AUSPEX

Auspex Architecture -

FMP Past & Present

Steve Blightman

Abstract

This document describes the hardware architecture of the Auspex file server, and contrasts
the FMP implementation with more classical SMP style architectures.

Copyright Notice
Copyright © 1996 Auspex Systems, Inc. All rights reserved.

This material contains information proprietary to Auspex Systems, Inc. No part of such
information may be disclosed, used, copied, or transmitted in any form or by any means
without prior written permission.

Auspex Systems, Inc.

5200 Great America Parkway
Santa Clara, CA 95054

(408) 986-2000

Document Serial No.: 00xxx
Version: 1

Date: September 10, 1996
Release Status: Preliminary

Auspex Architecture
| O 01 15'¢o 16 18 o1 5 (o) « DO 3
2.0 NSS5000 ATCHITECIUTE ...veeeeeiieiieeieee ettt ettt e e e e eeeaaae e e e e s s esaaaeeeeeesesasaneeeeessesnenes 5
2.1 System ATCRItECTUIEeevtiiiiiiiiiieteete ettt sttt et e 5
2.2 StOTAZE PrOCESSOT ...eeiueiiiiiieiiieeite ettt ettt st e et site et e st eesabeesbeesbeessaeeenanes 6
2.3 Ethernet PrOCESSOT.......uvviiiiiiieeiieeiee et e e e e e aaneeee e e eeearaeeeens 7
O Sy 1 o (e et) o 8
2.5 HOSE PrOCESSOT . ..uuviviiiiiiiiieieeeeeeeeeeee ettt aaerereaaes 8
2.6 Auspex Primary MEmOTYccceecueeiiiiiiiiiie ettt ettt et s 8
2.7 Hardware/Software INtErfaceuuvvveeeiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee s 8
27T MIO..eeeeeeeeeeeee ettt e et e e e e e ns 8
2.7.2 HardWare FifO..........oooovviiiiiiieieeiie et 9
3.0 NSO000 ArChitECTUTIEcoeevvveiieeeeeeeeeeee e et e e e e e e e ee e e e e eeeesareeeeeseeensreneeens 10
3.1 HOSt Processor HPS........ooooiiieeeeee et 10
4.0 NST000 ATCHITECIUTE ...vvvvvveeeeeeeieeeeeee ettt e e e e e e e e e e s enaaaeeeeesseensaaeeeeeesens 11
4.1 T/O ProcesSOr IOP ...ttt e e e e e e e e e e e e e e e e e 11
B2 IMVICOD ..ottt et e e e e e e e e taaeaeeeeeeeaareeeeeeeenannes 12
4.3 Hardware/Software INtEITACEvvveiiiieeiieeiee e 12
5.0 EUCHA ATCRITECIUIEo.eeeieeireeeeee e ettt e e et e e e e et e e e e e e sareneeeeeeennsreneeens 13
5.1 File & Storage ProCeSSOT.......ceiiiiiiiiiiieiteiterit ettt 13
5.2 NEIWOIK PrOCESSOTeevviiiieiieecieeiee ettt e e e e e e e e esaaae e e e e e seenanes 14
5.3 Hardware/Software INterfaceuuvvvvveiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee e 15
5.4 Future IMPIrOVEMENLSeeviieriieiiieeniieeeitesieeeiteeiteesiteesiteesateesiteesbeessbeessaeeenes 15
5.4.1 Memory on BINK........cccoviiiiiiiriieeiie ittt sttt 15
5.4.2 NetWork HEIPETccoviieiiieiieeiie ettt s s 15
6.0 COmMPELING ATrCHILECTUIESeeuvieuiieiieieeieete ettt e e ettt esbe et e sbeebeebeeeeas 16
6.1 Sun Ultra ENterprisSe SETVETcceveeiiieiiieiiieieerieesie ettt sieeteesee e e v s eneeeeeas 16
6.2 Sun Ultra Enterprise CIUSIETS.........covvirviirriiriiiiieieeieeteereete e 17
6.3 DG CCNUITIA SEIVETS....uvviiiiiieiiitireieeeeeeeiireeeeeeeeeiiiareeeeeeeeeitrereeeeeeseiarrreseeeeseirrreeens 18

Version 1.0 Confidential Auspex Systems

November 18, 1996

Page 2

Auspex Architecture November 8, 1996

1.0 Introduction

Auspex was founded in December of 1987 with the following mission statement from the original business
plan:

“Auspex will address the file server market by designing and manufacturing a file server which will conform
to industry standards and increase performance, reliability, and connectivity significantly above and beyond
other NFS file servers.”

