))

PROGRAMMER: TULANE UNIVERSITY -- Electrical Engineering DATE: / /

TITLE: §%; g %% MINUTEMAN D17B COMPUTER PROGRAM -- SYMBOLIC CODE PAGE: — T
LOCATION] - LOCATION] __INSTRUCTION -
cg O 2 |0P [SfiSp [CH/Sec COMMENTS CH © 2. |0P J$F]3p [CH/Sec COMMENTS

OO 4410 10l0401] (K4)==>= (A) L0
O 1 12410Q1(6|6000 X (K4) 4|
o2 4 2
o3 43
o4 4 4~
oS5 . 45
06 A
Q7 47
{ O 50
/[! 5/
[=2 S 2 1644 0153 0 453 KIFX(K2 +X(K3 tXK4))
/3 53 1241017016 0 001X+ X(K2+ X (K 2+ XKETY
! 4 S 4 .
/5 Kl
/16 1640117104/ 71 K3+ XK4& 56
17 1240134160001 X(K3+XK4) 377
20 X
217 X4
> D G 2
Z3 o3
24 S 4
25 65
26 (C‘,G
27 -2
30 10 164|071 0471 | Exp (X)
31 7/
32
33
346 H O35 0435 [KZF X (K3 + X K4)
3512401526000 X(K2+X(KI+X K4)
36 i
37

ée

23

CONSTANT LOCATIONS

CHANNEL/SECTOR

CONSTANT LOCATION
X 60/000
Ky 04/053, 071
K2 04/035
Ky 04/017
K4 04/001

4.2 Absolute Value

This program computesllx] for any given value of x by using the MIM and

COM instructions. The binary representation of x is initially in the U-loop

and |x| is found in the Accumulator.

ngg}ggn op Sp Sp C,S COMMENTS
000 CLA 001 U (x) — (A)
001 MIM 002 - fxl
002 coM 003 | x|

4.3 Unpacking

This program unpacks the middle split-word from a word containing three

~ 8-bit split-words. The word to be unpacked is in the U~loop and the

‘unpacked, right-justified split-word is found in the Accumulator.

SECTOR

LOCATION op Sg Sp C,S COMMENTS
000 cLA) 001 M, 0f) — (&)
001 cLA L 002 U (A) — (L), (1) — (&)
002 ANA - 003 42,s The mask is used to unpack
‘ the desired word. :
32,10 (A) are shifted right by

.. 003 - ARS : 014

eight bit positiomns.

~Ml = 00000000 11111111 00000000

(located in sector 1) -

24

4.4 Packing:

This program packs an 8-bit word (X) in bits 9-16 of the U-loop. Two
other 8-bit words are located in bits 1-8 and 17-24 and zeros are initially

in bits 9-16.

iggg;{m\x opP Sk Sp c,s COMMENTS'
000 CLA 001 X (X) — (4)
OQI ALS 012 22,010 (A) are shifted left eight bits
012 ADD 013 W)) + () — (&)
013 CLA L 014 U (A) — (L), (U) — (4)
014 ADD 015 W2 a) + (WZ) — (A)
015 ANA 016 42, The three 8-bit words are packed
as required.
WI = 11111111 00000000 11111111 (located in sectgr 13)
Wz = 00000000 11111111 00000000 (locate§ in sector 13)

4.5 Subréutine Linkage

A linkage between the main program and the subroutine is essential when’
various subroutines are used. Before transferring to the location of the

subroutine, two preparations have to be made. First, the data must be stored

A

into appropriate memory locations. Second, a returning transfer instruction
must be stored at the end of the sﬁbroutine. The résult will be located
either in the Accumulator or in a specific location as specified by tﬁe given
subroutine. The subroutine can be uséd as manv times as desired if a proper

linkage is established. TFollowing is an example illustrating this technique.

