

Copyright 1990 AT&T
All Rights Reserved
Printed In USA

Published by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any means-graphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap­
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in
writing from AT&T.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this document, AT&T
assumes no liability to any party for any loss or damage caused by errors or omissions or by state­
ments of any kind in this document, its updates, supplements, or special editions, whether such er­
rors are omissions or statements resulting from negligence, accident, or any other cause. AT&T furth­
er assumes no liability arising out of the application or use of any product or system described
herein; nor any liability for incidental or consequential damages arising from the use of this docu­
ment. AT&T disclaims all warranties regarding the information contained herein, whether expressed,
implied or statutory, including implied warranties of merchantability or fitness for a particular purpose.
AT&T makes no representation that the interconnection of products in the manner described herein
will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the
granting or license to make, use or sell equipment constructed in accordance with this description.

AT&T reserves the right to make changes without further notice to any products herein to improve
reliability, function, or design.

TRADEMARKS

UNIX is a registered trademark of AT&T.

The publisher offers discounts on this book when ordered in bulk quantities.
For more information, write:

Special Sales
Prentice-Hall, Inc.
College Technical and Reference Division
Englewood Cliffs, New Jersey 07632

or

call 201-592-2498

For single copies, call 201-767-5937

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-877655-5

UNIX
PRESS

A Prentice Hall Title

1

2

3

4

5

Contents

INTRODUCTION
Motorola 88000 Processor and the System V ABI 1-1
How to Use the Motorola 88000 Processor ABI Supplement 1-2

SOFTWARE INSTALLATION
Software Distribution Formats 2-1

LOW-LEVEL SYSTEM INFORMATION
Machine Interface 3-1
Function Calling Sequence 3-18
Operating System Interface 3-29
Coding Examples 3-44
Text Description Information 3-57

OBJECT FILES
ELF Header 4-1
Sections 4-2
Symbol Table 4-3
Relocation 4-4

PROGRAM LOADING AND DYNAMIC LINKING
Program Header 5-1
Segment Permissions 5-2
Program Loading 5-3
Dynamic Linking 5-7

Table of Contents

Table of Contents

6 LIBRARIES
System Library
C Library
System Data Interfaces

6-1
6-4
6-5

ii Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figures and Tables

Figure 3·1: C Scalar Types
Figure 3-2: Structure Smaller Than a Word
Figure 3-3: No Padding
Figure 3-4: Internal Padding
Figure 3-5: Internal and Tail Padding
Figure 3-6: union Allocation
Figure 3-7: Bit-Field Ranges
Figure 3-8: Bit Numbering
Figure 3-9: Left-to-Right Allocation
Figure 3-10: Boundary Alignment
Figure 3-11: Storage Unit Sharing
Figure 3-12: union Allocation
Figure 3-13: Unnamed Bit-Fields
Figure 3-14: FORTRAN Scalar Types
Figure 3-15: Optional FORTRAN Scalar Types
Figure 3-16: COBOL ASCII Digits
Figure 3-17: COBOL Sign Representations, Part 1 of 2
Figure 3-18: COBOL Sign Representations, Part 2 of 2
Figure 3-19: COBOL Sign Variants
Figure 3-20: COBOL BINARY Alignments
Figure 3-21 : Processor Registers
Figure 3-22: Stack Organization
Figure 3-23: Function Prologue
Figure 3-24: Simple Function Epilogue
Figure 3-25: Function Epilogue
Figure 3-26: Virtual Address Configuration
Figure 3-27: Exceptions and Signals, Part 1 of 2
Figure 3-28: Exceptions and Signals, Part 2 of 2
Figure 3-29: Declaration for main
Figure 3-30: Auxiliary Vector
Figure 3-31: Auxiliary Vector Types, a_ type
Figure 3-32: Position-Independent Function Prologue
Figure 3-33: Position-Independent Function Epilogue
Figure 3-34: Absolute Load and Store
Figure 3-35: Position-Independent Load and Store
Figure 3-36: Absolute Direct Function Call
Figure 3-37: Position-Independent Direct Function Call

Table of Contents

3-.2
3-3
3-4
3-4
3-5
3-5
3-6
3-7
3-7
3-7
3-8
3-8
3-8
3-9
3-10
3-12
3-13
3-13
3-15
3-16
3-18
3-21
3-23
3-23
3-24
3-30
3-35
3-36
3-39
3-41
3-42
3-48
3-48
3-49
3-50
3-51
3-52

iii

Table of Contents

Figure 3-38: Absolute Indirect Function Call
Figure 3-39: Position-Independent Indirect Function Call
Figure 3-40: Dynamic Stack Space Allocation
Figure 3-41: Tdesc Chunk
Figure 3-42: Info Field Alignment
Figure 3-43: Info Structure
Figure 3-44: Tdesc Information Piece
Figure 3-45: Map Protocol 1
Figure 3-46: Map Protocol 2
Figure 3-47: Tdesc Piece Entry
Figure 3-48: _debug_ info Structure
Figure 4-1: M88000 Identification, e ident
Figure 4-2: Special Sections
Figure 4-3: Relocatable Fields
Figure 4-4: Relocation Types, Part 1 of 2
Figure 4-5: Relocation Types, Part 2 of 2
Figure 5-1: Segment Permissions
Figure 5-2: Executable File Example
Figure 5-3: Program Header Segments Example
Figure 5-4: Process Image Segments
Figure 5-5: Example Shared Object Segment Addresses
Figure 5-6: Dynamic Array Tags, d_ tag
Figure 5-7: GOTP Binding Entry Stack Frame
Figure 5-8: GOTP Binding Entry
Figure 5-9: GOTP Binding Helper
Figure 5-10: PLT Entry
Figure 6-1: libsys Support Routines
Figure 6-2: libsys, Global External Data Symbols
Figure 6-3: <assert.h>
Figure 6-4: <ctype.h>
Figure 6-5: <dirent.h>
Figure 6-6: <errno.h>, Part 1 of 4
Figure 6-7: <errno.h>, Part 2 of 4
Figure 6-8: <errno.h>, Part 3 of 4
Figure 6-9: <errno.h>, Part 4 of 4
Figure 6-10: <fcntl.h>, Part 1 of 2
Figure 6-11: <fcntl .h>, Part 2 of 2
Figure 6-12: <float.h>
Figure6-13: <fmtmsg.h>
Figure 6-14: <ftw.h>
Figure 6-15: <grp.h>

3-53
3-53
3-54
3-58
3-59
3-60
3-63
3-64
3-64
3-65
3-66
4-1
4-2
4-4
4-8
4-9
5-2
5-3
5-4
5-5
5-6
5-8
5-12
5-12
5-13
5-16
6-1
6-3
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-13
6-14
6-15
6-15

iv Motorola 88000 PROCESSOR ABI SUPPLEMENT

Table of Contents

Figure 6-16: <sys/ipc.h> 6-16
Figure 6-17: <langinfo. h>, Part 1 of 2 6-17
Figure 6-18: <langinfo.h>, Part 2 of 2 6-18
Figure 6-19: <limits.h> 6-19
Figure 6-20: <locale.h> 6-20
Figure 6-21 : <sys/m88kbcs.h> 6-21
Figure 6-22: <math.h> 6-21
Figure 6-23: <sys/mman.h> 6-22
Figure 6-24: <mon.h> 6-22
Figure 6-25: <sys/mount.h> 6-23
Figure 6-26: <sys/msg.h> 6-24
Figure 6-27: <netconfig.h>, Part 1 of2 6-25
Figure 6-28: <netconfig. h>, Part 2 of 2 6-26
Figure 6-29: <netdir.h> 6-27
Figure 6-30: <nl_types.h> 6-28
Figure 6-31 : <sys/param.h> 6-28
Figure 6-32: <poll.h> 6-29
Figure 6-33: <sys/procset.h> 6-30
Figure 6-34: <pwd.h> 6-31
Figure 6-35: <sys/regset.h>, Part 1of2 6-32
Figure 6-36: <sys/regset.h>, Part 2 of 2 6-33
Figure 6-37: <sys/resource.h> 6-34
Figure 6-38: <rpc.h>, Part 1of12 6-35
Figure 6-39: <rpc.h>, Part 2of12 6-36
Figure 6-40: <rpc. h>, Part 3 of 12 6-37
Figure 6-41: <rpc.h>, Part 4of12 6-38
Figure 6-42: <rpc. h>, Part 5 of 12 6-39
Figure 6-43: <rpc .h>, Part 6 of 12 6-40
Figure 6-44: <rpc .h>, Part 7 of 12 6-41
Figure 6-45: <rpc .h>, Part 8of12 6-42
Figure 6-46: <rpc .h>, Part 9of12 6-43
Figure 6-47: <rpc. h>, Part 10 of 12 6-44
Figure 6-48: <rpc .h>, Part 11 of 12 6-45
Figure 6-49: <rpc .h>, Part 12 of 12 6-46
Figure 6-50: <search.h> 6-47
Figure 6-51: <sys/sem.h> 6-48
Figure 6-52: <setjmp.h> 6-49
Figure 6-53: <sys/shm.h> 6-50
Figure 6-54: <sigaction.h> 6-51
Figure 6-55: <sys/siginfo.h>, Part 1 of 3 6-52
Figure 6-56: <sys/siginfo.h>, Part 2 of 3 6-53

Table of Contents v

Table of Contents

Figure 6-57: <sys/siginfo.h>, Part 3 of 3
Figure 6-58: <signal. h>, Part 1 of 2
Figure 6-59: <signal. h>, Part 2 of 2
Figure 6-60: <sys/stat.h>, Part 1 of 2
Figure 6-61: <sys/ stat. h>, Part 2 of 2
Figure 6-62: <sys/statvfs.h>
Figure 6-63: <stdarg. h>
Figure 6-64: <stddef. h>
Figure 6-65: <stdio. h>
Figure 6-66: <stdlib. h>
Figure 6-67: <stropts .h>, Part 1 of 4
Figure 6-68: <stropts .h>, Part 2 of 4
Figure 6-69: <stropts .h>, Part 3 of 4
Figure 6-70: <stropts .h>, Part 4 of 4
Figure 6-71: <termios .h>, Part 1 of 6
Figure 6-72: <termios .h>, Part 2 of 6
Figure 6-73: <termios .h>, Part 3 of 6
Figure 6-74: <termios .h>, Part 4 of 6
Figure 6-75: <termios .h>, Part 5 of 6
Figure 6-76: <termios .h>, Part 6 of 6
Figure 6-77: <sys/time.h>, Part 1 of 2
Figure 6-78: <sys/time.h>, Part 2 of 2
Figure 6-79: <sys/times .h>
Figure 6-80: <sys/tiuser.h>, Service Types
Figure 6-81: <sys/tiuser. h>, Transport Interface States
Figure 6-82: <sys/tiuser. h>, User-level Events
Figure 6-83: <sys/tiuser. h>, Error Return Values
Figure 6-84: <sys/tiuser. h>, Transport Interface Data Structures, 1 of 2
Figure 6-85: <sys/tiuser. h>, Transport Interface Data Structures, 2 of 2
Figure 6-86: <sys/tiuser .h>, Structure Types
Figure 6-87: <sys/tiuser .h>, Fields of Structures
Figure 6-88: <sys/tiuser .h>, Events Bitmasks
Figure 6-89: <sys/tiuser.h>, Flags
Figure 6-90: <sys/types .h>
Figure 6-91 : <ucontext. h>
Figure 6-92: <uio.h>
Figure 6-93: <ulimit.h>
F!gure 6-94: <unistd. h>, Part 1 of 3
Figure 6-95: <unistd.h>, Part 2 of 3
Figure 6-96: <unistd.h>, Part 3 of 3
Figure 6-97: <utime.h>

6-54
6-55
6-56
6-57
6-58
6-59
6-60
6-61
6-62
6-63
6-64
6-65
6-66
6-67
6-68
6-69
6-70
6-71
6-72
6-73
6-74 '
6-75
6-75
6-76
6-76
6-77
6-78
6-79
6-80
6-80
6-81
6-81
6-82
6-82
6-83
6-83
6-84
6-84
6-85
6-86
6-86

vi Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figure 6-98: <utsname.h>
Figure 6-99: <varargs.h>
Figure 6-100: <wait.h>

Table of Contents

Table of Contents

6-87
6-87
6-88

vii

1 INTRODUCTION

Motorola 88000 Processor and the System
V ABI 1-1

How to Use the Motorola 88000 Processor
ABI Supplement 1-2
Evolution of the ABI Specification 1-2

Table of Contents

Motorola 88000 Processor and the System V
ABI

The System V Application Binary Interface, or ABI, defines a system interface
for compiled application programs. Its purpose is to establish a standard binary
interface for application programs on systems that implement UNIX System V
Release 4.0 or some other operating system that complies with the System V
Interface Definition, Issue 3.

This document is a supplement to the generic System V ABI, and it contains
information specific to System V implementations built on the M88000 processor
architecture. Together, these two specifications, the generic System V ABI and
the System V ABI Motorola 88000 Processor Supplement, constitute a complete
System V Application Binary Interface specification for systems that implement the
architecture of the M88000 processor.

INTRODUCTION 1-1

How to Use the Motorola 88000 Processor ABI
Supplement

This document is a supplement to the generic System V ABI and contains infor­
mation referenced in the generic specification that may differ when System V is
implemented on different processors. Therefore, the generic ABI is the prime
reference document, and this supplement is provided to fill gaps in that
specification.

As with the System V ABI, this specification references other publicly-available
reference documents, especially the MC88100 User's Manual. All the informa­
tion referenced by this supplement should be considered part of this
specification, and just as binding as the requirements and data explicitly included
here.

Evolution of the ABI Specification

The System V Application Binary Interface will evolve over time to address
new technology and market requirements, and will be reissued at intervals of
approximately three years. Each new edition of the specification is likely to con­
tain extensions and additions that will increase the potential capabilities of appli­
cations that are written to conform to the ABI.

As with the System V Interface Definition, the ABI will implement Level 1 and
Level 2 support for its constituent parts. Level 1 support indicates that a portion
of the specification will continue to be supported indefinitely, while Level 2 sup­
port means that a portion of the specification may be withdrawn or altered after

- - -
the next edition of the ABI is made available. That is, a portion of the
specification moved to Level 2 support in an edition of the ABI specification will
remain in effect at least until the following edition of the specification is pub­
lished.

These Level 1 and Level 2 classifications and qualifications apply to this Supple­
ment, as well as to the generic specification. All components of the ABI and of
this supplement have Level 1 support unless they are explicitly labeled as Level
2.

1-2 Motorola 88000 PROCESSOR ABI SUPPLEMENT

2 SOFTWARE INSTALLATION

Software Distribution Formats
Physical Distribution Media

Table of Contents

2-1
2-1

Software Distribution Formats

Physical Distribution Media

Approved media for physical distribution of ABI-conforming software are listed
below. Inclusion of a particular medium on this list does not require an ABI­
conforming system to accept that medium. For example, a conforming system
may install all software through its network connection and accept none of the
listed media.

• 5.25-inch floppy disk: 96 TPI (80 tracks/side) doubled-sided, 15
sectors/track, 512 bytes/sector, total format capacity of 1.2 megabytes per
disk.

• 3.5-inch floppy disk: 135 TPI (80 tracks/side) double-sided, 18 sectors/track,
512 bytes/sector, total format capacity of 1.44 megabytes per disk.

• 1/2-inch reel-to-reel tape: conforms to ANSI-standard reel-to-reel tape stan­
dard which consists of 9 tracks, 1600 BPI, no label.

• 150 MB quarter-inch cartridge tape in QIC-150 format.

The QIC-150 cartridge tape data format is described in Serial Recorded Magnetic
Tape Cartridge for Information Interchange, Eighteen Track 0.250 in. (6.30 mm) 10,000
bpi (394 bpmm) Streaming Mode Group Code Recording, Revision 1, May 12, 1987.
This document is available from the Quarter-Inch Committee (QIC) through Free­
man Associates, 311 East Carillo St., Santa Barbara, CA 93101.

SOFTWARE INSTALLATION 2-1

\

3 LOW-LEVEL SYSTEM
INFORMATION

Machine Interface
Processor Architecture
Data Representation

• Byte Ordering
• C Fundamental Types
• FORTRAN Data Types
• COBOL Data Types

Function Calling Sequence
Registers and the Stack Frame
Argument Transmission

• Argument Transmission for C
• Argument Transmission for FORTRAN
• Argument Transmission for COBOL

Result Transmission
• Result Transmission for C
• Result Transmission for FORTRAN
• Result Transmission for COBOL

Operating System Interface
Virtual Address Space

• Page Size
• Virtual Address Assignments
• Managing the Process Stack
• Coding Guidelines

Processor Execution Modes
Exception Interface
Process Initialization

• Registers
• Process Stack

Table of Contents

3-1
3-1
3-1
3-1
3-2
3-9
3-11

3-18
3-18
3-24
3-25
3-25
3-26
3-26
3-27
3-27
3-28

3-29
3-29
3-29
3-29
3-31
3-31
3-32
3-32
3-38
3-39
3-41

Table of Contents

Coding Examples 3-44
Code Model Overview 3-45
Position-Independent Function Prologue and Epilogue 3-47
Data Objects 3-49
Function Calls 3-50
Variable Argument List 3-54
Allocating Stack Space Dynamically 3-54

Text Description Information 3-57
Tdesc Information 3-57
Info Protocol 3-59
Map Protocol 3-63
Debug Info 3-66

ii Motorola 88000 PROCESSOR ABI SUPPLEMENT

Machine Interface

Processor Architecture

The MC88100 User's Manual defines the processor architecture. Programs
intended to execute directly on the processor use the instruction set, instruction
encodings, and instruction semantics of the architecture, with the following
exceptions:

• A program shall use only the instructions defined by the architecture.

• A program shall execute neither an xmem nor an lda instruction with an
immediate IMMl 6 field.

• A program shall not rely on the occurrence of a trap upon execution of a div
or di vu instruction with a zero divisor.

To be ABI-conforming, the processor must implement the architecture's instruc­
tions, perform the specified operations, and produce the specified results. The
ABI neither places performance constraints on systems nor specifies what instruc­
tions must be implemented in hardware. A software emulation of the architec­
ture could conform to the ABI.

Some processors might support the M88000 architecture as a subset, providing
additional instructions or capabilities. Programs that use those capabilities expli­
citly do not conform to the M88000 ABI. Executing those programs on machines
without the additional capabilities gives undefined behavior.

Data Representation

Byte Ordering

ABI compliant programs shall use Big-Endian byte order in all interfaces
described in this document. ABI compliant programs can assume that the Proces­
sor Status Register (PSR) byte order (BO) bit specifies Big-Endian byte order.

LOW-LEVEL SYSTEM INFORMATION 3-1

Machine Interface

C Fundamental Types

Figure 3-1 shows the correspondence between ANSI C's scalar types and the
processor's.

Figure 3-1: C Scalar Types

Type c
signed char
char

unsigned char
short
signed short
unsigned short

Integral int
signed int
long
signed long
en urn
unsigned int
unsigned long

Pointer
any-type *
any-type (*) ()
float

Floating-point double
long double

Alignment
sizeof (bytes)

1 1

1 1

2 2

2 2

4 4

4 4

4 4

4 4

8 8

8 8

MC88100

signed byte

unsigned byte

signed halfword

unsigned halfword

signed word

unsigned word

unsigned word

single-precision

double-precision
double-precision

A null pointer (for all types) has the value zero.

3-2 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Machine Interface

Y The long double type has the same size and alignment as the double
type for this version of the ABI. This relationship is Level 2: future ver­
sions of the Motorola 88000 Processor ABI Supplement may provide a dif­
ferent long double type.

Aggregates and Unions

An array assumes the alignment of its elements' type. The size of any object,
including arrays, structures, and unions, always is a multiple of the object's
alignment. Structure and union objects may, therefore, require padding to meet
size and alignment constraints.

• The alignment of a structure or a union is the maximum of the alignment of
its elements.

• Each member is assigned to the lowest available offset with the appropriate
alignment. This may require internal padding, depending on the previous
member.

• A structure's size is increased, if necessary, to make it a multiple of the
structure's alignment. This may require tail padding, depending on the last
member.

In the following examples, members' byte offsets appear in the upper left
corners.

Figure 3-2: Structure Smaller Than a Word

struct {
char

} ;

c;

LOW-LEVEL SYSTEM INFORMATION

Byte aligned, sizeof is 1

lo c I

3-3

Machine Interface

Figure 3-3: No Padding

struct {

char c;
char d;
short s;
long n;

} ;

Figure 3-4: Internal Padding

3-4

struct {

} ;

char c;
short s;

s

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figure 3-5: Internal and Tail Padding

struct { Double aligned, sizeof is 24

} ;

char c;
double d;
short s;

Figure 3-6: union Allocation

0
c

4

8

12

16

20

J pad

pad

d

d

s r
pad

union Word aligned, sizeof is 4

} ;

Bit-Fields

char c;
short s;
int j;

0
c

0

0

T pad

s I
j

Machine Interface

pad

pad

C struct and union definitions may have bit-fields, defining integral objects with
a specified number of bits.

LOW-LEVEL SYSTEM INFORMATION 3-5

Machine Interface

Figure 3-7: Bit-Field Ranges

Bit-field Type Widthw Range
signed char -2w-l to 2w-l_l

char 1to8 0 to 2w-l
unsigned char 0 to 2w-l

signed short -2w-l to 2w-l_ l

short 1to16 0 to 2w-l
unsigned short 0 to 2w-l

signed int -2w-1to2w-1_1
int

1to32
0 to 2w-1

en urn 0 to 2w-1
unsigned int 0 to 2w-1

signed long -2w-l to 2w-l_l
long 1to32 0 to 2w-l
unsigned long 0 to 2w-l

"Plain" bit-fields always have non-negative values. Although they may have
type char, short, int, or long (which can have negative values), these bit-fields
are extracted into a word with zero fill. Bit-fields obey the same size and align­
ment rules as other structure and union members, with the following additions.

• Bit-fields are allocated from left to right (most to least significant).

• A bit-field must entirely reside in a storage unit appropriate for its declared
type. Thus a bit-field never crosses its unit boundary.

• Bit-fields may share a storage unit with other struct/union members,
including members that are not bit-fields. Of course, struct members
occupy different parts of the storage unit.

• Unnamed bit-fields' types do not affect the alignment of a structure or union,
although individual bit-fields member offsets obey the alignment constraints.

The following examples show struct and union members' byte offsets in the
upper left corners; bit numbers appear in the lower corners.

3-6 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figure 3-8: Bit Numbering

Ox01020304

Figure 3-9: Left-to-Right Allocation

struct {
int
int
int

} ;

j:S;
k:6;
m:7;

Word aligned, sizeof is 4

Figure 3-10: Boundary Alignment

struct { Word aligned, sizeof is 12
short s:9;
int j:9;
char c;
short t: 9;
short u:9;
char d;

0 l pad s j 31 22 13
4

pad L t u 31 22
8

1:3
pad d 31

} ;

LOW-LEVEL SYSTEM INFORMATION

Machine Interface

pad

J c
0

16 pad
0

3-7

Machine Interface

Figure 3-11 : Storage Unit Sharing

struct {

} ;

char c;
short s:8;

Figure 3-12: union Allocation

union

} ;

char c;
short s:8;

Figure 3-13: Unnamed Bit-Fields

struct {

char c;
int :0;
char d;
short : 9;
char e;
char :O;

} ;

3-8

Halfword aligned, sizeof is 2

1:5 c 1: s ol

Halfword aligned, sizeof is 2
0 1

pad c
15 7
0

pad s
15 7 0

Byte aligned, sizeof is 9
0 1

c : 0
31 23
4 5

pad t 16
pad d :9

31 23 0
8

e
31

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Machine Interface

FORTRAN Data Types

Figure 3-14 shows the correspondence between FORTRAN' s scalar types and the
processor's.

Figure 3-14: FORTRAN Scalar Types

Alignment
Type FORTRAN Size (bytes) MC88100

Character CHARACTER*(n) n 1 byte sequence

Integral
LOGICAL 4 4 word
INTEGER 4 4 signed word

REAL 4 4 single-precision

Floating-point
DOUBLE PRECISION 8 8 double-precision

paired single-
COMPLEX 8 4

precision

The LOGICAL data type has value . FALSE. if, and only if, it is binary zero. Other­
wise, the value is . TRUE ..

Some FORTRAN programs that conform to ANSI Standard X3.9-1978 are not sup­
ported within this standard. Programs that force the compiler to produce
misaligned storage allocation of double-precision real (typically using the COMMON

and/ or EQUIVALENCE statements) are not supported.

Support of these programs would degrade the performance of double­
precision arithmetic in all programs. It is suggested that conforming com­
pilers inform the user of such a misalignment.

LOW-LEVEL SYSTEM INFORMATION 3-9

Machine Interface

Figure 3-15 shows additional, optional FORTRAN scalar types and their imple­
mentation on the MC88100.

Figure 3-15: Optional FORTRAN Scalar Types

Type FORTRAN

LOGICAL*l

LOGICAL*2

Integral
LOGICAL*4

INTEGER*l

INTEGER*2

INTEGER*4

REAL*4

REAL*8

Floating-point COMPLEX*8

COMPLEX*l6

DOUBLE COMPLEX

Alignment
Size (bytes)

1 1

2 2
4 4
1 1

2 2

4 4

4 4

8 8

8 4

16 8

MC88100
byte
halfword
word
signed byte
signed halfword
signed word
single-precision
double-precision
paired single-
precision
paired double-
precision

An array uses the same alignment as its elements.

3-10

The COMPLEX and coMPLEX*8 data types are 4 rather than 8 byte aligned as
they are often equivalenced to two REAL data types.

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Machine Interface

COBOL Data Types

~ COBOL data types are defined not only to promote interlanguage operability y but also to promote exchange of data with existing applications.

COBOL contains five categories of data items grouped into three classes. The
alphabetic class contains the alphabetic category. The numeric class contains the
numeric category. The alphanumeric class contains the numeric edited,
alphanumeric edited, and alphanumeric categories.

• The alignment of the group is the maximum of the alignments of its ele­
ments.

• The elements of the group, in the order in which they appear in the source
language, are assigned increasing positions, relative to the beginning of the
group, in the structure representation. Each elementary item is assigned to
the lowest available offset with the appropriate alignment. Note that this
may require internal padding.

• A group's size is increased the minimum amount necessary (possibly zero)
to make it an integral multiple of the group's alignment only if the group has
an OCCURS clause. Note that this may require tail padding (only when there is
an OCCURS clause).

Level 01 and 77 items alignment may use more restrictive alignment.

COBOL Standard Nonnumeric Data Types
All data types that belong to the alphabetic and alphanumeric classes are
represented as a sequence of 8-bit ASCII characters, one character per byte, with
byte alignment. The first, or leftmost, character at the COBOL source level is the
lowest addressed byte of the representation.

COBOL Standard Numeric Data Types
The data types of the numeric class are, for the purposes of this standard, dif­
ferentiated primarily by the USAGE and SIGN clauses of their COBOL source
descriptions. The numeric data types described in the ANSI standard are
DISPLAY, PACKED-DECIMAL, BINARY, and COMPUTATIONAL. COMPUTATIONAL shall use
the same format as BINARY.