At the time the performance of CPUs had been roughly doubling every 18 months, but the I/O performance
had not kept up. Sun, in particular, had been promoting the client/server model of computing and the idea
that “the network is the computer”, but they had been using their workstation architecture to build servers,
not appreciating that the requirements of the server were different from the requirements of the client.

Auspex felt that there were two underlying reasons why the workstation architecture did not give the per-
formance or the reliability required. The first was a software one, in that the servers of the day ran full Unix
implementations. There was a lot of unnecessary overhead in this, and Auspex decided to write their own
light weight kernel, later called FMK.

The second reason was a dataflow one. Workstations used a classic Von Neumann architecture, using one
memory space for user data as well as instruction data. This one memory space inevitably lived on one mem-
ory bus, and would ultimately be the system bottleneck, limiting both the CPU and the I/O performance.
Auspex’s answer to this was to move to a distributed processing model, where CPUs were positioned to ex-
ecute specific functions, and were kept out of the data path as much as possible. We christened this approach
“Functional Multi-Processing” or FMP.

A useful analogy for FMP is a factory production line. In this environment every worker is given a dedicated
function to do, and passes the results onto the next worker in line. For many years this proved to be the most
efficient way of manufacturing. This is the FMP approach.

In recent times, however, in the factory these methods have been abandoned, in favor of a more general ap-
proach where each worker is capable of multiple tasks. This has the benefit of allowing one worker to more
easily substitute for, or help, another. It also has some more humanistic benefits, such as being more satis-
fying and rewarding for the workers. Knowledge of someone else’s job may also allow a worker to better
perform his own functions. This is the symmetric multi-processing, SMP approach.

The SMP approach, however, demands much better communications between workers. Maintaining consis-
tency between workers also becomes a much bigger problem. In today’s computer technology the overhead
and complexity of the consistency protocols does not justify the load balancing benefits gained by the SMP
architecture. It seems likely to be many years before this happens.

At the risk of carrying the analogy too far, it might also be useful to point out that the factories only changed
worker’s assignments. They did not change the machinery used to manufacture the product. There are still
machines dedicated and optimized for specific tasks. Machines, as opposed to humans, work best when they
do one task repetitively. When used this way, machines can not only be more efficient and have more per-
formance, but they also can be more reliable. These same benefits are realized by our FMP approach.

So one of the key architectural concerns was the communication between workers. As we decided on a mes-
sage based protocol between these functional processors, we realized that it was critical that the message
passing be done with as little overhead as possible. One of the ways we accomplished this was by putting
all of shared memory in one address space. This enabled all messages, as well as data, to be passed with
direct memory access, and required no protocol overhead.

Version 1.0 Confidential Auspex Systems Page 3

Auspex Architecture November 8, 1996

This distributed memory model is today being called NUMA (for non-uniform memory access) or ccNU-
MA for it’s cache coherent version. ccNuma is being promoted as the model for scaling symmetric multi-
processors beyond three or four. In order for this to work, however, they must demonstrate that the cache
coherency schemes scale, since they depend on this. Auspex, in contrast, does not require cache coherency,
since the processors are performing different functions, and are not sharing control structures.

In summary then, we may say that there are two fundamental tenets underlying the Auspex technology.
They are a light weight kernel called FMK, and a distributed processing model in one shared memory ad-
dress space called FMP. From a hardware point of view, in order to maximize the performance of both the
CPUs and the dataflow, it is vitally important to keep the CPU and the datapath as separate as possible. Much
of the following discussion will address how the architecture of various Auspex product generations has
tried to achieve this.

Version 1.0 Confidential Auspex Systems Page 4

Auspex Architecture November 8, 1996

2.0 NS5000 Architecture

2.1 System Architecture
The NS5000 was the first product that Auspex produced. A basic system had 5 separate boards as follows:

Unix :
APM
HP Auspex
Host Primary
Processor Memory Auspex
Enhanced
VME
EP FpP SP
Ethernet File Storage
Processor Processor Processor
FMK FMK FMK
Functional multi-processing

The VME bus is used in this architecture for dataflow and for message traffic between the processors. It is
important to note that it is not used for fetching instructions for any of the processors. Network client user
data is transferred between the Ethernet Processor, Primary Memory, and the Storage Processor. This data
path is designed to be as short as possible. The primary memory is used as a read cache for user data. The
File Processor handles the file systems on the disk drives and metadata may be exchanged directly between
it and the Storage Processor controlling those drives.