25

MAIN PROGRAM SUBROUTINE
LOCATION INSTRUCTION LOCATION INSTRUCTION
“M—l Last instruction L Firgt instruction
beforg linkage of subroutine
M CLA MM1 . e e e e & e e
M+1 STO LL1
M+2 CLA MM2
M+3 STO - LL2
A CLA MM
A+l STO N+1) et e
A+2 TRA L N iast instruction
of subroutine
A+3 First instruction N+1 TRA A+3
after linkage
MM1 DATA 1' LL1 DATA 1
MM2 DATA 2 _ LL2 DATA 2
MM TRA A+3 LL RESULT

Some examples of subroutines that have been written and executed on the

s

D17B in the Systems Laboratory at Tulane University are listed below.

- 10-bit Binary to 12-bit BCD
8~character COA Subroutine
Von Neumann Division

Waveform Generation

26

4.6 Fine Countdown Mode (FCM)

In order to keep track of program timing, fine countdown can be used to
equalize the execution time of a subroutine for different situations. Usuglly,
the fine countdown mode will last as long as the maximum execution time of the
spec;fic subroutine. Then, Ku should be the maximum execution time minus two
rexpressed in wdt. This quantity is flag stored before entering fine countdown.

A typical program is shown below.

MAIN PROGRAM SUBROUTINE
LOCATION INSTRUCTION LOCATION INSTRUCTION
L-1 Last instruction N First instruction
before FCM of subroutine
L LPR 7400 ° c ©
L+1 CLA LL1
L+2 F,U CLA LL2 M Last instruction
of subroutine
L+3 STO 7000 -
L+4 STO 7001 NN DIB D16 _— AZA
L+5 STO 7002 NN+1 . T™MIL Go to NN+2 if
: -ve, NN if >0
L+6 STO 7003
L+7 EFC - - 62,s _ NN+2 DOA 2600
L+8 TRA N NN+3 TRA L+9
L+9 HFC 60,s
L+10 First instruction
after FCM
LLI) "K 1
u

LL2 SR

27

4.7 D-A and A—b Conversion

This pfogram will show some of the special I/0 capabilities of the D17B.
A digital number will be converted to an analog voltagevlevel. This signal
will be transmitted to the input of an A-D converter, and the resulting digi-

tized equivalent will be returned to the D17B using the Discrete.Inputs.

Sector
Location oP SF SP c,s COMMENTS
000 LPR 001 7200 Set Pl
001 CLA 002 X X) — (A)
002 VOA 003 3000 ¢.9) —> VO,,, send analog
vol%age to A-D converter.
003 DOA 004 2611 -25V at DO9 to pulse A-D.
004 DOA 005 2600 10V at D09 to pulse A-D.
005 DIB 006 5000 (Y —Y24) — (A)
Return converted digital
value to (A).
006 HPR 007 2200 Halt and compare converted

value with xX).

4.8 COA Subroutine (8-Octal Characters
.This program will send out eight octal characters through the COA output

yhich can be interfaced with a peripheral 1/0 device.

igg§g§0N oP Sg S c,s COMMENTS
~ 000 CLA 001 4601 (Data in 4601) —> (A)
001 CLA L 002 4602 (A) — (L) ,
| ("1" in 4602) — (A)
002 ANA 003 4200 W - W — @
003 . ALS 007 2203 Left shift 3-bits
067 - sTO 010 . 4610 Store masked LSB in 4606.

