
MINUTEMAN
COMPUTER

USERS
GROUP

D17B COMPUTER

DOCUMENTATION

MINUTEMAN COMPUTER

USERS GROUP

017B COMPUTER

PROGRAMMING MANUAL

Edited By

ChaI'Zes H. Beck

Professor and Director

SYSTEMS LABORATORY

Department of Electrical Engineering

School of Engineering

TULANE UNIVERSITY

REPORT MCUG-4-71

* Programming Features
* Instruction Set
* Programming Techniques
* Programming Examples

SEPTEMBER 1971

TABLE OF CONTENTS
PAGE

Preface 1i
CHAPTER 1 - PROGRAMMING FEATURES OF THE 017B •••••••••••• 1

CHAPTER 2 - PROGRAr~r.uNG THE 017B • • • • • • • • • • • • • ',. • •• 3
2.1 Addressing •••••
2.2 Word Formats •••••

.
.

2.3 Quasi-Octal Notation ••••••••••••••••
2.4 Minimal Delay Coding •••••••• j . .
2.5 Store Operations •••••• • • • • • •

2.6 Fine Countdown r·1ode •• • • •• • • • • •
.... -.~ ,

CHAPTER 3 - THE INSTRUCTION SET AND PROGRAMt4ING TECHNIQUES •••
3.1 Arithmeti c Operations •••• • •••
3.2 Shifting Operations and Masking· • • • • • • • •

3.3 Control Operations ••• • • • • • • • • • • • • ••
3.4 Input/Output Operations

CHAPTER 4 - PROGRANMING EXAr~PLES •••
4.1 Exp (x) •••• ~ • •

• • • • •
.
.

4.2 Absolute Value -. • •

4.3 Unpacking ••••••• • ••• • ••• • • • •

4.4 Packing • • • ••• • • • • • • • • • • • • • • • • •
4.5 Subroutine Linkages • • • • • • •• • • • • • • • • •
4.6 Fine Countdown r'1ode ••• • • • • •• • • • • • •
4.7 O-A and A-O Conversion •••••••••••••

4.8 COA Subroutine (8-0ctal Characters) • • • • • • • • •
. CHAPTER 5 - LIST OF INSTRUCTIONS ••••••••••••••••••

5.1 Arithmetic Operations ••• • • • •• • •
5.2 Shifting Operations • • • • • • • • • • •

-.
." e", ~ • - ... '

• • • • • •

3

3

8

8

12
13
15

15
16
18
19
21
21
23
23
2,4
24
26
2.7
27

29
29

30
5.3 Control Operations ••••••••••••••••• 30

5.4 Input and Output Operations • • ••• • • • • • • •• 31
Appendix - Dl7B COMPUTER INSTRUCTION SET •••••••••••••• 33·'

iii

LIST OF FIGURES

Fi gure 1 - Instructi on and data \llord formats •••••••

Figure 2 - Quasi-octal instruction coding· ••

PAGE
4

9

Figure 3 - Steps required for instruction completion ••••••• 10

Figure 4 - Minuteman D17B Symbolic prograrrrning form· •

LIST OF TABLES

. Table 1 - Flag store codes and memory specifications •

22

• PAGE
2

Table 2 D17B Computer instruction list· •••• • • •••••• - 33

iv

Chapter 1

PROGRAMMING FEATURES OF THE 017B

The D17B is a small serial-binary general-purpose computer which was

designed as an airborne control computer. It has several features which

make machine language programming different than for other general~purpose

computers.

The D17B has a disc memory which rotates at 6000 r/min. The disc

contains 21 concentric programmable channels which are addressable by even

octal numbers from 00 through 50. Each channel contains 128 sectors or

words, numbered octally from 00 through 177. Each word contains 24 bits

for the purpose of storing data or instructions. There are a total of 2727

addressable words on the disc. Since the disc rotates through 128 sectors

in 0.01 second, the length of time required to record, write, or pass over

anyone sector is 0.01/128 = 78.2 ~s. This interval defines one word time.

1

The serial presentation of information on the rotating disc necessitates

careful coding of a program to insure the minimum access time between instruc-·

tions as well as between an instruction and the data on which it operates.

This scheme of coding is referred to as minimal delay coding (MDC).

In addition to an Accumulator (A) and a Lower Accumulator (L), there are

rapid-access storage loops, each of which contains less than 128 words.

These loops (U, F, E, and H) have lengths of 1, 4, 8, and 16 words~ respec­

tively. Information stored in the U, F, E, and H loops is available after

1, 4, 4, and 8 wor.d times respectively, rather than after one entire disc

revolution. Significant characteristics of these loops are tabulated in

Table 1 along with the two input loops, V and R.

2

The DUB has a "flag store" mode which provides for"simultaneous1y stor-

ing the previous contents of the Accumulator in certain specified channels

coincident with the execution of an instruction. This feature eliminates the

need for an additional instruction to perform this frequent operation. The

D17B can also be used to perform paralle1- or multi-processing such as the

simultaneous execution of two identical single-precision arithmetic operations.
,

This not only provides for the execution of two operations during one word time,

but also effectively doubles the memory available for data storage. In sing1e-

precision data storage each word is divided into two ll-bit words at the sacri-

fice of some precision.

WORD LENGTH CHANNEL FLAG CODE DESCRIPTION
(s)

F

00 No Flag

4 52 02 F-100p

1 04 Telemetry

128 50 06 Channel 50

8 56 10 E-loop

1 64 12 L-10op
(Lower Accummulator)

16 54 14 H-1oop

1 60 16 U-loop

4 72 R-100p

4 70 V-loop

Table 1. Flag store codes and memory specifications.

2.1 Addressing

CHAPTER 2

PROGRAMMING THE 017B

Each word location on the disc memory is specified by a channel and

sector number denoted (c,s) for channel, sector. For example, (10, 113)

wo~ld specify the word located in sector 113 of channel 10. Twelve bits are

required for direct addressing all information stored in memory; five are

used for channel (since channels are only specified by even octal numbers)

and seven for the sector.

2.2 Word Formats

Four word formats are available: double-precision fixed or full-word

data, single-precision fixed or split-word data, unflagged instructions, and

flagged instructions. The formats are shown ~n Figure 1.