All of the processors in this system were 20Mhz 68020s. These were certainly not state-of-the-art at the
time, but they were only there for control. There were high performance, special purpose, bit slice engines
on both the Ethernet Processor and the Storage Processor to ensure the main data path was as fast as possi-
ble. It was felt that the VME bus would eventually limit the performance of this system, so a special Auspex
mode was designed to maximize the VME throughput.

In fact the first performance limit found was the performance of the EP and FP. Despite hardware check-
summing assistance on the EP, there was enough protocol processing that a higher performance CPU was
required. This was also true of the File Processor. So the first hardware design improvements to be done
were to change the processors on these boards to 40Mhz 68EC030s, and to increase their memory spaces.
This was the NS5500 model.

Now let’s look at the design of the individual boards.

Version 1.0 Confidential Auspex Systems Page 5

Auspex Architecture November 8, 1996

2.2 Storage Processor

This is the block diagram of the Storage Processor.

SCSI
— AFC 6251 _ O
I T T
|
: X 1(i channels |
1 1
YME | xvER Data Bus AFC 6251 | SCSI
r— —'— — " I I
| Write |
| Buffer | AFC
L — - — — I
Data Bus Control CPU N
68xxx
SRAM
Bit slice Dual
CPU bus
DMA Port
Engine RAM

The key thing to notice in this architecture is that the CPU is not attached to the data bus. The AFC chips
are simple buffer chips, designed to buffer 2 blocks of 128 bytes, and do word to byte length conversion.
Data can be transmitted with very little latency from the SCSI bus, through the 6251 and AFCs, to the VME
bus. The CPU is used to control the transfer, and instruct the DMA bit slice. The DMA bit slice is respon-
sible for the arbitration and control of the data bus. The CPU operates entirely out of the SRAM, and is un-
affected by transfers on the data bus.

The Write Buffer was added as an option to SP3 to improve disk write performance. Write data is stored in
this non volatile memory, so that disk writes may reliably be acknowledged early, before the data is physi-
cally committed to the disk drive. Again, transfers to and from this buffer do not interfere with the CPU,
other than the requirement for the code to start and stop the transfer.

In order to simplify the hardware, there is no shared memory space that may be accessed by another VME
master. In retrospect, it may have been possible to improve the performance of this board by making the
write buffer directly addressable on VME. Instead of having the SP’s DMA read the data from another board
and put it in the write buffer, it would have been possible for the other board to directly write it. Since in
general VME writes are more efficient than VME reads, this may have improved VME bus performance.

Otherwise it is a testament to the architecture of this board that it has lasted as long as it has. It has gone
through a number of changes, increasing the speed of the CPU, and adding VMEG64 support, but the archi-
tecture has remained the same.

Version 1.0 Confidential Auspex Systems Page 6

Auspex Architecture November 8, 1996

2.3 Ethernet Processor

This is the block diagram of the Ethernet Processor.

68440
DMA DRAM
VME Data B
== I XVR XVR ——22W | ARC XVR
AMD
LANCE
‘ Ethernet
Data 68440
Bus DMA DRAM
Control
AFC XVR
Bit slice
DMA AMD
Engine LANCE
| AFC Ethernet
Direct Dual
CPU/VME Port SRAM CPU
Interface RAM 68xxx
CPU bus

Again notice that the main data bus is separate from the CPU bus. Ethernet packets are stored in DRAM on
the Ethernet bus. The headers in DRAM memory may be read by the processor, but all the actual data can
be transferred via the VME bus without ever appearing on the CPU bus. The DRAM memories and the as-
sociated logic are duplicated for more performance.

The 3 AFC chips and the Bit slice DMA engines are leveraged from the Storage Processor design. An added
feature of the AFC chips is that they can perform checksumming of data on the fly as it is being transmitted
through them. This again is important because, without this, the Network Processor would consume a great
many CPU cycles performing network checksums, and all the packet data would have to appear on the main
CPU bus just for this function.

In contrast to the SP, there is a direct CPU to VME interface. This is primarily used by other VME masters
to read messages from the SRAM. Although the local CPU here can read and write VME memory directly,
we have found this to have a significant impact on the performance of the VME, and so this is avoided. Also
this direct VME interface only supports normal VME mode as a master, and normal or block as a VME
slave, and does not support enhanced VME in either direction. Enhanced VME transfers may only be done
by the DMA, so VME memory is normally accessed by this CPU via DMA through the third AFC chip.

