

UN IX® SYSTEM V RELEASE 4

DEVicE DRivER
INTERFACE I

DRiVEmt--KERNEl
INTERFACE

REFERENCE MANUAL

---0---

for Motorola Processors
---0---

~UNIX
~ SYSTEM LABORATORIES

Copyright© 1992, 1991 UNIX System Laboratories, Inc.
Copyright© 1990, 1989, 1988, 1987, 1986, 1985, 1984 AT&T
All Rights Reserved
Printed In USA

Published by Prentice Hall, Inc.
A Simon & Schuster Compa:iy
Englewood Cliffs, New Jer~ey 07632

Portions of this document contributed and copyrighted by Motorola, Inc.

No part of this publication may be reproduced or transmitted in any form or by any means-graphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap­
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in
writing from UNIX System Laboratories, Inc. (USL).

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy and completeness of all information in this
document, USL assumes no liability to any party for any loss or damage caused by errors or omis­
sions or by statements of any kind in this document, its updates, supplements, or special editions,
whether such errors, omissions, or statements result from negligence, accident, or any other cause.
USL further assumes no liability arising out of the application or use of any product or system
described herein; nor any liability for incidental or consequential damages arising from the use of this
document. USL disclaims all warranties regarding the Information contained herein, whether
expressed, implied or statutory, Including implied warranties of merchantability or fitness for a
particular purpose. USL makes no representation that the interconnection of products in the
manner described herein will not infringe on existing or future patent rights, nor do the descriptions
contained herein imply the granting of any license to make, use or sell equipment constructed in ac­
cordance with this description.

USL reserves the right to make changes to any products herein without further notice.

TRADEMARKS

Delta Series, DeltaSERVER, M68000 and M88000 are trademarks of Motorola, Inc.
IBM is a registered trademark of International Business Machines.
Motorola and the Motorola symbol are registered trademarks of Motorola, Inc.
UNIX is a registered trademark of UNIX System Laboratories, Inc. in the U.S.A. and other countries.
WE and Teletype are registered trademarks of AT&T.

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-587692-3

UNIX
PRESS

A Prentice Hall Title

P R E N T C E H A L L

ORDERING INFORMATION

UNIX® SYSTEM V, RELEASE 4 DOCUMENTATION

To order single copies of UNIX® SYSTEM V, Release 4 documentation,
please call (201) 767-5937.

ATTENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS:
For bulk purchases in excess of 30 copies please write to:
Corporate Sales
Prentice Hall
Englewood Cliffs, N.J. 07632
Or call: (201) 461-8441

ATTENTION GOVERNMENT CUSTOMERS: For GSA and other pricing
information please call (201) 767-5994.

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

1

2

3

4

A

Contents

Introduction
About This Document
Organization of Driver Reference Manuals
Conventions Used in This Document
Related Learning Materials

Driver Entry Points (D2)
Introduction
Overview of Driver Entry-Point Routines and Naming

Conventions
Manual Pages

Kernel Functions(D3)
Introduction
Manual Pages

Data Structures (D4)
Introduction
Manual Pages

Appendix A: Error Codes
Appendix A: Error Codes

Table of Contents

1-1
1-7
1-8
1-9

2-1

2-2
2-4

~-1

3-9

4-1
4-3

A-1

Table of Contents ---------------------

B

I

II

Appendix B: Migration from Release 3.2 to
Release 4.0
Appendix B: Migration from Release 3.2 to Release 4.0 B-1

Index
Index

Permuted Index
Permuted Index

1-1

DOI/OKI Reference Manual

Figures and Tables

Figure 1·1: Scope of DOI and OKI
Table 1·1: Exclusive Entry Points, Functions, and Structures
Table 1·2: Textual Conventions Used in This Book
Table 2·1: STREAMS Driver Entry Point Summary
Table 2-2: Driver Entry Points not Specific to STREAMS
Table 3-1: STREAMS Kernel Function Summary
Table 3-2: Kernel Functions Not Specific to STREAMS
Table 4-1: STREAMS Data Structure Summary
Table 4-2: Data Structures not Specific to STREAMS
Table A-1: Driver Error Codes
Table A-2: Error Codes by Driver Routine
Table B-1: 3.2 to 4.0 Migration

Table of Contents

1-1
1-5
1-8
2-2
2-3
3-3
3-6
4-1
4-2
A-2
A-3
8-2

Ill

1 Introduction

About This Document 1-1
Porting 1-2
Scope of Interfaces 1-3

• Scope of the Device Driver Interface (DOI) 1-3
• Scope of the Driver- Kernel Interface (OKI) 1-4

Interface Members 1-5
Audience 1-5
How to Use This Document 1-6

Organization of Driver Reference Manuals 1-1

Conventions Used In This Document 1-s

Related Learning Materials 1-9
Documentation 1-9

• Driver Development 1-9
• STREAMS 1-10
• C Programming Language and General Programming 1-10
• Assembly Language 1-10
• Operating System 1-11
• Software Packaging 1-11

Training 1-11

Table of Contents

About This Document

The Device Driver Interface/Driver- Kernel Interface Reference Manual provides
reference information needed to write device drivers in the UNIX System V
Release 4 environment. It describes two device driver interface specifications:
the Device Driver Interface (DOI) and the Driver-Kernel Interface (OKI).
Drivers written to conform to one or both of these interfaces are more likely to
be portable to other environments. DOI and OKI address different aspects of
the compatibility problem-their differences are summarized in Figure 1-1.

Figure 1-1: Scope of DOI and OKI

processor
specific
routines

processor
independent
routines

DOI
only
(DxD)

DOI
and
OKI
(DxDK)

supported
after SVR4

OKI
only
(DxK)

supported
through SVR4

Each box in Figure 1-1 represents a different set of interfaces. The "DOI only"
set (indicated throughout this manual with the DxD cross-reference code) are
processor specific and are intended to be supported beyond Release 4.0. The
DOI described in this manual is specific to the porting base, the 3B2 computer.
The "OKI only" set (DxK cross-reference code) are processor independent, but
are not guaranteed to be supported in the next release.

Most of the routines, functions, and structures described in this manual are part
of both DOI and OKI (cross-referenced by DxDK). As Figure 1-1 shows, drivers
written to conform to both interfaces are portable to all AT&T computers sup­
porting UNIX System V Release 4, and they will be compatible through and
beyond Release 4. To understand more completely what is meant by "portable"
and "compatible" for DOI and OKI, the scope of each interface must be more
thoroughly explained.

Introduction 1-1

About This Document

The goals of DOI and OKI overlap, and are not in any way mutually exclusive.
That is, a driver may be written to conform to both interfaces, increasing the
chances that driver code can be ported and can remain compatible with future
releases of the operating system.

Porting

Software is usually considered portable if it can be adapted to run in a different
environment more cheaply than it can be rewritten. The new environment may
include a different processor, operating system, and even the language in which
the program is written, if a language translator is available. More often, how­
ever, software is ported between environments that share an operating system,
processor, and source language. The source code is modified to accommodate
the differences in compilers or processors or releases of the operating system.

In the past, device drivers did not port easily for one or more of the following
reasons:

• To enhance functionality, members had been added to kernel data struc­
tures accessed by drivers, or the sizes of existing members had been
redefined.

• The calling or return syntax of kernel functions had changed.

• Driver developers did not use existing kernel functions where available,
or relied on undocumented side effects that were not maintained in the
next release.

• Processor-specific code had been scattered throughout the driver when it
could have been isolated.

Operating systems are periodically reissued to customers as a way to improve
performance, fix bugs, and add new features. This is probably the most com­
mon threat to compatibility encountered by developers responsible for maintain­
ing software. Another common problem is upgrading hardware. As new
hardware is developed, customers occasionally decide to upgrade to faster,
more capable computers of the same family. Although they may run the same
operating system as those being replaced, processor-specific code may prevent
the software from porting.

1-2 DOI/OKI Reference Manual

About This Document

Scope of Interfaces

Although application programs have all of the porting problems mentioned,
developers attempting to port device drivers have special challenges. Before
describing the differences between DOI and OKI, it is necessary to understand
the position of device drivers in UNIX systems.

Device drivers are kernel modules that control data transferred to and received
from peripheral devices. Although drivers are configured into a UNIX system as
part of the kernel, they are developed independently from the rest of the kernel.
If the goal of achieving complete freedom in modifying the kernel is to be
reconciled with the goal of binary compatibility with existing drivers, the
interaction between drivers and the kernel must be rigorously regulated. This
driver /kernel service interface is the most important of the three distinguishable
interfaces for a driver, summarized as follows:

• Driver-Kernel. 1/0 System calls result in calls to driver entry point rou­
tines. These make up the kernel-to-driver part of the service interface,
described in Section 2 of this manual. Drivers may call any of the func­
tions described in Section 3. These are the driver-to-kernel part of the
interface.

• Driver-Hardware. All drivers (except software drivers) must include an
interrupt handlin2 entrv ooint. and mav also perform direct-m.emorv
access CDMA). These, and other hardware-specific interactions make up
the driver /hardware interface.

• Driver-Boot/Configuration Software. At boot time, the existence of a
driver is made known to the system through information in system files,
enabling the system to include the driver. The interaction between the
driver and the boot and configuration software is the third interface affect­
ing drivers.

Scope of the Device Driver Interface (DOI)

The primary goal of DOI is to facilitate both source and binary portability across
successive releases of UNIX System Von a particular machine. Implicit in this
goal is an important fact. Although there is only one OKI, each processor pro­
duct has its own DOI. Therefore, if a driver is ever to be ported to different
hardware, special attention must be paid to the machine-specific routines that
make up the "DOI only" part of a driver. These include but are not confined to

Introduction 1-3

About This Document

the driver /hardware interface (as described in the previous section). Some
processor-specific functionality also may belong to the driver /kernel interface,
and may not be easy to locate.

To achieve the goal of source and binary compatibility, the functions, routines,
and structures specified in a DDI must be used according to these rules.

• Drivers cannot access system state structure (for example, u and sysinfo)
directly.

• For structures external to the driver that may be accessed directly, only
the utility functions provided in Section 3 of this manual should be used.
More generally, these functions should be used wherever possible.

• The header file ddi. h must be included at the end of the list of header
files. This header file "undefines" several macros that are reimplemented
as functions.

Scope of the Driver-Kernel Interface (OKI)
As its name implies, the OKI (Driver-Kernel Interface) is a defined service inter­
face for the entry point routines and utility functions specified for communica­
tion between the driver and kernel. It does not encompass the driver /hardware
or the driver /boot software interface.

Information is exchanged between the driver and kernel in the form of data
structures. The OKI specifies the contents of these structures as well as the cal­
ling and return syntax of the entry points and utility functions.

The intent of OKI is to promote source portability across implementations of
UNIX System V on different machines, and applies only to System V Release 4.
Because OKI applies only to the driver /kernel interface, it must be understood
that the sections of driver code affecting the hardware and boot/ configuration
interfaces may need to be rewritten, and should be isolated in subroutines as
much as possible.

1-4 DDl/DKI Reference Manual

About This Document

Certain interfaces documented in the OKI are not part of the DOI. Driver
writers should be aware that the use of these interfaces is not guaranteed to
be supported beyond System V Release 4.

Interface Members

As noted before, most entry points (Section 2), functions (Section 3), and struc­
tures (Section 4) described in this manual belong to both DOI and OKI. Table
1-1 lists the those that are exclusive either to DOI or OKI.

Table 1-1: Excluslve Entry Points, Functions, and Structures

DOI only OKI only
Section 2 init, int, size, start segmap, mmap

Section 3 dma_pageio, etoimajor, hat_getkpfnum
getemajor, geteminor,
get vec, hdeeqd, hdelog,
itoemajor, kvtophys,
physiock, vtop

I ~ection 4 hdedata None

Audience

This manual is for experienced C programmers responsible for creating, modify­
ing, or maintaining drivers that run on AT&T UNIX System V Release 4 and
beyond. It assumes that the reader is familiar with UNIX system internals and
the advanced capabilities of the C Programming Language. See the "Related
Learning Materials" section for a list of available AT&T documents and courses.

Introduction 1-5

About This Document

How to Use This Document

This manual is organized into four sections and two appendixes~

1·6

• "Section 1: Introduction" introduces the DOI, OKI, and other driver inter­
faces, lists the notational conventions used in this document, and lists
related courses and documents.

• "Section 2: Driver Entry Points" contains reference pages for all driver
entry point routines.

• "Section 3: Kernel Functions" contains reference pages for all driver func­
tions used in DDl/DKI drivers.

• "Section 4: Data Structures" contains reference pages for structures used
in DDl/DKI drivers.

• "Appendix A: Error Codes" contains a list of the error codes that are
appropriate for use in DDl/DKI drivers.

• "Appendix B: Migration from Release 3.2 to Release 4.0" describes the
changes to DDl/DKI between Release 3.2 and Release 4 of System V.

DDl/DKI Reference Manual

Organization of Driver Reference Manuals

Driver reference manual pages are similar to those in the Programmer's Reference
Manual, with the page name followed by a section number in parentheses. All
driver reference manual entries begin with a "D" to distinguish them as driver
reference pages.

Currently, the reference pages for the different interfaces are published in
separate volumes. Each manual contains three sections:

02 driver entry points
03 kernel functions used by drivers
04 system data structures accessed by drivers

Each section number is suffixed with a letter indicating the interfaces covered.
The suffixes used are:

D Device Driver Interface (DOI)
K Driver-Kernel Interface (OKI)
DK DOI and OKI
I SCSI Device Interface (SDI)
P Portable Device Interface (POI)
X Block and Character Interface (BCD

For example, open(D2DK) refers to the open entry point routine for a driver, not
to the open(2) system call documented in the Provammer' s Reference Manual.

Introduction 1-7

Conventions Used in This Document

Table 1-2 lists the textual conventions used in this book.

Table 1·2: Textual Conventions Used In This Book

Item Style Example
C Reserved Words Constant Width typedef

C typedef Declarations Constant Width caddr t
Driver Routines Constant Width open routine

Error Values Constant Width EINTR

File Names Constant Width sys/conf.h
Flag Names Constant Width B WRITE -

Kernel Macros Constant Width minor
Kernel Functions Constant Width ttopen

Kernel Function Arguments Italics bp
Structure Members Constant Width b addr -

Structure Names Constant Width buf structure
Symbolic Constants Constant Width NULL

System Calls Constant Width ioct1(2)

C Library Calls Constant Width printf(3S)
Shell Commands Constant Width layers(l)

User-Defined Variable Italics prefixclose

1-8 DDl/DKI Reference Manual

Related Learning Materials

AT&T provides a number of documents and courses to support users of our
systems. For a listing see:

AT&T Computer Systems Documentation Catalog (300-000)
AT&T Computer Systems Education Catalog (300-002)

Documentation

Most documents listed here are available from the AT&T Customer Information
Center. Refer to the six-digit select code (in parentheses, following the docu­
ment title) when ordering.

If ordering by telephone, use the following numbers:

1-800-432-6600 (toll free within the continental United States)
1-317-352-8557 (outside the continental United States)

In addition to AT&T documents, the following list includes some commercially
available documents that are relevant.

Driver Development

The UNIX S11stem V and V/386, Release 3, Block and Character Interface (BG)
Development Guide(307-191) discusses driver development concepts, debugging,
performance, installation, and other related driver topics for UNIX System V
Release 3.

The UNIX System V and V/386, Release 3, Block and Character Interface (BCI) Driver
Reference Manual (307-192) includes UNIX System V Rlease 3 reference material
to be used in conjunction with the above manual. It describes driver entry point
routines (Section D2X), kernel-level functions used in BCI drivers (Section D3X),
and data structures accessed by BCI drivers (Section D4X).

The UNIX System V PDI Driver Design Reference Manual (305-014) defines the
kernel functions and data structures used for Portable Driver Interface (PDI)
drivers.

The UNIX System V SCSI Driver Interface (SDI), Driver Design Reference Manual
(305-009) defines the kernel functions and data structures used for SDI drivers.

Introduction 1-9

Related Learning Materials

STREAMS

The Programmer's Guide: STREAMS tells how to write drivers and access devices
that use the STREAMS driver interface for character access.

C Programming Language and General Programming
Bentley, Jon Louis, Writing Efficient Programs (320-004), Englewood Cliffs, New
Jersey: Prentice-Hall, 1982, gives hints for coding practices that improve process
performance. Many of these ideas can be applied to driver code.

Kernighan, B. and D. Ritchie, C Programming Language, Second Edition (307-136),
Englewood Cliffs, New Jersey: Prentice-Hall, 1988, defines the functions, struc­
tures, and interfaces of the C Programming Language. A short tutorial is
included.

Lapin, J. E., Portable C and UNIX System Programming, Englewood Cliffs, New
Jersey: Prentice-Hall, 1987, discusses how to maximize the portability of C
language programs.

The Programmer's Guide: Networking Interfaces provides detailed information,
with examples, on the Section 3N library that comprises the UNIX System Tran­
sport Level Interface (TU).

The Programmer's Guide: ANSI C and Programming Support Tools includes instruc­
tions on using a number of UNIX utilities, including make and SCCS.

Assembly Language
The AT&T 3B2/3BS/3B15 Computers Assembly Language Programming Manual
(305-000) describes the Assembly Language instructions used by AT&T 3B2,
3B15 and 3B4000 computers.

WE 32100 Microprocessor Information Manual, Maxicomputing in Microspace (307-
730) introduces the WE 32100 microprocessor and summarizes its available
support products.

1-10 DDl/DKI Reference Manual

Related Learning Materlala

Operating System
Bach, Maurice J., Design of the UNIX Operating System (320-044), Englewood
Cliffs, New Jersey: Prentice-Hall, 1986, discusses the internals of the UNIX
operating system, and includes an explanation of how drivers relate to the rest
of the kernel.

The UNIX System V reference manuals are the standard reference materials for
the UNIX operating system. This information is organized into three books,
published separately for each system:

• The System Administrator's Reference Manual includes information on
administrative commands (Section lM), special device files (Section 7), and
system-specific maintenance commands (Section 8).

• The Programmer's Reference Manual includes information on programming
commands (Section 1), system calls (Section 2), library routines (Section 3),
file formats (Section 4), and miscellaneous topics (Section 5).

• The User's Reference Manual includes information on UNIX system user­
level commands (Section 1).

Software Packaging
The Programmer's Guide: System Services and Application Packaging Tools describes
how to write the scripts necessary to install a driver (or other software) under
the System Administration utility.

Training

The following courses are of particular interest to driver writers. To register for
a class:

• Within the continental United States, call 1-800-TRAINER.

• Within Canada, call 1-800-221-1647.

• Outside the continental United States, call 1-201-953-7554.

Introduction 1-11

Related Learning Materlals

C Language for Experienced Programmers (UC1001) is a thorough, formal introduc­
tion to the C Programming Language.

Internal UNIX System Calls and Libraries Using C Language (UC1011) is an intro­
duction to UNIX application programming in C. Topics include the execution
environment, memory management, input/output, record and file locking, pro­
cess generation, and interprocess communication (IPC).

UNIX System V Release 4 Device Drivers (UC1056) explores device driver mechan­
isms, operating system supplied functions, device driver source code examples,
installation procedures and debugging techniques. Character, STREAMS, and
block devices are covered as well as the entire 1/0 subsystem.

UNIX System V Release 4 Internals (UC1057) presents an in-depth look at UNIX
System V, Release 4, including the process, file and 1/0 subsystems. New
UNIX System V Release 4 concepts such as Network File Sharing (NFS), fast file
system, and virtual file systems (VFS) are also reviewed.

Internal System Calls and Libraries (Part 1) (UC1058) presents the C language
programmer's interface to UNIX System V Release 4. This course covers those
system calls and library functions not pertaining to interprocess communication.
Interprocess communication system calls and library functions are covered in
Part 2 of this course.

Internal System Calls and Libraries (Part 2) (UC1059) presents UNIX System V
Release 4 system calls and library functions pertaining to interprocess communi­
cation.

1·12 DDl/DKI Reference Manual

2 Driver Entry Points (02)

Introduction 2-1

Overview of Driver Entry-Point Routines
and Naming Conventions 2-2

Manual Pages 24

Table of Contents

Introduction

This chapter describes the DOI/OKI, DOI-only, and OKI-only entry-point rou­
tines a developer may include in a device driver. These are called entry-point
routines because they provide the calling and return syntax from the kernel into
the driver. For all driver types, these routines are called in response to system
calls, when the computer is started, when a device generates an interrupt, or for
STREAMS drivers, in response to STREAMS events.

All driver routines common to both DOI and OKI are identified with the
(D2DK) cross reference code. All DOI-only or OKI-only routines are identified
with the (020) or (D2K) reference codes respectively.

Functions provided to allow the driver to communicate with the kernel are
described in Section 3, and use the (D3DK), (030), and (D3K) cross reference
codes.

In this section, reference pages contain the following headings:

• NAME describes the routine's purpose.

• SYNOPSIS summarizes the routine's calling and return syntax.

• ARGUMENTS describes each of the routine's arguments.

• DESCRIPTION provides general information about the routine.

• DEPENDENCIES lists possible dependent routine conditions.

• SEE ALSO gives sources for further information.

Driver Entry Points (D2) 2·1

Overview of Driver Entry-Point Routines and
Naming Conventions

Each driver is organized into two parts: the base level and the interrupt level.
The base level interacts with the kernel and the user program; the interrupt
level interacts with the device.

To uniquely identify a driver, a prefix string is added to the driver routine
names. The prefix is defined in the driver's master file. For a driver with the
pre prefix, the driver code may contain routines named pre_ open, pre_ close,
pre_init, pre_ int, and so forth. All global variables associated with the driver
should also use the same prefix.

System routines can call subroutines that are assigned names by the driver
writer. Subroutines should be declared as static, and should also use the
driver prefix to increase code readability.

Table 2-1 summarizes the STREAMS driver entry points described in this section.
These entry points may be used in either DOI or OKI.

Table 2·1 : STREAMS Driver Entry Point Summary

Routine Description

put receive messages from the preceding queue

srv service queued messages

2-2 DDl/DKI Reference Manual

Overview of Driver Entry-Point Routines and Naming Conventions

Table 2-2 summarizes the block 1/0 driver entry points described in this sec­
tion. These entry points may be used in either DOI or OKI, except as noted.

Table 2·2: Driver Entry Points not Specific to STREAMS

Routine Description Type

chpoll poll entry point for a non-STREAMS
character driver

close relinquish access to a device

driverinfo driver information control DDI only

dump prepare device for crash dump DDI only

init initialize a device DDI only

int process a device interrupt DDI only

ioctl control a character device

nap map boot arguments to dev _t DDI only

nmap return page frame number OKI only

open gain access to a device

print display a driver message on system console

rP.=irl TP:ln n;it;i fmm :! nPviC'P

segmap map device memory into user space OKI only

size return size of logical device DDI only

start start access to a device DDI only

strategy perform block 1/0

write write data to a device

Driver Entry Points {D2) 2-3

Table of Contents

2. System Calls

intro(D2DK) ... introduction to driver entry point routines
chpoll(D2DK) .. poll entry point for a non-STREAMS character driver
close(D2DK) .. relinquish access to a device
driverinfo(D2DK) .. communicate with device driver
init(D2D) ... initialize a device
int(D2D) ... process a device interrupt
ioctl (D2DK) .. control a character device
mapdevice(D2DK) ... map boot information into root dev _t
mmap(D2K) .. check virtual mapping for memory mapped device
open (D2DK) .. gain access to a device
print(D2DK) ... display a driver message on system console
put(D2DK) .. receive messages from the preceding queue
read(D2DK) ... read data from a device
segmap(D2K) .. map device memory into user space
size(D2D) .. return size of logical device
srv(D2DK) ... service queued messages
start(D2D) .. start access to a device
strategy(D2DK) .. perform block 1/0
write(D2DK) ... write data to a device

Table of Contents 1

lntro(D2DK) DDl/DKI lntro(D2DK)

NAME
intro - introduction to driver entry point routines

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

DESCRIPTION

3/91

This section describes the routines a developer needs to include in a device
driver. These routines are called "entry point routines" because they provide the
interfaces that the kernel needs from drivers. The kernel calls them when needed.
Some are called at well-defined times, such as system start up and system shut
down. Others are called as a result of 1/0-related system calls or external events,
such as interrupts from peripheral devices.

Each driver is organized into two logical parts: the base level and the interrupt
level. The base level interacts with the kernel and the device on behalf of
processes performing 1/0 operations. The interrupt level interacts with the
device and the kernel as a result of an event such as data arrival, and usually can­
not be associated with any particular process.

Each driver is uniquely identified by a prefix string specified in its configuration
file. The name of all the driver-supplied routines and global variables should
begin with this prefix. This will reduce the chance of a symbol collision with
another driver. Any private routines defined by a driver that are not entry point
routines should be declared as static. Also, any global variables that are
private to the driver should be declared as static.

Page 1

chpoll (D2DK} DDl/DKI chpoll (D2DK}

NAME
chpoll - poll entry point for a non-STREAMS character driver

SYNOPSIS
#include <sys/poll.h>

chpoll (dev_t dev, short events, int anyyet, short *reventsp,
struct pollhead **phpp);

ARGUMENTS
dev
events

anyyet

reventsp

phpp

DESCRIPTION

The device number for the device to be polled.

The events that may occur. Valid events are:

POLLIN Data are available to be read.
POLI.OUT Data may be written without blocking.
POLLPRI High priority data may be read.
POLLHUP A device hangup.
POLI.ERR A device error.

A flag that is non-zero if any other file descriptors in the pollfd array
have events pending. The poll(2) system call takes a pointer to an
array of pollfd structures as one of its arguments. See the poll(2)
reference page for more details.

A pointer to a bitmask of the returned events satisfied.

A pointer to a pointer to a pollhead structure. The pollhead struc­
ture is defined in sys/poll.h.

The chpoll entry point routine is used by non-STREAMS character device
drivers that wish to support polling. The driver must implement the polling
discipline itself. The following rules must be followed when implementing the
polling discipline:

1. Implement the following algorithm when the chpoll entry point is called:

if (events_are_satisfied_now) {
*reventsp = mask_of_satisfied_events;

else {
*reventsp = 0;
if (! anyyet)

*phpp = &my_local_pollhead_structure;

return (0);

2. Allocate an instance of the pollhead structure. This instance may be tied to
the per-minor data structure defined by the driver. The pollhead structure
should be treated as a ''black box" by the driver. None of its fields should
be referenced. However, the size of this structure is guaranteed to remain
the same across releases.

3. Call the pollwakeup(D3DK) function whenever an event of type events
listed above occur. This function should only be called with one event at a
time.

3/91 Page 1

ch poll (D2DK) DDl/DKI chpoll (D2DK)

RETURN
A chpoll routine should return 0 for success, or the appropriate error number.

SEE AL.SO
pollwakeup(03DK), poll(2)

Page 2 3/91

close (02DK) DDl/DKI close(D2DK)

NAME
close - relinquish access to a device

SYNOPSIS [Block and Character)
tinclude <sys/types.h>
tinclude <sys/file.h>
tinclude <sys/errno.h>
tinclude <sys/open.h>
tinclude <sys/cred.h>
tinclude <sys/ddi.h>

int prefixclose(dev_t dev, int flag, int otyp, cred_t *credy);
ARGUMENTS

dev Device number.

flag File status flag, as set by the open(2) or modified by the fcntl(2) sys­
tem calls. The flag is for information only-the file should always be
closed completely. The flag is taken from the f _flag member of the
file structure which is in file.h. Possible values are: FEXCL,
FNDELAY, FREAD, and FWRITE. Refer to open(D2D) for more informa­
tion.

otyp Parameter supplied so that the driver can determine how many times
a device was opened and for what reasons. The flags assume the open
routine may be called many times, but the close routine should only
be called on the last close of a device.

OTYP BLK close was through block interface for the device

OTYP CHAR close was through the raw/character interface for the
device

OTYP MNT close was called as a result of a umount(2) system call;
unmount the file system associated with the block
device

OTYP SWP close a swapping device

OTYP LYR close a layered process (a higher-level driver called the
close routine of the device)

OTYP DMP close a device previously opened for crash dump

*cred y Pointer to the cred(D40) user credential structure.

SYNOPSIS [STREAMS]

3/91

tinclude sys/types.h
tinclude sys/stream.h
tinclude sys/file.h
tinclude sys/errno.h
tinclude sys/open.h
tinclude sys/cred.h
tinclude sys/ddi.h

int prefixclose (queue_ t *q, int flag, cred _ t *cred y) ;

Page 1

close(D2DK) DDl/DKI close(D2DK)

ARGUMENTS
*q Pointer to queue structure used to reference the read side of the

driver. (A queue is the central node of a collection of structures and
routines pointed to by a queue.)

flag File status flag.

*cred _p Pointer to the cred(04DK) user credential structure.

DESCRIPTION

Page 2

For STREAMS drivers, the close routine is called by the kernel through the
cdevsw table entry for the device. (Modules use the fmodsw table.) A non-null
value in the d_str field of the cdevsw entry points to a streamtab structure,
which points to a qinit structure containing a pointer to the close routine.
Non-STREAMS close routines are called directly from the bdevsw (block) or
cdevsw (character) tables.

The close routine ends the connection between the user process and the device,
and prepares the device (hardware and software) so that it is ready to be opened
again.

A device may be opened simultaneously by multiple processes and the open
driver routine is called for each open, but the kernel will only call the close rou­
tine when the last process using the device issues a close(2) or umount(2) system
call or exits. (An exception is a close occurring with the otyp argument set to
oryp _ LYR, for which a close (also having otyp = oryp _ LYR) occurs for each open.)

In general, a close routine should always check the validity of the minor number
component of the dev parameter. The routine should also check permissions as
necessary, by using the cred(D4D) structure (if pertinent), and the appropriate­
ness of the flag and otyp parameter values.

A close routine could perform any of the following general functions:

disable interrupts
hang up phone lines
rewind a tape
deallocate buffers from a private buffering scheme
unlock an unsharable device (that was locked in the open routine)
flush buffers
notify a device of the close
deallocate any resources allocated on open

The close routines of STREAMS drivers and modules are called when a stream
is dismantled or a module popped. The steps for dismantling a stream are per­
formed in the following order. First, any multiplexor links present are unlinked
and the lower streams are closed. Next, the following steps are performed for
each module or driver on the stream, starting at the head and working toward
the tail:

1. The write queue is given a chance to drain.

2. The close routine is called.

3. The module or driver is removed from the stream.

3/91

close(D2DK) DDl/DKI close(D2DK)

RETURN VALUE
The close routine should return O for success, or the appropriate error number.
Refer to Appendix A for a list of DDl/DKI error numbers. Return errors rarely
occur, but if a failure is detected, the driver should decide whether the severity of
the problem warrants either displaying a message on the console or, in worst
cases, triggering a system panic. Generally, a failure in a close routine occurs
because a problem occurred in the associated device.

SEE ALSO
open(D2D), cred(D4DK)

3/91 Page 3

driver Info (D2DK) DOI/OKI drlverlnfo (D2DK)

NAME
dri verinfo - communicate with device driver

SYNOPSIS

tinclude <sys/types.h>
tinclude <sys/buf.h>
tinclude <sys/dinfo.h>
tinclude <sys/edt.h>

int prefixdriverinfo (dev, crnd, argl, arg2);

ARGUMENTS
dev the dev _ t for the device on which the information exchange is to take

place.

cmd
argl

the command to be performed (int)

a general argument (int)

arg2 a general argument (int)

DESCRIPTION
The driverinfo routine is called indirectly (through cdevsw) by the kernel to
communicate with a device driver without having to open a device first (via open
and ioctl).

Drivers are free to support whatever commands they see fit (for example,
firmware download or specialized hardware controller commands), and return
whatever error codes seem appropriate, but drivers that implement the standard­
ized dri verinfo commands listed below must adhere to the error code returns
specified by the standardized command description.

STANDARDIZED COMMAND DXGETEDT

3/91

This command returns the extended EDT table for the devices attached to the
controller for the device specified by the dev argument. The argl argument is the
user space virtual address of the place to return the information, and the arg2
argument is the byte count.

The extended EDT table is retrieved with two calls via dri verinfo. First, the
number of extended EDT entries for the controller specified by the device argu­
ment is obtained by calling sysrn88k with a buffer of one integer and a byte count
of sizeof(int). This integer (that is, the number of extended EDT structures for the
argument controller) is then used to calculate how large a buffer is needed to
contain the entire extended EDT table for the controller, and that buffer is then
obtained. The size of this buffer must be sizeof(int) + XEDT count * sizeof(struct
xedt). The second invocation of dri verinfo with this newly obtained buffer
retrieves the extended EDT table

If the number of bytes specified by arg2 is incorrect, EINVAL is return. If the
controller specified by the dev argument isn't present, ENXIO is returned.

Page 1

drlverlnfo(D2DK) DOI/OKI drlverlnfo (D2DK)

STANDARDIZED COMMAND DDEVXEDT
This command returns the extended EDT entry for the device specified by the dev
argument. The arg1 argument is the user space virtual address of an xedt struc­
ture which will be filled in by this operation.

If the device specified by the dev argument isn't present, ENXIO is returned.

GENERIC ERROR RETURNS
If the command is invalid, EINVAL is returned.

Any 1/0 error incured by any operation will return EIO.

If a copyin or copyout operation failes, EFAULT is returned.

SEE ALSO
ioctl(D2DK)

Page 2 3/91

lnlt(D2D) (DOI) lnlt(D2D)

NAME
ini t - initialize a device

SYNOPSIS
void prefixinit () ;

DESCRIPTION
init and start(D2D) routines are used to initialize drivers and the devices they
control. init routines are executed during system initialization, and can be used
in drivers that do not require low level system services in order to be initialized.
start routines are executed after low level services are enabled, such as inter­
rupts and lower level kernel interfaces, but before file systems are available.
Most drivers can use either an ini t or a start routine, or they can be used in
combination. However, an init routine must be used in any driver controlling a
device required to bring the system up.

Not all drivers need an init or a start routine. However, a driver must have
either an init or start routine if it needs to allocate any data structures.

init and start routines can perform functions such as:

allocating buffers for private buffering schemes

mapping a device into virtual address space

initializing hardware (for example, system generation or resetting the
board)

initializing a serial device in a character driver

Because the init and start routines are executed before there is user context, no
functions that require user-context, such as sleep(D3DK), may be called.

SEE ALSO
st".?1rtJO?O). l"'llni ,,.(1 M)_ ""'c:t'<>r(4)

3/91 Page 1

lnt(D2D) (DDI) lnt(D2D)

NAME
int - process a device interrupt

SYNOPSIS
void prefixint (int ctlr);

ARGUMENT
ctlr specifies the unique number associated with the the controller that is gen­

erating the interrupt. These numbers are unique within each type of con­
troller and start with zero. ctlr represents the controller number
extracted from the board field of the /stand/.edt_data file.

DESCRIPTION

3/91

The int routine is the interrupt handler for both block and character hardware
drivers. The interrupt handler is responsible for determining the reason for an
interrupt, servicing the interrupt, and waking up any base-level driver processes
sleeping on the interrupt completion. For example, when a disk drive has
transfered information to the host to satisfy a read request, the disk drive's con­
troller generates an interrupt. The CPU acknowledges the interrupt and calls the
interrupt handler associated with that controller and disk drive. The interrupt
routine services the interrupt and then wakes up the driver base-level process
waiting for data. The base-level portion of the driver then conveys the data to
the user.

In general, most interrupt routines must do the following tasks:
keep a record of interrupt occurrences
return immediately if no devices controlled by a driver caused the inter­
rupt (only for systems supporting shared interrupts)
interpret the interrupt routine argument ctlr
reject requests for devices that are not served by the device's controller
process interrupts that happen without cause (called spurious interrupts)
handle all possible device errors
wake processes that are sleeping on the resolution of an interrupt request

There are also many tasks the int routine must perform that are driver-type and
device specific. For example, the following types of drivers require different
functions from their int routines:

A block driver dequeues requests, wakes up processes sleeping on an I/0
request, and ensures that system generation has completed.

A terminal driver receives and sends characters.

A printer driver ensures that characters are sent.

In addition, the functions of an int routine are device dependent. You should
know the exact chip set that produces the interrupt for your device. You need to
know the exact bit patterns of the device's control and status register and how
data is transmitted into and out of your computer. These specifics differ for
every device you access.

Page 1

lnt(D2D) (DOI) lnt(D2D)

The int routine for an intelligent controller that does not use individual interrupt
vectors for each subdevice must access the completion queue to determine which
subdevice generated the interrupt. It must also update the status information,
set/clear flags, set/clear error indicators, and so forth to complete the handling of
a job. The code should also be able to handle a spurious completion interrupt
identified by an empty completion queue. When the routine finishes, it should
advance the unload pointer to the next entry in the completion queue.

If the driver called biowait(030K) or sleep(030K) to await the completion of
an operation, the int routine must call biodone(030K) or wakeup(030K) to
signal the process to resume.

int is only used with hardware drivers, not software drivers.

CAUTION: The int routine must never:

contain calls to the sleep kernel function

use functions that call sleep

drop the interrupt priority level below the level at which the inter­
rupt routine was entered

call any function or routine that requires user context (that is, if it
accesses or alters information associated with the running process)

Note: uiom:::>ve(030K) cannot be used in an interrupt routine when the
uio segflg member of the uio(04DK) structure is set to UIO USERSPACE (indi-
cating a transfer between user and kernel space). -

SEE ALSO
biowait(03DK), sleep(D30K), biodone(030K), wakeup(030K)

Page 2 3/91

loctl(D2DK) DDl/DKI Ioctl (D2DK)

NAME
ioctl - control a character device

SYNOPSIS
#include <sys/cred.h>
#include <sys/types.h>
tinclude <sys/errno.h>

int prefixioctl (dev_t deo, int and, int arg, int mode, cred_t *cred_p,
int *rval_p) ;

ARGUMENTS
dev Device number.

and

3/91

Command argument the driver ioctl routine interprets as the opera­
tion to be performed. It should be defined, along with an integer
value that is actually passed, in the header file.

The 1/0 control command name and value can be defined in the
driver code itself, but this is not recommended. If 1/0 control com­
mands are defined in a header file, the user program and the driver
can both access the same definitions to ensure that they agree about
what each 1/0 control command value represents.

The 1/0 control command name is traditionally an all uppercase
alphabetic string. This alphabetic name can be a mnemonic. You
should try to keep the value!t for your 1/0 control commands distinct
from others on the system. Each driver's 1/0 control commands are
discrete, but it is possible for user-level code to access a driver witt, an
1/0 control command that is intended for another driver, which can
lead to serious consequences, such as if it meant to pass "drop carrier
on a communication line," but instead sends the argument to a disk
where it is interpreted as "reformat drive." Permissions can be set to
prevent most such events, but the more unique your 1/0 control com­
mand values are, the safer you are.

A number of different schemes are legal for assigning values to 1/0
control command names. The most straightforward is to use decimal
numbers; for example

tdefine COMMANDlOl
#define COMMAND202

Similarly, one can assign hexadecimal numbers as values

#define COMMANDAOxOa
#define COMMANDFF Oxff

The drawback to these methods is that one quickly gets an operating
system that contains several instances of each 1/0 control command
value, with the inherent risks discussed above.

A common method to assign 1/0 control command values that are
less apt to be duplicated is to use a left-shifted 8 scheme. For instance

Page 1

Ioctl (D2DK) DDl/DKI Ioctl (D2DK)

tdefine COMMANDlO ('Q'«8110)
tdefine COMMANDll (' Q'«B 111)
tdefine COMMAND12 ('Q'<<8112)

Alternately, the shift-left-8 scheme can be defined as a constant then
used for the 1/0 control command definitions. For example

tdef ine ROTA
tdefine COMMAND23
tdefine COMMAND25

('q'<<8)
(ROTAj234)
(ROTAl254)

An alternative coding style is to use enumerations for the command
argument, which allows the compiler to do additional type checking.

typedef enum {
XX COMMANDlO = 'Q'<<8 10,
XX COMMANDll = 'Q'<<8 11,
XX COMMAND12 'Q'<<8 12,

xx_cmds_t; ;

termio(7) specifies the command types that must work for AT&T ter­
minal drivers. Terminal drivers typically have a command to read the
current ioctl settings and at least one other that defines new settings.

arg Passes parameters between a user program and the driver.

"cred_p
"rval_p

When used with terminals, the argument is the address of a user pro­
gram structure containing driver or hardware settings. Alternatively,
the argument may be an integer that has meaning only to the driver.
The interpretation of the argument is driver dependent and usually
depends on the command type; the kernel does not interpret the argu­
ment.
r -i. ... :- 1 \.. - ... i.. ~: _ _.._ ~
-V.&1.•W..&..1.L~ YW..&W.'""~ ~· •W.&.l.llo.o&l •.&&.""" W'"'V.I.'-""' WWU..;J '-'t''-'.1.1.""'W•

Use of this mode is optional. However, the driver may use it to deter­
mine if the device was opened for reading or writing. The driver
makes this determination by checking the FREAD or FWRITE setting
(values are in file.h).

See the flag argument description of the open routine for further
values for the ioctl routine's mode argument.

Pointer to the cred(D4DK) user credential structure.

Pointer to return value for calling process. The driver may elect to set
the value which is valid only if the ioctl(D2DK) succeeds.

DESCRIPTION

Page 2

The ioctl(D2DK) routine provides character-access drivers with an alternate
entry point that can be used for almost any operation other than a simple transfer
of characters in and out of buffers. Most often, ioctl is used to control device
hardware parameters and establish the protocol used by the driver in processing
data.

3/91

loctl(D2DK) DDl/DKI Ioctl (D2DK)

The kernel looks up the device's file table entry, determines that this is a charac­
ter device, and looks up the entry point routines in cdevsw. The kernel then
packages the user request and arguments as integers and passes them to the
driver's ioctl routine. The kernel itself does no processing of the passed com­
mand, so it is up to the user program and the driver to agree on what the argu­
ments mean.

1/0 control commands are used to implement the terminal settings passed from
ttymon(lM) and stty(l), to format disk devices, to implement a trace driver for
debugging, and to clean up character queues. Since the kernel does not interpret
the command type that defines the operation, a driver is free to define its own
commands.

Drivers that use an ioctl routine typically have a command to "read" the
current ioctl settings, and at least one other that sets new settings. You can use
the mode argument to determine if the device unit was opened for reading or
writing, if necessary, by checking the FREAD or FWRITE setting.

If the third argument, arg, is a pointer to user space, the driver should call the
copyin(D3DK) and copyout(D3DK) functions to transfer data between kernel
and user space.

To implement 1/0 control commands for a driver the following two steps are
required:

1. Define the I/0 control command names and the associated value in the
driver's header file and comment the commands.

2. Code the ioctl routine in the driver that defines the functionality for each
I/0 control command name that is in the header file.

The ioctl routine is coded with instructions on the proper action to take for
each command. It is basically a switch statement, with each case definition
corresponding to an ioctl name to identify the action that should be taken.
However, the command passed to the driver by the user process is an integer
value associated with the command name in the header file.

It is critical that command definitions and routines be clearly commented.
Because there is so much flexibility in how commands are used, uncommented
commands can be very difficult to interpret at a later time.

Terminal drivers use and support the ioctl commands defined on the termio(7)
manual page. For instance, TCGETA gets the parameters associated with the ter­
minal and stores them in the structure referenced in the third argument of the
routine call. TCSETA sets the parameters associated with the terminal from the
structure referenced in the third argument.

Note: SfREAMS drivers do not have ioctl routines. The stream head converts
I/0 control commands to M_IOCTL messages, which are handled by the driver's
put(D2DK) or srv(D2DK) routine.

RETURN VALUE

3191

The ioctl routine should return 0 for success, or the appropriate error number.
Refer to Appendix A for a list of DDl/DKI error numbers. The driver may also
set the value returned to the calling process through the rval _y pointer.

Page 3

loctl(D2DK) DDl/DKI loctl(D2DK)

SEE ALSO
copyin(D3DK), copyout(D3DK)

Page 4 3191

mapdevlce (D2DK) DDl/DKI mapdevlce (D2DK)

NAME
mapdevice - map boot information into root dev_t

SYNOPSIS

#include <sys/types.h>
#include <sys/buf.h>

int prefixmapdevice (struct bootcm::I. *info, dev_t dev);

ARGUMENTS
info Pointer to the bootcmd structure.

dev Pointer to a dev_t.

DESCRIPTION
The mapdevice routine is called indirectly (through cdevsw) by the kernel to con­
vert the boot arguments into the dev _ t for the boot device. This entry point is
optional, but any device driver that may be responsible for the boot device must
include it.

At boot time, the kernel offers the bootcmd structure returned by the boot block
to each device driver that has a mapdevice entry point. The first device driver to
accept the bootcmd information is assumed to have validly mapped the informa­
tion into the dev _ t for the boot device; searching is then discontinued and kernel
initialization continues.

For disks, dev _ t should represent the slice for the root disk as specified in the
bootcm::I. structure. For tapes, dev _ t should represent the no rewind device for a
tape at the specified address.

RETURN VALUE

3/91

If the device driver is not the device responsible for the boot device or if the
device driver is not configured to deal with the device specified by the bootcm::I.
structure, a -1 is returned. Otherwise a zero is returned, and the dev t
corresponding to the bootcmd information is stored.

