UNIX®
SYSTEM V
Release 4

Commands
- Reference Manual

VOLUME 1
(Commands a-l)

for

Motorola Processors

@ MOTOROLA

UNIX®
SYSTEM V
Release 4

Commands
Reference Manual

VOLUME 1
(Commands a-1)

" for J
o Motorola Processors |

@ MOTOROLA

© COPYRIGHT MOTOROLA 1993
ALL RIGHTS RESERVED
Printed in the United States of America.

© Copyright 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990 AT&T
© Copyright 1991, 1992 UNIX System Laboratories, Inc.
ALL RIGHTS RESERVED
Printed in the United States of America.

Published by PTR Prentice-Hall, Inc.
A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

mu

OWNERSHIP
Portions of this documentation product(s) were contributed and copyrighted by Motorola, Inc.

REPRODUCTION/USE/DISCLOSURE
This documentation is copyrighted material. Making unauthorized copies is prohibited by law. No
part of this material may be reproduced or copied in man- or machine-readable form in any tangible
medium, or stored in a retrieval system, or transmitted in any form, or by any means, radio, electronic,
mechanical, photocopying, recording or facsimile, or otherwise, without the prior written permission
of Motorola, Inc.

NOTICE REGARDING DISCLAIMER OF WARRANTIES
The following does not apply where such provisions are inconsistent with local law; some states do not
allow disclaimers of express or implied warranties in certain transactions - therefore, this statement
may not apply to you. UNLESS OTHERWISE PROVIDED BY WRITTEN AGREEMENT WITH
MOTOROLA, INC., THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

ERRORS/CHANGES (MOTOROLA)
While reasonable efforts have been made to assure the accuracy of this documentation, Motorola, Inc.
assumes no liability resulting from any omissions in this documentation or from the use of the
information contained therein. Motorola reserves the right to revise this documentation and to make
changes from time to time in the content hereof without obligation to notify any person of such revision
or changes.

109876543

ISBN 0-13-088832-X

IMPORTANT NOTE TO USERS (USL)
While every effort has been made to ensure the accuracy of all information in this documentation, UNIX
System Laboratories, Inc. (USL) assumes no liabilities to any party for any loss or damage caused by
errors or omissions or by statements of any kind in this documentation, its updates, supplements, or
special editions, whether such errors are omissions or statements resulting from negligence, accident,
or any other cause. USL further assumes no liability arising out of the application or use of any product
or system described herein, nor any liability for incidental or consequential damages arising from the
use of this documentation. USL disclaims all warranties regarding the information contained herein,
whether expressed, implied, or statutory, including implied warranties of merchantability or fitness for a
particular purpose. USL makes no representation that the interconnection of products in the manner
described herein will not infringe on existing or future patent rights, nor do the descriptions contained
herein imply the granting of any license to make, use or sell equipment constructed in accordance with
such descriptions. USL reserves the right to make changes without further notice to any products
herein to improve reliability, function, or design.

PRODUCT AVAILABILITY
It is possible that this publication may contain reference to, or information about Motorola products
(machines and programs), programming, or services that are not announced in your country. Such
references or information must not be construed to mean that Motorola intends to announce such
Motorola products, programming, or services in your country.

GNU C COMPILER
The GNU C compiler is a product of the Free Software Foundation, Inc. and is subject to the GNU
General Public License as published by the Free Software Foundation. You should have received a
copy of the GNU General Public License along with the GNU C compiler product; if not, contact:

Free Software Foundation

675 Massachusetts Ave.
Cambridge, Massachusetts 02139
US.A.

THIS PROGRAM IS PROVIDED WITHOUT ANY WARRANTY, INCLUDING THE IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

Under the General Public License for GNU C you have the freedom to distribute copies of GNU C,
obtain source code if you want it, change the software, or use pieces of it in new free programs.

The GNU C compiler has been modified by Motorola, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph
(0)(1)(ii) of the Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013.

MOTOROLA, INC.
Computer Group
2900 South Diablo Way
Tempe, Arizona 85282

TRADEMARKS
Motorola and the Motorola logo are registered trademarks of Motorola, Inc. in the U.S.A. and in other
countries.
DeltaPRO, DeltaSeries, DeltaSERVER, M88000, SYSTEM V /68, and SYSTEM V /88 are trademarks of
Motorola, Inc. in the U.S.A.
All other marks are trademarks or registered trademarks of their respective holders.

UNIX is a registered trademark of UNIX System Laboratories, Inc. in the U.S.A. and other countries.
OSF/Motif is a trademark of The Open Software Foundation Inc.

GNU C s a trademark of the Free Software Foundation.

Table of Contents

Commands(1) and Miscellaneous Facilities(5)

accept, reject(1M) ... et e e accept or reject print requests
acct: acctdisk, acctdusg, accton, acctwtmp closewtmp, utmp2wtmp (1M)
... overview of accounting and miscellaneous accounting commands

acctems (IM) oo, ...command summary from per-process accounting records
acctcom(1) et search and print process accounting file(s)
acctcon, acctconl, acctcon2 (1M)cccceuencnee connect-time accounting

acctdisk, acctdusg, accton, acctwtmp (1M)
... overview of accounting and miscellaneous accounting commands

aCCtMETG(IM) woceiicice s merge or add total accounting files
acctpre, acctprel, acctpcm(lM) .. process accounting
acctsh: chargefee, ckpacct, dodisk, lastlogin, monacct, nulladm, prctmp, prdaily,

prtacct, runacct, shutacct, startup, turnacct(1M) shell procedures for accounting
addbib (1) ..o ..create or extend a bibliographic database
AAMUN(L) ettt ettt st create and administer SCCS files
AIPG(L) it query the ALP STREAMS module
apropos(1) ... s locate commands by keyword lookup
ar(1) maintain portable archive or library
ATCH(L) vt s display the architecture of the current host
arp (IM) .o, . . address resolution display and control
AS(1) ottt ettt teber ettt ettt ettt sttt et een assembler
ascii(5) ettt ettt ettt b et eaeee map of ASCII character set
at, batch(1) ettt reneberenerenens execute commands at a later time
AEQ(L) e display the jobs queued to run at specified times
ATM(1) o remove jobs spooled by at or batch
AUEOMOUNE (IM) .ot nees automatically mount NFS file systems
autopush(IM) ... configure lists of automatically pushed STREAMS modules
AWK(L) e pattern scanning and processing language
backup (1M) ... s initiate or control a system backup session
DANNET (1) ettt bbbt es st et ebe s make posters

basename, dirname(1) deliver portions of path names

basename(1).... display portions of pathnames
be(1) v . arbitrary-precision arithmetic language
DAiff(1) oo bttt n et s s big diff
DES (L) wecvreeericiminieecisci sttt bR big file scanner
biff(1) coooreiecnnes give notice of incoming mail messages
binmail (IM) ..o an early program for processing mail messages
DIOA (M) oottt ettt et NFS daemon
bkexcept(IM) ..o change or display an exception list for incremental backups

Table of Contents 1

Table of Contents

bKhiStory (1M) ...t report on completed backup operations
bkoper(1M) interact with backup operations to service media insertion prompts
bKreg (IM)ccoviciinicinciciicsiainns change or display the contents of a backup register
bkstatus (1M) e s display the status of backup operations
DOOL(IM) ettt st bbb bootstrap procedures
bootparamd (IM) ..ottt boot parameter server
bootpd, in.bootpd (IM) ...t Internet Boot Protocol server
bre, bcheckrc(IM) ... ssssens system initialization procedures
buildsys(IM) ... operating system configuration script
CAL(L) ceieteeeee ettt ettt ettt st et e b et bttt b et bt s e bbb et et be et sa ettt esenn print calendar
calendar(l)cocecremnnce ettt ettt reminder service
captoinfo (IM)ccccoevvvueivrcenierincieinnns convert a termcap description into a terminfo description
CAL(1) et concatenate and print files
... create the cat files for the manual
... C program beautifier
....................................... configurable C compiler

..... . vernennen. C compiler

................................... change working directory

...... change the delta comment of an SCCS delta

........................ Common Environment board status
.. Common Environment reset utility

CEIOW (1) ettt generate C flowgraph
ChecKfSYS(IM) ...coumimiiiiiiiiiiciiniissssssessssases check a file system
checknr(1) check nroff and troff input files; report possible errors
chgrp(1) . s change the group ownership of a file
ChKEY (1) oottt change user encryption key
Chkyn (1) oo get yes/no response from user or check answer to question
CRMOA (1) 1viieeieieieie ettt s et s e ettt st se st sesaeseane change file mode
CROWTIL(L) ittt sttt st sttt bbb s st nee change file owner
CROWTL(L) ettt et s bbbt st e et et e e sees change file owner
CHIOOE (IM) ottt s enenene change root directory for a command
ChrtbL(1IM) e generate character classification and conversion tables
ckbinarsys(1M)ccccovveruennnnnnnne. determine whether remote system can accept binary messages
ckbupscd (IM) ..o check file system backup schedule
ckdate, errdate, helpdate, valdate(1)cccooeuvvrrrrrerenrrerneceirnnnn. prompts for and validates a date
ckgid, errgid, helpgid, valgid (1)ccooveurrrrmmrereiieencirriann. prompt for and validate a group ID
CKINE (L) covercenic s display a prompt; verify and return an integer value
cKitem (1) coeveiecieeece e build a menu; prompt for and return a menu item
CKKEYWA (1) vttt s enenes prompt for and validate a keyword
ckpath(1) sdisplay a prompt; verify and return a pathname