LOW-LEVEL SYSTEM INFORMATION 3-11

Machine Interface

The implied decimal point in COBOL does not occupy a storage location.
Numeric items described in terms of pseudo-PICTURE character strings with no
implied decimal point represent all such numeric items without regard to the
implied decimal point.

COBOL Standard Numeric Data Types - DISPLAY A numeric data item described,
explicitly or implicitly, as USAGE IS DISPLAY is represented as one ASCII decimal
digit character for each digit position (i.e., each 9) in the PICTURE for the item,
aligned on a byte boundary. The high-order digit shall be the lowest addressed
byte of the representation. The representation of ASCII decimal digits is:

Figure 3-16: COBOL ASCII Digits

Digit Decimal Hexadecimal
0 48 30
1 49 31
2 50 32
3 51 33
4 52 34
5 53 35
6 54 36
7 55 37
8 56 38
9 57 39

Unsigned data items shall contain one byte for each digit position.

Separate sign representations (SIGN IS LEADING/TRAILING SEPARATE) shall be the
ASCII plus sign(+) for nonnegative numeric values and the ASCII minus sign(-)
for negative numeric values. The representation of the data item shall contain
one byte for each digit position plus one byte for the sign character. The sign
character shall be the lowest (LEADING) or highest (TRAILING) addressed byte of
the representation.

3-12 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Machine Interface

Combined sign representations (SIGN IS LEADING/TRAILING) shall combine the
representation of the high-order (LEADING, most significant) or low-order (TRAIL­

ING, least significant) digit position with the operational sign for the item. A con­
forming implementation for COBOL shall be able to consume data using both
combined sign representation variants shown in the following tables and shall
document which variant(s) is (are) produced by that implementation.

Figure 3-17: COBOL Sign Representations, Part 1of2

Nonnegative Negative
Digit Decimal Hex ASCII Decimal Hex ASCII

0 123 7B { 125 7D }
1 65 41 A 74 4A J
2 66 42 B 75 4B K
3 67 43 c 76 4C L
4 68 44 D 77 4D M
5 69 45 E 78 4E N
6 70 46 F 79 4F 0
7 71 47 G 80 50 p

8 72 48 H 81 51 Q
9 73 49 I 82 52 R

These combined sign representations allow the translation of numeric values
with combined signs from/to EBCDIC files without knowledge of the location
of numeric fields within a record area. While such a capability lies outside
ANSI X3.23-1985, which specifies that SIGN Is SEPARATE is required when
CODE SET is specified for a file, current practice dictates that the exchange of
combined sign data is necessary.

LOW-LEVEL SYSTEM INFORMATION 3-13

Machine Interface

Figure 3-18: COBOL Sign Representations, Part 2 of 2

3-14

Nonnegative Negative
Digit Decimal Hex ASCII Decimal Hex ASCII

0 48 30 0 112 70 p
1 49 31 1 113 71 q
2 50 32 2 114 72 r
3 51 33 3 115 73 s
4 52 34 4 116 74 t
5 53 35 5 117 75 u
6 54 36 6 118 76 v
7 55 37 7 119 77 w
8 56 38 8 120 78 x
9 57 39 9 121 79 y

The ABI anticipates that data fields using both representations may exist
within a single record. Interoperability is promoted by the ability to consume
both representations.

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Machine Interface

COBOL Standard Numeric Data Types - PACKED-DECIMAL A numeric data item
described explicitly as USAGE rs PACKED-DECIMAL is represented as one 4-bit
binary coded decimal (BCD) digit for each digit position (i.e., each 9) in the PIC­

TURE for the item. Two BCD digits are placed in each byte, with the lowest order
digit in the most significant four bits and the operational sign representation in
the least significant four bits of the highest addressed byte. The high-order digit
shall be contained in the lowest addressed byte of the representation; if an even
number of digits is specified in the PICTURE for the item, the high-order digit shall
be in the least significant four bits and the most significant four bits shall be zero.
The item is aligned on a byte boundary. The digit representations are as follows:

Digit Decimal Hexadecimal

0 0 0
1 1 1
2 2 2
3 3 3
4 . 4 4
5 5 5
6 6 6
7 7 7
8 8 8
9 9 9

A conforming implementation for COBOL shall be able to consume data using
both sign representation variants shown below and shall document which
variant(s) is (are) produced by that implementation.

Figure 3-19: COBOL Sign Variants

Nonnegative
Variant A
VariantB

LOW-LEVEL SYSTEM INFORMATION

OxC
OxF

Negative
OxD
OxD

Unsigned
OxF
OxF

3-15

Machine Interface

The ABI anticipates that data fields using both representations may exist
within a single record. Interoperability is promoted by the ability to consume
both representations.

COBOL Standard Numeric Data Types - BINARY A numeric data item described
explicitly as USAGE IS BINARY is represented as a 16-, 32-, or 64-bit binary integer
depending on the number of digit positions (i.e., 9' s) in the PICTURE for the item.

If the item is signed (the PICTURE character string contains an S) the binary
representation is a 2's complement binary integer. The sign bit shall be the most
significant bit of the lowest addressed byte of the binary integer. The remaining
seven bits of the lowest addressed byte shall contain the most significant portion
of the binary integer and the highest addressed byte shall contain the least
significant portion of the binary integer.

If the item has no sign, the binary representation is an unsigned binary integer.
The lowest addressed byte shall contain the most significant portion of the binary
integer and the highest addressed byte shall contain the least significant portion
of the binary integer.

As permitted by Sections 5.13.4 (9) and 5.14.4 (3) of ANSI X3.23-1985, the align­
ment and size of BINARY data items shall be as specified in the following table:

Figure 3-20: COBOL BINARY Alignments

3-16

Digit
Positions

1-4
5-9

10-18

Size
16-bit
32-bit
64-bit

Alignment
2byte
4 byte
4 byte

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Machine Interface

Binary representations of numbers that cannot be specified in the number of
decimal digits coded in the PICTURE for the item are nonstandard.

COBOL Nonstandard Numeric Data Types
Floating-point data types are not part of ANSI Standard COBOL and, therefore,
are an optional part of this standard. A conforming implementation of COBOL
shall adhere to ANSI/IEEE Std 754-1985 when providing these data types.

LOW-LEVEL SYSTEM INFORMATION 3-17

Function Calling Sequence

This section discusses the standard function calling sequence, including stack
frame layout, register usage, parameter passing, etc. C, FORTRAN, and COBOL
programs and their libraries use this calling sequence. The system libraries
described in Chapter 6 require this calling sequence.

~ C programs follow the conventions here. For specific information on the y implementation of C, see "Coding Examples" in this chapter.

Registers and the Stack Frame

The MC88100 provides 32 general purpose registers, each 32 bits wide. Brief
register descriptions appear in Figure 3-21.

Figure 3-21: Processor Registers

Register Name
#rO
#rl
#r2 to #r9
#rlO to #r13
#r14 to #r25
#r26 and #r27
#r28 and #r29
#r30
#r31

3-18

Usage
Always equal to zero
Holds the subroutine return pointer
Temporary register set used for parameter passing
Temporary registers used for language-specific purposes
Preserved registers
Temporary registers
Reserved for ABI future use
Preserved register
Contains the stack pointer

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Function Calling Sequence

Some registers have assigned roles.

#rO Register #rO contains the constant zero.

#rl Register #rl contains the return pointer generated by bsr
or jsr instructions. Register #rl may be destroyed across
subroutine calls.

#r2 through #r9 This set of registers may be modified across procedure
invocations and shall therefore be presumed by the calling
procedure to be destroyed. These temporary registers are
used for passing parameters to the called procedure.

#rlO through #r13 Registers #rlO through #r13 are also used as temporary
registers. These registers may be destroyed across subrou­
tine calls. Registers #rll, #r12, and #r13 have been allo­
cated for some specific language requirements. Register
#rll is used to pass the environment to a dummy pro­
cedure in FORTRAN. Register #rll is also used as a
scratch register by the dynamic linking mechanism. See
Chapter 5 for details. Register #r12 is used by a calling
procedure to pass an address to a called procedure when
the calling procedure expects a result to be stored in an
area of memory. The called procedure shall return its
result in this area pointed to by the value in #r12, while
the size in bytes is passed in #r13, if required by the
language.

#r14 through #r25 This set of registers shall be saved by the called procedure.
They are used when values must be preserved for the
duration of the current routine.

#r26 and #r27 This set of registers may be modified across procedure
invocations and shall therefore be presumed by the calling
procedure to be destroyed.

#r28 and #r29 A conforming program shall neither change nor rely on
the contents of these registers.

#r30 Register #r30 is a preserved register and shall be saved by
the called procedure.

LOW-LEVEL SYSTEM INFORMATION 3-19

Function Calling Sequence

#r31 The stack pointer (stored in #r31) shall maintain 16-byte
alignment. It shall point to the last word allocated on the
stack, and grow towards low addresses. If required, it
shall be decremented by the called procedure and incre­
mented prior to returning.

Registers #r14 through #r25 and #r30, which are visible to both a calling and a
called function, "belong" to the calling function. In other words, a called func­
tion shall save these registers' values before it changes them, restoring their
values before it returns. Registers #rl through #r13, #r26, and #r27 "belong"
to the called function. If a calling function wants to preserve such a register
value across a function call, it must save the value in its local stack frame.

Signals can interrupt processes [see signal(BA_OS)]. Functions called during
signal handling have no unusual restrictions on their use of registers. A compiler
may generate code that causes programs to use any register without the danger
of signal handlers inadvertently changing their values.

In addition to the registers, each function may have a frame on the run-time
stack. This stack grows downward from high addresses. Figure 3-22 shows the
stack frame organization.

3-20 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figure 3-22: Stack Organization

SP'-->
(SP before call)

SP->
(SP after call)

High

Address

Argument Area

Temporary Space/
Local Variable Space

Argument Area

Low

Address

Function Calling Sequence

direction of

stack growth l

SP denotes the stack pointer of the called subroutine at entry while SP' denotes
the stack pointer of the calling subroutine at entry.

Several key points about the stack frame deserve mention.

LOW-LEVEL SYSTEM INFORMATION 3-21

Function Calling Sequence

• The stack pointer shall maintain 16-byte alignment.

• The stack pointer shall point to the last word allocated on the stack and shall
grow towards low addresses.

• The stack pointer shall be decremented by the called procedure on entry, if
required, and incremented prior to return.

• Other areas depend on the compiler and the code being compiled. The stan­
dard calling sequence does not define a maximum stack frame size, nor does
it restrict how a language system uses the "local variable space" of the stan­
dard stack frame.

• The argument area shall be allocated by the caller and shall be at least 32
bytes. Its contents are not preserved across calls.

• The presence of the temporary space/local variable space depends on the
nature of the function.

Across function boundaries, the function prologue may consist of several opera­
tions that depend on the nature of the function. Stack space may be allocated if
the function:

• Uses the preserved registers and therefore must save and restore them

• Calls another function and therefore must save #rl, allocate the argument
area, and possibly save any parameters.

• Needs local variables or temporary space.

The standard function prologue performs any or all of the following tasks, as
needed:

• Allocates stack space

• Saves #rl

• Saves the address of the memory return value passed in #r12

• Saves parameters passed in registers #r2-#r9

• Saves registers #r14 through #r25

3-22 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Function Calling Sequence

Figure 3-23 illustrates an example of the function prologue allocating 88 bytes for
local storage, and saving registers #r24 and #r25. Eighty bytes are for local
storage, and an additional 8 bytes are used for saving registers #r24 and #r25.

Figure 3-23: Function Prologue

fen:
subu #r31,#r31,96
st.d #r24,#r31,88

The standard function epilogue performs the following tasks, as needed:

• Either loads the return value or copies the result to the area pointed to by the
pointer received in #rl2

• Restores registers #rl4 through #r25 and #r30

• Deallocates local stack space

If the function returns no value, or if the return register(s) already contain(s) the
desired value, and no local stack was allocated, the epilogue in Figure 3-24 would
suffice.

Figure 3-24: Simple Function Epilogue

I fcnend:
jmp #rl

For a function that uses register #r25, is not a leaf function (i.e., may call another
function and therefore may modify #rl), and requires a total of 80 bytes of local
stack space, the following epilogue might be used:

LOW-LEVEL SYSTEM INFORMATION 3-23

Function Calling Sequence

Figure 3-25: Function Epilogue

fcnend:
ld #r25,#r31,72
ld #rl,#r31,76
addu #r31,#r31,80
jmp #rl

Argument Transmission

There is an offset in the argument area corresponding to each argument. The cal­
ling procedure shall use the offset as if all of the parameters were passed in
memory with the first parameter at offset zero, and subsequent parameters
passed consecutively. The offset is always rounded up to a multiple of 4 bytes.
For arguments with greater than 4-byte alignment, the offset is always rounded
up to a multiple of that alignment.

Arguments shall be at least word-aligned objects, and shall always be an integral
number of words long. The first 8 words of the argument list will be passed in
registers #r2 through #r9, and not in the argument area. The first word of the
argument list is passed in #r2, the second in #r3, etc., allocating registers con­
secutively until the eighth word is passed in h9. The remainder of the argu­
ment list will be passed in memory, starting at an offset of 8 words from the start
of the argument area.

The following subsections detail the mapping from the requirements of the
specific language to the rules listed here, and also specify special cases that form
exceptions to the rules stated here.

3-24 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Function Calling Sequence

Argument Transmission for C
For the language C, signed short and characters are sign-extended to 32 bits
before being passed. Unsigned short and characters are zero-extended to 32 bits
before being passed. Any pointer, floating-point, integer, 4-byte aligned 4-byte
structure, or 4-byte aligned 4-byte union argument whose offset is less than 32, is
passed in the register numbered (or, for double-precision, the register pair begin­
ning with the register numbered) 2+(offset I 4).

All other arguments are passed at offset bytes from the beginning of the argument
area.

Argument Transmission for FORTRAN
All actual arguments are passed by reference, i.e., a pointer to the argument is
passed. Values transmitted in the argument area whose offset is less than 32 are
passed in registers.

A procedure argument is represented by a 4-byte aligned instance of the follow­
ing structure:

struct proc {int entry; int envir;}

where entry is the address of the first instruction of the procedure, and envir is
the "environment" for the procedure.

For an actual argument that is a procedure, the address of a proc structure
instance is passed. The envir member of this structure is unspecified; a value of
zero is recommended.

When a dummy procedure is invoked, control is transferred to the address in the
entry member of the associated proc structure instance. At time of transfer,
register #rll contains the content of the envir member of the structure instance.
Otherwise, the rules for dummy procedure invocation are the same as for exter­
nal procedure invocation.

LOW-LEVEL SYSTEM INFORMATION 3-25

Function Calling Sequence

The representation of a procedure includes an environment in order to pro­
vide interoperability with languages that have internal procedures.

The FORTRAN character data type requires the passing of length as well as data
address. In order to keep the other fundamental data types in compliance with
the general rules outlined in the "Argument Transmission" section and to pro­
mote interoperability with other languages, FORTRAN establishes the length
information for each string after passing all other arguments (including the char­
acter data addresses). The length in bytes of each character argument is passed
as a 32-bit quantity at a position in the argument area based on the following for­
mula:

given:

where:

then:

argl, arg2, .. . , argC, .. . , argN as the actual argument list

argC is of type CHARACTER; there are N actual arguments total,
and argC is the Cth argument

the length of argC will be passed with offset 4N +4(C-l).

If argC is the last actual argument of type CHARACTER, the argu­
ment area shall be at least 4N+4C bytes in size. If argX is the Xth
actual argument and is not of type CHARACTER, the value at offset
4N+4(X-1) is undefined.

Argument Transmission for COBOL

The argument transmission for all data types is done by passing the address of
the argument according to the convention outlined in the general rules of the
"Argument Transmission" section.

Result Transmission

Results may be returned in registers or in memory. Registers #r2 through #r9
are available to return results. When results are returned in memory, the calling
procedure allocates such memory and passes a pointer to it in fr12. The called
procedure will then perform the copy to this area. If the language requires a size
for this area, then the size in bytes shall be passed in #r13.

3-26 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Function Calling Sequence

Other data types are returned by copying the return value to the memory area
pointed to by the address contained in #r12 at subroutine entry.

The following subsections detail the mapping from the requirements of each
specific language to the rules specified in this section, and also specify special
cases that form exceptions to the rules stated here.

Result Transmission for C

In the language C, single-precision floating-point, pointers, 4-byte aligned 4-byte
structures, and 4-byte aligned 4-byte unions are returned in #r2. Signed integers
and characters are sign-extended to 32 bits and returned in #r2. Unsigned
integers and characters are zero-extended to 32 bits and returned in #r2.
Double-precision floating-point values are returned in the register pair #r2 and
#r3. Other types are returned via memory as described in the general rules of
"Result Transmission."

A function declared to return a float returns a single-precision value.

Result Transmission for FORTRAN

FORTRAN follows the general rules outlined in "Result Transmission" with the
following additions.

INTEGER variant data types of size less than 4 bytes are sign-extended to 4 bytes
before being returned. LOGICAL variant data types of size less than 4 bytes are
extended to 4 bytes before being returned.

One word results are returned in register #r2. DOUBLE PRECISION and REAL*8

results are returned in registers #r2 and #r3.

COMPLEX, COMPLEX*8, COMPLEX*l6, and DOUBLE COMPLEX functions return their
result by placing the data in memory at the location addressed by register #r12
(on entry to the function). The value in register #r13 (on entry to the function) is
unused.

CHARACTER functions return their result by placing the data in memory at the loca­
tion addressed by register #r12 (on entry to the function) padded or truncated to
the length in bytes of the data area given by register #r13 (on entry to the func­
tion).

LOW-LEVEL SYSTEM INFORMATION 3-27

Function Calling Sequence

Calls to fixed-sized CHARACTER functions, as well as those to CHARACTER* (*) func­
tions, pass the length in fr13.

~ This method does not interoperate with C structure returning functions T except when the size _of the structure is known to equal the value of frl3.

Result Transmission for COBOL

There are no value-returning functions in COBOL.

3-28 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Operating System Interface

Virtual Address Space

Processes execute in a 32-bit virtual address space. Memory management
hardware translates virtual addresses to physical addresses, hiding physical
addressing and letting a process run anywhere in the system's real memory.
Processes typically begin with three logical segments, commonly called text, data,
and stack. As Chapter 5 describes, dynamic linking creates more segments dur­
ing execution, and a process can create additional segments for itself with system
services.

Page Size

Memory is organized by pages, which are the system's smallest units of memory
allocation. Page size can vary from one system to another. The allowable page
sizes are 4K, SK, 16K, 32K, or 64K. Processes can call sysconf(BA_OS) to deter­
mine the system's current page size.

Virtual Address Assignments

Conceptually, processes have the full 32-bit address space available. In practice,
however, several factors limit the size of a process.

• The system reserves a configuration-dependent amount of virtual space.

• A tunable configuration parameter limits process size.

• A process whose size exceeds the system's available, combined physical
memory and secondary storage cannot run. Although some physical
memory must be present to run any process, the system can execute
processes that are bigger than physical memory, paging them to and from
secondary storage. Nonetheless, both physical memory and secondary
storage are shared resources. System load, which can vary from one pro­
gram execution to the next, affects the available amounts.

LOW-LEVEL SYSTEM INFORMATION 3-29

Operating System Interface

Figure 3-26: Virtual Addr~ss Configuration

Oxffffffff Reserved End of memory ...
Stack and

dynamic segments ...
Loadable segments

0 ... Beginning of memory

Loadable segments
Processes' loadable segments may begin at 0. The exact
addresses depend on the executable file format (see Chapters 4
and 5).

Stack and dynamic segments
A process's stack and dynamic segments reside below the
reserved area. Processes can control the amount of virtual
memory allotted for stack space, as described below.

Reserved A reserved area resides at the top of virtual space.

Although application programs may begin at virtual address 0, they conven­
tionally begin above OxlOOOO (64K), leaving the initial 64K with an invalid
address mapping. Processes that reference this invalid memoiy (for exam­
ple, by dereferencing a null pointer) generate an access exception trap, as
described in the "Exception Interface" section of this chapter.

As the figure shows, the system reserves the high end of virtual space, with a
process's stack and dynamic segments below that. Although the exact boundary
between the reserved area and a process depends on the system's configuration,
the reserved area shall not consume more than 512 MB from the virtual address
space. Thus the user virtual address range has a minimum upper bound of
Oxdfffffff. Individual systems may reserve less space, increasing processes'
virtual memory range. More information follows in the section "Managing the
Process Stack."

3-30 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Operating System Interface

Although applications may control their memory assignments, the typical
arrangement follows the diagram above. Loadable segments reside at low
addresses; dynamic segments occupy the higher range. When applications let
the system choose addresses for dynamic segments (including shared object seg­
ments), it chooses high addresses. This leaves the "middle" of the address spec­
trum available for dynamic memory allocation with facilities such as
malloc(BA_OS).

Managing the Process Stack

Section "Process Initialization" in this chapter describes the initial stack contents.
Stack addresses can change from one system to the next---even from one process
execution to the next on a single system. Processes, therefore, should not depend
on finding their stack at a particular virtual address. The stack segment has read
and write permissions.

A tunable configuration parameter controls the system maximum stack size. A
process also can use setrlimit(BA_OS), to set its own maximum stack size, up
to the system limit. Changes in the stack virtual address and size affect the vir­
tual addresses for dynamic segments. Consequently, processes should not
depend on finding their dynamic segments at particular virtual addresses. Facili­
ties exist to let the system choose dynamic segment virtual addresses.

Coding Guidelines

Operating system facilities, such as mmap(KE_OS), allow a process to establish
address mappings in two ways. First, the program can let the system choose an
address. Second, the program can force the system to use an address the pro­
gram supplies. This second alternative can cause application portability prob­
lems, because the requested address might not always be available. Differences
in virtual address space can be particularly troublesome between different archi­
tectures, but the same problems can arise within a single architecture.

Processes' address spaces typically have three segment areas that can change size
from one execution to the next: the stack [through setrlimit(BA_OS)], the data
segment [through malloc(BA_OS)], and the dynamic segment area [through
mmap(KE_OS)]. Consequently, an address that is available in one process execu­
tion might not be available in the next. A program that used mmap(KE_OS) to
request a mapping at a specific address thus could appear to work in some
environments and fail in others. For this reason, programs that wish to establish
a mapping in their address space should let the system choose the address.

LOW-LEVEL SYSTEM INFORMATION 3-31

Operating System Interface

Despite these warnings about requesting specific addresses, the facility can be
used properly. For example, a multiprocess application might map several files
into the address space of each process and build relative pointers among the files'
data. This could be done by having each process ask for a certain amount of
storage at an address chosen by the system. After each process receives its own,
private address from the system, it would map the desired files into memory, at
specific addresses within the original area. This collection of mappings could be
at different addresses in each process but their relative positions would be fixed.
Without the ability to ask for specific addresses, the application could not build
shared data structures, because the relative positions for files in each process
would be unpredictable.

Processor Execution Modes

Two execution modes exist in the M88000 architecture: user and supervisor.
Processes run in user mode (the less privileged). The operating system kernel
runs in supervisor mode. A program executes a trap instruction to change execu­
tion modes.

The ABI does not define the implementation of individual system calls.
Instead, programs shall use the system libraries that Chapter 6 describes.
Programs with embedded system call trap instructions do not conform to the
ABI.

Exception Interface

As the MC88100 User's Manual describes, instruction execution can generate
exceptions. The operating system handles such an exception either by complet­
ing the faulting operation in a manner transparent to the application, or by
delivering a signal to the application. The correspondence between exceptions
and signals is given in Figures 3-27 and 3-28.

The signals that an exception may give rise to are SIGSEGV, SIGILL, SIGBUS,

SIGTRAP, and SIGFPE. If one of these signals is generated due to an exception
when the signal is blocked, the behavior is undefined.

3-32 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Operating System Interface

Due to the pipelined nature of the MC88100, more than one instruction may be
executing concurrently. When an exception occurs, the operating system causes
all executing instructions to complete their executions. As a result of completing
these executions, additional exceptions may be generated. At most one of these
concurrent exceptions is a precise exception; all the others are necessarily impre­
cise.

The operating system partitions the set of concurrent exceptions into subsets, all
of whose exceptions share the same signal number. Each subset of exceptions is
delivered as a single signal. The multiple signals resulting from multiple con­
current exceptions are delivered in unspecified order, except that, if there is a
precise exception among the concurrent exceptions, the signal corresponding to
the precise exception shall be delivered first.

When a signal representing an exception is delivered and the extended signal
handler interface is selected with the SA_SIGINFO sigaction(BA_OS) flag, the
information communicated through the second and third arguments is as fol­
lows. In the siginfo structure, si _ signo contains the signal number;
si _ machinexcep contains the value l; _ ncodes contains the number of con­
current exceptions associated with this signal;_ exblks points to an array of
exblk _ t structures consisting of_ ncodes elements; and si _code contains a code
identifying the cause of the signal. In each of the exblk _ t elements, eb _ signo
contains the signal number; eb _code contains the code for the particular kind of
exception, as indicated in Figures 3-27 and 3-28; and the_ eb _registers union
contains additional information about the exception, as indicated in Figures 3-27
and 3-28. In the rncontext _ t structure of the ucontext _ t structure, version
contains the value 1; and the gregs array contains values for the indicated regis­
ters at the point of the exception. The effects of an instruction in progress at the
time of the exception, including changes to registers and memory, are reflected in
the machine state if and only if the given instruction completed successfully. For
a precise exception, the value of the R _ XIP element, with its low two bits cleared,
locates the instruction generating the exception.

When a signal not representing an exception is delivered and the extended signal
handler interface is selected with the SA_SIGINFO sigaction flag, the
si _ machinexcep member of the siginfo structure has the value 0.

Return from a signal handler handling a signal corresponding to an exception is
permitted. The process state for resumption is that contained in the ucontext _ t
structure. In particular, the machine state for resumption is that contained in the
(possibly modified) gregs array of the rncontext _ t structure. Note that process

LOW-LEVEL SYSTEM INFORMATION 3-33

Operating System Interface

execution is resumed at the addresses specified by the R _NIP and R _FIP values;
the R_XIP value is ignored. Note also that the low two bits of the aforementioned
register values are interpreted on resumption. See the MC88100 User's Manual for
details.

Figures 3-27 and 3-28 show the relationship between machine exceptions and sig­
nals. The "Exception" column indicates the machine exception; see the MC88100
User's Manual for more details. The "P /I" column indicates whether the excep­
tion is precise ("P") or imprecise ("I"); see the MC88100 User's Manual for more
details. The "Signal" column indicates the signal number under which the
exception is delivered, if it is delivered. The "eb _code" column indicates the
value assigned to the eb _code member of the exblk _ t structure for the excep­
tion, when the siginfo structure is passed to the signal handling function. The
eb _registers column indicates which member of the_ eb _registers union is
present, if any, when the siginfo structure is passed to the signal handling func­
tion.