3

The full-word format accommodates 23 binary bits in bit positions Tl

through T23. Bit position T24 contains the sign bit which indicates a nega­

tive number when equal to 1 and a positive number when equal to O. When a

negative number is entered into memory, the two's complement of the magnitude

'of the number must be entered in bit position Tl through T230

The split-word format provides for the storing of two 10-pitnumbers and

a sign bit for each. The "right-half" number is stored in bit position Tl

through Tll and the "left-half" number in positions Tl4 through T24. Bit posi­

tions Tt2 and Tl3 are unused and their values are not predictable.

The fixed binary point is located between T24-T23 for the full-word data

format; the two fixed binary points for the split-word format are located

between T24-T23 and Tll-TIO- However, if it is necessary .for the programmer

·. .-

SIGN WHOLE NUMBER

T
24 23 22 21 20 19 18 17 16 15 1'+ 13 12 11 10 9 8 7 6 5 '+ 3 2 1

1

7 7 7 7 7 7 7 7

SIGN 10 BIT BINARY FRACTION X X SIGN 10 BIT BINARY FRACTION

T
2'+ 23 22 21 20 19 18 17 16 15 1'+ 13 12 11 10 9 8 7 6 5 '+ 3 2 1

1 1 1 1 1 1 1 1 it 1 1 1 X X 1 1 1 1 1 1 1 1 1 1 1

7 7 7 6 3 7 7 7

. ,

Figure 1. Instruction and data word formats. (Sheet 1 of 3)

DECIMAL NUMBER

+1

•

•

a

•

•

-1

BINARY REPRESENTATION OCTAL E UIV.
.-;------~~~~

-.

0.11111····11

0.11111····10

•

•

0.00000····01

0.00000····00

1.11111····11

•

1.00000 10

1.00000 01

37777777

37777776,

•

00000001

00000000

77777777

•

•

•

40000002

40000001

Note: Numbers with magnitude of +1 to -1 may be represented
in binary as shown in the table above. All negative
numbers are shown in the 2's complement form as they
are represented in the 017B.

Figure 1. Instruction and data word formats. (Sheet 2 of 3)

5

UNFLAGGED INSTRUCTION (T = 0)
20

T T T T. T T T T T T T T T T T T T T T T T t T T
24 23 22 21 20 19 18 17 16 15 14 13 12 11.10 9 8' 7 6 5 4 3 2 1

OPERATION FLAG NEXT INSTRUCTION
CODE SECTOR ADDRESS

OP F Sp

FLAGGED INSTRUCTION (T = 1)
20

CHANNEL SECTOR
NUMBER NUMBER

C S

T T T' T T T T T T T T T T T t T T T T T T T T T
24 2.3 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

FLAG I SECTOR
I OPERATION FLAG STORAGE
I

OF NEXT CHANNEL .SECTOR
CODE LOCATION

I INSTRUCTION NUMBER NUMBER

I

. OP F SF
I

Sp C S
I

Figure 1. Instruction and data word formats. (Sheet 3 of 3)

7

to assume a location for the binary point he must appropriately allow for it

in programming and in interpreting results.

The unflagged instruction format consists of four parts: a 4-bit opera-

tion code (OP), a I-bit flag (F), the 7-bit sector address (Sp.) of the next

instruction within the active memory channel, and the 12-bit ch~nnel and

sector address (c,s) of the operand. Operation codes are two-digit quad-

octal numbers which determine the instruction type. A complete explanation

of'available instructions is given in Chapter 5.

For an unflagged instruction, F is always O. Since Sp contains no

channel specification, the next instruction must always be located in the

same channel as the one preceeding it. This restriction does not apply to

the transfer (TRA) and transfer on minus (TMI) instructions which have

different formats. The rightmost twelve bits of these transfer instructions

indicate the address of the next specified instruction which may be located

in any channel and sector of memory.

A flagged instruction is identical to an un flagged instruction except

that the flag bit is I and Sp is reduced from seven to four bits. The re-

maining three bits are used for the flag store code (Sf). When the flag bit

is 1, the contents of the Accumulator will be stored in the channel specified

by Sf ~uring the first word time of execution of the instruction. Determina-

tion of the storage location is explained in section 4 of this chapter.

Channel 50, the L, U, E,F, and H loops, and the telemetry output channel are

available as flag storage locations. The channel addresses and flag store

codes are listed in Table 1. Because Sp is limited to only four bits for

specification of the sector address of the next instruction, the next instruc-

tion after a flagged instruction will come from one of the next 16 sectors

after operand agreement (beginning of execution). Therefore, Sp is used to

i,ndicate only the four least significant bits of the sector address of the

next instruction.

2.3 Quasi-Octal Notation

8

Although words are represented internally by 24 binary bit·s, for pro­

gramming convenience an octal representation is used as input to reduce the

number of digits which need to be punched. However, since the instruction

word formats are not compatible with the eight 3-bit groupings of bits needed

for octal notation, an intermediate or "quasi-octal" notation is used.

Figure 2 shows the quasi-octal grouping of bits for the two instruction

formats. Pseudo-zero bits are inserted as shown and the quasi-octal repre­

sentation may then be found by grouping each set of three bits and finding

the octal equivalents. The octal representation may then be found by

grouping and adding the quasi-octal numbers as shown. Since it is easier to

work with octal digits than with binary when writing programs, all numbers

which refer to the contents of parts of the two instruction formats will be

represented in quasi-octal notation so that the total word may then be

conveniently converted to an a-digit octal number.

2.4 Minimal Delay Coding

Because information on the memory disc is transferred serially~ the

location of successive instructions and their operands on the disc is

extremely important. Five steps are necessary to complete an instruction;

Figure 3 shows how the D17B can simultaneously complete certain steps of

successive instructions. With minimal delay coding an. instruction can be

completed in the number of word times equal to the execution time of that

instruction. Therefore, to execute a number of sequentia~ instructions in

the minimum number of word times, the instructions should be separated by

UNFLAGGED INSTRUCTION

OP CODE F NEXT INSTRUCTION SECTOR OPERAND

T T T T T T T T T T T T T T T .T T T T
24 23 22 21 20 19 18 17 16 15 ,14 13 12 11 10 9 8 7 6

OP F Sp C

1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 4 0 1 7 7 7 6 1

7 5 7 7 7 7 \ ,

FLAGGED INSTRUCTION

OP CODE F NEXT INSTRUCTION SECTOR OPERAND

T T T T T T T T IT T T T T , T T T T T T
24 23 22 21 20 19 18 171 16 15 14 13 12 11 10 9 8 7 6

OP F SF I Sp C

1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1

I
• 7 4 2 1 6 11 7 7 6 1

I

7 7 7 7 7 7

Figure 2. Quasi-octal instruction coding.