2 Commands Reference Manual

Table of Contents

ckrange (1) .oprompts for and validates an integer
CKSEI(L) v display a prompt; verify and return a string answer
cktime (1) -eveeeernieieieens ..display a prompt; verify and return a time of day
CRULA (1) 1ottt s bbb st bene prompt for and validate a user ID
CKYOITL(L) oot prompt for and validate yes/no
Clear(l) oo ettt b bbbttt ettt aenren clear the terminal screen
COf2€lf (1) oo, e COFF to ELF object file translation
COL(T) vt ettt et e e ee filter reverse line-feeds
COLUDL(IMY) oottt bennas .create collation database

COMD (1) 1ottt ettt b s ettt b st b sanan e b s s te s asn e s senas combine SCCS deltas
COMM(L) e . select or reject lines common to two sorted files
compress, uncompress, zcat (1) compress, expand or display expanded files
comsat, IN.COMSAL (TIM) ...cuiiirieiriiirieireeeiet ettt ettt sttt a bbb s en e snaen biff server
cocreate, cosend, cocheck, coreceive, codestroy (1F)cccccccovuuviunrnnns communicate with a process
COPY (1) vt e ss b e copy groups of files
cp(1) s s copy files
cpio(1) ... bt e copy file archives in and out
CTASI(LIIM) ettt snne e examine system images
CrashCONT(IM) ..ottt st saene enable/disable crash dumps
CPOTL(TIM) ottt ettt b ettt ettt et st clock daemon
CLOMEAD (1) oottt ses e et ese bbbt b sttt user crontab file
CEYPE(L) ot e encode/decode
CSCOPE(L) correriirictniectcte st interactively examine a C program
CSI(L) ceeeeee e .shell command interpreter with a C-like syntax
CSPIE(L) oot context split
CLLC) espawn login to a remote terminal
ctags(1) ettt bbbttt nebene ettt ten create a tags file for use with vi
CLTACE (L) ovrviiriricecrt ettt et bbbt saree C program debugger
CU(TC) ottt ettt e be s as et et s e sas s ses s s s esanes call another UNIX system
CUNIX (IM) i,configure a new bootable operating system
CUL(L) e SN cut out selected fields of each line of a file
VoML (1) oo ettt neaes convert OMF (XENIX) libraries to ELF
CXTEf (1) v s generate C program cross-reference
date(1) .o .print and set the date
dbemd (IM) .o load command and macro files into a kernel executable file
dbsym (IM)ccccveuvurirncceincnnnne . add symbols to kernel debugger
AC(1) o ettt ettt et bbbt ettt na desk calculator
Acon(IM) ..o . ettt control dual console operation
dcopy (generic) (1M) SRR copy file systems for optimal access time
dcopy (S5)(IM) .o, copy sb5 file systems for optimal access time

Table of Contents 3

Table of Contents

dd(1M)...... convert and copy a file
ddefs(1M) disk definition information manager
delsysadm(IM) ... sysadm interface menu or task removal tool
delta(l) ettt et bt bbbttt bneat make a delta (change) to an SCCS file
AErOff(1) .ovveereeereeieeeeeeresereeseseeeresseseaeaerenes remove nroff/troff, tbl, and eqn constructs
deroff(1) .. remove nroff, troff, tbl and eqn constructs
devattr(1M) lists device attributes
devfree(1M) ettt et et release devices from exclusive use
devinfo(1M) reeee s sasnass print device specific information
devnm (IM)cceueeee . . ettt ettt sttt seteeenanetes device name
devreserv(1M) . reserve devices for exclusive use
df (generic) (IM)ccccvverervnncs report number of free disk blocks and files
Af (DSA) (1) vttt esesseaeaeseenenas ...report free disk space on file systems
df (85)(IM) ..oreport number of free disk blocks and i-nodes for s5 file systems
Af (UES) (IM) ettt ettt eee report free disk space on ufs file systems
Afmounts (IM) ... display mounted NFS resource information
AfMOUNtS(IM) .ecovereereicete e rrinees display mounted RFS resource information
AfMOUNtS(IM) ..oovvveeieee s display mounted resource information
dAfshares(1M)cccovereevrcnnieeeereeee e list available NFS resources from remote systems
dfshares(1M)ccccoveererrreccennnnes ... list available RFS resources from remote systems
dfshares(1M) rertraeeaentaatenenas list available resources from remote or local systems
diff (1) e differential file comparator
iff3(1) v e 3-way differential file comparison
diffmk (1) cooevrcrnenee reveeeereasereatrenns mark differences between versions of a troff input file
dig(1M) send domain name query packets to name servers
dinit(IM) .cooveeerevencennnes ettt ettt ettt et nanen disk initializer
IECINP (1) oo baes directory comparison
dis(1) . . ettt e ettt tees object code disassembler
diskusg(1M) RN generate disk accounting data by user ID
dispadmin (1M) et e process scheduler administration
dispgid (1) e e displays a list of all valid group names
AISPULA (1) covvvvrinirimiriceci s ssscassanes displays a list of all valid user names
di(1) rerere e Common Environment download utility
dname(1M) print Remote File Sharing domain and network names
domainname (1M) .get/set name of current secure RPC domain
download(1) ... SRR host resident PostScript font downloader
dpost(1) .o - troff postprocessor for PostScript printers
drvinstall (1M) st sens st install /uninstall a driver
dsconfig (1)display data storage device configuration
du(1M) summarize disk usage

4 Commands Reference Manual

Table of Contents

du(IM) .o display the number of disk blocks used per directory or file
dump selected parts of an object file
... echo arguments
... put string on virtual output
.. echo arguments
.. text editor
EAIE(1) v text editor (variant of ex for casual users)
dqUOta(IM) ..o e edit user quotas
edsysadm (IM) ... s sysadm interface editing tool
€AtP (IM) et Equipped Device Table Probe procedures
€greP (1) covveeiereiii s search a file for a pattern using full regular expressions
enable, diSable (1) .ccvveeueriircciriiciicciccr e enable/disable LP printers
NV (1)t ettt et senen set environment for command execution
ENVITOT(5) wevevenieuiieteieieieestste et s ete e et st s e e e e st se e sen s esese e esese st ebeseseseeseseseseatacasenan user environment
envmon (1M)

......... add /dev entries for the environmental monitor board in the Equipped Device Table
eqn, neqn, Checkeq(1) ..o s typeset mathematics
eqnchar(5)cooeeceieunnee special character definitions for eqn
EUCSEE (1) ottt ettt et be et b et e sase st sse et sbenene set or get EUC code set widths
X (1) vttt ettt ettt s e s e e bbbttt et ettt et ne s text editor
eXPOIES (IM) cooveiieericec e export and unexport directories to NFS clients
EXPI (1) ot evaluate arguments as an expression
EXSET(L) ovvrvertiriretcict s extract strings from source files
face(l) .oevrveeeeeeererecreeerreenee executable for the Framed Access Command Environment Interface
FACLOT (1) orrerieiierereieeece ettt e eneneas obtain the prime factors of a number
fastboot, fasthalt(IM)ccccoevvrvrvrivniccinnnne reboot/halt the system without checking the disks
fdetach(IM)oouevvrrurinciciie et detach a name from a STREAMS-based file descriptor
£AP (IM) e create, or restore from, a full file system archive
ff (generic) (IM)ccoevevuruncnees ettt list file names and statistics for a file system
£ (S5) (1IM) ettt ettt display i-list information
£ (UFS) (IM) oottt list file names and statistics for a ufs file system

FIE (IM) et nneees create, or restore from, a full file system archive
FEIEP (1) ot search a file for a character string
file(1) sdetermine file type
fimage (IM) ..o create, restore an image archive of a filesystem
FINC(IM) oo fast incremental backup
FINA (L) vttt s st s e e as s st sa e et se bt e e s e nean find files
fINGET (1) covvvvvrinirincieiicc e sisenees display information about local and remote users
fingerd, in.fingerd (IM) ..o remote user information server
FNICUL(TF) ottt asa st ee cut out selected fields of each line of a file