3-34 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Operating System Interface

Figure 3-27: Exceptions and Signals, Part 1 of 2

Exception P/I Signal eb code _eb_registers
See

Notes

Code access p SIGSEGV SEGV CODE 1

Data access I SIGSEGV SEGV DATA dfltinfo 2,3

Misaligned data p SIGBUS BUS ALIGN 4
access

Protection violation I SIGBUS BUS PROT dfltinfo 3

Unimplemented p SI GILL ILL ILLOPC 5
opcode

Privileged instruction p SIGILL ILL PRVOPC

violation

Integer overflow p SIGFPE FPE INTOVF

Integer divide p SIGFPE FPE INTDIV 6
or

FPE INTOVF

Bounds check trap p SIGFPE FPE FLTSUB

Trap to vectors 504-511 p SIGTRAP vector number

LOW-LEVEL SYSTEM INFORMATION 3-35

Operating System Interface

Figure 3-28: Exceptions and Signals, Part 2 of 2

Exception P/I Signal eb code eb
. See

registers N t - - o es
Floating-point inexact I SIGFPE FPE FLTRES fpifltinfo 7,8

Floating-point overflow I SIGFPE FPE FLTOVF fpifltinfo 8,9
or

FPE FLTRES

Floating-point I SIGFPE FPE FLTUND fpifltinfo 8,10
underflow or

FPE FLTRES

Floating-point divide p SIGFPE FPE FLTDIV 11
by zero or

FPE FLTINV

Floating-point reserved p SIGFPE FPE FLTINV 12
operand or

FPE FLTNAN

Floating-point integer p SIGFPE FPE FLTINV 13
conversion overflow

Floating-point privilege p SIGFPE FPE PRIWIO
violation

Floating-point p SIGFPE FPE UNIMPL
unimplemented opcode

Notes:

1. Code access exceptions caused by demand paging within the text segment
and areas made executable [as by mprotect (KE_ OS)] are handled tran­
sparently to the application.

2. Data access exceptions caused by references to the stack segment shall be
handled by extending the stack in a manner transparent to the application,
within the stack limits specified by setrlimit(BA_OS). Data access

3-36 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Operating System Interface

exceptions caused by demand paging shall be handled transparently to the
application.

3. The values of the members of struct dfltinfo, passed as_ eb _registers,
are the MC88100's Address Register, Transaction Register, and Data Register,
respectively, of the memory transaction that caused the fault.

4. This exception can be disabled by setting the MXM bit of the Processor
Status Register. (See the setpsr() function in "Support Routines" in
Chapter 6.)

5. Conforming applications shall not use unimplemented opcodes.

6. If the faulting instruction is div, the dividend is the most negative integer
and the divisor is -1, then the SIGFPE signal shall be sent with FPE _ INTOVF

as eb _code. If the divisor is zero for any integer division instruction, the
SIGFPE signal shall be sent with FPE _ INTDIV as eb _code. Otherwise, the
faulting instruction must be div and one or both operands negative. In
this case, the system completes the operation in a manner transparent to
the application.

7. This exception can be disabled by clearing bit 0 (EFINX) of the Floating
Point Control Register.

8. The values of the members of struct fpifltinfo, passed as
_ eb _registers, are the MC88100' s Floating Point Result High Register,
Result Low Register, and Imprecise Operation Type Register, respectively.

9. If bit 1 (EFOVF) of the FPCR is set, the SIGFPE signal shall be sent with
FPE _FLTOVF as eb _code. Otherwise, bit 1 (AFOVF) of the FPSR shall be set,
and if bit 0 (EFINX) of the FPCR is set, the SIGFPE signal shall be sent with
FPE _FLTINEX as eb _code. If bit:) of the FPCR is also clear, then bit 0
(AFINX) of the FPSR shall be set and the system shall complete the opera­
tion in a manner transparent to the application and consistent with
ANSI/IEEE Std 754-1985 and the MC88100 User's Manual.

10. If bit 2 (EFUNF) of the FPCR is set, the SIGFPE signal shall be sent with
FPE_FLTUND as eb _code. Otherwise, if there has been a loss of accuracy, bit
2 (AFUNF) of the FPSR shall be set. In this case, if bit 0 (EFINX) of the FPCR
is set, the SIGFPE signal shall be sent with FPE _FLTINEX as eb _code; if it is
clear, then bit 0 (AFINX) of the FPSR shall be set. If no signal is sent, the
system shall complete the operation in a manner transparent to the appli­
cation and consistent with ANSI/IEEE Std 754-1985 and the MC88100 User's
Manual.

LOW-LEVEL SYSTEM INFORMATION 3-37

Operating System Interface

11. If the numerator is zero, the exception shall be handled as a floating-point
reserved operand exception. Otherwise, if bit 3 (EFDVZ) of the FPCR is set,
the SIGFPE signal shall be sent with FPE _FLTDIV as eb _code. If bit 3 of the
FPCR is clear, then the system shall set bit 3 (AFDVZ) of the FPSR and com­
plete the operation in a manner transparent to the application and con­
sistent with ANSI/IEEE Std 754-1985 and the MC88100 User's Manual.

12. If the operation is the subtraction of two infinities, the multiplication of
infinity and zero, or the division of one infinity by another, and bit 4
(EFlNV) of the FPCR is set, then the SIGFPE signal shall be sent with
FPE_FLTOPERR as eb _code; otherwise bit 4 (AFINV) of the FPSR shall be set.
If either operand is a signaling NaN and bit 4 of the FPCR is set, then the
SIGFPE signal shall be sent with FPE _FLTNAN as eb _code; otherwise bit 4 of
the FPSR shall be set. If no signal is sent, the system shall complete the
operation in a manner transparent to the application and consistent with
ANSI/IEEE Std 754-1985 and the MC88100 User's Manual.

13. If the operand can be converted to an integer without overflow, the system
shall complete the operation in a manner transparent to the application. If
it cannot, and bit 4 (EFINV) of the FPCR is set, then the SIGFPE signal shall
be sent. If bit 4 of the FPCR is clear, then bit 4 (AFINV) of the FPSR shall be
set and the system shall complete the operation in a manner transparent to
the application and consistent with ANSI/IEEE Std 754-1985.

Process Initialization

This section describes the machine state that exec(BA_OS) creates for "infant"
processes, including argument passing, register usage, stack frame layout, etc.
Programming language systems use this initial program state to establish a stan­
dard environment for their application programs. As an example, a C program
begins executing at a function named main, conventionally declared in the fol­
lowing way.

3-38 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Operating System Interface

Figure 3-29: Declaration for main

I extern int rnain(int argc, char *argv[], char *envp[]);

Briefly, argc is a non-negative argument count; argv is an array of argument
strings, with argv [argc] ==0; and envp is an array of environment strings, also
terminated by a null pointer.

Although this section does not describe C program initialization, it gives the
information necessary to implement the call to main or to the entry point for a
program in any other language.

Registers

When a process is first entered (from an exec() system call), registers are initial­
ized as follows:

#rl is implementation-defined.

#r2 contains argc, the number of arguments.

#r3 contains argv, a pointer to the array of argument pointers in the stack.
The array is immediately followed by a NULL pointer. If there are no
arguments, #r3 shall point to a NULL pointer.

#r4 contains envp, a pointer to the array of environment pointers in the
stack. The array is immediately followed by a NULL pointer. If no
environment exists, #r4 shall point to a NULL pointer.

#r5 contains a pointer to the auxiliary vector. The auxiliary vector shall
have at least one member, a terminating entry with an a_ type of
AT_NULL.

#r6 possibly contains a termination function pointer. If #r6 contains a
nonzero value, the value represents a function pointer that the appli­
cation should register with atexit(BA_OS). If #r6 contains zero, no
action is required.

LOW-LEVEL SYSTEM INFORMATION 3-39

Operating System Interface

#r7-#r13

#r14-#r30

#r31

FPSR

FPCR

PSR

are currently set to zero. Future versions of the system might use the
registers to hold special values, so applications should not depend on
these registers' values.

are unspecified.

is the initial stack pointer, aligned to an 16-byte boundary.

is the floating-point user status register. This register is initially
cleared.

is the floating-point user control register. This register is set to round
to nearest mode and all the user exception handlers are disabled. Indi­
vidual processes may change the register contents if desired.

is the Processor Status Register; it contains Ox3f0, which corresponds
to:

• user mode,

• Big-Endian byte ordering,

• concurrent operation allowed,

• carry bit clear,

• SFU 1 enabled,

• SFU2-SFU7 disabled,

• misaligned accesses cause an exception,

• interrupts enabled,

• shadow registers enabled.

Individual programs may need to manipulate the stacked data and register con­
tents at startup before control passes to the main section of the program.

3-40 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Operating System Interface

Process Stack

Every process has a stack, but the system defines no fixed stack address. Further­
more, a program's stack address can change from one system to another-even
from one process invocation to another.

Whereas the argument and environment vectors transmit information from one
application program to another, the auxiliary vector conveys information from
the operating system to the program. This vector is an array of the following
structures, interpreted according to the a_ type member.

Figure 3-30: Auxiliary Vector

typedef
{

struct

int a_type;
union

long a_val;
void *a_ptr;
void (*a_ fen) ();

a_un;
auxv_t;

LOW-LEVEL SYSTEM INFORMATION 3-41

Operating System Interface

Figure 3-31 :

AT NULL

AT IGNORE

AT EXECFD

AT PHDR

3-42

Auxiliary Vector Types, a_ type

Name Value a un

AT NULL 0 ignored
AT IGNORE 1 ignored
AT EXECFD 2 a val
AT PHDR 3 a_ptr
AT PRENT 4 a val
AT PHNUM 5 a val
AT PAGESZ 6 a val
AT BASE 7 a_ptr
AT FLAGS 8 a val
AT ENTRY 9 a_ptr

The auxiliary vector has no fixed length; instead the end of the
table is indicated by placing AT_ NULL into a_ type.

This type indicates the entry has no meaning. The correspond­
ing value of a_ un is undefined.

As Chapter 5 describes, exec(BA_OS) may pass control to an
interpreter program. When this happens, the system places
either an entry of type AT_ EXECFD or one of the type AT _PHDR in
the auxiliary vector. The entry for type AT_ EXECFD uses the
a_ val nle111ber to corltain a file descriptor open to read the
application program's object file.

Under some conditions, the system creates the memory image
of the application program before passing control to the inter­
preter program. When this happens, the a _ptr member of the
AT _PHDR entry tells the interpreter where to find the program
header table in the memory image. If the AT _PHDR entry is
present, entries of types AT _PRENT' AT _PHNUM, and AT - ENTRY shall
also be present. See Chapter 5 in both the System V ABI and
this processor supplement for more information about the pro­
gram header table.

Motorola 88000 PROCESSOR ABI SUPPLEMENT

AT PHENT

AT PHNUM

AT PAGESZ

AT BASE

AT FLAGS

AT ENTRY

Operating System Interface

The a_ val member of this entry holds the size, in bytes, of one
entry in the program header table to which the AT _PHDR entry
points.

The a_ val member of this entry holds the number of entries in
the program header table to which the AT _PHDR entry points.

If present, this entry's a_ val member gives the system page
size, in bytes. The same information also is available through
sysconf(BA_OS).

The a _ptr member of this entry holds the base address at which
the interpreter program was loaded into memory. See "Pro­
gram Header" in the System V ABI for more information about
the base address.

If present, the a_ val member of this entry holds one-bit flags.
Bits with undefined semantics are set to zero. No flags are
defined for the M88000.

The a_ptr member of this entry holds the entry point of the
application program to which the interpreter program should
transfer control.

Other auxiliary vector types are reserved.

LOW-LEVEL SYSTEM INFORMATION 3-43

Coding Examples

This section discusses example code sequences for fundamental operations such
as calling functions, accessing static objects, and transferring control from one
part of a program to another. Previous sections discuss how a program may use
the machine or the operating system, and they specify what a program may and
may not assume about the execution environment. Unlike previous material, the
information here illustrates how operations may be done, not how they must be
done.

As before, examples use the ANSI C language. Other programming languages
may use the same conventions displayed below, but failure to do so does not
prevent a program from conforming to the ABI. Two main object code models
are available.

• Absolute code. Instructions can hold absolute addresses under this model. To
execute properly, the program must be loaded at a specific virtual address,
making the program's absolute addresses coincide with the process's virtual
addresses.

• Position-independent code. Instructions under this model hold relative
addresses, not absolute addresses. Consequently, the code is not tied to a
specific load address, allowing it to execute properly at various positions in
virtual memory.

Following sections describe the differences between these models. Code
sequences for the models (when different) appear together, allowing easier com­
parison.

3-44

Examples below show code fragments with various simplifications. They are
intended to explain addressing modes, not to show optimal code sequences
nor to reproduce compiler output.

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Coding Examples

When other sections of this document show assembly language code
sequences, they typically show only the absolute versions. Information in
this section explains how position-independent code would alter the exam­
ples.

Code Model Overview

When the system creates a process image, the executable file portion of the pro­
cess has fixed addresses, and the system chooses shared object virtual addresses
to avoid conflicts with other segments in the process. To maximize text sharing,
shared object libraries conventionally use position-independent code, in which
instructions contain no absolute addresses. Shared object text segments can be
loaded at various virtual addresses without having to change the segment
images. Thus multiple processes can share a single shared object text segment,
even though the segment resides at a different virtual address in each process.

Position-independent code relies on two techniques.

• Control transfer instructions hold addresses relative to the Execute Instruc­
tion Pointer (XIP). A XIP-relative branch or function call computes its desti­
nation address in terms of the current XIP, not relative to any absolute
address.

• When the program requires an absolute address, it computes the desired
value. Instead of embedding absolute addresses in the instructions, the com­
piler generates code to calculate an absolute address during execution.

Because the processor architecture provides XIP-relative call and branch instruc­
tions, compilers can satisfy the first condition easily.

A global offset table and a procedure linkage table provide information for address
calculation. Position-independent object files (executable and shared object files)
have these tables in unshared segments. When the system creates the memory
image for an object file, the table entries are relocated to reflect the absolute vir­
tual addresses as assigned for an individual process. Because unshared segments
are private for each process, the table entries can change-unlike shared seg­
ments, which multiple processes share.

LOW-LEVEL SYSTEM INFORMATION 3-45

Coding Examples

However, there still remains the problem of addressing the global offset table
and the procedure linkage table in a position-independent manner. The M88000
architecture lacks instructions to reference data or compute addresses with XIP­
relative addresses. The most efficient method to reference locations in a shared
object is with based addressing. In this scheme, the address of the shared object
is computed at execution time and held in a register. The offset from this address
to any location in the shared object is known by the link editor when it is building
the shared object, and this offset can be efficiently encoded in instructions.

In order to allow it to lay out the shared object as efficiently as possible, the link
editor is given the responsibility of choosing the location in the shared object
whose address at execution time will serve as the addressing base. Code gen­
erated for a shared object refers to the addressing base only indirectly, through a
variety of relocation types that deal with the addressing base. The link editor
records its choice of addressing base with the DT _ 88K _ ADDRBASE value. (See
Chapter 5 for more information.) One natural choice for the position of the
addressing base is the address of the global offset table.

Do not confuse the related terms ''base address" and "addressing base." The
base address of an executable or shared object file, as defined by the System V
ABI, is the lowest virtual address associated with the memory image of the
program's object file. In similar terms, the addressing base is a particular virtual
address associated with the memory image of the program's object file. The
addressing base of a shared object may coincide with its bas~ address, but it need
not.

Assembly language examples below show the explicit notation needed for
position-independent code. In the descriptions below, the construction "differ­
ence between X and Y" means the 32-bit modulus subtraction X - Y.

sf got

pfgotp

ptplt

3-46

This expression denotes the address of a global offset table entry
for symbol s.

This expression denotes the address of a global offset table pro­
cedure entry for the procedure named by symbol p.

This expression denotes an address to which control can be
transferred to invoke the procedure named by symbol p. This
address is either the address of p or the address of a procedure
linkage table entry for p.

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Coding Examples

s#rel This expression denotes the difference between the value of the
symbol s and the addressing base for the shared object containing
the expression. This expression is valid only in a shared object.

s#got _rel This expression denotes the difference between the address
denoted by s#got and the addressing base for the shared object
containing the expression. This expression is valid only in a
shared object.

p#gotp _rel This expression denotes the difference between the address
denoted by p#gotp and the addressing base for the shared object
containing the expression. This expression is valid only in a
shared object.

p#pl t _rel This expression denotes the difference between the address
denoted by p#plt and the addressing base for the shared object
containing the expression. This expression is valid only in a
shared object.

s#abdiff This expression denotes the difference between the addressing
base for the shared object containing the expression and the value
of the symbol s. The value of the symbol s must represent an
address in the shared object containing the expression. This
expression is valid only in a shared object.

Position-Independent Function Prologue and
Epilogue

This section describes the function prologue and epilogue for position­
independent code. A position-independent function generally needs to establish
its addressing base to afford access to its private data, in particular its global
offset table entries. The addressing base is typically computed into a preserved
register, such as #r25, so that its value will be preserved throughout the activa­
tion of the function.

LOW-LEVEL SYSTEM INFORMATION 3-47

Coding Examples

As a reminder, this entire section contains examples. Using #r25 is a con­
vention, not a requirement; moreover, this convention is private to a function.
Not only could other registers serve the same purpose, but different func­
tions in a program could use different registers.

The prologue for a position-independent function name that needs 96 bytes of
stack space and uses register 'ftr25 to hold the addressing base might be as shown
in Figure 3-32.

Figure 3-32: Position-Independent Function Prologue

name: subu 'ftr31,'ftr31,96
st 'ftr25,fr31,88
st 'ftrl,fr31,92
bsr.n here
or.u 'ftr25,fr0,fhi16(here'ftabdiff)

here: or 'ftr25,fr25,'ftlo16(herefabdiff)
addu 'ftr25,fr25,frl

The epilogue for the position-independent function name described above might
be as shown in Figure 3-33.

Figure 3-33: Position-Independent Function Epilogue

I name: ld fr2s, fr31, 88 I
ld 'ftrl,fr31,92
addu 'ftr31,fr31,96
jmp frl

3-48 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Coding Examples

Data Objects

This discussion excludes stack-resident objects, because programs always com­
pute their virtual addresses relative to the stack and frame pointers. Instead, this
section describes objects with static storage duration.

In the M88000 architecture, only load and store instructions access memory.
Because instructions cannot hold 32-bit addresses directly, a program normally
computes an address into a register. Symbolic references in absolute code put
the symbols' values-or absolute virtual addresses-into instructions.

Figure 3-34: Absolute Load and Store

c
extern int src;
extern int dst;
extern int *ptr;
ptr = &dst;

*ptr src;

global

or.u
or
or.u
st

or.u
ld
or.u
ld
st

Assembly
src, dst, ptr

#r2,#r0,#hi16(dst)
#r2,#r2,#lo16(dst)
#r3,#r0,#hi16(ptr)
#r2,#r3,#lo16(ptr)

#r2,#r0,#hi16(src)
#r2,#r2,#lo16(src)
#r3,#r0,#hi16(ptr)
#r3,#r3,#lo16(ptr)
#r2,#r3,0

Position-independent instructions cannot contain absolute addresses. Instead,
instructions that reference symbols hold the offsets of the symbols' global offset
table entries relative to the addressing base for the shared object. Combining the
offset of the global offset table entry with the addressing base in #r25 gives the
absolute address of the table entry holding the desired address.

LOW-LEVEL SYSTEM INFORMATION 3-49

Coding Examples

Figure 3-35: Position-Independent Load and Store

c
extern int src;
extern int dst;
extern int *ptr;
ptr = &dst;

*ptr src;

Function Calls

Assembly
global src, dst, ptr

or.u #r2,#r0,#hi16(dst#got_rel)
or #r2,#r2,#lo16(dst#got_rel)
ld #r2,#r25,#r2
or.u #r3,#r0,#hi16(ptr#got_rel)
or #r3,#r3,#lo16(ptr#got_rel)
ld #r3,#r25,#r3
st #r2,#r3,0

or.u #r2,#r0,#hi16(src#got_rel)
or #r2,#r2,#lo16(src#got_rel)
ld #r2,#r25,#r2
ld #r2,#r2,0
or.u #r3,#r0,#hi16(ptr#got_rel)
or #r3,#r3,#lo16(ptr#got_rel)
ld #r3,#r25,#r3
ld #r3,#r3,0
st #r2,#r3,0

A function call is typically made with a bsr instruction. A bsr instruction has a
self-relative branch displacement that can reach 128 megabytes in either direc­
tion. Hence, use of a bsr instruction to effect a call within an executable or
shared object file limits the size of the executable or shared object file to 128
megabytes. A bsr instruction can also be used to effect a call between two dif­
ferent object files, without constraining the placement of the two object files in
memory, because control generally passes from the bsr instruction, through an
indirection sequence, to the desired destination. See "Procedure Linkage Table"

3-50 Motorola 88000 PROCESSOR ABI SUPPLEMENT

in Chapter 5 for more information on the indirection sequence.

Figure 3-36: Absolute Direct Function Call

c
extern
void function();
function();

or:

Assembly

global function
bsr function#plt

global function
bsr function

Coding Examples

Figure 3-36 shows two methods for effecting a call in absolute code. Note that
the #plt suffix can be supplied or omitted. Supplying the #plt suffix is con­
venient if it is desirable to make absolute and position-independent function calls
in the same way. Omitting the #plt suffix is convenient if it is desirable to make
absolute function calls the way they have been made traditionally.

Supplying the #plt suffix does not necessarily result in the use of a procedure
linkage table entry. If caller and callee are both in the executable file, for exam­
ple, no PLT entry is needed. On the other hand, omitting the #plt suffix may
result in the use of a PLT entry. If the link editor determines that the executable
file is making reference to a function defined in a shared object, the link editor
uses a PL T entry for the reference.

LOW-LEVEL SYSTEM INFORMATION 3-51

Coding Examples

Figure 3-37: Position-Independent Direct Function Call

c
extern
void function();
function() ;

or:

Assembly

global function
bsr function#plt

global function
or.u #rl,#r0,#hi16(function#gotp_rel)
or #rl,#rl,#lo16(function#gotp_rel)
ld #rl,#r25,#rl
jsr #rl

Figure 3-37 shows two methods for effecting a call in position-independent code.
If a bsr instruction is used, the #plt suffix should be supplied. Without the #plt
suffix, a reference in a shared object to an external function resolves not to a PL T
entry in the shared object, but to the canonical address for the function. (See
"Function Addresses" in Chapter 5 for more information.) Such resolution
compromises the position independence of the shared object.

As the second alternative in Figure 3-37 shows, the indirection of the procedure
linkage table entry may be avoided by making direct reference to the global offset
table procedure entry for the function. The instruction sequence shown assumes
that the addressing base is heid in register #r25.

Other sequences for effecting a direct function call are possible. For example, in
absolute code, the global offset table procedure entry could be loaded directly
and used with a jsr instruction. In position-independent code, the global offset
table procedure entry can be loaded more concisely as long as there are not too
many global offset table entries.

3-52 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Coding Examples

Figure 3-38: Absolute Indirect Function Call

c
extern void {*ptr) ();
extern void name{);
ptr = name;

{*ptr) {);

Assembly
global ptr, name

or.u #r2,#r0,#hi16{name)
or #r2,#r2,#lo16{name)
or.u #r3,#r0,#hi16{ptr)
st #r2,#r3,#lo16{ptr)

or.u #rl,#r0,#hi16{ptr)
ld #rl,#rl,#lo16{ptr)
jsr #rl

Figure 3-39: Position-Independent Indirect Function Call

c
extern void {*ptr) {);
extern void name{);
ptr = name;

{*ptr) ();

LOW-LEVEL SYSTEM INFORMATION

Assembly
global ptr, name

or.u #r2,#r0,#hi16{name#got_rel)
or #r2,#r2,#lo16{name#got_rel)
ld #r2,#r25,#r2
or.u #r3,#r0,#hi16{ptr#got_rel)
or #r3,#r3,#lo16(ptr#got_rel)
ld #r3,#r25,#r3
st #r2,#r3,0

or.u #rl,#r0,#hi16(ptr#got_rel)
or #rl,#rl,#lo16{ptr#got_rel)
ld #rl,#r25,#rl
ld #rl,#rl,O
jsr #rl

3-53

Coding Examples

Variable Argument List

Previous sections describe the rules for passing arguments. Unfortunately, some
otherwise portable C programs depend on the argument passing scheme, impli­
citly assuming that 1) all arguments reside on the stack, and 2) arguments appear
in increasing order on the stack. Programs that make these assumptions never
have been portable, but they have worked ort many machines. Portable C pro­
grams should use the header files <stdarg. h> or <varargs . h> to deal with vari­
able argument lists (on MC88100 and other machines as well).

Allocating Stack Space Dynamically

Figure 3-40: Dynamic Stack Space Allocation

Before

I------<

fixed
frame
area

frame pointer -~ ,__ __ __,
argument

area
stack pointer -~ 1--------i

~ (High Memory) --~

frame pointer-~

stack pointer --~

~ (Low Memory)-~

After

fixed
frame
area

dynamic
stack
space

direction of j
stack growth

argument
area

The M88000 architecture supports dynamic stack space allocation for those
languages that require it. The mechanism for allocatihg dynamic space is embed­
ded completely within a function and does not affect the standard calling

3-54 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Coding Examples

sequence. Thus, functions that need dynamic stack frame sizes can call functions
that do not, and vice versa.

A typical variant of the mechanism is described below and diagrammed in Fig­
ure 3-40. The figure shows the layout of a stack frame before and after dynamic
stack allocation. The fixed frame area is used for storage of function data, such as
local variables, whose sizes are known to the compiler. The fixed frame area is
allocated at function entry and does not change in size or position during the
function's activation. The argument area is used for storage of arguments passed
in calls to other functions. Its size is also known to the compiler and can be allo­
cated along with the fixed frame area at function entry. However, the standard
calling sequence requires that the stack pointer locate the argument area, so the
argument area must move when dynamic stack allocation occurs.

Data in the argument area are naturally addressed at constant offsets from the
stack pointer. However, in the presence of dynamic stack allocation, the offsets
from the stack pointer to the data in the fixed frame area are not constant. To
provide addressability, a frame pointer is established to locate the fixed frame
area consistently throughout the function's activation.

Dynamic stack allocation is accomplished by "opening" the stack just above the
argument area. The following steps show the process in detail.

1. The amount of dynamic space to be allocated is rounded up to a multiple
of 16 bytes, so that 16-byte stack alignment is maintained.

2. The stack pointer is decreased by the rounded byte count.

3. All active data in the argument area, if any, are copied from the previous
position of the stack pointer to the new position. The amount of data to be
copied is known to the compiler.

4. The address of the newly allocated dynamic stack space is the sum of the
new value of the stack pointer and the size of argument area.

The above process can be repeated as many times as desired within a single func­
tion activation. When it is time to return, the stack pointer is first reset to its posi­
tion as shown in the left portion of Figure 3-40, thereby removing all dynamically
allocated stack space. Normal return pro~essing may then ensue.