010 CLA 011 4601 (Data in 4601) —> (A)

28

COA Subroutine (Continued)

o011 ARS 013 3201 Right shift 1-bit
013 CLA L 14 4614 (A) — (L)
4614 (37777777) (A)
014 ANA 015 4200 (A)+ (L) —> (&)
: Make sign bit zero.
015 COA 017 4001 Character output (A>24—21
017 ADD 020 4606 Add masked LSB.
020 STO 021 4603 (A) —> 4601 (Data)
021 CLA 022 4622 (4622) —> (A)
022 TMI 023 4430 Is 8th COA completed?
023 SUB 024 4624 (A)-4624(1) —> (A)
024 STO 025 4624 (A) — 4622
. 025 CLA 026 4626 4626 —> (A), Delay counter
026 SUB 027 4627 S (A)-4627(1) — (A) -
027 TMI 026 4400 Test for end of delay.’
030 CLA 031 4631 4631(6) — (A)
031 STO ‘ 032 4624 (A) —> 4622
032 - HPR - 033 2200 Halt
LOCATION DATA -
4601 o Data for output -
4602 00000001
4606 Storage - masked LSB
4614 37777777
4622 00000006
4624 00000001
4626 00000005
4627 00000001

- 4631 00000006

29

Chapter 5
LIST OF INSTRUCTIONS

This section contains a list of the available instructions with a brief

‘explanation of each. The following abbreviations are used to facilitate a

more concise listing:

S.l

CLA

' STO

SAD.

'SUB

SSU

MPY

SMP-

() = The contents of (subscripts a-b refer to bit positions a thru b).
— é replaces |

wdt = word times

(c,s) = (m) = contents of Opérand bit positions

Other symbols have been explained previously.

Arithmetic Operations

Clear and Add 44 C,5 1 wdt
(m) —> (A)
Store Accumulator 54 c,s 1 wdt

(A) —> (m) except if: (m) is a one word loop, or a cold channel and the
enable write switch is in the disable position in which case (A) and (m)
are unchanged. If (¢) is 50, F, H, or E, only L may be used for flag
storing.

Add 64 » c,s 1 wdt

(m) + (A) — (4)

Split Add . v 60 C,S 1 wdt

1424 F B ppgy ™ Wy g and @y gy + @), — By,

Subtract : 74 C,s 1 wdt

4 - m) — (4 '

Split Subtract 70 c,s 1 wdt

B 1pmpq = M yyogy ™ Byypq a0d Wy gy - @y gy — By

Multiply ‘ ' . 24 c,s - 13 wdt
~(A) — (L) and (&) * (m) — (&)

Split Multiply | ' 20 Ce,s 0 Twdt
Wy gy T Wy g and W)y, o T Mgy |

Bypy t @y = Wy gqad Ay - @y — @y g,y

30

MMP Multiply Modified 34 c,s 13 wdt
Execution is the same as for MPY; however, the operand channel address
is modified before execution. Each of the three least significant bits
of the operand channel address (T, - T,.) may be changed (0 —> 1 or
1 — 0) if the corresponding phase register bit (P, - P,) is ONE. The
operand channel bit remains unchanged if the corresponding phase register
bit is ZERO. This is equivalent to the EXCLUSIVE OR of the operand bits
and the phase register bits.

SMM Split Multiply Modified 30 c,s 7 wdt
It is the same as SMP but with the conditions for MMP.

COM Complement 40 46,s 1 wdt
The 2's complement of (A) —> (A), (s) are ignored.

MIM Minus Magnitude 3 40 44 s 1 wdt
If (A) > 0, the 2's complement of (A) —> (A). (s) are ignored. If
(A) < 0, (A) are unchanged.

5.2 Shifting Operations

ALS Accumulator Left Shift 00 22,s s+1 wdt
(A) -are shifted by (s)l_5 bit positions.

ARS Accumulator Right Shift 00 32,s s+1 wdt

: (A) are shifted right by (s)l_5 bit positions.

SAL Split Accumulator Left Shift 00 : 20,s s+l wdt
(A)14—24 and (A)l_11 are shifted left by (s)l_5 bit positions.

SAR Split Accumulator Right Shift 00 30,s s+1 wdt |
(A)u}__24 and (A)l_11 are shifted right by (s)l_5 bit positions.

SLL Split Left Word Left Shift 00 24,s s+l wdt

<A)14-24 are shifted left by (5)1-5 bit positions. (A)l-ll unchanged.

