

A Practical Guide to

Systems
Development
Management

AUERBACH Data Processing Management Library

James Hannan, Editor

•

Contributors To This Volume

Norman Carter
Development Systems International, Studio City CA

Jerome E. Oyba
Catonsville MD

Steven A. Epner
President, The User Group Incorporated, St. Louis MO

Leslie H. Green
The Fidelity Bank, Philadelphia PA

Edward J. Kirby
Systems Design Consultant, Sherborn MA

Henry C. Lucas, Jr.
Professor and Chairman, Computer Applications and Information Systems

Graduate School of Business Administration, New York University

New York NY

G.A. Eugenia Schneider
Naval Weapons Center, China Lake CA

James A. Senn
Associate Professor of Management Information Systems, School of Management,

State University of New York, Binghamton NY

John Shackleton
ASI Corporate, Arlington Heights IL

Stephen P. Taylor
Sperry Univac, Irvine CA

Raymond P. Wenig
President, International Management Services Incorporated

Framingham MA

A Practical Guide to

A
AUERBAC~

~

Systems
Development
Management

Edited by James Hannan

AUERBACH Publishers Inc
Pennsauken NJ

VAN NOSTRAND REINHOLD COMPANY
New York Cincinnati Toronto London Melbourne

Copyright © 1982 by AUERBACH Publishers Inc

Library of Congress Catalog Card Number 82-11610

ISBN 0-442-20915-0

All rights reserved. No part of this work covered by the copyright hereon
may be reproduced or used in any form or by any means-graphic,
electronic, or mechanical, including photocopying, recording, taping,
or information storage and retrieval systems-without written permis­
sion of the publisher.

Printed in the United States of America

Published in the United States in 1982
by Van Nostrand Reinhold Company Inc
135 West 50th Street
New York NY 10020 USA

16 15 14 13 12 11 10 9 8 7 6 5

Library of Congress Cataloging in Publication Data
Main entry under title:

A Practical guide to systems development management.

(Auerbach data processing management library ; 5)
1. System design. 2. Electronic data processing-Management.

I. Hannan, James, 1946- . II. Series.
QA76.9.S88P7 1982 658.4'032 82-11610
ISBN 0-442-20915-0 (pbk.)

Contents

Preface vii

Introduction ix

Chapter 1 The Systems Development Manager
Edward J. Kirby 1

2 Systems Development Methodology Packages
John Shackleton 11

3 Performance Appraisal of Project Managers
Nonnan Carter 25

4 Using A Systems Consultant
Steven A. Epner ••••••••••••••••••••••••••••• o. 45

5 Systems Analysis Checklist
Raymond P. Wenig 59

6 User-Oriented Systems Analysis and Design
Henry C. Lucas, Jr. 67

7 Organizational Decision Making and DSS
Design

Stephen P. Taylor ••••••••••••••••• 0 •••••••••• 0. 81

8 Evaluating Software Packages
Raymond P. Wenig 89

9 Organizing for Project Management
Leslie H. Green 115

10 Structured Walkthroughs
James A. Senn 127

11 Post-Implementation System Review
Jerome E. Dyba 141

Contents

12 Maintenance Documentation
G.R. Eugenia Schneider. 153

Preface

In its relatively brief existence, the computer has emerged
from the back rooms of most organizations to become an integral part of
business life. Increasingly sophisticated data processing systems are being used
today to solve increasingly complex business problems. As a result, the typical
data processing function has become as intricate and specialized as the business
enterprise it serves.

Such specialization places a strenuous burden on computer
professionals. Not only must they possess specific technical expertise, they
must understand how to apply their special knowledge in support of business
objectives and goals. A computer professional's effectiveness and career hinge
on how ably he or she manages this challenge.

To assist computer professionals in meeting this challenge,
AUERBACH Publishers has developed the AUERBACH Data Processing
Management Library. The series comprises eight volumes, each addressing the
management of a specific DP function:

A Practical Guide to Data Processing Management
A Practical Guide to Programming Management
A Practical Guide to Data Communications Management
A Practical Guide to Data Base Management
A Practical Guide to Systems Development Management
A Practical Guide to Data Center Operations Management
A Practical Guide to EDP Auditing
A Practical Guide to Distributed Processing Management

Each volume contains well-tested, practical solutions to the
most common and pressing set of problems facing the manager of that function.
Supplying the solutions is a prominent group of DP practitioners-people who
make their living in the areas they write about. The concise, focused chapters
are designed to help the reader directly apply the solutions they contain to his or
her environment.

AUERBACH has been serving the information needs of
computer professionals for more than 25 years and knows how to help them
increase their effectiveness and enhance their careers. The AUERBACH Data
Processing Management Library is just one of the company's many offerings in
this field.

James Hannan
Assistant Vice President
AUERBACH Publishers

vii

\

Introduction

Systems development has traditionally been considered the
heart of the data processing function and one of the most challenging of all D P
activities. Proponents of this viewpoint note that developing cost-effective
solutions to an organization's business needs requires a rare mix of business,
technical, interpersonal, and managerial skills. To be successful, systems
analysts need to know as much about an organization'S structure, function,
goals, and objectives as they do about the latest developments in hardware and
software technology. They must be able to interact effectively with different
levels of user and DP management in the course of their analysis and design
work. And they must be familiar with the array of available development and
project management tools and techniques.

Whether one accepts the contention that systems development
is the preeminent data processing activity or not, it is difficult to deny that it has
become significantly more complex and challenging in recent years. Several
factors have contributed to this trend. Users, an increasing percentage of whom
are more knowledgeable about and comfortable with computers, are demand­
ing more sophisticated solutions to a greater number of business problems. The
business problems themselves have become more complex in the face of
intensified competition, a less predictable economic climate, and the reshaping
of established patterns of business behavior. Add to these factors a rapidly
changing technological environment, and the challenge to develop useful
systems on time and within budget becomes formidable indeed. This volume of
the AUERBACH Data Processing Management Library is designed to help
systems developers meet that challenge.

We have commissioned an outstanding group ofDP practition­
ers to share the benefits of their extensive and varied experience in systems
development. Our authors have written on a carefully chosen range of topics
and have provided proven, practical advice for managing the systems develop­
ment function more productively.

In Chapter One, Edward J. Kirby discusses the characteristics
and management skills that the successful systems development manager
should possess. He also outlines the manager's functions and day-to-day
activities and points up common problems that the manager is likely to encoun­
ter, together with practical solutions.

A major concern of any systems development manager is the
establishment and use of a standardized development methodology. Whether
developed in-house or purchased from a vendor, standard methodologies help
ensure systems reliability, quality, and predictability as well as user satisfac­
tion. In Chapter Two, John Shackleton examines the major characteristics of
systems development methodology packages and briefly describes a number of
the more popular vendor packages available.

ix

Introduction

Another important challenge confronting development manag­
ers is cultivating and retaining competent project managers. Structured, com­
prehensive performance appraisals are effective tools for accomplishing that
goal. In "Performance Appraisal of Project Managers," Norman Carter de­
scribes performance appraisal techniques that help both project leaders and
development managers understand evaluations. Also included are procedures,
a checklist, and sample forms that can facilitate performance appraisal.

No matter how competent development personnel are, manag­
ers sometimes need additional people on a temporary basis to handle excessive
work loads or to provide a specialized skill for a project. For such help
managers often tum to consultants. In Chapter Four, Steven A. Epner offers
practical advice for selecting and using a consultant and provides a sample
consultant contract.

Improving the results of the analysis phase of the systems
development life cycle and the overall effectiveness of the project team can pay
large dividends in the later stages of a development project. A comprehensive
systems analysis checklist can help bring about such improvement and can also
help produce consistent results while contributing to the expertise of the team
members that perform the analysis. Raymond P. Wenig provides such a
checklist in Chapter Five.

Many of the failures of computer-based information systems
are attributable to their not having been designed with the end user in mind. In
his "User-Oriented Systems Analysis and Design," Henry C. Lucas, Jr.,
discusses analysis and design techniques that ensure the development of quality
systems that meet user needs. Stephen P. Taylor then addresses methods for
developing a special kind of information system-a decision support system­
that is designed around the user organization's decision-making style in
Chapter Seven.

Although user-centered analysis and design can help satisfy
user demands for better and more responsive systems, managers are often hard­
pressed to keep pace with the sheer volume of systems that users request. As a
result, software packages have become an attractive alternative to developing
systems in-house. In Chapter Eight, Raymond Wenig discusses methods for
evaluating the internal structure and operational characteristics of software
packages and explains how such evaluations can be used in package selection.

Designing a new system or modifying an existing system or
package involves the coordination of people, resources, and a nonrecurring set
of relatively complex tasks. Such an undertaking requires effective project
management if it is to succeed. In "Organizing for Project Management,"
Leslie H. Green discusses the essential elements of effective project manage­
ment and alternative project management structures.

A major task of the project team is reviewing the system design
for any errors or omissions. The use of structured walkthroughs is a proven

x

\

Introduction

technique to "proof' program design, detect errors, and control structure.
James A. Senn discusses the concept of structured walkthroughs and describes
how to apply it in Chapter Ten.

In addition to conducting design reviews, it is also advisable to
perfonn post-implementation reviews. Such reviews reveal if the systems
development process was properly applied and managed and if the anticipated
benefits of the new or revised system were attained. In Chapter Eleven,
Jerome E. Dyba provides a methodology and checklist for reviewing systems
following implementation.

Although a phase of the life cycle that most managers would
rather ignore, program maintenance is a costly, time-consuming process that
may account for as much as 80 percent of software costs. In Chapter Twelve,
G .R. Eugenia Schneider discusses procedures that can help reduce these costs
through comprehensive documentation of all maintenance. She describes the
necessary maintenance activities, as well as the procedures for perfonning
them, and provides practical documentation fonnats.

xi

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I
I

I
I

I
I
I
I

~ The Systems
Development
Manager

INTRODUCTION

by Edward J. Kirby

Data processing, particularly systems development, is a high-technology
activity. It may indeed be the only activity in an organization that must
respond to constant, rapid technological changes that demand changes in
work habits and organization. An additional problem is that systems develop­
ment managers, many of whom are promoted from the technical ranks, tend
to be naive and inexperienced in such basic managerial skills as budgeting,
human relations, and communications.

A problem arises in management goal orientation. Upper management is
accustomed to work being completed on time and at c1ose-to-estimated costs.
This, unfortunately, is seldom true with systems development projects. Sys­
tems for information processing have historically been late and excessive in
cost.

Some of the bad reputation is undeserved. The functional goals of other
project types tend to be straightforward and specific; those of information
systems, elusive and general. Systems developers contribute to this problem
by failing to "value engineer" their products and instead trying to achieve
heretofore unattained levels of technical perfection. In extreme cases, they
include in a system functions and features that far exceed the users' expecta­
tions and, needless to say, their budgets as well. They cheerfully accept
changes to specifications, at first, then they tolerate them; finally, in a state of
panic, they attempt to reject them. Systems developers rarely insist on the
increases in cost and development time necessitated by specification changes.

This chapter, which is written mainly for the new manager, discusses how
these problems can be handled or avoided. Other problem areas are also
discussed, and the characteristics and functions of the systems development
manager are described.

CHARACTERISTICS OF A GOOD SYSTEMS DEVELOPMENT
MANAGER

The systems development manager must be oriented toward providing
service. Computer systems do not exist for their own sake; they are developed

2 SYSTEMS DEVELOPMENT MANAGEMENT

as tools to help people work. The system, like any tool, must be matched to
the worker as well as the work. The worker is the best authority on himself
and usually is one of the best sources regarding his work. He does not,
however, know very much about toolmaking. Therefore, a continuing dia­
logue with system users is essential to successful systems. The service attitude
is one of promptness, responsiveness, solicitousness, and readiness to provide
help at any time, without constant intervention.

The development manager must be a salesman, able to market to users and
his management his ideas and approaches. After they have been approved, he
must sell the ideas to his technical staff. Furthermore, he must be persuasive
enough to get the resources he needs.

The development manager must be a planner, presenting detailed short-,
intermediate-, and long-range plans in writing for all of his group's activities.
Still, he must be flexible enough to adapt and alter these plans to accommo­
date changing circumstances. He must have the temperament to accept change
without frustration and the ability to allay the frustrations of his personnel.
Foresightedness in effective contingency planning is one of his most valuable
assets.

Resourcefulness is the key to obtaining the resources that are unavailable
through conventional channels. It is the attribute that enables people to see the
alternative solutions to any problem and pursue each of these alternatives until
a satisfactory solution is found. Its companion virtue is, of course, the seren­
ity to accept alternatives felt to be imperfect or that may have been conceived
by someone else.

The systems development manager must have skill in dealing with others
so that he can influence those both inside and outside his development group.
He must have credibility, and his staff must be loyal to him. This requires
both fairness and equal treatment in work assignments and in the performance
he expects. Standard procedures that provide division of less desirable work
and objective performance standards are helpful. Sympathy for the staff's
problems can be significant in systems development projects, which often
involve late hours, difficult deadlines, and the usual frustrations of technical
work. It is safe to assume that the secretive and deceptive manager does not
gain the confidence of his staff.

Technical proficiency has not been mentioned because it cannot be proved
that this is an asset to the systems development manager. Basic management
skills and awareness of available DP tools and techniques go a long way
toward ensuring a systems development manager's success.

MANAGEMENT SKILLS

Technical Awareness

Systems development managers must maintain up-to-date knowledge of
the latest methods, techniques, and products. This responsibility is seldom
neglected because most development managers are both relaxed and stimu-

SYSTEMS DEVELOPMENT MANAGER 3

lated by books, periodicals, and professional society meetings. What is ne­
glected is the responsibility for passing this information to staff technicians as
well as to upper management. This is especially important because the lay
press reports these developments in terms that are obsolete, oversimplified,
forbidding, and unrealistic.

Managerial Ability

Another largely underestimated responsibility is that of managing people.
Because systems analysts and programmers are, for the most part, self­
directed professionals, who are accustomed to receiving mid- to long-term
assignments, it is all too frequently assumed that they need little or no man­
agement. The falseness of this assumption is proved, of course, by their rapid
migration between employers. Top management of organizations with large
staffs of other types of professionals seldom understands that one of the
principal problems of planning systems development is that one or more key
people in any project lasting more than a year will almost surely resign within
that time.

Ability to Delegate

All managers must delegate authority. Inexperienced systems development
managers who came up through the technical ranks frequently fail in this area.
Without delegation of authority, a manager's time is consumed attending to
excessive detail, and workers become resentful because they feel that their
manager lacks confidence in them. Well-distributed authority in a develop­
ment project ensures efficient handling of crises and continuity when key
people resign. A hierarchy of technical decision levels must be designed so
that the systems development manager is free to discharge his other responsi­
bilities.

In addition, the extent of the supervisor's authority should be clear both to
him and to his subordinates. The systems manager will gain tremendous
savings of time as the result of clarifying and resolving task conflicts. After
work segments have been delegated, the manager must, of course, discipline
himself to a policy of noninterference.

Ability to Motivate Systems Personnel

Few experienced systems managers would subscribe to the misconception
that DP personnel are universally self-motivated, challenged by the risk and
excitement of their careers, and dedicated to reaching ever-higher pinnacles of
excellence for its own sake. Nonetheless, the attention given to employee
motivation is frequently intermittent and sometimes so casual as to be unrec­
ognizable. In motivating systems people, the first concept that must be under­
stood is their work goal. When all theories of motivation are sorted, the
development and support of information systems is clearly their objective.

4 SYSTEMS DEVELOPMENT MANAGEMENT

This is the goal of the manager, the group, and all of its members. The
objectives of personal development, skills improvement, and work satisfac­
tion are incidental, although not unimportant. Members of the systems devel­
opment team must strive toward their primary objective under the systems
manager's direction and perform to the standards he has set.

The approach many systems managers adopt toward motivation is revealed
by their desire to be fair. To them, being fair consists of rewarding good
performers and not rewarding the others. Although this method leads to great
self-satisfaction, it is of little use in meeting productivity objectives. These
objectives can be met only by motivating all members of the systems team
toward more and better work. A good practice for the manager who wishes to
improve group performance is to devote his managerial attentions more inten­
sively to average and below-average performers.

There is little benefit in negatively motivating professional/technical peo­
ple. For some, admittedly, fear of punishment will provide an incentive to
perform, but a much stronger incentive will be to seek another, more pleasant
working environment. For others, fear is ineffective because it distracts them
to the point where they cannot function.

Ability to Manage Personal Time

Some managers have an open-door policy, which, unfortunately, works to
everyone's disadvantage. These managers are very difficult to meet with
because someone else gets through the open door first. The managers them­
selves have to carry home a briefcase full of work every night to catch up on
what they should have accomplished during the day.

The systems manager should keep office hours on an appointment basis. It
is not unreasonable to insist that employees request an appointment before
meeting with managers. (In true emergencies, of course, this request may
come just before the appointment.) By working according to schedule, the
manager can tell his visitor in advance how much time he has available.

The manager's schedule should be based on the best overall distribution of
time. Typically, a systems manager may decide to spend 25 percent of his
time on communications with users and his own management, 35 percent in a
staff communications and work direction, and 40 percent in planning and
administration. Although the percentages will vary from time to time, they
should be used as a guide for preparing all other schedules. Significant devia­
tions are inadvisable.

In scheduling appointments and activities, the manager should use his
calendar as a tool to determine adherence to his overall plan of time distribu­
tion. This means that he must record the amount of time spent on activities
that were not scheduled in advance. If he does not attempt to compensate for
deviations from the schedule, he is probably neglecting some area of responsi­
bility. As much activity as possible should be scheduled in advance on a
weekly or biweekly basis. This means that the manager should spend from
five to fifteen minutes each day on mini-schedules, blocking out anticipated

SYSTEMS DEVELOPMENT MANAGER 5

activities on the calendar according to the exact times when they will begin
and end.

FUNCTIONS

First and foremost, the systems development manager is a manager-more
specifically, a manager of people, policies, and technical efforts. His func­
tions are within several general areas.

Policies. The systems development manager must enforce, and in many
cases define and implement, the following types of policies:

• Governmental (e.g., social security taxes)
• Organizational (e.g., expense account reporting)
• Departmental (e.g., personnel reviews)
• Project management and systems development methodology (e.g., sta­

tus review formats)
• Task level (e.g., program-naming conventions)

Policies are standing guidelines for the performance of management and
technical work. They represent the current views of the organization and the
systems manager(s) regarding how various work efforts are to be performed.

Policies save management work by eliminating endless explanation and
discussions of how relatively minor tasks should be accomplished. They
provide a basis for intelligent task clarification. Policies help avoid confusion
and open apparent ambiguities to discussion and resolution.

A manager should have firm ideas about the practices and priorities he
wishes to implement. They should be thoroughly reviewed before publication
and discussed with others to uncover possible misinterpretations and to help
gain their acceptance. Whenever a new policy is created, it must be compared
with previous ones to avoid contradiction. All new policies should be catego­
rized and indexed.

Policies have no meaning if they are not enforced. It is essential to disci­
pline those who fail to meet departmental standards. Even more important,
the manager himself must closely adhere to them.

The policies must be justifiable to the highest level of company manage­
ment if their support is to be expected when disciplinary action is taken
against policy offenders. In addition, it is most important to foster an environ­
ment in which policies and changes can be discussed freely and intelligently;
otherwise, workers and users may consider them a hindrance to productivity.

Performance Review. A periodic performance review and appraisal
should be conducted for each employee.

The principal deterrent to poor performance should be the employee's
awareness of his role in group success or failure. After providing direction,
the manager's role is to correct any behavior that detracts from good team
performance. When a worker does not adequately contribute to team output,

6 SYSTEMS DEVELOPMENT MANAGEMENT

the manager's immediate duty is to explain clearly the behavior required. If
this does not correct the problem, the manager must investigate the conse­
quences of removing the worker from the team or organization. If removal
from the team is not a viable alternative, or if, in the manager's judgment,
removal would be even more detrimental than allowing the worker to remain,
there is no option other than further explanation and instruction. If, however,
removal is considered a sound approach, the manager may wish to warn the
employee that if the fault is not corrected, he will be removed from the project
group. Beyond this, however, managers must be extremely careful about
making remarks that may be construed as either threats or promises. Credibil­
ity is a leader's strongest tool.

Arbitration of the Use of Technical Resources. The development man­
ager is the arbiter for technical resource use. He allocates machine time, data
preparation time, and specialist time among his projects and assigns and
reassigns priorities. He reviews project plans and estimates and decides what
revisions are necessary to avoid overlaps and overcommitment of resources.
Most important, he must reconcile requirements and desired resources, with
available funds.

Training. When the systems manager engages in design, development, or
programming, he is ignoring his responsibility as a manager. If others cannot
do the work as well as he can, he must teach them or provide them with a
means of education so that they can better perfonn.

All systems people want to improve their skills and increase their value to
the organization. A skills improvement program, fonnal and structured,
should be an integral part of every systems department. It should include
training of less-experienced people by senior technicians, including, if appli­
cable, the systems manager; cross-training in different activities; and outside
training through packaged products, lecturers, and seminars.

Not all training in the systems department should be technical. Because
systems are created based on user requirements, communication is an essen­
tial element in the development process. Training in oral and written commu­
nication skills should be made available at all levels.

Preparation and/or Review of Cost/Benefit Analyses. This process
should be conducted on the basis of known facts and limited to management
decisions either already made or within one's own power to make. The
present or previous cost of the function to be perfonned by the system can be
calculated. The positive benefits of the proposed system can be stated subjec­
tively.

Overseeing Project Management. Project management techniques
should be second nature to the systems development manager. Reporting the
amount of time spent on projects by team members falls within this function.
Time reporting is often more of a detriment to achievement than a benefit to

SYSTEMS DEVELOPMENT MANAGER 7

management. Reporting schemes often are so complicated that they waste
enonnous amounts of time just in their preparation and submission. Request­
ing employees to report very small time periods leads them to feel a lack of
management confidence in them and forces them to fabricate their reports.

Most time reporting systems have no tolerance for any activities other than
those directly related to development projects. Many systems also force re­
view at several supervisory levels. This necessitates earlier and earlier sub­
mission of time reports. It is ironic that many of the systems that require
reporting in one-hundredth-of-an-hour increments are the same ones that force
reporting as early as one and one-half days before the end of the period.
Systems development time can probably be reported most accurately in incre­
ments of one-half day or more.

Problem Solving. It is a fact that responding to problems consumes a
large portion of every systems manager's time. There are some common
approaches to problem solving that are more satisfactory than others and
pennit a systems manager more time to conduct his work without undue
pressure. The first of these is dealing with expected or suspected problems
quickly, for it is well known that problems intensify with age. One aid to early
awareness of problems is long-range planning. Thorough long-range planning
points up unaddressed areas in which problems are likely to occur or where,
historically, problems have occurred. When a potential problem is recog­
nized, the manager should quickly delegate all or part of its solution. Often,
time-consuming research or rework is required to solve problems. If these
activities are not delegated, the manager will soon face a problem backlog that
permits no time for any management activity other than addressing problems.

It is difficult to distinguish between potential problems and nonproblems.
Nonproblems are a series of symptoms or indicators that point to a discrep­
ancy or condition that simply does not exist. For example, a user becomes
agitated because a description of a required function in his system cannot be
found in the user manual. The function exists, but he has either missed the
section that describes it or the description is inadequate. These issues are as
serious to those who report them as are real problems and are equally deserv­
ing of respect and concern. They underscore, however, the need for research
and analysis to prevent a problem from becoming a crisis.

Any time an unsatisfactory condition is reported, the correct systems ap­
proach is to view it as the affected person views it. Primary emphasis should
be on how long it will take for a response or solution to be provided. The
affected person has little interest in who will solve the problem or how.

When approaching problems from a management standpoint, the emphasis
should be on who will solve the problem. Responsibility should be assigned to
an individual, and he should be asked to report on how the problem will be
solved. Creating a solution consists of devising a method, testing to determine
its feasibility, and then implementing the correction. Systems people should
be taught to solve problems calmly and quickly, responding to reported needs
rather than reacting to emotionally charged or chaotic situations. No one will

8 SYSTEMS DEVELOPMENT MANAGEMENT

insist that the manager personally solve their problem if he can persuade them
that he has delegated it to the best-qualified individual.

MODUS OPERANDI

The day-to-day actions of a systems development manager are particularly
important because inevitably there are crises that he must face with equanim­
ity. Following a routine can have a calming effect on development activities.
There are certain elements that should be included in the routine.

Supervision. Supervision should be casual but frequent. It is inappro­
priate to scrutinize the activities of professionals at a detailed level, but a close
management "presence" can be reassuring and reinforcing.

Supervision on a regular basis can be as simple as a brief visit and a few
words of encouragement. The first level of perfonnance evaluation should
occur at the time of assignment and completion of tasks. Employees should
set their own objectives, with management guidance. An employee in whom
the manager lacks confidence should be given shorter-term objectives. The
nature of systems and programming work is such that often the technician
himself has difficulty measuring his progress, and constantly asking him
about it can be confusing as well as aggravating.

Conducting and Attending Meetings. Many systems managers complain
bitterly that all of their time is consumed by nonproductive activities. They
spend their time in endless meetings with upper management and users. Their
administrative tasks are such a burden that no time is left for the technical
aspects of their job. They are firmly convinced that no relief is possible
because they have no choice but to answer their boss' demands. Furthermore,
they see their jobs as problem driven; just when they are about to get orga­
nized, another new crisis develops.

The development manager should schedule brief, regular meetings with
upper management to inform them of the latest achievements. It is important
to hold these meetings when things are going smoothly as well as when there
are problems. Users should be met with on a regular basis simply to ask if
work is progressing to their satisfaction and to inquire whether there is any­
thing further that can be done for them. This reinforces the image of service,
which is essential to systems development success.

When attending meetings conducted by others, the development manager
should indicate in advance how much time he can spare for them, and he
should arrive promptly. When diplomatically possible, he should leave meet­
ings when the allotted time has expired. Good personal time management is
an excellent example a manager can set for his subordinates.

Meetings should be carefully controlled, unless the manager and attendees
have spare time. If managers were to estimate the number of man-hours and
the attendant cost of each meeting before convening it, they would have far
fewer and smaller ones. Meetings should be brief, well organized (with an

SYSTEMS DEVELOPMENT MANAGER 9

agenda, of course), run firmly by the chainnan, and cancelled when they are
no longer necessary.

Reporting. Reporting can be a valuable management tool because reports
permit a manager to state problems and accomplishments objectively and with
the correct perspective. Reports should be developed in a predetennined
fonnat but should be flexible enough to state exceptions. They should have
sufficient continuity that if compiled, they would read as the history of a
development project or projects. It is obvious that the most readable reports
will be the most effective. The major points should always be summarized
briefly at the beginning because some readers have neither the time nor the
need to read all details.

PROBLEM AREAS

Coping with Design Change Requests. A rigid policy regarding re­
quested changes to systems designs is required for the systems development
manager to properly control this area. The only persons with whom specifica­
tions changes should be discussed are those with budget responsibility. There
is no such thing as a "free" system change because any change requires a
revision of system specifications. User management should be apprised of this
fact. In the case of a deletion, there may be an offsetting saving, but, nonethe­
less, the most insignificant changes still cost. Finn policies must also be
instituted regarding those from whom changes will be accepted, and a system
of fonnal proposals and acceptances should be developed.

Maintenance. Another problem area for systems development managers
is related to the undesirable tasks that must be perfonned in the course of
development work. One of these tasks is program maintenance. Maintenance
becomes a serious problem for managers when a programmer of long tenure is
assigned this responsibility. This senior person, of course, may be the only
person qualified to maintain his programs. It is conceivable that eventually he
could reach the point where he would no longer have time to do any develop­
ment work at all. This indicates a need for more maintainable programs and
better documentation-and, especially, a full-time maintenance function.

The need for such a function is obvious if talented individuals are to be
kept at high levels of productivity. The question is who will perfonn mainte­
nance. Maintenance can be used effectively as a training vehicle, but there is
the attendant risk of inexperienced hands working on the programs. Another
solution is to treat maintenance as a rotating assignment, delegating tasks
when they arise to alternate programmers. The difficulty is that maintenance
must also be scheduled according to programmer availability; this does not
always result in a fair distribution of these less desirable assignments.

Documentation. Closely related to maintenance is program documenta­
tion. The better the documentation is, the more easily a program can be
maintained. Primary program documentation is the commentary that the pro-

10 SYSTEMS DEVELOPMENT MANAGEMENT

grammer codes in the allocated spaces of his source statements. From these a
program narrative and flow chart can be prepared; these become the basis for
any further documents.

Two flaws that lead to poor documentation exist in this approach. First, the
comments written with the source code are detailed and infonnative when the
code is rough and new, but the corrections made in a frantic rush for comple­
tion bear either sketchy, minimal comments or none at all. Second, many
programmers are not good writers, and few enjoy writing. They view docu­
mentation as a necessaty evil to be finished as quickly as possible. Usually the
documents are not reviewed until someone needs them, and by then, the
author/programmer may not be available for explanation. The preceding
presents a strong case for the use of a technical writer in any development
group large enough to keep one occupied full time. The difference in the
quality of documents produced by one who enjoys writing and one who
despises it can be justification for such a position.

CONCLUSION

There is an emotional barrier to systems development that stems from
resistance to automation. This difficulty has always faced computer profes­
sionals, many of whom have become so callous to it they forget about it.
Nonetheless it exists and proliferates when tales are told of how computer
errors have caused one disaster or another. There is also the fear, of course, of
computers replacing people. This is another area where some systems devel­
opers must share the blame for their attempts at crude cost justifications,
based on jobs they predict can be eliminated.

These factors have contributed to the isolation of systems development
departments and their assignment as an outcast position that is detrimental
because the results of their work can only be successful if adopted by the
mainstream organization. Defensive development managers often not only
accept this isolation willingly but encourage it. They feel that if their group is
left alone they can accomplish more.

The systems development department, under the leadership of its manager,
must join and remain in the mainstream of the organization. Without availing
themselves of the opportunity to become as familiar as possible with the
character and special needs of the user, the developers cannot be responsive.
Without allowing the other'members of the organization to observe closely
systems under development, the developers are missing a wonderful opportu­
nity to promote system acceptance after installation.

BlbUoaraphy

Drucker, Peter F. Effective Executive. New York: Hatper & Row, 1967.

Mackenzie, R. Alec. The Time Trap. New York: American Management Association, 1972.

Stoner, James A. F. ManageIMnt. Englewood Cliffs NJ: Prentice-Hall, 1978.

~ Systems Development
Methodology
Packages by John Shackleton

INTRODUCTION

The methodological alternatives available when developing a software
system are to purchase a systems development methodology package or to
develop one's own methodology in-house. Often the home-grown methodol­
ogy is successful, as in certain large corporations.

The other alternative, using a vendor-supplied systems development meth­
odology package, requires asking certain questions regarding each package.
One question to keep in mind when evaluating a systems development meth­
odology package is whether it provides standardization in the development
process that allows management to accurately predict time and resource re­
quirements. One should also determine whether the package provides greater
user satisfaction and helps produce a better-quality product. In addition, it is
pertinent to consider whether the methodology can be understood and used
effectively by inexperienced personnel.

This chapter discusses the major considerations in selecting a systems
development methodology package and briefly describes certain packages
now on the market.

CONSIDERATIONS IN CHOOSING A SYSTEMS DEVELOPMENT
METHODOLOGY PACKAGE

One problem in choosing a systems development methodology package is
finding informative literature on the large number of packages available.
Many packages are listed in the Survey of CPM Scheduling Software Pack­
ages and Related Project Control Programs [1]. This reference manual
briefly discusses each package and provides vendor addresses. Three areas
should be considered when evaluating these packages:

• Organization
• Implementation considerations
• Total cost

Organization of the Package

The methodology should be structured with clearly defined life cycle
phases and tasks, with end-of-phase documentation generated as a by-product

12 SYSTEMS DEVELOPMENT MANAGEMENT

of each phase activity. The package should give clear examples of all major
deliverables and should state exactly the activities of each task and the level of
detail required.

Some methodologies break down tasks into minute detail in the hope that
inexperienced developers, by completing all the tasks, will produce a better
system. A highly detailed methodology requires a large amount of unneces­
sary paperwork, however, which usually results in a less usable methodology .
An average task should take from 10 to 50 man-hours to complete.

The package should provide automated tools or manual guidelines for
estimating development costs and time. There are a number of estimating
methods to choose from; one or more may be used in a particular package.
The formula for estimating can be based on the difficulty of each program, the
experience of the personnel available, and so on. The method may estimate
from the parts of the system to the whole, or it may use historical information
about similar projects. Since history has shown that most systems estimates
are too low, any technique capable of enlarging estimates should be en­
couraged. Estimates done at the detailed task level usually accomplish this.

To establish a basis for measuring the project's progress, the package
should provide automated tools or manual guidelines for assigning and sched­
uling resources. Scheduling can prove a major downfall for most project
managers. As systems become increasingly larger in scope and complexity,
an automated schedule becomes a necessity.

The package should be adaptable from small to large projects (or vice
versa). The analyst should be able to skip some steps on small projects. The
package should also be able to handle complex projects and should deal with
data base and data communications as well as batch projects.

The package should improve the quality of the system. There are a number
of questions to be asked regarding system qUality:

• How much will the methodology affect the system in terms of increas-
ing revenue, avoiding cost, or improving service?

• How easy, quick, and inexpensive is it to change the system?
• Will any future changes have a major impact on the existing system?
• Will the methodology provide reports or queries quickly and inexpen­

sively?
Most of the methodologies now on the market do provide many useful man­
agement reports that are easy and inexpensive to modify.

Automated Tools. Many methodologies (e.g., PRIDE-ASDM) have a
number of automated tools built into them. Others, like STRADIS, use other
vendor software packages (e.g., mM's DATAMANAGER). Virtually all
vendors have plans for some sort of automated tool. Some of the automated
tools that are or will be available are:

• Project planning/estimating package
• Project control/reporting package
• Data dictionary
• Data base design aid

METHODOLOGY PACKAGES 13

• Systems design aid
• Graphics support software for documentation
• Test processing for documentation

Implementation Considerations

It appears that most packages take longer to successfully implement than
vendors state. Vendor estimates of implementation time range from three
weeks to six months. User experience, however, indicates that the implemen­
tation often takes from two to three years. Before implementing a package, it
is crucial that management have a schedule for making the change. Since most
packages require extensive user tailoring, the extent of tailoring should be
agreed upon by top management before implementation begins.

Probably the most important factor in successful implementation is proper
training. Vendor training varies from one day to six months, with varying
degrees of success. Training should include management, users, and the
technical staff. The training should cover all aspects of the project cycle and
utilize case studies.

Most successful implementations begin with a small- to medium-sized
pilot project, carried out by the best and most experienced staff members
available. The results of each phase in the pilot project should be carefully
documented and the final results presented to top management. After neces­
sary modifications have been made to the package, it should be used on all
future systems development projects.

Total Cost

In addition to the cost of the vendor package itself, a number of incidental
costs are usually incurred when purchasing a systems development package
(e.g., certain customizing, training, and consulting costs). Initial use of a
package also usually incurs a cost increase because of the learning curve.
Because some packages require extensive documentation, cost increases may
be permanent.

SYSTEMS DEVELOPMENT METHODOLOGY PACKAGES

The following are descriptions of the more popular vendor-supplied meth­
odology packages. It should be noted that the source for the number of users
of each package is the vendor.

CARA Systems Development Standards

The fundamental philosophy behind the development of CARA Systems
Development Standards is to keep the standards as simple as possible. The
methodology, developed at Kraft Incorporated in 1977, now has approxi­
mately 100 users.

14 SYSTEMS DEVELOPMENT MANAGEMENT

The systems development standards consist of three publications: the refer­
ence card, the handbook, and the reference manual. These are organized to
facilitate cross-referencing.

The reference card provides an overview of the systems development life
cycle by identifying phases, costs, activities, and review and decision points.
It also serves as an index for the handbook and the reference manual. The card
is very helpful to experienced users of CARA as a checklist to ensure that all
aspects of the development cycle have been covered.

The handbook describes in detail the activities to be done, the documenta­
tion that should be produced, and the deliverables to be expected at the
completion of each phase. The handbook also identifies the person(s) respon­
sible for each task within the various phases.

The reference manual explains how to organize phases and perform the
various tasks within the systems development life cycle.

The CARA systems development life cycle has five phases:
• Feasibility study
• Systems design
• Programming and procedures
• Systems acceptance
• Implementation and support

Each phase is further divided into tasks and subtasks that define the partici­
pants in each activity and the documentation that should be produced with
each task. Nonetheless, the methodology does not drown the technical user in
unnecessary paperwork; 13 documentation forms are considered essential for
a project.

Profitable Information by Design (PRIDE) Automated Systems
Design Methodology (ASDM)

PRIDE-ASDM, developed and marketed by M. Bryce and Associates, of
Cincinnati, is one of the older and more integrated packages available. It
encompasses project management, data management, structured analysis and
design methods, and documentation. There are currently about 1,000 PRIDE
users, 30 percent of whom use the fully integrated PRIDE-ASDM package.

The PRIDE-ASDM development cycle is divided into nine phases:
• System study and evaluation
• System design
• Subsystem design
• Computer procedure design
• Program design
• Computer procedure test
• System test
• System operation
• System audit

METHODOLOGY PACKAGES 15

Each of the phases produces specific documentation that acts as defined
benchmarks throughout the methodology. A manual included with the soft­
ware package provides examples of all major deliverables.

The ASDM portion of the integrated package consists of an Information
Resource Manager (IRM) and an Automated Design Facility (ADF). The
IRM is the nucleus of the software package and contains the system's data and
organizational components-just like a data dictionary. Unlike a traditional
data dictionary, however, IRM presents data in a business systems orientation
rather than in a DP programming orientation. The IRM can keep track of data
throughout a system, no matter how or where it is stored. IRM also provides
important management reports for evaluating project status and perfonnance.
ADF acts as a computer-aided design tool that the analyst can use during the
analysis and design phases.

PRIDE-ASDM also automatically generates systems documentation as a
by-product of the analysis and design efforts. The documentation includes
design manuals, user manuals, computer run books, and various project activ­
ity reports.

Systems Development Methodology (SDM/70) Project Planning
and Control System (PC/70)

SDM/70. Developed by Atlantic Software of Philadelphia, SDM170 is
also one of the older systems development packages. It now has approxi­
mately 300 users.