Page 1

mmap(D2K) OKI mmap(D2K)

NAME
nunap - check virtual mapping for memory mapped device

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/cred.h>
tinclude <sys/nunan.h>
tinclude <sys/vm.h>

int prefixnunap (dev _ t dev, off_ t off, int prot) ;

ARGUMENTS
dev Device whose memory is to be mapped.

off Offset within device memory at which mapping begins.

prot Protection flag from nunan.h (for example, PROT_WRITE, PROT_READ).

DESCRIPTION
The nunap entry point is a required entry point for character drivers supporting
memory-mapped devices. A memory mapped device has memory that can be
mapped into a process's address space. The nunap(2) system call, when applied to
a character special file, allows this device memory to be mapped into user space
for direct access by the user application (no kernel buffering overhead is
required).

An nunap(D2K) routine checks if each offset is within the range of pages sup­
ported by the device. For example, a device that has 512 bytes of memory that
can be mapped into user space should not support offsets greater than 512. If the
offset does not exist, then -1 is returned. If the offset does exist, nmap returns the
masked page table entry for the page at offset off in the device's memory.

nunap should only be supported for memory-mapped devices or pseudo-devices.
c &.hn.--.... -fn')V\,,.t,.. ,.. _ ,..,..., t-... t. 1-.,.,, ... ;,..(.,, ~,,. _..n ,...-~ .._ ,...,_,..A ..., _ '=' J:', __ , ·--·-· .. -- r-o- _ - - J rr--
device drivers.

RETURN VALUE
If the protection and offset are valid for the device, the driver should return the
masked page table entry, typically obtained using the function
hat_getkpfnum(D3K), for the page at offset off in the device's memory. If not, -1
should be returned.

SEE ALSO
segmap(D2K), hat _getkpfnum(D3K)

3/91 Page 1

open(D2DK) DDl/DKI open(D2DK)

NAME
open - gain access to a device

SYNOPSIS [Block and Character]
tinclude <sys/types.h>
tinclude <sys/file.h>
tinclude <sys/errno.h>
tinclude <sys/open.h>
#include <sys/cred.h>

prefixopen (dev_t *deo, int flag, int otyp, cred_t *cred_p);

ARGUMENTS
deo Pointer to a device number.

3/91

flag Information passed from the user program open(2) or create(2) sys­
tem call instructs the driver on how to open the file. The bit settings
for the flag are found in file.h associated with the f_flag member
of the file structure. Valid settings are:

FNDEIAY

FREAD

FWRITE

open the device and return immediately without sleeping
(do not block the open even if there is a problem)

open the device with read-only permission (if ORed with
FWRITE, then allow both read and write access)

open a device with write-only permission (if ORed with
FREAD, then allow both read and write access)

otyp Parameter !;!Upplied so that the dri.ver can determine how many times
a device was opened and for what reasons. The flags assume the open
routine may be called many times, but the close routine should only
be called on the last close of a device. All flags are defined in

•cred_p

open.h.

OTYP BLK

OTYP CHAR

OTYP MNT

OTYP DMP

OTYP SWP

OTYP LYR

open occurred through block interface for the device

open occurred through the raw I character interface for
the device

the file system on the block device is being opened due
to a rnount(2) system call

open a device for crash dump

open a swapping device

open a layered process. This flag is used when one
driver calls another driver's open or close routine. In
this case, there is exactly one close for each open
called. This permits software drivers to exist above
hardware drivers and removes any ambiguity from· the
hardware driver regarding how a device is used. This
flag applies to both block and character devices.

Pointer to the cred(D40K) user credential structure.

Page 1

open(D2DK) DOI/OKI open(D2DK)

SYNOPSIS [STREAMS]
tinclude <sys/file.h>
tinclude <sys/stream.h>

prefixopen (queue_t *q, dev_t *dev, int oflag, int sflag, cred_t *cred_y);
ARGUMENTS [STREAMS]

*q A pointer to the read queue. (A queue is the central node of a collec­
tion of structures and routines pointed to by a queue.)

*dev Pointer to a device number. For modules, *dev always points to the
device number associated with the driver at the end (tail) of the
stream.

oflag Valid oflag values are the same as those listed above, with the excep­
tion that FP.PPEND, FCREAT, and FTRUNC have no meaning to a
STREAMS device. For modules, oflag is always set to O.

sflag Valid values are as follows:

*cred_y

CLONEOPEN Eliminates the need for user processes to poll many
minor devices when looking for an unused one. If the
driver wishes to assign the device a device file, the
open routine must assign and return a minor number.
If no device file is required, the open routine does not
have to return a minor number.

MODOPEN Indicates that an open routine is being called for a
module, not a driver. Drivers should return error
numbers or 0 if an open is attempted with sflag set to
MODOPEN.

O Indicates a driver opened directly, without calling the
~!~~e d!!~"e!.

Pointer to the cred(04DK) user credential structure.

DESCRIPTION
The driver's open routine is called by the kernel through the cdevsw or bdevsw
entry for the device during an open(2) or a mount(2) on the special file for the
device. The routine should verify that the minor number component of dev is
valid, that the type of access requested by otyp and flag is appropriate for the
device, and, if required, check permissions using the user credentials pointed to
by cred_y.

RETURN VALUE
The open· routine should return O for success, or the appropriate error number.
Refer to Appendix A for a list of DOI/OKI error numbers.

SEE ALSO
close(D2DK)

Page 2 3/91

print (D2DK) DDl/DKI print (D2DK)

NAME
print - display a driver message on system console

SYNOPSIS

tinclude <sys/types.h>
tinclude <sys/errno.h>

int prefixprint (dev_t dev, char *str);

ARGUMENTS
dev Device number.

*str Pointer to a character string describing the problem. An explanation
of the problem contained in the string should be included in the driver
output.

DESCRIPTION
The print routine is called indirectly by the kernel through the bdevsw entry for
the device when the kernel has detected an exceptional condition (such as out of
space) in the device. To display the message on the console, the driver should
use the cmn_err(D3DK) kernel function.

RETURN VALUE
The print routine should 'return 0 for success, or the appropriate error number.
Refer to Appendix A for a list of DDl/DKI error numbers. The print routine
can fail if the driver implemented a non-standard print routine that attempted to
perform error logging, but was unable to complete the logging for whatever rea­
son. Generally, since most print routines call the cmn _ err(D3DK) function, and
this function is declared as void, return values are seldom returned from this
routine. If a failure occurs, call cmn_ err to display a message to the operator.

SEE ALSO
cmn _ err(D3DK)

3/91 Page 1

put(D2DK) DDl/DKl(STREAMS) put(D2DK)

NAME
put - receive messages from the preceding queue

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/stropts.h>

void prefixrput (queue_t *q, mblk_t mp); /* read side */

void prefixwput(queue_t *q,mblk_tmp); /*write side*/

ARGUMENTS
*q Pointer to the queue(D4DK) structure.

mp Pointer to the message block.

DESCRIPTION
The primary task of the put routine is to coordinate the passing of messages from
one queue to the next in a stream. The put routine is called by the preceding
stream component (module, driver, or stream head). put routines are designated
"write" or "read" depending on the direction of message flow.

With few exceptions, a module or driver must have a put routine. One exception
is the read side of a driver, which does not need a put routine because there is
no component downstream to call it. The put routine is always called before the
component's corresponding srv(D2DK) (service) routine, and so put should be
used for the immediate processing of messages.

A put routine must do at least one of the following when it receives a message:

pass the message to the next component on the stream by calling the
putnext(D3DK) function

F!"~(:e~~ t!!e ~e~~~ge, if ~~~~0h~+i=t prnrPc:,dne le: TP'}11irPd (for example.
high priority messages)

enqueue the message (with the putq(D3DK) function) for deferred pro­
cessing by the service srv(D2DK) routine

Typically, a put routine will switch on message type, which is contained in the
db_type member of the datab structure pointed to by mp. The action taken by
the put routine depends on the message type. For example, a put routine might
process high priority messages, enqueue normal messages, and handle an
unrecognized message by changing its type to M _ IOCNAK (negative acknowledge­
ment) and sending it back to the stream head using the qreply(D3DK) function.

The putq(D3DK) function can be used as a module's put routine when no special
processing is required and all messages are to be enqueued for the srv routine.

put routines do not have user context and so may not call sleep(D3DK).

SEE ALSO

3/91

The BCI Driver Development Guide, Chapter 7, "STREAMS"

The Programmer's Guide: STREAMS

streamtab(D4DK), putctl(D3DK), putctll(D3DK), putnext(D3DK),
putq(D3DK), qreply(D3DK), srv(D2DK)

Page 1

read (D2DK) DOI/OKI read(D2DK)

NAME
read - read data from a device

SYNOPSIS
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/open.h>
#include <sys/uio.h>
#include <sys/cred.h>

prefixread(dev_t dev, uio *uio_p, cred_t *cred_p);

ARGUMENTS
dev
Device number.

*uio _p Pointer to the uio(04DK) structure that describes where the data is to
be stored in user space.

*cred _p Pointer to the cred(04DK) user credential structure for the 1/0 tran­
saction.

DESCRIPTION
The driver read routine is called indirectly through cdevsw by the read(2) sys­
tem call. The read routine should check the validity of the minor number com­
ponent of dev and the user credentials contained in the cred(D4DK) structure
pointed to by *cred _p (if pertinent). The read routine should supervise the data
transfer into the user space described by the uio(D4DK) structure.

RETURN VALUE
The read routine should return 0 for success, or the appropriate error number.
Refer to Appendix A for a list of error values.

SEE ALSO
write(D2DK)

3/91 Page 1

segmap (D2K) OKI segmap(D2K)

NAME
segmap - map device memory into user space

SYNOPSIS

#include <sys/types.h>
#include <sys/nunan.h>
#include <sys/pararn.h>
#include <sys/vm.h>

int prefixsegmap(dev_t dev, off_t off,struct as *asp, addr_t *addrp,
off_ t Zen, unsigned int prot, unsigned int maxprot,
unsigned int flags, cred_t *credy);

ARGUMENTS
dev Device whose memory is to be mapped.

off Offset within device memory at which mapping begins.

*asp Pointer to the address space into which the device memory should be
mapped.

*addrp Pointer to the address in the address space to which the device
memory should be mapped.

Zen Length (in bytes) of the memory to be mapped.

prot Protection flag (from sys/nunan.h) for example, PROT_WRITE,
PROT_READ, PROT_USER (indicating the mapping is being done as a
result of a nunap(2) system call).

maxprot Maximum protection flag possible for attempted map (PROT _WRITE
may be masked out if the user opened the special file read-only). If
(maxprot & prot) != prot then there is an access violation.

flags Flags indicating type of mmap (for example, MAP_ SHARED vs.
MAP _PRIVATE), whether the user specified an address (MAP _FIXED).
Found in sys/nunan.h.

*cred y Pointer to the cred(D4DK) user credentials structure.

DESCRIPTION

3/91

The segmap entry point is an optional routine for character drivers that support
memory mapping. The nunap(2) system call, when applied to a character special
file, allows device memory to be mapped into user space for direct access by the
user application (no kernel buffering overhead is required).

Typically, a character driver that needs to support the nunap(2) system call sup­
plies eith,er a single nunap(D2K) entry point, or both an nunap and a segmap entry
point routine (see the nunap(D2K) reference page). If no segmap entry point is
provided for the driver, the default kernel segmap routine is called to perform the
mapping.

A driver for a memory-mapped device would provide a segmap entry point if it:

Page 1

segmap(D2K) OKI segmap(D2K)

requires the mapping to be done through a virtual memory (VM) segment
driver other than the default seg_ dev driver provided by the kernel

needs to control the selection of the user address <'-~ which the mapping
occurs in the case where the user did not specify Cln address in the rrmap(2)
system call

Among the responsibilities of a segmap entry point are:

Select a segment driver and check the memory map flags for appropriate­
ness to the segment driver. For example, the seg_ dev segment driver
does not support memory maps that are marked MAP _PRIVATE (copy-on­
write).

Verify that the range to be mapped makes sense in the context of the
device (does the offset and length make sense for the device memory that
is to be mapped). Typically, this task is performed by calling the
mnap(D2K) entry point.

If MAP _FIXED is not set in flags, obtain a user address at which to map.
Otherwise, unmap any existing mappings at the user address specified.

Perform the mapping and return the error status if it fails.

RETURN VALUE
The routine returns 0 if the driver is successful in performing the memory map of
its device address space into the specified address space. An error number
should be returned on failure. For example, valid error numbers would be ENXIO
if the offset/length pair specified exceeds the limits of the device memory, or
EINVAL if the driver detects an invalid type of mapping attempted.

SEE ALSO
rrmap(D2K)

Page 2 3/91

slze(D2D) (DOI)

NAME
size - return size of logical device

SYNOPSIS

tinclude <sys/types.h>

prefixsize(dev_t dev);

ARGUMENT
dev The logical device number.

DESCRIPTION

slze(D2D)

Returns the number of 512-byte units on a logical device (partition). Although
this routine is not required, it is recommended that new drivers include one as
the Release 4.0 kernel calls the size routine on behalf of certain UNIX commands
such as stat(3G).

RETURN VALUE

3/91

The number of 512 byte units on the logical device specified by dev, or -l on
failure.

Page 1

srv(D2DK) DDl/DKl(STREAMS) srv(D2DK)

NAME
srv - service queued messages

SYNOPSIS

#include <sys/types.h>
#include <sys/stream.h>
finclude <sys/stropts.h>

void prefixrsrv(queue_t q); I* read side */

void prefixwsrv (queue_t q); I* write side */
ARGUMENTS

•q Pointer to the queue(D4DK) structure

DESCRIPTION

3/91

The optional service (srv) routine may be included in a STREAMS module or
driver for one or more of the following reasons:

to provide greater control over the flow of messages in a stream

to make it possible to defer the processing of some messages to avoid
depleting system resources

to combine small messages into larger ones, or break large messages into
smaller ones
to recover from resource allocation failure. A module's or driver's
put(D3DK) routine can test for the availability of a resource, and if it is
not available, enqueue the message for later processing by the srv routine.

A message is first passed to a module's or driver's put(D2DK) routine, which
may or may not do some processing. It must then either

pass the message to the next stream component with putnext(D3DK)

if a srv routine has been included, it may call the putq(D3DK) function to
place the message on the queue

Once a message has been enqueued, the STREAMS scheduler controls the calling
of the service routine. Service routines are called in FIFO order by the scheduler.
No guarantees can be made about how long it will take for a srv routine to be
called except that it will happen before any user level process are run.

Every stream component (stream head, module or driver) has limit values it uses
to implement flow control. Tunable high and low water marks are checked to
stop and restart the flow of message processing. Flow control limits apply only
between two adjacent components with srv routines.

STREAMS messages can be defined to have up to 256 different priorities to sup­
port some networking protocol requirements for multiple bands of data flow. At
a minimum, a stream must distinguish between normal (priority zero) messages
and high priority messages (such as M_IOCACK). High priority messages are
always placed at the head of the srv routine's queue, after any other enqueued
high priority messages. Next are messages from all included priority bands,

Page 1

srv(D2DK) DDl/DKI(STREAMS) srv(D2DK)

which are enqueued in decreasing order of priority. Each priority band has its
own flow control limits. If a flow controlled band is stopped, all lower priority
bands are also stopped.

Once a srv routine is called by the STREAMS scheduler it must process all mes­
sages on its queue. The following steps are general guidelines for processing
messages. Keep in mind that many of the details of how a srv routine should be
written depend of the implementation, the direction of flow (upstream or down­
stream), and whether it is for a module or a driver.

1. Use the getq(D3DK) function to get the next enqueued message.

2. If the message is high priority, process (if appropriate) and pass to the next
stream component with the putnext(D3DK) function.

3. If it is not a high priority message (and therefore subject to flow control),
attempt to send it to the next stream component with a srv routine. Use
bcanput(D3DK) to determine if this can be done.

4. If the message cannot be passed, put it back on the queue with
putbq(D3DK). If it can be passed, process (if appropriate) and pass with
putnext.

NOTE: Each stream module has a read and write service (srv) routine. If a ser­
vice routine is not needed (because the put routine processes all messages), a
NULL pointer should be placed in module's qinit structure. Do not use the
nulldev routine instead of the NULL pointer. Use of nulldev for a srv routine
may result in flow control errors.

SEE ALSO

Page 2

The BCI Driver Development Guide, Chapter 7, "STREAMS"

The Programmer's Guide: STREAMS, Chapter 5, "Messages"

bcanputllJJLJKJ, canputllJJLJKJ, getq(LJJLJK), putllJ:llJK), putbq(lJ::SlJK),
putnext(D3DK), putq(D3DK), queue(D4DK)

3/91

atart(D2D) (DDI) atart(D2D)

NAME
start - start access to a device

SYNOPSIS
void prejixstart();

DESCRIPTION
The start routine is called when a computer starts placing a device into a known
state. At the time this routine is called, the developer cannot depend on :i::oot
being mounted. However, the developer can depend on low level system ser­
vices being available such as interrupts enabled.

A start routine may perform the following types of activities:

initialize data structures for device access

allocate buffers for private buffering scheme

map device into virtual address space

initialize hardware (for example, perform a system generation and reset
the board)

initialize the serial device for character drivers

initialize any static data associated with the driver

SEE ALSO
initCD2DK), cunix(lM), master(4)

3/91 Page 1

strategy (D2DK} DDl/DKI strategy (D2DK}

NAME
strategy - perform block 1/0

SYNOPSIS

tinclude <sys/types.h>
tinclude <sys/buf.h>

int prefixstrateqy (struct buf *bp) ;

ARGUMENT
bp Pointer to the buf(D4DK) structure.

DESCRIPTION
The strateqy routine is called indirectly (through bdevsw) by the kernel to read
and write blocks of data on the block device. strateqy may also be called
directly or indirectly (via a call to the kernel function physiock(D3D)), to support
the raw character interface of a block device (read(D2DK), write(D2DK) and
ioctl(D2DK)). The strateqy routine's responsibility is to set up and initiate the
transfer.

RETURN VALUE
On an error condition, OR the b flags member of the buf(D4DK) structure with
B_ERROR and set the b_error member to the appropriate error value.

SEE ALSO
read(D2DK), write(D2DK)

3/91 Page 1

wrlte(D2DK) DDl/DKI wrlte(D2DK)

NAME
write - write data to a device

SYNOPSIS

tinclude <sys/types.h>
tinclude <sys/errno.h>
tinclude <sys/open.h>
tinclude <sys/cred.h>

int prefixwrite(dev_t dev, uio_t *uio_p, cred_t *cred_p);

ARGUMENTS
dev

uio_p

cred_p

Device number.

Pointer to the uio(D4DK) structure that describes where the data is to
be stored in user space.

Pointer to the cred(D4DK) user credential structure for the 1/0
transaction.

DESCRIPTION
Used for character or raw data 1/0, the driver write routine is called indirectly
through cdevsw by the write(2) system call. The write routine supervises the
data transfer from user space to a device described by the uio(D4DK) structure.

The write routine should check the validity of the minor number component of
dev and the user credentials pointed to by cred_p (if pertinent).

RETURN VALUE
The write routine should return O for success, or the appropriate error number.
Refer to Appendix A for a list of DDl/DKI error numbers.

SEE ALSO
read(D2DK>

3/91 Page 1

3 Kernel Functions(D3)

Introduction
Function Summary

Manual Pages

Table of Contents

3-1
3-3

3-8

Introduction

This chapter describes the kernel functions available for use by device drivers.
Each function is described in a separate entry. Most functions are part of both
DOI and OKI-these are indicated by the (D3DK) cross reference code. Func­
tions belonging only to DOI are cross-referenced by (030) and OKI-only func­
tions are marked (D3K).

The following additional routines were added to D3DK for device driver sup­
port on the M68000 family of processors and M88000 family of processors:

• bp _ iosetup(D3DK)

• dcache _ inval(D3DK)

• dcache _ sync(D3DK)

• dma _ sgio(D3DK)

• iomapin(D3DK)

• iomem_alloc(D3DK)

• iomem_free(D3DK)

• ioprobe(D3DK)

• rrp_iosetup(D3DK)

• uioohvsioCD3DK)

In this section, the information for each driver function is organized under the
following headings:

• NAME summarizes the function's purpose.

• SYNOPSIS shows the syntax of the function's entry point in the source
code. #include statements are shown for required header files.

• ARGUMENTS describes any arguments required to invoke the function.

• DESCRIPTION describes general information about the function.

• RETURN VALUE describes the return values and messages that can result
from invoking the function.

• LEVEL indicates from which driver level (base or interrupt) the function
can be called.

Kernel Functlons(D3) 3-1

Introduction

3-2

• SEE ALSO indicates functions that are related by usage and sources, and
which can be referred to for further information.

• EXAMPLE shows how the function can be used in driver code.

The ddi. h header file undefines macros that have been reimplemented as
functions in UNIX System V Release 4. Always place ddi.h at the end of
the list of include statements to avoid contention between macro and func­
tion declarations.

DDl/DKI Reference Manual

Function Summary

Table 3-1 summarizes the STREAMS functions described in this section.
STREAMS functions may be used in either DOI or DKI.

Table 3-1: STREAMS Kernel Function Summary

Routine Description

adjmsg remove the specified number of bytes from
a message

allocb allocate a message block

backq get pointer to the previous queue

bean put test for flow control in specified priority
band

bufcall get buffer when allocb fails

can put test for room in a message queue

copyb copy a message block

copymsg copy a message to a new message

datamsg test whether a message is a data message

dupb duplicate a message block descriptor

dupmsg duplicate a message

enableok enable a queue for service

esballoc allocate a message block with a shared
buffer

esbbcall get message header when esballoc fails

flushband flush messages for specified priority band

flushq remove messages from a queue

freeb free a message block

freemsg free all message blocks in a message

getq get a message from the front of a queue

in sq insert a message into a queue

linkb concatenate two message blocks

mp_iosetup create scatter I gather list

Kernel Functlons(D3)

Introduction

3-3

Introduction

Table 3-1: STREAMS Kernel Function Summary (continued)

Routine Description

msgdsize return the number of bytes in a message

noenable prevent a queue from being scheduled

OTHERQ get a pointer to a module's other queue

pullupmsg concatenate bytes in a message

putbq place a message at the head of a queue

putctl put a control message on a queue

putctll put a control message with a one-byte
parameter on a queue

put next send a message to the next module in the
stream

putq put a message on a queue

qenable enable a queue

qreply send a message in the reverse direction

qsize find the number of messages on a queue

RD get a pointer to a module's read queue

nnvb remove a message block from a queue

nnvq remove a message from a queue

SAMES TR test if next queue is same type

strlog submit messages for logging
strqget get information about a queue

strqset change information about a queue

testb check for an available buffer

unlinkb remove the message block from the head of
a message

WR get pointer to this module's write queue

3-4 DDl/DKI Reference Manual

Introduction

Table 3-2 summarizes the functions not specific to STREAMS. Functions can be
used in either DDI or OKI, except as noted.

Table 3-2: Kernel Functions Not SpecHlc to STREAMS

Routine Description Type

bcopy copy data between locations in the kernel,
for example, from one buffer to another

biodone release buffer after block 1/0 and wakeup
processes

biowait suspend processes pending completion of
block 1/0

bp_iosetup create scatter I gather list

bp_mapin allocate virtual address space

bp_mapout deallocate virtual address space

brelse return buffer to the kernel

btop return number of memory pages contained
in specified number of bytes (downward
rounding)

btopr return number of memory pages contained
in snecifiPd nnmhPr nf hvt.•" (11nW',.rrl .
rounding)

bzero clear memory for a number of bytes

clrbuf erase buffer contents

cmn err display message or panic the system

copy in copy data from user space to the driver

copy out copy data from the driver to user space

dcache inval invlidate data cache

dcache_sync sync the data cache

delay delay for specified number of clock ticks

dma_pageio break up OMA requests DOI only

dma_sgio break up scatter I gather request

drv_getparm retrieve kernel state information

Kernel Functlons(D3) 3.5

Introduction

Table 3-2: Kernel Functions Not Specific to STREAMS (continued)

Routine Description Type

drv_hztousec convert from clock ticks to microseconds

drv_priv determine driver privileges

drv usectohz convert from microseconds to clock ticks

drv usecwait wait for specified number of microseconds

etoimajor convert external major number to internal DOI only
major number

freerbuf free a raw buffer header

getemajor get external major number DDI only

geteminor get external minor number DOI only

geterror return an 1/0 error

getmajor get major number

getminor get minor number

getrbuf get a raw buffer header

getvec get an interrupt vector for a given virtual DOI only
board address

hat_getkpfnum get page frame number for address DKI only

hdeeqd initialize error logging in the hard disk DOI only

hdelog log a hard disk error DDI only

iomapin map an 1/0 address in

iomem alloc allocate physically contiguous memory -
iomem free free memory allocated by iomem _ alloc

ioprobe probe 1/0 address

itoemajor internal major number to external number DOI only

kmem alloc allocate from kernel free space -
kmem free free previously allocated kernel memory -
kmem zalloc allocate and clear storage from kernel free -

memory

kvtophys convert kernel virtual to physical address DOI only

makedevice create a device number

3-6 DDl/DKI Reference Manual

Introduction

Table 3-2: Kernel Functions Not Specific to STREAMS (continued)

Routine Description Type

max return the larger of two integers

min return the smaller of two integers

page_numtopp convert page frame number to page struc-
tu re

page__pptonum convert page structure to page frame
number

physiock validate and issue raw 1/0 request DOI only

poll wakeup inform a process that an event has occurred

pt ob convert size in pages to size in bytes

:crnalloc allocate space from a private space manage-
ment map

:anfree free space back into a private space
management map

rminit initialize a private space management map

rmsetwant set the map's wait flag for wakeup

nnw;int: w;iit fnr frpp m~"'lT1nn1

sleep suspend execution

spl suspend or allow interrupts

timeout call function in clock ticks

uiomove copy kernel data using uio structure

uiophysio validate and issue raw 1/0 request

untimeout cancel timeout with matching ID

ureadc add character to uio structure

use race verify user access to data structures

uwritec remove a character from a uio structure

vtop convert virtual to physical address DDI only

wakeup resume suspended execution

Kernel Functlons(D3) 3-7

Table of Contents

3. Functions
adjmsg(D3DK) ... trim bytes from a message
allocb(D3DK) ... allocate a message block
backq (D3DK) .. get pointer to the queue behind the current queue
bcanput(D3DK) ... test for flow control in specified priority band
bcopy(D3DK) .. copy data between address locations in the kernel
biodone(D3DK) .. release buffer after block 1/0 and wakeup processes
biowait(D3DK) ... suspend processes pending completion of block 1/0
bp _iosetup (D3DK) .. create scatter I gather list for block drivers
bp _ mapin(D3DK) ... allocate virtual address space
bp _ mapout(D3DK) ... deallocate virtual address space
brelse(D3DK) ... return buffer to the bfreelist
btop(D3DK) .. convert size in bytes to size in pages (round down)
btopr(D3DK) .. convert size in bytes to size in pages (round up)
bufcall(D3DK) ... call a function when a buffer becomes available
bzero(D3DK) .. clear memory for a given number of bytes
canput(D3DK) .. test for room in a message queue
clrbuf(D3DK) ... erase the contents of a buffer
cmn_err(D3DK) .. display an error message or panic the system
copyb(D3DK) .. copy a message block
copyin(D3DK) ... copy data from a user program to a driver buffer
rnpym~~(n."..lnJ() .. ~~PY ~ ~::!~~~o~

copyout(D3DK) ... copy data from a driver to a user program
datamsg(D3DK) ... test whether a message is a data message
delay(D3DK) delay process execution for a specified number of clock ticks
dcache _ inval(D3DK) .. invalidate the data cache
dcache_sync(D3DK) ... sync the data cache
dma_pageio(D3D) .. break up an 1/0 request into manageable units
dma_sgio(D3D) break up an 1/0 request for controller that does scatter/gather
drv _getparm(D3DK) ... retrieve kernel state information
drv _ hztousec (D3DK) ... convert clock ticks to microseconds
drv _priv(D3DK) ... determine driver privilege
drv _ usectohz (D3DK) ... convert microseconds to clock ticks
drv _ usecwait(D3DK) .. busy-wait for specified interval

Table of Contents 1

Table of Contents

2. System Calls
dump(D2DK) .. gain access to a device crash dump routine
dupb(D3DK) .. duplicate a message block descriptor
dupmsg(D3DK) ... duplicate a message
enableok(D3DK) .. reschedule a queue for service
esballoc(D3DK) ... allocate a message block using a shared buffer
esbbcall(D3DK) ... call function when buffer is available
etoimajor(D3D) .. convert external to internal major device number
flushband(D3DK) .. flush messages for a specified priority band
flushq (D3DK) .. remove messages from a queue
freeb(D3DK) ... free a message block
freemsg(D3DK) ... free all message blocks in a message
freerbuf(D3DK) .. free a raw buffer header
getemajor(D3D) ... get external major device number
geteminor(D3D) .. get external minor device number
geterror(D3DK) .. return 1/0 error
getmajor(D3DK) .. get major or internal major device number
getminor(D3DK) .. get minor or internal minor device number
getq(D3DK) ... get the next message from a queue
getrbuf(D3DK) .. get a raw buffer header
hat_getkpfnum(D3K) .. get page frame number for kernel address
hdeeqd(D3D) ... initialize hard disk error logging
hdelog(D3D) .. log hard disk error
iomapin(D3DK) ... map an 1/0 address (device)
iomem _alloc(D3DK) .. allocate physically contiguous memory
iomem _free(D3DK) ... free memory allocated by iomem _alloc
ioprobe(D3DK) ... probe an 1/0 address for a device
insq(D3DK) ... insert a message into a queue
itoemajor(D3D) .. convert internal to external major device number
kmem_alloc(D3DK) .. allocate space from kernel free memory
kmem _ free(D3DK) .. free previously allocated kernel memory
kmem_zalloc(D3DK) allocate and clear space from kernel free memory
kvtophys(D3D) ... convert kernel virtual address to physical address
linkb(D3DK) ... concatenate two message blocks
makedevice(D3DK) make device number from external major and minor
max(D3DK) .. return the larger of two integers
mp_iosetup(D3DK) ... create scatter/gather list for STREAMS drivers
min(D3DK) ... return the lesser of two integers
msgdsize(D3DK) ... return the number of bytes in a message

2 Device Driver Interface/Driver Kernel Interface Reference Manual

Table of Contents

noenable(D30K) ... prevent a queue from being scheduled
OTHERQCD3DK) ... get pointer to queue's partner queue
page_numtopp(D3DK) .. convert page frame number to page structure
page_pptonum(D3DK) .. convert page structure to page frame number
physiock(D30) .. validate and issue raw 1/0 request
pollwakeup(D3DK) .. inform a process that an event has occurred.
ptob (03DK) .. convert size in pages to size in bytes
pullupmsg(D3DK) ... concatenate bytes in a message
putbq(D3DK) ... place a message at the head of a queue
putctl(D3DK) .. send a control message to a queue
putctll (03DK) send a control message with a one-byte parameter to a queue
putnextCD3DK) .. send a message to the next queue
putq(D3DK) .. put a message on a queue
qenable(D3DK) ... enable a queue
qreply(D3DK) .. send a message on a stream in the reverse direction
qsize(D3DK) .. find the number of messages on a queue
RDCD3DK) ... get pointer to the read queue
rmalloc(D3DK) ... allocate space from a private space management map
rmfree(D3DK) release free space back into a private space management map
rminit(D3DK) .. initialize a private space management map
rmsetwant(D3DK) ... set the map's wait flag for a wakeup
rmvb(D3DK) ... remove a message block from a message

IT""'ll"T"'llo.T,, ··---- ---- _ -- ---- -- €--- - -··-··-
11llY\.{\UJU1'.J •••u•••o•••••••••••••••••• 111;1.l.lVVI; c;i J..&&..:;o;,,o..51; l.tUJ.11. Q. 'fU.~U.~

rmwant(D3DK) ... wait for free memory
SAMESTR(D3DK) .. test if next queue is same type
sleep(D3DK) .. suspend process activity pending execution of an event
spl(D30) .. block/allow interrupts
strlog(D3DK> ... submit messages to the log driver
strqget(D3DK) .. get information about a queue or band of the queue
strqset(D3DK) change information about a queue or band of the queue
testb(D3DK) .. check for an available buffer
timeout (03DK) .. execute a function after a specified length of time
uiomove(D3DK) .. copy kernel data using uio(D4DK) structure
uiophysio(D3D) .. validate and issue raw 1/0 request
unlinkb(D3DK) .. remove a message block from the head of a message
untimeout(03DK) .. cancel previous timeout(D3DK) function call
ureadc(D3DK) ... add character to a uio structure
useracc(03DK) ... verify whether user has access to memory
uwritec(D3DK) ... remove a character from a uio structure
vtop(D30) .. convert virtual to physical address

Table of Contents 3

Table of Contents

wakeup(D3DK) .. resume suspended process execution
WR(D3DK) ... get pointer to the write queue for this module or driver

4 Device Driver Interface/Driver Kernel Interface Reference Manual

adjmsg (D3DK) DDl/DKl(STREAMS)

NAME
adjmsg - trim bytes from a message

SYNOPSIS
tinclude <sys/stream.h>

int adjmsg(mblk_t *mp, int len):

ARGUMENTS
•mp Pointer to the message to be trimmed.

1en The number of bytes to be removed.

DESCRIPTION

adjmsg (D3DK)

adjmsg removes bytes from a message. I len I (the absolute value of len) specifies
how many bytes are to be removed. If len is greater than O, bytes are removed
from the head of the message. If 1en is less than o, bytes are removed from the
tail. adjmsg fails if I ten I is greater than the number of bytes in mp.

RETURN VALUE

LEVEL

If the message can be trimmed successfully, 1 is returned.. Otherwise, 0 is
returned.

Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 7, "STREAMS"

3/91 Page 1

allocb(D3DK) DDl/DKl(STREAMS) allocb(D3DK)

NAME
allocb - allocate a message block

SYNOPSIS
tinclude <sys/stream.h>

mblk t *allocb (int size, int pri) ;

ARGUMENTS
size The number of bytes in the message block.

pri Priority of the request (no longer used).

DESCRIPTION
allocb tries to allocate a SfREAMS message block. Buffer allocation fails only
when the system is out of memory .. If no buffer is available, the bufcall(D3DK)
function can help a module recover from an allocation failure.

NOTE: The pri argument is no longer used in UNIX System V Release 4, but is
retained for compatibility with existing drivers.

The following figure identifies the data structure members that are affected when
a message block is allocated.

message block
(mblk t)

db base
db-lim
db-type (M DATA)
db=class (b)

data block
(dblk t)

data buffer

RETURN VALUE

LEVEL

If successful, allocb returns a pointer to the allocated message block of type
M_DATA (defined in sys/stream.h). If a block cannot be allocated, a NULL pointer
is returned.

Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 7, "STREAMS"

Programmer's Guide: STREAMS, Chapter 5, ''Messages"

bufcall(D3DK), esballoc(D3DK), esbbcall(D3DK), testb(D3DK)

EXAMPLE

3/91

Given a pointer to a queue (q) and an error number (err), the send_ error routine
sends an M _ERROR type message to the stream head.

If a message cannot be allocated, o is returned, indicating an allocation failure
(line 8). Otherwise, the message type is set to M_ERROR (line 10). Line 11 incre­
ments the write pointer (bp->b_wptr) by the size (one byte) of the data in the
message.

Page 1

allocb(D3DK) DDl/DKI(STREAMS) allocb(D3DK)

Page 2

A message must be sent up the read side of the stream to arrive at the stream
head. To determine whether q points to a read queue or a write queue, the q­
>q_ flag member is tested to see if QREADR is set (line 13). If it is not set, q points
to a write queue, and in line 14 the RD(D3DK) function is used to find the
corresponding read queue. In line 15, the putnext(D3DK) function is used to
send the message upstream, returning 1 if successful.

1 send_error(q,err)

2 queue_t •q;

3 unsigned char err;

4 {

5 mblk_t *bp;

6

7 if ((bp - allocb(l, BPRI_HI)) -- NULL) /* allocate msg. block */
B return (0);

9

10 bp->b_datap->db_type = M_ERROR; /* set rnsg type to M_ERROR */

11 *bp->b_wptr++ - err; /* increment write pointer */

12
13

14

15

if (! q->q_flag & QREADR))

q - RD(q);
putnext (q, bp);

16 return (1);

17

/* if not read queue */

I* get read queue */

/* send message upstream */

3/91

backq(D3DK) DDl/DKl(STREAMS) backq(D3DK)

NAME
backq - get pointer to the queue behind the current queue

SYNOPSIS
iinclude <sys/strearn.h>

queue_t *backq(queue_t *cq):
ARGUMENT

•cq The pointer to the current queue. queue_ t is an alias for the
queue(D4DK) structure.

DESCRIPTION
backq returns a pointer to the queue preceding cq (the current queue). If cq is a
read queue, backq returns a pointer to the queue downstream from cq, unless it
is the stream end. If cq is a write queue, backq returns a pointer to the next
queue upstream from cq, unless it is the stream head.

RETURN VALUE

LEVEL

If successful, backq returns a pointer to the queue preceding the current queue.
Otherwise, it returns NULL.

Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 7, "STREAMS"

3/91 Page 1

bcanput(D3DK) DDl/DKl(STREAMS) bcanput (D3DK)

NAME
bcanput - test for flow control in specified priority band

SYNOPSIS
tinclude <sys/stream.h>

int bcanput (queue_t *q, unsigned char pri);

ARGUMENT
q Pointer to the message queue.

Message priority. pri
DESCRIPTION

Like the canput(D3DK) function, bcanput searches through the stream (starting
at q) until it finds a queue containing a service routine where the message can be
enqueued, or until it reaches the end of the stream. If found, the queue contain­
ing the service routine is tested to see if there is room for a message in the queue.
If the queue is full, bcanput sets the QWANTW flag to back-enable the caller's
service routine.

If pri is 0, the bcanput call is equivalent to a call to canput.

NOTE: You are responsible for both testing a queue with bcanput and refraining
from placing a message on the queue if bcanput fails.

RETURN VALUE

LEVEL

A 1 is returned if a message of priority pri can be placed on the queue, or if the
band does not yet exist on the queue. A 0 is returned if the priority band is
flow-controlled.

Base or Interrupt

S!:!: !\LSQ
BCI Driver Development Guide, Chapter 7, "STREAMS"

canput(D3DK), putbq(D3DK), putnext(D3DK)

3/91 Page 1

bcopy(D3DK) DDl/DKI bcopy(D3DK)

NAME
bcopy - copy data between address locations in the kernel

SYNOPSIS
tinclude <sys/types.h>

int bcopy (caddr _ t from, caddr _ t to, long bcount) ;

ARGUMENTS
from Source address from which the copy is made.

to

bcount

Destination address to which copy is made.

The number of bytes moved.

DESCRIPTION
bcopy copies bcount bytes from one kernel address to another. If the input and
output addresses overlap, the command executes, but the results may not be as
expected.

CAUTION: The from and to addresses must be within the kernel space. No range
checking is done. If an address outside of the kernel space is selected, the driver
may corrupt the system in an unpredictable way.

Note that bcopy should never be used to move data in or out of a user buffer,
because it has no provision for handling page faults. The user address space can
be swapped out at any time, and bcopy always assumes that there will be no
paging faults. If bcopy attempts to access the user buffer when it is swapped
out, the system will panic. It is safe to use bcopy to move data within kernel
space, since kernel space is never swapped out.

RETURN VALUE
Under all conditions, o is returned.

LEVEL
Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 6, '1nput/Output Operations"

copyin(030K), copyout(030K)

EXAMPLE

3191

An 1/0 request is made for data stored in a RAM disk. If the 1/0 operation is a
read request, the data is copied from the RAM disk to a buffer (line 7). If it is a
write request, the data is copied from a buffer to the RAM disk (line 11). The
bcopy function is used since both the RAM disk and the buffer are part of the
kernel address space.

1 tdefine RAMDNBLK 1000 /* blocks in the RAM disk *I
2 tdefine RAMDBSIZ 512 /* bytes per block */

3 char randblks[RAMDNBLK] [RAMDBSIZ]; /*blocks forming RAM disk */

4

5 if (bp->b_flags & B_READ) /* if read request, copy data from RAM */

6 /* disk data block to system buffer */

7 bcopy (&rarndblks[bp->b_blkno] [OJ, bp->b_un.b_addr, bp->b_bcount);

8

Page 1

bcopy(D3DK) DDl/DKI bcopy(D3DK)

9 else /* else write request, copy data from a */

10 /* system buffer to RAM disk data block */

11 bcopy(bp->b_un.b_addr, &rarndblks[bp->b_blkno] [OJ, bp->b_bcount);

Page 2 3/91

blodone(D3DK) DDl/DKI blodone (D3DK)

NAME
biodone - release buffer after block I/0 and wakeup processes

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/buf.h>

void biodone(struct buf *bp);

ARGUMENT
*bp Pointer to the buffer header structure defined in buf . h. This is the

address of the buffer header associated with the buffer where the I/0
occurred.

DESCRIPTION
The biodone function is called by either the driver int(D2D) or strategy(D2DK)
routines when a block I/0 request is complete. In general, biodone awakens
sleeping processes waiting for the 1/0 to complete, sets the B_DONE flag in the
buf structure b_flags field, and releases the block if the I/0 is asynchronous.

For drivers that wish to make multiple 1/0 requests without releasing and reallo­
cating a buffer header for each individual request, biodone provides the capabil­
ity to check for an additional function to be called before the buffer header is
released. Additional routines to be called from biodone are referenced by the
(*b_biodone) field of the buf structure.

biodone performs the foll0wing functions in the order presented:

checks the (*biodone) field of the buf structure for additional routines to
be called. If an additional routine is referenced, it is called and the func­
tions listed below are not completed.

awakens the process(es) that called sleep(D3DK) to wait for the buffer
header if 1/0 is synchronous

releases the block if 1/0 is asynchronous and awakens processes awaiting
asynchronous I/0

marks b_flags of buffer with B_DONE

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 9, "Synchronizing Hardware and Software
Events"

biowait(D3DK), buf(D4DK), delay(D3DK), int(D3D), strategy(D3DK),
sleep(D3DK), timeout(D3DK), untimeout(D3DK), wakeup(D3DK)

EXAMPLE

3/91

Generally, the first validation test performed by any block device
strategy(D2DK) routine is a check for an end-of-file (EOF) condition. The
strategy routine is responsible for determining an EOF condition when the
device is accessed directly. If a read request is made for one block beyond the

Page 1

blodone (03DK) DOI/OKI blodone (03DK)

Page 2

limits of the device (line 10), it will report an EOF condition. Otherwise, if the
request is outside the limits of the device, the routine will report an error condi­
tion. In either case, report the 1/0 operation as complete (line 27).

#define IlAMIJNBLK 1000 /* Number of blocks in RAM disk */
2 #define IlAMIJBSIZ 512 /* Number of bytes per block */
3 char ramdblks[IlAMIJNBLK] [RAMDBSIZJ; /*Array containing RAM disk */
4

5 ramdstrategy(bp)
6 register struct buf *bp;

7

8

9

10
11

12

13

14

15
16
17

18
19

20

21
22

23

24

25
26
27

28

29

30
31

32
33
34

register daddr_t blkno = bp->b_blkno; I* get block number *I

if (blkno < 0 I I blkno >= RAMDNBLK) {
/*

* If requested block is outside RAM disk

* limits, test for EOF which could result
• from a direct (physiock) request.

*I
if (blkno == RAMDNBLK && bp->b_flags & B_READ)

I*
* If read is for block beyond RAM disk
* limits, mark EOF condition.
*/
bp->b_resid -= bp->b_bcount;/* compute return value */

else {

bp->b_error = ENXIO;

bp->b_flags I= B_ERROR;
/* endif *I

/* I/0 attempt is beyond •/

/* limits of RAM disk */

/* return error */

biodone (bp); /* mark I/O complete (B_DONE) */

/*

* Wake any processes awaiting this I/0

* or release buffer for asynchronous
* (B_ASYNC) request.
*/

return;
) /* endif */

3/91

blowalt (D3DK) DDl/DKI blowalt (D3DK)

NAME
biowait - suspend processes pending completion of block 1/0

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/buf.h>

int biowait(struct buf *bp);
ARGUMENT

*bp Pointer to the buf structure.

DESCRIPTION
The biowait function suspends process execution during a block 1/0 transfer by
calling sleep(D3DK). Block driver routines using the buf structure to allocate
buffers can use the biowai t function to suspend a process while waiting for a
read or write request to complete.

The biowait function is one of three functions used to aid block 1/0 transfers.
The other functions in this group are biodone(D3DK), which notifies biowait
that the 1/0 is complete, and brelse, which frees the buffer allocated for the
transfer.

Drivers using the biowai t function must also include the biodone(D3DK) func­
tion in their interrupt routines. The biodone function awakens biowait when
the 1/0 transfer is complete.

Because biowait calls sleep, biowait cannot be called from an interrupt routine
or from an init(D2D) routine.

RETURN VALUE

LEVEL

None. However, biowait returns any error that may have occured during the
1/0 transfer to the user using geterror(D3DK).