T T T
5 4

S

1 1 1

7

7

T T T
5 4

S

1 1 1

7

7
.,

T
3 2

1

7

7

T
3 2

1

7

7

T
1

1 I

T
1

1

BINARY

QUASI­
OCTAL

MAXIMUM
OCTAL
VALUE

BINARY

QUASI­
OCTAL

MAXIMUM
OCTAL
VALUE

WORD TIMES

3 4 5 6

fIRST INSTRUCTION

SECOND INSTRUCTION

THIRD INSTRUCTION

Figure 3. Steps required for instruction completion.

KEY:

IS - Instruction
Search

IR - Instruction
Read

as - Operand
Search

OR - Operand
Read

EX - Execute

.....
o

,,,-

n-1 sectors where n is the execution time, measured in word times, of the

first instr·uction of each pair of instructions considered. However, it is

permissible to locate an instruction in a sector which is alloted ·for the

execution of the previous instruction.

11

For example, if a CLA instruction is followed by an ADD instruction, the

ADD instruction should be located in the sector following the CLA instruction,

since the execution time of the CLA instruction is one word time., If a MPY

instruction is followed by an ADD instruction, the ADD instruction should be

located 13 sectors after the MPY instruction since the execution time of the

MPY instruction is 13 word times. However, if the 13 sectors following the

MPY instruction are used for the next instruction of the program, a delay of

one disc revolution will take place between the end of execution of the MPY

instruction and the next instruction.

Figure 3 also shows that, for a given in·struction, the operand can be

read during the word time immediately following the reading of the instruc­

tion. Therefore, when writing a program, the operand of each instruction

should be,located in the sector following the sector location of the instruc­

tion. In order to maintain the desired instruction locations, the operands

should be located in other channels in the correct sector since corresponding

sectors in all channels are available during the same word time. It is

usually convenient to locate all operands in .the same channel;

lfit is necessary to write on (or read from) a sector which is not

located optimally in relation to the instruction, the next instruction should

be located a sufficient number of sectors later so that, when the word is

stored (or read), the operand sector or some later sector will contain the

next instruction. If this is not done the disc may have to rotate almost an

entire revolution to reach the sector of the next instruction. For example,

'.

12

if an ADD instruction is located in sector 71 and specifies that the number

to be added is in sector 75, then the next instruction should be located in

sector 75.

The E and H loops each have an intermediat,e read head in addition to the

normal read head to enable more rapid access to stored information. For

example, if a word was stored in sector 3 of the H-loop, which has 16 sectors,

it would not be available for 16 word times with the normal read head. How-

ever, the intermediate read head makes the word available after 8 word times

in sector 13.

2.5 StoreOperations

Words may be stored in any channel ex.cept one word loops using the STO

instruct~ons if the Enable Write switch is ON. If it is OFF, only channel 50

and the F, E, and H loops may be written on. When a STO instruction is

encountered, the sector storage address is compared with the addresses

recorded on the sector track of the disc. When the two addresses agree, the

contents of the Accumulator are stored in the word which has a sector address

of two less than that specified since the write head is located two sector

addresses behind the read head.

Therefore, for STO instruction to be executed in one word time the

address to be stored should be specified at one sector greater than the

sector location of the instruction. The word will then be stored in the

sector location preceding the instruction. The channel selected for storage

should be different from the channel in which the instructions are located in

order not to interfere with their optimal location. However, the channel

selected for storage may be the same as the channel where the instructions

are located so that instruction modification may be performed under program .
control. For a flag store to channel 50, the word stored will be auto!Jlat-

ically placed in sector s-2, where s is the sec·tor address of the operand.

13

Flag storing to the rapid-access loops is done in a "different manner.

In a flagged instruction, if the flag-code of one of the rapid-access loops

is placed in Sf, then the previous contents of the Accumulator will be stored

in the sector of the designated loop which cur responds to the least signifi-

cant bits of the operand sector address.

For example, flag storing in the E-Ioop which contains eight words by an

instruction located in sector 116, whose operand is located in se~tor 117,

will cause the previous contents of the Accumulator to be stored in word

seven of the E-Ioop.

2.6 Fine Countdown

In real-time programming, timing control is an important factor. The

execution time of some particular part of a program may vary for different

situations. The fine countdown mode, one of the special features of the D17B

'computer, can be utilized for program timing control when it is necessary.

Once the program transfers to a certain subroutine, the fine countdown mode

can be initiated simultaneously. Fine countdown is performed independently

of the pr~gram in memory.

When the fine countdown mode is entered, the 0, +1, and -1 incremental

inputs to V, instead of accumulating in their respective sectors of V, cause

the product of the input and the contents of their sector to be algebraically

'added to the contents of the U-Ioop. The U-Ioop, assuming that it contained

a positive number by flag storage originally, is counted down at a rate

depending upon the sign and magnitude of the numbers placed in "the V-loop and

upon the sign and frequency of the inputs. When 'the contents of the U-Ioop

become negative, DS is turned on independently by IDS" Fc Ux T24 , and a

discrete output signal (D) is issued automatically. The discrete register
16 ,

must"be set to zero prior to entering the fine countdown mode, and the third

14

bit of phase register, P3' must be set to O. During fine countdown (F = 1),
c

the V-loop recirculates or receives new information via the STO instruction.

The special discrete output indicates a solution of the equation:

where Ku is the contents of the U-Ioop before fine countdown. Ko through K3

are the constants in the V-loop, and II through 13 are the incremental inputs.

II will be sampled once every two word times whereas 12 and 13 wil~ be sampled

once every four word times .