SDM170 consists of nine manuals:
• Summary guidelines
• System requirements definition
• System design alternatives
• System external specifications
• System internal specifications
• Program development testing
• Conversion/Implementation
• Other supporting guidelines
• Estimating guidelines

The manuals provide a step-by-step detailed description of all tasks to be
completed within a phase.

In addition to the nine manuals dealing with the systems development life
cycle, a number of management manuals provide management with an under­
standing of the system and also offer procedures for managing the installation
of SDMI70.

The SDM170 development life cycle is divided into nine phases:
• Service request
• System requirements definition
• System design objectives
• System external specifications
• System internal specifications

16 SYSTEMS DEVELOPMENT MANAGEMENT

• ~gr.anurrring documentation
• System testing and integration
• User/Operations guides
• Post-implementation review

Each phase has specific documentation produced as tasks are completed
within a phase. Each task has one or more forms that must be completed to
provide proof of completion.

peno. Atlantic Software developed this automated planning control sys­
tem for use in conjunction with SDM170 or as a standalone software package.
PC170 currently has approximately 560 users. It provides a number of report
options to assist managers in planning and scheduling (e.g., manpower avail­
ability reports, CPM project scheduling bar charts, and resource planning
reports). It also generates reports for controlling performance, project moni­
toring, time and cost accounting, and measurement and evaluation. The re­
ports are aimed at a number of audiences, namely top management, informa­
tion systems managers, and users and technical personnel.

SPECTRUM-1

SPECTRUM-I, developed by Toellner and Associates, of Los Angeles, is
another older package. There are approximately 200 users. The system devel­
opment life cycle is divided into three phases that are further divided into 13
subphases, as follows:

• Phase I-Systems definition
-Master systems plan
-User requirements
-Systems definition
-Advisability study

• Phase 2-Systems design
-Preliminary design
-Systems/Subsystems design
-~grarn design
- Progr.anurrring/Testing

• Phase 3-Systems implementation
-Implementation planning
-System test
-Operations turnover
-Start-up/Training
-AcceptancefVVrap-up

The materials provided in the SPECTRUM-I package are substantial (30
manuals). They consist of long-range planning procedures, systems develop­
ment guidelines, project planning and control guidelines, documentation stan­
dards, and change control guidelines.

With SPECTRUM-I, much emphasis is placed on the implementation of
the package. Toellner and Associates firmly believes that vendor packages
require substantial tailoring to individual requirements to obtain maximum

METHODOLOGY PACKAGES 17

benefit from the methodology. As part of the SPECTRUM-1 implementation,
from one to six months are allotted to tailor all manuals to individual needs.
There is also extensive training for executive management, user management,
and technical users, as well as training in estimating, scheduling, and quality
review. Toellner and Associates strongly recommends introducing
SPECTRUM-1 through a pilot project, after which all new projects would use
the methodology.

Structured Analysis, Design and Implementation of Information
Systems (STRADIS)

STRADIS was an outgrowth of Gane and Sarson's (Improved Systems
Technologies Incorporated) Structured Systems Analysis. Analysts should be
familiar with Gane and Sarson's Structured Systems Analysis techniques in
order to use STRADIS effectively. One of the most recent methodologies to
appear on the market, it has approximately 25 users. Like CARA, STRADIS
was designed to keep systems development simple and to hold documentation
to a minimum.

STRADIS has seven major deliverables:
• Initial study report
• Detailed study report
• Draft requirements statement
• Total requirements statement
• Outline physical design
• Design statement
• Tested code· and procedures manual

The STRADIS package consists of a standards and procedures manual,
seminar workshops, a reference card, and a number of wall charts and mem­
ory aids. It also includes a reference library of 16 books that address a number
of topics (e.g., data base design, structured analysis).

The systems development life cycle is represented in STRADIS by a data
flow diagram in which analysts and users can clearly identify the project
activities. The data flows from process to process, identifying the documenta­
tion for each phase.

EVALUATION CHART

The evaluation chart shown in Table 2-1 can be used as a quick reference
to evaluate the packages discussed in this chapter. The evaluation scores were
based on a survey of 100 systems development methodology package users
that was conducted by Advanced Systems Incorporated. The conclusions
drawn from the survey are intended as a guide to aid prospective users in
selecting vendor packages and not as an absolute measure of the quality of any
particular vendor product. The items listed on the chart are those factors that
should be considered in selecting any vendor systems development package.
The questionnaire has been included in the Appendix.

18 SYSTEMS DEVELOPMENT MANAGEMENT

Table 2·1. Systems Development Methodology Package Evaluation Chart

Methodology

CARA

PRIDE-ASDM

SDM/70-PC170
SPECTRUM-1

STRADIS

Systems
Development

Cost of
Bene- Package·

Charactertistics Use Characteristics fits $

2 3 2 2 2
44443
4 4 4 3 3
5 4 3 2 3
3 3 3 2 3

544 2 3 4 3 3 3 3
343 4 4 3 4 4 4 2
232 3 3 2 4 4 3 2
2 3 3 2 3 4 4 4 3 3
4 4 4 2 443 2 3 3

28,000
74,000
70,000
50,000
30,000

Legend:
5 = High
1 = Low

• Approximate average cost

The chart divides each vendor package into four major components:
• Systems development characteristics
• Use characteristics
• Benefits
• Cost

Systems Development Characteristics. The vendor packages are evalu­
ated from their technical aspect, which is divided into five sections:

• Phased deliverables-Is the systems development life cycle clearly di­
vided into predefined phases, with major documentation deliverables
for each phase?

• Checklist of tasks-Are all tasks within a phase clearly identified and
defined?

• Scheduling guidelines-Does the methodology or tool assist in manag­
ing time and resources? Does it identify project progress or slippage?

• Estimating guidelines-Does the methodology or tool provide a step­
by-step description of the estimating process for all phases of the
systems development life cycle?

• Quality control-Are there effective quality assurance reviews with
guidelines built into the methodology or tool for use at appropriate
times within the systems development life cycle?

Use Characteristics. The vendor packages are evaluated based on eight
aspects of use:

METHODOLOGY PACKAGES 19

• Understandability-How easily can someone unfamiliar with the meth­
odology or tool understand its results?

• Manageability-How easy is the methodology or tool to manage and
control?

• Transferability-How easily can the methodology or tool be taught to
someone unfamiliar with it?

• Automated tools-Does the package have automated tools (e.g., graph­
ics software support or text documentation) that can easily be obtained
and applied to aid in the use of the methodology or tool?

• End-User impact-Is the output from the methodology or tool easily
understandable by nontechnical end users? To what extent do users
interface with the development cycle?

• Flexibility of use-How easy is it to tailor the package to existing or
future internal standards?

• Flexibility of range-To what degree is the package applicable to sim­
ple to complex applications?

• Extent of use-How widely is the package currently used?

Benefits. Two types of benefits are evaluated:
• Life cycle benefits-Does the methodology or tool reduce development

time and improve the quality of the system?
• Savings-Does the methodology or tool reduce the cost of system de­

velopment?

Cost of Package. This figure represents the total package cost, including
installation but excluding consulting fees.

CONCLUSION

To obtain maximum benefits from a package, the following steps should
be followed:

• After obtaining top management's commitment, a strategy for changing
the package should be designed.

• The methodology should be tailored to the organization's standards and
requirements.

• Management, users, and technical personnel who are involved in the
initial system should be trained.

• The new methodology should be introduced on a small or medium pilot
project, using the best available people.

• Both success and problems should be monitored and documented as
development progresses.

• The preceding five steps should be reiterated until the package is fully
implemented.

Vendor packages that bring standardization to the complex problems of sys­
tems development can be very helpful.

Reference

1. Project Management Institute. Survey of CPM Scheduling Software Packages and Related Project Control Programs, 2d ed.
Drexel Hill PA: Project Management Institute, 1980.

20 SYSTEMS DEVELOPMENT MANAGEMENT

APPENDIX

ASI Questionnaire: Evaluating Systems Development Tools and
Methodologies

1. What methodology (e.g., SDMI70, SPECTRUM-I) do you use?

2. Whattools (e.g., PCnO) do you use?

Please complete one set of questions for each tool or methodology used in your
environment.

How detailed is the methodology or tool (i.e., how many man-hours are
required, on the average, for the smallest task)?

Less than I hour
1-10 hours
10-50 hours (one man-week)
50-100 hours
More than 200 hours (one man-month)

Other comments:

()
()
()
()
()

How flexible is the methodology or tool (i.e., the span of simple-to-complex
application to which the methodology or tool can be usefully applied)?

Can be used on (check all applicable boxes):

Very simple applications
Simple applications
Average applications
Complex applications
Very complex applications

Other comments:

()
()
()
()
()

Does the methodology or tool enhance the quality of the project or system in
terms of:

1. Ease of use-Does the system meet user needs, or will it be sabotaged?
2. Reliability-How often/for how long does the system go down (i.e., how

many/how serious are the software bugs when it is turned over to produc­
tion)?

3. Changeability-How easy, quick, and inexpensive is it to change the
software or the data base yet still retain a working system?

METHODOLOGY PACKAGES 21

4. Perfonnance-Does the system provide reports/queries with acceptable
response/speed at acceptable cost?

All four components are built into activities and deliverables. (
Methodology or tool makes some contribution to quality. (
Methodology or tool is not concerned with system quality. (

Other comments:

Does the methodology or tool provide realistic examples of deliverables (e.g.,
design documentation)?

Every deliverable defined is supported with an example. ()
Major deliverables have examples. ()
Deliverables are defmed but have no examples. ()
Deliverables are not defined. ()

Other comments:

Does the methodology make doing projects easier or harder (i.e., do the
benefits of standardization and control cost anything)?

No cost

Not sure
Some cost

Severe cost

Other comments:

Project is much easier with methodology than
without.

Project is slightly easier with methodology
than without.

Maybe some cost.
Project is slightly harder with methodology

than without.
Much more work required to do projects with

the methodology.

Which approach is taken by the methodology or tool?

Formula for cost per program.
Estimate parts, combine to get whole.
Historical information about similar projects.
Similar projects.
Methodology says nothing about estimation.

()

()

()
()

()

()
()
()
()
()

In your opinion, how realistic is the estimation approach taken by the methodol­
ogyortool?

22 SYSTEMS DEVELOPMENT MANAGEMENT

Very realistic and usable
Okay if used by an experienced project manager
Fine in theory but not useful in our shop

Other comments:

()
()
()

To what extent does the methodology encourage the use of the following
structured methodologies: structured analysis, structured design, structured
programming, structured walkthroughs, and top-down development?

Use of all five is mandatory .
Encoumges use but not mandatory.
Supports some methodologies.
Says nothing about structured techniques.

()
()
()
()

To what extent is project/system documentation produced as a by-product or
integral part of necessary project work or produced in addition to project work
or after the fact?

Completely a by-product
Mainly a by-product
Some by-product, some after the fact
Mainly after the fact
Completely after the fact

Other comments:

What tmining is provided by vendor?

One to four weeks in-house
Four to eight weeks in-house
More than nine weeks in-house
Other:

How easy to learn is the methodology or tool?

Very easy
Easy
Avemge
Difficult
Very difficult

How adequate is the tmining provided?

Adequate
Acceptable

()
()
()
()
()

()
()
()
()

()
()
()
()
()

()
()

METHODOLOGY PACKAGES

Poor
Nonexistent

Other comments:

How long did the methodology take to implement?

Less than six months
Less than one year
Less than two years
More than two years

Other comments:

)
)

()
()
()
()

What automated tools are available to support the methodology?

From Vendor
Announced Delivered

Project () ()
planning/estimating
package

Project () ()
control/event-time
reporting package

Data dictionary () ()
Graphics support software () ()

for documentation
Data design aid () ()
Text processing for () ()

documentation

Other comments:

Estimate the total cost of installing the methodology .

Cost of documentation packages
Customization by vendor
Customization by your staff
Training-vendor costs
Training by your staff (time, travel)
Consulting-vendor
Other-costs

Other comments:

From
Other Vendor

()

()

()
()

()
()

What do you feel is the most desirable aspect of the tool or methodology?

What do you feel is the least desirable aspect of the tool or methodology?

23

@ Performance Appraisal of
Project Managers by Norman Carter

INTRODUCTION

Appraisal of a project manager's contribution to the development of his
staff and to the quality of production is often overlooked by management.
Some supervisors apparently feel that a raise and an occasional pat on the back
obviate the need for formal evaluation. This attitude, however, can greatly
contribute to employee discontent and high turnover.

Companies that conduct regular feedback interviews six months after em­
ployees leave have found that lack of effective performance appraisal ranks
high on the list of reasons for leaving. In many cases, it is more important
than the financial motivation so often discussed at the time of leaving. If lack
of effective performance appraisal is indeed a major reason for employee
turnover, there are straightfolWard ways to attack the problem.

There is another reason for conducting regular, formal performance ap­
praisal of project managers: both the Equal Employment Opportunity Com­
mission (EEOC) and Affirmative Action (AA) require that a company be able
to demonstrate a direct and traceable relationship between a job description,
performance criteria for the job, appraisal of performance against the descrip­
tion and criteria, and direct involvement of the individual in setting, monitor­
ing, and measuring objectives.

Objectives of Performance Appraisal

The primary objectives of performance appraisal are to:
• Review employee progress in terms directly related to the organization

and to the individual's job family and position.
• Review and establish measurable performance goals for the next given

time period.
• Design objectives, action plans, and training curricula for each individ-

ual for current and future job responsibilities.
Note that justification for a requested salary increase is not among these
objectives. In fact, a combined performance and compensation appraisal de­
tracts from the objectivity of the performance evaluation (unless, as described
under Weighted Performance Goals, the two are inextricably bound); the

26 SYSTEMS DEVELOPMENT MANAGEMENT

functional manager may find that he must make unsupported statements or
statements that do not reflect a consistent view of the individual's contribution
to the department in order to support a requested increase.

Performance appraisal provides the framework within which the growth of
an employee can be evaluated independently of the availability of money to
compensate that individual. In fact, consistent appraisals are one lever a
functional manager can use to correct salary grades or ranges with the com­
pensation manager. Once-a-year fudged performance appraisals make correc­
tion of salary inequities almost impossible.

Performance appraisal can also be used for mutual discussion of the profes­
sional and technical achievements of the project manager. Performance objec­
tives can be negotiated, thus avoiding unilateral goal setting by the manager.

As part of management's responsibility to project manager development,
there must be a willingness to set objectives that permit the project manager
maximum freedom to accomplish the job through project team members. This
might entail creating different work schedules, changing processes or proce­
dures (with good reason), and/or establishing specific objectives and rewards
to encourage improved performance or productivity. In as many ways as
possible, the manager must view and appraise the project managers and teams
as proprietors of their businesses. This requires the manager to generate a high
degree of confidence to the project manager as well as constant and consistent
coaching.

Managers as Coaches Rather Than Umpires

The role of a manager can be likened to that of the coach of a team. Each
player (or project manager) is taught what to do and how to do it under normal
circumstances. As the game proceeds, the coach makes minor adjustments. A
coach who does not modify the game plan in response to the play is usually
neither respected by his players nor successful in developing or maintaining a
winning team.

At the same time, a player is responsible for calling a time-out to discuss a
situation observed on the field so that the coach can offer further assistance. In
this sense, the success of the team is as important as the success of each
individual.

Performance appraisal involves the functional manager in the coaching or
counseling of project managers in their overall development rather than just as
an umpire dealing with disputes and disruptions. It also involves evaluation of
a project manager's coaching and counseling of project team members.

TYPES OF PERFORMANCE APPRAISAL

Performance appraisal usually is viewed as a single activity: sit down, fill
out the form, conduct a cursory everything-is-all-right discussion, sign the
form, and get back to work. It is not as simple as that, however.

PERFORMANCE APPRAISAL 27

Employees traditionally fall into three categories:
• High perfonners with high potential
• Average perfonners
• Marginal perfonners

All three types of perfonnance can be observed in project managers.

When evaluating a project manager, it is necessary to differentiate between
technical capability, skill, and perfonnance and managerial skill and perfonn­
ance. Specific attention to marginal aspects of the job must be evaluated. For
example:

• Is the project manager effectively interpreting user and senior manage­
ment requirements so that objectives for himself and his staff can be
properly set?

• Is he capable of recognizing when a perfonnance requirement cannot be
attained?

• Is he spending enough time training and counseling project members?
If the functional manager observes that managing skill is deficient, he must
ask:

• Is the cause lack of knowledge that can be gained through training?
• Is the cause lack of direction from management?
• Is poor time utilization by the individual creating an imbalance between

technical and supervisory perfonnance?
The evaluator should prepare differently for appraisals in each perfonnance
category to provide maximum benefit to the project manager and to the
company.

The high perfonner should, of course, be expected to accomplish more
than the low perfonner and also to perfonn more job-related self-development
activities outside of work. A low perfonner, however, who is to be separated
from the company, may be on the job longer than expected while a replace­
ment is obtained. It may be best to remove this type of project manager from a
position of responsibility. No training activities should be scheduled for this
individual. See Figure 3-1 for a breakdown of perfonnance/training activity
requirements.

~
High Performer Average Performer Marginal Performer

Cate 0 Training 9 ry Ready Future Short Plan Long Plan Keep Sepa,a'e
Activity

Self.clevelopment High High Above Average Low None
average expected

Clauesl To round out Key Subjects for Next reqUired Selective skill for
To maintain skill wolkahopll knowledge next position missing skills ad'vancemenl

•• mlna,.

To supplement To prepare for
To maintain

Coachlng/eounNllng Intensive IntenSIVe To maintain skill mimmumskill
skills advancement until separation

Involvement In other
High High Some As Available Minimum company activit ...

Figure 3-1. PerformancelTraining Activity Requirements

28 SYSTEMS DEVELOPMENT MANAGEMENT

PREPARING FOR THE PERFORMANCE APPRAISAL

An effective perfonnance appraisal is a most demanding and rewarding
activity, but it requires time-which managers often claim they lack for such
appraisals. Time can always be found, however, to interview new hires, to
correct work if employee objectives have been poorly set, or to provide
training when lack of knowledge causes errors. Often, more time is required
to correct a performance problem than to conduct an appraisal, set objectives,
and help the employee understand them. Preparing and conducting a thor­
ough, effective performance appraisal should take less than five hours per
person.

Review and Evaluation of Performance. This step involves gathering the
tools for appraisal, reviewing objectives and accomplishments, considering
why things were or were not done as agreed, reviewing the project manager's
overall performance, and identifying the individual's strengths and
weaknesses. This crucial preparatory activity should take from one to one and
one-half hours per person.

Discussion. After the manager and the project manager have prepared for
the evaluation, perfonnance, productivity, and continuing objectives should
be discussed. This should also take from one to one and one-half hours per
person.

Negotiation. If perfonnance evaluation is done consistently and at logical
checkpoints throughout the year, differences of opinion should be minimal.
Several discussions may be necessary, however, to reach mutually agreeable
perfonnance objectives. These discussions may require two meetings of about
an hour each.

Completion. Completing and submitting all paperwork in accordance
with company procedures should take about 15 minutes.

The Tools

The types of tools discussed in the following sections facilitate perform­
ance appraisal.

Standard Forms and Procedures. If standard forms and procedures have
not been specified by the company, they should be developed and used
consistently. This requirement becomes increasingly important as EEOC and
AA continue to expand their roles as protectors of employee rights. Standard­
ization also helps avoid government audits that occur when individuals feel
that varying standards are being applied.

Position Descriptions. The project manager job description should be
written in specific terms detailing what is to be done and how, in addition to
providing broad statements of responsibility and authority.

PERFORMANCE APPRAISAL 29

Job Standards. Job standards and tools should describe project require­
ments, system development standards and guidelines, departmental standards
and policies, and pertinent company policies and procedures.

Assignments/Results. The objectives for the period should be available
for review, as should a list of assignments that may have facilitated or im­
peded achievement of the objectives.

Previous Appraisals. Several prior appraisals should be available for re­
view to help detect such trends as failure to meet objectives or exceeding
objectives frequently.

Setting the Meeting Date

To ensure that both parties are effectively prepared, the project manager
should receive copies of the performance evaluation forms and instructions at
least one week before the discussion date. If special or additional goals have
been included, they should be reviewed and communicated to the project
manager at this time (preferably in writing). Self-assessment aids can also be
made available at this time for the individual to use, if desired.

THE PERFORMANCE APPRAISAL DISCUSSION

At best, performance appraisal begins as a stressful interview. The partici­
pants bring different expectations. Until it is understooq that their differences
are professional and not personal, that compromise need not be all on one
side, and that effective negotiation is a sign of professional maturity, the
discussion will achieve less than optimal results. The following suggestions
should help alleviate the threatening aspects of the discussion.

The Environment. Do not conduct the discussion in a noisy environment
or with other people present. For example, do not hold it in a restaurant where
customers and serving make communication difficult. (In addition, it is diffi­
cult to enjoy a meal under the constraints of such a critical activity as perform­
ance appraisal.)

The best setting is a neutral environment (e.g., a conference room) where
both parties can come from behind their desks. In addition, try to ensure that
the discussion is not interrupted; telephone calls should not be taken by either
person during the discussion. Behaviorists state that each time a discussion is
interrupted, regaining the concentration and flow that existed before the inter­
ruption takes between five and ten minutes.

The atmosphere should be as comfortable as possible. If the atmosphere of
the department is shirt sleeve, keep it that way. Do not set up artificially
formal barriers. Have some liquid (coffee, soft drink, water) available.

The Discussion. The process must be a discussion, not a monologue.
Both parties, but especially the manager, should practice active listening

30 SYSTEMS DEVELOPMENT MANAGEMENT

techniques. Notes should be taken and, whenever necessary, read back so that
both parties understand and agree on what has been discussed.

Negotiating. When differences of opinion on perfonnance arise, the man­
ager should be prepared to use conflict resolution skills. Resolutions must be
within the scope of and consistent with the perfonnance appraisal tools men­
tioned earlier. Agreements reached outside these constraints, unless carefully
documented and well understood, often lead to additional conflict. They are,
therefore, self-defeating as a means of improving perfonnance.

Legal Requirements

Although all of the EEOC rulings and AA requirements cannot be detailed
in this chapter, the following points should not be overlooked:

• Compliance with the laws is compulsory, not voluntary.
• Intent to follow the laws is not sufficient.
• Documentation of appropriate procedures and policies is required in

case of audit.
• The responsible organizations have stated that audits of compliance

will be conducted more frequently than in the past.
Not only do these points apply to the perfonnance appraisal of a project
manager but, as will become clear in the next section, a project manager must
understand and abide by these requirements.

Goal Setting

Two types of objectives setting are required for perfonnance evaluation:
qualitative and quantitative.

Qualitative Goals. Too often, all of the established goals are qualitative
and include such statements as:

• Will maintain a level of production consistent with the average
achieved by other project managers

• Will comply with procedures established by management

Although some qualitative goals can be beneficial, they should be ex­
pressed in concrete tenns so that the individual understands exactly what is
expected. For example, more explicit qualitative goals might be:

• To conduct a workshop with project personnel, within one week of the
beginning of a project phase, on the system standards to be applied
during that phase. The project manager will report to management (in
writing) the date on which the workshop occurred.

• To understand and ensure compliance by all assigned project personnel
with company attendance reporting requirements.

Qualitative goals should be kept to the minimum consistent with the assump­
tion that the employee knows the general requirements of the company and his
job.

PERFORMANCE APPRAISAL 31

Quantitative Goals. As much as possible, perfonnance goals should be
quantitative and restricted to an attainable number, generally between three
and five. With more than five goals, activity and accomplishment tend to
become too diffuse and judgment imprecise. Spreading fewer than three goals
over a similar period of time tends to make recalling sufficient detail difficult.

At a minimum, a quantitative goal should include the following elements:
• A description of the task to be done
• A definition of the standard to be used
• A breakdown of the task into deliverable items and the standard for

each; for example:
To list the eight laws and executive orders that govern EEOC and AA
compliance requirements. Within six months the project manager
will report to management that the project is in compliance.

• A statement of the value to the individual in meeting the goal; for
example:

Completion of this objective will be valued at 20 percent of the next
appraisal. Failure to complete the project within six months may be
considered cause for relieving the project manager of his supervisory
responsibilities.
(Note that the reason for the significant penalty in this example is the
exposure of the company to legal action if compliance with EEOC
and AA regulations is not achieved.)

With project manager objectives, those variables that may cause failure to
meet goals must be carefully identified; otherwise, the tendency is to blame
something or someone else for the unmet objective. References to signed
approvals, accepted specifications, and individuals who must sign off on
perfonnance are more necessary at this level than at most others. The project
manager should be expected to identify many of these constraints.

JUDGING REWARDS AND PENALTIES

An effective challenge to individuals to improve their perfonnance requires
rewards and penalties. Often, the reward is more money and the penalty less,
with a range of 3 to 6 percent. In view of today's economy, this may not be
sufficient motivation. Rewards not exclusively tied to money should be used.

Weighted Performance Goals. Once agreed-upon objectives are ac­
cepted as the normal, expected perfonnance, the effect of other-than-normal
perfonnance can be judged. Weighted goals, which define other than standard
perfonnance, can be expressed as follows:

• The objective is to complete the project on the schedule described and
within a budget of $X, over which you have control. Upon completion,
your perfonnance reward will be:
-On schedule, below budget = normal increase + 10% of budget

saved
-Before schedule, below budget = normal increase + 25% of budget

saved

32 SYSTEMS DEVELOPMENT MANAGEMENT

-After schedule or over budget = no increase
• The objective is to implement the XYZ software package successfully

and in accordance with the vendor's contract terms and planned sched­
ule and to achieve a level of user satisfaction so that fewer than four
complaints will be received by management in the first three months of
operation.
-Should this occur, 50 percent of your performance award will be

earned.
-If the schedule is missed by more than one month or if user com­

plaints exceed four in that period, the performance award will be
decreased to 35 percent.

-If the schedule is missed by more than three months or if complaints
exceed 10 in that period, the goal will be considered unmet.

These examples show that while weighted goals expedite quantification of
rewards, they require considerable thought, precise definition, and tough­
minded enforcement. In most cases, however, a demanding atmosphere,
coupled with fair and firm goal setting and evaluation, benefits the individual
and the company.

Additional Techniques

Three additional techniques can be used to make performance appraisal
more effective. Totem poling, tie breaking, and ranking aid in weighing
individuals against each other; these techniques are perhaps most beneficial in
situations where resources and opportunities are limited.

Totem Poling. Totem poling is the listing of all employees in order of
performance, top to bottom. The totem pole is constructed from the manag­
er's empirical judgment and is then refined by the performance appraisals.
Inconsistencies in judgment at appraisal time are minimized since the person
constructing the totem pole must ask:

Why have I placed this project manager in this position? Is this placement
consistent with the performance appraisal mting?

Tie Breaking. Some form of tie breaking is required when two or more
project managers seem to have identical ratings and only one can be selected
for advancement. Pertinent rating questions can be developed, with the value
of each determined on a basis acceptable· to all managers involved in the
selection process. Figure 3-2 shows the kinds of questions and value ratings
that can be created.

With this tie-breaking technique, each individual is rated and the score is
calculated by multiplying the numeric value of the answer by the value rating
and then adding all rated items. The result can be used as one input to help
break a tie.

Ranking. Totem poles of all project managers in an organization (or de­
partment) can be combined for similar job families or project groups. Using a
master ranking list, management can:

PERFORMANCE APPRAISAL

Individual Rating

1. Demonstrated ability to bring projects in on time and
within budget (± 5%)

~ Usually better £ As planned 1 Usually misses

2. Adherence to SDLC process, stated guidelines, project
Qob procedure)

~ Always g Satisfactory 1 Fails to comply

3. Effective user relationships (does not require manager
intervention)

~ Fewer than two complaints/yr g Three to five
complaints 1 More than six complaints

4. Quality production

~ Consistently above standard £ Meets standard
1 Below standard

5. Quantity Production

Value Rating

x 3

x 1

x 3

x 2

~ Consistently above standard g Meets standard x 2
1 Below standard

6. Meeting agreed-upon objectives

;l Usually betters performance g Meets at least 2 x 1
out of 3 1 Rarely meets

7. Making creative input outside of assigned project area

~ Often (2 to 3 times/yr) g Sometimes (1/yr)
1 Rarely

8. Applies training received, when back on job

~ Always g Sometimes 1 Rarely

9. Consistency and accuracy of project planning and
estimating

~ Plan always met (barring outside intervention)
2 Plan "met 80% of time 1 Plan met less than
- 50% of the time

10. Knows and actively supports management objectives

~ Always £ Usually 1 Rarely

Figure 3-2. Typical Tie-Breaking Questions

x 1

x 1

x 3

x 2

33

• Identify evaluation inconsistencies among departments or managers
• Identify candidates:

-For advancement
-For evaluation of low performance
-Who are expected to change ranking position during the next 12 to 24

months

34 SYSTEMS DEVELOPMENT MANAGEMENT

PERFORMANCE EVALUATION AND PLANNING PROCEDURES

Each project manager's job performance should be evaluated regularly.
This evaluation becomes part of the project manager's personnel records and
is a factor in compensation, promotion, training, transfer, and termination.
The forms shown in Figures 3-3 through 3-13 can be used in preparing for and
conducting performance evaluations.

PERFORMANCE PLANNING JOB STANDARDS

FOR (EMPLOYEE) DATE

JOB TITLE SUPERVISOR

Here are the job standards we will use to evaluate your performance at your
next performance appraisal in (Month, Year).

They are in order of their importance.

EMPLOYEE INITIAL SUPERVISOR INITIAL

Figure 3-3. Performance Planning Worksheet: Job Standards

PERFORMANCE PLANNING SPECIFIC OBJECTIVES

FOR (EMPLOYEE) DATE

JOB TITLE SUPERVISOR

Here are the specific objectives we will use to measure your performance at
your next performance appraisal in (Month, Year).

They are in order of their importance. c SPECIFICOBJECTIVE~J

__ ~ 7-,"",,~

EMPLOYEE INITIAL SUPERVISOR INITIAL

Figure 3-4. Performance Planning Worksheet: Specific Objectives

PERFORMANCE APPRAISAL

PERFORMANCE PLANNING COMMON PERFORMANCE FACTORS

FOR (EMPLOYEE) I DATE I
JOB TITLE I SUPERVISOR j
We will consider the common performance factors checked here In monitoring and evaluating
your Job performance. These will be conSidered In addition to. not a replacement for. Job standards
and objectives.

(NOTE: Only check the most important factors. Use the comment section to further explain level of
performance expected and the relatiYe Importance of each to overall performance on the Job)

COMMENTS
D QUALITY - of finished work regardless of amount completed

Accuracy. neatness. thoroughness.

o QUANTITY - am~unt of satisfactory work completed. Volume
of output. speed In completing assignments.

o TIME MANAGEMENT - meeting deadlines. UtilIZing time el-
fectively for maximum output and/or highest quality Punctu·
Blity. Attendance.

o ORGANIZATION - logically plans and organizes own and I or
others' work for most effective handling or reduction of un-
necessary activities

o COMMUNICATIONS - effectiveness of written, oral, listening
skills.

o KNOWLEDGE OF OWN JOB - know· how and skills necessary
to do the Job. Adequacy of practical. technical. or professional
skills and experience

o KNOWLEDGE OF RELATED AREAS - awareness 01 work re-
lationships with other areas.

o ~;h~~;A~~rn; :~i~tYg~~~I~~na~~~~iC?Pt~~~~a~~. ~fu~~~~r
other resources to complete task. achieve a goal.

o SELF-DEVELOPMENT - awareness 01 own strengths.
weaknesses. interests. Plans for elimination of deficiencies.
attainment of goals. Accepts/seeks new responsibilities.

o SElF·STAATER - working with limited supervision or direc-
tion. Following through on own initiative.

o HUMAN RELATIONS - effective work relations with superVi-
sor. peers. others outside working Unit. favorable customer
relations.

o PLANNING - setting oblectlves. budgeting. scheduling. lore-
casting.

o DECISION MAKING - making prompt deCISions considering
relevant factors and evaluating alternatives.

o COST AWARENESS - awareness ollinanclal impact 01 deCI-
sions. actions. Good business Judgment

o DEVELOPING PEOPLE - recognizing growth potential. de-

F~li~~r;;3~~~fs?lt:~r~sn~t~~sd~~il~:rn~~~~~~:c:~:r ~~~7~~t~~g~
ual.

o PERSONNEL PRACTICES - effective and appropriate use 01
salary and benefits programs. performance appraisal. internal
placement. career planning. training and development oppor·
tunities. etc.

o AFFIRMATIVE ACTION - working with others harmoniously
without re~ard to race. religion. national origin. sex. age. or

n:~:i~~g·ti~:~b?a:.ak:i~:I~h!:::i~:~~i!~~~~~~ Ec~c:e~~jg~=
jectives Of minorities. women.and handicapped people.

D SUPPORT OF SOCIAL POLICY, CONSUMER AFFAIRS PRO-
GRAMS - professional. commur:'1ity. or volunteer activities
that promote company objectiyes. Actively promoting Af·
firmative lending and other consumer programs.

oOTHER-

Figure 3·5. Performance Planning Worksheet: Common Performance
Factors

35

36 SYSTEMS DEVELOPMENT MANAGEMENT

PERFORMANCE PLANNING

These are the revisions, additions, or deletions we have made and the date of
change.

Figure 3-6. Performance Planning Worksheet: Negotiated Objectives

A perfonnance evaluation is a communication tool in that project managers
are involved in planning their work, targeting perfonnance goals, and measur­
ing results. This allows project managers and their managers to discuss job
perfonnance (as it relates to the desired results) openly. It encourages the
discussion of career aspirations and the development of plans toward their
realization. It enables the development manager to evaluate the project man­
ager's job perfonnance objectively in terms of the position requirements and
other negotiated objectives.

Project Manager Performance Categories

Explicitly defined tenns, such as the following, should be used in describ­
ing an employee's level of perfonnance:

• New in Position-This category includes project managers who need
more training and/or experience to achieve basic competence levels. A
project manager should remain in this category until perfonnance and
productivity increase through experience. A maximum of three months
is suggested.

• Marginal-This category includes project managers whose perfonn­
ance needs improvement to achieve basic competence levels (Le., the
perfonnance does not meet minimum job standards or negotiated ob­
jectives). The expected results have not been achieved. Improvement
to a competent perfonnance level within a reasonable time is required
for the project manager to continue in the position.

• Competent-This is the standard level of fully adequate perfonnance
(Le., the project manager's perfonnance meets the previously nego­
tiated objectives). Project managers in this category consistently dis­
charge all job requirements in an able manner, and the expected results
are achieved.

• Commendable-This category includes project managers whose job
perfonnance exceeds the previously negotiated objectives. The com­
mendable project manager is clearly above average in meeting require­
ments; better-than-expected results are consistently achieved.

PERFORMANCE APPRAISAL 37

PERFORMANCE PLANNING INTERIM PERFORMANCE REVIEWS

C~F_O_R_(_E_M_P_L_O_Y_E_E_) ________________ ~IJ_O_B __ TI_T_LE ____________ ~)

FIRST REVIEW DATE

lEMPLOYEE INITIAL ISUPERVISOR INITIAL

SECOND REVIEW DATE

lEMPLOYEE INITIAL ISUPERVISOR INITIAL

THIRD REVIEW DATE __________________ __

lEMPLOYEE INITIAL ISUPERVISOR INITIAL

Figure 3-7. Performance Planning Worksheet: Interim Reviews

38 SYSTEMS DEVELOPMENT MANAGEMENT

• Distinguished-Project managers in this category have proved them­
selves to be exceptional in surpassing objectives. Such project manag­
ers are outstanding perfonners whose achievements are readily appar­
ent. They are thus ready for promotion or added responsibilities at an
early time.

PERFORMANCE PLANNING

The Performance Planning Interview. The manager should prepare for
the interview by reviewing:

• The project manager's position definition.
• Organizational objectives-This review aids in detennining which proj­

ect manager accomplishments are necessary to achieve organizational
objectives.

• Appropriate documents prepared by the project manager on the job.

The Performance Planning Worksheet. The worksheet should be com­
pleted as follows:

• The development manager and project manager should discuss and then
list the job standards, in order of importance, that will be used to
evaluate his or her perfonnance (see Figure 3-3).

• Specific objectives that should be met by the project manager should be
discussed and listed, also in order of importance (see Figure 3-4).

• Common perfonnance factors (Le., those not related to specific jobs or
departments) that are significant for this project manager should be
checked off (see Figure 3-5); appropriate comments should be added.

Quarterly Reviews. When quarterly reviews are necessary or desirable,
the development manager should review the Perfonnance Planning Work­
sheet in order to gauge the project manager's progress toward achieving the
stated goals. The project manager should be notified of the review and its
expected content at least 24 hours in advance. The following should occur
during the review:

• Objectives and desired results should be discussed. If altered circum­
stances require changing the objectives, new or modified objectives
should be inserted at this time (see Figure 3-6).

• The development manager and the project manager should discuss the
progress made and complete the appropriate section on the worksheet
(see Figure 3-7).

The Perfonnance Planning Worksheet is usually retained within the depart­
ment after this review.

PERFORMANCE APPRAISAL

The perfonnance planning interview, at which objectives should be nego­
tiated between the project manager and the development manager, should be
held within three weeks of the last evaluation (these activities can, of course,

PERFORMANCE APPRAISAL 39

be done together). The completed Performance Planning Worksheet should
be fOlWarded within one week to the DP manager, Personnel, and other
appropriate departments for review. The worksheet should then be returned to
the development manager.

