i

ATal

SYSTEM V A
APPLICATION BINARY INTERFACE

Motorola 88000 Processor
Supplement

UNIX Software Operation

Copyright 1990 AT&T
All Rights Reserved
Printed in USA

Published by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any means—graphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap-
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in
writing from AT&T.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this document, AT&T
assumes no liability to any party for any loss or damage caused by errors or omissions or by state-
ments of any kind in this document, its updates, supplements, or special editions, whether such er-
rors are omissions or statements resulting from negligence, accident, or any other cause. AT&T furth-
er assumes no liability arising out of the application or use of any product or system described
herein; nor any liability for incidental or consequential damages arising from the use of this docu-
ment. AT&T disclaims all warranties regarding the information contained herein, whether expressed,
implied or statutory, including implied warranties of merchantability or fitness for a particular purpose.
AT&T makes no representation that the interconnection of products in the manner described herein
will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the
granting or license to make, use or sell equipment constructed in accordance with this description.

ATA&T reserves the right to make changes without further notice to any products herein to improve
reliability, function, or design.

TRADEMARKS
UNIX is a registered trademark of AT&T.

The publisher offers discounts on this book when ordered in bulk quantities.
For more information, write:

Special Sales

Prentice-Hall, Inc.

College Technical and Reference Division

Englewood Cliffs, New Jersey 07632

or
call 201-592-2498

For single copies, call 201-767-5937
10987654321

ISBN 0-13-877L55-5

UNIX

PRESS
A Prentice Hall Title

Contents

1 INTRODUCTION
Motorola 88000 Processor and the System V ABI
How to Use the Motorola 88000 Processor ABI Supplement

2 SOFTWARE INSTALLATION

Software Distribution Formats 2-1
3 LOW-LEVEL SYSTEM INFORMATION
Machine Interface 3-1
Function Calling Sequence 3-18
Operating System Interface 3-29
Coding Examples 3-44
Text Description Information 3-57
4 OBJECT FILES
ELF Header 41
Sections 4-2
Symbol Table 4-3
Relocation 4-4
5 PROGRAM LOADING AND DYNAMIC LINKING
Program Header 5-1
Segment Permissions 5-2
Program Loading 5-3
Dynamic Linking 5-7

Table of Contents

Table of Contents

6 LIBRARIES

System Library 6-1
C Library 6-4
System Data Interfaces 6-5

i Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figures and Tables

Figure 3-1: C Scalar Types 3-2
Figure 3-2: Structure Smaller Than a Word 3-3
Figure 3-3: No Padding 3-4
Figure 3-4: Internal Padding 3-4
Figure 3-5: Internal and Tail Padding 3-5
Figure 3-6: union Allocation 3-5
Figure 3-7: Bit-Field Ranges 3-6
Figure 3-8: Bit Numbering 3-7
Figure 3-9: Left-to-Right Allocation 3-7
Figure 3-10: Boundary Alignment 3-7
Figure 3-11: Storage Unit Sharing 3-8
Figure 3-12: union Allocation 3-8
Figure 3-13: Unnamed Bit-Fields 3-8
Figure 3-14: FORTRAN Scalar Types 3-9
Figure 3-15: Optional FORTRAN Scalar Types 3-10
Figure 3-16: COBOL ASCII Digits 3-12
Figure 3-17: COBOL Sign Representations, Part 1 of 2 3-13
Figure 3-18: COBOL Sign Representations, Part 2 of 2 3-13
Figure 3-19: COBOL Sign Variants 3-15
Figure 3-20: COBOL Binary Alignments 3-16
Figure 3-21: Processor Registers 3-18
Figure 3-22: Stack Organization 3-21
Figure 3-23: Function Prologue 3-23
Figure 3-24: Simple Function Epilogue 3-23
Figure 3-25: Function Epilogue 3-24
Figure 3-26: Virtual Address Configuration 3-30
Figure 3-27: Exceptions and Signals, Part 1 of 2 3-35
Figure 3-28: Exceptions and Signals, Part 2 of 2 3-36
Figure 3-29: Declaration for main 3-39
Figure 3-30: Auxiliary Vector 3-41
Figure 3-31: Auxiliary Vector Types, a type 3-42
Figure 3-32: Position-Independent Function Prologue 3-48
Figure 3-33: Position-Independent Function Epilogue 3-48
Figure 3-34: Absolute Load and Store 3-49
Figure 3-35: Position-Independent Load and Store 3-50
Figure 3-36: Absolute Direct Function Call 3-51
Figure 3-37: Position-Independent Direct Function Call 3-52

Table of Contents iii

Table of Contents

Figure 3-38: Absolute Indirect Function Call
Figure 3-39: Position-Independent Indirect Function Call
Figure 3-40: Dynamic Stack Space Allocation
Figure 3-41: Tdesc Chunk

Figure 3-42: Info Field Alignment

Figure 3-43: Info Structure

Figure 3-44: Tdesc Information Piece

Figure 3-45: Map Protocol 1

Figure 3-46: Map Protocol 2

Figure 3-47: Tdesc Piece Entry

Figure 3-48: _debug_info Structure

Figure 4-1: M88000 Identification, e ident
Figure 4-2: Special Sections

Figure 4-3: Relocatable Fields

Figure 4-4: Relocation Types, Part 1 of 2
Figure 4-5: Relocation Types, Part 2 of 2
Figure 5-1: Segment Permissions

Figure 5-2: Executable File Example

Figure 5-3: Program Header Segments Example
Figure 5-4: Process Image Segments

Figure 5-5: Example Shared Object Segment Addresses
Figure 5-6: Dynamic Array Tags, d_tag
Figure 5-7: GOTP Binding Entry Stack Frame
Figure 5-8: GOTP Binding Entry

Figure 5-9: GOTP Binding Helper

Figure 5-10: PLT Entry

Figure 6-1: libsys Support Routines

Figure 6-2: libsys, Global External Data Symbols
Figure 6-3: <assert.h>

Figure 6-4: <ctype.h>

Figure 6-5: <dirent.h>

Figure 6-6: <errno.h>, Part 1 of 4

Figure 6-7: <errno.h>, Part2 of 4

Figure 6-8: <errno.h>, Part 3 of 4

Figure 6-9: <errno.h>, Part 4 of 4

Figure 6-10: <fcntl.h>, Part1 of 2

Figure 6-11: <fcntl.h>, Part2 of 2

Figure 6-12: <float.h>

Figure 6-13: <fmtmsg.h>

Figure 6-14: <ftw.h>

Figure 6-15: <grp.h>

3-53
3-53
3-54
3-58
3-59
3-60
3-63
3-64
3-64
3-65
3-66
4-1

4-2

4-8
4-9
5-2
5-3
5-4
5-5

5-8

5-12
5-12
5-13
5-16

6-3
6-5
6-6

6-8

6-9

6-10
6-11
6-12
6-13
6-13
6-14
6-15
6-15

iv Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figure 6-16:
Figure 6-17:
Figure 6-18:
Figure 6-19:
Figure 6-20:
Figure 6-21:
Figure 6-22:
Figure 6-23:
Figure 6-24:
Figure 6-25:
Figure 6-26:
Figure 6-27:
Figure 6-28:
Figure 6-29:
Figure 6-30:
Figure 6-31:
Figure 6-32:
Figure 6-33:
Figure 6-34:
Figure 6-35:
Figure 6-36:
Figure 6-37:
Figure 6-38:
Figure 6-39:
Figure 6-40:
Figure 6-41:
Figure 6-42:
Figure 6-43:
Figure 6-44:
Figure 6-45:
Figure 6-46:
Figure 6-47:
Figure 6-48:
Figure 6-49:
Figure 6-50:
Figure 6-51:
Figure 6-52:
Figure 6-53:
Figure 6-54:
Figure 6-55:
Figure 6-56:

<sys/ipc.h>
<langinfo.h>, Part 1 of 2
<langinfo.h>, Part 2 of 2
<limits.h>

<locale.h>
<sys/m88kbcs.h>
<math.h>

<sys/mman.h>

<mon .h>

<sys/mount .h>
<sys/msg.h>
<netconfig.h>, Part 1 of 2
<netconfig.h>, Part 2 of 2
<netdir.h>
<nl_types.h>
<sys/param.h>

<poll.h>
<sys/procset.h>
<pwd.h>

<sys/regset.h>, Part 1 of 2
<sys/regset.h>, Part 2 of 2
<sys/resource.h>
<rpc.h>, Part 1 of 12
<rpc.h>, Part 2 of 12
<rpc.h>, Part 3 of 12
<rpc.h>, Part 4 of 12
<rpc.h>, Part 5 of 12
<rpc.h>, Part 6 of 12
<rpc.h>, Part 7 of 12
<rpc.h>, Part 8 of 12
<rpc.h>, Part 9 of 12
<rpc.h>, Part 10 of 12
<rpc.h>, Part 11 of 12
<rpc.h>, Part 12 of 12
<search.h>

<sys/sem.h>

<setjmp.h>

<sys/shm.h>
<sigaction.h>
<sys/siginfo.h>, Part 1 of 3
<sys/siginfo.h>, Part2 of 3

Table of Contents

Table of Contents

6-16
6-17
6-18
6-19
6-20
6-21
6-21
6-22
6-22
6-23
6-24
6-25
6-26
6-27
6-28
6-28
6-29
6-30
6-31
6-32
6-33
6-34
6-35
6-36
6-37
6-38
6-39
6-40
6-41
6-42
6-43
6-44
6-45
6-46
6-47
6-48
6-49
6-50
6-51
6-52
6-53

Table of Contents

Figure 6-57:
Figure 6-58:
Figure 6-59:
Figure 6-60:
Figure 6-61:
Figure 6-62:
Figure 6-63:
Figure 6-64:
Figure 6-65:
Figure 6-66:
Figure 6-67:
Figure 6-68:
Figure 6-69:
Figure 6-70:
Figure 6-71:
Figure 6-72:
Figure 6-73:
Figure 6-74:
Figure 6-75:
Figure 6-76:
Figure 6-77:
Figure 6-78:
Figure 6-79:
Figure 6-80:
Figure 6-81:
Figure 6-82:
Figure 6-83:
Figure 6-84:
Figure 6-85:
Figure 6-86:
Figure 6-87:
Figure 6-88:
Figure 6-89:
Figure 6-90:
Figure 6-91:
Figure 6-92:
Figure 6-93:
Figure 6-94:
Figure 6-95:
Figure 6-96:
Figure 6-97:

vi

<sys/siginfo.h>, Part 3 of 3
<signal.h>, Part 1 of 2
<signal.h>, Part 2 of 2
<sys/stat.h>, Part 1 of 2
<sys/stat.h>, Part 2 of 2
<sys/statvfs.h>

<stdarg.h>
<stddef.h>
<stdio.h>

<stdlib.h>
<stropts
<stropts
<stropts.
<stropts
<termios
<termios
<termios
<termios.
<termios
<termios

<sys/time.h>, Part 1 of 2
<sys/time.h>, Part 2 of 2
<sys/times.h>

<sys/tiuser.
<sys/tiuser.
<sys/tiuser.
<sys/tiuser.
<sys/tiuser.
<sys/tiuser.
<sys/tiuser.
<sys/tiuser.
<sys/tiuser.

<sys/tiuser

<sys/types.h>
<ucontext.h>

<uio.h>
<ulimit.h>

<unistd.h>, Part 1 of 3
<unistd.h>, Part 2 of 3
<unistd.h>, Part 3 of 3

<utime.h>

.h>,
.h>,
h>,
.h>,
.h>,
.h>,
.h>,
h>,
.h>,
.h>,

6-54

6-55

6-56

6-57

6-58

6-59

6-60

6-61

6-62

6-63

Part 1 of 4 6-64

Part 2 of 4 6-65

Part 3 of 4 6-66

Part 4 of 4 6-67

Part 1 of 6 6-68

Part 2 of 6 6-69

Part 3 of 6 6-70

Part 4 of 6 6-71

Part 5 of 6 6-72

Part 6 of 6 6-73
6-74 -

6-75

6-75

h>, Service Types 6-76

h>, Transport Interface States 6-76

h>, User-level Events 6-77

hx, Error Return Values 6-78

h>, Transport Interface Data Structures, 1 of 2 6-79

h>, Transport Interface Data Structures, 2 of 2 6-80

h>, Structure Types 6-80

h>, Fields of Structures 6-81

h>, Events Bitmasks 6-81

.h>, Flags 6-82

6-82

6-83

6-83

6-84

6-84

6-85

6-86

6-86

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Table of Contents

Figure 6-98: <utsname.h> 6-87
Figure 6-99: <varargs.h> 6-87
Figure 6-100: <wait.h> 6-88

Table of Contents vii

1. INTRODUCTION

~ NOILONAOHLNI '}

1 INTRODUCTION

Motorola 88000 Processor and the System
V ABI 1-1

How to Use the Motorola 88000 Processor

ABI Supplement 12
Evolution of the ABI Specification 1-2

Table of Contents

Motorola 88000 Processor and the System V
ABI

The System V Application Binary Interface, or ABI, defines a system interface
for compiled application programs. Its purpose is to establish a standard binary
interface for application programs on systems that implement UNIX System V
Release 4.0 or some other operating system that complies with the System V
Interface Definition, Issue 3.

This document is a supplement to the generic System V ABJ, and it contains
information specific to System V implementations built on the M88000 processor
architecture. Together, these two specifications, the generic System V ABI and
the System V ABI Motorola 88000 Processor Supplement, constitute a complete
System V Application Binary Interface specification for systems that implement the
architecture of the M88000 processor.

INTRODUCTION 1-1

How to Use the Motorola 88000 Processor ABI
Supplement

This document is a supplement to the generic System V ABI and contains infor-
mation referenced in the generic specification that may differ when System V is
implemented on different processors. Therefore, the generic ABI is the prime
reference document, and this supplement is provided to fill gaps in that
specification.

As with the System V ABI, this specification references other publicly-available
reference documents, especially the MC88100 User’s Manual. All the informa-
tion referenced by this supplement should be considered part of this
specification, and just as binding as the requirements and data explicitly included
here.

Evolution of the ABI Specification

The System V Application Binary Interface will evolve over time to address
new technology and market requirements, and will be reissued at intervals of
approximately three years. Each new edition of the specification is likely to con-
tain extensions and additions that will increase the potential capabilities of appli-
cations that are written to conform to the ABI

As with the System V Interface Definition, the ABI will implement Level 1 and
Level 2 support for its constituent parts. Level 1 support indicates that a portion
of the specification will continue to be supported indefinitely, while Level 2 sup-
port means that a portion of the specification may be withdrawn or altered after
the next edition of the ABI is made available. That is, a portion of the
specification moved to Level 2 support in an edition of the ABI specification will
remain in effect at least until the following edition of the specification is pub-
lished.

These Level 1 and Level 2 classifications and qualifications apply to this Supple-
ment, as well as to the generic specification. All components of the ABI and of
this supplement have Level 1 support unless they are explicitly labeled as Level

\

1-2 Motorola 88000 PROCESSOR ABI SUPPLEMENT

2. SOFTWARE INSTALLATION

NOLLVTIVLSNI 3HVYMLHO0S ¢

2 SOFTWARE INSTALLATION

Software Distribution Formats
Physical Distribution Media

Table of Contents

2-1
2-1

Software Distribution Formats

Physical Distribution Media

Approved media for physical distribution of ABI-conforming software are listed
below. Inclusion of a particular medium on this list does not require an ABI-
conforming system to accept that medium. For example, a conforming system
may install all software through its network connection and accept none of the
listed media.

W 5.25-inch floppy disk: 96 TPI (80 tracks/side) doubled-sided, 15
sectors/track, 512 bytes/sector, total format capacity of 1.2 megabytes per
disk.

B 3.5-inch floppy disk: 135 TPI (80 tracks/side) double-sided, 18 sectors/track,
512 bytes/sector, total format capacity of 1.44 megabytes per disk.

M 1/2-inch reel-to-reel tape: conforms to ANSI-standard reel-to-reel tape stan-
dard which consists of 9 tracks, 1600 BPI, no label.

B 150 MB quarter-inch cartridge tape in QIC-150 format.

The QIC-150 cartridge tape data format is described in Serial Recorded Magnetic
Tape Cartridge for Information Interchange, Eighteen Track 0.250 in. (6.30 mm) 10,000
bpi (394 bpmm) Streaming Mode Group Code Recording, Revision 1, May 12, 1987.
This document is available from the Quarter-Inch Committee (QIC) through Free-
man Associates, 311 East Carillo St., Santa Barbara, CA 93101.

SOFTWARE INSTALLATION 21

3. LOW-LEVEL SYSTEM INFORMATION

NOILYINHOSLNI W3LSAS 13AIT-MOT €

3 LOW-LEVEL SYSTEM
INFORMATION

Machine Interface 3-1
Processor Architecture 3-1
Data Representation 3-1
W Byte Ordering 3-1
B C Fundamental Types 3-2
B FORTRAN Data Types 3-9
B COBOL Data Types 3-11
Function Calling Sequence 3-18
Registers and the Stack Frame 3-18
Argument Transmission 3-24
B Argument Transmission for C 3-25
B Argument Transmission for FORTRAN 3-25
B Argument Transmission for COBOL 3-26
Result Transmission 3-26
B Result Transmission for C 3-27
W Result Transmission for FORTRAN 3-27
B Result Transmission for COBOL 3-28
Operating System Interface 3-29
Virtual Address Space 3-29
W Page Size 3-29
B Virtual Address Assignments 3-29
B Managing the Process Stack 3-31
B Coding Guidelines 3-31
Processor Execution Modes 3-32
Exception Interface 3-32
Process Initialization 3-38
B Registers 3-39
B Process Stack 3-41

Table of Contents i

Table of Contents

Coding Examples 3-44
Code Model Overview 3-45
Position-Independent Function Prologue and Epilogue 3-47
Data Objects 3-49
Function Calls 3-50
Variable Argument List 3-54
Allocating Stack Space Dynamically 3-54
Text Description Information 3-57
Tdesc Information 3-57
Info Protocol 3-59
Map Protocol 3-63
Debug Info 3-66

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Machine Interface

Processor Architecture

The MC88100 User’s Manual defines the processor architecture. Programs
intended to execute directly on the processor use the instruction set, instruction
encodings, and instruction semantics of the architecture, with the following
exceptions:

B A program shall use only the instructions defined by the architecture.

B A program shall execute neither an xmem nor an 1da instruction with an
immediate 1MM16 field.

B A program shall not rely on the occurrence of a trap upon execution of a div
or divu instruction with a zero divisor.

To be ABI-conforming, the processor must implement the architecture’s instruc-
tions, perform the specified operations, and produce the specified results. The
ABI neither places performance constraints on systems nor specifies what instruc-
tions must be implemented in hardware. A software emulation of the architec-
ture could conform to the ABIL.

Some processors might support the M88000 architecture as a subset, providing
additional instructions or capabilities. Programs that use those capabilities expli-
citly do not conform to the M88000 ABI. Executing those programs on machines
without the additional capabilities gives undefined behavior.

Data Representation

Byte Ordering

ABI compliant programs shall use Big-Endian byte order in all interfaces
described in this document. ABI compliant programs can assume that the Proces-
sor Status Register (PSR) byte order (BO) bit specifies Big-Endian byte order.

LOW-LEVEL SYSTEM INFORMATION 3-1

Machine Interface

C Fundamental Types

Figure 3-1 shows the correspondence between ANSI C’s scalar types and the
processor’s.

Figure 3-1: C Scalar Types

Alignment
Type C sizeof (bytes) MC88100
zi’lgzed char 1 1 signed byte
unsigned char 1 1 unsigned byte
zfl‘;;g o short 2 2 | signed halfword
unsigned short 2 2 unsigned halfword
Integral int
signed int
long 4 4 signed word
signed long
enum
unsigned int .
unsigned long 4 4 unsigned word
Pointer Z:Z_g?ﬁ j*) 0 4 4 unsigned word
float 4 4 single-precision
Floating-point | double 8 8 double-precision
long double 8 8 double-precision

A null pointer (for all types) has the value zero.

3-2 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Machine Interface

type for this version of the ABI. This relationship is Level 2: future ver-
sions of the Motorola 88000 Processor ABI Supplement may provide a dif-
ferent long double type.

W The long double type has the same size and alignment as the double

Aggregates and Unions

An array assumes the alignment of its elements’ type. The size of any object,
including arrays, structures, and unions, always is a multiple of the object’s
alignment. Structure and union objects may, therefore, require padding to meet
size and alignment constraints.

B The alignment of a structure or a union is the maximum of the alignment of
its elements.

B Each member is assigned to the lowest available offset with the appropriate
alignment. This may require internal padding, depending on the previous
member.

B A structure’s size is increased, if necessary, to make it a multiple of the
structure’s alignment. This may require fail padding, depending on the last
member.

In the following examples, members’ byte offsets appear in the upper left
corners.

Figure 3-2: Structure Smaller Than a Word

struct { Byte aligned, sizeof is 1
0

char c; c

};

LOW-LEVEL SYSTEM INFORMATION 3-3

Machine Interface

Figure 3-3: No Padding

struct { Word aligned, sizeof is 8
. 0 T 2
char c; c d s
char d;
short s; ‘ n
long n;

Figure 3-4: Internal Padding

struct { Halfword aligned, sizeof is 4
. 5 T
char c; c pa d
short s;

2
}: s

3-4 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Machine Interface

Figure 3-5: Internal and Tail Padding

struct { Double aligned, sizeof is 24
. 0 1
char c; c pad
double d;
short s; * pad
}i 5
d
12
d
16 18
s pad
20
pad

Figure 3-6: union Allocation

union { Word aligned, sizeof is 4
- 0 1

char C; c pa d

short s;

int i ’ s ’ pad
}i 5

J
Bit-Fields

C struct and union definitions may have bit-fields, defining integral objects with
a specified number of bits.

LOW-LEVEL SYSTEM INFORMATION 3-5

Machine Interface

Figure 3-7: Bit-Field Ranges

Bit-field Type Width w Range
signed char 2% 102w 11
char 1to8 0to2*-1
unsigned char 0to2¥-1
signed short 2910 2%"11
short 1to 16 0to 2*-1
unsigned short 0to2¥-1
signed int 2%l o 2@l
int 0to2%-1
enum 1to32 0to2%¥-1
unsigned int 0to2¥-1
signed long 2% 1o 2%l
long 1to 32 0to2*-1
unsigned long 0to2*-1

“Plain” bit-fields always have non-negative values. Although they may have
type char, short, int, or long (which can have negative values), these bit-fields
are extracted into a word with zero fill. Bit-fields obey the same size and align-
ment rules as other structure and union members, with the following additions.

Bit-fields are allocated from left to right (most to least significant).

A Dbit-field must entirely reside in a storage unit appropriate for its declared
type. Thus a bit-field never crosses its unit boundary.

Bit-fields may share a storage unit with other struct /union members,
including members that are not bit-fields. Of course, struct members
occupy different parts of the storage unit.

Unnamed bit-fields” types do not affect the alignment of a structure or union,
although individual bit-fields member offsets obey the alignment constraints.

The following examples show struct and union members’ byte offsets in the
upper left corners; bit numbers appear in the lower corners.

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Machine Interface

Figure 3-8: Bit Numbering

0 2 3
0x01020304 o1 | 02 03 04
31 23 15 7 0
Figure 3-9: Left-to-Right Allocation

struct { Word aligned, sizeof is 4
. e o
}nt J:3s | k m pad
int k:6; 31 2 20 13 0
int m:7;

};

Figure 3-10: Boundary Alignment
struct { Word aligned, sizeof is 12
« Q. 0 3
s:hort s :9; s i pad c
int j:9; 31 22 13 7 0
char c; ot pad u pad
short t: 9; 31 22 15 6 0
8 9

short u:9; d pad
char d; 2 =

LOW-LEVEL SYSTEM INFORMATION 3-7

Machine Interface

Figure 3-11: Storage Unit Sharing

struct { Halfword aligned, sizeof is 2
- 0 1
char (o} c s
short s:8; 15 7 0

Figure 3-12: union Allocation

union { Halfword aligned, sizeof is 2
. 0 1
char c; c pad
short s:8; 15 7
}i N ad
15 7 p 0

Figure 3-13: Unnamed Bit-Fields

struct { Byte aligned, sizeof is 9
char c; 0 1 .n
C <V
int :0; 31 23
4 5 6
char d; d pad :9 pad
Short . 9 ; 31 23 15 6 0
3
char e; e
31

char :0;
}:

3-8 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Machine Interface

FORTRAN Data Types

Figure 3-14 shows the correspondence between FORTRAN's scalar types and the
processor’s.

Figure 3-14: FORTRAN Scalar Types

Alignment
Type FORTRAN Size (bytes) MC88100
Character CHARACTER* (1) n 1 byte sequence
Inteeral LOGICAL 4 4 word
& INTEGER 4 4 signed word
REAL 4 4 single-precision
Floati . DOUBLE PRECISION 8 8 double-precision
oating-point - 3
COMPLEX 3 4 paired single-
precision

The 1oGICAL data type has value .FALSE. if, and only if, it is binary zero. Other-
wise, the value is . TRUE..

Some FORTRAN programs that conform to ANSI Standard X3.9-1978 are not sup-
ported within this standard. Programs that force the compiler to produce
misaligned storage allocation of double-precision real (typically using the coMMon
and/or EQUIVALENCE statements) are not supported.

Support of these programs would degrade the performance of double-
NOTE | precision arithmetic in all programs. It is suggested that conforming com-
pilers inform the user of such a misalignment.

LOW-LEVEL SYSTEM INFORMATION 39

Machine Interface

Figure 3-15 shows additional, optional FORTRAN scalar types and their imple-
mentation on the MC88100.

Figure 3-15: Optional FORTRAN Scalar Types

Alignment
Type FORTRAN Size (bytes) MC88100
LOGICAL*1 1 1 byte
LOGICAL*2 2 2 halfword
LOGICAL*4 4 4 word
Integral ;
INTEGER*1 1 1 signed byte
INTEGER*2 2 2 signed halfword
INTEGER*4 4 4 signed word
REAL*4 4 4 single-precision
REAL*8 8 8 double-precision
Floating-point | coMPLEX*8 8 4 pairgq single-
precision
COMPLEX*16 16 8 pairc?q double-
DOUBLE COMPLEX precision

An array uses the same alignment as its elements.