. If Ko through K3 are stored as 1 and II through 13 are made to be -1 by

setting Vk equal to 1 and Vs equal to 1, the fine countdown mode will last

K + 2 word times until a discrete signal is generated. If the execution of
u

the subroutine is completed before the fine countdown terminates, the computer

can be made to idle until the discrete signal transfers the program tq an

appropriate location. In this fashion, the programmer can assure that the

computer will require equal execution time, K + 2 word times, for a certain
u

subroutine and gain the ability of timing control. A typical example utilizing

fine countdown mode can be found in Sec. 4.6.

15

Chapter 3

THE INSTRUCTION SET AND PROGRAMMING TECHNIQUES

Included at the end of this manual is a list and a brief explanation of

all the available instructions, their mnemonics, quad-octal codes, execution

times, and other pertinent data. It is the purpose of this chapter to

explain the uses and limitations of this instruction set as well as the
•

,special features of the D17B (i.e. flag storing, rapid-access loops, and

split-word operations).

3.1 Arithmetic Operations

Instructions for adding, subtracting, multiplying, complementing, and

storing are available. Separate instructions are used for adding, subtracting,

-and mUltiplying with split-word formats. These instructions are basically
•

-the same as in other general-purpose machines, with the exception of the

Multiply Modified (MMP) and Split Multiply Modified (SMM) instructions which

may have their operand addresses modified as determined by the exclusive-OR

of the three least significant bits of the operand and the contents of the"

phase register.

Addition, subtraction, and complementation each require one word time

-for execution. Multiplication requires 13 word times and split multiplication

7 word times. When storage space and time are at a premiumit.is often

desirable to use the split-word instructions; especially whe? high precision

is not needed. Split words are accurate to a tenth of one per cent.

Noticeably absent from this set is a division instruction. The D17B

does not have a hardware division capability since it isa relatively time

cOllsuming process. To divide by a constant, the reciprocal of the number is

. stored and mUltiplication may then be used. To divide bi .a power of two,

right shifting is used.

16

It is often necessary to use the appropriate Taylor series expansion to

compute functions such as SIN, EXP, etc. These expansions contain sums of

terms which are very similar. To program these expansions with the minimum

number ·of operations needed, a technique called "nesting" is used.

For example, the expansion of EXP .(x) is:

x2 x3 x4
Exp(x) = 1 + x + 2! + 3: + 4! +

After nesting, the first five terms are:

where: Kl = 1

K = 1/2! = 0.5000
2

K3 = 1/3! = 0~1666

K = 1/4! = 0.0416
4

The programs for this and other·functions are given in Chapter 4.

3.2 Shifting Operations and Masking

Shifting instructions are available to move the contents of the

Accumulator either to the left or right. There are separate instructions

available for the full-word format and for each word of the split-word

format.

These instructions are briefly described in the list of instructions in

Chapter 5. Using a left-shift instruction causes the contents of the

Accumulator to be shifted to the left the specified number of bits. The most

significant bits are lost and zeros fill the vacated positions of the least

significant bits, I~ performing a right-shirt the least significant bits ara

lost and zeros fill the vacated positions of the most significant bits,

except wheri the number is negative; in this case ones fill the vacated bit

positions.

A shift instruction requires a minimum of two word times to be executed,

specifically for a zero- and a one-bit shifto Otherwise, it requires one

word time more than the number of shifts desired (n + 1 word times).

An instruction which is commonly used in conjunction with shifting

operations i.s the ANA instruction or "logical AND to Accumulator 0 " The ANA

instruction replaces the contents of the Accumulator with the "logical AND"

17

between corresponding bits of the Accumulator and the Lower Accumulator. The

ANA instruction can be used to perform masking, and in conjunctiort with-

shifting operations it may be used to perform packing and unpacking of words

of less than 24 bits (eog,,"11-bit split-words).

In large general--purpose machines, a "logical OR to Accumulator" is

available and is used primarily for packing while the ANA instruction is used

for unpacking. It is therefore appropriate to consider how the ANA instruc-

tion may be used for both operations and, at the same time, demonstrate how

flag storing may be used to reduce execution time.

To unpack, for example, suppose that three 8-bit words are stored in a

word in memory, and the middle word is to be right justified in the Accumulator,

as is usually required. A "mask" containing I's in bits 9 through 16 and

zeros in all other bit positions is first placed in the Accumulator (using

CLA). The entire word to be unpacked is then placed in the Accumulator (using

CLA), and at the same time the "maskll is flag-stored in the Lower·Accumulator.

The ANA instruction is then used, leaving the bits in bit positions 9 through

16 unchanged and all other bi~s zero. A right-shift of eight bits will then

right-justify the 8~bit word.

Packing requires two more word times. For example, if it is desired to

repack the 8-bit word which was unpacked in the previous example, the word is
,

first placed in the Accumulator and then shifted left eight bit positions. A -
word containing zeros in bits 9 through,16 and ones in all other bit positions

18

is then added to the Accumulator, resulting in the word to be packed to be

located in bits 9~16 and ones in all other bit positions. The word containing

the other two 8-bit words is then placed in the Accumulator, while simulta­

neously flag-storing the previous contents of the Accumulator in the Lower

Accumulator. Assuming bits 9-16 of the Accumulator are zero (if they are

not they must be masked to zero), a word containing ones in bits 9-16 and

zeros in all other bit positions is added to the Accumulator, resulting in all

ones in bits 9-16. Use of the ANA operation will then produce the original

word (containing three 8-bit words) in the Accumulator.

3.3 Control Operations

The basic control operations available are Unconditional Transfer (TRA),

Transfer on Minus (TMI), and Halt and Proceed (HPR). Now, although this is

a small set compared to those of larger general-purpose computers, it can be

used to effect all other control operations.

To achieve a transfer on plus, the twots complement of the word is taken

before testing it with the TMI instruction. A transfer on zero may be

achieved by first using the MIM instruction to make the number negative.

Then~ by using the TMI instruction, the contents of Sp will specify the next

instruction if the Accumulator is zero.