PERFORMANCE APPRAISAL SUPERVISOR ASSESSMENT

FOR (EMPLOYEE) JOB TITLE

LOCATION SUPERVISOR

TIME INJOB PERFORMANCE PERIOD: FROM --
TO

SUPERVISOR ASSESSMENT

Here is how I see your performance in EXPECTED LEVEL
OF PERFORMANCE relation to the Standards and QQjec-

Does Not ~ we agreed to. They are listed in Exceeds Meets
order of importance. Meet

COMMENTS:

~~ YT4
Figure 3-8. Performance Appraisal--:Manager Assessment: Standards and

Objectives

PERFORMANCE APPRAISAL SUPERVISOR ASSESSMENT

COMMON PERFORMANCE FACTORS

Focus for Here's how I see your per- EXPECTED LEVEL
Improve- formance in relation to OF PERFORMANCE
ment the Common Perfor- Does Not mance Factors we set at Exceeds Meets Meet the beginning of this ap-

praisal cycle. They are
listed in order of impor-
tance.
COMMENTS:

~ ~~'-

r _____ J-===:I---====~n~~J
Figure 3-9. Performance Appraisal-Manager Assessment: Common

Performance Factors

40 SYSTEMS DEVELOPMENT MANAGEMENT

PERFORMANCE APPRAISAL SUPERVISOR ASSESSMENT

Here are what I see as your major strengths and abilities. the things you have
done particularly well. and the significant improvements you have made since
your last appraisal:

I think improvement in these areas will increase your overall effectiveness on
the job: (Explain)

-
-

I also considered these additional factors (if any) in reaching the overall rating
for you:

OVERALL PERFORMANCE

Here's how I rate your overall performance, based on the performance criteria
we established and considering the relative importance of each:

DOES NOT MEET MEETS EXPECTED EXCEEDS
EXPECTED LEVEL LEVEL OF EXPECTED LEVEL
OF PERFORMANCE 0 PERFORMANCE 0 OF PERFORMANCE 0

Figure 3-10. Performance Appraisal-Manager Assessment and Rating

PERFORMANCE APPRAISAL 41

PERFORMANCE APPRAISAL EMPLOYEE ASSESSMENT

FOR (EMPLOYEE) JOB TITLE

LOCATION SUPERVISOR

TIME IN JOB PERFORMANCE PERIOD: FROM __
TO~

EMPLOYEE ASSESSMENT
Here is how I see my performance in relation to Job Standards and S~
Qbj~since my last appraisal. They are listed in order of importance.

Figure 3-11. Performance Appraisal-Project Manager Assessment:
Standards and Objectives

The Appraisal Form

One week before the scheduled evaluation, the project manager should
receive a copy of the Performance Planning Worksheet and a copy of the
position description; both documents should be brought to the discussion. The
development manager should complete the appropriate sections on the Per­
formance Appraisal form prior to the interview. The evaluator should com­
pare the results expected (as indicated on the Performance Planning Work­
sheet) to the achieved results (see Figures 3-8 and 3-9).

Other factors that the evaluator might consider are absences, outside job­
related activities, time management, human relations, and such administrative
skills as planning, leadership, organizing, and controlling (see Figure 3-10).
The overall performance rating (as shown in Figure 3-10) should be the
criterion later used to recommend merit increases. The rating should be based
on a comparison of the achieved results with the expected results. The evalua­
tor should emphasize the project manager's strengths and abilities in relation
to his or her job performance (see Figure 3-10). He or she should comment on
areas in which the project manager can upgrade his or her current performance
rating and/or be considered for additional responsibilities.

During the discussion the following should occur:
• The evaluator should consider the project manager's own assessment

(see Figures 3-11 and 3-12) in terms of improving his or her effective­
ness in the current position as well as possibly developing the project
manager for advancement (see Figure 3-13).

42 SYSTEMS DEVELOPMENT MANAGEMENT

• The project manager should write any additional comments concerning
the evaluation (see Figure 3-13).

• If there is not sufficient time to prepare a Performance Planning Work­
sheet for the next period (see Figures 3-3 and 3-6), the evaluator and
project manager should schedule a time within the next three weeks in
which to do so.

PERFORMANCE APPRAISAL EMPLOYEE ASSESSMENT

I have shown greatest strength or improvement in performing my job in these
areas:

I would like to improve my performance on the job in these areas:

These are my objectives for this job, or for a career, or for my own
improvement, for now and in the future.
OR: 0 At this time, I am satisfied in my current position and wish to remain.
(NOTE: This section is optional. By noting your interests, even if they change
later on, your supervisor can provide counseling and direction to help you
reach your goals.)

Here are ways that would help me improve my performance or meet my
objectives (e.g., more or different help from your supervisor, special training in
basic or new skills, cross-training in other areas, etc.).

Figure 3-12. Performance Appraisal-Project Manager Assessment:
Strengths and Objectives

PERFORMANCE APPRAISAL

PERFORMANCE APPRAISAL DEVELOPMENT/COMMENTS

DEVELOPMENTAL PLAN
I think we should take these steps to improve your performance on the job, or
to help you progress toward your personal career objectives.
(Use career planning tools if appropriate. If the employee wants to remain in
the present assignment at this time, please say so here.)

EMPLOYEE COMMENTS
What do you think about this appraisal?

EMPLOYEE SIGNATURE DATE
(Signature indicates you have seen and discussed this appraisal with your
supervisor. It does not necessarily imply agreement with the appraisal or
overall rating.)

SUPERVISOR'S SIGNATURE DATE

REVIEWED BY DATE

ADDITIONAL REVIEW - (If any) DATE

Figure 3-13. Developmental Plan and Project Manager Comments

Processing the Performance Appraisal Form

43

The Perfonnance Appraisal fonn should be routed to Personnel and other
appropriate departments within two days after the interview. The Perfonnance
Planning Worksheet covering the period evaluated should be attached.

44 SYSTEMS DEVELOPMENT MANAGEMENT

CONCLUSION

Regular perfonnance appraisals, using the methods discussed in the first
part of this chapter and the standardized procedures and forms recommended
in the latter part of this chapter, can significantly help project managers
understand how well they are performing their jobs and how they are per­
ceived by their managers. As mentioned, the lack of this information is
frequently an important factor in employee dissatisfaction and subsequent
resignation.

Such evaluations require time and effort to prepare and execute; the bene­
fits to project managers, their managers, and the organization, however, can
be substantial.

~ Using a Systems
Consultant

INTRODUCTION

by Steven A. Epner

Certain steps are necessary to ensure productive and cost-effective use of
systems consultants. These steps involve detennining whether the use of a
consultant is appropriate and evaluating both the consultant's skills and the
organization's needs to ensure that they match. This chapter addresses these
issues in six major sections:

• Preliminary considerations
• Establishing and defining deliverables
• Timing and cost constraints
• Locating consultants
• Selecting consultants
• Contracts

PRELIMINARY CONSIDERATIONS

Consultants have varying degrees of skill and experience but share the
common goal of providing organizations with temporary assistance for spe­
cific needs. A consultant can be defined as "a person who gives expert or
professional advice" and " . . . has an assured competence in a particular
field or occupation."

This definition raises a major question in data processing. The field does
not have a well-defined standard body of knowledge. In addition, many
methods may be available to accomplish a given goal. One procedure may be
more appropriate than another, but none may be deemed wrong. Competence
and expertise thus become difficult to determine.

A consultant's social skills are also important. OP is a field where the
interaction between people and machines can make the difference between
success and failure. An average system that takes into consideration the man­
machine interfaces will often succeed, while the more technically elegant
design can fail if it ignores such nontechnical areas. Successful consulting
requires both technical and interpersonal skills.

46 SYSTEMS DEVELOPMENT MANAGEMENT

One other critical element is client commitment. No consultant can be
expected to work in a vacuum. Successful consulting engagements always
include a client liaison who has the responsibility and the authority to act on
behalf of the client. Without this liaison, the consultant may be missing the
key element necessary in solving the problems or providing the solutions he or
she was hired to supply.

There are three major reasons for using a consultant:
• Peak load
• Special skills
• Objectivity

It is important to understand what is involved in each-of these situations.
Consultants appropriate in one environment may not be useful in another.

Peak Load. Sometimes an organization finds itself committed to complet­
ing more work than is possible with in-house resources. Under these condi­
tions, the organization can either eliminate or delay a project or contract, with
outside services provided to assist in completing all deliverables on schedule.
These outside services may become involved in design work, programming,
testing, auditing, and other staff functions.

Another type of peak load situation involves a project of limited duration.
For economic reasons, many companies conclude that the use of consultants
will reduce actual cost. In the current business environment, hiring permanent
employees represents many expenses in addition to salary (e.g., placement
fees, benefit plans, administrative costs, and training and orientation). More­
over, work sufficient to justify the additional personnel may not exist upon
project completion. The resulting frequent hiring and layoffs can destroy an
employer's reputation with prospective DP staff, thus making the long-range
cost to the firm incalculable.

Special Skills. Organizations often find themselves requiring background
or knowledge that is not readily available from internal staff. Some of these
skills may be esoteric and thus unnecessary on a regular basis. Others may be
quite common but, because of the goals of the organization, not available in­
house. An engineering firm, for example, may not have anyone capable of
generating financial systems. The entire staff may be technically oriented and
well trained but not versed in the accounting side of business.

Certain management functions may also require social skills. Organiza­
tional structure, long-range planning, training, employee evaluations, staff
searches, hardware/software selection, special studies, project planning and
management, and many other capabilities fall into this category.

Objectivity. There are situations in which an outsider's objectivity is
required-when someone is needed to rise above company politics and offer
an independent viewpoint. Often the consultant is used as a buffer between
competing factions within the organization. The presence of an outsider can
assist these groups in resolving conflicting goals in the best interests of the
organization.

USING A SYSTEMS CONSULTANT 47

In some cases, a consultant is hired to review procedures that were fol­
lowed to reach a given conclusion. The assignment is not to redo the work but
to verify that accepted or defensible practices were used. The consultant acts
as the seal of approval.

Many times a single consulting assignment combines parts of these three
areas. For example, it may be necessary to plan for and select new equipment.
This requires a special skill as well as objectivity, and the consultant can
provide the disinterested third-party view as well as specialized knowledge.

ESTABLISHING AND DEFINING DELIVERABLES

It is not enough to have identified a proper reason for bringing in a consult­
ant. To successfully use one, an organization must be willing and able to
properly define the results expected. Without such preliminary definition, no
consulting engagement can hope to reach a satisfactory conclusion. A client
who has not properly done his or her homework should entertain a proposal
from the consultant to help define expected project results.

A proven, effective method for measuring progress toward goals is through
the definition of deliverable results. Initially, broadly defined goals can assist
in establishing project direction; however, this will be inadequate for project
control and quality assurance. Deliverables must be defined in detail. It is not
enough simply to specify that a report be generated. A detailed outline of that
report is recommended. Major sections of the report, in fact, can become
deliverables that provide client and consultant with an ability to measure
progress. This procedure also provides review documents that enable the
client to constantly monitor the efforts of the consultant and verify that the
proper direction is being followed.

Well-defined, measurable deliverables provide a means of good project
control. More important, they eliminate guesswork when identifying progress
in the project life cycle. A detailed map should be available so that all parties
can measure and understand the status of a project.

Consulting can be divided into two major areas that produce two types of
deliverables. First are the contracting firms that provide services related to the
implementation of programs, documentation, and turnkey systems. Delivera­
bles can include programs, results of unit or system tests, documentation,
hardware installation, and demonstrations.

Second are the advisory services. Deliverables in this case may not be as
easy to define. They usually fall into the categories of reports and presenta­
tions encompassing anything from reorganization to training. Outlines and
definitions of each section can provide the detail and intennediate milestones
required.

Deliverables, thus, can take many forms. A client may require a systems
design or program modification. The deliverable may be a plan for improving
management control or even for deciding what the problem really is. It may
simply be the availability of an independent party to review various ideas.

48 SYSTEMS DEVELOPMENT MANAGEMENT

Ongoing support, plan reviews, and assistance in hiring staff can all be
deliverables.

TIMING AND COST CONSTRAINTS

Consultants are not miracle workers. Even the very best cannot provide
results overnight. This should be kept in mind when establishing contract
goals. It is always in the client's best interest to ensure the environment is
conducive to successful project work.

A major consideration is timing. Many clients do not contact a consultant
until it is too late to complete the project properly. They then expect someone
else to make up for their lack of advance planning or to accept the blame for
delays.

The amount of time necessary to do a job correctly must be allowed. There
is an old saying, "If you don't have time to do it right, where will you get
time (or money) to do it over?" The client and the consultant must be aware
of all critical deadlines. These generally concern government regulation or
major milestones in corporate development (e.g., as the start-up of a new
plant or the ability to respond to a new marketing plan that is already being put
into effect).

It is not sufficient to look only at required dates. There is also a need to
review staff availability. A consultant cannot know more about the organiza­
tion than those who work there. If there is no time for interaction with the
affected employees, results cannot be guaranteed.

It may be in the organization's best interest to provide the consultant with
employees. This can be very advantageous to the organization, since the
consultant can share his or her knowledge with in-house staff. The company
may be able to gradually develop its own resources to minimize future re­
quirements for outside assistance.

In some cases, the consultant will require additional people who are not
available internally. The consultant must be able to complete the project on
time and to commit additional professional staff if necessary, although five
people will not necessarily complete a project in 20 percent of the time
originally bid for one person. If timing is critical to the organization, how­
ever, the extra cost in overhead may be justified.

The total cost of using a consultant should always be considered. Exces­
sive concern with hourly rates is nonproductive and can even become an
obsession detrimental to the project as a whole. A $50 per hour rate may be
more cost-effective than a $40 rate for reasons of speed, experience, or other
factors affecting project completion. Low-ball bids have other problems as
well. If the consultants underbid because they were "hungry," .they might
lose interest if a new project comes along at a better rate. Someone working
for below-average wages will not be the best performer. Decisions should be
based on dollars for results. If an emergency project cannot be cost-justified,
it is probably not that important.

USING A SYSTEMS CONSULTANT 49

Finally, prerequisites should be defined. Necessary internal approvals
should be known in advance. Infonnation requirements should be defined to
enable the consultant to assist in structuring a proposal that helps meet the
organization's goals. Time and cost constraints on the consultant and the
client should be documented. Consultants have only one resource to sell­
time. If the consultant knows that the client recognizes and respects this, he or
she may be willing to assist in advanced planning before hourly billing be­
gins.

LOCATING CONSULTANTS

Once the project is defined, it can be used as a basis for determining which
type of consultant would be most helpful. Consideration of the following
elements will aid an educated search for individuals or firms who can fulfill an
organization's need~.

Large versus Small Firm

The first element to be examined is whether a large or a small firm should
be employed. Depending on circumstances, each has advantages and disad­
vantages. Both can provide specialized expertise and/or temporary staff to
solve a client's problems. Both are able to expand the capabilities of the in­
house staff. Each can provide expert opinions and an independent view.

Small Firms. The small firm has a significant advantage for smaller con­
tracts (i.e., any project whose total cost will be less than $50,000). A large
firm may be tempted to use a contract like this as a training project for new
employees. Such a contract may, however, represent a significant portion of a
smaller consulting firm's yearly gross. The project will thus be afforded the
attention and consideration the client feels it must receive. The project will be
staffed by senior or management-level people; the consulting team will proba­
bly include an owner or a director of the firm and, therefore, will receive the
attention and commitment that is the basis for successful consulting.

A small firm may also be less expensive. Lower overhead and less nonpro­
ductive administrative time enable the smaller consulting firm to provide
high-quality services at a lower cost.

Finally, a small firm can be very flexible. Changes in contracts and re­
quirements can be handled and approved quickly. It is unnecessary to fight
multiple levels of authority to effect minor changes.

Large Firms. The large firm has a significant advantage when handling
very large projects. Several small firms can enter into a joint venture to
provide for the large contract, but the large firm can respond to the same
requirement and fit it into existing structure and standard project procedures.
In addition, the large firm, because of its size, may be able to provide such
support services as data entry, machine time, and other clerical as well as DP
functions.

50 SYSTEMS DEVELOPMENT MANAGEMENT

The large firm is more highly structured. This may help standardize and
control the work process, which carries with it a risk of standardized solu­
tions; however, an astute client can ensure that this does not happen.

Size can provide a false sense of security, however. Even the largest firms
cannot justify great depth in every specialized skill. Size alone, therefore,
does not provide a significant advantage except possibly when related to large
projects.

One other consideration is important: whether the client feels more at ease
with an officer of a small firm than with a manager of a large firm. Teamwork
is basic to good consulting, and interpersonal relationships are the foundation
of a good consulting environment.

General versus Specialized Consultants

The second element to consider in locating consultants is whether to con­
tract with a firm having a broad or a specialized background. The general
consultant is one who has been involved in many projects for several different
industries. The other alternative is an individual who is specialized in one
industry, process, language, or machine.

Many general consultants consider lack of experience in a certain situation
to be valuable. In fact, they are careful not to let prior knowledge of a
situation affect their investigation. They therefore do not assume some factors
to be obvious and not in need of investigation. Even elementary questions are
asked so that a true understanding of a client's situation and requirements can
be developed. A diverse background has given these consultants the ability to
examine situations from unusual angles. In looking for answers, they can
review combinations and permutations of various elements from other proj­
ects in which they have been involved. New solutions may be found to old
problems.

A general consultant is not always appropriate, however. A company
might feel more comfortable with someone who has in-depth knowledge of
the specific application. This feeling of security may be necessary to provide
the comfort level required for project success.

The specialized consultant can also bring experiences from similar situa­
tions to bear on the problem. It is more likely that such consultants have been
through the major pitfalls associated with certain kinds of solutions.

Consultants with strong specialized backgrounds can better lead manage­
ment that is weak in state-of-the-art technology. Because of new technology
and products, management may not be current in technology or confident in
its own abilities. An experienced, specialized consultant can provide that
extra measure of confidence necessary for success.

On the other hand, a general consultant and a strong, self-assured manage­
ment team can explore unique solutions. The approaches examined for any
situation can be quite varied and touch on the state of the art. The artificial
constraints of convention can be replaced by new methods, possibly leading

USING A SYSTEMS CONSULTANT 51

to the discovery of new processes with the potential to provide significant
competitive advantages.

Each consulting situation is different, and there are excellent reasons for
using each type of consultant. The decision on which to use must be based on
the requirements of the project at hand. Consideration must also be given to
the personalities of both the organization and the individuals involved.

Type of Contract

The last element to consider prior to selecting a consultant is whether to
seek a fixed-cost or a time-and-material contract. Generally, open-ended con­
tracts are based on time and material because sufficient information is un­
available to make a finn fixed-cost bid. This type of contract is also appropri­
ate when a company is using consultants as an extension of its own staff.

Fixed-cost contracts provide the organization with the ability to evaluate
projects on a business basis (i.e., on the known value of deliverables). Fixed­
cost contracts, however, require in-depth knowledge of what is to be done.
The company must be prepared to have or to develop detailed definitions for
all deliverable items.

A third special category of contract exists, generally referred to as a re­
tainer contract. Usually, the client pays a fixed amount for access to the
consultant for a certain number of hours in a given period (e.g., monthly,
bimonthly, quarterly). In return for the advance commitment, the consultant
often charges a fee significantly less than published rates.

Retainer agreements take many different fonns. Some items to consider
are:

• What if more hours are required than are paid for?
• How long is the commitment?
• When are fee structures reviewed?
• What if the consultant is unable to perform?

Retainer contracts are signed for many reasons, including:
• Continuing assistance during implementation of a project
• Participation in long-range planning
• Evaluation of performance on a regular basis
• Regular training of staff
• Facilities management of equipment and/or people

Searching for Consultants

Having weighed the issues of large versus small firms, general versus
specialized consultants, and the type of contract desired, the organization can
now begin searching for its consultants. The organization has determined
what is required, when it is needed, how it is to be completed, and what is
desired in a consultant. These decisions form the foundation for a successful
consulting relationship. The client can then communicate requirements so that
the consultant can respond with a proposal.

52 SYSTEMS DEVELOPMENT MANAGEMENT

The best source of consultant names is personal referrals. A recommenda­
tion from a respected associate is the best reference any consultant can have.
In such a case, an individual's reputation is on the line, and he or she will not
make such a recommendation lightly.

The national Independent Computer Consultants Organization (ICCA, PO
Box 27412, St Louis, Missouri 63141) and its local chapters provide lists of
consulting organizations. It is important to note that these are referrals rather
than recommendations. The contracting firm must verify that the consultant
can properly complete the project.

Finally, there are the yellow pages. Headings to check include Data Pro­
cessing Services, Computer Programming Services, and Data Systems­
Consultants and Designers.

A Request for Proposal (RFP) can be distributed to all potential consult­
ants. The grapevine will carry it to firms that would not be found othelWise.

'(The complete details of an RFP are beyond the scope of this chapter. The
major element is a repetition of the data gathering described earlier.)

Final selection requires evaluating every alternative. An easy answer to the
question of how many consultants should be considered does not exist. Too
many can be confusing; too few may not provide an adequate choice. The
important point is to search until the right consultant is found.

SELECTING CONSULTANTS

Selecting the best consultant is as important, if not more so, than hiring an
employee; a resource is being obtained from whom immediate results are
expected and needed. The organization must find someone with the skills and
experience to provide such assistance.

The first task in investigating consultants is to contact references. It is
unlikely that a consultant would give a bad reference; therefore, questions
such as "Did they get the project done?" are worthless. Questions should be
designed to discover how the consultant worked; for example, asking about
milestone reporting, presentations, teamwork, and interpersonal skills­
things that can spell the difference between success and failure-provides
valuable information. It is also important to determine the "personalities" of
the companies at which particular consultants have been successful. Consult­
ants who work well in a structured organization may have difficulty in another
environment.

Interviewing Consultants

After a list of suitable consultants has been made, each must be inter­
viewed. Feeling comfortable with the person or group is critical. Good con­
sulting depends on teamwork, and a personality clash can drastically reduce
the chances of success.

The total project should be reviewed with the consultant during the inter­
view. Consultants may refuse a job because:

USING A SYSTEMS CONSULTANT 53

• They do not feel capable of completing it competently.
• They do not think there is a good personality match with the company.
• Time and money constraints may be such that chances of success seem

low.
• They are not interested in the proposed project.

These are things to discover early. Any other concerns the organization has
should be covered, including timing, additional personnel, or cost. No subject
that affects the success of the project is taboo.

Cost should not be made the all-important topic of the interview, especially
periodic rates. A lower hourly charge will not necessarily result in a lower
project cost. Most charges are based on three factors: length of contract,
individual background, and skill requirements. Length of contract is an easy
measure to understand. The longer the contract, the less time the consultant
must spend marketing himself or herself for future engagements in relation to
the number of hours worked. That cost can be spread over a greater period and
result in a lower cost per hour or day.

The individual's background is also important. A consultant with a PhD
and 20 years of experience charges more than a recent programming institute
graduate.

The cost of hiring a highly skilled consultant may be tempered by the skill
required. For example, recommending a hardware/software solution costing
more than $5 million is more expensive than designing a name and address
file on a small business computer.

Consultants should submit a written proposal that should contain sufficient
information for evaluating an approach and developing some idea of total
cost. The client can provide the consultant with an outline specifying what is
to be included in the proposal. As mentioned previously, a consultant has only
one commodity-time. If the consulting firm is good (and busy), a response
requiring excessive detail can be counterproductive. The best firms may not
respond because of the expense involved.

A number of organizations have found it worthwhile to make a preliminary
selection. They then establish a short, low-cost phase during which the con­
sultant is asked to develop full, detailed plans. Dollar exposure is thus kept to
a minimum, but a commitment has been made on both sides. A clear under­
standing that additional project work is dependent on satisfactory results is
important if this approach is taken.

CONTRACTS

Contracts are often regarded with terror. Some organizations spend hun­
dreds of thousands of dollars on fine print that often confuses more than helps.
At the other extreme are those who feel that business on a handshake is all
they need. There are even some who believe the law to be well enough
defined that they are safe no matter what they sign.

The preferred view is that contracts are not the basis for suit but the basis
for understanding. A contract, clearly stated, can establish an enforceable

54 SYSTEMS DEVELOPMENT MANAGEMENT

agreement that is understood and approved by both sides. The following
discussion is based on the ICCA's Standard Ponn Consulting Contract (see
Appendix), used here with pennission of that association.

It must also be remembered that, when necessary, details of the contract
can be changed. In such cases the basic contract discussed here may suffice,
but modifications should be added to document any other understandings
reached. With the proper attachments, this contract can be used for fixed-cost,
time and material, and retainer contracts.

The first paragraph in this contract, entitled Services, is the most impor­
tant. It goes a long way toward ensuring good consulting. A complete defmi­
tion of what is to be done must be attached and signed by the principals
involved. This paragraph also guarantees a consultant's ready access to the
client's staff and resources as necessary. A consultant cannot perfonn duties
adequately in a vacuum.

The second paragraph is entitled Rate of Payment for Services. Nothing is
left to speculation. Everyone involved must state on paper what is expected,
when, and for what cost. This will eliminate almost all arguments usually
associated with contracts that seem to have gone sour.

Paragraph 3 is related to expenses. The wording should be based on the
organization's situation. Specific reimbursable or nonreimbursable expenses
should be defined before work begins.

Paragraph 4 is a simple statement that the client will pay the amounts
agreed to in paragraphs 2 and 3 upon receipt of invoices. This forces the
consultant to follow standard business billing practices.

Paragraph 5 covers confidential information. Both the client and consultant
are protected. They both agree not to disclose to an outside party any confi­
dential information on research, development, trade secrets, or business af­
fairs. This, of course, refers to information not generally known or "easily
ascertainable by non-parties or ordinary skill in computer design and pro­
gramming."

Paragraph 6 is designed to help both client and consultant protect their
personnel resources. Both parties agree not to try to hire the other's employees
for at least six months after project completion, except by written agreement.
Because of a number of legal cases that have arisen recently, it further states
that "neither consultant nor consultant's staff is or shall be deemed to be
employees of the client." Consultant staff may include full-time employees
and/or subcontractors.

Paragraph 7 defmes ownership of deliverables produced during the project.
This paragraph is frequently changed. In some cases, a client will make
special arrangements with the consultant to receive pricing considerations in
retum for releasing ownership and future marketing rights. These questions
should be worked out well in advance and worded clearly so that each party's
rights and privileges are understood.

USING A SYSTEMS CONSULTANT 55

Paragraph 8 is one of the most important to the consultant. The client
liaison, responsible for, and with the authority to control, the project, is listed
by name.

Paragraph 9 concerns warranties and consultant liability. This is the most
legally complicated paragraph in the contract. Included is an agreement to
attach to the contract any special requirements for formats or standards to be
followed in the project. That is followed by a statement concerning warran­
ties, "whether written, oral, or implied," that follow specific legal standards.

Paragraph 10 is a simple legal statement that specifies that this document is
the complete agreement.

Paragraph 11 identifies the state law under which the contract is to be
signed. It is generally the consultant's home state; however, many clients
alter this to their own state if different from that of the consultant. It is a minor
point (unless the client expects the contract to go to suit) and should be
negotiated between parties.

The twelfth paragraph, entitled Scope of Agreement, is a way of legally
covering all bases.

Paragraph 13, entitled Additional Work, outlines the procedure to be fol­
lowed when the services requested are changed or added to. The process may
be modified to fit the client's standards. The usual minimum requirement is
that the client submit a written request for additional services.

Paragraph 14 identifies the official addresses of both client and consultant.

Paragraph 15, the last standard paragraph, is a legal formula prohibiting
assignment by either party without the prior written consent of the other. The
parties agree to complete the contract.

Additional clauses can be added as necessary. The goal of the contract is to
define what, when, and how much is involved. Any special needs, agree­
ments, or arrangements should thus be spelled out.

An alternative to this contract is possible. A simple' 'letter of understand­
ing" that identifies the services, payments, ownership of the final product,
and the client representative may suffice. There is no absolute requirement for
legal format. The most important element is that the parties have documented
and reviewed their agreement with each other.

CONCLUSION

Consultants offer management the chance to expand the abilities of their
organization and are a valuable resource to be sought out and used. The
possibilities can be endless. Nonetheless, successful consulting requires a
team effort. Management commitment makes the difference between success
and failure.

56 SYSTEMS DEVELOPMENT MANAGEMENT

APPENDIX

Independent Computer Consultants Association

STANDARD FORM CONSULTING CONTRACT

THIS AGREEMENT is made as of ___________ , 19 __ .

between ("Client")

and ("Consultant")

In the event of a conflict in the provisions of any attachments hereto and the
provisions set forth in this Agreement, the provisions of such attachments shall govern.

1. Services. Consultant agrees to perform for Client the services listed in the
Scope of Services section in Exhibit A, attached hereto and executed by both Client and
Consultant. Such services are hereinafter referred to as "Services". Client agrees that
consultant shall have ready access to client's staff and resources as necessary to perform
the Consultant's services provided for by this contract.

2. Rate of Payment for Services. Client agrees to pay Consultant for Services in
accordance with the schedule contained in Exhibit B attached hereto and executed by
both Client and Consultant.

3. Reimbursement for Expenses. Consultant shall be reimbursed by Client for all
reasonable expenses incurred by Consultant in the performance of Services, including,
but not limited to, travel expenses of Consultant and Consultant's staff, long distance
telephone calls, computer time, and supplies.

4. Invoicing. Client shall pay the amounts agreed to herein upon receipt of in­
voices which shall be sent by, and client shall pay the amount of such invoices to
Consultant.

5. Confidential Information. Each party hereto ("Such Party") shall hold in trust
for the other party hereto ("Such Other Party"), and shall not disclose to any nonparty to
the Agreement, any confidential information of Such Other Party. Confidential information
is information which relates to Such Other Party's research, development, trade secrets
or business affairs, but does not include information which is generally known or easily
ascertainable by non-parties of ordinary skill in computer design and programming.

6. Staff. Neither Consultant nor Consultant's staff is or shall be deemed to be
employees of Client. Consultant shall take appropriate measures to insure that its staff
who perform Services are competent to do so and that they do not breach Section 5
hereof.

Each of the parties hereto agrees that, while performing Services under this Agree­
ment, and for a period of six (6) months following the termination of this Agreement,
neither party will, except with the other party's prior written approval, solicit or offer
employment to the other party's employees or staff engaged in any efforts under this
Agreement.

7. Use of Work Product. Consultant and Client agree that Client shall have
nonexclusive ownership of the deliverable products described in Exhibit A and the ideas
embodied therein.

USING A SYSTEMS CONSULTANT 57

8. Client Representative. The following individual __________ _

_________________ shall represent the client during the per­

formance of this contract with respect to the services and deliverables as defined herein
and has authority to execute written modifications or additions to this contract as defined
in section 13.

LIMITED WARRANTY

9. Liability. Consultant warrants to Client that the material, analysis, data, pro­
grams and services to be delivered or rendered hereunder, will be of the kind and quality
designated and will be performed by qualified personnel. Special requirements for format
or standards to be followed shall be attached as an additional Exhibit and executed by
both Client and Consultant. Consultant makes no other warranties, whether written,
oral or implied, including without limitation warranty of fitness for purpose or
merchantability. In no event shall Consultant be liable for special or consequential
damages, either in contract or tort, whether or not the possibility of such damages has
been disclosed to Consultant in advance or could have been reasonably foreseen by
Consultant, and in the event this limitation of damages is held unenforceable, then the
parties agree that by reason of the difficulty in foreseeing possible damages all liability to
client shall be limited to One Hundred dollars ($100.00) as liquidated damages and not as
penalty.

10. Complete Agreement. This agreement contains the entire agreement be­
tween the parties hereto with respect to the matters covered herein. No other agreements,
representations, warranties or other matters, oral or written, purportedly agreed to or
represented by or on behalf of Consultant by any of its employees or agents, or contained
in any sales materials or brochures, shall be deemed to bind the parties hereto with
respect to the subject matter hereof. Client acknowledges that it is entering into this
Agreement solely on the basis of the representations contained herein.

11. Applicable Law. Consultant shall comply with all applicable laws in performing
Services but shall be held harmless for violation of any governmental procurement
regulation to which it may be subject but to which reference is not made in Exhibit A. This
Agreement shall be construed in accordance with the laws of the State indicated by the
consultant's address (14ii).

12. Scope of Agreement. If the scope of any of the provisions of the Agreement is
too broad in any respect whatsoever to permit enforcement to its full extent, then such
provisions shall be enforced to the maximum extent permitted by law, and the parties
hereto consent and agree that such scope may be judicially modified accordingly and that
the whole of such provisions of this Agreement shall not thereby fail, but that the scope of
such provisions shall be curtailed only to the extent necessary to conform to law.

13. Additional Work. After receipt of an order which adds to the Services, Consult­
ant may, at its discretion, take reasonable action and expend reasonable amounts of time
and money based on such order. Client agrees to pay and reimburse Consultant for such
action and expenditure as set forth in Exhibit B of this Agreement for payments and
reimbursements related to Services.

14. Notices.

(i) Notices to Client should be sent to:

58 SYSTEMS DEVELOPMENT MANAGEMENT

(ii) Notices to Consultant should be sent to:

15. Assignment. This Agreement may not be assigned by either party without the
prior written consent of the other party. Except for the prohibition on assignment con­
tained in the preceding sentence, this Agreement shall be binding upon and inure to the
benefit of the heirs, successors and assigns of the parties hereto.

IN WITNESS WHEREOF, the parties hereto have signed this Agreement as of the
date first above written.

Client Consultant

type Name and Title

~ Systems Analysis
Checklist by Raymond P. Wenig

INTRODUCTION

A systems analysis checklist can improve the results of the analysis and the
overall effectiveness of the project team. It can also help produce consistent
results and contribute to the expertise of the team members who perfonn the
analysis. This chapter presents a checklist for planning and evaluating the
systems analysis phase of a project.

CHECKLIST CONTENTS

The following questions cover the major areas of evaluation and review to
ascertain that systems analysis work is progressing steadily.

Analysis Planning

Questions
1. Are the reasons for the analysis project clearly defmed in writing?
2. Are the project limits defined?
3. Are limits set on resources, time, and funds?
4. Is completion of the system scheduled?
5. Who will perfonn the analysis work?
6. Who are the user participants?
7. Are objectives set for the new or modified system? If so, what are they,

and who set them?
8. What priority has the organization set for the project?
9. What previous systems analysis work has been perfonned in this appli­

cation area?
10. What is the status of current systems serving the application?
11. What (if any) special legal, security, or audit considerations must be

observed in this system?

Output
1. A narrative definition of the project boundaries
2. A tentative work plan for the analysis work
3. A user contact list

60 SYSTEMS DEVELOPMENT MANAGEMENT

4. A tentative resource staffing list
5. A list of existing application systems
6. A priority impact statement concerning the relative importance of the

system

User Contacts

Questions
1. Are all user participants identified?
2. What are the organizational relationships of the users?
3. What is the current level of user systems knowledge? Have the users

had previous systems experience?
4. Do users clearly understand the current system and its operation?
5. Are legitimate user complaints about the current system documented?

Is the impact of the complaints fully documented?
6. How much time and effort are the users willing to put into the initial

analysis work?
7. Are users identified who are supporters of, resistant to, and indifferent

to the system?
8. Do users expect any specific benefits from the resulting system?
9. Is there clearly defined top-level support for the project? If so, who

constitutes this support, and how much power do they wield?
10. Who are the key decision makers in the user environment?
11. How many user locations are there? How many people will use the

system at various levels? What is their level of computer systems
experience?

Output
1. An organizational chart of all participating user areas, including their

hierarchical relationships
2. A narrative describing the users' systems backgrounds and prior expe­

riences
3. Documentation of user problems with the existing system and the

impact of these problems
4. A work plan of expected user participation in the analysis
5. A tentative statement of user expectations
6. A narrative on the political relationships and systems support expecta-

tions of the major user participants .
7. A brief history of previous data systems and procedures used in the

application area
8. Identification of any other organizational systems or applications that

interrelate with the proposed system

System Objectives

Questions
1. Are system objectives formally defined, or are they loosely stated and

subject to interpretation and/or later definition?

SYSTEMS ANALYSIS CHECKLIST 61

2. Will the new system have a major impact on the basic operations of the
organization?

3. Will the new system replace an existing one? If so, how old is the
current system, and how many others preceded it?

4. Is the new system expected to cause relocation or removal of any work
functions? If so, how sensitive is the issue, and who will help combat
any resistance?

5. Is an interim system required to satisfy immediate goals or to eliminate
intolerable problems with the existing system?

6. Is a phased development and implementation approach feasible, or is a
one-time mass conversion required?

7. What cost can be justified, and what resources can be allocated for this
project?

8. How close to the state of the art is the new system expected to be?
9. How much organizational shock can users tolerate? How much change

do they really want? How much change will cause them to reject the
new system?

10. How much time can users allocate for training and start-up? During
what period of time?

Output
1. A comprehensive statement of system objectives
2. A statement of general scope and level of project effort required,

including tentative cost and resource estimates
3. A statement concerning the current system and procedures considered

for change, elimination, and/or replacement
4. A general statement covering the expected project phasing and the

overall team approach to the project
5. A tentative statement covering the levels and impact of anticipated

organizational changes that will result from the system
6. A commentary on the roles and responsibilities of each participating

user department and major user group in the desired system

Current System

Questions
1. What are the problems with the current system as evaluated by the

users and by the technical team? Do these evaluations agree?
2. How do other organizations perform similar functions? What is the

current state of the art in the application area?
3. What other methods and procedures have been tried and/or used to

service the application? .
4. What is the detailed chronology of the current system, its predecessor,

and the changes made to both systems?
5. What is the organization's history during the current system's life?
6. What development, maintenance, and operational costs are associated

with the current system (including user efforts)?

62 SYSTEMS DEVELOPMENT MANAGEMENT

7. Identify the name, rank, and organizational position of those who
supported, built, and use the current system.

8. Identify one or more major situational failures that resulted from the
current system.

Output
1. A comprehensive narrative on the current system and its operation,

history, and users
2. A ranked list of the current system's major faults and problems
3. A full cost analysis of the current system
4. A general statement on how closely the new system might approach

those in other organizations or the state of the art
5. A complete collection of the documents, procedures, and other availa­

ble details concerning the operation/content of the current system

Data Elements and Structures

Questions
1. Are the current data elements, files, forms, procedures, and so on

thoroughly documented?
2. Are the current data elements and structures logical, consistent, and

utilized?
3. How clean is the current data base?
4. Do users have a list of new data elements they would like to see in the

new system? Is it feasible to add these data elements?
5. How much redundancy exists between the current system's data base

and that of other applications in the organization? Are any of the other
applications a more logical repository for any elements of the data
base?

6. Is there enough flexibility in the current data structure to perform
efficient modifications or changes? Can the structure be changed to
meet the new system's needs?

7. How difficult will it be to convert the current data base to a new one?
How much error testing will have to be done to achieve a clean conver­
sion?

8. How much maintenance is usually done on the existing data base?
9. Can or should extensive data archives from this data base be con­

verted?
10. How much of the current data base is actively used? By whom?
11. What significant faults or failures were encountered with the data files,

and how were they dealt with?
12. How many times and in what ways has the data base been modified?