SLR Split Left Word Right Shift 00 34,s - s+l wdt
- (A)14-24 are shifted right by (5)1—5 bit positions. (A)l_ll‘unchanged.

SRL Split Right Word Left Shift 00 26,s . TEFL wdt
(A);_;; are shifted left by (s);_ g bit positions. (4);, ,, unchanged.

SRR Split Right Word Right Shift 00 36,s - s+l wdt
(A)l_11 are shifted right by (s)l_5 bit positions. CA)14-24 unchanged.

5.3 Control Operations

TRA Transfer] v 50 c,s 1 wdt
The next instruction is specified by (m); (Sp) are ignored and (c)
cannot be 64, 70, or 72.

TMI Transfer on Minus 10 C,S e 1 wdt
If (A) < 0, the next instruction is specified by (m), (c) cannot be

31

64, 70, or 72 and all flag ccdes are defined. If (A) > 0, the next

"instruction is specified by (Sp). Also, all flag codes are defined
only if the TMI instruction is optimally located in relation to the
last instruction, and the sector location is one less than (m).

HPR Halt and Proceed 40 22,s 1 wdt
The Machine halts. The next instruction is specified by (Sp), which
must specify the next sector after the HPR instruction when the computer
is returned to the compute mode. (s) are ignored. :

SCL Split Compare and Limit 04 ¢,s 2 wdt
This instruction is defined only if the split words in (m) are positive
or 0. The split words of (A) are compared simultaneously and indepen-
dently with the corresponding parts of the contents of (m).

If Moy 14 > @y s @y gy = Wy,

1]
If (A)24_14 < 1's complement of (m)24_14, 1's complement of

(m)24_14 - (A)24_14, otherwise no change. The same is true for

A1y and My -

ANA Logical AND to Accumulator 40 42,s 1 wdt
(A) are logically ANDed, bit by bit, with (L) and the result stored in
.

LPR Load Phase Register 40 7-,s 1 wdt

Bits directly from (c,s)8 9.5 of the instruction word will become
b] b] -
(P)1 2 3° (m) are unaffected. The instructions shown below will
b ’ . .

set the (P) individually. They may be combined into one instruc-

1,2,3
tion to set any configuration.
40xx7200 -—-——»(P)l,z’3 100

40xx7400 ———)'(P)1 2.3~ 010
: N &

40xx7020 thru 40xx7037 — (P) = 001
. 1,2,3

.EFC Enter Fine Countdown 40 ‘ 62,s 1 wdt
Enter the fine countdown mode. (s) are ignored.

HFC Halt Fine Countdown 40 60,s 1 wdt
Halt the fine countdown mode. (s) are ignored.

RSD Reset Detector B _ 40 20,s 1 wdt
The detector is turned off. (s) are ignored.

5.4 Input and Output Operations

DIA Discrete Input A 40 52,s 1 wdt

(X)1419 — (A)1-19, Fc (Fine Cougtdown) “*’(A)zo,

‘Dr (Detector) — (A)Zl’ (P)3,I,2 — (A)22_24. (s)" are ignored.

DIB

DOA

VOA

VOB

vocC

BOA

BOB

BOC

+ COA

32

Discrete Input B 40 50,s 1 wdt
(Y)1-24 —_— (A)1_24. (s) are ignored.

Discrete Output A 40 26,s 1 wdt
(I)I—S —_— (D)I-S' D matrix selects one of the 28 output lines, numbered
ch-4c & Dsc-31c’ corresponding to the BCD representation of <D)1—5'
The step signal remains energized until the next DOA instruction is

executed. (I) are ignored.