Another way to change the use of the TNI instruction is by subtracting

a one from the word to be tested in the least significant bit position. This

bas the effect of changing the use of the TMI instruction to transfer on

minus or zero to one location and plus to another, rather than on minus to one

location and on plus or zero to another. Making this change, rather than

simply complem~nting the word and then testing it, allows freedom of channel

location if the contents of the Accumulator are zero. The MIM and COM

instructions maybe used together to obtain the absolute value of a number.

19

This is illustrated in Chapter 4 as a programming example.

3.4 Input/Output Operations

The program, composed of instruction and data words, is entered into

memory either through the manual control board, flexowriter, teletypewriter,

paper tape reader, card reader, or magnetic tape reader. Instruction and

data characters can be read in during the load/verify mode; sequential memory

j

locations are assumed unless a location control character is present.

.. The main instruction which causes the D17B to output the contents of the

Accumulator to an external source is character output (COA). To effect trans-

mission of a single character the four MSB's from the Accumulator are loaded

into a special register. As this register is loaded, a parity bit is gen-

erated. After loading the register and generating the parity bit, a timing

pulse is available, and the four bits plus the parity bit are transmitted out

in parallel. Continuing in this fashion it would require six COA instructions

to transmit an entire computer word.

By'properly shifting right once and then using COA, the full octal

contents of the Accumulator can be transmitted by using eight CoA instructions.

Output devices currently being used are the light display, flexowriter,

teletypewriter, and paper tape punch.

There are several additional instructions which enable the progrannner to

enter or extract data from the Dl7B under program. control. Discrete input

lines (Xlc thru X24c and Ylc thru Y24c) are availa:ble for entering 24-bit data

words. Among them X20c thru X24c are inputs derived fromFc, Dr, P3, PI, and

P2 flip-flops respectively_ The true level for the discrete input lines is

-lO~ and p V represents the false level.

Discrete output instructions providefo.r outputting ~ level on one of 28

discrete output lines. Only one line can be energized at a time with the

20

execption of DOl, D02, D03, and D04. D04 can be activated with one of DOl,

D02, or D03, thus allowing for two lines at most to be energized at a time.

Furthermore, DIO and D21 are ANDed with Dr, the gyro bottoming detector, True

and false output level for DOA are -25V and +IOV respectively, Under program

control three voltage outputs can be updated one at a time from the computer.

The analog voltage outputs are proportional to the digital information held in

buffer registers which are associated with the D/A converters. Split word data

is used to originate the analog signal. The eight MSB's of either the right
.. ' ~

or left half word are fed into one of the three buffer registers. The total

voltage swing is approximately ±20V.

Three binary outputs are available on two lines for each output from the

(G)l_3 flip-flops and are of a pulse nature. Execution of a BOA, BOB, or BOC

will cause the eight MSB's of the Accumulator to be increased or decreased by

one depending on the existing state of the associated G flip-flop. At the

completion of the instruction the sign position of the Accumulator will deter-

mine the new setting of the associated G flip-flop. The true output level is

-lOV, and the false level is -IV.

Chapter" 4

PROGRAMMING EXAMPLES

4.1 Exp (x)

This program computes eX for any given value of x, using the following

algorithm:

x2 x3 x4
Exp (x) .!. 1 + x + 2! + 3! .+ 4!

.:. K1 +.x(K1 + x(K2 + x(K3 +x(K4»»
Where K1 = 1.0, K3 = 0.16666,

K2 = 0.5, K4 = 0.04167

Symb~ls such as K1, K2, etc. are used to represent the constants and

designations U, L, etc. to represent the rapid-access loops to provide more

flexibility in application and better understanding. These programs ~re

written using MDC; therefore, a programming sheet has been included as an

21

example," for the first program, to show actual memory locations for a prog~am

which starts in sector 000 of channel 2.

It is assumed that X is in the U-loop and Exp(x) will be placed in the

Accumulator(A-loop).

SECTOR
LOCATION OP SF S C,S COMMENTS

P

000 CLA 001 K4 (K4)~ (A)

001 MPY 016 U x(K4)

016 ADD . 017 K3 K3 + x(K4)
011 MPY 034 U x(K3 + x(K4»
034 ADD 035 K2 K2 + x(K3 + x(K4»
035 HPY: 052 U x(K2 + x(K3 + x(K4»)

".
052 ADD 053 K1 Kl + x(K2 + x(Kj 7 x (K4»)
053 HPY 070 U x(K1 + x(K2 + x(K3 + x (K4) »).

010 ADD 071 K1 K1 + x(Kl + x(K2 + x(K3 + x(K4»»

.

I

PROGRAMMER: TULANE UNIVERSITY -- Electrical Engineering DATE: / /
I TITLE: Ex 0 (xJ MINUTEMAN D17B COMPUTER PROGRAM -- SYMBOLIC CODE PAGE: ,

LOCATION J.N~ KUL! JUN
fH 02. OP Sf So CHI Sec COMMENTS

oo,ti 0 01 04-01 r k 4-) __ ~ CA)
~ 0' ~ 0 /6 6000 x~ (K4J,

LOCATION I l~§OCtmN' I
I

COMMENTS CH 02. twl Sf p 'CH/Sec I
"

4-C
4-1

02..
0..:3
04- !
DS

4-2- -I _43 i
4-9- I
4-S

06 I
01

I
I 0
I I
i2.
1:3
14

-$~ I
So
,,5"1

o 4-.5" 3JKI1-XCK..~t-1t&.;~~1 1.5 2- ~.q.. 0 S":J.
.s-3'!24-ST7"o

-S4Y "0 o OIX{k/+t{(k 2-+ X JS o+xKtf._1
i

IS

I 16 64- 0 17 0417 1<.3 T .M+
17""T2.-1- 0 .34- 60&0 XCK3+-X' :71-)

-3"'3'
S'G I i !

1~7 I
:2.0 60
21 (PI
2.2

,
I

23
2+
2S
26 I
27

G,2. I _q,3i
64- I
bS' i

I ",];:I
(",7

.:.30
3 I
32.

3~~ 3!t. " , ,O.3S Olt-3Si f<.Z t- X O\:~ 1- X K4J
\3 :;,:20 ,S2 '''00 t:)k>«f(Zt~{f<~ + {~J(1-}Li
~! ; ·1 . ..:37"_

I !