The covprEx and compLEx*8 data types are 4 rather than 8 byte aligned as
NOTE | they are often equivalenced to two ReAL data types.

3-10 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Machine Interface

COBOL Data Types

COBOL data types are defined not only to promote interlanguage operability
NOTE | but also to promote exchange of data with existing applications.

COBOL contains five categories of data items grouped into three classes. The
alphabetic class contains the alphabetic category. The numeric class contains the
numeric category. The alphanumeric class contains the numeric edited,
alphanumeric edited, and alphanumeric categories.

B The alignment of the group is the maximum of the alignments of its ele-
ments.

B The elements of the group, in the order in which they appear in the source
language, are assigned increasing positions, relative to the beginning of the
group, in the structure representation. Each elementary item is assigned to
the lowest available offset with the appropriate alignment. Note that this
may require internal padding.

B A group’s size is increased the minimum amount necessary (possibly zero)
to make it an integral multiple of the group’s alignment only if the group has
an ocCurs clause. Note that this may require tail padding (only when there is
an OCCURS clause).

Level 01 and 77 items alignment may use more restrictive alignment.

COBOL Standard Nonnumeric Data Types

All data types that belong to the alphabetic and alphanumeric classes are
represented as a sequence of 8-bit ASCII characters, one character per byte, with
byte alignment. The first, or leftmost, character at the COBOL source level is the
lowest addressed byte of the representation.

COBOL Standard Numeric Data Types

The data types of the numeric class are, for the purposes of this standard, dif-
ferentiated primarily by the usaGE and s16N clauses of their COBOL source
descriptions. The numeric data types described in the ANSI standard are
DISPLAY, PACKED-DECIMAL, BINARY, and COMPUTATIONAL. COMPUTATIONAL shall use
the same format as BINARY.

LOW-LEVEL SYSTEM INFORMATION 3-11

Machine Interface

The implied decimal point in COBOL does not occupy a storage location.
Numeric items described in terms of pseudo-PICTURE character strings with no
implied decimal point represent all such numeric items without regard to the
implied decimal point.

COBOL Standard Numeric Data Types — pispray A numeric data item described,
explicitly or implicitly, as USAGE IS DISPLAY is represented as one ASCII decimal
digit character for each digit position (i.e., each 9) in the PICTURE for the item,
aligned on a byte boundary. The high-order digit shall be the lowest addressed
byte of the representation. The representation of ASCII decimal digits is:

Figure 3-16: COBOL ASCII Digits

Digit Decimal Hexadecimal

0 48 30
1 49 31
2 50 32
3 51 33
4 52 34
5 53 35
6 54 36
7 55 37
8 56 38
9 57 39

Unsigned data items shail contain one byte for each digit position.

Separate sign representations (SIGN IS LEADING/TRAILING SEPARATE) shall be the
ASCII plus sign (+) for nonnegative numeric values and the ASCII minus sign (-)
for negative numeric values. The representation of the data item shall contain
one byte for each digit position plus one byte for the sign character. The sign
character shall be the lowest (LEADING) or highest (TRAILING) addressed byte of
the representation.

3-12 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Machine Interface

Combined sign representations (SIGN IS LEADING/TRAILING) shall combine the
representation of the high-order (LEADING, most significant) or low-order (TRAIL-
ING, least significant) digit position with the operational sign for the item. A con-
forming implementation for COBOL shall be able to consume data using both
combined sign representation variants shown in the following tables and shall
document which variant(s) is (are) produced by that implementation.

Figure 3-17: COBOL Sign Representations, Part 1 of 2

Nonnegative Negative
Digit Decimal Hex ASCII Decimal Hex ASCH

0 123 7B { 125 7D }

1 65 41 A 74 4A]

2 66 42 B 75 4B K
3 67 43 C 76 4C L
4 68 44 D 77 4D M
5 69 45 E 78 4E N
6 70 46 F 79 4F O
7 71 47 G 80 50 P
8 72 48 H 81 51 Q
9 73 49 I 82 52 R

These combined sign representations allow the translation of numeric values
NOTE | with combined signs from/to EBCDIC files without knowledge of the location
of numeric fields within a record area. While such a capability lies outside
| ANSI X3.23-1985, which specifies that siGN 1s SEPARATE is required when
copE SET is specified for a file, current practice dictates that the exchange of
combined sign data is necessary.

LOW-LEVEL SYSTEM INFORMATION 3-13

I Machine Interface

Figure 3-18: COBOL Sign Representations, Part 2 of 2

Nonnegative Negative
Digit Decimal Hex ASCII Decimal Hex ASCII
0 48 30 0 112 70 P
1 49 31 1 113 71 q
2 50 32 2 114 72 r
3 51 33 3 115 73 s
4 52 34 4 116 74 t
5 53 35 5 117 75 u
| 6 54 36 6 118 76 v
3 7 55 37 7 119 77 w
8 56 38 8 120 78 X
| 9 57 39 9 121 79 y

The ABI anticipates that data fields using both representations may exist
NOTE | within a single record. Interoperability is promoted by the ability to consume
both representations.

| 3-14 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Machine Interface

COBOL Standard Numeric Data Types — paCKED-DECIMAL A numeric data item
described explicitly as USAGE IS PACKED-DECIMAL is represented as one 4-bit
binary coded decimal (BCD) digit for each digit position (i.e., each 9) in the p1C-
TURE for the item. Two BCD digits are placed in each byte, with the lowest order
digit in the most significant four bits and the operational sign representation in
the least significant four bits of the highest addressed byte. The high-order digit
shall be contained in the lowest addressed byte of the representation; if an even
number of digits is specified in the PICTURE for the item, the high-order digit shall
be in the least significant four bits and the most significant four bits shall be zero.
The item is aligned on a byte boundary. The digit representations are as follows:

Digit Decimal Hexadecimal

O OO WNNRPLO
O WO UT s WNR-RO
OO NANUT R W~ O

A conforming implementation for COBOL shall be able to consume data using
both sign representation variants shown below and shall document which
variant(s) is (are) produced by that implementation.

Figure 3-19: COBOL Sign Variants

Nonnegative Negative Unsigned

Variant A oxC 0xD OxF
Variant B OxF 0xD OxF

LOW-LEVEL SYSTEM INFORMATION 3-15

Machine Interface

both representations.

|

The ABI anticipates that data fields using both representations may exist
NOTE | within a single record. Interoperability is promoted by the ability to consume

COBOL Standard Numeric Data Types — BinARY A numeric data item described
explicitly as USAGE IS BINARY is represented as a 16-, 32-, or 64-bit binary integer
depending on the number of digit positions (i.e., 9’s) in the PICTURE for the item.

If the item is signed (the PICTURE character string contains an S) the binary
representation is a 2’s complement binary integer. The sign bit shall be the most
significant bit of the lowest addressed byte of the binary integer. The remaining
seven bits of the lowest addressed byte shall contain the most significant portion
of the binary integer and the highest addressed byte shall contain the least

significant portion of the binary integer.

If the item has no sign, the binary representation is an unsigned binary integer.
The lowest addressed byte shall contain the most significant portion of the binary
integer and the highest addressed byte shall contain the least significant portion

of the binary integer.

As permitted by Sections 5.13.4 (9) and 5.14.4 (3) of ANSI X3.23-1985, the align-
ment and size of BINARY data items shall be as specified in the following table:

Figure 3-20: COBOL BinaRY Alignments

Digit
Positions Size Alignment
1-4 16-bit 2 byte
5-9 32-bit 4 byte
10-18 64-bit 4 byte

3-16 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Machine Interface

Binary representations of numbers that cannot be specified in the number of
decimal digits coded in the PICTURE for the item are nonstandard.

coBOL Nonstandard Numeric Data Types

Floating-point data types are not part of ANSI Standard COBOL and, therefore,
are an optional part of this standard. A conforming implementation of COBOL
shall adhere to ANSI/IEEE Std 754-1985 when providing these data types.

LOW-LEVEL SYSTEM INFORMATION 3-17

Function Calling Sequence

This section discusses the standard function calling sequence, including stack
frame layout, register usage, parameter passing, etc. C, FORTRAN, and COBOL
programs and their libraries use this calling sequence. The system libraries
described in Chapter 6 require this calling sequence.

C programs follow the conventions here. For specific information on the
NOTE | implementation of C, see “Coding Examples” in this chapter.

Registers and the Stack Frame

The MC88100 provides 32 general purpose registers, each 32 bits wide. Brief
register descriptions appear in Figure 3-21.

Figure 3-21: Processor Registers

Register Name Usage

#r0 Always equal to zero

#rl Holds the subroutine return pointer

#r2 to #r9 Temporary register set used for parameter passing

#r10 to #r13 Temporary registers used for language-specific purposes

#rl14 to #r25
#r26 and #r27
#r28 and #r29

Preserved registers
Temporary registers
Reserved for ABI future use

#r30 Preserved register
#r31 Contains the stack pointer
3-18 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Function Calling Sequence

Some registers have assigned roles.

#r0
#ril

#r2 through #r9

#r10 through #r13

#r14 through #r25

#r26 and #r27

#r28 and #r29

#r30

Register #r0 contains the constant zero.

Register #r1 contains the return pointer generated by bsr
or jsr instructions. Register #r1 may be destroyed across
subroutine calls.

This set of registers may be modified across procedure
invocations and shall therefore be presumed by the calling
procedure to be destroyed. These temporary registers are
used for passing parameters to the called procedure.

Registers #r10 through #r13 are also used as temporary
registers. These registers may be destroyed across subrou-
tine calls. Registers #r11, #r12, and #r13 have been allo-
cated for some specific language requirements. Register
#rll is used to pass the environment to a dummy pro-
cedure in FORTRAN. Register #r11 is also used as a
scratch register by the dynamic linking mechanism. See
Chapter 5 for details. Register #r12 is used by a calling
procedure to pass an address to a called procedure when
the calling procedure expects a result to be stored in an
area of memory. The called procedure shall return its
result in this area pointed to by the value in #r12, while
the size in bytes is passed in #r13, if required by the

language.
This set of registers shall be saved by the called procedure.

They are used when values must be preserved for the
duration of the current routine.

This set of registers may be modified across procedure
invocations and shall therefore be presumed by the calling
procedure to be destroyed.

A conforming program shall neither change nor rely on
the contents of these registers.

Register #r30 is a preserved register and shall be saved by
the called procedure.

LOW-LEVEL SYSTEM INFORMATION 3-19

Function Calling Sequence

#r31 The stack pointer (stored in #r31) shall maintain 16-byte
alignment. It shall point to the last word allocated on the
stack, and grow towards low addresses. If required, it
shall be decremented by the called procedure and incre-
mented prior to returning.

Registers #r14 through #r25 and #r30, which are visible to both a calling and a
called function, “belong’ to the calling function. In other words, a called func-
tion shall save these registers’ values before it changes them, restoring their
values before it returns. Registers #r1 through #r13, #r26, and #r27 “belong”
to the called function. If a calling function wants to preserve such a register
value across a function call, it must save the value in its local stack frame.

Signals can interrupt processes [see signal(BA_OS)]. Functions called during
signal handling have no unusual restrictions on their use of registers. A compiler
may generate code that causes programs to use any register without the danger
of signal handlers inadvertently changing their values.

In addition to the registers, each function may have a frame on the run-time
stack. This stack grows downward from high addresses. Figure 3-22 shows the
stack frame organization.

3-20 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Function Calling Sequence

Figure 3-22: Stack Organization

High
Address

Argument Area

Sp’ —>
(SP before call)
Temporary Space/ direction of
Local Variable Space | stack growth
Argument Area
SP —>
(SP after call)
Low
Address

SP denotes the stack pointer of the called subroutine at entry while SP’ denotes
the stack pointer of the calling subroutine at entry.

Several key points about the stack frame deserve mention.

LOW-LEVEL SYSTEM INFORMATION 3-21

Function Calling Sequence

B The stack pointer shall maintain 16-byte alignment.

B The stack pointer shall point to the last word allocated on the stack and shall
grow towards low addresses.

B The stack pointer shall be decremented by the called procedure on entry, if
required, and incremented prior to return.

B Other areas depend on the compiler and the code being compiled. The stan-
dard calling sequence does not define a maximum stack frame size, nor does
it restrict how a language system uses the “local variable space’ of the stan-
dard stack frame.

B The argument area shall be allocated by the caller and shall be at least 32
bytes. Its contents are not preserved across calls.

B The presence of the temporary space/local variable space depends on the
nature of the function.

Across function boundaries, the function prologue may consist of several opera-
tions that depend on the nature of the function. Stack space may be allocated if
the function:

B Uses the preserved registers and therefore must save and restore them

M Calls another function and therefore must save #r1, allocate the argument
area, and possibly save any parameters.

B Needs local variables or temporary space.
The standard function prologue performs any or all of the following tasks, as
needed:

B Allocates stack space

B Saves #rl

M Saves the address of the memory return value passed in #r12

B Saves parameters passed in registers #r2-#r9

M Saves registers #r14 through #r25

3-22 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Function Calling Sequence

Figure 3-23 illustrates an example of the function prologue allocating 88 bytes for
local storage, and saving registers #r24 and #r25. Eighty bytes are for local
storage, and an additional 8 bytes are used for saving registers #r24 and #r25.

Figure 3-23: Function Prologue

fcn:
subu #r31, #r31, 96
st.d #r24, #r31, 88

The standard function epilogue performs the following tasks, as needed:
B Either loads the return value or copies the result to the area pointed to by the
pointer received in #r12
M Restores registers #rl14 through #r25 and #r30

B Deallocates local stack space

If the function returns no value, or if the return register(s) already contain(s) the
desired value, and no local stack was allocated, the epilogue in Figure 3-24 would
suffice.

Figure 3-24: Simple Function Epilogue

fcnend:
jmp #rl

For a function that uses register #r25, is not a leaf function (i.e., may call another
function and therefore may modify #r1), and requires a total of 80 bytes of local
stack space, the following epilogue might be used:

LOW-LEVEL SYSTEM INFORMATION 3-23

Function Calling Sequence

Figure 3-25: Function Epilogue

fcnend:
1d #r25, #r31,72
1d #rl,#r31,76
addu #r31, #r31, 80
Jmp #rl

Argument Transmission

There is an offset in the argument area corresponding to each argument. The cal-
ling procedure shall use the offset as if all of the parameters were passed in
memory with the first parameter at offset zero, and subsequent parameters
passed consecutively. The offset is always rounded up to a multiple of 4 bytes.
For arguments with greater than 4-byte alignment, the offset is always rounded
up to a multiple of that alignment.

Arguments shall be at least word-aligned objects, and shall always be an integral
number of words long. The first 8 words of the argument list will be passed in
registers #r2 through #r9, and not in the argument area. The first word of the
argument list is passed in #r2, the second in #r3, etc., allocating registers con-
secutively until the eighth word is passed in #r9. The remainder of the argu-
ment list will be passed in memory, starting at an offset of 8 words from the start
of the argument area.

The following subsections detail the mapping from the requirements of the
specific language to the rules listed here, and also specify special cases that form
exceptions to the rules stated here.

3-24 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Function Calling Sequence

Argument Transmission for C

For the language C, signed short and characters are sign-extended to 32 bits
before being passed. Unsigned short and characters are zero-extended to 32 bits
before being passed. Any pointer, floating-point, integer, 4-byte aligned 4-byte
structure, or 4-byte aligned 4-byte union argument whose offset is less than 32, is
passed in the register numbered (or, for double-precision, the register pair begin-
ning with the register numbered) 2+(offset /4).

All other arguments are passed at offset bytes from the beginning of the argument
area.

Argument Transmission for FORTRAN

All actual arguments are passed by reference, i.e., a pointer to the argument is
passed. Values transmitted in the argument area whose offset is less than 32 are
passed in registers.

A procedure argument is represented by a 4-byte aligned instance of the follow-
ing structure:

struct proc {int entry; int envir;}

where entry is the address of the first instruction of the procedure, and envir is
the “environment” for the procedure.

For an actual argument that is a procedure, the address of a proc structure
instance is passed. The envir member of this structure is unspecified; a value of
zero is recommended.

When a dummy procedure is invoked, control is transferred to the address in the
entry member of the associated proc structure instance. At time of transfer,
register #r11 contains the content of the envir member of the structure instance.
Otherwise, the rules for dummy procedure invocation are the same as for exter-
nal procedure invocation.

LOW-LEVEL SYSTEM INFORMATION 3-25

Function Calling Sequence

The representation of a proceduré includes an environment in order to pro-
NOTE | vide interoperability with languages that have internal procedures.

The FORTRAN character data type requires the passing of length as well as data
address. In order to keep the other fundamental data types in compliance with
the general rules outlined in the ““Argument Transmission”” section and to pro-
mote interoperability with other languages, FORTRAN establishes the length
information for each string after passing all other arguments (including the char-
acter data addresses). The length in bytes of each character argument is passed
as a 32-bit quantity at a position in the argument area based on the following for-
mula:

given: argl,arg2, ..., argC, ..., argN as the actual argument list

where: argC is of type CHARACTER; there are N actual arguments total,
and argC is the Cth argument

then: the length of argC will be passed with offset 4N+4(C-1).

If argC is the last actual argument of type CHARACTER, the argu-
ment area shall be at least 4N+4C bytes in size. If argX is the Xth
actual argument and is not of type CHARACTER, the value at offset
4N+4(X-1) is undefined.

Argument Transmission for COBOL

The argument transmission for all data types is done by passing the address of
the argument according to the convention outlined in the general rules of the
”Argument Transmission” section.

Result Transmission

Results may be returned in registers or in memory. Registers #r2 through #r9
are available to return results. When results are returned in memory, the calling
procedure allocates such memory and passes a pointer to it in #r12. The called
procedure will then perform the copy to this area. If the language requires a size
for this area, then the size in bytes shall be passed in #r13.

3-26 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Function Calling Sequence

Other data types are returned by copying the return value to the memory area
pointed to by the address contained in #r12 at subroutine entry.

The following subsections detail the mapping from the requirements of each
specific language to the rules specified in this section, and also specify special
cases that form exceptions to the rules stated here.

Result Transmission for C

In the language C, single-precision floating-point, pointers, 4-byte aligned 4-byte
structures, and 4-byte aligned 4-byte unions are returned in #r2. Signed integers
and characters are sign-extended to 32 bits and returned in #r2. Unsigned
integers and characters are zero-extended to 32 bits and returned in #r2.
Double-precision floating-point values are returned in the register pair #r2 and
#r3. Other types are returned via memory as described in the general rules of
“Result Transmission.”

A function declared to return a float returns a single-precision value.

Result Transmission for FORTRAN

FORTRAN follows the general rules outlined in ““Result Transmission’”” with the
following additions.

INTEGER variant data types of size less than 4 bytes are sign-extended to 4 bytes
before being returned. LOGICAL variant data types of size less than 4 bytes are
extended to 4 bytes before being returned.

One word results are returned in register #r2. DOUBLE PRECISION and REAL*8
results are returned in registers #r2 and #r3.

COMPLEX, COMPLEX*8, COMPLEX*16, and DOUBLE COMPLEX functions return their
result by placing the data in memory at the location addressed by register #r12
(on entry to the function). The value in register #r13 (on entry to the function) is
unused.

CHARACTER functions return their result by placing the data in memory at the loca-
tion addressed by register #r12 (on entry to the function) padded or truncated to
the length in bytes of the data area given by register #r13 (on entry to the func-
tion).

LOW-LEVEL SYSTEM INFORMATION 3-27

Function Calling Sequence

Calls to fixed-sized CHARACTER functions, as well as those to CHARACTER* (*) func-
tions, pass the length in #r13.

This method does not interoperate with C structure returning functions
NOTE | except when the size of the structure is known to equal the value of #r13.

Result Transmission for COBOL

There are no value-returning functions in COBOL.

3-28 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Operating System Interface

Virtual Address Space

Processes execute in a 32-bit virtual address space. Memory management
hardware translates virtual addresses to physical addresses, hiding physical
addressing and letting a process run anywhere in the system’s real memory.
Processes typically begin with three logical segments, commonly called text, data,
and stack. As Chapter 5 describes, dynamic linking creates more segments dur-
ing execution, and a process can create additional segments for itself with system
services.

Page Size

Memory is organized by pages, which are the system’s smallest units of memory
allocation. Page size can vary from one system to another. The allowable page
sizes are 4K, 8K, 16K, 32K, or 64K. Processes can call sysconf (BA_OS) to deter-
mine the system’s current page size.

Virtual Address Assignments

Conceptually, processes have the full 32-bit address space available. In practice,
however, several factors limit the size of a process.

B The system reserves a configuration-dependent amount of virtual space.
B A tunable configuration parameter limits process size.

B A process whose size exceeds the system'’s available, combined physical
memory and secondary storage cannot run. Although some physical
memory must be present to run any process, the system can execute
processes that are bigger than physical memory, paging them to and from
secondary storage. Nonetheless, both physical memory and secondary
storage are shared resources. System load, which can vary from one pro-
gram execution to the next, affects the available amounts.

LOW-LEVEL SYSTEM INFORMATION 3-29

Operating System Interface

Figure 3-26: Virtual Address Configuration

OXEEFEEFFE Reserved End of memory

Stack and
dynamic segments

Loadable segments

Beginning of memory

Loadable segments
Processes’ loadable segments may begin at 0. The exact
addresses depend on the executable file format (see Chapters 4
and 5).

Stack and dynamic segments
A process’s stack and dynamic segments reside below the
reserved area. Processes can control the amount of virtual
memory allotted for stack space, as described below.

Reserved A reserved area resides at the top of virtual space.

Although application programs may begin at virtual address 0, they conven-
NOTE | tionally begin above 0x10000 (64K), leaving the initial 64K with an invalid
address mapping. Processes thai reference this invalid memory (for exam-
| ple, by dereferencing a null pointer) generate an access exception trap, as
described in the “Exception Interface” section of this chapter.

As the figure shows, the system reserves the high end of virtual space, with a
process’s stack and dynamic segments below that. Although the exact boundary
between the reserved area and a process depends on the system’s configuration,
the reserved area shall not consume more than 512 MB from the virtual address
space. Thus the user virtual address range has a minimum upper bound of
Oxdff££fff. Individual systems may reserve less space, increasing processes’
virtual memory range. More information follows in the section “Managing the
Process Stack.”

3-30 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Operating System Interface

Although applications may control their memory assignments, the typical
arrangement follows the diagram above. Loadable segments reside at low
addresses; dynamic segments occupy the higher range. When applications let
the system choose addresses for dynamic segments (including shared object seg-
ments), it chooses high addresses. This leaves the “middle” of the address spec-
trum available for dynamic memory allocation with facilities such as
malloc(BA_OS).

Managing the Process Stack

Section “‘Process Initialization” in this chapter describes the initial stack contents.
Stack addresses can change from one system to the next—even from one process
execution to the next on a single system. Processes, therefore, should not depend
on finding their stack at a particular virtual address. The stack segment has read
and write permissions.

A tunable configuration parameter controls the system maximum stack size. A
process also can use setrlimit (BA_OS), to set its own maximum stack size, up
to the system limit. Changes in the stack virtual address and size affect the vir-
tual addresses for dynamic segments. Consequently, processes should not
depend on finding their dynamic segments at particular virtual addresses. Facili-
ties exist to let the system choose dynamic segment virtual addresses.

Coding Guidelines

Operating system facilities, such as mmap(KE_OS), allow a process to establish
address mappings in two ways. First, the program can let the system choose an
address. Second, the program can force the system to use an address the pro-
gram supplies. This second alternative can cause application portability prob-
lems, because the requested address might not always be available. Differences
in virtual address space can be particularly troublesome between different archi-
tectures, but the same problems can arise within a single architecture.

Processes’ address spaces typically have three segment areas that can change size
from one execution to the next: the stack [through setrlimit (BA_OS)], the data
segment [through malloc(BA_OS)], and the dynamic segment area [through
mmap (KE_OS)]. Consequently, an address that is available in one process execu-
tion might not be available in the next. A program that used mmap(KE_OS) to
request a mapping at a specific address thus could appear to work in some
environments and fail in others. For this reason, programs that wish to establish
a mapping in their address space should let the system choose the address.

LOW-LEVEL SYSTEM INFORMATION 3-31

Operating System Interface

Despite these warnings about requesting specific addresses, the facility can be
used properly. For example, a multiprocess application might map several files
into the address space of each process and build relative pointers among the files’
data. This could be done by having each process ask for a certain amount of
storage at an address chosen by the system. After each process receives its own,
private address from the system, it would map the desired files into memory, at
specific addresses within the original area. This collection of mappings could be
at different addresses in each process but their relative positions would be fixed.
Without the ability to ask for specific addresses, the application could not build
shared data structures, because the relative positions for files in each process
would be unpredictable.

Processor Execution Modes

Two execution modes exist in the M88000 architecture: user and supervisor.
Processes run in user mode (the less privileged). The operating system kernel
runs in supervisor mode. A program executes a trap instruction to change execu-
tion modes.

The ABI does not define the implementation of individual system calls.
NOTE | Instead, programs shall use the system libraries that Chapter 6 describes.
Programs with embedded system call trap instructions do not conform to the
I ABI.

Exception Interface

As the MC88100 User’s Manual describes, instruction execution can generate
exceptions. The operating system handles such an exception either by complet-
ing the faulting operation in a manner transparent to the application, or by
delivering a signal to the application. The correspondence between exceptions
and signals is given in Figures 3-27 and 3-28.

The signals that an exception may give rise to are SIGSEGV, SIGILL, SIGBUS,
SIGTRAP, and SIGFPE. If one of these signals is generated due to an exception
when the signal is blocked, the behavior is undefined.

3-32 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Operating System Interface

Due to the pipelined nature of the MC88100, more than one instruction may be
executing concurrently. When an exception occurs, the operating system causes
all executing instructions to complete their executions. As a result of completing
these executions, additional exceptions may be generated. At most one of these
concurrent exceptions is a precise exception; all the others are necessarily impre-
cise.

The operating system partitions the set of concurrent exceptions into subsets, all
of whose exceptions share the same signal number. Each subset of exceptions is
delivered as a single signal. The multiple signals resulting from multiple con-
current exceptions are delivered in unspecified order, except that, if there is a
precise exception among the concurrent exceptions, the signal corresponding to
the precise exception shall be delivered first.

