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Abstract

Disk drives are often dismissed as mundane devices, but they are actually interesting, complicated, and misunderstood. As used in
traditional Unix compute servers or general-purpose servers, disk storage subsystems have usually been optimized for excellent
sequential-transfer performance. Perhaps counter-intuitively, however, NFS file servers exhibit marked random-access disk traffic.
This report explores this apparent contradiction. It investigates the anatomy of a client-to-server NFS I/O operation in complete,
microsecond-level detail. It debunks the myth of disk transfer rate, and shows instead that disk-drive concurrency is the most
important factor in disk storage performance for most NFS network file servers.

The paper presents a careful analysis of both SCSI and IPI disk drives. It begins with a concrete and detailed comparison of both
performance-oriented and non-performance-oriented technical specifications of SCSI and IPI drive and interface types. It offers a
thorough empirical evaluation of SCSI disk drive performance, varying parameters such as synchronous or asynchronous bus
transfers, random and sequential access patterns, and multiplicity of drives per SCSI channel. It discusses (nonempirically) similar
characteristics for IPI-2 drives. Measured disk traffic patterns are presented for several >5-GB NFS servers using SCSI disk arrays.
As can be expected in a 40-200 user file server, request rates are random and independent--not sequential as often benchmarked in
general-purpose servers.

The report concludes with carefully benchmarked comparisons of file servers using SCSI-based disk arrays (like the Auspex
NetServer family) and IPI-2 subsystems (like the Solbourne SE/900 and Sun SPARCserver 600MP). The results show that NFS
heavy-load throughput using SCSI disk arrays scales linearly with extra drives, whereas IPI-2 throughput scales less than
proportionally with extra drives. This SCSI performance advantage, combined with its outstanding storage density, price-
performance, and price-capacity, make SCSI disks a superior choice for NFS servers. IPI-2 drives, with their very high transfer rates,
remain an excellent choice for compute and simulation servers executing large-file applications where sequential throughput is
essential.
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Preface to the Second Edition

This second edition of SCSI and IPI reflects the annual advance of disk technology in the eighteen months since the first edition of
January 1991:

8-inch disk technology--either SMD or IPI--is effectively dead in the Unix market. Thus references to 8-inch disks are mostly
eliminated in this edition.

3.5-inch disks are now available with both high performance and high capacity (>=1GB). Thus 3.5-inch disks are introduced and
compared in this edition.

SCST's superiority is especially clear in the 3.5-inch form factor, with outstanding end-user price-capacities of ~$3.75/MB, dropping
rapidly.

SCSI-2 disks are now shipping. Initially, most SCSI-2 drives simply offer SCSI-2's extended software command set, possibly with
the "fast" 10-MB/s 8-bit-wide transfer mode. But "wide" 16-bit SCSI is advancing quickly, with host adapter VLSI chips now
available to OEMs, and drive manufacturers supporting 16-bit cabling.

More disk manufacturers and computer vendors support SCSI, driven directly by SCSI's price-performance and price-capacity
victories. Some disk manufacturers are abandoning support for IPI; others skipped IPI altogether (e.g., Hewlett-Packard). Some Unix
vendors that previously supported SCSI primarily for their workstations now have medium-capacity SCSI-disk server subsystems as
well (e.g., SGI and Sun). Finally, StorageTek, an IBM-plug-compatible mainframe "DASD" supplier, formally announced its Iceberg
5.25-inch SCSI RAID-5 disk array product.

In January 1992, a shortened version of this paper was presented and published at the USENIX Winter technical conference in San
Francisco. Since that time, the following changes have been incorporated in this full-length edition:

Tables are updated with the latest, production-level specifications for the new drives.

A new chart, 2b, is included that shows SCSI channel performance with up to six drives per channel in both random- and sequential-
transfer tests.

Section 4.1--The Anatomy of an NFS Operation--is revised to show the new, faster system-level timings that result from using the
latest SCSI drives in a shipping NFS server.

To conclude this preface, then, SCSI storage now sweeps across the full range (and scale) of contemporary computer systems.

-- Nelson & Cheng, July 1992

1 Introduction and Terminology

1.1 Disks and NFS

Disk drives are complex storage devices. The typical speeds of different disk functions span five decimal orders of magnitude--almost
a million to one--from transfer rates of about 25 Mb/s to access times of about 10 ms. Individual disk-drive complexity is
compounded when disks are used in computer systems, where overall storage performance is governed by hardware-software
interactions. Consequently, common disk performance metrics such as transfer rate and access time can be misleading indicators of
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total system performance. This report examines disk subsystem design in the context of a specific, system-level storage application:
the NFS Network File System [Sandberg85].

NES file server traffic has an often-surprising disk access pattern: random 1/0 using small (8-KB) blocks. This is in complete
contrast to the disk access patterns of compute servers or stand-alone workstations, which are usually sequential. Recognizing this
random-access NFS traffic pattern--and then designing for it--is the crucial conceptual element of high-performance NFS storage
design.

As mainframe database vendors have long known, random-access disk storage performance is directly related to the number of disk
actuators and storage channels.

An actuator is an independently operated disk arm-and-head assembly that can move to a specified disk address and transfer data
there. Most disk drives have only one actuator (there are exceptions in mainframe and supercomputer products).

A storage channel or channel is a hardware datapath that can funnel data from an actuator's heads to and from main memory.
Conventional Unix-system disk controllers usually have only one channel per controller, although two is not uncommon.

Excellent random-access disk subsystem performance requires a fine balance between many actuators, multiple channels, and peak
system I/O demands.

The objective of this report is to show that SCSI disk technology easily outperforms IPI-2 and SMD technology in NFS server disk
subsystems. Recent commercial developments seem to confirm the price-performance advantage of this conclusion: Both Silicon
Graphics and Sun Microsystems--once SMD and IPI stalwarts--are chasing Auspex with initial, medium-capacity SCSI subsystems
for their server products.

While IPI and SMD are outstanding technologies for sequential access, they are not cost effective for high-performance random-
access configurations. SCSI disk technology, in contrast, offers a built-in balance of actuators and channels that intrinsically
optimizes random access at low cost. Because our system-level goals include low price and large capacity as well as high
performance, this report explores these important issues in conjunction with performance.

1.2 Performance Measured as Throughput and Access Time

In this report, throughput is the primary metric of disk subsystem performance. Disk subsystem throughput is the capability of the
entire subsystem to perform work.

Sequential transfer throughput is usually expressed as an aggregate transfer rate in MB/s. It is typically measured by summing the
sequential transfer rate of each disk that can be attached to a separate, available channel. High sequential throughput is useful for the
large data transfers (>>100 KB) characteristic of data-intensive technical and scientific applications executing on compute servers.

Random access throughput is expressed as an aggregate read or write I/O rate on small-block transfers in disk I/O operations per
second (disk IOPS). It is usually measured by summing the I/O rates of all independent disks on each separate, available channel. In
this NFS-oriented report, a disk's small-block random-access 1/O rate is the disk's ability to perform 8-KB block transfers from
uniformly distributed addresses across the entire disk.

Sequential throughput favors high transfer rates and is less sensitive to initial positioning (access) times. Random throughput favors
fast access times and is less sensitive to transfer rate. Unless otherwise mentioned in this report, disk throughput and disk performance
refer to random access throughput because random access throughput is the essential metric for NFS performance.

1.3 Latent SCSI Skepticism

Readers whose previous experience with SCSI disks has been limited to the Macintosh, IBM PC, or CISC-generation workstation
arenas may be skeptical of "high-performance" SCSI claims. These prejudices are justified. Early SCSI drive implementations, and
many contemporary low-cost, low-capacity implementations, do (or did) not provide basic performance comparable to 8-inch SMD
or IPI drive technology. However, current-generation, high-capacity (>1 GB), 5.25-inch SCSI and IPI disks do provide performance
comparable to or better than their 8-inch cousins.

Fortunately, the SCSI specification--as opposed to early SCSI realizations--permits a wide spectrum of performance implementations.
An examination of actual high-performance SCSI drive specifications in section 3 will dispel latent SCSI prejudice.

1.4 The SCSI-1 and SCSI-2 Specifications

SCSI is an acronym for small computer system interface. The original SCSI-1 specification [SCSI1] defines an 8-bit-wide bus that
operates at 1-2 MB/s asynchronously and up to 5 MB/s synchronously. The SCSI-1 common command set (CCS) comes in two parts:
the mandatory commands like inquiry, read, and write and optional commands like readbuffer, writebuffer, and logselect. Different
vendors often implement non-common--or semantically incompatible common--subsets of SCSI-1 commands. Consequently, many
SCSI-1 drives are software plug-incompatible, especially the high-performance drives with more available commands.

The new SCSI-2 specification [SCSI2] defines 8-, 16-, and 32-bit busses, operating at maximum synchronous speeds of 10-, 20-, and

40-MB/s. Eight-bit SCSI-2 is defined to be hardware backward compatible with SCSI-1. The SCSI-2 command set is more precisely
defined and functionally richer than SCSI-1. It is also software backward compatible with SCSI-1. This has three benefits:
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SCSI-2 drives can initially be used with SCSI-1 hosts and software drivers.

Different vendors' SCSI-2 drives will be more freely interchangeable because of accurate SCSI-2 common command set
implementations.

SCSI-2 drives, because of more built-in intelligence such as command reordering and multisegment caching, will behave better in
low-end computer systems that may perform no disk optimization in higher-level software (e.g., Macintoshes and PCs).