""/ 0 164- 0 71 04 7 I I t:xp 6d :
I 7l I ' -=
!

I '

~= -+----lAd:-Ii--Ih--,----~ ---. , , i I

I
. • -i=r =:

!

I I !

I H -,
I'\)
I'\)

CONSTANT LOCATIONS

CONSTANT

4.2 Absolute Value

CHANNEL/SECTOR'
LOCATION
60/000
04/053, 071
04/035
04/017
04/001

23

. This program computes -lxl for any given value of x by using the MIM and

COM instructions. The binary representation of x i.s initially in the U-loop

and Ixl is found in the Accumulator.

SECTOR OP SF Sp C,S COMMENTS LOCATION

000 CLA 001 U (x) --+- (A)

001 MIM 002 - Ixl
002 COM 003 Ixl

4.3 Unpacking

This program unpacks the middle split-word from a word containing three

. 8-bitsplit-words. The word to be unpacked is in the U-Ioop and the

unpacked, right-justified split-word is found in the Accumulator.

SECTOR
LOCATION

000

001

002

003

OP

CLA

CLA

ANA

ARS

L

001

002

003

014

MI - 00000000 11111111 00000000

C,S COMMENTS

(Hi) --+- (A).

U (A) --+- (L), (U) ~ (A)

42,s The mask is used to unpack
the desired word.

32,10 '(A) are shifted right by
eight bit positions.

(located in sector 1)

24

4.4 Packing·

This program packs an 8-bit word (X) in bits 9-16 of the U-loop. Two

other 8-bit words are located in bits 1-8 and 17-24 and zeros are initially

in bits 9-16.

SECTOR OP LOCATION
Sp c,s COMMENTS

000 CLA 001 X (X) ~ (A)

Op1 ALS 012 22,010 (A) are shifted left eight bits

012 ADD 013 WI (A) + (W1)~ (A)

013 CLA L 014 u (A) ~ (L), (U) ~ (A)

014 ADD 015 tV2 (A) + (\v2) ~ (A)

015 ANA 016 42, The three 8-bit words are packed
as required.

WI = 11111111 00000000 11111111 (located in sector 13)

W2 = 00000000 11111111 00000000 (located in sector 15)

4.5 Subroutine Linkage

A linkage betlV'een the main program and the subroutine is essential when

various subroutines are used. Before transferring to the location of the

subroutine, two preparations have to be made. First, the data must be stored
'.
into appropriate memory locations." Second, a returning transfer instruction

must be stored at the end of the subroutine. The result will be located

either in the Accumulator or i.n a specific location as specified by the given

subroutine. The subroutine can be used as man:' times as desired if a proper

linkage is established. Following is an example illustrating this technique.

MAIN PROGRAM

LOCATION INSTRUCTION

M-! Last instruction
before linkage

M eLA MM!

M+l STO LLl

M+2 eLA MM2

M+-3 STO· LL2

A eLA MM

A+l STO N+l

A+2 TRA L

A+3 First instruction
after linkage

MMl DATA 1

MM2 DATA 2

MM TRA A+3

LOCATION

L

N

N+l

LLl

LL2

LL

25

SUBROUTINE

INSTRUCTION

First instruction
of subroutine

.
Last instruction
of subroutine

TRA A+3

DATA 1

DATA 2

RESULT

Some examples of subroutines that have been written and executed on the

D17B in the Systems Laboratory at Tulane University are listed below.

lO-bit Binary to 12-bit BCD

8-character COA Subroutine

Von Neumann Division

Waveform Generation

26

4.6 Fine Countdown Mode (FCM)

In order to keep track of program timing, fine countdown can be used to

equalize the execution time of a subroutine for different situations. Usually,

the fine countdown mode will last as long as the maximum execution time of the

specific subroutine. Then, K should be the maximum execution time minus two
u

expressed in wdt. This quantity is flag stored before entering fine countdown.

A typical program is shown belOtv.

LOCATION

L-1

L

L+1

L+2

L+3

L+4

L+5

L+6

L+7

L+8

L+9

L+10

LLI

LL2

MAIN PROGRAM

F,U

INSTRUCTION

Last instruction
before FCM

LPR 7400

CLA LL1

CLA LL2

STO 7000

STO 7001

STO 7002

STO 7003

EFC 62,s

TRA N

HFC 60,s

First instruction
after FCM

UK "
u

"I"

LOCATION

N

M

NN

NN+1

NN+2

NN+3

SUBROUTINE

INSTRUCTION

First instruction
of subroutine

Last instruction
of subroutine

DIB D16 --l- A24

. TMI Go to NN+2
-ve, NN if

DOA 2600

TRA L+9

if
>0

27

.4.·7 D-A and A-D Conversion

This program will show some of the special I/O capabilities of the D17B.

A digital number will be converted to an analog voltage level. This signal

will be transmitted to the input of an A-D converter, and the resulting digi-

tized equivalent will be returned to the D17B using the Discrete. Inputs.

Sector OP SF Sp Location c,s

000 LPR 001 7200

001 CLA 002 X

002 VOA 003 3000

003 OOA 004 2611

004 OOA 005 2600

005 DIB 006 5000

006 HPR 007 2200

4.8 COA Suoroutine (8-0ctal Characters)

COMMENTS

Set PI

(X) -+- (A)

(A)24-l7 --~ VOll , send analog
volfage to A-D converter.

-25V at D09 to pulse A-D.

lOV atD09 to pulse A-D.

(Yt-Y24) -+- (A)
Refurn converted digital
value to (A).

Halt and compare conve~ted
value with (X).

.This program will send out eight octal characters through the C<?A output

which can be interfaced with a peripheral I/O device.
'-

SECTOR.
LOCATION

000

001

002

003
1" .'

" .

007

010

OP

CLA

CLA

ANA

ALS

STO

CLA

c,s COMMENTS

001 4601 (Data in 4601) ~ (A)

.002 4602 (A) ~ (L)
("l" in 4602) ~ (A)

003 4200 (A) • (L) ~ (A)

007 2203 Left shift 3-bits.

010 4610 Store masked LSB in 4606.