LOW-LEVEL SYSTEM INFORMATION 3-55

Coding Examples

Even in the presence of signals, dynamic allocation is "safe." If a signal inter­
rupts allocation, one of three things can happen.

1. The signal handler can return. The process then resumes the dynamic allo­
cation from the point of interruption.

2. The signal handler can execute a non-local goto, or longjmp [see
setjmp(BA_LIB)]. This resets the process to a new context in a previous
stack frame, automatically discarding the dynamic allocation.

3. The process can terminate.

Regardless of when the signal arrives during dynamic allocation, the result is a
consistent (though possibly dead) process.

3-56 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Text Description Information

The M88000 ABI opts not to prescribe the form of a stack frame, in order to leave
compilers with the greatest possible flexibility to generate efficient code. For
example, no convention is defined to link stack frames at execution time, and a
compiler may elect not to use a frame pointer for a particular routine. The lack of
a traditional stack frame convention, however, would make low-level debugging
impossible, were it not for the alternate convention described here.

This section defines a mechanism by which programs describe relevant aspects of
their text sections. The essence of the mechanism is that information about
important execution-time characteristics of procedures is provided statically, by
the compiler and link editor, rather than dynamically, by executing instructions
at runtime, wherever possible. Information describing a procedure is generated
by the compiler and is associated with the procedure by the link editor. When
the information relevant to a particular text address is needed, the text address is
mapped to the procedure containing the address, and the text description infor­
mation associated with the procedure is consulted.

Text description information describes code in an object file. This code is
referred to as "text" because it usually resides in the . text section. However,
code may reside in other sections with attributes similar to those of the . text
section, and even in sections with attributes similar to those of the . data section,
provided that the latter sections are made executable during execution. Refer­
ences to "text'' should be taken to mean references to "code" in its more general
form.

Tdesc Information

A text chunk is a contiguous sequence of zero or more words of text of an object
file. A text chunk consisting of zero words is an empty text chunk. The start
address of a non-empty text chunk is the minimum of the addresses of the words
of the non-empty text chunk. The end address of a non-empty text chunk is the
maximum of the addresses of the words of the non-empty text chunk, plus 4.
The start address and end address of an empty text chunk are equal. The start
address is inclusive and the end address is exclusive. An address is said to be
"in" a text chunk if it is greater than or equal to the start address of the text
chunk and less than the end address of the text chunk. A word is said to be "in"
a text chunk if its address is in the text chunk.

LOW-LEVEL SYSTEM INFORMATION 3-57

Text Description Information

Contributors of text (typically compilers and assemblers) shall partition that text
into one or more text chunks. All text chunks so defined for an object file must
not overlap; that is, no word may be in more than one text chunk.

Contributors of text identify a text chunk and associate information descriptive of
that text chunk by contributing a "tdesc chunk" to the . tdesc section. The
• tdesc section is system-defined. It has the SHF _ ALLOC attribute, it does not have
the SHF _WRITE attribute, and it may or may not have the SHF _ EXECINSTR attribute.

A tdesc chunk begins on a word boundary and is a contiguous sequence of words
with the following structure:

Figure 3-41: Tdesc Chunk

Word
Position

0

1
2
3
4+

Bit
Range
31-24
23-2
1-0

31- 0
31- 0
31-0

Interpretation

zeroes
info length, in bytes
info alignment exponent
info protocol
start address of text chunk
end address of text chunk
info

The zeroes in word 0 are designed to be distinct from the high 8 bits of typicai
M88000 "no-op" instructions (instructions that, when executed, have no effect).
This allows possible padding between tdesc chunks to be detected, whether the
padding consists of words of zeroes or no-op instructions.

The info protocol describes the form and interpretation of the tdesc chunk, pri­
marily that of its info portion.

The info protocol represents a contract between compiler and debugger I runtime
system. Providing for different info protocols allows different (through space
and time) compilers to use different strategies for describing their code.

3-58 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Text Description Information

The info length is the number of bytes of meaningful information that begin in
word 4 of the structure. The tdesc chunk is padded with 0 to 3 bytes of
undefined information to make its total size an integral multiple of 4 bytes.

The info alignment exponent indicates the required alignment for the info field after
the link editor has collected and reformatted the tdesc information (as described
later). The info alignment exponent specifies the required alignment according to
the following table:

Figure 3-42: Info Field Alignment

info alignment
exponent

0
1
2
3

alignment
in bytes

1
2
4
8

~ Alignments greater than 8 are not supported.

y
Info Protocol

Two info protocols are defined. They are identified with the integers 1 and 2.
The only difference between the two protocols is the interpretation of the start
address and end address of the text chunk. For protocol 1, the addresses are
absolute; for protocol 2, the addresses are relative to the addressing base for the
shared object containing the tdesc chunk. Hence, info protocol 2 can be used
only in a shared object. Otherwise, the two info protocols are the same. For both
protocols the info length is always 16 and the info alignment exponent is always
2. The structure of the info for both protocols is as follows:

LOW·LEVEL SYSTEM INFORMATION 3-59

Text Description Information

Figure 3-43: Info Structure

Word Bit
Interpretation

Position Range
0 31-24 info variant, the integer 1

23- 7 register save mask, for registers 4"r14-4"r30; bit 7 is
the fr30 save mask, bit 8 for fr29, etc., consecutively
until bit 23 for fr14

6 zero
5 return address info discriminant

4-0 frame address register
1 31- 0 frame address offset
2 31- 0 return address info
3 31- 0 register save offset

The above structure is the only currently defined variant. Zeroes are required
where no useful information is defined to facilitate future extension.

The info field of the tdesc chunk describes important low-level characteristics of
the execution environment which is in effect when the instruction pointer is in
the associated text chunk. Because the information in the tdesc chunk is
unchanging, it must depend on the context. The context consists of a text address
and the values that the registers available to user-level programs would have
were controi about to proceed to the instruction addressed by the text address.
The text address portion of a context is called its instruction pointer.

The canonical frame address (abbreviated "CFA") for a procedure is the value of the
stack pointer at entry to the procedure. The CFA shall be computable from the
procedure's context and its text chunk's associated tdesc chunk's info field as fol­
lows:

CFA =contents_ of(frame address register)+ frame address offset

where"+" represents machine address arithmetic, and "contents_of(register)"
represents the value of the indicated register in the procedure's context.

3-60 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Text Description Information

Procedures that construct a "frame pointer'' in a register will specify that register
as the frame address register and the difference between the initial stack pointer
value and the contents of that register as the frame address offset. Procedures
that do not construct a frame pointer explicitly will specify the stack pointer as
the frame address register and the (necessarily) fixed frame size as the frame
address offset.

The current size of a frame can be computed as follows:

frame size= CFA - contents_ of(#r31)

where "-" represents mathematical subtraction. (The stack pointer is always
housed in fr31.)

A frame position is a (byte) address relative to the CFA; that is, to calculate the
address of a word at a frame position, sum (using machine address arithmetic)
the CFA and the frame position. A frame position must be an integral multiple of
4. That is, frame positions mark word-aligned positions in the frame.

The return address for a procedure is the text address to which the procedure
would return control were it to complete normally. Currently the return address
must be "exact;" that is, a procedure is constrained to return exactly to the return
address if it returns normally. The procedure housed in the text chunk that the
return address of another procedure is in is known as the parent or caller of that
other procedure. Note that, in the case of "tail call," the caller is not the pro­
cedure that passed control directly, but rather an ancestor of that procedure.

The return address shall be computable from the procedure's context and its text
chunk's associated tdesc chunk's info field as follows: If the return address info
discriminant is 0, the return address is the value of the register specified by the
return address info field, with its low two bits cleared; if the return address info
discriminant is 1, the return address is the value of the word at the frame position
specified by the return address info field, with its low two bits cleared. A return
address is always word-aligned. Ignoring the low two bits of return address
values mimics the behavior of the hardware and allows other useful information
to be stored there.

The return address for a procedure is contained in #rl at entry to the procedure.
A procedure that calls another procedure must store the initial contents of #rl in
its frame.

LOW-LEVEL SYSTEM INFORMATION 3-61

Text Description Information

A leaf procedure (one that calls no other) may not need to store the contents of
#rl, so its return address would remain there. However, a leaf procedure may
need to free #rl, to use a bsr instruction which transfers within the procedure to
locate the procedure in a position independent manner. In this case, the pro­
cedure may save the initial contents of #rl in another register instead of in its
frame.

A return address value of zero indicates the absence of a parent text chunk and
hence terminates a return address chain. The runtime initializer (typically crtO)
shall have a return address, as described by its tdesc information, of zero. Stack
traceback is achieved by following the chain of return addresses from callee to
caller. A distinguished value for the end of this chain is required to make the
traceback terminate.

The register save mask may have "l" bits only in bit positions corresponding to
preserved register numbers. The register save mask must have a "l" bit in any
bit position corresponding to a preserved register that is modified by the pro­
cedure. The values at procedure entry of the registers marked by "1" bits in the
register save mask must be stored in the frame. The lowest-numbered register
whose mask bit is "1" is stored at the frame position specified by the register
save offset. Successively higher-numbered registers whose mask bits are "l" are
stored in successive words in the frame at increasing addresses. A bit in the
register save mask at position p, relative to the least significant bit of the mask,
corresponds to the register numbered 30-p.

Both the tdesc chunk header and info field for info protocols 1 and 2 are 16 bytes
in length. This avoids padding with assemblers that pad section sizes to multi­
ples of 16 bytes.

Typically, the execution environment of a procedure is not fully established until
after several initial instructions have been executed. These initial instructions are
often referred to as the procedure's prologue. Similarly, the procedure's execution
environment is typically disestablished incrementally by final instructions
referred to as the procedure's epilogue. That portion of a procedure which is nei­
ther prologue nor epilogue is termed body.

The simple information provided by a tdesc chunk with info protocols 1 and 2
can describe only a single, unchanging execution environment. This suffices for a
single tdesc chunk to describe a procedure's body. However, the procedure's
prologue and epilogue portions are not correctly described by the same tdesc
information. Hence, the text chunk that covers the procedure's body must not

3-62 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Text Description Information

also cover its prologue and epilogue sections. Additional text chunks can be
defined to describe prologue and epilogue sections. However, because the exe­
cution environment typically changes frequently during prologue and epilogue
sections, possibly many additional, small text chunks, each with its own tdesc
chunk, would be required. For this reason, the requirement as to which instruc­
tions must be in a text chunk (and hence which must be described by tdesc infor­
mation) is left purposely vague. Discretion is left to the implementation.

Map Protocol

The link editor treats tdesc information specially. When producing an executable
file or shared object file, it reformats the contributions to the . tdesc section
before making them part of a segment of the object file. The reformatted tdesc
information may consist of one or more pieces. Each piece of tdesc information
is aligned to a word boundary and has the following general structure:

Figure 3-44: Tdesc Information Piece

Word Bit
Position Range

0 31 - 0
1+

Interpretation

map protocol
info

The map protocol describes the form and interpretation of the info portion of the
tdesc information piece.

The map protocol represents a contract between link editor and
debugger I runtime system. Providing for different map protocols allows dif­
ferent (through space and time) link editors to use different strategies for map­
ping text addresses to tdesc chunks.

LOW-LEVEL SYSTEM INFORMATION 3-63

Text Description Information

Two map protocols are defined. They are identified with the integers 1 and 2.

The structure of the info for map protocol 1 is shown in Figure 3-45.

Figure 3-45: Map Protocol 1

Word Bit
Position Range

0 31-0
1+

Interpretation

end address of this structure
tdesc chunk sequence

The first word of info gives the address just beyond the end of this piece of tdesc
information. Beginning at the second word is a concatenation of all contributions
to the . tdesc section, in arbitrary order. This concatenation includes all tdesc
chunks and may include padding words before, between, and after tdesc chunks.
A padding word is either a word all of whose bits are zero, or a word whose high
8 bits are not all zero. The required alignment of the info fields of the tdesc
chunks shall be met. Hence, the only required "reformatting" performed for
map protocol 1 is the addition of the map protocol word and the end address
word. This map protocol is crude, but it is adequate to support debugging,
because debugging performance is not critical.

The structure of the info for map protocol 2 is shown in Figure 3-46.

Figure 3-46: Map Protocol 2

Word Bit
Position Range

0 31-0
1+

3-64

Interpretation

end address of this structure
array of tdesc piece entries

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Text Description Information

The first word of info gives the address just beyond the end of this piece of tdesc
information. The remainder of the piece is an array of structures with the follow­
ing form:

Figure 3-47: Tdesc Piece Entry

Word Bit
Position Range

0 31- 0
1 31 - 0

Interpretation

address of tdesc information piece
addressing base for piece

The first word gives the address of another piece of tdesc information. An
address of zero represents an absent piece. If the first word is nonzero, the
second word gives the addressing base for any immediately subordinate tdesc
chunks with info protocol 2.

Together, map protocols 1and2 provide the capability to represent a tree of
tdesc information. Map protocol 1 pieces serve as the leaves of the tree; map pro­
tocol 2 pieces serve as the nodes of the tree.

When producing an executable file or shared object file, the link editor reformats
the contributions to the . tdesc section into a single piece with map protocol 1.
This tdesc information piece resides in a segment with read permission but
without write permission.

When producing an executable file that does not participate in dynamic linking,
the link editor defines the symbol_ tdesc as the address of the tdesc information
piece with map protocol 1.

When producing an object file that participates in dynamic linking, the link editor
includes a dynamic linking array entry with d_ tag member equal to
DT_88K_TDESC and d_ptr member equal to the address of the object file's tdesc
information piece with map protocol 1. Additionally, in an executable file that
participates in dynamic linking, the link editor allocates a tdesc information piece
with map protocol 2 and defines the symbol_ tdesc as the address of this second
piece. This second piece resides in a segment with both read and write permis­
sions and has at least as many tdesc piece entries as two more than the number of

LOW-LEVEL SYSTEM INFORMATION 3-65

Text Description Information

shared object files referenced by the executable file. Both words of each of the
entries are initially zero. The dynamic linker fills in an entry for each object file
whose dynamic linking array it processes.

Debug Info

When producing an executable file, the link editor creates the following data
structure in a segment with read permission but without write permission and
defines the symbol_ debug_ info as the address of the beginning of the structure.
(See "Program Header" in Chapter 5 for the segment description.) The structure
shall be word-aligned.

Figure 3-48: _debug_ info Structure

Word Bit
Position Range

Interpretation

0 31- 0 debug info protocol, the integer 1
1 31- 0 the value of the_ tdesc symbol
2 31- 0 number of text words
3 31- 0 pointer to text words
4 31- 0 number of data words
5 31-0 pointer to data words

The pointer to text words is the address of a contiguous sequence of words that
reside in a segment with execute permission and that are not otherwise refer­
enced. The number of text words indicates the number of such words. The
number of text words shall be at least 1. These words are available to a
debugger, for use as places to set breakpoints safely for its own use.

The pointer to data words is the address of a contiguous sequence of words that
reside in a segment with write permission and that are not otherwise referenced.
The number of data words indicates the number of such words. The number of
data words shall be at least 256. These words are available to a debugger, for use
as places to store data safely for its own use in the memory of the process being

3-66 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Text Description Information

debugged.

When producing an executable file, the link editor shall create a single segment of
type PT_ 88K_DEBINFADDR. This segment shall contain a single word, whose value
is the value of the_ debug_ info symbol.

LOW-LEVEL SYSTEM INFORMATION 3-67

4 OBJECT FILES

ELF Header
Machine Information

Sections
Special Sections

Symbol Table
Symbol Values

Relocation
Relocation Types

Table of Contents

4-1
4-1

4-2
4-2

4-3
4-3

4-4
4-4

ELF Header

Machine Information

For file identification in e _ ident, the M88000 requires the following values.

Figure 4-1: M88000 Identification, e _ ident

Position
e_ident[EI_CLASS]
e_ident[EI_DATA]

Value
ELFCLASS32
ELFDATA2MSB

The ELF header's e _flags member holds bit flags associated with the file. The
M88000 defines no flags, so this member contains zero. Processor identification
resides in the ELF header's e _machine member and must have the value 5,
defined as the name EM 88K.

OBJECT FILES 4-1

Sections

The M88000 architecture is such that an individual section cannot permit writing
and execution attributes-SHE' WRITE and SHF EXECINSTR-at the same time.

Special Sections

Various sections hold program and control information. Sections in the list
below are used by the system and have the indicated types and attributes.

Figure 4-2: Special Sections

.tdesc

4-2

Name Type
.got SHT PROGBITS
.plt SHT PROGBITS
.tdesc SHT PROGBITS

Attributes

SHE' ALLOC +SHE' WRITE
SHE' ALLOC +SHE' EXECINSTR
see below

This section holds text description information. It has the
SHF _ ALLOC attribute, it does not have the SHF _WRITE attribute, and it
may or may not have the SHF _ EXECINSTR attribute. See ''Text
Description Information" in Chapter 3 for more information.

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Symbol Table

Symbol Values

If an executable file contains a reference to a function defined in one of its associ­
ated shared objects, the symbol table section for that file will contain an entry for
that symbol. The st_ shndx member of that symbol table entry contains
SHN _ UNDEF. This signals to the dynamic linker that the symbol definition for that
function is not contained in the executable file itself. If that symbol has been allo­
cated a procedure linkage table entry in the executable file, and the st_ value
member for that symbol table entry is non-zero, the value will contain the virtual
address of the first instruction of that procedure lirlkage table entry. Otherwise,
the st_ value member contains zero. This procedure linkage table entry address
is used by the dynamic linker in resolving references to the address of the func­
tion. See "Function Addresses" in Chapter 5 for details.

OBJECT FILES 4-3

Relocation

Relocation Types

Relocation entries describe how to alter the following instruction and data fields
(bit numbers appear in the lower box corners; byte numbers appear in the upper
box corners).

Figure 4-3:

bytes

half16

4-4

Relocatable Fields

17
bytes

ol

115
half16

al

131
word32

ol

131
uawd32

ol

131 115
low16

ol

131 125
low26

ol

This specifies an 8-bit field occupying 1 byte with arbitrary alignment.

This specifies a 16-bit field occupying 2 bytes with 2-byte alignment.

Motorola 88000 PROCESSOR ABI SUPPLEMENT

word32

uawd32

low16

low26

Relocation

Ox0102 l~o __ 01_~11
__ 0_2 _ _.

This specifies a 32-bit field occupying 4 bytes with 4-byte alignment.
These values use the byte order illustrated below.

This specifies a 32-bit field occupying 4 bytes with arbitrary align­
ment. These values use the same byte order as for word32.

Ox01020304 1~0 __ 0_1_~1~1 __ 02_~J_2 _0_3_~13
__ o_4_~

This specifies a 16-bit field occupying the least significant bits of a
field similar to word32. These bits represent values in the same byte
order as word32.

This specifies a 26-bit field occupying the least significant bits of a
field similar to word32. These bits represent values in the same byte
order as word32.

Calculations below assume the actions are transforming a relocatable file into
either an executable or a shared object file. Conceptually, the link editor merges
one or more relocatable files to form the output. It first decides how to combine
and locate the input files, then updates the symbol values, and finally performs
the relocation. Relocations applied to executable or shared object files are similar
and accomplish the same result. Descriptions below use the following notation.

A This means the addend used to compute the value of the relocatable
field.

AB This means the addressing base for the shared object. See Chapter 5
for more information.

B This means the base address at which a shared object has been loaded
into memory during execution. Generally, a shared object file is built
with a 0 base virtual address, but the execution address will be dif­
ferent. See "Program Header" in the System V ABI for more

OBJECT FILES 4-5

Relocation

information about the base address.

G This means the place (section offset or address) of a global offset table
entry for the symbol. See Chapter 5 for more information.

GP This means the place (section offset or address) of a global offset table
procedure entry for the symbol. See Chapter 5 for more information.

L This means the place (section offset or address) of the symbol, or of a
procedure linkage table entry for the symbol. See Chapter 5 for more
information.

P This means the place (section offset or address) of the storage unit
being relocated (computed using r _offset).

S This means the value of the symbol whose index resides in the reloca­
tion entry.

Relocation entries apply to bytes (byte8), halfwords (half16), or words (the oth­
ers). In any case, the r _offset value d~signates the offset or virtual address of
the first byte of the affected storage unit. The relocation type specifies which bits
to change and how to calculate their values. The M88000 uses only Elf32 _ Rela
relocation entries, with explicit addends. Thus the r _addend member serves as
the relocation addend.

The following general rules apply to the interpretation of the relocation types in
Figure4-4.

• "+"and"-" denote 32-bit modulus addition and subtraction, respectively.
">>"denotes arithmetic right shifting of the value of the left operand by the
number of bits given by the right operand.

• For relocation types whose names end in "_DISP16", the upper 15 bits of the
value computed before shifting must all be the same. For relocation types
whose names end in "_DISP26", the upper 5 bits of the value computed
before shifting must all be the same. For relocation types whose names end
in either "_DISP16" or '1_DISP26", the low 2 bits of the value computed
before shifting must all be zero.

• For relocation types whose names end in "_ 8", the upper 24 bits of the com­
puted value must all be zero. For relocation types whose names end in
"_SS", the upper 25 bits of the computed value must all be the same. For
relocation types whose names end in"_ 16", the upper 16 bits of the com­
puted value must all be zero. For relocation types whose names end in

4-6 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Relocation

"_ 16S", the upper 17 bits of the computed value must all be the same.

• #hi16 (value) and Ho16 (value) denote the high and low 16 bits, respec­
tively, of the indicated value.

• Reference in a calculation to the value "G" implicitly creates a global offset
table entry for the indicated symbol. Reference in a calculation to the value
"GP" implicitly creates a global offset table procedure entry for the indicated
symbol. Reference in a calculation to the value "L" may implicitly create a
procedure linkage table entry for the indicated symbol.

• A relocation type whose calculation involves either the value "B" or the
value "AB" may only be used in a shared object.

• For relocation types whose names begin with either "R_88K_ABDIFF_'' or
"R _ 88K _ ABREL _'', the symbol's value must represent an address in the shared
object containing the relocation.

• For relocation types whose names include "_SREL_'', the address of the
storage unit affected by the relocation either must both be in the same shared
object, or must both be in an executable file.

• Where a relocation type does not use the associated symbol, the symbol
index in the relocation entry must be zero.

• The link editor shall detect and report violations of restrictions described
above.

OBJECT FILES 4-7

Relocation

Figure 4-4: Relocation Types, Part 1 of 2

Name Value Field Calculation

R 88K NONE 0 none none
R 88K COPY 1 none see below -
R 88K GOTP ENT 2 word32 see below -
R 88K 8 4 byteB s +A - -
R 88K 8S 5 byteB S +A - -
R 88K 168 7 half16 S +A - -
R 88K DISP16 8 half16 (S + A - P) >> 2 - -
R 88K DISP26 10 low26 (S + A - P) >> 2 - -
R 88K PLT DISP26 14 low26 (L + A - P) >> 2 - - -
R 88K BBASED 32 16 word32 B+A - - -
R 88K BBASED 32UA 17 uawd32 B+A - - -
R 88K BBASED 16H 18 half16 #hi16 (B+A) - - -
R 88K BBASED 16L 19 half16 #1016(B+A) - - -
R 88K ABDIFF 32 24 word32 AB - S + A - - -
R 88K ABDIFF 32UA 25 uawd32 AB - S + A - - -
R 88K ABDIFF 16H 26 half16 #hi16 (AB - s +A) - - -
R 88K ABDIFF 16L 27 half16 #1016(AB - s +A) - - -
R 88K ABDIFF 16 28 half16 AB - S +A -
R 88K 32 32 word32 S +A - -
R 88K 32UA 33 uawd32 S +A
R 88K 16H 34 half16 #hi16 (s +A) -
R 88K 16L 35 half16 #1016(s +A) -
R 88K 16 36 half16 S +A - -
R 88K GOT 32 40 word32 G+A - - -
R 88K GOT 32UA 41 uawd32 G+A - - -
R 88K GOT 16H 42 half16 #hi16(G+A) - - -
R 88K GOT 16L 43 half16 #1016(G+A) - - -
R 88K GOT 16 44 half16 G+A - - -
R 88K GOTP 32 48 word32 GP+ A - - -
R 88K GOTP 32UA 49 uawd32 GP+ A

- - -
R 88K GOTP 16H 50 half16 #hi16(GP +A) - -
R 88K GOTP 16L 51 half16 #1016(GP +A) - - -
R 88K GOTP 16 52 half16 GP+ A - - -

4-8 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Relocation

Figure 4-5: Relocation Types, Part 2 of 2

Name Value Field Calculation

R 88K PLT 32 56 word32 L +A - - -
R 88K PLT 32UA 57 uawd32 L +A

- - -
R 88K PLT 16H 58 half16 #hi16 (L +A)

- - -
R 88K PLT 16L 59 half16 #1016(L+A) - - -
R 88K PLT 16 60 half16 L+A - - -
R 88K ABREL 32 64 word32 S + A - AB - - -
R 88K ABREL 32UA 65 uawd32 S + A - AB - - -
R 88K ABREL 16H 66 half16 #hil6(S +A - AB) - - -
R 88K ABREL 16L 67 half16 #lol6(S +A - AB)

- - -
R 88K ABREL 16 68 half16 S + A - AB - - -
R 88K GOT ABREL 32 72 word32 G+A-AB - - - -
R 88K GOT ABREL 32UA 73 uawd32 G+A-AB - - - -
R 88K GOT ABREL 16H 74 half16 #hil6(G +A - AB) - - - -
R 88K GOT ABREL 16L 75 half16 #lo16(G +A - AB)

- - - -
R 88K GOT ABREL 16 76 half16 G+A-AB - - - -
R 88K GOTP ABREL 32 80 word32 GP+A-AB - - - -
R 88K GOTP ABREL 32UA 81 uawd32 GP+A-AB

- - - -
R 88K GOTP ABREL 16H 82 half16 #hi16(GP +A - AB)

- - - -
R 88K GOTP ABREL 16L 83 half16 #lol6(GP+ A - AB)

- - - -
R 88K GOTP ABREL 16 84 half16 GP + A - AB - - - -
R 88K PLT ABREL 32 88 word32 L+A-AB - - - -
R 88K PLT ABREL 32UA 89 uawd32 L + A - AB

- - - -
R 88K PLT ABREL 16H 90 half16 #hil6(L +A - AB)

- - - -
R 88K PLT ABREL 16L 91 half16 #lol6(L +A - AB) - - - -
R 88K PLT ABREL 16 92 half16 L+A-AB - - - -
R 88K SREL 32 96 word32 S +A - P - - -
R 88K SREL 32UA 97 uawd32 S +A - P - - -
R 88K SREL 16H 98 half16 #hi16(S +A - P) - - -
R 88K SREL 16L 99 half16 #1016(S +A - P)

- - -

OBJECT FILES 4-9

Relocation

Relocation types with special semantics are described below.