Base Only (Do not call from an interrupt routine)

SEE ALSO

3/91

biodone(D3DK), brelse(D3DK), sleep(D3DK), timeout(D3DK),
untimeout(D3DK), wakeup(D3DK)

Page 1

bp_losetup(D3DK) DOI/OKI bp _ losetup (D3DK)

NAME
bp _ iosetup - create scatter I gather list for block drivers

SYNOPSIS
#include <sys/types.h>
#include <sys/buf.h>
#include <sys/iosystm.h>

int bp_iosetup (struct buf *bp, struct iolist *list, int size, int maxcoalesce);

ARGUMENTS
*bp pointer to the buffer header structure

*list pointer to the scatter I gather list

size the number of 1/0 vectors in list

maxcoalesce
the maximum coalescing size the controller can handle

DESCRIPTION
bp_iosetup is invoked from block driver strategy routines. It returns a count of
at most size (physical address, length) 1/0 vectors which are returned in list, and
can then be passed to a controller. The 1/0 vectors are computed from the vir­
tual address or page list and count in the buffer header. This routine ensures that
the data cache has been invalidated or synced for all pages involved in the OMA
transfer. bp_iosetup fails with a return value of -1 if list becomes larger than
size.

This routine is provided specifically for device driver support on the M68000 or
M88000 family of processors.

RETURN VALUE
The number of entries in list.

LEVEL
Base.

SEE ALSO
mp_ iosetup(D3DK), buf(D4DK)

3/91 Page 1

bp_mapln(D3DK) DDl/DKI bp_mapln (D3DK)

NAME
bp _ mapin - allocate virtual address space

SYNOPSIS
#include <sys/types.h>
#include <sys/buf.h>

vaddr t bp_mapin(struct buf *bp);
ARGUMENTS

•bp pointer to the buffer header structure

DESCRIPTION
bp _ mapin is used to map virtual address space to a page list maintained by the
buffer header during a paged-1/0 request. bp_mapin allocates system virtual
address space, maps that space to the page list, and returns the offset into the
map. The offset is stored in the bp->b_un.b_addr field of the buf structure (see
buf(D4DK)). Virtual address space is then deallocated using the bp _ mapout func­
tion.

If a NULL page list is encountered, bp _ma pin returns without allocating space and
no mapping is performed.

bp _ mapin should be used by drivers that map the address specified in the buf
pointer into kernel space (that is, drivers that access data in the buffer rather than
just handing an address to the controller). This routine ensures that the data
cache has been invalidated or sync'ed for all page(s) involved in the OMA
transfer.

RETURN VALUE
The starting address of the allocated system virtual address space.

LEVEL
Base.

SEE ALSO
bp _ mapout(D3DK), buf(D4DK)

3/91 Page 1

bp_mapout(D3DK) DDl/DKI

NAME
bp_mapout - deallocate virtual address space

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/buf.h>

void bp_mapin(struct buf *bp);

ARGUMENTS
bp Pointer to the buffer header structure.

DESCRIPTION

bp_mapout(D3DK)

This function deallocates system virtual address space allocated by a previous call
to bp_mapin(D3DK). bp_mapin maps virtual address space to a page list main­
tained by the buffer header for a paged-1/0 request, then returns the offset into
the map to the b _ addr field of the buf structure.

This routine ensures that the data cache has been invalidated or sync' ed for all
page(s) involved in the OMA transfer.

RETURN VALUE
None

LEVEL
Base

SEE ALSO
bp_mapin(D3DK), buf(D4DK)

3/91 Page 1

brelse(D3DK} DDl/DKI brelse(D3DK}

NAllE
brelse - return buffer to the bfreelist

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/buf.h>

void brelse(struct buf *bp);
ARGUMENT

.bp Pointer to the buf structure.

DESCRIPTION
The brelse function returns a previously allocated buffer to the buffer free list.
First, brelse wakes up processes sleeping on the buffer. After the driver func­
tion is finished with the buffer, brelse returns the buffer header to a list of free
buffers and awakens any processes that called sleep(D3DK) to wait for a free
buffer on the bfreelist.

RETURN VALUE

LEVEL

None, however, if b flags has B ERROR enabled due to an error in an earlier 1/0
transfer, b flags is-ORed with B STALE and B AGE, B ERROR and B DELWRI are
disabled, and b_error is set to 0.- - - -

Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 6, '1nput/Output Operations"

clrbuf(D3DK), biodone(D3DK), biowait(D3DK)

3/91 Page 1

btop(D3DK) DDl/DKI

NAME
btop - convert size in bytes to size in pages (round down)

SYNOPSIS
tinclude <sys/ddi.h>

unsigned long btop (unsigned long numbytes) ;
ARGUMENT

numbytes Number of bytes.

DESCRIPTION

btop(D3DK)

The btop function returns the number of memory pages that are contained in the
specified number of bytes, with downward rounding in the case that the byte
count is not a page multiple. For example, if the page size is 2048, then
btop(4096) returns 2, and btop(4097) returns 2 as well. btop(O) returns O.

RETURN VALUE

LEVEL

The return value is always the number of pages. There are no invalid input
values, and therefore no error return values.

Base or Interrupt

SEE ALSO
btopr(D3DK), ptob(030K)

3/91 Page 1

btopr(D3DK) DDl/DKI

NAME
btopr - convert size in bytes to size in pages (round up)

SYNOPSIS
tinclude <sys/ddi.h>

unsigned long btopr(unsigned long numbytes);

ARGUMENT
numbytes Number of bytes.

DESCRIPTION

btopr(D3DK)

This function returns the number of memory pages contained in the specified
number of bytes memory, rounded up to the next whole page. For example, if
the page size is 2048, then btopr(4096) returns 2, and btopr(4097) returns 3.

RETURN VALUE

LEVEL

The return value is always the number of pages. There are no invalid input
values, and therefore no error return values.

Base or Interrupt

SEE ALSO
btop(D3DK), ptob(D3DK)

3/91 Page 1

bufcall (D3DK) DDl/DKl(STREAMS) bufcall (D3DK)

NAME
bufcall - call a function when a buffer becomes available

SYNOPSIS
tinclude <sys/stream.h>

int bufcall (int siu, int pri, int (*June) (), long arg);

ARGUMENTS
size Number of bytes in the buffer.

pri Priority of the allocb(030K) allocation request (not used).

June Function or driver routine to be called when a buffer becomes avail­
able.

arg Argument to the function to be called when a buffer becomes avail­
able.

DESCRIPTION
bufcall serves as a timeout(030K) call of indeterminate length. When a buffer
allocation request fails, bufcall can be used to schedule the routine June, to be
called with the argument arg when a buffer becomes available. June may be a
routine that calls bufcall or it may be another kernel function.

NOTE: Even when June is called by bufcall, allocb(030K) can still fail if
another module or driver had allocated the memory before June was able to call
allocb.

RETURN VALUE

LEVEL

If the bufcall scheduling fails, June is never called and 0 is returned. If success­
ful, bufcall returns 1.

Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 7, "STREAMS"

allocb(030K), esballoc(030K), esbbcall(D30K), testb(030K),
timeout(030K)

EXAMPLE

3/91

The purpose of this srv(D2DK) service routine is to add a header to all M _DATA
messages. Service routines must process all messages on their queues before
returning, or arrange to be rescheduled.

While there are message to be processed (line 13), check to see if it is a high
priority message or a normal priority message that can be sent on Oine 14). Nor­
mal priority message that cannot be sent are put back on the message queue (line
34). If the message was a high priority one, or if was normal priority and
canput(030K) succeeded, then send all but M _DATA messages to the next stream
entity with putnext(030K) (line16).

For M _DATA messages, try to allocate a buffer large enough to hold the header
(line 18). If no such buffer is available, the service routine must be rescheduled
for a time when a buffer is available. The original message is put back on the
queue (line 20) and bufcall (line 21) is used to attempt the rescheduling. It will

Page 1

bufcall (D3DK) DDl/DKI(STREAMS) bufcall (D3DK)

Page 2

succeed if a buffer of the specified size (sizeof (struct hdr)) is available. If it
does, qenable(D30K) will put q on the list of queues to have their service rou­
tines called. If bufcall fails, timeout(D3DK> (line 22) is used to try again in
about a half second (HZ/2).

If the buffer allocation was successful, initialize the header (lines 25-28), make the
message type M_PROTO (line 29), link the M_DATA message to it (line 30), and pass
it on (line 31).

1 struct hdr {
2 unsigned int h_size;
3 int h _version;
4 J;
5
6 modsrv(qJ
7 queue_t •q;
8

9 mblk_t *bp;
10 mblk - t •mp;
11 struct hdr *hp;
12
13

14

15

16
17
18
19
20

21

22
23

24

25
26

27

28

29

30
31

32

33
34

35

36
37
38

while ((mp = getq(qJJ !=NULL) { /* get next message •/
if (mp->b_datap->db_type >• QPCTL I I /* if high priority */

canput (q->q_nextJJ { /* normal & can be passed •/
if (mp->b_datap->db_type ~ M_DATA)

putnext (q, mp) ; I* send all but M_DATA */
else {

else {

bp = allocb(sizeof(struct hdr), BPRI_LO);
fr (bp = NULL) { /* if unsuccessful •/

putbq(q, mp); I* put it back */
if (!bufcall(sizeof(struct hdrJ, BPRI_LO,

qenable, (long) q) J /• try to reschedule •I
timeout(qenable, (long)q, HZ/2};

return;

hp • {struct hdr *Jbp->b_wptr;
hp->h_size = msgdsize(mp); /• initialize header */
hp->h_version = l;

bp->b_wptr += sizeof(struct hdr);
bp->b_datap->db_type = M_PROTO; /* make M_PROTO */

bp->b_cont = mp; /• link it •/
putnext (q, bpi; /• pass it on •/

putbq (q, J!P) ;

return;

/• normal priority, canput failed •/
/• put back on the message queue •/

3191

bzero(D3DK) DDl/DKI bzero (D3DK)

NAME
bzero - clear memory for a given number of bytes

SYNOPSIS
tinclude <sys/types.h>

int bzero (caddr_taddr, int bytes);

ARGUMENTS
addr

bytes

DESCRIPTION

Starting virtual address of memory to be cleared.

The number of bytes to clear starting at addr.

The bzero function clears a contiguous portion of memory by filling the memory
with zeros.
CAUTION: The address range specified must be within the kernel space. No
range checking is done. If an address outside of the kernel space is selected, the
driver may corrupt the system in an unpredictable way.

RETURN VALUE
Under normal conditions, a o is returned. Otherwise, a -1 is returned.

LEVEL
Base or Interrupt

SEE ALSO
bcopy(D3DK), clrbuf(D3DK), kmem _ zalloc(D3DK)

EXAMPLE

3191

In a driver close(D2DK) routine, rather than clear each individual member of its
private data structure, the driver could use bzero as shown here:

bzero(&drv_dat[minor(dev)], sizeof(struct drvr_data));

Page 1

canput (D3DK) DDl/DKl(STREAMS) canput(D3DK)

NAME
canput - test for room in a message queue

SYNOPSIS
tinclude <sys/stream.h>

int canput (queue_t *t:q);

ARGUMENT
•cq The pointer to the message queue. queue_ t is an alias for the

queue(D4DK) structure.

DESCRIPTION
canput searches through the stream (starting at cq) until it finds a queue contain­
ing a service routine where the message can be enqueued, or until it reaches the
end of the stream. If found, the queue containing the service routine is tested to
see if there is room for a message in the queue. If the queue is full, canput sets
the QWANTW flag to back-enable the caller's service routine.

NOTE: You are responsible for both testing a queue with canput and refraining
from placing a message on the queue if canput fails.

RETURN VALUE
If the message queue is not full, 1 is returned. A O is returned if the queue is
full.

LEVEL
Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 7, "STREAMS"

bcanput(D3DK), putbq(D3DK), putnext(D3DK)

EXAMPLE
See the bufcall(D3DK) function page for an example of canput.

3/91 Page 1

clrbuf(D3DK) DDl/DKI

NAME
clrbuf - erase the contents of a buffer

SYNOPSIS
#include <sys/types.h>
#include <sys/buf.h>

void clrbuf(struct buf *bp);
ARGUMENT

.. bp

DESCRIPTION

Pointer to the buf(D4DK) structure

clrbuf (D3DK)

The clrbuf function zeros a buffer and sets the b resid member of the buf
structure to 0. Zeros are placed in the buffer starting-at bp->b_un.b_words for a
length of bp->b_bcount bytes. b_un.b_words and b_bcount are members of the
buf structure defined in sys /buf. h.

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO
brelse(D3DK), buf(D4DK)

EXAMPLE
See biowait(D3DK).

3191 Page 1

cmn_err(D3DK) DDl/DKI cmn_err(D3DK)

NAME
cmn _err - display an error message or panic the system

SYNOPslS
#include <sys/cmn_err.h>

int cmn_err (int "leuel, char *format, int args);

ARGUMENTS
"leuel

format

3/91

A constant defined in the sys/cmn err.h header file. level indicates
the severity of the error condition. The four severity levels are

CE CONT used to continue another message or to display an
informative message not connected with an error.

CE NOTE used to display a message preceded with NOTICE. This
message is used to report system events that do not
necessarily require user action, but may interest the
system administrator. For example, a message saying
that a sector on a disk needs to be accessed repeatedly
before it can be accessed correctly might be
noteworthy.

CE WARN used to display a message preceded with WARNING.
This message is used to report system events that
require immediate attention, such as those where if an
action is not taken, the system may panic. For exam­
ple, when a peripheral device does not initialize
correctly, this level should be used.

CE PANIC used to display a message preceded with PANIC or
DOUBLE PANIC, and to panic the system. Drivers
should specify this level only under the most severe
conditions or when debugging a driver. A valid use of
this level is when the system cannot continue to func­
tion. If the error is recoverable, or not essential to con­
tinued system operation, do not panic the system. This
level halts multiuser processing.

The message to be displayed. By default, the message is sent both to
the system console and to the kernel buffer putbuf. If the first charac­
ter in format is an exclamation point (" ! "), the message goes only to
putbuf. If the first character in format is a circumflex ("""), the mes­
sage goes only to the console. Except for the first character, the rules
for format are the same as those for printf(35) strings. To read put­
buf, use the following crash(lM) commands:

od -d putbufsz
od -a putbuf size

The first command returns the size of putbuf (the default is 2000
bytes). The second command uses the returned size to read putbuf.

Page 1

cmn _err (D3DK) DOI/OKI cmn_err(D3DK)

cmn_err appends \n to each format, even when a message is sent to
putbuf, except when level is CE_CONT.

Vaild conversion specifications are 3s, 3u, 3d, 3o, and 3x. The cmn_err func­
tion is otherwise similar to the printf(35) library subroutine in displaying mes­
sages on the system console or storing on putbuf.

NOI'E: cmn _err does not accept length specifications in conversion specifications.
For example, 33d is ignored.

args the set of arguments passed with the message being displayed. Any
argument within the range of supported conversion specifications can
be passed.

DESCRIPTION
cmn _err displays a specified message on the console and/ or stores it in the
putbuf array. cmn_err can also panic the system.

At times, a driver may encounter error conditions requiring the attention of a pri­
mary or secondary system console monitor. These conditions may mean halting
multiuser processing; however, this must be done with caution. Except during
the debugging stage, a driver should never stop the system.

The cmn _err function with the CE_ CONT argument can be used by driver
developers as a driver code debugging tool. However, using cmn err in this
capacity can change system timing characteristics.

If CE_PANIC is set, cmn_err stops the machine, after possibly a crash dump.

RETURN VALUE

LEVEL

None. However, if an unknown level is passed to cmn_err, the following panic
error message is displayed:

PANIC: unknown level in crm err (level=level, msg=format)

Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 12

print(D2DK), printf(35)

EXAMPLE

Page 2

The cmn _err function can record tracing and debugging information only in the
putbuf (lines 15 and 16); display problems with a device only on the system con­
sole (line 21); or stop the system if a required device malfunctions (line 27).

1 struct device
2 int control;
3 int stat us;
4 int error;

5 short recv _char;
6 short xmit_char;
7); I* end device */

8

9 extern struct device xx_addr[];
10 extern int xx_cnt;

/* physical device registers layout */

I* physical device control word */

/* physical device status word */

I* error codes from device */

/* receive character from device */

/* transmit character to device */

/* physical device registers */

I* number of physical devices */

3/91

cmn_err(D3DK) DDl/DKI cmn _err (D3DK)

11 register struct device •rp;

12 rp - xx_addr[(getminor(dev) >> 4) & Oxf];

13
/* get dev registers •/

14 fifdef DEBUG I* in debugging mode, log function call */

15 cmn err(CE_NOTE, "!xx_open function call, dev - Ox\x", dev);

16 cmn_err(CE_CONT, "! flag= Ox\x", flag); /* continue msg •/

17 #endif /*end DEBUG*/

18
19 /* display device power failure on system console */

20 if ((rp->status & POWER) -= OFF)

21 cmn_err(CE_WARN, "xx_open: Power is OFF on device \d port \d",

22 ((getminor(dev) >> 4) & Oxf), (getminor(dev) & Oxf));

23

24 /* halt system if root device has bad VTOC •/

25 /* send message to system console and to putbuf •/

26 if (rp->error -- BADVTOC && dev ~ rootdev)

27 ann_err (CE_PANIC, "xx_open: Bad VTOC on root device");

3/91 Page 3

copyb (D3DK) DDl/DKl(STREAMS) copyb(D3DK)

NAME
copyb - copy a message block

SYNOPSIS
tinclude <sys/stream.h>

mblk t *copyb (mblk_t *Up);

ARGUMENT
bp Pointer to the message block from which data is copied.

DESCRIPTION
copyb allocates a new message block, and copies into it the data from the block
pointed to by bp. The new block will be at least as large as the block being
copied. The b_rptr and b_wptr members of l1p are used to determine how many
bytes to copy.

RETURN VALUE

LEVEL

If successful, copyb returns a pointer to the newly allocated message block con­
taining the copied data. Otherwise, it returns a NULL pointer.

Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 7, "STREAMS"

allocb(D3DK)

EXAMPLE

3/91

For each message in the list, test to see if the downstream queue is full with the
canput(D3DK) function (line 21). If it is not full, use copyb(D3DK) to copy a
header message block, and dupmsg(D3DK) to duplicate the data to be retransmit­
ted. If either operation fails, reschedule a timeout at the next valid interval.

Update the new header block with the correct destination address (line 34), link
the message to it (line 35), and send it downstream (line 36). At the end of the
list, reschedule this routine.

1 struct retrns {
2 mblk_t *r_mp;
3 long r_address;

queue_t *r_outq;

struct retrns *r_next;
6) ;

7

8 struct protoheader {

9 long h_address;

10) ;

11

12 mblk_t *header;
13

14 retransrnit(ret)
15 register struct retrns *ret;

Page 1

copyb (D3DK)

Page 2

16
17

18

19

20

21

22

23

24

25

26
27

28

29

30

31
32

33

34

35

36
37

38

39

40

DDl/DKl(STREAMS) copyb (D3DK)

register mblk_t *bp, •mp;
struct protoheader *php;

while (ret)
if (!canput(ret->r_outq->q_next)) { /*no room*/

ret = ret->r_next;
continue;

bp = copyb(header); /* copy header rnsg. block*/
if (bp == NULL)

break;
mp= dupnsg(ret->r_mp);
if (mp •• NULL) (

freeb(bp);
break;

/* duplicate data */
/* if unsuccessful •/

/* free the block */

php = (struct protoheader *)bp->b_rptr;
php->h_address = ret->r_address; /* new header •/
bp->bp_cont = mp; /* link the message */
putnext(ret->r_outq, bp);
ret = ret->r_next;

I* send downstream */

tirneout(retransrnit, (long)ret, RETRNS_TIME); /*reschedule*/

3/91

copyln (D3DK) DDl/DKI copyln (D3DK)

NAME
copyin - copy data from a user program to a driver buffer

SYNOPSIS
tinclude <sys/types.h>

int copyin (caddr_t userbuf, caddr_t driverbuf, int en) ;

ARGUMENTS
userbuf User program source address from which data is transferred.

Driver destination address to which data is transferred.

Number of bytes transferred.

driverbuf

en
DESCRIPTION

copyin copies data from a user program source address to a driver buffer. The
driver developer must ensure that adequate space is allocated for the destination
address.

Addresses that are word-aligned are moved most efficiently. However, the driver
developer is not obligated to ensure alignment. This function automatically finds
the most efficient move according to address alignment.

RETURN VALUE

LEVEL

Under normal conditions a o is returned indicating a successful copy. A -1 is
returned if one of the following occurs:

paging fault; the driver tried to access a page of memory for which it did
not have read or write access

invalid user area or stack area

invalid address that would have resulted in data being copied into the
user block

If a -1 is returned, return EFAULT.

Base Only (Do not call from an interrupt routine)

SEE ALSO
BCI Driver Development Guide, Chapter 6, '1nput/Output Operations"

bcopy(03DK), copyout(D3DK), uioioove(D3DK)

3/91 Page 1

copymsg (D3DK) DOI/OKI(STREAMS) copymsg (D3DK)

NAME
copymsg - copy a message

SYNOPSIS
iinclude <sys/stream.h>

mblk t *copymsg (mblk _ t mp) ;

ARGUMENTS
mp Pointer to the message to be copied. mblk t is an instance of the

msgb(D4DK) structure.

DESCRIPTION
copymsg forms a new message by allocating new message blocks, copies the con­
tents of the message referred to by mp (using the copyb(D3DK) function), and
returns a pointer to the new message.

RETURN VALUE

LEVEL

If the copy is successful, copymsg returns a pointer to the new message. Other­
wise, it returns a NULL pointer.

Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 7, "STREAMS"

allocb(D3DK), copyb(D3DK), msgb(D4DK)

EXAMPLE

3/91

The routine lctouc converts all the lowercase ASCII characters in the message to
uppercase. If the reference count is greater than one (line 8), then the message is
shared, and must be copied before changing the contents of the data buffer. If
the call to the copymsg(D3DK) function fails (line 9), return NULL (line 10), other­
wise, free the original message (line 11). If the reference count was equal to 1,
the message can be modified. For each character (line 16) in each message block
(line 15), if it is a lowercase letter, convert it to an uppercase letter line 18). A
pointer to the converted message is returned (line 21).

1 mblk_t *lctouc(mp)
2 rnblk _ t *mp;

3 {

4

5

6

7

8

9

10

11

12
13

14

15
16

rnblk _ t *crop;
mblk - t *trnp;
unsigned char *cp;

if (mp->b_datap->db_ref > 1)
if ((crop = copyrnsg (mp)) == NULL)

return (NULL);

freernsg (mp) ;
) else {

crnp = mp;

for (tmp = crnp; tmp; tmp = tmp->b_next)
for (cp = trnp->b_rptr; cp < trnp->b_wptr; cp++) {

Page 1

copymsg (D3DK)

Page 2

17

18

19

20

21
22

return (crnp);

DDl/DKI(STREAMS)

if ((*cp <= 'z') && (*cp >= 'a'))

•cp -- Ox20;

copymsg(D3DK)

3/91

copyout (D3DK) DOI/OKI copyout (D3DK)

NAME
copyout - copy data from a driver to a user program

SYNOPSIS
tinclude <sys/types.h>

int copyout (caddr _ t driverbuf, caddr _ t userbuf, long en);

ARGUMENTS
driverbuf Source address in the driver from which the data is transferred.

Destination address in the user program to which the data is
transferred.

userbuf

en Number of bytes moved.

DESCRIPTION
copyout copies data from driver buffers to user data space.

Addresses that are word-aligned are moved most efficiently. However, the driver
developer is not obligated to ensure alignment. This function automatically finds
the most efficient move algorithm according to address alignment.

RETURN VALUE

LEVEL

Under normal conditions a O is returned to indicate a successful copy. Other­
wise, a -1 is returned if the specified address range is not valid.

If a -1 is returned, return EFAULT.

Base Only (Do not call from an interrupt routine)

SEE ALSO
BCI Driver Development Guide, Chapter 6, '1nput/Output Operations"

bcopy(D3DK), uiomove(D3DK), copyin(D3DK)

EXAMPLE

3191

A driver ioctl(D2DK) routine (line 9) can be used to get or set device attributes
or registers. In the xx_ GETREGS condition (line 17), the driver copies the current
device register values to a user data area (line 18). If the specified argument con­
tains an invalid address, an error code is returned.

1 struct device /* layout of physical device registers */
2 int
3 int

control;

status;
I* physical device control word */
/* physical device status word */

short
5 short

recv_char; /* receive character from device */
xmit_char; /* transmit character to device */

6); /* end device */
7

8 extern struct device xx_addr[]; /*phys. device regs. location*/

9 xx_ioctl(dev, cmd, arg, flag)
10 dev t dev;
11 caddr_t arg;
12

13

14 register struct device *rps &xx_addr[getminor(dev) >> 4];

Page 1

copyout (D3DK) DDl/DKI

Page 2

15 switch(cmd)
16

17

18

19
20

21

case XX_GETREGS: /* copy device reqs. to user proqram */

if (copyout((caddr_t)rp, arq, sizeof(struct device))
return(EFAULT);
I* endif */

break;

copyout (D3DK)

3/91

datam-e (D3DK) DDUDKl(STREAMS) datamag (D3DK)

NAME
clatamsg - test whether a message is a data message

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

int clatamsg (unsigned char type) ;

ARGUMENT
type The type of message to be tested. The db_type field of the clatab

structure contains the message type. This field may be accessed
through the message block using mp->b_clatap->db_type.

DESCRIPTION
The clatamsg function tests the type of message to determine if it is a data mes­
sage type (M_DATA, M_DELAY, M_PROTO, or M_PCPROTO).

RETURN VALUE

LEVEL

clatamsg returns 1 for TRUE, if the message is a data message; and o for FALSE for
any other type of message.

Base or Interrupt

SEE ALSO
BCI Driver Deoelopment Gu~, Chapter 7, "STREAMS"
allocb(03DK), clatab(D4DK), msgb(D40K)

EXAMPLE

3/91

The put(D2DK) routine enqueues all data messages for handling by the
srv(D2DK) (service) routine. All non-data messages are handled in the put
routine.

1 xxxput (q, mp)

2 queue_t *q;

3 mblk_t *mp;

4

5 if (datamsg(mp->b_datap->db_type))

6 putq (q, mp) ;

7 return;

8

9 switch (mp->b_datap->db_type)

10 case M_FLUSH:

11
12

Page 1

delay(D3DK) DDl/DKI delay(D3DK)

NAME
delay - delay process execution for a specified number of clock ticks

SYNOPSIS
void delay (long ticks) ;

ARGUMENT
ticks The number of clock cycles for a delay. ticks are frequently set as an

expression containing the system variable HZ, the number of clock ticks
in one second; HZ is defined in sys/param.h.

DESCRIPTION
delay provides a way to wait for an event to happen. Occasionally, a driver may
need to wait a given period of time until work is available. The value of HZ can
vary from system to system, and so the function drv _ hztousec(03DK) should be
used when accurate timing is required.

The delay function calls timeout(D3DK) to schedule a wakeup call after the
specified amount of time has elapsed. delay then goes to sleep until timeout
wakes up the sleeping process. While delay is active, splhi is set. At comple­
tion, the former priority level is returned through splx.

delay requires user context.

RETURN VALUE
None

LEVEL
Base Only (Do not call from an interrupt routine)

SEE ALSO
BCI Driver Development Guide, Chapter 10, "Synchronizing Hardware and
Software Events"

biodone(03DK), biowait(D3DK), drv hztousec(D3DK), drv usectohz(D3DK),
sleep(D3DK), timeout(D3DK), untimeout(D3DK), wakeup(D3DK)

EXAMPLE

3/91

Before a driver 1/0 routine allocates buffers and stores any user data in them, it
checks the status of the device (line 12). If the device needs manual intervention
(such as, needing to be refilled with paper), a message is displayed on the system
console (line 14). The driver waits an allotted time (line 16) before repeating the
procedure.

1 struct device
2 int control;

3 int status;
4 short xmit_char;
5 I; /* end device */
6

/* layout of physical device registers */
/* physical device control word
/* physical device status word
/* transmit character to device

*I
*/
*/

7 extern struct device xx_addr[]; /*physical device regs. location*/

9 /* get device registers */
10 register struct device *rp - &xx_addr[getminor(dev)>>4)];
11

12 while(rp->status & NOPAPER) { /* while printer is out of paper */

Page 1

delay(D3DK) DDl/DKI

Page 2

13
14
15
16
17

/* display messaqe and rinq bell on system console */

cmn_err(CE_WARN, "Axx_write: NO PAPER in printer 'lld\007",

delay (60 * HZ);
I* endwhile */

(dev & Oxf)) ;
I* wait one minute and try aqain *I

dalay(D3DK)

3/91

dcache _lnval (D3DK} DDl/DKI

NAME
dcache _ inval - invalidate the data cache

SYNOPSIS
iinclude <sys/types.h>
tinclude <sys/buf.h>
tinclude <sys/iosystm.h>

void dcache _ inval (paddr _ t paddr int len) ;

ARGUMENTS
paddr the physical starting address

len the amount of memory to be invalidated

DESCRIPTION

dcache _lnval (D3DK}

If the standard driver support routines that automatically invalidate the cache (for
example, bp_iosetup) are not used, dcache_inval performs any explicit cache
invalidate operations that may be needed.

On systems that implement bus snooping, dcache_inval does nothing. On non­
snooping systems that cannot use the standard support routines, the data cache
must be invalidated before a read.

RETURN VALUE
None.

LEVEL
Base, interrupt.

SEE ALSO
dcache _ sync(D3DK)

3/91 Page 1

dcache _sync (D3DK) DDl/DKI dcache _sync (D3DK)

NAME
dcache _sync - sync the data cache

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/buf.h>
tinclude <sys/iosystm.h>

void dcache_sync (paddr_t paddr int len);

ARGUMENTS
paddr the physical starting address

len the length to be synced

DESCRIPTION
If the standard driver support routines that automatically sync the cache (for
example, bp_iosetup) are not used, dcache_sync performs any explicit cache
sync operations that may be needed.

On systems that implement bus snooping, dcache _sync does nothing. On non­
snooping systems that cannot use the standard support routines, the data cache
must be synced before a write. On all systems, the data cache must be synced
following a read if any transferred data might be in the cache rather than in
memory (that is, if the driver copies data into the destination rather than using
OMA).

RETURN VALUE
None.

LEVEL
Base, interrupt.

SEE ALSO
dcache _ inval(D3DK)

3/91 Page 1

dma _pagelo (030) (DOI) dma _pagelo (030)

NAME
dma_pageio - break up an 1/0 request into manageable units

SYNOPSIS
tinclude <sys/buf.h>

void clma_pageio (void (*strat) () strat, struct buf *bp);

ARGUMENTS
.. strat Pointer to the strategy(D2DK) routine to call to complete the 1/0

transfer.

bp Pointer to the buf structure.
DESCRIPTION

dma_pageio breaks up a data transfer request from physiock(D3DK) into units
of contiguous memory. The data is broken into 512-byte sectors until the last
data bytes are encountered. dma_pageio executes splO around its internal sleep
calls on reads and writes after the strategy routine is called. This may alter pre­
viously set spl(D3D) calls.

The driver must modify b _flags to indicate whether the transfer is a read or a
write. OR in B _READ to indicate a read; turn B _READ off to indicate a write.

RETURN VALUE

LEVEL

None. However, conditions in drna _pageio can cause the following to be set:

If memory for a temporary buffer cannot be allocated, b_flags is ORed
with B ERROR and B DONE, and b error is set to EAGAIN (resource tem­
porarily unavailablef All allocated temporary buffers are deallocated
when the transfer completes.

If the 1/0 transfer is incomplete (b _flags does not contain B _DONE), then
b _flags is set to B _WANTED and sleep(D3DK) is called to wait until a
buffer can be aiiocateci. Toe s.1.eep priority is set to l'fil.tHO.

The sleep code section is surrounded by a spl6-spl0 function set which
may alter a previously set spl value.

If B _ERROR is set after the strategy(D2DK) routine completes, allocated
memory is freed and dma _pageio returns.

When the transfer completes, any allocated buffers are freed.

Base Only

SEE ALSO
BCI Driver Development Guide, Chapter 6, '1nput/Output Operations"

EXAMPLE

3/91

The following example shows how drna _pageio is used when reading or writing
disk data.

1 struct dsi ze

2 daddr_t nblocks; /* number of blocks in disk partition */
3 int cyloff; /* starting cylinder i of partition •/

4 I my_sizes[4) - I

5

Page 1

dma _pagelo (D3D) (DDI) dma _pagelo (D3D)

Page 2

6
7

8 };

9

20448, 21,
21888, 1

I* partition 0 = cyl 21-305
I* partition 1 • cyl 1-305

10 /* physical read •I
11 my_read(dev, uio_p, cred_p)
12
13
14
15
16
17

18
19

dev_t
uio_t
cred_t

dev;
*uio_p;
•cred_p;

reqister int nblks;
I* qet number of blocks in the partition
nblks • my_sizes[qetminor(dev) & Ox7].nblocks;

*I
*I

*I

20
21
22

I* if request is within limits for the device, schedule I/O*/
physiock (my_breakup, O, dev, B_READ, nblks, uio_p);

23
24 /* physical write */
25 my_write(dev, uio_p, cred_p)
26

27

28
29
30
31
32
33

dev t
uio_t
cred_t

dev;
*uio_p;
*cred_p;

register int nblka;
I* qet the number of blocks in the partition
nblks = my_sizes[getminor(dev) & Ox7].nblocks;

*I

34
35
36

37

I* if request is within limits for the device, schedule I/0 *I
physiock(my_breakup, O, dev, B_WRITE, nblks, uio_p);

I

38 /*
39 break up the request that came fran physio into chunks of
40 contiquous memo:r;y. Pass at least 512 bytes (one sector) at a
41 time (except for the last request) •
42 •/
43
44 static
45 my_jlreakup(bp)
46
47

48
49

reqister struct buf *bp;

dma_pageio(my_strateqy, bp);

3191

dma_sglo(D3D) (DOI) dma_sglo(D3D)

NAME
dma_sgio - break up an 1/0 request for controller that does scatter/gather

SYNOPSIS
tinclude <sys/buf.h>

void dma_sgio (void (*strat) () strat, struct buf *bp);

ARGUMENTS
*strat pointer to the strategy(D2DK) routine to call to complete the 1/0

transfer

bp pointer to the buf structure

DESCRIPTION
dma _ sgio is used for physical 1/0 when the driver supports scatter I gather but
the user transfer cannot be handled directly by the controller because of align­
ment problems.

dma _ sgio allocates all the kernel virtual memory needed for the transaction
(aligned on a page boundary), initiates the transaction, and copies the data to the
user address space. If there is a limit to the number of blocks that can be DMAed
by the controller, and the size of the read/write requests exceeds the limit, then
the driver must invoke dma _ sgio iteratively, without exceeding the maximum
limit on each iteration, until the read/write request is satisfied.

If the user address is aligned suitably, the driver should initiate a OMA transac­
tion directly to the user address by calling the strategy routine.

This routine is provided specifically for device driver support on the M68000 or
M88000 family of processors.

RETURN VALUE
None.

LEVEL
Base only.

SEE ALSO
dma _pageio(D3DK)

3/91 Page 1

drv _getparm (D3DK) DDl/DKI drv _getparm (D3DK)

NAME
drv_getparm - retrieve kernel state information

SYNOPSIS
tinclude <sys/ddi.h>

int drv_getparm(unsigned long parm, unsigned long *valuey);

ARGUMENTS
parm The kernel parameter to be obtained from ddi . h. Possible values are

valuey

LBOLT Read the value of the lbolt. (lbolt is an integer that
represents the number of dock ticks since the last system
reboot. This value is used as a counter or timer inside
the system kernel.)

PPGRP Read the process group identification number. This
number determines which processes should receive a
HANGUP or BREAK signal when detected by a driver.

UPROCP Read the process table token value. This information is
used for the second argument of the vtop(D3D) function.

PPID Read process identification number.

PSID Read process session identification number.

TIME Read time in seconds.

CPUBOARD Read the CPU board token. The values for the token
may be found in the file /usr/include/sys/mvmecpu.h.

A pointer to the data space in which the value of the parameter is to
be copied.

DESCRIPTION
This function verifies that parm corresponds to a kernel parameter that may be
read. If the value of parm does not correspond to a parameter or corresponds to
a parameter that may not be read, -1 is returned. Otherwise, the value of the
parameter is stored in the data space pointed to by value y.

drv_getparm does not explicitly check to see whether the device has the
appropriate context when the function is called and the function does not check
for correct alignment in the data space pointed to by value y. It is the responsi­
bility of the driver writer to use this function only when it is appropriate to do so
and to correctly declare the data space needed by the driver.

RETURN VALUE

LEVEL

3/91

drv getparm returns 0 to indicate success, -1 to indicate failure. The value
stored in the space pointed to by value y is the value of the parameter if 0 is
returned, undefined if -1 is returned. -1 is returned if you specify a value other
than LBOLT, PPGRP, PPID, PSID, TIME, CPUBOARD or UPROCP. Always check
the return code when using this function.

Base only when using the PPGRP, PPID, PSID, TIME, or UPROCP argument
values.

Interrupt usable when using the LBOLT and CPUBOARD argument value.

Page 1

drv _getparm (D3DK) DDl/DKI drv _getparm (D3DK)

SEE ALSO
vtop(D3D), buf(D4DK)

Page 2 3/91

drv _ hztousec (D3DK) DDl/DKI drv _ hztousec (D3DK)

NAME
drv _ hztousec - convert clock ticks to microseconds

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/ddi.h>

clock t drv_hztousec(clock_t hz);

ARGUMENT
hz The length of time (expressed in HZ units) to convert to its

microsecond equivalent

DESCRIPTION
drv _ hztousec converts into microseconds the length of time expressed by hz,
which is in units of time based on the value of HZ, the kernel parameter whose
value is defined in sys/param.h.

The kernel variable lbolt, which is readable through drv _getpann(D3DK), is the
length of time the system has been up since boot and is expressed in HZ units.
Drivers often use the value of lbolt before and after an 1/0 request to measure
the amount of time it took the device to process the request. drv _ hztousec can
be used by the driver to convert the reading from HZ units, which could poten­
tially vary between system impleme.ntations, to a known unit of time.

RETURN VALUE

LEVEL

The number of microseconds equivalent to the hz argument. No error value is
returned. If the microsecond equivalent to hz is too large to be represented as a
clock_t, then the maximum clock_t value will be returned.

Base or Interrupt

SEE ALSO
drv _getpann(D3DK), drv _ usectohz(D3DK)

3/91 Page 1

drv _prlv (D3DK) DDl/DKI

NAME
drv _yri v - determine driver privilege

SYNOPSIS
int drvyriv (cred_t *er);

ARGUMENT
.. er Pointer to the cred(D4DK) (credential) structure.

DESCRIPTION

drv _prlv (D3DK)

The drv __priv function provides a general interface to the system privilege policy.
It determines whether the credentials supplied by the cred structure pointed to
by er identify a priviledged process. This function should only be used when file
access modes and special minor device numbers are insufficient to provide pro­
tection for the requested driver function. It is intended to replace all calls to
suser () and any explicit checks for effective user ID - O in driver code.

RETURN VALUE
This routine returns O if it succeeds, EPERM if it fails.

LEVEL
Base or Interrupt

SEE ALSO
cred(D4DK)

3/91 Page 1

drv _usectohz(D3DK) DDl/DKI drv _ usectohz(D3DK)

NAME
drv usectohz - convert microseconds to clock ticks

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/ddi.h>

clock t drv usectohz (clock_t microsecs);
ARGUMENTS

microsecs The number of microseconds to convert to its HZ equivalent.

DESCRIPTION
drv_usectohz converts a length of time expressed in microseconds to HZ, the
unit of time based on the the kernel parameter HZ whose value is defined in
sys/param.h. The time arguments to timeout(D3DK) and delay(D3DK) are
expressed in HZ, as well as the kernel variable lbol t, which is readable through
drv_getparm(LBOLT).

drv_usectohz is a portable way for drivers to make calls to timeout(D3DK) and
delay(D3DK) and remain binary compatible should the driver object file be made
part of a kernel that was compiled with a value of HZ different from that with
which the driver was compiled.

RETURN VALUE

LEVEL

The value returned is the number of HZ units equivalent to the microsecs argu­
ment. No error value is returned. If the HZ equivalent to microsecs is too large to
be represented as a clock_t, then the maximum clock_t value will be returned.

Base or Interrupt

SEE ALSO
drv _ hztousec(D3DK)

3/91 Page 1

drv _ usecwalt (D3DK) DDl/DKI drv _ usecwalt (D3DK)

NAME
drv_usecwait - busy-wait for specified interval

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/ddi.h>

void drv usecwait (clock_t microsecs) ;

ARGUMENT
microsecs The number of microseconds to busy-wait.

DESCRIPTION
The kernel function delay(03DK) can be used by a driver to delay for a specified
number of system ticks (given by parameter HZ in sys/param.h, which indicates
how many system ticks occur per second). There are two limitations: (1) the
granularity of the wait time is limited to 1/HZ second, which may be more time
than is needed for the delay, and (2) delay(03DK) may only be invoked with
user context and hence cannot be used at interrupt time or system initialization.

Often, drivers need to delay for only a few microseconds, waiting for a write to a
device register to be picked up by the device. In this case, even with user con­
text, delay(D30K) produces too long a wait period. The function drv_usecwait
is provided to give drivers a means of busy-waiting for a specified microsecond
count. The amount of time spent busy-waiting may be greater than the
microsecond count but will minimally be the number of microseconds specified.

Note that the driver wastes processor time by making this call since
drv_usecwait does not invoke sleep but simply busy-waits. The driver should
only make calls to drv_usecwait as needed, and only for as much time as
needed. drv_usecwait does not raise the processor interrupt level; if the driver
wishes to me1.:;k uui init:ccupi;;:,, ii i;:, iL;:, t-.::.::tpuu~it,ir;.L y i.V ~Ci. i.hi; p;iv;i~y !~·"·~!
before the call and restore it to its original value afterward.

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO
delay(03DK), timeout(D3DK), untimeout(030K)

3/91 Page 1

dump(D2DK) DDl/DKI dump(D2DK)

NAME
dump - gain access to a device crash dump routine

SYNOPSIS (Character]
tinclude <sys/types.h>
tinclude <sys/file.h>
tinclude <sys/errno.h>
tinclude <sys/open.h>
finclude <sys/cred.h>
tinclude <sys/crash.h>

int prefixdum:p (dev _ t dev, int memsize, int *seq/lag, int *startblk, int *blkcnt,
int *ptrblk, int *chunksize, int (**dumpfunc) ());

ARGUMENTS
dev A device number.

memsize Amount of physical memory to be dumped.

seqflag Pointer to a flag which the driver sets to indicate whether the device is
sequential or random access. The settings are defined in crash. h.
Valid settings are:

startblk

blkcnt

ptrblk

CRASH RAND DEVICE the device is random access - -
CRASH_SEQ_DEVICE the device is sequential access

Pointer which returns where the first block should be written for ran­
dom access or returns 0 for sequential access.

Pointer which returns the number of blocks which should be written
to the device.

Pointer which returns where the pointer block should be written for
random access or returns 0 for sequential access.

chunksize Pointer which returns the number of blocks the device can accept per
call to dumpfunc.

dumpfunc Pointer which returns the address of the routine which will do the
writing for the crash dump. The routine's interface is as follows:

int dumpfunc (dev_t dev, int blkno, paddr_t phys_addr, int cmd, int
nblocks);

dev

blkno

phys_addr

cmd

A device number.

The block number to write to.

The physical memory address to read from.

The command to perform, valid commands are:

CRASH DOIO RD read from device

CRASH DOIO WR write to device

CRASH DOIO EOT do device specific action(s) at end of
crash dump

3/91 Page 1

dump(D2DK) DDl/DKI dump(D2DK)

nblocks The number of blocks to transfer.

The return value is o for success and -1 if an error occurred.

DESCRIPTION
The driver's dump routine is called by the kernel through the cdevsw or bdevsw
entry for the device during a panic via cmn_err(D301<). The routine should ver­
ify that the minor number component of dev is valid, that dumping to this device
is still valid, that the device is ready to perform a crash dump, and set the vari­
ous parameters depending on whether it is accessed sequentially or by random
access. If the device is a disk, only dumping to a partition tagged with V _SWAP
is allowed.

The routine returned by dump to do the 1/0 should transfer the data to the device
and return when finished. If the device transfers by sequential access, this rou­
tine must also accept the command CRASH _Doro _EOT to write the Ear mark(s) or
take other device specific actions to finish the crash dump.

All blocks are specified as 512 bytes, the device is responsible for converting to
the appropriate logical block size.

RETURN VALUE
The dump routine should return 0 for success, or -1 for failure.

SEE ALSO
open(02DI<), close(D2DK), cmn _ err(D3DI<)

Page 2 3191

dupb(D3DK) DDl/DKl(STREAMS) dupb(D3DK)

NAME
dupb - duplicate a message block descriptor

SYNOPSIS
#include <sys/stream.h>

mblk t *dupb (mblk _ t *bp) ;

ARGUMENTS
"bp Pointer to the message block to be duplicated. mblk t is an instance

of the msgb(04DK) structure.