Output
1. A comprehensive set of format and content definitions of all data

elements, files, and supporting data structures
2. An evaluation of current data base content, with emphasis on cleanli-

SYSTEMS ANALYSIS CHECKLIST 63

ness, errors, unused areas, redundancy, conversion, and future use
3. A list of expected changes, additions, deletions, and other modifica­

tions to data elements and structure that are anticipated for the new
system

4. A summary of the major uses of the data file and its elements
5. A list of faults and failures of the existing data files

User Interviews

Questions
1. Are all users identified?
2. Is there a formal interview plan for each user level covered?
3. Are lists of questions and objectives developed for the interviews at

each user level?
4. Is top management supporting and publicizing the interviews, the inter­

view team, and the overall expectations? Is top management making a
strong pitch for interviewee cooperation?

5. Are all interviews scheduled during acceptable time periods?
6. Are the interviewers trained in effective interview techniques?
7. Are all scheduled interviews completed? Have canceled, interrupted,

or forgotten interviews been rescheduled and conducted?
8. Have the interviewers taken adequate notes and written evaluations of

each interview?
9. Have the interviewers compared notes, impressions, and other obser­

vations? Are these details documented?
10. Are interviewees given adequate feedback (e.g., summary reports,

notes)?
11. Have follow-up interviews been conducted when special problems or

conditions are uncovered during initial interviews?
12. Has management been kept informed about the interview process, any

problems uncovered, and uncooperative users?

Output
1. A formal interview plan
2. Documentation of interview results
3. A report summarizing the interviews that includes both consensus an­

swers and significant variances
4. An internal analysis of user attitudes and positions vis-a-vis the system
5. A management report covering interview findings and cooperation of

the participants
6. Results of test interviews along with changes in questions, emphasis,

and other interviewing guidelines
7. Explanation of any incomplete interviews

Research on Other Systems

Questions
1. What other organizations can be surveyed regarding their approach to

the subject application?

64 SYSTEMS DEVELOPMENT MANAGEMENT

2. What (if any) proprietary packages are available that might suit the
application area?

3. What (if any) trade/industry associations study or catalog the systems
work of others in the same field?

4. What (if any) formal literature is available on the subject application
area?

5. How much time and effort should be spent in reviewing other systems?
6. Were the reviews of other systems productive? Should more time be

spent on this activity?
7. Are field interviews of other users and organizations necessary?

Output
1. A list of organizations and sources to review for base knowledge on

alternative approaches to the application
2. A narrative report detailing the ways other organizations are solving

the application
3. A technical evaluation covering the state of the art for the application

area
4. A summary report on contacts with other users and organizations
5. A follow-up plan for reviewing or tracking major developments in the

industry

Alternative Propositions

Questions
1. How many application alternatives should be considered?
2. How much time and effort should be spent in evaluation of alterna­

tives?
3. How detailed and complete should the consideration of each alternative

be?
4. How will the alternatives be developed and documented?
5. Are formal requirements and evaluation criteria established for the

alternatives?
6. Who will evaluate the alternatives? Will the users review the alterna-

tives?
7. Are all logical alternatives being considered?
8. Are outside expert opinions being sought on the alternatives?
9. Are the alternatives considered consistent with those evaluated by other

organizations?

Output
1. Alternative design definitions
2. Positive and negative factors of each alternative
3. Evaluation reports from each group who studies the alternatives
4. Fonnal user presentation of the alternatives
5. Preliminary cost predictions for each alternative

SYSTEMS ANALYSIS CHECKLIST

6. A technology impact assessment for each alternative
7. A user impact assessment for each alternative

Selecting a Design Alternative

Questions
1. Are all alternatives fully reviewed and evaluated?

65

2. Are the alternatives ranked in terms of their ability to meet the system
requirements criteria?

3. Is there a technical/management team with authority to select the most
appropriate alternative?

4. Does one alternative clearly outrank the others?
5. Which alternative(s) do the users support?
6. Which alternative is best to implement in terms of time, cost, re­

sources, and technical risk?
7. Which alternative uses the most advanced concepts?
8. Which alternative is likely to last the longest?

Output
1. A detailed comparison of alternatives
2. A ranking of alternatives
3. A specific recommendation as to the alternative that is best to pursue
4. A report to the users on the alternative selected
5. A summary of reasons for rejecting other alternatives

Structural AnalYSis

Questions
1. Are all data elements, flows, and expected processing steps defined for

the selected alternative?
2. Are procedural and organizational changes that the new system will

generate defined and evaluated?
3. Are the content and uses of input fIles and outputs defined in a general

way?
4. Are the equipment requirements for the new system estimated?
5. Is there a list of expected system modules?
6. Is there a tentative data conversion plan?
7. Is an overall system flow being generated?
8. Are associated clerical procedures outlined?
9. What is the estimated volume of data and transactions?

10. Are the security and accuracy requirements of the data being consid­
ered?

11. Are testing procedures for the new approach thoroughly defined?
12. Is a preliminary system implementation plan available?

Output
1. A report of the proposed system approach
2. A system flowchart

66 SYSTEMS DEVELOPMENT MANAGEMENT

3. A user operations and responsibility flowchart
4. A detailed report on the analysis findings
5. A costlbenefit analysis report
6. A preliminary testing plan
7. A tentative implementation plan

Plans for Next Phase

Questions
1. Are there work tasks and resource estimates for the general design

work?
2. Is there a resource loading plan that shows requirements by work task?
3. Are user support tasks identified and planned? Are the users aware of

them?
4. Are target dates set for obtaining authorization to proceed with the next

phase? What is the expected completion date of the proposed work?

Output
1. The work plan and resource estimates
2. The user support plan
3. A narrative on the approach to managing the next phase

Management Presentations and Reviews

Questions
1. Are all levels of management in the technical and user areas briefed on

the analysis results and recommendations?
2. Are the presentations clearly and logically fonnulated?
3. Are management's concerns and questions documented and answered?
4. Has the proposed alternative survived management's scrutiny?
5. Does the analysis team have any doubts about the project approach?
6. Have minority opinions and negative comments been properly ad­

dressed?

Output
1. Presentation critiques and internal reviews
2. Presentation reports and visual aids
3. Authorization to proceed

CONCLUSION

A checklist can expedite and help ensure the high quality and completeness
of systems analysis work. The checklist presented in this chapter can be used
as is or can be modified to suit the organization, the users, or the specific
projects.

<0 User-Oriented
Systems Analysis
and Desig n by Henry C. Lucas, Jr.

INTRODUCTION

Users often complain about the small return from their large investment in
computer-based information systems. They are frustrated by their inability to
influence decisions about information systems in their organizations. Often,
expensive computer-based systems are not used at all or are not exploited to
their full potential. Experiences in different organizations have produced the
following examples of problems:

• Two information systems at a major bank calculated the internal trans­
fer price for borrowing and lending among branches. Each system's
report showed a different figure, which clearly should have been identi­
cal on each output. Branch managers questioned both figures and did
not rely on any of the data in the two reports because of this inconsis­
tency.

• The manager of the computer department in a manufacturing company
had not distributed computer output for two months because he was not
completely satisfied with the reports. Users did not seem to notice the
absence of the output.

• A major university developed a sophisticated online computer system
to automate a number of administrative functions. Most users ex­
pressed a desire to return to manual or batch computer-produced re­
ports because of difficulties with the new system.

• One mining company spent almost five years designing an inventory
control system for its largest division. When installed, the system
showed clear cost savings. Several years later, however, managers in
other divisions were still resisting the installation of the new system.

• A manufacturing company installed a modified order-entry package.
The system eventually worked, but during installation the company
lost track of all orders for three days.

What is responsible for these problems with information systems? Why are
systems analysts and systems designers creating systems that are not used?
This chapter suggests a method of systems analysis and design centered on the
user. The theory behind user-oriented design is that the systems analysis and
design phase is too important to be left solely to the professional designer. In
user-oriented design, responsibility for the system shifts from the analyst to
the user.

68 SYSTEMS DEVELOPMENT MANAGEMENT

TYPES OF INFORMATION SYSTEMS

Before discussing some of the details of user-oriented design, it is useful to
describe different infonnation systems and to review the systems life cycle.
Different individuals in an organization make different decisions. Rarely is
the lowest supervisory level in a company involved in strategic planning
decisions. On the other hand, the president of an organization makes rela­
tively few operational control decisions. Thus, when a system is being de­
signed for a particular level of management, an analyst should keep in mind
the type of infonnation required. Infonnation systems requirements fall into
three categories defined by the types of decisions they support [1).

Strategic planning decisions determine the objectives of an organization
and allocate resources to attain these goals. These decisions are made over a
long period of time and often involve substantial investment. The develop­
ment and marketing of a new product is an example of a strategic decision, as
is the commitment to acquire a new subsidiary.

Managerial control decisions are concerned with the use of resources in the
organization. These decisions often deal with financial or personnel consider­
ations. An accountant trying to determine the reasons for a deviation from
planned budget is working on a managerial control problem.

Operational control decisions deal with the daily operations of the finn and
tend to be short run in nature. What the factory should produce today and how
much of a certain part should be reordered for inventory are operational
control questions.

Infonnation for strategic planning (e.g., data on the economy, competi­
tion) usually comes from the external enviroiunent. Accurate detailed infor­
mation is not mandatory for strategic planning; summary infonnation may be
all that is needed in many situations. Strategic decisions usually involve
planning and are more long-range than other decisions.

Operational control decisions have almost opposite information
requirements-the data for operational control decisions usually is generated
internally, and accuracy is highly important. Detailed infonnation is the rule,
and this type of decision must be made frequently. Operational control deci­
sions are of short range and are likely to trigger immediate action. The
infonnation requirements for managerial control decisions fall in between
those of the other two types.

A type of infonnation system that cuts across the categories described
above is the decision support system (DSS). DSSs are designed to support a
specific decision, like those made in portfolio management and production
planning. DSSs often involve mathematical models and large data bases. One
of their main characteristics is voluntary use.

The typical production system (e.g., one that processes payments, orders,
and shipments) must be used; a DSS, on the other hand, is adopted voluntarily
by the decision maker. There are numerous sophisticated and relevant systems
that are not used by those for whom they were designed. One company with a

USER-ORIENTED ANAL YSIS/DESIGN 69

large decision support system estimates that only 10 percent of the potential
users actually use the system.

The Designer's Responsibility

The designer should recognize the different infonnation requirements of
the various types of decisions. One of the largest problems in the design of
infonnation systems (especially top-management decision systems) is that of
providing the wrong data for a particular decision. Analysts, conditioned by
lower-level operational control systems, may supply top management-faced
with a strategic problem-with unnecessary data generated from internal
records with high levels of accuracy and detail.

Strategic planning, managerial control, and operational control can be
supported by computer-based infonnation systems. Most current computer­
based systems, however, are transaction-oriented systems, which involve
very few decisions or decisions that are so routine and programmed that they
are uninteresting. For example, they compute the payroll or produce accounts
payable checks. Frequently, however, transaction-processing systems collect
the infonnation necessary to make other kinds of decisions. An order-entry
system, for example, may produce summary reports that are useful in solving
operational control problems, such as production scheduling.

There is nothing wrong with developing transaction-processing systems­
they are often able to demonstrate cost savings to the organization. The
organization that develops only this type of system, however, ignores some of
the potential of the computer as an aid to decision making. Good transaction­
processing systems are necessary, but they should not be the only types of
computer-based aids developed.

CONVENTIONAL APPROACHES TO ANALYSIS AND DESIGN

This section describes some of the conventional approaches to systems
analysis and design and suggests some of the problems with them.

The Systems Life Cycle

Table 6-1 shows the stages in the systems life cycle. The need to improve
existing infonnation processing procedures usually stimulates the desire for a
new computer-based infonnation system. A feasibility study or a preliminary
survey is conducted to determine if a system can be developed to solve the
users' infonnation processing problems. Based on the outcome of a feasibility
study, a decision is made to proceed with the design of a system.

The design stage is the major creative part of the systems life cycle.
Detailed specifications are developed for exactly what the system is to do.
Programming turns these detailed specifications into a working computer
system, and testing ensures that the system works satisfactorily. Throughout
the programming and testing stages, the system is documented.

70 SYSTEMS DEVELOPMENT MANAGEMENT

Changes to the existing information processing procedures are made dur­
ing conversion so that the new system can be used. During installation, the
organization begins to rely on the new system. Finally, after installation is
completed, the system becomes operational and is run on a routine basis.

Stages in the Design Process

Table 6-2 contains a list of the major tasks undertaken in systems analysis
and design.

Motivation refers to the reason the study is being undertaken. Generally, a
user has an information processing problem and feels that the computer can
help in solving it. (Chances for success are much greater when the user, rather
than the DP department, suggests a new system.) The analyst tries to deter­
mine the users' goals for the system and attempts to understand the existing
system in terms of its performance of some or all of the required functions.

Table 6-1. Systems Life Cycle

Inception
Feasibility Study
Design

Specifications
Programming
Testing
Documentation

Conversion
Installation
Operation

Table 6-2. Steps In Systems Design

Motivation
Feasibility Study
Systems Analysis
An Ideal System
Detailed Specifications
Conversion and Installation

Based on initial discussions with users, a feasibility study is conducted.
The feasibility study includes documentation of the existing information pro­
cessing procedures. The design team then formulates a rough alternative
system and estimates costs. At the completion of the feasibility study, a
decision is made on whether or not to proceed with the system.

If the decision is positive, detailed systems analysis and design are under­
taken. The approach must ftrst be documented thoroughly through the collec­
tion of data on the volume of input and output, information flows, and
decisions. Then the actual systems design begins. One way to produce a new
system is to design an ideal one without cost or other constraints. When this is
accomplished, the design team iterates to produce an acceptable and feasible
system; for example, modiftcations are made to the ideal system to bring its
costs within reasonable limits.

Following the completion of the outline for the system, detailed speciftca­
tions are produced at the processing, logic, ftle design, and 110 levels. Pro­
grams are assigned to and written by programmers. Manual procedures are
specifted and the entire system tested, both with unit test data and logical data
for the entire system.

During conversion and installation, existing information processing proce­
dures are phased out as the new system begins working. These stages involve

USER-ORIENTED ANAL YSIS/DESIGN 71

training users and running final tests as well as converting files and other
procedures to the new system.

Problems with the Conventional Approach

The steps contained in Table 6-2 are conventional. Many texts on systems
analysis and design contain similar lists of tasks. Problems in four areas­
information flows and paper processing, decision making, change in the
organization, and the role of the analyst-arise when this approach is used.

Information Flows and Paper Processing. The conventional approach
overemphasizes information and paper flows. These processes are, in fact,
independent of the development of computer systems and could just as easily
apply to the development of systems and procedures involving manual tabu­
lating equipment.

Decision Making. The stages in conventional design do not sufficiently
consider decision making. Computer-based systems can potentially assist in
making decisions, and systems designers should focus on this as well as on
paper flows. The failure to do so, combined with the overemphasis on infor­
mation and paper flows, has resulted in an overabundance of transaction
systems. While these systems must function well if the organization is to
continue in business, the potential of computer-based systems is not realized
if systems do not also support decision making.

Change in the Organization. The conventional view of systems analysis
and design obscures the fact that information systems are designed to bring
about change in the organization. If users were satisfied with existing infor­
mation processing procedures, there would be no reason for a new system. Of
course, the degree of change varies from one system to another. Some imple­
mentation efforts involve only minimal changes, such as new input or output
procedures; others may result in changes to work groups or the structure of the
organization. Whatever the case, an approach to analysis and design that takes
into account the problems of introducing change is needed.

Role of the Analyst. The last problem concerns the role of the systems
analyst. The conventional design method implies that the analyst is com­
pletely in charge of the systems design process. The analyst is seen as an artist
or an architect who receives a commission, discusses the work with the client,
and creates the desired product. This has led to the failure of many systems.

USER-ORIENTED DESIGN

Rather than placing systems analysts in charge of the design effort, users
should themselves manage the design of their computer-based information
systems. They should actually perform some of the tasks usually carried out
by the analyst. Experience indicates that users are capable of such tasks and
that successful results can be achieved in this way [2].

72 SYSTEMS DEVELOPMENT MANAGEMENT

Reasons for User Participation

There are many reasons for user participation in the design of infonnation
systems. In the past, user participation has meant that designers consulted
users, but the users did not necessarily have any real influence over the
system. Real user involvement requires time. Users must understand the
system, and their recommendations must prevail. A number of benefits result
from this type of user participation [3]:

• It builds user self-esteem.
• It is intrinsically satisfying and challenging.
• Because the users have psychological ownership of the system, they are

motivated to work with it, and the new system is more likely to be
used.

• More commitment to change usually results.
• Users become more knowledgeable about the system and are trained to

use it prior to conversion and installation.
• Users retain much of the control over operations in their areas.
• The users know what is needed for a particular application; if the users

are in charge, quality is defined according to the users' criteria.
• Users know more about present information processing procedures,

and user-oriented design therefore results in better solutions to prob­
lems.

• User-designed interfaces are easier to use than those designed by sys­
tems designers.

A New Design Methodology

User-oriented design has three major components:
• User-controlled systems design
• User-defined criteria of system quality
• Special attention to the design of the interface between user and system

User-Controlled Design. User control of design may be innovative, but it
is the most important component of user-oriented design. Although many DP
departments stress participation and involvement, this involvement is often
superficial. Users' suggestions are solicited, but users have little influence on
the final system. In user-oriented design, the responsibility for the design of
the system lies with the user. The computer professional becomes a catalyst
who helps the user construct the system and who translates the user design
into technical specifications for computer processing. User-oriented design
places the user in total control of the design of the system.

The users' efforts are guided by the analyst, who indicates what tasks must
be accomplished. For example, the analyst might suggest that the first task is
the specification of output. Users are asked to think about the infonnation
desired and to draw a rough sketch of a needed report. The users then consider
ways in which the report could be used. Trade-offs among different ways of
making the information available (e.g., online inquiry or printed report) are

USER-ORIENTED ANAL YSISIDESIGN 73

discussed with the users. The analyst, based on his or her knowledge of
computer capabilities, presents alternatives for user consideration.

Next, the users might be asked to develop a method for obtaining input for
the new system. The users determine the content and form of the input after
the analyst has discussed such alternatives as a terminal, rnark sensing, and
optical character recognition. Finally, the users are shown how computer files
are developed. Working with the analyst, users define the processing logic
and file structures for the system. Users should also suggest conversion and
installation plans.

System Quality. The second part of user-oriented design is concerned
with system quality, which should be evaluated according to user criteria
rather than the criteria of the DP department or professional analyst. In the
university system described earlier in this chapter, the DP department devel­
oped an online system using the latest in communications and data base
technologies. Users were irritated, however, because the command language
was difficult to use and because the system contained a number of errors.
Users no longer had the familiar batch reports, and the system was available
only for a short period during the day. Computer professionals thought this
system was excellent because of its technical elegance, but the users were
dissatisfied because the system was driven by technology more than by their
needs.

User/System Interface. The final component of user-oriented design is
the interface between the users and the system. Effort should be made to
ensure the design of a high-quality interface. Input and output with which
users have contact should be carefully designed; experimentation should be
the rule. Users should design their own input and output forms and should
have the opportunity to work with them and the proposed output devices
before they become part of the system. Users should also choose the appropri­
ate mode (Le., batch or online) and technology for the system.

Reaction of the Systems Staff

The systems staff may fear loss of control if user-oriented design is em­
ployed. For example, one manager resisted this approach primarily because
he was rewarded for finishing systems on time and within budget. He per­
ceived that management wanted his systems staff to be cost cutters. This
conception of the DP function suggests development of operational control
systems, the use of which is mandatory. In such an environment, user­
oriented design is difficult to implement.

Many professionals now realize that conventional design approaches have
consistently resulted in failure and sometimes in disaster. Although it is not
universally endorsed by systems professionals, there is growing recognition
that user-oriented design, or a similar technique, will be required for success
in the future.

74 SYSTEMS DEVELOPMENT MANAGEMENT

ADOPTING USER-ORIENTED DESIGN

The following discussion presents a series of steps designed to aid in
adopting user-oriented design.

Application Identification

A key activity for the organization is to identify areas where potential for
computer applications is high. The problem does not concern the feasibility of
an application but rather what type of system should be developed and what
the priorities of different suggested applications should be.

The identification and selection of applications is a key place for the
involvement of users. Users should understand why a particular application is
chosen for development; often, higher management commissions a new sys­
tem. The end user may not have had any input in the decision to develop a
system. Management should make clear the reasons for the new application to
everyone involved in the design and use of the system.

Users should also influence system boundaries; more than one alternative
to the status quo should be considered. In some instances the user may choose
a less complex system, omitting some functions in the interest of rapid imple­
mentation. In other circumstances, they may opt for a very elaborate and
sophisticated application. Whatever alternative is selected. the user should
consider a range of options and participate in the choice.

Design Committee

The use of a design committee is integral to user-oriented design. All
levels of individuals affected by the system should participate in its design. It
is difficult for one person to design a system-the more individuals involved
in this creative task, the better the system. If there are too many individuals
for all to be included on the design team, a representative from each group of
users should be selected. The representatives then act as the liaison between
the design team and the users. In the design of a retail data collection system,
for example, certain clerks could represent all clerks who will use the system.

Appointing the Head of the DeSign Team

It is important that the head of the design team be a user. Otherwise, the
users will not perceive that they are in control of the development process.
One of the goals of user-oriented design is to ease conversion and to ensure
that users have psychological ownership of the system. To achieve this goal, a
user must be in charge of the design team.

The Role of Management

Management plays a key role in the development of a new system and the
adoption of user-oriented design. Management must clarify the objectives of

USER-ORIENTED ANAL YSIS/DESIGN 75

all new systems. In one company, management wanted to unify the customer
services function, thereby removing customer services from two areas and
creating a new department responsible for all customer contact. This unpopu­
lar change was blamed on a new order-processing system until it was made
clear that top management wanted the change and that the new system would
facilitate it.

Managers must also provide resources so that users can participate in
design; for example, they may have to hire new employees to free user time.
Management must also encourage and attend frequent review meetings to
discuss the design in progress.

These reviews play an extremely important part in the user design process.
Everyone involved with the system must attend. Management does not always
understand that it should also be involved. Often during these meetings,
policy questions arise that must have the input of higher levels of manage­
ment. For example, management must participate in decisions on the alloca­
tion of products to customers. In addition, the participation of high-level
managers in the design process serves as a model for others in the organiza­
tion; this kind of participation is a part of management's leadership role.

User Role in Design

A continual difficulty in the design of new information processing systems
is the lack of available time users can give to the design effort. New informa­
tion systems are usually designed for areas where users are already overbur­
dened; existing information processing procedures may have broken down.
Managers of user areas must provide sufficient resources to enable user partic­
ipation.

Role of the Professional Analyst

The professional analyst who adopts the role of catalyst in the design
process is crucial to user-oriented design. Instead of being in charge of the
system, the analyst should present alternatives to the users. Presenting the
various stages of the systems life cycle is a way to start. The approach should
be to ask users about decisions, rather than to tell them what the computer
system is going to do. The analyst explains each alternative and its benefits,
costs, and trade-offs and gives reasons for recommending a particular alterna­
tive. If a user can justify a request for 12 months' sales history for the current
and previous years, it should be provided. Above all, the analyst should not
speak of what he or she can do for the users but rather of what the computer
can be programmed to do.

Specifying Goals

One helpful design approach is to begin by specifying the goals for the new
system. A group meeting can be held to obtain an overview of what a system
should accomplish. Next, users identify the output they would like to have

76 SYSTEMS DEVELOPMENT MANAGEMENT

from the system-not in detail but in broad tenns. The inputs available to
produce this output are described. From this the contents of files are devel­
oped. At this point, users meet with the analyst to detennine the processing
mode. Output displays or report formats are then developed in detail. Input
documents or displays are refined and the file contents specified.

Progress Review

Although the design approach sounds sequential, it is not. There are a
number of cycles in which progress is reviewed and refined. As the system
evolves, frequent review meetings and walkthroughs are held. Several users
should attempt to define each display or report. Again, the development of a
system is a creative process, and the creativity of more than one individual is
needed. Individuals should be encouraged to walk through their processing
with the entire group.

Challenging the Design

One function of the systems analyst is to challenge the design as it devel­
ops. The analyst must check to ensure that the multiple uses of infonnation
have been considered. For an accountant, for example, data on last year's
sales may be viewed as historical, whereas the market researcher might look
at this data as indicative of future sales. The analyst must be sure that decision
making, not just the flow of data, has been considered in the design.

Testing

The interface must be carefully tested. Users should develop their own pro
forma reports and should review all input and output documents and displays
carefully. Where possible, live tests should be conducted, and in an online
system, the user should work with a tenninal display before finalizing the
system specifications.

Conversion and Installation Plan

Users can develop the conversion and installation plan. What data must be
transferred to the new system and how different individuals will respond to a
new system are important considerations. A foreman with 20 years of experi­
ence may react quite differently from a manager who has just joined the
company. It is important for users to develop test data in order to assure
themselves that the system operates according to specifications.

Post-Implementation Audit

A post-implementation audit should be conducted by the users and the
systems analyst working on the project. Some questions to ask are:

• Were the stated goals achieved?
• Were costs within reason?

USER-ORIENTED ANAL YSIS/DESIGN 77

• Does the system function according to the desires of the users?
• What can be done to improve the design approach in the future?
• Were enough meetings held?
• Did users on the team understand what they were requesting

CASE STUDIES

This section presents two examples of user-oriented design. The first ex­
ample involves a firm that had followed the conventional approach to design
and encountered difficulty. A user-oriented approach was adopted to rescue
the project.

Order Processing

This firm had developed one of the early online order-entry systems in its
industry. The competition, however, had since developed more advanced
systems, and this company wished to develop the "next generation." Design
work had begun, and the analysts felt they were very user oriented; however,
management, after receiving an 8-inch-thick set of preliminary systems speci­
fications that it could not understand, had misgivings. A consultant was
retained to evaluate user reaction to the system.

The new system was to be quite comprehensive; it was to begin with a new
and more sophisticated forecasting technique, encompass order entry and
production scheduling, and eventually attempt to load machinery on the pro­
duction floor. A number of new features required extensive research.

The consultant confirmed management's fears-very few users really un­
derstood the system, and most had misgivings about how it would work in
their environment. The consultant recommended that users and top manage­
ment attend a series of review meetings.

The consultant learned enough about the system to make a presentation in
the first meeting. The discussion was at the conceptual level. Users and
managers from all functional areas began to understand the implications of the
system and its boundaries. They reviewed the list of remaining conceptual
design questions and added to it a number of further issues to be explored.

At a second meeting a month later, the remaining design issues were
discussed. At the end of the meeting, the issues were grouped into categories,
and teams of two or three users and one professional designer were formed to
research specific issues and report back to the main group.

The primary purpose of these meetings and the change in strategy was to
get users involved and to help them understand the system.

Summary of Steps. In the preceding example, there were several key
steps:

• Management recognized a problem with the conventional approach and
sought help.

78 SYSTEMS DEVELOPMENT MANAGEMENT

• Top management was willing to meet with the users and others in a
review session. Management was also willing to explain its reasons for
undertaking the system.

• At the conceptual walkthrough of the system, there was widespread
participation from all areas affected by the system. The presentation
clarified that the system was not yet "cast in concrete" and thus
encouraged changes.

• The walkthroughs continued, with further attendance and support by
top management.

• The initial meetings were followed by action-the formation of design
task forces to resolve specific design issues.

Manufacturing System

In this example, the company, a small manufacturer of women's garments,
was implementing a computer-based system. At the time this study began,
two service bureaus were used: one for payroll processing and the other for
accounts receivable. There was a scarcity of information on orders and pro­
duction planning, however. Existing information processing procedures, par­
ticularly in the office area, were insufficient as a result of huge increases in
sales volume.

A professional consultant was retained to study the manufacturer's present
information processing procedures. This consultant fulfilled the role of a
systems analyst. The initial contact with the president of the company pro­
vided good management support.

After several months, it became clear that the office manager would be the
user in charge of the project. Unfortunately, it was impossible, because of
space considerations and training problems, to provide extra help for users.
As a result, a long time was needed to develop the system.

Joint Meetings. At the first design meeting, all potential users in the
company participated in setting the objectives of the system. These individu­
als were drawn from production control, scheduling, purchasing, office man­
agement, credit, sales, and order processing. More than 10 people were
involved in the design process, in addition to the analyst. The first meeting
produced general concensus on system objectives, including order process­
ing, raw materials forecasting, and accounts receivable.

Order processing is an extremely important application, both for timely
shipments and for scheduling production. Accurate raw materials forecasts
are one of the keys to success in this particular business, as it is very expen­
sive to end a sales season with excess materials. While the batch-processing
accounts receivable system in use was satisfactory, it was felt that a new
system should integrate accounts receivable with order processing and inven­
tory.

After the review meeting, users began to identify the system output, to
define report formats, and to develop the needed input. The analyst developed
lists of file contents; users determined the field sizes.

USER·ORIENTED ANALYSIS/DESIGN 79

Hardware/Software Specifications. The company did not have its own
computer at the time and planned to develop the specifications for a system
and put them out for bids. Since a batch service bureau operation could be
selected, no assumption was made as to the mode of processing. For the most
part, a batch-oriented system was designed since it could easily be converted
to online input and output, while the reverse was not necessarily true.

As the design proceeded, crucial decisions, particularly in the area of
shipping, were discussed in the main group. Alternative scenarios for differ­
ent decision areas were discussed. Specific decisions of a more parochial
nature were discussed in smaller meetings. For example, since accounts re­
ceivable was primarily the concern of the office area, production control did
not need to spend time discussing detailed accounts receivable questions.

Before submitting a finished document for bidding, two full reviews with
the entire design team were held. Again, critical decisions were discussed,
and the draft of the system was distributed to the team. After careful consider­
ation, an online minicomputer system developed by a turnkey vendor was
selected. Because the system was to be in-house and online, the opportunity
existed for reviewing the programming specifications to convert to online
input and to eliminate some of the reports with online inquiry. The original
consultant who acted as the systems analyst continued during that time to
interface the turnkey systems group with the manufacturing company. During
this process, the users seemed well informed about the capabilities of the
system and its objectives.

Summary of Steps. The example just described illustrates the steps dis­
cussed under Adopting User-Oriented Design:

• Although no formal committee existed, a group of key users defined the
decision areas to be included in the system.

• The user group itself became the design committee; key users (includ­
ing the president of the company) were aware of and involved in
decisions about the system.

• A user was in charge of the system. Although the analyst was responsi­
ble for putting together the documentation on the system, the user was
in charge of the detailed decisions reflected in the documentation.

• Management was unable to provide extra resources to aid user involve­
ment, but during the project, a production control supervisor was added
to facilitate the development of specifications.

• The analyst acted as a catalyst in the design process; alternatives were
explained, and, in general, the users' solutions were accepted. When
the users' wishes were very difficult or very expensive to implement,
they were very reasonable in making compromises.

• Following the user-oriented design approach, an overview was ob­
tained; then the output was identified, and the input and flles were
specified. Each of these components was defined in increasing detail
through successive iterations.

• Frequent review meetings were the rule. Small groups met to discuss
each aspect of the system, while a larger review group met to examine

80 SYSTEMS DEVELOPMENT MANAGEMENT

the entire system. Since individuals served in the review group and a
small group, they had good knowledge of one aspect of the system and
a working knowledge of the entire system.

• The design was challenged in a manner that was nonthreatening to the
user. Questions were asked about whether specific reports or fields
were needed. The contractor who was programming the system also
challenged the design, asking questions about whether certain infonna­
tion was necessary and whether it was economical to store it.

• The user interface is currently being designed. The online components
of the interface will be tested carefully with users. The basic input
fonnat was produced by the users, and they will have a strong influence
on the screen fonnats for input and inquiry.

• Conversion is still in the planning stages; however, based upon the
knowledge indicated by users so far, all parties are optimistic.

• A post-implementation audit will be conducted after system installa­
tion.

CONCLUSION

Better-quality systems should result from user-oriented and user-controlled
design because users know their procedures and can suggest ways to improve
them. Users become better prepared for conversion and installation and more
knowledgeable about the system than when conventional approaches are em­
ployed. Finally, users become enthusiastic about the new system-something
rarely seen with conventional design techniques. Designing systems accord­
ing to the approach recommended in this chapter may take longer and cost
more, but given the poor record of conventional approaches to design, the
increased cost and effort seem well worthwhile.

References

1. Anthony, Robert. Planning and Control Syste",.: A Frameworlc for Analysis. Division of Research, Graduate School of
Business Administtation. Cambridge MA: Harvanl University Press, 1965.

2. Lucas, H.C., lr. The Analysis, Design and Implementation of ltiformtJtion Systems, 2nd ed. New York: McGraw-Hill Book
Co., 1981.

3. Lucas, H.C., lr. Toward Creative Systems Design. New Yorlc: Columbia University Press, 1974.

Bibliography

"Defining an Information System." AUERBACH Data Processing Management Series. Portfolio No. 3-10-01 (1976).

"Perfonning Systems Analysis." AUERBACH Data Processing Management Series. Portfolio No. 3-10-03 (1976).

l! Organizational
Decision Making and
DSS Design by Stephen P. Taylor

INTRODUCTION

The design of Decision Support Systems (DSSs) is one of the most chal­
lenging activities facing DP professionals today. The technological advances
of recent years, coupled with the declining cost of DP technology, have
permitted increasingly complex problem resolution by automation. Unfortu­
nately, the rapid growth of computer-based information systems has resulted
in numerous problems, particularly in systems design. One of the most com­
mon difficulties facing DP professionals is the discrepancy between what the
user requires and what the DP professional delivers.

The design of DSSs is especially problematic because the demands placed
on the system vary significantly from those placed on a simple transaction or
accounting system. Decision-making activity within an organization occurs in
a largely unstructured environment of constantly shifting goals, priorities, and
decision-making styles. Moreover, decision-making activity is not easily ana­
lyzed or reduced to a simple equation. Traditional approaches to the design of
decision support tools have proved inadequate; new methods and procedures
that are based on a more thorough understanding of organizational behavior
are needed.

The design of a DSS requires a firm understanding of the decision-making
process within an organization. Training of DP and management personnel,
however, largely ignores this important topic. DP professionals and business
managers thus are often unaware of how the organization actually functions.
The designers of management decision systems have traditionally viewed
decision making as a rational exercise. The principal decision makers in the
organization are seen as logical people who want better information on which
to base their decisions. Thus, the systems designers have emphasized improv­
ing the predictive qualities of DSS models, providing faster hardware and
more efficient software to increase response time, and producing reports
faster to improve the immediacy of information. The implicit assumption is
that better data and more accurate models result in a better DSS. Such think­
ing can lead to better predictive tools, yet this alone does not guarantee that
the system will function as an important decision-making aid.

82 SYSTEMS DEVELOPMENT MANAGEMENT

Organizational changes resulting from the introduction of a DSS should be
anticipated and incorporated into the system 4esign. Such changes should not
be dismissed as personnel problems and therefore outside the domain of
systems design. The probability of a system's success can be greatly increased
if its adverse effects on the organization, the work group, an:d the individual
are considered and minimized during system design.

In addition, the organization's decision-making procedures are a major
factor in determining the requirements of a computer-based decision support
tool. DSS design will be improved, and the DSS will gain more complete user
acceptance if it matches the de facto decision-making process of the organiza­
tion.

DSS designers must determine which model best fits the decision-making
process of a specific organization. A few observations on this problem are
made in the following discussion.

DSS Requirements. The organizational context surrounding the system
will vary substantially according to the system's function. Systems designed
to predict the impact of economic factors on the rate of inflation are likely to
have less volatile organizational side effects than do those whose goal is to
determine the quantity of resources necessary for welfare programs and the
allocation of such resources. The social, economic, and organizational con­
text within which a system will function must be understood by DSS design­
ers. The differences between the public and private sectors as well as those
between Fortune 500 corporations and small, concentrated businesses are
critical factors in DSS design.

Decision-Making Level. The level of decision making that the DSS will
support (Le., operational, managerial, or strategic) should also be investi­
gated. Low-level decisions require less scrutiny in design than do policy
decisions that have significant impact on a large number of interest groups.

Decision-Making Style. Although broad parameters such as those just
discussed can be helpful in determining the correct organizational approach to
DSS design, the first step is to understand how decisions are made in the
organization. Three perspectives on organizational decision making can facil­
itate this inquiry. Each position highlights certain components of decision
making while de-emphasizing others. Together these perspectives provide a
much richer understanding of the decision-making process than would be
gleaned if each was analyzed separately.

THREE PERSPECTIVES

The first obstacle to understanding organizational decision making is the
number of theories on the topic. Academic literature discusses decision­
making theories ranging from the normative rational perspective to the de­
scriptive political paradigm put forth by political scientists. Three perspec-

DECISION MAKING AND DSS DESIGN 83

tives on decision making are presented here: the rational, the organizational
process, and the political. Each suggests different factors on which decisions
are based and thus alters the motives for adopting computer technology as a
decision support tool.

The Rational Perspective

This approach has been the classic template for constructing DSSs.
Founded on the free-market idea, it defmes the organization as a profit­
maximizing entity that depends on cost/benefit analysis for every decision.
The decision maker chooses the alternative that produces the most utility for
the least cost.

In this perspective, decision making can be reduced to an ordered set of
steps. The individual is confronted with specific alternative courses of action,
each of which is evaluated and assigned an outcome. The decision maker then
ranks the consequences to determine the most beneficial outcome. In the case
of business decisions, the decision criterion is generally the profit motive.

The Organizational Process Perspective

In response to the rational perspective of organizational decision making,
theorists have conceived a model based on the actual behavior of decision
makers [1,2, 3, 4]. This is the organizational process model.

In this perspective, the cost of obtaining all information necessary to make
optimal decisions is considered prohibitively high, and such decision making
is not considered possible in the real world. Choices are not always clear cut
and involve many subjective factors that cannot be stated explicitly in cost!
benefit equations. The organization therefore pursues a decision-making strat­
egy designed to produce satisfactory-not optimal-decisions.

Decision-making criteria may depend more on social than on technical
factors. Decisions may not be based on their technical value in attaining a goal
but on the most acceptable strategy for maintaining the status quo, protecting
the interests of the decision maker, and preserving group autonomy and
freedom. Such objectives are attained through the development of rules,
regulations, and standard operating procedures (SOPs) that reduce the
decision-making function to a routine.