When a signal representing an exception is delivered and the extended signal
handler interface is selected with the sa SIGINFO sigaction(BA_OS) flag, the
information communicated through the second and third arguments is as fol-
lows. Inthe siginfo structure, si signo contains the signal number;
si_machinexcep contains the value 1, ncodes contains the number of con-
current exceptions associated with this signal; _exblks points to an array of
exblk t structures consisting of ncodes elements; and si_code contains a code
identifying the cause of the signal. In each of the exblk t elements, eb_signo
contains the signal number; eb _code contains the code for the particular kind of
exception, as indicated in Flgures 3-27 and 3-28; and the eb registers union
contains additional information about the exception, as indicated in Figures 3-27
and 3-28. In the mcontext_t structure of the ucontext_t structure, version
contains the value 1; and the gregs array contains values for the indicated regis-
ters at the point of the exception. The effects of an instruction in progress at the
time of the exception, including changes to registers and memory, are reflected in
the machine state if and only if the given instruction completed successfully. For
a precise exception, the value of the R_xTP element, with its low two bits cleared,
locates the instruction generating the exception.

When a signal not representing an exception is delivered and the extended signal
handler interface is selected with the sa SIGINFO sigaction flag, the
si_machinexcep member of the siginfo structure has the value 0.

Return from a signal handler handling a signal corresponding to an exception is

permitted. The process state for resumption is that contained in the ucontext_t
structure. In particular, the machine state for resumption is that contained in the
(possibly modified) gregs array of the mcontext_t structure. Note that process

LOW-LEVEL SYSTEM INFORMATION 3-33

Operating System Interface

execution is resumed at the addresses specified by the R NIP and R FIP values;
the R_xTP value is ignored. Note also that the low two bits of the aforementioned
register values are interpreted on resumption. See the MC88100 User’s Manual for
details.

Figures 3-27 and 3-28 show the relationship between machine exceptions and sig-
nals. The “Exception”” column indicates the machine exception; see the MC88100
User’s Manual for more details. The “P/I"” column indicates whether the excep-
tion is precise (“P”’) or imprecise (“1”); see the MC88100 User’s Manual for more
details. The ““Signal” column indicates the signal number under which the
exception is delivered, if it is delivered. The ““eb_code’ column indicates the
value assigned to the eb_code member of the exblk t structure for the excep-
tion, when the siginfo structure is passed to the 51gna1 handling function. The
eb registers column indicates which member of the eb registers union is
present, if any, when the siginfo structure is passed to o the signal handling func-
tion.

3-34 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Operating System Interface

Figure 3-27: Exceptions and Signals, Part 1 of 2

. . . See
Exception P/1 Signal eb code _eb registers
- - = Notes
Code access P SIGSEGV SEGV_CODE - 1
Data access I SIGSEGV SEGV DATA dfltinfo 2,3
Misaligned data P SIGBUS BUS ALIGN - 4
access
Protection violation I siGBUsS BUS PROT dfltinfo 3
Unimplemented P sIGILL ILL ILLOPC - 5
opcode
Privileged instruction =~ P SIGILL ILL PRVOPC -
violation
Integer overflow P SIGFPE FPE INTOVF -
Integer divide P SIGFPE FPE INTDIV - 6
or
FPE_INTOVF

Bounds check trap P SIGFPE FPE FLTSUB -

Trap to vectors 504-511 P SIGTRAP vector number -

LOW-LEVEL SYSTEM INFORMATION 3-35

Operating System Interface

Figure 3-28: Exceptions and Signals, Part 2 of 2

See

Exception P_/I Signal eb code _eb registers Notes

Floating-point inexact I SIGFPE FPE FLTRES fpifltinfo 78

Floating-point overflow I SIGFPE FPE FLTOVF fpifltinfo 8,9

or

FPE_FLTRES
Floating-point I siGrPE FPE FLTUND fpifltinfo 8,10
underflow or

FPE_FLTRES
Floating-point divide P SIGFPE FPE FLIDIV - 11
by zero or

FPE_FLTINV
Floating-point reserved P SIGFPE FPE FLTINV - 12
operand . or

FPE_FLTNAN
Floating-point integer =~ P SIGFPE FPE FLTINV - 13

conversion overflow

Floating-point privilege P SIGFPE FPE PRIVVIO -
violation

Floating-point P SIGFPE FPE _UNIMPL -
unimplemented opcode

Notes:

3-36

Code access exceptions caused by demand paging within the text segment
and areas made executable [as by mprotect (KE_OS)] are handled tran-
sparently to the application.

Data access exceptions caused by references to the stack segment shall be
handled by extending the stack in a manner transparent to the application,
within the stack limits specified by setrlimit (BA_OS). Data access

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Operating System Interface

exceptions caused by demand paging shall be handled transparently to the
application.

3. The values of the members of struct dfltinfo, passed as_eb registers,
are the MC88100’s Address Register, Transaction Register, and Data Register,
respectively, of the memory transaction that caused the fault.

4. This exception can be disabled by setting the MXM bit of the Processor
Status Register. (See the setpsr() function in ““Support Routines” in
Chapter 6.)

5. Conforming applications shall not use unimplemented opcodes.

6. If the faulting instruction is div, the dividend is the most negative integer
and the divisor is —1, then the SIGFPE signal shall be sent with FPE_INTOVF
aseb code. If the divisor is zero for any integer division instruction, the
SIGFPE signal shall be sent with FPE_INTDIV as eb code. Otherwise, the
faulting instruction must be div and one or both operands negative. In
this case, the system completes the operation in a manner transparent to
the application.

7. This exception can be disabled by clearing bit 0 (EFINX) of the Floating
Point Control Register.

8. The values of the members of struct fpifltinfo, passed as
_eb registers, are the MC88100’s Floating Point Result High Register,
Result Low Register, and Imprecise Operation Type Register, respectively.

9. If bit 1 (EFOVF) of the FPCR is set, the SIGFPE signal shall be sent with
FPE FLTOVF as eb_code. Otherwise, bit 1 (AFOVF) of the FPSR shall be set,
and if bit 0 (EFINX) of the FPCR is set, the SIGFPE signal shall be sent with
FPE_FLTINEX as eb_code. If bit J of the FPCR is also clear, then bit 0
(AFINX) of the FPSR shall be set and the system shall complete the opera-
tion in a manner transparent to the application and consistent with
ANSI/IEEE Std 754-1985 and the MC88100 User’s Manual..

10. If bit 2 (EFUNF) of the FPCR is set, the SIGFPE signal shall be sent with
FPE_FLTUND as eb_code. Otherwise, if there has been a loss of accuracy, bit
2 (AFUNF) of the FPSR shall be set. In this case, if bit 0 (EFINX) of the FPCR
is set, the SIGFPE signal shall be sent with FPE_FLTINEX as eb_code; if it is
clear, then bit 0 (AFINX) of the FPSR shall be set. If no signal is sent, the
system shall complete the operation in a manner transparent to the appli-
cation and consistent with ANSI/IEEE Std 754-1985 and the MC88100 User’s
Manual.

LOW-LEVEL SYSTEM INFORMATION 3-37

Operating System Interface

11.

12.

13.

If the numerator is zero, the exception shall be handled as a floating-point
reserved operand exception. Otherwise, if bit 3 (EFDVZ) of the FPCR is set,
the SIGFPE signal shall be sent with FPE_FLTDIV as eb_code. If bit 3 of the
FPCR is clear, then the system shall set bit 3 (AFDVZ) of the FPSR and com-
plete the operation in a manner transparent to the application and con-
sistent with ANSI/IEEE Std 754-1985 and the MC88100 User’s Manual.

If the operation is the subtraction of two infinities, the multiplication of
infinity and zero, or the division of one infinity by another, and bit 4
(EFINV) of the FPCR is set, then the sIGFPE signal shall be sent with
FPE_FLTOPERR as eb_code; otherwise bit 4 (AFINV) of the FPSR shall be set.
If either operand is a signaling NaN and bit 4 of the FPCR is set, then the
SIGFPE signal shall be sent with FPE_FLTNAN as eb_code; otherwise bit 4 of
the FPSR shall be set. If no signal is sent, the system shall complete the
operation in a manner transparent to the application and consistent with
ANSI/IEEE Std 754-1985 and the MC88100 User’s Manual .

If the operand can be converted to an integer without overflow, the system
shall complete the operation in a manner transparent to the application. If
it cannot, and bit 4 (EFINV) of the FPCR is set, then the SIGFPE signal shall
be sent. If bit 4 of the FPCR is clear, then bit 4 (AFINV) of the FPSR shall be
set and the system shall complete the operation in a manner transparent to
the application and consistent with ANSI/IEEE Std 754-1985.

Process Initialization

This section describes the machine state that exec(BA_OS) creates for “infant”
processes, including argument passing, register usage, stack frame layout, etc.
Programming language systems use this initial program state to establish a stan-
dard environment for their application programs. As an example, a C program
begins executing at a function named main, conventionally declared in the fol-
lowing way.

3-38

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Operating System Interface

Figure 3-29: Declaration for main

extern int main(int argc, char *argv[], char *envp[]):;

Briefly, argc is a non-negative argument count; argv is an array of argument
strings, with argv [argc]==0; and envp is an array of environment strings, also
terminated by a null pointer.

Although this section does not describe C program initialization, it gives the
information necessary to implement the call to main or to the entry point for a
program in any other language.

Registers

When a process is first entered (from an exec() system call), registers are initial-
ized as follows:

#rl
#r2
#r3

#r4

#r5

#r6

is implementation-defined.
contains argc, the number of arguments.

contains argv, a pointer to the array of argument pointers in the stack.
The array is immediately followed by a NULL pointer. If there are no
arguments, #r3 shall point to a NULL pointer.

contains envp, a pointer to the array of environment pointers in the
stack. The array is immediately followed by a NULL pointer. If no
environment exists, #r4 shall point to a NULL pointer.

contains a pointer to the auxiliary vector. The auxiliary vector shall
have at least one member, a terminating entry with an a_type of
AT _NULL.

possibly contains a termination function pointer. If #r6 contains a
nonzero value, the value represents a function pointer that the appli-
cation should register with atexit (BA_OS). If #r6 contains zero, no
action is required.

LOW-LEVEL SYSTEM INFORMATION 3-39

Operating System Interface

#r7-#rl3

#r14-#r30

#r31
FPSR

FPCR

PSR

are currently set to zero. Future versions of the system might use the
registers to hold special values, so applications should not depend on
these registers’ values.

are unspecified.
is the initial stack pointer, aligned to an 16-byte boundary.

is the floating-point user status register. This register is initially
cleared.

is the floating-point user control register. This register is set to round
to nearest mode and all the user exception handlers are disabled. Indi-
vidual processes may change the register contents if desired.

is the Processor Status Register; it contains 0x3f0, which corresponds
to:

user mode,

Big-Endian byte ordering,

concurrent operation allowed,

carry bit clear,

SFU 1 enabled,

SFU2-SFU7 disabled,

misaligned accesses cause an exception,

interrupts enabled,

shadow registers enabled.

Individual programs may need to manipulate the stacked data and register con-
tents at startup before control passes to the main section of the program.

3-40

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Operating System Interface

Process Stack

Every process has a stack, but the system defines no fixed stack address. Further-
more, a program’s stack address can change from one system to another—even
from one process invocation to another.

Whereas the argument and environment vectors transmit information from one
application program to another, the auxiliary vector conveys information from
the operating system to the program. This vector is an array of the following
structures, interpreted according to the a_type member.

Figure 3-30: Auxiliary Vector

typedef struct
{
int a_type;
union {
long a val;
void *a ptr;
void (*a_fcn) () ;
} a un;
} auxv t;

LOW-LEVEL SYSTEM INFORMATION 3-41

Operating System Interface

Figure 3-31: Auxiliary Vector Types, a_type

Name Value a un
AT NULL 0 ignored
AT IGNORE 1 ignored
AT EXECFD 2 a val
AT PHDR 3 a ptr
AT PHENT 4 a val
AT PHNUM 5 a val
AT PAGESZ 6 a val
AT BASE 7 a ptr
AT FLAGS 8 a val
AT ENTRY 9 a ptr

AT NULL

AT IGNORE

AT EXECFD

AT PHDR

3-42

The auxiliary vector has no fixed length; instead the end of the
table is indicated by placing AT NULL into a_type.

This type indicates the entry has no meaning. The correspond-
ing value of a_un is undefined.

As Chapter 5 describes, exec(BA_OS) may pass control to an
interpreter program. When this happens, the system places
either an entry of type AT EXECFD or one of the type AT PHDR in
the auxiliary vector. The entry for type AT EXECFD uses the
a_val member to contain a file descriptor open to read the
application program’s object file.

Under some conditions, the system creates the memory image
of the application program before passing control to the inter-
preter program. When this happens, the a ptr member of the
AT PHDR entry tells the interpreter where to find the program
header table in the memory image. If the AT PHDR entry is
present, entries of types AT PHENT, AT PHNUM, and AT ENTRY shall
also be present. See Chapter 5 in both the System V ABI and
this processor supplement for more information about the pro-
gram header table.

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Operating System Interface

AT PHENT The a_val member of this entry holds the size, in bytes, of one
entry in the program header table to which the AT PHDR entry
points.

AT PHNUM The a_val member of this entry holds the number of entries in

the program header table to which the AT PHDR entry points.

AT PAGESZ If present, this entry’s a_val member gives the system page
size, in bytes. The same information also is available through
sysconf(BA_OS).

AT BASE The a_ptr member of this entry holds the base address at which
the interpreter program was loaded into memory. See ‘‘Pro-
gram Header” in the System V ABI for more information about

the base address.

AT FLAGS If present, the a_val member of this entry holds one-bit flags.
Bits with undefined semantics are set to zero. No flags are
defined for the M88000.

AT ENTRY The a_ptr member of this entry holds the entry point of the

application program to which the interpreter program should
transfer control.

Other auxiliary vector types are reserved.

LOW-LEVEL SYSTEM INFORMATION 3-43

Coding Examples

This section discusses example code sequences for fundamental operations such
as calling functions, accessing static objects, and transferring control from one
part of a program to another. Previous sections discuss how a program may use
the machine or the operating system, and they specify what a program may and
may not assume about the execution environment. Unlike previous material, the
information here illustrates how operations may be done, not how they must be
done.

As before, examples use the ANSI C language. Other programming languages
may use the same conventions displayed below, but failure to do so does not
prevent a program from conforming to the ABL. Two main object code models
are available.

B Absolute code. Instructions can hold absolute addresses under this model. To
execute properly, the program must be loaded at a specific virtual address,
making the program’s absolute addresses coincide with the process’s virtual
addresses.

B Position-independent code. Instructions under this model hold relative
addresses, not absolute addresses. Consequently, the code is not tied to a
specific load address, allowing it to execute properly at various positions in
virtual memory.

Following sections describe the differences between these models. Code
sequences for the models (when different) appear together, allowing easier com-
parison.

Examples below show code fragments with various simplifications. They are
NOTE | intended to explain addressing modes, not to show optimal code sequences
nor to reproduce compiler output.

3-44 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Coding Examples

When other sections of this document show assembly language code
NOTE | sequences, they typically show only the absolute versions. Information in
this section explains how position-independent code would alter the exam-
‘ ples.

Code Model Overview

When the system creates a process image, the executable file portion of the pro-
cess has fixed addresses, and the system chooses shared object virtual addresses
to avoid conflicts with other segments in the process. To maximize text sharing,
shared object libraries conventionally use position-independent code, in which
instructions contain no absolute addresses. Shared object text segments can be
loaded at various virtual addresses without having to change the segment
images. Thus multiple processes can share a single shared object text segment,
even though the segment resides at a different virtual address in each process.

Position-independent code relies on two techniques.

B Control transfer instructions hold addresses relative to the Execute Instruc-
tion Pointer (XIP). A XIP-relative branch or function call computes its desti-
nation address in terms of the current XIP, not relative to any absolute
address.

B When the program requires an absolute address, it computes the desired
value. Instead of embedding absolute addresses in the instructions, the com-
piler generates code to calculate an absolute address during execution.

Because the processor architecture provides XIP-relative call and branch instruc-
tions, compilers can satisfy the first condition easily.

A global offset table and a procedure linkage table provide information for address
calculation. Position-independent object files (executable and shared object files)
have these tables in unshared segments. When the system creates the memory
image for an object file, the table entries are relocated to reflect the absolute vir-
tual addresses as assigned for an individual process. Because unshared segments
are private for each process, the table entries can change—unlike shared seg-
ments, which multiple processes share.

LOW-LEVEL SYSTEM INFORMATION 3-45

Coding Examples

However, there still remains the problem of addressing the global offset table
and the procedure linkage table in a position-independent manner. The M88000
architecture lacks instructions to reference data or compute addresses with XIP-
relative addresses. The most efficient method to reference locations in a shared
object is with based addressing. In this scheme, the address of the shared object
is computed at execution time and held in a register. The offset from this address
to any location in the shared object is known by the link editor when it is building
the shared object, and this offset can be efficiently encoded in instructions.

In order to allow it to lay out the shared object as efficiently as possible, the link
editor is given the responsibility of choosing the location in the shared object
whose address at execution time will serve as the addressing base. Code gen-
erated for a shared object refers to the addressing base only indirectly, through a
variety of relocation types that deal with the addressing base. The link editor
records its choice of addressing base with the bT_88K_ADDRBASE value. (See
Chapter 5 for more information.) One natural choice for the position of the
addressing base is the address of the global offset table.

Do not confuse the related terms “‘base address” and ““addressing base.” The
base address of an executable or shared object file, as defined by the System V
ABI, is the lowest virtual address associated with the memory image of the
program’s object file. In similar terms, the addressing base is a particular virtual
address associated with the memory image of the program’s object file. The
addressing base of a shared object may coincide with its base address, but it need
not.

Assembly language examples below show the explicit notation needed for
position-independent code. In the descriptions below, the construction ““differ-
ence between X and Y’ means the 32-bit modulus subtraction X - Y.

s#got This expression denotes the address of a global offset table entry
for symbol s.
p#gotp This expression denotes the address of a global offset table pro-

cedure entry for the procedure named by symbol p.

p#plt This expression denotes an address to which control can be
transferred to invoke the procedure named by symbol p. This
address is either the address of p or the address of a procedure
linkage table entry for p.

3-46 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Coding Examples

s#rel This expression denotes the difference between the value of the
symbol s and the addressing base for the shared object containing
the expression. This expression is valid only in a shared object.

s#got_rel This expression denotes the difference between the address
denoted by s#got and the addressing base for the shared object
containing the expression. This expression is valid only in a
shared object.

p#gotp rel This expression denotes the difference between the address
denoted by p#gotp and the addressing base for the shared object
containing the expression. This expression is valid only in a
shared object.

p#plt rel This expression denotes the difference between the address
denoted by p#plt and the addressing base for the shared object
containing the expression. This expression is valid only in a
shared object.

s#abdiff This expression denotes the difference between the addressing
base for the shared object containing the expression and the value
of the symbol s. The value of the symbol s must represent an
address in the shared object containing the expression. This
expression is valid only in a shared object.

Position-Independent Function Prologue and
Epilogue

This section describes the function prologue and epilogue for position-
independent code. A position-independent function generally needs to establish
its addressing base to afford access to its private data, in particular its global
offset table entries. The addressing base is typically computed into a preserved
register, such as #r25, so that its value will be preserved throughout the activa-
tion of the function.

LOW-LEVEL SYSTEM INFORMATION 3-47

Coding Examples

As a reminder, this entire section contains examples. Using #r25 is a con-
NOTE | vention, not a requirement; moreover, this convention is private to a function.
Not only could other registers serve the same purpose, but different func-
‘ tions in a program could use different registers.

The prologue for a position-independent function name that needs 96 bytes of
stack space and uses register #r25 to hold the addressing base might be as shown
in Figure 3-32.

Figure 3-32: Position-Independent Function Prologue

name: subu #r31, #xr31, 96
st #r25, #r31, 88
st #rl, #r31,92
bsr.n here
or.u #r25, #r0, #hil6 (here#abdiff)
here: or #r25, #r25, #1016 (hereffabdiff)
addu #r25, #r25, #rl

The epilogue for the position-independent function name described above might
be as shown in Figure 3-33.

Figure 3-33: Position-Independent Function Epilogue

name: 1d #r25,#r31, 88
1d #rl, #r31, 92
addu #r31, #r31,96
Jmp #rl

3-48 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Coding Examples

Data Objects

This discussion excludes stack-resident objects, because programs always com-
pute their virtual addresses relative to the stack and frame pointers. Instead, this
section describes objects with static storage duration.

In the M88000 architecture, only load and store instructions access memory.
Because instructions cannot hold 32-bit addresses directly, a program normally
computes an address into a register. Symbolic references in absolute code put
the symbols” values—or absolute virtual addresses—into instructions.

Figure 3-34: Absolute Load and Store

C Assembly

extern int src; global src, dst, ptr

extern int dst;

extern int *ptr;

ptr = &dst; or.u #r2,#r0, #hil6 (dst)
or #r2,#r2, #1016 (dst)
or.u #r3, #r0, #hil6 (ptr)
st #r2, #r3, #1016 (ptr)

¥ptr = src; or.u #r2, #r0, #hil6 (src)
1d #r2,#r2, #1016 (src)
or.u #r3, #r0, #hil6 (ptr)
1d #r3,#r3, #1016 (ptr)
st #r2,#r3,0

Position-independent instructions cannot contain absolute addresses. Instead,
instructions that reference symbols hold the offsets of the symbols” global offset
table entries relative to the addressing base for the shared object. Combining the
offset of the global offset table entry with the addressing base in #r25 gives the
absolute address of the table entry holding the desired address.

LOW-LEVEL SYSTEM INFORMATION 3-49

Coding Examples

Figure 3-35: Position-Independent Load and Store

C Assembly

extern int src; global src, dst, ptr

extern int dst;

extern int *ptr;

ptr = &dst; or.u #r2, #r0, #hil6 (dst#got rel)
or #r2,#r2, #1016 (dst#got rel)
1d #r2, #r25, #r2
or.u #r3, #r0, #hil6 (ptr#got rel)
or #r3, #r3, #1016 (ptri#got rel)
1d #r3, #r25, #r3
st #r2,#r3,0

#*ptr = src; or.u #r2,#r0, #hil6 (srci#got rel)
or #r2,#r2, #1016 (src#got rel)
1d #r2, #r25,#r2
1d #r2,#r2,0
or.u #r3, #r0, #hil6 (ptri#got rel)
or #r3, #r3,#1ol6 (ptr#got rel)
1d #r3, #r25, #r3
1d #r3,#r3,0
st #r2,#r3,0

Function Calls

A function call is typically made with a bsr instruction. A bsr instruction has a
self-relative branch displacement that can reach 128 megabytes in either direc-
tion. Hence, use of a bsr instruction to effect a call within an executable or
shared object file limits the size of the executable or shared object file to 128
megabytes. A bsr instruction can also be used to effect a call between two dif-
ferent object files, without constraining the placement of the two object files in
memory, because control generally passes from the bsr instruction, through an
indirection sequence, to the desired destination. See ‘“‘Procedure Linkage Table”

3-50 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Coding Examples

in Chapter 5 for more information on the indirection sequence.

Figure 3-36: Absolute Direct Function Call

C Assembly
extern
void function(); global function
function(); bsr function#plt
or:
global function
bsr function

Figure 3-36 shows two methods for effecting a call in absolute code. Note that
the #p1t suffix can be supplied or omitted. Supplying the #plt suffix is con-
venient if it is desirable to make absolute and position-independent function calls
in the same way. Omitting the #plt suffix is convenient if it is desirable to make
absolute function calls the way they have been made traditionally.

Supplying the #plt suffix does not necessarily result in the use of a procedure
linkage table entry. If caller and callee are both in the executable file, for exam-
ple, no PLT entry is needed. On the other hand, omitting the #plt suffix may
result in the use of a PLT entry. If the link editor determines that the executable
file is making reference to a function defined in a shared object, the link editor
uses a PLT entry for the reference.

LOW-LEVEL SYSTEM INFORMATION 3-51

Coding Examples

Figure 3-37: Position-Independent Direct Function Call

C Assembly
extern
void function():; global function
function () ; bsr function#plt
or:

global function

or.u #rl, #r0, #hil6 (function#gotp rel)
or #rl, #rl, #1016 (function#gotp rel)
1d #rl, #r25, #rl

jsr #rl

Figure 3-37 shows two methods for effecting a call in position-independent code.
If a bsr instruction is used, the #plt suffix should be supplied. Without the #plt
suffix, a reference in a shared object to an external function resolves not to a PLT
entry in the shared object, but to the canonical address for the function. (See
“Function Addresses” in Chapter 5 for more information.) Such resolution
compromises the position independence of the shared object.

As the second alternative in Figure 3-37 shows, the indirection of the procedure
linkage table entry may be avoided by making direct reference to the global offset
table procedure entry for the function. The instruction sequence shown assumes
that the addressing base is held in register #r25.

Other sequences for effecting a direct function call are possible. For example, in
absolute code, the global offset table procedure entry could be loaded directly
and used with a jsr instruction. In position-independent code, the global offset
table procedure entry can be loaded more concisely as long as there are not too
many global offset table entries.

3-52 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Coding Examples

Figure 3-38: Absolute Indirect Function Call

C

extern void (*ptr) ();
extern void name () ;
ptr = name;

(*ptr) () ;

Assembly
global ptr, name
or.u #r2, #r0, #hil6 (name)
or #r2, #r2, #1016 (name)
or.u #r3,#r0, #hil6 (ptr)
st #r2, #r3, #1016 (ptr)
or.u #rl, #r0, #hil6 (ptr)
1d #rl, #rl, #1016 (ptr)
jsr #rl

Figure 3-39: Position-Independent Indirect Function Call

C

Assembly

extern void (*ptr) ();
extern void name () ;
ptr = name;

(*ptr) () ;

global ptr, name

or.
or
1d
or
or
1d
st

or.
or
id
1d
jsr

u

.u

#r2, #r0, #hil6 (name#got rel)
#r2, #r2, #1016 (name#got rel)
#r2, #r25, #r2

#r3, #r0, #hil6 (ptr#got rel)
#r3, #r3, #1016 (ptr#got rel)
#r3, #r25, #r3

#r2, #r3,0

#rl, #r0, #hil6 (ptr#got rel)
#rl, #rl, #1016 (ptr¥got rel)
#rl, #r25, #rl

#rl,#r1,0

#rl

LOW-LEVEL SYSTEM INFORMATION

3-53

Coding Examples

Variable Argument List

Previous sections describe the rules for passing arguments. Unfortunately, some
otherwise portable C programs depend on the argument passing scheme, impli-
citly assuming that 1) all arguments reside on the stack, and 2) arguments appear

in increasing order on the stack. Programs that make these assumptions never
have been portable, but they have worked on many machines. Portable C pro-
grams should use the header files <stdarg.h> or <varargs.h> to deal with vari-
able argument lists (on MC88100 and other machines as well).