In this report, SCSI-1 and SCSI-2 can be considered equivalent unless otherwise specified.
1.5 TPI-2 and SMD Functional Equivalence
IPI and SMD are acronyms for intelligent peripheral interface and storage module device. Because IPI-2 and SMD both have device-

level disk interfaces (explained later in section 3.5), they are functionally equivalent for the purpose of this report. For simplicity,
then, the remainder of the report mentions only IPI disk drives, and uses unsuffixed IPI to refer to IPI-2.

2 Why NFS Servers Experience Random Disk Traffic
2.1 A Server's View of NFS Clients

Figure 1 shows a typical large NFS network. From 40 to 200 client workstations are being served from a single NFS server. Notice
that the server "sees" aggregate, mixed NFS file traffic as it arrives spontaneously and independently from all workstations on the
attached networks. Now consider two facts of NFS implementation:

Net 1 ‘

Commpiile 56
g
8
Net 4 =
it Sery g
-+~
:
=

NetServer Net 8

Client Workstation Ethern Maif serv

L |

Figure 1: A large NFS network with 40-200 client workstations served by a single NFS server. The key notion is that the
manifold users offer an aggregate random-access disk workload. This is because it's common in medium-to-large Unix networks to
attach 4-8 Ethernet segments, each loaded with RISC workstations, to a consolidated data server. Auspex NetServers are one example
of consolidated NFS servers. Many organizations are unifying an overgrowth of traditional, limited-performance file servers onto
large, consolidated NFS servers. The reasons are many: up to one-third lower cost per seat; a single point of administration and
backup; higher NFS throughput; increased disk and network expandability (scalability); better reliability by excising NFS
crossmounts; eliminated free space fragmentation; reduced /usr and project library file replication; and decreased power and floor
space requirements.

Small blocks are mandatory. NFS 1/0O requests are limited to a maximum of 8 KB per read or write operation. This 8-KB maximum is
required by the definition of NFS [Sandberg85]--and by the operating implementations of over 300 licensed NFS vendors. This means
that to transfer a 1-MB file between a client and server, the client must issue 128 separate read or write requests, and the server must
respond to each and every one of these small 8-KB requests. This consumes substantial network capacity and causes much client and
server software overhead--but the NFS protocol permits no shortcuts.

Randomized sequentiality. Even in a best-case scenario where each workstation is itself sequentially reading or writing a large file, the

server still receives an aggregate request stream that is unordered and random (assuming that most files are not shared simultaneously,
almost universally true in department- and campus-sized technical environments). A single user's sequential intentions can be lost in
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the randomness of the whole.

In total, an NFS server sees autonomous client workstations that collectively and rapidly issue random I/O requests for small data
blocks.

2.2 The Nature and Limits of NFS Optimizations

Mild NFS performance optimizations are possible. Client workstations can help themselves somewhat by performing read-ahead or
write-behind buffering within their own file systems (typically using block I/O demons (BIODs)). Servers could perform similar
optimizations, but are usually constrained by the limited read-ahead policy of the Unix File System [McKusick84, Kleiman86], the
simple-and-stateless objective of most NFS servers [Sandberg85], or the synchronous write policy of NFS itself. These complex
issues of buffer cache management, per-client (rather than per-server) file contexts, and fast stable storage (to mask synchrony) are
beyond the scope of this paper. They have been extensively addressed in non-NFS distributed file systems such as Sprite and Andrew
[Nelson88, Rosenblum90, Howard88] that have traded some reliability for much greater performance. Srinivasan and Mogul
[Srinivasan89] have applied some Sprite-inspired optimizations in a "Spritely NFS" prototype with moderate results. Lyon and
Sandberg [Lyon89] have shown that fast stable storage for disk-level NFS write buffering can boost performance on write-intensive
workloads (e.g., writes >=15%).

In practice, the most beneficial file-server performance optimizations have been applied to non-NFS file systems. This demonstrates
the limited protocol evolution of NFS and hence the fundamental importance of a strong, underlying random-access storage
subsystem for NFS itself. Keeping NFS servers simple (stateless) has explicitly forsaken some classes of software optimization for
improved reliability. This is a worthwhile tradeoff, but it places strong demands on an NFS server's disk subsystem, which remains in
the uncomplicated-but-unoptimized critical path of NFS server performance.

2.3 Storage Scalability and Disk Subsystem Design Goals for NFS

Disk storage scalability is a special concern in NFS servers. For example, growing an NFS server from 40 to 100 to 200 workstation
users nominally requires not only double and then quadruple the storage capacity, but also two and then four times the random-access
disk I/0 rate. It is this random-access throughput increase, more than any other factor, that limits the NFS abilities of IPI disk
technology.

This section has outlined why high-performance NFS file servers using standard extent-based file systems need large-capacity,
scalable-throughput, random-access-optimized disk storage subsystems. (A traditional extent-based file system attempts to allocate
files contiguously--and usually with less success as free space decreases. In contrast, a log-structured file system like LFS
[Rosenblum90] batches temporally-local writes into physically-contiguous groups, but without regard to individual-file contiguity).
This leads to some natural goals for NFS storage subsystem design:

Select individual disks with high random throughput (fast access times).

Design the storage controller to initiate fully concurrent seeks and allow parallel transfers.

Pre-sort disk seeks in "elevator" queues to minimize actuator time and motion.

Use disk drives (like SCSI) that allow autonomous seeks and buffered read-ahead transfers.

Use multiple storage channels that permit parallel, low-latency disk-to-memory transfers.

Finally, all of the above performance goals must be balanced against cost objectives. Price-performance and price-capacity tradeoffs
must be made in the context of the NFS throughput and storage capacity requirements of the target file server.
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Chart 1: Disk price-capacity versus form factor. Both historical and future price trends are indicated. The 5.25-inch drive is the
clear price-capacity leader, and will remain so until 3.5-inch drives are available in >= 1-GB sizes. Prices are wholesale, based on
large-volume OEM purchases. The fundamental data is from Seagate and Dataquest.

3 SCSI and IPI Disk Drive Trends and Comparison

3.1 Trends in Form Factor and Price-Capacity

Chart 1 shows the annual decrease in disk price-capacity for four drive form factors--8.0-, 5.25-, 3.5-, and 2.5-inches. Price-capacity
is a different metric from price-performance and measures normalized storage costs, usually in $/MB based on large-quantity OEM
costs. The important trends in chart 1 are:

5.25-inch disks are the industry's current price-capacity leader.

3.5-inch disks should overtake 5.25-inch in 1992 in raw price-capacity, although equivalent overall performance in >= 1-GB sizes
could lag another year.

8-inch disks were nearing the end of their lifecycle in 1990 as their price-capacity ($7.00/MB) was higher than either 5.25-inch
($2.70/MB) or 3.5-inch ($4.00/MB) disks. By the end of 1991, 8-inch IPI disks in high-performance Unix systems had been mostly
replaced by their 5.25-inch successors.

2.5-inch disks, popular in laptop computers, will remain premium-priced for several years.

In summary, the highest-capacity SCSI disk drives will be implemented in 5.25-inch form factors for several more years. The
highest-capacity IPI disks will be 8-inch, but will be used only in high-end supercomputer-like applications; 5.25-inch IPI will be
used in most Unix compute servers.

3.2 Head-Disk Assemblies for SCSI and IPI

A head-disk assembly, or HDA, is the electromechanical portion of a disk drive. It consists of platters, spindle, motor, seek actuator,
arms, read-write heads, etc. Interestingly, the HDAs of a single vendor's SCSI and IPI high-performance disks will usually be
identical in the future. The SCSI interface will appear first on smaller form-factor HDAs, driven by personal -computer needs. But
only the interface electronics will distinguish SCSI and IPI in the same form factor. For instance, 5.25-inch SCSI has been common
for several years, with 5.25-inch IPI appearing in late 1991 (e.g., Seagate's high-end 5.25-inch SCSI and IPI disks use the same
HDA). High-performance 3.5-inch SCSI is now available (e.g., from IBM); 3.5-inch IPI will lag and probably appear in 1994 (if
ever).

This implies that the differences in SCSI and IPI manufacturing cost will be based solely on the drive interface electronics. These
costs are usually (but not always, depending on volume) more expensive for SCSI because of read-ahead track buffers and more
powerful embedded microprocessors. Yet SCSI drive prices are expected to remain substantially lower than IPI because of intense
vendor competition and volume SCSI shipments. The massive scale of SCSI production actually reduces the cost of SCSI
manufacturing. These competitive and volume factors will make SCSI the absolute leader in price-capacity, and among the leaders
for price-performance.

3.3 SCSI and IPI General HDA Comparison
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Table 1 is a comparison of three manufacturers' HDAs: 5.25-inch "Elite-2" IPI from Seagate [Seagate91], 5.25-inch "Coyote-4" SCSI
from Hewlett-Packard [HP92], and 3.5-inch "Corsair" SCSI from IBM [IBM91]. The IPI drive is representative of those used by
Silicon Graphics, Solbourne, and Sun in their general-purpose servers. The 5.25-inch SCSI drive is representative of those used by
Auspex and others in NFS file servers, and the 3.5-inch SCSI drives of those used in workstations and personal computers.
Reviewing table 1, some results are:

SCSI's higher recording density. The 1-GB IBM SCSI drive has 20-40% higher recording density than either of the 5.25-inch HDAs.
Recording density and miniaturization are the primary technology thrusts of drive manufacturers, so SCSI's advantage here represents
a certain amount of vendor leap-frog activity. The important point is that competitive workstation factors will push 3.5-inch SCSI
technology the farthest in the next few years, and that IPI will move from its late-1991 introduction in 5.25-inch form more slowly to
the 3.5-inch HDA platform.