C. E. Lindblom suggested that policy formulation is a slow, incremental
process [1]. Decision makers move from problem to problem and avoid
drastic changes in favor of small, measured steps. The process can be charac­
terized as decision making by successive limited comparisons, where changes
are compared in order to arrive at the most appropriate short-term decision.

Herbert Simon's theory of "satisficing" -roughly defined as a combina­
tion of satisfying and sufficing-significantly modified the rational model [2].
Simon suggested that the decision maker operates in an environment of
"bounded rationality," where the individual's rational decision-making abili­
ties are bounded by a limited ability to perceive, understand, and manipulate

84 SYSTEMS DEVELOPMENT MANAGEMENT

the social world. The decision maker "satisfices" by taking the first accepta­
ble solution found after making only a moderate effort.

The Political Model

The political model sees the organization as a collection of parties acting
independently to further their own goals and enhance their status. The
achievement of individual objectives is put before the pursuit of the rational
goals of the organization (Le., profit maximization).

The decision-making process is perceived as essentially pluralistic. While
the rational concept may hold for simple heuristic games and the organiza­
tional process model for customer accounting and inventory, neither describes
decision making at a strategic or policy level. Many decisions are made in
relation to political constraints, aspirations, and interactions [5].

Viewed from this perspective, decisions result from the interaction of
individuals who focus not on a single strategic issue but on many diverse
problems and who do not act according to a consistent set of strategic objec­
tives but according to conceptions of national, divisional, and personal goals.

Power is the dominant force in the political model. Those who possess the
greatest amount of power ultimately determine the alternatives that will be
viewed as realistic, the consequences that will be seen and ignored, the size of
the stakes, and the structure within which the decision is made.

DSS DESIGN IMPLICATIONS

Computer-based technology can affect the organization's decision-making
process by [6]:

• Altering communication flow and content
• Increasing managerial control
• Shifting power among organizational subunits
• Changing the organizational structure
• Shifting the decision-making function from one management level to

another
• Psychologically affecting individuals and work groups

Figure 7-1 summarizes the importance given each issue in the rational, organ­
izational process, and political models.

The technical goals of system design-flexibility, reliability, security, and
so on-also greatly depend on the decision-making environment. Each
decision-making model supports a different definition of a "good" decision,
the activity required to make it, and the criteria on which it is based.
Figure 7-2 presents a subset of possible design goals or system characteristics,
together with their relative importance in each decision-making environment.

The Rational Perspective

The rational model presents a normative view of systems design that
stresses the development of purely technical characteristics. The use of mod-

DECISION MAKING AND DSS DESIGN 85

els to represent the external environment and evaluate decision alternatives is
of great importance. Such things as speeding the flow of infonnation, obtain­
ing accurate data, and reducing noise in communications channels are exam­
ples of important design goals.

Decision makers are seen as optimizing solutions within the framework of
the organization's goals. The decision-making process is a purely mechanical
procedure based on objective and context-independent information; the per­
sonnel behind a decision are irrelevant. Conflict among alternatives is not
acknowledged. The most utilitarian decision is, by definition, the best and the
one taken.

There are some disadvantages to this model. By emphasizing only the
technical merits of a system, important design concepts are overlooked. So­
cial interaction and the structure of the organization are not considered. Such
factors as power, negotiation, influence, and policy are ignored, as are such
design goals as security, programmed decisions, coalition building, and
power enhancement.

The value of this model is that it suggests pitfalls to avoid during system
design. DP professionals must not construct systems for the purely rational
entrepreneur, however. Even if such people did exist, the environment in
which they operate must be understood and incorporated into the DSS design.

Effect of DSS on
Organizational
Decision Making Rational Perspective

Organizational
Proeees Perspective Political Perspecllve

Change structure of Homogeneous decision Coalitions altered Alters balance 01 power
organization maker

Alter lIow 01 information Unimportant Vital to subsystems Political instrument
Affect work groups Not treated Subunits affected Fundamental
Affect individuals Not emphasized Not emphasized Very important
Produce power shilt No concept 01 power Alters coalition struclure Fundamental
Alter level 01 managerial Employees as tools Develop SOPs Power leverage

control
Centralize/decentralize Homogeneous decision SOPs are changed Shilt in power

decision making maker
Political weapon Alter who makes Homogeneous decision Coalitions affected

decisions

Figure 7-1. Relative Impact of DSS Technology

Deelgn Goal or
System Characteristic Rational Perspective

Organizational
Process Perspective Political Perspective

Modeling capability Fundamental Does not help make
decisions

Not essential to good
decisions

Program decisions Not treated Fundamental Avoid routinization
Data access (security) Homogeneous decision Protects coalition Information as weapon

maker structure
Coalition·building Coalitions not treated Fundamental Fundamental

capacity
If SOPs supported Flexible data display Helre evaluate decision Persuade, inlluence

a ternatlves
Enhance power or Not relevant Avoid conllicl Fundamental

status
Reliable information Indi~ensable If SOPs s'8rsrted If power increases
Dependable Fun amental Manual S s handle If power increases

lallure
Fast response time
Adaptable

Indispensable
Alter models

Helps information flow
Organizations change

slowly

If power increases
Organization in constant

change

Figure 7-2. DSS Design Implications

86 SYSTEMS DEVELOPMENT MANAGEMENT

The Organizational Process Perspective

The organizational process model suggests that strategic decisions are
determined by coalitions, each of which has its own priorities, goals, and
focus. Bargaining among these coalitions and factoring large-scale problems
into subproblems are the central decision-making activities.

Organizational goals are established and attended to on the basis of slow
and incremental change in the membership of dominant coalitions. The intro­
duction of DSS technology can affect the coalition structure suddenly and
dramatically and cause unanticipated problems. Changes in the flow of com­
munication through the formal structure of the organization can upset institu­
tionalized procedures and alter the structure and content of work groups. An
example is the impact of a Material Requirements Planning (MRP) system on
an organization's management, accounting, and production functions. Infor­
mation gathering, control, and planning are centralized into one subunit. This
concentration of activity causes a power shift, alters methods of management
control, and necessitates new procedures to make the system function prop­
erly.

The system designer must identify the SOPs of those organizational subu­
nits that play an important role in the decision-making process. It is generally
difficult to gain user acceptance of an information system that cuts across the
organizational structure or intrudes on territorial rights. Nonetheless, an effec­
tive set of SOPs often enables the development of support systems that permit
new problem-solving procedures to be developed and accepted rapidly.

The technical features of DSS design are given less emphasis in the organi­
zational process model than in the rational model. Such design goals as
reliability, dependability, adaptability, and response time are assigned only a
moderate degree of importance. In this model, the decision maker chooses the
first acceptable solution to the problem at hand, thus eliminating the need for
a comprehensive search for all decision alternatives.

Speeding the flow of information through the organization therefore be­
comes less critical. The decision maker, according to this model, depends less
on current and up-to-date information than in the rational model. Acceptable
goals are set, and a satisfactory solution to the problem, rather than the
optimal solution, is found. The requirement to anticipate all data and decision
outcomes is relaxed. Information sufficient for making a decision is satisfac­
tory.

The importance this model attributes to coalitions in decision making
suggests that a successful DSS include a means of supporting coalition build­
ing in an organization. Although many case studies support the notion of
coalition-based decision making, few DSSs possess this design feature.

The principle of coalition building can be applied to computer-aided design
tools. Such a system might be enhanced to include a mail system that would
permit the ideas, comments, and suggestions of the development team to be
circulated among participants. The system can also be used to arrange meet-

DECISION MAKING AND DSS DESIGN 87

ings, disseminate interface design changes, and reduce the overhead of inter­
personal communication that accompanies large software projects. These ex­
amples illustrate the potential for coalition building inherent in such design
tools.

The Political Perspective

The political model of decision making is important for DSS design, espe­
cially since it is so seldom considered relevant. Individuals and groups, al­
though committed to a particular goal, will fight hard for their individual
point(s) of view.

The political model implies that DSS technology is adopted to the extent
that the power, legitimacy, and status of organizational subunits are en­
hanced. The computer is viewed less as a tool to improve the quality of
decisions than as a means of securing the political advantage of one group or
interest over another. The goals of coalitions and individuals are seen as the
motivating force behind DSS acquisition.

The flow of information and channels of communication are extremely
important in the political model. The introduction of a DSS can significantly
affect these structures by shifting the function of gathering and analyzing
information from one department to another. This shift creates a class struc­
ture within the organization, some groups becoming information rich at the
expense of other subunits that become information poor. As a result, manag­
ers and employees can become anxious and fearful, not knowing how the
altered information flow will affect their situations, and they may resist the
introduction of' a DSS [7].

In the political model, the risk that DSS implementation can result in the
inversion of superior-subordinate relationships is acknowledged [8]. A lower­
level manager may "program" middle or top management for political rea­
sons if he or she has control of a DSS terminal. That is, the system can be
programmed to cover up real organizational problems and uncertainties and
thus elicit from upper management the decision desired by the lower-level
manager. The computer is viewed as just another weapon in the decision­
making arena.

A DSS must be adaptable and respond quickly to the organizational change
that frequently occurs in this volatile political arena. The designer must there­
fore provide a modular design of system components to facilitate organiza­
tional needs that constantly change shape.

Systems must be secure and support the formation of coalitions. Data must
be secure to prevent others from exploiting it to their own advantage. As in
the organizational process model, a coalition-building program is highly de­
sirable. This permits rapid assessment of the relative strengths and
weaknesses of a decision under consideration and determination of who must
be influenced if the desired outcome is to be obtained. Thus, negotiation is
greatly facilitated.

88 SYSTEMS DEVELOPMENT MANAGEMENT

CONCLUSION

DSS design cari be significantly aided by an understanding of the decision­
making process in an organization. The three perspectives discussed provide
contrasting views on the complex activity of organizational decision making
and its implication for DSS design.

The systems designer must choose the model that best fits the organization.
The best way to synthesize these models into a usable tool is to adopt a
diagnostic approach-the image of a doctor making a house call is not inap­
propriate. In some cases the political or rational dimension may not be rele­
vant; however, designers must determine this rather than assume it.

Work must be done to develop clearer insight into how the organizational
decision process affects DSS design. In addition, tools must be developed to
help designers diagnose the specific organization's decision-making process.
The future success of DSS design depends on how well these tasks are carried
out.

1. Lindblom, C. E. "The Science of 'Muddling Through." Public Administration Review, Vol. 19, No.2 (1959), 79-88.
2. Simon, H. A. The New Science of Management Decision. New Vorl<: Hruper & Row, 1955.
3. Simon, H. A. "The Corporation: Will It Be Managed by Machines?" Management and Corporations. Edited by M. Anshen

aud G. Bach. New Yorl<: McGraw-Hill, 1960.
4. Simon, H. A. The Shape of Automation for Men and Management. New Yorl<: Hruper & Row, 1965.
5. Allison, G. The Essence of Decision: Explaining the Cuban Missile Crisis. Boston: Little, Brown, aud Co., 1971.
6. Federico, P., Bl1m, K. E., aud McCalla, D. B. Management l'lfonnation Systems and OrganizatiolllJl Behovior. New Vorl<:

Praeger Publications, 1980.
7. Hoos, I. R. "When Computers Take Over the Office." Harvard Business Review, Vol. 38, No.4 (1960), i02-112.
8. Reynolds, W. H. "The Executive Synecdoche." MSU Business Topics, Vol. 17, No.4 (1969), 21-29.

Bibliography

Kling, R., and Scacchi, W. "Recurrent Dilemmas of Routine Computer Use in Complex Organizations." AFIPS. Proceedings of
the 1979 NCC, New Yorl<, 1979.

Kling, R. "Infonnation Systems in Public Policy-making: Computer Technology aud OIganizational Arrangements." Telecom­
munications Policy, Vol. 2 (1978), 22-32.

Kling, R. "Social Analysis of Computing: Theoretical Perspectives in Recent Empirical Research," Computing Surveys, Vol.
12, No.1 (March 1980) 61-110.

Lucas, H. C. Toward Creative Systems Design. New Yorl<: Columbia University Press, 1974.

Lucas, H. C. Why Systems Fail. New Vorl<: Columbia University Press, 1975.

® Evaluating Software
Packages by Raymond P. Wenig

INTRODUCTION

There are few new applications being designed and developed for com­
puter systems today. Payroll, customer accounts, inventory, and so on cannot
be significantly developed further until a major change occurs in the func­
tional structure of organizations. Most current systems work comprises main­
tenance or replacement projects.

Systems work, therefore, mostly involves reinventing or duplicating. Al­
though customization is needed for many products to interface to an individ­
ual organization, base programs in most applications are the same or very
similar.

This chapter discusses reusing existing software packages to form all or
part of a new application. Such reuse can supply the following benefits:

• Direct cost savings
• Time savings
• Reduced risk
• Better-planned implementations
• Earlier documentation
• Concentration on changes rather than base structure

Reusable software packages can come from several sources, 'including:
• Unbundled hardware vendors
• User group libraries
• Software vendors
• Other users
Two major obstacles hinder software use. One is locating a software pack­

age that seems to perform the desired application and will operate on user
equipment. Another is spending the time and energy to thoroughly evaluate
package operation and function.

This chapter covers the latter problem, presenting a comprehensive meth­
odology for reviewing and evaluating available software packages. All perti­
nent aspects of existing software are covered, including user opinions, pro­
gramming contents, modification requirements, and documentation.

90 SYSTEMS DEVELOPMENT MANAGEMENT

EVALUATING SOFTWARE FOR REUSE

The user should be able to uncover several existing software products that
might service a prospective application with minimal effort. The question
then involves how to validate perfonnance, content, and usability of such
products for specific user applications.

Answering this question requires a thorough and detailed evaluation of the
available system. Some of this can be conducted by the prospective end user;
however, much of it will require the skills of a software professional. The
software evaluation process is iterative; some brief initial tests serve as a basis
for identifying software that merits more detailed (and expensive) evaluation.
The overall evaluation of software products should concentrate on the follow­
ing areas:

• Existing uses, users, and perfonnance
• Adaptability to prospective applications
• Structure and content
• Ease of modification

DETERMINING APPLICATIONS REQUIREMENTS

The objective of acquiring and using preexisting software for a potential
application is to save time and money, an objective that should be achieved
within the franlework of servicing end-user needs. Before committing to
acquisition and installation, it is necessary to ascertain software performance
and usability in the application environment. To determine these factors,
prospective users must understand their needs and requirements for the appli­
cation software as well as hardware limitations and options. Whether or not to
use software packages that employ a particular DBMS must also be consid­
ered.

Prospective software shoppers should not count on finding a software
product that fully satisfies their needs. They should be especially careful not
to allow the operations of an existing software package to influence their
definition of systems requirements and operations.

Requirements defmition must be done by or for the prospective users
before starting a search of available software. The following questions serve
as a basis for developing applications requirements:

• What are the objectives of the application?
• What transactions must be handled?
• What documents must be produced?
• What files must be maintained?
• What volume of transactions must be handled?
• What unique steps must be taken in transaction processing?
• What controls must be maintained?
• What inquiry needs must be fulfilled?
• What type of environment must the application fit?
• What future enhancements are desirable? What options?

EVALUATING SOFTWARE PACKAGES 91

• Who will operate the application?
• What hardware/equipment limits exist?
• What is the user's level of systems expertise?
• What internal system support exists?
• What security requirements and internal standards must be met?
• What type of DBMS, if any, will be used or required?

Answers to these questions should provide a solid basis for reviewing and
evaluating available software for potential applications. If answers are un­
available, additional internal research should be conducted before entering the
packaged software market.

DOES THE COMPUTER SOFTWARE PACKAGE REALLY EXIST?

Although obvious, there are important initial conditions in evaluating any
software package-namely, does it really exist, and is some organization
actually using it? Many good software systems ideas have been conceived and
promoted without actually ever having been built and tested. Some systems
have been designed but never implemented and some designed and built but
never used. Still others are heavily promoted while under development.

A key caution for all prospective software buyers: Never buy an unproven
software package unless it can be treated as a research and development risk
investment. The risks of being an initial user of a new software system,·
especially one designed and built for another organization, are far greater than
those associated with software tailored to specific applications.

Proving that a software product actually exists and is operative is fairly
easy. All potential software package suppliers to be reviewed should be
required to provide a total or representative list of currently active user organi­
zations, including specific contacts. The user should then invest the time and
energy to call and/or visit one or more users of any software product that
appears to meet prospective system requirements.

The amount of effort to be spent in determining existence and use of a
software product depends on such factors as package cost and source reputa­
tion. A few long-distance phone calls to users of $1,000 to $10,000 software
products are worth the expense. Systems that cost $25,000 or more probably
merit visits to user installations. If a system costs less than $1,000, it is
probably more economical to buy the product on a trial basis and test it in the
prospective user environment.

When the value of the software product exceeds $25,000 and the package
is a complete operational application (as opposed to a utility or a simple
application package), the prospective user should be prepared to make signifi­
cant front-end investments by visiting current users. Software operation and
the environment(s) in which it is used should be studied. Some users might
find that they easily invest more in product review and evaluation than in
procurement.

The search and evaluation process should be treated as a research project
and managed accordingly, using appropriate time-and-effort budget control
procedures.

92 SYSTEMS DEVELOPMENT MANAGEMENT

CONDUCTING USER VISITS

Visiting user installations provides the opportunity to evaluate software
products in real environments and to meet those who regularly experience its
performance. Most users are very close to their systems and are directly
responsible for processing, personnel, and, sometimes, software support.

Active software users are usually willing to discuss their systems objec­
tively. The visiting team should concentrate their questioning on the follow­
ing:

• What is the overall level of satisfaction with the system?
• May the team see a demonstration of how transactions are entered and

processed by the system?
• May the team review a set of output reports?
• What transaction volume does the system handle (average and peak

levels)?
• How long do operators await file responses (average and worst-case

situations)?
• How large are the files? What is the growth rate?
• Has data ever been lost? How was the software recovery mode?
• What major and minor software problems have been encountered?
• What changes were installed in the software? What changes are antici-

pated?
• How is vendor support?
• What are the operators' main complaints about the system?
• What savings were realized, if any? What expenses were incurred

beyond initial costs?
• How efficiently does the system use resources?
• What are the resource requirements (e.g., compile and execution times,

memory size)?
• Would the user buy the system again? What would they do differently?

Following the visit, a report should be written indicating the visitors'
responses to the questions as well as their impressions of the user organiza­
tion, personnel, environment, and other important systems aspects. Special
attention should be given to unique systems features and to operational ele­
ments that do not apply to the prospective user's situation. Any hesitation or
negative response should be evaluated further and cross-checked with addi­
tional user contacts.

PROFESSIONAL EVALUATION

The first step in evaluating an applications software product should be
conducted solely by the user representatives. Conducting the user review
initially is important, because if a prospective system does not appear to
satisfy user requirements, evaluating the product professionally is of minimal
value. The risk involved in user review is that the user might accept a system
that is technically poor if it appears to operate acceptably. This is a tolerable
risk because a poorly built system usually shows many faults at user operating

EVALUATING SOFTWARE PACKAGES 93

levels. The corollary of this risk-namely, that a satisfactory operational level
implies a solid technical product-is not necessarily true. Professional evalua­
tion of user-acceptable applications software is still necessary to advise the
user on customization and changes required in a package; different versions of
the system may require different support personnel. It should be noted that
widely used applications software will contain some dead code and hooks for
future enhancements. This shows vendor planning and is advantageous to the
user.

Non-user-oriented systems utilities, service routines, operating systems,
and other computer support software should also be professionally evaluated.
This evaluation should concentrate on content, quality, and flexibility of the
software products.

The evaluation should be conducted by individuals with intimate knowl­
edge of computers, programming, and systems operations. A general com­
puter expert is not as well suited to such an evaluation since computer technol­
ogy, programming limitations, and operation methods all differ significantly.
The differences are often subtle, but they are especially important to the user
who expects a system to operate in a specific computer environment.

Professional evaluation of a reusable software product should concentrate
on:

• Content and quality of computer programs
• Program flows, controls, and systems interactions
• Input, output, and file structures
• Operational tests and safeguards
• Flexibility and expandability
• Documentation
• Evidence of current structured coding techniques and modular design
• Adherence to reasonable standards and practices
• Use of sound design and programming methodology
• Clear identification of previous systems changes and modifications
• Maintainability guidelines

The following sections provide specific tests and details for conducting
professional evaluations of computer software.

EVALUATING THE CONTENT AND QUALITY OF COMPUTER
SOURCE PROGRAMS

The most significant components of reusable software are the source pro­
grams. Any system changes or enhancements will require planning, design­
ing, and installation in these source programs.

A good software professional should be able to review copies of program
source listings and to evaluate quickly system content and qUality.

Program evaluation consists of a survey and soundness review of certain
aspects of software design and construction. It should logically, methodically,
and exhaustively review package attributes-both seen and unseen-and con­
centrate on product operation, maintainability, and extensibility.

94 SYSTEMS DEVELOPMENT MANAGEMENT

The program survey should begin with a quick review of the total package,
including:

• Original authors and history
• Major upgrades and changes
• Existing users
• Software maintenance procedures
• Documentation
• Design considerations
• Contacts
• Revisions in process
• Reported errors
• Support procedures

After a first pass through major areas of the software package, the profes­
sional review should focus on specific system content, operational logic, and
support provisions. The familiarization process should identify:

• System completeness
• Potentially weak areas
• Ease of understanding package constructs
• Consistency

As a fmal test, an automated source code analyzer (e.g., OPTIMIZER ill)
can determine the amount of dead code, unused variables, and embedded
loops. This will require coordination between the software vendor and the
acquirer of the package. If the user environment does not have access to one
of these analyzers, a third party may be necessary. A service bureau would be
a good resource to tap.

Language

Program source language is key to such factors as ease of modification,
efficiency of processing, transportability to other computers, and user inde­
pendence. The evaluator should check the specific language that was used for
the source programs and verify how many of its special features are exercised
in the program code.

Strong preference must be given to the use of high-level procedure lan­
guages. Ten- to twenty-percent assembly language for application programs is
acceptable for reasons of efficiency, but a greater percentage makes it difficult
(if not impossible) to modify, enhance, or transfer the system to another
computer for a prospective user. Operating systems, utility programs, and
special service routines (e.g., data communications protocol handlers) are
built for specific computers and must take advantage of machine-level options
and efficiencies.

In reviewing the language used in a specific series of programs, the evalua­
tor should become familiar with the vendor's language specifications, espe­
cially special features and extensions. The evaluator should then review the
program source listings and determine the number of unique special features
and extensions used in the system. This information should be available

EVALUATING SOFTWARE PACKAGES 95

through program documentation or early program comments. In systems not
originally designed for reuse by others, these details might not be recorded. In
this case, the evaluator must review program source statements to determine
the use of special language capabilities.

Some preference should be given source programs that adhere to standard
language attributes, since these systems can be more easily transferred to
other equipment and users. The greater the use of unique language extensions,
the more difficult it becomes to transfer and reuse the programs (except on
duplicate vendor computers). A distinctly negative evaluation should be given
to programs that use the source language in clever, sophisticated, or machine­
or data-flow-dependent ways. Such implementation usually leads to trouble in
reuse situations because of the difficulty of modifying the programs without
risking the stability of the sophisticated structure. Keeping program code
simple, straightforward, and logical is absolutely necessary in reusable soft­
ware.

The language used in packaged software has several other important impli­
cations in the review and acquisition process. Changes in software languages
are an example: it is possible to acquire a system whose language is moving
toward extinction and diminishing support. Although such a package may
operate successfully today, its long-term implications indicate costly mainte­
nance, lack of adequate programming talent, and a distinct generation gap.

The popular high-level languages most likely to survive include:
• BASIC
• COBOL
• FORTRAN
• Pascal
• RPG
• APL
• PLil

In addition, some new languages are likely to experience long-term survival
and growth:

• C
• ADA
• FORTH
• MUMPS

The dying languages include:
• ALGOL
• AUTOCODER
• JOVIAL
• Assembly languages (e.g., Assembler, BAL, GMAP)

In addition to preferring the more popular languages, validating the level
and use of language standards in the package is important. Several languages
mentioned previously (e.g., COBOL) have multiple standards, which un­
dergo continual change.

96 SYSTEMS DEVELOPMENT MANAGEMENT

Preference must be given to a packaged system using a current-level stan­
dardized language. Older standard-language levels become extinct, and many
new versions are major, incompatible rewrites of the total language.

Program Comments

Some guidelines and an understanding of the style and approach used in the
programs are necessary in source program review. A good programmer can
eventually fathom someone else's program but not without wasting much time
and money. The best guidelines for understanding and/or modifying existing
computer programs are clear, concise program comments. The comments are
nonexecuted English definitions of what is transpiring in the program.

A good application program should be filled with clear and concise com­
ment statements. These statements should exactly define the operations occur­
ring in the program and specifically identify the names and uses of major
variables. The program evaluator should carefully check the meaning and
consistency of program comments.

A suggested approach for checking comments in programs is to randomly
select a sample program and obtain a current listing of its source statements.
The evaluator should then read this source listing thoroughly. The evaluator
should note any unanswered or confusing segments of the program. If neces­
sary, the comments should be reread. When finished, the evaluator should be
able to define, with the aid of the comments, the basic meaning, purpose, and
operation of the program.

After reading the comments in some programs, the evaluator may be
confused. This usually indicates a poorly documented program or inconsistent
internal documentation. Such confusion may occur when the program devel­
oper has written comments in shorthand or depended on symbols or variable
names to denote what is happening. If the reviewer cannot easily understand
the program from the comments, it is probable that future programmers who
try to change or modify the program will encounter similar difficulties. That it
will cost more to modify or enhance such programs is also a fair assumption.

Variable Naming

Another major area of an application source program that should be re­
viewed is the way in which variables have been named and identified. To
change a computer program, it is necessary to identify the variable(s) to be
changed and/or to create new variables that adhere to the program flow. When
using another organization's program, it is necessary to use the variables and
variable naming conventions already established within the system. This
means that the clarity and structure of variable names become significant
factors in the ability to reuse the software.

On starting the source code review, an evaluator should be able to quickly
and clearly identify the type and format of variable names used throughout the
program. It always helps if the programmer has provided some embedded
comments describing how variables are named, created, and used.

EVALUATING SOFTWARE PACKAGES 97

There are three schools of thought on how to name variables in computer
programs. One, the "funny school," uses names of friends, enemies, birds,
or any other handy, idiosyncratic device for creating and identifying program
variables. Since adherents to this school do not produce software that can be
readily reused or modified by others, "'funny" variable naming should be
avoided.

The second school of variable naming creates a meaningful set of 3- to 6-
character names that indicate variable meaning and use. An example of such
variable names would be the definition of a customer identification code by
one of the following: CUST, CUSID, CUSTID, CID. Programs with varia­
bles thus named tend to be easily deciphered if the author consistently uses the
identification structure. Difficulties can arise, however, if the encoding has
been compressed into short character sets.

The third type of variable naming is to name and identify all variables as
part of the system structure. Therefore, early in systems documentation, a
complete list of the variable names, definitions, and uses within the system is
prepared. Some application systems have even included specific program
cross-references and areas of use for each variable. This approach indicates
that the variable naming was part of the design process and was structured for
the flexibility and reuse of the software. Variables named with this level of
consistency throughout the system probably provide the reuser with the best
form of variable identification.

Program Module Structure

The next factor to consider in evaluating a reusable software package is the
overall structure of the program modules. Because of the computer's limited
direct-access memory storage capabilities, it is usually necessary to break
programs into reasonably sized modules and to call them into memory from a
secondary storage device (magnetic tape or disk) and overlay the previously
used module(s). Execution control, data values, errors, and so on must there­
fore be carefully controlled from module to module to ensure that the system
properly performs its various functions without losing or erroneously chang­
ing the proper results.

One of the first structural areas to check is the number of program modules
in the system being reviewed and their relative sizes. If the system only
contains a few relatively large modules of 10,000 or more statements per
module, it will require significant dedicated computer memory (300K to 400K
words or more) for one program alone. Such a structure, usually performance
efficient, requires more dedicated resources while in operation. The more
desirable structure (especially for interactive, multiple applications systems)
has smaller but more modules with logical functional segmentation. As mem­
ory costs continue to decrease and speed increases, however, this becomes
less of a cost factor.

Preference should be given to a computer system that uses a modular
program structure, with each program limited to from 100 to 500 source

98 SYSTEMS DEVELOPMENT MANAGEMENT

language statements. Although such systems are usually better constructed,
require less computer dedication, and perform interactively, they are some­
what less performance efficient than large programs. Another advantage is
that small modules are easier to change and/or replace when modifying or
enhancing a system. As programmer costs continue to rise, this factor be­
comes more significant. Documentation is also usually better because it is
easier to produce for small module entities.

In reviewing program modules, the following factors should be consid­
ered:

• The relative size of modules should be consistent. The evaluator should
check specific sizes from which to build a distribution histogram. The
better systems have more modules (+80 percent) within a narrow size
range, such as 300 (±50) source statements.

• Common data areas should be well defined and standardized across
individual modules. They, too, should be of consistent size, appear in
standard positions in the program, and contain logical variables.

• Logical file structures should be used for defining, building, and stor­
ing data. They should be defmed so that variables, sizes, types, and
contents can be quickly determined. The file definitions are most flexi­
ble when done on early systems modules and then reused via a short­
hand reference.

• Consistent error handling methodologies should be used in the program
modules. This would include clear identification of errors and error
messages as well as clear audit trails on error disposal or repair.

• Transaction audit trails should be maintained by all modules whenever
a data file is changed. The audit files should be available for restarting
the system, developing history profiles, and testing and certifying sys­
tem performance.

Interface Linkages

Once the content of the program modules has been checked, the evaluator
should study the connection methodologies between modules. Many com­
puter systems (except small utility systems) are built on a module overlay
concept: either a base master control program is used to call in appropriate
processing modules, or each module has built-in logic capabilities to select
the next performing module.

The evaluator should check that the calling sequence for program modules
is clear and standardized. All pass-along variables should be clearly identified
and stored in a common data area or explicitly named in a transfer section or
calling sequence. A few randomly selected modules should be reviewed to
validate linkage consistency. Special attention should be given to value­
passing through the use of absolute address locations, implied-value strings,
trailer values attached to common data space, and other nonstandard program­
ming practices. Passage linkages are an indication of tricky programming,
which means that the programs may explode when someone tries to modify
and/or enhance them.

EVALUATING SOFTWARE PACKAGES 99

Good interfaces are major factors in judging the adequacy of system design
and program construction logic. Proper linkage construction involves:

• Clear module naming conventions
• Well-defined parameter passing processes
• Good documentation on all interlink relationships
• Definition of linkage entrances and exits
• Documentation of purpose and operation
• Cross-reference listing of all to/from linkages to other modules

If the linkage-interfacing process is complicated or unclear, the software
packages value should be downgraded. Later extensions to the system will
have to be interlinked to the existing process. Any ambiguity or excess com­
plexity in linkages will hamper package extensibility and greatly increase
enhancement costs.

Restart Provisions

If software fails, operators must be able to restart programs quickly and
correctly and continue their processing without loss of data or damage to
master files. To accomplish this, the software system must have adequate
built-in restart capabilities and automatic storage of necessary recovery data.

The professional evaluator should carefully inspect the software modules
and documentation to determine how, when, and where any restart provisions
are active in the system. Once located, their operation and expected perform­
ance should be thoroughly evaluated in an actual processing environment.

The best type of restart provision is a continuous data audit trail file. This
approach maintains a complete, continuous log of significant transactions
against major files, plus regular recording of significant program values at
main overlay points in the system (e.g., after file updates, long processing, or
computational modules).

A check of the restart-data file layouts should confirm that necessary data
is present to support a systems restart. Consistency of restart-data generation
throughout the system should be checked.

If time permits, an actual test of the restart process is worthwhile, espe­
cially when the evaluator has some doubts about the apparent programming of
the restart process.

File Structures

File structures are significant elements in the overall software system ar­
chitecture. Most transaction processing application systems actively build,
access, and depend on their data files as a major reference and operational link
in their processing. Many program modules might be working in the total
system, and the file structures represent a major element that knits together
the system.

100 SYSTEMS DEVELOPMENT MANAGEMENT

It is possible to change systems programs without affecting the file struc­
tures; however, it is seldom possible to change file structures without causing
several program module changes.

The file structures are crucial common keys that usually support many
program modules within a system. The evaluator should ascertain that de­
tailed file layouts exist for each file, with a clear explanation of the contents of
each field. The next step is to locate the actual file layout definitions in the
software listings and validate that the documentation and the programs are
consistent. A random check of two or three major files should suffice.

A DBMS-based environment demands slightly different considerations.
This is especially true if the software package uses a different DBMS or none
at all. The conversion effort must then be factored into the decision process.

Each major file should be closely studied to detennine its structure, organi­
zation, keys, expansion capabilities, audit-trail generation, health tests, and
overall flexibility. The following are some of the factors to be reviewed:

• Keys-position, size, unused fields, check digits, access authorization,
subkeys, links to related keys.

• Audit trails-date and type of last record change, old/new record log­
ging, use counts.

• Health tests-record bit counts, use bit tests and comparisons, bit dis­
crepancy handling.

• Expansion capabilities-expected ease of changing or adding fields to
the records, including unused embedded or end-of-record fields and the
ease of changing file-definition programming.

• Linkage structure-resolution of duplicate record keys; connection to
subordinate records; ability to locate partial, embedded, or multiple
keys.

• Organization of the record-physical chronology of data fields in order
of use or importance.

• Handling of unfilled fields-used for storage of unfilled data fields in a
record (e.g., space filled, zero filled, special-character filled).

• Variable packing-used on numeric values in the file, specifically
whether they are in binary, decimal, or packed decimal format.

• Character representation-used for storing alphanumeric data in
records to detennine whether it is EBCDIC; ASCll; full 8-, 7-, or 6-bit
code or whether any parity bits have been removed to compress space.

• Equipment dependence-computer file devices (magnetic disk, in par­
ticular) often have fixed vendor-oriented limits on record sizes, key
structures, and other elements. A check of the files and the programs
should be made to test the level of equipment dependence (or prefera­
bly independence).

• File types-keyed, indexed, variable, fixed, blocked, spanned; deter­
mine which is used and how equipment dependent it is.

File structures should have consistent physical structure and programming­
level definitions. Preference should be given to easily understood, logical file
structures, rather than to complex ones.

EVALUATING SOFlWARE PACKAGES 101

Software packages using separable file management routines or a data base
approach are best: they allow easier modification of file structures and content
without requiring modification of each routine. Although few standards exist
for file or data base management systems-many of which are unique proprie­
tary packages-they can enhance maintainability of the software product and
increase adaptability to user requirements.

Fail-Safe Operation

Once installed and operating, an interactive computer system must be able
to continue operating no matter what. This is critical because most computer
applications will be operated by non-DP personnel. The system will usually
not have a protective layer of specialized operators. The applications software
must tolerate all types of difficulties and recover to a position from which the
operator can restart the process.

Power failure, data file destruction, illogical and improper data entty, or
data file or program intrusion by an unauthorized user are examples of com­
puter system failures. Proper computer programming controls must provide
support for these potential problems. Some failures receive hardware support,
as in the case of power-failure detection. Even here, however, the programs
must be able to recognize power failures to prevent data loss and to provide
instructions for recovery and continuation once full power is returned.

Fail-safe operation should be treated as a critical software attribute. The
professional computer evaluator should verify that there are connections at all
possible fault points to test for proper system operation. Test results or default
options should always transfer control to a restart point, saving all necessary
data values. Erroneous or illogical data entty could cause a transfer by a
rejection routine that removes the erroneous data from the system, logs the
errors, and then transfers control to a clean data reentty point.

The evaluator should also check that the system cannot lose control be­
tween program modules or be forced to subvert the logical order of modules.
Preferred systems.are those with built-in checks and balances between mod­
ules or control counters that use values generated by prior modules as keys for
next-step processing.

Hands-on access to an operating version of the system may be expeditious
for the professional evaluator. This can be done at an existing user installation
or at the software vendor site. Such operational evaluation should consist of
running the system and attempting to jam, stop, hinder, disrupt, or destroy
system operation.

The potential user should not be too discouraged if the software package is
easily destroyed in actual operating conditions. Few current computer appli­
cation systems would receive very high ratings in this category. This is a
significant and important area in evaluating an application, but it is one the
evaluator will find a pronounced weakness. Although a system without high
ratings in this area does not warrant automatic rejection, it can cause concern
since it affects the operational use and long-term stability of the system. For

102 SYSTEMS DEVELOPMENT MANAGEMENT

systems without built-in fail-safe capabilities, the user should evaluate the
costs required for their addition.

EXTERNAL ENVIRONMENT: USER INTERACTION WITH THE
SYSTEM

The end users of an interactive software package must manage and control
the system's overall flow and performance. The professional evaluator should
review the software to verify that the system can properly interact with its
users. Key areas are discussed in the following sections.

Systems Start-up. It is important to set date, time, transaction control
numbers, security keys, restart controls, and so on.

Program Selection. This includes the process of reviewing available pro­
gram action choices (e.g., through screen menus) and user input of chosen
actions.

Error Messages. The format and display of error messages (e.g., the use
of reserved error area and blinking sc~n messages) and the clarity of typical
messages (abbreviated codes versus lucid definitions of the errors) should be
checked.

Error Corrections. These are procedures for inserting proper values into
the system in place of designated errors, including instructions to users con­
cerning error correction options, handling of error data (e.g., outright rejec­
tion or holding in a suspense area awaiting correction), and software design
philosophy regarding error audit trails and ultimate disposition of errors.

Operator/User Instructions. Comments to help the operator correctly
and efficiently address and use the system should be clear and concise. The
length and detail of the comments, the availability of detailed backup instruc­
tions, listing of alternative choices, and the use of shorthand or omitted
messages for experienced operators are all important aspects of this task.

Operator Action Commands. These are the level-of-command user en­
tries that cause the system to perform a chosen action. They may vary from
single-key entry commands to complicated sequences of multiple-character
answers. Single keystroke commands offer simplicity and speed; complicated
sequences achieve better security control.

Restart Procedures. These are the actions necessary to reestablish proper
system operations if the normal process is interrupted. Included are halt
indications and instructions given to the operator to restore the system to its
correct working position. Restart procedures should include identification of
last-accepted data values and the required place to restart the process (e.g., by
indicating any requirements to reenter lost data).