Allocating Stack Space Dynamically

Figure 3-40: Dynamic Stack Space Allocation

Before After
<— (High Memory) —>
fixed fixed
frame frame
area area
frame pointer —> frame pointer —>
argument dynamic | direction of
area stack stack growth
stack pointer —> space
argument
area
stack pointer ——>
<— (Low Memory) —>

The M88000 architecture supports dynamic stack space allocation for those
languages that require it. The mechanism for allocating dynamic space is embed-
ded completely within a function and does not affect the standard calling

3-54

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Coding Examples

sequence. Thus, functions that need dynamic stack frame sizes can call functions
that do not, and vice versa.

A typical variant of the mechanism is described below and diagrammed in Fig-
ure 3-40. The figure shows the layout of a stack frame before and after dynamic
stack allocation. The fixed frame area is used for storage of function data, such as
local variables, whose sizes are known to the compiler. The fixed frame area is
allocated at function entry and does not change in size or position during the
function’s activation. The argument area is used for storage of arguments passed
in calls to other functions. Its size is also known to the compiler and can be allo-
cated along with the fixed frame area at function entry. However, the standard
calling sequence requires that the stack pointer locate the argument area, so the
argument area must move when dynamic stack allocation occurs.

Data in the argument area are naturally addressed at constant offsets from the
stack pointer. However, in the presence of dynamic stack allocation, the offsets
from the stack pointer to the data in the fixed frame area are not constant. To
provide addressability, a frame pointer is established to locate the fixed frame
area consistently throughout the function’s activation.

Dynamic stack allocation is accomplished by “opening’ the stack just above the
argument area. The following steps show the process in detail.

1. The amount of dynamic space to be allocated is rounded up to a multiple
of 16 bytes, so that 16-byte stack alignment is maintained.

2. The stack pointer is decreased by the rounded byte count.

3. All active data in the argument area, if any, are copied from the previous
position of the stack pointer to the new position. The amount of data to be
copied is known to the compiler.

4. The address of the newly allocated dynamic stack space is the sum of the
new value of the stack pointer and the size of argument area.

The above process can be repeated as many times as desired within a single func-
tion activation. When it is time to return, the stack pointer is first reset to its posi-
tion as shown in the left portion of Figure 3-40, thereby removing all dynamically
allocated stack space. Normal return processing may then ensue.

LOW-LEVEL SYSTEM INFORMATION 3-55

Coding Examples

Even in the presence of signals, dynamic allocation is “safe.” If a signal inter-
rupts allocation, one of three things can happen.

1. The signal handler can return. The process then resumes the dynamic allo-
cation from the point of interruption.

2. The signal handler can execute a non-local goto, or longjmp [see
setjmp(BA_LIB)]. This resets the process to a new context in a previous
stack frame, automatically discarding the dynamic allocation.

3. The process can terminate.

Regardless of when the signal arrives during dynamic allocation, the result is a
consistent (though possibly dead) process.

3-56 Motorolia 88000 PROCESSOR ABI SUPPLEMENT

Text Description Information

The M88000 ABI opts not to prescribe the form of a stack frame, in order to leave
compilers with the greatest possible flexibility to generate efficient code. For
example, no convention is defined to link stack frames at execution time, and a
compiler may elect not to use a frame pointer for a particular routine. The lack of
a traditional stack frame convention, however, would make low-level debugging
impossible, were it not for the alternate convention described here.

This section defines a mechanism by which programs describe relevant aspects of
their text sections. The essence of the mechanism is that information about
important execution-time characteristics of procedures is provided statically, by
the compiler and link editor, rather than dynamically, by executing instructions
at runtime, wherever possible. Information describing a procedure is generated
by the compiler and is associated with the procedure by the link editor. When
the information relevant to a particular text address is needed, the text address is
mapped to the procedure containing the address, and the text description infor-
mation associated with the procedure is consulted.

Text description information describes code in an object file. This code is
referred to as ““text” because it usually resides in the .text section. However,
code may reside in other sections with attributes similar to those of the .text
section, and even in sections with attributes similar to those of the .data section,
provided that the latter sections are made executable during execution. Refer-
ences to ““text” should be taken to mean references to “‘code’” in its more general
form.

Tdesc Information

A text chunk is a contiguous sequence of zero or more words of text of an object
file. A text chunk consisting of zero words is an empty text chunk. The start
address of a non-empty text chunk is the minimum of the addresses of the words
of the non-empty text chunk. The end address of a non-empty text chunk is the
maximum of the addresses of the words of the non-empty text chunk, plus 4.
The start address and end address of an empty text chunk are equal. The start
address is inclusive and the end address is exclusive. An address is said to be
“in” a text chunk if it is greater than or equal to the start address of the text
chunk and less than the end address of the text chunk. A word is said to be “in”
a text chunk if its address is in the text chunk.

LOW-LEVEL SYSTEM INFORMATION 3-57

Text Description Information

Contributors of text (typically compilers and assemblers) shall partition that text
into one or more text chunks. All text chunks so defined for an object file must
not overlap; that is, no word may be in more than one text chunk.

Contributors of text identify a text chunk and associate information descriptive of
that text chunk by contributing a ““tdesc chunk” to the .tdesc section. The
.tdesc section is system-defined. It has the sHF ALLOC attribute, it does not have
the sHF WRITE attribute, and it may or may not have the SHF_EXECINSTR attribute.

A tdesc chunk begins on a word boundary and is a contiguous sequence of words
with the following structure:

Figure 3-41: Tdesc Chunk

Word Bit Interpretation
Position Range P
0 31-24 | zeroes

23-2 | infolength, in bytes
1-0 | info alignment exponent

1 31-0 | info protocol

2 31-0 | start address of text chunk
3 31-0 | end address of text chunk
4+ info

The zeroes in word 0 are designed to be distinct from the high 8 bits of typical
M88000 “no-op” instructions (instructions that, when executed, have no effect).
This allows possible padding between tdesc chunks to be detected, whether the
padding consists of words of zeroes or no-op instructions.

The info protocol describes the form and interpretation of the tdesc chunk, pri-
marily that of its info portion.

The info protocol represents a contract between compiler and debugger/runtime
system. Providing for different info protocols allows different (through space
and time) compilers to use different strategies for describing their code.

3-58 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Text Description Information

The info length is the number of bytes of meaningful information that begin in
word 4 of the structure. The tdesc chunk is padded with 0 to 3 bytes of
undefined information to make its total size an integral multiple of 4 bytes.

The info alignment exponent indicates the required alignment for the info field after
the link editor has collected and reformatted the tdesc information (as described
later). The info alignment exponent specifies the required alignment according to
the following table:

Figure 3-42: Info Field Alignment

info alignment alignment

exponent in bytes
0 1
1 2
2 4
3 8

Alignments greater than 8 are not supported.
NOTE

Info Protocol

Two info protocols are defined. They are identified with the integers 1 and 2.
The only difference between the two protocols is the interpretation of the start
address and end address of the text chunk. For protocol 1, the addresses are
absolute; for protocol 2, the addresses are relative to the addressing base for the
shared object containing the tdesc chunk. Hence, info protocol 2 can be used
only in a shared object. Otherwise, the two info protocols are the same. For both
protocols the info length is always 16 and the info alignment exponent is always
2. The structure of the info for both protocols is as follows:

LOW-LEVEL SYSTEM INFORMATION 3-59

Text Description Information

Figure 3-43: Info Structure

Word Bit Interpretation
Position = Range p
0 31-24 | info variant, the integer 1

23 -7 | register save mask, for registers #r14-#r30; bit 7 is
the #r30 save mask, bit 8 for #r29, etc., consecutively

until bit 23 for #r14
6 | zero
5 | return address info discriminant
4-0 | frame address register
1 31-0 | frame address offset
2 31-0 | return address info
3 31-0 | register save offset

The above structure is the only currently defined variant. Zeroes are required
where no useful information is defined to facilitate future extension.

The info field of the tdesc chunk describes important low-level characteristics of
the execution environment which is in effect when the instruction pointer is in
the associated text chunk. Because the information in the tdesc chunk is
unchanging, it must depend on the context. The context consists of a text address
and the values that the registers available to user-level programs would have
were control about to proceed to the instruction addressed by the text address.
The text address portion of a context is called its instruction pointer.

The canonical frame address (abbreviated ““CFA”) for a procedure is the value of the
stack pointer at entry to the procedure. The CFA shall be computable from the
procedure’s context and its text chunk’s associated tdesc chunk’s info field as fol-
lows:

CFA = contents_of(frame address register) + frame address offset

where ““+” represents machine address arithmetic, and ““contents_of(register)”’
represents the value of the indicated register in the procedure’s context.

3-60 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Text Description Information

Procedures that construct a “frame pointer”” in a register will specify that register
as the frame address register and the difference between the initial stack pointer
value and the contents of that register as the frame address offset. Procedures
that do not construct a frame pointer explicitly will specify the stack pointer as
the frame address register and the (necessarily) fixed frame size as the frame
address offset.

The current size of a frame can be computed as follows:

frame size = CFA — contents_of(#r31)
where “~"’ represents mathematical subtraction. (The stack pointer is always
housed in #r31.)

A frame position is a (byte) address relative to the CFA; that is, to calculate the
address of a word at a frame position, sum (using machine address arithmetic)
the CFA and the frame position. A frame position must be an integral multiple of
4. That is, frame positions mark word-aligned positions in the frame.

The return address for a procedure is the text address to which the procedure
would return control were it to complete normally. Currently the return address
must be “exact;” that is, a procedure is constrained to return exactly to the return
address if it returns normally. The procedure housed in the text chunk that the
return address of another procedure is in is known as the parent or caller of that
other procedure. Note that, in the case of ““tail call,” the caller is not the pro-
cedure that passed control directly, but rather an ancestor of that procedure.

The return address shall be computable from the procedure’s context and its text
chunk’s associated tdesc chunk’s info field as follows: If the return address info
discriminant is 0, the return address is the value of the register specified by the
return address info field, with its low two bits cleared; if the return address info
discriminant is 1, the return address is the value of the word at the frame position
specified by the return address info field, with its low two bits cleared. A return
address is always word-aligned. Ignoring the low two bits of return address
values mimics the behavior of the hardware and allows other useful information
to be stored there.

The return address for a procedure is contained in #r1 at entry to the procedure.
A procedure that calls another procedure must store the initial contents of #rl in
its frame.

LOW-LEVEL SYSTEM INFORMATION 3-61

Text Description Information

A leaf procedure (one that calls no other) may not need to store the contents of
#r1, so its return address would remain there. However, a leaf procedure may
need to free #r1, to use a bsr instruction which transfers within the procedure to
locate the procedure in a position independent manner. In this case, the pro-
cedure may save the initial contents of #r1 in another register instead of in its
frame.

A return address value of zero indicates the absence of a parent text chunk and
hence terminates a return address chain. The runtime initializer (typically crt0)
shall have a return address, as described by its tdesc information, of zero. Stack
traceback is achieved by following the chain of return addresses from callee to
caller. A distinguished value for the end of this chain is required to make the
traceback terminate.

The register save mask may have ““1” bits only in bit positions corresponding to
preserved register numbers. The register save mask must have a ““1” bit in any
bit position corresponding to a preserved register that is modified by the pro-
cedure. The values at procedure entry of the registers marked by ““1” bits in the
register save mask must be stored in the frame. The lowest-numbered register
whose mask bit is “1” is stored at the frame position specified by the register
save offset. Successively higher-numbered registers whose mask bits are “1” are
stored in successive words in the frame at increasing addresses. A bit in the
register save mask at position p, relative to the least significant bit of the mask,
corresponds to the register numbered 30-p.

Both the tdesc chunk header and info field for info protocols 1 and 2 are 16 bytes
in length. This avoids padding with assemblers that pad section sizes to multi-
ples of 16 bytes.

Typically, the execution environment of a procedure is not fully established until
after several initial instructions have been executed. These initial instructions are
often referred to as the procedure’s prologue. Similarly, the procedure’s execution
environment is typically disestablished incrementally by final instructions
referred to as the procedure’s epilogue. That portion of a procedure which is nei-
ther prologue nor epilogue is termed body.

The simple information provided by a tdesc chunk with info protocols 1 and 2
can describe only a single, unchanging execution environment. This suffices for a
single tdesc chunk to describe a procedure’s body. However, the procedure’s
prologue and epilogue portions are not correctly described by the same tdesc
information. Hence, the text chunk that covers the procedure’s body must not

3-62 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Text Description Information

also cover its prologue and epilogue sections. Additional text chunks can be
defined to describe prologue and epilogue sections. However, because the exe-
cution environment typically changes frequently during prologue and epilogue
sections, possibly many additional, small text chunks, each with its own tdesc
chunk, would be required. For this reason, the requirement as to which instruc-
tions must be in a text chunk (and hence which must be described by tdesc infor-
mation) is left purposely vague. Discretion is left to the implementation.

Map Protocol

The link editor treats tdesc information specially. When producing an executable
file or shared object file, it reformats the contributions to the .tdesc section
before making them part of a segment of the object file. The reformatted tdesc
information may consist of one or more pieces. Each piece of tdesc information
is aligned to a word boundary and has the following general structure:

Figure 3-44: Tdesc Information Piece

Word Bit

Positon ~Range Interpretation
0 31-0 | map protocol
1+ info

The map protocol describes the form and interpretation of the info portion of the
tdesc information piece.

The map protocol represents a contract between link editor and
debugger/runtime system. Providing for different map protocols allows dif-
ferent (through space and time) link editors to use different strategies for map-
ping text addresses to tdesc chunks.

LOW-LEVEL SYSTEM INFORMATION 3-63

Text Description Information

Two map protocols are defined. They are identified with the integers 1 and 2.

The structure of the info for map protocol 1 is shown in Figure 3-45.

Figure 3-45: Map Protocol 1

Word Bit Interpretation
Position Range P
0 31-0 | end address of this structure
1+ tdesc chunk sequence

The first word of info gives the address just beyond the end of this piece of tdesc
information. Beginning at the second word is a concatenation of all contributions
to the . tdesc section, in arbitrary order. This concatenation includes all tdesc
chunks and may include padding words before, between, and after tdesc chunks.
A padding word is either a word all of whose bits are zero, or a word whose high
8 bits are not all zero. The required alignment of the info fields of the tdesc
chunks shall be met. Hence, the only required “reformatting” performed for
map protocol 1 is the addition of the map protocol word and the end address
word. This map protocol is crude, but it is adequate to support debugging,
because debugging performance is not critical.

The structure of the info for map protocol 2 is shown in Figure 3-46.

Figure 3-46: Map Protocol 2

Word Bit

Positon ~ Range Interpretation
0 31-0 | end address of this structure
1+ array of tdesc piece entries

3-64 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Text Description Information

The first word of info gives the address just beyond the end of this piece of tdesc
information. The remainder of the piece is an array of structures with the follow-
ing form:

Figure 3-47: Tdesc Piece Entry

Word Bit Interpretation
Position Range P
0 31-0 | address of tdesc information piece
1 31-0 | addressing base for piece

The first word gives the address of another piece of tdesc information. An
address of zero represents an absent piece. If the first word is nonzero, the
second word gives the addressing base for any immediately subordinate tdesc
chunks with info protocol 2.

Together, map protocols 1 and 2 provide the capability to represent a tree of
tdesc information. Map protocol 1 pieces serve as the leaves of the tree; map pro-
tocol 2 pieces serve as the nodes of the tree.

When producing an executable file or shared object file, the link editor reformats
the contributions to the .tdesc section into a single piece with map protocol 1.
This tdesc information piece resides in a segment with read permission but
without write permission.

When producing an executable file that does not participate in dynamic linking,
the link editor defines the symbol tdesc as the address of the tdesc information
piece with map protocol 1.

When producing an object file that participates in dynamic linking, the link editor
includes a dynamic linking array entry with d_tag member equal to

DT _88K_TDESC and d_ptr member equal to the address of the object file’s tdesc
information piece with map protocol 1. Additionally, in an executable file that
participates in dynamic linking, the link editor allocates a tdesc information piece
with map protocol 2 and defines the symbol _tdesc as the address of this second
piece. This second piece resides in a segment with both read and write permis-
sions and has at least as many tdesc piece entries as two more than the number of

LOW-LEVEL SYSTEM INFORMATION 3-65

Text Description Information

shared object files referenced by the executable file. Both words of each of the
entries are initially zero. The dynamic linker fills in an entry for each object file
whose dynamic linking array it processes.

Debug Info

When producing an executable file, the link editor creates the following data
structure in a segment with read permission but without write permission and
defines the symbol debug_info as the address of the beginning of the structure.
(See “Program Header” in Chapter 5 for the segment description.) The structure
shall be word-aligned.

Figure 3-48: debug info Structure

Word Bit

Positon ~ Range Interpretation

31-0 | debug info protocol, the integer 1
31-0 | the value of the tdesc symbol
31-0 | number of text words

31-0 | pointer to text words

31-0 | number of data words

31-0 | pointer to data words

G W= O

The pointer to text words is the address of a contiguous sequence of words that
reside in a segment with execute permission and that are not otherwise refer-
enced. The number of text words indicates the number of such words. The
number of text words shall be at least 1. These words are available to a
debugger, for use as places to set breakpoints safely for its own use.

The pointer to data words is the address of a contiguous sequence of words that
reside in a segment with write permission and that are not otherwise referenced.
The number of data words indicates the number of such words. The number of
data words shall be at least 256. These words are available to a debugger, for use
as places to store data safely for its own use in the memory of the process being

3-66 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Text Description Information

debugged.

When producing an executable file, the link editor shall create a single segment of
type PT_88K_DEBINFADDR. This segment shall contain a single word, whose value
is the value of the debug_info symbol.

LOW-LEVEL SYSTEM INFORMATION N 3-67

4. OBJECT FILES

S3Tid 103rga0 ‘v

4 OBJECT FILES

ELF Header 4-1
Machine Information 4-1
Sections 4-2
Special Sections 4-2
Symbol Table 4-3
Symbol Values 4-3
Relocation 4-4
Relocation Types 4-4

Table of Contents

ELF Header

Machine Information

For file identification in e _ident, the M88000 requires the following values.

Figure 4-1: M88000 Identification, e ident

Position

Value

e ident [EI_CLASS]
e ident [EI_DATA]

ELFCLASS32
ELFDATA2MSB

The ELF header’s e _flags member holds bit flags associated with the file. The
M88000 defines no flags, so this member contains zero. Processor identification
resides in the ELF header’s e machine member and must have the value 5,

defined as the name EM 88K.

OBJECT FILES

Sections

The M88000 architecture is such that an individual section cannot permit writing
and execution attributes—SHF WRITE and SHF EXECINSTR—at the same time.

Special Sections

Various sections hold program and control information. Sections in the list
below are used by the system and have the indicated types and attributes.

Figure 4-2: Special Sections

Name Type Attributes
.got SHT PROGBITS | SHF ALLOC+ SHF WRITE
.plt SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR
.tdesc | SHT PROGBITS see below
.tdesc This section holds text description information. It has the

SHF ALLOC attribute, it does not have the sHF WRITE attribute, and it
may or may not have the SHF EXECINSTR attribute. See ““Text
Description Information” in Chapter 3 for more information.

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Symbol Table

Symbol Values

If an executable file contains a reference to a function defined in one of its associ-
ated shared objects, the symbol table section for that file will contain an entry for
that symbol. The st_shndx member of that symbol table entry contains

sHN UNDEF. This signals to the dynamic linker that the symbol definition for that
function is not contained in the executable file itself. If that symbol has been allo-
cated a procedure linkage table entry in the executable file, and the st value
member for that symbol table entry is non-zero, the value will contain the virtual
address of the first instruction of that procedure linkage table entry. Otherwise,
the st_value member contains zero. This procedure linkage table entry address
is used by the dynamic linker in resolving references to the address of the func-
tion. See “Function Addresses” in Chapter 5 for details.

OBJECT FILES 4-3

Relocation

Relocation Types

Relocation entries describe how to alter the following instruction and data fields
(bit numbers appear in the lower box corners; byte numbers appear in the upper

box corners).

Figure 4-3: Relocatable Fields

byte8
7 0
halflé

15 ¢ f 0
word32

31 0
uawd32

31 0

lowl6
31 15 0
low26
31 25 0

byte8 This specifies an 8-bit field occupying 1 byte with arbitrary alignment.

halfl6 This specifies a 16-bit field occupying 2 bytes with 2-byte alignment.

4-4

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Relocation

word32

uawd32

low16

low26

0x0102 | 01 02

This specifies a 32-bit field occupying 4 bytes with 4-byte alignment.
These values use the byte order illustrated below.

This specifies a 32-bit field occupying 4 bytes with arbitrary align-
ment. These values use the same byte order as for word32.

0x01020304 ’ 01 02 03 04

This specifies a 16-bit field occupying the least significant bits of a
field similar to word32. These bits represent values in the same byte
order as word32.

This specifies a 26-bit field occupying the least significant bits of a
field similar to word32. These bits represent values in the same byte
order as word32.

Calculations below assume the actions are transforming a relocatable file into
either an executable or a shared object file. Conceptually, the link editor merges
one or more relocatable files to form the output. It first decides how to combine
and locate the input files, then updates the symbol values, and finally performs
the relocation. Relocations applied to executable or shared object files are similar
and accomplish the same result. Descriptions below use the following notation.

A

This means the addend used to compute the value of the relocatable
field.

This means the addressing base for the shared object. See Chapter 5
for more information.

This means the base address at which a shared object has been loaded
into memory during execution. Generally, a shared object file is built
with a 0 base virtual address, but the execution address will be dif-
ferent. See “Program Header” in the System V ABI for more

OBJECT FILES 4-5

Relocation

GP

information about the base address.

This means the place (section offset or address) of a global offset table
entry for the symbol. See Chapter 5 for more information.

This means the place (section offset or address) of a global offset table
procedure entry for the symbol. See Chapter 5 for more information.

This means the place (section offset or address) of the symbol, or of a
procedure linkage table entry for the symbol. See Chapter 5 for more
information.

This means the place (section offset or address) of the storage unit
being relocated (computed using r offset).

This means the value of the symbol whose index resides in the reloca-
tion entry.

Relocation entries apply to bytes (byte8), halfwords (half16), or words (the oth-
ers). In any case, the r_offset value designates the offset or virtual address of
the first byte of the affected storage unit. The relocation type specifies which bits
to change and how to calculate their values. The M88000 uses only E1£32 Rela
relocation entries, with explicit addends. Thus the r _addend member serves as
the relocation addend.

The following general rules apply to the interpretation of the relocation types in
Figure 4-4.

B “+” and “~” denote 32-bit modulus addition and subtraction, respectively.

>>"" denotes arithmetic right shifting of the value of the left operand by the
number of bits given by the right operand.

For relocation types whose names end in ““_DIsp16”, the upper 15 bits of the
value computed before shifting must all be the same. For relocation types
whose names end in “_D1sp26”, the upper 5 bits of the value computed
before shlftmg must all be the same. For relocation types whose names end
in either “_DIsP16” or ‘* D1sp26”, the low 2 bits of the value computed
before shifting must all be zero.

For relocation types whose names end in 8", the upper 24 bits of the com-
puted value must all be zero. For relocation types whose names end in
**_85”, the upper 25 bits of the computed value must all be the same. For
relocation types whose names end in ““_16", the upper 16 bits of the com-
puted value must all be zero. For relocation types whose names end in

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Relocation

” 16S”, the upper 17 bits of the computed value must all be the same.

B #hil6 (value) and #1016 (value) denote the high and low 16 bits, respec-
tively, of the indicated value.

B Reference in a calculation to the value “G” implicitly creates a global offset
table entry for the indicated symbol. Reference in a calculation to the value
“Gp”” implicitly creates a global offset table procedure entry for the indicated
symbol. Reference in a calculation to the value ““L” may implicitly create a
procedure linkage table entry for the indicated symbol.

M A relocation type whose calculation involves either the value ““B” or the
value “AB” may only be used in a shared object.

B For relocation types whose names begin with either “R_88Kk_ABDIFF "’ or
“R 88K ABREL ", the symbol’s value must represent an address in the shared
object containing the relocation.

B For relocation types whose names include *“_sreL ", the address of the
storage unit affected by the relocation either must both be in the same shared
object, or must both be in an executable file.

B Where a relocation type does not use the associated symbol, the symbol
index in the relocation entry must be zero.

B The link editor shall detect and report violations of restrictions described
above.