SCSI's volumetric efficiency. SCSI has over twice the storage capacity of IPI in similar cabinets, since SCSI--in 3.5-inch--leads IPI--
in 5.25-inch--in smaller form factors by several years. This is a result of both smaller-form-factor drives and lower-power-
dissipation drives, which can be packed tightly in rectangular arrays without cooling problems. This volumetric efficiency can result
in substantial floor-space (footprint) savings.

HP (C3010 scsi-2 IBM 0663 scsi-2

Non-Performance Metrics ST41800K ipi-2

Customer Shipment Date March 1992 May 1992 November 1991
Size (form factor) 5.25 inch 5.25 inch 3.5 inch
Formatted Capacity (gb) 1.43 est. (1.986 2.003 gb 1.004 gb
unf'mt) gb
Track buffer size (kb) 0 kb 256 kb 256 kb
Spindle-synchronization Yes Yes No
Option
Dual-ported Controller Yes Yes No
Option
Typical End-user List $6,400 est. $7,500 est. $3,800 est.
Price
Price-capacity ($/mb) $4.48/mb $3.75/mb $3.78/mb
# of Drives in 19x72-inch 50 50 >= 150
rack
Volumetric Efficiency
72 gb 100 gb >= 150 gb
(gb per full-size cabinet)
mtbf (rated hours) 250,000 hr 300,000 hr 400,000 hr
Power (watts during seek) 44 W 38 W le W
Surfaces (data + servo) 18 + 0 19 + 1 15 + 1
Tracks/Surface (data + 2,627 + ? 2,255 + 70 2,051 + @
spare)
Sectors/Track (data + 08 + ? 76-96 + 0 66 + 30-40
spare)
Constant-density Recording No Yes (for data) Yes (for
spares)
Tracks/inch (tpi) 2,250 tpi 2,000 tpi 2,238 tpi
Linear Bit Density 42,000 bpi 47,751 bpi 58,874 bpi

(bits/in)

Table 1: A SCSI and IPI HDA comparison on non-performance metrics. Some comments on the metrics: Formatted capacity is
measured after hardware disk formatting of 512-byte sectors, but before Unix newfs formatting. Formatted IPI capacities are
controller dependent, usually 80-85% of unformatted. Parallel-head drives such as the dual-head ST41800K IPI drive usually lose
about 10% of their capacity in multihead operation. This is because more embedded control information is consumed at hardware
formatting time (e.g., the union of bad spots, a doubling of spare sectors and tracks, etc.). The advantages of SCSI's track buffers--not
now available in IPI--are discussed in section 3.5.1. Spindle synchronization is useful for ganged high-bandwidth disk-array
configurations, especially RAID-3 [Patterson88]. Spare tracks and sectors are assigned during hardware formatting to allow the disk
controller to remap bad spots with minimal performance impact. For IPI, sparing is controller dependent, so spare tracks and sectors
are indicated with ? in the table. Constant-density recording (sometimes called zone-bit recording) adds more sectors per track as
track radius increases, usually in a few fixed zones of constant sectors/track. This boosts disk capacity at the expense of extra
controller firmware complexity.

3.4 SCSI and TPI HDA Performance Comparison

Table 2 is a performance comparison of the three HDAs reviewed in the previous section: 5.25-inch dual-head IPI from Seagate,
5.25-inch SCSI from Hewlett-Packard, and 3.5-inch SCSI from IBM.

A review of table 2 discloses generally minor drive differences: The IBM HDA has a slightly longer rotational latency because it
rotates 1,100 RPM slower than the other drives. The IBM HDA has the best seek times because of its new-technology "nanoslider"
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actuator. Command overhead times (which reflect controller software and hardware overhead) have similar figures, with HP leading.
Transfer rates differ: the dual-head Seagate drive is obviously fastest; the HP drive is next because of its high recording density and
high rotational speed; the IBM HDA's exceptional bit density is counterbalanced by its smaller form factor, which reduces track linear
velocity and thus transfer rate. This leads to two final conclusions:

Similar small-block 1/O rate (random-access throughput). For all drive types, the sum of average seek, rotational latency, and 8-KB
transfer times is close to 20ms. This yields random-access throughput of about 50 IOPS on a single-drive basis. This means that
factors other than raw performance--for instance, cost, interface, and controller issues--should be key determinants in disk-drive
choices for random-access applications like NFS.

Superior IPI transfer rate (sequential-transfer throughput). IPI drives are readily available with parallel-head transfer capability. By
multiplexing the individual data streams of two or three read/write heads, aggregate transfer rates of 6 or 9 MB/s (or more) are
possible. (Parallel-head SCSI drives could be easily built, but are not available today.) This high IPI sequential throughput can be
important for the data-intensive, large-file applications typically run on supercomputers and minisupercomputers. Such throughput is
largely wasted using NFS, as is quantitatively discussed in section 4.1.
ST41800K ipi-2

Performance Metrics HP C3010 scsi-2 1IBM 0663 scsi-2

Command Overhead 1 ms est. 500 us 950 us
Seek (random average, read & 11.0 ms 11.5 ms 10.4 ms
write)
Seek (short, track-to-track) 1.7 ms 2.0ms 0.6 R & 3.0W ms
Rotational Speed (rpm) 5,400 rpm 5,400 rpm 4,316 rpm
Rotational Latency (1/2 5.56 ms 5.56 ms 6.95 ms
revolution)
Seek+Rotate Time (average) 16.5 ms 17.0 ms 17.4 ms
Transfer Rate from Buffer (mb/s) 7.5 mb/s 10 mb/s @ 5 mb/s
unbuffered 8b
20 mb/s @
16b
Transfer Rate (raw media mb/s) 7.5 mb/s 4.2-5.3 mb/s 3.0 mb/s
(dual-head)
Transfer Rate (sector-to-sector 6.0 mb/s 4.1 mb/s (mean) 2.4 mb/s
data mb/s)
Data Transfer Time for 8-kb (ms) 1.4 ms 2.0 ms 3.4 ms
Fraction of Full Rotation for 12 % 18 % 24 %
8-kb Block
Random i/o Rate (8-kb 53 iops 51 iops 46 iops
i/0s/second)

Table 2: A SCSI-2 and IPI-2 HDA performance comparison. Some comments on the metrics: Command overhead for IPI drives is
dependent on the controller, and is thus estimated here. The average seek time is computed over all possible seek distances, a uniform
distribution. Transfer rate is a complex number, because the media transfer rates quoted by vendors usually exceed the sector-to-
sector data rate by 15-20% and the sustained cylinder-to-cylinder data rate by up to 35%. These rate reductions are caused by format
information that must be read, but that is not data; the need to switch between tracks and cylinders, which can take time but transfers
no data; and occasional bad spots, requiring time to process remappings. The sector-to-sector transfer rate is the real rate at which
data is transferred to or from a track on the disk. It is computed by dividing the total data bytes in a track by the time of a disk
revolution. For the constant-density-recorded HP drive, the middle of the three zones is used for the mean. The 8-KB data transfer
time uses the realistic sector-to-sector transfer rate and assumes that all 8KB is on the same disk track. The random 1/0 rates
indicated are computed by taking the inverse of the (command overhead+ average seek time+ average rotational latency+ data transfer
time for 8KB).

3.5 SCSI and IPI Interface Definitions and Operation

Comparing the SCSI and IPI interfaces is a bit like comparing bread and flour. The inquisitive reader has undoubtedly been waiting
for something to be different, for previous sections have concluded that typical SCSI and IPI HDA performance is essentially
identical (unless two IPI heads are multiplexed to double transfer rate). The wait is over: it is the SCSI and IPI interfaces that duel as
competitors, not the HDAs. This section examines how the two interfaces work. Section 3.6 will compare their specifications and
limits.

The fundamental difference between SCSI and IPI-2 is that SCSI is a bus interface, and IPI-2 is a device interface. Refer to figure 2.

3.5.1 The SCSI Bus Interface

SCSI, as a bus interface, defines a shared bus that peer devices such as disks and tapes use to conduct and communicate their business
using packets. The SCSI-1 bus is 8-bits wide and transfers data at <=5 MB/s synchronously, and 1-2 MB/s asynchronously. There
can be 8 devices per SCSI-1 bus and 16 per SCSI-2--addressed 0-7 or 0-15 (only two disks are shown in figure 2). The
implementation of the SCSI interface in each device is called the SCSI controller, or just the controller. Device 7 (the highest priority)
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is usually reserved for host system access, and this host interface is conventionally called the SCSI host adapter, not the "host SCSI
controller." In figure 2, the Storage Processor has 10 host adapters on a single board. Since the SCSI bus fills the traditional I/O
channel role in SCSI storage subsystems, this report often uses the less-precise term "SCSI channel" to refer to the SCSI bus.