EVALUATING SOFTWARE PACKAGES 103

Descriptive Data Overrides/Exception Entries. These involve the opera­
tor's ability to override selected data fields in an input fonnat and to enter
exception input into data files. The evaluator should review the override
process and ascertain whether it adheres to logical rules and controls. The
nonnal approach for descriptive data overrides is to allow the user to make a
specific entry in every field in a format by stopping the terminal cursor at the
start of each field. If a user chooses to make no entry, he or she presses the
skip or line-feed key. The system then places a default value into the skipped
field. The alternate method is to place the default value in the data field first.
The user is then allowed to place a substitute value by tabbing the cursor to the
field and entering the override. Either method is acceptable. The evaluator
should determine that a sound audit trail is kept on such changes and that
controls for review and/or authorization of the exceptions are properly imple­
mented in the software (e.g., supervisory terminal reviews, data override
reports, detailed transaction audit trails).

File Updating. The steps and control procedures involved in proper appli­
cation of revised and new data to master and work files are critical areas of
any data system. It is important that the software package perform its file
updates:

• In a user-transparent mode
• While adhering to accepted audit standards
• While providing for safety points in the event of a hardware failure
• While checking all data processed for consistency and errors
• While validating the acceptability of update results
• While maintaining an indicator of the status of update progress

The conclusion of any file update process should verify the number of
records processed against an initial count and provide a set of file content
values. Hash-total checking on updates is considered a plus factor.

DBMS Considerations. The current operations environment significantly
affects the requirement for a data-base-oriented software package. If no
DBMS is currently in use and one is desired, selection is the primary concern.
Then the market can be surveyed for an application package that uses that
particular DBMS. It may be difficult or impossible to find such a package, in
which case conversion may be necessary. The evaluation process must then
include a step to estimate the effort needed to modify the new software.

Report Generation. The process of generating systems reports involves
controlling when reports are generated (i.e., whether a logical process, such
as file updating, must be complete before reports can be called out). It also
involves obtaining the user input necessary to define the report details and
outlining the operational steps needed to produce the report.

The user inputs (e.g., report name, data, and control values) should be
simple and straightforward. Most of these values should be automatically
created by the report generator, with allowance for user overrides. In fact,

104 SYSTEMS DEVELOPMENT MANAGEMENT

many reports may be automatic final steps in a systems process, without any
requirement that a user specifically request their generation.

Producing hard-copy reports necessitates evaluation of the software's
printing capabilities, including report alignment output and operational steps
to be taken to ensure proper positioning of the data on the paper. Good
software features in this area will include the optional ability to selectively
reprint individual reports based on types, number, or other criteria, without
reexecuting the system (Le., a spool routine).

Inquiry Procedures. Most interactive systems need to inquire into data
fIles to ascertain the current value/status of various elements. The inquiry
process involves user identification of needed data and system retrieval and
display of the proper results.

The evaluator should review in detail the inquiry-input process-including
menu selection steps used to identify the type and characteristics of the in­
quiry, input screen layout, guidance messages, partial or subordinate identifi­
ers, and other retrieval definition factors. The disposition of the answers
should then be reviewed (e.g., whether they appear on the CRT or printer,
user options on details to be displayed, and whether hard copy can be re­
quested).

The evaluator should ensure that the inquiry software does not change any
fIle values and that the inquiry process can be ended and system control
returned either to a neutral position (Le., program-selector menu) or back to
the interrupted processing. The evaluator should also determine whether the
requests are logged to the transaction audit trail.

Exit Procedures. These procedures are used in performing a normal
closeout or an emergency exit procedure of an action process. In normal
cases, the software should allow an easy exit from the process when a user
indicates the end of data has been reached or explicitly enters an "end" action
command at a proper sequence point. The emergency exit procedure must
allow proper logging of in-process data, generate restart positions, properly
suspend actions, and transfer control to an action-selection module. A review
should be made of the software's method of passing system control to the
next-logical modules.

Shutdown/End-of-Day Procedures. These are operator instructions that
indicate the logical end of a unit of processing (e.g., shift, day, week, or a
particular function of the system). These procedures should be automatically
enforced before a next-logical-unit process can be instituted (e.g., a date
change for the next day's start-up). The shut down process should be checked
for proper generation of audit logs and the necessary procedures for required
action steps.

Interactive Flow Control. The processing of most applications software
packages occurs on a partially or fully interactive basis on most state-of-the­
art software packages. The interactive processes should be carefully defined

EVALUATING SOFTWARE PACKAGES 105

and easy to follow. The control over sequence and actions could be automatic,
through user menus, by terminal function keys, or through user commands.
The major considerations for interactive flow controls include user initiation,
activity progress indicators, error handling, interrupts, and restart provisions.

User Documentation

User documentation is a deliverable that helps take the place of resident
software experts. It therefore must be complete, easy to use, well indexed,
and accurate. It should also be well written, professionally reproduced, and
easily updated. User documentation should include the following elements:

• An overview of the software product, its structure, and application
objectives

• An explanation of input procedures and data items, including edits,
tests, errors, and control steps

• An explanation of output reports and data items, including a definition
of their source and/or deviation

• Step-by-step operating instructions, including start-up, recovery, shut­
down, program calling, and audit tests

• A failure analysis matrix with recommended action steps for restoring
proper processing

• Maintenance request procedures and service response events

Output Reports

Most software produces a series of output reports as a major product for
users. These reports are also one of the major design features of the software
product. The content, layout, flexibility, and usability of the output reports
represent significant characteristics of the package.

The professional evaluator should review the reports in terms of overall
structure, logic oflayouts, headings, totals, controls, and other factors. He or
she should also check the report writing programs to determine the degree of
ease or difficulty in implementing changes to the reports.

In addition, the evaluator should review the options and external choices
that are built into the software. These would include:

• Report headings
• Field size limits or flexibility
• Control numbers
• Distribution identification
• Sort selections
• Report suppression
• Choice of levels of details
• Types of error messages
• Selection of total breaks
• Content options

The more of these parameters that are built into the software, the easier it may
be to tailor it to user needs without expensive program modification. Such

106 SYSTEMS DEVELOPMENT MANAGEMENT

flexibilities may increase the difficulty of installing report changes at the
programming level, however. A careful analysis of the reports' end-user
suitability and of the types of expected changes will aid the evaluator in
judging the flexibility of the output report programs for the prospective buyer.

More generalized software may feature a built-in report generator. This
capability can be a great asset in helping end users obtain tailored output at
minimal programming cost. If this capability is present, the evaluator should
review its structure, use, and flexibility. The following areas require special
attention:

• Field selection
• Position indicators
• Total generation
• Line counts and page breaks
• Field/column headings
• Data controls
• Ease of use

Some report generators are little more than facilities to call an open pro­
gram subroutine. Someone must then create the programming steps-data
selection, computation, totaling, positioning, and other detail-level steps. If a
report generator is included in the software, the evaluator should walk through
an actual sequence of report building and generating instructions to ascertain
the capabilities and flexibilities of this feature.

Output Forms

The generation of transaction reports from packaged software may require
the use of special preprinted forms. These could include:

• Checks
• Picking lists
• Statements
• Purchase orders

The acceptability of such forms to end users should be evaluated. Some
package vendors are the primary source of the forms and use them to establish
a lock-in relationship. Conversely, some define the format but do not supply a
sample. The users must design their own and contract for forms supply.

A check should be made on form flexibility and the ease with which such
variables as fields, location, and content can be changed to ensure usable
package outputs. The use of multipurpose forms or user-defined formats
should be considered a package asset.

Computer Output Microforms (COM)

Micrographics are increasingly used as an output medium. Many systems
now have specific files designated for COM, while others contain hooks for
COM software routines. The evaluator must know whether the present envi­
ronment is roll film or fiche, online or offline, and must be able to define the
minimum requirements for the new software package.

EVALUATING SOFTWARE PACKAGES 107

Systems Documentation

Most software buyers are concerned primarily with operating and user
documentation. Systems documentation, which contains significant informa­
tion about the logic, structure, and flexibility of the system, is often given
only a cursory review. It may be weak, incomplete, and inconsistent, and the
weaknesses may not be apparent until the system fails or a user wants to
install a major change in the software.

The professional evaluator should critically reView systems documentation
for the following:

• Systems logic flow diagram
• Narrative overview of the system
• Flow diagram and logic narrative for each system's module
• Readable record layouts with detailed data element definitions, includ-

ing sizes, edits, and data sources and uses
• Input and output record layouts with definition of elements
• Definition of any program-level options
• Definition of all variables
• Explanation of any open or reserved variables or code sections
• Definition of all audit tests and edits in the system

Systems documentation often consists of source program listings with
some program comments embedded in the code. If the comments are ade­
quate, the listings can be considered minimally acceptable systems documen­
tation. A careful check should be made to ascertain that program comments
are consistent from module to module and are up to date. At the very least, the
embedded narrative should:

• Define all variables
• Identify major decisions and functions
• Outline all entries, exits, and error conditions

Audit Provisions

Audit provisions are critical to checking and balancing data files, testing
system operations, or validating financial accounts. If audit mechanisms are
inadequate or inoperable, it is difficult to acquire or build good test programs
to perform such functions.

The professional evaluator should review the software for its ability to
support a reasonable set of audit requests as a by-product of the normal
processing steps or as a special processing procedure. Desirable audit proce­
dures include:

• Displaying the value of intermediate variables
• Tracing a transaction through all processing steps, providing step iden­

tification and value output
• Selecting and printing specific records from data files
• Extracting log entries of a transaction and tracing its disposition

through the system

108 SYSTEMS DEVELOPMENT MANAGEMENT

• Producing a balanced output of all data items in and out of all system
modules, by number and amount

The software developers should have included most of these audit capabili­
ties to aid in testing the product. These capabilities should have been left in
the system for use in future enhancements validation and for data auditing. If
these capabilities are missing from the system, the evaluator should estimate
the time and cost to build them. As an alternative, the reviewer might check
the feasibility of using a generalized data auditing package on the computer
applications software and associated data files.

Competitive Processing

Application systems are real-time, user-demand-responsive systems that
support the processing of various concurrent applications based on current
user needs or demands. The professional evaluator should test each system's
ability to perfonn under heavy data and user loads for varying mixtures of
applications.

Several problems usually become apparent during the competitive process-
ing review, such as:

• Slowdown in user-terminal response time
• Reduced output speeds
• Lengthy queues of requests for file information
• Excessive operating system overhead times

The competitive processing review, therefore, should evaluate the follow­
ing aspects of the software:

• The maximum time to access the same record from a file if all user
terminals request access simultaneously

• The maximum number of concurrent resident applications that can be
active under the software

• The estimated maximum rate at which transactions can be entered into
the terminal, including editing and error correction times

Evaluation of the final area should concentrate on predicting the operation of
the software when maximum loading conditions exist. Such conditions may
not occur often; however, when they do, it is usually during a period when
users are intolerant of system slowdown or failure to carry the load. The
selling vendor should respond to these concerns in writing, and an attempt
must be made to tie them to the contractual perfonnance specifications of the
software.

Customization

Most software packages require customization to tailor them to user needs.
Such changes require careful definition before a commitment is made, since
the costs of installing and validating the necessary changes may exceed the
cost of the package. In addition, it can be difficult to install the desired
changes in the prospective software.

EVALUATING SOFTWARE PACKAGES 109

The evaluator should work with end users to review the appropriateness of
the various elements of the software product. Together they should define a
list of necessary characteristics and a list of options for the software. All user­
oriented elements in the product (e.g., input formats, reports, displays, and
processing rules) should be reviewed. For each element, the users should
indicate the mandatory and desimble changes.

The evaluator should then meet with the developer to determine the neces­
sary effort and anticipated difficulties in making the required changes. The
output of this effort should be a work-task test with some resource estimates,
including associated time-and-cost values. The developer is often the best
source of input regarding changes. The developer has unique knowledge of
the product and should be able to produce the most changes within the least
time-and-cost framework. At times, the developer can be convinced to pro- .
vide some customization effort in the quoted product price.

If the software developer is not available to perform any product change
work, the evaluator should define the changes in detail and the expected costs
to install them. If the evaluator is not qualified to make such estimates, local
software firms should be issued an RFP to install the changes.

The overall review of any software product should take place on a
complete-cost basis to show the total time and cost to produce an acceptable
working product that the purchasing organization can use. Often, it is easier to
make major modifications to a less-than-satisfactory product than to make
small changes to a more complex system that satisfies all user needs. Progmm
structures, documentation, flexibility, files, report genemtors, edits, and
other building-block modules playa significant role in system changes.

Vendor Support

Any applications software package requires a certain degree of vendor
support. Basic support should be provided with the package; additional sup­
port should be available on an as-needed basis at an established price.

The areas of vendor support that should be evaluated are:
• Customization of input, output, and options on the software
• Opemtional installation and setup of the system on the buyer's hard-

ware
• Tmining of opemtors and system users
• Audit of system opemtions after some actual use
• A specified number of days or man-hours to support the package
• Availability of telephone consultation to help in using and understand­

ing the package
• Availability of a retainer type of priority maintenance service to ensure

prompt attention and to help keep the system running

The systems software purchaser may not need all of these items. Many
software products can be self-installed and easily understood, provided ade­
quate documentation exists. When the selection is fmally made, the buyer
should be sure that the required and agreed-upon vendor support items are

110 SYSTEMS DEVELOPMENT MANAGEMENT

clearly spelled out in the contract. If these areas are not included with the
package, or if they are a separate cost item, the prospective buyer should
estimate the costs of acquiring this support before comparing the product
against one with a heavy amount of built-in support. If the developing vendor
does not offer support services, then an estimate of the costs of the internal or
external effort needed to provide the required support is necessary.

PACKAGE SELECTION AND ACQUISITION

After a complete analysis, the prospective buyer must select a particular
package. Different situations and uses dictate the proper weights for the
various factors. The use of numeric rating schemes and plus/minus (+ / -)
lists can be helpful in sorting the competing packages. The buyer must bal­
ance the specific factors covered in the previous sections and must judge each
vendor's capabilities.

Once the decision is made, a complex and often frustrating postselection
phase occurs-contract negotiations. For simple systems, a contract is usually
a brief licensing agreement and a purchase order. For more significant soft­
ware (more than $5,000), the agreement should take the fonn of a clearly
written legal document that spells out the responsibilities and obligations of
all parties. Some vendors employ a standard contract. Most contracts, how­
ever, are one sided or incomplete. The buyer should ensure that a legal
counselor reviews the contract and makes appropriate modifications and/or
additions.

The best way to commit to an outside software product is to treat it as a
new product investment project. Although the basic package exists, it is not
successfully implemented until it begins to service the user organization.
Bringing the software to this level can represent a major effort, often many
times more costly (in user time and energy) than the review and selection
process.

Defining System Changes. As mentioned previously, very few reusable
applications packages will fit a new buyer's needs without a significant num­
ber of changes. Quite often the cost of the changes exceeds the cost of the
software package, and this should not be considered abnonnal.

Data Conversion Requirements. The specific software product selected
will define a significant amount of the data base and file elements for the final
system. Users are cautioned not to attempt too many changes in a software
system data structure.

The new system's data structure will become the repository of user data,
thus necessitating data conversion from its current internal fonn and fonnat
(e.g., file folders, ledger cards, service bureau files, single records, other
computer systems) to the new software structure. This conversion process
requires:

• Access to current data values
• Conversion to the new fonnat

EVALUATING SOFTWARE PACKAGES 111

• Input into the new data storage media
• Validation of content
• Parallel updating of values
• Cutover to new system operations

The vendor should know how to convert successfully and may be able to
supply some level of direct support and help.

The data conversion process should be treated as a special user-managed
project that can parallel system modification and installation. The conversion
project is probably the most significant commitment the user must make to a
reusable software project because it involves a commitment of the organiza­
tion's human resources to learn a new system and to translate familiar data
into an unfamiliar form.

Product Acceptance. As soon as the software product is selected, the
organization should define the tests and conditions that will determine the
successful operation and acceptability of the finished software product.

Acceptance tests, which should be treated as a multifaceted user project,
can aid in learning, certification, vendor evaluation, and future enhancements
identification. Acceptance tests should be designed to validate the total sys­
tem, the weak areas, and any changes that have been implemented in the
system.

A major part of the acceptance project is generation of a comprehensive set
of test data. The vendor often supplies such data for acceptance testing. Users
should review and enhance it or supply their own. This final test data should
contractually form the basis for acceptance. The test data should be designed
to test all facets of the software, including:

• All transactions
• Errors
• Expected error combinations
• All major reports
• End-of-period processing
• File maintenance options
• Audit tests

Test data should be prepared as a permanent data product used for initial
system validation and subsequent revalidation whenever a change is made.
For viability, the user organization should also maintain a full set of accurate
answers for all test data elements.

The next step in the acceptance process is to develop a detailed validation
and testing plan. This plan will become the step-by-step processing and evalu­
ation guide for the acceptance efforts. It should include:

• File-building procedures
• Test data execution steps
• Auditing/results comparison efforts
• Volume testing procedures

The product acceptance project is a demanding and critical effort for a new
or modified software system and is the organization's last checkpoint before

112 SYSTEMS DEVELOPMENT MANAGEMENT

full implementation of the product. The more thorough the project, the greater
the chance for a successful system. The acceptance team should negotiate
with the developers to solve all critical problems prior to implementation and
to generate a reasonable schedule for correcting any noncritical problems.

Product Documentation. When the buyer selects a particular software
product, he or she commits both to the system and its documentation. The
organization should review the available documentation and develop docu­
mentation acceptable to the users.

Even if the available documentation (especially user-oriented instruction)
is adequate, the rewriting of all or part of it for consistency with the user
organization should be considered. The process of documentation enhance­
ment provides:

• A review of the system from a user's viewpoint
• "Apparent" tailoring of the product to fit the organization's needs
• Expanded coverage of important system aspects

Additional summary documentation can be helpful in reducing organizational
resistance and in establishing a positive attitude.

The documentation enhancement project can occur in parallel with the
software modification project. It is a user-run project that encourages partici­
pation in the total system and makes knowledgeable users available to cooper­
ate and communicate with the modifications development team.

Implementation and Stabilization. The final commitment to a new soft­
ware system is the installation and use of the product. The installation process
involves the execution of the training program, distribution of documentation,
and the collection and processing of "live" data. It also involves:

• Converting existing data rues
• Responding to faults, problems, and complaints
• Controlling user uncertainty and fear(s)
• Working with the developer to identify and correct system problems

The implementation process also involves stabilizing the operation of the
system. Improving the system's performance is nearly always accompanied
by unexpected problems and hurried responses and repairs. The process must
be user controlled and requires a dynamic form of real-time project manage­
ment.

As implementation begins to stabilize, the user team should determine the
learning curve for the system and plan the steps to improve user and system
performance. The team should also plan the first full system audit and evalua­
tion and determine that the product is performing satisfactorily.

CONCLUSION

Successful implementation of packaged software requires:
• Good-quality software products
• Willingness to compromise on details

EVALUATING SOFTWARE PACKAGES 113

• A responsive product vendor
• Time spent learning and practicing the use of the system
• Clear understanding of needs and expectations
• Properly implemented modifications
• Adequate long-term support
• A comprehensive test plan

The reuse of available software can save both time and money, resulting in
a better product. The achievement of these benefits requires a great deal of
work and investment to ascertain that the product can adequately serve user
requirements. The detailed list of checks provided herein should be followed
to ensure the promised results from existing software packages.

I
I
I
I

® Organizing for Project
Management by Leslie H. Green

INTRODUCTION

Project management generally refers to a management process that is de­
signed to deal with a specific problem or achieve an explicit objective. In its
simplest form, project management can be defined as assigning personnel
within a functional organization to a temporary task force for the completion
of a specified task. At a more complex level, project management refers to a
highly fluid organization with little hierarchical structure and within which
people are rotated in and out of project assignments as required.

Three ingredients are necessary to enable effective project management:
• A project organization that possesses the skills necessary for project

completion
• A manager or management function that can integrate the skills neces­

sary to accomplish the project objective
• A development methodology for implementing the project objective

Systems development methodology is the subject of this service as a whole.
The other essential elements of project management are discussed in this
chapter.

APPROACHES TO PROJECT MANAGEMENT

To accomplish effective project management, one of four basic organiza­
tional forms can be employed.

The Functional Approach. The first, and perhaps most common, method
is to employ the existing hierarchical organization. That is to say, at some
level within the organization sufficiently high to direct all related aspects of
the task, a project can be formulated. In a formal or informal fashion, the
various reporting functional units are apprised of the project and their required
contribution to its completion. Throughout the life cycle of the project, peri­
odic reviews are conducted by the involved functional managers. These re­
views are formally or informally conducted until such time that the various
subtasks are completed and integrated into the end product. This form of

116 SYSTEMS DEVELOPMENT MANAGEMENT

project organization is conducive to relatively small or uncomplicated proj­
ects.

Project Teams. An alternate project form is one in which a project man­
ager is appointed, and all resources necessary for completion of the project are
directly assigned to him (see Figure 9-1). Within this structure, the project
team or task force, under the direction of the project manager, is solely
responsible for project completion. Inasmuch as resources from the related
functional areas are assigned to the project manager, there is little or no need
for external interfaces with the various functional units. The significant differ­
ence between the project team approach and the functional approach is that
the project manager is able to direct the efforts of planning and implementa­
tion of projects without crossing organizational boundaries.

Matrix Form. Another variation on the manner in which projects can be
managed is the use of a matrix organization. Within this structure, a project
manager is appointed and made responsible for the project; however, re­
sources required for the project are retained by the functional units (see Figure
9-2). This form of project organization is frequently employed in large proj­
ects where diverse and sophisticated skills are required and where those skills
can best be managed by functional managers more adept and skilled in the

Project
User Manager ,..-

I Department I

I I L ______________ ~

I
I I I I Higher L_

Project Project Project I Management
I

Leader Leader Leader I
I
I

User I Computer Represen - 1--
tatives I Operations

I
I
I
I
I Technical Subsystem Subsystem Subsystem L_

Services A B C I
Personnel Personnel Personnel I

I
I
I
I

I Graphics & L.._.
Printing

Figure 9-1. Organization of a Project Team

Project
Management

Director

Consulting
& Systems
Design

Director

Applications
Program­
ming

Director

Vice President
(headofDP
department)

Director

Telecom­
munications

System
Control
Software

Director

Technical
Services

Figure 9·2. Matrix Project Management

Director

Computer
Operations

Director

User
Department

o
:II

~ z
N
Z
(j)

CS
:II
"'C

2
m
~
~
>
Z
l)
m
~
m
Z
-;

....,

118 SYSTEMS DEVELOPMENT MANAGEMENT

various disciplines. In this project structure, a number of advantages are
gained in terms of bringing the best efforts and resources to bear on the needs
of the project. The appointment of a full-time manager responsible for the
management of the project provides the level of attention required for project
direction and control. Likewise, the assignment of personnel to the project
within the functional areas provides the quantity and quality of required
personnel resources, with a minimum of disruption within the functional
areas.

Influence Form. A fourth form of project organization is one in which a
project manager is responsible for project completion without a dedicated
project team or formal interface within a matrix organization. In this form, the
project manager acts as a responsible agent for the project. The project man­
ager influences task accomplishment and integration through communication
with and through the various involved functional areas. The essential differ­
ence between this form of project implementation and the functional approach
is that the appointed project manager's sole responsibility is to the project; he
is not, therefore, concerned or otherwise deterred by additional managerial
duties or responsibilities. This structure can more readily be recognized by the
use of such phrases as special assignment or ad hoc tasks.

PROJECT IMPLEMENTATION

The successful implementation of projects requires that a disciplined ap­
proach be adopted. This approach varies, based on the approach to project
management implemented in the organization.

Functional Project Management

Projects that are accommodated within the functional organization are
most familiar to many businesses. If the requirement for a new product or
service is recognized, the chief executive officer (CEO), in discussion with
one or more department heads, would acknowledge the requirement as well as
commission a project for its development. In this organizational project form,
the project is run or managed by the CEO or a designated line manager.
Project responsibilities are typically in excess of ongoing line responsibilities
and, as such, receive less attention than problems encountered within the
spectrum of line functions.

Tasks required to complete the project tend to be generally defined by the
manager assigned responsibility, with detailed definition left to the various
involved departments. Task definition and implementation are carried out
within the functional areas, with little formal regard to project integration
except in those areas where coordination with other functional areas is recog­
nized as a prerequisite for task implementation.

The management of the project is likewise decentralized, and few formal
control mechanisms are apparent at the project level. Control of tasks within

ORGANIZING FOR PROJECT MANAGEMENT 119

the functional areas is accomplished by the functional manager or managers
involved, with little consistency among functional areas.

Project status tends to be reported on an informal basis, and decisions that
affect project fonn or content are made by those areas most affected. Deci­
sions that affect the total project are generally resolved at a higher level, with
the manager assigned total responsibility.

Finally, project planning tends to be done on an impromptu basis as prob­
lems arise. Overall project plans are infrequently drafted and updated. Little
formal contingency planning is evident, except as might be noted within the
functional areas as detailed tasks are defined.

The functional project fonn of organization works well with relatively
uncomplicated projects in which project tasks can be easily accommodated by
the various participants, and the requirement for detailed planning and inte­
gration is not paramount to project success.

The disadvantage of this fonn of project implementation is that it does not
accommodate all projects. In particular, it does not satisfy projects that are
technically complex or that require long time frames for implementation. The
reasons for this are many; however, the most significant one is that the
authority and responsibility for project completion are either too diffused
among the participants, or, if focused or centralized, they are vested in a
manager with responsibilities in addition to the project [1].

The management of large, complex projects requires an enonnous amount
of time and attention. Decisions are frequently required and must be made
with a minimum of input from project members. Planning, coordination,
integration, and control of project elements can overwhelm a functional man­
ager with additional duties, with the result that neither the project nor the line
responsibilities are effectively managed.

Influence Project Management

A variation of the functional project fonn, influence project fonn [2],
attempts to solve the basic problem of the functional fonn by assigning a
project manager to the project effort. Typically, the project manager is staff to
the responsible manager and has no direct responsibility for the various tasks
being perfonned within the functional units. In this case, the project manager
is more of a monitor or expediter than a manager and integrator of project
activities. The responsibilities of the project manager are to call meetings for
discussion of status, to act as arbitrator to resolve project conflicts or prob­
lems, and to influence the development of the product or service as he deems
necessary or in accordance with instructions from the manager ultimately
responsible for the project.

Depending on the size and complexity of the project and the political and
organizational environment within the functional organization, this fonn of
project management can work well. It solves the problem inherent in the
functional fonn in that someone is committed full time to monitor the project

120 SYSTEMS DEVELOPMENT MANAGEMENT

status and to ensure, to the degree possible, that the various project elements
coalesce to accomplish the project objective.

Matrix Project Management

In the matrix form of project management, a project manager with total
responsibility for project completion is appointed. The project manager's
responsibilities include planning, scheduling, acquisition and maintenance of
all project resources, integration, testing, and implementation. While respon­
sibility for the project rests with the project manager, all personnel assigned to
the project remain in functional areas under the direct control of the functional
managers.

The project manager's authority and responsibility for such a project flows
horizontally across the organization. It is this apparent violation of more
standard organizational theory that makes the matrix form of project manage­
ment a difficult one to implement successfully. Although it is a workable and
legitimate project form that has been successfully implemented in many or­
ganizations, its success depends on the presence of a number of conditions.

Matrix Project Management Problem Areas. One source of problems
within the matrix form of organization is the apparent conflict between the
authority of the project manager and the authority of the functional manager.
Beyond the dimension of decisions discussed previously, the management and
coordination of numerous project activities through the functional areas make
the requirement for an effective project manager that much more important
than in other project forms. As an example, a project manager within a matrix
may have the authority to insist on thorough planning by the functional units
as well as the freedom and authority to challenge the functional unit's project
assumptions and the method in which work is performed. The exercise of this
. authority can cause organizational conflict between the project and the func­
tional areas involved.

The solution to this problem rests with corporate management. Every
member of the organization must be fully apprised of the project manager's
role and the extent of his authority. Similarly, the role of the functional units
that support the project must be defined in such a way that problems arising
from authority conflicts can be avoided or reduced.

Another problem associated with the matrix form of project organization is
the difficulty encountered in making project decisions. Because of the dual
control inherent in this form, decisions affecting the project must be made
with the awareness and concurrence of the functional areas involved. Fre­
quently, however, the functional manager is faced with a number of priorities
and decisions apart from the project requirement, making concurrence and
commitment difficult to accommodate within the time frames required by the
project manager. From the project manager's viewpoint, the involvement of
the functional area in the decision process can be burdensome, prohibiting the
ability to make timely decisions, with a resultant impact on project schedules
and costs.

ORGANIZING FOR PROJECT MANAGEMENT 121

Other problems attendant with matrix project management are the in­
creased requirement for coordination and integration of project tasks. The fact
that tasks are dispersed throughout the organization gives rise to an additional
level of interfaces that must be controlled by the project manager.

Matrix Project Management Advantages. The advantages of the matrix
form of project management are that projects receive the level of attention
required for successful completion with a minimum of disruption to the organ­
ization. Project members remain in their functional areas, reporting to the
managers most familiar with how best to accomplish the tasks required.

This form further optimizes resource utilization in that project members,
when not performing project tasks, can be assigned other tasks. Peer inter­
change and staff development are also facilitated.

Team Project Management

Perhaps the most easily recognized form of project organization is the team
or task-force concept of accommodating project requirements. While the ma­
trix form tends to be difficult to implement effectively and is only appropriate
for large, highly complex projects (for which the project manager may not
possess the technical skills to effectively manage tasks), the task-force ap­
proach is relatively easy to implement effectively and is best for medium­
sized projects. In this form of project organization, the authority and re­
sources required to complete the task are assigned to one manager, with the
resultant effect that projects can be easily controlled and managed.

Project Team Problems. While this form of project organization would
appear ideal because it eliminates many of the disadvantages of other forms, it
is not without its problems. The apparent advantage of having complete
authority over project personnel can have an alienating effect on those people
assigned to the project. This arises because project members find themselves
working for a manager who, upon project completion, will no longer influ­
ence their careers. In addition, sustained absence from their traditional func­
tional organization can diminish their visibility throughout the course of the
project.

Another problem is the absence of technical and professional interchange
among peers. Task-force members frequently require interchange among peo­
ple with the same professional background. Project commitments, however,
frequently obviate the opportunity for this type of interchange.

Problems can arise within the functional areas as a result of the project
team form. Functional managers are occasionally reluctant to assign their best
people to a project team for fear that ongoing operations may be impaired. As
a result, the people best qualified for the project may not be "available."

Furthermore, many line areas have procedural disciplines in place to facili­
tate operational efficiencies. These procedures might have to be compromised

122 SYSTEMS DEVELOPMENT MANAGEMENT

by the project manager for the benefit of the project. Project personnel return­
ing to the functional areas, with the procedural disciplines in effect and in
which other personnel may have been assigned their usual duties and respon­
sibilities, can cause personnel problems and decreased functional effective­
ness.

Project Team Advantages. There are a number of advantages to the
project team form of project management. The fact that all resources are
assigned directly to the project manager greatly facilitates directing and con­
trolling the project. Project problems are more easily detected, enabling rapid
remedial action. Decisions regarding the project can likewise be made and
implemented quickly, as the functional areas need not necessarily be in­
volved. Problems attendant with integrating the various project tasks are less
severe in that direct control of the various project elements facilitates the
integration process. Coordination is also less of a problem because of the
centralized nature of the project team approach.

THE PROJECT MANAGER

All methods for project implementation except the functional approach
require the appointment of a project manager, who has two basic functions: to
develop a project plan and to implement it [3]. The formulation of a project
plan depends, in large part, on the project manager's planning experience
coupled with the use of numerous disciplines and tools for project scheduling
and control. The implementation of the project, however, depends on the
project manager's ability to focus the efforts of the project team on the
resolution and completion of project tasks.

Project Manager Selection

Any current manager is a candidate for project management because the
management skills of planning, organizing, staffing, controlling, and direct­
ing are necessary skills of the project manager as well. The difference lies in
the emphasis of these management skills coupled with experience with project
or task-force problems.

Formal education and experience in the management process are obviously
indicated for effective project management. Education increases the manag­
er's ability to learn from experience and enables creation of an environment
conducive to effective management.

Education, however, is not the delineating factor for selection of a project
manager. Experience, coupled with an awareness of the project management
process and the ability to apply project management techniques, is required
for the successful project manager [4].

Project manager selection is frequently difficult because of the lack of
formal use of project management techniques. Within the construction and
aerospace industries, where project management has become an integral part

ORGANIZING FOR PROJECT MANAGEMENT 123

of the organization, the tendency is to develop project managers from the
functional areas as experience on various projects is developed [5].

In selecting a project manager from the ranks of existing functional manag­
ers, emphasis should be placed on the manager's past performance on various
assignments, together with how well that manager has evidenced the flexibil­
ity to adapt to different management techniques. The selection emphasis
should be less on formal training in project management and more directed to
the spectrum of experiences encountered by the prospective project manager.
In general, the following attributes should be sought:

• A working knowledge of various fields of business and DP and the
ability to delve into the intricacies of a specific technology

• A sound understanding of general management problems
• The ability to communicate effectively at all levels of the organization
• An integrative nature
• A strong background in planning and management

A survey of successful managers has indicated that the experiences that most
contributed to their success were the opportunity for challenging assignments
coupled with the opportunity to work for a variety of managers with varying
styles [6]. It is this experience and opportunity that project management
provides, with the additional potential benefit of creating more effective func­
tional managers.

Project Manager Training

To date, very little in the way of formal training in project management has
evolved from the academic community, although some schools are beginning
to offer graduate-level courses directed at providing project management
skills [7]. A number of seminars are available in project management, produc­
tivity management, and product management; some are specifically directed
to DP personnel. These courses are beneficial for the first-time or experienced
DP project manager and serve to augment the experience of managing a
project. Despite the relative codification of project management as a manage­
ment process, experience remains the best teacher of project managers.

The Role of the Project Manager

While the project and functional managers are similar in many ways, they
differ significantly in their approaches to their jobs. Beyond the attributes of
good management, the project manager differs from his functional counter­
part in the following areas:

• Task orientation
• Management of personnel
• Management of interfaces
• Organizational emphasis
• Management perspective
• Implementation style

124 SYSTEMS DEVELOPMENT MANAGEMENT

Task Orientation. Unlike a functional manager, the project manager is
primarily involved with the planning and implementation of a one-time proj­
ect. Because of this, he must be fully informed on the dimensions and limits
of the project. The project manager must be sensitive to these limits to ensure
that problems outside the scope of the project do not become a project require­
ment without full cognizance that the project, as originally defined, has
changed. Within reasonable limits, the project manager's focus must be con­
fined to the project requirements rather than redirected to the solution of
problems within the functional areas with which he interfaces. Unlike his
functional counterpart, he must continually "think project" and direct his
energies to its successful completion.

Management of Personnel. In terms of personnel, the project manager's
interpersonal skills and style tend to be different. Within a functional organi­
zation, personnel know fairly accurately their position with respect to salary,
promotional opportunity, and personnel policies. When assigned to project
tasks, these same personnel usually find themselves working for or being
influenced by a manager outside of the functional organization. This
divergence from traditional superior-subordinate relationships requires that
the project manager use a modified style of motivation and persuasion to
maintain the active support and participation of project members. To that end,
the project manager must develop a project orientation among all project
members and strive to maintain a project or team psychology.

Another potential problem with the project team approach is that the proj­
ect manager is frequently unskilled in those areas represented by the project
members. In addition, a project manager selected from one user department
typically has little experience with the concerns of other user departments.
This can result in the members feeling that they are technically mismanaged
or that their problems and efforts are not fully understood or appreciated. To
avoid this problem, the project manager must attempt to be thoroughly famil­
iar, both conceptually and technically, with those functions required by the
project.

Another source of personnel problems is the lack of visibility felt by team
members as it relates to the functional manager. Sensitivity to this problem
and continual communication with the functional manager regarding project
member contributions can reduce this potential trouble area.

The matrix form also has the potential for personnel problems. The appar­
ent violation of the superior-subordinate relationship gives rise to confusion
and anxiety on the part of project members within functional areas. The
project manager must again recognize this potential problem and modify his
style to accommodate the matrix pattern. The project manager's emphasis
must be on influencing the efforts of project members so as to reduce the
potential for confusion and anxiety. He must be persuasive and effectively
communicate throughout the various levels of the functronal organization so
that his relationship to all members of the project is clear.

ORGANIZING FOR PROJECT MANAGEMENT 125

Management of Interfaces. In the matrix fonn of project management,
the emphasis is on the integration of project tasks and activities and the
management of the interfaces created by the project organization [8]. As a
project is broken down into tasks and subtasks and as these units of effort are
perfonned by the specialized functional areas, the resulting matrix gives the
project manager many more organizational and project interfaces to manage.
These interfaces are generally personal, organizational, and systems inter­
faces [9].

Personal interfaces are those established among project members as well as
those between the project members and the project manager. With members,
the project manager may be called on to facilitate communications or resolve
problems. Between the manager and team members, the project manager must
strive to constantly improve the personal relationships and interfaces in order
to maintain a hannonious environment.

Organizational interfaces exist between the project manager and his superi­
ors as well as with the involved functional areas. Because each functional area
may have its own objectives, disciplines, and functions, misunderstanding
and conflict can easily occur at these organizational interfaces. The project
manager must be aware of these potential conflicts and strive to effectively
control these interface points.

CONCLUSION

Project management does not evolve by itself. What evolves is a trial-and­
error process of project implementation that results in the ineffective manage­
ment of change. Without effective project management, projects drift to com­
pletion (or go on and on) with, at best, only partial realization of the
anticipated benefits.

There is no mystery to effective project management. It requires a sensitiv­
ity to organizational structures and a cognizance of the management problems
inherent in managing a process that is different from the more traditional
functions of the organization. Equally as important, it requires an approach or
measured methodology to project implementation that ensures control of
costs, time, and the quality of the completed project.

References

1. Stewart, John M. "Making Project Management Work." llu3iness Horizons. Vo!' 8 (Fall 1965).
2. Steiner, George A., and Ryan, William G. Industrial Project Management. Toronto: Collier MacMillan, 1968.
3. O'Brien, James J. "Project Management: An Overview." Project Management Quarterly. Vol. 8 (September 1977).
4. Cleland, David I. "Why Project Management?" llu3iness Horizons. Vo!. 7 (Winter 1964), p. 82.
5. Dnke, Robert K., Wohi80n, Frederick H., and Mitchel, Douglaa R. "Project Management at Fluor Utah, Incorporated."