011 4601 (Data in 4601) ~ (A)

28

COA Subroutine (Continued)

011 ARS 013 3201 Right shift I-bit

013 CLA L 14 4614 (A) -.. (L)
4614 (37777777) (A)

014 ANA 015 4200 (A)-eL) -.. (A)
Make sign bit zero.

015 COA 017 4001 Character output (A)24-21

017 ADD 020 4606 Add masked LSB.

020 STO 021 4603 (A) -.. 4601 (Data)

021 CLA 022 4622 (4622) -.. (A)

022 TMI 023 4430 Is 8th COA completed?

023 SUB 024 4624 (A)-4624 (1) -.. (A)

024 STO 025 4624 (A) -+ 4622

025 CLA 026 4626 4626 -- (A), Delay counter

026 SUB 027 4627 . (A)-4627 (1) -- (A)

027 TMI 026 4400 Test for end of delay ..

030 CLA 031 4631 4631(6) -- (A)

031 STO 032 4624 (A) -- 4622

032 HPR 033 2200 Halt

,

LOCATION DATA·

4601 Data for output .

4602 00000001

4606 Storage -masked tSB

4614 37771777

4622 00000006

4624 00000001

4626 00000005
"

4627· 00000001

4631 00000006

..

29

Chapter 5

LIST OF INSTRUCTIONS

This section contains a list of the available instructions with a brief

·explanation of each. The following abbreviations are used to facilitate a

more concise .listing:

():: The contents of (subscripts a-b refer to bit positions a thru b).

-+- :: replaces

wdt :: word times

(c,s) = (m) _ contents of operand bit positions

Other symbols have been explained previously.

5.1 Arithmetic Operations

CLA Clear and Add 44 c,s I wdt

STO

ADD

SAD·

SUB

(m) -+- (A)

Store Accumulator
(A) -+- em) except if:
enable write switch is
are unchanged. If (c)
stbring •.

Add _
em) + (A) -+- (A)

Split Add

54 C,s I wdt
em) is a one word loop, or a cold channel and the

in the disable position in which case (A) and em)
is 50, F, Ht or E, only L may be used for flag

64 c,s I wdt

60 C,s 1 wdt
(m)I4-24 + (A)14-24 -+- {A)14-24 and {m)l-II + (A) I-II -+- (A) I-II

Subtract 74 c,s 1 wdt
(A) - (m) -+- (A)

SSU Split Subtract 70 C,s 1 wdt
(A) 14-24 - (m) 14-24 -+- .(A) 14-24 and (A) 1-11 - em) 1-11 -+- .(A) 1-11

MPY Multiply
(A) -+- (L) and

·24
(A) • (m) -+- (A)

c,s .13 wdt

SMP· Split Multiply 20 c,s 7 wdt
(A't_ll -+- (L) 14-24 ·and (A) 14-24 -+- (L) 1-11

CM 14-24 • {m)~4-24 -+- (A)14-24 and (A) 1-11 • (m) 1-11 -+- (A) 1-11 . .

30

MMP Multiply Hodified 34 e,s 13 wdt
Execution is the same as for MPY; however, the operand channel address
is modified before execution. Each of the three least significant bits
of the operand channel address (T8 - TiD) may be changed (0 --+ 1 or
1 --+ 0) if the corresponding phase reg1ster bit (PI - P3) is ONE. The
operand ch.:!.nnel bit remains unchanged if the corresponding phase regi;:;ter
bit is ZERO. This is equivalent to the EXCLUSIVE OR of the operand bits
and the phase register bits.

SMM Split Multiply Modified 30 c,s 7 wdt'
It is the same as S~W but with the conditions for ~W.

COM Complement 40 46,s 1 wdt
The 2's complement of (A) --+ (A), (s) are ignored.

MIM Minus Magnitude 40 44,s 1 wdt
If (A) > 0, the 2'5 complement of (A) --+

(A) ~ 0, (A) are unchanged.
(A). (s) are ignored. If

5.2 Shifting Operations

ALS Accumulator Left Shift 00 22,s 5+1 wdt
(A) -are shifted by (s)1_5 bit positions.

ARS Accumulator Right Shift 00 32,s 8+1 wdt
(A) are shifted right by (s)1-5 bit positions.

-
SAL Split Accumulator Left Shift 00 20,s s+1 wdt

(A)14-24 and (A)1-11 are shifted left by (s) 1-5 bit positions.

SAR Split Accumulator Right Shift 00 30,s 5+1 wdt
(A) 14-24 and (A) 1-11 are shifted right by (5)1-5 bit positions.

SLL

SLR

SRL

SRR

Split Left Word Left Shift 00 24,s
(A)14-24 are shifted left by (s)1_5 bit' positions.

Split Left Word Right Shift 00 34,s
(A)14-24 are shifted right by (s)1_5 bit positions.

00 26,s Split Right Word Left Shift
(A)l_11 are shifted left by (s)1_5 bit positions.

Split Right Word Right Shift
(A)1-11 are shifted right by

00 36,s
(s)1-5 bit positions.

5.3 Control Operations

TRA Transfer 50 C,s
The next instruction is specified by' (m); (Sp) are
cannot be 64, 70, or 72.

TMI Transfer on Minus 10 C,s

s+1 wdt
(A) 1-11 unchanged.

5+1 wdt
(A)1~11'unchanged.

8+1 wdt
(A)14-24 unchanged.

5+1 wdt
(A)14-24 unchanged.

1 wdt
ignored and (c)

1 wdt
If (A) < 0, the next instruction is specified by (m) , (c) cannot be

64, 70, or 72 and all flag codes are defined. If (A) ~ 0, the next
. instruction is specified by (Sp). Also, all flag codes are defined
only if the TMI instruction is optimally located in relation to the
last instruction, and the sector location is one less than (m).

31

HPR Halt and P::oceed 40 22,s 1 wdt
The Machine halts. The next instruction is specified by (Sp), which
must specify the next sector after the HPR instruction when the computer
is returned to the compute mode. (s) are ignored.

SCL Split Compare and Limit 04 C,s 2 wdt
This instruction is defined only if the split words in (m) a~e positive
or O. The split words of (A) are compared simultaneously and indepen­
dently with the corresponding parts of the contents of (m).