R 88K COPY

R 88K GOTP ENT

This relocation type assists dynamic linking. Its offset
member refers to a location in a writable segment. The
symbol table index specifies a symbol that should exist
both in the current object file and in a shared object.
During execution, the dynamic linker copies data associ­
ated with the shared object's symbol to the location
specified by the offset.

This relocation type assists dynamic linking. The reloca­
tion offset gives the location of a global offset table pro­
cedure entry. The relocation symbol names the pro­
cedure. The relocation addend gives the address of the
associated GOTP binding entry. For an executable file,
this address is absolute; for a shared object file, it is rela­
tive to the base address for the shared object. See
Chapter 5 for details.

The use of relocation types whose names end in "_ 16" is generally subject to
failure, because the value computed may not fit in 16 bits. However, the use of
the R_88K_GOT_ABREL_16 and R_88K_GOTP_ABREL_16 relocation types shall not fail
unless the total number of distinct GOT and GOTP entries for the executable or
shared object being link edited exceeds 16 380. In other words, the link editor is
obliged to favor GOT and GOTP entries when choosing an addressing base and
laying out the private data of either the executable or shared object file.

4-10 Motorola 88000 PROCESSOR ABI SUPPLEMENT

5 PROGRAM LOADING AND
DYNAMIC LINKING

Program Header

Segment Permissions

Program Loading

Dynamic Linking
Dynamic Section
Global Offset Table
Function Addresses
Procedure Linkage Table

Table of Contents

5-1

5-2

5-3

5-7
5-7
5-9
5-14
5-15

.1

!

Program Header

An additional segment type, PT_ 8 8K _DEBINFADDR, is defined with value
Ox7000 0001. This segment contains a single word whose value is the value of the
debug info symbol. The segment is created by the link editor. It allows a
debugger operating as a process separate from the process it is debugging to
locate the debug information in the executable file.

PROGRAM LOADING AND DYNAMIC LINKING 5-1

Segment Permissions

The M88000 architecture is such that an individual segment cannot permit writ­
ing and execution attributes-PF_ Wand PF_ x-at the same time. The following
combinations of segment permissions are valid for the M88000:

Figure 5-1: Segment Permissions

Flags Value
Permissions Granted

Read Write Execute
none 0 no no no
PF X 1 unspecified no yes -
PF W 2 unspecified yes unspecified -
PF R 4 yes no unspecified -
PF R+PF x 5 yes no yes -
PF R+PF W 6 yes yes unspecified - -

In the table, "yes" indicates the access shall be allowed; "no" indicates the access
shall be denied and a SIGBUS signal shall be sent to the process; "unspecified"
indicates that the process cannot rely on either obtaining access nor receiving the
signal.

For the M88000 architecture, the segment permissions indicate only the initial
state of the segment. The use of the mprotect (KE_OS) function can change the
state during execution.

5-2 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Program Loading

As the system creates or augments a process image, it logically copies a file's seg­
ment to a virtual memory segment. When-and if-the system physically reads
the file depends on the program's execution behavior, system load, etc. A pro­
cess does not require a physical page unless it references the logical page during
execution, and processes commonly leave many pages unreferenced. Therefore
delaying physical reads frequently obviates them, improving system perfor­
mance. To obtain this efficiency in practice, executable and shared object files
must have segment images whose file offsets and virtual addresses are
congruent, modulo the page size.

Virtual addresses and file offsets for M88000 segments are congruent modulo
64K (OxlOOOO). The value of the p _align member of each program header in a
shared object file must be 64K.

Figure 5-2: Executable File Example

File Offset
0

OxlOO

Ox2bf00

Ox30d00

File
ELF header

Program header table
Other information

Text segment
...

Ox2be00 bytes
Data segment

...
Ox4e00 bytes

Other information
...

PROGRAM LOADING AND DYNAMIC LINKING

Virtual Address

Ox10100

Ox3beff
Ox4bf00

Ox50cff

5-3

Program Loading

Figure 5-3: Program Header Segments Example

Member Text Data
p_type PT 88K LOAD PT 88K LOAD
p_offset OxlOO Ox2bf00
p_vaddr Ox10100 Ox4bf00
p_paddr unspecified unspecified
p_filesz Ox2be00 Ox4e00
p_memsz Ox2be00 Ox5e24
p_flags PF R+PF X PF R+PF W - - - -
p_align OxlOOOO OxlOOOO

Although the example's file offsets and virtual addresses are congruent modulo
64 K for both text and data, up to four file pages hold impure text or data
(depending on page size and file system block size).

• The first text page contains the ELF header, the program header table, and
other information.

• The last text page holds a copy of the beginning of data.

• The first data page has a copy of the end of text.

• The last data page may contain file information not relevant to the running
process.

Logically, the system enforces the memory permissions as if each segment were
complete and separate; segments' addresses are adjusted to ensure each logical
page in the address space has a single set of permissions. In the example above,
the region of the file holding the end of text and the beginning of data will be
mapped twice: at one virtual address for text and at a different virtual address
for data.

The end of the data segment requires special handling for uninitialized data,
which the system defines to begin with zero values. Thus if a file's last data page
includes information not in the logical memory page, the extraneous data must
be set to zero, not the unknown contents of the executable file. "Impurities" in
the other three pages are not logically part of the process image; whether the

5-4 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Program Loading

system expunges them is unspecified. The memory image for this program fol­
lows, assuming 4 KB (OxlOOO) pages.

Figure 5-4: Process Image Segments

Virtual Address
OxlOOOO

OxlOlOO

Ox3bf OO

Ox4b000

Ox4bf00

Ox50d00

Ox51d24

Contents
Header padding

OxlOO bytes
Text segment

...

Ox2be00 bytes
Data padding
OxlOO bytes

Text padding
OxfOO bytes

Data segment

...

Ox4e00 bytes
Uninitialized data
Ox1024 zero bytes

Page padding
Ox2dc zero bytes

Segment

Text

Data

One aspect of segment loading differs between executable files and shared
objects. Executable file segments typically contain absolute code [see "Coding
Examples" in Chapter 3]. To let the process execute correctly, the segments must
reside at the virtual addresses used to build the executable file. Thus the system
uses the p _ vadd.r values unchanged as virtual addresses.

PROGRAM LOADING AND DYNAMIC LINKING 5-5

Program Loading

On the other hand, shared object segments typically contain position­
independent code. This lets a segment's virtual address change from one process
to another, without invalidating execution behavior. Though the system chooses
virtual addresses for individual processes, it maintains the segments' relative posi­
tions. Because position-independent code uses relative addressing between seg­
ments, the difference between virtual addresses in memory must match the
difference between virtual addresses in the file. The following table shows possi­
ble shared object virtual address assignments for several processes, illustrating
constant relative positioning. The table also illustrates the base address computa­
tions.

Figure 5-5: Example Shared Object Segment Addresses

Source Text Data Base Address
File Ox200 Ox2a400 OxO
Process 1 Oxc0000200 Oxc002a400 OxcOOOOOOO
Process 2 Oxc0010200 Oxc003a400 Oxc0010000
Process 3 Oxd0020200 Oxd004a400 Oxd0020000
Process 4 Oxd0030200 Oxd005a400 Oxd0030000

5-6 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Dynamic Linking

Dynamic Section

Dynamic section entries give information to the dynamic linker. Some of this
information is processor-specific, including the interpretation of some entries in
the dynamic structure.

DT PLTGOT

DT JMPREL

DT PLTRELSZ

DT PLTREL

This entry's d _ptr member gives the address of three consecu­
tive words in the private data of an executable or shared object
file. These 12 bytes must be 4-byte aligned. The first word must
be set by the link editor to contain the address of the symbol
_DYNAMIC; the address is absolute for an executable file and rela­
tive to the base address for a shared object. The second and
third words are used to support lazy binding. The DT _PLTGOT

entry is required in every object file that participates in dynamic
linking. The link editor chooses where to locate the three words;
one natural place would be the beginning of the global offset
table.

On the M88000, these entries specify a relocation table that per­
tains to global offset table procedure entries, rather than to the
procedure linkage table, as described in the System V ABI. This
relocation table should contain all relocation entries of type
R _ 88K _ GOTP _ENT, and only those entries. In particular, reloca­
tion entries applying to the procedure linkage table are found
with all other relocation entries in the relocation table specified
by the DT _ RELA, DT _ RELASZ, and DT _ RELAENT entries.

PROGRAM LOADING AND DYNAMIC LINKING 5-7

Dynamic Linking

The following additional dynamic array tags are defined:

Figure 5-6: Dynamic Array Tags, d_ tag

Name Value d un Executable Shared Object

DT 88K ADDRBASE Ox70000001 d_ptr ignored required - -
DT 88K PLTSTART Ox70000002 d_ptr optional optional - -
DT 88K PLTEND Ox70000003 d_ptr optional optional - -
DT 88K TDESC Ox70000004 d_ptr optional optional - -

DT 8 8K ADDRBASE

This entry's d _ptr member gives the addressing base for the
shared object.

DT 88K PLTSTART

DT 88K PLTEND

This entry's d _ptr member gives the low address (inclusive) of
the PLT region in an object file.

This entry's d_ptr member gives the high address (exclusive) of
the PLT region in an object file.

DT 88K TDESC This entry's d_ptr member gives the address of the tdesc infor­
mation for the object file. See "Text Description Information" in
Chapter 3 for more information.

If either of DT _ 88K _PLTSTART or DT _ 88K _PLTEND is present, both must be present.

The PLT region is that portion of an object file that must be made executable by
the dynamic linker after relocations are performed in the region. The PLT region
includes all PLT entries for the object file that require relocation by the dynamic
linker. The region of memory between (((oT _ 88K _PLTSTART value) I 64K) * 64K)
(inclusive) and ((((oT_88K_PLTEND value)+ 64K-1) I 64K) * 64K) (exclusive),
where arithmetic is as for unsigned integers in the C language, is subject to being
made executable by the dynamic linker.

5-8 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Dynamic Linking

Global Offset Table

Position-independent code cannot, in general, contain absolute virtual addresses.
Global offset tables hold absolute addresses in private data, thus making the
addresses available without compromising the position-independence and shara­
bility of a program's text. A program can reference its global offset table in
several ways:

• An executable file can reference its global offset table absolutely, as it would
any data, because the address of the global offset table is known to the link
editor. A shared object can reference its global offset table with position­
independent references, because all of the text and data of a shared object file
remains fixed relative to itself no matter where the shared object segments
are assigned in memory.

• A shared object typically references its global offset table relative to the
shared object's addressing base. The link editor establishes the addressing
base and the location of the global offset table, so it can calculate constant
offsets to global offset table entries. The addressing base value can be com­
puted by a function in a shared object in a position-independent manner as
shown in Figure 3-32.

• References from a shared object's procedure linkage table to the global offset
table procedure entries are made absolutely. This is possible because the
procedure linkage table is private to the shared object.

Initially, the global offset table holds information as required by its relocation
entries (see "Relocation" in Chapter 4). When the dynamic linker creates
memory segments for a loadable object file, it processes the relocation entries,
some of which will refer to the global offset table. The dynamic linker deter­
mines the associated symbol values, calculates their absolute addresses, and sets
the global offset table entries to the proper values. Although the absolute
addresses are unknown when the link editor builds an object file, the dynamic
linker knows the addresses of all memory segments and can thus calculate the
absolute addresses of the symbols contained therein.

A global offset table entry provides direct access to the absolute address of a
symbol, without compromising position independence and sharability. Because
the executable file and shared objects have separate global offset tables, a symbol
may appear in several tables. The dynamic linker processes all the global offset

PROGRAM LOADING AND DYNAMIC LINKING 5-9

Dynamic Linking

table relocations before giving control to any code in the process image, thus
ensuring the absolute addresses are available during execution.

The dynamic linker may choose different memory segment addresses for the
same shared object in different programs; it may even choose different library
addresses for different executions of the same program. Nonetheless, memory
segments do not change addresses once the process image is established. As long
as a process exists, its memory segments reside at fixed virtual addresses.

Global offset table ("GOT") entries are created by the link editor in response to
the use of certain relocation types. A GOT entry is 4 bytes long and 4-byte
aligned and is allocated in writable memory private to the executable or shared
object file. After relocation by the link editor, the dynamic linker, or both, a GOT
entry generally contains the value of its associated symbol, which is usually the
address of the entity (object or function) represented by the symbol. The one
exception is the case of a function for which there is a PL T entry in the executable
file. In this case the GOT entry contains the address of that PLT entry. In this
way, the address by which the executable file knows the function (its PLT entry
address) is also the address by which all shared objects know the function.

More efficient access to functions is provided by special GOT entries known as
"global offset table procedure" ("GOTP") entries. Like GOT entries, GOTP entries
are created by the link editor in response to use of certain relocation types, are 4
bytes long and 4-byte aligned, are allocated in writable memory private to the
executable or shared object file, and are relocated by the link editor, dynamic
linker, or both. A GOTP entry, however, may only refer to a function. During
execution, the GOTP entry contains an address to which control can be
transferred in order to reach the function represented by the symbol associated
with the GOTP entry. Moreover, the contents of the GOTP entry may change dur­
ing execution. This is "lazy binding", described below. Although the contents of
a GOTP entry may change during execution, every value contained in a GOTP
entry serves to transfer control correctly to the associated function.

A GOTP entry has an associated relocation of type R _ 8 BK_ GOTP _ENT. The reloca­
tion information and the initial contents of the entry are described under the
R_88K_GOTP_ENT relocation type.

There are two separate relocation operations that the dynamic linker may per­
form for a GOTP entry. The first, called "pre-binding," is performed during the
dynamic linker's relocation phase when lazy binding is in effect (when the
LO _BIND_ NOW environment variable is missing or null). In pre-binding, the

5-10 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Dynamic Linking

dynamic linker rewrites the GOTP entry so that calling through it invokes the
dynamic linker. When the first invocation is made through the GOTP entry, the
dynamic linker gains control and performs the second relocation operation on
the GOTP entry, called ''binding." Binding involves locating the relocation table
entry associated with the GOTP entry, looking up the associated symbol to find
where the function resides in memory, rewriting the GOTP entry to point directly
to the function, and finally transferring control to the function. If lazy binding is
not in effect (the value of the ID _BIND _NOW environment variable is non-null), the
dynamic linker simply performs the binding operation during its relocation
phase, bypassing the pre-binding step altogether.

Lazy binding generally improves overall application performance, because
unused symbols incur lower dynamic linking cost. Nevertheless, two situa­
tions make lazy binding undesirable for some applications. First, the initial
reference to a shared object function takes longer than subsequent calls,
because the dynamic linker intercepts the call to resolve the symbol. Some
applications cannot tolerate this unpredictability. Second, if an error occurs
and the dynamic linker cannot resolve the symbol, the dynamic linker will ter­
minate the program. Under lazy binding, this might occur at arbitrary times.
Once again, some applications cannot tolerate this unpredictability. By turn­
ing off lazy binding, the dynamic linker forces the failure to occur during pro­
cess initialization, before the application receives control.

The link editor and dynamic linker collaborate to support lazy binding. For each
GOTP entry, the link editor creates a "GOTP binding" entry, a sequence of
instructions that serves to transfer control to the dynamic linker. When lazy
binding is in effect, the dynamic linker stores the address of the GOTP binding
entry in the GOTP entry. (The addend in the relocation entry for the GOTP entry
locates the GOTP binding entry.) The dynamic linker also stores a word identify­
ing the executable or shared object file and the address of its binding routine in
the second and third words, respectively, of the three words located by the
DT _PLTGOT value for the executable or shared object file.

The GOTP binding entry is responsible for transferring control to the address con­
tained in the word at "DT_PLTGOT value"+ 8, having extended the stack by 16
bytes with the following values:

PROGRAM LOADING AND DYNAMIC LINKING 5-11

Dynamic Linking

Figure 5-7: GOTP Binding Entry Stack Frame

4fr31 Offset
12
8
4
0

Contents
frl value at time of call
reloc off value
word at "DT PLTGOT value" + 4
thevalueO

The reloc _off value is the offset, in bytes, from the DT _ JMPREL value for the exe­
cutable or shared object file containing the GOTP entry, to the relocation entry for
the GOTP entry.

The GOTP binding entry may destroy the contents of register frll. The GOTP
binding entry, in transferring to the dynamic linker, must place an appropriate
return address in 4frl, to maintain a proper return address chain for text descrip­
tion information purposes.

There are many ways for the link editor to satisfy the above requirements. One
possible implementation of the GOTP binding entry is:

Figure 5-8: GOTP Binding Entry

or.u frll,fr0,fhi16(reloc_off)
or frll,frll,flo16(reloc_off)
br GOTP_binding_helper

where GOTP _binding_ helper is a sequence of instructions particular to the given
executable or shared object file. A GOTP binding helper routine that cooperates
with GOTP binding entries as shown above could be:

5-12 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Dynamic Linking

Figure 5-9: GOTP Binding Helper

subu #r31,#r31,16
st #rl,#r31,12
st #rll,#r31,8
bsr here

here: or.u #rll,#r0,#hi16(DT_PLTGOT-here)
or #rll,#rll,#lo16(DT_PLTGOT-here)
addu #rll,#rll,#rl
ld #rl,#rll,4
st #rl,#r31,4
ld #rll, #rll, 8
st #r0,#r31,0
jsr #rll
or #rO,#rO,#rO

The expression "oT _PLTGOT-here" represents the distance from label here to the
DT _PLTGOT-specified value. The final "no-op" instruction is needed so that the
return address placed in #rl by the jsr instruction will correctly locate the GOTP
binding helper routine for text description information purposes.

The example sequences shown for the GOTP binding entry and GOTP binding
helper routine are designed not to require any relocation by the dynamic linker.
Hence, they can be part of the normal text of a shared object. In particular, they
don't need to reside along with PLT entries in the PLT region. However, it may be
convenient for the link editor to create a procedure linkage table consisting of the
GOTP binding helper routine followed by PLT and GOTP binding entries for each
GOTPentry.

PROGRAM LOADING AND DYNAMIC LINKING 5-13

Dynamic Linking

Function Addresses

References to the address of a function from an executable file and the shared
objects associated with it might not resolve to the same value. References from
within shared objects will normally be resolved by the dynamic linker to the vir­
tual address of the function itself. References from within the executable file to a
function defined in a shared object will normally be resolved by the link editor to
the address of the procedure linkage table entry for that function within the exe­
cutable file.

To allow comparisons of function addresses to work as expected, if an executable
file references a function defined in a shared object, the link editor will place the
address of the procedure linkage table entry for that function in its associated
symbol table entry. (See "Symbol Values" in Chapter 4.) The dynamic linker
treats such symbol table entries specially. If the dynamic linker is searching for a
symbol, and encounters a symbol table entry for that symbol in the executable
file, it normally follows the rules below.

• If the st_ shndx member of the symbol table entry is not SHN _ UNDEF, the
dynamic linker has found a definition for the symbol and uses its st_ value
member as the symbol's address.

• If the st_ shndx member is SHN _ UNDEF and the symbol is of type STT _FUNC

and the st_ value member is not zero, the dynamic linker recognizes this
entry as special and uses the st_value member as the symbol's address.

• Otherwise, the dynamic linker considers the symbol to be undefined within
the executable file and continues processing.

Some relocations are associated with procedure linkage table entries. These
entries are used for direct function calls rather than for references to function
addresses. These relocations are not treated in the special way described above
because the dynamic linker must not redirect procedure linkage table entries to
point to themselves.

5-14 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Dynamic Linking

Procedure Linkage Table

The procedure linkage table is a repository for short sequences of code that pro­
vide convenient access to GOTP entries. A procedure linkage table ("PLT") entry
is a sequence of instructions that passes control on to a procedure identified by a
particular GOTP entry. The benefit of a PLT entry is that it provides an address
(the address of its first instruction) to which control can simply be transferred (as
by a bsr instruction, for example) in order to invoke a GOTP entry with the
appropriate protocol.

It is usually better to access a GOTP entry directly rather than indirectly through a PLT
entry. However, there are some situations in which a PLT entry can be useful.

• When code is compiled for inclusion in an executable file (and, in particular,
not for inclusion in a shared object), it is generally best to compile a call into
simply a bsr instruction, under the assumption that most calls from outside
of all shared objects will be to procedures that are not in a shared object. If it
turns out for such a call that the procedure being called is in a shared object,
a PLT entry can be created by the link editor, and the bsr instruction can sim­
ply be adjusted to reference the PLT entry.

• When code is compiled for inclusion in a shared object, the compiler can
emit instructions to access the GOTP entry directly. It may be useful, how­
ever, for either convenience of the compiler or compactness of the call (when
many are made statically to the same GOTP entry), to use simply a bsr
instruction and a PLT entry.

The procedure linkage table is unlike a normal table in one respect-its entries
are not necessarily all the same size. (Nevertheless, typically the entries will all
be the same size.) The form of a typical PLT entry, for a hypothetical procedure
named "name," is shown below, as if it were written in assembly language.

PROGRAM LOADING AND DYNAMIC LINKING 5-15

Dynamic Linking

Figure 5-10: PLT Entry

name: or.u #rll,#r0,#hi16(name#gotp)
ld #rll,#rll,#lo16(name#gotp)
jmp #rll

Although the instruction sequence shown above is only one of many possible
sequences, the following points will invariably be true:

• The GOTP entry for the procedure is referenced absolutely. Because the glo­
bal offset table for a shared object may reside at different locations in dif­
ferent processes, the PLT entry code cannot be shared by different processes.

• Register #rll is used to load the contents of the GOTP entry.

• No register other than #rll is changed by the PLT entry sequence.

Executable files and shared object files have separate procedure linkage tables,
just as they have separate global offset tables. The treatment by the link editor
and dynamic linker can vary in the two different cases. The procedure linkage
table in an executable file can be relocated by the link editor, so it can be placed in
the text area and shared by all processes executing that file. Note that, in this
case, the dynamic linker doesn't act on the procedure linkage table at all.
Because the PLT entry refers to absolute addresses in the global offset table, how­
ever, the procedure linkage table in a shared object file cannot be relocated until
the shared object has had its memory assigned by the dynamic linker. In the
shared object case, the link editor constructs the procedure linkage table in a seg­
ment that is initially writable but not executable. The link editor records the
extent of the PLT region with the DT_88K_PLTSTART and DT_88K_PLTEND informa­
tion. The dynamic linker loads the shared object, performs relocations (including
those on the procedure linkage table), then uses mprotect(KE_OS) to change the
segment containing the procedure linkage table from writable to executable.
Note that the area of memory subject to being changed from writable to execut­
able is the area containing the PLT region, rounded outward on each end to a 64K
boundary.

5-16 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Dynamic Linking

The link editor is responsible for contributing text description information to
describe the code that it creates, namely the PL T entries, GOTP binding entries,
and GOTP binding helper routine.

PROGRAM LOADING AND DYNAMIC LINKING 5-17

6 LIBRARIES

System Library
Additional Entry Points
Support Routines
Global Data Symbols

• Application Constraints

C Library
Additional Support Routines

System Data Interfaces
Data Definitions

Table of Contents

6-1
6-1
6-1
6-3
6-3

6-4
6-4

6-5
6-5

'I

System Library

Additional Entry Points

There are no additional entry points required by the Motorola 88000 Processor
Supplement.

Support Routines

Besides operating system services, libsys contains the following processor­
specific support routines. The routines are also accessible named with a leading
underscore.

Figure 6-1: libsys Support Routines

getpsr sbrk setpsr

unsigned getpsr(void);
This function returns the current contents of the Processor Status
Register (PSR).

char *sbrk(int incr);
This function adds incr bytes to the break value and changes the
allocated space accordingly. Iner can be negative, in which case the
amount of allocated space is decreased. The break value is the
address of the first location beyond the end of the data segment. The
amount of allocated space increases as the break value increases.
Newly allocated space is set to zero. If, however, the same memory
space is reallocated to the same process, its contents are undefined.
Upon successful completion, sbrk returns the old break value. Other­
wise, it returns -1 and sets errno to indicate the error.

unsigned setpsr(unsigned psr);
This function sets several bits in the Processor Status Register (PSR) of
the calling process. These bits control certain aspects of the execution
of the process. The bits that can be set are the SER, C, BO, and MXM

LIBRARIES 6-1

System Library

6-2

bits; the precise semantics of these bits are defined in the MC88100
User's Manual.

The parameter psr is the bitwise inclusive OR of one or more of the
following values: PSR_SER, PSR_C, PSR_MXM, or PSR_BO. (See
<m88kbcs.h>.)

Setting the SER bit (PSR _SER) turns on serial mode. Clearing this bit
allows concurrent operation.

Setting the C (PSR _ c) bit sets the carry bit to one; clearing this bit
zeroes the carry bit.

Setting the MXM bit (PSR_ MXM) disables misaligned access exceptions.
Clearing this bit enables misaligned access exceptions; in this mode a
misaligned access causes the system to deliver a SIGBUS signal to the
process.

Setting the BO bit (PSR_Bo) causes the current byte order to be Little­
Endian; clearing the BO bit causes the current byte order to be Big­
Endian. Regardless of the setting of the BO bit, all interfaces to or
from the system are always in Big-Endian order: all fields in struc­
tures, signal frames, etc.

All bits in the psr parameter except SER, C, BO, and MXM are ignored.

The setpsr call returns the previous value of the Processor Status
Register.

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Library

Global Data Symbols

The libsys library requires that some global external data objects be defined for the
routines to work properly. In addition to the corresponding data symbols listed in
the System V ABI, the following symbols must be provided in the system library on
all ABI-conforming systems implemented with the Motorola 88000 processor archi­
tecture. Declarations for the data objects listed below can be found in the Data
Definitions section of this chapter or immediately following the table.

Figure 6-2: libsys, Global External Data Symbols

flt rounds __ huge_val

Application Constraints

As described above, libsys provides symbols for applications. In a few cases,
however, an executable is obliged to provide symbols for the library. In addition
to the application-provided symbols listed in this section of the System V ABI,
conforming applications on the Motorola 88000 processor architecture are also
required to provide the following symbols.

extern _end;
This symbol refers neither to a routine nor to a location with interest­
ing contents. Instead, its address must correspond to the beginning of
a program's dynamic allocation area, called the heap. Typically, the
heap begins immediately after the data segment of the program's exe­
cutable file. This value is normally provided by the static linker.

extern canst int lib version;

LIBRARIES

This variable's value specifies the compilation and execution mode for
the program. If the value is zero, the program wants to preserve the
semantics of older (pre-ANSI) C, where conflicts exist with ANSI. Oth­
erwise, the value is non-zero, and the program wants ANSI C seman­
tics. This value is normally provided by the compiler.

6-3

C Library

Additional Support Routines

There are no additional support routines required by the Motorola 88000 Proces­
sor Supplement.

6-4 Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Data Definitions

This section contains standard header files that describe system data. These files
are referred to by their names in angle brackets: <name.h> and <sys/name.h>.
Included in these headers are macro definitions and data definitions.

The data objects described in this section are part of the interface between an
AHi-conforming application and the underlying AHi-conforming system where it
will run. While an ABI-conforming system must provide these interfaces, it is not
required to contain the actual header files referenced here.