Table of Contents 5

Table of Contents

fmlexpr(1F) evaluate arguments as an expression
FMIGTEP (1F) oottt s search a file for a pattern
FINTE(L) ettt eese e asese e nsese e nrensaenenes invoke FMLI
fmt(1) o simple text formatters
fmthard (IM) ..o, populate VTOC on hard disks
fmtmsg(1)display a message on stderr or system console
FOIA (L) ettt sttt ettt ettt s bbb ettt et ea st et s naten fold long lines
FTEC{IIM) ettt ettt bbb nene recover files from a backup tape
fromsmtp (IM) ..o receive RFC822 mail from SMTP
FSDA(IM) oottt file system block analyzer
fsck (generic) (IM) ..o ...check and repair file systems
fsck (bfs) (IM) ..oevveerereirrerrienens check and repair bfs file systems
fsck (s5)(1M) check and repair s5 file systems
fsck (UFS) (IM) oeverieireieie e file system consistency check and interactive repair
fsdb (Zeneric) (IM) ...t snesaens ... file system debugger
fsdb (s5) (1M) et aaes s5 file system debugger
£SAD (ULS) (1M) eoreereerrecnerncemeneie et sees et ssessssasssssass ufs file system debugger
fsirand (1)cooeveeeee ...install random inode generation numbers
fstyp (8eneric) (IM) ... esaen determine file system type
FEP(L) o file transfer program
HPA(IM) e, .DARPA Internet File Transfer Protocol server
fUMOUNE(IM) oottt eeene forced unmount of advertised resources
FUSAZE (1M cevvereieeneirrenceerse sttt sa s ss st sss s et sanes disk access profiler
FUSET (IM) .o essesssssseasins identify processes using a file or file structure
fwtmp, Wtmpfix (1IM) ..o, manipulate connect accounting records
8COTE (1) v get core images of running processes
gencat(l) .o, generate a formatted message catalogue
BEE(L) et get a version of an SCCS file
8EtAEV (IM) oottt lists devices based on criteria
getdgrp(IM) ... lists device groups which contain devices that match criteria
EIM(IF) oo returns the current framelD number
GEtIA(IM) .ot s program to retrieve the
getiteMS (1F) ..o return a list of currently marked menu items
getmajor(1M) . print major number(s) of hardware and software drivers
getmany (IM)cocoovvvevvcivnvnercnnenn. program to retrieve classes of variables from an SNMP entity
getnext(IM) ..., program to retrieve variables from an SNMP entity
getone(IM) ..., program to retrieve variables from an SNMP entity
8ELOPL(1) e parse command options
getopts, GetOPLCVE(L) . parse command options
getroute(1M)ocoevverrnennnee. a program to extract the routing information from an SNMP entity
6 Commands Reference Manual

. Table of Contents

gettable (IM) ..o get DoD Internet format host table from a host
EEEXE (L) o retrieve a text string from a message data base
ety (IM) oo, set terminal type, modes, speed, and line discipline
getVOL(IM) ..o ... verifies device accessibility
graph(1G) .. . e bbbt draw a graph
BTEP (1) oot search a file for a pattern
groupadd (IM) ... add (create) a new group definition on the system
groupdel(IM) ... delete a group definition from the system
groupmod (IM) ... modify a group definition on the system
GIOUPS (1) oo naees print group membership of user
SIOUPS (1) oot display a user’s group memberships
grpck(IM) oo . . - check group database entries

halt(1M) s bbb s stop the processor
RA (L) s display files in hexadecimal format
REAA (1) oo display first few lines of files
help(1) ask for help with message numbers or SCCS commands
ROSEIA (1) eeeeeeeireerieicrercreeeieee et eeeees print the numeric identifier of the current host
hostname (1) ... set or print name of current host system
htable(1M) ettt ettt ettt convert DoD Internet format host table
IedPatch (IM) oot s patch in-core disk into kernel
ICONV (1) coittitt st code set conversion utility
ICOMV (D) ettt ettt ettt et et code set conversion tables
IA(AM) e ... print the user name and ID, and group name and ID
idload (IM) .o Remote File Sharing user and group mapping
HCONFAG(IM) oot configure network interface parameters
IGE(IM) oo software management package-generation facility
intimed, HME (IM) .ccuviririririerereirere ettt sesse s sssssnss s sessass e s sssans time server daemon
incfile(1M) create, restore an incremental filesystem archive
indicator(1F)display application specific alarms and/or the “‘working”” indicator
indxbib(1) OO create an inverted index to a bibliographic database
inetd (1M) Internet services daemon
infocmp (IM) oo compare or print out terminfo descriptions
iNit, tElNIE(IM) coeoiiiiiieie ettt e enaas process control initialization
install(1M) ettt bttt bbbttt et et b bRt b ek E koA ke b b s et e ettt ettt a et et e ereraseaean install commands
INSTALL(L) vttt ettt s s b et a e bbb e s bt b s e s st santneansenee install files
INETO (1) oo introduction to commands and application programs
INETO (5) wervirinicicrc ettt introduction to miscellany
iperm(1) o remove a message queue, semaphore set, or shared memory ID
IPCS(L) covvreirrreeeine ettt report inter-process communication facilities status
IXE(IM) oo ...software management package extraction facility

Table of Contents 7

Table of Contents

JOIMU(L) ettt e relational database operator
jwin(1) print size of layer
kbdcomp (1M)compile kbd tables
kbdload (1M) load or link kbd tables
kbdpipe(1) use the KBD module in a pipeline
kbdset(1) attach to kbd mapping tables, set modes
kcrash (1M) examine system images
kdb(1M) kernel debugger (with multi-processor support)
keylogin(1) decrypt and store secret key
Keyserv (IM) ..ot server for storing public and private keys
kill(1) terminate a process by default
KIAIL(IIM) ettt ettt st st ab sttt s seasnes kill all active processes
ksh, rksh(1) ...cccccerruneeee KornShell, a standard /restricted command and programming language
labelit (generic) (1M) ..o ... provide labels for file systems
labelit (s5)(1M) ceerersnee e ... provide labels for s5 file systems
labelit (Ufs)(IM) c...ccovererrreereeirrerennes .provide labels for ufs file systems
1anginfo (5) ... language information constants
[ast(1) cceeeererrecerrnens . indicate last user or terminal logins
1astcOmMMI (1) .ocvcveeerreereieiereereeeereceeereesenesees show the last commands executed, in reverse order
1A (1) e link editor for object files
IA (1) e link editor, dynamic link editor
1dd (1) list dynamic dependencies
1dsysdump (1M) ..ot reesenssnne load system dump from selected devices
lex(1) e generate programs for simple lexical tasks
Ifmt(1)

...... display error message in standard format and pass to logging and monitoring services
JINE (L) eertrererueireeieteeeeserie e st s e s tsasts e st ss e b ss s antess e s s snsese st st ssseb st sastessebebaa s s s st tranesaentantes read one line
link, unlink (1M)ccooeeveeernrnrnecrnneens link and unlink files and directories
lint(1) et s a C program checker
LStAZIp (IM) oo lists members of a device group
LSEEN(IM) oottt cseesaensesesaensese s sessesesassnas network listener daemon
listusers(1) list user login information
In(1) ... eteteeieiseesttttettteteseseaeses et et s e st e s et s es et bes et esesees link files
IN(L) ottt ses s s et snasaenes make hard or symbolic links to files
1I0CKA (IM) . network lock daemon
10gGET(1) e sadd entries to the system log
LOGIN (1) ottt as sign on
logins(1M) ... list user and system login information
logname(1)ccoeiruerriirnniinrnnnceneinerniennnns get login name

1 1oT0) (I R find words in the system dlctlonary or lines in a sorted list

8 Commands Reference Manual

Table of Contents

lookbib (1) find references in a bibliographic database
10rder(1) v e find ordering relation for an object library
Ip, cancel(1) c..oeueveeiieieieieee e send/cancel requests to an LP print service
Ipadmin(IM) ... configure the LP print service
IPC(IM) oo ettt et es line printer control program
Ipfilter (IM) ...corriircccn s administer filters used with the LP print service
Ipforms (IM) ..o administer forms used with the LP print service
IPq(1) oo SRR display the queue of printer jobs
Ipr(1) o SORRRRN ..send a job to the printer
lprm(1) ettt ettt remove jobs from the printer queue
Iprof (1) wvvveeiereiie v display line-by-line execution count profile data
Ipsched, Ipshut, Ipmove(1IM)cccccevvvvunncen. start/stop the LP print service and move requests
Ipstat(1) .o, . print information about the status of the LP print service
Ipsystem (IM) ..., register remote systems with the print service
IPEESE(L) et generate lineprinter ripple pattern
lpusers(1M) .. e s set printing queue priorities
IS(1) e ettt et e e b st ettt et s bt eet s list contents of directory
IS(1) oeeereeeeecceenne eetettreuetetetet b st b et a bt e et et s e e et e b n s et s ssenee list the contents of a directory
Is, lc(1) rreeeeeeeneaa ettt et et nen list contents of directory

Table of Contents 9

Introduction

Reference Manuals

Description Manual pages provide technical reference information about
the interfaces and execution behavior of each UNIX SYSTEM
V Release 4 component.

Organization The type of component being described is indicated by the
numerical section suffix. Within each section there may be
subsections indicated by a single letter. Related sections are
organized into reference manuals and alphabetized by name.
The following table shows the contents of the reference
manuals and their section suffixes.

Title and Contents Sections

Commands Reference Manual Volumes 1 and 2
General-purpose user commands 1
Basic networking commands 1C
Form and Menu Language Interpreter (FMLI) 1F
System maintenance commands 1M
Enhanced networking commands 1IN
Miscellaneous reference information related to 5

commands.