OBJECT FILES 4-7

Relocation

Figure 4-4: Relocation Types, Part 1 of 2

Name Value Field Calculation

R 88K NONE 0 none none
R 88K COPY 1 none see below
R 88K GOTP_ENT 2 word32 | see below
R 88K 8 4 byte8 S+ A

} R 88K 8S 5 byte8 S +A

T R 88K 16S 7 half16 S +A
R 88K DISP1l6 8 half16 (S+A-P) >> 2
R 88K DISP26 10 low26 (S+A-P) > 2
R 88K PLT DISP26 14 low26 (L+A-P) >> 2
R 88K BBASED 32 16 word32 | B + A
R 88K BBASED 32UA 17 uawd32 | B + A

| R 88K BBASED 16H 18 half16 #hil6(B + A)

} R 88K BBASED 16L 19 | halfl6 | #1016(B + A)

? R 88K ABDIFF 32 24 word32 | AB - S + A

} R 88K ABDIFF 32UA 25 uawd32 | AB - S + A
R 88K ABDIFF 16H 26 half16 #hil6(AB - S + A)
R 88K ABDIFF 16L 27 half16 #lol6(aB - S + A)
R 88K ABDIFF 16 28 half16 AB - S + A
R 88K 32 32 word32 | S + A
R 88K 32UA 33 uawd32 | S + A
R 88K 16H 34 | halfl6 | #hil6(S + A)

; R 88K 16L 35 | halfl6 | #lol6(S + A

i R 88K 16 36 | halfl6 | s +A
R 88K GOT 32 40 word32 | G + A
R 88K GOT 32UA 41 uawd32 | G + A
R 88K GOT 16H 42 half16 #hil6(G + A)
R 88K GOT 16L 43 halfl6 #lol6(G + A)

‘ R 88K GOT 16 44 half16 G+ A

| R 88K GOTP 32 48 word32 | GP + A

! R 88K GOTP_32UA 49 uawd32 | Gp + A
R 88K GOTP_16H 50 half16 #hil6(Gp + A)
R 88K GOTP 16L 51 half16 #lol6(Gp + A)
R 88K GOTP 16 52 half16 GP + A

4-8 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Relocation

Figure 4-5: Relocation Types, Part 2 of 2

Name Value Field Calculation
R 88K PLT 32 56 word32 | L + A
R 88K PLT 32UA 57 uawd32 | L + A
R 88K PLT 16H 58 half16 #hil6(L + A)
R 88K PLT 16L 59 | halfl6 | #1lol6(L + A)
R 88K PLT 16 60 half16 L+A
R 88K ABREL 32 64 word32 | S + A — AB
R 88K ABREL 32UA 65 uawd32 | S + A - AB
R 88K ABREL 16H 66 half16 #hil6(S + A - AB
R 88K ABREL 16L 67 half16 #1lo16(S + A - AB
R 88K ABREL 16 68 half16 S+ A - 1B
R 88K GOT ABREL 32 72 word32 | G + A - BB
R 88K GOT ABREL 32UA 73 uawd32 | G + A - AB
R 88K GOT ABREL 16H 74 half16 #hil6(G + A - AB
R 88K GOT ABREL 16L 75 half16 #1lol6(G + A - AB
R 88K GOT ABREL 16 76 half16 G+ A - aB
R 88K GOTP ABREL 32 80 word32 | GP + A — AB
R 88K GOTP ABREL 32UA 81 uawd32 | GP + A - BB
R 88K GOTP_ABREL 16H 82 half16 #hil6(GP + A - BB)
R 88K _GOTP_ABREL 16L 83 half16 #lol6(GP + A - BB)
R 88K GOTP_ABREL 16 84 half16 GP + A - AB
R 88K PLT ABREL 32 88 word32 | L + A - BB
R 88K PLT ABREL 32UA 89 uawd32 | L + A - AB
R 88K PLT ABREL 16H 90 half16 #hil6é(L + A - AB
R 88K PLT ABREL 16L 91 half16 #lol6(L + A - AB
R 88K PLT ABREL 16 92 half16 L +A-AB
R 88K SREL 32 96 word32 | S+ A - P
R 88K SREL 32UA 97 uawd32 | S + A - P
R 88K SREL 16H 98 half16 #hil6(S + A - P)
R 88K SREL 16L 99 half16 #lol6(S + A - P)

OBJECT FILES 4-9

Relocation

Relocation types with special semantics are described below.

R 88K _COPY

R 88K GOTP ENT

This relocation type assists dynamic linking. Its offset
member refers to a location in a writable segment. The
symbol table index specifies a symbol that should exist
both in the current object file and in a shared object.
During execution, the dynamic linker copies data associ-
ated with the shared object’s symbol to the location
specified by the offset.

This relocation type assists dynamic linking. The reloca-
tion offset gives the location of a global offset table pro-
cedure entry. The relocation symbol names the pro-
cedure. The relocation addend gives the address of the
associated GOTP binding entry. For an executable file,
this address is absolute; for a shared object file, it is rela-
tive to the base address for the shared object. See
Chapter 5 for details.

The use of relocation types whose names end in *“ 16" is generally subject to
failure, because the value computed may not fit in 16 bits. However, the use of
theR 88K GOT ABREL 16 and R 88K GOTP ABREL 16 relocation types shall not fail
unless the total number of distinct GOT and GOTP entries for the executable or
shared object being link edited exceeds 16 380. In other words, the link editor is
obliged to favor GOT and GOTP entries when choosing an addressing base and
laying out the private data of either the executable or shared object file.

4-10

Motorola 88000 PROCESSOR ABI SUPPLEMENT

5. PROGRAM LOADING AND DYNAMIC LINKING

ONIDANIT DINVNAQ ANV ONIGVO1 E<m00mn__ 5

5 PROGRAM LOADING AND
DYNAMIC LINKING

Program Header 5-1
Segment Permissions 5-2
Program Loading 5-3
Dynamic Linking 5-7
Dynamic Section 5-7
Global Offset Table 5-9
Function Addresses 5-14
Procedure Linkage Table 5-15

Table of Contents

Program Header

An additional segment type, PT_88K_DEBINFADDR, is defined with value
0x70000001. This segment contains a single word whose value is the value of the
_debug_info symbol. The segment is created by the link editor. It allows a
debugger operating as a process separate from the process it is debugging to
locate the debug information in the executable file.

¢

PROGRAM LOADING AND DYNAMIC LINKING 5-1

Segment Permissions

The M88000 architecture is such that an individual segment cannot permit writ-
ing and execution attributes—pPF wand PF_x—at the same time. The following
combinations of segment permissions are valid for the M88000:

Figure 5-1: Segment Permissions

il Val Permissions Granted
ags ame Read Write Execute
none 0 no no no
PF X 1 unspecified no yes
PF W 2 unspecified | yes | unspecified
PF R 4 yes no unspecified
PF_R+PF X 5 yes no yes
PF R+PF W 6 yes yes | unspecified

In the table, ““yes” indicates the access shall be allowed; “no”” indicates the access
shall be denied and a S1GBUS signal shall be sent to the process; “‘unspecified”
indicates that the process cannot rely on either obtaining access nor receiving the
signal.

For the M88000 architecture, the segment permissions indicate only the initial
state of the segment. The use of the mprotect (KE_OS) function can change the
state during execution.

5-2 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Program Loading

As the system creates or augments a process image, it logically copies a file’s seg-
ment to a virtual memory segment. When—and if—the system physically reads
the file depends on the program’s execution behavior, system load, etc. A pro-
cess does not require a physical page unless it references the logical page during
execution, and processes commonly leave many pages unreferenced. Therefore
delaying physical reads frequently obviates them, improving system perfor-
mance. To obtain this efficiency in practice, executable and shared object files
must have segment images whose file offsets and virtual addresses are
congruent, modulo the page size.

Virtual addresses and file offsets for M88000 segments are congruent modulo
64K (0x10000). The value of the p_align member of each program header in a
shared object file must be 64K.

Figure 5-2: Executable File Example

File Offset File Virtual Address
0 ELF header
Program header table
Other information
0x100 Text segment 0x10100
0x2be00 bytes 0x3beff
0x2bf00 Data segment 0x4bf00
0x4e00 bytes 0x50cff
0x30d00 Other information

PROGRAM LOADING AND DYNAMIC LINKING 5-3

Program Loading

Figure 5-3: Program Header Segments Example

Member Text Data
p_type PT 88K LOAD | PT 88K LOAD
p_offset 0x100 0x2bf00
p_vaddr 0x10100 0x4b£f00
p_paddr unspecified unspecified
p_filesz 0x2be00 0x4e00
p_memsz 0x2be00 0x5e24
p_flags PF_R+PF X PF R+PF W
p align 0x10000 0x10000

Although the example’s file offsets and virtual addresses are congruent modulo
64 K for both text and data, up to four file pages hold impure text or data
(depending on page size and file system block size).

B The first text page contains the ELF header, the program header table, and
other information.

B The last text page holds a copy of the beginning of data.
B The first data page has a copy of the end of text.

B The last data page may contain file information not relevant to the running
process.

Logically, the system enforces the memory permissions as if each segment were
complete and separate; segments’ addresses are adjusted to ensure each logical
page in the address space has a single set of permissions. In the example above,
the region of the file holding the end of text and the beginning of data will be
mapped twice: at one virtual address for text and at a different virtual address
for data.

The end of the data segment requires special handling for uninitialized data,
which the system defines to begin with zero values. Thus if a file’s last data page
includes information not in the logical memory page, the extraneous data must
be set to zero, not the unknown contents of the executable file. “Impurities” in
the other three pages are not logically part of the process image; whether the

5-4 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Program Loading

system expunges them is unspecified. The memory image for this program fol-
lows, assuming 4 KB (0x1000) pages.

Figure 5-4: Process Image Segments

Virtual Address
0x10000

0x10100

0x3b£f00

0x4b000

0x4bf00

0x50d00

0x51d24

Contents

Header padding
0x100 bytes

Text segment

0x2be00 bytes

Data padding
0x100 bytes

Text padding
0xf00 bytes

Data segment

0x4e00 bytes

Uninitialized data
0x1024 zero bytes

Page padding
0x2dc zero bytes

Segment

Text

Data

One aspect of segment loading differs between executable files and shared
objects. Executable file segments typically contain absolute code [see ““Coding
Examples” in Chapter 3]. To let the process execute correctly, the segments must
reside at the virtual addresses used to build the executable file. Thus the system
uses the p_vaddr values unchanged as virtual addresses.

PROGRAM LOADING AND DYNAMIC LINKING

Program Loading

On the other hand, shared object segments typically contain position-
independent code. This lets a segment’s virtual address change from one process
to another, without invalidating execution behavior. Though the system chooses
virtual addresses for individual processes, it maintains the segments’ relative posi-
tions. Because position-independent code uses relative addressing between seg-
ments, the difference between virtual addresses in memory must match the
difference between virtual addresses in the file. The following table shows possi-
ble shared object virtual address assignments for several processes, illustrating
constant relative positioning. The table also illustrates the base address computa-
tions.

Figure 5-5: Example Shared Object Segment Addresses

Source Text Data Base Address
File 0x200 0x2a400 0x0
Process 1 0xc0000200 0xc002a400 0xc0000000
Process 2 0xc0010200 0xc003a400 0xc0010000
Process 3 | 0xd0020200 | 0xd004a400 0xd0020000
Process 4 0xd0030200 0xd005a400 0xd0030000

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Dynamic Linking

Dynamic Section

Dynamic section entries give information to the dynamic linker. Some of this
information is processor-specific, including the interpretation of some entries in
the dynamic structure.

DT PLTGOT

DT JMPREL
DT PLTRELSZ
DT PLTREL

This entry’s d_ptr member gives the address of three consecu-
tive words in the private data of an executable or shared object
file. These 12 bytes must be 4-byte aligned. The first word must
be set by the link editor to contain the address of the symbol
_DYNAMIC; the address is absolute for an executable file and rela-
tive to the base address for a shared object. The second and
third words are used to support lazy binding. The DT PLTGOT
entry is required in every object file that participates in dynamic
linking. The link editor chooses where to locate the three words;
one natural place would be the beginning of the global offset
table.

On the M88000, these entries specify a relocation table that per-
tains to global offset table procedure entries, rather than to the
procedure linkage table, as described in the System V ABI. This
relocation table should contain all relocation entries of type

R 88K _GOTP_ENT, and only those entries. In particular, reloca-
tion entries applying to the procedure linkage table are found
with all other relocation entries in the relocation table specified
by the DT RELA, DT RELASZ, and DT RELAENT entries.

PROGRAM LOADING AND DYNAMIC LINKING 5-7

Dynamic Linking

The following additional dynamic array tags are defined:

Figure 5-6: Dynamic Array Tags, d tag

Name Value d un Executable Shared Object
DT 88K _ADDRBASE 0x70000001 | d ptr | ignored required
DT 88K _PLTSTART 0x70000002 | d _ptr | optional optional
DT 88K _PLTEND 0x70000003 | d ptr | optional optional
DT_88K_TDESC 0x70000004 | d _ptr | optional optional

DT 88K ADDRBASE
This entry’s d_ptr member gives the addressing base for the
shared object.

DT_88K_PLTSTART
This entry’s d_ptr member gives the low address (inclusive) of
the PLT region in an object file.

DT _88K_PLTEND
This entry’s d_ptr member gives the high address (exclusive) of
the PLT region in an object file.

DT 88K TDESC This entry’s d ptr member gives the address of the tdesc infor-
mation for the object file. See “Text Description Information” in
Chapter 3 for more information.

If either of DT_88K_PLTSTART or DT_88K PLTEND is present, both must be present.

The PLT region is that portion of an object file that must be made executable by
the dynamic linker after relocations are performed in the region. The PLT region
includes all PLT entries for the object file that require relocation by the dynamic
linker. The region of memory between (((DT_88k PLTSTART value) / 64K) * 64K)
(inclusive) and ((((DT_88K PLTEND value) + 64K — 1) / 64K) * 64K) (exclusive),
where arithmetic is as for unsigned integers in the C language, is subject to being
made executable by the dynamic linker.

5-8 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Dynamic Linking

Global Offset Table

Position-independent code cannot, in general, contain absolute virtual addresses.
Global offset tables hold absolute addresses in private data, thus making the
addresses available without compromising the position-independence and shara-
bility of a program’s text. A program can reference its global offset table in
several ways:

B An executable file can reference its global offset table absolutely, as it would
any data, because the address of the global offset table is known to the link
editor. A shared object can reference its global offset table with position-
independent references, because all of the text and data of a shared object file
remains fixed relative to itself no matter where the shared object segments
are assigned in memory.

B A shared object typically references its global offset table relative to the
shared object’s addressing base. The link editor establishes the addressing
base and the location of the global offset table, so it can calculate constant
offsets to global offset table entries. The addressing base value can be com-
puted by a function in a shared object in a position-independent manner as
shown in Figure 3-32.

B References from a shared object’s procedure linkage table to the global offset
table procedure entries are made absolutely. This is possible because the
procedure linkage table is private to the shared object.

Initially, the global offset table holds information as required by its relocation
entries (see “Relocation” in Chapter 4). When the dynamic linker creates
memory segments for a loadable object file, it processes the relocation entries,
some of which will refer to the global offset table. The dynamic linker deter-
mines the associated symbol values, calculates their absolute addresses, and sets
the global offset table entries to the proper values. Although the absolute
addresses are unknown when the link editor builds an object file, the dynamic
linker knows the addresses of all memory segments and can thus calculate the
absolute addresses of the symbols contained therein.

A global offset table entry provides direct access to the absolute address of a
symbol, without compromising position independence and sharability. Because
the executable file and shared objects have separate global offset tables, a symbol
may appear in several tables. The dynamic linker processes all the global offset

PROGRAM LOADING AND DYNAMIC LINKING 5-9

Dynamic Linking

table relocations before giving control to any code in the process image, thus
ensuring the absolute addresses are available during execution.

The dynamic linker may choose different memory segment addresses for the
same shared object in different programs; it may even choose different library
addresses for different executions of the same program. Nonetheless, memory
segments do not change addresses once the process image is established. As long
as a process exists, its memory segments reside at fixed virtual addresses.

Global offset table (“GOT”’) entries are created by the link editor in response to
the use of certain relocation types. A GOT entry is 4 bytes long and 4-byte
aligned and is allocated in writable memory private to the executable or shared
object file. After relocation by the link editor, the dynamic linker, or both, a GOT
entry generally contains the value of its associated symbol, which is usually the
address of the entity (object or function) represented by the symbol. The one
exception is the case of a function for which there is a PLT entry in the executable
file. In this case the GOT entry contains the address of that PLT entry. In this
way, the address by which the executable file knows the function (its PLT entry
address) is also the address by which all shared objects know the function.

More efficient access to functions is provided by special GOT entries known as
““global offset table procedure” (“GOTP”’) entries. Like GOT entries, GOTP entries
are created by the link editor in response to use of certain relocation types, are 4
bytes long and 4-byte aligned, are allocated in writable memory private to the
executable or shared object file, and are relocated by the link editor, dynamic
linker, or both. A GOTP entry, however, may only refer to a function. During
execution, the GOTP entry contains an address to which control can be
transferred in order to reach the function represented by the symbol associated
with the GOTP entry. Moreover, the contents of the GOTP entry may change dur-
ing execution. This is “lazy binding”, described below. Although the contents of
a GOTP entry may change during execution, every value contained in a GOTP
entry serves to transfer control correctly to the associated function.

A GOTP entry has an associated relocation of type R 88k _GoTP_ENT. The reloca-
tion information and the initial contents of the entry are described under the
R _88K_GOTP_ENT relocation type.

There are two separate relocation operations that the dynamic linker may per-
form for a GOTP entry. The first, called “pre-binding,” is performed during the
dynamic linker’s relocation phase when lazy binding is in effect (when the
LD_BIND NOW environment variable is missing or null). In pre-binding, the

5-10 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Dynamic Linking

dynamic linker rewrites the GOTP entry so that calling through it invokes the
dynamic linker. When the first invocation is made through the GOTP entry, the
dynamic linker gains control and performs the second relocation operation on
the GOTP entry, called “binding.” Binding involves locating the relocation table
entry associated with the GOTP entry, looking up the associated symbol to find
where the function resides in memory, rewriting the GOTP entry to point directly
to the function, and finally transferring control to the function. If lazy binding is
not in effect (the value of the LD BIND NOw environment variable is non-null), the
dynamic linker simply performs the binding operation during its relocation
phase, bypassing the pre-binding step altogether.

Lazy binding generally improves overall application performance, because
NOTE | unused symbols incur lower dynamic linking cost. Nevertheless, two situa-
tions make lazy binding undesirable for some applications. First, the initial
| reference to a shared object function takes longer than subsequent calls,
because the dynamic linker intercepts the call to resolve the symbol. Some
applications cannot tolerate this unpredictability. Second, if an error occurs
and the dynamic linker cannot resolve the symbol, the dynamic linker will ter-
minate the program. Under lazy binding, this might occur at arbitrary times.
Once again, some applications cannot tolerate this unpredictability. By turn-
ing off lazy binding, the dynamic linker forces the failure to occur during pro-
cess initialization, before the application receives control.

The link editor and dynamic linker collaborate to support lazy binding. For each
GOTP entry, the link editor creates a “GOTP binding’”’ entry, a sequence of
instructions that serves to transfer control to the dynamic linker. When lazy
binding is in effect, the dynamic linker stores the address of the GOTP binding
entry in the GOTP entry. (The addend in the relocation entry for the GOTP entry
locates the GOTP binding entry.) The dynamic linker also stores a word identify-
ing the executable or shared object file and the address of its binding routine in
the second and third words, respectively, of the three words located by the

DT _PLTGOT value for the executable or shared object file.

The GOTP binding entry is responsible for transferring control to the address con-
tained in the word at “DT_PLTGOT value’ + 8, having extended the stack by 16
bytes with the following values:

PROGRAM LOADING AND DYNAMIC LINKING 5-11

Dynamic Linking

Figure 5-7: GOTP Binding Entry Stack Frame

#r31 Offset Contents
12 #r1 value at time of call
8 reloc off value
4 word at “DT_PLTGOT value”” + 4
0 the value 0

The reloc_off value is the offset, in bytes, from the DT JMPREL value for the exe-
cutable or shared object file containing the GOTP entry, to the relocation entry for
the GOTP entry.

The GOTP binding entry may destroy the contents of register #r11. The GOTP
binding entry, in transferring to the dynamic linker, must place an appropriate
return address in #r1, to maintain a proper return address chain for text descrip-
tion information purposes.

There are many ways for the link editor to satisfy the above requirements. One
possible implementation of the GOTP binding entry is:

Figure 5-8: GOTP Binding Entry

or.u #rll, #r0,#hil6 (reloc_off)
or #rll, #rll, #1ol6 (reloc off)
br GOTP_binding helper

where GOTP_binding helper is a sequence of instructions particular to the given
executable or shared object file. A GOTP binding helper routine that cooperates
with GOTP binding entries as shown above could be:

5-12 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figure 5-9: GOTP Binding Helper

subu #r31, #r31,16
st #rl, #r31,12
st #r1l, #r31,8
bsr here
here: or.u #rll, #r0, #hil6 (DT PLTGOT-here)
or #rll, #rll, #1016 (DT PLTGOT-here)
addu #rll, #rll,#rl
1d #rl, #rll1,4
st #rl,#r31,4
1d #rl1l, #r11,8
st #r0,#r31,0
jsr #rll
or #r0, #r0, #r0

The expression “DT_PLTGOT-here” represents the distance from label here to the
DT_PLTGOT-specified value. The final “no-op” instruction is needed so that the
return address placed in #r1 by the jsr instruction will correctly locate the GOTP
binding helper routine for text description information purposes.

The example sequences shown for the GOTP binding entry and GOTP binding
helper routine are designed not to require any relocation by the dynamic linker.
Hence, they can be part of the normal text of a shared object. In particular, they
don’t need to reside along with PLT entries in the PLT region. However, it may be
convenient for the link editor to create a procedure linkage table consisting of the
GOTP binding helper routine followed by PLT and GOTP binding entries for each
GOTP entry.

PROGRAM LOADING AND DYNAMIC LINKING 5-13

Dynamic Linking

Dynamic Linking

Function Addresses

References to the address of a function from an executable file and the shared
objects associated with it might not resolve to the same value. References from
within shared objects will normally be resolved by the dynamic linker to the vir-
tual address of the function itself. References from within the executable file to a
function defined in a shared object will normally be resolved by the link editor to
the address of the procedure linkage table entry for that function within the exe-
cutable file.

To allow comparisons of function addresses to work as expected, if an executable
file references a function defined in a shared object, the link editor will place the
address of the procedure linkage table entry for that function in its associated
symbol table entry. (See “Symbol Values” in Chapter 4.) The dynamic linker
treats such symbol table entries specially. If the dynamic linker is searching for a
symbol, and encounters a symbol table entry for that symbol in the executable
file, it normally follows the rules below.

B If the st_shndx member of the symbol table entry is not SN UNDEF, the
dynamic linker has found a definition for the symbol and uses its st_value
member as the symbol’s address.

B If the st_shndx member is SHN UNDEF and the symbol is of type sTT FUNC
and the st_value member is not zero, the dynamic linker recognizes this
entry as special and uses the st_value member as the symbol’s address.

B Otherwise, the dynamic linker considers the symbol to be undefined within
the executable file and continues processing.

Some relocations are associated with procedure linkage table entries. These
entries are used for direct function calls rather than for references to function
addresses. These relocations are not treated in the special way described above
because the dynamic linker must not redirect procedure linkage table entries to
point to themselves.

5-14 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Dynamic Linking

Procedure Linkage Table

The procedure linkage table is a repository for short sequences of code that pro-
vide convenient access to GOTP entries. A procedure linkage table (“PLT"’) entry
is a sequence of instructions that passes control on to a procedure identified by a
particular GOTP entry. The benefit of a PLT entry is that it provides an address
(the address of its first instruction) to which control can simply be transferred (as
by a bsr instruction, for example) in order to invoke a GOTP entry with the
appropriate protocol.

It is usually better to access a GOTP entry directly rather than indirectly through a PLT
entry. However, there are some situations in which a PLT entry can be useful.

B When code is compiled for inclusion in an executable file (and, in particular,
not for inclusion in a shared object), it is generally best to compile a call into
simply a bsr instruction, under the assumption that most calls from outside
of all shared objects will be to procedures that are not in a shared object. If it
turns out for such a call that the procedure being called is in a shared object,
a PLT entry can be created by the link editor, and the bsr instruction can sim-
ply be adjusted to reference the PLT entry.

M When code is compiled for inclusion in a shared object, the compiler can
emit instructions to access the GOTP entry directly. It may be useful, how-
ever, for either convenience of the compiler or compactness of the call (when
many are made statically to the same GOTP entry), to use simply a bsr
instruction and a PLT entry.

The procedure linkage table is unlike a normal table in one respect—its entries
are not necessarily all the same size. (Nevertheless, typically the entries will all
be the same size.) The form of a typical PLT entry, for a hypothetical procedure
named ““name,” is shown below, as if it were written in assembly language.

PROGRAM LOADING AND DYNAMIC LINKING 5-15

Dynamic Linking

Figure 5-10: PLT Entry

name: or.u #rll,#r0, #hil6 (name#gotp)
1d #rll, #rll, #1016 (name#gotp)
Jmp #ril

Although the instruction sequence shown above is only one of many possible
sequences, the following points will invariably be true:

B The GOTP entry for the procedure is referenced absolutely. Because the glo-
bal offset table for a shared object may reside at different locations in dif-
ferent processes, the PLT entry code cannot be shared by different processes.

B Register #r11 is used to load the contents of the GOTP entry.
M No register other than #r11 is changed by the PLT entry sequence.

Executable files and shared object files have separate procedure linkage tables,
just as they have separate global offset tables. The treatment by the link editor
and dynamic linker can vary in the two different cases. The procedure linkage
table in an executable file can be relocated by the link editor, so it can be placed in
the text area and shared by all processes executing that file. Note that, in this
case, the dynamic linker doesn’t act on the procedure linkage table at all.

Because the PLT entry refers to absolute addresses in the global offset table, how-
ever, the procedure linkage table in a shared object file cannot be relocated until
the shared object has had its memory assigned by the dynamic linker. In the
shared object case, the link editor constructs the procedure linkage table in a seg-
ment that is initially writable but not executable. The link editor records the
extent of the PLT region with the DT 88K _PLTSTART and DT _88K_PLTEND informa-
tion. The dynamic linker loads the shared object, performs relocations (including
those on the procedure linkage table), then uses mprotect (KE_OS) to change the
segment containing the procedure linkage table from writable to executable.
Note that the area of memory subject to being changed from writable to execut-
able is the area containing the PLT region, rounded outward on each end to a 64K
boundary.

5-16 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Dynamic Linking

The link editor is responsible for contributing text description information to
describe the code that it creates, namely the PLT entries, GOTP binding entries,
and GOTP binding helper routine.

PROGRAM LOADING AND DYNAMIC LINKING 5-17

6. LIBRARIES

S3idvdall ‘9

6 LIBRARIES

System Library 6-1
Additional Entry Points 6-1
Support Routines 6-1
Global Data Symbols 6-3

B Application Constraints 6-3
C Library 6-4
Additional Support Routines 6-4
System Data Interfaces 6-5
Data Definitions 6-5

Table of Contents

System Library

Additional Entry Points

There are no additional entry points required by the Motorola 88000 Processor
Supplement.

Support Routines

Besides operating system services, libsys contains the following processor-
specific support routines. The routines are also accessible named with a leading
underscore.