ANSI C serves as the ABI reference programming language, and data definitions
are specificed in ANSI C format. The C language is used here as a convenient
notation. Using a C language description of these data objects does not preclude
their use by other programming languages.

Figure 6-3: <assert .h>

extern void __ assert (const char *• const char •, int);
fdefine assert(EX) \

(void) ((EX) 11 (__ assert (itEX, FILE __ , __ LINE __), 0))

LIBRARIES 6-5

System Data Interfaces

Figure 6-4: <ctype.h>

6-6

itdef ine u 01
#define L 02
itdef ine N 04
itdef ine s 010
itdef ine p 020
itdef ine c 040
itdef ine B 0100
Jldef ine x 0200

extern unsigned char

#define isalpha(c)
#define isupper(c)
#define islower(c)
#define isdigit(c)
#define isxdigit(c)
#define isalnum(c)
#define isspace(c)
#define ispunct(c)
#define isprint(c)
#define isgraph(c)
#define iscntrl(c)
#define isascii(c)
#define _toupper(c)
#define _tolower(c)
#define toascii(c)

__ ctype[];

((__ ctype+l) [c]&(_Ul_L))
((__ ctype+l) [c]& U)
((__ ctype+l) [c] & L)
((__ ctype+l) [c]& N)
((__ ctype+l) [c]& X)
((__ ctype+l) [c] & (Ul_Ll_N))
((__ ctype+l) [c]&_S)
((__ ctype+l) [c] &_P)
((__ ctype+l) [c]& (_Pl_Ul_Ll_Nl_B))
((__ ctype+l) [c]& (_Pl_Ul_Ll_N))
((__ ctype+l) [c]&_C)
(! ((c)&-0177))
((__ ctype+258) [c])
((__ ctype+258) [c])
((c)&0177)

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figure 6-5: <dirent. h>

struct dirent
ino t

off t

d_ino;

d_off;
unsigned short d_reclen;
char d_name [1];

) ;

LIBRARIES

System Data Interfaces

6-7

System Data Interfaces

Figure 6-6: <errno.h>, Part 1 of 4

extern int errno;

#define EPERM 1
#define ENO ENT 2
#define ESRCH 3
#define EINTR 4
#define EIO 5
#define ENXIO 6
#define E2BIG 7
#define ENO EXEC 8
#define EBADF 9
#define ECHILD 10
#define EAGAIN 11

#define ENOMEM 12
#define EACCES 13

#define EFAULT 14
#define ENOTBLK 15
#define EBUSY 16
#define EEXIST 17
#define EXDEV 18
#define ENODEV 19
#define ENOTDIR 20
#define EISDIR 21
#define EINVAL 22
#define ENFILE 23
#define EMF ILE 24
#define ENOTTY 25
#define ETXTBSY 26
#define EFBIG 27
#define ENOS PC 28
#define ESPIPE 29
#define EROFS 30

l'""'~
EMLINK 31

) EPIPE 32 #define

6-8 Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-7: <errno.h>, Part 2 of 4

#define EDOM 33
fdef ine ERANGE 34
fdef ine ENOMSG 35
fdef ine EID RM 36
fdef ine ECHRNG 37
fdef ine EL2NSYNC 38
fdef ine EL3HLT 39
#define EL3RST 40
#define ELNRNG 41
fdef ine EUNATCH 42
fdef ine ENOCSI 43
fdefine EL2HLT 44
fdefine EDEADLK 45
#define ENOLCK 46
fdefine ENOSTR 60
fdef ine ENODATA 61
fdef ine ETIME 62
fdef ine ENOSR 63
fdefine ENONET 64
fdef ine ENOPKG 65
fdef ine EREMC>TE 66
#define ENOLINK 67
fdef ine EADV 68
fdef ine ESRMNT 69
fdef ine ECOMM 70
#define EPROTO 71

LIBRARIES 6-9

System Data Interfaces

Figure 6-8: <errno. h>, Part 3 of 4

fdefine EMULTIHOP 74
fdefine EBADMSG 77
fdefine ENAMETOOLONG 78
fdefine EOVERFLOW 79
#define ENOTUNIQ 80
#define EBADFD 81
fdefine EREMCHG 82
fdefine ENOSYS 89
#define ELOOP 90
#define ERESTART 91
#define ESTRPIPE 92
#define ENOTEMPTY 158
#define ESTALE 162

/* The following errno values are optional. */

#define EWOULDBLOCK EDEADLK
#define EBADE 50
#define EBADR 51
tdef ine EXFULL 52
#define ENOANO 53
#define EBADRQC 54
#define EBADSLT 55
#define EDEADLOCK 56
#define EBFONT 57
#define EDOTDOT 76
#define ELIBACC 83
#define ELIBBAD 84
fdef ine ELIBSCN 85

6-10 Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-9: <errno.h>, Part 4 of 4

#define ELIBMAX 86
#define ELIBEXEC 87
#define EINPROGRESS 128
tdef ine EALREADY 129
#define ENOTSOCK 130
#define EDESTADDRREQ 131
fdef ine EMSGSIZE 132
tdef ine EPROTOTYPE 133
tdef ine ENOPROTOOPT 134
fdef ine EPROTONOSUPPORT 135
tdef ine ESOCKTNOSUPPORT 136
#define EOPNOTSUPP 137
#define EPFNOSUPPORT 138
tdefine EAFNOSUPPORT 139
tdef ine EADDRINUSE 140
tdefine EADDRNOTAVAIL 141
fdefine ENETDOWN 142
tdef ine ENETUNREACH 143
fdef ine ENETRESET 144
tdef ine ECONNABORTED 145
#define ECONNRESET 146
#define ENOBUFS 147
#define EISCONN 148
#define ENOTCONN 149
#define ESllUTDOWN 150
#define ETOOMANYREFS 151
#define ETIMEDOUT 152
#define ECONNREFUSED 153
#define EHOSTDOWN 156
fdef ine EHOSTUNREACH 157
fdefine EPROCLIM 159
#define EU SERS 160
#define EDQUOT 161
#define EPOWERFAIL 163

LIBRARIES 6-11

System Data Interfaces

Figure 6-10: <fcntl.h>, Part 1 of 2

#define 0 RDONLY 0
#define 0 WRONLY 1
#define O_RDWR 2
#define 0 NDELAY 04
#define O_APPEND 010
#define o SYNC 020
#define 0 NONBLOCK 0100
#define O CREAT 00400
#define O_TRUNC 01000
#define 0 EXCL 02000
#define 0 NOCTTY 04000

#define F DUPFD 0
#define F GETFD 1
#define F_SETFD 2
#define F GETFL 3
#define F_SETFL 4
#define F GETLK 14
#define F_SETLK 6
#define F_SETLKW 7

#define F_FREESP 11

#define FD_CLOEXEC 1
#define 0 ACCMODE 03

6-12 Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

The following struct flock is defined differently than in the 88open Object
Compatibility Standard.

Figure 6-11: <fcntl.h>, Part 2 of 2

typedef struct flock {
short l_type;
short
off t
off t

long
pid_t
long

flock_t;

l_whence;
!_start;
l_len;
l_sysid;
l_pid;
pad[4);

#define F_RDLCKOl
#define F WRLCK02
#define F_UNLCK03

Figure 6-12: <float. h>

extern int __ flt_rounds;

#define FLT ROUNDS flt rounds

LIBRARIES 6-13

System Data Interfaces

Figure 6-13: <fmtmsg.h>

#define MM NULL OL

#define MM HARD OxOOOOOOOlL
JI define MM SOFT Ox00000002L
Jldefine MM FIRM Ox00000004L
#define MM RECOVER OxOOOOOlOOL
#define MM_NRECOV Ox00000200L
#define MM_ APPL Ox00000008L
#define MM_UTIL OxOOOOOOlOL
ildef ine MM OPSYS Ox00000020L
#define MM_PRINT Ox00000040L
#define MM_CONSOLE Ox00000080L
#define MM_NOSEV 0
Jldef ine MM HALT 1
#define MM ERROR 2
#define MM WARNING 3
Jldef ine MM INFO 4

#define MM NULLLBL ((char *) 0)
ildef ine MM NULLSEV MM NOSEV
Jldef ine MM NULLMC OL
#define MM NULLTXT ((char *) 0)
ildef ine MM NULLACT ((char *) 0)
#define MM NULLTAG ((char *) 0)

ildef ine MM NOTOK -1
Jldef ine MM OK OxOO
#define MM NOMSG OxOl
#define MM_NOCON Ox04

6-14 Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-14: <ftw.h>

#define FTW PHYS 01
#define FTW MOUNT 02

#define FTW CHDIR 04
#define FTW DEPTH 010

#define FTW F O

#define FTW D 1
#define FTW DNR 2
#define FTW_NS 3

#define FTW SL 4
#define FTW DP 6

#define FTW SLN 7

struct FTW

int quit;
int base;

int level;
) ;

Figure 6-15: <grp.h>

struct group
char *gr_name;

char *gr _passwd;
gid_t gr_gid;
char **gr_mem;

) ;

LIBRARIES 6-15

System Data Interfaces

The following struct ipc perm is defined differently than in the 88open
Object Compatibility Standard.

Figure 6-16: <sys/ipc.h>

struct ipc_perm
uid t uid;
gid_t gid;
uid t cuid;
gid_t cgid;
mode t mode;
unsigned long seq;
key_t key;
long pad[4];

} ;

#define IPC CREAT 0001000
fdefine IPC EXCL 0002000
Jldefine IPC NOWAIT 0004000
Jldefine IPC ALLOC 0100000

Jldefine IPC PRIVATE (key_t)O

Jldefine IPC RMID 10
Jldefine IPC SET 11

fdef ine !PC STAT 12

6-16 Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-17: <langinfo.h>, Part 1of2

Jldefine DAY 1 1
Jldefine DAY 2 2

Jldefine DAY 3 3

Jldefine DAY 4 4

Jldefine DAY 5 5
#define DAY 6 6
Jldefine DAY 7 7

#define ABDAY 1 8
#define ABDAY 2 9
#define ABDAY 3 10
#define ABDAY 4 11

#define ABDAY 5 12
#define ABDAY 6 13
#define ABDAY 7 14

#define MON 1 15
Jldefine MON 2 16

#define MON 3 17
Jldefine MON 4 18
#define MON 5 19

Jldefine MON 6 20
#define MON 7 21
#define MON 8 22
Jldefine MON 9 23
#define MON 10 24
Jldefine MON 11 25

Jldefine MON 12 26

LIBRARIES 6-17

System Data Interfaces

Figure 6-18: <langinfo.h>, Part 2 of 2

#define ABMON 1 27
#define ABMON_2 28
#define ABMON_3 29
#define ABMON_4 30
Jidefine ABMON 5 31
#define ABMON_6 32
#define ABMON_7 33
#define ABMON_8 34
#define ABMON_9 35
#define ABMON_lO 36
#define ABMON_ll 37
idefine ABMON 12 38

Jtdef ine RADIXCHAR 39
idefine THOU SEP 40
Jtdef ine YESSTR 41
Jtdef ine NOSTR 42
Jtdef ine CRNCYSTR 43

#define D_T_FMT 44
#define D_FMT 45
ildefine T_FMT 46
Jldefine AM_STR 47
#define PM STR 48

6-18 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figure 6-19: <limits.h>

#define MB_LEN_MAX 5

#undef ARG MAX
#undef CHILD MAX
ltundef MAX CANON
#undef NGROUPS MAX
#undef LINK MAX
ltundef NAME_MAX
tundef OPEN MAX
#undef PASS MAX
tundef PATH MAX
tundef PIPE BUF
#undef MAX INPUT

/* the #undef-fed values vary and should be

retrieved using sysconf() or pathconf () */

#define POSIX ARG MAX 4096 - -
#define _POSIX_CHILD_MAX 6
#define _POSIX_LINK_MAX 8
tdefine POSIX MAX CANON 255 - - -
#define POSIX MAX INPUT 255
tdefine POSIX NAME MAX 14 - - -
#define POSIX NGROUPS MAX 0
tdefine POSIX OPEN MAX 16
#define POSIX PATH MAX 255 - - -
fdefine POSIX PIPE BUF 512 - - -

fdefine NL ARGMAX 9
fdefine NL LANGMAX 14

tdefine NL MSGMAX 32767
fdefine NL_NMAX 1
fdef ine NL SETMAX 255
fdefine NL_TEXTMAX 255
#define NZERO 20
fdefine TMP MAX 17576
#define FCHAR MAX 1048576

LIBRARIES

System Data Interfaces

6-19

System Data Interfaces

Figure 6-20: <locale.h>

6-20

struct lconv
char
char
char
char
char
char
char
char
char
char
char
char
char

char
char

char
char

char
lconv;

*decimal_point;
*thousands_sep;
*grouping;
*int_curr_symbol;
*currency_ symbol;
*mon_decirnal_point;
*mon_thousands_sep;
*mon_grouping;
*positive_sign;
*negative_sign;
int_frac_digits;
frac_digits;
p _cs _precedes;
p_sep_by_space;
n_cs_precedes;
n_sep_by_space;
p_sign_posn;
n_sign_posn;

#define LC CTYPE 0
#define LC NUMERIC 3
#define LC TIME 2
#define LC COLLATE 1

#define LC MONETARY 4

#define LC MESSAGES 5
#define LC ALL 6
lldefine NULL 0

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figure 6-21: <sys/m88kbcs. h>

#define PSR SER Ox20000000
#define PSR C OxlOOOOOOO
#define PSR MXM Ox00000004
#define PSR BO Ox40000000

Figure 6-22: <math.h>

typedef union _h_val {
unsigned long i [2];
double d;

_h_val;

extern const h val
#define HUGE_VAL

LIBRARIES

__ huge_val;
__ huge_val.d

System Data Interfaces

6-21

System Data Interfaces

Figure 6-23: <sys/rrrrnan.h>

#define PROT READ Oxl
#define PROT WRITE Ox2
#define PROT EXEC Ox4
#define PROT NONE OxO

#define MAP SHARED 1

#define MAP PRIVATE 2
#define MAP FIXED OxlO

#define MS_SYNC OxO
#define MS_ASYNC Oxl
#define MS_INVALIDATE Ox2

Figure 6-24: <mon.h>

struct hdr {

char *lpc;
char *hpc;
int nfns;

);

struct cnt {

char *fnpc;
long mcnt;

);

typedef unsigned short WORD;

6-22 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figure 6-25: <sys/mount .h>

#define MS_RDONLY
#define MS DATA
#define MS_NOSUID
#define MS REMOUNT

LIBRARIES

OxOl
Ox04
OxlO
Ox20

System Data Interfaces

6-23

System Data Interfaces

The following struct rnsqid ds is defined differently than in the 88open
Object Compatibility Standard:-

Figure 6-26: <sys/msg. h>

6-24

struct msqid_ds {
struct ipc _pe:rm msg_pe:rm;
struct msg *msg_first;
struct msg •msg_last;
unsigned long msg_cbytes;
unsigned long msg_qnum;
uns'igned long msg_qbytes;
pid_t msg_lspid;
pid_t msg_lrpid;
time t msg_stime;
long rnsg_susec;
time t msg_rtime;
long msg_rusec;
time t msg_ctime;
long msg_cusec;

long pad[4];
);

tdefine MSG_NOERROR 010000

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figure 6-27: <netconfig .h>, Part 1 of 2

struct netconfig {

char *nc_netid;

unsigned long nc semantics;

unsigned long nc flag;
char •nc_protofmly;
char *nc_proto;
char *nc_device;
unsigned long nc_nlookups;

char **nc lookups;

unsigned long
};

*define NC TPI CLTS
#define NC TPI COTS
#define NC_TPI_COTS_ORD
#define NC TPI RAW
*define NC NOFLAG
#define NC VISIBLE
#define NC BROADCAST

LIBRARIES

nc_unused[8];

1

2

3
4

00
01
02

System Data Interfaces

6-25

System Data Interfaces

Figure 6·28: <netconfig .h>, Part 2 of 2

6-26

#define NC_NOPROTOFMLY "-"
#define NC_LOOPBACK "loopback"
#define NC_INET
#define NC_IMPLINK
#define NC _PUP
#define NC_CHAOS
#define NC_NS
#define NC_NBS
lldefine NC_ECMA
#define NC_DATAKIT
#define NC_CCITT
lldefine NC_SNA
#define NC_DECNET
#define NC_DLI
lldefine NC_LAT
#define NC_HYLINK
#define NC_APPLETALK
lldefine NC_NIT
#define NC_IEEE802
#define NC - OSI
#define NC_X25
#define NC_OSINET
#define NC_GOSIP
#define NC_NOPROTO
#define NC_TCP
#define NC_UDP
#define NC ICMP

"inet"
"implink"
"pup"
"chaos"
"ns"
"nbs"
"ecma"
"datakit"
"ccitt"
"sna"
"decnet"
"dli"
"lat"
"hylink"
"appletalk"
"nit"
"ieee802"
"osi"
"x25"
"osinet"
"gosip"

"tcp"
"udp"
"ic:mp"

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figure 6-29: <netdir. h>

struct nd_addrlist {
int n_cnt;
struct netbuf •n_addrs;

};

struct nd_hostservlist {
int h_cnt;
struct nd hostserv *h_hostservs;

};

struct nd_hostserv {
char *h_host;
char *h_serv;

} ;

#define ND_BADARG -2

#define ND_N~ -1

#define ND_OK 0
#define ND_NOHOST 1

#define ND_NOSERV 2
#define ND_NOSYM 3
#define ND_OPEN 4

#define ND_ACCESS 5
#define ND_UKNWN 6
#define ND_NOCTRL 7

#define ND_FAILCTRL 8
#define ND_SYSTEM 9
#define ND_HOSTSERV 0
#define ND_HOSTSERVLIST 1
#define ND_ADDR 2
#define ND_ ADDRLIST 3
#define ND_SET_BROADCAST 1
#define ND_SET_RESERVEDPORT 2
#define ND_CHECK_RESERVEDPORT 3
#define ND_MERGEADDR 4

#define HOST SELF
#define HOST ANY
#define HOST BROADCAST

LIBRARIES

"\\1"
"\\2"
"\\3"

System Data Interfaces

6-27

System Data Interfaces

Figure 6-30: <nl_types.h>

ltdefine NL_SETD 1

typedef short nl_item ;

typedef void •nl _ catd;

Figure 6·31: <sys/param.h>

ltdefine HZ sysconf(3)

idefine NGROUPS_UMIN 0

ltdef ine MAXPATHLEN 1024
idef ine MAXSYMLINKS 20
ltdef ine MAXNAMELEN 256

idef ine NADDR 13

ltdef ine NBBY 8
ltdef ine NBPSCTR 512

6-28 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figure 6-32: <poll.h>

struct pollfd
int fd;
short events;
short revents;

};

fdef ine POI.LIN OxOOOl
#define POLLPRI Ox0002
#define POI.LOUT Ox0004
#define POLLRDNORM Ox0040
#define POLLWRNORM POLLO UT
fdefine POLLRDBAND Ox0080
fdef ine POLLWRBAND Ox0100
#define POLI.NORM POLLRDNORM

#define POLI.ERR Ox0008
#define POLLHUP Ox0010
#define POLLNVAL Ox0020

LIBRARIES

System Data Interfaces

6-29

System Data Interfaces

Figure 6-33: <sys/procset .h>

6-30

fdefine P _ INITPID 1
fdef ine p INITUID 0
#define P_INITPGID 0
fdefine P MYID (-1)

typedef long id_t;

typedef enum idtype
P_PID,
P_PPID,
P_PGID,
P_SID,
P_CID,
P_UID,
P_GID,
p ALL

idtype_t;

typedef enum idop
POP_DIFF,
POP_AND,
POP_OR,
POP XOR

idop_t;

typedef struct procset
idop_t p_op;
idtype_t p_lidtype;
id t p_lid;
idtype_t p_ridtype;
id t

procset_t;
p_rid;

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-34: <pwd.h>

struct passwd
char *pw_name;
char •pw _yasswd;
uid t pw_uid;
gid_t pw_gid;
char *pw_age;
char *pw_comment;
char •pw_gecos;
char •pw_dir;
char *pw_shell;

};

LIBRARIES 6-31

System Data Interfaces

Figure 6-35: <sys/regset.h>, Part 1 of 2

typedef unsigned int greg_t;
#define NGREG 38
typedef greg_ t gregset _ t [NGREG] ;

fdefine R_RO 0
fdefine R_Rl 1
#define R_R2 2
#define R_R3 3
ftdefine R _ R4 4
ftdefine R_R5 5
ftdefine R_R6 6
#define R_R7 7
#define R_RB 8
#define R_R9 9
ftdefine R_RlO 10
ftdefine R_Rll 11
ftdefine R_R12 12
fdefine R_R13 13
#define R_R14 14
#define R_R15 15
ftdefine R_R16 16
fdefine R_R17 17
fdefine R_R18 18
fdefine R_R19 19
fdefine R_R20 20
fdefine R_R21 21
fdefine R_R22 22
fdefine R_R23 23
fdefine R_R24 24
fdefine R_R25 25

6-32 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figure 6-36: <sys/regset.h>, Part 2 of 2

#define R_R26 26
#define R_R27 27
#define R_R28 28
#define R_R29 29
#define R_R30 30
#define R_R31 31
#define R_XIP 32
#define R_NIP 33
#define R_FIP 34
#define R_PSR 35
#define R_FPSR 36
#define R_FPCR 37

typedef struct dfltinfo
unsigned int dma;

unsigned int dint;
unsigned int dind;

dfltinfo_t;

typedef struct fpifltinfo {
unsigned int
unsigned int
unsigned int

fpifltinfo_t;

LIBRARIES

fprh;
fprl;
fpit;

System Data Interfaces

6-33

System Data Interfaces

Figure 6-37: <sys/resource.h>

6-34

#define RLIMIT_CPU 0
#define RLIMIT _FSIZE 1

#define RLIMIT _DATA 2

#define RLIMIT _STACK 3

#define RLIMIT _CORE 4

#define RLIMIT_NOFILE 5

#define RLIMIT _ VMEM 6

#define RLIMIT _AS RLIMIT VMEM

struct rlimit {

};

rlim t rlim_cur;
rlim t rlim_max;

typedef unsigned long rlim_t;

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figure 6-38: <rpc. h>, Part 1 of 12

#define MAX_AUTH_BYTES400
#define MAXNETNAMELEN 255
#define HEXKEYBYTES 48

enurn auth_stat {

};

AUTH_OK=O,
AUTH _ BADCRED=l,
AUTH_REJECTEDCRED=2,
AUTH _ BADVERF=3,
AUTH _ REJECTEDVERF=4,
AUTH _ TOOWEAK=5,
AUTH_INVALIDRESP=6,
AUTH FAILED=?

union des block

};

LIBRARIES

struct {
unsigned long high;
unsigned long low;
key;

char c[8];

System Data Interfaces

6-35

System Data Interfaces

Figure 6-39: <rpc.h>, Part 2of12

6-36

struct opaque_auth

};

int oa _flavor;
char *oa_base;
unsigned int oa_length;

typedef struct
struct opaque_auth ah_cred;
struct opaque_auth ah_verf;
union des block ah_key;
struct auth_ops {

void (*ah_nextverf) (};
int (*ah_marshal) (};
int (*ah_validate) (};
int (*ah _refresh) (} ;
void (*ah_destroy) (};
*ah_ops;

char *ah_private;
} AUTH;

struct authsys_parms

);

unsigned long aup_time;
char *aup _ machname;
uid t aup _ uid;
gid_t aup_gid;
unsigned int aup_len;
gid_t *aup_gids;

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figure 6-40: <rpc.h>, Part 3of12

extern struct opaque_auth _null_auth;

fdefine AUTH_NONE
fdefine AUTH_NULL
fdefine AUTH_SYS
idefine AUTH UNIX
fdefine AUTH_SHORT
fdefine AUTH_DES

0
0
1

AUTH SYS
2

3

fdefine DES_FAILED(err) ((err) > DESERR _NOHWDEVICE)

LIBRARIES

System Data Interfaces

6-37

System Data Interfaces

Figure 6-41 : <rpc. h>, Part 4 of 12

enum clnt _stat {
RPC_SUCCESS=O,
RPC_CANTENCODEARGS=l,
RPC_CANTDECODERES=2,
RPC_CANTSEND=3,

};

RPC _ CANTRECV=4,
RPC_TIMEDOUT=5,
RPC_INTR=18,
RPC _ VERSMISMATCH=6,
RPC _ AUTHERROR=7,
RPC _PROGUNAVAIL=B,
RPC_PROGVERSMISMATCH=9,
RPC_PROCUNAVAIL=lO,
RPC_CANTDECODEARGS=ll,
RPC_SYSTEMERROR=12,
RPC _ UNKNOWNHOST=l3,
RPC_UNKNOWNPROT0=17,
RPC _ UNKNOWNADDR=l 9,
RPC_NOBROADCAST=21,
RPC_RPCBFAILURE=14,
RPC_PROGNOTREGISTERED=15,
RPC_N2AXLATEFAILURE=22,
RPC _ UDERROR=23,
RPC_TLIERROR=20,
RPC FAILED=16

*define RPC_PMAPFAILURE RPC_RPCBFAILURE

6-38 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figure 6-42: <rpc.h>, Part 5of12

#define RPC NONE a
#define RPC NETPATH 1

#define RPC VISIBLE 2
#define RPC CIRCUIT V 3

- - -
#define RPC DATAGRAM V 4

#define RPC CIRCUIT N 5 - - -
#define RPC DATAGRAM N 6
Jldefine RPC TCP 7

#define RPC UDP 8

#define RPC ANYSOCK
#define RPC ANYFD

-1

RPC ANYSOCK

struct rpc_err {

enum clnt stat re status;
union

struct {

int errno;

int t_errno;

RE_err;

enum auth stat RE_why;
struct {

unsigned long low;
unsigned long high;
RE_vers;

struct
long sl;
long s2;
RE_lb;

} ru;
) ;

LIBRARIES

System Data Interfaces

6-39

System Data Interfaces

Figure 6-43: <rpc.h>, Part 6 of 12

6-40

struct rpc_createerr {
enum clnt stat cf_stat;
struct rpc_err cf_error;

} ;

typedef struct
AUTH *cl_auth;
struct clnt_ops {

enum clnt_stat (*cl_call) ();
void (*cl_abort) ();
void (*cl_geterr) ();
int (*cl_freeres) ();
void (*cl_destroy) ();
int (*cl_control) ();
*cl_ops;

char *cl_private;
char *cl_netid;
char *cl_tp;

CLIENT;

#define FEEDBACK_REXMITl
#define FEEDBACK OK

#define CLSET TIMEOUT
#define CI.GET TIMEOUT
#define CI.GET SERVER ADDR
#define CI.GET FD
#define CI.GET SVC ADDR
#define CLSET FD CLOSE
#define CLSET FD NCLOSE
#define CLSET RETRY TIMEOUT
#define CLGET RETRY TIMEOUT