DESCRIPTION
dupb creates a new mblk _ t structure to reference the message block pointed to by
bp. Unlike copyb(030K), dupb does not copy the information in the data block,
but creates a new structure to point to it.
The following figure shows how the db_ref field of the dblk_t structure has
been changed from 1 to 2, reflecting the increase in the number of references to
the data block. The new mblk t contains the same information as the first. Note
that b_rptr and b_wptr are copied from bp, and that db_ref is incremented.

db_ref (1)
db base

db ref
db base

(2)

bp bp

0 L
nbp

b_datap b_datap b_datap

.--- b_rptr b_rptr 1-i
r- b_wptr b_wptr

I

~
..........

~

...;;. E-

Before After

nbp=dupb (bp) ;

RETURN VALUE
If successful, dupb returns a pointer to the new message block. Otherwise, it
returns a NULL pointer.

LEVEL
Base or Interrupt

SEE ALSO
copyb(030K)

3/91 Page 1

dupb(D3DK) DDl/DKI(STREAMS) dupb(D3DK)

EXAMPLE

Page 2

This srv(D3DK) (service) routine adds a header to all M_DATA messages before
passing them along. The message block for the header was allocated elsewhere.
For each message on the queue, if it is a priority message, pass it along immedi­
ately (lines 9-10). Otherwise, if it is anything other than an M_DATA message (line
11), and if it can be sent along (line 12), then do so (line 13). Otherwise, put the
message back on the queue and return (lines 15-16). For all M_DATA messages,
first check to see if the stream is flow-controlled (line 19). If it is, put the message
back on the queue and return (line 22); if it is not, the header block is duplicated
Oine 20). If dupb fails, the service routine is rescheduled in one tenth of a second
(HZ/10) with timeout and then we return (lines 23-24). If dupb succeeds, link
the M _DATA message to it Oine 26) and pass it along (line 27). dupb can be used
here instead of copyb(D3DK) because the contents of the header block are not
changed.

1 xxxsrv(q)
2 queue_t *q;
3
4 mblk _ t *mp;
5 mblk - t *bp;
6 extern mblk_t *heir;
7

8 while ((mp = getq (q)) ! = NULL) {
9 if (mp->b_datap->db_type >= QPCTL)

10 putnext (q, mp) ;
11 else if (mp->b_datap->db_type != M_DATA)
12 if (canput(q->q_next))
13 putnext (q, mp);
14 else {
1'i nnthnfr1. mn\ !

16 return;
17

18

19

20

21

22
23

24

25

26

27
28

29
30

31

32

33

34

else /* M_DATA */

if (canput(q->q_next))

bp - dupb (hdr) ;
if (bp =- NULL)

putbq (q, rrp) ;

tirneout(qenable, (long)q, HZ/10);
return;

linkb(bp, mp);
putnext (q, bp);

else {
putbq(q, mp);
return;

3/91

dupmsg (D3DK) DDl/DKl(STREAMS)

NAME
dupmsg - duplicate a message

SYNOPSIS
#include <sys/stream.h>

mblk t *dupmsg (mblk_t *mp);

ARGUMENTS
mp Pointer to the message block.

DESCRIPTION

dupmsg (D3DK)

dupmsg forms a new message by copying the message block descriptors pointed
to by mp and linking them. dupb(D3DK) is called for each message block. The
data blocks themselves are not duplicated.

RETURN VALUE
If successful, dupmsg returns a pointer to the new message block. Otherwise, it
returns a NULL pointer.

LEVEL
Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 7, "STREAMS"
copyb(D3DK), copymsg(D3DK), dupb(D3DK)

EXAMPLE
See the copyb(D3DK) function page for an example of dupmsg.

3/91 Page 1

enableok(D3DK) DDl/DKl(STREAMS)

NAME
enableok - reschedule a queue for service

SYNOPSIS
tinclude <sys/stream.h>
tinclude <sys/ddi.h>

void enableok(queue_t *q);

ARGUMENT
q A pointer to the queue to be rescheduled.

DESCRIPTION

enableok (D3DK)

The enableok function allows queue q to be rescheduled for service. It cancels
the effect of a previous use of the noenable(D3DK) function on q by turning off
the QNOENB flag in the queue.

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 7, "STREAMS"

noenable(D3DK), qenable(D30K)

EXAMPLE
The qrestart routine uses two STREAMS functions to restart a queue that has
been disabled. The enableok function turns off the QNOENB flag, allowing the
qenable(03DK) function to schedule the queue for immediate processing.

1 void

2 qrestart(rdwr q)

3 register queue_t *rdwr_q;

4

5 I
6 enableok(rdwr_q);

7 /* re-enable a queue that has been disabled */

8 (void) qenable(rdwr_q);

9
10

3/91 Page 1

esballoc (D3DK) DDl/DKl(STREAMS) esballoc(D3DK)

NAME
esballoc - allocate a message block using a shared buffer

SYNOPSIS
tinclude <sys/stream.h>

mblk t *esballoc (unsigned char *base, int sfae, int pri,
- frtn_t *fr_rtnp);

ARGUMENTS
base Address of user supplied data buffer.

size

pri

fr_rtnp

Number of bytes in data buffer.

Priority of allocation request (to be used by allocb(D3DK) function,
called by esballoc).

Free routine data structure.

DESCRIPTION
esballoc creates a SfREAMS message and attaches a user-supplied data buffer
in place of a STREAMS data buffer. It calls allocb(D3DK) to get a message and
data block header only. The user-supplied data buffer, pointed to by base, is used
as the data buffer for the message.

The free_ rtn structure is referenced by the dp _ freep member of the clatab
structure. When freeb(D3DK) is called to free the message, the driver's message
freeing routine (referenced through the free_rtn structure) is called, with argu­
ments, to free the data buffer.

The free_ rtn structure has the following declaration:

struct free_rtn {
void (*free func) (); /*user's freeing routine*/
char *free_arg; /* arguments to free_func() */

typedef struct free_rtn frtn_t;

Instead i;>f requiring a specific number of arguments, the free_arg field is
defined of type char *. This way, the driver can pass a pointer to a structure if
more than one argument is needed.

NOTE: The free_func function must be defined in kernel space, should be
declared void and accept one argument. It has no user context and must not
sleep.

RETURN VALUE

LEVEL

On success, a pointer to the newly allocated message block is returned. On
failure, NULL is returned.

Base or Interrupt

SEE ALSO
allocb(D3DK), freeb(D3DK), clatab(D4DK), free_ rtn(D4DK)

3/91 Page 1

I

esbbcall (D3DK) DDl/DKl(STREAMS) esbbcall (D3DK)

NAME
esbbcall - call function when buffer is available

SYNOPSIS
tinclude <sys/stream.h>

mblk_t *esbbcall (int pri, int June, long arg);
ARGUMENTS

pri Priority of allocation request (to be used by allocb(D3DK) function,
called by esbbcall)

June
arg

Function to be called when buffer becomes available.

Argument to June.
DESCRIPTION

esbbcall, like bufcall(D3DK), serves as a timeout(D3DK) call of indeterminate
length. If esballoc(D3DK) is unable to allocate a message and data block header
to go with its externally supplied data buffer, esbbcall can be used to schedule
the routine June, to be called with the argument arg when a buffer becomes avail­
able. June may be a routine that calls esbbcall or it may be another kernel func­
tion.

RETURN VALUE
On success, 1 is returned. On failure, O is returned.

LEVEL
Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 7, "STREAMS"

allocb(D3DK), bufcall(D3DK), datab(D4DK), esballoc(D3DK)

3/91 Page 1

etolmajor(D3D) (DDI) etolmaJor (D3D)

NAME
etoimajor - convert external to internal major device number

SYNOPSIS
tinclude <ays/typea.h>
tinclude <sys/ddi.h>

int etoimajor(major_t emaj);
ARGUMENT

emaj
DESCRIPTION

An external major number.

etoimajor converts the external major number (etnaJ) to an internal major
number.

RETURN VALUE

LEVEL

etoimajor returns the internal major number or NODEV if the external major
number exceeds the bdevsw and cdevsw count.

Base or Interrupt

SEE ALSO

3191

getemajor(D30), getemi.nor(D30), getmajor(D3DK), getminor(D3DK),
itoemajor(030), makedevice(D3DK)

Page 1

fluahband (D3DK) DOI/OKI(STREAMS)

NAME
flushband - flush messages for a specified priority band

SYNOPSIS
tinclude <sys/stream.h>

void flushband(queue_t q,unsigned char pri,int fiag);
ARGUMENTS

q
pri

fiag

Pointer to the queue.

Priority of messages to be flushed.

Valid flag values are:

fluahband (D3DK)

FLUSHDATA Flush only data messages (types M_DATA, M_DELAY,
M_PROTO, and M_PCPROTO).

FLUSHALL Flush all messages.

DESCRIPTION
The flushband function flushes messages associated with the priority band
specified by pri. If pri is 0, only normal and high priority messages are flushed.
Otherwise, messages are flushed from the band pri according to the value of flag.

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 7, "STREAMS"

flushq(D3DK)

3/91 Page 1

flushq (D3DK) DOI/OKI(STREAMS) flushq (03DK)

NAME
flushq- remove messages from a queue

SYNOPSIS
tinclude <sys/stream.h>

void flushq (queue_t *q, int flag);
ARGUMENTS

*q Pointer to the queue to be flushed.

flag Valid flag values are:

FLUSHDATA Flush only data messages (types M_DATA, M_DELAY,
M_PROTO, and M_PCPROTO).

FLUS.HALL Flush all messages.

DESCRIPTION
flushq frees messages and their associated data structures by calling
freemsg(D3DK). If the queue's count falls below the low water mark and
QWANTW is set, the nearest upstream service procedure is enabled.

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 7, "STREAMS"

freemsg(D3DK), putq(D3DK)

EXAMPLE

3/91

This example depicts the canonical flushing code for STREAMS modules. The
module has a write service procedure and potentially has messages on the queue.
If it receives an M _FLUSH message, and if the FLUSHR bit is on in the first byte of
the message (line 10), then the read queue is flushed (line 11). If the FLUSHW bit is
on (line 12), then the write queue is flushed (line 13). Then the message is passed
along to the next entity in the stream (line 14). See the example for
qreply(D3DK) for the canonical flushing code for drivers.

1 /*

2 * Module write-side put procedure.

3 */
4 xxxwput (q, mp)
5 queue_t *q;
6 mblk _ t *mp;
7 {

8

9

10
11

12

13
14

switch(mp->b_datap->db_type)
case M_FLUSH:

if (*rrp->b _ rptr & FLUSHR)
flushq(RD{q), FLUSHALL);

if (*rrp->b_rptr & FLUSHW)
flushq(q, FLUSHALL);

putnext (q, mp) ;

Page 1

' I

flushq (D3DK) DOI/OKI(STREAMS) flushq (D3DK)

15 break;

16
17 I

Page 2 3/91

freeb(D3DK) DDl/DKl(STREAMS) freeb(D3DK)

NAME
freeb - free a message block

SYNOPSIS
#include <sys/stream.h>

void freeb(mblk_t *bp);
ARGUMENTS

bp Pointer to the message block to be deallocated. mblk t is an instance
of the msgb(D4DK) structure.

DESCRIPTION
freeb deallocates a message block. If the reference count of the db_ref member
of the datab(D4DK) structure is greater than 1, freeb decrements the count. If
db_ref equals 1, it deallocates the message block and the corresponding data
block and buffer.

If the data buffer to be freed was allocated with the esballoc(D3DK) function,
the buffer may be a non-STREAMS resource. In that case, the driver must be
notified that the attached data buffer needs to be freed, and run its own freeing
routine. To make this process independent of the driver used in the stream,
freeb finds the free rtn(D4DK) structure associated with the buffer. The
free_rtn(D4DK) structure contains a pointer to the driver-dependent routine,
which releases the buffer. Once this is accomplished, freeb releases the
STREAMS resources associated with the buffer.

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 7, "STREAMS"

allocb(D3DK), dupb(03DK), esballoc(D3DK), free_ rtn(D4DK)

EXAMPLE
See the copyb(03DK) function page for an example of freeb.

3/91 Page 1

freemsg(D3DK) DDl/DKl(STREAMS)

NAME
freemsg - free all message blocks in a message

SYNOPSIS
tinclude <sys/stream.h>

int freemsg(mblk_t *mp);
ARGUMENT

freemsg (D3DK)

mp Pointer to the message blocks to be deallocated. mblk_t is an instance
of the msgb(D4DK) structure.

DESCRIPTION
freemsg calls freeb(D3DK) to free all message and data blocks associated with
the message pointed to by mp.

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 7, "STREAMS"

freeb(D3DK)

EXAMPLE
See the copymsg(D3DK) function page for an example of freemsg.

3/91 Page 1

freerbuf(D3DK} DDl/DKI

NAME
freerbuf - free a raw buffer header

SYNOPSIS
tinclude <sys/buf.h>
#include <sys/ddi.h>

void freerbuf(struct buf *bp);
ARGUMENTS

freerbuf(D3DK}

•bp Pointer to a previously allocated buffer header structure.

DESCRIPTION
freerbuf frees a raw buffer header previously allocated by getrbuf(D3DK).
This function does not sleep and so may be called from an interrupt routine.

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO
getrbuf(D3DK), kmem _ alloc(D3DK), kmem _ free(D3DK), kmem _ zalloc(D3DK)

3/91 Page 1

gatamaJor (D3D) (DDI)

NAME
getemajor - get external major device number

SYNOPSIS
finclude <sys/types.h>
tinclude <sys/ddi.h>

major_t getemajor(dev_t dev);

ARGUMENT

gatamajor (D3D)

dev An external device number (contains both the major and minor
number).

DESCRIPTION
getemajor returns the external major number given a device number, deo.

RETURN VALUE
The external major number.

LEVEL
Base or Interrupt

SEE ALSO
geteminor(D30), etoimajor(030), getmajor(D3DK), makedevice(D3DK),
getminor(D3DK)

3/91 Page 1

getemlnor(D3D) (DOI) getemlnor(D3D)

NAME
geteminor - get external minor device number

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/ddi.h>

minor t geteminor(dev_t dev);
ARGUMENT

dev External device number.

DESCRIPTION
geteminor returns the external minor number given a device number, dev.

RETURN VALUE
The external minor number.

LEVEL
Base or Interrupt

SEE ALSO

3191

getemajor(D3D), etoimajor(D3D), getmajor(D3DK), makedevice(D3DK),
getminor(D3DK)

Page 1

gatarror (D3DK)

NAME
geterror - return 1/0 error

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/buf.h>

DDl/DKI

int geterror(struct buf *bp);

gatarror (D3DK)

ARGUMENT
bp Pointer to the block interface buffer structure defined in buf • h.

DESCRIPTION
geterror is called to retrieve the error number from the error field of the buffer
header structure.

RETURN VALUE

LEVEL

An error number indicating the error condition of the 1/0 request is returned. If
the 1/0 requested is completed successfully, O is returned.

Base or Interrupt

SEE ALSO
buf(D401<)

3/91 Page 1

getmajor (D3DK) DDl/DKI getmajor {D3DK)

NAME
getmajor - get major or internal major device number

SYNOPSIS
finclude <sys/types.h>
iinclude <sys/mkdev.h>
iinclude <sys/ddi.h>

major_t getmajor(dev_t dev);

ARGUMENT
dev Device number.

DESCRIPTION
The getmajor function extracts either the major number or the internal major
number from a device number. For the MC88000 and MC68000 architectures,
getmajor returns the internal major number. For architectures that do not make
a distinction between internal and external major numbers, getmajor returns the
major number.

RETURN VALUE

LEVEL

The major number or internal major number.

NOTE: No validty checking is performed. If dev is invalid, an invalid number is
returned.

Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 3, ''Drivers in the UNIX Operating System"

makedevice(D3DK), getminor(D3DK)

3/91 Page 1

getmlnor (D3DK) DOI/OKI getmlnor(D3DK)

NAME
getminor - get minor or internal minor device number

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/mkdev.h>
tinclude <sys/ddi.h>

minor t getminor (dev_t dev);

ARGUMENT
dev Device number.

DESCRIPTION
The getminor function extracts either the minor number or the internal minor
number from a device number. For the MC88000 and MC68000 architectures,
getminor returns the internal minor number. For architectures that do not make
a distinction between internal and external minor numbers, getminor returns the
minor number.

RETURN VALUE

LEVEL

The minor number or internal minor number.

NOTE: No validty checking is performed. If dev is invalid, an invalid number is
returned.

Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 3, ''Drivers in the UNIX Operating System"

getmajor(D3DK), makedevice(D3DK)

3/91 Page 1

getq(D3DK) DDUDKl(STREAMS) getq(D3DK)

NAME
getq - get the next message from a queue

SYNOPSIS
tinclude <sys/stream.h>

mblk t *getq(queue_t *q);

ARGUMENTS
q Pointer to the queue from which the message is to be retrieved.

DESCRIPTION
getq is used by a service (srv(D2DK)) routine to retrieve its enqueued messages.

A module or driver may include a service routine to process enqueued messages.
Once the STREAMS scheduler calls srv it must process all enqueued messages,
unless prevented by flow control. getq gets the next available message from the
top of the queue pointed to by q. It should be called in a while loop that should
be exited only when there are no more messages.

getq turns the QWANTR flag off when a queue is being read, and turns QWANTR on
when there are no more messages. When QWANTW is set it means an attempt has
been made to write to the queue while it was blocked by flow control. If this is
the case, getq back-enables (restarts) the service routine once it falls below the
low water mark.

RETURN VALUE

LEVEL

If there is a message to retrieve, getq returns a pointer to it. If no message is
queued, getq returns a NULL pointer.

Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 7, "STREAMS"

Programmer's Guide: STREAMS, Chapter 5, ''Messages"

bcanput(D3DK), canput(D30K), putbq(D3DK), putq(D3DK), qenable(D3DK),
srv(D2DK)

EXAMPLE
See the dupb(D3DK) function page for an example of getq.

3/91 Page 1

J

getrbuf (D3DK) DDl/DKI getrbuf (D3DK)

NAME
getrbuf - get a raw buffer header

SYNOPSIS
tinclude <sys/buf.h>
tinclude <sys/kmem.h>
tinclude <sys/ddi.h>

struct buf *getrbuf (long sleepflag>;
ARGUMENT

sleepftag Indicates whether driver should sleep for free space.

DESCRIPTION
getrbuf allocates the space for a buffer header to the caller. It is used in cases
where a block driver is performing raw (character interface) 1/0 and needs to set
up a buffer header that is not associated with the buffer cache.

getrbuf calls kmem_alloc(D3DK) to perform the memory allocation.
kmem _ alloc requires the information included in the sleep/lag argument. If
sleep/lag is set to KM_SLEEP, the driver may sleep until the space is freed up. If
sleepftag is set to KM_NOSLEEP, the driver will not sleep. In either case, a pointer
to the allocated space is returned or NULL to indicate that no space was available.

RETURN VALUE
A pointer to the allocated buffer header, or NULL if no space is available.

LEVEL
Base or Interrupt (must not sleep if calling from interrupt routine)

SEE ALSO
freerbuf(D3DK), kmem_alloc(D3DK), kmem_free(D3DK)

3/91 Page 1

hat_getkpfnum (D3K) DKI hat_getkpfnum (D3K)

NAME
hat _getkpfnum - get page frame number for kernel address

SYNOPSIS
finclude <sys/vrn.h>
finclude <sys/types.h>

u_int hat_getkpfnum(caddr_t addr);

ARGUMENT
addr The kernel virtual address for which the page frame number is to be

returned.

DESCRIPTION
Drivers implementing the mmap(D2K} entry point must return -1 (for error} or the
page frame number corresponding to the virtual address of the device memory
addr. This frame number can be obtained by a call to hat _getkpfnurrL

RETURN VALUE

LEVEL

The page frame number corresponding to virtual address addr. There is no spe­
cial error. return value; invalid addresses will produce meaningless return values.

Base or interrupt. Although there is no reason why hat _getkpfnum cannot be
called at interrupt level, there is no need since it only needs to be called from
mmap(D2K}.

SEE ALSO
mmap(D2K}, page_ numtopp(D2DK}, page _pptonwd:D2DK}

3/91 Page 1

hdeeqd(D3D) (DDI) hdeeqd (D3D)

NAME
hdeeqd - initialize hard disk error logging

SYNOPSIS
tinclude <sys/types.h>
#include <sys/hdelog.h>
tinclude <sys/mkdev.h>

int hdeeqd(dev_t dev, claddr_t pdsno, short edtyp);

ARGUMENTS
dev External device number (contains both the major number and the

minor number). The driver must call the expdev macro (defined in
sysmacros.h) to compress the device number.

pdsno Physical description sector

edtyp Error device type. The valid values are
EQD _ EFC external floppy controller
EQD _ EHDC external hard disk controller
EQD _ID integral disk drive
EQD _IF integral floppy disk drive
EQD _TAPE cartridge tape drive

DESCRIPTION
hdeeqd initializes information in the hard disk error logging table for the device
specified by dev. This function is called once per device.
NOTE: This function is not part of the default set of kernel functions. Ensure that
the HDE bootable object module is placed in the /boot directory.

RETURN VALUE

LEVEL

3/91

Under all conditions, a o is returned. However, internal errors can occur in
hdeeqd causing a warning message to display on the console. Errors occur in the
following conditions:

The internal major device number is greater than or equal to the number of
the controllers, called cdevcnt, which is assigned by !boot when the
operating system is loaded. The message is

WARNING: hdeeqd: major (ddev) = int-major (>-cdevcnt)

int-major is the internal major device number.

The count of used disk slots in the error logging table exceeds the number
of available slots. The message is

WARNING: Too few HDE equipped slots
bad block handling skipped for maj/mi.n = ext-maj, ext-min

ext-maj and ext-min are the external major and minor numbers.

Base or Interrupt

Page 1

hdeeqd(D3D) (DOI) hdeeqd(D3D)

SEE ALSO
BCI Driver Development Guide, Chapter 12, "Error Reporting"
hdelog(D3D), hdedata(D40)

EXAMPLE

Page 2

WheI\ a device is opened for the first time, the driver open(D2DK) or ini t(02D)
routines (open in this example) must identify the device and set up controlling
information about the device. In this example, the information is kept on a con­
trolling sector on the disk. If the controlling sector does not exist, the informa­
tion is encoded as a static table in the driver.

1

2
3
4

5

6

7

8
9

10

11

12

13

14
15

16

17

18

19

20
21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

fdefine lOC_CNTLBLKNO 0
stru~ device

I* controlling sector block number */
I* physical device registers layout */

char
us ho rt
char
char

reserve[4J; /*reserve space on card */
control;
status;
ivec_num;

paddr_t addr;
int count;

J; /* end device •/
struct xx

/* physical device control word */

I* physical device status word •/
I* device interrupt vector number in •/
I* OxfO; subdevice reporting in OxOf */

/* data address to be read/written •/
I* amount of data to be read/written */

I* logical device structure •/
struct buf •xx_head; I* I/O buffer queue head pointer *I
struct buf •xx_tail; I* I/O buffer queue tail pointer *I
short xx_flag; I* logical status flag •/
struct hdedata xx_edata; /* disk error log error record •/
struct iostat xx_stat; /* unit I/O statistics for */

I* establishing an error rate during error logging */

}; /* end xx_•/

struct xx_info I* infoimation on control sector •/
long xx_id; /* disk device id code •/

long xx_cyl; I* total number of cylinders •/

long xx_trk; /* number of tracks per cylinder */
long xx_sec; /* number of sectors per track •/

char xx_serial[l2J; I* device serial number *I
}; /* end xx_info */

extern struct xx_ xx_devtab[]; /* logical device structures table•/
extern struct device •xx_addr[J; /*physical dev registers location•/
extern struct xx_info xx_info[J; /*device control infoimation */
extern int xx_cnt;

xx_open (dev, flag, otyp, crp)
dev_t *dev;
int flag, otype;
struct cred *crp;

register struct xx_ *dp;
register struct device •rp;

/* number of devices *I

3/91

hdeeqd(D3D) (DOI) hdeeqd(D3D)

3191

39

40
41
42 if

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

register int unit;

unit • getminor(dev) >> 4; /* get drive unit number */
dp = &xx_devtab[unit]; /*get logical device information*/
((dp->xx_flag & XX_OPEN) •• 0) { /*if first time device opened*/
register struct buf *~;
hdeeqd(dev, XX_CNTLBLl<NO, EQD_ID); /*initialize error logging */
bp • kmem_alloc(l024, KM_NOSLEEP); /*get control sector buffer*/
bp->b_flags - B_READ; /* set up buffer to read */
bp->b_blkno • XX_CNTLBLKNO; /* control sector from disk */
bp->b_count • 512;
bp->b_edev • dev;
xx_strategy(bp);
biowait (bp);
if ((bp->b_flags & B_ERROR) != 0

/* read control sector*/
I* wait for read to complete */

{

/* if data error occurred, display message on console */
xx_print (dev, "xx_ open: cannot read control sector");

else (/* copy control sector data to info table */

bcopy(bp->b_un.b_addr, &xx_info[unit], sizeof(struct xx_info));
hdeeqd(dev, XX_CNTLBLl<NO, EQD_ID); /*start error logging*/
dp->flag I= XX_OPEN; /* indicate device open */

/* endif •/
brelse (bp); /* release system buffer •/

/* endif */

If this is the first open, hdeeqd (line 44) is used to initiate error logging for the
device. A system buffer is allocated (line 45) and the driver reads the controlling
sector from the xx strategy routine (line 50). If an error occurred on the read
attempt, an error - message is displayed (line 54) and an error condition is

• . 1 ,...,.,,_ - ··-·-~- - •'- - ..J.....: ____ ---·~- !-£ -- ... L~ - t-,..,- i.\.. ,..,...,..J...,,.,.11.: ... rr c-nMn•
C~UJJlt:U. \.J\.Jlt:::I VV.l~f L.ll~ Y11Y~.l ~¥~_, ill&U.&&.u.~".1.UJ.l .&&'V&&1.,_ -,,,., 0 ... _._, ...

with bcopy (line 56) and indicates the device has been opened. Finally, the sys­
tem buffer is released (line 60).

Page 3

hdelog(D3D) (DOI) hdelog(D3D)

NAME
hdelog - log hard disk error

SYNOPSIS
#include <sys/types.h>
#include <sys/hdelog.h>
#include <sys/mkdev.h>

int hdelog (struct hdedata *eptr) ;
ARGUMENT

eptr Pointer to the hdedata(D4D) structure defined in sys/hdelog.h. The
driver developer places information in the structure before hdelog is
called.

DESCRIPTION
hdelog logs a hard disk error in the error logging queue and displays a warning
message on the console to alert the operator to the problem.

The console message is

WARNING: severity readtype hard disk error:
maj/min = external-major-num, external-minor-num

where severity is "marginal" or "unreadable", and read.type is "CRC" (cyclic
redundancy check) or "ECC" (error check and correction).

hdeeqd(D3D) must be called once before this function to initialize error logging.
hdelog logs disk drive media errors. NOI'E: This function is not part of the
default kernel. Ensure that the HOE bootable object module is placed in the /boot
directory.

Before calling this function, values must be assigned to the hdedata(D4D) struc­
ture. These members include the expanded device number; the disk pack serial
number; the physical block address; the type of read operation CRC or ECC;
whether the error is marginal or whether the disk is unreadable; the number of
unreadable tries; the bit width of the corrected error; and a time stamp.

RETURN VALUE

LEVEL

Under all conditions,a O is returned. However,an internal error can occur in hde­
log causing a warning message to display on the console. This error occurs
when the error logging table is full. In this case, the usual disk error warning
message is prefaced with

WARNING: HOE queue full, following report not logged

Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 12, "Error Reporting"

hdeeqd(D3D), hdedata(D4D)

EXAMPLE

3/91

A driver interrupt routine must check for data transfer errors (called data checks).
When a data check occurs (reported by the device in the status or error register),
the driver determines if there have been sufficient attempts to resolve the error.

Page 1

hdelog (030) (DOI) hdelog (030)

Page 2

If so, the driver abandons the 1/0 request by marking the buffer as being in
error, logging an unresolved error (line 60), and marking the 1/0 operation com­
plete (line 61). When an error persists in spite of multiple attempts to resolve it,
the driver logs marginal errors (line 75) and attempts the 1/0 operation again.
The driver may try to resolve the error with software by using the error correc­
tion bits in an error check and correction (ECC) register. See hdedata(D4D) for a
description of the xx_edata structure shown in this example line 17).

2

3

4

5

6

7

8

9

10

11

st ruct device {

char reserve [41 ;
ushort control;

char status;

char ivec_num;

paddr_t addr;
int count;

); /* end device */

12 struct xx_
13

14
15
16

17

18
19

struct buf

struct buf
short

*xx_head;
•xx_tail;
xx_flag;

struct hdedata xx_edata;
struct iostat xx_stat;

20) ; I* end xx * /

21

/* layout of physical device regs */
/* reserve space on card * /
/* physical device control word */

/* physical device status word */

I* device interrupt vector no. in */
/* OxfO; subdevice in OxOf *I
/* address of data read/written */
/* amount of data read/written */

I* logical device structure */

/* I/O buffer queue head pointer */

/* I/0 buffer queue tail pointer */
/* logical status flag */
/* hard disk error record */

/* unit I/0 stats for setting an */
/* error rate during error logging */

23

24
25
26

27

28

/* information on disk control sector */

long
long
long
long
char

xx_id;
xx_cyl;
xx_trk;
xx_sec;

xx_serial[l2];

29); /* end xx info */

/* device id code
/* total number of cylinders

*/

*I
/* number of tracks per cylinder */

I* number of sectors per track */
I* device serial number */

30 extern struct xx xx_devtab[];/* logical dev structures table */

31 extern struct device *xx_addr[]; /*physical dev register location*/

32 extern struct xx_info xx_info[]; /*device control information */

33 extern int
34 xx_int{board)

xx_cnt; /* number of devices *I

35

36

int board;

37 register struct device *rp = xx_addr[board];

38 register struct xx *dp;

39 register struct buf *bp;
40

41

42

register int unit;

unit= {board<< 4) I (rp->ivec_num & Oxf);

/* get dev registers */

/* make unit number */

3/91

hdelog (030) (DOI) hdelog (030)

3/91

43 dp = &xx_devtab[unit];
44 if ((rp->status & DATACHK) != 0) {
45 /* if data check error occurred */
46 if {++dp->xx_edata.badrtcnt > XX_MAXTRY) /* if sufficient */
4 7 /* attempts have been made, then abandon the I/0 request *I
48 bp = dp->xx_head; /* get buffer fran I/0 queue */
49

50
51
52
53

54
55
56

57
58
59
60

61

62

dp->xx_head = bp->av_forw; /* remove buffer fran I/O queue •/
bp->b_flags I= B_ERROR; /*mark buffer as being in error•/
bp->b_error - EIO; /* supply error condition •/

/* supply information needed for error logging •/
dp->xx_edata.diskdev = bp->b_edev; /• device number */
dp->xx_edata.blkaddr = bp->b_blkno; /• block no. in error •/
dp->xx_edata.readtype = HDEECC; /* error type: error check */
dp->xx_edata.severity = HDEUNRD; /• data was unreadable
dp->xx_edata.bitwidth = O;

•/

dp->xx_edata.timestmp =time; /* time recording occurred •/
bcopy(dp->xx_edata.dskserno, xx_info[unit].serial, 12);
hdelog(&dp->xx_edata); /* log abandoned I/0 operations*/
biodone(bp); /*mark I/O operation complete */

63 else if(dp->xx_edata.badrtcnt > 1) {/* if more than one retry*/
64 /* log error as marginal */
65 bp = dp->xx_head; ,/* get buffer from I/O queue but leave on */
66 /* I/0 queue so that I/0 operation is repeated •/
67 /• supply information needed for error logging */
68

69
70

71

72

73

74
75

dp->xx_edata.diskdev = bp->b_edev; /* device number •/
dp->xx_edata.blkaddr = bP->b_blkno; /* error block number •/
dp->xx_edata.readtype = HDEECC; /* err. type: error check •/
dp->xx_edata.severity = HDEMARG; /* marginal error •/
dp->xx_edata.bitwidth = O;
dp->xx_edata.timestmp - time; /• time recording occurred •/
bcopy{dp->xx_edata.dskserno, xx_info[unit].serial, 12);
hdelog(&dp->xx_edata); ;• log data check error •/

76 /* endif *I
77 /* endif */
78

Page 3

lomapln (D3DK) DOI/OKI

NAME
iomapin - map an 1/0 address (device)

SYNOPSIS
iinclude <sys/types.h>
iinclude <sys/buf.h>
tinclude <sys/iosystm.h>

int iomapin (unsigned int bus, addr t addr, int len);

ARGUMENTS
bus
addr

I/ 0 bus where device resides.

Address on bus.

len Amount to be mapped in.

DESCRIPTION

lomapln(D3DK)

In UNIX System V /88, if a device is present, it can be mapped in via iomapin.
bus is the 1/0 bus where the device resides (for example, VME_Al6 or VME_A32).
iomapin may use any leftover data BATCs to map the area 1-1, or it may use
seg_kmem to map the device into the kernel virtual segment.

In, devices are mapped in 1-1 and iomapin simply returns the address (thus, it's
essentially a no-op).

RETURN VALUE
The address used to access the device mapped in.

LEVEL
Base

SEE ALSO
ioprobe(03DK)

3/91 Page 1

lomem_ alloc (D3DK) DDl/DKI lomem_alloc(D3DK)

NAME
iomem _ alloc - allocate physically contiguous memory

SYNOPSIS
tinclude <aya/typea.h>
tinclude <aya/buf.h>
tinclude <aya/ioayatm.h>

int iomem_alloc (int nbytes, int flags) ;

ARGUMENTS
nbytes size, in bytes, of the request

flags special processing request

DESCRIPTION
The memory returned is physically contiguous and virtually mapped (no guaran­
tee of 1:1 mapping).

iomem alloc accepts the flags IOM_NOSLEEP and IOM_NOCACHE. The
IOM _ NOSLEEP flag should be set if the requester will tolerate waiting for the
request memory. The IOM_NOCACHE flag should be set if the requested pages
should be marked as cache-inhibited after they have been successfully allocated.
Because iomem_alloc fails (returning NULL) when the requested number of con­
tiguous pages cannot be found, it should be called at system initialization only.

NOTE: Memory allocated by iomem_alloc is not paged. Available memory is
therefore limited. Excessive use of this memory is likely to affect overall system
performance.

RETURN VALUE

LEVEL

If successful, iomem_alloc returns the address of the first byte of the contiguous
memory allocated. On UNIX System V /88, NULL is returned if IOM _ NOSLEEP is
set and memory cannot be allocated.

Base.

SEE ALSO
iomem _ free(D3DK), kmem _ alloc(D3DK)

3/91 Page 1

lomem _free (D3DK) DOI/DK.I

NAME
iomem_free - free memory allocated by iomem_alloc

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/buf.h>
tinclude <sys/iosystm.h>

int iomem_free(caddr_t *addr, int nbytes);

ARGUMENTS
"addr

nbytes

DESCRIPTION

pointer to the virtual address

size, in bytes, of resource released

lomem _free (D3DK)

iomem_free is used to free memory allocated by iomem_alloc. Repetitious use
of alloc/free operations is not advised.

LEVEL
Base.

SEE ALSO
iomem _ alloc(D3DK), kmem _ free(D3DK)

3/91 Page 1

loprobe (D3DK) DDl/DKI loprobe (D3DK)

NAME
ioprobe - probe an 1/0 address for a device

SYNOPSIS
UNIX System VI 68:

tinclude <sys/types.h>
tinclude <sys/buf.h>
finclude <sys/iosystm.h>

int ioprobe(u_int access, addr_t addr, u int *data);

UNIX System V /88:

tinclude <sys/types.h>
tinclude <sys/buf.h>
tinclude <sys/iosystm.h>

int ioprobe(u_int bus, addr_t addr);

ARGUMENTS
bus The 1/0 bus to probe (UNIX System V /88 only).

access The type of probe desired (UNIX System V /68 only).

addr The Address to probe.

data The data read or written by ioprobe (UNIX System V /68 only).

DESCRIPTION

3/91

ioprobe is used in driver initialization routines to probe for a controller at addr.

On UNIX System VI 68, the controller may be probed in different ways depend­
ing on the value of access. The following constants are used to define the access
type:

!OP READ 0
!OP WRITE 1
!OP BYTE 2
!OP-SHORT 4
!OP LONG 6
IOP DEFBUS 0

ioprobe is called with an access value that is a combination (bit-wise "or") of
these constants. Acceptable access values (defined in sys/iosystm.h) and the
resulting behavior of ioprobe follow:

IOP_READ I IOP_BYTEI IOP_DEFBUS Read a byte from addr.

IOP_READIIOP_SHORTIIOP_DEFBUS

IOP_READIIOP_LONGIIOP_DEFBUS

Read an unsigned short integer from
addr.

Read an unsigned long integer from
addr.

Page 1

loproba (D3DK) DDl/DKI

IOP_WRITEIIOP_BYTEIIOP_DEFBUS

IOP_WRITEIIOP_SHORTIIOP_DEFBUS

IOP_WRITEIIOP_LONGIIOP_DEFBUS

Write a byte to addr.

Write a short to addr.

Write a long to addr.

loproba (D3DK)

On UNIX System V /88, a specific bus may be selected when ioprobe is called.
bus (defined in sys/iosystm.h) may be one of the following:

VME Al6 Ox4
VME-A24 OxS
VME A32 Ox6

If addr is invalid or nonexistent, ioprobe returns -1.

RETURN VALUE
The address of the device, or -1 if no device responded.

LEVEL
Base

SEE ALSO
iomapin(D3DK)

Page 2 3191

lnsq(D3DK) DDl/DKl(STREAMS) lnsq(D3DK)

NAME
insq - insert a message into a queue

SYNOPSIS
tinclude <sys/stream.h>

int insq(queue_t *q,mblk_t *emp, mblk_t *nmp);
ARGUMENTS

q Pointer to the queue containing message emp.
emp Enqueued message before which the new message is to be inserted

(mblk _ t is an instance of the msgb(D40K) structure).

nmp Message to be inserted.

DESCRIPTION
insq inserts a message into a queue. The message to be inserted, nmp, is placed
in q immediately before the message emp. If emp is NULL, the new message is
placed at the end of the queue. The queue class of the new message is ignored.
All flow control parameters are updated. The service procedure is enabled unless
QNOENB is set.

CAUTION: If emp is non-NULL, it must point to a message on q or a system panic
could result.

RETURN VALUE
insq returns 1 on success, and o on failure.

LEVEL
Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 7, "STREAMS"

EXAMPLE

3/91

This routine illustrates the steps a transport provider may take to place expedited
data ahead of normal data on a queue (assume all M_DATA messages are con­
verted into M_PROTO T_DATA_REQ messages). Normal T_DATA_REQ messages are
just placed on the end of the queue (line 14). However, expedited T_EXDATA_REQ
messages are inserted before any normal messages already on the queue (line 28).
If there are no normal messages on the queue, bp will be NULL and we will fall
out of the for loop (line 21). insq will act like putq(D3DK) in this case.

1 #include <sys/tihdr.h>
2

3 xxxwput (q, mp)

queue_t •q;
mblk_t •mp;

6 (

7

8

9

10
11

12

union T_primitives •tp;

switch (mp->b_datap->db_type)
case M_PROTO:

tp = (union T_primitives *)mp->b_rptr;
switch (tp->type) (

Page 1

lnsq(D3DK)

Page 2

13

14
15
16
17
19
20

21

22

23

24

25

26

27

28
29
30

32

33

34

DDl/DKl(STREAMS)

case T_DATA_REQ:
putq (q, mp) :

break;

case T_EXDATA_REQ:
mblk_t *bp;
union T_primitives *ntp;

for (~ - q->q_first; bp; bp • bp->b_next) {
if (bp->b_datap->db_type -- M_PROTO) (

ntp - (union T_primitives *)bp->b_rptr;
if (ntp->type != T_EXDATA_REQ)

break;

insq(q, bp, mp);
break;

lnsq(D3DK)

3/91

ltoemajor (D3D) (DDI) ltoemajor(D3D)

NAME
itoemajor - convert internal to external major device number

SYNOPSIS
#include <sys/types.h>
tinclude <sys/ddi.h>

int itoemajor (major_t imaj, int prevemaj);
ARGUMENTS

imaj
prevemaj

An internal major number.

Most recently obtained external major number (or NODEV, if this is the
first time the function has been called).

DESCRIPTION
itoemajor converts the internal major number to the external major number.
The external-to-internal major number mapping is many-to-one, and so any inter­
nal major number may correspond to more than one external major number. By
repeatedly invoking this function and passing the most recent external major
number obtained, the driver can obtain all possible external major number values.

RETURN VALUE
External major number, or NODEV, if all have been searched

LEVEL
Base or Interrupt

SEE ALSO

3/91

getemajor(D3D), geteminor(D3D), etoimajor(D3D), getmajor(D3DK),
getminor(D3DK), makedevice(D3DK)

Page 1

kmem_alloc(D3DK) DDl/DKI kmem_alloc(D3DK)

NAME
kmem _ alloc - allocate space from kernel free memory

SYNOPSIS
#include <sys/types.h>
#include <sys/kmem.h>

_VOID *kmem_alloc (size_t size, int flag>;
ARGUMENTS

size Number of bytes to allocate.

flag Determines if caller will sleep to wait for free space. Possible flags are
KM_SIEEP to sleep while waiting for free space, and KM_NOSIEEP to
return NULL if space is not available.

DESCRIPTION
The kmem _ alloc function allocates a specified amount of kernel memory in bytes
and returns a pointer to the allocated memory. The flag argument determines
whether the function will sleep while waiting for free space to be released. If flag
has KM_ SIEEP set, the caller may sleep until free space is available. If flag has
KM_NOSIEEP set and space is not available, NULL will be returned.

NOTE: Memory allocated by kmem_alloc is not paged. Available memory is
therefore limited. Excessive use of this memory is likely to affect overall system
performance.

RETURN VALUE

LEVEL

If successful}, kmem_alloc returns a pointer to the allocated space. NULL is
returned if KM _NOSIEEP is set and memory cannot be allocated.

Base (interrupt only if KM_ NOSIEEP is set in flag>
~cc Ai..~u

3/91

freerbuf(D3DK), getrbuf(D3DK), kmem free(D3DK), kmem zalloc(D3DK),
rmalloc(D3DK), rmfree(D3DK), rminitCb3DK), nnsetwant(D3DK),
rmwant(D3DK)

Page 1

kmem_free(D3DK) DDl/DKI kmem_free(D3DK)

NAME
kmem _free - free previously allocated kernel memory

SYNOPSIS
#include <sys/types.h>
#include <sys/kmem.h>

void kmem_free (_VOID *cp, size_t size);

ARGUMENTS
cp Address of the allocated storage from which to return size of allocated

memory.

size Number of bytes to free (same number of bytes as allocated by
kmem_alloc(D3DK) or kmem_zalloc(D3DK).

DESCRIPTION
This function returns size of storage to kernel free space previously allocated by
kmem_alloc(D3DK) or kmem_zalloc(D3DK). The cp and size values must specify
exactly one complete area of allocated memory. One kmem free call must
correspond to one allocation.

RETURN VALUE
Under all conditions, no value is returned.

LEVEL
Base or Interrupt

SEE ALSO

3/91

freerbuf(D3DK), getrbuf(D3DK), kmem alloc(D3DK), kmem zalloc(D3DK),
rmalloc(D3DK), rmfree(D3DK), rminit(D3DK), rmsetwant(03DK),
rmwant(D3DK)

Page 1

kmem _zalloc (03DK) DDl/DKI kmem_zalloc(03DK)

NAME
kmem _ zalloc - allocate and clear space from kernel free memory

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/kmem.h>

VOID *kmem _ zalloc (unsigned long sfae, unsigned long flag) ;
ARGUMENTS

sfae Number of bytes to allocate.

flag Determines if caller may sleep to wait for free space. Possible flags are
KM_ SLEEP to sleep while waiting for free space, and KM_ NOSLEEP to
return NULL if space is not available.

DESCRIPTION
This function allocates size of storage from kernel free space, clears it, and returns
a pointer to the allocated memory. If flag has KM_ SLEEP set, the caller may sleep
until free space is available. If flag has KM_ NOSLEEP set and space is not available,
NULL will be returned.

NOTE: Memory allocated by kmem_zalloc is not paged. Available memory is
therefore limited. Excessive use of this memory is likely to affect overall system
performance.

RETURN VALUE

LEVEL

kme!lL zalloc returns NULL if memory cannot be allocated. Otherwise, it returns
a pointer to the allocated space.

Base (interrupt only if KM _NOSLEEP is set in flag>
SEE ALSO

3/91

.treerbu.tlDjDKJ, getrbu.tlDjDKJ, Janem a.UoclDjDKJ, Janem .treelDjDKJ,
rmalloc(D3DK), rmfree(D3DK), rminit(D3DK), :cmsetwant(D3DK),
rmwant(D3DK)

Page 1

kvtophys(D3D) (DDI)

NAME
kvtophys - convert kernel virtual address to physical address

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/ddi.h>

paddr_t kvtophys (caddr_t caddr);

ARGUMENTS
caddr Kernel virtual address to translate.

DESCRIPTION

kvtophys(D3D)

· This function returns the physical address equivalent of the specified kernel vir­
tual address. The same functionality is provided in the vtop(D3D) function.

RETURN VALUE

LEVEL

kvtophys returns NULL if caddr is invalid; otherwise, a physical address is
returned. CAUTION: If caddr is invalid, kvtophys could panic the system.