The SCSI controller built into SCSI disk drives is frequently called "intelligent." This is because the controller responds to very high-
level, almost un-disk-like commands. For example, read (logical block number L, number of sectors S) is a SCSI command to read S
512B sectors of data from the disk starting at 512B-block L. Note that no disk-style cylinder, track, or sector addresses are given--just
a linear block number. Also, multiple blocks (sectors) can be conveniently read--even if they cross track or cylinder boundaries, or
include remapped bad spots. In a SCSI disk drive, the controller imposes a simple linear addressing scheme on top of complex
physically-addressed media. The controller also transparently deals with issues of error detection and correction, bad-sector
remapping, error logging, and data buffering (see below). This intelligence is integrated directly into the drive by the disk vendor, who
presumably best knows how to deal with these issues--in the lowest-overhead manner--for his own HDA.

SCSI is not a fixed master-slave bus. Each device can assume control as the bus master and transact business in a request-reply
fashion with any other device on the bus--although usually to the host, through the host adapter. Consequently, SCSI device
communication is interrupt driven, not polled, which reduces bus contention. Because the single SCSI bus is used to pass both control
and data information, the SCSI bus is the storage channel (defined in section 1.1) for all attached devices.

The SCSI bus permits substantial device concurrency, since, for instance:

The host can connect to a tape drive and give it a command to read data. The tape then disconnects from the bus--freeing the host--
and continues executing the read command and filling its internal buffers.

While the tape is at work (and off the bus), the host can immediately connect to another device--say, a disk drive--and give it a
command to write data (including sending the data with the command). The host can now disconnect from the disk.

While both the tape and disk are at work (and still off the bus), the host can request another disk to read data without waiting for the
previous disk or tape. Again, once the disk has received the read command, it can disconnect from the host and actually perform the
read into internal buffers.

Now, when the tape has actually read its data, it becomes bus master, reconnects to the host adapter, and transmits the data requested
by the host over the SCSI channel.

While the tape is sending its data, assume that the disk finishes its read operation. The disk tries to connect to the bus, but finds it
busy with tape traffic. The disk non-intrusively monitors the bus until the tape finishes, then takes its turn as bus master and sends its
data to the host adapter.

As the disk transfers the requested data to the host, many SCSI controllers will automatically read the remainder of the current disk
track into their internal buffers. This is called read ahead. If the host should soon ask for more data on the same track (e.g.,
sequentially read the next few sectors), read ahead permits the drive to quickly respond from its buffers rather than from the (slower)
disk itself. If the host asks for other data (not read ahead), read-ahead operations can be instantly aborted and the requested data
sought without delay. Some SCSI disks have multisegment caching that stores noncontiguous tracks or sectors, corresponding to
different disk-traffic localities (i.e., user working sets).
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Figure 2: Typical SCSI disk array and IPI-2 disk subsystem architectures. The storage subsystems of Auspex NetServers and
Sun SPARCservers are illustrated as concrete examples of each architecture. The transfer rates in the figure correspond to current-
generation 5.25-inch disks, not the forthcoming drives in tables 1-2. The Storage Processor has a maximum of 20 drives--2 per SCSI
channel--and each drive can read and write concurrently as described in section 3.5.1. Do not construe the term disk array too
elaborately: it simply refers to a disk subsystem organization that has high drive packing density (volumetric efficiency) with the
drives attached to multiple parallel channels (typically >=5). (For the curious, Katz and Patterson define disk arrays in detail
[Patterson88].) The NetServer Storage Processor is an intelligent, 10-SCSI-channel controller that supports 10 ¥ 5 MB/s= 50 MB/s
aggregate channel rate. (The asterisk (*) indicates 5 MB/s synchronous or 2 MB/s asynchronous transfer rates.) SPARCserver IPI
subsystems support up to 8 disks per controller, but each controller has strictly serial read and write access to each disk, as described
in section 3.5.2. There is a current limit of 4 IPI controllers per SPARCserver system, with a single IPI channel per controller,
although other vendors support more controllers or more channels per controller. The Sun ISP-80 controllers handle a 10 MB/s
channel transfer rate and are optimized (with controller buffering) for sequential read-ahead. Despite this sequential transfer
advantage, section 4.3 discusses empirical testing that confirms that the limited drive concurrency of this style of IPI subsystem
greatly restricts NFS (random-access) throughput.

Notice that the intelligent nature of the SCSI interface permits and even encourages a complete decoupling of a device's operation
requests, operation execution, and operation replies. Further, requests and replies to different SCSI devices can be freely intermixed in
time--device access is not serialized (funneled down to a single active device), and device execution is completely autonomous and
overlapped. For electromechanical devices like disks and tapes, buffering in the device's controller matches the millisecond speeds of
the recording hardware to the microsecond speeds of the SCSI bus--analogous to a freeway on-ramp. This thousand-fold impedance
matching between SCSI devices and the SCSI bus is a great advantage: it works smoothly, it's economical since it is built into the
device, and it enables scalable device parallelism. As we will see in section 4.4, arrays of SCSI disks can easily deliver this random-
access throughput at the system level--ideal for NFS service.

3.5.2 The IPI-2 Device Interface

IPI-2 is a 16-bit parallel synchronous data interface with five separate control signals for disk device control. Up to eight IPI devices
can be attached to a single 10-MB/s IPI channel, addressed 0-7. IPI is a master-slave channel, unlike SCSI, which has a peer-to-peer
protocol. As a result, an IPI channel attaches disks to a host system through a distinguished disk controller. This controller is the
channel master and needs no device address of its own since it controls slave devices (e.g., disk drives 0-7).

Compared to SCSI, the IPI interface is an unintelligent interface. IPI drives do not offer a bad-spot-free, linear-address disk model to
the IPI channel. Rather, the IPI controller assumes these tasks, and uses the many data and control signals of the IPI channel to
implement a higher-level model to the host. In essence, while SCSI puts the intelligence in each drive (in the drive's SCSI controller),
IPI pulls the intelligence out of the drive and puts it up on the disk channel controller, where intelligent functions are shared among the
up to eight drives per channel. While this may appear to have some economic benefit, in practice the low volumes of IPI drives--and
even lower volumes of frequently host-vendor-specific controllers--keep IPI subsystem prices well above similarly-configured SCSI
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drive prices.

Pushing IPI intelligence back to the controller can have serious performance disadvantages. Typical IPI controllers can command disk
drives to perform concurrent seeks. But the IPI channel performs only strictly serialized data transfers. Furthermore, IPI drives do not
(yet) have individual read-ahead track buffers--buffering is pushed back to the shared controller. The result is that IPI drives on the
same channel end up waiting for each other--each waiting to initiate raw transfers to the controller.

Consider this typical sequence of events for the IPI subsystem in figure 2:
The IPI controller commands one disk to seek to a specified track.
The controller immediately commands another disk on the same channel to a different track.

The controller waits for the two disks until one of them is ready to transfer data at the desired sector on the target track and interrupts
the controller. (The implications of so-called zero-latency reads (ZLR) are not considered here. In a ZLR transfer, data movement can
start from the middle sectors--not just the first--of a multisector transfer. The remaining data--i.e., the initial sectors requested--are
read later when the disk head arrives there. The piecemeal transfer is spliced together by the controller before being passed,
contiguous and intact, to the host. ZLR is an advantage for large, multi-track (>50 KB) transfers, but is of marginal help for small
NFS-style 8-KB block transfers.)

The controller accepts raw data from the ready drive, processing the preamble and postamble, performing error detection (typically by
computing a Reed-Solomon ECC code), buffering, etc. The controller is fully occupied servicing this single drive for the duration of
the transfer.

During the above drive's transfer, the second drive becomes ready. But because the controller and channel are already busy with a
transfer, the second drive waits--and the read-write heads spin past the desired data sectors. This is where SCSI has a key advantage:
a SCSI drive that finds its channel busy never waits, because the SCSI HDA can transfer the target data into local-to-the-drive
buffers. An IPI drive, on the contrary, must rotate completely around--wasting 11-16 milliseconds, depending on disk angular velocity
(RPM)--before it can begin the transfer again. This is an enormous penalty. It lets us predict that adding more drives to an IPI
channel will not linearly increase random-access throughput--a counterintuitive hypothesis that is tested in section 4.3.

After spinning around, the second drive executes its transfer, as long as the first drive is finished and no other drive has grabbed the
IPI channel in the single-rotation interim. The necessarily serialized access to the IPI channel for data transfers severely limits IPI's
random-access throughput. This is the classic and well-known channel contention problem in the mainframe world, where disk drives
must be coupled with a balanced number of channels to maintain unhindered storage-to-host throughput.

Finally, consider the effect of IPI read-ahead. If an IPI controller has been programmed to perform track (or greater) read-ahead--
typical of sequential-transfer environments--other waiting disks will wait even longer. Furthermore, if the read-ahead data is never
used because of random-access, all that extra waiting time is really wasted. Contrast this with SCSI, where read-ahead occurs inside
the drive, creating neither channel contention nor unnecessary waiting.

Several methods are available to widen IPI's serial-channel bottleneck. The easiest remedy is to use only one IPI disk per controller
(which is how SCSI operates already). While computer vendors often benchmark their IPI disk subsystems using this method, it is far
too expensive for most customers. A second remedy is to build multiple storage channels into one controller. Unfortunately, it takes
substantial hardware real estate to cope with the low-level IPI-2 device interface, resulting in a limit on how many channels can be
packed onto a printed-circuit board. Still, some clever vendors are building two-channel IPI controllers for the Unix market. But this
does not match the dense channel packing possible with SCSI, where 5- and even 10-SCSI-channel host adapters exist.