Version 1.0 Confidential Auspex Systems Page 7

Auspex Architecture November 8, 1996

2.4 File Processor

This is the block diagram of the File Processor

VME Direct
I XVR CPU/VME DRAM SRAM CPU
Interface 08xxx

CPU Bus

This design is obviously much simpler, since it has no I/O interfaces. Indeed originally we used a Motorola
VME single board computer as the file processor, but this operated only out of DRAM, which was slower,
and did not support some of the Auspex specific features such as physical slot identification and hardware
FIFO descriptors. So we decided to leverage the Ethernet Processor design, stripping off all the network and
DMA logic that was not required. We added DRAM support to the CPU design for metadata cache, which
could be large, but all the code essentially ran out of SRAM.

The main limitation in this design is that the VME interface did not support enhanced mode transfers, and
that there is no DMA. The lack of DMA could be somewhat overcome by making other processors push
data to, or pull data from this processor, but the lack of enhanced mode consumed a substantial amount of
VME bandwidth.

2.5 Host Processor

The Host Processor designs for the NS5000 and NS5500 were basically Sun VME designs. HP1, HP2, and
HP3 were all variations of a Sun 68020 design and HP4 was a Sun Sparc design. None of these designs had
very good VME implementations, and none of them were capable of VME master DMA transfers. On the
other hand they were naturally Sun compatible, and for most NFS transfers the Host was not involved any-
way.

2.6 Auspex Primary Memory

Although the first shipments were made with Clearpoint VME memory, it was necessary to design our own
memory board so that we could use Enhanced VME mode. This was the key to achieving the anticipated
performance of the VME bus and the system as a whole. At the same time, we were able to incorporate the
Auspex standard board registers, such as status and board type, and support physical slot identification.

2.7 Hardware/Software Interface

271 Mi16

From a software view, one of the key decisions was the system software that we would use. For best perfor-
mance we did not want our functional processors to be burdened with a full operating system. We therefore
decided to write our own lightweight kernel on which we could base the EP, FP, and SP code. In the original
specification there were 16 basic messages that drove this kernel, and hence the name M16.

Version 1.0 Confidential Auspex Systems Page 8

Auspex Architecture November 8, 1996

The software written for the EP and FP was basically interrupt driven, but the interrupt processing required
was kept to a minimum. The software for the SP however, was more extensively interrupt driven, due to the
requirement that for that generation of SCSI controllers, each SCSI phase change had to be handled by the
CPU.

2.7.2 Hardware Fifo

Much thought was given to how best to pass messages between processors. We decided that we would not
have a special interconnect dedicated to messages, but would use the VME bus for both data and messages.
We therefore needed something with little overhead, that was also scalable. We did not want to classic lock
mechanisms that are usually required for SMP systems, since manipulating these locks over the VME would
prove costly to our performance.

So we settled on a hardware FIFO on each processor board. In this FIFO we would store 32 bit pointers to
messages in the single VME (NUMA) address space. Now in order to send an unsolicited message from one
board to another, we could issue a VME 32 bit write to the receiving board’s FIFO. Each board had a single
well known address for it’s hardware FIFO. Now since the VME 32 bit write was indivisible, multiple
boards could send messages to one FIFO, and the VME bus arbitration would determine which order the
message pointers were stored in this FIFO. The receiving board reads the pointers out of it’s hardware FIFO,
and then reads the message itself from VME address space.

Version 1.0 Confidential Auspex Systems Page 9

Auspex Architecture November 8, 1996

3.0 NS6000 architecture

Although the NS5500 was leading the way in I/O performance, Auspex was being asked for more Host Pro-
cessor performance. This has never been an area in which we believe we can, or should, add much value.
So the idea here was that we should leverage as much standard CPU technology as we could, and thus the
HP5 was based on the MBus used in the Sparcstation 2. The one area we felt we could improve, however,
was the interface between the HP and the rest of our system, and so we developed MVIC, the MBus to VME
interface. This allowed data transfers between the MBus and VME to be done at a much faster speed, and
also allowed the HP to become a full participant in the message passing by supporting a hardware descriptor
FIFO.

3.1 Host Processor HPS
This is the block diagram of the HPS

HyperSparc CPU SCSI I/F
Module
SBus
M2S
MBus

MVIC Memory MPC

Controller

VME DRAM Serial Port
Memory PROM
RTC, etc.