Base or Interrupt

SEE ALSO
vtop(D3D)

3/91 Page 1

llnkb (D3DK) DDl/DKI(STREAMS)

NAME
linkb - concatenate two message blocks

SYNOPSIS
tinclude <sys/stream.h>

void linkb(mblk_t *mpl, mblk_t *mp2);

ARGUMENTS

llnkb (D3DK)

mp1 The message to which mp2 is to be added. mblk t is an instance of
the msgb(D4DK) structure.

mp2 The message to be added.

DESCRIPTION
linkb creates a new message by adding mp2 to the tail of mp1. The continuation
pointer (b _cont) of the first message is set to point to the second message:

mpl

RETURN VALUE
None

LEVEL

mp

b_datap

b_cont -

2
b_datap

b cont (0)

Base or Interrupt

SEE ALSO

db base

-~ db base

linkblmol. mo2\:

BCI Driver Development Guide, Chapter 7, "STREAMS"

unlinkb(D3DK)

EXAMPLE

~

~

See the dupb(D3DK) function page for an example of linkb.

3/91

data
buffer

data
buffer

Page 1

makedevlce (D3DK) DOI/OKI makedevlce (D3DK)

NAME
makedevice - make device number from external major and minor

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/makedev.h>
tinclude <sys/ddi.h>

dev_t makedevice (major_t majnum, minor_t minnum);

ARGUMENTS
majnum External major number.

minnum External minor number.

DESCRIPTION
The makedevice function creates a device number from an external major and
external minor device number. makdevice should be used to create device
numbers so that additional overhead on the driver can be avoided, and so the
driver will port easily to releases that treat device numbers differently.

RETURN VALUE

LEVEL

The device number, containing both the major number and the minor number, is
returned. No validation of the external major or minor numbers is performed.

NOTE: The numbers returned by getmajor(D3DK) and getminor(D3DK) are not
valid arguments to makedevice in systems where there is a distinction between
internal and external numbers. The functions getemajor(D3D) and
geteminor(D3D) should be used on those systems.

Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 3, ''Drivers in the UNIX Operating System"

getemajor(D3D), geteminor(D3D), getmajor(D3DK), getminor(D3DK)

EXAMPLE

3/91

In the following example makedevice creates device numbers for every device
supported by the example init(D2D) routine. The init routine initializes each
device by calling the xxx_dev_init () routine (line 8) with the device number for
each device. The device numbers are created from the preconfigured major
device number, XXMAJOR, and the range of valid minor numbers for the device.

1 xxxinit ()
2 (

3 dev_t dev;
4 minor_ t min;
5

6 for (min = O; min < XXMAXMIN; min++)
7 dev = makedevice(XXMAJOR, min);
8 xxx_dev_init(dev);
9

10

Page 1

max(D3DK) DDl/DKI

NAME
max - return the larger of two integers

SYNOPSIS
int max (int int1, int int2);

ARGUMENTS
int1, int2 The integers to be compared.

DESCRIPTION
max compares two integers and returns the larger of two.

RETURN VALUE
The larger of the two numbers.

LEVEL
Base or Interrupt

SEE ALSO
min(030K)

3/91

max(D3DK)

Page 1

mp_losatup(D3DK) DDl/DKI mp _losetup (D3DK)

NAME
mp_iosetup - create scatter/gather list for STREAMS drivers

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/buf.h>
tinclude <sys/iosystm.h>

int mp_iosetup(struct nblk *mp, struct iolist •list, int size intmaxcoalesce)

ARGUMENTS
•mp pointer to a STREAMS message structure

•list

size
maxcoalesce

pointer to the scatter I gather list

the number of 1/0 vectors in list
the maximum coalescing size the controller can handle

DESCRIPTION
mp_iosetup is invoked from STREAMS driver strategy routines. It returns a
count of at most size (physical address, length) 1/0 vectors which are returned in
list, and can then be passed to a controller. The 1/0 vectors are computed from
the virtual address in the STREAMS message. This routine ensures that the data
cache has been invalidated or synced for all page(s) involved in the OMA
transfer. mp_iosetup fails with a return value of -1 if list becomes larger than
size.
This routine is provided specifically for device driver support on the M68000 or
M88000 family of processors.

RETURN VALUE
The number of entries in list.

LEVEL
Base.

SEE ALSO
bp _ iosetup(D30K), msgb(D40K)

3/91 Page 1

mln(D3DK) DDl/DKI

NAME
min - return the lesser of two integers

SYNOPSIS
int min (int int1, int int2);

ARGUMENTS
int1, int2 The integers to be compared.

DESCRIPTION
min compares two integers and returns the lesser of the two.

RETURN VALUE
The lesser of the two integers.

LEVEL
Base or Interrupt

SEE ALSO
max(D3DK)

3/91

mln(D3DK)

Page 1

msgdsize (D3DK) DOI/OKI(STREAMS)

NAME
msgdsize - return the number of bytes in a message

SYNOPSIS
#include <sys/stream.h>

int msgdsize(mblk_t *mp);
ARGUMENT

mp
DESCRIPTION

Message to be evaluated.

msgdslze(D3DK)

msgdsize counts the number of bytes in a data message. Only bytes included in
the data blocks of type M _DATA are included in the count.

RETURN VALUE
The number of data bytes in a message, expressed as an integer.

LEVEL
Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 7, "STREAMS"

EXAMPLE
See the bufcall(D3DK) function page for an example of the msgdsize function.

3/91 Page 1

noenable (D3DK) DDl/DKl(STREAMS)

NAME
noenable - prevent a queue from being scheduled

SYNOPSIS
tinclude <sys/stream.h>
tinclude <sys/ddi.h>

void noenable(queue_t *q);

ARGUMENT
q Pointer to the queue.

DESCRIPTION

noenable(D3DK)

The noenable function prevents the queue q from being scheduled for service by
insq(D3DK), or by putq(D3DK) or putbq(D3DK) when enqueuing an ordinary
priority message. The queue can be re-enabled with the enableok(D3DK)
function.

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 7, "STREAMS"

enableok(D3DK), insq(D3DK), putq(D3DK), putbq(D3DK), qenable(03DK)

3/91 Page 1

OTHERQ(D3DK) DDl/DKl(STREAMS)

NAME
OTHERQ - get pointer to queue's partner queue

SYNOPSIS
tinclude <sys/stream.h>
tinclude <sys/ddi.h>

queue_t *OTHERQ(queue_t *q);

ARGUMENT
q Pointer to the queue.

DESCRIPTION

OTHERQ(D3DK)

The OTHERQ function returns a pointer to the other of the two queue structures
that make up a STREAMS module or driver. If q points to the read queue the
write queue will be returned, and vice versa.

RETURN VALUE
OTHERQ returns a pointer to a queue's partner.

LEVEL
Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 7, "STREAMS"

EXAMPLE

3/91

This routine sets the minimum packet size, the maximum packet size, the high
water mark, and the low water mark for the read and write queues of a given
module or driVer. It is passed either one of the queues. This could be used if a
module or driver wished to update its queue parameters dynamically.

l void

2 set_q__params (q, min, max, hi, lo)

3 queue_t *q;
4 short min;

5 short max;

6 ushort hi;
7 ushort lo;

8

9 q->q_minpsz = min;

10 q->q_maxpsz • max;

11 q->q_ hiwat = hi;

12 q->q_lowat - lo;
13 OTHERQ(q)->q_minpsz =min;

14 OTHERQ(q)->q_maxpsz - max;

15 OTHERQ(q)->q_hiwat • hi;
16 OTHERQ(q)->q_lowat • lo;

17

Page 1

page_ numtopp (D3DK) DOI/OKI page _numtopp (D3DK)

NAME
page_numtopp- convert page frame number to page structure

SYNOPSIS
tinclude <sys/types.h>
tinclude <vm/page.h>

page_t page_numtopp (u_int pfn);

ARGUMENT
pfn The page frame number to be converted.

DESCRIPTION
page_ numtopp converts a page frame number to its corresponding page struc­
ture.

RETURN VALUE

LEVEL

A pointer to the page structure is returned. If the page frame number is invalid,
NULL is returned.

Base or Interrupt

SEE ALSO
page _pptonum:D3DK)

3/91 Page 1

page _pptonum (D3DK) DDl/DKI page _pptonum (D3DK)

NAME
page yptonum - convert page structure to page frame number

SYNOPSIS
tinclude <sys/types.h>
tinclude <vm/page.h>

u_int pageyptonum(page_t *pp);

ARGUMENT
pp Pointer to a page structure.

DESCRIPTION
page yptonum is called to convert a page structure to its corresponding page
frame number.

RETURN VALUE

LEVEL

The page frame number corresponding to the page structure is returned. No
error is returned. If pp (the page structure address) is invalid, the system will
panic.

Base or Interrupt

SEE ALSO,
page_ numtopp(D3DK)

3/91 Page 1

physlock(D3D) (DOI) physlock(D3D)

NAME
physiock - validate and issue raw 1/0 request

SYNOPSIS
#include<sys/types.h>
#include <sys/buf.h>
#include <sys/errno.h>
#include <sys/uio.h>
#include <sys/cred.h>

int physiock (int (*(strategy) (), struct buf *buf, dev_t dev,
int rwflag, daddr_t nblocks, uio_t *uio_p);

ARGUMENTS
strategy Address of the driver strategy routine.

buf

dev
rwflag

nblocks

uio_p

Pointer to the buf structure describing the 1/0 request. If set to NULL,
then a buffer is allocated from the buffer pool and returned to the free
list after the transfer completes.

Device number.

Flag indicating whether the access is a read (B_READ) or a write
(B_WRITE). Note that B_WRITE cannot be directly tested as it is o
Number of blocks that a logical device can support, for example, a
disk partition, or tape.

Pointer to the uio structure that defines the user space of the 1/0
request.

DESCRIPTION
physiock is called by the character interface to block driver read(D2DK) and
write(D2DK) routines to help perform unbuffered 1/0 while maintaining the
buffer header as the interface structure.

physiock performs the following functions:

verifies the requested transfer is valid by checking if the offset is at or past
the end of the device

sets up a buffer header describing the transfer

calls uiophysio () to initiate the 1/0. See uiophysio(D3D).

A transfer using physiock is considered valid if the specified data location exists
on the device, and the user has specified a storage area that exists in user
memory space.

RETURN VALUE

3/91

physiock returns 0 if the result is successful, the appropriate error number upon
failure. physiock returns the ENXIO error (see Appendix A for more information)
if an attempt is made to read beyond the end of the device. If a read is per­
formed at the end of the device, 0 is returned. ENXIO is also returned if an
attempt is made to write at the end of a device or beyond the end of the device.
physiock may also return any error code produced by uiophysio.

Page 1

phyalock (D3D) (DDI) phyalock(D3D)

LEVEL
Base Only (Do not call from an interrupt routine)

SEE ALSO
dma_pageio(D3D), strategy(D2DK), uiophysio(D3D)

EXAMPLE
1
2
J
4
5
6
7
8
9

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
JO
31
32
33
34
35
36
36
37
38
39
40
41
42

Page 2

struct dsi ze

l;

daddr_t nblocks;
int cyloff;

OISKsizes[16] • I

I* disk partition block nl.l!lber */
I* startinq cylinder f of partition

20448, 21, /* partition 0 - cyl 21-305 */

12888, 126, I* 1 - cyl 126-305 *I
9360, 175, I* 2 - cyl 175-305 *I
7200, 205, I* 3 • cyl 205-305 *I
3600, 255, /* 4 - cyl 255-305 */

21816, 3, I* 5 ~ cyl 2-305 *I
21888, 1, I* 6 - cyl 1-305 *I
72, 1, I* 7 - cyl 1 *I

*I

OISKread(dev, uio_;>, cred_;>) /* direct read request from block device */
dev_t dev;
uio_t •uio_;>;
cred_t •cred_p;

register int nblks;

/* qet number of blocks in the partition */

nblks • OISKsizes[minor(dev) & Ox7].nblocks;

I*
• Check limits of read request. If request is in
• the limits of the disk partition, schedule direct I/O.
*I

physiock(OISKstrat, 0, dev, B_REAO, nblks, uio_;>);

l /* end OISKread •/

DISKwrite(dev, uio_;>, cred_p) /* direct write request to block device */
dev_t dev;
uio_t *uio_;>;
cred _ t •cred _;>

register int nblks;

I* get number of blocks in the partition */

3/91

physlock(D3D) (DDI) physlock(D3D)

43 nblks • DISKsizas[minor(dav) & Ox7].nblocks;
44
45 /*

46 * Check limits of write request. If request is in
47 * the limits of the disk partition, schedule direct I/O.
48 */

49

50 physiock(DISKstrat, O, dav, B_WRITE, nblks, uio_p);
51
52 I /* end DISKwrite */

3/91 Page 3

pollwakaup (D3DK) DDl/DKI

NAME
pollwakeup - inform a process that an event has occurred

SYNOPSIS
#include <sys/poll.h>
void pollwakeup(struct pollhead *php,short event);

ARGUMENTS
php
event

DESCRIPTION

Pointer to a pollhead structure.

Event to notify the process about.

pollwakaup(D3DK)

The pollwakeup function wakes a process waiting on the occurrence of an event.
It should be called from a driver for each occurrence of an event. The pollhead
structure will usually be associated with the driver's private data structure associ­
ated with the particular minor device where the event has occurred. See
chpoll(D2DK) and poll(2) for more detail.

RETURN
None

LEVEL
Base or Interrupt

SEE ALSO
chpoll(D2DK), poll(2)

3/91 Page 1

ptob(D3DK) DDl/DKI

NAME
ptob - convert size in pages to size in bytes

SYNOPSIS
#include <sys/ddi.h>

unsigned long ptob (unsigned long numpages) ;
ARGUMENT

numpages Size in number of pages to convert to size in bytes.

DESCRIPTION

ptob(D3DK)

This function returns the number of bytes that are contained in the specified
number of pages. For example, if the page size is 2048, then ptob (2) returns
4096. ptob (0) returns 0.

RETURN VALUE

LEVEL

The return value is always the number of bytes in the specified number of pages.
There are no invalid input values, and no checking will be performed for
overflow in the case of a page count whose corresponding byte count cannot be
represented by an unsigned long. Rather, the higher order bits will be ignored.

Base or interrupt

SEE ALSO
btop(03DK), btopr(D3DK)

3/91 Page 1

pullupmsg (D3DK) DDl/DKl(STREAMS) pullupmsg (D3DK)

NAME
pullupmsg - concatenate bytes in a message

SYNOPSIS
#include <sys/stream.h>

int pullupmsq (mblk_t *mp, int len);

ARGUMENTS
•mp Pointer to the message whose blocks are to be concatenated. mblk t

is an instance of the msgb(D40K) structure.

1en Number of bytes to concatenate.
DESCRIPTION

pullupmsq tries to combine multiple data blocks into a single b)ock. pullupmsq
concatenates and aligns the first 1en data bytes of the message pointed to by mp.
If 1en equals -1, all data is concatenated. If 1en bytes of the same message type
cannot be found, pullupmsq fails and returns 0.

RETURN VALUE
On success, 1 is returned; on failure, o is returned.

LEVEL
Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 7, "STREAMS"
allocb(03DK)

EXAMPLE

3/91

This is a driver write srv(D2DK) (service} routine for a device that does no~ sup­
port scatter/gather OMA. For all M_DATA messages, the data will be transferred to
the device with OMA.

First, try to pull up the message into one message block with the pullupmsg
function Oine 12). If successful, the transfer can be accomplished in one OMA job.
Otherwise, it must be done one message block at a time (lines 19-22). After the
data has been transferred to the device, free the message and continue processing
messages on the queue. ·

1 xxxwsrv (q)

2 queue_t *q;

3 I
4

5
6

7

8

9

10
11
12
13
14

mblk - t *Iii>;
mblk_t *tmp;

cacldr_t dma_addr;
int dma _ len;

while ((up • qetq (q)) ! • NULL) I
switch (mp->b_datap->db_type)
case M_DATA:

if (pullupnsq(!l1P, -1))
dma_addr • vtop(mp->b_rptr);
dma_len = np->b_wptr - np->b_rptr;

Page 1

pullupmsg (D3DK)

Page 2

15
16
17
18
19
20

21
22

23

24
25

26
27

28

DDl/DKl(STREAMS)

xxx_do_dma(dma_addr, dma_len);
freemsq (mp);

break;

for (tmp • mp; tmp; tnp • tmp->b_cont) (
dma_addr • vtop(tmp->b_rptr);
dma_len • tmp->b_wptr - tmp->b_rptr;
xxx_do_dma(dma_addr, dma_len);

fraemsq (mp);
break;

pullupmsg(D3DK)

3/91

putbq (D3DK) DOI/OKI(STREAMS) putbq(D3DK)

NAME
putbq - place a message at the head of a queue

SYNOPSIS
tinclude <sys/stream.h>

int putbq(queue_t *q,mblk_t *bp);

ARGUMENTS
q Pointer to the queue.

bp Pointer to the message block.

DESCRIPTION
putbq places a message at the beginning of the appropriate section of the mes­
sage queue. There are always sections for high priority and ordinary messages.
If other priority bands are used, each will have its own section of the queue, in
priority band order, after high priority messages and before ordinary messages.
putbq can be used only for ordinary and priority band messages. High priority
messages are not subject to flow control, and so cannot be put back on the queue.

This function is usually called when bcanput(D3DK) or canput(D3DK) deter­
mines that the message cannot be passed on to the next stream component. The
flow control parameters are updated to reflect the change in the queue's status. If
QNOENB is not set, the service routine is enabled.

RETURN VALUE
putbq returns 1 on success and O on failure.

LEVEL
Base or Interrupt

SEE ALSO
BC! Driver Development Guide, Chapter 7, "STREAMS"

Programmer's Guide: STREAMS, Chapter 5, "Messages"

bcanput(D3DK), canput(D3DK), getq(D3DK), putq(D3DK)

EXAMPLE
See the bufcall(D3DK) function page for an example of putbq.

3/91 Page 1

putctl (D3DK) DDl/DKl(STREAMS) putctl(D3DK)

NAME
put.ctl - send a control message to a queue

SYNOPSIS
tinclude <sys/stream.h>

int putctl(queue_t *q,inttype);

ARGUMENTS
q Queue to which the message is to be sent.

Message type (must be control, not data type). type
DESCRIPTION

putctl tests the type argument to make sure a data type has not been specified,
and then attempts to allocate a message block. putctl fails if type is
M_DATA,M_DEIAY, M_PROTO, or M_PCPROTO, or if a message block cannot be allo­
cated. If successful, putctl calls the put(D2DK) routine of the queue pointed to
byq.

RETURN VALUE

LEVEL

On success, 1 is returned. If type is a data type, or if a message block cannot be
allocated, o is returned.

Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 7, "STREAMS"

datamsg(D3DK), putctll(D3DK)