System Calls and Library Functions

Reference Manual
System calls 2
BSD system compatibility library 3
Standard C library 3C
Executable and linking format library 3E

Continued on next page

Introduction 1

Reference Manuals, Continued

Contents Sections
System Calls and Library Functions Reference Manual (continued)
General-purpose library 3G
Math library 3M
Networking library 3N
Standard I/O library 3S
Specialized library 3X
Miscellaneous reference information related to programming. | 5
System Files and Devices Reference Manual
System file formats 4
Special files (devices) 7
Device Driver Interface/Driver - Kernel Interface Reference Manual
Driver Data Definitions D1
Driver Entry Point Routines D2
Kernel Utility Routines D3
Kernel Data Structures D4
Kernel Defines D5
Master Permuted Index
Permuted index of all manual pages All

2 Introduction

Retitled Reference Manuals

Background Four reference manuals for this release have been
restructured and/or retitled to more accurately describe their

contents. The following table shows these changes.

Previous Titles Current Titles Current
Sections
User’s Reference Manual/ Commands Reference Manual 1,1C, 1F,
System Administrator’s (Volume 1,a-1) 1M, 1N,
Reference Manual (Volume 2, m - z) 5
(Commands a -1)
(Commands m - z)
Programmer’s Reference Manual: System Calls and Library Functions 2,3,3C,
Operating System API Reference Manual 3E, 3G,
Part 1: Programming Commands 3M, 3N,
and System Calls 35,3X,5
Part 2: Functions
System Files and Devices Reference | System Files and Devices Reference 4,7
Manual Manual (section 5 removed)
Permuted Index Master Permuted Index All
Introduction 3

Manual Page Format

Main All UNIX manual pages have a common format. The
headings following main headings are used:
used
Heading Section Contents

NAME Name of the component and brief statement of its purpose

SYNOPSIS Syntax of the component

DESCRIPTION | General discussion of functionality

EXAMPLE Example(s) of usage

FILES File names built into the component

SEE ALSO Cross-references to related components

Note: Not all manual pages use all headings.

4 Introduction

Typographical Conventions

Style and The following typographical and formatting conventions are
conventions used.
used
Convention Indicates ...
Constant width a literal that should be entered just as it
appears
Italic a substitutable argument
Square brackets around an argu- | an optional argument
ment []
name or file a file name
Ellipses ... previous argument may be repeated
Argument beginning with a flag argument
- minus
+ plus L
= equal

Introduction 5

Permuted Index

Definition A permuted index is an alphabetical listing of all the

keywords in the NAME line of a manual page.

Certain common words are not considered keywords and are
not recognized. In the example below, the common words of,
to, and the are not recognized.

Example The NAME line of the adjtime(2) manual page appears
below.
adjtime(2) adjtime(2)
NAME

adjtime- correct the time to allow synchronization of the system clock

The adjtime(2) entries from the permuted index are shown
below. These entries appear in the a, ¢, and s sections of the
permuted index respectively.

Remainder of NAME line Keyword and NAME line Manual
Page

synchronization of the system/ adjtime correct the time to allow. adjtime(2)
clock adjtime correct the time to allow synchronization of the system . .. adjtime(2)
allow synchronization of the system clock adjtime correct the timeto. .. adjtime(2)
synchronization of the/ adjtime correct thetimetoallow.............. adjtime(2)
adjtime correct the time to allow synchronization of the system clock. . . adjtime(2)
to allow synchronization of the system clock / correct the time...... adjtime(2)

Continued on next page

Introduction

Permuted Index, Continued

How a
permuted
index is
constructed

Identification
of entries

Master
Permuted
Index

Introduction

The center column lists each keyword followed by all or a
portion of the NAME line, as space permits. The left column
lists the remainder of the NAME line. The right column
indicates the manual page being referenced.

Omitted words are indicated with a slash (/).

Manual page entries are identified with their section suffixes
shown in parentheses.

Example: man(1) and man(5)

Section suffixes eliminate confusion caused by duplication of
names among the sections.

Each reference manual has a permuted index for the manual
pages contained in that book.

The Master Permuted Index covers all the manual pages of this
documentation library.

Request for Comment

Description

Online
versions
of RFCs

A Request for Comment (RFC) is a document that describes
some aspect of networking technology. The RFCs cited in the
SEE ALSO section of these manual pages are available in
hard copy for a small fee from:

Network Information System Center
SRI International

333 Ravenswood Avenue

Menlo Park, CA 94025

415-859-6387 fax: 415-859-6028
emaillnisc@nisc.sri.com

Online versions of the RFCs are available by ftp from
nic.ddn.mil.To retrieve an on-line RFC, do the following:

Step

Action

1

Connect to the RFC host by entering:

ftp nic.ddn.mil
user name: anonymous
password: guest

Retrieve the RFC by entering:
get rfc/rfcnum

where num is the number of the RFC

Example:
get rfc:rfcll71.txt

End the ftp session by entering;:

quit

Introduction

intro(1) intro(1)

NAME
intro - introduction to commands and application programs

DESCRIPTION
This section describes, in alphabetical order, commands, including user commands,
programming commands and commands used chiefly for maintenance and
administration (1M commands).

Because of command restructuring for the Virtual File System architecture, there
are several instances of multiple manual pages with the same name. For example,
there are four manual pages called mount(1M). In each such case the first of the
multiple pages describes the syntax and options of the generic command, that is,
those options applicable to all FSTypes (file system types). The succeeding pages
describe the functionality of the FSType-specific modules of the command. These
pages all display the name of the FSType to which they pertain centered and in
parentheses at the top of the page. Note that the administrator should not attempt
to call these modules directly. The generic command provides a common interface
to all of them. Thus the FSType-specific manual pages should not be viewed as
describing distinct commands, but rather as detailing those aspects of a command
that are specific to a particular FSType.

Manual Page Command Syntax
Unless otherwise noted, commands described in the SYNOPSIS section of a
manual page accept options and other arguments according to the following syntax
and should be interpreted as explained below.

name [-option ...] [cmdarg...]

where:

[] Surround an option or cmdarg that is not required.

o Indicates multiple occurrences of the option or cmdarg .

name The name of an executable file.

option (Always preceded by a “-"".)
noargletter ... or,
argletter optarg|, ...]

noargletter A single letter representing an option without an option-argument.
Note that more than one noargletter option can be grouped after one
““~"" (Rule 5, below).

argletter A single letter representing an option requiring an option-argument.

optarg An option-argument (character string) satisfying a preceding
argletter. Note that groups of optargs following an argletter must be
separated by commas, or separated by white space and quoted (Rule
8, below).

cmdarg Path name (or other command argument) not beginning with “~", or

/- by itself indicating the standard input.

Command Syntax Standard: Rules
These command syntax rules are not followed by all current commands, but all
new commands will obey them. getopts(1) should be used by all shell procedures
to parse positional parameters and to check for legal options. It supports Rules
3-10 below. The enforcement of the other rules must be done by the command

10/92 Page 1

intro(1) intro(1)

itself.

1. Command names (name above) must be between two and nine charac-
ters long.

Command names must include only lower-case letters and digits.
Option names (option above) must be one character long.

“_rr

All options must be preceded by

s

Options with no arguments may be grouped after a single

AN

The first option-argument (optarg above) following an option must be
preceded by white space.

N

Option-arguments cannot be optional.

8. Groups of option-arguments following an option must either be
separated by commas or separated by white space and quoted (for
example, -0 xxx,z,yy or -0 "xxx z yy").

9. All options must precede operands (cmdarg above) on the command
line.

10. “--""may be used to indicate the end of the options.
11. The order of the options relative to one another should not matter.

12. The relative order of the operands (cmdarg above) may affect their
significance in ways determined by the command with which they
appear.

13. """ preceded and followed by white space should only be used to
mean standard input.

SEE ALSO
getopts(l), exit(2), wait(2), getopt(3C).

How to Get Started in the ““Introduction’’ to this document

DIAGNOSTICS

Upon termination, each command returns two bytes of status, one supplied by the
system and giving the cause for termination, and (in the case of “normal” termina-
tion) one supplied by the program [see wait(2) and exit(2)]. The former byte is 0
for normal termination; the latter is customarily 0 for successful execution and
non-zero to indicate troubles such as erroneous parameters, or bad or inaccessible
data. It is called variously “exit code”, “exit status”, or “return code’, and is
described only where special conventions are involved.

NOTES
Throughout the manual pages there are references to TMPDIR, BINDIR, INCDIR,
and LIBDIR. These represent directory names whose value is specified on each
manual page as necessary. For example, TMPDIR might refer to /var/tmp. These
are not environment variables and cannot be set. [There is an environment variable
called TMPDIR which can be set. See tmpnam(3S).] There are also references to LIB-
PATH, the default search path of the link editor and other tools.

Page 2 10/92

intro (1) intro (1)

Some commands produce unexpected results when processing files containing null
characters. These commands often treat text input lines as strings and therefore
become confused upon encountering a null character (the string terminator) within
a line.

10/92 Page 3

intro(5) intro(5)

NAME
intro - introduction to miscellany

DESCRIPTION
This section describes miscellaneous information related to commands.