Notice here that this is basically a workstation design with the typical Von Neumann architecture. Data and
instructions are fetched from the single memory, and this of course becomes the performance bottleneck.
Everything wants to access the DRAM memory via the MBus. As in all popular architectures today, the Hy-
persparc CPU mitigates this problem with the use of data and instruction caches, but it’s performance is still
heavily dependent on memory access times. In typical implementations, even with cache hit rates above
95%, we have observed that CPUs can end up stalled waiting for data more than 50% of the time. Since
there is not generally extensive I/O traffic to the Host Processor, however, performance of the system is not
unduly affected.

In retrospect today, the major mistake here was not to strive harder to make this design 100% Sun compat-
ible, but at the time it wasn’t clear exactly what was needed to do this, and the choice of the Fujitsu chip set
restricted us.

Version 1.0 Confidential Auspex Systems Page 10

Auspex Architecture November 8, 1996

4.0 NS7000 architecture

MVIC as an IC development would never had been justified if it had only been used in the Host Processor.
The intent at the beginning of the IC design was that the part would be leveraged into an I/O processor de-
sign, so that the functional processors could continue to evolve. Since it was obvious that we should transi-
tion our Host Processor from 68000 to Sparc technology, it also made sense to transition our functional
processors this way as well. Looking at the performance of the NS6000 system, the limiting factor was the
performance of the Ethernet Processor, followed fairly closely by the File Processor.

The first choice, then, was to transition the Ethernet Processor. This had the added benefit of allowing us to
leverage other SBus network designs, so that we would not have to develop FDDI or ATM interfaces our-
selves. It was also apparent that we could take advantage of the fact that MBus was designed to support more
than one processor, and so we could transition the File Processor function to this board as well. Although
the pairing of the File and Ethernet processors may not have been as natural as the File and Storage proces-
sors, the Storage Processor was not limiting the performance. It was therefore opportunistic to pair the func-
tions this way.

At this time it also became apparent that the VME bus was going to limit the system performance. So we
also decided to integrate the primary memory function into this design. This enabled us to move the user
data cache closer to the network, as well as reducing the basic board set from 5 to 3 boards. On the down
side, it did mean that, in a multi-board configuration, the user data cache was distributed across multiple
IOPs. So in order to get maximum system performance, it is necessary to configure the system so that the
file systems accessed by clients are managed by the IOP to which their networks are attached. In this way
we can minimize the IOP to IOP communication.

4.1 1/0 Processor IOP
This is the block diagram of the IOP3.

Network
Interface
—— Cards
MBus
M2S SBus
SEC — Misc /O
HyperSparc
Module
XVvers SRAM
MPC
HyperSparc
Module
RMC DRAM
MVIC64

We also designed the Network Accelerator card to offload the CPU from having to perform checksumming.
This card was an SBus card that could be installed on the same SBus as the Network Interface cards.

Version 1.0 Confidential Auspex Systems Page 11

Auspex Architecture November 8, 1996

We also designed the Network Accelerator card to offload the CPU from having to perform checksumming.
This card was an SBus card that could be installed on the same SBus as the Network Interface cards. It
worked in conjunction with the buffered Ethernet adaptor that we designed. The way this worked was that
the network packets buffered on the Ethernet card could be transferred through the Network Accelerator to
accumulate the checksum. This was done without putting the data onto the MBus. Unfortunately with FDDI
cards, the network packets go directly to memory on MBus, so moving them back out to the SBus to accu-
mulate checksums was not deemed worthwhile. In this case, the network CPU does the checksum.

Overall, however, as in the HP5, the major bottleneck in this board design is the MBus. Both processors and
VME transfers are competing for this bus. The SRAM was added to the IOP3 design in order to alleviate
some of this problem. This enabled instructions to be fetched from SRAM memory more quickly, but the
fundamental problem remained.

In summary then, as often happens, the strength of this design was also its weakness. The fact that we le-
veraged standard workstation design allowed us to use standard CPU modules and support chips. On the
other hand, by doing this we mixed user data and instruction paths, limiting the performance gain that we
could realize.

4.2 MVIC64

Despite the performance issues discussed above, when we transitioned the IOP to HyperSparc, the function-
al multiprocessors were finally fast enough that we had reached VME saturation. We then decided to rede-
sign the MVIC chip to support 64 bit, rather than 32 bit, transfers. At the time IEEE was enhancing the VME
specification to support 64 bit transfers, by multiplexing the address and data lines, so allowing the same
physical backplanes to achieve the higher transfer rates. This was a natural thing to do, and we decided to
do it too.