EXAMPLE

3/91

The send_ctl routine is used to pass control messages downstream. M BREAK
~~~~:!.c;e~ ~!'e !'!.~!!d!ed ...,;tn r11t- .-.t-1 (Jinp 1 n ymtctll <line 16) is used for 
M_DEIAY messages, so that pann can be used to specify the length of the delay. In 
either case, if a message block cannot be allocated a variable recording the 
number of allocation failures is incremented Oines 12, 17). If an invalid message 
type is detected, cmn _ err(D3DK) panics the system (line 21). 

1 void 
2 send_ctl (wrq, type, parrn) 
3 queue_t *wrq; 

unchar type; 
unchar parm; 

6 ( 

7 extern int num_alloc_fail; 
8 

9 switch (type) { 

10 case M_BREAK: 
11 if (!putctl(wrq->q_next, M_BREAK)) 

12 num_alloc_fail++; 
13 break; 
14 

15 
16 

case M DELAY: 
if (!putctll(wrq->q_next, M_DELAY, parrn)) 

Page 1 



putctl (D3DK) DDl/DKl(STREAMS) putctl ( D3DK) 

17 nurn_alloc_fail++; 

18 break; 
19 
20 default: 

21 ann_err(CE_PANIC, "send_ctl: bad message type passed"); 
22 break; 

23 

24 

Page 2 3/91 



putctl1 ( D3DK) DDl/DKI( STREAMS) putctl1 (D3DK) 

NAME 
putctll - send a control message with a one-byte parameter to a queue 

SYNOPSIS 
iinclude <sys/stream.h> 

int putctll (queue_t *q, int type, int pl; 

ARGUMENTS 
q Queue to which the message is to be sent. 

type Type of message. 

p One-byte parameter. 

DESCRIPTION 
putctll, like putctl(D3DK), tests the type argument to make sure a data type 
has not been specified, and attempts to allocate a message block. The p parame­
ter can be used, for example, to specify how long the delay will be when an 
M_DELAY message is being sent. putctll fails if type is M_DATA, M_PROTO, or 
M _PCPROTO, or if a mesage block cannot be allocated. If successful, putctll calls 
the put(D2DK) routine of the queue pointed to by q. 

RETURN VALUE 
On success, 1 is returned. O is returned if type is a data type, or if a message 
block cannot be allocated. 

LEVEL 
Base or Interrupt 

SEE ALSO 
BCI Driver Development Guide, Chapter 7, "STREAMS" 

allocb(D3DK), datamsg(D3DK), putctl(D3DK) 

cA:Aiiii'i..c 
See the putctl(D3DK) function page for an example of putctll. 

3/91 Page 1 



putnext (D3DK) DDl/DKl(STREAMS) 

NAME 
putnext - send a message to the next queue 

SYNOPSIS 
#include <sys/stream.h> 
#include <sys/ddi.h> 

int putnext (queue_t *q, mblk_t *mp); 
ARGUMENTS 

putnext(D3DK) 

q Pointer to the queue from which the message mp will be sent. 

mp 
DESCRIPTION 

Message to be passed. 

The putnext function is used to pass a message to the put(D2DK) routine of the 
next queue in the stream. 

RETURN VALUE 
None 

LEVEL 
Base or Interrupt 

SEE ALSO 
BCI Driver Development Guide, Chapter 7, "STREAMS" 

EXAMPLE 
See the allocb(D3DK) function page fot an example of putnext. 

3/91 Page 1 



putq(D3DK) DDl/DKl(STREAMS") 

NAME 
putq - put a message on a queue 

SYNOPSIS 
iinclude <sys/stream.h> 

int putq(queue_t *q,mblk_t *bp); 

ARGUMENTS 
q Pointer to the queue to which the message is to be added. 

bp Message to be put on the queue. 

DESCRIPTION 

putq(D3DK) 

putq is used to put messages on a driver's queue after the module's put routine 
has finished processing the message. The message is placed after any other mes­
sages of the same priority, and flow control parameters are updated. If QNOENB is 
not set, the service routine is enabled. If no processing is done, putq can be used 
as the module's put routine. 

RETURN VALUE 
putq returns 1 on success and O on failure. 

LEVEL 
Base or Interrupt 

SEE ALSO 
BC! Driver Development Guide, Chapter 7, "STREAMS" 

putbq(D3DK), qenable(D3DK), :anvq(D3DK) 

EXAMPLE 
See the datamsg(D3DK) function page for an example of putq. 

3/91 Page 1 



qenable ( D3DK) DOI/OKI( STREAMS) 

NAME 
qenable - enable a queue 

SYNOPSIS 
tinclude <sys/stream.h> 
tinclude <sys/ddi.h> 

void qenable(queue_t *q); 

ARGUMENT 
q Pointer to the queue to be enabled. 

DESCRIPTION 

qenable(D3DK) 

qenable puts the queue pointed to by q on the linked list of those whose service 
routines are ready to be called by the SfREAMS scheduler. 

RETURN VALUE 
None 

LEVEL 
Base or Interrupt 

SEE ALSO 
BCI Driver Development Guide, Chapter 7, "STREAMS" 

EXAMPLE 
See the dupb(03DK) function page for an example of the qenable. 

3/91 Page 1 



qreply(D3DK) DDl/DKl(STREAMS) qreply (D3DK) 

NAME 
qreply - send a message on a stream in the reverse direction 

SYNOPSIS 
tinclude <sys/stream.h> 

void qreply(queue_t *q, mblk_t *bp); 
ARGUMENTS 

q Pointer to the queue. 

bp Pointer to the message to be sent in the opposite direction. 

DESCRIPTION 
qreply sends a message on a stream in the opposite direction from q. It calls the 
OTHERQ(D3DK) function to find q's module partner, and passes the message by 
calling the put(D2DK) routine of the next queue in the stream after q's partner. 

RETURN VALUE 
None 

LEVEL 
Base or Interrupt 

SEE ALSO 
BCI Driver Deoelopment Guide, Chapter 7, ''STREAMS" 

Programmer's Guide: STREAMS 
OTHERQ(D3DK), putnext(D3DK) 

EXAMPLE 

3/91 

This example depicts the canonical flushing code for STREAMS drivers. The 
driver has a write srv(D2DK) (service) routine that may have messages on the 
queue. If it receives an M _FLUSH message (line 6), and if the FLUSHW bit is on in 
.• '"6 - • • ,. • • ,.. ...... • , •• •• • ,, 11 , ,... "' • ·- .J 
tne Dr!it oyte UI tne lfitlti!i<lgt: \llllt: I J, Ult:ll Ult: went: '{Ut:Ut: lti UU!illt:U. \llllt: U/ o.uu 

the FLUSHW bit is turned off (line 9). If the FLUSHR bit is on, then the read queue 
is flushed (line 12) and the message is sent back up the read side of the stream 
with the qreply(D3DK) function Cline 13). If the FLUSHR bit is off, then the mes­
sage is freed (line 15). See the example for flushq(D3DK) for the canonical flush­
ing code _for modules. 

qreply does two things. First, it calls the OTHERQ function to change pointer q to 
the module's other queue(D4DK) structure, reversing the direction of the flow. 
Then it uses that queue's q_next pointer to call the next module's put(D2DK) 
routine with the M _ IOCNAK message. 

1 xxxwput (q, mp) 

2 queue_t •q; 
3 mblk - t •mp; 

4 

5 switch(mp->b_datap->db_type) 
6 case M_FLUSH: 
7 if (*mp->b _ :rptr & FLUSllW) 
8 flushq(q, FLUSllALL); 
9 *rrp->b_:rptr &- -FLUSllW; 

10 

Page 1 



qreply ( D3DK) 

Page 2 

11 

12 
13 

14 
15 

16 

17 

18 

19 

DOI/OKI( STREAMS) 

if (*rnp->b_rptr & FLUSHR) { 
flushq(RD(q), FLUSHALL); 
qreply(q, mp); 

) else { 

,.. 
break; 

freemsg (mp) ; 

qreply ( D3DK) 

3/91 



qslze(D3DK) DDl/DKI( STREAMS) 

NAME 
qsize - find the number of messages on a queue 

SYNOPSIS 
*include <sys/stream.h> 

int qsize(queue_t *q); 

ARGUMENT 
q Queue to be evaluated. 

DESCRIPTION 

qslze(D3DK) 

qsize evaluates the queue q and returns the number of messages it contains. 

RETURN VALUE 
If there are no message on the queue, qsize returns O. Otherwise, it returns the 
integer representing the number of messages on the queue. 

LEVEL 
Base or Interrupt 

SEE ALSO 
BCI Driver Development Guide, Chapter 7, "STREAMS" 

3/91 Page 1 



RD(D3DK) DDl/DKl(STREAMS) 

NAME 
RD - get pointer to the read queue 

SYNOPSIS 
tinclude <sys/stream.h> 
finclude <sys/ddi.h> 

queue_t RD(queue_t *q); 

ARGUMENT 

RD(D3DK) 

q Pointer to the write queue whose read queue is to be returned. 

DESCRIPTION 
The RD function accepts a write queue pointer as an argument and returns a 
pointer to the read queue of the same module. 

CAUTION: Make sure the argument to this function is a pointer to a write queue. 
RD will not check for queue type, and a system panic could result if it is not the 
right type. 

RETURN VALUE 
The pointer to the read queue. 

LEVEL 
Base or Interrupt 

SEE ALSO 
BCI Driver Development Guide, Chapter ~, "STREAMS" 
WR(D3DK) 

EXAMPLE 
See the qreply(D3DK> function page for an example of RD. 

3/91 Page 1 



rmalloc(D3DK) DOI/OKI rmalloc(D3DK) 

NAME 
rmalloc - allocate space from a private space management map 

SYNOPSIS 
iinclude <sys/map.h> 
iinclude <sys/ddi.h> 
iinclude <sys/iosystm.h> 

unsigned long rmalloc (struct map •mp, int size); 

ARGUMENTS 
mp memory map from where the resource is drawn 

size number of units of the resource 

DESCRIPTION 
rmalloc is used by a driver to allocate space from a previously defined and ini­
tialized private space management map. The map itself is declared as a structure 
using the driver prefix in the form prefixmap. Memory is initially allocated for the 
map either by a data array, or by the kmem_alloc(D3DK) function. rmalloc is 
one of five functions used for private map management. The other functions 
include: 

rmfree 
rminit 
nnwant 
rmsetwant 

return previously allocated space to a map 
define a map structure and initialize a map table 
return the number of processes waiting for free space 
increment the count of the number of processes waiting for 
free space in the map 

The rmalloc function allocates space from a memory map in terms of arbitrary 
units. The system maintains the map structure by size and index, computed in 
units appropriate for the memory map. For example, units may be byte 
addresses, pages of memory, or blocks. The elements of the memory map are 
sorted by index, and the system uses the size member to combine adjacent objects 
into one memory map entry. The system allocates objects from the memory map 
on a first-fit basis. The normal return value is an unsigned long set to the value 
of m _ addr from the map structure. 

Memory returned by rmalloc is byte aligned only. 

RETURN VALUE 

LEVEL 

3/91 

Under normal conditions, rmalloc returns the base of the allocated space. Other­
wise, the rmalloc function returns a O if all memory map entries are already allo­
cated. 

Base. 
Interrupt if nnwant is not set. 

Page 1 



rmalloc(D3DK) DDl/DKI rmalloc ( D3DK) 

SEE ALSO 
BCI Driver Development Guide, Chapter 6, '1nput/Output Operations" 

drna _pageio(D3D), rmfree(D3DK), rminit(D3DK), rmwant(D3DK) 

EXAMPLE 

Page 2 

The following example is a simple memory map, but it illustrates the principles of 
map management. A driver initializes the map table by calling both the 
rminit(D30K) and rmfree(D3DK) functions. rminit(D3DK) establishes the 
number of slots or entries in the map, and rmfree initializes the total buffer area 
the map is to manage. The following example is a fragment from a hypothetical 
start routine and illustrates the following procedures: 

Declaration of the map structure Oine 4). The defined map array must be 
initialized to zero before calling rminit. 

The use of kmem_alloc(D3DK) to allocate memory for the map. This 
example panics the system if the required amount of memory can not be 
allocated (lines 10-14). 

The use of mapinit to configure the total number of entries in the map, 
and of rmfree to configure the total buffer area. 

1 tdefine XX_MAPSIZE 12 

2 fdefine XX_BUFSIZE 2560 

3 

4 struct map xx_ map [XX_ MAP SIZE) ; I* Space management map for •I 
5 /* a private buffer */ 

6 xx_start () 

7 /* 
8 • Allocate private buffer. If insufficient memory, 
9 • display message and halt system. 

10 */ 
11 
12 register caddr_t bP; 

13 if ((bP = kmem_alloc (XX_BUFSIZE, KM_NOSLEEP) == 0) 

14 
15 ann_err(CE_PANIC, "xx_start: kmem_alloc failed before %d buffer 

allocation", XX_BUFSIZE); 

16 /* endif •I 
17 /* 

18 • Initialize space management map with number 
19 • of slots in map. 

20 */ 

21 rminit(xx_map, XX_MAPSIZE); 

22 /* 
23 • Initialize space management map with total 

24 • buffer area it is to manage. 

25 */ 

26 rmfree (xx_map, XX_BUFSIZE, bp); 

3/91 



rmalloc(D3DK) DDl/DKI rmalloc(D3DK) 

3/91 

The rmalloc(D3DK} function is then used by the driver's read or write routine 
to allocate buffers for specific data transfers. If the appropriate space cannot be 
allocated, the rmsetwant(D3DK} function is used to wait for a free buffer and the 
process is put to sleep until a buffer is available. When a buffer becomes avail­
able, the rmfree(D3DK} function is called to return the buffer to the map and to 
wake the sleeping process (no wakeup(D3DK) call is required). 

The next example illustrates the following procedures: 

1 
2 
3 
4 
5 
6 
7 

The size of the 1/0 request is calculated and stored in the size variable 
(lines 14-15). 

While buffers are available, buffers are allocated through the rmalloc 
function using the size value (line 25). 

If there are not enough buffers free for use, the rmsetwant(D3DK} func­
tion is called, and the process is put to sleep (lines 26-28). When a buffer 
becomes available, the rmfree(D3DK) function returns the buffer to the 
map and wakes the process. 

The uiomove(D3DK} function is used to move data to the allocated buffer 
(line 35). 

If the address passed to the uiomove function is invalid, the rmfree func­
tion is called to release the previously allocated buffer, and an EFAOLT 
error is returned. 

#define XX_MAPPRIO (PZERO + 6) 
tdefine XX_MAPSIZE 12 
tdefine XX BUFSIZE 2560 
#define XX_MAXSIZE (XX_BUFSIZE I 4) 

struct map xx_map[XX_MAPSIZE]; 
char xx_buffer[XX_BUFSIZE]; 

/* Private buffer space map */ 
/* driver xx_ buffer area */ 

8 read(dev, uio__p, cred__p) 
9 

10 
11 

12 

dev t 
uio t 
cred_t 

dev; 
uio_p; 
cred__p; 

13 register caddr_t addr; 
14 register int size; 

/* Pointer to uio structure for I/O */ 

15 size= rnin(COUNT, XX_MAXSIZE); /*Break large I/O request*/ 
16 /* into small ones */ 
17 /* 
18 * Get buffer. If space is not available, then 
19 * request a wakeup when space is returned. Wait 
20 * for space; rrnfree will check rrnsetwant and 
21 * supply the wakeup call. 
22 */ 

23 oldlevel = spl4(); 
24 
25 while((addr = (caddr_t)rmalloc(xx_map, size)) ==NULL) { 

Page 3 



rmalloc(D30K) DOI/OKI 

Page 4 

26 
27 
28 

29 
30 
31 

32 

33 
34 

35 

36 
37 

38 

39 

40 

nnsetwant(xx_map) 
sleep (xx_ map, XX_MAXPRIO); 

/* endwhile */ 
splx(oldlevel); 

/* 

* Move data to buffer. If invalid address is found, 
* return buffer to map and return error code. 
*I 

if (uiomove(addr, size, UIO_llEAD, uio_J>) .... -1) 
oldlevel • spl4(); 
nnfree(xx_map, size, addr); 
splx(oldlevel); 
return (EFAULT); 

/* endif */ 

rmalloc(D3DK) 

3191 



rmfree(D3DK) DDl/DKI rmfree(D3DK) 

NAME 
rmfree - release free space back into a private space management map 

SYNOPSIS 
tinclude <sys/map.h> 
tinclude <sys/ddi.h> 

void rmfree (struct map *mp, long size, unsigned long index) ; 
ARGUMENTS 

•mp pointer to the map(D4D.K) structure 

size number of units being freed 
index index of the first unit of the allocated resource 

DESCRIPTION 
rmfree releases space back into a private space management map. It is the oppo­
site of rmalloc(D3DK), which allocates space that is controlled by a private map 
structure. 
Drivers may define private space management buffers for allocation of memory 
space, in terms of arbitrary units, using the rrnalloc(D3D.K), rmfree and 
rmini t(D3DK) functions. The drivers must include the file map. h. The system 
maintains the memory map list structure by size and index, computed in units 
appropriate for the memory map. For example, units may be byte addresses, 
pages of memory, or blocks. The elements of the memory map are sorted by 
index, and the system uses the size member so that adjacent objects are combined 
into one memory map entry. The system allocates objects from the memory map 
on a first-fit basis. rmfree frees up unallocated memory for re-use. 

RETURN VALUE 

LEVEL 

None. However, if them addr member of the map structure is returned as 0, the 
fnllntAT;na ur=-"1ina m'3c::~;;'.",:. iii: r1icnl~:n1Ar1 nn +het. ronnc.nlo· 
----- ·----o ··-------o --------o- -- ---c--J-- --- ---- --------· 

WARNING: rmfree map overflow mp lost size items at index 

where mp is the hexadecimal address of the map structure, size is the decimal 
number of buffers freed, and index is the decimal address to the first buffer unit 
freed. 

Freeing a block of memory more than once may crash the system. 

Base or Interrupt. 

SEE ALSO 
rmalloc(D3DK), rminit(D3DK), rnwant(D3DK) 

EXAMPLE 
See rmalloc(D3DK). 

3/91 Page 1 



rmlnlt(D3DK) DOI/OKI rmlnlt(D3DK) 

NAME 
rrnini t - initialize a private space management map 

SYNOPSIS 
#include <sys/map.h> 
#include <sys/ddi.h> 

void rrninit (struct map *mp, unsigned long mapsize); 
ARGUMENTS 

*mp Pointer to the memory map from where the resource is drawn. 

mapsize Number of entries for the memory map table. 

DESCRIPTION 
The rrninit function initializes a private map structure that can be used for the 
allocation of memory space. The map itself is declared as a structure using the 
driver prefix in the form prefixma.p. Memory is initially allocated for the map 
either by a data array, or by the krnem _ alloc(D3DK) function. 

The driver must initialize the map structure by calling rrninit. However, rrninit 
does not cause the memory map entries to be labeled available. This must be 
done through nnfree(D3DK) before objects can actually be allocated from the 
memory map. 

The system maintains the memory map list structure by size and index, computed 
in units appropriate for the memory map. Units may be byte addresses, pages of 
memory, or blocks. The elements of the memory map are sorted by index. 
Two memory map table entries are reserved for internal system use and they are 
not available for memory map use. 

NOTE: The map array must be initialized to zero before calling rminit. 

RETURN VALUE 
None 

LEVEL 
Base or Interrupt 

SEE ALSO 
BCI Driver Development Guide, Chapter 6, '1nput/Output Operations" 

rmalloc(D3DK), rmwant(D3DK), nnfree(D3DK), :ansetwant(D4DK) 

EXAMPLE 
See rmalloc(D3DK). 

3/91 Page 1 



rmsetwant (D3DK) DDl/DKI 

NAME 
rmsetwant - set the map's wait flag for a wakeup 

SYNOPSIS 
iinclude <sys/map.h> iinclude <sys/ddi.h> 

void rmsetwant (struct map *map _y); 

ARGUMENTS 
map_y Pointer to the map the driver is waiting for. 

DESCRIPTION 

rmsetwant(D3DK) 

The rmsetwant function increments the counter on the wait flag of the map 
pointed to by map_y. It is typically called from the driver's read or write rou­
tine after an unsuccessful attempt to allocate space from the map using 
rmalloc(D3DK). 

Typically, a driver will sleep on map__p after calling rmsetwant. When the 
nnfree function returns space to the map, it calls wakeup(D3DK). 

RETURN VALUE 
None 

LEVEL 
Base only 

SEE ALSO 
rmalloc(D3DK), nnfree(D3DK), rminit(D3DK), rmwant(D3DK), map(D4DK) 

EXAMPLE 
See rmalloc(D3DK). 

3/91 Page 1 



rmvb(D3DK) DOI/OKI( STREAMS) rmvb(D3DK) 

NAME 
rmvb - remove a message block from a message 

SYNOPSIS 
tinclude <sys/stream.h> 

mblk t *rmvb(mblk_t *mp, mblk_t *bp); 

ARGUMENTS 
*mp Message from which a block is to be removed. mblk t is an instance 

of the msgb(D4DK) structure. 

bp Message block to be removed. 

DESCRIPTION 
rmvb removes a message block (bp) from a message (mp), and returns a pointer to 
the altered message. The message block is not freed, merely removed from the 
message. It is the module or driver's responsibility to free the message block. 

RETURN VALUE 

LEVEL 

If successful, a pointer to the message (minus the removed block) is returned. 
The pointer is NULL if bp was the only block of the message before rmvb was 
called. If the designated message block (bp) does not exist, -1 is returned. 

Base or Interrupt 

EXAMPLE 

3/91 

This routine removes all zero-length M_DATA message blocks from the given mes­
sage. For each message block in the message, save the next message block (line 
10). If the current message block is of type M_DATA and has no data in its buffer 
(line 11), then remove it from the message (line 12) and free it (line 13). In either 
case, continue with the next message block in the message (line 16). 

1 void 
2 xxclean (mp) 

3 mblk _ t *mp; 

4 { 

5 mblk_t *tmp; 

6 mblk_t *nmp; 

7 

8 tmp = mp; 

while (trip) 

10 nmp - tmp->b_next; 
11 if ((tmp->b_datap->db_type == M_DATA) && 

(tmp->b_rptr ~ tmp->b_wptr)) { 

12 nnvb(mp, tmp); 
13 freeb(trrp); 

14 
15 
16 

17 

tmp = nmp; 

Page 1 



rmvq(D3DK) DDl/DKI( STREAMS) rmvq(D3DK) 

NAME 
rmvq - remove a message from a queue 

SYNOPSIS 
tinclude <sys/stream.h> 

void rmvq (queue_t *q, mblk_t •mp); 

ARGUMENTS 
q Queue containing the message to be removed. 

mp Message to remove. 

DESCRIPTION 
rmvq removes a message from a queue. A message can be removed from any­
where on a queue. To prevent modules and drivers from having to deal with the 
internals of message linkage on a queue, either rmvq or getq(D3DK) should be 
used to remove a message from a queue. 

CAUTION: Make sure that the message mp exists to avoid a possible system 
panic. 

RETURN VALUE 
None 

LEVEL 
Base or Interrupt 

SEE ALSO 
BC! Driver Development Guide, Chapter 7, "STREAMS" 

EXAMPLE 

3/91 

This code fragment illustrates how one may flush one type of message from a 
queue. In this case, only M_PROTO T_DATA_IND messages are flushed. For each 
.,_...,ro ....... .-.n .... _ ~\......, ........................ .:.t :.a. :,,.. -- 'l• T"'IT'\f"\mf"\ -----.---.- /1!-.- 0\ -~ '---- ,... ....,,.,....,. ..,...,...,,.... ........ - ...... -0- ""' ............... '1----1 .......... a~ .,. ... , ...... _ .... ...,_._ .a..&L~i:ll-=>Q.fii~ \.&.1..1.Lt;;; V/ v.1. "1Yt;;; .a._vn.a.n_.L.&.'t.LI 

(line 10), save a pointer to the next message (line 11), remove the T_DATA_IND 
message (line 12) and free it (line 13). Continue with the next message in the list 
(line 19). 

1 mblk_t *mp; 

2 mblk_t •runp; 

3 queue_t •q; 
4 union T_primitives •tp; 

5 

6 mp = q->q_first; 
7 while (mp) { 

8 if {mp->b_datap->db_type == M_PROTO) 
9 

10 
11 

12 
13 
14 

15 
16 
17 

tp = (union T_primitives •)mp->b_rptr; 
if (tp->type == T_DATA_IND) { 

nmp = mp->b_next; 
rrnvq {q, mp); 
freemsg (mp); 
mp= nmp; 

else { 
mp = mp->b_next; 

Page 1 



rmvq(D3DK) DDl/DKl(STREAMS) rmvq(D3DK) 

18 I else I 
19 mp • mp->b_next; 

20 
21 I 

Page 2 3/91 



rmwant(D3DK) 

NAME 
rmwant - wait for free memory 

SYNOPSIS 
tinclude <sys/map.h> 
tinclude <sys/ddi.h> 

DDl/DKI 

unsigned long rmwant (struct map *map_p); 
ARGUMENT 

rmwant (D3DK) 

map_p Pointer to the map(D4DK) structure on which the driver is waiting for 
space. 

DESCRIPTION 
The rmwant function returns the number of processes waiting for free space in the 
map. 

RETURN VALUE 
The number of processes waiting for free space in the map. 

LEVEL 
Base or Interrupt 

SEE ALSO 
BCI Driver Development Guide, Chapter 6, '1nput/Output Operations" 

rmalloc(D3DK), rminit(D3DK), rmfree(D3DK), nnsetwant(D3DK), map(D4DK) 

3/91 Page 1 



SAMESTR (D3DK) DDl/DKl(STREAMS) 

NAME 
SAMESTR - test if next queue is same type 

SYNOPSIS 
tinclude <sys/stream.h> 

int SAMESTR(queue_t *q); 

ARGUMENT 
•q Pointer to the queue. 

DESCRIPTION 

SAMESTR(D3DK) 

The S~STR function is used to see if the next queue in a stream (if it exists) is 
the same type as the current queue (that is, both are read queues or both are 
write queues). 

RETURN VALUE 
· SAMESTR returns 1 if the next queue is the same type as the current queue. It 
returns O if the next queue does not exist or if it is not the same type. 

LEVEL 
Base or Interrupt 

SEE ALSO 
OTHERQ(D3DK) 

3/91 Page 1 



sleep(D3DK) DOI/OKI sleep(D3DK) 

NAME 
sleep - suspend process activity pending execution of an event 

SYNOPSIS 
tinclude <sys/types.h> 
tinclude <sys/param.h> 

int sleep ( caddr _ t event, int priority) ; 
ARGUMENTS 

event 

priority 

Address (signifying an event) for which the process will wait to be 
updated. 

Priority that is assigned to the process when it is awakened. If priority 
is ORed with the defined constant PCATCH, the sleep function does not 
call longjmp on receipt of a signal. Instead, it returns the value 1 to 
the calling routine. 

DESCRIPTION 

3191 

sleep suspends execution of a process to await certain events such as reaching a 
known system state in hardware or software. For instance, when a process wants 
to read a device and no data is available, the driver may need to call sleep to 
wait for .data to become available before returning. This causes the kernel to 
suspend executing the process that called sleep and schedule another process. 
The process that called sleep can be restarted by a call to the wakeup(D3DK) 
function with the same event specified as that used to call sleep. 

A driver (with data stored in local variables) may call sleep while waiting for an 
event to occur. Make sure another process will not interrupt the driver and 
overwrite the local variables. 

The event address used when calling sleep should be the address of a kernel data 
cim1rt11n> nr nnP nf thP clnvPr'ci nwn clata citr11C'tt11'PC1_ The sleen address is an 
arbitrary address that has no meaning except to the corresponding wakeup func­
tion call. This does not mean that any arbitrary kernel address should be used 
for sleep. Doing this could conflict with other, unrelated sleep/wakeup opera­
tions in the kernel. A kernel address used for sleep should be the address of a 
kernel data structure directly associated with the driver 1/0 operation (for exam­
ple, a buffer assigned to the driver). · 

Before a process calls sleep, the driver usually sets a flag in a driver data struc­
ture indicating the reason why sleep is being called. 

The priority argument, called the sleep priority, is used for scheduling purposes 
when the process awakens. This parameter has critical effects on how the process 
that called sleep reacts to signals. If the numerical value of the sleep priority is 
less than or equal to the constant PZERO (defined in the sys/param.h header file), 
then the sleeping process will not be awakened by a signal. However, if the 
numerical value is greater than PZERO, the system awakens the process that called 
sleep prematurely (that is, before the event on which sleep was called occurred) 
on receipt of a non-ignored, non-held signal. In this case, it returns the value 1 to 
the calling routine if PCATCH is set; otherwise it does a longjmp and never returns 
to the driver. If the event occurred, o is returned. 

Page 1 



al11p(D3DK) DDl/DKI alaap(D3DK) 

To pick the correct sleep priority, base your decision on whether or not the pro­
cess should be awakened on the receipt of a signal. If the driver calls deep for 
an event that is certain to happen, the driver should use a priority numerically 
less than or equal to PZERO. (However, you should only use priorities less than 
or equal to PZERO if your driver is crucial to system operation.) If the driver calls 
sleep while it awaits an event that may not happen, use a priority numerically 
greater than PZERO. 

An example of an event that may not happen is the arrival of data from a remote 
device. When the system tries to read data from a terminal, the terminal driver 
might call sleep to suspend the current process while waiting for data to arrive 
from the terminal. If data never arrives, the sleep call will never be answered. 
When a user at the terminal presses the BREAK key or hangs up, the terminal 
driver interrupt handler sends a signal to the reading process, which is still exe­
cuting sleep. The signal causes the reading process to finish the system call 
without having read any data. If sleep is called with a priority value that is not 
awakened by signals, the process can be awakened only by a specific wakeup call. 
If that wakeup call never happened (the user hung up the terminal), then the pro­
cess executes sleep until the system is rebooted. 

Another important criteria for selecting the appropriate priority is how important 
the event or resource being waited for is to overall system performance. For 
example, disk 1/0 is often a bottleneck, so the priority for disk 1/0 is higher than 
most other priorities. In contrast, terminal 1/0 is a much lower priority. The 
sooner the process runs, the faster the resource will be used and freed again. 

Drivers calling sleep must occasionally perform cleanup operations before 
returning. Typical items that need cleaning up are locked data structures that 
should be unlocked when the system call completes. This is done by ORing prior­
ity with PCATCH and executing sleep. If sleep returns a 1, then you can cleanup 
any locked structures or free any allocated resources, and return. CAUTION: If 
sleep is called from the driver strategy(02DK) routine, you should OR the 
priority argument with PCATCH or select a priority of PZERO or less. 

RETURN VALUE 

LEVEL 

If. the sleep priority argument is ORed with the defined constant PCATCH, the 
sleep function does not call longjrrp on receipt of a signal; instead, it returns the 
value 1 to the calling routine. If the process put in a wait state by sleep is 
awakened by an explicit wakeup call rather than by a signal, the sleep call 
returns o. 

Base Only (Do not call from an interrupt routine) 

SEE ALSO 

Page 2 

BCI Driver Development Guide, Chapter 10, "Synchronizing Hardware and 
Software Events" 

clelay(D3DK), biodone(D3DK), biowait(D3DK), timeout(D3DK), 
untimeout(D3DK), wakeup(03DK) 

3/91 



aleep(D3DK) DDl/DKI alaap(D3DK) 

EXAMPLE 
See the untimeout(D3DK) function page for an example of sleep. 

3/91 Page 3 



spl(D3D) (DOI) spl(D3D) 

NAME 
spl - block/ allow interrupts 

SYNOPSIS 
#include <sys/inline.h> 

int splO (); 
int spll (); 
int spl4 (): 
int spl5 (): 
int spl6 (): 
int spl7(); 
int splvm(); 
int splhi (): 
int splstr(): 
int spltty(); 

int splx (int okflevel) ; 

ARGUMENT 
oldlevel Last set priority value (only splx has an input argument). 

DESCRIPTION 

3/91 

spl blocks or allows interrupts. When a process is executing code in a driver, the 
system will not switch context from that process to another executing process 
unless it is explicitly told to do so by the driver. This protects the integrity of the 
kernel and driver data structures. However, the system does allow devices to 
interrupt the processor and handle these interrupts immediately. 

The integrity of system data structures would be destroyed · if an interrupt 
handler were to manipulate the same data structures as a process executing in the 
driver. To prevent such problems, the kernel provides the spl functions allowing 
a driver to set processor execution levels, prohibiting the handling of interrupts 
below the level set. 

The selection of the appropriate spl function is important. The execution level to 
which the processor is set must be high enough to protect the region of code; but 
this level should not be so high that it unnecessarily locks out interrupts that 
need to be processed quickly. A hardware device is assigned to an interrupt 
priority level depending on the type of device. By using the appropriate spl 
function, a driver can inhibit interrupts from its device or other devices at the 
same or lower interrupt priority levels. 

The spl command changes the state of the processor status word (PSW). The 
PSW stores the current processor execution level, in addition to information relat­
ing to the operating system internals. The spl functions block out interrupts that 
come in at a priority level at or below a machine-dependent interrupt priority 
level. The spl functions include the following: 

splO Restores all interrupts when executing on the base level. A driver 
routine may use splO when the routine has been called through a 
system call; that is, if it is known that the level being restored is 
indeed at base level. 

Page 1 



spl(D3D) (DDI) spl(D3D) 

spll 

spl4 

splS 

spl6 

spl7 

splvm 

splhi 

spltty 

splstr 

splx 

Used in context and process switch to protect critical code. 

Used in character drivers to protect critical code. 

Used in character drivers to protect critical code (this function has 
the same effect as spl4). 

Used in block drivers to protect critical code. 

Used in any type of driver to mask out all interrupts including the 
clock, and should be used very sparingly. 

Used in memory management code to protect critical regions. 

Used in any type of driver to mask out all interrupts including the 
clock, and should be used very sparingly. (This function is identi-
cal to spl 7 .) 

Used by a TfY driver to protect critical code. 

Used to protect STREAMS driver and module critical regions of 
code. This is defined to be high enough to block interrupts from 
the highest priority STREAMS device. splstr is mapped to 
spltty. 

Used to terminate a section of protected critical code. This func­
tion restores the interrupt level to the previous level specified by 
its argument oldlevel. 

NOTE: spl functions should not be used in interrupt routines unless you save the 
old interrupt priority level in a variable as it was returned from an spl call. 
later, splx must be used to restore the saved old level. Never drop the interrupt 
priority level below the level at which an interrupt routine was entered. For 
example, if an interrupt routine is entered at the interrupt priority level of an 
spl6, do not call splO through splS or the stack mav become corrupted. 

RETURN VALUE 
All spl functions (except splx) return the former priority level. 

EXAMPLE 
See the untimeout(D3DK) function page for an example of spl. 

Page 2 3191 



strlog (D3DK) DDl/DKl(STREAMS) strlog ( D3DK) 

NAllE 
strlog - submit messages to the log driver 

SYNOPSIS 
tinclude <sys/stream.h> 
tinclude <sys/strlog.h> 
tinclude <sys/log.h> 

int strlog (short mid, short sid, char 'level, unsigned short flags, 
char *fmt, unsigned arg1, ... ) ; 

ARGUMENTS 
mid 

sid 

'level 
flags 

fmt 

Identification number of the module or driver submitting the message. 

Identification number for a particular minor device. 

Tracing level for selective screening of low priority messages. 

Valid flag values are: 

SL ERROR Message is for error logger. 
SL_ TRACE Message is for trace. 
SL_ NOTIFY Mail copy of message to system administrator. 
SL CONSOLE 

- Log message to console. 
SL FATAL Error is fatal. 
SL WARN Error is a warning. 
SL NOTE Error is a notice. 

printf(3S) style format string. %s, %e, %g, and %G formats are not 
allowed. 

arg1 Zero or more arguments to print!. 

DESCRIPTION 
strlog submits formatted messages to the log(7) driver. The messages can be 
retrieved with the getmsg(2) system call. The flags argument specifies the type of 
the message and where it is to be sent. strace(lM) receives messages from the 
log driver and sends them to the standard output. strerr(lM) receives error 
messages from the log driver and appends them to a file called 
/var/adm/streams/error.mm-dd, where mm-dd identifies the date of the error 
message. 

RETURN VALUE 
strlog returns 0 if the message is not seen by all the readers, 1 otherwise. 

LEVEL 
Base or Interrupt 

SEE ALSO 
BCI Driver Development Guide, Chapter 12, "Error Reporting" 

log(7) 

3/91 Page 1 



strqget ( D3DK) DDl/DKl(STREAMS) strqget(D3DK) 

NAME 
strqget - get information about a queue or band of the queue 

SYNOPSIS 
tinclude <sys/stream.h> 

int strqget (queue t *q, qfields_t what, unsigned char pri, 
long *valp) ; -

ARGUMENTS 
q Pointer to the queue 

what Which field of the queue structure to return information about. Valid 
values are specified in stream. h: 

typedef enurn qfields { 
QHIWAT - 0, I* q_hiwat or qb_hiwat */ 
QLOWAT 1, /* q_lowat or qb_lowat */ 
QMAXPSZ = 2, /* q_maxpsz */ 
QMINPSZ = 3, I* q_minpsz */ 
QCOUNT - 4, /* q_count or qb_count */ 
QFIRST - 5, /* q_first or qb_first */ 
QLAST - 6, /* q_last or qb_last */ 
QFIAG - 7, /* q_flag or qb_flag */ 
QBAD - 8 

qfields_t; 

pri Priority of request. 

valp The value for the requested field. 

DESCRIPTION 
strqget gives drivers and modules a way to get information about a queue or a 

•• " " , ,. .•• , - '_,. __ ,, __ ------! ___ r.,..-n~•••,., ..:I-•-_, ___ .._ ____ _ 
jJcU"Ll~UlcU UdllU Ul d 'i uc=:uc: WY JLUU UL u.1.u;:~.u y CU .. Lf0::1:)~11ll:J ,.JI J. J.'-&.:on.J.Y.l"" U.QLQ l:)LJ. U.\..l.U..l..:;o::t. 

RETURN VALUE 
On success, o is returned. An error number is returned on failure. 

LEVEL 
Base or Interrupt 

SEE ALSO 
BCI Driver Development Guide, Chapter 7, "STREAMS" 

strqset(D3DK) 

3/91 Page 1 



strqset ( D3DK) DDl/DKl(STREAMS) strqset (D3DK) 

NAME 
strqset - change information about a queue or band of the queue 

SYNOPSIS 
tinclude <sys/stream.h> 

int strqset (queue_t *q, qfields_t what, unsigned char pri, 
long *val); 

ARGUMENTS 
q Pointer to the queue. 

what Which field of the queue structure to return information about. Valid 
values are specified in stream.h: 

pri 
val 

typedef enum qfields { 
QHIWAT =- 0, I* 'l_hiwat or qb_hiwat */ 
QLOWAT • 1, /* 'l_lowat or qb_lowat */ 
QMAXPSZ - 2, I* 'l_maxpSZ */ 
QMINPSZ ""' 3, I* 'l_minpsz */ 
QCOUNT 4, /* 'l_count or qb_count */ 
QFIRST - 5, /* 'l_first or qb_first */ 
QI.AST - 6, /* 'l_last or qb_last */ 
QFLAG - 7, /* 'l_flag or qb_flag */ 
QBAD - 8 

qfields,,_t; 

Priority of request. 

The value for the field to be changed. 

DESCRIPTION 
strqset gives drivers and modules a way to change information about a queue 
or a particular band of a queue without directly accessing SfREAMS data struc­
tures. The fields that can be returned are defined in the enumerated type 
qfields. qfields defines the following fields: 

RETURN VALUE 

LEVEL 

On success, o is returned. An error number is returned on failure. If the what 
field is read-only, EPERM is returned and the field is left unchanged. 

Base or Interrupt 

SEE ALSO 
BCI Driver Development Guide, Chapter 7, "STREAMS" 

strqget(D3DK) 

3/91 Page 1 



testb (D3DK) DDl/DKl(STREAMS) testb(D3DK) 

NAME 
testb - check for an available buffer 

SYNOPSIS 
iinclude <sys/stream.h> 

int testb (int size, int pri) ; 
ARGUMENTS 

size Size of the requested buffer. 

pri Priority of the allocb request. 

DESCRIPTION 
testb checks to see if an allocb(03DK) call is likely to succeed if a buffer of size 
bytes at priority pri is requested. Even if testb returns successfully, the call to 
allocb can fail. 

RETURN VALUE 
Returns 1 if a buffer of the requested size is available, and o if one is not. 

LEVEL 
Base or Interrupt 

SEE ALSO 
BCI Driver Development Guide, Chapter 7, "STREAMS" 

allocb(D3DK) , bufcall(D30K) 

EXAMPLE 

3/91 

In a srv(D2DK) (service) routine, if copymsg(03DK) fails (line 6), the message is 
put back on the queue (line 7) and a routine, tryagain, is scheduled to be run in 
one tenth of a second (HZ/10). Then the service routine returns. 

When the timeout(D3DK) function runs, if there is no message on the front of 
the qut!ut!, it ju~i rt:iurn~. VGt1;:1 vv i::t-.;::, fu1 ~~l-1 ii-u:O~G.i)i: blv\:~ iii t!"i~ fi1~~ rr;.c:;:;Qgc, 
check to see if an allocation would succeed. If the number of message blocks 
equals the number we can allocate, then enable the service procedure. Otherwise, 
reschedule tryagain to run again in another tenth of a second. Note that 
tryagain is merely an approximation. Its accounting may be faulty. Consider 
the case of a message comprised of two 1024-byte message blocks. If there is 
only one free 1024-byte message block and no free 2048-byte message blocks, then 
testb will still succeed twice. If no message blocks are freed of these sizes 
before the service procedure runs again, then the copymsg(03DK) will still fail. 
The reason testb is used here is because it is significantly faster than calling 
copymsg. We must minimize the amount of time spent in a timeout routine. 

1 xxxsrv(q) 
2 queue_t *q; 

3 

4 mblk_t •np; 

mblk_t •nmp; 

6 

7 

8 

if ((nmp = copymsg(rnp)) ==NULL) { 
putbq (q, mp); 
tirneout(tryagain, (long)q, HZ/10); 

Page 1 



testb(D3DK) DDl/DKl(STREAMS) 

Page 2 

9 

10 

11 

12 

return; 

13 tryagain (q) 

14 queue_t *q; 

15 
16 register int can_alloc = O; 

17 register int num_blks - o; 
18 register mblk_t *mp; 

19 

20 if ( !q->q_first) 

21 return; 
22 for (mp • q->q_first; mp; mp • mp->b_cont) { 

23 num_blks++; 

24 can_alloc +- testb((mp->b_datap->db_lim -

25 mp->b_datap->db_base) I BPRI_MED); 

26 
27 

28 

29 

30 

31 

if (num_blks == can_alloc) 
qenable (q) ; 

else 

timeout (tryaqain, (long) q, HZ/10); 

testb ( D3DK) 

3/91 



tlmeout(D3DK) DOI/OKI timeout ( D3DK) 

NAME 
timeout - execute a function after a specified length of time 

SYNOPSIS 
#include <sys/types.h> 

int timeout(int (*/tn) (), caddr_t arg, long ticks); 

ARGUMENTS 
ftn Kernel function to invoke when the time increment expires. 

Argument to the function. arg 

ticks Number of clock ticks to wait before the function is called. 

DESCRIPTION 
The timeout function schedules the specified function to be called after a 
specified time interval. Control is immediately returned to the caller. This is use­
ful when an event is known to occur within a specific time frame, or when you 
want to wait for 1/0 processes when an interrupt is not available or might cause 
problems. For example, some robotics applications do not provide a status flag 
for determining when to pump information to the robot's controller. By using 
timeout, the driver can wait a predetermined interval and then begin transfer­
ring data to the robot. 

The exact time interval over which the timeout takes effect cannot be guaranteed, 
but the value given is a close approximation. The function called by timeout 
must adhere to the same restrictions as a driver interrupt handler. It can neither 
sleep nor use previously set local variables. 

RETURN VALUE 

LEVEL 

Under normal conditions, an integer timeout identifier is returned (which may, in 
unusual circumstances, be set to 0). Otherwise, if the timeout table is full, the 
fnllnW'ino- """fro mp"""""P rP«nltf;: - u J. U' 

PANIC: Timeout table overflow 

The timeout function returns an identifier that may be passed to the 
untimeout(D3DK) function to cancel a pending request. NOTE: No value is 
returned from the called function. 

Base or Interrupt 

SEE ALSO 
BCI Driver Development Guide, Chapter 10, "Synchronizing Hardware and 
Software Events" 

delay(03DKK), biodone(D3DK), biowait(D3DK), sleep(D3DK), 
untimeout(D3DK), wakeup(D3DK) 

EXAMPLE 
See the bufcall(D3DK) function page for an example of timeout. 

3/91 Page 1 



ulomove(D3DK) DDl/DKI ulomove ( D3DK) 

NAME 
uiornove - copy kernel data using uio(D40K) structure 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/uio.h> 

int uiornove (caddr_t address, long nbytes, enum uio_rw rwflag, 
struct uio * uio _p) ; 

ARGUMENTS 
address Source/ destination kernel address of the copy. 

Number of bytes to copy. nbytes 

rwflag Flag indicating read or write operation. Possible values are UIO_READ 
and UIO WRITE. 

uio _p Pointer to the uio structure for the copy. 

DESCRIPTION 
The uiornove function copies nbytes of data to or from the space defined by the 
uio structure (described in uio.h) and the driver. 

The uio _ segflg member of the uio structure determines the the type of space to 
or from which the transfer being made. If it is set to UIO_SYSSPACE the data 
transfer is between addresses in the kernel. If it is set to UIO USERSPACE the 
transfer is between a user program an\f kernel space. -

In addition to moving the data, uiornove adds the number of bytes moved to the 
iov base member of the iovec(D4DK) structure, decreases the iov len member, 
increases the uio offset member of the uio structure, and decreases the 
uio resid member: 

This function does automatic page boundary checking. nbytes does not have to be 
word-aligned. 

CAUTION: If uio segflg is set to UIO SYSSPACE and address is selected from 
user space, the system panics. -

RETURN VALUE 

LEVEL 

uiomove returns 0 upon success or -1 on failure. The driver entry point routine 
through which uiomove was called should return EFAULT if -1 is returned. 

Base. 

SEE ALSO 
uio(D4DK), ureadc(D3DK), uwritec(D3DK) 

EXAMPLE 
See nnalloc. 

3/91 Page 1 



ulophyslo(D3D) (DOI) ulophyslo(D3D) 

NAME 
uiophysio - validate and issue raw 1/0 request 

SYNOPSIS 
#include<sys/types.h> 
#include <sys/buf.h> 
#include <sys/errno.h> 
#include <sys/uio.h> 
#include <sys/cred.h> 

int uiophysio (int (*(strategy) (), struct buf *buf, dev_t dev, 
int rwflag, uio_t *uio_p); 

ARGUMENTS 
strategy Address of the driver strategy routine. 

buf 

dev 

rwfl.ag 

uio_p 

Pointer to the buf structure describing the 1/0 request. 

Device number. 

Flag indicating whether the access is a read (B_READ) or a write 
(B _WRITE). Note that B _WRITE cannot be directly tested as it is O. 

Pointer to the uio structure that defines the user space of the 1/0 
request. 

DESCRIPTION 
uiophysio is called directly by some drivers, or indirectly via physiock(D3D). 

uiophysio performs the following functions: 

faults pages in and locks the pages impacted by the 1/0 transfer so they 
can not be swapped out 

calls the driver strategy(D2DK) routine passed to it 

sleeps until the transfer is complete and is awakened by the 
biodone(D3DK) function in the driver's interrupt routine 

performs the necessary cleanup and updates, then returns to the driver 
routine 

A transfer using uiophysio is considered valid if the user has specified a storage 
area that exists in user memory space. 

RETURN VALUE 

LEVEL 

uiophysio returns 0 if the result is successful, the appropriate error number 
upon failure. EFAULT is returned if user memory is not available. EAGAIN is 
returned if uiophysio could not lock pages for DMA. 

Base Only (Do not call from an interrupt routine) 

SEE ALSO 
drna _pageio(D3D), strategy(D2DK), physiock(D3D) 

3/91 Page 1 



unllnkb(D3DK) DDl/DKI( STREAMS) 

NAME 
unlinkb - remove a message block from the head of a message 

SYNOPSIS 
tinclude <sys/stream.h> 

mblk t *unlinkb(mblk_t *mp); 
ARGUMENT 

mp Pointer to the message. 

DESCRIPTION 

unllnkb ( D3DK) 

unlinkb removes the first message block from the message pointed to by mp. A 
new message, minus the removed message block, is returned. 

RETURN VALUE 

LEVEL 

If successful, unlinkb returns a pointer to the message with the first message 
block removed. If there is only one message block in the message, NULL is 
returned. 

Base or Interrupt 

SEE ALSO 
BCI Driver Development Guide, Chapter 7, "STREAMS" 

linkb(D3DK) 

EXAMPLE 

3/91 

The routine expects to get passed an M_PROTO T_DATA_IND message. It will 
remove and free the M_PROTO header and return the remaining M_DATA portion of 
the message. 

1 rnblk t • 

2 makedata (mp) 

3 mblk_t *mp; 

4 { 

5 mbik_ t *nmp; 

6 

7 nmp = unlinkb(rrp); 
8 freeb (mp); 

9 return(nrrp); 
10 

Page 1 

~ 
I 



untlmeout ( D3DK) DOI/OKI untlmeout ( D3DK) 

NAME 
untimeout - cancel previous timeout(D3DK) function call 

SYNOPSIS 
tinclude <sys/types.h> 

int untimeout(int id); 

ARGUMENTS 
id Identification value generated by a previous timeout function call. 

DESCRIPTION 
untimeout cancels a pending timeout(D3DK) request. 

RETURN VALUE 
None 

LEVEL 
Base or Interrupt 

SEE ALSO 
BCI Driver Development Guide, Chapter 10, "Synchronizing Hardware and 
Software Events" 

delay(D3DK), biodone(D3DK), biowait(D3DK), sleep(D3DK), timeout(D3DK), 
wakeup(D3DK) 

EXAMPLE 

3/91 

A driver may have to repeatedly request outside help from a computer operator. 
The timeout function is used to delay a certain amount of time between requests. 
However, once the request is honored, the driver will want to cancel the timeout 
operation. This is done with the untimeout function. 

In a driver open(D2DK) routine, after the input arguments have been verified, the 
"t:>t11" nf th<> cl.,v;r., ;., t<> .. tM Tf thP nPvirP is nnt nn-linP.. a messal!e is disolaved 
~~-the -;yst~ console. The driver schedules a wakeup(03DK) call and waits' for 
five minutes (line 41). If the device is still not ready, the procedure is repeated. 

When the device is made ready, an interrupt is generated. The driver interrupt 
handling routine notes there is a suspended process. It cancels the timeout 
request (line 59) and wakens the suspended process (line 61). 

1 struct mtu_device { 

2 
3 

4 

5 

6 

7 

8 

) ; 

int 
int 
int 
paddr_t 

/* end device 

/* layout of physical device registers *I 

control; /* physical device control word */ 

status; /* physical device status word */ 

byte_cnt; /* number of bytes to be transferred */ 
baddr: /* DMA starting physical address */ 

*/ 

9 struct mtu 

10 /* magnetic tape unit logical structure */ 

/* pointer to I/O queue head */ 

/* pointer to buffer I/O queue tail •/ 
11 

12 
13 
14 

struct buf *mtu_head; 
struct but *mtu_tail; 
int mtu_flag; /* logical status flag 

int mtu_to_id; /* time out ID number 

*/ 

•/ 

Page 1 



untlmeout ( D3DK) DDl/DKI untlmaout ( D3DK) 

Page 2 

15 ); /* end mtu */ 
16 
17 extern struct mtu_device *mtu_addr[]; 
18 extern struct mtu mtu_tbl[]; 
19 extern int mtu_cnt; 

20 mtu_open(dev, flag, type, c_ptr) 
21 dev_t dev; 
22 
23 register struct mtu *dp; 
24 register struct mtu_ device •rp; 

/* location of dev reqs */ 
/* location of dev structs */ 

25 if {(getminor(dev) » 3) > mtu_cnt) {/*if dev doesn't exist*/ 
26 
27 
28 
29 
30 
31 
32 
33 

return (ENXIO); 
) /* endif •/ 

dp • &mtu_tbl[getminor(dev)]; 
if (dp->mtu_flag & MTU_BUSY) 

return (EBUSY) ; 
I /* endif */ 

/* then return error condition */ 

/* get loqical device struct •/ 
!= 0) { /* if device is in use, */ 

/* return busy status */ 

34 dp->mtu_flag = MTU_BUSY; /* mark device in use & clear flags •/ 
35 rp - xx_addr[getminor(dev) >> 3]; /*get device regs*/ 
36 oldlevel2 - splhi(); 
37 while( (rp->status & MTU_LOAD) == 0) I I* while tape not loaded */ 

38 /* display mount request on con:;ole *I 
39 ann_err(CE_NOTE, "!Tape MOUNT, drive %d", minor{dev) & Ox3); 
40 dp->mtu_flag I= MTU_WAIT; /* indicate process suspended *I 

41 dp->mtu to id = timeout {wakeup, dp, 5*60*HZ); /* wait 5 min */ 
42 if (sleep(dp, (PCATCH I PZERo+2)) == 1) {/*wait on tape load */ 
43 
44 dp->mtu_flag = O; 

I* if user aborts process, release */ 
/* tape device by clearing flags */ 

45 untimeout(dp->mtu_to_id); 
46 splx{oldlevel2); 
47 /* endif •I 
48 I /* endwhile */ 
49 splx(oldlevel2); 
50 I* end mtu_open */ 

51 mtu_int {cntr) 
52 int cntr; I* controller that caused the interrupt */ 
53 
54 
55 

56 
57 
58 
59 

register struct 
register struct 

mtu_device *rp = xx_addr[cntr]; /* get device reqs *I 

mtu *dp = &mtu_tbl[cntr << 3 I (rp->status & Ox3)]; 

if ((dp->mtu_flag & MTU_WAIT) != 0) ( I* if process is suspended *I 
I* waiting for tape mount, *I 

untimeout(dp->mtu_to_id); I* cancel timeout request */ 

dp->flag &= -MTU_WAIT; I* clear wait flag *I 

3/91 



untlmaout ( D3DK) 

3/91 

60 

61 
wakeup(dp); 

/* endif */ 

DDl/DKI untlmaout ( D3DK) 

/* awaken suspended process */ 

Page 3 



ureadc(D3DK) DDl/DKI 

NAME 
ureadc - add character to a uio structure 

SYNOPSIS 
#include <sys/uio.h> 

int ureadc (int c, uio_t *uio_p); 
ARGUMENTS 

c 
*uio_p 

DESCRIPTION 

The character added to the uio structure. 

Pointer to the uio(D4DK) structure. 

ureadc(D3DK) 

ureadc transfers the character c into the address space of the uio structure 
pointed to by uio _p, and updates the uio structure as for uiomove(D3DK). 

RETURN VALUE 
o is returned on success and EFAULT on failure. 

LEVEL 
Base or Interrupt 

SEE ALSO 
uiomove(D3DK), uwritec(D3DK), iovec(D4DK), uio(D4DK) 

3/91 Page 1 



useracc ( D3DK) DDl/DKI useracc(D3DK) 

NAME 
useracc - verify whether user has access to memory 

SYNOPSIS 
tinclude <sys/types.h> 
tinclude <sys/buf.h> 

int useracc(caddr_t base, uint count, int access); 

ARGUMENTS 
base The start address of the user data area 

count 
access 

The size of the data transfer in bytes 

A flag to determine whether the access is a read or write. The defined 
constant B _READ specifies a read from the device and a write to 
memory. This requires that the user have write access permission for 
the specified data area. The defined constant B _WRITE specifies a read 
from memory and a write to the device. It requires read access per­
mission for the data area. (B READ and B WRITE are defined in the 
system header file sys/buf .h.) -

DESCRIPTION 
useracc verifies if a user has proper access to memory. It is not necessary to use 
useracc for buffered I/0 (including use of the copyin(D3DK) and 
copyout(D3DK) functions). 

RETURN VALUE 

LEVEL 

Under normal conditions, 1 is returned. If the user does not have the proper 
access permission to the memory specified, 0 is returned. 

Base Only (Do not call from an interrupt routine) 

SEE ALSO 
drv __pri v(D3DK) 

3191 Page 1 



uwrltac(D3DK) DDl/DKI 

NAME 
uwritec - remove a character from a uio structure 

SYNOPSIS 
#include <sys/uio.h> 

int uwritec (uio_t *uio_p); 
ARGUMENTS 

*uio_p 
DESCRIPTION 

Pointer to the uio(D4DK) structure. 

uwrltac ( D3DK) 

uwritec returns a character from the uio structure pointed to by uio_p, and 
updates the uio structure as for uiomove(D3DK). 

RETURN VALUE 

LEVEL 

The next character for processing is returned on success, and -1 is returned if uio 
is empty or there is an error. 

Base or Interrupt 

SEE ALSO 
uiomove(D3DK), ureadc(D3DK), iovec(D4DK), uio(04DK) 

3/91 Page 1 



vtop(D3D) (DOI) vtop(D3D) 

NAME 
vtop - convert virtual to physical address 

SYNOPSIS 
tinclude <sys/types.h> 

paddr_t vtop(long vaddr, proc_t *pl; 

ARGUMENTS 
vaddr Virtual address to convert. 

p Pointer to the proc(D4X) structure used by vtop to locate the informa­
tion tables used for memory management. To indicate that the 
address is in kernel virtual space or in the virtual space of the current 
process, set p to NULL. Drivers that can transfer data directly in and 
out of user memory space must set p to the b _proc member of the 
buf(D4DK) structure. 

DESCRIPTION 
vtop converts a virtual address to a physical address. When a driver receives a 
memory address from the kernel, that address is virtual. Generally, memory 
management is performed by the MMU. However, devices that access memory 
directly (OMA) deal only with physical memory addresses. In such cases, the 
driver must provide the device with physical memory addresses. 

The virtual address is the memory address being translated. The vtop function 
returns the translated address. 

Similar functionality is provided by the kvtophys(D3D) function. 

RETURN VALUE 

NOTE 

LEVEL 

Under normal conditions, a physical address is returned. A value of -1 will be 
returned if the virtual address to be translated is not valid. 

If the physical memory corresponding to the virtual address being translated is 
not explicitly locked (via uiophysio or physiock) or definitely known to be in the 
correct state (for example, 1/0 requests via the strategy entry point or known 
kernel data), the returned address will be invalid. 

Base or Interrupt. 

SEE ALSO 
BCI Driver Development Guide, Chapter 6, '1nput/Output Operations" 

btop(D3DK), btopr(D3DK), ptob(D3DK), kvtophys(D3D) 

3/91 Page 1 



wakeup ( D3DK) DDl/DKI wakeup(D3DK) 

NAME 
wakeup - resume suspended process execution 

SYNOPSIS 
tinclude <sys/types.h> 

void wakeup(caddr_t event); 
ARGUMENT 

event Address that is the same address used by sleep(D3DK) to suspend 
process execution. 

DESCRIPTION 
wakeup awakens all processes that called sleep with an address as the event 
argument. This lets the processes execute according to the scheduler. Ensure 
that the same event argument is used for both sleep and wakeup. It is recom­
mended for code readability and for efficiency to have a one-to-one correspon­
dence between events and sleep addresses. Also, there is usually one bit in the 
driver flag member that corresponds to the reason for calling sleep. 

Whenever a driver calls sleep, it should test to ensure the event on which the 
driver called sleep occurred. There is an interval between the time the process 
that called sleep is awakened and the time it resumes execution where the state 
forcing the sleep may have been reentered. This can occur because all processes 
waiting for an event are awakened at the same time. The first process given con­
trol by the scheduler usually gains control of the event. All other processes 
awakened should recognize that they cannot continue and should reissue sleep. 

RETURN VALUE 
None 

LEVEL 
Base or Interrupt 

SEE ALSO 
BCI Driver Development Guide, Chapter 10, "Synchronizing Hardware and 
Software Events" 

delay(D3DK), biodone(D3DK), biowait(D3DK), sleep(D3DK), timeout(D3DK), 
untimeout(D3DK) 

EXAMPLE 
See the untimeout(D3DK) function page for an example of wakeup. 

3/91 Page 1 



WR(D3DK) DDl/DKl(STREAMS) WR(D3DK) 

NAME 
WR- get pointer to the write queue for this module or driver 

SYNOPSIS 
finclude <sys/stream.h> 
finclude <sys/ddi.h> 

queue_t WR(queue_t *q); 

ARGUMENTS 
q Pointer to the read queue whose write queue is to be returned. 

DESCRIPTION 
The WR function accepts a read queue pointer as an argument and returns a 
pointer to the write queue of the same module. 

CAUTION: Make sure the argument to this function is a pointer to a read queue. 
WR will not check for queue type, and a system panic could result if the pointer is 
not to a read queue. 

RETURN VALUE 
The pointer to the write queue. 

LEVEL 
Base or Interrupt 

SEE ALSO 
Programmer's Guide: STREAMS 
OTHERQ(D3DK), RD(D3DK) 

EXAMPLE 

3/91 

In a SfREAMS close routine, the driver or module is passed a pointer to the 
read queue. The driver must zero out the q_ptr field of both the read and write 
aueues if it had oreviouslv initializP.d thPm in its nn..n mntinP_ ThP!'lP mmallv aTP 
set to the address of the module-specific data structure for the minor device. J 

1 xxxclose(q, flag) 
2 queue_t *q; 

3 int flag; 
4 ( 

5 q->q_ptr = NULL; 
6 WR(q)->q_ptr =NULL; 

7 I 

Page 1 





4 Data Structures (04) 

Introduction 4-1 

Manual Pages 4-3 

Table of Contents 





Introduction 

This chapter describes the data structures used by drivers to share infonnation 
between the driver and the kernel. All driver data structures shared by both 
DOI and OKI are identified with the (D4DK) cross reference code. All DOI-only 
or OKI-only structures are identified with the (040) or (D4K) cross reference 
codes respectively. 

In this section, reference pages contain the following headings: 

• NAME summarizes the structure's purpose. 

• SYNOPSIS lists the include file that defines the structure. 

• DESCRIPTION provides general information about the structure. 

• STRUCTURE MEMBERS lists all accessible structure members. 

• SEE ALSO gives sources for further information. 

Table 4-1 summarizes the SfREAMS structures described in this section. 
STREAMS structures may be used in either DOI or OKI. 

Table 4--1: STREAMS Data Structure Summary 

Routine Description 

! rl.::it-.::ih ! &;TRF AM&; mP<:<:~g~ ,fat~ ~tr111:t1-1-!''0' 

free rtn structure specifying routine that frees non-STREAMS data -
buffers 

module info STREAMS driver identification and limit value structure -
msgb STREAMS message block structure 

qband STREAMS queue flow control information structure 

qinit structure specifying SfREAMS queue processing procedures 