Figure 6-1: libsys Support Routines

getpsr sbrk setpsr

unsigned getpsr (void) ;
This function returns the current contents of the Processor Status
Register (PSR).

char *sbrk(int incr);
This function adds incr bytes to the break value and changes the
allocated space accordingly. Incr can be negative, in which case the
amount of allocated space is decreased. The break value is the
address of the first location beyond the end of the data segment. The
amount of allocated space increases as the break value increases.
Newly allocated space is set to zero. If, however, the same memory
space is reallocated to the same process, its contents are undefined.
Upon successful completion, sbrk returns the old break value. Other-
wise, it returns —1 and sets errno to indicate the error.

unsigned setpsr (unsigned psr);
This function sets several bits in the Processor Status Register (PSR) of
the calling process. These bits control certain aspects of the execution
of the process. The bits that can be set are the SER, C, BO, and MXM

LIBRARIES 6-1

System Library

bits; the precise semantics of these bits are defined in the MC88100
User’s Manual .

The parameter psr is the bitwise inclusive OR of one or more of the
following values: PSR SER, PSR C, PSR MXM, or PSR _BO. (See
<m88kbcs.h>.)

Setting the SER bit (PSR_SER) turns on serial mode. Clearing this bit
allows concurrent operation.

Setting the C (PSR _C) bit sets the carry bit to one; clearing this bit
zeroes the carry bit.

Setting the MXM bit (Psr_Mxm) disables misaligned access exceptions.
Clearing this bit enables misaligned access exceptions; in this mode a
misaligned access causes the system to deliver a SIGBUS signal to the
process.

Setting the BO bit (PSR_BO) causes the current byte order to be Little-
Endian; clearing the BO bit causes the current byte order to be Big-
Endian. Regardless of the setting of the BO bit, all interfaces to or
from the system are always in Big-Endian order: all fields in struc-
tures, signal frames, etc.

All bits in the psr parameter except SER, C, BO, and MXM are ignored.

The setpsr call returns the previous value of the Processor Status
Register.

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Library

Global Data Symbols

The libsys library requires that some global external data objects be defined for the
routines to work properly. In addition to the corresponding data symbols listed in
the System V ABI, the following symbols must be provided in the system library on
all ABI-conforming systems implemented with the Motorola 88000 processor archi-
tecture. Declarations for the data objects listed below can be found in the Data
Definitions section of this chapter or immediately following the table.

Figure 6-2: libsys, Global External Data Symbols

__flt rounds _ huge val

Application Constraints

As described above, libsys provides symbols for applications. In a few cases,
however, an executable is obliged to provide symbols for the library. In addition
to the application-provided symbols listed in this section of the System V ABI,
conforming applications on the Motorola 88000 processor architecture are also
required to provide the following symbols.

extern _end;
This symbol refers neither to a routine nor to a location with interest-
ing contents. Instead, its address must correspond to the beginning of
a program’s dynamic allocation area, called the heap. Typically, the
heap begins immediately after the data segment of the program’s exe-
cutable file. This value is normally provided by the static linker.

extern const int 1lib version;
This variable’s value specifies the compilation and execution mode for
the program. If the value is zero, the program wants to preserve the
semantics of older (pre-ANSI) C, where conflicts exist with ANSI. Oth-
erwise, the value is non-zero, and the program wants ANSI C seman-
tics. This value is normally provided by the compiler.

LIBRARIES 6-3

C Library

Additional Support Routines

There are no additional support routines required by the Motorola 88000 Proces-
sor Supplement.

6-4 Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Data Definitions

This section contains standard header files that describe system data. These files
are referred to by their names in angle brackets: <name.h>and <sys/name.h>.
Included in these headers are macro definitions and data definitions.

The data objects described in this section are part of the interface between an
ABI-conforming application and the underlying ABI-conforming system where it
will run. While an ABI-conforming system must provide these interfaces, it is not
required to contain the actual header files referenced here.

ANSI C serves as the ABI reference programming language, and data definitions
are specificed in ANSI C format. The C language is used here as a convenient
notation. Using a C language description of these data objects does not preclude
their use by other programming languages.

Figure 6-3: <assert.h>

extern void _ _assert (const char *, const char #*, int);
#define assert (EX) \
(void) ((EX) || (_ _assert (#X, = FILE , @ LINE), 0))

LIBRARIES 6-5

System Data Interfaces

Figure 6-4: <ctype.h>

-

N

#define U 01

#define L 02

#define _N 04

#define _S 010

#define _P 020

#define C 040

#define B 0100

#define X 0200

extern unsigned char _ _ctypel];

#define isalpha(c) ((__ctype+l) [cl&(_U|_L))
#define isupper(c) ((__ctype+l) [cl& U)
#define islower (c) ((__ctypetl) [cl&_L)

#define isdigit (c) ((__ctype+l) [c]&_N)

#define isxdigit(c) ((__ctype+l) [cl&_X)
#define isalnum(c) ((__ctype+l) [cl&(_U|_L|_N))
#define isspace(c) ((_ _ctypetl) [cl&_S)

#define ispunct (c) ((__ctype+l) [c]&_P)
#define isprint (c) ((__ctype+1) [c]&(_P|_U|_L|_N|_B))
#define isgraph(c) ((__ctypetl) [cl& (_P|_U|_L|_N))
#define iscntrl(c) ((__ctype+l) [c]& C)
#define isascii(c) (1 ((c)&~0177))

#define _toupper (c) ((__ctype+258) [c])

#define _tolower (c) ((_ _ctypet+258) [c])

#define toascii(c) ((c)&0177)

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-5: <dirent.h>

struct dirent {

ino_t d_ino;

off t d off;
unsigned short d reclen;
char d name[1];

LIBRARIES 6-7

System Data Interfaces

Figure 6-6: <errno.h>, Part 1 of 4

~

extern int errno;

#define EPERM
#define ENOENT
#define ESRCH
#define EINTR
#define EIO
#define ENXIO
#define E2BIG
#define ENOEXEC
#define EBADF
#define ECHILD
#define EAGAIN
#define ENOMEM
#define EACCES
#define EFAULT
#define ENOTBLK
#define EBUSY
#define EEXIST
#define EXDEV
#define ENODEV
#define ENOTDIR
#define EISDIR
#define EINVAL
#define ENFILE
#define EMFILE
#define ENOTTY
#define ETXTBSY
#define EFBIG
#define ENOSPC
#define ESPIPE
#define EROFS
#define EMLINK
#define EPIPE

W oo N WN P

NNOMNNNMNNNNRRERRRRERERRRB
N sWNHFEFORE®ONU S WNKRHO

28

6-8

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-7: <errno.h>, Part 2 of 4

-~

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

EDOM
ERANGE
ENOMSG
EIDRM
ECHRNG
EL2NSYNC
EL3HLT
EL3RST
ELNRNG
EUNATCH
ENOCSI
EL2HLT
EDEADLK
ENOLCK
ENOSTR
ENODATA
ETIME
ENOSR
ENONET
ENOPKG
EREMOTE
ENOLINK
EADV
ESRMNT
ECOMM
EPROTO

33
34
35
36
37
38
39
40
41
42
43
44
45
46
60
61
62
63
64
65
66
67
68
69
70
71

LIBRARIES

System Data Interfaces

Figure 6-8: <errno.h>, Part 3 of 4

4 N

#define EMULTIHOP 74
#define EBADMSG 77
#define ENAMETOOLONG 78
#define EOVERFLOW 79
#define ENOTUNIQ 80
#define EBADFD 81
#define EREMCHG 82
#define ENOSYS 89
#define ELOOP 90
#define ERESTART 91
#define ESTRPIPE 92
#define ENOTEMPTY 158
#define ESTALE 162

/* The following errno values are optional. */

#define EWOULDBLOCK EDEADLK

#define EBADE 50
#define EBADR 51
#define EXFULL 52
#define ENOANO 53
#define EBADRQC 54
#define EBADSLT 55
#define EDEADLOCK 56
#define EBFONT 57
#define EDOTDOT 76
#define ELIBACC 83
#define ELIBBAD 84
#define ELIBSCN 85

N /

6-10 Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-9: <errno.h>, Part4 of 4

-

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

N

ELIBMAX 86
ELIBEXEC 87
EINPROGRESS 128
EALREADY 129
ENOTSOCK 130
EDESTADDRREQ 131
EMSGSIZE 132
EPROTOTYPE 133
ENOPROTOOPT 134
EPROTONOSUPPORT
ESOCKTNOSUPPORT
EOPNOTSUPP 137
EPFNOSUPPORT 138
EAFNOSUPPORT 139
EADDRINUSE 140
EADDRNOTAVAIL 141
ENETDOWN 142
ENETUNREACH 143
ENETRESET 144
ECONNABORTED 145
ECONNRESET 146
ENOBUFS 147
EISCONN 148
ENOTCONN 149
ESHUTDOWN 150
ETOOMANYREFS 151
ETIMEDOUT 152
ECONNREFUSED 153
EHOSTDOWN 156
EHOSTUNREACH 157
EPROCLIM 159
EUSERS 160
EDQUOT 161
EPOWERFAIL 163

135
136

LIBRARIES

6-11

System Data Interfaces

Figure 6-10: <fcntl.h>, Part 1 of 2
#define O RDONLY 0
#define O WRONLY 1
#define O RDWR 2
#define O NDELAY 04
#define O APPEND 010
#define O_SYNC 020
#define O NONBLOCK 0100
#define O CREAT 00400
#define O TRUNC 01000
#define O_EXCL 02000
#define O _NOCTTY 04000
#define F_DUPFD 0
#define F_GETFD 1
#define F_SETFD 2
#define F_GETFL 3
#define F_SETFL 4
#define F_GETLK 14
#define F_SETLK 6
#define F_SETLKW 7
#define F_FREESP 11
#define FD_CLOEXEC 1
#define O ACCMODE 03

N

6-12

Motorola 88000 PROCESSOR ABI SUPPLEMENT

NOTE

-

System Data Interfaces

The following struct flock is defined differently than in the 88open Object
Compatibility Standard.

Figure 6-11: <fcntl.h>, Part 2 of 2

typedef struct flock {

short
short
off t
off t
long
pid t
long
} flock t;

1 type;
1_whence;
1 _start;
1_len;

1 sysid;
1 pid;
pad[4];

#define F_RDLCK 01
#define F_WRLCK 02
#define F_UNLCK 03

Figure 6-12:

<float.h>

extern int __flt rounds;

#define FLT ROUNDS

_ _flt rounds

LIBRARIES

6-13

System Data Interfaces

Figure 6-13: <fmtmsg.h>
#define MM NULL oL
#define MM HARD 0x00000001L
#define MM SOFT 0x00000002L
#define MM FIRM 0x00000004L
#define MM RECOVER 0x00000100L
#define MM NRECOV 0x00000200L
#define MM APPL 0x00000008L
#define MM UTIL 0x00000010L
#define MM OPSYS 0x00000020L
#define MM PRINT 0x00000040L
#define MM CONSOLE 0x00000080L
#define MM NOSEV 0
#define MM HALT 1
#define MM ERROR 2
#define MM WARNING 3
#define MM _INFO 4
#define MM NULLLBL ((char #) 0)
#define MM NULLSEV MM NOSEV
#define MM NULLMC oL
#define MM NULLTXT ((char *) 0)
#define MM NULLACT ((char #) 0)
#define MM NULLTAG ((char *) 0)
#define MM NOTOK -1
#define MM OK 0x00
#define MM NOMSG 0x01
#define MM NOCON 0x04 j
6-14 Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-14: <ftw.h>

-~

#define FTW_PHYS

#define FTW MOUNT
#define FTW_CHDIR
#define FTW_DEPTH

#define FTW F
#define FTW D
#define FTW_DNR
#define FTW NS
#define FTW SL
#define FTW_DP
#define FTW_SIN

struct FIW

{
int quit;
int base;
int level;

}i

N

01
02
04
010

~NoOds WN O

Figure 6-15: <grp.h>

struct group {

char *gr_name;

char *gr_passwd;
gid t gr_gid;

char #*gr mem;

LIBRARIES

6-15

System Data Interfaces

The following struct ipc perm is defined differently than in the 88open
NOTE | Object Compatibility Standard.

Figure 6-16: <sys/ipc.h>

}i

#define
#define
#define
#define

#define
#define

#define
#define

N

struct ipc perm {

uid t

gid t

uid t

gid t

mode_t
unsigned long
key t

long

IPC_CREAT
IPC_EXCL
IPC_NOWAIT
IPC_ALLOC

IPC_PRIVATE
IPC_RMID

IPC_SET
IPC_STAT

uid;
gid;
cuid;
cgid;
mode;
seq;
key;
pad[4];

0001000
0002000
0004000
0100000

(key t)0
10

11
12

6-16

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-17: <langinfo.h>, Part 1 of 2
#define DAY 1 1
#define DAY 2 2
#define DAY 3 3
#define DAY 4 4
#define DAY 5 5
#define DAY 6 [3
#define DAY 7 7
#define ABDAY 1 8
#define ABDAY 2 9
#define ABDAY 3 10
#define ABDAY 4 11
#define ABDAY 5 12
#define ABDAY 6 13
#define ABDAY 7 14
#define MON 1 15
#define MON 2 16
#define MON 3 17
#define MON 4 18
#define MON 5 19
#define MON 6 20
#define MON 7 21
#define MON 8 22
#define MON 9 23
#define MON 10 24
#define MON 11 25
#define MON 12 26

-

LIBRARIES

6-17

System Data Interfaces

Figure 6-18:

-

<langinfo.h>, Part 2 of 2

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define

#define
#define
#define
#define
#define

ABMON 1
ABMON 2
ABMON 3
ABMON 4
ABMON 5
ABMON 6
ABMON 7
ABMON 8
ABMON 9
ABMON 10
ABMON 11
ABMON 12

RADIXCHAR
THOUSEP
YESSTR
NOSTR
CRNCYSTR

D_T_FMT
D_FMT
T_FMT
AM STR
PM STR

27
28
29
30
31
32
33
34
35
36
37
38

39
40

42
43

44
45
46
47
48

6-18

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-19: <limits.h>

/

#define MB_LEN MAX 5

#undef ARG MAX
#undef CHILD MAX
#undef MAX CANON
#undef NGROUPS_MAX
#undef LINK MAX
#undef NAME MAX
#undef OPEN MAX
#undef PASS MAX
#undef PATH MAX
#undef PIPE BUF
#undef MAX INPUT

/* the #undef-fed values vary and should be
retrieved using sysconf() or pathconf() */

~

#define _POSIX ARG MAX 4096

#define _POSIX CHILD MAX 6

#define _POSIX LINK MAX 8

#define _POSIX MAX CANON 255

#define _POSIX MAX INPUT 255

#define _POSIX NAME MAX 14

#define _POSIX NGROUPS MAX 0

#define _POSIX OPEN MAX 16

#define _POSIX PATH MAX 255

#define _POSIX PIPE BUF 512

#define NL ARGMAX 9

#define NL_LANGMAX 14

#define NI _MSGMAX 32767

#define NL NMAX 1

#define NL_SETMAX 255

#define NL TEXTMAX 255

#define NZERO 20

#define TMP MAX 17576

#define FCHAR MAX 1048576 J
LIBRARIES 6-19

System Data Interfaces

Figure 6-20: <locale.h>

—

struct lconv {

char *decimal point;
char *thousands_sep;
char *grouping;
char #int curr symbol;
char *currency symbol;
char *mon_decimal point;
char *mon_thousands_sep;
char *mon_grouping;
char *positive sign;
char *negative sign;
char int_frac digits;
char frac digits;
char p cs precedes;
char P_sep_by space;
char n cs precedes;
char n_sep by space;
char p sign posn;
char n sign posn;

} lconv;

#define LC CTYPE

#define LC NUMERIC
#define LC_TIME
#define LC COLLATE
#define LC MONETARY
#define LC MESSAGES
#define LC ALL
#define NULL

S o U HE N WO

6-20

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-21: <sys/m88kbcs.h>

#define PSR _SER 0x20000000
#define PSR _C 0x10000000
#define PSR _MXM 0x00000004
#define PSR BO 0x40000000

Figure 6-22: <math.h>

typedef union _h val {
unsigned long 1i[2];

double d;
} _h val;
extern const _h val _ _huge val;
#define HUGE_VAL _ _huge val.d

LIBRARIES 6-21

System Data Interfaces

Figure 6-23:

-

<sys/mman.h>

#define PROT READ
#define PROT WRITE
#define PROT EXEC
#define PROT NONE

#define MAP SHARED
#define MAP PRIVATE
#define MAP FIXED

#define MS SYNC

#define MS_ASYNC
#define MS INVALIDATE 0x2

0x1
0x2
0x4
0x0

1
2
0x10

0x0
0x1

Figure 6-24:

<mon.h>

-

struct hdr {
char
char
int

}:

struct cnt {
char
long
}:

*1pc;
*hpc;
nfns;

*fnpc;
ment ;

K\\\fypedef unsigned short WORD;

6-22

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-25: <sys/mount.h>

#define MS_RDONLY
#define MS_DATA
#define MS_NOSUID
#define MS REMOUNT

0x01
0x04
0x10
0x20

LIBRARIES

6-23

System Data Interfaces

The following struct msqid ds is defined differently than in the 88open
NOTE | Object Compatibility Standard.

Figure 6-26: <sys/msg.h>

struct msqgid ds { \

struct ipc perm msg_perm;
struct msg *msg_ first;
struct msg *msg_last;

unsigned long msg_cbytes;
unsigned long msg_gnum;
u.nﬁgned long msg_gbytes;

pid t msg_lspid;
pid t msg_lrpid;
time t msg_stime;
long msg_susec;
time t msg_rtime;
long msg_rusec;
time t msg_ctime;
long msg_cusec;
long pad[4];

}i

#define MSG NOERROR 010000

6-24 Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-27: <netconfig.h>, Part 1 of 2
struct netconfig {
char *nc_netid;
unsigned long nc_semantics;
unsigned long nc_flag;
char *nc_protofmly;
char *nc_proto;
char *nc_device;
unsigned long nc_nlookups;
char **nc_lookups;
unsigned long nc_unused[8];
}:
#define NC TPI_CLTS 1
#define NC_TPI_COTS 2
#define NC_TPI_COTS_ORD 3
#define NC_TPI_RAW 4
#define NC NOFLAG 00
#define NC_VISIBLE 01
#define NC_BROADCAST 02

-

LIBRARIES

6-25

System Data Interfaces

Figure 6-28:

-~

<netconfig.h>, Part 2 of 2

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

NC_NOPROTOFMLY "-"
NC_LOOPBACK "loopback"

NC_INET "inet"
NC_IMPLINK "implink"
NC_PUP "pup"
NC_CHAOS "chaos"
NC_NS "ns"
NC_NBS "nbs"
NC_ECMA "ecma"
NC_DATAKIT "datakit"
NC_CCITT "ccitt"
NC_SNA "sna"
NC_DECNET "decnet"”
NC_DLI "dli"
NC_ILAT "lat"
NC_HYLINK "hylink"
NC _APPLETALK "appletalk"
NC_NIT "nit"
NC_IEEE802 "ieee802"
NC_0OsI "osi"
NC_X25 "x25"
NC_OSINET "osinet"
NC_GOSIP "gosip"
NC_NOPROTO -
NC_TCP "tcp"
NC_UDP "udp"
NC_ICMP "icmp"

6-26

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-29:

<netdir.h>

///'

}i

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define

N

struct nd addrlist {

int n_cnt;

struct netbuf *n_addrs;

struct nd hostservlist {

int h cnt;

struct nd hostserv *h hostservs;

struct nd hostserv {

char #*h host;
char #*h_serv;

ND_BADARG

ND_NOMEM

ND_OK

ND_NOHOST

ND_NOSERV

ND_NOSYM

ND_OPEN

ND_ACCESS

ND_UKNWN

ND_NOCTRL
ND_FAILCTRL
ND_SYSTEM
ND_HOSTSERV
ND_HOSTSERVLIST
ND_ADDR

ND_ADDRLIST
ND_SET_BROADCAST
ND_SET_RESERVEDPORT
ND_CHECK_RESERVEDPORT
ND_MERGEADDR

HOST SELF
HOST ANY
HOST BROADCAST

[
=N

BWNKFEF WNHFEFOOVWOINUO D WNKHO

"\\lll
m\2
"3

LIBRARIES

6-27

System Data Interfaces

Figure 6-30:

<nl_ types.h>

#define NL_SETD 1

| typedef short nl_item ;
typedef void *nl catd;

Figure 6-31: <sys/param.h>

#define HZ sysconf (3)
#define NGROUPS UMIN 0
#define MAXPATHLEN 1024
#define MAXSYMLINKS 20
#define MAXNAMELEN 256
#define NADDR 13
#define NBBY 8
#define NBPSCTR 512

N

6-28

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-32:

<poll.h>

-

#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define

o

struct pollfd {

int fd;

short events;

short revents;

POLLIN
POLLPRI
POLLOUT
POLLRDNORM
POLLWRNORM
POLLRDBAND
POLLWRBAND
POLLNORM

POLLERR
POLLHUP
POLLNVAL

0x0001
0x0002
0x0004
0x0040
POLLOUT
0x0080
0x0100
POLLRDNORM

0x0008
0x0010
0x0020

LIBRARIES

6-29

System Data Interfaces

Figure 6-33:

-

<sys/procset .h>

#define
#define
#define
#define

typedef

typedef

P_INITPID
P_INITUID
P_INITPGID
P_MYID

-~ O O

long id t;

enum idtype {
P PID,
P_PPID,
P_PGID,

P _SID,

P_CID,

P UID,

P_GID,

P_ALL

} idtype t;

typedef

enum idop {
POP_DIFF,
POP_AND,
POP_OR,
POP_XOR

} idop t;

typedef

struct procset {

idop t P_op;
idtype t p_lidtype;
id t p_lid;
idtype t p_ridtype;
id t p_rid;

} procset t;

6-30

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-34: <pwd.h>

/

struct passwd {
char *pw_name;
char *pw_passwd;
uid t pw_uid;
gid t pw gid;
char *pw_age;
char *pw_comment;
char *pw_gecos;
char *pw_dir;
char *pw_shell;

}i

LIBRARIES

6-31

System Data Interfaces

Figure 6-35: <sys/regset.h>, Part 1 of 2

4 N

typedef unsigned int greg t;
#define NGREG 38
typedef greg t gregset_t [NGREG] ;
#define RRO 0

#define RR1 1

#define R R2 2

#define R R3 3

#define R R4 4

#define RR5 5

#define RR6 6

#define R R7 7

#define R R8 8

#define R R9 9

#define R R10 10
#define R R11 11
#define R R12 12
#define R R13 13
#define R R14 14
#define R R15 15
#define R R16 16
#define R R17 17
#define R R18 18
#define R R19 19
#define R R20 20
#define R R21 21
#define R R22 22
#define R R23 23
#define R R24 24
#define R R25 25

_ /

6-32 Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-36: <sys/regset.h>, Part 2 of 2
#define R R26 26
#define R R27 27
#define R R28 28
#define R R29 29
#define R R30 30
#define R R31 31
#define R XIP 32
#define R NIP 33
#define R FIP 34
#define R PSR 35
#define R FPSR 36
#define R FPCR 37
typedef struct dfltinfo {

typedef

-

unsigned int dma
unsigned int dmt
unsigned int dmd

v Ne N

} dfltinfo t;

struct fpifltinfo {
unsigned int fprh;
unsigned int fprl;
unsigned int fpit;

} fpifltinfo t;

LIBRARIES

6-33

System Data Interfaces

Figure 6-37: <sys/resource.h>

4 N

#define RLIMIT CPU
#define RLIMIT FSIZE
#define RLIMIT DATA
#define RLIMIT STACK
#define RLIMIT CORE
#define RLIMIT NOFILE
#define RLIMIT VMEM
#define RLIMIT AS RLIMIT VMEM

AU WN O

struct rlimit {
rlim t rlim cur;
rlim t rlim max;
bi

typedef unsigned long rlim t;

N /

6-34 Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-38: <rpc.h>, Part 1 of 12

4 N

#define MAX AUTH BYTES 400
#define MAXNETNAMELEN 255
#define HEXKEYBYTES 48

enum auth stat {
AUTH OK=0,
AUTH BADCRED=1,
AUTH_REJECTEDCRED=2,
AUTH_BADVERF=3,
AUTH REJECTEDVERF=4,
AUTH_TOOWEAK=5,
AUTH_INVALIDRESP=6,
AUTH FAILED=7

union des block {
struct {
unsigned long high;
unsigned long low;
} key;
char c[8];

}:

o _/

LIBRARIES 6-35

System Data Interfaces

Figure 6-39: <rpc.h>, Part 2 of 12

-

struct opaque auth {
int oa_flavor;
char #*oa base;
unsigned int oa_length;
}:

typedef struct {
struct opaque auth ah cred;
struct opaque auth ah verf;
union des block ah key;
struct auth ops {
void (*ah nextverf) ();
int (*ah_marshal) ();
int (*ah_validate) ();
int (*ah_refresh) ();
void (*ah destroy) ();
} *ah ops;
char *ah private;
} AUTH;

struct authsys parms {
unsigned long aup time;
char #*aup machname;
uid t aup uid;
gid t aup gid;
unsigned int aup len;
gid t *aup gids;

-

6-36

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-40: <rpc.h>, Part 3 of 12

-~

extern struct opaque auth null_auth;

#define AUTH NONE 0
#define AUTH NULL 0
#define AUTH SYS 1
#define AUTH UNIX AUTH_SYS
#define AUTH SHORT 2
#define AUTH DES 3

#define DES FAILED (err)

N

((err) > DESERR NOHWDEVICE)

\

LIBRARIES

6-37

System Data Interfaces

Figure 6-41: <rpc.h>, Part 4 of 12

enum clnt stat {

}:

#define RPC_PMAPFAILURE RPC RPCBFAILURE j

RPC_SUCCESS=0,
RPC_CANTENCODEARGS=1,
RPC_CANTDECODERES=2,
RPC_CANTSEND=3,
RPC_CANTRECV=4,
RPC_TIMEDOUT=5,
RPC_INTR=18,
RPC_VERSMISMATCH=6,
RPC_AUTHERROR=7,
RPC_PROGUNAVAIL=8,
RPC_PROGVERSMISMATCH=9,
RPC_PROCUNAVATL=10,
RPC_CANTDECODEARGS=11,
RPC_SYSTEMERROR=12,
RPC_UNKNOWNHOST=13,
RPC_UNKNOWNPROTO=17,
RPC_UNKNOWNADDR=19,
RPC_NOBROADCAST=21,
RPC_RPCBFAILURE=14,
RPC_PROGNOTREGISTERED=15,
RPC_N2AXLATEFATLURE=22,
RPC_UDERROR=23,
RPC_TLIERROR=20,
RPC_FAILED=16