We had many discussions about which VME transfer modes we would support. In the end our decision was
to keep MVIC64 as simple as possible. We would do VMEG64 transfers in much the same way as we did
enhanced VME32 transfers. This also meant that our VMEG64 transfers would then also be enhanced and
run potentially faster than the IEEE standard. Unfortunately we would not be able to interface with other
manufacturer’s VME boards. We also defined the 64 bit VME address to closely match the 64 bit MBus
address internal on the IOP, and so were also able to further simplify the design.

4.3 Hardware/Software Interface

In an on-going quest for performance, some changes were made in this timeframe to some of the low level
software routines.

As stated above, since we had transitioned to this Sparc based IOP, the performance on the MBus had be-
come a major concern. Having processors using the MBus and VME bus to directly access message data
became a significant performance penalty, so we altered the software for the IOP so that all messages were
fetched with DMA.

The other significant change made was to go to a polling method, rather than being interrupt driven. This
was demonstrated to enable appreciably better throughput, without impacting latencies.

Version 1.0 Confidential Auspex Systems Page 12

Euclid Deliverables November 8, 1996

5.0 Euclid Architecture

The Euclid project was started to transition the Auspex Netserver products to different technologies. Instead
of VME we will use SCI for the interconnect; instead of SBus we will use PCI for the local bus; and instead
of Sparc CPUs we will use Intel Pentium Pros. We will still use standard workstation technology, but instead
of attaching the interconnect to the Processor’s memory bus, we will attach it directly to the local PCI bus.
This gives us the advantage of being able to transfer data directly from a peripheral on the PCI bus to the
interconnect without affecting the CPU’s access to it’s local data.

5.1 File & Storage Processor

In contrast to the NS7000, we also decided to move the File Processor function to where it perhaps more
naturally belonged; that is, with the Storage Processor. In fact, because we are using more intelligent SCSI
host adaptors than in the NS7000, a large part of the Storage Processor function disappears, and we will not
dedicate a processor to this function. So we believe that one processor can be shared to perform both the
File and Storage processor functions. One of the anticipated benefits of combining the File and Storage pro-
cessor functions is that it is no longer necessary to transfer raw metadata over the interconnect. In the
NS7000 system this has been seen to account for as much as 35% of the VME bandwidth.

This is the block diagram of the FSP in Euclid 1

Orion
P6 Memory DRAM
Controller memory
| |
Orion Orion
PCI PCI
Bridge Bridge
DEC
PCI PCI/PCI PCI
Bridge
PCI
;(S). A Write Buffer
XOR memory
| PCI
Misc. to Adaptec | - — — - | Adaptec
/0 SCI Dual x4 Dual
\ SCSI - T T SCSI
SCI ‘ ‘ ‘ ‘
SCSI SCSI SCSI SCSI

This appears to be a very efficient implementation for the FSP. User data can be transferred from the SCSI
devices across the two PCI buses to the SCI interconnect without going onto the CPU’s memory bus. Meta-
data, on the other hand, can go directly through the Orion PCI Bridge (the OPB) on the right hand side to
the CPU’s memory data. So the data that the CPU needs to see, i.e. the metadata, can be readily accessed,
whereas the data it doesn’t care about, i.e the user data, bypasses it.

Version 1.0 Confidential Auspex Systems Page 13

Euclid Deliverables November 8, 1996

The DEC PCI/PCI bridge is present mainly for electrical loading reasons. There are concerns about the per-
formance implications this bridge may have. Only having one write buffer in the bridge limits the benefits
we can achieve from the buffers in the PCI/SCI bridge. On the other hand, it does give us 2 PCI busses and
increases the potential performance of the I/O system. The write buffer straddles the two PCI busses such
that write data can be transferred from the SCI bus on one PCI bus, and out to the SCSI device on the other.
This ensures that the write data only appears on each bus once. Messages from other subsystems can be ac-
cessed on the left hand side PCI bus, and may not interfere with transfers on the right hand side PCI bus.
We believe, then, that the benefit of the two PCI busses should compensate for the penalty incurred by the
bridge.