Finally, remember that the serial-channel bottleneck mainly applies to random 1/O patterns. One of IPI's raisons d'étre is quick,
massive, single-drive sequential transfers using parallel heads. IPI will do this well even with multiple drives per IPI channel because
the transfer time--for suitably long transfers--outweighs the pretransfer positioning time.

3.6 SCSI and IPI Interface Comparison

The previous section defined the SCSI-bus and IPI-device interfaces. It continued to describe some performance-critical operational
issues of disk-to-host transfers. This section returns to basics by summarizing and comparing SCSI and IPI interface specifications.
See table3.

Attribute ipi-2 scsi-1 scsi-2
Device or Bus Interface Device Bus Bus
Arbitration Scheme Master-slave Peer-Peer Peer-Peer
Track Buffering No Yes Yes
Autonomous Device Operation No Yes Yes
Multiple Transfers per Bus/Channel No Yes Yes
Multiple Command Queueing Yes* No Yes
Read-ahead Possible Yes* Yes Yes
Zero-latency Reads (zlr) Likely Yes* No Yes
Bus/Channel Width (bits) 16b 8b 8b, 16b, 32b
Max Bus/Channel Bandwidth (mb/s) 10 mb/s 5 mb/s 10, 20, 40
mb/s
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Device to Channel to Controller Yes Yes Yes
Parity?

Device to Channel to Controller Yes No No
ecc?

Table 3: A SCSI-1, SCSI-2, and IPI-2 interface comparison. Some comments on the attributes: Section 3.5 defines device and bus
interfaces and discusses SCSI's and IPI's arbitration schemes. Zero-latency reads are defined in section 3.5.2. All IPI attributes
marked with an asterisk (*) are optionally implemented in the IPI controller but are not available in the drives themselves.

Reviewing table 3, there are six key attributes that distinguish SCSI from IPI:

Multiple transfers per bus/channel. Because SCSI devices are buffered and intelligent, physical device data transfers can proceed in
parallel, decoupled from the channel. IPI transfers, as we have seen, are direct-coupled, serial, and will often miss their optimal
starting points when there is more than one drive per (busy) channel.

Multiple command queueing. With both IPI and SCSI-1, command queueing (and sorting) is left as a controller function, where it is
usually performed in high-performance systems. With SCSI-2, queueing can also occur within the SCSI-2 device's own controller.
As well as aiding device optimization, this queueing has the added benefit of reducing bus contention by eliminating unnecessary bus
handshaking when multiple commands are sent together using command linking .

Read-ahead possible. With its internal buffering, read-ahead is natural and straightforward in SCSI devices. For disks, read-ahead is
usually done on a track basis--that is, as a disk head sweeps an entire track, all the data passing under it is read into the local buffer.
Lacking device-level buffering, IPI drives do not perform read-ahead themselves, although a high-performance controller will often
do so. Unconstrained controller-based IPI read-ahead can have serious negative performance implications in random-access
environments like NFS, as discussed in section 3.5.2.

SCSI read-ahead better. With its per-drive internal buffering, SCSI read-ahead can be more effective than IPI's controller-level
buffering. This is because IPI-controller-driven read-ahead easily results in unnecessary disk delays and channel contention.

Zero-latency reads likely. SCSI-1 does not usually perform ZLR. Many SCSI-2 drives do. As we have seen, IPI disks do not perform
either reads or zero-latency reads themselves. In an IPI disk subsystem, then, ZLR is usually implemented in the controller.

IPI has better end-to-end data integrity. Since IPI controllers perform ECC computations on raw sectors, full ECC protection is
provided from the media to the host controller. SCSI typically uses only ninth-bit byte-parity protection from the drive's buffer to the
host. This gives IPI a distinct data-integrity edge in data-sensitive or long-cabled environments.

3.7 A SCSI-1 Drive Laboratory Performance Analysis

Examining disk specifications is no substitute for an empirical performance analysis. Charts 2a and 2b present the results of extensive
SCSI testing that measures the numbers discussed below [Cheng90, Starr90]. Hewlett-Packard 97548 663-MB SCSI-1 drives [HP89]
were used. These drives--lower in both performance and capacity than the HP C3010 drives in tables 1 and 2 [HP92]--execute 2-
MB/s asynchronous SCSI bus transfers and either 4- or 5-MB/s synchronous transfers. The host adapter was a 10- channel Auspex
Storage Processor attached to special instrumentation.
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Chart 2a: A test-bench evaluation of SCSI-1 disk drive read performance on 1-3 drives. In this graphical analysis of the
HP97548 SCSI drive, curves 1-7 investigate the influence of five parameters on read performance: (1)synchronous and asynchronous
bus transfers, (2)random and sequential access patterns, (3)sorted and unsorted seek queues, (4)read-ahead enabled and disabled, and
(5)multiplicity of drives per SCSI channel. In particular, observe that SCSI random-access throughput scales almost linearly as more
drives are added to the same SCSI channel (curves 5-7). As we will discover in section 4.3, normal IPI subsystems like the one in
figure 2 exhibit much worse behavior. More detailed conclusions are discussed in the text. Note that the service time for a disk
operation in milliseconds is simply the inverse of its operation rate in IOPS (which is plotted on the Y-axis, above).

Here are some important conclusions from the SCSI-1 evaluation in chart 2a:

Multiple drives on one SCSI bus perform well. For random access there is only a 5% fall-off in throughput linearity with three
synchronous drives--i.e., three drives on one SCSI channel perform almostthree times as many random 1/Os (curves 5&6). For
sequential access, where SCSI bus data transfer time is larger, three-drive sequential-synchronous throughput linearity decreases 20%
with read-ahead (curve 1) but only 1% with no read-ahead (curve?2).

The cost of random access (over sequential access) is 16 ms, or exactly the average seek time of the HP 97548 disk drive--the
expected result (curves 2&6, 4&7).

Sorting seeks into elevator queues works well, reducing random-access service time from 33 ms to 28 ms, or 15%, for a single
synchronous drive (curves 5&6). Conversely, sorting seeks increases random-access throughput from 30 read IOPS to 36 read IOPS
on one drive, and from 86 to 98 read IOPS on three drives.

Read-ahead is crucial for excellent sequential throughput. Using only one drive per channel, sequential synchronous throughput
increased from 467 KB/s without read-ahead to 745 KB/s (60% more) with read-ahead of sequential 8-KB blocks (curves 1&2). On
a per-operation basis, read-ahead drops a read's response time by about 7 ms, which is nearly the average rotational delay. So not
reading ahead requires rotating around again, as expected.
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For random disk transfers, asynchronous SCSI transfers are only slightly slower than synchronous ones. On a single disk,
asynchronous random-access reads take an extra 0.9 ms (3%) of transfer time per 16-sector 8-KB block (curves 6&7). On three disks,
the added time rises to 3.8 ms (11%) per drive.

For large sequential disk transfers, asynchronous SCSI transfers are slower than synchronous ones. On a single disk, asynchronous
sequential transfers take an extra 3.1 ms (29%) of transfer time per 16-sector 8-KB block (curves 1&3). This corresponds to a drop in
sequential throughput from 745 to 598 KB/s. On three disks, the asynchronous slowdown is pronounced, taking 6.3 ms (46%) longer
per drive.
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Chart 2b: A test-bench evaluation of SCSI-1 channel performance on 1-6 drives. This graphical analysis of the HP97548 drive
studies the effect of many drives per controller on random and sequential read performance. Random-access throughput--for both
sorted and unsorted seeks (curves 2&3)--scales linearly to 5 drives with a minor decrease at6. This is remarkable scalability.
Sequential throughput for 8-KB blocks (curve 1) tapers off starting with the third drive due to SCSI bus contention in the bandwidth-
intensive multi-drive sequential test.

Chart 2b studies read behavior as a function of up to six drives on one SCSI channel. The test environment is similar, but not identical
to, that of chart 2a. One notable difference is that the later-model HP97548 drives used for chart 2b performed synchronous transfers
at SMB/s, not 4MB/s as in 2a. Chart 2b confirms two trends for 4-6 drives per channel that were observed above for 1-3:

Random-access throughput scales linearly for the small, 8-KB blocks measured. This is true for both sorted (curve 2) and unsorted
(curve 3) seeks. Sorting gives the same performance gain as in chart2a.

Sequential throughput rapidly falls off linear when multiple, sequential-reading SCSI drives jointly contend for the 5 MB/s SCSI-1

bus (curve 1). This is because each drive is capable of bursting data at 5 MB/s from its read-ahead buffer, and all the drives' buffers
are indeed filled and ready to transfer in this sequential-read test.

3.8 SCSI and IPI Comparison Summary
Section 3 has examined SCSI and IPI from specifications to testing, from HDA to interface, from price-capacity to price-

performance, and from the cursory to the detailed. Table 4 summarizes these findings for the disk subsystem organizations shown in
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figure 2.
Attribute Advantage E ipi-2 Disk & scsi Array
Ctlr
Transfer Rate Unstriped (mb/s) 4
Transfer Rate Striped (mb/s) 4 4
Disk Drive Concurrency (disk 4
operations/second)
Disk Channel Utilization (disk 4
operations/second)
Storage Controller or Processor (disk 4
operations/s)
Price-Capacity ($/mb) 4
Volumetric Efficiency (gb/m3) 4
Reliability (disk mtbf) 4 4

Table 4: A summary comparison of SCSI-array and IPI disk subsystems. Check marks in this table are a consequence of
conclusions reached in earlier sections and tables.