6-38

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-42: <rpc.h>, Part 5 of 12

-)

#define _RPC NONE
#define RPC_NETPATH
#define _RPC VISIBLE
#define RPC CIRCUIT V
#define RPC DATAGRAM V
#define RPC CIRCUIT N
#define _RPC DATAGRAM N
#define RPC TCP
#define _RPC_UDP

@® N o WN RO

#define RPC_ANYSOCK -1
#define RPC_ANYFD RPC_ANYSOCK

struct rpc err {
enum clnt stat re status;
union {
struct {
int errno;
int t_errno;
} RE err;
enum auth stat RE why;
struct {
unsigned long low;
unsigned long high;
} RE_vers;
struct {
long sl1;
long s2;
} RE 1b;

LIBRARIES 6-39

System Data Interfaces

Figure 6-43: <rpc.h>, Part 6 of 12

-

struct rpc createerr {
enum clnt stat cf stat;
struct rpc err cf error;

_

}:

typedef struct {

AUTH *cl_auth;
struct clnt ops {
enum clnt stat (*cl call) ();

void (*cl abort) ();
void (*cl_geterr) ();
int (*cl_freeres) ();
void (*cl_destroy) ();
int (*cl_control) ();

} *cl ops;

char *cl_private;
char *cl netid;
char *cl _tp;

} CLIENT;

#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define

FEEDBACK_REXMIT1
FEEDBACK_OK

CLSET_TIMEOUT
CLGET_TIMEOUT
CLGET_SERVER ADDR
CLGET_FD
CLGET_SVC_ADDR
CLSET_FD_CLOSE
CLSET_FD_NCLOSE
CLSET_RETRY_TIMEOUT
CLGET RETRY_ TIMEOUT

N

G 0 oo W

6-40

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-44: <rpc.h>, Part 7 of 12

-

}:

extern struct
rpc_createerr rpc createerr;

enum xprt_stat {
XPRT DIED,
XPRT MOREREQS,
XPRT IDLE

typedef struct {

int xp_fd;
unsigned short xp port;
struct xp ops {
int (*xp_recv) () ;
enum xprt stat (*xp_stat) ();
int (*xp_getargs) () ;
int (*xp_reply) ();
int (*xp freeargs) () ;
void (*xp _destroy) ();
} *xp_ops;
int xp_addrlen;
char *xp tp;
char *xp netid;
struct netbuf xp ltaddr;
struct netbuf xp rtaddr;
char xp raddr([16];
struct opaque auth xp verf;
char *xp pl;
char *xp p2;
char *xp p3;

} SVCXPRT;

~

LIBRARIES

6-41

System Data Interfaces

Figure 6-45: <rpc.h>, Part 8 of 12

-

_

struct svc req {
unsigned long rq_prog;
unsigned long rq_vers;
unsigned long rq_proc;
struct opaque auth rq_cred;
char *rqg_clntcred;
SVCXPRT *rq_xprt;

extern fd set svc fdset;
typedef struct fdset {

long fds bits[32];
} fd set;

enum msg_type {
CALL=0,
REPLY=1

enum reply stat {
MSG_ACCEPTED=0,
MSG_DENIED=1

enum accept_stat {
SUCCESS=0,
PROG_UNAVAIL=1,
PROG_MISMATCH=2,
PROC_UNAVATIL=3,
GARBAGE_ARGS=4,
SYSTEM ERR=5

6-42

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-46: <rpc.h>, Part9 of 12

///'

enum reject_stat {
RPC_MISMATCH=0,
AUTH ERROR=1

}i

struct accepted reply {
struct opaque auth ar verf;
enum accept_stat ar_stat;
union {
struct {
unsigned long low;
unsigned long high;
} AR versions;
struct {
char *where;
xdrproc_t proc;
} AR results;
} ru;

struct rejected reply {

enum reject stat rj stat;
union {

struct {

unsigned long low;

unsigned long high;

} RJ_versions;

enum auth stat RJ_why;

} ru;

x” W,

LIBRARIES 6-43

System Data Interfaces

Figure 6-47: <rpc.h>, Part 10 of 12

4)

struct reply body {
enum reply stat rp stat;
union {
struct accepted reply RP_ar;
struct rejected reply RP_dr;
} ru;

struct call body {
unsigned long cb rpcvers;
unsigned long cb_prog;
unsigned long cb vers;
unsigned long cb proc;
struct opaque auth cb cred;
struct opaque_auth cb verf;

struct rpc msg {
unsigned long rm xid;
enum msg_type rm direction;
union {
struct call body RM cmb;
struct reply body RM rmb;
} ru;

struct rpcb {
unsigned long r prog;
unsigned long r vers;
char *r_netid;
char *r_addr;
char *r_owner;

6-44 Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-48: <rpc.h>, Part 11 of 12

struct rpcblist {
struct rpcb rpcb map;
struct rpcblist *rpcb next;
};

enum xdr op {
XDR_ENCODE=0,
XDR_DECODE=1,
XDR FREE=2

};

struct xdr discrim {
int value;
xdrproc_t proc;

};

enum authdes namekind {
ADN FULLNAME,
ADN NICKNAME

};

struct authdes fullname {
char *name;
union des_block key;
u_long window;

}:

struct authdes cred {
enum authdes namekind adc namekind;
struct authdes fullname adc fullname;
unsigned long adc nickname;

}:

o

LIBRARIES

6-45

System Data Interfaces

Figure 6-49:

/

<rpc.h>, Part 12 of 12

typedef

} XDR;

typedef
#define

#define
#define

#define
#define
#define
#define
#define
#define

#define

#define
#define
#define
#define
#define

struct {
enum xdr_op X op;
struct xdr ops {

int (*x_getlong) () ;
int (*x_putlong) ();
int (*x_getbytes) () ;
int (*x_putbytes) () ;
unsigned int (*x getpostn) () ;
int (*x_setpostn) () ;
long * (*x_inline) ();
void (*x_destroy) () ;
} *x ops;

char x public;
char x private;
char x base;
int x_handy;

int (*xdrproc t) ()
NULL xdrproc t ((xdrproc t)O0)

auth destroy (auth) ((* ((auth) >ah_ops—>ah_destroy)) (auth))
clnt_call(rh, proc, xargs, argsp, xres, resp, secs) \

((* (rh) ->cl_ops—>cl call) (rh, proc, xargs, argsp, Xres, resp, Secs))
clnt_freeres(rh, xres, resp) ((*(rh)->cl ops->cl_freeres) (rh, xres, resp))

clnt_geterr(rh, errp) ((*(rh)->cl ops—>cl geterr) (rh, errp))
clnt_control(cl, rq, in) ((* (cl) —>cl_ops—>cl_control) (cl, rq, in))
clnt_destroy (rh) ((* (rh) =>cl_ops—>cl_destroy) (rh))

svc_destroy (xprt) (* (xprt) —>xp_ops—>xp_destroy) (xprt)

svc_freeargs (xprt, xargs, argsp) \

(* (xprt) —>xp_ops—>xp freeargs) ((xprt), (xargs), (argsp))
svc_getargs(xprt, xargs, argsp) \

(* (xprt) —>xp_ops—>xp_getargs) ((xprt), (xargs), (argsp))
svc_getrpccaller (x) (& (x) >xp_rtaddr)

xdr_getpos (xdrs) (* (xdrs) —>x_ops—>x_getpostn) (xdrs)
xdr_setpos (xdrs, pos) (*(xdrs)->x ops—>x setpostn) (xdrs, pos)
xdr_inline(xdrs, len) (*(xdrs)->x ops—>x inline) (xdrs, len)
xdr_destroy (xdrs) (* (xdrs) >x_ops—>x_ destroy) (xdrs)

6-46

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-50: <search.h>

typedef struct entry { char *key; void *data; } ENTRY;
typedef enum { FIND, ENTER } ACTION;
typedef enum { preorder, postorder, endorder, leaf } VISIT;

LIBRARIES 6-47

System Data Interfaces

NOTE

The following struct semid ds is defined differently than in the 88open
Object Compatibility Standard.

Figure 6-51: <sys/sem.h>

-

#define SEM UNDO

#define GETNCNT
#define GETPID
#define GETVAL
#define GETALL
#define GETZCNT
#define SETVAL
#define SETALL

struct semid ds {

struct sem
char

time t

long

time t

long

long
}:

struct sem {

pid t

}i

struct sembuf {

short
short

}:

N

struct ipc perm

unsigned short sem nsems;

unsigned short semval;

unsigned short semncnt;
unsigned short semzcnt;

unsigned short sem num;

010000

O oSO W

sem perm;
*sem base;
sem pad[2];

sem_otime;
sem_ousec;
sem ctime;
sem_cusec;
pad[4];

sempid;

sem_op;
sem_flg;

6-48

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-52: <setjmp.h>

#define _JBLEN 40

#define _SIGJIBLEN 128

typedef int jmp buf[JBLEN];
typedef int sigjmp buf[SIGJBLEN];

LIBRARIES 6-49

System Data Interfaces

The following struct shmid ds is defined differently than in the 88open
NOTE | Object Compatibility Standard.

Figure 6-53: <sys/shm.h>

4 N

struct shmid ds {

struct ipc perm shm perm;
int shm segsz;
struct anon map *shm _amp;
unsigned short shm lkent;

char pad[2];

pid t shm_lpid;

pid t shm cpid;

unsigned long shm nattch;
unsigned long shm cnattch;

time t shm_atime;
long shm_ausec;
time t shm_dtime;
long shm_dusec;
time t shm_ctime;
long shm_cusec;
long padl[4];

b

#define SHMLBA sysconf (31)

#define SHM RDONLY 010000
#define SHM RND 020000

6-50 Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-54: <sigaction.h>

-

#define
#define
#define
#define
#define
#define
#define

-

struct sigaction {

void
sigset t
int

SA_NOCLDSTOP
SA_NOCLDWAIT
SA_ONSTACK
SA_RESETHAND
SA_RESTART
SA_SIGINFO
SA_NODEFER

(*sa_handler) () ;
sa_mask;
sa flags;

0x00000001
0x00000002
0x00010000
0x00020000
0x00040000
0x00080000
0x00100000

LIBRARIES

6-51

System Data Interfaces

Figure 6-55: <sys/siginfo.h>, Part1of3
#define SI_FROMUSER(sip) ((sip)->si code <= 0)
#define SI_FROMKERNEL (sip) ((sip)->si_code > 0)
#define SI_USER 0
#define ILL ILLOPC 1
#define ILL PRVOPC 2
#define FPE_INTOVF 0x80000001
#define FPE_INTDIV 0x80000002
#define FPE_FLTSUB 0x80000003
#define FPE FLTRES 0x01
#define FPE FLTOVF 0x02
#define FPE FLTUND 0x04
#define FPE FLTDIV 0x08
#define FPE FLTINV 0x10
#define FPE PRIVVIO 0x20
#define FPE UNIMPL 0x40
#define FPE FLINAN 0x80
#define SEGV_MAPERR 0x01
#define SEGV_ACCERR 0x02
#define SEGV_CODE 0x04
#define SEGV_DATA 0x08
#define BUS_ADRALN 0x01
#define BUS_ADRERR 0x02
#define BUS_OBJERR 0x03
#define BUS_ALIGN 0x04
#define BUS PROT 0x08

.

6-52

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-56: <sys/siginfo.h>, Part 2 of 3
#define CLD_EXITED 1
#define CLD_KILLED 2
#define CLD_DUMPED 3
#define CLD_TRAPPED 4
#define CLD STOPPED 5
#define CLD_CONTINUED 6
#define POLL_IN 1
#define POLL OUT 2
#define POLL MSG 3
#define POLL ERR 4
#define POLL PRI 5
#define POLL HUP 6
#define SI_MAXSZ 256
#define SI_PAD ((SI_MAXSZ/sizeof (int))-4)
typedef struct {
int eb signo;
int eb code;
union {
int _pad[14];
dfltinfo t _fault;
fpifltinfo t _fpui;
} _eb registers;
} exblk_t;

LIBRARIES

6-53

System Data Interfaces

Figure 6-57:

/

<sys/siginfo.h>, Part 3 of 3

typedef

struct siginfo {
int si_signo;
int si_errno;
int si_code;
int si machinexcep;
union {
int _pad[SI_PAD];
struct {
pid t _pid;
union {
struct {
uid t _uid;
}_kill;
struct {
clock t _utime;
int _status;
clock t _stime;
} _cld;
} _pdata;
} _proc;
struct {
int _fd;
long _band;
} _file;
struct {
int _ncodes;

exblk t* exblks;
} _machine;
} _data;

} siginfo t;

6-54

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-58: <signal.h>, Part 1 of 2
#define SIGHUP 1
#define SIGINT 2
#define SIGQUIT 3
#define SIGILL 4
#define SIGTRAP 5
#define SIGIOT 6
#define SIGABRT 6
#define SIGEMT 7
#define SIGFPE 8
#define SIGKILL 9
#define SIGBUS 10
#define SIGSEGV 11
#define SIGSYS 12
#define SIGPIPE 13
#define SIGALRM 14
#define SIGTERM 15
#define SIGUSR1 16
#define SIGUSR2 17
#define SIGCLD 18
#define SIGCHLD 18
#define SIGPWR 19
#define SIGWINCH 20
#define SIGPOLL 22
#define SIGSTOP 23
#define SIGTSTP 24
#define SIGCONT 25
#define SIGTTIN 26
#define SIGTTOU 27
#define SIGURG 33
#define SIGIO 34
#define SIGXCPU 35
#define SIGXFSZ 36
#define SIGVTALRM 37
#define SIGPROF 38
#define SIGLOST 40

_

LIBRARIES

6-55

System Data Interfaces

Figure 6-59: <signal.h>, Part 2 of 2

/

#define NSIG 65
#define MAXSIG 64
#define SIG BLOCK 0

#define SIG_UNBLOCK 1

#define SIG SETMASK 2

#define SIG _ERR (void(*) ())-1
#define SIG IGN (void(*) ())1

#define SIG HOLD (void(*) ()2

#define SIG DFL (void(*) ())0

#define SS_ONSTACK
#define SS DISABLE

0x00000001
0x00000002

struct sigaltstack {
char *ss_sp;
int ss_size;
int ss_flags;
}:
typedef struct sigaltstack stack t;
typedef struct sigset {
unsigned long s[2];

} sigset_t;

#define SIGNO_MASK OxXFF
#define SIGDEFER 0x100
#define SIGHOLD 0x200
#define SIGRELSE 0x400
#define SIGIGNORE 0x800
#define SIGPAUSE 0x1000

6-56

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-60: <sys/stat.h>, Part1of2

4 N

#define ST FSTYPSZ 16

struct stat {

dev_t st_dev;
ino_t st_ino;
mode t st_mode;
nlink t st_nlink;
uid t st_uid;
gid t st_gid;
dev_t st_rdev;
off t st _size;
time t st_atime;
unsigned long st ausec;
time t st_mtime;
unsigned long st musec;
time t st_ctime;

unsigned long st cusec;
timestruc t st_atim;
timestruc t st_mtim;
timestruc t st _ctim;

long st_blksize;

long st_blocks;

char st_fstype[ST FSTYPSZ];
char st_padding[408];

LIBRARIES 6-57

System Data Interfaces

Figure 6-61: <sys/stat.h>, Part 2 of 2
#define S_IFMT 0xF000
#define S IFIFO 0x1000
#define S_IFCHR 0x2000
#define S_IFDIR 0x4000
#define S IFBLK 0x6000
#define S_IFREG 0x8000
#define S_IFLNK 0xA000
#define S_ISUID 04000
#define S _ISGID 02000
#define S _ISVTX 01000
#define S IRWXU 00700
#define S _IRUSR 00400
#define S_IWUSR 00200
#define S_IXUSR 00100
#define S_IRWXG 00070
#define S_IRGRP 00040
#define S IWGRP 00020
#define S IXGRP 00010
#define S_IRWXO 00007
#define S_IROTH 00004
#define S IWOTH 00002
#define S_IXOTH 00001
#define S_ISFIFO(mode) ((mode & S_IFMT) == S_IFIFO)
#define S _ISCHR(mode) ((mode & S_IFMT) == S_IFCHR)
#define S_ISDIR(mode) ((mode & S_IFMT) == S_IFDIR)
#define S _ISBLK(mode) ((mode & S_IFMT) == S IFBLK)
#define S ISREG(mode) ((mode & S IFMT) == S IFREG)

N

6-58

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-62:

<sys/statvfs.h>

-~

#define

typedef

FSTYPSZ

16

struct statvfs {

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
char

unsigned
unsigned
char

unsigned

} statvfs t;

#define ST RDONLY
#define ST NOSUID

long
long
long
long
long
long
long
long
long

long
long

long

f bsize;

f frsize;

£ blocks;

£ bfree;

f bavail;

f files;

f ffree;

f favail;

£ fsid;

f basetype [FSTYPSZ];
f flag;

f namemax;

f fstr(32];

£ filler[16];

0x01
0x02

~

LIBRARIES

6-59

System Data Interfaces

Figure 6-63: <stdarg.h>

typedef struct {

int next arg;
int *mem ptr;
int *reg ptr;
} va list;

The member next _arg is the number of words from the beginning of the argu-
ment list to the beginning of the next argument to be returned by va_arg.

next_arg shall always have a nonnegative value. mem ptr points at the begin-
ning of the argument area. reg_ptr points at a structure of the following form:

struct {int #r2, #r3, #r4, #r5, #r6, #r7, #r8, #r9;}

where each member contains the value at procedure entry of the indicated regis-
ter, if that register holds a portion of the variable argument list represented by
the va_list structure. A procedure receiving a va list structure shall not refer
to members of the structure pointed at by reg_ptr that do not correspond to
portions of the variable argument list that the va_1list structure represents. The
structure pointed at by reg_ptr shall be 8-byte aligned.

The procedure using the va_1list structure determines, for each argument
NOTE | of the variable argument list, whether to fetch the argument value from the
memory area or the register area, according to the position of the argument
| in the argument list and the type of the argument (including size, alignment,
and whether it is a structure or union).

6-60 Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-64: <stddef.h>

#define NULL 0

typedef int ptrdiff t;
typedef unsigned int size t;
typedef long wchar t;

LIBRARIES 6-61

System Data Interfaces

Figure 6-65: <stdio.h>
typedef unsigned int size t;
typedef long fpos t;
#define NULL 0
#define BUFSIZ 1024
#define EOF (-1)
#define stdin (&_ _stdinb)
#define stdout (&__stdoutb)
#define stderr (&_ _stderrb)
extern FILE _ _stdinb;
extern FILE __stdoutb;
extern FILE _ _stderrb;
#define getchar() getc (stdin)
#define putchar (x) putc((x),stdout)
#define SEEK SET 0
#define SEEK CUR 1
#define SEEK END 2
#define I ctermid 9
#define I_cuserid 9
#define P_tmpdir "/var/tmp/™
#define L _tmpnam (sizeof (P_tmpdir) + 15) /
6-62 Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-66: <stdlib.h>

-

typedef struct {
int quot;
int rem;
} div_t;

typedef struct {
long int
long int
} 1div t;

typedef unsigned int

#define NULL

#define EXIT FAILURE
#define EXIT SUCCESS
#define RAND MAX

extern unsigned char
#define MB CUR MAX

N

quot;
rem;

size t;
0
1

0
32767

_ _ctypell;

__ctype[520]

LIBRARIES

6-63

System Data Interfaces

Figure 6-67: <stropts.h>, Part 1 of 4
#define RNORM 0x000
#define RMSGD 0x001
#define RMSGN 0x002
#define RMODEMASK 0x003
#define RPROTDAT 0x004
#define RPROTDIS 0x008
#define RPROTNORM 0x010
#define FLUSHR 0x01
#define FLUSHW 0x02
#define FLUSHRW 0x03
#define S_INPUT 0x0001
#define S_HIPRI 0x0002
#define S_OUTPUT 0x0004
#define S MSG 0x0008
#define S_ERROR 0x0010
#define S HANGUP 0x0020
#define S_RDNORM 0x0040
#define S WRNORM S_OUTPUT
#define S_RDBAND 0x0080
#define S _WRBAND 0x0100
#define S_BANDURG 0x0200
#define RS HIPRI 1
#define MSG HIPRI 0x01
#define MSG_ANY 0x02
#define MSG_BAND 0x04
#define MORECTL 1
#define MOREDATA 2
#define MUXID ALL (-1)

6-64 Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-68: <stropts.h>, Part 2 of 4
#define STR ("S8"<<8)
#define I_NREAD (STR|01)
#define I PUSH (STR|02)
#define I_POP (STR| 03)
#define I_LOOK (STR| 04)
#define I_FLUSH (STR]| 05)
#define I_SRDOPT (STR| 06)
#define I_GRDOPT (STR|07)
#define I_STR (STR|010)
#define I_SETSIG (STR|011)
#define I_GETSIG (STR|012)
#define I _FIND (STR}013)
#define I_LINK (STR|014)
#define I_UNLINK (STR|015)
#define I _RECVFD (STR|016)
#define I PEEK (STR|017)
#define I _FDINSERT (STR|020)
#define I_SENDFD (STR| 021)
#define I_SWROPT (STR|023)
#define I_GWROPT (STR|024)
#define I LIST (STR| 025)
#define I_PLINK (STR|026)
#define I_PUNLINK (STR|027)
#define I_FLUSHBAND (STR| 034)
#define I_CKBAND (STR| 035)
#define I _GETBAND (STR|036)
#define I_ATMARK (STR|037)
#define I _SETCLTIME (STR|040)
#define I GETCLTIME (STR|041)
#define I_CANPUT (STR|042)

o

LIBRARIES

6-65

System Data Interfaces

Figure 6-69: <stropts.h>, Part 3 of 4

-

struct

};

struct

struct

}:
struct
struct

}i

_

strioctl {

int ic_cmd;

int ic timout;
int ic len;

char *ic dp;
strbuf {

int maxlen;

int len;

char *buf;

strpeek {

struct strbuf ctlbuf;
struct strbuf databuf;
long flags;
strfdinsert {

struct strbuf ctlbuf;
struct strbuf databuf;

long flags;
int fildes;
int offset;

strrecvfd {
int fd;
uid t uid;
gid t gid;
char £i11([8];

6-66

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-70: <stropts.h>, Part 4 of 4

4 N

struct str mlist {
char 1 name [FMNAMESZ+1];

}i

struct str_list {

int sl nmods;
struct str_mlist *#sl_modlist;
}i
#define ANYMARK 0x01
#define LASTMARK 0x02
#define FMNAMESZ 8

struct bandinfo {
unsigned char bi pri;
int bi_flag;

_ Y,

LIBRARIES 6-67

System Data Interfaces

Figure 6-71: <termios.h>, Part 1 of 6

(#define NCC 8

#define NCCS 19
#define CTRL(c) ((c)&037)
#define IBSHIFT 8

#undef _POSIX VDISABLE

typedef unsigned long tcflag t;
typedef unsigned char cc t;
typedef unsigned long speed t;

#define VINTR
#define VQUIT
#define VERASE
#define VKILL
#define VEOF
#define VEOL
#define VEOL2
#define VMIN
#define VTIME
#define VSWICH
#define VSTART
#define VSTOP
#define VSUSP
#define VDSUSP
#define VREPRINT
#define VDISCARD
#define VWERASE
#define VLNEXT

N

O oSy WNBREO

e s
Ubd WN R o

6-68

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-72: <termios.h>, Part2 of 6
#define CNUL 0
#define CDEL 0377
#define CESC A\
#define CINTR 0177
#define CQUIT 034
#define CERASE T#
#define CKILL re’
#define CEOT 04
#define CEOL 0
#define CEOL2 0
#define CEOF 04
#define CSTART 021
#define CSTOP 023
#define CSWICH 032
#define CNSWTCH 0
#define CSUSP CTRL('z’)
#define CDSUSP CTRL('y’)
#define CRPRNT CTRL('r’)
#define CFLUSH CTRL(’0")
#define CWERASE CTRL("w’)
#define CLNEXT CTRL('v’)
#define IGNBRK 0000001
#define BRKINT 0000002
#define IGNPAR 0000004
#define PARMRK 0000010
#define INPCK 0000020
#define ISTRIP 0000040
#define INLCR 0000100
#define IGNCR 0000200
#define ICRNL 0000400
#define IUCLC 0001000
#define IXON 0002000
#define IXANY 0004000
#define IXOFF 0010000
#define IMAXBEL 0020000

N

LIBRARIES

6-69

System Data Interfaces

Figure 6-73:

-

<termios.h>, Part 3 of 6

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

OPOST
OLCUC
ONLCR
OCRNL
ONOCR
ONLRET
OFILL
OFDEL
NLDLY
NLO
NL1
CRDLY
CRO
CR1
CR2
CR3
TABDLY
TABO
TAB1
TAB2
TAB3
XTABS
BSDLY
BSO
BS1
VTDLY
VTO
VT1
FFDLY
FFO
FF1

0000001
0000002
0000004
0000010
0000020
0000040
0000100
0000200
0000400
0
0000400
0003000
0
0001000
0002000
0003000
0014000
0
0004000
0010000
0014000
TAB3
0020000
0
0020000
0040000
0
0040000
0100000
0
0100000

6-70

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-74: <termios.h>, Part 4 of 6
#define CBAUD 077600000
#define BO 0
#define B50 00200000
#define B75 00400000
#define B110 00600000
#define B134 01000000
#define B150 01200000
#define B200 01400000
#define B300 01600000
#define B600 02000000
#define B1200 02200000
#define B1800 02400000
#define B2400 02600000
#define B4800 03000000
#define B9600 03200000
#define B19200 03400000
#define EXTA 03400000
#define B38400 03600000
#define EXTB 03600000
#define CSIZE 00000060
#define CS5 0
#define CS6 0000020
#define CS7 0000040
#define CS8 0000060
#define CSTOPB 0000100
#define CREAD 0000200
#define PARENB 0000400
#define PARODD 0001000
#define HUPCL 0002000
#define CLOCAL 0004000
#define LOBLK 0010000
#define RCV1EN 0020000
#define XMT1EN 0040000
#define CIBAUD 037700000000
#define PAREXT 04000000