If (A)24-l4 > (m)24-l4' (m)24-l4 --+ (A)24-l4
If (A)24-l4 < l's complement of (m)24-l4' l's complement of

(m)24-l4 --+ (A)24-14' otherwise no change. The same is true for

(A)II-l and (m)II-I'

ANA Logical AND to Accumulator 40 42,s 1 wdt
(A) are logically ANDed, bit by bit, with (L) and the result stored in
(A) ..

LPR Load Phase Register 40 7-,s 1 wdt

,EFC

HFC

RSD

5.4

DIA

Bits directly from (c,s)8,9,5 of the instruction word will become

(P)1,2,3" (m) are unaffected.

set the (P)1,2,3 individually.

tion to set any configuration.

The instructions shown below will

They may be combined into one instruc-

40xx7200 --+ (P)1,2,3 = 100

40xx7400 --+ (P)1,2,3 = 010

40xx7020 thru 40xx7037 --+ (P)1,2,3 = 001

Enter Fine Countdown 40 62,s 1 wdt
Enter the fine countdown mode. (s) are ignored.

Halt Fine Countdown 40 60,s 1 wdt
Halt the fine countdown mode. (s) are ignored.

Reset Detector 40 20,s 1 wdt
The detector is turned off. (s) are ignored,

Input and Output Operations

Discrete Inpl1t A 40 52,s 1 wdt

(~)1-19 ~ (A)1-19, Fc (Fine Countdown) --+ (A)ZO'

#Dr (Detector) --+ (A)21' (P)3,1,2 --+ (A)Z2-24' (sYare ignored.

DIB

DOA

32

Discrete Input B 40 50,s 1 wdt
(Y)1-24--+- (A)I-24· (s) are ignored.

Discrete Output A 40 26,s 1 wdt
(1)1-5 --+- (D)I-5· D matrix selects one of the 28 output lines, numbered

D1c- 4c & D8c-31c' corresponding to the BCD representatio~ of (D) 1-5.

The step signal remains energized until the next DOA instruction is

executed. (L)6,7 are ignored.

VOA Voltage Output A 40 30,s 1 wdt
If (5)4 is 0, (A)17-24 are converted to a proportional voltage and sent

\ to voltage output A. If (s)4 is 1, (A)4_11 are converted and sent to

voltage output A. When (P)I-3 is XOl, terminal 1 is selected for the

VOB

voe

BOA

voltage outputs; XU for terminal 2, XI0 for terminal 3 and 100 for

terminal 4. (s) 1-3, 5-7 are ignored.

Voltage Output B 40
Same instruction as VOA except voltage output

Voltage Output e 40
Same instruction as VOA e~cept voltage output

Binary Output A 40
If the previous binary output was
added to (A) 17-24. Binary output

+1 or .-1, a
A is set t()

otherwise. (s) are ignored.

32,s 1 wdt
B is used.

34,s 1 wdt
e is used.

10,sl wdt
1 is subtracted from or
a +1 if (A)24 is 0, or a -1

BOB Binary Output B 40 12,s 1 wdt
Same ~nstruction as BOA except binary output B is used.

Boe Binary Output e 40 02,s 1 wdt
Same instruction as BOA except binary output e is used.

'COA Character Output A 00 40,s -s+1 wdt
(A)21-24 become available to output equipment for s wdts. (A) are

shifted left four positions. eOA is not defined when s is O. (c)5

must be 1 for eOA. (c)4_1 are ignored. Therefore, (c) may be any

even octal number from 40-76.

A list of the Dl7B instruction repertoire which summarizes all the

available instructions, their mnemonics and quad-octal codes is given in the

following table.

33

CODE DESCRIPTION NUMERIC CODE

ARITHMETIC CLA CLEAR AI.'1D ADD 44 c~s

STO STORE ACCUMULATOR 54 C,s
ADD ADD 64 c~s

SAD SPLIT WORD ADD 60 C,s
SUB SUBTRACT 74 C,s
SSU SPLIT WORD SUBTRACT 70 c~s
MPY MULTIPLY 24 c~s

SMP SPLIT WORD MULTIPLY 20 C,s
MPM MULTIPLY MODIFIED 34 c,s
SMM SPLIT WORD MULTIPLY MODIFIED 30 C,s
COM COMPLEMENT 40 46~s
MIM MIN-US MAGNITUDE 40 44,s

SHIFT ALS ACCUMULATOR LEFT SHIFT 00 22,s
ARS ACCUMULATOR RIGHT SHIFT 00 32,s
SAL SPLIT ACCUMULATOR LEFT SHIFT 00 20,s
SAR SPLIT ACCUMULATOR RIGHT SHIFT 00 30,s
SLL SPLIT LEFT WORD LEFT SHIFT 00 24,s
SLR SPLIT LEFT WORD RIGHT SHIFT 00 34,s
SRL SPLIT RIGHT WORD LEFT SHIFT 00 26,s
SRR SPLIT RIGHT WORD RIGHT SHIFT 00 36,s

-CONTROL TRA TRANSFER 50 c,s
TMI TRANSFER ON MINUS 10 c,s
HPR HALT AND PROCEED 40 22,s
SCL SPLIT COMPARE AND LIMIT 04 c,s
ANA LOGICAL AND TO ACCUMULATOR 40 42,s
LPR LOAD PHASE REGISTER 40 7-,s
EFC ENTER FINE COUNTDOWN ' 40 62,s
HFC HALT FINE COUNTDOWN 40 60,s
RSD RESET DETECTOR 40 20,s

INPUT / OUTPUT DIA DISCRETE INPUT A 40 52,s
DIB DISCRETE INPUT B 40 50,s
OOA DISCRETE OUTPUT A 40-26,5
VOA VOLTAGE OUTPUT A 40 30,s
VOB VOLTAGE OUTPUT B 40 32,s
voe VOLTAGE OUTPUT C 40 34,s
BOA BINARY OUTPUT A ' 40 10,s
BOB BINARY OUTPUT B . 40 12,s
BOC BINARY OUTPUT C 40 02,s
eOA CHARACTER OUTPUT A 00 40,s"

Table 2. 017S computer instruction set ..

	000
	001
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33