queue STREAMS queue structure 

streamtab structure specifying qinit structures 

Data Structures (D4) 4-1 



Introduction 

Table 4-2 summarizes structures that are not specific to STREAMS 1/0. These 
structures may be used in either DOI or OKI, except as noted. 

Table 4·2: Data Structures not SpecHlc to STREAMS 

Routine Description Type 

buf block 1/0 data transfer structure 

cred access credential structure 

hdedata hard disk error data structure DOI only 

iovec structure specifying address and size of 
1/0 request using uio(D40K) 

map private memory map structure 

uio scatter/gather 1/0 request structure 

Y Do not declare arrays of structures as the size of the structures may 
change between releases. Rely only on the structure members listed in 
this chapter and not on unlisted members or the position of a member in 
a structure. 

DDl/DKI Reference Manual 



Table of Contents 

4. Fiie Formats 
buf(D4DK) ..................................................................................... block 1/0 data transfer structure 
cred(D4DK) ............................................................................................... access credential structure 
datab(D4DK) ............................................................................... STREAMS message data structure 
free_ rtn CD4DK) .................................. structure that specifies a driver's message freeing routine 
hdedata(D40) ..................................................................................... hard disk error data structure 
iovec(D4DK) ....................................................... data storage structure for 1/0 using uio(D4DK) 
mapCD4DK) ....................................................................................... private memory map structure 
module_info(D4DK) ........................... STREAMS driver identification and limit value structure 
msgb(D4DK) ............................................................................. STREAMS message block structure 
qband(D4DK) .............................................. SfREAMS queue flow control information structure 
qinit(D4DK) ..................................................... STREAMS queue processing procedures structure 
queue(D4DK) ........................................................................................... STREAMS queue structure 
streamtab(D4DK) ................................................................ STREAMS entity declaration structure 
uio(D4DK) ............................................................................... scatter/gather 1/0 request structure 

Table of Contents 1 





buf(D4DK} DDl/DKI buf(D4DK} 

NAME 
buf - block 1/0 data transfer structure 

SYNOPSIS 
#include <sys/buf.h> 

DESCRIPTION 

3/91 

The buf structure is the basic data structure for block 1/0 transfers. Each block 
1/0 transfer has an associated buffer header. The header contains all the buffer 
control and status information. For drivers, the buffer header pointer is the sole 
argument to a block driver strategy(D2DK) routine. Do not depend on the size 
of the buf structure when writing a driver. 

It is important to note that a buffer header may be linked in multiple lists simul­
taneously. Because of this, most of the members in the buffer header cannot be 
changed by the driver, even when the buffer header is in one of the drivers' work 
lists. 
Buffer headers are also used by the system for unbuffered or physical 1/0 for 
block drivers. In this case, the buffer describes a portion of user data space that 
is locked into memory (see physiock(D3D)). 

Block drivers often chain block requests so that overall throughput for the device 
is maximized. The av forw and the av back members of the buf structure can 
serve as link pointers fur chaining block requests. 
The following figure illustrates two linked lists of buffers. The top illustration is 
the bfreelist, the list of available buffers. The bottom illustration is a queue of 
allocated buffers. The lined areas indicate other buffer members. 

bfreelist buf structures 

Available Buffers 

Allocated Buffers 

Page 1 



buf(D4DK) DDl/DKI buf(D4DK) 

STRUCTURE MEMBERS 

Page 2 

int b flags; /* Buffer status */ 
struct buf *b_forw; /* headed by d_tab of conf.c */ 
struct b~f *b_back; /* headed by d tab of conf .c */ 
struct buf *av_forw; /* Driver work-list link */ 
struct buf *av_back; /*Driver work lists link·*/ 
o dev t b_dev; /* Major/minor device numbers */ 
unsigned b_bcount; /* t of bytes to transfer */ 
caddr_t b_addr; /*Buffer's virtual address*/ 
daddr_t b_blkno; /* Block number on device */ 
char b_oerror; /* Old post-I/O error number */ 
unsigned int b_resid; /* it of bytes not transferred */ 
clock t b_start; /* request start time */ 
struct proc *b_proc; /* Process table entry address */ 
struct page *b_pages; /* page list for PAGEIO */ 
unsigned long b_reltime; /* previous release time */ 
long b bufsize; /* size of allocated buffer */ 
int (°*b_iodone): I* function called by biodone */ 
struct vnode *b_vp; /* vnode associated with block */ 
int b_error; /* expanded error field */ 
dev_t b_edev; /* expanded dev field */ 

CAUTION: Buffers are a shared resource within the kernel. Drivers should read 
or write only the members listed in this section. Drivers that attempt to use 
undocumented members of the buf structure risk corrupting data in the kernel or 
on the device. 

The paddr macro (defined in buf.h) provides access to the b_un.b_addr member 
of the buf structure. (b_un is a union that contains b_addr.) 

The members of the buffer header available to test or set by a driver are as fol­
lows: 

b flags stores the buffer status and tells the driver whether to read or write to 
the device. The driver must never clear the b flags member. If this is done, 
unpredictable results can occur including loss-of disk sanity and the possible 
failure of other kernel processes. 

Valid flags are as follows: 

B BUSY 

B DONE 

B ERROR 

B KERNBUF 

B PAGEIO 

indicates the buffer is in use. 

indicates the data transfer has completed. 

indicates an 1/0 transfer error. 

indicates the buffer is allocated by the kernel and not by a 
driver. 

indicates the buffer is being used in a paged 1/0 request. 
If B _PAGEIO is set, the b _pages field of the buffer header 
will point to a sorted list of page structures. Also, the 
b addr field of the buffer header will be offset into the 
first page of the page list. If B_PAGEIO is not set, the 
b addr field of the buffer header will contain the kernel 

3/91 



buf(D4DK) DOI/OKI buf(D4DK) 

3/91 

B PHYS 

BREAD 

B WANTED 

B WRITE 

virtual address of the 1/0 request. The b_pages field of 
the buffer header is not used. 

indicates the buffer header is being used for physical 
(direct) 1/0 to a user data area. The b un member con-
tains the starting address of the user data-area. 

indicates data is to be read from the peripheral device into 
main memory. 

indicates the buffer is sought for allocation. 

indicates the data is to be transferred from main memory 
to the peripheral device. B _WRITE is a pseudo flag that 
occupies the same bit location as B _READ. B _WRITE cannot 
be directly tested; it is only detected as the NOT form of 
BREAD. 

av_ forw and av_ back can be used by the driver to link the buffer into driver 
work lists. 

b_dev contains the external major and minor device numbers of the device 
accessed. For Release 4.0, this field is replaced by the expanded device number 
field b_edev. b_dev is maintained for compatibility. 

b_bcount specifies the number of bytes to be transferred in both a paged and a 
non-paged 1/0 request. 

b_addr is either the virtual address of the 1/0 request, or an offset into the first 
page of a page list depending on whether B _PAGEIO is set. If it is set, the 
b _pages field of the buffer header will point to a sorted list of page structures 
and b_addr will be the offset into the first page. If B_PAGEIO is not set, b_addr 
is the virtual address from which data is read or to which data is written. 

b _ blkno identifies which logical block on the device (the device is defined by the 
device number) is to be accessed. The driver may have to convert this logical 
block number to a physical location such as a cylinder, track, and sector of a disk. 

The b _ oerror with a char data type and the expanded b _error with an int 
data type both may hold an error code that should be passed as a return code 
from your driver routine. b_error and b_oerror is set in conjunction with the 
B _ERROR flag (set by the operating system in the b _flags member). The error 
codes are described in Appendix A. 

b_resid.indicates the number of bytes not transferred because of an error. 

b_start holds the time the 1/0 request was started. 

b _proc contains the process table entry address for the process requesting an 
unbuffered (direct) data transfer to a user data area (this member is set to 0 
when the transfer is buffered). The process table entry is used to perform proper 
virtual to physical address translation of the b _ un member. 

b_pages contains a pointer to the page structure list used in a paged 1/0 
operation. 

Page 3 



buf(D4DK} DDl/DKI buf(D4DK} 

b_bufsize contains the size of the allocated buffer. 

(*b_iodone) identifies a specific biodone routine to be called by the driver 
when the 1/0 is complete. 

b_vp identifies the vnode associated with the block. 

SEE ALSO 

Page 4 

strategy(D2DK), physiock(D3D), brelse(D3DK), clrbuf(D3DK), 
iovec(D4DK), uio(D4DK) 

3/91 



cred(D4DK) DOI/OKI cred(D4DK) 

NAME 
cred - access credential structure 

SYNOPSIS 
#include <sys/cred.h> 

DESCRIPTION 
This structure is used to check the access credentials of the process requesting 
access to kernel space. 

The size of the er _groups [] array is configurable, however, its size is the same 
for all cred structures. Note that er ngroups records the number of elements 
currently in use, not the array size. -

STRUCTURE MEMBERS 
ushort cr_ref; /* reference count on processes using */ 

I* cred structure. Not set by drivers. *! 
ushort cr_ngroups; I* number of groups in cr_groups */ 
uid t cr_uid; I* effective user ID *I 
gid_t cr_gid; !* effective group ID *! 
uid t cr_ruid; I* real user ID *I 
gid_t cr_rgid; I* real group ID */ 
uid t cr_suid; !* "saved" user ID (from exec) */ 
gid_t cr_sgid; I* "saved" group ID (from exec) */ 
gid_t cr_groups[l]; !* supplementary groups list *! 

The cred structure is defined as type cred_t. 

SEE ALSO 

3/91 

open(D2DK), close(D2DK), ioctl(D2DK), mnap(D2DK), read(D2DK), 
write(D2DK), segmap(D2DK) 

Page 1 



datab(D4DK} DDl/DKl(STREAMS} datab(D4DK} 

NAME 
datab - STREAMS message data structure 

SYNOPSIS 
tinclude <sys/stream.h> 

DESCRIPTION 
The datab structure describes the data of a STREAMS message. The actual data 
contained in a STREAMS message is stored in a data buffer pointed to by this 
structure. A msgb (message block) structure includes a field that points to a 
datab structure. 
A data block can have more than one message block pointing to it at one time, so 
the db_ref member keeps track of a data block's references, preventing it from 
being deallocated until all message blocks are finished with it. 

STRUCTURE MEMBERS 
union { 

struct datab *freep; 
struct free rtn *frtnp; 
db_f; 

unsigned char 
. unsigned char 
unsigned char 
unsigned char 
unsigned char 
unsigned int 
caddr t 
long 

*db_base; 
*db_lim; 
db_ref; 
db_type; 
db_iswhat; 
db_size; 
db_msgaddr; 
db_filler; 

I* routine to free non-STREAMS buffer */ 

/* first byte of buffer */ 
/* last byte (+l) of buffer */ 
/* # of message pointers to this data */ 
/* messa.ge type */ 
/* status of msg/data/buffer triplet */ 
I* used internally */ 
/* triplet mesg header; points to datab */ 
/* reserved for future use */ 

A datab structure is defined as type dblk _ t. 

SEE ALSO 
BCI Driver Development Guide, Chapter 4, "Header Files and Data Structures" 

free_ rtn(040K), rnsgb(040K) 

3/91 Page 1 



free_ rtn ( 040K) 001/0Kl(STREAMS) free_ rtn ( 040K) 

NAME 
free_rtn - structure that specifies a driver's message freeing routine 

SYNOPSIS 
iinclude <sys/stream.h> 

DESCRIPTION 
The free_rtn structure is referenced by the dp_freep member of the datab 
structure. When freeb(D3D) is called to free the message, the driver's message 
freeing routine (referenced through the free_ rtn structure) is called, with argu­
ments, to free the data buffer. 

STRUCTURE MEMBERS 
void (*free_func) () /*user's freeing routine*/ 
char *free_arg /*arguments to free_func() */ 

The free_rtn structure is defined as type frtn_t. 

SEE ALSO 
datab(D4DK), esballoc(D3DK) 

3/91 Page 1 



hdedata { D4D) {DDI) hdedata { D4D) 

NAME 
hdedata - hard disk error data structure 

SYNOPSIS 
tinclude <sys/hdelog.h> 

DESCRIPTION 
The hdedata data structure temporarily stores hard disk error information sent to 
an error queue. A hdedata structure is initialized for every disk on the system 
by hdeeqd(D3D) when the system is booted. An error queue is also initialized by 
hdeeqd. 

When the disk driver finds an error, it provides hdelog(D3D) with the error 
information. hdelog passes the hdedata structure for the error to the error 
queue. This error queue is a queue of bad block reports that have not been 
remapped. This queue resides in the kernel and not on the disk. 

After a number or errors are accumulated, an administrator examines the list of 
errors collected in the queue. If any of the errors need to be "fixed," the 
administrator remaps the bad block. Remapping means that the block address is 
rewritten to a defect table on the disk. Physical Description sector information 
points to this defect table. 

The following figure illustrates the logging of hard disk errors: 

driver hdelog 

hdedata 
structure 

error 
queue 

STRUCTURE MEMBERS 
o dev t diskdev; 

char dskserno[l2]; 
daddr t blkaddr; 

char readtype; 

char severity; 
char badrtcnt; 
char bit width; 
time t timestmp; 

/* Major/minor disk device number */ 
I* (major number for character device) */ 
I* Disk pack serial number (can be all zeros) */ 
/* Physical block address */ 
I* in machine-independent form */ 
I* Error type:CRC (cyclical redundancy check) */ 
/* or ECC (error check and correction) *I 
I* Severity type: marginal or unreadable */ 
/* Number of unreadable tries */ 
I* Bitwidth of corrected error: 0 if CRC */ 
/* Time stamp */ 

NOTE: The disk pack serial number is not currently evaluated, but it must con­
tain a value. Set to all zeros. 

SEE ALSO 
hdeeqd(D3D), hdelog(D3D) 

3191 Page 1 



lovec(D4DK) DOI/OKI 

NAME 
iovec - data storage structure for 1/0 using uio(D4DK) 

SYNOPSIS 
finclude <sys/uio.h> 

DESCRIPTION 

lovec ( D4DK) 

An iovec structure describes a data storage area for transfer in a uio structure. 
Conceptually, it may be thought of as a base address and length specification. 

STRUCTURE MEMBERS 
caddr t iov_base; /* base address of the data storage area */ 

/* represented by the iovec structure */ 
int iov_len; /* size of the data storage area in bytes */ 

SEE ALSO 
uio(D4DK) 

3/91 Page 1 



map(D4DK) DDl/DKI map(D4DK) 

NAME 
map - private memory map structure 

SYNOPSIS 
tinclude <sys/map.h> 

DESCRIPTION 
The map structure defines the size and index into a private space management 
map. The private map is declared as an instance of the map structure using the 
driver prefix in the form prefi:xrnap. The size is defined in the m_size field as the 
number of arbitrary units used to make up the map. The index is defined in 
m_addr as the first available unit of the map. 

Private maps are managed through a set five functions: 

rmalloc allocates space from a defined and initialized map 
rmfree returns previously allocated space to map 
rminit defines a map structure and initializes a map table 
rmwant returns the number of processes waiting for free space 
rmsetwant increments the count of the number of processes waiting for 

free space in the map 

Private maps can be made up of any units appropriate for the specific uses of the 
map. For example, units may be byte addresses, pages of memory, or blocks. 
The map itself. does not define the resource, and the size of the map is not related 
to the size of the map structure. 

STRUCTURE MEMBERS 
unsigned long m_size /* number of units available */ 
unsigned long m_addr /* address of first available unit */ 

SEE ALSO 

3/91 

rmalloc(D3DK), rmfree(D3DK), rminit(D3DK), rmsetwant(D3DK), 
rmwant(D3DK) 

Page 1 



module _info ( D4DK) DDl/DKl(STREAMS) module _info ( D4DK) 

NAME 
rnodule_info - STREAMS driver identification and limit value structure 

SYNOPSIS 
#include <sys/stream.h> 

DESCRIPTION 
When a module or driver is declared, several identification and limit values can 
be set. These values are stored in the m:>dule info structure. 

The module_ info structure is intended to be read-only. However, the flow con­
trol limits (mi_hiwat and mi_lowat) and the packet size limits (mi_minpsz and 
mi_maxpsz) are copied to the QUEUE structure, where they may be modified. 

STRUCTURE MEMBERS 
ushort mi idnurn; /* module ID number *I -
char *mi id.name; I* module name */ -
short mi_minpsz; /* minimum packet size *I 
short mi_maxpsz; I* maximum packet size *I 
ushort mi_hiwat; /* high water mark */ 
ushort mi lowat; /* low water mark *I -

The constant FMNAMESZ, limiting the length of a module's name, is currently set to 
a value of eight. 

SEE ALSO 
queue(D4DK) 

3/91 Page 1 



msgb(D4DK) DDl/DKI( STREAMS) msgb(D4DK) 

NAME 
msgb - STREAMS message block structure 

SYNOPSIS 
#include <sys/stream.h> 

DESCRIPTION 
A STREAMS message is made up of one or more message blocks, referenced by a 
pointer to a msgb structure. The b _next and b _prev pointers are used to link 
messages together on a QUEUE's message queue. The b_cont pointer links 
message blocks together when a message is composed of more than one block. 

Each msgb structure also includes a pointer to a datab structure, the data block 
(which contains pointers to the actual data of the message), and the type of the 
message. 

STRUCTURE MEMBERS 
struct msgb 
struct msgb 
struct msgb 
unsigned char 
unsigned char 
struct datab 
unsigned char 
unsigned char 
unsigned short 
long 

*b_next; 
*b_prev; 
*b_cont; 
*b_rptr; 
*b_wptr; 
*b_datap; 
b_band; 
b_pad1; 
b_flag; 
b_pad2; 

/* next message on queue */ 
/* previous message on queue */ 
I* next message block */ 
/* 1st unread data byte of buffer */ 
/* 1st unwritten data byte of buffer */ 
/* pointer to data block */ 
/* message priority */ 
/* used internally */ 
/* used by stream head */ 
/* used internally */ 

The msgb structure is defined as type mblk_t. 

SEE ALSO 
BCI Driver Development Guide, Chapter 4, ''Header Files and Data Structures" 

datab(D4DK) 

3/91 Page 1 



qband(D4DK) DOI/OKI( STREAMS) 

NAME 
qband - STREAMS queue flow control information structure 

SYNOPSIS 
iinclude <sys/stream.h> 

DESCRIPTION 

qband ( D4DK) 

The qband structure contains flow control information for each priority band in a 
queue. 

The qband structure is defined as type qband_t. 

STRUCTURE MEMBERS 
struct qband 
ulong 
struct msgb 
struct msgb 
ulong 
ulong 
ulong 
long 

SEE ALSO 

*qb_next; 
qb_count 
*qb_first; 
*qb_last; 
*qb_hiwat; 
*qb_lowat; 
*qb_flag; 
*qb_padl; 

msgb(D4DK), queue(D4DK) 

3/91 

/* 
/* 
I* 
I* 
/* 
I* 
I* 
I* 

next band's info */ 
number of bytes in band *I 
start of band's data*/ 
end of band's data*/ 
band's high water mark*/ 
band's low water mark*/ 
band's status*/ 
reserved for future use */ 

Page 1 



qlnlt(D4DK) DDl/DKl(STREAMS) 

NAME 
qinit - STREAMS queue processing procedures structure 

SYNOPSIS 
tinclude <sys/stream.h> 

DESCRIPTION 

qlnlt(D4DK) 

The qinit structure contains pointers to processing procedures for a QUEUE. The 
streamtab structure for the module or driver contains pointers to one qinit 
structure for both upstream and downstream processing. 

STRUCTURE MEMBERS 
int (*qi_putp) (); 
int (*qi_srvp) (); 
int (*qi_qopen) (); 
int (*qi_qclose) (); 
int (*qi_qadmin) (); 
struct module info *qi_minfo; 
struct module stat *qi_mstat; 

SEE ALSO 

/* put procedure */ 
/* service procedure */ 
I* open procedure */ 
/* close procedure */ 
/* unused */ 
/* module parameters */ 
/* module statistics */ 

BC! Driver Development Guide, Chapter 4, ''Header Files and Data Structures" 

queue(D4DK), streamtab(D4DK) 

3/91 Page 1 



queue(D4DK) DOI/OKI( STREAMS) queue (D4DK) 

NAME 
queue - STREAMS queue structure 

SYNOPSIS 
iinclude <sys/stream.h> 

DESCRIPTION 
A STREAMS driver or module consists of two queue structures, one for upstream 
processing (read) and one for downstream processing (write). This structure is 
the major building block of a stream. It contains pointers to the processing pro­
cedures, pointers to the next and previous queues in the stream, flow control 
parameters, and a pointer defining the position of its messages on the STREAMS 
scheduler list. 

The queue structure is defined as type queue_t. 

STRUCTURE MEMBERS 
struct qinit 
struct msgb 
struct msgb 
struct queue 
struct queue 

VOID 

ulong 
ulong 
long 
long 
ulong 
ulong 
struct qband 
unsigned char 
Uns1gneci cnaL 
long 

SEE ALSO 

*q_qinfo; 
*q_first; 
*q_last; 
*q_next; 
*q_link; 
qytr; 
q_count; 
q_flag; 
q_minpsiz; 
q_maxpsiz; 
q_hiwat; 
q_lowat; 
*q_bandp; 
q_nband; 
4._.f:JdU1-LJJ; 

q_pad2[2]; 

msgb(D4DK), qband(D4DK) 

3/91 

/* module or driver entry points */ 
I* first message in queue */ 
/* last message in queue */ 
/* next queue in stream */ 
/* used internally */ 
/* pointer to private data structure */ 
/* approximate size of message queue */ 
I* status. of queue */ 
/* smallest packet accepted by QUEUE */ 
/* largest packet accepted by QUEUE */ 
I* high water mark */ 
/* low water mark */ 
I* separate flow info */ 
/* nurciber of priority band > 0 *I 
I .. .Lt:.:;,t;;;.L \lt;;U. .1..U.L 

/* reserved for future use *I 

Page 1 



streamtab ( 040K) 001/0Kl(STREAMS) streamtab ( 040K) 

NAME 
streamtab - STREAMS entity declaration structure 

SYNOPSIS 
tinclude <sys/stream.h> 

DESCRIPTION 
Each STREAMS driver or module must have a streamtab structure. Drivers 
access this structure through the cdevsw table, and modules use the fmodsw table. 

streamtab is made up of qinit structures for both the read and write queue 
portions of each module or driver. (Multiplexing drivers require both upper and 
lower qinit structures.) The qinit structure contains the entry points through 
which the module or driver routines are called. 

Normally, the read QUEUE contains the open and close routines. Both the read 
and write queue can contain put and service procedures. 

STRUCTURE MEMBERS 
struct qinit 
struct qinit 
struct qinit 
struct qinit 

SEE ALSO 
qinit(D4DK) 

3/91 

*st _rdinit; 
*st _wrinit; 
*st _muxrinit; 
*st _rnuxwinit; 

/* read QUEUE */ 
/* write QUEUE */ 
/* lower read QUEUE*/ 
/* lower write QUEUE*/ 

Page 1 



ulo(D4DK) DOI/OKI ulo(D4DK) 

NAME 
uio - scatter/gather 1/0 request structure 

SYNOPSIS 
#include <sys/uio.h> 

DESCRIPTION 
A uio structure describes an 1/0 request that can be broken up into different 
data storage areas (scatter/gather 1/0). A request is a list of iovec structures 
(base/length pairs) indicating where in user space or kernel space the 1/0 data is 
to be read/written. 

The contents of uio structures passed to the driver through the entry points 
should not be written by the driver. The uiomove(D3D) function takes care of all 
overhead related to maintaining the state of the uio structure. 

STRUCTURE MEMBERS 
iovec t 

int 
off t 

*uio_iov; 

uio iovcnt; 
uio_offset; 

short uio_segflg; 

short uio fmode; 
daddr t uio limit; 

int uio_resid; 

I* pointer to the start of the iovec */ 
/* list for the uio structure */ 

/* the number of iovecs in the list */ 
/* offset into file where data is */ 

/* transferred from or to */ 
/* identifies the type of I/O transfer: */ 
/* UIO SYSSPACE: kernel <-> kernel */ 
/* UIO USERSPACE: kernel <-> user */ 
/* file mode flags (not driver setable) */ 
/* ulimit for file (maximum block offset) . */ 
/* not driver setable */ 

/* residual count */ 

The uio _ iov member is a pointer to the beginning of the iovec(D4DK) list for 
the uio. Wnen the uio structure is passeci t0 the cirivt!r foruu15i1 a.u "u••y pu;_.,,, 
the driver should not set uio _ iov. When the uio structure is created by the 
driver, uio _iov should be initialized by the driver and not written to afterward. 

SEE ALSO 
iovec(D4DK) 

3/91 Page 1 





A Appendix A: Error Codes 

Appendix A: Error Codes A-1 

Table of Contents 





Appendix A: Error Codes 

This appendix lists the error codes that should be returned by a driver routine 
when an error is encountered. Table A-1 lists the error values in alphabetic 
order. All the error values are defined in /usr/include/sys/errno.h. In the 
driver open(D2D), close(D2D), ioctl(D2D), read(D2D), and write(D2D) rou­
tines, errors are passed back to the user with the return instruction at the end 
of the routine. In the driver strategy(D2D) routine, errors are passed back to 
the user by setting the b _error member of the buf(D4D) structure to the error 
codes. 

For STREAMS ioctl routines, error numbers translate to the error numbers sent 
upstream in an M_IOCNAK message. For STREAMS read and write routines, 
error numbers translate to the error numbers sent upstream in an M _ERROR mes­
sage. 

The driver print routine should not return an error code, as the function that 
it calls, cmn_err(D3D), is declared as void (no error is returned). 

Appendix A: Error Codes A-1 



Appendix A: Error Codes 

Table A-1 : Driver Error Codes 

Error Use in these 
Value Error Description Driver Routines (020) 
EA GAIN Kernel resources, such as the buf struc- open, ioctl, read, 

ture or cache memory, are not available write, strategy 
at this time; cannot open device (device 
may be busy, or the system resource is 
not available). 

EFAULT An invalid address has been passed as open, close, ioctl, 
an argument; memory addressing read, write, stra-
error. tegy 

EINTR PCATCH set, wake with signal; sleep open, close, ioctl, 
interrupted by signal. read, write, stra-

tegy 

EINVAL An invalid argument was passed to the open, ioctl, read, 
routine. write, strategy 

EIO A device error occurred; a problem open, close, ioctl, 
was detected in a device status register read, write, stra-
(the 1/0 request was valid, but an tegy 
error occurred on the device). 

ENXIO An attempt was made to access a open, close, ioctl, 
device or subdevice that does not exist read, write, stra-
(one that is not configured); an attempt tegy 
was made to perform an invalid 1/0 
operation; an incorrect minor number 
was specified. 

EPERM A process attempting an operation did open, ioctl, read, 
not have required permission. write, close 

EROFS An attempt was made to open for writ- open 
ing a read-only device. 

A·2 DDl/DKI Reference Manual 



Appendix A: Error Codes 

Table A-2 cross references error values to the driver routines from which the 
error values can be returned. 

Table A-2: Error Codes by Driver Routine 

read, write, 
open close ioctl and strategy 

EAGAIN EFAULT EAGAIN EAGAIN 
EFAULT EINTR EFAULT EFAULT 
EINTR EIO EINTR EINTR 
EINVAL ENXIO EINVAL EINVAL 
EIO EIO EIO 
ENXIO ENXIO ENXIO 
EPERM EPERM 
EROFS 

Appendix A: Error Codes A-3 





B Appendix B: Migration from 
Release 3.2 to Release 4.0 

Appendix B: Migration from Release 3.2 to 
Release 4.0 e-1 

Table of Contents 





Appendix B: Migration from Release 3.2 to 
Release 4.0 

The UNIX System V Block and Character Interface (BC!) Reference Manual defined 
the functions, routines, and structures appropriate for use in the UNIX System V 
Release 3.2 environment. Table B-1 presents all of the kernel utility functions 
included in the BCI followed by information about changes to the functions for 
Release 4.0. Most of the functions fall into one of these categories: 

• No change. The function behaves the same way it did in BCI. 

• Not supported. The function is not included in either DDI or DKI. No 
replacement is provided. 

• Supported but obsolete. The function is included in DDI or DKI but a 
replacement is suggested. 

• Macro reimplemented as function. The calling and return syntax has not 
changed for macros converted to functions. 

• Replaced. The function is. not included in either DDI or DKI but a 
replacement is provided. 

• Renamed only. The function was renamed, but the functionality is the 
same as it was under the old name. 

Appendix B: Migration from Release 3.2 to Release 4.0 B-1 



Appendix B: Migration from Release 3.2 to Release 4.0 

Table B-1 : 3.2 to 4.0 Migration 

BCI Comments DDl/DKI 

adjmsg No change adjmsg 
allocb For memory mapped 1/0, use esbal- allocb 

loc 
backq No change backq 
bcopy No change bcopy 
brelse Supported but obsolete. Allocate kmem free 

buffer with kmem alloc or or freerbuf -
getrbuf(D3DK). 

btoc Replaced btop,btopr 
bufcall Do not use with esballoc bufcall 
bzero Word alignment no longer required bzero 
canon Not supported None 
canput Use bcanput to test specific priority canput 

band 
clrbuf buf structure has changed clrbuf 
cmn err No change cmn err 
copyb No change copyb 
copy in Supported but obsolete. Use uiomove uiomove 
copymsg No change copymsg 
copyout Supported but obsolete. Use uiomove uiomove 
ct ob Replaced pt ob 
datamsg No change datamsg 
delay No change delay 
dma alloc Not supported None 
dma_breakup Replaced dma_pageio 
drv rf ile Not supported None 
d.upb No change dupb 
d.upmsg No change dupmsg 
enableok Macro reimplemented as function enableok 
flushq Use flushband to flush specific prior- flushq 

ity band 
freeb Frees allocb and esballoc allocated freeb 

B-2 DDl/DKI Reference Manual 



Appendix B: Migration from Release 3.2 to Release 4.0 

Table B-1: 3.2 to 4.0 Migration (continued) 

BCI Comments DDI/DKI 

buffers 
freemsg No change freemsg 
fubyte Replaced. uiomove 
fuword Replaced uiomove 
getc Not supported. None 
getcb Not supported None 
get cf Not supported None 
geteblk Replaced. Use krnem_alloc or getrbuf kmem alloc 

to allocate a buffer header or getrbuf 
getq No change getq 
getvec No change getvec 
hdeeqd No change hdeeqd 
hdelog No change hdelog 
inb Not supported. None 
ind Not supported None 
in sq No change in sq 
iodone Renamed only biodone 
iomove Replaced. uiomove 
.! ----- .! ...... 'D~---~,..l ~-1 .. '- .! ---- .! ...... ..... ....," .. ~ .......... ..._'-"'.&l....._...&L"',,... V&&&J ~..._vwvu..i..~ 

kseg Not supported. None 
linkb No change linkb 
logmsg Not supported None 
logstray Not supported None 
longjrrp Not supported None 
major Renamed. Macro reimplemented. as getmajor 

function 
makedev Renamed. Macro reimplemented. as makedevice 

function 
malloc Renamed only rmalloc 
mapinit Renamed only rminit 
mapwant Renamed only rmsetwant 
max No change max 
mfree Renamed only rmfree 

Appendix B: Migration from Release 3.2 to Release 4.0 B-3 



Appendix B: Migration from Release 3.2 to Release 4.0 

Table B-1: 3.2 to 4.0 Migration (continued) 

BCI Comments DDI/DKI 

min No change min 
minor Renamed. Macro reimplemented as getminor 

function 
msgdsize No change msgdsize 
noenable Macro reimplemented as function noenable 
OTHERQ Macro reimplemented as function OTHERQ 

physck Replaced. Functionality included in physiock 
physiock 

physio Replaced. Functionality included in physiock 
physiock 

psignal Not supported None 
pullupmsg No change pullupmsg 
putbq No change putbq 
putc Not supported None 
putcb Not supported None 
put cf Not supported None 
putctl No change putctl 
putctll No change putctll 
put next Macro reimplemented as function put next 
putq No change putq 
qenable Macro reimplemented as function qenable 

qreply No change qreply 
qsize No change qsize 
RD Macro reimplemented as function RD 

:rmvb No change :rmvb 
:rmvq No change :rmvq 
signal Not supported None 
sleep No change sleep 
spl No change spl 
splx No change splx 
sptalloc Not supported kmem alloc 
sptfree Not supported kmem free -

B-4 DDl/DKI Reference Manual 



Appendix B: Migration from Release 3.2 to Release 4.0 

Table B-1: 3.2 fo 4.0 Migration (continued) 

BCI Comments DDI/DKI 

strlog No change strlog 
subyte Replaced uiomove 
suser Replaced drv_priv 
suword Replaced uiomove 
testb No change testb 
timeout No change timeout 
ttclose Not supported None 
ttin Not supported None 
ttinit Not supported None 
ttiocom Not supported None 
ttioctl Not supported None 
ttopen Not supported None 
ttout Not supported None 
ttread Not supported None 
ttrstrt Not supported None 
tttimeo Not supported None 
ttwrite Not supported None 
ttyflush Not supported None 
t.t.vwait. Not suppnrtPd NnnP 
ttxput Not supported None 
unk.seg Not supported None 
unlinkb No change unlinkb 
untimeout No change untimeout 
user ace No change use race 
vtop No change vtop 
wakeup No change wakeup 
WR Macro reimplemented as function WR 

Appendix B: Migration from Release 3.2 to Release 4.0 B-5 





I Index 

Index 1-1 

Table of Contents 





Index 

B 
block I/0 3: 5- 7 
buffers, for raw I/0 3: 8 

D 
DDI/DKI (Device Driver 

Interface/Driver-Kernel Inter­
face) 1: 1-5 

data structures 4: 1-2 
driver entry point routines 2: 1-3 
error codes A: 1-3 

kernel functions 3: 1-8 
migration from Release 3.2 to 

Release 4.0 B: 1-5 

Device Driver Interface (see 
DDl/DKI) 

DKI (Driver-Kernel Interface) (see 
DDl/DKI) 

driver 
block 3: 5--8 

t:i-1lii puiiil5 '· .-"' 
functions 3: 1-8 

porting 1: 2 
STREAMS 3: 3-4 

structures 4: 1-2 

Driver-Kernel Interface (see 
DDI/DKI) 

R 
raw 1/0 3: 8 

Index 

s 
STREAMS entry points 2: 1-3 
STREAMS functions 3: 3-4 

STREAMS structures 4: 1-2 

1-1 





Permuted Index 

cred 
close relinquish 

routine dump gain 
open gain 
start start 

useracc verify whether user has 
event sleep suspend process 

ureadc 
iomapin map an 1/0 

ioprobe probe an 1/0 
get page frame number for kernel 
kernel virtual address to physical 

bcopy copy data between 
bp _ mapin allocate virtual 

bp _ mapout deallocate virtual 
kvtophys convert kernel virtual 
vtop convert virtual to physical 

allocb 
shared buffer esballoc 

kernel free memory kmem _ zalloc 
memory iomem _ alloc 

management map rmalloc 
memory kmem _ alloc 

bp_mapin 
iomem_free free memory 

L--mOTn Woo frcso nTt:nrin11~lu --- ------ - - -- - - c - - - J 

a function when a buffer becomes 
testb check for an 

call function when buffer is 
behind the current queue 

flow control in specified priority 
messages for a specified priority 

get information about a queue or 
change information about a queue or 

specified priority band 
locations in the kernel 

call a function when a buffer 
backq get pointer to the queue 

brelse return buffer to the 
1/0 and wakeup processes 

completion of block 1/0 
allocb allocate a message 

copyb copy a message 
dupb duplicate a message 

create scatter I gather list for 

Permuted Index 

access credential structure ............................................. cred(D4DK) 
access to a device ........................................................... close(D2DK) 
access to a device crash dump .................................. dump(D2DK) 
access to a device ..... ... ........................ ........................... open(D2DK) 
access to a device .............................................................. start(D20) 
access to memory ...................................................... useracc(D3DK) 
activity pending execution of an ................................ sleep(D3DK) 
add character to a uio structure .............................. ureadc(D3DK) 
address (device) ....................................................... iomapin(D3DK) 
address for a device ................................................. ioprobe(D3DK) 
address hat_getkpfnum ............................... hat_getkpfnum(D3K) 
address kvtophys convert ...................................... kvtophys(D3D) 
address locations in the kernel ................................. bcopy(D3DK) 
address space ........................................................ bp_mapin(D3DK) 
address space ...................................................... bp_mapout(D3DK) 
address to physical address .................................... kvtophys(D3D) 
address ................................................................................ vtop(D3D) 
adjmsg trim bytes from a message ......................... adjmsg(D3DK) 
allocate a message block ............................................. allocb(D3DK) 
allocate a message block using a ........................... esballoc(D3DK) 
allocate and clear space from ........................ kmem_zalloc(D3DK) 
allocate physically contiguous ....................... iomem_alloc(D3DK) 
allocate space from a private space ....................... rmalloc(D3DK) 
allocate space from kernel free ....................... kmem _ alloc(D3DK) 
allocate virtual address space ............................ bp _mapin(D3DK) 
allocated by iomem_alloc ................................. iomem_free(D3DK) 
~llnr:>tP<'i lcPrnPl mPmnTv kmem free(D3DK) 
allocb allocate a message block ................................. allocb(D3DK) 
available bufcall call ................................................. bufcall(D3DK) 
available buffer ............................................................... testb(D3DK) 
available esbbcall ..................................................... esbbcall(D3DK) 
backq get pointer to the queue .................................. backq(D3DK) 
band bcanput test for ............................................. bcanput(D3DK) 
band flushband flush .......................................... flushband(D3DK) 
band of the queue strqget ....................................... strqget(D3DK) 
band of the queue strqset ........................................ strqset(D3DK) 
bcanput test for flow control in ............................. bcanput(D3DK) 
bcopy copy data between address ........................... bcopy(D3DK) 
becomes available bufcall ........................................ bufcall(D3DK) 
behind the current queue ........................................... backq(D3DK) 
bfreelist .......................................................................... brelse(D3DK) 
biodone release buffer after block ......................... biodone(D3DK) 
biowait suspend processes pending ...................... biowait(D3DK) 
block ............................................................................... allocb(D3DK) 
block ............................................................................... copyb(D3DK) 
block descriptor ............................................................. dupb(D3DK) 
block drivers bp _iosetup .................... ... ........... bp _iosetup(D3DK) 

1 



Permuted Index 

freeb free a message 
rmvb remove a message 

unlinkb remove a message 
biodone release buffer after 

processes pending completion of 
buf 

strategy perform 
msgb STREAMS message 

esballoc allocate a message 
spl 

freemsg free all message 
linkb concatenate two message 

mapdevice map 
list for block drivers 

space 
address space 

controller that does/ dma_sgio 
manageable units dma_pageio 

bfreelist 
in pages (round down) 

in pages (round up) 
structure 

buffer becomes available 
processes biodone release 

bufcall call a function when a 
clrbuf erase the contents of a 

from a user program to a driver 
a message block using a shared 

freerbuf free a raw 
getrbuf get a raw 

esbbcall call function when 
testb check for an available 

brelse return 
drv _ usecwait 

clear memory for a given number of 

2 

adjmsg trim 
msgdsize return the number of 

pullupmsg concatenate 
convert size in pages to size in 

btop convert size in 
btopr convert size in 

number of bytes 
dcache _ inval invalidate the data 

dcache_sync sync the data 
becomes available bufcall 

available esbbcall 
previous timeout(D3DK) function 

block ................................................................................. freeb(D3DK) 
block from a message ................................................... rmvb(D3DK) 
block from the head of a message ......................... unlinkb(D3DK) 
block 1/0 and wakeup processes ......................... biodone(D3DK) 
block 1/0 biowait suspend .................................... biowait(D3DK) 
block 1/0 data transfer structure .................................. buf(D4DK) 
block 1/0 ................................................................... strategy(D2DK) 
block structure ............................................................... msgb(D4DK> 
block using a shared buffer .................................... esballoc(D3DK) 
block/allow interrupts ........................................................ spl(D3D) 
blocks in a message ................................................. freemsg(D3DK) 
blocks ............................................................................... linkb(D3DK) 
boot information into root dev_t ...................... mapdevice(D2DK) 
bp _iosetup create scatter I gather ..................... bp _iosetup(D3DK) 
bp_mapin allocate virtual address .................... bp_mapin(D3DK) 
bp_mapout deallocate virtual .......................... bp_mapout(D3DK) 
break up an 1/0 request for .................................. dma_sgl.o(D30) 
break up an 1/0 request into ............................ dma_pageio(D3D) 
brelse return buffer to the .......................................... brelse(D3DK) 
btop convert size in bytes to size ................................ btop(D3DK) 
btopr convert size in bytes to size ............................. btopr(D3DK) 
buf block 1/0 data transfer ............................................ buf(D4DK) 
bufcall call a function when a .................................. bufcall(D3DK) 
buffer after block 1/0 and wakeup ...................... biodone(D3DK) 
buffer becomes available ........................................... bufcall(D3DK) 
buffer .............................................................................. clrbuf(D3DK) 
buffer copyin copy data ........................................... copyin(D3DK) 
buffer esballoc allocate ........................................... esballoc(D3DK) 
buffer header ............................................................. freerbuf(D3DK) 
buffer header .............................................................. getrbuf(D3DK) 
buffer is available ..................................................... esbbcall(D3DK) 
buffer ...................................................•............................ testb(D3DK) 
buffer to the bfreelist ................................................... brelse(D3DK) 
busy-wait for specified interval ................... drv _ usecwait(D3DK) 
bytes bzero ................................................................... bzero(D3DK) 
bytes from a message ............................................... adjmsg(D3DK) 
bytes in a message ................................................. msgdsize(D3DK) 
bytes in a message .............................................. pullupmsg(D3DK) 
bytes ptob ....... ................................................................ ptob(D3DK) 
bytes to size in pages (round down) .......................... btop(D3DK) 
bytes to size in pages (round up) .............................. btopr(D3DK) 
bzero clear memory for a given ................................ bzero(D3DK) 
cache .................................................................. dcache_inval(D3DK) 
cache ................................................................... dcache_sync(D3DK) 
call a function when a buffer ................................... bufcall(D3DK) 
call function when buffer is .................................... esbbcall(D3DK) 
call untimeout cancel ......................................... untimeout(D3DK) 

DDl/DKI Reference Manual 



function call untimeout 
queue 

band of the queue strqset 
ioctl control a 

poll entry point for a non-STREAMS 
uwritec remove a 

ureadc add 
testb 

mapped device mmap 
non-STREAMS character driver 

bytes bzero 
kmem zalloc allocate and 

execution for a specified number of 
convert microseconds to 

drv hztousec convert 

buffer 
panic the system 

driverinfo 
biowait suspend processes pending 

pullupmsg 
linkb 

display a driver message on system 
clrbuf erase the 

iomem _ alloc allocate physically 
ioctl 

bc~put test for flow 
qband STREAMS queue flow 

putctl send a 
parameter to a/ putctll send a 

/break up an 1/0 request for 
drv hztousec 

device number etoimajor 
device number itoemajor 

physical address kvtophys 
drv usectohz 

structure page_numtopp 

frame number page_pptonum 
pages (round down) btop 

pages (round up) btopr 
bytes ptob 

vtop 
copyb 

copymsg 
in the kernel bcopy 

Permuted Index 

Permuted Index 

cancel previous timeout(D3DK) ........................ untimeout(D3DK) 
canput test for room in a message .......................... canput(D3DK) 
change information about a queue or ..................... strqset(D3DK) 
character device ........................................................... .... ioctl(D2DK) 
character driver chpoll .............................................. chpoll(D2DK) 
character from a uio structure ................................ uwritec(D3DK) 
character to a uio structure ...................................... ureadc(D3DK) 
check for an available buffer ........................................ testb(D3DK) 
check virtual mapping for memory ............................ mmap(D2K) 
chpoll poll entry point for a ...................................... chpoll(D2DK) 
clear memory for a given number of ........................ bzero(D3DK) 
clear space from kernel free memory 
.............................................................................. kmem_zalloc(D3DK) 
clock ticks delay delay process ................................. delay(D3DK) 
clock ticks drv _ usectohz .............................. drv _ usectohz(D3DK) 
clock ticks to microseconds .......................... drv _ hztousec(D3DK) 
close relinquish access to a device .............................. close(D2DK) 
clrbuf erase the contents of a ..................................... clrbuf(D3DK) 
cmn_err display an error message or .................. cmn_err(D3DK) 
communicate with device driver ....................... driverinfo(D2DK) 
completion of block 1/0 .......................................... biowait(D3DK) 
concatenate bytes in a message ........................ pullupmsg(D3DK) 
concatenate two message blocks ................................ linkb(D3DK) 
console print .................................................................. print(D2DK) 
contents of a buffer ...................................................... clrbuf(D30K) 
contiguous memory ......................................... iomem _ alloc(D3DK) 
control a character device .............................................. ioctl(D2DK) 
control in specified priority band ......................... bcanput(D3DK) 
control information structure .................................... qband(D4DK) 
control message to a queue ........................................ putctl(D3DK) 
control message with a one-byte ............................... putctl(D3DK) 
controller that does scatter/gather ....................... dma_sgio(D30) 
convert clock ticks to microseconds ............ drv_hztousec(D3DK) 
convert external to internal major ......................... etoimajor(D30) 
convert internal to external major ......................... itoemajor(D30) 
convert kernel virtual address to ........................... kvtophys(D30) 
convert microseconds to clock ticks ............ drv _ usectohz(D3DK) 
convert page frame number to page 
.......................................................................... page_numtopp(D3DK) 
convert page structure to page ................. page _pptonum(D3DK) 
convert size in bytes to size in ..................................... btop(D3DK) 
convert size in bytes to size in ................................... btopr(D3DK) 
convert size in pages to size in .................................... ptob(D3DK) 
convert virtual to physical address ............................... vtop(D30) 
copy a message block ................................................. copyb(D3DK) 
copy a message ....................................................... oopymsg(D3DK) 
copy data between address locations ...................... bcopy(D3DK) 

3 



Permuted Index 

program copyout 
driver buffer copyin 

structure uiomove 

program to a driver buffer 

a user program 
dump gain access to a device 

block drivers bp _iosetup 
STREAMS drivers mp _iosetup 

cred access 
get pointer to the queue behind the 

the kernel bcopy copy 
dcache_inval invalidate the 

dcache_sync sync the 
read read 

program copyout copy 
driver buffer copyin copy 

datamsg test whether a message is a 
using uio(D4DK) iovec 

datab STREAMS message 
hdedata hard disk error 

write write 
buf block 1/0 

uiomove copy kernel 
structure 

data message 
cache 

bp_mapout 
streamtab STREAMS entity 

specified number of clock ticks 
specified number of clock/ delay 

dupb duplicate a message block 
drv_priv 

close relinquish access to a 
dump gain access to a 

driverinfo communicate with 
init initialize a 

int process a 
ioctl control a character 

iomapin map an 1/0 address 
ioprobe probe an 1/0 address for a 

segmapmap 
virtual mapping for memory mapped 

convert external to internal major 

4 

copy data from a driver to a user ........................ copyout(D3DK) 
copy data from a user program to a ...................... copyin(D3DK) 
copy kernel data using uio(D4DK) ...................... uiomove(D3DK) 
copyb copy a message block ..................................... copyb(D3DK) 
copyin copy data from a user .................................. copyin(D3DK) 
copymsg copy a message ...................................... copymsg(D3DK) 
copyout copy data from a driver to ..................... copyout(D3DK) 
crash dump routine ..................................................... dump(D2DK) 
create scatter I gather list for ............................. bp _iosetup(D3DK) 
create scatter/ gather list for ............................ mp _iosetup(D3DK) 
cred access credential structure .................................... cred(D4DK) 
credential structure ......................................................... cred(D4DK) 
current queue backq ................................................... backq(D3DK) 
data between address locations in ............................ bcopy(D3DK) 
data cache ......................................................... dcache _ inval(D3DK) 
data cache .......................................................... dcache_sync(D3DK) 
data from a device ......................................................... read(D2DK) 
data from a driver to a user .................................. copyout(D3DK) 
data from a user program to a ................................ copyin(D3DK) 
data message ............................................................ datamsg(D3DK) 
data storage structure for 1/0 .................................... iovec(D4DK) 
data structure ........ :....................................................... datab(D4DK) 
data structure ............................................................... hdedata(D40) 
data to a device ............................................................. write(D2DK) 

. data transfer structure ..................................................... buf(D4DK) 
data using uio(D4DK) structure ........................... uiomove(D3DK) 
datab STREAMS message data .................................. datab(D4DK) 
datamsg test whether a message is a .................. datamsg(D3DK) 
dcache_inval invalidate the data .................. dcache_inval(D3DK) 
dcache_sync sync the data cache ................... dcache_sync(D3DK) 
deallocate virtual address space ...................... bp_mapout(D3DK) 
declaration structure ............................................. streamtab(D4DK) 
delay delay process execution for a .......................... delay(D3DK) 
delay process execution for a ..................................... delay(D3DK) 
descriptor ........................................................................ dupb(D3DK) 
determine driver privilege .................................... drv _priv(D3DK) 
device ............................................................................... close(D2DK) 
device crash dump routine ........................................ dump(D2DK) 
device driver .......................................................... driverinfo(02DK) 
device ..................................................................................... init(D2D) 
device interrupt ..................................................................... int(D2D) 
device ................................................................................ ioctl(D2DK) 
(device) ...................................................................... iomapin(D3DK) 
device ........................................................... ............... ioprobe(D3DK) 
device memory into user space ................................. segmap(D2K) 
device mmap check ...................................................... mmap(D2K) 
device number etoimajor ....................................... etoimajor(D3D) 

DDl/DKI Reference Manual 



and minor makedevice make 
getemajor get external major 

geteminor get external minor 
get major or internal major 

get minor or internal minor 
convert internal to external major 

open gain access to a 
read read data from a 

size return size of logical 
start start access to a 
write write data to a 

map boot information into root 
message on a stream in the reverse 

hdedata hard 
hdelog log hard 

hdeeqd initialize hard 
console print 

the system cmn _err 
into.manageable units 

for controller that does/ 
in bytes to size in pages (round 

copy data from a user program to a 
point for a non-STREAMS character 
driverinfo communicate with device 

intro introduction to 
value/ module info STREAMS 

- print display a 
ctrv _pnv cietermme 

strlog submit messages to the log 
copyout copy data from a 

the write queue for this module or 
driver 

scatter I gather list for block 
free_ rtn structure that specifies a 
scatter I gather list for STREAMS 

information 
microseconds 

to clock ticks 
specified interval 

dump routine 
dump gain access to a device crash 

descriptor 
descriptor dupb 

dupmsg 

qenable 

Permuted Index 

Permuted Index 

device number from external major ..... ......... makedevice(D3DK) 
device number .......................................................... getemajor(D30) 
device number ......................................................... geteminor(D30) 
device number getmajor ....................................... getmajor(D3DK) 
device number getminor ..................................... getminor(D3DK) 
device number itoemajor ....................................... itoemajor(D30) 
device ...................... ......................................................... open(D2DK) 
device .......... ... ................................................................... read(D2DK) 
device .................................................................................... size(D20) 
device ................................................................................... start(D2D) 
device .............................................................................. write(D2DK) 
dev_t mapdevice ................................................ mapdevice(D2DK) 
direction qreply send a ............................................. qreply(D3DK) 
disk error data structure ............................................ hdedata(D40) 
disk error ........................................................................ hdelog(D3D) 
disk error logging ........................................................ hdeeqd(D30) 
display a driver message on system .......................... print(D2DK) 
display an error message or panic ....................... cmn_err(D3DK) 
dma_pageio break up an 1/0 request ............. dma_pageio(D3D) 
dma_sgio break up an 1/0 request ...................... dma_sgio(D30) 
down) btop convert size .............................................. btop(D3DK) 
driver buffer copyin ................................................. copyin(D3DK) 
driver chpoll poll entry ............................................. chpoll(D2DK) 
driver ...................................................................... driverinfo(D2DK) 
driver entry point routines .......................................... intro(D2DK) 
driver identification and limit ....................... module info(D4DK) 
driver message on system console ............................. print(D2DK) 
cinver pnviiege ....................................................... cirv _priv(u3Li.Ki 
driver .............................................................................. strlog(D3DK) 
driver to a user program ........................................ copyout(D3DK) 
driver WR get pointer to .............................................. WR(D3DK) 
driverinfo communicate with device ................ driverinfo(D2DK) 
drivers bp _iosetup create ................................. bp _iosetup(D3DK) 
driver's message freeing routine ........................... free _rtn(D4DK) 
drivers mp _iosetup create .............................. mp _iosetup(D3DK) 
drv _getparm retrieve kernel state ................ drv __getparm(D3DK) 
drv _ hztousec convert clock ticks to ............ drv _ hztousec(D3DK) 
drv _priv determine driver privilege ................... drv _priv(D3DK) 
drv _ usectohz convert microseconds ........... drv _ usectohz(D3DK) 
drv _ usecwait busy-wait for .......................... drv _ usecwait(D3DK) 
dump gain access to a device crash ......................... dump(D2DK) 
dump routine ............................................................... dump(D2DK) 
dupb duplicate a message block ................................ dupb(D3DK) 
duplicate a message block ................................ ........... dupb(D3DK) 
duplicate a message ................................................ dupmsg(D3DK) 
dupmsg duplicate a message ................................ dupmsg(D3DK) 
enable a queue .......................................................... qenable(D3DK) 

5 



Permuted Index 

service 
streamtab STREAMS 

character driver chpoll poll 
intro introduction to driver 

clrbuf 
hdedata hard disk 

geterror return 1/0 
hdelog log hard disk 

hdeeqd initialize hard disk 