Some comments on table 4:
SCSI remains the volumetric-efficiency leader because of the new, 1-GB 3.5-inch SCSI drives.

Since disk striping (interleaving) can be applied to both multicontroller and multichannel IPI subsystems and also to multi-SCSI-bus
subsystems, both IPI and SCSI can attain >>10 MB/s aggregate transfer rates. For those unfamiliar with disk striping, see Patterson
and Katz's RAID paper [Patterson88].

At MTBEF ratings of >=250K hours for both IPI and SCSI because of their like (or identical) HDAs, both drive types are extremely
reliable.

4 SCSI and IPI Disk Subsystem Performance Comparison

4.1 The Anatomy of an NFS Operation--Measuring Transfer Rate & NFS Throughput

Figure 3 dissects the anatomy of an NFS Read operation from when the Read request is initiated on a client workstation until the
Read's 8 KB of data returns to the client from a disk. The resulting timing analysis is done in the context of an Auspex NetServer
[Hitz90, Nelson91], a functional asymmetric multiprocessor NFS file server that uses SCSI disk arrays for its NFS storage subsystem
(figure 2). The goal of this timing analysis, presented in detail below, is to clearly demonstrate that the actual data-transfer time of an
8-KB NFS disk read is such a small part of overall system-level NFS Read time that the disk's transfer rate has negligible performance
impact.

The analysis in figure 3 explicitly ignores all system-, controller-, and drive-level caching optimizations, both for reads and writes.
This is necessary to study the influence of actual disk transfer rate: If a disk is not involved in an I/O operation because a cache-hit
stepped conveniently into the way--at any level in the system--then transfer rate doesn't matter at all. Caching is indeed crucial for
system performance and is used in all real systems. But this study examines what happens when there is a data cache miss on a read
(or write).

Finally, the NetServer timings shown for the NS5000 Ethernet and File Processors in figure 3 are from a two-year-old software
release. As such, because of substantial software tuning and hardware upgrades to these processors, the timings shown are probably
40-60% high (the NS5500--with new processors--has about 80% higher maximum NFS throughput than the NS5000). However,
since individual NS5500 I/O processors have not yet been measured, actual--if older--NS5000 times are used.
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Figure 3: The anatomy of an uncached NFS Read operation. The indicated 19.7 ms of total disk time dominates the overall 32.0ms
required for the complete client-to-server-to-client NFS Read. However, the disk data-transfer time for an 8-KB NFS block is only
2.0ms of the 19.7 ms total disk time, or just 6% of the entire 32.0ms client-to-server-to-client NFS Read time. This 6% transfer-rate
contribution is not significant, and becomes less so as disk transfer rate increases further beyond 5.0 MB/s. Client workstation time is
not included in the total time. Detailed discussion and further conclusions appear in the text. The timings indicated for the NetServer
are not estimates but were measured with software monitors and logic analyzers on an NS5000 running Auspex software release 1.1.
The disk timings are based on current-generation HP C3010 SCSI-2 drives [HP92] of tables 1-2. Ethernet timings are for
transmission times assuming no access deference or collisions.

Let's examine each step in the timing path of figure 3's non-cached Read operation, and make some key observations along the way:

A Ethernet request time: 0.16ms, inbound to server only. This is the Ethernet transmission time required to send a single IP packet
(UDP datagram) that contains the NFS Read remote procedure call (RPC). This is a best-possible time that assumes no Ethernet
contention or collisions. Read requests are about 100bytes long and contain IP, UDP, and RPC headers, NFS file handle and offset
information, and user identification and (optionally) authentication information.

B Ethernet Processor (EP) time: 3.5ms, inbound and outbound. This is the complete NFS protocol processing time required for the
Read (or of many other NFS operations). In the NetServer, protocol processing includes Ethernet, IP, UDP, RPC, XDR, and NFS
processing time. It also incorporates preliminary local file system (LFS [Schwartz90]) processing time (equivalent to much of what
happens in a conventional NFS server's NFSDs) and block-transfer DMA time between I/O cache memory and the Ethernet
Processor.

Observe that NFS protocol processing time (EP time) dominates all other NFS file server software overhead--the EP's 3.5ms exceeds
the FP's 1.5ms or the SP's 370us. (This is why NetServers integrate protocol processing directly into the network interface--for
network scalability with very low response times.)

C File Processor (FP) time: 1.5ms, inbound and outbound. This includes all file-system processing time, including cache
management. In the NetServer, it also includes the time for kernel-level message-passing communication [Hitz90] between the
Ethernet, File, and Storage Processors, which takes about 100us per one-way message.

There are two request-reply message pairs exchanged for an NFS disk Read (four one-way messages): a Read request from the EP to
the FP, an 8-KB disk-read request from the FP to the SP, a trivial "done" reply from the SP back to the EP, and a Read-data reply
from the FP back to the EP.

D Storage Processor (SP) time: 370us, inbound and outbound. This includes all Storage Processor kernel message-processing time
(230us), elevator queuing software overhead (67us), SCSI bus arbitration (lus), and SP SCSI command overhead (70us). Put in
conventional SCSI terms, the NetServer's SCSI host adapter overhead is 138us, an exceptionally low figure since many host adapters
have overheads >1 millisecond.
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E Disk time: 19.7 ms total. This total disk-read time for a randomly-accessed 8-KB NFS data block includes six components:
1. 70us of SCSI device selection and command transfer (overlapped with SP overhead in D above).

2. 500us of SCSI drive command decode and processing;

3. 11.5ms average seek time;

4. 5.56ms average rotational latency; and

5. 2.0ms data-transfer time for 16 sectors (8 KB), all assumed to be on the same disk track (a realistic best case).

6. 260us of SCSI cleanup and handshake (some overlapped with the SP in D).

Observe that this 19.7 ms of disk time overwhelms all other times, and that transfer time is a small fraction--10%--of disk time. We
will study the influence of increasing this transfer rate below in table 5. Note that items 1-6 sum to 19.89 ms; the 19.7ms total
excludes the overlaps mentioned in items 1 and 6. The drive-specific timings for items 2-5 above are for the HPC3010 2.0-GB
SCSI-2 drive (table 2) [HP92].

F Ethernet reply time: 6.8ms, outbound from server only. This is the Ethernet transmission time required to send the 6 IP packets that
contain the server's reply to the client's NFS Read RPC. This is again a best-possible time that assumes no Ethernet deference or
collisions. Read replies are about 8,500bytes long and contain IP, UDP, and RPC headers, NFS file information, and the actual 8 KB
(8,192bytes) of file data. Although the Read RPC reply is a single UDP datagram, it is too large to be encapsulated in a single IP
packet. Thus it is fragmented into 5 full size (1,512-byte) IP packets and a final, sixth partial packet.

Observe that at nearly 7ms, Ethernet transmission time is a significant factor (22%) of overall Read time. On an Ethernet
experiencing moderate loads (>30%), deferred transmissions and collisions can easily add 10-30ms to this 7ms of unhindered
transmission time [Boggs88]. Moral: don't overload your Ethernets or both throughput and NFS response times will suffer.

G Client workstation time: Ims total. Client workstation time is highly variable, and depends not only on workstation CPU power, but
also on the capabilities of the workstation's Ethernet interface, software driver, and Ethernet-to-memory I/O datapath. As a
consequence, this analysis assumes an optimistic 1ms total client NFS processing time. This is not obtained in previous generation 10-
MIPS CISC workstations, but may well be in contemporary 100-MIPS RISC workstations.

[[sigma]] Total time: 32.0ms, not including client workstation time.

Table 5 shows the performance impact of increasing disk drive transfer rate on the system measured in figure 3. Note that a 9-MB/s
SCSI drive would only improve NFS read performance by 3%, and a 12-MB/s drive by only 4%. But even these improvements would
be worthwhile only on SCSI drives: if an IPI subsystem were used instead of a SCSI disk array, random-access throughput would
suffer greatly because of IPI channel-access contention, as discussed in section 3.5.2 and shown empirically later in section 4.3.

Raw Transfer Rate 8-kb Transfer Total nfs Read [[Deltal]
Time Time Performance
4.86 mb/s 2.0 ms 32.0 ms Baseline
6.0 mb/s 1.6 ms 31.6 ms +1 %
9.0 mb/s 1.1 ms 31.1 ms +3 %
12.0 mb/s 0.8 ms 30.8 ms +4 %

Table 5: The influence of disk data-transfer rate on system-level NFS performance. The 4% gain--i.e., reduction in total Read
time--from using even 12-MB/s drives is negligible. The transfer times shown are the data-transfer times for a 16-sector, 8-KB
block. The total NFS Read time consists of a fixed, 30.0ms portion (the sum of all but the data-transfer and client-workstation times
in figure 3), to which the data-transfer time is added.

4.2 NFS Benchmarking, NFS IOPS, and the NFS Operation Mixture

Some simple fundamentals of NFS benchmark methodology are needed for the following sections that examine disk subsystem
performance in the context of system-level NFS testing. A complete discussion of accurate NFS benchmarking is a complex subject
beyond the scope of this paper. This section briefly repeats some definitions and descriptions from Horton's NFS performance study
[Horton90].