1
2

1
2

3
6

7

8

9
4

5

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figure 6-44: <rpc.h>, Part 7 of 12

extern struct
rpc_createerr rpc_createerr;

enurn xprt_stat {
XPRT_DIED,

XPRT_MOREREQS,

XPRT IDLE

};

typedef struct {
int xp_fd;
unsigned short xp port;
struct xp_ops I

int (*xp_recv) ();
enurn xprt_stat (*xp_stat) ();
int(*xp_getargs) ();
int(*xp_reply) ();
int(*xp_freeargs) ();
void (*xp_destroy) ();

*xp_ops;
int xp _addrlen;
char *xp_tp;
char *xp_netid;
struct netbuf xp_ltaddr;
struct netbuf xp_rtaddr;
char xp_raddr[16];
struct opaque_auth xp_verf;
char *xp_pl;
char
char

SVCXPRT;

*xp_p2;
*xp_p3;

LIBRARIES

System Data Interfaces

6-41

System Data Interfaces

Figure 6-45: <rpc.h>, Part 8of12

6-42

struct svc_req {

} ;

unsigned long rq_prog;
unsigned long rq_vers;
unsigned long rq_proc;
struct opaque_auth rq_cred;
char
SVCXPRT

*rq_ clntcred;
•rq_xprt;

extern fd_set svc_fdset;
typedef struct fdset {

long fds_bits[32];
} fd_set;

enum msg_type
CALL=O,

REPLY=l

} ;

enum reply_stat {

} ;

MSG_ ACCEPTED=O,

MSG DENIED=l

enum accept_stat {
SUCCESS=O,

} ;

PROG _ UNAVAIL=l,

PROG_MISMATCH=2,

PROC_UNAVAIL=3,

GARBAGE_ ARGS=4,

SYSTEM ERR=5

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figure 6-46: <rpc.h>, Part 9of12

enum reject_stat {

} ;

RPC _ MISMATCH=O,

AUTH ERROR=l

struct accepted_reply {

} ;

struct opaque_auth ar_verf;
enum accept_stat ar_stat;
union {
struct {
unsigned long low;
unsigned long high;

} AR_versions;
struct {

char •where;
xdrproc_t proc;

} AR_results;
l ru;

struct rejected_reply {

} ;

LIBRARIES

enum reject_stat rj_stat;
union {
struct {
unsigned long low;
unsigned long high;

} RJ _versions;
enum auth stat RJ_why;

l ru;

System Data Interfaces

6-43

System Data Interfaces

Figure 6-47: <rpc. h>, Part 10 of 12

6-44

struct

} ;

struct

} ;

reply_body {

enum reply_stat rp_stat;
union {

struct accepted_reply RP_ar;
struct rejected_reply RP_dr;
ru;

call_body
unsigned long cb_rpcvers;
unsigned long cb_prog;
unsigned long cb_vers;
unsigned long cb _proc;
struct opaque_auth cb_cred;
struct opaque_auth cb_verf;

struct rpc _ msg {

};

unsigned long rm_xid;
enum msg_type rm_direction;
union {

struct call_body RM_cmb;
struct reply_body RM_rmb;
ru;

struct rpcb {

};

unsigned long r_prog;
unsigned long r_vers;
char *r_netid;
char *r_addr;
char *r_owner;

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figure 6-48: <rpc.h>, Part 11of12

struct rpcblist {

) ;

struct rpcb rpcb_map;
struct rpcblist •rpcb_next;

enum xdr_op {
XOR_ ENCODE=O,

XOR_DECODE=l,

XOR FREE=2

);

struct xdr discrim
int value;
xdrproc_t proc;

) ;

enum authdes namekind
ADN_FULLNAME,

ADN NICKNAME

) ;

struct authdes fullname
char *name;

);

union des block key;
u_long window;

struct authdes_cred {

);

enum authdes_namekind adc_namekind;
struct authdes_fullname adc_fullname;
unsigned long adc_nickname;

LIBRARIES

System Data Interfaces

6-45

System Data Interfaces

Figure 6-49: <rpc. h>, Part 12 of 12

6-46

typedef struct {

} XDR;

enum xdr_op x op;
struct xdr_ops {

int (*x_getlong) ();
int (*x_putlong) ();
int (*x_getbytes) ();
int (*x_putbytes) ();
unsigned int (*x_getpostn) ();
int (*x_setpostn) ();
long* (*x_inline) ();
void (*x_destroy) ();
•x_ops;

char x _public;
char x_private;
char x_base;
int x_handy;

typedef int (*xdrproc_t) ()
Jtdefine NULL_xdrproc_t ((xdrproc_t) 0)

#define auth_destroy(auth) ((* ((auth) ->ah_ ops->ah _destroy)) (auth))
Jtdefine clnt_call(rh, proc, xargs, argsp, xres, resp, secs) \

((*(rh)->cl_ops->cl_call) (rh, proc, xargs, argsp, xres, resp, secs))
#define clnt_freeres(rh, xres, resp) ((*(rh)->cl_ops->cl_freeres) (rh, xres, resp))
fdefine clnt_geterr(rh, errp) ((*(rh)->cl_ops->cl_geterr) (rh, errp))
fdefine clnt_control(cl, rq,
fdefine clnt_destroy(rh)
fdefine svc_destroy(xprt)

in) ((*(cl)->cl ops->cl control) (cl, rq, in))
((*(rh)->cl_ops->cl_destroy) (rh))
(*(xprt)->xp_ops->xp_destroy) (xprt)

fdefine svc freeargs(xprt, xargs, argsp) \
(*(xprt)->xp_ops->xp_freeargs) ((xprt), (xargs), (argsp))

fdefine svc_getargs(xprt, xargs, argsp) \
(* (xprt)->xp _ ops->xp _getargs) ((xprt) , (xargs), (argsp))

#define svc_getrpccaller(x) (&(x)->xp_rtaddr)
Jtdefine xdr_getpos(xdrs) (*(xdrs)->x_ops->x_getpostn) (xdrs)
#define xdr_setpos(xdrs, pos) (*(xdrs)->x_ops->x_setpostn) (xdrs, pos)
Jtdefine xdr_inline(xdrs, len) (*(xdrs)->x_ops->x_inline) (xdrs, len)
#define xdr_destroy(xdrs) (*(xdrs)->x_ops->x_destroy) (xdrs)

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figure 6-50: <search.h>

typedef struct entry { char *key; void *data; } ENTRY;
typedef enum { FIND, ENTER } ACTION;
typedef enum { preorder, postorder, endorder, leaf } VISIT;

LIBRARIES

System Data Interfaces

6-47

System Data Interfaces

The following struct semid ds is defined differently than in the 88open
Object Compatibility Standard:-

Figure 6-51: <sys/sern.h>

6-48

#define SEM_UNOO 010000

#define GETNCNT 3
#define GETPID 4
#define GETVAL 5
#define GETALL 6
#define GETZCNT 7
#define SETVAL 8
fdef ine SETALL 9

struct semid ds
struct ipc _penn sem _penn;

};

struct sem •sem_base;
char sem_pad[2];
unsigned short sem_nsems;

time t sem_otime;

long
time t
long
long

sem_ousec;
sem_ctime;
sem_cusec;
pad[4];

struct sem {

};

unsigned short semval;
pid_t sempid;
unsigned short semncnt;
unsigned short sernzcnt;

struct sembuf {
unsigned short sem _ num;
short sem_op;
short sem_flg;

};

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figure 6-52: <setjmp.h>

Jtdefine _ JBLEN 40
Jtdefine _SIGJBLEN 128
typedef int jmp _buf [_ JBLEN];
typedef int sigjmp_buf[_SIGJBLEN];

LIBRARIES

System Data Interfaces

6-49

System Data Interfaces

The following struct shmid ds is defined differently than in the 88open
Object Compatibility Standard:-

Figure 6-53: <sys/shm.h>

6-50

struct shmid_ds {
struct ipc yerm sl:un yerm;
int sl:un _segsz;
struct anon_map •sJ:un_amp;

};

unsigned short sl:un_lkcnt;
char pad[2J;
pid_t
pid_t

sl:un _ lpid;
sl:un _ cpid;

unsigned long sl:un _ nattch;
unsigned long sl:un _ cnattch;
time_t sl:un_atime;
long
time t
long
time_t
long
long

shm_ausec;
sl:un _ dtime;
shm_dusec;
sl:un _ ctime;
shm_cusec;
padl[4];

fdefine SHMLBA sysconf(31)

fdefine SHM_RDONLY
fdefine SHM_RND

010000
020000

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figure 6·54: <sigaction.h>

struct sigaction
void
sigset_t
int

};

(*sa_handler) ();
sa_mask;
sa_flags;

tdefine SA_NOCLDSTOP OxOOOOOOOl
tdefine SA_NOCLDWAIT Ox00000002
tdefine SA_ ONSTACK Ox00010000
#define SA_ RESETHAND Ox00020000
#define SA_RESTART Ox00040000
#define SA SIGINFO OxOOOBOOOO
#define SA_NODEFER Ox00100000

System Data Interfaces

LIBRARIES 6-51

System Data Interfaces

Figure 6-55: <sys/ siginfo. h>, Part 1 of 3

6-52

#define SI_FROMUSER(sip) ((sip)->si_code <= 0)
#define SI _FROMI<ERNEL (sip) ((sip) ->si _code > 0)

#define Sl_USER 0

#define ILL_ILLOPC 1

fdefine ILL_PRVOPC 2

fdefine FPE_INTOVF OxBOOOOOOl
fdefine FPE_INTDIV Ox80000002
#define FPE_FLTSUB Ox80000003
#define FPE_FLTRES OxOl
#define FPE_FLTOVF Ox02
#define FPE_FLTUND Ox04
#define FPE_FLTDIV Ox OB
#define FPE_FLTINV OxlO
#define FPE_PRIVVIO Ox20
#define FPE_UNIMPL Ox40
#define FPE_FLTNAN Ox BO

#define SEGV_MAPERR OxOl
#define SEGV_ACCERR Ox02
#define SEGV_CODE Ox04
#define SEGV_DATA Ox OB

#define BUS_ADRl\LN OxOl
#define BUS_ADRERR Ox02
#define BUS_OBJERR Ox03
#define BUS_ALIGN Ox04
#define BUS_PROT OxOB

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figure 6-56: <sys/siginfo.h>, Part 2 of 3

#define CLD_EXITED
#define CLD KILLED
#define CLD_DUMPED
#define CLD_TRAPPED
#define CLD_STOPPED
#define CLD_CONTINUED

fdefine POLL_IN
#define POLL OUT
fdefine POLL_ MSG
#define POLL_ERR
#define POLL_PRI
#define POLL_HUP

#define SI MAXSZ
#define SI PAD

typedef struct

1
2

3

4
5
6

1
2

3
4

5
6

256
((SI_MAXSZ/sizeof(int))-4)

int eb_signo;
int eb_code;
union {

int _yad[14];
dfltinfo t _fault;
fpifltinfo_t _fpui;

_ eb _registers;
exblk_t;

LIBRARIES

System Data Interfaces

6-53

System Data Interfaces

Figure 6-57: <sys/siginfo.h>, Part 3 of 3

typedef struct siginfo {
int si_signo;
int si_errno;
int si_code;
int si_machinexcep;
union

int _pad[SI_PAD];
struct {

pid_t _pid;
union {

struct
uid t

} _kill;
struct {

clock_t
int
clock t

} _ydata;
} _proc;
struct {

_cld;

int _fd;
long _band;

_file;
struct {

int _ ncodes;

exblk_t*_exblks;
_machine;

_data;
siginfo_t;

_uid;

_utime;
_status;
_stime;

6-54 Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-58: <signal. h>, Part 1 of 2

lldefine SIGHUP 1
lldefine SIGINT 2
lldef ine SIGQUIT 3
#define SIGILL 4
#define SIGTRAP 5
fdef ine SIGIOT 6
lldefine SIGABRT 6
lldefine SIGEMT 7
lldefine SIGFPE 8
#define SIGKILL 9
lldefine SIGBUS 10
lldef ine SIGSEGV 11
#define SIGSYS 12
lldefine SIGPIPE 13
lldefine SIGALRM 14
#define SIGTERM 15
lldef ine SIGUSRl 16
lldefine SIGUSR2 17
lldefine SIGCLD 18
#define SIGCHLD 18
lldefine SIGPWR 19
fdef ine SIGWINCH 20
#define SIGPOLL 22
#define SIGSTOP 23
fdef ine SIGTSTP 24
#define SIGCONT 25
#define SIGTTIN 26
#define SIGTTOU 27
#define SIGURG 33
fdef ine SIGIO 34
fdef ine SIGXCPU 35
fdef ine SIGXFSZ 36
#define SIGVTALRM 37
fdef ine SIGPROF 38
#define SIGLOST 40

LIBRARIES 6-55

System Data Interfaces

Figure 6-59: <signal.h>, Part 2 of 2

6-56

tdefine NSIG
tdefine MAXSIG

tdefine SIG_BLOCK
#define SIG_UNBLOCK
#define SIG_SETMASK
#define SIG_ERR
#define SIG_IGN
#define SIG_HOLD
#define SIG_DFL

#define SS_ONSTACK
#define SS_DISABLE

struct sigaltstack
char •ss_sp;

65
64

0
1
2
(void(*) ())-1
(void(*) ()) 1
(void(*) ())2
(void(*) ())0

OxOOOOOOOl
Ox00000002

int ss_size;
int ss_flags;

};
typedef struct sigaltstack stack_t;
typedef struct sigset {

unsigned long s[2];
} sigset_t;

tdefine SIGNO_MASK OxFF
#define SIGDEFER OxlOO
tdef ine SIGHOLD Ox200
tdefine SIGRELSE Ox400
#define SIGIGNORE Ox800
#define SIGPAUSE OxlOOO

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-60: <sys/ stat. h>, Part 1 of 2

#define ST FSTYPSZ 16

struct stat {

dev t st_dev;
ino t st_ino;
mode t st_mode;
nlink t st_nlink;
uid t st_uid;
gid_t st_gid;
dev t st_rdev;
off t st_size;
time_t st_atime;
unsigned long st_ausec;
time t st_rntime;
unsigned long st_nrusec;
time t st_ctime;
unsigned long st_cusec;
timestruc_t st_atim;
timestruc t st_rntim;
timestruc t st_ctim;
long st_blksize;
long st_blocks;
char st_fstype[ST_FSTYPSZ];
char st_padding[408];

};

LIBRARIES 6-57

System Data Interfaces

Figure 6-61: <sys/ stat. h>, Part 2 of 2

#define S_IFMT OxFOOO
#define S IFIFO OxlOOO
#define S_IFCHR Ox2000
#define S IFDIR Ox4000
#define S_IFBLK Ox6000
#define S IFREG Ox8000
#define S IFLNK OxAOOO
#define S_ISUID 04000
#define S _ ISGID 02000
#define S_ISVTX 01000
#define S_IRWXU 00700
#define S_IRUSR 00400
#define S_IWUSR 00200
#define S_IXUSR 00100
#define S_IRWXG 00070
#define S_IRGRP 00040
#define S_IWGRP 00020
#define S _ IXGRP 00010
#define S_IRWXO 00007
#define S_IROTH 00004
#define S_IWOTH 00002
#define S_IXOTH 00001

#define S_ISFIFO(mode) ((mode & S_IFMT) == S_IFIFO)
#define S_ISCHR(mode) ((mode & S IFMT) == S_IFCHR)
#define S_ISDIR(mode) ((mode & S_IFMT) == S_IFDIR)
#define S_ISBLK(mode) ((mode & S_IFMT) == S_IFBLK)
#define S_ISREG(mode) ((mode & S_IFMT) == S_IFREG)

6-58 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figure 6-62: <sys/statvfs.h>

ltdefine FSTYPSZ 16

typedef struct statvfs {
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long

f_bsize;
f_frsize;
f_blocks;
f_bfree;
f_bavail;
f_files;
f_ffree;
f_favail;

unsigned long f_fsid;
char f_basetype[FSTYPSZ];
unsigned long f_flag;
unsigned long f_namemax;
char f_fstr[32];
unsigned long f_filler[16J;

statvfs_t;

#define ST_RDONLY
#define ST NOSUID

LIBRARIES

OxOl
Ox02

System Data Interfaces

6-59

System Data Interfaces

Figure 6-63: <stdarg.h>

typedef struct {
int
int
int
} va_list;

next_arg;
*mem_ptr;
*reg_ptr;

The member next _arg is the number of words from the beginning of the argu­
ment list to the beginning of the next argument to be returned by va _ arg.
next _arg shall always have a nonnegative value. mem _ptr points at the begin­
ning of the argument area. reg_ptr points at a structure of the following form:

struct {int #r2, #r3, #r4, #r5, #r6, #r7, #r8, #r9;}

where each member contains the value at procedure entry of the indicated regis­
ter, if that register holds a portion of the variable argument list represented by
the va _list structure. A procedure receiving a va _list structure shall not refer
to members of the structure pointed at by reg_ptr that do not correspond to
portions of the variable argument list that the va _list structure represents. The
structure pointed at by reg_ptr shall be 8-byte aligned.

6-60

The procedure using the va list structure determines, for each argument
of the variable argument lisf whether to fetch the argument value from the
memory area or the register area, according to the position of the argument
in the argument list and the type of the argument {including size, alignment,
and whether it is a structure or union).

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-64: <stddef. h>

#define NULL 0
typedef int ptrdiff_t;
typedef unsigned int size_t;
typedef long wchar_t;

LIBRARIES 6-61

System Data Interfaces

Figure 6-65: <stdio.h>

typedef unsigned int size_t;
typedef long fpos_t;

#define NULL 0

#define BUFSIZ 1024
#define EOF (-1)

fdef ine st din (& __ stdinb)
#define stdout (& __ stdoutb)
fdef ine stderr (& __ stderrb)

ext em FILE __ stdinb;
extern FILE __ stdoutb;
extern FILE __ stderrb;
#define getchar() getc (stdin)
#define putchar(x) putc ((x), stdout)

fdef ine SEEK SET 0
fdef ine SEEK CUR 1
#define SEEK END 2
#define L cte:rmid 9
#define L cuserid 9
#define P_tmpdir n /var /tmp/"
#define L_tmpnam (sizeof (P _ tmpdir) + 15)

6-62 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figure 6-66: <stdlib.h>

typedef struct
int
int

div_t;

quot;
rem;

typedef struct
long int
long int

ldiv_t;

typedef unsigned int

itdef ine NULL
#define EXIT_FAILURE
#define EXIT_SUCCESS
#define RAND_MAX

extern unsigned char
#define MB_CUR_MAX

LIBRARIES

quot;
rem;

size_t;

0
1

0
32767

__ ctype[J;
__ ctype[520)

System Data Interfaces

6-63

System Data Interfaces

Figure 6-67: <stropts. h>, Part 1 of 4

fdefine RNORM OxOOO
fdefine RMSGD OxOOl
fdefine RMSGN Ox002
fdefine RMODEMASK Ox003
fdefine RPROTDAT Ox004
fdefine RPROTDIS Ox008
#define RPROTNORM Ox010

#define FLUSHR OxOl
#define FLUSllW Ox02
#define FLUSHRW Ox03

#define S_INPUT OxOOOl
#define S_HIPRI Ox0002
#define S_OUTPUT Ox0004
fdefine S_MSG Ox0008
fdefine S_ERRDR Ox0010
fdefine S_HANGUP Ox0020
fdefine S_RDNORM Ox0040
#define S WRNORM S OUTPUT
#define S RDBAND Ox0080
#define S WRBAND Ox0100
#define S BANDURG Ox0200

#define RS_HIPRI 1

#define MSG_HIPRI OxOl
fdefine MSG_ANY Ox02
fdefine MSG_BAND Ox04

#define MORECTL 1

#define MOREDATA 2

#define MUXID_ALL (-1)

6-64 Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-68: <stropts. h>, Part 2 of 4

Jldefine STR ('S'<<B)
Jldefine I NREAD (STRIOl)
Jldef ine I PUSH (STRl02)
Jldefine I POP (STRI03)
Jldef ine I LOOK (STRl04)
Jldef ine I FLUSH (STRI05)
Jldef ine I SRDOPT (STRI06)
Jldefine I GRDOPT (STRl07)
fdef ine I STR (STRI 010)
#define I_SETSIG (STRIOll)
#define I_GETSIG (STRI012)
#define I_FIND (STRl013)
#define I_LINK (STRI014)
#define I_UNLINK (STRl015)
fdefine I_RECVFD (STRl016)
#define I_PEEK (STRI017)
fdefine I_FDINSERT (STRI020)
fdefine I_SENDFD (STRl021)
fdefine I SWROPT (STRI023)
Jldefine I_GWROPT (STRl024)
Jldef ine I LIST (STRI025)
Jldef ine I PLINK (STRI026)
Jldef ine I PUNLINK (STRI027)
Jldef ine I FLUSHBAND (STRl034)
#define I CKBAND (STRI035)
#define I_GETBAND (STRl036)
#define I ATMARK (STRI037)
#define I SETCLTIME (STRI040)
fdef ine I GETCLTIME (STRI041)
fdefine I CANPUT (STRl042)

LIBRARIES 6-65

System Data Interfaces

Figure 6-69: <stropts.h>, Part 3 of 4

6-66

struct strioctl {

int ic_cnrl;
int ic_timout;
int ic_len;
char *ic_dp;

) ;

struct strbuf
int maxlen;
int len;
char •buf;

) ;

struct strpeek
struct strbuf ctlbuf;
struct strbuf databuf;
long flags;

);

struct strfdinsert {

struct strbuf ctlbuf;
struct strbuf databuf;
long flags;
int fildes;
int offset;

);

struct strrecvfd {

);

int fd;
uid_t uid;
gid_t gid;
char fill [8];

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figure 6-70: <stropts. h>, Part 4 of 4

struct str_mlist {
char l_name[FMNAMESZ+l];

};

struct str_list {
int
struct str mlist

} ;

#define ANYMARK OxOl
#define LASTMARK Ox02

#define FMNAMESZ 8

struct bandinf o {
unsigned char bi_pri;

sl_nmods;
*sl_modlist;

int bi_flag;
} ;

LIBRARIES

System Data Interfaces

6-67

System Data Interfaces

Figure 6-71: <termios .h>, Part 1 of 6

6-68

Jldef ine NCC
Jldef ine NCCS
#define CTRL (c)

8
19
((c)&037)

Jldef ine IBSHIFT 8
Jlundef POSIX VDISABLE

typedef unsigned long tcflag_t;
typedef unsigned char cc_t;
typedef unsigned long speed_t;

Jidef ine VINTR 0
Jldef ine VQUIT 1
#define VERASE 2
#define VKILL 3
#define VEOF 4
#define VEOL 5
#define VEOL2 6
#define VMIN 4
#define VTIME 5
#define VSWTCH 7

#define VSTART 8
#define VSTOP 9
#define VSUSP 10
#define VDSUSP 11

!define VREPRINT 12
#define VDISCARD 13

#define VWERASE 14
#define VLNEXT 15

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-72: <termios .h>, Part 2 of 6

tdef ine CNUL 0
#define CDEL 0377
#define CESC '\\'
fdef ine CINTR 0177
#define CQUIT 034
#define CERASE 't'
#define CKILL '@'

#define CEOT 04
#define CEOL 0
#define CEOL2 0
#define CEOF 04
#define CSTART 021
#define CSTOP 023
#define CSWTCH 032
#define CNSWTCH 0
#define CSUSP CTRL('z')
#define CDSUSP CTRL('y')
#define CRPRNT CTRL('r')
#define CFLUSH CTRL('o')
#define CWERASE CTRL('w')
#define CI.NEXT CTRL('v')

#define IGNBRK 0000001
tdef ine BRKINT 0000002
#define IGNPAR 0000004
#define PARMRK 0000010
#define INPCK 0000020
#define I STRIP 0000040
#define INLCR 0000100
#define IGNCR 0000200
fdef ine ICRNL 0000400
#define IUCLC 0001000
#define IXON 0002000
fdef ine IXANY 0004000
#define IXOFF 0010000
#define IMAXBEL 0020000

LIBRARIES 6-69

System Data Interfaces

Figure 6-73: <termios.h>, Part 3 of 6

#define OPOST 0000001
#define OLCUC 0000002
#define ONLCR 0000004
#define OCRNL 0000010
#define ONOCR 0000020
#define ONLRET 0000040
#define OFILL 0000100
#define OFDEL 0000200
#define NLDLY 0000400
#define NLO 0
#define NLl 0000400
#define CRDLY 0003000
#define CRO 0
#define CRl 0001000
#define CR2 0002000
#define CR3 0003000
#define TABDLY 0014000
#define TABO 0
#define TABl 0004000
Jldefine TAB2 0010000
#define TAB3 0014000
#define XTABS TAB3
#define BSDLY 0020000
#define BSD 0
#define BSl 0020000
#define VTDLY 0040000
#define VTO 0
#define VTl 0040000
#define FFDLY 0100000
#define FFO 0
#define FFl 0100000

6-70 Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-74: <termios .h>, Part 4 of 6

Jldef ine CBAlJD 077600000
Jldef ine BO 0
#define B50 00200000
Jldefine B75 00400000
#define BllO 00600000
#define B134 01000000
Jldefine B150 01200000
Jldef ine B200 01400000
#define B300 01600000
Jldefine B600 02000000
#define B1200 02200000
#define Bl800 02400000
Jldef ine B2400 02600000
#define B4800 03000000
#define B9600 03200000
Jldefine B19200 03400000
Jldefine EXTA 03400000
#define B38400 03600000
Jldefine EXTB 03600000
#define CSIZE 00000060
#define CS5 0
#define CS6 0000020
#define CS7 0000040
fdefine CSS 0000060
idefine CSTOPB 0000100
tdefine CREAD 0000200
tdefine PARENB 0000400
tdef ine PARODD 0001000
#define HUPCL 0002000
Jldefine CLOCAL 0004000
Jldef ine LOBLK 0010000
#define RCVlEN 0020000
#define XMTlEN 0040000
#define CIBAUD 037700000000
#define PAREXT 04000000

LIBRARIES 6-71

System Data Interfaces

Figure 6-75: <termios. h>, Part 5 of 6

#define ISIG 0000001
#define !CANON 0000002
#define XCASE 0000004
#define ECHO 0000010
#define ECHOE 0000020
#define ECHOK 0000040
#define ECHONL 0000100
#define NOFLSH 0000200
#define TOSTOP 0000400
#define ECHOCTL 0001000
#define ECHOPRT 0002000
#define ECHOKE 0004000
#define FLUSHO 0020000
#define PENDIN 0040000
#define IEXTEN 0100000

#define IOCTYPE Oxf fOO

6-72 Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-76: <termios .h>, Part 6 of 6

Jldefine TIOC ('T'<<B)
Jldefine TCSANOW (TIOCI 14)
Jldefine TC SAD RAIN (TIOCl15)
Jldefine TCSAFLUSH (TIOCI 16)

Jldefine TCIFLUSH 0
Jldefine TCOFLUSH 1
Jldefine TCIOFLUSH 2
Jldefine TCOOFF 0
Jldefine TCOON 1
Jldefine TCIOFF 2
Jldef ine TCION 3

struct termios

tcflag_t c_iflag;
tcflag_t c_oflag;
tcflag_t c_cflag;
tcflag_t c_lflag;
char c_yadl;
cc_t c_cc[NCCSJ;