5.2 Network Processor

This is the block diagram of the Network Processor

Orion
P6 P6 Memory DRAM
Controller memory
| |
Orion Orion
PCI PCI
Bridge Bridge
" DEC |
PCI | pcrpcr | PCI
| Bridge
L _ 1
PCI
to
ISA
| PCI Network | i\fet\;/fork
Misc. to Interface <4 nterface
I/l(s)C SCI Card - — — - | Card
SCI

The DEC PCI/PCI bridge is in dotted lines because in the first implementation this bridge is unused. It is
simply there because we are using the same motherboard as the FSP.

The Network Processor presents some different challenges. In this first implementation the DRAM on the
processor bus will be used for packet data, user data cache, and CPU instructions. This is obviously not ide-
al, and looks in many ways like the IOP architecture of the NS7000, with the same problems. This approach
is being used in Euclid 1, however, to constrain the engineering effort required. We suspect that, with the

Version 1.0 Confidential Auspex Systems Page 14

Euclid Deliverables November 8, 1996

fact that we have two PCI buses to divide the data paths, the contention for the DRAM memory will limit
the potential performance of this design. It should be noted, too, that there is no hardware assist for check-
summing - this will all be done in software.

5.3 Hardware/Software Interface

Many of the lessons learned in the previous designs are being used in Euclid. We are continuing in our ef-
forts to keep the processor off the peripheral bus as much as possible. As in the NS7000, we will continue
to use polling, rather than interrupts, to schedule the work, and the events register itself has been implement-
ed such that it is the main memory of the processor itself. The message descriptor FIFO has also been
changed from a hardware FIFO to a circular buffer in main memory. This had the double benefit of saving
cost, as well as moving the FIFO itself much closer to the CPU. The CPU no longer has to read the FIFO
from the main data bus, in this case, PCI.

5.4 Future Improvements

From an architectural view, then, the FSP design seems optimal. There will undoubtedly be some deficien-
cies in the chip implementations, and we will be looking closely at opportunities to improve these. We may
also support multiple processors in the future, but at the moment this is thought to be unnecessary to reach
our performance goals.

The NP, on the other hand, offers some substantial room for improvement. There have been many different
discussions about this, but for the sake of this paper, we’ll mention two.

5.4.1 Memory on Blink

In both the IOP of the NS7000 and the Network Processor, the data cache memory has been part of the mem-
ory on the Network Processor. There are good reasons why the cache should be managed by the Network
Processors and placed as closely to the network as possible. Demand for access to this data cache, however,
severely impacts the ability of the Network Processor CPU itself to access it’s instruction and own data
space.

Architecturally we would benefit by moving back to the original NS5000 architecture where the data cache
was directly attached to the interconnect. In the future we may have requirements for very high speed access
to sequential data. If we move the data cache to the interconnect, we may be able to more easily achieve this,
using such things as interleaving. These notions lead us to the idea of implementing a memory design on
Blink. Blink is the bus on the other side of the SCI Link Controller IC, and in Euclid 1 is present in the
PCI/SCI boards as well as in any SCI switch. Moving our data cache to one of these spaces could signifi-
cantly relieve the contention for the Network Processor CPU’s memory bus.

5.4.2 Network Helper

The other data we would like to avoid having on the CPU memory bus is the network packet data. Unfortu-
nately this packet data is normally composed of two parts, a header and a data field. While the CPU needs

in general to look at the header, it really has little use for the data field. Various schemes have been discussed
to separate these two data fields, so that the header may be easily read or composed by the CPU, but that the
data goes directly to the data cache. There are also opportunities for hardware development to support the

Network CPU by performing some basic functions such as checksumming. Checksumming can account for
as much as 10% of the CPU activity if done in software, whereas it is a relatively simple thing to implement
in hardware. It is these discussions that have led to the working specifications of an IC design that we call

Cygnus.