LIBRARIES

6-71

| System Data Interfaces

Figure 6-75: <termios.h>, Part 5 of 6

4 N

#define ISIG 0000001
#define ICANON 0000002
#define XCASE 0000004
#define ECHO 0000010
#define ECHOE 0000020
#define ECHOK 0000040
#define ECHONL 0000100
#define NOFLSH 0000200
#define TOSTOP 0000400
#define ECHOCTL 0001000
#define ECHOPRT 0002000
#define ECHOKE 0004000
#define FLUSHO 0020000
#define PENDIN 0040000
#define IEXTEN 0100000
#define IOCTYPE 0x££00

6-72 Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-76: <termios.h>, Part 6 of 6
#define TIOC (" T’ <<8)
#define TCSANOW (TIOC|14)
#define TCSADRAIN (TIOC|15)
#define TCSAFLUSH (TIOC|16)
#define TCIFLUSH 0
#define TCOFLUSH 1
#define TCIOFLUSH 2
#define TCOOFF 0
#define TCOON 1
#define TCIOFF 2
#define TCION 3
struct termios {

tcflag t c_iflag;
tcflag t c_oflag;
tcflag t c_cflag;
tcflag t c_1flag;
char c_padl;
cc t c_cc[NCCS];

N

LIBRARIES

6-73

System Data Interfaces

Figure 6-77: <sys/time.h>, Part1 of 2

4)

#define CLK TCK *
#define CLOCKS PER SEC 1000000
#define NULL 0

typedef long clock t;
typedef long time t;

struct tm {
int tm sec;
int tm min;
int tm hour;
int tm mday;
int tm mon;
int tm_year;
int tm wday;
int tm yday;
int tm isdst;

struct timeval {
time t tv_sec;
long tv_usec;

extern long timezone;
extern int daylight;
extern char *tzname[2];

/* starred values may vary and should be
retrieved with sysconf() of pathconf() */

N /

6-74 Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-78:

<sys/time.h>, Part 2 of 2

~

#define
#define
#define

typedef

}

N

struct itimerval {

struct timeval it interval;
struct timeval it _value;

ITIMER REAL 0
ITIMER VIRTUAL 1
ITIMER PROF 2

struct timestruc {
time t tv_sec;
long tv_nsec;
timestruc_t;

Figure 6-79:

<sys/times.h>

struct tms {

clock_t tms_utime;
clock t tms_stime;
clock t tms_cutime;
clock t tms_cstime;

LIBRARIES

6-75

System Data Interfaces

Figure 6-80:

<sys/tiuser.h>, Service Types

#define
#define
#define

T_CLTS 3
T_COTS 1
T_COTS_ORD 2

Figure 6-81:

-

N

<sys/tiuser.h>, Transport Interface States

#define
#define
#define
#define
#define
#define
#define
#define

T_DATAXFER
T_IDLE
T_INCON
T_INREL
T_OUTCON
T_OUTREL
T_UNBND
T_UNINIT

O O WS NG

6-76

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-82: <sys/tiuser.h>, User-level Events

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

_

T_ACCEPT1
T_ACCEPT2
T_ACCEPT3
T_BIND
T_CLOSE
T_CONNECT1
T_CONNECT2
T_LISTN
T_OPEN
T_OPTMGMT
T_PASSCON
T RCV
T_RCVCONNECT
T_RCVDIS1
T_RCVDIS2
T_RCVDIS3
T_RCVREL
T_RCVUDATA
T_RCVUDERR
T_SND
T_SNDDIS1
T_SNDDIS2
T_SNDREL
T_SNDUDATA
T_UNBIND

~

LIBRARIES

6-77

System Data Interfaces

Figure 6-83: <sys/tiuser.h>, Error Return Values
#define TACCES 3
#define TBADADDR 1
#define TBADDATA 10
#define TBADF 4
#define TBADFLAG 16
#define TBADOPT 2
#define TBADSEQ 7
#define TBUFOVELW 11
#define TFLOW 12
#define TLOOK 9
#define TNOADDR 5
#define TNODATA 13
#define TNODIS 14
#define TNOREL 17
#define TNOTSUPPORT 18
#define TNOUDERR 15
#define TOUTSTATE 6
#define TSTATECHNG 19

TSYSERR 8

ude fine

6-78

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-84: <sys/tiuser.h>, Transport Interface Data Structures, 1 of 2

/

struct netbuf {
unsigned int maxlen;
unsigned int len;
char *buf;

struct t_bind {
struct netbuf addr;
unsigned int qglen;
}i

struct t call {
struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;
}i

struct t_discon {
struct netbuf udata;
int reason;
int sequence;

struct t_info {
long addr;
long options;
long tsdu;
long etsdu;
long connect;
long discon;
long servtype;

LIBRARIES 6-79

System Data Interfaces

Figure 6-85: <sys/tiuser.h>, Transport Interface Data Structures, 2 of 2

a N

struct t_optmgmt {
struct netbuf opt;
long flags;

}:

struct t uderr {
struct netbuf addr;
struct netbuf opt;
long error;

};

struct t unitdata {
struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

}:

o J

Figure 6-86: <sys/tiuser.h>, Structure Types

#define T BIND
#define T CALL
#define T DIS
#define T INFO
#define T_OPTMGMT
#define T UDERROR
#define T UNITDATA

GO NI W

6-80 Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-87: <sys/tiuser.h>, Fields of Structures

#define T ADDR 0x00000001
#define T OPT 0x00000002
#define T UDATA 0x00000004
#define T ALL 0x00000007

Figure 6-88: <sys/tiuser.h>, Events Bitmasks

4 N

#define T LISTEN 0x00000001
#define T CONNECT 0x00000002
#define T DATA 0x00000004
#define T EXDATA 0x00000008
#define T DISCONNECT 0x00000010
#define T ERROR 0x00000020
#define T UDERR 0x00000040
#define T ORDREL 0x00000080
#define T EVENTS 0x000000££

. /

LIBRARIES 6-81

System Data Interfaces

Figure 6-89:

<sys/tiuser.h>, Flags

#define T MORE 0x00000001
#define T EXPEDITED 0x00000002
#define T NEGOTIATE 0x00000004
#define T CHECK 0x00000008
#define T DEFAULT 0x00000010
#define T SUCCESS 0x00000020
#define T FAILURE 0x00000040
Figure 6-90: <sys/types.h>

typedef long time t;
typedef long daddr_t;
typedef unsigned long dev t;
typedef long gid t;
typedef unsigned long ino t;
typedef int key t;
typedef long pid t;
typedef unsigned long mode t;
typedef unsigned long nlink t;
typedef long off t;
typedef long uid t;

6-82

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-91: <ucontext.h>

4 N

#include <sys/regset.h>

typedef struct {
int version;
gregset_t gregs;

} mcontext t;

#define MCONTEXT VERSION 1

typedef struct ucontext ({

unsigned long uc_flags;
struct ucontext *uc_link;
sigset_t uc_sigmask;
stack t uc_stack;
mcontext t uc_mcontext;
long uc_filler[210];

} ucontext t;

#define GETCONTEXT 0
#define SETCONTEXT 1

Figure 6-92: <uio.h>

typedef struct iovec {
char *iov_base;
int iov_len;

} iovec_t;

LIBRARIES 6-83

System Data Interfaces

Figure 6-93: <ulimit.h>
#define UL GETFSIZE 1
#define UL_SETFSIZE 2
Figure 6-94: <unistd.h>, Part 1 of 3
#define R OK 4
#define W_OK 2
#define X OK 1
#define F_OK 0
#define F_ULOCK 0
#define F_LOCK 1
#define F_TLOCK 2
#define F_TEST 3
#define SEEK SET 0
#define SEEK CUR 1
#define SEEK END 2
#define _POSIX JOB_CONTROL 1
#define _POSIX SAVED IDS 1
#undef _POSIX VDISABLE
#define _POSIX VERSION *
#define XOPEN VERSION *
/#* starred values may vary and should be
retrieved with sysconf() of pathconf() */

\

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-95: <unistd.h>, Part2 of 3

4)

#define _SC ARG MAX 1
#define _SC CHILD MAX 2
#define _SC CLK TCK 3
#define _SC NGROUPS MAX 4
#define _SC OPEN MAX 5
#define _SC_JOB_CONTROL 6
#define _SC SAVED IDS 7
#define _SC_VERSION 8
#define _SC_BCS_VERSION 9
#define _SC_BCS_VENDOR STAMP 10
#define _SC BCS SYS_ID 11
#define _SC_MAXUMEMV 12
#define _SC_MAXUPROC 13
#define _SC MAXMSGSZ 14
#define _SC NMSGHDRS 15
#define _SC SHMMAXSZ 16
#define _SC_SHMMINSZ 17
#define _SC SHMSEGS 18
#define _SC_NMSYSSEM 19
#define _SC_MAXSEMVL 20
#define _SC NSEMMAP 21
#define _SC NSEMMSL 22
#define _SC NSHMMNI 23
#define _SC_ITIMER VIRT 24
#define _SC_ ITIMER PROF 25
#define _SC_TIMER GRAN 26
#define _SC PHYSMEM 27
#define _SC AVAILMEM 28
#define _SC NICE 29
#define _SC MEMCTL UNIT 30

LIBRARIES 6-85

System Data Interfaces

Figure 6-96: <unistd.h>, Part 3 of 3

-

#define _SC_SHMLBA
#define _SC_SVSTREAMS
#define _SC_CPUID
#define _SC PASS MAX
#define _SC PAGESIZE
#define _SC XOPEN VERSION

#define _PC LINK MAX
#define PC MAX CANON
#define _PC MAX INPUT
#define _PC_NAME MAX

#define PC PATH MAX
#define _PC PIPE_BUF
#define PC CHOWN RESTRICTED
#define PC NO TRUNC
#define _PC VDISABLE

#define _PC BLKSIZE

#define STDIN FILENO
#define STDOUT FILENO
#define STDERR FILENO

31
32
33
34
36

W oo Ny WN R

-
(=]

= o

Figure 6-97: <utime.h>

struct utimbuf {
time t actime;
time t modtime;

6-86

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-98: <utsname.h>

-

#define SYS NMLN

struct utsname {

o

256

char sysname [SYS NMLN] ;
char nodename [SYS NMLN] ;
char release[SYS NMLN];
char version[SYS NMLN];
char machine [SYS NMLN];

~

Figure 6-99: <varargs.h>

#include <stdarg.h>

LIBRARIES

6-87

System Data Interfaces

Figure 6-100: <wait.h>

4)

#define WSTOPPED 0177
#define WCONTINUED 0010
#define WUNTRACED 0004
#define WNOHANG 0100
#define WNOWAIT 0200
#define WEXITED 0001
#define WTRAPPED 0002
#define WTRACED WTRAPPED
#define WSTOPFLG 0177
#define WCONTFLG 0177777
#define WSIGMASK 0177

#define WLOBYTE (stat) ((int) ((stat)&0377))
#define WHIBYTE (stat) ((int) (((stat)>>8)&0377))
#define WWORD (stat) ((int) ((stat))&0177777)

#define WCOREFLG 0200

#define WCOREDUMP (stat) ((stat) &WCOREFLG)

#define WEXITSTATUS (s) (((s) &0x££00) >>8)

#define WIFCONTINUED (stat) (WWORD (stat) ==WCONTFLG)

#define WIFEXITED (s) (WTERMSIG (s) ==0)

#define WIFSIGNALED (s) (!WIFEXITED (s) && !WIFSTOPPED (s))

#define WIFSTOPPED (s) ((WTERMSIG (s) ==0x7f) && (((s)&0x80)==0))
#define WSTOPSIG(s) (WIFSTOPPED (s) ?WEXITSTATUS (s) :0)

#define WTERMSIG (s) ((s) &0x7f)

6-88 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Index

88000 1:1, 3:1,32, 43, 49, 54, 57-58, 5:2
88100 1:1, 3:1,18,33,54
88200 3:1

A

ABI conformance 3:1, 32
see also undefined behavior 3: 1
see also unspecified property 3:1
absolute addresses 3: 49
absolute code 3:44, 5:5
see also position-independent code

3:44
address
stack 3:41
virtual 5:3

addresses, absolute 3: 49
addressing, virtual (see virtual address-
ing)
addu instruction 3: 48
aggregate 3:3
alignment
argument 3:24
array 3:3
bit-field 3:6
COBOL data 3: 11
executable file 5:3
parameter 3:24
scalar types 3:2,9-10
stack frame 3:22
structure and union 3:3
allocation, dynamic stack space 3:54
alphabetic data class, COBOL 3: 11
alphanumeric data class, COBOL 3: 11
ANSI, C (see C language, ANSI)
ANSI Standard X3.9-1978 3:9

Index

ANSI X3.23-1985 3:13
ANSI/IEEE Std 754-1985 3:17,37-38
architecture
implementation 3: 1
processor 3:1
restrictions 3: 1
argc 3:39

argument

alignment 3:24
length 3:24
argument area 3: 24
offsets into 3:24
argument transmission 3: 24
COBOL 3:26
floating-point 3: 25
FORTRAN 3:25
integer 3:25
pointer 3:25
structure 3:25
union 3:25
arguments

bad assumptions 3: 54
exec(BA_0OS) 3:39
function 3:18

main 3:39

passing 3:24
variable list 3:54
argv 3:39

array 3:3
atexit(BA_0S) 3:39
auxiliary vector 3: 41

B

base address 3:43
BCD digits 3:15

Index

behavior, undefined (see undefined
behavior)

Big-Endian byte order 3:1, 40, 6:2
BINARY alignments 3: 16
binary coded decimal digits 3:15
BINARY data type, COBOL 3:11
bit-field 3:5

alignment 3:6

allocation 3:6
boot parameters (see tunable parameters)
breakpoint trap exception 3: 38
bsr instruction 3: 50
byte order bit 3:1, 6:2

C

C language
ANSI 3:2, 38, 54
calling sequence 3: 18, 54
fundamental types 3:2
main 3:38
portability 3:54
calling sequence 3:18
function epilogue 3:23
function prologue 3:23
function prologue and epilogue
3:47-48
canonical frame address 3: 60
char 3:2
CHARACTER data type 3:9, 26
character data type 3:26
CHARACTER data type 3:27
character strings, PICTURE 3: 12
chunk, text 3:57
COBOL 3:11
COBOL argument transmission 3: 26
COBOL ASCII digits 3:12
COBOL calling sequence 3:18

COBOL data types 3: 11

COBOL OCCURS clause 3: 11

COBOL result transmission 3: 28

COBOL scalar types 3: 11

COBOL sign representation 3: 12

code generation 3: 44

code sequences 3: 44

COMMON statement 3: 9

COMPLEX data type 3:10, 27

COMPUTATIONAL data type, COBOL
3: 1

concurrent exceptions 3: 33

configuration parameters (see tunable
parameters)

crt0.o 3:62

D

data
process 3:29
uninitialized 5: 4
data representation 3: 1
data types
COBOL 3: 11
FORTRAN 3:9
debugging 5:1
low-level 3:57
debugging with tdesc 3: 57
demand paging 3:37
diskettes, floppy 2: 1
DISPLAY data type, COBOL 3:11-12
distribution media 2:1
div instruction, restrictions 3: 1
div instruction faults 3:37
divu instruction, restrictions 3: 1
double 3:2
DOUBLE COMPLEX data type 3:10, 27
DOUBLE PRECISION data type 3: 27

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Index

double versus long double 3:3
double word 3:22
double zero-extension, unsigned integers
3:28
double-precision 3:2
double-precision arithmetic 3:9
dummy procedure 3:25
dynamic linking 3:29, 5:7
lazy binding 5: 10
LD_BIND_NOW 5:10
relocation 5:9
see also dynamic linker 5:7
dynamic linking array tag 5:7
dynamic segments 3:30, 5:6
dynamic stack allocation 3: 54
signals 3:56

E

EBCDIC translation 3:13
emulation, instructions 3: 1

Endian
Big 3:1,40, 6:2
Little 6:2

entry, procedure 3: 22
environment 5:10
exec(BA_OS) 3:39
envp 3:39
EQUIVALENCE statement 3:9
exceptions
concurrent 3: 33
data access 3:37
floating-point 3: 37
imprecise 3: 33-34
interface 3:32
machine 3:33
precise 3:33-34
signals 3:32

Index

type table 3:38
exceptions and signals 3:34
exec(BA_0S) 3:45

interpreter 3: 42

paging 5:3

process initialization 3: 38
executable file, segments 5:5
execution mode (see processor execution

mode)

external memory fault exception 3:38

F

faults (see traps)
file, object (see object file)
file offset 5:3
float 3:2
floating-point 3:2
argument transmission 3: 25
IEEE 3:17,37-38
result transmission 3: 27
floating-point exceptions 3: 37
formats
array 3:3
structure 3:3
union 3:3
FORTRAN argument transmission 3: 25
FORTRAN calling sequence 3:18
FORTRAN character data type 3:26
FORTRAN dummy procedure 3:25
FORTRAN language 3:9-10
FORTRAN result transmission 3:27
FORTRAN scalar types 3:9
frame pointer. 3:49
frame pointer 3: 61
frame size, dynamic 3: 54
function addresses 5: 14
function arguments (see arguments)

Index

function call, code 3:50

function linkage (see calling sequence)

function prologue and epilogue (see cal-
ling sequence)

G

gate vector fault exception 3: 38

general purpose registers 3: 18

getpsr() 6:1

global offset table 3:45, 4:6, 5:7,9
relocation 3: 45

global offset table procedure entry 5: 10

_GLOBAL_OFFSET_TABLE_ (see global

offset table)

IEEE floating-point 3: 17, 37-38
illegal level change exception 3: 38
illegal opcode exception 3: 38
imprecise exceptions 3:33-34
indirection sequence 3: 51
info protocols, tdesc 3: 59
initialization, process 3:38
installation, software 2: 1
instructions, emulation 3: 1
int 3:2
integer
argument transmission 3: 25
result transmission 3: 27
INTEGER data type 3:10, 27
integer overflow exception 3: 38
integer zero-divide exception 3:38
interoperability, language 3: 14, 16, 26,
28
invalid descriptor exception 3: 38

J

jmp instruction 3: 48

L

language interoperability 3: 14, 16, 26, 28
lazy binding 5:10
Id instruction 3: 48
Ida instruction, restrictions 3: 1
LD_BIND_NOW 5:10
Id(SD_CMD) (see link editor)
length

argument 3:24

parameter 3:24
Level 01 items, COBOL 3: 11
Level1 1:2
Level2 1:2, 3:3
Level 77 items, COBOL 3: 11
libsys 6:1
link editor 5:9
link editor registers 3: 19
linkage, function (see calling sequence)
Little-Endian byte order 6:2
local variable space 3:22
LOGICAL data type 3:9-10, 27
long 3:2
long double 3:2
long double versus double 3:3
longjmp(BA_LIB) (see

setjmp(BA_LIB))

M

MS88000 3:1, 32, 43, 49, 54, 57-58, 5:2-3
machine exception 3:33
main

arguments 3:39

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Index

declaration 3:38

malloc(BA_OS) 3:31

MC88100 3:1,18,33,54

media, distribution 2:1

memctl() 6:1

memory allocation, stack 3: 54

memory management 3: 29

memory return value register 3: 19

misaligned access 3: 40

misaligned storage allocation 3:9

mmap(KE_OS) 3: 31

modes, processor (see processor execu-
tion mode)

mprotect(KE_OS) 3:36, 5:2, 16

N

no-op instruction 3: 58

no-op instructions 3: 58

null pointer 3:2-3, 30, 39
dereferencing 3: 30

numeric data class, COBOL 3: 11

O

object file 4:1
ELF header 4:1
executable 3:45
executable file 3:45
section 4:2
see also archive file 4:1
see also dynamic linking 5:7
see also executable file 4: 1
see also relocatable file 4: 1
see also shared object file 4:1
segment 5:3
shared object file 3:45

Index

special sections 4:2
OCCURS clause 3: 11
OCS differences 6: 13, 16, 24, 48, 50
offset table, global (see global offset
table)
opcodes, use of unimplemented 3: 37
optimization 3:57
optionl scalar types 3:10
or instruction 3: 48

P

PACKED-DECIMAL data type, COBOL
3: 11
padding, structure and union 3: 3
page size 3:29,43, 5:3
paging 3:29, 5:3
performance 5:3
paging and exceptions 3:37

parameter
alignment 3:24
length 3:24

passing 3:24
parameter registers 3: 19
parameters
function (see arguments)
system configuration (see tunable
parameters)
passing
arguments 3:24
parameters 3:24
results 3:26
performance 3:1,9
paging 5:3
permissions, segment 5: 2
physical addressing 3:29
PICTURE character strings, COBOL
3:12

Index

pipelined instructions 3: 33 PSR 3:1
PLT region 5:8, 16 purpose of ABI 1:1
pointer 3:3

argument transmission 3: 25

null 3:2-3, 30, 39 Q

resul.t transmission 3:27 QIC cartridge 2: 1
portability

C program 3:54

instructions 3: 1 R
position-independent code 3: 44, 47, 5:6

see also absolute code 3: 44 REAL data type 3:10, 27

see also global offset table 3:44 register

see also procedure linkage table 3: 44 memory return value 3:19
precise exceptions 3:33-34 stack pointer 3:20
privileged opcode exception 3: 38 registers
privileged register exception 3:38 calling sequence 3:19
procedure description 3: 18-19

called 3:22 floating-point 3: 40

entry 3:22 general purpose 3:18

return 3:22 initial values 3: 39, 41
procedure linkage table 3:45, 5:7,15 language-specific 3: 19

relocation 3: 45 parameter 3:19
process preserved 3:19

dead 3:56 reserved 3:40

entry point 3:39 reserved for link editor 3: 19

initialization 3:38 saving 3:20

segment 3:29 scratch 3:19-20

size 3:29 signals 3:20

stack 3:41 temporary 3:19

virtual addressing 3: 29 relocation
processor architecture 3: 1 global offset table 3:45
processor execution mode 3: 32 procedure linkage table 3: 45
Processor Status Register (PSR) 3:1, 6: 1 reserved data type exception 3: 38
processor-specific information 3:1, 18, reserved opcode exception 3: 38

29, 44, 5:3,9, 15, 6: 1 resources, shared 3:29
program counter, relative addressing (see result, size 3:26
XIP-relative) result transmission 3: 26

program loading 5:3 COBOL 3:28

1-6 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Index

floating-point 3: 27
FORTRAN 3:27
integer 3:27
pointer 3:27
structure 3:27
union 3:27
results, passing 3: 26
return

pointer 3:19
procedure 3:22
return pointer 3:19

return value register, memory 3:19

S

sbrk() 6:1

scalar types 3:2,9
optional 3:10

scratch registers 3: 19
secondary storage 3:29
section, object file 5:3
segment

dynamic 3:30
permissions 5: 4
process 3:29-30, 5:3, 10

segment permissions 3:31, 5:2

segments

executable 5:2
unshared 3:45
writable 5:2
setjimp(BA_LIB) 3:56
setpsr() 3:37, 6:1
setrlimit(BA_OS) 3:31,36
shadow registers 3:40
shared object file 3:45
segments 3:30, 5:6
short 3:2
sigaction(BA_0OS) 3:33

Index

SIGBUS 5:2

siginfo structure 3:33

SIGN clause, COBOL 3: 11

sign extension, bit-field 3:6

sign representation, COBOL 3:12

signal(BA_0OS) 3:20

signals 3:20, 56

signed 3:2,6

signed characters, sign-extension 3: 25,
27

signed integers, sign-extension 3: 25, 27

sign-extension

signed characters 3: 25, 27

signed integers 3: 25, 27

single-precision 3:2

sizeof 3:2

structure 3:3

software installation 2: 1

space, variable, local 3: 22

st instruction 3:48

stack

address 3: 41

dynamic allocation 3: 54

growth 3:20

process 3:29-30

system management 3: 31

stack allocation, dynamic 3: 54

stack frame 3:18, 21

alignment 3:22

form of 3:57

organization 3:20-21

size 3:22

stack pointer 3:49

stack pointer register 3:20

stack traceback 3:62

<stdarg.h> 3:54

structure 3:3

argument transmission 3: 25

Index

padding 3:3 U
result transmission 3: 27
subu instruction 3: 48
symbol table 4:3
sysconf(BA_OS) 3:29, 43
system calls 6: 1

see also libsys 6: 1
system load 3:29

ucontext_t structure 3:33
undefined behavior 3: 1, 25-27, 40-43, 59,
5:4, 6:1
see also ABI conformance 3: 1
see also unspecified property 3:1,
25-27, 40, 42-43, 59, 6:1
uninitialized data 5: 4

union 3:3
T argument transmission 3: 25
result transmission 3: 27

tape unshared segments 3: 45

QIC cartridge 2:1 unsigned 3:2,6

reel-to-reel 2:1 unsigned characters, zero-extension
tdesc info protocols 3: 59 3:25,27-28
tdesc information 3: 57 unsigned integers, zero-extension 3: 25,
.tdesc section 3:58 27-28
temporary registers 3:19 unspecified property 3:1,32, 5:3,5
termination, process 3: 56 see also ABI conformance 3:1
text see also undefined behavior 3:1

process 3:29 USAGE clause, COBOL 3: 11

sharing 3:45 user mode (see processor execution
text chunk 3:57 mode)

text description (tdesc) information 3: 57 User’s Manual 1:2
text section 3:57
trace trap exception 3:38
transmission V
argument 3:24
parameter 3:24
result 3:26
traps (see exceptions)
traps, access exception 3: 30
tunable parameters
process size 3:29
stack size 3: 31

<varargs.h> 3:54
variable argument list 3: 54
variable space, local 3:22
virtual addressing 3: 29, 45
bounds 3:30

invalid 3:30

1-8 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Index

X

XIP-relative branch 3: 45
Xmem instruction, restrictions 3: 1

z

Zero
null pointer 3: 3, 30
uninitialized data 5: 4

virtual address 3: 30

zero fill 3:6

zero-extension

unsigned characters 3: 25, 27-28
unsigned integers 3: 25, 27

Index -9

320-167

X
UNIX
PRESS

A Prentice Hall Title

TSEN D~13~-877LE5=5