NFS IOPS--1/0 operations per second--are an NFS-specific measure of NFS load. NFS IOPS are computed by dividing the total
number of NFS operations executed by a server (or client) in a given time interval by that time itself. These NFS throughput results
are plotted as a function of average response times (e.g., chart 3). Each type of NFS operation--Read, Write, Create, Remove, Lookup,
GetAttr, SetAttr, etc.--is counted as a single operation in the total operation count. For reference, a single DECstation 3100 or
SPARCstation] performing moderate NFS 1/0 (e.g., compiling remote sources) generates a load of 10-20 IOPS to an NFS server,
depending on local disk and memory configuration.

nfs Operation GetA SetA Look ReadL ReadD Rea Writ Crea Remo FSSt Tot
M1ix ttr ttr up ink ir d e te ve at al
nhfsstone 13% 1% 34% 8% 3% 22% 15% 2% 1% 1% 100
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Default %
Software Company 14% 1% 59% 2% 9% 8% 4% 1% 1% 1% 100
%

Table 6: Two distinct NFS operation mixtures. NHFSStone's default operation mix is widely used [Lyon89]. It is moderately I/O
intense and characterizes a diskless-workstation software development environment. On the NHFSStone mix, Read and Write
combined constitute 37%, or just over one-third of all operations. Directory operations (Lookup, GetAttr, SetAttr, ReadLink, and
ReadDir) constitute 59%, or approach two-thirds. The Software Company's mix is particular to chart 4. It has an extremely high
Lookup fraction and unusually low Read and Write ratios--a lightweight mix reflecting a low-use dataless software development
environment with very deep directory trees. The remaining seven (of the seventeen total) NFS operations unrepresented in this table
are executed so infrequently as to be negligible.

The benchmark workloads used in this study consist of synthetic NFS traffic. This traffic is carefully generated to correspond to
average NFS operation mixtures actually encountered on servers handling client workstations executing software development
applications. The server disk traffic resulting from these synthetic NFS workloads is distributed equally across initially-empty file
systems on all tested disks. The two sets of NFS operation mixes used for this paper's tests appear in table 6.

It is often useful to derive a single NFS throughput figure-of-merit from the two-dimensional throughput versus response-time curves

shown in the accompanying charts. In this report, we measure a server's NFS throughput (in NFS IOPS) at either 50 or 70

milliseconds response time. The 50- or 70-ms response time cutoff is a comfortable maximum: workstation users prefer 20-40ms and

notice a marked slowdown at >=100ms.
4.3 Why IPI is Poor at NFS--Measuring Multiple IPI Drives per Controller
4.3.1 Multiple Drives per Controller without Write Caching

In section 3.5.2 we predicted that adding drives to the same IPI disk channel would less-than-linearly increase random-access
throughput. Chart 3 is empirical proof of this counterintuitive hypothesis. For reasons of convenient access, Sun's SPARCserver IPI
disk subsystem was used for this test. Similar results are expected from any sequentially-optimized IPI (or SMD) disk subsystem,
although the relative ratios would change depending on a particular vendor's implementation.
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Chart 3: An NFS performance comparison of multiple IPI drives on a single IPI controller without write caching. Notice how
the 4/490's NFS throughput actually decreases--and response times increase--as more disks are added to the same IPI channel. This
is because of bottlenecked IPI channel access (probably including excessive and unnecessary read-ahead). Both this negative
throughput scaling and the saturated-disk, 150-ms throughput crossover are explained in the text. All disk writes performed in this
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test are synchronous and not buffered asynchronously through fast stable storage such as a non-volatile RAM cache. This test uses the
default NHFSStone NFS mix (table 6). The test configuration was a Sun 4/490 running SunOS 4.0.3 with one ISP-80 IPI-2 controller
and 1-4 Seagate 8-inch IPI-2 disks.

This comparison is a system-level test--not an isolated disk subsystem test. The NFS load driving the server originates on
workstations, so server network and CPU characteristics will play a part in the results. But from test trial to test trial in chart 3, only
the number of disks was varied. Three drive configurations were tested on a 4/490--1, 2, and 4 drives, all on the same IPI controller.
No asynchronous write-caching (buffering) was used--NFS Write operations are performed synchronously to disk.

Here are the critical observations in chart 3:

With only 1 drive, response times stay between 30-50ms until about 80 NFS IOPS (measured at a response-time threshold of 70ms)
and then throughput levels off.

With 2 drives, response times increase to 40-70ms and throughput drops to about 65 NFS IOPS at a 70ms response time. Random-
access throughput and response time is worse for 2 drives than 1.

With 4 drives, response times increase further, to 50-100ms, and throughput drops further to about 55 NFS IOPS. Four drives are
worse than 2 drives, because there are now 3 drives waiting for the 1 active drive on the IPI channel to finish.

In total overload, at the response time region of 150-200ms, 4-drive throughput exceeds 2-drive throughput, which exceeds 1-drive
throughput. This is probably because each disk finally has enough queued work (in the controller) that whenever one drive finishes a
data transfer, one of the waiting disks (probably) has queued data under its heads and can begin transferring it immediately. But the
high response times of this overload region are unacceptable for most applications.

The negative throughput scaling in chart 3 is worse than expected. In general, a small positive but ever-diminishing (i.e., markedly
sublinear) throughput increase should occur for each extra disk on a single channel. We speculate the tested 4/490 was optimized for
"excessive" sequential read ahead, with very detrimental results on this small-block 8-KB NFS test as explained at the end of section
3.5.2. We did not have access to a system with such better behavior when preparing the paper.

These three IPI performance curves show our prediction that IPI disk subsystems do not exhibit good random-access performance
unless there is a low drive-to-controller ratio--e.g., 1:1 or 2:1. This is an expensive proposition.

4.3.2 Multiple Drives per Controller with Write Caching

This section continues the previous study of the Sun 4/490 IPI subsystem, this time with system-level write caching (described
below) included. While 4 IPI controllers were available in the test configuration, only 1 and 2 drives per controller were tested.
However, as chart 4 shows, write buffering does not effectively mask the multiple-drive-per-controller contention problem on the
4/490 under heavy NFS loads. Two configurations of SCSI-array NetServers are included for comparison.

In detail, this section repeats the test of the last section with three major changes:

The IPI disk subsystem is "fronted" by a stable-storage write buffer that permits the disk subsystem to perform writes asynchronously
from the system (and the user's) point of view. Asynchronous NFS writes are usually not performed by NFS servers because strict
NFS semantics require synchronous writes to maintain a stateless server guarantee. However, a write cache (or write buffer) that can
survive crashes--and therefore appear like a zero-latency disk--is completely acceptable [Lyon89]. Since a write cache is a random-
access as well as zero-latency device, it should increase the random-access performance--i.e., boost throughput and reduce response
time--of (sequentially oriented) IPI subsystems.

Third-party Ethernet controllers that incorporate some NFS protocol processing are used instead of the 4/490's built-in Ethernet
interface. This change should not influence the disk subsystem, although it may free some 490 CPU cycles for extra NFS processing.

The NFS operation mix (section 4.2) is significantly different and less server-intensive in these tests, so that the total NFS loads
measured are much higher. Because of the different mixes used in charts 3 and 4 (see table 6), their throughput curves cannot be
compared directly. (Chart 4 uses benchmark data based on a different mix because write-cached data using the same mix as chart 3 is
not available.)

Consider these chart 4 observations:

With only 1 drive per channel (4 total) on the 4/490, NFS response times stay between 20-40ms until about 380 NFS IOPS, and then
throughput levels off. These response times are relatively lower than in chart 3--the write cache is working.

With 2 drives per channel (8 total), once again response times increase, and NFS throughput decreases. Under heavy NFS load, we
speculate that the Prestoserve write cache has a high miss ratio, and that the writes going directly to the disks are immediately stalled
because of multiple drive-per-controller contention, as before.

This leads to the hypothesis that write caching will be most effective for low to medium NFS loads. This is tentatively confirmed by
the enhanced 490's better performance than the 4-drive NetServer. Write buffering has masked the IPI random-access shortcomings in
a small, 4-drive configuration. Because of the zero-latency "disk" access, the 490 response times are shorter than the NetServer.
Maximum NFS throughput of both the buffered 4/490 and unbuffered NetServer is similar--within 8%--showing that both systems
are probably disk limited as they enter overload.
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Chart 4: An NFS performance comparison of 1-2 IPI drives on 4 IPI controllers with write caching. The 4/490 has 4 controllers
and is tested either with 1 drive per controller ("4 drives" in the chart), or 2 per controller ("8 drives"). Notice how the 4/490's NFS
throughput still decreases as a second disk is added to each IPI channel (from 4 to 8 total). This is because even the Prestoserve write
cache cannot totally overcome IPI's serial-channel transfer contention under heavy NFS load. On the other hand, notice that SCSI disk
array throughput on the NetServer doubles as disks are doubled. Further conclusions appear in the text. All 4/490 disk writes
performed in this test were buffered asynchronously through a Prestoserve write cache. This test uses a software company's specific
NFS operation mix (table 6). This mix is so different from that used in chart 3 that throughput curves from the two charts are not
directly comparable. The test configurations were: a Sun 4/490 running SunOS 4.1 with a Prestoserve 2.0 write cache, 2 Interphase
NC400 Network Controllers, 4 ISP-80 IPI-2 controllers, and 4-8 Sun IPI-2 disks; an Auspex NS5000 NetServer running version 1.2
software and SunOS 4.0.3 with an Auspex Storage Processor and 4-8 1-GB SCSI-2 disks.