10/92 Page 1

accept(1M) (Line Printer Spooling Utilities) accept (1M)

NAME
accept, reject - accept or reject print requests

SYNOPSIS
accept destinations
reject [-r reason] destinations

DESCRIPTION
accept allows the queueing of print requests for the named destinations. A destina-
tion can be either a printer or a class of printers. Run lpstat -a to find the status
of destinations.

reject prevents queueing of print requests for the named destinations. A destina-
tion can be either a printer or a class of printers. (Run lpstat -a to find the status
of destinations.) The following option is useful with reject.

-r reason Assign a reason for rejection of requests. This reason applies to all destina-
tions specified. Reason is reported by 1pstat -a. It must be enclosed in
quotes if it contains blanks. The default reason is unknown reason for
existing destinations, and new destination for destinations just added
to the system but not yet accepting requests.

FILES
/var/spool/lp/*

SEE ALSO
1padmin(1M), 1psched(1M)
enable(l), 1p(1), lpstat(1).

10/92 Page 1

acct(1M) (Job Accounting Utilities) acct(1M)

NAME

acct: acctdisk, acctdusg, accton, acctwtmp closewtmp, utmp2wtmp - overview
of accounting and miscellaneous accounting commands

SYNOPSIS

/usr/lib/acct/acctdisk
/usr/lib/acct/acctdusg [-ufile] [-p file]
/usr/lib/acct/accton [file]
/usr/lib/acct/acctwtmp "reason”
/usr/lib/acct/closewtmp

/usr/lib/acct/utmp2wtmp

DESCRIPTION

10/92

Accounting software is structured as a set of tools (consisting of both C programs
and shell procedures) that can be used to build accounting systems. acctsh(1M)
describes the set of shell procedures built on top of the C programs.

Connect time accounting is handled by various programs that write records into
/var/adm/wtmp, as described in utmp(4). The programs described in acctcon(1M)
convert this file into session and charging records, which are then summarized by
acctmerg(1M).

Process accounting is performed by the UNIX system kernel. Upon termination of a
process, one record per process is written to a file (normally /var/adm/pacct). The
programs in acctprc(IM) summarize this data for charging purposes;
acctcms(1M) is used to summarize command usage. Current process data may be
examined using acctcom(1).

Process accounting and connect time accounting (or any accounting records in the
tacct format described in acct(4)) can be merged and summarized into total
accounting records by acctmerg (see tacct format in acct(4)). prtacct (see
acctsh(1M)) is used to format any or all accounting records.

acctdisk reads lines that contain user ID, login name, and number of disk blocks
and converts them to total accounting records that can be merged with other
accounting records.

acctdusg reads its standard input (usually from find / -print) and computes
disk resource consumption (including indirect blocks) by login. If -u is given,
records consisting of those filenames for which acctdusg charges no one are placed
in file (a potential source for finding users trying to avoid disk charges). If -p is
given, file is the name of the password file. This option is not needed if the pass-
word file is /etc/passwd. (See diskusg(1M) for more details.)

accton alone turns process accounting off. If file is given, it must be the name of an
existing file, to which the kernel appends process accounting records (see acct(2)
and acct(4)).

acctwtmp writes a utmp(4) record to its standard output. The record contains the
current time and a string of characters that describe the reason. A record type of
ACCOUNTING is assigned (see utmp(4)). reason must be a string of 11 or fewer char-
acters, numbers, $, or spaces. For example, the following are suggestions for use in
reboot and shutdown procedures, respectively:

Page 1

acct(1M) (Job Accounting Utilities) acct(1M)

acctwtmp "acctg on" >> /var/adm/wtmp
acctwtmp "acctg off" >> /var/adm/wtmp

For each user currently logged on, closewtmp puts a false DEAD_PROCESS record in
the /var/adm/wtmp file. runacct (see runacct (1M)) uses this false DEAD_PROCESS
record so that the connect accounting procedures can track the time used by users
logged on before runacct was invoked.

For each user currently logged on, runacct uses utmp2wtmp to create an entry in
the file /var/adm/wtmp, created by runacct. Entries in /var/adm/wtmp enable
subsequent invocations of runacct to account for connect times of users currently
logged in.
FILES
/etc/passwd used for login name to user ID conversions
/usr/lib/acct holds all accounting commands listed in
sub-class 1M of this manual
/var/adm/pacct current process accounting file
/var/adm/wtmp login/logoff history file

SEE ALSO

acctcms(1M), acctcom(l), acctcon(lM), acctmerg(lM), acctprc(iM),
acctsh(1M), diskusg(1M), fwtmp(IM), runacct(IM), acct(2), acct(4), utmp(4).

Page 2 10/92

acctems (1M) (Accounting Utilities) acctems (1M)

NAME
acctcms - command summary from per-process accounting records

SYNOPSIS
/usr/lib/acct/acctems [-a [-p] [-o]] [-c] [-3] [-n] [-s] [-t] files

DESCRIPTION
acctcms reads one or more files, normally in the form described in acct(4). It adds
all records for processes that executed identically-named commands, sorts them,
and writes them to the standard output, normally using an internal summary for-
mat. The options are:

-a Print output in ASCII rather than in the internal summary format. The out-
put includes command name, number of times executed, total kcore-
minutes, total CPU minutes, total real minutes, mean size (in K), mean CPU
minutes per invocation, "hog factor”, characters transferred, and blocks read
and written, as in acctcom(1). Output is normally sorted by total kcore-

minutes.

-c Sort by total CPU time, rather than total kcore-minutes.

-3 Combine all commands invoked only once under "##x*other".

-n Sort by number of command invocations.

-s Any filenames encountered hereafter are already in internal summary for-
mat.

-t Process all records as total accounting records. The default internal sum-

mary format splits each field into prime and non-prime time parts. This
option combines the prime and non-prime time parts into a single field that
is the total of both, and provides upward compatibility with old (that is,
pre-UNIX System V Release 4.0) style acctcms internal summary format
records.

The following options may be used only with the -a option.
-p Output a prime-time-only command summary.
-0 Output a non-prime (offshift) time only command summary.

When -p and -o are used together, a combination prime and non-prime time report
is produced. All the output summaries will be total usage except number of times
executed, CPU minutes, and real minutes, which will be split into prime and non-
prime.

A typical sequence for performing daily command accounting and for maintaining
a running total is:

acctcms file ... > today

cp total previoustotal

acctcms -s today previoustotal > total
acctcms -a -s today

SEE ALSO
acct(1IM), acctcom(l), acctcon(IM), acctmerg(1M), acctprc(1M), acctsh(1M),
fwtmp(1M), runacct(1M), acct(2), acct(4), utmp(4).

NOTES
Unpredictable output results if -t is used on new style internal summary format
files, or if it is not used with old style internal summary format files.

10/92 Page 1

acctcom(1) (Accounting Utilities) acctcom(1)

NAME

acctcom - search and print process accounting file(s)

SYNOPSIS

acctcom [options | [file . ..]

DESCRIPTION

10/92

acctcom reads file, the standard input, or /var/adm/pacct, in the form described
by acct(4) and writes selected records to the standard output. Each record
represents the execution of one process. The output shows the COMMAND NAME,
USER, TTYNAME, START TIME, END TIME, REAL (SEC),CPU (SEC),MEAN SIZE (K),
and optionally, F (the fork/exec flag: 1 for fork without exec), STAT (the system
exit status), HOG FACTOR, KCORE MIN, CPU FACTOR, CHARS TRNSFD, and BLOCKS
READ (total blocks read and written).

A # is prepended to the command name if the command was executed with
superuser privileges. If a process is not associated with a known terminal, a 2 is
printed in the TTYNAME field.

If no files are specified, and if the standard input is associated with a terminal or
/dev/null (as is the case when using & in the shell), /var/adm/pacct is read; oth-
erwise, the standard input is read.

If any file arguments are given, they are read in their respective order. Each file is
normally read forward, i.e., in chronological order by process completion time. The
file /var/adm/pacct is usually the current file to be examined; a busy system may
need several such files of which all but the current file are found in
/var/adm/pacctincr.

The options are:

-a Show some average statistics about the processes selected. The statis-
tics will be printed after the output records.

-b Read backwards, showing latest commands first. This option has no
effect when the standard input is read.

-f Print the fork/exec flag and system exit status columns in the out-
put. The numeric output for this option will be in octal.

-h Instead of mean memory size, show the fraction of total available CPU

time consumed by the process during its execution. This “hog factor”
is computed as (total CPU time)/(elapsed time).

-1 Print columns containing the 1/0 counts in the output.

-k Instead of memory size, show total kcore-minutes.

-m Show mean core size (the default).

-r Show CPU factor (user-time/(system-time + user-time)).

-t Show separate system and user CPU times.

-V Exclude column headings from the output.

-1line Show only processes belonging to terminal /dev/term/line.

-u user Show only processes belonging to user that may be specified by: a

user ID, a login name that is then converted to a user ID, a #, which
designates only those processes executed with superuser privileges,
or ?, which designates only those processes associated with unknown
user IDs.