Project Management Quarterly.
6. Patten, Thomas H., Jr. "Organizational Processes and the Development of Managers: Some Hypotheses. " Current Perspec­

tives for Managing Organizations. Edited by Bernard M. Bass and Samuel D. Deep. Englewood Cliffs NJ: Prentice-Hall,
1970.

7. Bernard, Prosper M. "Fonna! Training in Project Management." 1977 Proceedings. Project Management Institute, Drexel
Hill PA, 1977.

8. Lawrence, Paul R., and Lorsch, Jay W. "New Management Job: The Integrator." Harvard Business Review. Vo!' 45
(November-December 1967), 1,45-49.

9. Stuckenbruck, Linn C. "Project Manager-The Systems Integrator." Project Management Quarterly. Vol. 9 (September
1978).

126 SYSTEMS DEVELOPMENT MANAGEMENT

Bibliography

Gaddis, Paul O. "The Project Manager." Harvard Business Review. Vol. 37 (May-June 1959), p. 95.

Kost, Fremont E., and Rosenzweig, James E. Organization and Management-A Systems Approach. New York: McGraw Hill,
1970.

1l@ Structured
Walkthroughs

INTRODUCTION

by James A. Senn

Before starting to construct any system, program, or module, it is advis­
able to ensure that the construction will be suitable. This is the purpose of a
structured walkthrough. A structured walkthrough is simply a review of a
system or a. software product by people involved in or allied with the develop­
ment effort; in other words, people at the same level in the hierarchy review a
development effort together to find areas where improvements should be
made.

Typically, structured walkthroughs are associated with programming and
software construction. Such walkthroughs are aimed at uncovering errors in
code. But this is only one way to use walkthroughs; they are also useful for
design reviews. A team can review such design particulars as file types,
access methods, data base design, planned coding schemes, and so on. Simi­
lar reviews can be undertaken at the requirements analysis stage so that any
omissions, misunderstandings, poor decisions, or vague areas can be given
attention before additional time and resources are committed to the effort.

The Need for Structured Review. Software systems are the lifeblood of
the modem computer system. It is no secret that although hardware costs are
decreasing rapidly, software-related expenses are rising at a rate that is totaUy
out of control. Furthermore, even with the high cost of building or acquiring
programs, it is difficult to obtain high-quality software. Even purchased soft­
ware suffers from lack of qUality. For example, the mM OS operating system
contained many errors; this was true even in later versions, which had been
used at hundreds of field sites. This problem is not uncommon.

Although the industry has not yet devised a way to estimate software
construction time accurately, it is clear that development time is often exces­
sive. A goal of virtually all organizations is to obtain high-quality software
more quickly, especially if this can be done at a lower cost than that currently
incurred. Structured walkthroughs can help achieve this goal.

After software systems are built and installed, they are often used for many
years, during which time they undergo changes. Some changes correct errors;

128 SYSTEMS DEVELOPMENT MANAGEMENT

others add new functions or enhancements. In addition, maintenance is per­
formed to rewrite sections of code so that a program is more efficient (see
Table 10-1).

Unfortunately, even experienced programmers often write software that is
not easily maintained. Possible modifications are not considered during the
design and programming activities; thus, ease of maintenance is not designed
into the code. By calling attention to this area of activity during design
reviews, walkthroughs can aid in formulating design methods and coding
standards that make program maintenance and enhancement easier. In addi­
tion, because proper use of walkthroughs can reduce the number of program­
ming errors, the need for corrective maintenance can be reduced. Each of
these advantages will become more apparent as this chapter examines ways to
conduct software reviews.

Table 10-1. Maintenance Activities Associated with Software Systems

Maintenance Type

Repair and Correction

Revision

Enhancements

Description

To correct operating deficiencies, errors, and bugs
that have been detected or are known to exist in
the software or processing system or in the over­
all application design

To install mandated changes resulting from busi­
ness or environmental (e.g., government) inputs
that require modification of the system; also in­
cludes changes to improve job or program effi­
ciency

Modifying an existing system or application to per­
form additional processing or reporting or to per­
form additional functions

The Purpose of Structured Walkthroughs. When conducting a walk­
through, the goal is simple: to find errors or problems. Note that no attempt is
made to correct these difficulties at the time they are found. For reasons that
will become more evident later, this is done sometime after the review is
concluded.

It is also important to emphasize that structured walkthroughs are not
intended to frod fault with or blame any individuals. The design or the soft­
ware, not the designers or programmers, is the focal point of the review. The
emphasis of the discussion must be on improving the product rather than on
assessing individuals. If this strategy is violated or abandoned, structured
walkthroughs lose their meaning and value. In addition, involved personnel
will begin to consider a required walkthrough an obstacle to be avoided rather
than a helpful, cost-saving tool.

Relation to Training Programs. Training for people who are new to the
department or new to a certain job is often neglected. Many organizations rely
on some outside organization (e.g., a college or university or another busi­
ness) or on attendance at professional seminars or workshops for training.

STRUCTURED WALKTHROUGHS 129

Although useful, they are not adequate because actual in-house methods and
situations cannot be addressed.

A common way of introducing new programmers to a job environment is to
assign them to a large-scale software maintenance project to clean up or adapt
a software system to meet stated operation and quality specifications. Such
projects are usually one to six months in duration. The rationale is that by
correcting and/or enhancing someone else's work, new programmers can
obtain skills and techniques while learning about common mistakes and how
to avoid them.

Participating in structured walkthroughs extends such training methods.
Walkthroughs can focus on live, in-house development or maintenance proj­
ects, at various stages of development (e.g., specification, design, and pro­
gramming). Walkthroughs focus on problems and errors and also can show
ways to detect and avoid these kinds of difficulties or inefficiencies.

Structured walkthroughs also offer training in a different sense. Each mem­
ber of a walkthrough team must be an active participant, not a casual ob­
Server. While making contributions, each learns methods and gains insights
from other people on the team. Thus, both junior and seasoned programmers
learn and advance.

CONDUCTING STRUCTURED WALKTHROUGHS

The manner in which structured walkthroughs are conducted can largely
determine their usefulness. In this section, the way to get the most out of this
technique is discussed. The focus is on when to use the method, how to select
appropriate participants, what procedures to follow, and what the result
should be.

When to Do Structured Walkthroughs. Because walkthroughs are aimed
at producing more reliable and cost-effective software products, there are
several points in the software life cycle where walkthroughs can be applied:
after the analysis stage, following design, and after programming. These
reviews seem to be of equal value (see Table 10-2).

Requirements Review

Following investigation and determination of the information and process­
ing requirements that the proposed design should satisfy, it is often useful to
walk through the requirements specifications. This review, which is called
either a requirements review or a specification review, is directed at examin­
ing the functions, activities, and processes to be handled by the forthcoming
system. Any inconsistencies in the requirements stated by the users or identi­
fied by the analysts should be uncovered, as should any areas in the specifica­
tions that are vague or unclear. Inaccurate statements and assumptions should
also be detected.

It is generally suggested that a requirements review focus on a written
document that can be studied prior to the review session. Narrative descrip-

130 SYSTEMS DEVELOPMENT MANAGEMENT

Table 10-2. Types of Reviews Where Walkthrough Methodology
Can Be Used

Type of Review

Requirements Review
(Specification Review)

Design Review

Code Review

Testing Reviews

Description

Performed after a preliminary systems investiga­
tion has been completed in order to determine
which functions and activities can or should be
handled by the proposed application system.
Also aimed at identifying misunderstandings, in­
accuracies in specifications, or misleading as­
sumptions on the part of either systems person­
nel or users.

Performed to examine the logical design of the ap­
plications software. Assessment of the system
blueprint as it has been established to determine
whether the design will meet the original design
specifications.

Aimed at detecting problems in the coded software
that stem from errors, misunderstandings, or
poor adherence to programming standards. The
review should ensure that the code meets the
original design specifications. (Applies to both
new developments and maintenance projects.)

Performed to ensure that the testing strategy being
used for an application is sufficient to detect the
most significant errors or bugs in an application
program. Includes review of test data to be used.

tions that explain the context of the system are commonly used for require­
ments walkthroughs. These descriptions should spell out the different activi­
ties in the system area under investigation. Narrative descriptions should also
identify key people and components and how they relate to one another.
Sources and uses of information should also be identified.

Some shops use flowcharts that relate processes, control points, and data
flow, or they use decision tables or even data dictionaries in place of narra­
tives. The particular fonn of the description is unimportant, provided it is
useful and understandable to those involved in the requirements review.

Design Review

As its name implies, a design review is a structured walkthrough to exam­
ine the logical design selected to deal with the information and processing
requirements that were identified in the systems analysis stage. This review
attempts to detennine whether the proposed design is a valid one and whether
it will meet the specifications. The walkthrough can be conducted by examin­
ing a design presented using anyone of a number of documentation/
presentation methods (e.g., HIPO and pseudocode).

Code Review

The type of review that is usually associated with structured walkthroughs
is the code review. Most organizations and staff members begin using the

STRUCTURED WALKTHROUGHS 131

walkthrough methodology with this fonn of review. Quite simply, a code
walkthrough is an assessment of program code.

For new development projects, participants can review the entire software
set as a complete package, comparing it with the original design or require­
ments specifications. Discovering that a portion of the code disagrees with the
original specifications or finding problems or mistakes that originated with the
earlier requirements analysis is not uncommon. Although having to modify
the design or change the code at this point can be frustrating, it is easier and
less costly than waiting until the software is installed.

As indicated earlier, code reviews should not be limited to new develop­
ment projects; maintenance activities can also benefit from structured
walkthroughs. The method is the same and the benefits equally significant.
Maintenance projects have all of the attributes and problems of a new devel­
opment activity, except that in maintenance projects some of the code and part
of the documentation are already completed when the work starts (note that
this can be an advantage or a disadvantage).

Testing Review

Many organizations overlook the advantages of using the walkthrough
methodology to review testing, yet the same benefits of peer review can be
realized at this life cycle stage, also. In fact, errors undetected during the
testing stage will likely remain with the system when it is implemented, and it
is these errors that cause nightmares for users and programmers alike.

Participants in testing reviews do not actually examine the output from test
runs or search for errors that have been detected using a set of test data.
Rather, they focus on the testing strategy to be used and detennine whether it
adequately detects critical errors. These people also assist in developing test
data that can detect design or software errors. The purpose of testing is to find
errors rather than to prove program correctness; therefore, an effective testing
strategy is one that is likely to fmd the most serious errors.

THE PARTICIPANTS

One of the first questions to arise with structured walkthrough methodol­
ogy concerns selection of participants. This issue and how it is handled can
significantly affect the usefulness of the review strategy.

The Role of Programmers/Designers

Although programming and systems development have generally been
considered solitary activities, this notion is changing. The concept of pro­
gramming teams has become a topic of frequent discussion in many organiza­
tions. Through the team approach, more timely and reliable code is expected.

The use of structured walkthroughs is related to team programming, not
just because they are based on similar objectives but because the walkthrough

132 SYSTEMS DEVELOPMENT MANAGEMENT

concept recognizes that systems and program development may involve sev­
eral people for each step. Structured walkthroughs, then, are team-like activi­
ties. Furthermore, participants, with the possible exception of representatives
from user departments, are individuals who are actually involved in develop­
ing software or applications.

The individual(s) who formulated the design specifications or wrote the
code being reviewed as well as a number of other people, should participate in
the walkthrough. Often a moderator is chosen to oversee the walkthrough and
keep the group focused on the discussion topic (i.e., finding, not correcting,
errors and problems). The moderator need not necessarily lead the review;
many organizations prefer to have the programmer or developers do this
because they are most familiar with the details of their project. (This familiar­
ity, however, can be a problem by introducing strong biases or persuasive
capabilities and causing reviewers to inadvertently overlook problems.)

It is imperative that the information produced during review sessions be
captured completely and accurately. The leader of the session is occupied
with ensuring that the appropriate concerns are discussed and therefore may
not be able to jot down all of the points aired by participants. The programmer
or developer may not record ideas in the same manner in which they are
discussed by reviewers. Therefore, it is advisable to appoint a recorder for
each walkthrough session in order to have all relevant details recorded com­
pletely and objectively. The intentionjs not, of course, to get a highly detailed
record of who said what but rather to record the important points made.
During the review, comments and suggestions may be made in rapid succes­
sion. Thus, the recorder must be constantly attentive. In many sessions,
recorders are so busy taking notes that they cannot participate.

Experienced DP organizations are finding that standards for data names,
module determination, field type and size, and so on are desirable. This is
most often discussed in relation to data base environments, although it is
equally important in non-data-base environments. In any case, the time to
start enforcing these standards is at the design stage. They therefore can be
discussed during the walkthrough sessions. This discussion can be led by the
moderator or by a representative of the standards or data administration
group.

Maintenance considerations should also be addressed during the structured
walkthroughs; such concerns include coding standards, modularity, docu­
mentation, and parameterization. It is increasingly commQn to fmd organiza­
tions that will not accept new software for installation until it has been ap­
proved by software maintenance teams. In such an organization, a
maintenance representative should be included in the review team.

Role of Management

Generally, management should not play a direct part in a walkthrough.
Doing so would jeopardize the intent of the review. Reviews are aimed at
helping individuals improve their design or product and, at the same time,

STRUCTURED WALKTHROUGHS 133

creating a cost-effective software product for the organization. This discus­
sion has characterized walkthroughs as occurring in an open, give-and-take
atmosphere. Unfortunately, if management takes an active role in
walkthroughs, it is likely that the true spirit of the review will dissolve.

Too often, management involvement is construed as evaluation. Many
times, the result is that individuals attempt to perfect their product before the
review session so that they look good in the eyes of management. Managers
may feel that a considerable number of questions, mistakes, or changes indi­
cates that the individual whose work is under review is incompetent. In brief,
when management attends walkthrough sessions, the atmosphere changes
significantly, resulting in less constructive results for the organization and the
other participants.

Management may ask for reports summarizing the review sessions. Some
types of reports, however, should not be produced. The only information that
really need be passed on to management is that a review has been done, which
project or product was discussed, and who attended or participated. Reports
should not summarize the errors detected, modifications suggested, or revi­
sions needed. If participants know this information is communicated, it will
have the same effect as that of management actually observing. An appropri­
ate sample evaluation summary is shown in Figure 10-1. This could be
augmented with a 1- or 2-page memo giving a bit more detail.

Although it may seem unrealistic that management should not be involved
in structured walkthroughs, most managers indicate that they prefer not to
attend these sessions. They recognize that the walkthrough is a work session
rather than a time to evaluate staff members. They also realize that because
the sessions can be quite technical and clearly require a detailed knowledge of
the product being reviewed, they would be unable to contribute much to the
discussion. Moreover, managers are usually aware that their attendance can
change the atmosphere of the sessions, thus inhibiting progress.

Size of Walkthrough Team

The members of the walkthrough team should be carefully selected so that
the various roles are filled by competent and contributing people. Care must
also be taken to ensure that the size of the team is appropriate for the project
under review. At a minimum, the team should include the individual(s) who
actually designed or coded the project, a recorder, and a leader.

In some. organizations it is felt that having more persons involved in the
examination increases the chances of locating problem areas. The group
should not be so large, however, that lengthy discussions are needed; review
sessions should not exceed 90 minutes. Considering the time constraint and
general purpose of the review sessions, it is suggested that an upper limit of
about seven persons be set for any walkthrough.

134 SYSTEMS DEVELOPMENT MANAGEMENT

Summary of Walkthrough/Review

Date

Project/Contract No. Time

Project Name

Unit/Section/Module Reviewed

Brief description of above

Participants

Leader-Phone

Results

[1 ACCEPT IN CU RRENT FORM [1 REJECT - MAJOR REVISIONS

NEEDED

[1 ACCEPT WITH MINOR MODI- [1 REJECT - REDEVELOPMENT

FICATION NEEDED

[1 REVIEW NOT COMPLETED

. Discussion/Recommendations

Attachments

Leader Signature

Figure 10-1. Sample Form for Reporting Results of Walkthrough Session

STRUCTURED WALKTHROUGHS 135

Organizational Support and Participation

Although DP management should not have any direct role in walkthrough
sessions, users should participate in such nontechnical walkthroughs as those
conducted to examine specifications or functional requirements. Users can be
extremely helpful in recognizing problems in system design attributes.

Some users may criticize walkthroughs as too time-consuming for the
results they produce. This occurs because users do not fully understand the
purpose and method of reviews or because they have had poor experience
with structured reviews. In these cases the p~blem is not the review method
but rather the way it has been implemented. In general, when structured
walkthroughs are properly introduced and administered, the results are appar­
ent to systems persons and users alike because more timely and correct sys­
tems are obtained.

PROCEDURES

Walkthroughs depend on fully informed participants; thus, those involved
must come prepared. The individual requesting the walkthrough (Le., the
designer or programmer whose work is to be revieWed) should notify partici­
pants far enough in advance that they can study the materials to be examined.
Generally, two to three days' notice is adequate.

Which materials should be distributed depends on the type of walkthrough.
Copies of the documents or code to be walked through should be distributed,
along with summaries of interviews, sample forms, and so on for a require­
ments review or system descriptions, liD charts, and macro flowcharts for a
design review. Code and test reviews usually require program listings and test
data plans.

It has already been pointed out that walkthroughs should not be too
lengthy. Because time and concentration limits preclude a single-session re­
view of, for example, a lO,OOO-line COBOL program, it is obvious that this
amount of code should not be distributed. Rather, only the modules actually
being examined should be distributed. If this cannot be done easily, it may be
an indication that the design is not sufficiently modularized.

It is essential that the participants in a walkthrough have the time, interest,
and willingness to do the required preparation. If they cannot or will not
prepare adequately, they will not be able to contribute to the walkthrough. It
is better to have others replace them on the team so that maximum benefit can
be realized. Note that if participants are expected to spend five or six hours in
preparation, they may be justified in claiming they are too busy. In this case,
it is probable that the session is not organized or limited properly. The objec­
tive of the session must be reformulated.

Starting the Walkthrough

There is more than one way to handle the mechanics of the walkthrough;
the best approach depends on the organization, the nature of the people on the

136 SYSTEMS DEVELOPMENT MANAGEMENT

review team, and perhaps even the type of project being examined. It is
generally suggested that the moderator for the session, rather than the pro­
grammer or designer, start the session and introduce the plan of action. The
moderator may prefer to have the programmer or designer then give an over­
view of the project, presenting the important attributes of the design, code,
and so on. It is recommended that the moderator ensure that this be an
objective presentation that tells the what and how of the segment to be re­
viewed rather than the why. The presentation should not be a defense offered
before the wolves start in with their cross-examination. If the review involves
a project with which the participants are already familiar from previous
walkthroughs, it may be unnecessary to begin with a formal introduction or
overview.

How to Proceed

Depending on the type of review and whether or not it is the initial one, the
actual walkthrough activities may vary. For first reviews of a project, atten­
tion should be given to determining what the logic or specifications are in
compatison to what they were intended to be. For example, if processing
logic does not perform all required validation checks, the team should dis­
cover this. As difficulties or misunderstandings are uncovered, they should be
noted by the recorder so that they can be dealt with later.

If design specifications are being reviewed, participants should consider
whether the proposed design will do the intended job and whether it will do it
efficiently. Answering these questions necessitates knowledge of such items
as file and transaction volumes, update frequencies, processing modes, access
methods, keys, and the like. In addition, participants must know something
about how the output from the system will actually be used; they should also
be informed on the type of people who will use the system so that interface
methods and protocols can be scrutinized.

When programs are reviewed, the participants also must be sensitive to
execution efficiency, use of standard data names and modules, and program
bugs. Appropriate comments and documentation permit this level of scrutiny.
Obvious errors (e.g., syntax errors and blatant logic errors) can even be jotted
down ahead of time by team members and submitted to the recorder, thereby
saving meeting time. Other errors may merit discussion and examination
during the review. Figure 10-2 shows a section of a checklist that might be
used for noting problems and their severity.

If the review session is not the first one, there is "old business" to handle;
that is, problems, suggestions, and comments mentioned during the previous
walkthrough must be resolved. The designer or programmer should indicate
how problems were solved, which suggestions were implemented, and which
were not, along with the reason(s) for choosing alternative solutions. There
may be very good reasons for not making changes as suggested, but they must
be communicated to and agreed upon by other participants. When all old
business is cleared, other areas can be reviewed.

STRUCTURED WALKTHROUGHS 137

Walkthrough/Review Checklist

Project/Contract No.
Project Name

Problem Detected
(check all that apply)

Review Category Absent Unnec Error Major·

Backup procedures

Error messages

Execution time

External documentation

Internal documentation

Input validation

Interface mechanism

Procedural logic

Passing of data

Meets design specifications

Meets user/problem specifications

Meets coding standards

Meets data standards

Maintainability

Storage use

Test data

Test procedure

Test for end conditions

Test for all possible conditions

Test drop through

Transfer of control

Visible structure

• Major error that will cause failure or crash

FIgure 10-2. Sample Checklist for Guiding Review Activities

138 SYSTEMS DEVELOPMENT MANAGEMENT

Approval

In many organizations, the team assigned to do structured walkthroughs on
a particular project has final approval authority on the project. In other. words,
the team must approve the specifications, design, code, and test plan before
the projeci can proceed to the next stage. In some cases, a project with
problems that are corrected need not be returned to the team for a final review
prior to its acceptance. When critical changes are involved, the team may
decide that review of the modified program or design is required before
acceptance is granted.

Some organizations have set up formal voting rules stating that unanimous
agreement must be reached for acceptance. In others, a simple majority is
necessary. In still others, the formality depends on the nature of the problem
or change suggested; design questions may require full team approval, while
questions of programming taste or execution efficiency may be settled with
the approval of only a majority of team members.

PROBLEMS AND PITFALLS

As previously noted, problems can develop if management becomes di­
rectly involved in walkthrough work sessions or if participants do not ade­
quately prepare for reviews. There are, however, other ways in which prob­
lems can develop.

If there is a tendency to try to complete a walkthrough too quickly (perhaps
because the participants have some other meeting or project that is demanding
their time), the walkthrough will not be fully successful; in the rush, problems
or weaknesses in the product can easily be overlooked. It is generally better to
postpone a walkthrough until the participants can devote the necessary time to
it.

Some walkthrough teams get enmeshed in discussions of programming
style. Although adherence to organization standards for such items as data
names, field length, and type is important, inflexibility with regard to style
can be counterproductive, especially if it is based on personal preference.
Avoiding this type of difficulty is the task of the leader or moderator.

A similar concern regards individuals who feel they have the answer to a
particular problem or situation. One of the objectives of structured
walkthroughs is to set ego problems aside; however, an individual pushing a
single correct approach is bound to occur. The participants and leader are
responsible for recognizing and subduing such a person, even if it means
openly ignoring his or her suggestions.

Egos are manifested in other ways, also. For example, some people enjoy
making others look bad. They therefore attempt to find "just one more error"
or discuss an approach as being "the worst way to do it." Unfortunately,
these problems are all too common.

Some pitfalls and problems are more subtle than the ones previously men­
tioned. The individual who is always late or the person who is in too many

STRUCTURED WALKTHROUGHS 139

walkthroughs cannot do justice to any walkthrough; such a person needs to be
better managed. Similarly, participants who fake it by making a leader or
developer render extra detail as a way of masking their unpreparedness do not
contribute to the team. Those who· are unwilling or unable to face the real
problems with a design, for example, and attempt to sidestep such problems
by blaming the situation on standards or users represent a different problem.

CONCLUSION

Merely having a structured walkthrough for a program or project does not
guarantee that the final product will be better than if no walkthrough had been
held; the approach is effective only if used properly. To ensure success, the
walkthrough must be properly managed and conducted in accordance with the
guidelines outlined in this chapter.

Bibliography

Fagan, M.E. "Design and Code Inspections to Reduce Errors in Pmgnun Development." IBM Systems Journal. Vol. 15, No.3
(1976) 182-211.

1111 Post-Implementation
System Review by Jerome E. Oyba

INTRODUCTION

Systems development projects often fail to meet schedules, to confonn to
budgets, and to produce satisfied customers. In retrospect, we sometimes
blame someone or something, but we seldom review the entire process and
the results. What we should do is close the loop by performing a complete
analysis of how we did what we did-after we did it.

A post-implementation review is designed to examine a development proj­
ect and the resulting system to determine how effectively the feasibility study
(including requirements and cost/benefit analyses) was perfonned, how com­
pletely development was consummated, how efficiently the computer opera­
tions staff is supporting the new system, and, most important, how satisfied
Ute users are. A post-implementation review should provide an awareness of
the achievements, shortcomings, and disappointments of the development
effort and the system. This should then enable the organization to plan better
and to improve the systems development methodology.

THE POST-IMPLEMENTATION REVIEW PROCESS

In perf~rming a post-implementation review, it is important to determine:
• Whether the preliminary studies were complete
• Whether implementation progressed according to plan
• Whether the original cost/benefit analysis projections were accurate

and what cost/benefit relationship exists today
• Whether the output, documentation, and security are adequate
• Whether the computer operations staff is able to meet the schedules and

run the system successfully
• Whether any additional revisions or enhancements should be made to

improve the system
• The value of the DP capability in assisting the organization to meet the

daily service needs of its employees and recipients
The review culminates in a report that should tell DP management, user
management, computer operations management, and development personnel
how well implementation was effected.

142 SYSTEMS DEVELOPMENT MANAGEMENT

When To Review

As a rule, the best time to perfonn a post-implementation review is approx­
imately six months after system installation. During this period people can
become familiar with the new system and can make minor corrections. This
time also allows significant problems to surface. Earlier review does not allow
costs and benefits to stabilize, nor does it allow time for people to relinquish
old habits. Later review may have to deal with larger volumes, law changes,
and the like, which tend to distort the scope and intensity of the original
project. Naturally, some special consideration must be given to annual or
other cyclical requirements.

If the report produced during the review is comprehensive, subsequent
review is facilitated. Periodic reviews can be perfonned to ascertain whether
changes are needed, whether the system should be overhauled, or whether a
completely new direction should be considered.

Scope

When performing a post-implementation system review and analysis, all
aspects of the current system should be reviewed, with emphasis on the users'
point of view. Functions beyond the scope of the existing system (i.e., those
that have not been systematized) should not be included in the study; how­
ever, they should be identified for possible future analysis.

Working closely with users, development personnel, and operations per­
sonnel is essential, especially for infonnation gathering. A cooperative, open
relationship must be developed to ensure a successful effort. During the
study, minor modifications on which the reviewer and the primary user agree
should be made. Any major modifications identified and agreed to should be
considered a separate project(s) and scheduled according to other organization
priorities.

All aspects covered in the Post-Implementation System Review Outline/
Checklist (see Appendix) should be reviewed, when applicable, in depth. The
major sections in the outline are:

• General Evaluation
• Feasibility Study and Implementation
• Reports
• Data Base (or Master Files)
• Documentation
• Security
• Computer Operations
• Systems and Programming Maintenance

To reap the most benefit, the report that describes the findings of these
analyses should be reviewed by management and followed up.

METHODOLOGY

The steps to be perfonned in a post-implementation review are:
1. Obtain management approval.

POST-IMPLEMENTATION REVIEW 143

2. Inform users and DP personnel that the study is starting. (To maximize
the findings, the reviewer should be ensured access to all levels of
personnel in all pertinent areas.)

3. Have a kick-off meeting with the people involved.
• Review the purpose of the study. Emphasize that this is not a witch

hunt but a learning experience.
• Review the outline of the areas to be covered.
• Establish schedule,s and needs. (Two to six man-months are usually

required.)
4. Obtain all information needed to review the system.

• Interview user(s), DP personnel, and other involved personnel.
• Use the Post-Implementation System Review Outline as a question­

naire, and obtain as much information as possible by observation
and from involved personnel.

• Visit other jurisdictions as required.
• Research reports and the like as required.

5. Write a draft of the report, explaining in detail each item covered in the
Post-Implementation System Review Outline. Review the draft with
involved personnel and obtain sign-off.

6. Publish the final report. Produce a separate list of any recommenda­
tions.

7. Present the findings to management.
8. Follow up on implementation of the recommendations as they are ap­

proved.

CONCLUSION

Development projects have a beginning and an end; the post­
implementation review is the end. It documents what was done, how success­
fully it was done, and what remains to be done. Anything after this review
should be considered a new project and managed accordingly.

Incorporating a post-implementation system review into the normal devel­
opment procedures helps solidify and improve the development process. The
review closes the loop by accounting for all development project activities.
The type of formalized and consistent approach described in this chapter and
outlined in the Appendix should enable management to better plan, organize,
direct, and control development projects.

144 SYSTEMS DEVELOPMENT MANAGEMENT

APPENDIX

Post-Implementation System Review
Outline/Checklist

A. General Evaluation
The purpose of this section is to review the overall adequacy and acceptance
of the system. User statements, explanations, and/or classifications should
be fully described in the report.
1. General satisfaction with the system-This item is an interpretation of

the users' experience with the implemented system. Comments should
address:
a. The level of user satisfaction
b. The strengths of the system, areas of success, and so on
c. Any problems and suggested improvements
d. The extent to which the system is used (e.g., whether it is being

worked around or used only as a last resort)
2. Current costlbenefit justification-This item documents whether the

system is paying for itself. Details of costs and benefits should be
provided in other sections; this section is intended merely to recap the
costs and benefits. Comments should address:
a. The extent of the benefits and whether they are less than or greater

than the operating cost
b. Whether the difference is permanent or will change over time
c. Whether the system is or will be cost-justifiable

3. Needed changes or enhancements-This analysis gauges the magni­
tude of effort needed to improve the system. The report should contain
the nature and priority of the suggested changes. Comments should
address:
a. The level of the required changes
b. The suggested changes
c. The extent of the required resystematization

4. Projected cost/benefit justification-This item projects whether future
use of the system, after any needed or desired changes, will continue to
be economical. Comments should address:
a. The projected benefits and operating costs
b. The extent of economic feasibility

B. Feasibility Study and Implementation
The purpose of this section is to gauge the completeness of the feasibility
study and of implementation according to the study.
1. Objectives-This evaluation determines the adequacy of the original

definition of objectives and whether they were achieved during imple­
mentation. An evaluation of whether the objectives have changed or
should have changed should be included. Comments should address:
a. The level of the objective definition
b. The level of meeting objectives
c. Possible changes to the objectives

POST-IMPLEMENTATION REVIEW 145

2. Scope-This analysis detennines whether proper limits were estab­
lished in the feasibility study and whether they were maintained during
implementation. The report should comment on:
a. The adequacy of the scope definition
b. The extent to which the scope was followed
c. Possible changes to the scope

3. Benefits-This analysis detennines whether the benefits anticipated in
the feasibility study were realized. The report should detail all benefits,
tangible or intangible, and any quantifiable resources associated with
each. Comments should address:
a. The adequacy of the benefit definition
b. The level of benefits realized
c. The anticipated benefits that can be realized
d. The reason for the variance between planned and realized benefits,

if any
4. Development cost-This analysis detennines the adequacy of the de­

velopment cost estimate and any deviation between the estimated and
actual development costs. The report should address:
a. The adequacy of the original and subsequent development cost

estimates
b. The actual development costs, by type
c. The reasons for any difference between estimated and actual costs

5. Operating cost-This analysis detennines the adequacy of the operat­
ing cost estimates and any deviation between the estimate and the
actual operating costs. The report should summarize the resources
required to operate the system. Comments should address:
a. The adequacy of the operating estimates
b. The actual operating costs
c. The difference

6. Schedule-This evaluation determines whether implementation pro­
ceeded according to the predetermined schedule. The report should
contain:
a. An analysis of the scheduled implementation and actual conver­

sion, including documentation, cut-over, training, and so on
b. Specifics on the deviations from the schedule, if any, and the

reasons for these deviations
c. Identification of any speedups or delays

7. Training-This evaluation determines whether all levels of user train­
ing were adequate and timely. Comments should address:
a. The timeliness of the training provided
b. The adequacy of the training
c. The appropriateness of the training
d. Identification of training needs by job category
e. The ability of the personnel to use the training provided

C. Reports
The purpose of this section is to evaluate the adequacy of and satisfaction
with the outputs from the system. Care must be taken to ensure that all
reports are evaluated. Comments about user capability to use the data
provided are also appropriate.

146 SYSTEMS DEVELOPMENT MANAGEMENT

1. Usefulness-This evaluation detennines the user need for the output
provided. The report should contain:
a. Identification of the level of need as, for example:

(1) Absolutely essential
(2) Important and highly desirable
(3) Interesting; proves what is already known
(4) Unnecessary

b. Demonstration of the ability to do without the reports
c. Alternatives for obtaining the information

2. Layout-This analysis determines the layout aspects of readability,
legibility, understandability, and the like. Comments naturally pertain
to printed reports and screen formats. The following topics should be
addressed:
a. Date entries: as-of date, date prepared, for-period-ending date,

and so on
b. Headings: report name, columnar headings, unique report num-

ber, and so on
c. Mnemonic expansion
d. Totals
Analysis of the report layout should also address:
a. The understandability of the reports
b. The degree of knowledge about each report that the user must have

before making use of it
c. Any problem areas

3. Timeliness-This analysis determines whether report production
meets user needs. Comments should include:
a. The frequency of output arriving on time, early, and late
b. The amount of follow-up needed to obtain the reports

4. Controls-This evaluation determines the adequacy of the controls on
master files or the data base, source documents, transactions, and
outputs. Each area should be reviewed thoroughly for financial con­
trols and file control counts. The report should address:
a. The level of controls present in the entire system and on each

component (e.g., transaction, batch, file)
b. The adequacy of the controls; the strengths and possible areas for

improvement
c. The amount of resystematization required, if any

5. Audit trails-This analysis reviews the ability to trace transactions
through the system and the tie-in of the system to itself. Comments
should address:
a. The thoroughness of the audit trails
b. The level of improvements necessary, if any

D. Data Base (or Master Files)
The purpose of this section is to review the adequacy of the data base or
master files. In analyzing a data base, some items may contradict each
other, and these contradictions should be explained (e.g., completeness
may be lacking while relevance is appropriate, or completeness may be
high with relevance low).

POST-IMPLEMENTATION REVIEW 147

1. Completeness-This evaluation detennines whether the data base is
all-inclusive and whether all needed or desirable data elements are
included. The report should contain:
a. An analysis of whether the data elements provided are:

(1) Required
(2) Desired
(3) Required for future use

b. The level of system supplementation with nonintegrated data that
is required

2. Relevance-This evaluation detennines whether the data base is too
all-encompassing (i.e., whether there are data elements present that are
never or seldom used). Comments should include:
a. The frequency of data element use:

(1) Frequently
(2) Infrequently
(3) Never

b. Recommended changes
3. Currency-This evaluation determines the level of data element cur­

rency. The nature and use of the system dictate the need for currency.
The system review report should specifically state the desired currency
of data for meeting user/operational needs. The report should address:
a. The desired currency of the data
b. The currency achieved

4. Structure-This item evaluates the file structure used to ascertain
whether other methods would be more appropriate. Alternatives could
include:
a. One long record for each entity
b. Segmented records: a header plus numerous trailers
c. Hierarchical data base structures
d. Chained data records

5. Media-This analysis detennines if data is on appropriate media or if
others would be more appropriate. Alternatives could be:
a. Punched card
b. Magnetic tape
c. Floppy disk
d. Direct-access storage devices
e. Mass storage devices
f. Main memory
Note: Analysis of media and/or structure may be more appropriately
accomplished in a performance study that is independent of the post­
implementation review.