6,7

Voltage Output A 40 30,s 1 wdt
If (s)4 is 0, (A)”__24 are converted to a proportional voltage and sent

to voltage output A. If (s)4 is 1, (A)4-11 are converted and sent to
voltage output A. When (P)1—3 is X01l, terminal 1 is selected for the

‘ voltage outputs; X11 for terminal 2, X10 for terminal 3 and 100 for

terminal 4. (s)l__3 5.7 are ignored.
3

Voltage Output B 40 32,s 1 wdt
Same instruction as VOA except voltage output B is used.

Voltage Output C 40 34,s 1 wdt
Same instruction as VOA except voltage output C is used.

Binary Output A . 40 10,s 1 wdt
If the previous binary output was +1 or -1, a 1 is subtracted from or
added to (A) Binary output A is set to a +1 if (A)24 is 0, or a -1

17-24"°

otherwise. (s) are ignored.

Binary Output B 40 12,s 1 wdt

Same instruction as BOA except binary output B is used.

Binary Output C 40 02,s 1 wdt
" Same instruction as BOA except binary output C is used.

Character Output A 00 40,s 's+1 wdt

(A)21-24 become available to output equipment for s wdts. (A) are

shifted left four positions. COA is not defined when s is 0.‘m(c')5
must be 1 for COA. (C)A—l are ignored. Therefore, (c) may be any

even octal number from 40-76.

A list of the DI17B imstruction repertoire which summarizes all the

available instructions, their mnemonics and quad-octal codes is given in the

following table.

CODE DESCRIPTION NUMERIC CODE

ARITHMETIC CLA CLEAR AND ADD : 44 ¢,s
STO STORE ACCUMULATOR 54 «¢,s
- ADD ADD 64 ¢c,s
SAD SPLIT WORD ADD . 60 c,s
SUB SUBTRACT . 74 c,s
SSU SPLIT WORD SUBTRACT ' 70 c,s
MPY MULTIPLY 24 c,s
SMP SPLIT WORD MULTIPLY o 20 e¢,s
MPM MULTIPLY MODIFIED 34 c,s
SMM SPLIT WORD MULTIPLY MODIFIED 30 c,s
COM COMPLEMENT 40 46,s
MIM MINUS MAGNITUDE 40 44,s
SHIFT " ALS ACCUMULATOR LEFT SHIFT ' 00 22,s
ARS ACCUMULATOR RIGHT SHIFT 00 32,s
SAL SPLIT ACCUMULATOR LEFT SHIFT 00 20,s
SAR SPLIT ACCUMULATOR RIGHT SHIFT 00 30,s
SLL - SPLIT LEFT WORD LEFT SHIFT 00 24,s
SLR SPLIT LEFT WORD RIGHT SHIFT 00 34,s
SR, SPLIT RIGHT WORD LEFT SHIFT 00 26,s
SRR SPLIT RIGHT WORD RIGHT SHIFT 00 36,s
CONTROL TRA TRANSFER - 50 c,s
TMI TRANSFER ON MINUS 10 c,s
HPR HALT AND PROCEED 40 22,s
SCL SPLIT COMPARE AND LIMIT 04 c,s
ANA LOGICAL AND TO ACCUMULATOR 40 42,s
LPR LOAD PHASE REGISTER » 40 7-,s
EFC ENTER FINE COUNTDOWN 40 62,s
HFC HALT FINE COUNTDOWN 40 60,s
RSD RESET DETECTOR 40 20,s
INPUT/OUTPUT DIA DISCRETE INPUT A 40 52,s
DIB DISCRETE INPUT B 40 50,s
DOA DISCRETE OUTPUT A 40726,s
VOA VOLTAGE OUTPUT A 40 30,s
VOB VOLTAGE OUTPUT B 40 32,s
VOC VOLTAGE OUTPUT C 40 34,s
BOA BINARY OUTPUT A 40 10,s
BOB BINARY OUTPUT B - 40 12,s
BOC BINARY OUTPUT C 40 02,s
COA CHARACTER OUTPUT A 00 40,s

Table 2. D178 computer‘instruction set,?

	000
	001
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33