);

LIBRARIES 6-73

System Data Interfaces

Figure 6-77: <sys/time.h>, Part 1of2

fdefine CLK _ TCK *
fdefine CLOCKS_PER_SEC 1000000
fdefine NULL 0

typedef long clock_t;
typedef long time_t;

struct tm {

I;

int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm _ wday;
int tm _yday;
int tm_isdst;

struct timeval {
time_t tv_sec;
long tv_usec;

I;

extern long timezone;
extern int daylight;
extern char •tzname[2];

I* starred values may vary and should be

retrieved with sysconf() of pathconf() */

6-74 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figure 6-78: <sys/tirne.h>, Part 2 of 2

struct itimerval {
struct timeval it_interval;
struct timevalit_value;

};

#define ITIMER REAL
#define ITIMER VIRTUAL
#define ITIMER PROF

typedef struct timestruc
time t tv_sec;
long tv _ nsec;
timestruc _ t;

Figure 6-79: <sys/times .h>

0

2

struct tms {
clock t
clock t
clock t
clock t

tms_utirne;

tms_stime;
tms _cut irne;

tms _ cstirne;

};

LIBRARIES

System Data Interfaces

6-75

System Data Interfaces

Figure 6-80: <sys/tiuser.h>, Service Types

#define T CLTS 3

#define T COTS 1

#define T COTS ORD 2

Figure 6-81: <sys/tiuser .h>, Transport Interface States

#define T DATAXFER 5
#define T IDLE 2

#define T INCON 4

#define T INREL 7

#define T OUTCON 3

Jtdefine T OUTREL 6
#define T UNBND 1

#define T UNINIT 0

6-76 Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-82: <sys/tiuser .h>, User-level Events

lldefine T ACCEPTl 12
lldefine T ACCEPT2 13
lldefine T ACCEPT3 14

lldefine T BIND 1
lldefine T CLOSE 4
lldefine T CONNECTl 8
lldefine T CONNECT2 9
lldefine T LISTN 11

lldefine T OPEN 0
!define T OPTMGMT 2
lldefine T PASSCON 24
lldefine T RCV 16
lldefine T RCVCONNECT 10
#define T RCVDISl 19
lldefine T RCVDIS2 20

lldefine T RCVDIS3 21
lldefine T RCVREL 23
#define T RCVUDATA 6
lldefine T RCVUDERR 7
#define T SND 15
#define T SNDDISl 17
lldefine T SNDDIS2 18
#define T SNDREL 22
lldefine T SNDUDATA 5
#define T UNBIND 3

LIBRARIES 6-77

System Data Interfaces

Figure 6-83: <sys/tiuser. h>, Error Return Values

Jldefine TACCES 3
Jldef ine TBADADDR
Jldefine TBADDATA 10
Jldefine TBADF 4
Jldefine TBADFLAG 16
Jldefine TBADOPT 2
Jldefine TBADSEQ 7
Jldefine TBUFOVFLW 11

Jldefine TFWW 12
#define TLOOK 9
#define TNOADDR 5
Jldefine TNODATA 13

Jldefine TNODIS 14
Jldefine TNOREL 17
Jldefine TNOTSUPPORT 18
Jldefine TNOUDERR 15
#define TOUT STATE 6

#define TSTATECllNG 19
Jldef ine TSYSERR 8

6-78 Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-84: <sys/tiuser .h>, Transport Interface Data Structures, 1 of 2

struct netbuf {

unsigned int maxlen;
unsigned int len;
char •buf;

);

struct t bind {

struct netbuf addr;
unsigned int qlen;

} ;

struct t call {

struct netbuf addr;
struct netbuf opt;

struct netbuf udata;

int sequence;
);

struct t discon {

struct netbuf udata;
int reason;

int sequence;
) ;

struct t inf a -
long addr;
long options;
long tsdu;
long etsdu;
long connect;
long dis con;
long servtype;

);

LIBRARIES 6-79

System Data Interfaces

Figure 6-85: <sys/tiuser .h>, Transport Interface Data Structures, 2 of 2

struct t_optmgmt {

struct netbuf opt;
long flags;

};

struct t uderr

struct netbuf addr;
struct netbuf opt;
long error;

};

struct t unitdata {

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

};

Figure 6-86: <sys/tiuser.h>, Structure Types

fdef ine T BIND 1

Jldefine T CALL 3
fdefine T DIS 4

fdefine T INFO 7

fdefine T OPTMGMT 2

Mef ine T UDERROR 6
Jtdefine T UNITDATA 5

6-80 Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figure 6-87: <sys/tiuser. h>, Fields of Structures

#define
#define
#define
#define

T ADDR
T OPT
T UDATA
T ALL

OxOOOOOOOl
Ox00000002
Ox00000004
Ox00000007

Figure 6-88: <sys/tiuser .h>, Events Bitmasks

#define T LISTEN OxOOOOOOOl
#define T CONNECT Ox00000002
#define T DATA Ox00000004
#define T EXDATA OxOOOOOOOB
#define T DISCONNECT OxOOOOOOlO
#define T ERROR Ox00000020
#define T UDERR Ox00000040
#define T ORDREL OxOOOOOOBO
#define T EVENTS OxOOOOOOf f

LIBRARIES

System Data Interfaces

6-81

System Data Interfaces

Figure 6-89: <sys/tiuser.h>, Flags

Jldefine T MORE OxOOOOOOOl
Jldefine T EXPEDITED Ox00000002
Jldefine T NEGOTIATE Ox00000004
Jldefine T CHECK Ox00000008
Jldefine T DEFAULT Ox00000010
Jldefine T SUCCESS Ox00000020
Jldefine T FAILURE Ox00000040

Figure 6-90: <sys/types. h>

6-82

typedef long
typedef long

time_t;
daddr_t;

typedef unsigned long dev_t;

typedef long gid_t;
typedef unsigned long ino_t;
typedef int key_t;

typedef long pid_t;
typedef unsigned long rnode_t;
typedef unsigned long nlink_t;

typedef long off_t;
typedef long uid_t;

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Figure 6-91: <ucontext.h>

#include <sys/regset.h>

typedef struct {

int
gregset_t

mcontext_t;

version;
gregs;

#define MCONTEXT_VERSION 1

typedef struct ucontext
unsigned long

struct ucontext

sigset_t
stack t
mcontext t

long
ucontext_t;

#define GETCONTEXT 0
#define SETCONTEXT 1

Figure 6-92: <uio.h>

typedef struct iovec
char *iov_base;
int iov_len;

iovec_t;

LIBRARIES

uc_flags;

*uc_link;
uc_sigmask;
uc_stack;
uc_mcontext;
uc_filler[210];

System Data Interfaces

6-83

I

'I

System Data Interfaces

Figure 6-93: <ulimit .h>

#define UL GETFSIZE
#define UL_SETFSIZE

1

2

Figure 6-94: <unistd.h>, Part 1 of 3

#define R_OK 4

#define WOK 2

#define X_OK 1
#define F_OK 0

#define F_ULOCK 0
#define F_LOCK 1

#define F TLOCK 2

#define F_TEST 3

#define SEEK SET 0
#define SEEK CUR 1

#define SEEK END 2

#define POSIX JOB CONTROL - -
#define _POSIX_SAVED_IDS 1

#undef POSIX VDISABLE

#define _POSIX - VERSION *
#define XOPEN VERSION *

/* starred values may vary and should be
retrieved with sysconf() of pathconf() */

6-84 Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-95: <unistd.h>, Part 2 of 3

#define SC ARG MAX 1 - - -
#define SC CHILD MAX 2
#define SC CLK TCK 3 - - -
#define SC NGROUPS MAX -
#define SC OPEN MAX 5
#define SC JOB CONTROL 6 - - -
#define SC SAVED IDS 7
#define SC VERSION 8
#define SC BCS VERSION 9
#define SC BCS VENDOR STAMP 10 - - - -
#define SC BCS SYS ID 11 -
#define SC MAXUMEMV 12
#define SC MAXUPROC 13
#define SC MAXMSGSZ 14
#define SC NMSGHDRS 15
#define SC SHMMAXSZ 16
#define SC SHMMINSZ 17

#define SC SHMSEGS 18
#define SC NMSYSSEM 19
#define SC MAXSEMVL 20
#define SC NSEMMAP 21
#define SC NSEMMSL 22
#define SC NSHMMNI 23
#define SC ITIMER VIRT 24
#define SC ITIMER PROF 25 - - -
#define SC TIMER GRAN 26 - - -
#define SC PHYSMEM 27
#define SC AVAILMEM 28
#define SC NICE 29
#define SC MEMCTL UNIT 30

LIBRARIES 6-85

System Data Interfaces

Figure 6-96: <unistd.h>, Part 3 of 3

#define SC SHMLBA 31
lldefine SC SVSTREAMS 32
lldefine SC CPUID 33
lldefine _SC_PASS_MAX 34
#define _SC_PAGESIZE 36
#define _SC_XOPEN_VERSION 37

#define _PC_LINK_MAX 1
lldefine PC MAX CANON 2 - - -
#define _PC_MAX_INPUT 3
lldefine _PC_ NAME_ MAX 4
lldef ine PC PATH MAX 5 - - -
lldefine _PC_PIPE_BUF 6
lldefine _PC_CHOWN_RESTRICTED 7
#define PC NO TRUNC 8
#define _PC_VDISABLE 9
#define PC BLKSIZE 10

#define STDIN FILENO 0
#define STDOUT FILENO 1
#define STDERR FILENO 2

Figure 6-97: <utime.h>

6-86

struct utimbuf

);

time t actime;
time t rnodt.ime;

Motorola 88000 PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-98: <utsnarne.h>

#define SYS_NMLN 256

struct utsnarne

char sysname[SYS_NMLN];
char nodename[SYS_NMLN];
char release[SYS_NMLN];

char version[SYS_NMLN];
char machine[SYS_NMLNJ;

) ;

Figure 6-99: <varargs. h>

LIBRARIES 6-87

System Data Interfaces

Figure 6-100: <wait.h>

6-88

#define WSTOPPED 0177
#define WCONTINUED 0010
#define WUNTRACED 0004
#define WNOHANG 0100
#define WNOWAIT 0200
#define WEXITED 0001
#define WTRAPPED 0002
#define WTRACED WTRAPPED

#define WSTOPFLG 0177
#define WCONTFLG 0177777
#define WSIGMASK 0177

#define WLOBYTE(stat)
#define WHIBYTE(stat)
#define WWORD(stat)

((int) ((stat) &0377))
((int) (((stat) »8) &0377))
((int) ((stat)) &0177777)

#define WCOREFLG 0200

#define WCOREDUMP(stat)
#define WEXITSTATUS(s)
#define WIFCONTINUED(stat)
#define WIFEXITED(s)
#define WIFSIGNALED(s)
#define WIFSTOPPED(s)
#define WSTOPSIG(s)
#define WTERMSIG(s)

((stat)&WCOREFLG)
(((s)&Oxff00)>>8)
(WWORD (stat)= =WCONTFLG)
(WTERMSIG (s) ==0)
(!WIFEXITED(s)&&!WIFSTOPPED(s))
((WTERMSIG (s) ==Ox7f) && (((s) &Ox80) ==0))
(WIFSTOPPED(s)?WEXITSTATUS(s) :0)
((s) &Ox7f)

Motorola 88000 PROCESSOR ABI SUPPLEMENT

Index

88000 1: 1, 3: 1, 32, 43, 49, 54, 57-58, 5: 2

88100 1: 1, 3: 1, 18, 33, 54

88200 3: 1

A
ABI conformance 3: 1, 32

see also undefined behavior 3: 1

see also unspecified property 3: 1

absolute addresses 3: 49
absolute code 3: 44, 5: 5

see also position-independent code
3:44

address
stack 3: 41

virtual 5: 3

addresses, absolute 3: 49
addressing, virtual (see virtual address-

ing)
addu instruction 3: 48

aggregate 3: 3
alignment

argument 3: 24

array 3: 3
bit-field 3: 6

COBOL data 3: 11

executable file 5: 3
parameter 3: 24

scalar types 3: 2, 9-1 o
stack frame 3: 22

structure and union 3: 3
allocation, dynamic stack space 3: 54

alphabetic data class, COBOL 3: 11

alphanumeric data class, COBOL 3: 11

ANSI, C (see C language, ANSI)
ANSI Standard X3.9-1978 3: g

Index

ANSI X3.23-1985 3: 13

ANSI/IEEE Std 754-1985 3: 17, 37-38

architecture
implementation 3: 1

processor 3: 1

restrictions 3: 1

argc 3: 39
argument

alignment 3: 24
length 3: 24

argument area 3: 24

offsets into 3: 24
argument transmission 3: 24

COBOL 3: 26

floating-point 3: 25

FORTRAN 3: 25

integer 3: 25
pointer 3: 25

structure 3: 25

union 3: 25
arguments

bad assumptions 3: 54
exec(BA_os) 3: 39

function 3: 18

main 3: 39
passing 3: 24

variable list 3: 54
argv 3: 39

array 3: 3

atexit(BA_OS) 3: 39

auxiliary vector 3: 41

B
base address 3: 43

BCD digits 3: 15

1-1

Index

behavior, undefined (see undefined
behavior)

Big-Endian byte order 3: 1, 40, 6: 2

BINARY alignments 3: 16
binary coded decimal digits 3: 15
BINARY data type, COBOL 3: 11
bit-field 3: 5

alignment 3: 6
allocation 3: 6

boot parameters (see tunable parameters)
breakpoint trap exception 3: 38
bsr instruction 3: 50
byte order bit 3: 1, 6: 2

c
C language

ANSI 3: 2, 38, 54
calling sequence 3: 18, 54
fundamental types 3: 2
main 3: 38
portability 3: 54

calling sequence 3: 18
function epilogue 3: 23
function prologue 3: 23
function prologue and epilogue

3:47-48
canonical frame address 3: 60
char 3: 2

CHARACTER data type 3: 9, 26
character data type 3: 26
CHARACTER data type 3: 27
character strings, PICTURE 3: 12
chunk, text 3: 57
COBOL 3: 11
COBOL argument transmission 3: 26
COBOL ASCII digits 3: 12
COBOL calling sequence 3: 18

1-2

COBOL data types 3: 11
COBOL OCCURS clause 3: 11
COBOL result transmission 3: 28
COBOL scalar types 3: 11
COBOL sign representation 3: 12
code generation 3: 44
code sequences 3: 44
COMMON statement 3: 9
COMPLEX data type 3: 10, 27
COMPUTATIONAL data type, COBOL

3: 11
concurrent exceptions 3: 33
configuration parameters (see tunable

parameters)
crtO.o 3: 62

D
data

process 3:29
uninitialized 5: 4

data representation 3: 1
data types

COBOL 3: 11
FORTRAN 3:9

debugging 5: 1
low-level 3: 57

debugging with tdesc 3: 57
demand paging 3: 37
diskettes, floppy 2: 1
DISPLAY data type, COBOL 3: 11-12
distribution media 2: 1
div instruction, restrictions 3: 1
div instruction faults 3: 37
divu instruction, restrictions 3: 1
double 3: 2

DOUBLE COMPLEX data type 3: 10, 27
DOUBLE PRECISION data type 3: 27

Motorola 88000 PROCESSOR ABI SUPPLEMENT

double versus long double 3: 3
double word 3: 22

double zero-extension, unsigned integers
3:28

double-precision 3: 2

double-precision arithmetic 3: 9

dummy procedure 3: 25
dynamic linking 3: 29, 5: 7

lazy binding 5: 1 o
LD_BIND_NOW 5: 10
relocation 5: 9

see also dynamic linker 5: 7

dynamic linking array tag 5: 7

dynamic segments 3: 30, 5: 6

dynamic stack allocation 3: 54
signals 3: 56

E
EBCDIC translation 3: 13

emulation, instructions 3: 1

En di an
Big 3: 1, 40, 6: 2

Little 6: 2
entry, procedure 3: 22

environment 5: 10
exec(BA_OS) 3: 39

envp 3: 39

EQUIVALENCE statement 3: 9
exceptions

concurrent 3: 33

data access 3: 37
floating-point 3: 37

imprecise 3: 33-34

interface 3: 32

machine 3: 33

precise 3: 33-34

signals 3: 32

Index

type table 3: 38

exceptions and signals 3: 34

exec(BA_OS) 3: 45
interpreter 3: 42

paging 5: 3

process initialization 3: 38

executable file, segments 5: 5

Index

execution mode (see processor execution
mode)

external memory fault exception 3: 38

F
faults (see traps)
file, object (see object file)
file offset 5: 3

float 3: 2

floating-point 3: 2

argument transmission 3: 25
IEEE 3: 17, 37-38

result transmission 3: 27

floating-point exceptions 3: 37

formats
array 3: 3
structure 3: 3
union 3: 3

FORTRAN argument transmission 3: 25
FORTRAN calling sequence 3: 18

FORTRAN character data type 3: 26
FORTRAN dummy procedure 3: 25
FORTRAN language 3: 9-10
FORTRAN result transmission 3: 27

FORTRAN scalar types 3: 9
frame pointer. 3: 49

frame pointer 3: 61
frame size, dynamic 3: 54
function addresses 5: 14

function arguments (see arguments)

1-3

Index

function call, code 3: 50

function linkage (see calling sequence)
function prologue and epilogue (see cal-

ling sequence)

G
gate vector fault exception 3: 38
general purpose registers 3: 18

getpsr() 6: 1

global offset table 3: 45, 4: 6, 5: 7, 9

relocation 3: 45

global offset table procedure entry 5: 1 o
_GLOBAL_OFFSET_TABLE_ (see global

offset table)

IEEE floating-point 3: 17, 37-38

illegal level change exception 3: 38

illegal opcode exception 3: 38

imprecise exceptions 3: 33-34

indirection sequence 3: 51

info protocols, tdesc 3: 59

initialization, process 3: 38

installation, software 2: 1
instructions, emulation 3: 1
int 3:2

integer
argument transmission 3: 25

result transmission 3: 27

INTEGER data type 3: 10, 27

integer overflow exception 3: 38

integer zero-divide exception 3: 38

interoperability, language 3: 14, 16, 26,

28

invalid descriptor exception 3: 38

1-4

J
jmp instruction 3: 48

L
language interoperability 3: 14, 16, 26, 28

lazy binding 5: 1 o
Id instruction 3: 48

Ida instruction, restrictions 3: 1
LD_BIND_NOW 5: 10
ld(SD_CMD) (see link editor)
length

argument 3: 24

parameter 3: 24

Level 01 items, COBOL 3: 11
Level 1 1: 2

Level 2 1 : 2, 3: 3
Level 77 items, COBOL 3: 11
libsys 6: 1

link editor 5: 9
link editor registers 3: 19

linkage, function (see calling sequence)
Little-Endian byte order 6: 2

local variable space 3: 22

LOGICAL data type 3: 9-1 o, 27

long 3: 2

long double 3: 2
long double versus double 3: 3
longjmp(BA_LIB) (see

setjmp(BA_LIB))

M
M88000 3: 1, 32, 43, 49, 54, 57-58, 5: 2-3

machine exception 3: 33
main

arguments 3:39

Motorola 88000 PROCESSOR ABI SUPPLEMENT

declaration 3: 38

malloc(BA_OS) 3: 31

MC88100 3: 1, 18, 33, 54

media, distribution 2: 1

memctl() 6: 1

memory allocation, stack 3: 54

memory management 3: 29

memory return value register 3: 19
misaligned access 3: 40

misaligned storage allocation 3: 9

mmap(KE_OS) 3: 31

modes, processor (see processor execu­
tion mode)

mprotect(KE_OS) 3: 36, 5: 2, 16

N
no-op instruction 3: 58

no-op instructions 3: 58

null pointer 3: 2-3, 30, 39

dereferencing 3: 30

numeric data class, COBOL 3: 11

0
object file 4: 1

ELF header 4: 1
executable 3: 45

executable file 3: 45

section 4: 2
see also archive file 4: 1
see also dynamic linking 5: 7
see also executable file 4: 1
see also relocatable file 4: 1
see also shared object file 4: 1
segment 5: 3
shared object file 3: 45

Index

special sections 4: 2

OCCURS clause 3: 11

OCS differences 6: 13, 16, 24, 48, 50
offset table, global (see global offset

table)
opcodes, use of unimplemented 3: 37

optimization 3: 57

optionl scalar types 3: 1 o
or instruction 3: 48

p
PACKED-DECIMAL data type, COBOL

3: 11

padding, structure and union 3: 3
page size 3: 29, 43, 5: 3

paging 3: 29, 5: 3
performance 5: 3

paging and exceptions 3: 37

parameter
alignment 3: 24

length 3: 24

passing 3: 24

parameter registers 3: 19

parameters
function (see arguments)
system configuration (see tunable

parameters)
passing

arguments 3: 24

parameters 3: 24

results 3: 26
performance 3: 1, 9

paging 5: 3
permissions, segment 5: 2
physical addressing 3: 29

PICTURE character strings, COBOL

3: 12

Index

1-5

Index

pipelined instructions 3: 33

PLT region 5: 8, 16
pointer 3: 3

argument transmission 3: 25

null 3: 2-3, 30, 39

result transmission 3: 27

portability
C program 3: 54

instructions 3: 1
position-independent code 3: 44, 47, 5: 6

see also absolute code 3: 44

see also global offset table 3: 44

see also procedure linkage table 3: 44

precise exceptions 3: 33-34

privileged opcode exception 3: 38

privileged register exception 3: 38

procedure
called 3:22

entry 3: 22
return 3: 22

procedure linkage table 3: 45, 5: 7, 15

relocation 3: 45

process
dead 3: 56
entry point 3: 39

initialization 3: 38

segment 3: 29

size 3: 29

stack 3: 41

virtual addressing 3: 29

processor architecture 3: 1
processor execution mode 3: 32

Processor Status Register (PSR) 3: 1, 6: 1
processor-specific information 3: 1, 18,

29, 44, 5: 3, 9, 15, 6: 1

program counter, relative addressing (see
XIP-relative)

program loading 5: 3

PSR 3: 1
purpose of ABI 1 : 1

Q
QIC cartridge 2: 1

R
REAL data type 3: 10, 27

register
memory return value 3: 19

stack pointer 3: 20

registers
calling sequence 3: 19

description 3: 18-19

floating-point 3: 40

general purpose 3: 18

initial values 3: 39, 41

language-specific 3: 19

parameter 3: 19

preserved 3: 19

reserved 3: 40

reserved for link editor 3: 19

saving 3: 20

scratch 3: 19-20

signals 3: 20

temporary 3: 19

relocation
global offset table 3: 45

procedure linkage table 3: 45

reserved data type exception 3: 38

reserved opcode exception 3: 38

resources, shared 3: 29

result, size 3: 26
result transmission 3: 26

COBOL 3: 28

1-6 Motorola 88000 PROCESSOR ABI SUPPLEMENT

floating-point 3: 27

FORTRAN 3: 27

integer 3: 27

pointer 3: 27

structure 3: 27

union 3: 27

results, passing 3: 26

return
pointer 3: 19

procedure 3: 22

return pointer 3: 19

return value register, memory 3: 19

s
sbrk() 6: 1

scalar types 3: 2, 9

optional 3: 1 o
scratch registers 3: 19

secondary storage 3: 29

section, object file 5: 3

segment
dynamic 3: 30

permissions 5: 4

process 3:29-30, 5:3, 10

segment permissions 3: 31, 5: 2

segments
executable 5: 2

unshared 3: 45
writable 5: 2

setjmp(BA_LIB) 3: 56

setpsr() 3: 37, 6: 1

setrlimit(BA_OS) 3: 31, 36

shadow registers 3: 40
shared object file 3: 45

segments 3: 30, 5: 6

short 3: 2

sigaction(BA_OS) 3: 33

Index

SIGBUS 5: 2

siginfo structure 3: 33

SIGN clause, COBOL 3: 11

sign extension, bit-field 3: 6

sign representation, COBOL 3: 12

signal(BA_OS) 3: 20

signals 3: 20, 56

signed 3: 2, 6

signed characters, sign-extension 3: 25,

27

Index

signed integers, sign-extension 3: 25, 27

sign-extension
signed characters 3: 25, 27

signed integers 3: 25, 27

single-precision 3: 2

sizeof 3: 2

structure 3: 3

software installation 2: 1

space, variable, local 3: 22

st instruction 3: 48

stack
address 3: 41

dynamic allocation 3: 54
growth 3: 20

process 3:29-30

system management 3: 31

stack allocation, dynamic 3: 54
stack frame 3: 18, 21

alignment 3: 22

form of 3: 57

organization 3: 20-21

size 3: 22

stack pointer 3: 49

stack pointer register 3: 20

stack traceback 3: 62

<Stdarg.h> 3: 54
structure 3: 3

argument transmission 3: 25

1-7

I

I

i

,•I

Index

padding 3: 3
result transmission 3: 27

subu instruction 3: 48

symbol table 4: 3

sysconf(BA_OS) 3: 29, 43

system calls 6: 1

see also libsys 6: 1

system load 3: 29

T
tape

QIC cartridge 2: 1
reel-to-reel 2: 1

tdesc info protocols 3: 59

tdesc information 3: 57

.tdesc section 3: 58

temporary registers 3: 19
termination, process 3: 56
text

process 3:29

sharing 3: 45

text chunk 3: 57

text description (tdesc) information 3: 57

text section 3: 57

trace trap exception 3: 38

transmission
argument 3: 24

parameter 3: 24

result 3: 26
traps (see exceptions)
traps, access exception 3: 30

tunable parameters
process size 3: 29

stack size 3: 31

u
ucontext_t structure 3: 33
undefined behavior 3: 1, 25-27, 40-43, 59,

5: 4, 6: 1

see also ABI conformance 3: 1

see also unspecified property 3: 1,
25-27,40,42-43,59, 6: 1

uninitialized data 5: 4
union 3: 3

argument transmission 3: 25

result transmission 3: 27

unshared segments 3: 45

unsigned 3: 2, 6

unsigned characters, zero-extension
3:25,27-28

unsigned integers, zero-extension 3: 25,

27-28

unspecified property 3: 1, 32, 5: 3, 5

see also ABI conformance 3: 1
see also undefined behavior 3: 1

USAGE clause, COBOL 3: 11
user mode (see processor execution

mode)
User's Manual 1: 2

v
<Varargs.h> 3: 54

variable argument list 3: 54

variable space, local 3: 22
virtual addressing 3: 29, 45

bounds 3: 30

invalid 3: 30

1-8 Motorola 88000 PROCESSOR ABI SUPPLEMENT

x
XIP-relative branch 3: 45
xmem instruction, restrictions 3: 1

z
zero

null pointer 3: 3, 30
uninitialized data 5: 4
virtual address 3: 30

zero fill 3: 6
zero-extension

unsigned characters 3: 25, 27-28
unsigned integers 3: 25, 27

Index

Index

1-9

ISBN 0-13-877655-5