6. Privacy (or allowed access to data)-This evaluation detennines the
adherence to restrictions on the access to data contained in the various
files. The report should state desired privacy criteria for the system and
then evaluate how they have been followed up to this point. The results
should help to strengthen procedures in the future. Comments should
address:
a. The privacy criteria established
b. Recommended privacy criteria
c. Adherence to and violations of privacy

148 SYSTEMS DEVELOPMENT MANAGEMENT

d. The cost of providing this level of privacy
e. The potential effect on individuals if the privacy criteria are not

followed

E. Documentation
The purpose of this section is to review the adequacy of the published
documentation and how well it has been maintained to date.
1. Systems and user documentation-This review determines the ade­

quacy of the overall documentation of the system. User documentation
should be thoroughly appropriate for the user's purposes. The report
should detail any weak aspects. The systems and user documentation
should contain, at a minimum:
a. Systems narrative
b. Systems flowchart
c. Objectives, scope
d. Input and output documents (examples and explanations)
e. File specifications
f. Program narratives and flowcharts
g. Schedules for all jobs
h. Procedures for controlling the documentation
i. Security/privacy requirements
The report should include:
a. A review of the completeness of the documentation
b. A statement about whether the documentation is up to date
c. The extent of any desired changes
d. The effort, if any, required to make the documentation compre­

hensive and current
2. Operations run book-This review determines the status of the run

books for control clerks and computer operators. At a minimum, the
operations run book should contain:
a. A systems flowchart
b. Program history
c. JCL Gobstreams)
d. Labeling instructions
Report comments should address:
a. The completeness of the run book
b. Whether the run book is current
c. The extent of suggested changes
d. The effort required to make the changes

3. Data entry procedures-This evaluation assesses the adequacy of the
data entry procedures. The report should review:
a. The completeness and currency of the procedures
b. The documentation for terminal users
c. The backup of formats and procedures
d. The extent of suggested changes
e. The effort required to implement these changes

4. Program post lists-This item evaluates the filing and maintaining of
post lists that correspond to the source decks (either in manual files or

POST-IMPLEMENTATION REVIEW 149

on disk controlled by systems software). Comments should address:
a. Completeness
b . Availability
c. Ease oflocating the lists
d. Currency
e. Desired changes
f. The effort required to make the changes

5. Test data and procedures-This item assesses the presence and mainte­
nance of test data and the procedures for using it (to facilitate systems
and program maintenance and to have predetermined data results for
new equipment and software changes). The report should describe:
a. The availability of the test data and procedures
b. The currency of the test data and procedures
c. The suggested changes
d. The effort required to revise the test data and procedures

F. Security
The purpose of this section is to determine whether the system provides
adequate security of mes, data programs, and so on. In addition to access
security, backup, recovery, and restart procedures should be reviewed.
1. Master data-This analysis determines whether adequate security,

backup, recovery, and restart procedures are provided for master me
data. The report should address:
a. The adequacy of the security, backup, recovery, and restart proce­

dures
b. The suggested changes
c. The effort required to make the changes

2. Transaction data-This analysis determines whether the security,
backup, recovery, and restart capabilities adequately safeguard trans­
action data. Online systems naturally require special techniques (e. g. ,
logging). The report should address:
a. The adequacy of the security, backup, recovery, andrestartproce­

dures
b. The suggested changes
c. The effort required to make the changes

3. Source decks-This analysis determines whether the security, backup,
recovery, and restart capabilities adequately safeguard the program
source decks. The report should address:
a. The adequacy of the security, backup, recovery, and restart proce­

dures
b. The suggested changes
c. The effort required to make the changes

4. System-resident (SYSRES) pack-This analysis determines whether
the security, backup, recovery, and restart procedures adequately
safeguard the SYSRES pack. The report should address:
a. The adequacy of the security, backup, recovery, and restart proce­

dures

150 SYSTEMS DEVELOPMENT MANAGEMENT

b. The suggested changes
c. The effort required to make the changes

5. Off-site storage-This analysis determines whether appropriate files,
programs, and procedures are established to enable recovery from a
disaster. The report should address:
a. The adequacy and currency of off-site storage procedures
b. The extent that procedures cover:

(1) Master data
(2) Transaction data
(3) Source programs
(4) Object programs
(5) SYSRES pack
(6) Documentation (e.g., systems, operations, user manuals)

c. The results of any adequacy-of-recovery test

G. Computer Operations
The purpose of this section is to ascertain the current level of operational
activities. Although the user point of view should be primary, the computer
operations view should also be investigated.
1. Control of work flow-This analysis evaluates the user interface with

DP. The submittal of source material, the receipt of outputs, and any
problems getting work in, through, and out of computer operations
should be investigated. The report shouldaddress:
a. Any problems in getting the work accomplished
b. The frequency and extent of the problems
c. Suggested changes
d. The effort required to make the changes

2. Scheduling-This analysis determines the ability of computer opera­
tions to schedule according to user needs and to complete scheduled
tasks. The report should address:
a. Any problems in getting the work accomplished
b. The frequency and extent of the problems
c. Suggested changes
d. The effort required to make the changes

3. Data entry-This analysis reviews the data entry function. The keying
and data verification error rate is included in this analysis. Comments
should address:
a. The volume of data processed (entry and verification)
b. The number of errors being made
c. The frequency of problems
d. The suggested changes
e. The effort required to make the changes

4. Computer processing-This analysis should uncover computer pro­
cessing problems. Some areas to review are:
a. The correct use of forms, tapes, and the like
b. The ability of computer operators to follow instructions (e.g.,

forms lineup and proper responses on the console)

POST-IMPLEMENTATION REVIEW 151

The report should address:
a. Identifiable problems
b. The extent of reruns, if any
c. A description of the work load
d. An evaluation of whether multiprogramming would be beneficial

and, ifso, how
5. Peak loads-This analysis assesses the ability of computer operations

to handle peak loads and to clear up backlogs when they occur. Any
off-loading that could be helpful should be investigated. Comments
should address:
a. The level of user satisfaction
b. The adequacy of the response time (for online systems)
c. The effect of delays on online and/or batch systems
d. The suggested changes
e. The effort required to make the changes

H. Systems and Programming Maintenance
The purpose of this section is to evaluate the need for enhancements or
revisions and/or the responsiveness to maiI).tenance requests.
1. Systems maintenance-This review detennines whether any changes

should be made to the system to improve effectiveness or usability.
Comments should include:
a. The suggested changes
b. The effort required to make the changes
c. Costlbenefit analysis of each

2. The volume of maintenance requests-This analysis detennines the
frequency and extent of maintenance requirements. The report should
address:
a. The frequency of requests
b. The effort required to process the requests

3. Responsiveness-This analysis ascertains the level of responsiveness
to user requests for systems and/or programming maintenance. The
report should detail all requests that have been made, listing all open
items. Comments should address:
a. The time required to accomplish each request
b. A follow-up of each satisfied request

4. Documentation maintenance-This investigation evaluates the cur­
rentness of the documentation in view of the maintenance requests that
have been satisfied. The report should specifically address the status of
the:
a. Systems and user documentation
b. Operations run book
c. Data entry procedures documentation
d. Program post lists documentation
e. Test data and procedures
The report should also contain the following information for all docu­
mentation:
a. When the last change was made
b. Plans for maintaining up-to-date documentation, if needed

~72 Maintenance
Documentation

by G.R. Eugenia Schneider

INTRODUCTION

Data processing is generally depicted in the literature as a world in which
programs are carefully designed, written, tested, documented, used in pro­
duction, and then replaced by more up-to-date programs created in the same
way. The real world, of course, does not usually reflect this ideal. Programs
and systems written many years ago are still in use; many of these originated
as manual operations. When computers became available, operations that
seemed amenable to automation were turned over to the machine, until the
total system was eventually automated and the pieces were patched together
with badly understood and thoroughly undocumented procedures.

This chapter primarily addresses the lack of documentation procedures for
the particular needs of the maintenance shop. It discusses the functions of it
maintenance shop and by whom these functions are perfonned, the proce­
dures a maintenance programmer follows in updating a program, and the
types of formal documentation a maintenance shop generates.

MAINTENANCE FUNCTIONS

A number of duties tend to be included under the banner of system mainte-
nance; these duties can be categorized under four job titles:

• Maintenance manager
• Archivist
• Document librarian
• Maintenance programmer

Although one person is frequently expected to perfonn all of these duties,
defining the jobs separately can help maintenance shops prepare for expan­
sion.

Maintenance Manager

The maintenance manager monitors incoming program change requests
and trouble-log entries. When a program change is proposed, the manager
must arrange for a timely decision on the proposal's criticality and feasibility.

154 SYSTEMS DEVELOPMENT MANAGEMENT

Sometimes systems changes are critical and must be made immediately. It is
therefore especially important that changes be coded and tested, with no
danger of the change destroying any previous version of a program or data
entity. It is also important that the change can simply be withdrawn if it is
ultimately disapproved. The manager must ensure that the requester has the
opportunity to see the change in operation and that he or she gets a prompt
response. Even if the change is withdrawn, the maintainers will gain valuable
infonnation about the program (possibly improving its documentation in the
process).

The manager also assigns the writing of the fonnal documentation needed
to support the maintenance effort and monitors the completion of documents.
Although the librarian stores documents with other information about the
system, program, and so on to which they refer, internal chronological docu­
ment numbers should be assigned. These documents may include a system
maintenance overview, a maintainer's guide, patch documentation, a formal
definition of data files, fonnat guidelines, and maintenance procedure guide­
lines.

The manager should review schedules and priorities monthly. This activity
might well coincide with a general meeting of primary maintenance service
users and maintenance staff. Such meetings provide an opportunity for a
discussion of the overall software system goals and enable compromises
between computer capabilities and project DP requests. The meetings also
provide the best forum for a post-implementation review of software changes
and can be used to ascertain that the changes meet the needs of, and are
understood by, the users. Abbreviated minutes can be sent to management
and may reveal a need for the allocation of additional resources for the
maintenance function.

Status Report. The manager should submit a quarterly status report to his
or her immediate supervisor. This fonnal documentation of the group's work
provides much-needed publicity about the nontriviality of maintenance activi­
ties. The status report should contain the following information:

• Scope-the name of the reporting group and the period covered
• Work completed-a listing in outline fonn, by system and by program,

of all significant code, procedure, and documentation changes made
during the quarter

• Work scheduled-a listing of pending maintenance activities (com­
paring work scheduled this quarter with work actually required next
quarter documents the unpredictability of assignments; it may help to
justify additional resources)

• Reports acquired and generated-bibliographic references for new doc­
uments added to the document library during the quarter

• Personnel assignments-a list, by job title, of the man-months involved
in these accomplishments

Among his or her many functions, the maintenance manager is frequently
required to be a psychologist to keep users, customers, and programmers

MAINTENANCE DOCUMENTATION 155

speaking to one another. It may also be wise to have the maintenance manager
develop, implement, and maintain the organization's disaster plan. Few com­
panies have worked out formal disaster plans, and the maintenance shop bears
the brunt of the problem when the system crashes.

Archivist

The archivist is responsible for keeping up-to-date records of the contents
of, changes made to, and backup copies of all computer tapes and files used
by the maintenance staff. He or she develops and implements backup proce­
dures for all files in the archive library. This includes all programs, utilities,
data bases, data files, run streams, and the like that are stored on the computer
and that have anything to do with programs currently being maintained. The
archivist must generate run streams for listing the complete contents of any
disk or tape file in the archive library. He or she must also know how to
retrieve the latest version of any file as well as the previous versions that are
under the jurisdiction of the maintenance shop.

The files in the archive library should be separated, first according to the
computer on which they reside, then alphabetically by file (or library) name.
Each file (or library) should have a documentary package in which listings are
categorized as data, source code, run streams, or text. Within each category,
individual physical elements should be stored in alphabetical order by the
name used to access the element and then by revision date, with the most
recent date first. The first section in the package should hold tables of contents
of the file, again with the most recent entries listed first. Another section
should contain listings showing how to retrieve that file from the archive
tapes.

The archivist does not keep track of which files are logically associated
with particular programs or with each other. His or her only concern is the
maintenance and protection of the physical files and the keeping of records of
the changes made to them. When any computer file is updated, therefore, it
should be backed up immediately (on tape, card, or floppy disk) until the next
archive tape is generated and verified. At least once a month, the file backup
run streams should be modified to ensure that all files altered since the last
formal backup are included in the next quarterly archive tape. At the same
time, the table of contents of any altered file and listings of the new element
should be stored in the file documentation package.

Before starting the archiving procedure, the archivist should request pro­
grammer confirmation of the completeness of the file change records assem­
bled during the quarter. Then he or she generates the quarterly archive tape,
documenting it with a list of the run stream that generated it. The tape is
validated by listing the table of contents of each file or library on the tape, in
order by tape file number. This output is then separated, and each table of
contents is stored in the individual file or library documentation package. It
should be noted that all files maintained in the archive library must be backed
up at least once a year.

156 SYSTEMS DEVELOPMENT MANAGEMENT

Document Librarian

The document librarian's primary function is to systematize the storage
and retrieval of all infonnation that is of use to the maintenance staff. Two
other tasks, however, are routinely assigned to the document librarian. One is
fonns management, which involves storing master copies of all fonns used in
the shop and ensuring their copying and distribution. The other is WP control.
Storing skeleton copies of typical documents generated by the maintenance
group on the computer has dual advantages. It improves the motivation of
documentation personnel by making it easier to produce the assigned docu­
ments and ensures that all documents of the same type and purpose have the
same fonnat.

The library should contain copies of all available infonnation about the
systems and programs being maintained. It is organized around a book of
system abstracts, each referencing the programs, data files, procedures, and
other entities that comprise the system. Library files are organized first by
system, then by program and by data files. To avoid being buried under
paper, the library should contain only one copy of any document. Documents
defining data or interface procedures among programs in the system or relat­
ing to the design of the entire system are stored with the system documenta­
tion and are cross-indexed in the program documentation files. Similarly,
documents defining individual programs or data files are stored under those
headers and are referenced in the system documentation file.

When all infonnation about a program is requested, the librarian should be
able to determine the existence and location of such infonnation immediately.
A program that has been worked on will have library files, archive files, and a
maintenance binder containing all of its documentation. If the program has
not previously been worked on, the system should be sufficiently cross­
indexed to show whether the program or any of its 1/0 files was referenced in
the documentation of other programs.

If the requester is a programmer with a maintenance assignment, a library
file and maintenance package for the program should be started. This package
includes the appropriate fonns for a set of basic documentation (called, for
convenience, a minidoc)-a software abstract providing concise infonnation
about the software (see Table 12-1), a master run stream list showing how the
program is run (see Table 12-2), and a run setup fonn, which is to be filled in
by the user; a programmer's notebook for recording all pertinent infonnation;
a maintenance binder to hold the documentation; and copies of any existing
documentation found in other library folders. If the search draws a blank,
however, one should look elsewhere in the organization for "corporate mem­
ory" about the program. (A program that is just beginning its life in the
maintenance shop requires the same paperwork.)

In developing a library system, it should be remembered that one of the
major objectives is to indicate exactly what documentation exists concerning
the software. The records are therefore categorized by type of documentation
and by currency. New documentation should be added to the current docu-

MAINTENANCE DOCUMENTATION 157

mentation at least once a month, and the appropriate cross-references should
be generated. New documentation files should be opened for programs and
systems that have been assigned for maintenance for the first time or for
which a first piece of documentation has been acquired; noncurrent docu­
ments should be transferred to a historical file. A list of all documents ac­
quired and generated during the last quarter should be distributed at the end of
that period.

Maintenance Programmer

The maintenance programmer seems to spend the day programming with
the following cycle: make a change, make a run, curse, scribble, and loop. A
few things need to be added, however. The programmer must record every­
thing done, thought, or looked at that pertains to the program in his or her
notebook-code changes and their effects, program runs and their outcomes,
insights and infonnation gleaned, useful conversations held, definitive
progress made, milestones achieved, and the date on which the event oc­
curred.

The programmer should insert any fonnal documentation or examples that
might be used in such documentation into the maintenance binder, which
typically includes:

• Minidoc-should be generated or updated by maintainer.
• User's guide-only if it exists; should not be written at this time.
• Analyst's manual-only if it exists; should not be written at this time.
• Maintenance infonnation-patch or maintenance document; should be

generated or updated by maintainer.
• Source lists and cross-references-should be inserted before mainte­

nance work begins.
• Data files-formal definitions that should be generated or updated by

maintainer. .
• Sample I/O-should be inserted before maintenance begins.
• Benchmark I/O-should be present if it exists; should be generated by

maintainer for pennanent changes.
• System interactions-generally not fonnalized; should be included if

interfaces with other programs become significant.
• Other-No file can be without this category.

All programmers' notebooks should be brought up-to-date at least weekly,
preferably daily. If any changes have been made to data, program, or run
stream files, the archivist should be infonned and provided with a list of the
new file contents. Newly acquired or generated documents should be sent to
the document librarian monthly. By the last week of the quarter, the manager
should be provided with an outline of progress made toward completion of
each assigned project for inclusion in the quarterly status report.

MAINTENANCE GUIDELINES

The guidelines described in this section encompass most of the activities in
a maintenance shop. These activities are divided into three major areas: an

158 SYSTEMS DEVELOPMENT MANAGEMENT

emergency takeover when a program that no one has ever heard of needs
changing, permanent program changes, and temporary patches. The decision
to make a temporary patch or a permanent modification rests with the mainte­
nance manager.

Emergency Takeover

In an emergency situation, programmers must respond sensibly and with­
out panic to the command, "Program XYZ doesn't work ... fix it!" As­
suming that no one in the shop has ever heard of XYZ, the programmer
proceeds as follows:

1. The librarian is asked for any information pertaining to XYZ. If any
exists, the programmer should fmd out who worked on it last and
should obtain the programmer's notebook and maintenance binder. If
there is no information, the librarian should open a file and issue the
paperwork for beginning a maintenance project.

2. The appropriate forms used in a given shop for a programmer's note­
book should be set up, and the programmer should immediately start
to enter everything done, learned, and acquired about the program
during the takeover period.

3. If not already in hand from the archive, a table of contents of the
program source file should be located, and listings (cross-referenced
where applicable) should be generated of all program modules. If the
archive has no information on this program file, a complete archive
documentation package, including a table of contents and source list­
ings, should be sent to the archivist, who assumes maintenance of
these files.

4. A complete set of sample I/O formats should be found or made,
including dumps of any tapes or disk files used. If the programmer is
fixing an aborted program, the failed run stream is needed as a test for
the update; however, it is not sufficient as a benchmark run. For that,
a data set that ran successfully before the failure is needed.

5. A programmer's version of the change request should be written and
sent to the requester (via the manager) for comment.

6. Using whatever information can be gleaned from file lists, sample
I/O, and the like, the programmer should work backward from the
present to fill in the programmer's notebook. A new page should be
allowed for each month to permit addition of later information.

7. When the programmer's approved or amended change request comes
back, the programmer should stop the book work and start the
change-with a surprising amount of knowledge about the program.

Permanent Modifications

Permanent changes are generally those that fix a bug, add new capabilities,
or improve usability. When designing a permanent change, it is important to
remember that acceptance of the assignment is a commitment to the program

MAINTENANCE DOCUMENTATION 159

in the eyes of the customer and the user. The next time a change is needed, the
same programmer will be asked to make it; furthennore, he or she will be
expected to come up to speed on the program and its intricacies almost
instantaneously, even though several years may have elapsed since it was last
seen. In self-defense, the programmer should design the change the way he or
she wishes the program had been written in the first place. The programmer
should consider how each type of change might be incorporated and should
make current changes that will ease the insertion of future changes.

Code changes should be designed in accordance with structured program­
ming techniques and such internal documentation concepts as those outlined
in the next section of this chapter.

A test run stream that will change files only for the duration of a run should
be used. All pennanent file changes can then be made at one time, in order,
when the change has been tested and is ready for implementation and produc­
tion use. A hard-copy list of the final changes thus becomes a primary piece of
documentation for the new program version.

A benchmark data set should be created for testing and validating the
changes. The most desirable benchmark is representative of the full range of
program use in general and of the proposed update in particular. It is crucial
that the benchmark run successfully before modifications are made, or there
will be no way to validate the update.

Before giving the finished change to production, one should ascertain that
the previous version can be restored at any time. If the new version fails, the
user should be given the familiar program immediately. It is not uncommon
for the old version to crash harder than the new one because the error is not
related to the recent changes.

Temporary Patches

Temporary program patches are made for a number of reasons, including:
• Special-purpose, limited-use modification
• Changes awaiting formal approval for implementation
• Quick-and-dirty changes to be added formally later

In general, it is unnecessary to know as much about a program to write a patch
as to make a pennanent change. The rationale for this is usually that although
the change is needed immediately, it will be forgotten tomorrow.

Although the person who designs a patch is often much less closely identi­
fied with the program than the one who actually maintains it, patch changes
tend to need defending more often. These changes are likely to be so out of
phase with the original purpose of the program that it is hard to judge their
total effect on program function. Deferise will be demanded not only by
customers and users but (especially) by the next programmer, who may have
to incorporate the patch permanently and then live with it.

In designing a patch, the principles outlined in the section on Internal
Documentation should be used. One additional caution-the entire change

160 SYSTEMS DEVELOPMENT MANAGEMENT

should be put in one unbroken block, in only one program module, if at all
possible.

In implementing the patch, the only pennanent file changes should be at
the level of linked executable code; patch code should always be stored on the
machine as an add or include file in the compilation procedure.

The test data required for patches tends to be somewhat informal. All that
is needed is a data set that exercises the patch, whether or not it exercises the
entire program. It is dangerous to assume that the program being patched truly
works. If the test data does not work with the patched code, it is wise to see
whether it functioned as planned on the original program.

A complete minidoc is written for the patched program before it is handed
off to production. This task is relatively simple for a patch because the run
setup needs to be revised only from the start of the run to the end of the altered
code. Fonnal patch documentation (described in the next section) is rarely
written before handoff because patches often carry unreasonable time de­
mands. The programmer can then get additional information from user and
customer responses before committing the activities to paper.

DOCUMENTATION FORMATS

Research in a large maintenance group at the Camp Pendleton Marine Base
[1] has shown that the most important software documentation for a main­
tainer is the code itself. A far-off second is a narrative description of the
purpose of each code module. Following that at fairly regular intervals are
flowcharts, module hierarchy diagrams, data flow traces, and HIPO charts.
Why then is other documentation required if well-organized lists are all a
maintainer wants? One reason is that the code is probably not well organized.
The major reason, however, is that if other documentation does exist, the
maintainer must be able to find and use it. The following other types of formal
maintenance documentation are therefore needed:

• Minidoc-used to find program records and indicate where the program
is, who uses it, what it does, and where to find more information

• Maintainer's guide-used to formalize everything that a maintainer
might want to know about a program

• Patch documentation-used to formalize a specialized change made to
a program (from a maintainer's viewpoint) and to tell the customer
what it is expected to do

• Data formats-used to define the physical and logical characteristics of
data files and thereby provide information on interfaces among pro­
grams

Minidoc

The minidoc is basically the bare bones of information about a software
item. It enables the librarian and archivist to file their records concerning the
software, it informs customers and management of the software's capabilities,

MAINTENANCE DOCUMENTATION 161

and it shows users how to set up runs with confidence. This sounds like a
great deal of infonnation, and it is; it also sounds like a great deal of paper,
but it is not. The minidoc includes the software abstract, master run stream
list, and run setup fonn.

Software Abstract. The software abstract (shown in Table 12-1) is in­
tended to tell its reader enough about the software to indicate where to find all
other pertinent information. A copy of the abstract opens every document
concerning the software. Because it has a fairly rigid format and should be
limited in length, a series of abstracts can be scanned swiftly, and the same
infonnation can always be found at the same place [2].

Master Run Stream List. The master run stream list (see Table 12-2) is,
for the most part, an example of the way a program is run. The three types of
entries in a master run stream list are the header, the control command list,
and the data definitions.

Run Setup Form. The run setup fonn (RSU) is completed by the user
whenever the program is run. It looks much like the master run stream, with a
header that tells the program name, version, and the date it went into produc­
tion; a line for each control command, with the unvarying parts of the com­
mand typed in all uppercase characters; and a line for each data type.

Commands. The command is printed with a space between each two
characters, and the parts to be filled in by the user are represented as under­
scores. Information can be typed under the parts to be filled in, indicating the
type of infonnation needed and the column in which it begins.

Data Type Definitions. The definition of each data type is preceded by its
type definition taken from the master run stream. If there can be only one
occurrence of the data type in the run stream, the card is represented by a
sequence of spaced underscores'in the RSU. Under the location of each data
item is the name of the item and an indication of those columns that belong to
it. Elsewhere on the sheet is a user definition of the item, including such
information as:

• Allowed values of coded inputs, and their meanings
• Type of data (e.g., binary, alphanumeric)
• Position in field (right or left justified or centered)

Unvarying data inputs are typed on the fonn. When there are several
records of one data type, the RSU must include a table with enough lines for
the maximum number of inputs. The table is preceded by the data definition
from the master run stream. If the table entries have no intrinsic sequencing
information, sequence numbers should be printed outside the table. The col­
umn headings on such a table should include the item name, the columns
assigned to it, and the position code (e.g., R for right justified). A listing of
user definitions of the data items in the table should appear elsewhere on the
page.

162 SYSTEMS DEVELOPMENT MANAGEMENT

Table 12-1. Checklist for a Software Abstract

Software Abstract
Name-software name; one-line description of purpose
category-area of interest, department, system; superset name categorizing

the software

Purpose-brief description of what the software does

Keywords*-quick-reference information further explaining software
capabilities

Type-level of software (e.g., program, system, processor, subroutine
library, utility, data base)

Date-relevant life-cycledates (e.g., ordered, designed, implemented,
revised)

Status-two-part description of software status: experimental or certified; fully
or partially supported (and by whom)

Documentation-bibliographic references for formal software documentation

Contacts-names, locations, and phone numbers of cognizant people (those
who can answer questions about the software)

Comments-any additional brief information that tells a reader whether the
software might be interesting and useful

AbllitieS/llmltations*-brief description of parameters and restrictions on use
Source*-where software was obtained and for what computer it was written

Language*-computer (or data base) language in which software is written

Access*-where source code, data files, and run streams are stored;
commands needed to obtain such information from the computer

Testing*-reference to any documentation on testing or indication of how
exhaustively the software has been validated

Date/initials of preparer

• Optional items; to be included if space and motivation permit

Maintainer's Guide

The maintainer's guide is the maintenance-shop equivalent of an analyst's
manual in the design shop and is meant to be a complete standalone definition
of a program. This guide is often the only existing formal documentation of
the program, and the format reflects that possibility. The table of contents has
an interest code to the right of each entry, indicating who would be interested
in that section. The usual codes are: u-user, e-project engineer, and
p-programmer; many more are possible. A maintainer's guide is outlined in
Table 12-3.

Patch Documentation

Although patch documentation has the same format as the maintainer's
guide, it makes no attempt to define the entire program. Only changes made
since the last production version are defined, whether or not any previous
documentation was written about the program at any level.

The author should be aware that this document (like the maintainer's
guide) may well be the only formal description of the program. Every effort is

MAINTENANCE DOCUMENTATION

Table 12-2. Contents of a Master Runstream List

Header Record-one line, containing:

Example:

'"" ... MASTER RUNSTREAM'
Program Name (version)
Cataloging date
I *.,

"""MASTER DECK-GUST (VER. 3)-CATALOGED 15 AUG 77"""

163

Control Card Definitions-one line for each control command in a com­
plete program run, listed in the order in which they would appear in a typ­
ical runstream. All unvarying command elements are typed uppercase, ex­
actly as they would be punched. Varying command elements are typed
lowercase, if that option is available, or designated by a character that
would not otherwise appear in a command line. If there is room, an expla­
nation appears to the right of the command, telling what information
should be filled in.

Example:

@ASG, T 14,U9,XXXX-FUGHT TAPE NUMBER REPLACES X'S

Data Definitions-For any data type that is part of the runstream (i.e., not
tape or disk files, just card input), there is one line of definition, located
where that data type would appear in the setup. The data definition con­
tains:

'On.' -sequence number (first card is 01.)
Name of the data type
'('
Number of cards of this type
'REQUIRED' or 'OPTIONAL'
If optional, the condition under which the data element is used
'r

Example:

03. SEGMENT CARD (IF3 CARDS-OPTIONAL-IF IF3.GT.O)

therefore made to point out, by the fonnat of the document and the audience
flags in the table of contents, which parts of the patch documentation are to be
extracted for users, analysts, or project management. The outline for patch
documentation is shown in Table 12-4.

Data Formats

A general format for documenting data files is shown in Table 12-5. There
are, of course, some slight differences involved for effective documentation
of special sorts of data files. The difference in defining a card file, for
example, would be the columns occupied by each data item and possibly a
notation that the item is right or left justified in its field.

Sequential Files. Tape files require such additional information as the
number of files, the packing density, and a complete definition of any check
sum or block start and end codes added by the system. If the tape is to go to
another organization, the recording speed, make, and model of the tape unit

164 SYSTEMS DEVELOPMENT MANAGEMENT

Table 12-3. Outline for a Maintainer's Guide

Table of Contents

Cover Letter-memo explaining the purpose of the document, the authority
under which the work was performed, and the distribution of the memo
and the document

Abstract-a copy of the program abstract from the minidoc
Description of Program Use

Operating Instructions
Control Commands
Input Data Cards
Other Input Media

Overview
Disk files
Magnetic tape
Other

Description of Program Outputs
Output-Handling -Procedures
Printer Outputs
Other Output Media

Overview
Plotter
Disk files
Magnetic tape
Other

Definition of Program Structure
Summary of Physical and Logical Design

Functional Description
Module Flowchart
Data Flowchart
Other Design Information

Main Program
Description of User Subprograms

Name and function
Inputs-arguments, globals, and read-ins
Outputs-arguments, globals, and write-outs
Functional description-purpose, algorithms, and so on

Appendices

Appendix A-Sample Inputs and Outputs
Benchmark runstream listing
Input data for benchmark run
Printer outputs
Other outputs

Appendix B-Speclal User Information
Master runstream
Run setup form
Other

Appendix C-Deflnltlon of Data Flies·
Input files
Scratch files
Output files

Appendix D-Speclal Maintenance Information
Runstream listings

Catalog production program
Document contents of program files
Document contents of data flies
Compile and test
Other

Machine-dependent information

u

e,u

p

e,u

u

p

p

MAINTENANCE DOCUMENTATION

Table 12-3. (cont)
System subroutines and libraries used
Internal data representations (and character codes)
Time and memory parameters
Other

Appendix E-Source Lists and Cross-References
All program modules

• See Table 12·5.

Table 12-4. Outline for Patch Documentation

Table of Contents

165

p

Cover Letter-Memo explaining the purpose of the document, the authority
under which the work was performed, and the distribution of the memo
and the document

Abstract-A special program abstract that describes the program as it op­
erates with the patch in place

Changes In Program Use u
Operating Instructions
Control Commands
Input Data Cards
Other Input Media

Overview
Disk files
Magnetic tape
Other

Changes in Propram Outputs e,u
Output-Handling Procedures
Printer Outputs
Other Output Media

Overview
Plotter
Disk files
Magnetic tape
Other

Changes in Program Structure p
Summary of Physical and Logical Changes

Functional Description
Module Flowchart
Data Flowchart
Other DeSign Information

Procedural Changes in Existing Routines
Main Programs
Subprograms

Description of New Subprograms
Name and function
Inputs-arguments, globals, and read-ins
Outputs-arguments, globals, and write-outs
Functional description-purpose, algorithms, and the like

Appendices

Appendix A-Sample Inputs and Outputs
Test runstream listing
Input data for test run
Printer outputs
Other outputs

e,u

166 SYSTEMS QEVELOPMENT MANAGEMENT

Table 12-4. (cont)

Appendix B-Special User Information
Master runstream
Run setup form
Other

Appendix C-Deflnltlon of Data Files·
New or altered input files
New or altered scratch files
New or altered output files

Appendix D-Special Maintenance Information
Runstream listings

Catalog patch version of program
Document altered contents of program files
Document altered contents of data files
Compile and test
Other

Machine-dependent information
System subroutines and libraries used
Internal data representations (and character codes)
Time and memory parameters
Other

File updates
Program updates
Data updates
Runstream updates

Appendix E-Source Lists and Cross-References
New or altered modules only

• See Table 12-5.

u

p

p

p

used to write the tape should be included. For disk mes, especially if the me
will be read by a language or processor unlike the one that wrote it, physical
track size limits should be included, as well as any check sum and start- or
end-of-block infonnation the system generates.

Random-Access Files. The additional infonnation needed for random­
access mes includes all possible values of the key variable and the exact
command used to access a record. The listing appended to the documentation
should be sorted by the most common order of the keys.

Data Bases. There is usually a straightforward way to list the logical
fonnat description for data bases. This listing, and the commands used to
produce it, should be included in the documentation. The me list should
contain all current contents in an order that reflects the most common use.

Internal Documentation

Except in rare programs written according to structured design precepts,
the code to be modified may be all but unreadable. It is also possible that no
external documentation exists for the program and that the only infonnation
about the program's inner workings is the code itself.

MAINTENANCE DOCUMENTATION 167

Table 12·5. General Format for Documenting Data Files

Cover Page

Data Item Table

Listings and Dumps

Identification
Source (organization and computer)
Type (e.g., card, tape, disk)
Cognizant personnel (location, phone, and area of

cognizance)
End·file definition (physical andlor logical)
Block definition

Length-records per block or variable
Frequency-generally, when a block is writ­

ten
Format-what record types are included,

how many of each, and in what order
Recognition-how start of block is recog­

nized
Record definition

Length-physical and logical record size
(words, characters, bytes, or bits)

Frequency-as above, what causes a record
to be written

Format-detailed physical and logical de­
scription of the contents of each data item

Word definition
Length-in bits
Complementation-ones or twos
Format-bit-by-bit description of internal for-

mat of all data types in the record
Processing history

Source program(s) where used
Description of transformations within program
Parameters and restrictions on content and

use

Sequence number
Logical definition (with units)
Range of values or list of possible values
Scaling information (Le., units conversions)
Coding (e.g., ASCII, 029 keypunch, BCD)
Format (e.g., nnn.nn, FS.2, real)
Data name in program (at time of 1/0)
Comments

The following paragraphs provide guidance on how to structure mainte­
nance updates and their supporting comments to make the update as readable
as possible and the program more maintainable.

Module Structure. Before attempting to modify a piece of code, it is wise
to understand the current structure of that code and to evaluate the feasibility
of restructuring the module to enhance its readability and maintainability. A
maintenance programmer who has the opportunity to design a new module or
restructure an old one should keep in mind such desirable features of well­
structured code as:

• Dividing code into logical blocks, with transfers of control into the
block only to the first statement in the block

168 SYSTEMS DEVELOPMENT MANAGEMENT

• Making all transfers of control downward, except for iteration (loop)
control, and always to a label on a line that contains no executable code

• Putting all data definitions in one location and initializing all working
data values

• Whenever possible, making all transfers of control to points outside the
block from the last statement of the block

• Including debug printouts of representative inputs and outputs of the
module and for any intermediate steps where the data has been signifi­
cantly transformed

• Segregating. into discrete modules the sections of code that implement
main control flow, machine- or installation-dependent code, input,
output, and standardized procedures

Main Program Header. The header, or preface, in the main program
should tell a reader enough to enable him or her to control the program, run a
benchmark, and understand the results. At a minimum, the header should
contain the information shown in Table 12-6.

Subprogram Header. All independent modules in the program, whether
or not the source code is stored separately from the main program, should
have a header block. A minimal subprogram header block should contain the
information outlined in Table 12-7.

Embedded Comments. Generally, the only comments within the code
should be the logical block separators. These should be three lines long, with
the first and third lines merely a comment character and a row of asterisks in
columns 30 through 72. The middle line should contain a few beginning and
ending asterisks (e.g., columns 30 to 33 and 70 to 72), a logical block ID
number, and a few words describing the purpose of the block.

If the compiler allows it and if the program may be compiled on another
machine, in-line comments should be used to explain all the data declarations.
It must be remembered that not all information is contained in comments; a
great deal can be imparted by judicious use of:

• Mnemonic variable and constant names
• Defining constant values in data declarations and setting initial variable

values with executable code
• Indenting the beginning of a line to make the logical and iterative

structure as obvious as possible
• Writing 1/0 formats with the variable names, column headings, and 110

format specifications lined up vertically in the source list

WHEN IS THE JOB FINISHED?

Two frequently asked but often difficult to answer questions are: When is a
maintenance task finished? When is a newly developed program ready for
production? The primary difference in the answers is the level of documenta-

MAINTENANCE DOCUMENTATION

Table 12-6. Contents of a Header for a Main Program

Title-one-line descriptive name of program
Author-name, address, and phone number of author
Date Wrlttenllmplemented-date when the program was authorized for

creation or date of first production use (whichever is more significant)

169

Function-paragraph that defines the purpose of the program, the source
of the inputs, the destination of the outputs, and any significant logical
transformations in between that may not be readily obvious from reading
the main program code

Revision Table-table showing, for each (known) version of the program:
Revision number or letter code
Date the new version went into production
Name or initials of the update programmer
Change request code (to identify the programmer's notebook and main­

tenance log entries for the revision)
One-line description of the reason for the revision

Subroutine and Function Table-table that describes, for each separate
code module: type code (e.g., u-user, I-library), name, one-line descrip­
tion of purpose

Peripheral Requirements Table-table that describes, for each peripheral
device used:

Type code (i-input, o-output, s-scratch)
Logical unit name and/or number in the program
One-line description of use
Source or destination of the data
Exact control-card image (if any) used to assign the peripheral device to

the run
References-bibliographic references to documentary information about the

program, including background references for algorithms or procedures"
and manual references documenting unusual programming techniques

Parameters and Restrlctions*-any situations in which data may be inap­
propriate for the use of this program

Formal Runstreams*-name, location, and purpose of canned runstreams
to aid in program maintenance and use

• Optional

tion that can reasonably be generated before a program is handed off to
production. Following the guidelines presented in this chapter greatly simpli­
fies the question of when to hand off to production. Very briefly stated, a
program is ready to be given back to its users when:

1. The test run using the benchmark data has been approved by the pro­
grammer and the customer

2. The minidoc has been updated to reflect the change, and the user
understands the new run setup form

The maintenance task is a slightly different matter; the programmer must also:
1. Bring the maintenance binder up to date
2. Complete and close the programmer's notebook
3. See that the maintenance or patch documentation is written, approved,

and sent for distribution
4. Give all appropriate materials to the librarian and archivist to bring their

files up to date

170 SYSTEMS DEVELOPMENT MANAGEMENT

Table 12-7. Contents of a Header for a Subprogram

Access-information about where to find the module on a computer file (in­
cludes version identification and date of most recent modification)

Function-a few lines describing the purpose of the module
Inputs-name and short definition of each datum that is used within, but

whose value is set outside, the module
Outputs-name and short definition of each datum whose value is set

within, for use later outside of, the module
Revision Table*-as shown in Table 12-6.

Data/Parameter Deflnltions*-name and definition of significant data enti-
ties; define any data held in global storage at this point

Equatlons*

Parameters and Restrictions*
References*-documents describing algorithms, procedures, or unusual

programming practices used in the module

• Optional

When the librarian and archivist have also closed their files and the post­
implementation review has passed without new changes being required, the
maintenance project is finished.

CONCLUSION

Statistics indicate that maintenance may represent up to 80 percent of
resource time and cost during the lifetime of a software system [3]. This
knowledge, unfortunately, is rarely translated into adequate maintenance fa­
cilities and resources. Part of the reason is that no one really understands what
software maintenance entails nor how many people it takes to start a mainte­
nance shop. A rule of thumb is that at least two people are needed at the
outset: a programmer and someone in a general support function. Where the
shop goes from there depends on a variety of factors, including:

• Size of system(s) being maintained
• Complexity of interactions among programs
• How often changes are requested
• How soon changes must be finished
• Whether a· design shop exists to trade new programs for old

Probably the most important factor of all, however, is how well the code was
initially written.

How can a system be designed for maintainability? This chapter has at­
tempted to answer that question. If an organization practices good structured
programming techniques, backed up by solid structured documentation prac­
tices, and adds a formalized test and evaluation procedure for enhancements
and updates, systems will be more maintainable from the start.

MAINTENANCE DOCUMENTATION 171

References

1. Shumate, Kenneth C., and Anderson, Gordon E. "Resolving DP Management Issues by the Numbers." Data Management,
Vol. 18, No.2 (MIlICh 1980), 32-35.

2. Schneider, Gene, French, Don, and Lucas, Lee. "How to Document Software." Naval Weapons Center CCF-87. China
Lake CA, August 1977.

3. Lientz. B.P., Swanson, E.B., and Tompkins, G.E. "Characteristics of Application Software Maintenance." Communica­
tions of the ACM, Vol. 21, No.6 (June 1978), 466-471.