cmn_err display an 

using a shared buffer 
is available 

internal major device number 
pollwakeup inform a process that an 

activity pending execution of an 
specified length of time timeout 
clock ticks delay delay process 

suspend process activity pending 
wakeup resume suspended process 

makedevice make device number from 
getemajor get 

itoemajor convert internal to 
geteminor get 

number etoimajor convert 
queue qsize 

rmsetwant set the map's wait 
band bcanput test for 

qband STREAMS queue 
priority band flushband 

specified priority band 

hat_getkpfnum get page 
convert page structure to page 

page_numtopp convert page 
freeb 

freerbuf 
message freemsg 

iomem alloc iomem free - -
allocate space from kernel 

and clear space from kernel 
rmwant wait for 

memory kmem_free 
space management/ rmfree release 

6 

that specifies a driver's message 
a message 

enableok reschedule a queue for ......................... enableok(D30K) 
entity declaration structure ................................. streamtab(D4DK) 
entry point for a non-STREAMS .............................. chpoll(D2DK) 
entry point routines ....................................................... intro(D2DK) 
erase the contents of a buffer ..................................... clrbuf(D30K) 
error data structure .................................................... hdedata(D40) 
error ............................................................................ geterror(D30K) 
error ................................................................................. hdelog(D3D) 
error logging ................................................................. hdeeqd(D3D) 
error message or panic the system ....................... cmn_err(D3DK) 
esballoc allocate a message block .......................... esballoc(D3DK) 
esbbcall call function when buffer ......................... esbbcall(D3DK) 
etoimajor convert external to .................................. etoimajor(D30) 
event has occurred ............................................ pollwakeup(D3DK) 
event sleep suspend process ...................................... sleep(D3DK) 
execute a function after a ............. ........................... timeout(D3DK) 
execution for a specified number of .......................... delay(D30K) 
execution of an event sleep ........................................ sleep(D3DK) 
execution .................................................................... wakeup(D3DK) 
external major and minor ................................ makedevice(D3DK) 
external major device number ............................... getemajor(D3D) 
external major device number ................................ itoemajor(D3D) 
external minor device number .............................. geteminor(D3D) 
external to internal major device ........................... etoimajor(D3D) 
find the number of messages on a ............................. qsize(D3DK) 
flag for a wakeup ................................................ rmsetwant(D3DK) 
flow control in specified priority .......................... bcanput(D3DK) 
flow control information structure ........................... qband(D4DK) 
flush messages for a specified ............................ flushband(D3DK) 
flushband flush messages for a .......................... flushband(D3DK) 
flushq remove messages from a queue ................... flushq(D30K) 
frame number for kernel address ................ hat_getkpfnum(D3K) 
frame number page_pptonum ................. page_pptonum(D3DK) 
frame number to page structure ............... page_numtopp(D3DK) 
free a message block ..................................................... freeb(D3DK) 
free a raw buffer header ......................................... freerbuf(D3DK) 
free all message blocks in a .................................... freemsg(D3DK) 
free memory allocated by ................................ iomem _ free(D3DK) 
free memory kmem _ alloc ............................... kmem _ alloc(D3DK) 
free memory kmem _ zalloc allocate ............ kmem _ zalloc(D3DK) 
free memory .............................................................. rmwant(D3DK) 
free previously allocated kernel ....................... kmem_free(D3DK) 
free space back into a private ................................... rmfree(D30K) 
freeb free a message block ........................................... freeb(D3DK) 
freeing routine free _rtn structure ......................... free_ rtn(D4DK) 
freemsg free all message blocks in ........................ freemsg(D3DK) 
freerbuf free a raw buffer header .......................... freerbuf(D3DK) 

DDl/DKI Reference Manual 



driver's message freeing routine 
of time timeout execute a 

cancel previous timeout(D3DK) 
available bufcall call a 

es bbcall call 
routine dump 

open 
number 
number 

major device number 
minor device number 

queue 

bzero clear memory for a 
hdedata 

hdelog log 
hdeeqd initialize 

for kernel address 

structure 
logging 

remove a message block from the 
putbq place a message at the 

freerbuf free a raw buffer 
getrbuf get a raw buffer 

module info STREAMS driver 
occurred pollwakeup 

of the queue strqget get 
of the queue strqset change 

drv _getparm retrieve kernel state 
mapdevice map boot 

qband STREAMS queue flow control 

in it 
management map rminit 

hdeeqd 
insq 

max return the larger of two 
min return the lesser of two 

etoimajor convert external to 
getmajor get major or 

getminor get minor or 
number itoemajor convert 

Permuted Index 

Permuted Index 

free _rtn structure that specifies a .......................... free _rtn(D4DK) 
function after a specified length ............................ timeout(D3DK) 
function call untimeout ..................................... untimeout(D3DK) 
function when a buffer becomes .............................. bufcall(D3DK) 
function when buffer is available .......................... esbbcall(D3DK) 
gain access to a device crash dump ......................... dump(D2DK) 
gain access to a device .................................................. open(D2DK) 
getemajor get external major device .................... getemajor(D3D) 
geteminor get external minor device ................... geteminor(D3D) 
geterror return 1/0 error ........................................ geterror(D3DK) 
getmajor get major or internal ............................. getmajor(D3DK) 
getminor get minor or internal ............................ getminor(D3DK) 
getq get the next message from a ................................ getq(D3DK) 
getrbuf get a raw buffer header ............................. getrbuf(D3DK) 
given number of bytes ................................................. bzero(D3DK) 
hard disk error data structure .................................. hdedata(D4D) 
hard disk error .............................................................. hdelog(D30) 
hard disk error logging .............................................. hdeeqd(D3D) 
hat_getkpfnum get page frame number 
............................................................................. hat_getkpfnum(D3K) 
hdedata hard disk error data ................................... hdedata(D4D) 
hdeeqd initialize hard disk error .............................. hdeeqd(D3D) 
hdelog log hard disk error .......................................... hdelog(D3D) 
head of a message unlinkb .................................... unlinkb(D3DK) 
head of a queue ............................................................ putbq(D3DK) 
header ......................................................................... freerbuf(D3DK) 
header .......................................................................... getrbuf(D3DK) 
identitication and lmut vatue/ ...................... mociuie _mio\Li4u.K) 
inform a process that an event has ................ pollwakeup(D3DK) 
information about a queue or band ........................ strqget(D3DK) 
information about a queue or band ........................ strqset(D3DK) 
information ....................................................... drv _getparm(D3DK) 
information into root dev _t ............................... mapdevice(D2DK) 
information structure .................................................. qband(D4DK) 
init initialize a device .......................................................... init(D2D) 
initialize a device ................ ......... ... ... .................. ................ init(D2D) 
initialize a private space ............................................. rminit(D3DK) 
initialize hard disk error logging .............................. hdeeqd(D30) 
insert a message into a queue ...................................... insq(D3DK) 
insq insert a message into a queue .............................. insq(D3DK) 
int process a device interrupt ............................................. int(D2D) 
integers ............................................................................. max(D3DK) 
integers .............................................................................. min(D3DK) 
internal major device number ................................ etoimajor(D3D) 
internal major device number .............................. getmajor(D3DK) 
internal minor device number ............................. getminor(D3DK) 
internal to external major device ........................... itoemajor(D3D) 

7 



Permuted Index 

int process a device 
spl block/allow 

busy-wait for specified 
point routines 
routines intro 

dcache_inval 
iomapin map an 

ioprobe probe an 
biodone release buffer after block 

pending completion of block 
buf block 

geterror return 
does/ dma_sgio break up an 

dma _pageio break up an 
physiock validate and issue raw 

uio scatter I gather 
uiophysio validate and issue raw 

strategy perform block 
iovec data storage structure for 

contiguous memory 
iomem _free free memory allocated by 

iomem _ alloc 

device 
1/0 using uio(D4DK) 
physiock validate and 

uiophysio validate and 
external major device number 

get page frame number for 
between address locations in the 

structure uiomove copy 
kmem_alloc allocate space from 

allocate and clear space from 
kmem _free free previously allocated 

drv _getparm retrieve 
address kvtophys convert 

kernel free memory 
kernel memory 

space from kernel free memory 
address to physical address 

max return the 
a function after a specified 

min return the 
STREAMS driver identification and 

blocks 

8 

interrupt .............................................................. ............ ....... int(D2D) 
interrupts ...... ....................................................... ......... ......... spl(D3D) 
interval drv _ usecwait ................................... drv _ usecwait(D3DK) 
intro introduction to driver entry ............................... intro(D2DK) 
introduction to driver entry point .............................. intro(D2DK) 
invalidate the data cache ................. ............... dcache inval(D3DK) 
1/0 address (device) ............................................... io~apin(D3DK) 
1/0 address for a device ......................................... ioprobe(D3DK) 
1/0 and wakeup processes .................................... biodone(D3DK) 
1/0 biowait suspend processes ............................. biowait(D3DK) 
1/0 data transfer structure ............................................. buf(D4DK) 
1/0 error .................................................................... geterror(D3DK) 
1/0 request for controller that .............................. dma_sgio(D3D) 
1/0 request into manageable units .................. dma_pageio(D3D) 
1/0 request ................................................................. physiock(D3D) 
l/0 request structure ....................................................... uio(D4DK) 
l/0 request ............................................................... uiophysio(D3D) 
l/0 .............................................................................. strategy(D2DK) 
l/0 using uio(D4DK) ................................................... iovec(D4DK) 
ioctl control a character device ..................................... ioctl(D2DK) 
iomapin map an I/O address (device) ................ iomapin(D3DK) 
iomem_alloc allocate physically .................... iomem_alloc(D3DK) 
iomem_alloc ........................................................ iomem_free(D3DK) 
iomem _free free memory allocated by 
................................................................................ iomem_free(D3DK) 
ioprobe probe an I/0 address for a ...................... ioprobe(D3DK) 
iovec data storage structure for .................................. iovec(D4DK) 
issue raw l/0 request .............................................. physiock(D3D) 
issue raw l/0 request ............................................. uiophysio(D3D) 
itoemajor convert internal to ............... ... ............ .... itoemajor(D3D) 
kernel address hat_getkpfnum ................... hat_getkpfnum(D3K) 
kernel bcopy copy data ............................................. bcopy(D3DK) 
kernel data using uio(D4DK) ............................... uiomove(D3DK) 
kernel free memory .......................................... kmem_alloc(D3DK) 
kernel free memory kmem _ zalloc .............. kmem _zalloc(D3DK) 
kernel memory .................................................... kmem_free(D3DK) 
kernel state information ................................. drv _getparm(D3DK) 
kernel virtual address to physical ......................... kvtophys(D3D) 
kmem_alloc allocate space from ..................... kmem_alloc(D3DK) 
kmem_free free previously allocated .............. kmem_free(D3DK) 
kmem zalloc allocate and clear .................... kmem zalloc(D3DK) 
kvtophys convert kernel virtual ............................. kvtophys(D3D) 
larger of two integers ..................................................... max(D3DK) 
length of time timeout execute ............................. timeout(D3DK) 
lesser of two integers ...................................................... min(D3DK) 
limit value structure module_info ............... module_info(D4DK) 
linkb concatenate two message ................................... linkb(D3DK) 

DDl/DKI Reference Manual 



bp _iosetup create scatter I gather 
mp _iosetup create scatter I gather 

bcopy copy data between address 
strlog submit messages to the 

hdelog 
hdeeqd initialize hard disk error 

size return size of 
make device number from external 

convert external to internal 
getemajor get external 

getmajor get major or internal 
convert internal to external 

number getmajor get 
external major and minor 

break up an 1/0 request into 
allocate space from a private space 

space back into a private space 
rminit initialize a private space 

iomapin 
dev t mapdevice 

segmap 

from a private space management 
into a private space management 

a private space management 
map private memory 

root dev t 
check virtual mapping for memory 

mmap check virtual 
rmsetwant set the 

integers 
iomem free free 

bzero clear 
segmap map device 

allocate physically contiguous 
allocate space from kernel free 

free previously allocated kernel 
and clear space from kernel free 

map private 
mmap check virtual mapping for 

rmwant wait for free 
verify whether user has access to 

adjmsg trim bytes from a 
putbq place a 

allocb allocate a 
copyb copy a 

Permuted Index 

Permuted Index 

list for block drivers ........................................... bp _iosetup(D3DK) 
list for STREAMS drivers ................................ mp_iosetup(D3DK) 
locations in the kernel ................................................. bcopy(D3DK) 
log driver ....................................................................... strlog(D3DK) 
log hard disk error ....................................................... hdelog(D30) 
logging ........................................................................... hdeeqd(D3D) 
logical device .... ........................ ...... .................. ............ ....... size(D2D) 
major and minor makedevice ........................ makedevice(D3DK) 
major device number etoimajor ............................ etoimajor(D3D) 
major device number .............................................. getemajor(D30) 
major device number ............................................. getmajor(D3DK) 
major device number itoemajor ............................ itoemajor(D3D) 
major or internal major device ............................. getmajor(D3DK) 
makedevice make device number from 
................................................................................ makedevice(D3DK) 
manageable units dma _pageio ........................ dma _pageio(D3D) 
management map rmalloc ...................................... rmalloc(D3DK) 
management map rmfree release free ....... ...... ... ... rmfree(D3DK) 
management map ........................................................ rminit(D3DK) 
map an 1/0 address (device) ................................ iomapin(D3DK) 
map boot information into root ........................ mapdevice(D2DK) 
map device memory into user space ....................... segmap(D2K) 
map private memory map structure ........................... map(D4DK) 
map rmalloc allocate space .................................... rmalloc(D3DK) 
map rmfree release free space back ....................... rmfree(D3DK) 
map rminit initialize .................................................. rminit(D3DK) 
map structure .................................................................. map(D4DK) 
mapdevice map boot information into ............ mapdevice(UZUK) 
mapped device mmap ................................................. mmap(D2K) 
mapping for memory mapped device ....................... mmap(D2K) 
map's wait flag for a wakeup ........................... rmsetwant(D3DK) 
max return the larger of two ........................................ max(D3DK) 
memory allocated by iomem_alloc ................ iomem_free(D3DK) 
memory for a given number of bytes ....................... bzero(D3DK) 
memory into user space ....... ... ... ........................ ........ segmap(D2K) 
memory iomem_alloc .................................... iomem_alloc(D3DK) 
memory kmem_alloc ....................................... kmem_alloc(D3DK) 
memory kmem _free .......................................... kmem _ free(D3DK) 
memory kmem _ zalloc allocate .................... kmem _zalloc(D3DK) 
memory map structure .................................................. map(D4DK) 
memory mapped device ............................................... mmap(D2K) 
memory ...................................................................... rmwant(D3DK) 
memory useracc ....................................................... useracc(D3DK) 
message ....................................................................... adjmsg(D3DK) 
message at the head of a queue ................................ putbq(D3DK) 
message block ............................................................... allocb(D3DK) 
message block .............................................................. copyb(D3DK) 

9 



Permuted Index 

·dupb duplicate a 
freeb free a 

rmvb remove a 
message unlinkb remove a 

msgb STREAMS 
esballoc allocate a 

freemsg free all 
linkb concatenate two 

copymsg copy a 
datab STREAMS 

test whether a message is a data 
dupmsg duplicate a 

structure that specifies a driver's 
free all message blocks in a 

getq get the next 
rmvq remove a 

insq insert a 
datamsg test whether a 

return the number of bytes in a 
putq put a 

direction qreply send a 
print display a driver 

cmn_err display an error 
pullupmsg concatenate bytes in a 

canput test for room in a 
rmvb remove a message block from a 

putctl send a control 
putnext send a 

a message block from the head of a 
to a queue putctll send a control 

band flushband flush 
flushq remove 

put receive 
qsize find the number of 

srv service queued 
strlog submit 

drv hztousec convert clock ticks to 
drv usectohz convert 

integers 
geteminor get external 

getminor get minor or internal 
number from external major and 

number getrninor get 
memory mapped device 

pointer to the write queue for this 
identification and limit value/ 

list for STREAMS drivers 

10 

message block descriptor ............................................ dupb(D3DK) 
message block ................................................................ freeb(D3DK) 
message block from a message .................................. rmvb(D3DK) 
message block from the head of a ......................... unlinkb(D3DK) 
message block structure .............................................. msgb(D4DK) 
message block using a shared buffer .................... esballoc(D3DK) 
message blocks in a message ...... ........................... freemsg(D3DK) 
message blocks ............................................................... linkb(D3DK) 
message .................................................................... copymsg(D3DK) 
message data structure ................................................ datab(D4DK) 
message datamsg ................................................... datamsg(D3DK) 
message ..................................................................... dupmsg(D3DK) 
message freeing routine free_rtn .......................... free_rtn(D4DK) 
message freemsg ..................................................... freemsg(D3DK) 
message from a queue ................................................... getq(D3DK) 
message from a queue ................................................. rmvq(D3DK) 
message into a queue ..................................................... insq(D3DK) 
message is a data message .................................... datamsg(D3DK) 
message msgdsize ................................................ msgdsize(D3DK) 
message on a queue ....................................................... putq(D3DK) 
message on a stream in the reverse ........................ qreply(D3DK) 
message on systerr,i console ......................................... print(D2DK) 
message or panic the system ................................. cmn_err(D3DK) 
message ................................................................. pullupmsg(D3DK) 
message queue ............................................................ canput(D3DK) 
message ........................................................................... rmvb(D3DK) 
message to a queue ...................................................... putctl(D3DK) 
message to the next queue ...................................... putnext(D3DK) 
message unlinkb remove ....................................... unlinkb(D3DK) 
message with a one-byte parameter ......................... putctl(D3DK) 
messages for a specified priority ....................... flushband(D3DK) 
messages from a queue .............................................. flushq(D3DK) 
messages from the preceding queue ............................ put(D2DK) 
messages on a queue ................................... ...... ... ........ qsize(D3DK) 
messages ............................................................................. srv(D2DK) 
messages to the log driver ......................................... strlog(D3DK) 
microseconds ................................................... drv _ hztousec(D3DK) 
microseconds to clock ticks .......................... drv _ usectohz(D3DK) 
min return the lesser of two .......................................... min(D3DK) 
minor device number ............................................. geteminor(D3D) 
minor device number ............................................ getrninor(D3DK) 
minor makedevice make device .................... makedevice(D3DK) 
minor or internal minor device ........................... getrninor(D3DK) 
mmap check virtual mapping for ............................... mmap(D2K) 
module or driver WR get ............................................. WR(D3DK) 
module_info STREAMS driver ...................... module_info(D4DK) 
mp _iosetup create scatter I gather ................... mp _iosetup(D3DK) 

DOI/OKI Reference Manual 



structure 
in a message 
getq get the 

SAMESTR test if 
putnext send a message to the 

scheduled 
chpoll poll entry point for a 

external to internal major device 
hat_getkpfnum get page frame 

minor makedevice make device 
getemajor get external major device 

geteminor get external minor device 
get major or internal major device 

get minor or internal minor device 
internal to external major device 
bzero clear memory for a given 

msgdsize return the 
process execution for a specified 

qsize find the 
page structure to page frame 

page_numtopp convert page frame 
inform a process that an event has 

/send a control message with a 

partner queue 
address hat_getkpfnum get 

convert page structure to 

page_numtopp convert 

convert page frame number to 
page _pptonum convert 

number to page structure 

to page frame number 

convert size in bytes to size in 
convert size in bytes to size in 

ptob convert size in 
cmn _err display an error message or 

a control message with a one-byte 
OTHERQ get pointer to queue's 

biowait suspend processes 
sleep suspend process activity 

strategy 
convert kernel virtual address to 

Permuted Index 

Permuted Index 

msgb STREAMS message block ................................. msgb(D4DK) 
msgdsize return the number of bytes ................ msgdsize(D3DK) 
next message from a queue .......................................... getq(D3DK) 
next queue is same type ..................................... SAMESTR(D3DK) 
next queue .................................................................. putnext(D3DK) 
noenable prevent a queue from being ................ noenable(D3DK) 
non-STREAMS character driver ................................ chpoll(D2DK) 
number etoimajor convert ..................................... etoimajor(D3D) 
number for kernel address ........................... hat_getkpfnum(D3K) 
number from external major and ................... makedevice(D3DK) 
number ....................................................................... getemajor(D3D) 
number ...................................................................... geteminor(D3D) 
number getmajor ................................................... getmajor(D3DK) 
number getminor .................................................. getminor(D3DK) 
number itoemajor convert ..................................... itoemajor(D3D) 
number of bytes ............................................................ bzero(D3DK) 
number of bytes in a message ............................. msgdsize(D3DK) 
number of clock ticks delay delay ........................... delay(D3DK) 
number of messages on a queue ................................ qsize(D3DK) 
number page _pptonum convert .............. page _pptonum(D3DK) 
number to page structure .......................... page_numtopp(D3DK) 
occurred pollwakeup ...................................... pollwakeup(D3DK) 
one-byte parameter to a queue .................................. putctl(D3DK) 
open gain access to a device ........................................ open(D2DK) 
OTHERQ get pointer to queue's ........................ OTHERQ(D3DK) 
page frame number for kernel ..................... hat_getkpfnum(D3K) 
page frame number page_pptonum 
.......................................................................... page _pptonum(U::SUKJ 
page frame number to page structure 
.......................................................................... page_ numtopp(D3DK) 
page structure page_ numtopp ................. page_ numtopp(D3DK) 
page structure to page frame number 
.......................................................................... page_pptonum(D3DK) 
page_numtopp convert page frame 
.......................................................................... page_ numtopp(D3DK) 
page _pptonum convert page structure 
.......................................................................... page _pptonum(D3DK) 
pages (round down) btop ............................................ btop(D3DK) 
pages (round up) btopr .............................................. btopr(D3DK) 
pages to size in bytes .................................................... ptob(D3DK) 
panic the system ...................................................... cmn_err(D3DK) 
parameter to a queue putctll send .......................... putctl(D3DK) 
partner queue ......................................................... OTHERQ(D3DK) 
pending completion of block 1/0 .......................... biowait(D3DK) 
pending execution of an event .................................... sleep(D3DK) 
perform block 1/0 ................................................... strategy(D2DK) 
physical address kvtophys .................................... kvtophys(D3D) 

11 



Permuted Index 

vtop convert virtual to 
iomem alloc allocate 

request 
queue putbq 

driver chpoll poll entry 
intro introduction to driver entry 

OTHERQ get 
current queue backq get 

RD get 
module or driver WR get 

character driver chpoll 
event has occurred 

put receive messages from the 
scheduled noenable 

call untimeout cancel 
kmem free free 
system console 

test for flow control in specified 
flush messages for a specified 

map 
rmalloc allocate space from a 

/release free space back into a 
rm in it initialize a 

drv _priv determine driver 
ioprobe 

qinit STREAMS queue processing 
int 

of an event sleep suspend 
number of clock ticks delay delay 

wakeup resume suspended 
pollwakeup inform a 

buffer after block I/O and wakeup 
block l/0 biowait suspend 

qinit STREAMS queue 
copy data from a driver to a user 

copyin copy data from a user 
in bytes 
message 

putq 

12 

preceding queue 
of a queue 

queue 
a one-byte parameter to a queue 

queue 

information structure 

physical address ................................................................ vtop(D3D) 
physically contiguous memory ..................... iomem_alloc(D3DK) 
physiock validate and issue raw I/0 .................... physiock(D3D) 
place a message at the head of a .............................. putbq(D3DK) 
point for a non-STREAMS character .... ................... chpoll(D2DK) 
point routines ......................................................... ........ intro(D2DK) 
pointer to queue's partner queue ....................... OTHERQ(D3DK) 
pointer to the queue behind the ................................ backq(D3DK) 
pointer to the read queue ............................................... RD(D3DK) 
pointer to the write queue for this ............................... WR(D3DK) 
poll entry point for a non-STREAMS ...................... chpoll(D2DK) 
pollwakeup inform a process that an ............ pollwakeup(D3DK) 
preceding queue ............................................................... put(D2DK) 
prevent a queue from being ................................. noenable(D3DK) 
previous timeout(D3DK) function .................... untimeout(D3DK) 
previously allocated kernel memory .............. kmem_free(D3DK) 
print display a driver message on .............................. print(D2DK) 
priority band bcanput ............................................ bcanput(D3DK) 
priority band flushband ..................................... flushband(D3DK) 
private memory map structure .................................... map(D4DK) 
private space management map ............................. rmalloc(D3DK) 
private space management map .............................. rmfree(D3DK) 
private space management map ............................... rminit(D3DK) 
privilege .................................................................... drv _priv(D3DK) 
probe an I/0 address for a device ........................ ioprobe(D3DK) 
procedures structure ...................................................... qinit(D4DK) 
process a device interrupt ........ ........................................... int(D2D) 
process activity pending execution ............................ sleep(D3DK) 
process execution for a specified ............................... delay(D3DK) 
process execution ..................................................... wakeup(D3DK) 
process that an event has occurred ................ pollwakeup(D3DK) 
processes biodone release ..................................... biodone(D3DK) 
processes pending completion of ........................... biowait(D3DK) 
processing procedures structure .................................. qinit(D4DK) 
program copyout .................................................... copyout(D3DK) 
program to a driver buffer ....................................... copyin(D3DK) 
ptob convert size in pages to size ............................... ptob(D3DK) 
pullupmsg concatenate bytes in a .................... pullupmsg(D3DK) 
put a message on a queue ............................................ putq(D3DK) 
put receive messages from the ...................................... put(D2DK) 
putbq place a message at the head ........................... putbq(D3DK) 
putctl send a control message to a ........................... putctl(D3DK) 
putctll send a control message with ........................ putctl(D3DK) 
putnext send a message to the next ...................... putnext(D3DK) 
putq put a message on a queue .................................. putq(D3DK) 
qband STREAMS queue flow control ..................... qband(D4DK) 
qenable enable a queue ........................................... qenable(D3DK) 

DDl/DKI Reference Manual 



procedures structure 
in the reverse direction 

on a queue 
to the queue behind the current 

backq get pointer to the 
canput test for room in a message 

structure qband STREAMS 
flushq remove messages from a 

enableok reschedule a 
WR get pointer to the write 

noenable prevent a 
getq get the next message from a 

insq insert a message into a 
SAMESTR test if next 

strqget get information about a 
strqset change information about a 

get pointer to queue's partner 
structure qinit STREAMS 

place a message at the head of a 
putctl send a control message to a 

with a one-byte parameter to a 
receive messages from the preceding 

putnext send a message to the next 
putq put a message on a 

qenable enable a 
find the number of messages on a 

RD get pointer to the read 
rmvq remove a message irom a 

about a queue or band of the 
about a queue or band of the 

queue STREAMS 
srv service 

OTHERQ get pointer to 
freerbuf free a 

getrbuf get a 
physiock validate and issue 

uiophysio validate and issue 

read 
RD get pointer to the 

queue put 
wakeup processes biodone 

private space management/ rmfree 
close 

structure uwritec 

Permuted Index 

Permuted Index 

qinit STREAMS queue processing .............................. qinit(D4DK) 
qreply send a message on a stream ........................ qreply(D3DK) 
qsize find the number of messages ............................ qsize(D3DK) 
queue backq get pointer ............................................ backq(D3DK) 
queue behind the current queue ............................... backq(D3DK) 
queue ............................................................................ canput(D3DK) 
queue flow control information ................................ qband(D4DK) 
queue ............................................................................. flushq(D3DK) 
queue for service .................................................... enableok(D3DK) 
queue for this module or driver ................................... WR(D3DK) 
queue from being scheduled ................................ noenable(D3DK) 
queue ................................................................................. getq(D3DK) 
queue ................................................................................. insq(D3DK) 
queue is same type .............................................. SAMESTR(D3DK) 
queue or band of the queue ..................................... strqget(D3DK) 
queue or band of the queue ..................................... strqset(D3DK) 
queue OTHERQ ................................................... OTHERQ(D3DK) 
queue processing procedures ....................................... qinit(D4DK) 
queue putbq ................................................................ putbq(D3DK) 
queue .............................................................................. putctl(D3DK) 
queue /send a control message ............................... putctl(D3DK) 
queue put ......................................................................... put(D2DK) 
queue ........................................................................... putnext(D3DK) 
queue ................................................................................ putq(D3DK) 
queue ........................................................................... qenable(D3DK) 
queue qsize .................................................................... qsize(D3DK) 
queue .................................................................................. RD(D3DK) 
queue ............................................................................... .1u1v'i\D3D~) 
queue STREAMS queue structure ............................ queue(D4DK) 
queue strqget get information ................................ strqget(D3DK) 
queue strqset change information .......................... strqset(D3DK) 
queue structure ............................................................ queue(D4DK) 
queued messages .............................................................. srv(D2DK) 
queue's partner queue .......................................... OTHERQ(D3DK) 
raw buffer header ..................................................... freerbuf(D3DK) 
raw buffer header ...................................................... getrbuf(D3DK) 
raw I/O request ........................................................ physiock(D3D) 
raw I/0 request ....................................................... uiophysio(D3D) 
RD get pointer to the read queue .................................. RD(D3DK) 
read data from a device ................................................ read(D2DK) 
read queue ......................................................................... RD(D3DK) 
read read data from a device ....................................... read(D2DK) 
receive messages from the preceding ........................... put(D2DK) 
release buffer after block I/0 and ........................ biodone(D3DK) 
release free space back into a ................................... rmfree(D3DK) 
relinquish access to a device ........................................ close(D2DK) 
remove a character from a uio ............................... uwritec(D3DK) 

13 



Permuted Index 

message rmvb 
head of a message unlinkb 

rmvq 
flushq 

dma_sgio break up an 1/0 
dma_pageio break up an 1/0 

physiock validate and issue raw 1/0 
uio scatter/gather 1/0 

validate and issue raw 1/0 
enableok 
wakeup 

drv_getparm 
brelse 

geterror 
size 
max 
min 

message msgdsize 
send a message on a stream in the 

private space management map 
a private space management map 

management map 
for a wakeup 

message 

canput test for 
mapdevice map boot information into 

size in bytes to size in pages 
size in bytes to size in pages 

gain access to a device crash dump 
a driver's message freeing 

introduction to driver entry point 
type 

request for controller that does 
structure uio 

drivers bp _iosetup create 
drivers mp _iosetup create 

noenable prevent a queue from being 

14 

space 
putctl 

one-byte parameter to a/ putctll 
reverse direction qreply 

putnext 
enableok reschedule a queue for 

srv 
wakeup rmsetwant 

remove a message block from a ................................. rmvb(D3DK) 
remove a message block from the ......................... unlinkb(D3DK) 
remove a message from a queue .............. ................. rmvq(D3DK) 
remove messages from a queue ...... ......................... flushq(D3DK) 
request for controller that does/ ........................... dma _sgio(D3D) 
request into manageable units ............... ........... dma _pageio(D30) 
request ......................................................................... physiock(D3D) 
request structure ............................................................... uio(D4DK) 
request uiophysio ................................................... uiophysio(D3D) 
reschedule a queue for service ............................. enableok(D30K) 
resume suspended process execution .................. wakeup(D30K) 
retrieve kernel state information ............ ...... drv _getparrn(D3DK) 
return buffer to the bfreelist ...................................... brelse(D3DK) 
return 1/0 error ....................................................... geterror(D3DK) 
return size of logical device .............. ................................ size(D2D) 
return the larger of two integers ................................. max(D3DK) 
return the lesser of two integers ................................... rnin(D3DK) 
return the number of bytes in a .......................... msgdsize(D3DK) 
reverse direction qreply ........................................... qreply(D3DK) 
rmalloc allocate space from a ................................. rmalloc(D3DK) 
rrnfree release free space back into ......................... rrnfree(D3DK) 
rminit initialize a private space ................................ rminit(D3DK) 
rmsetwant set the map's wait flag ................... rmsetwant(D30K) 
rmvb remove a message block from a ...................... rmvb(D3DK) 
rmvq remove a message from a queue .................... rmvq(D3DK) 
rrnwant wait for free memory ............................... rmwant(D3DK) 
room in a message queue ......................................... canput(D3DK) 
root dev _ t ............................................................. mapdevice(D2DK) 
(round down) btop convert ......................................... btop(D3DK) 
(round up) btopr convert ........................................... btopr(D3DK) 
routine dump .............................................................. dump(D2DK) 
routine /structure that specifies ........................... free_rtn(D4DK) 
routines intro ................................................................. intro(D2DK) 
SAMESTR test if next queue is same ............... SAMESTR(D3DK) 
scatter/gather /break up an 1/0 ........................ dma_sgio(D3D) 
scatter/gather 1/0 request ............................................. uio(D4DK) 
scatter I gather list for block .............................. bp _iosetup(D3DK) 
scatter/gather list for STREAMS .................... mp_iosetup(D3DK) 
scheduled ................................................................. noenable(D3DK) 
segrnap map device memory into user ................... segrnap(D2K) 
send a control message to a queue ........................... putctl(D3DK) 
send a control message with a .................................. putctl(D3DK) 
send a message on a stream in the .......................... qreply(D3DK) 
send a message to the next queue ......................... putnext(D3DK) 
service ....................................................................... enableok(D3DK) 
service queued messages ................................................. srv(D2DK) 
set the map's wait flag for a .............................. rmsetwant(D3DK) 

DDl/DKI Reference Manual 



allocate a message block using a 
ptob convert size in pages to 
(round down) btop convert 

(round up) btopr convert 
btop convert size in bytes to 

btopr convert size in bytes to 
ptob convert 

size return 

pending execution of an event 
management map rmfree release free 

bp _ mapin allocate virtual address 
deallocate virtual address 

management map rmalloc allocate 
kmem alloc allocate 

kmem zalloc allocate and clear 
allocate space from a private 

free space back into a private 
rminit initialize a private 

segmap map device memory into user 
drv _usecwait busy-wait for 

timeout execute a function after a 
delay delay process execution for a 

bcanput test for flow control in 
flushband flush messages for a 

freeing/ free _rtn structure that 

start 

uio(D4DK) iovec data 

qreply send a message on a 
limit value structure module info 

create scatter I gather list for 
structure streamtab 

msgb 
datab 

information structure qband 
structure qinit 

queue 
declaration structure 

driver 
queue or band of the queue 
queue or band of the queue 
buf block 1/0 data transfer 

cred access credential 

Permuted Index 

Permuted Index 

shared buffer esballoc ............................................ esballoc(D3DK) 
size in bytes ..................................................................... ptob(D3DK) 
size in bytes to size in pages ........................................ btop(D3DK) 
size in bytes to size in pages ...................................... btopr(D3DK) 
size in pages (round down) .......................................... btop(D3DK) 
size in pages (round up) ............................................. btopr(D3DK) 
size in pages to size in bytes ........................................ ptob(D3DK) 
size of logical device .......................................................... size(D2D) 
size return size of logical device ...................................... size(D2D) 
sleep suspend process activity .................................... sleep(D3DK) 
space back into a private space ................................ rmfree(D3DK) 
space ....................................................................... bp_mapin(D3DK) 
space bp_mapout .............................................. bp_mapout(D3DK) 
space from a private space ...................................... rmalloc(D3DK) 
space from kernel free memory ..................... kmem_alloc(D3DK) 
space from kernel free memory ................... kmem_zalloc(D3DK) 
space management map rmalloc ........................... rmalloc(D3DK) 
space management map /release ........................... rmfree(D3DK) 
space management map ............................................. rminit(D3DK) 
space .. ............... ... ...... ...... ............ ...... ... ... ....................... segmap(D2K) 
specified interval ............................................. drv _ usecwait(D3DK) 
specified length of time ........................................... timeout(D3DK) 
specified number of clock ticks .................................. delay(D3DK) 
specified priority band ............................................ bcanput(D3DK) 
specified priority band ........................................ flushband(D3DK) 
specifies a driver's message .................................... free _rtn(D4DK) 
spl block/allow interrupts ................................................. spl(D3D) 
srv seIVIce queueci messages .......................................... :;rv\Li2.iJ1':/ 
start access to a device ..................................................... start(D2D) 
start start access to a device ............................................ start(D2D) 
storage structure for 1/0 using .................................. iovec(D4DK) 
strategy perform block 1/0 .................................... strategy(D2DK) 
stream in the reverse direction ................................. qreply(D3DK) 
STREAMS driver identification and ............. module_ info(D4DK) 
STREAMS drivers mp _iosetup ...................... mp _iosetup(D3DK) 
STREAMS entity declaration .............................. streamtab(D4DK) 
STREAMS message block structure .......................... msgb(D4DK) 
STREAMS message data structure ............................ datab(D4DK) 
STREAMS queue flow control .................................. qband(D4DK) 
STREAMS queue processing procedures ................... qinit(D4DK) 
STREAMS queue structure ........................................ queue(D4DK) 
streamtab STREAMS entity ................................. streamtab(D4DK) 
strlog submit messages to the log ............................. strlog(D3DK) 
strqget get information about a ............................... strqget(D3DK) 
strqset change information about a ......................... strqset(D3DK) 
structure ............................................................................. buf(D4DK) 
structure ........................................................................... cred(D4DK) 

15 



Permuted Index 

datab STREAMS message data 
iovec data storage 

hdedata hard disk error data 
map private memory map 

identification and limit value 
msgb STREAMS message block 

convert page frame number to page 
queue flow control information 

STREAMS queue processing procedures 
queue STREAMS queue 

STREAMS entity declaration 
message freeing routine free_rtn 

page _pptonum convert page 
uio scatter/gather I/0 request 

copy kernel data using uio(D4DK) 
ureadc add character to a uio 

remove a character from a uio 
strlog 

execution of an event sleep 
completion of block l/0 biowait 

wakeup resume 
dcache_sync 

an error message or panic the 
print display a driver message on 

priority band bcanput 
can put 

SAMESTR 
message datamsg 

for a specified number of clock 
convert microseconds to clock 

drv hztousec convert clock 
specified length of time 

untimeout cancel previous 
buf block I/0 data 

adjmsg 
SAMESTR test if next queue is same 

structure 
ureadc add character to a 

uwritec remove a character from a 
storage structure for 1/0 using 

uiomove copy kernel data using 
uio(D4DK) structure 

l/O request 
up an l/0 request into manageable 

the head of a message 
timeout(D3DK) function call 

16 

structure ......................................................................... datab(D4DK) 
structure for l/0 using uio(D4DK) ........................... iovec(D4DK) 
structure ........................................................................ hdedata(D4D) 
structure ........................................................................... map(D4DK) 
structure /STREAMS driver ......................... module_info(D4DK) 
structure ......................................................................... msgb(D4DK) 
structure page_numtopp .......................... page_numtopp(D3DK) 
structure qband STREAMS ...................................... qband(D4DK) 
structure qinit ................................................................ qinit(D4DK) 
structure ........................................................................ queue(D4DK) 
structure streamtab ............................................. streamtab(D4DK) 
structure that specifies a driver's .............. ............ free _rtn(D4DK) 
structure to page frame number ............... page_pptonum(D3DK) 
structure ............................. ................................................ uio(D4DK) 
structure uiomove ................................................. uiomove(D3DK) 
structure ..... .................. ........................... ...... ............... ureadc(D3DK) 
structure uwritec ...................................................... uwritec(D3DK) 
submit messages to the log driver .......................... .. strlog(D3DK) 
suspend process activity pending .............................. sleep(D3DK) 
suspend processes pending ..................................... biowait(D3DK) 
suspended process execution ................................. wakeup(D3DK) 
sync the data cache .......................................... dcache_sync(D3DK) 
system cmn_err display ........................................ cmn_err(D3DK) 
system console ............................................................... print(D2DK) 
test for flow control in specified ........................... bcanput(D3DK) 

, test for room in a message queue ........................... canput(D3DK) 
test if next queue is same type .......................... SAMESTR(D3DK) 
test whether a message is a data .......................... datamsg(D3DK) 
testb check for an available buffer .............................. testb(D3DK) 
ticks I delay process execution ................................. delay(D3DK) 
ticks drv _ usectohz ......................................... drv _ usectohz(D3DK) 
ticks to microseconds ..................................... drv _hztousec(D3DK) 
timeout execute a function after a ......................... timeout(D3DK) 
timeout(D3DK) function call .............................. untimeout(D3DK) 
transfer structure .............................................................. buf(D4DK) 
trim bytes from a message ....................................... adjmsg(D3DK) 
type ......................................................................... SAMESTR(D3DK) 
uio scatter/gather 1/0 request ...................................... uio(D4DK) 
uio structure .......................................................... ...... ureadc(D3DK) 
uio structure ............................................................... uwritec(D3DK) 
uio(D4DK) iovec data ................................................. iovec(D4DK) 
uio(D4DK) structure ............................................... uiomove(D3DK) 
uiomove copy kernel data using ......................... uiomove(D3DK) 
uiophysio validate and issue raw ......................... uiophysio(D3D) 
units dma _pageio break .................................... dma _pageio(D3D) 
unlinkb remove a message block from ................. unlinkb(D3DK) 
untimeout cancel previous ................................. untimeout(D3DK) 

DDl/DKI Reference Manual 



in bytes to size in pages (round 
structure 

useracc verify whether 
copy data from a driver to a 

copyin copy data from a 
segmap map device memory into 

access to memory 
esballoc allocate a message block 

data storage structure for 1/0 
uiomove copy kernel data 

uio structure 
physiock 

uiophysio 
driver identification and limit 

memory useracc 
bp _ mapin allocate 

bp _ mapout deallocate 
kvtophys convert kernel 

device mmap check 
vtop convert 

address 
rmsetwant set the map's 

rm want 
release buffer after block 1/0 and 

execution 
set the map's wait flag for a 

datamsg test 
.. - -- - - - ____ !r __ 
~.1.a ......... ,.,. ........ J 

for this module or driver 
write 

driver WR get pointer to the 

Permuted Index 

Permuted Index 

up) btopr convert size ................................................ btopr(D3DK) 
ureadc add character to a uio .................................. ureadc(D3DK) 
user has access to memory ...................................... useracc(D3DK) 
user program copyout ........................................... copyout(D3DK) 
user program to a driver buffer .............................. copyin(D3DK) 
user space ..... ... ...... ...... ... ...... ...... ......... ......... ... ......... ..... segmap(D2K) 
useracc verify whether user has ............................. useracc(D3DK) 
using a shared buffer ............................................... esballoc(D3DK) 
using uio(D4DK) iovec ............................................... iovec(D4DK) 
using uio(D4DK) structure .................................... uiomove(D3DK) 
uwritec remove a character from a ........................ uwritec(D3DK) 
validate and issue raw 1/0 request ....................... physiock(D3D) 
validate and issue raw 1/0 request ..................... uiophysio(D3D) 
value structure /STREAMS .......................... module_ info(D4DK) 
verify whether user has access to ........................... useracc(D3DK) 
virtual address space ........................................... bp_mapin(D3DK) 
virtual address space ......................................... bp_mapout(D3DK) 
virtual address to physical address ...................... kvtophys(D3D) 
virtual mapping for memory mapped ....... ................ mmap(D2K) 
virtual to physical address .............................................. vtop(D3D) 
vtop convert virtual to physical ..................................... vtop(D3D) 
wait flag for a wakeup ....................................... rmsetwant(D3DK) 
wait for free memory ............................................... rmwant(D3DK) 
wakeup processes biodone ................................... biodone(D3DK) 
wakeup resume suspended process ..................... wakeup(D3DK) 
wakeup rmsetwant ............................................ rmsetwant(D3DK) 
whether a message is a data message ................. datamsg(D3DK) 
-·-L-i.L-- ----- ,_ __ ------ .1.- -----·· ,,,,,... .... _..,.....,,.../T"\~T"\V\ 
, ............... , ........ ~.I. ... ,&.&J ............. .JO ................. , ........... ,'"' ... , •••••••••••••••••••••• _..,._.._ ............ ,_ .... _ ...... , 

WR get pointer to the write queue .............................. WR(D3DK) 
write data to a device ................................................... write(D2DK) 
write queue for this module or ..................................... WR(D3DK) 
write write data to a device ........................................ write(D2DK) 

17 













\ 

UNIX 
PRESS 

UNIX® SYSTEM V RELEASE 4 

DEViCE DRiVER INTERFACE I . 
DRiVEmt--KERNEl INTERFACE 

REFERENCE MANUAL 
--------<>--------
for Motorola Processors 
--------<>--------

The reference manual set for UNIX® System V Release 4 for Motorola Processors 
is the definitive source for complete and detailed specifications for all System V 
interfaces. Newly reorganized, this edition makes finding the manual page you need 
easy and fast. Each volume contains supplemental cross-references to aid those 
familiar with the old organization. 

The new organization groups manual pages in the way most users need to use them: 

• The User's Reference Manual/ System Administrator's Reference Manual 
describes all user and administrator commands in the UNIX system, including 
new multiprocessing commands. · · 

• The Programmer's Reference Manual describes UNIX system calls and C 
language library functions , including new multiprocessing interfaces. 

• The System Files and Devices Reference Manual describes file formats, special 
files (devices), and miscellaneous system facilities. 

• The Device Dn·ver lnteiface/ Dn·ver-Kemel lnteiface Reference Manual describes 
functions used by device driver software. Editions of this manual are available 
for both uniprocessor and multiprocessor versions of the operating system. 

• The Master Index provides a master permuted index for the entire reference 
manual set. 

Use Background Color To Locate 
Your Document Title: 

COLOR 
CODE DOCUMENT TYPE <>--------------<> 

D GENERAL DOCUMENTS 

• USER'S GUIDES 

ISBN 0-13-587692-3 

90000> 

A Prentice Hall Title 

• ADMINISTRATOR'S GUIDES 

D PROGRAMMER'S GUIDES 

• REFERENCE MANUALS 9 780135 876923 