Page 1

acctcom(1) (Accounting Utilities) acctcom(1)
-g group Show only processes belonging to group. The group may be desig-
nated by either the group ID or group name.
-s time Select processes existing at or after time, given in the format
hr [:min [:sec]].
-e time Select processes existing at or before time.
-S time Select processes starting at or after time.
-E time Select processes ending at or before time. Using the same time for
both -S and -E shows the processes that existed at time.
-npattern ~ Show only commands matching pattern that may be a regular expres-
sion as in regcmp(3G), except + means one or more occurrences.
-q Do not print any output records, just print the average statistics as
with the -a option.
-o ofile Copy selected process records in the input data format to ofile;
suppress printing to standard output.
-H factor Show only processes that exceed factor, where factor is the “hog fac-
tor’” as explained in option -h above.
-0 sec Show only processes with CPU system time exceeding sec seconds.
-Csec Show only processes with total CPU time (system-time + user-time)
exceeding sec seconds.
-1 chars Show only processes transferring more characters than the cutoff
number given by chars.
FILES
/etc/passwd
/var/adm/pacctincr
/etc/group
SEE ALSO

NOTES

Page 2

acct(1M), acctcms(1M), acctcon(1M), acctmerg(1M), acctprc(1M), acctsh(1M),
fwtmp(1M), ps(1), runacct(1M), su(l), acct(2), regemp(3G), acct(4), utmp(4).

acctcom reports only on processes that have terminated; use ps(l) for active

processes.

If time exceeds the present time, then time is interpreted as occurring on the previ-

ous day.

10/92

acctcon (1M) (Accounting Utilities) acctcon (1M)

NAME

acctcon, acctconl, acctcon2 - connect-time accounting

SYNOPSIS

/usr/lib/acct/acctcon [options]
/usr/lib/acct/acctconl [options]

/usr/lib/acct/acctcon?2

DESCRIPTION

acctcon converts a sequence of login/logoff records to total accounting records
(see the tacct format in acct (4)). login/logoff records are read from standard
input. The file /var/adm/wtmp is usually the source of the login/logoff records,
however, because it may contain corrupted records or system date changes, it
should first be fixed using wtmpfix. The fixed version of file /var/adm/wtmp can
then be redirected to acctcon. The tacct records are written to standard output.
Here are the options for acctcon:

-1file file is created to contain a summary of line usage showing line name,
number of minutes used, percentage of total elapsed time used, number of
sessions charged, number of logins, and number of logoffs. This file helps
track line usage, identify bad lines, and find software and hardware oddi-
ties. Hangup, termination of login(l) and termination of the login shell
each generate logoff records, so that the number of logoffs is often three to
four times the number of sessions. See init(1M) and utmp(4).

-ofile file is filled with an overall record for the accounting period, giving start-
ing time, ending time, number of reboots, and number of date changes.

acctcon is a combination of the programs acctconl and acctcon2. acctconl
converts login/logoff records, taken from the fixed /var/adm/wtmp file, to ASCII
output. acctcon2 reads the ASCII records produced by acctconl and converts
them to tacct records. acctconl can be used with the -1 and -o options, described
above, as well as with the following options:

-p Print input only, showing line name, login name, and time (in both
numeric and date/time formats).

-t acctconl maintains a list of lines on which users are logged in. When it
reaches the end of its input, it emits a session record for each line that still
appears to be active. It normally assumes that its input is a current file, so
that it uses the current time as the ending time for each session still in pro-
gress. The -t flag causes it to use, instead, the last time found in its input,
thus assuring reasonable and repeatable numbers for non-current files.

EXAMPLES

10/92

The acctcon command is typically used as follows:
acctcon -1 lineuse -o reboots < tmpwtmp > ctacct
The acctconl and acctcon2 commands are typically used as follows:

acctconl -1 lineuse -0 reboots < tmpwtmp | sort +1n +2 > ctmp
acctcon2 < ctmp > ctacct

Page 1

acctcon (1M) (Accounting Utilities) acctcon (1M)

FILES
/var/adm/wtmp

SEE ALSO
acct(1M), acctems(IM), acctcom(l), acctmerg(1M), acctprc(1M), acctsh(1M),
fwtmp(1M), init(IM), runacct(1M), login(1), acct(2), acct(4), utmp(4).

NOTES

The line usage report is confused by date changes. Use wtmpfix (see fwtmp(1M)),
with the /var/adm/wtmp file as an argument, to correct this situation.

Page 2 10/92

acctdisk (1M) acctdisk (1M)

NAME

acctdisk, acctdusg, accton, acctwtmp - overview of accounting and miscellane-
ous accounting commands

SYNOPSIS

/usr/lib/acct/acctdisk
/usr/lib/acct/acctdusg [-ufile] [-p file]
/usr/lib/acct/accton [file]
/usr/lib/acct/acctwtmp reason
/usr/lib/acct/closewtmp
/usr/lib/acct/utmp2wtmp

DESCRIPTION

10/92

Accounting software is structured as a set of tools (consisting of both C programs
and shell procedures) that can be used to build accounting systems. acctsh(1M)
describes the set of shell procedures built on top of the C programs.

Connect time accounting is handled by various programs that write records into
/var/adm/utmp, as described in utmp(4). The programs described in acctcon(1M)
convert this file into session and charging records, which are then summarized by
acctmerg(1M).

Process accounting is performed by the system kernel. Upon termination of a pro-
cess, one record per process is written to a file (normally /var/adm/pacct). The
programs in acctprc(lM) summarize this data for charging purposes;
acctcms(1M) is used to summarize command usage. Current process data may be
examined using acctcom(1).

Process accounting and connect time accounting (or any accounting records in the
tacct format described in acct(4)) can be merged and summarized into total
accounting records by acctmerg [see tacct format in acct(4)]. prtacct [see
acctsh(1IM)] is used to format any or all accounting records.

acctdisk reads lines that contain user ID, login name, and number of disk blocks
and converts them to total accounting records that can be merged with other
accounting records.

acctdusg reads its standard input (usually from find / -print) and computes
disk resource consumption (including indirect blocks) by login. If -u is given,
records consisting of those filenames for which acctdusg charges no one are placed
in file (a potential source for finding users trying to avoid disk charges). If -p is
given, file is the name of the password file. This option is not needed if the pass-
word file is /etc/passwd. [See diskusg(1M) for more details.]

accton alone turns process accounting off. If file is given, it must be the name of an
existing file, to which the kernel appends process accounting records [see acct(2)
and acct(4)].

acctwtmp writes a utmp(4) record to its standard output. The record contains the
current time and a string of characters that describe the reason. A record type of
ACCOUNTING is assigned [see utmp(4)]. reason must be a string of 11 or fewer char-
acters, numbers, $, or spaces. For example, the following are suggestions for use in
reboot and shutdown procedures, respectively:

Page 1

acctdisk (1M) acctdisk (1M)

acctwtmp acctgon >> /var/adm/wtmp
acctwtmp "file acctgoff" >> /var/adm/wtmp

For each user currently logged on, closewtmp puts a false DEAD_PROCESS record in
the /var/adm/wtnp file. runacct [see runacct (1M)] uses this false DEAD_PROCESS
record so that the connect accounting procedures can track the time used by users
logged on before runacct was invoked.

For each user currently logged on, runacct uses utmp2wtmp to create an entry in
the file /var/adm/wtmp, created by runacct. Entries in /var/adm/wtmp enable
subsequent invocations of runacct to account for connect times of users currently
logged in.

FILES
/var/adm/passwdused for login name to user ID conversions
/usr/lib/acct holds all accounting commands listed in section 1M
/var/adm/pacct current process accounting file
/var/adm/wtmp login/logoff history file

SEE ALSO
acctcms(1M), acctcom(l), acctcon(1M), acctmerg(lM), acctprc(1M),
acctsh(1M), diskusg(1M), fwtmp(1M), runacct(1M), acct(2), acct(4), utmp(4).

Page 2 10/92

acctmerg (1M) (Job Accounting Utilities) acctmerg (1M)

NAME

acctmerg - merge or add total accounting files

SYNOPSIS

/usr/lib/acct/acctmerg [-a] [-1] [-p] [-t] [-u] [-V] [file] . ..

DESCRIPTION
acctmerg reads its standard input and up to nine additional files, all in the tacct
format (see acct(4)) or an ASCII version thereof. It merges these inputs by adding
records whose keys (normally user ID and name) are identical, and expects the
inputs to be sorted on those keys. Options are:

-a
-i
-p
-t
-u
-V

EXAMPLES

Produce output in ASCII version of tacct.

Input files are in ASCII version of tacct.

Print input with no processing.

Produce a single record that totals all input.

Summarize by user ID, rather than user ID and name.

Produce output in verbose ASCII format, with more precise notation for
floating-point numbers.

The following sequence is useful for making "repairs" to any file kept in this format:

acctmerg -v <filel > file2

Edit file2 as desired ...

SEE ALSO

acctmerg -i <file2 > filel

acct(1M), acctcms(1M), acctcom(l), acctcon(IM), acctprc(IM), acctsh(IM),
fwtmp(1M), runacct(1M), acct(2), acct(4), utmp(4).