Version 1.0 Confidential Auspex Systems Page 15

Euclid Deliverables

6.0 Competing architectures

6.1 Sun Ultra Enterprise Server

This is the block diagram of the Enterprise system architecture

November 11, 1996

r—-— - - - - - - - - - - 1 r——-— - - - - - - - - - - 1
| SBus I/O board | | SBus I/0O board |
A A
I P SBus Al I < SBus Al
| e SYSIO 1 |« | | e SYSIO 1 |« |
I I | I
| UPA| | | UPA| |
< SBus | | < SBus |
: p SYSIO0 |4 T p SYSIO 0 [« |
I I I I
| ‘ o |
Address 8x Data |4 Address 8x Data |4 |
|| Controller Controller v : || Controller Controller v
I I 7 y
Lo |- - - - J S J
< A 4 - A 4 >
) Address Bus Gigaplane g
) Data Bus g
r——1—-—- - -7 - - - - = A r—-—T - - - - - - - - — = A
I I I 4 I
| | Address 8x Data |« | | | Address 8x Data |« |
I Controller Controller | 4 | I Controller Controller | A |
A y A y
I I I I
I I I I
| < CPUO |« | | < CPUO |« |
I I I I
| | | |
| < » CPU1 |« | | < » CPU1 |« |
I v vl | v v
I I I I
: Memory |« : : Memory |« :
| CPU/Memory Board I | CPU/Memory Board I
Lo g Lo g

This is a fairly classic SMP kind of design. In order to be able to effectively support multiple processor
boards, all using a snooping cache coherency protocol, a very fast system interconnect is required.

The Gigaplane, as Sun call their interconnect, is very wide and very fast. The data width is 256 bits, or 32
bytes wide, while the address bus is 42 bits wide for a total addressability of 2 TB. It runs at 83.3MHz for
a burst transfer speed of 2.6GB/sec. It is split transaction, and the address cycle overhead is eliminated by
having separate address and data buses. On the other hand, latency to memory is still of the order of 50 clock
cycles for a cache line. In terms of clock cycles this is slightly slower than their old MBus designs, but in

absolute time is somewhat faster because of the higher clock speed.

Version 1.0

Confidential Auspex Systems

Page 16

Euclid Deliverables November 11, 1996

It is interesting to note that this interconnect is, in many ways, simpler than the dual XDBusses found in the
previous Sparccenter 2000 design. Sun seems to have determined that having a simpler single bus may ac-
tually improve their reliability, despite the fact that dual busses may have offered some redundancy.

We do not believe these kind of architectures perform at all well in file server applications. All data, whether
it be user data, meta data, or CPU data, appears on the interconnect. All the emphasis seems to be towards
getting everything close to the CPUs. This is ideal for compute server applications.

6.2 Sun Ultra Enterprise Clusters

This is the block diagram of the hardware architecture of the Ultra Enterprise Cluster HA server

Managemen
Console
Redundant Network Connections
- | |
Ultra Terminal Ultra
Enterprise Concentrator Enterprise
Server Private Ethernet Links Server
(or SCI)
L
- |
SPARC SPARC SPARC
Storage Storage Storage
Array Array Array

Sun supports this hardware as either one server serving users with the other as a hot standby, or as two serv-
ers serving users, each backing the other up should it fail. They also support mixing different classes of serv-
ers for more efficient costs of the backup configurations. In the High Availability configuration, data is
mirrored on the Sparc Storage Arrays. A third storage array is used to save a third copy of the meta data.
During failover, all three copies are checked. If two or more agree, they are assumed to correctly represent
the state of the data.

In the original architecture the private links between the servers were dual Ethernets, but Sun has obviously
determined that the latencies involved in the protocols required was impacting the performance, and so they
have switched to SCI. SCI has latencies which are an order of magnitude lower.

While this is only a 2 node cluster, Sun are preparing to offer multi-node clusters using the same kind of
architecture with SCI switches, and Fibre channel switches to support more storage arrays.

Version 1.0 Confidential Auspex Systems Page 17

Euclid Deliverables November 11, 1996

6.3 DG ccNuma Servers

This is the block diagram of Data General’s ccNuma servers

SCI
P6 to SCI P6 to SCI
Interface Interface
r— - - - - — — — — — — - — 7 r— - - - - — — — — — — - — 7
: P6| |p6| |P6| | P6 : : P6| |P6| |P6| | P6 :
|1 [[| | |1 [[| |
| I I | | | | | | I
I OPB OPB OMC |— Memory | | I OPB OPB OMC | Memory | |
I I I I
| PCI |PCI SHV server M/B | | PCI |PCI SHV server M/B |
I S S J I S S J
Fibre Fibre
Channel Channel
Interface Interface
Hub
disks

This is a true SMP architecture. They are connecting Standard High Volume (SHV) 4 way P6 motherboards
from Intel together on SCI and implementing the directory based coherency protocol designed as the IEEE
SCI standard. Like Sun, they are going to take advantage of Fibre Channel disk drives and switches to con-
nect the disk storage.

There are many technical challenges in this architecture, and doubts about it’s true scalability.

Version 1.0 Confidential Auspex Systems Page 18