The NetServer scales well, more than doubling throughput as the number of disks double from 4 to 8. This is in stark contrast to the
490, where moving from 4 to 8 drives decreases throughput. With SCSI disk arrays, write caching is not needed to achieve high
overall throughput on normal operation mixes. However, there is merit in using a write cache to reduce latencies at low load levels, or
for certain write-intensive applications.

For a further discussion of the systems in chart 4, including NFS performance on the standard NHFSStone operation mix, read
Auspex's Benchmark Brief 5 [Auspex90].

In conclusion, IPI disk subsystems will benefit from write caching on most configurations and for low to moderate NFS loads. But

our initial premise--that IPI random-access throughput is limited by serial IPI channel contention--has been empirically validated
even with system-level write caching. With or without write caching, IPI is poor at heavy-load NFS.
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Chart 5: A scalability study of the SCSI disk arrays. In scaling a NetServer (the NS5000 curves) from a 2-Ethernet, 4-drive
system, to 4 nets and 8 drives, and 8 nets and 16 drives, the NetServer has a remarkably linear NFS throughput increase of 1.9
(geometric mean) per step. This demonstrates that SCSI disk arrays can provide almost perfectly scalable random-access throughput.
The disk array can respond to this scaled-up load because drives are balanced with channels in a 2:1 ratio (and note that chart 2b lets
us predict similar results for up to 6:1 ratios). This is possible because SCSI controllers are built into each drive and 10 channels are
available on one board. (Notice that to supply scaled-up NFS workload to the server, extra Ethernets are needed as well, although they
do not effect the disk subsystem.) Sun SPARCservers 490 and 690MP are shown for NFS comparison in the curves with "hollow"
data points (the 690MP estimate is based on Sun's own 8%-improvement figure). This test uses the NHFSstone default NFS operation
mix (table 6). The Auspex test configuration was an NS5000 running version 1.4 software and SunOS 4.1 with 2-16 HP 97560 1.35-
GB SCSI-2 disks. (See the comment on NS5000 versus NS5500 NFS throughput at the beginning of section 4.1. The NS5500, for
which only an 8-net, 16-drive curve is shown, achieves over 2,200 NFS IOPS with similar SCSI scaling.) The SPARCserver test
configuration was a 4/490 running SunOS 4.1 with 24 NFSDs, Prestoserve 2.0, NC400 software 1.1, 3 Sun ISP-80 IPI-2 disk
controllers, and 8 911- MB 6-MB/s IPI-2 disk drives.

4.4 The Advantages of SCSI Disk Arrays for NFS

This section finishes our empirical disk subsystem investigations by examining the scalability of SCSI disk arrays as more drives are
added. As chart 5 shows, it's possible to achieve nearly linear throughput scalability on NFS workloads.

Once again, the benchmarked SCSI disk array is within an Auspex server. For readers familiar with Patterson and Katz's work on
Redundant Arrays of Inexpensive Disks (RAID [Patterson88]), Auspex's disk arrays are organized in the simplest fashion: RAID 0
(independent disks) and RAID 1 (dual-disk mirroring)--no striped parity scheme is used. For NFS, which requires small-block
random I/Os, RAID 0 and 1 work extremely well. Questions of file-system load balancing across a multiple-disk array are addressed
below.

Chart 5 shows the scalability of the NetServer SCSI disk array over 4-16 disks and very high offered NFS loads. Disk array
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throughput scales nearly linearly (1.9:2.0, geometric mean) because of the disk-to-channel balance. This is outstanding: There must
be no bottlenecks in the entire system to achieve this overall client-to-server NFS throughput linearity.

4.5 Balancing Disk Array Load
Organizing a file server's disk arrays as independent disks (RAID 0) begs the question of how a system administrator balances file

system I/O loads across those many disks. In practice, Auspex has found that system administrators have good intuition about their
user's requirements.

System Disk Drive E 1 2 3 4 5 ) 7 8 9 10 11 12 13 14 15 16
Adobe Queue time 18 17 27 22 25 24 23 38 14 27 17 27
Cavg. ms)
Service time 20 20 21 20 18 16 19 17 18 19 18 16
Cavg. ms)
Auspex Queue time 7 13 8 15 9 31 22 21 21 17 0 46 34 9 29 18
Cavg. ms)
Service time 22 21 21 20 19 17 17 19 16 17 26 22 21 15 22 19
Cavg. ms)
3Com Queue time 13 12 6 45 33 92 24 33
Cavg. ms)
Service time 22 15 19 19 20 20 33 18
Cavg. ms)

Table 7: Sample disk-array queue times and disk service times from operational NetServer systems. In general, each system's
individual disk loads are very well balanced (the two exceptions, the bold 0 and 92, are discussed in the text). This indicates that
experienced system administrators have good intuition about how to assign swap partitions and file systems to disk drives for even
load balancing. In addition, the low disk service times indicate that there is a mild and unexpectedly pleasant degree of locality of disk
reference, even for heavy NFS loads. See the text for further discussion.

Table 7 shows the disk activity levels of several NetServer customers. These levels are long-term (several day) averages. They were
measured by special software instrumentation inside the Storage Processor. Here is a brief interpretation of this operational data:

The queue and service times are fairly uniform across all disks. This shows that the disks are evenly loaded, and that the respective
system administrators have done good jobs. Two major exceptions are shown in bold: Auspex disk 11 has 0 queue time, so it is
probably very infrequently used or read-only (i.e., never written; see below). 3Com disk 6 has a deep queue, so it is probably heavily
written (e.g., an overloaded swap disk, since service times are so short that the writes are close together on the disk).

Average disk service times are 15-22ms, less than the 29-ms average random-1/O service time for the HP 97548 663-MB SCSI-1
drives used in these systems. This means that most NFS 1/Os probably require less than an average seek, and that the NetServer's
SCSI-drive read-ahead is finding some sequential access traffic to optimize. So it appears that even large NFS servers will see some
locality of disk reference, probably because the Unix File System's cylinder group notion is working well.

The average queue time is 10-30ms--about the above-measured time of a single 8-KB 1/O. This subtle finding probably indicates
that two disk I/Os frequently arrive as pairs. We speculate that they are often writes, because an NFS Write is usually transformed
into two disk writes--one for the file's inode, and another for the 8-KB data block.

The previous point implies that the NetServer disk array usually encounters NFS Write operations, that such writes are usually not
themselves queued (i.e., that the disk array is not heavily loaded), and that most NFS Reads come from the server's file cache. Other
operational statistics indicate that the average read-to-write ratio at the disk is 1:3, rising to as much as 1:6 for /tmp file systems and
swap partitions. This shows the effectiveness of the primary memory buffer cache, which services most reads without any disk
activity. These conclusions are tentative and need more study, but are our best estimates at present.

In Auspex's current server software, two built-in capabilities make it easy for system administrators to balance their disk and file-
system loads:

Disk concatenation, striping, and mirroring are fully supported as virtual partitions [Cheng91]. Both mirroring (for reads) and striping
(for reads and writes) distribute disk traffic across multiple physical disks and eliminate hot-spot disks. The two techniques can be
used together to construct a mirrored, striped, maximal-size file system--larger than a physical disk--which puts multiple actuators to
work on critical, high-traffic data.

Auspex's servers come with a comprehensive performance monitor [Hitz91] that, in the storage area, shows disk I/O rates, I/O types,
and virtual partition access information. Similar information is provided for file systems, including file-operation rates, cache hit
rates, and cache age distributions. This makes it easy to spot currently overloaded drives or file systems, and to predict forthcoming
overloads.

5 Conclusion

This paper began with two thrusts: show that NFS file server disk traffic has a random--not sequential--access pattern and explore
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and explain the complex behavior of modern disk drives. The conclusions from these apparently dissimilar investigations were
checked in a performance evaluation of IPI and SCSI disk subsystems in high-performance NFS file servers. The result is that SCSI
disk arrays easily outperformed a contemporary, optimized IPI drive subsystem on NFS workloads. The SCSI subsystem also
demonstrated nearly linear throughput scalability, a remarkable achievement given its low cost. This result has now moved beyond
upstart startup Auspex to traditional Unix vendors such as Data General, Silicon Graphics, and Sun. These companies now offer
medium-capacity SCSI disk subsystems--in addition to IPI--for their file server products.

Some further conclusions and comments:

Disk transfer rate is the least critical aspect of disk performance for NFS workloads in file servers using conventional extent-based
file systems like the UFS Unix file system. Transfer rate is important for data-intensive compute-server applications where a small
file is >>100 KB.

High per-disk random I/O rates and fully concurrent disk activities are essential for good NFS performance. SCSI disks have built-in
controllers for concurrent, autonomous activity. IPI-2 disks do not.

Disk array organization gives superior random I/O rates and can deliver extreme transfer rates (20-40 MB/s) with striping. Merchant-
market SCSI disk-array controllers supporting this functionality can be readily built because of the sophisticated, standard SCSI
interface ASICs available. These controllers have 5-10 SCSI channels per controller and are available from OEM vendors like NCR
and Array Technologies.

SCSI disk arrays have exceptional scalability, capacity, and performance. In large part, this is because of their built-in controllers and
track buffering. But attractive pricing of both the SCSI disks and SCSI interface components--induced by high-volume shipments--is
key as well.

These are the reasons why SCSI is better than IPI for NFS.
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