10/92

Page 1

acctprc (1M) (Job Accounting Utilities) acctprc(1M)

NAME
acctprc, acctprcl, acctpre2 - process accounting

SYNOPSIS
/usr/lib/acct/acctprc
/usr/lib/acct/acctprcl [ctmp]
/usr/lib/acct/acctprc2

DESCRIPTION

acctprc reads standard input, in the form described by acct (4), and converts it to
total accounting records (see the tacct record in acct (4)). acctprc divides CPU
time into prime time and non-prime time and determines mean memory size (in
memory segment units). acctprc then summarizes the tacct records, according
to user IDs, and adds login names corresponding to the user IDs. The summarized
records are then written to standard output. acctprcl reads input in the form
described by acct(4), adds login names corresponding to user IDs, then writes for
each process an ASCII line giving user ID, login name, prime CPU time (tics), non-
prime CPU time (tics), and mean memory size (in memory segment units). If ctmp is
given, it is expected to contain a list of login sessions sorted by user ID and login
name. If this file is not supplied, it obtains login names from the password file, just
as acctprc does. The information in ctmp helps it distinguish between different
login names sharing the same user ID.

From standard input, acctprc2 reads records in the form written by acctprcl,
summarizes them according to user ID and name, then writes the sorted summaries
to the standard output as total accounting records.

EXAMPLES
The acctprc command is typically used as shown below:

acctprc < /var/adm/pacct > ptacct
The acctprcl and acctprc2 commands are typically used as shown below:
acctprcl ctmp </var/adm/pacct | acctprc2 >ptacct

FILES
/etc/passwd

SEE ALSO
acct(1M), acctems(1M), acctcom(l), acctcon(1M), acctmerg(lM), acctsh(1M),
cron(1M), fwtmp(1M), runacct(IM), acct(2), acct(4), utmp(4).

NOTES
Although it is possible for acctprcl to distinguish among login names that share
user IDs for commands run normally, it is difficult to do this for those commands
run from cron(1M), for example. A more precise conversion can be done using the
acctwtmp program in acct(1M). acctprc does not distinguish between users with
identical user IDs.

A memory segment of the mean memory size is a unit of measure for the number of
bytes in a logical memory segment on a particular processor.

10/92 Page 1

acctsh(1M) acctsh (1M)

NAME

acctsh: chargefee, ckpacct, dodisk, lastlogin, monacct, nulladm, prctmp,
prdaily, prtacct, runacct, shutacct, startup, turnacct - shell procedures for
accounting

SYNOPSIS

/usr/lib/acct/chargefee login-name number
/usr/lib/acct/ckpacct [blocks]
/usr/lib/acct/dodisk [-0] [files ...]
/usr/lib/acct/lastlogin
/usr/lib/acct/monacct number
/usr/lib/acct/nulladmfile
/usr/lib/acct/prctmp
/usr/lib/acct/prdaily [-1] [-c] [mmdd]
/usr/lib/acct/prtacct file ["heading"]
/usr/lib/acct/runacct [mmdd] [mmdd state)
/usr/lib/acct/shutacct ["reason" |
/usr/lib/acct/startup

/usr/lib/acct/turnacct on | off | switch

DESCRIPTION

10/92

chargefee can be invoked to charge a number of units to login-name. A record is
written to /var/adm/fee, to be merged with other accounting records by runacct.

ckpacct should be initiated via cron(1M) to periodically check the size of
/var/adm/pacct. If the size exceeds blocks, 1000 by default, turnacct will be
invoked with argument switch. If the number of free disk blocks in the /var file
system falls below 500, ckpacct will automatically turn off the collection of process
accounting records via the off argument to turnacct. When at least 500 blocks are
restored, the accounting will be activated again on the next invocation of ckpacct.
This feature is sensitive to the frequency at which ckpacct is executed, usually by
cron.

dodisk should be invoked by cron to perform the disk accounting functions. By
default, it will use diskusg (see diskusg (1M)) to do disk accounting on the S5 file
system in /etc/vistab. If the -o flag is used, it will use acctdusg (see acct (1M))
to do a slower version of disk accounting by login directory. files specifies the one
or more filesystem names where disk accounting will be done. If files are used, disk
accounting will be done on these filesystems only. If the -o flag is used, files should
be mount points of mounted filesystems. If the -o option is omitted, files should be
the special file names of mountable filesystems.

lastlogin is invoked by runacct to update /var/adm/acct/sum/loginlog,
which shows the last date on which each person logged in.

monacct should be invoked once each month or each accounting period. number
indicates which month or period it is. If number is not given, it defaults to the
current month (01-12). This default is useful if monacct is to executed via
cron(IM) on the first day of each month. monacct creates summary files in

Page 1

acctsh (1M) acctsh (1M)

FILES

Page 2

/var/adm/acct/fiscal and restarts the summary files in /var/adm/acct/sum.

nulladm creates file with mode 664 and ensures that owner and group are adm. It is
called by various accounting shell procedures.

prctmp can be used to print the session record file (normally
/var/adm/acct/nite/ctmp created by acctconl (see acctcon (1M)).

prdaily is invoked by runacct to format a report of the previous day’s accounting
data. The report resides in /var/adm/acct/sum/rprt/mmdd where mmdd is the
month and day of the report. The current daily accounting reports may be printed
by typing prdaily. Previous days’ accounting reports can be printed by using the
mmdd option and specifying the exact report date desired. The -1 flag prints a
report of exceptional usage by login id for the specified date. Previous daily reports
are cleaned up and therefore inaccessible after each invocation of monacct. The -c
flag prints a report of exceptional resource usage by command, and may be used on
current day’s accounting data only.

prtacct can be used to format and print any total accounting (tacct) file.

runacct performs the accumulation of connect, process, fee, and disk accounting
on a daily basis. It also creates summaries of command usage. For more informa-
tion, see runacct(1M).

shutacct is invoked during a system shutdown to turn process accounting off and
append a "reason" record to /var/adm/wtmp.

startup can be invoked when the system is brought to a multi-user state to turn
process accounting on.

turnacct is an interface to accton (see acct(1M)) to turn process accounting on or
off. The switch argument moves the current /var/adm/pacct to the next free
name in /var/adm/pacctincr (where incr is a number starting with 1 and incre-
menting by one for each additional pacct file), then turns accounting back on
again. This procedure is called by ckpacct and thus can be taken care of by the
cron and used to keep pacct to a reasonable size. shutacct uses turnacct to
stop process accounting. startup uses turnacct to start process accounting.

/var/adm/fee accumulator for fees

/var/adm/pacct current file for per-process accounting

/var/adm/pacctincr used if pacct gets large and during execution of
daily accounting procedure

/var/adm/wtmp login/logoff summary

/usr/lib/acct/ptelus.awk contains the limits for exceptional usage by login
D

/usr/lib/acct/ptecms.awk contains the limits for exceptional usage by com-
mand name

/var/adm/acct/nite working directory

/usr/lib/acct holds all accounting commands listed in section

1M of this manual

10/92

acctsh (1M) acctsh(1M)

/var/adm/acct/sum summary directory contains information for
monacct
var/adm/acct/fiscal fiscal reports directory
SEE ALSO

acct(1M), acctems(IM), acctcom(l), acctcon(IM), acctmerg(1M), acctprc(1M),
cron(1M), diskusg(1M), fwtmp(1M), runacct(IM), acct(2). acct(4), utmp(4)

10/92 Page 3

addbib (1) (BSD Compatibility Package) addbib (1)

NAME

addbib - create or extend a bibliographic database

SYNOPSIS

/usr/ucb/addbib [-a] [-p promptfile | database

DESCRIPTION

USAGE

When addbib starts up, answering y to the initial Instructions? prompt yields
directions; typing n or RETURN skips them. addbib then prompts for various
bibliographic fields, reads responses from the terminal, and sends output records to
database. A null response (RETURN) means to leave out that field. A ‘-’ (minus
sign) means to go back to the previous field. A trailing backslash allows a field to
be continued on the next line. The repeating Continue? prompt allows the user
either to resume by typing y or RETURN, to quit the current session by typing n or
a, or to edit database with any system editor (vi, ex, ed).

The following options are available:

-a Suppress prompting for an abstract; asking for an abstract is the default.
Abstracts are ended with a CTRL-D.

-p promptfile
Use a new prompting skeleton, defined in promptfile. This file should con-
tain prompt strings, a TAB, and the key-letters to be written to the database.

Bibliography Key Letters

10/92

The most common key-letters and their meanings are given below. addbib insu-
lates you from these key-letters, since it gives you prompts in English, but if you
edit the bibliography file later on, you will need to know this information.

Author’s name

oo
W >

Book containing article referenced

(@]

City (place of publication)

]

Date of publication

t

Editor of book containing article referenced

es|

Footnote number or label (supplied by refer(1))

Government order number

jast

Header commentary, printed before reference

H

Issuer (publisher)

@l

Journal containing article

~

Keywords to use in locating reference
Label field used by -k option of refer(1)

o0 % o0 P oP E_‘(; o0 0P o° oP o°

=

M Bell Labs Memorandum (undefined)
SN Number within volume
%0 Other commentary, printed at end of reference

Page 1

addbib (1) (BSD Compatibility Package) addbib (1)

%P Page number(s)

%Q Corporate or Foreign Author (unreversed)
%R Report, paper, or thesis (unpublished)

$S Series title

$T Title of article or book

Vv Volume number

$X Abstract — used by roffbib, not by refer
%Y,z Ignored by refer

SEE ALSO
ed(1), ex(1), indxbib(1), lookbib(1l), refer(l), roffbib(1), sortbib(1), vi(1).

Page 2 10/92

admin(1) (Source Code Control System Utilities) admin(1)

NAME
admin - create and administer SCCS files
SYNOPSIS
admin [-n] [-i[name]] [-zrel] [-t[name]] [-£flaglflag-val]] [-dflaglflag-val]] [-alogin]
[-elogin] [-m[mrlist]] [-y[comment]] [-h] [-z] files
DESCRIPTION

admin is used to create new SCCS files and change parameters of existing ones.
Arguments to admin, which may appear in any order, consist of keyletter argu-
ments (that begin with -) and named files (note that SCCS filenames must begin
with the characters s.). If a named file does not exist, it is created and its parame-
ters are initialized according to the specified keyletter arguments. Parameters not
initialized by a keyletter argument are assigned a default value. If a named file
does exist, parameters corresponding to specified keyletter arguments are changed,
and other parameters are left unchanged.
If a directory is named, admin behaves as though each file in the directory were
specified as a named file, except that non-SCCS files (last component of the path
name does not begin with s.) and unreadable files are silently ignored. If a name
of - is given, the standard input is read; each line of the standard input is taken to
be the name of an SCCS file to be processed. Again, non-SCCS files and unreadable
files are silently ignored.

The keyletter arguments are listed below. Each argument is explained as if only

one named file were to be processed because the effect of each argument applies

independently to each named file.

-n This keyletter indicates that a new SCCS file is to be created.

-i[name] The name of a file from which the text for a new SCCS file is to be taken.
The text constitutes the first delta of the file (see -r keyletter for delta
numbering scheme). If the -i keyletter is used, but the filename is
omitted, the text is obtained by reading the standard input until an
end-of-file is encountered. If this keyletter is omitted, the SCCS file is
created empty. Only one SCCS file may be created by an admin com-
mand on which the i keyletter is supplied. Using a single admin to
create two or more SCCS files requires that they be created empty (no
-i keyletter). Note that the -i keyletter implies the -n keyletter.
Characters from supplementary code sets can be used for the name of
the file from which the text is to be taken. The file may also include
characters from supplementary code sets.

-rrel The rel (release) into which the initial delta is inserted. This keyletter
may be used only if the -1i keyletter is also used. If the -r keyletter is
not used, the initial delta is inserted into release 1. The level of the ini-
tial delta is always 1 (by default, initial deltas are named 1.1).

-t[name] The name of a file from which descriptive text for the SCCS file is to be
taken. If the -t keyletter is used and admin is creating a new SCCS file
(the -n and/or -1 keyletters also used), the descriptive text filename
must also be supplied. In the case of existing SCCS files: (1) a -t
keyletter without a filename causes removal of the descriptive text (if
any) that is currently in the SCCS file, and (2) a -t keyletter with a
filename causes text (if any) in the named file to replace the descriptive

10/92 Page 1

admin (1) (Source Code Control System Utilities) admin(1)

text (if any) that is currently in the SCCS file. Characters from supple-
mentary code sets can be used for the name of the file from which the
text is to be taken. The file may also include characters from supple-
mentary code sets.

-fflag This keyletter specifies a flag, and, possibly, a value for the flag, to be
placed in the SCCS file. Several -f keyletters may be supplied on a sin-
gle admin command line. The allowable flags and their values are:

b

cceil

tfloor

dsiD

i[str]

1list

Page 2

Allows use of the -b keyletter on a get command to create
branch deltas.

The highest release (that is, ceiling): a number greater than
0 but less than or equal to 9999 that may be retrieved by a
get command for editing. The default value for an
unspecified c flag is 9999.

The lowest release (that is, floor): a number greater than 0
but less than 9999 that may be retrieved by a get command
for editing. The default value for an unspecified f flag is 1.

The default delta number (SID) to be used by a get com-
mand.

Causes the No id keywords (ge6) message issued by get
or delta to be treated as a fatal error. In the absence of this
flag, the message is only a warning. The message is issued if
no SCCS identification keywords [see get(1)] are found in
the text retrieved or stored in the SCCS file. If a value is sup-
plied, the keywords must exactly match the given string.
The string must contain a keyword, and no embedded new-
lines.

Allows concurrent get commands for editing on the same
SID of an SCCS file. This flag allows multiple concurrent
updates to the same version of the SCCS file.

A list of releases to which deltas can no longer be made (get
-e against one of these "locked" releases fails). The list has
the following syntax:

<list> ::= <range> | <list> , <range>
<range> ::= RELEASE NUMBER | a

The character a in the list is equivalent to specifying all
releases for the named SCCS file.

Causes delta to create a null delta in each of those releases
(if any) being skipped when a delta is made in a new release
(for example, in making delta 5.1 after delta 2.7, releases 3
and 4 are skipped). These null deltas serve as anchor points
so that branch deltas may later be created from them. The
absence of this flag causes skipped releases to be non-
existent in the SCCS file, preventing branch deltas from
being created from them in the future.

10/92

admin(1)

10/92

-dflag

-alogin

-elogin

-m[mrlist]

(Source Code Control System Utilities) admin(1)

qtext User-definable text substituted for all occurrences of the $0%
keyword in SCCS file text retrieved by get. Characters from
supplementary code sets can be used for the substitution
text text.

mmod mod (module) name of the SCCS file substituted for all
occurrences of the $M% keyword in SCCS file text retrieved
by get. If the m flag is not specified, the value assigned is
the name of the SCCS file with the leading s. removed.
Characters from supplementary code sets can be used for
the module name mod.

ttype type of module in the SCCS file substituted for all
occurrences of $Y% keyword in SCCS file text retrieved by
get.

vlpgm] Causes delta to prompt for Modification Request (MR)
numbers as the reason for creating a delta. The optional
value specifies the name of an MR number validity checking
program [see delta(l)]. This program will receive as argu-
ments the module name, the value of the type flag (see tfype
above), and the mrlist. (If this flag is set when creating an
SCCs file, the m keyletter must also be used even if its value
is null).

Causes removal (deletion) of the specified flag from an SCCS file. The
-d keyletter may be specified only when processing existing SCCS files.
Several -d keyletters may be supplied in a single admin command. See
the - f keyletter for allowable flag names.

(1list used with -d indicates a list of releases to be unlocked. See the
-f keyletter for a description of the 1 flag and the syntax of a list.)

A login name, or numerical UNIX System group ID, to be added to the
list of users who may make deltas (changes) to the SCCS file. A group
ID is equivalent to specifying all login names common to that group ID.
Several a keyletters may be used on a single admin command line. As
many logins or numerical group IDs as desired may be on the list
simultaneously. If the list of users is empty, anyone may add deltas. If
login or group ID is preceded by a ! they are to be denied permission
to make deltas.

A login name, or numerical group ID, to be erased from the list of users
allowed to make deltas (changes) to the SCCS file. Specifying a group
ID is equivalent to specifying all 1login names common to that group
ID. Several -e keyletters may be used on a single admin command line.

The list of Modification Request (MR) numbers is inserted into the SCCS
file as the reason for creating the initial delta in a manner identical to
delta. The v flag must be set and the MR numbers are validated if the
v flag has a value (the name of an MR number validation program).
Diagnostics will occur if the v flag is not set or MR validation fails.

Page 3

admin (1) (Source Code Control System Utilities) admin (1)

-y[comment]
The comment text is inserted into the SCCS file as a comment for the ini-
tial delta in a manner identical to that of delta. Omission of the -y
keyletter results in a default comment line being inserted.

The -y keyletter is valid only if the -i and/or -n keyletters are
specified (that is, a new SCCS file is being created). The comment text
including characters from supplementary code sets can be inserted into
the SCCS file as a comment.

-h Causes admin to check the structure of the SCCS file [see sccsfile(4)],
and to compare a newly computed check-sum (the sum of all the char-
acters in the SCCS file except those in the first line) with the check-sum
that is stored in the first line of the SCCS file. Appropriate error diag-
nostics are produced. This keyletter inhibits writing to the file, nullify-
ing the effect of any other keyletters supplied; therefore, it is only
meaningful when processing existing files.

-z The SCCS file check-sum is recomputed and stored in the first line of
the SCCS file (see -h, above). Note that use of this keyletter on a truly
corrupted file may prevent future detection of the corruption.

The last component of all SCCS filenames must be of the form s. file. New SCCS files
are given mode 444 [see chmod(1l)]. Write permission in the pertinent directory is,
of course, required to create a file. All writing done by admin is to a temporary x-
file, called x.file, [see get(1)], created with mode 444 if the admin command is
creating a new SCCS file, or with the same mode as the SCCS file if it exists. After
successful execution of admin, the SCCS file is removed (if it exists), and the x-file is
renamed with the name of the SCCS file. This renaming process ensures that
changes are made to the SCCS file only if no errors occurred.

It is recommended that directories containing SCCS files be mode 755 and that SCCS
files themselves be mode 444. The mode of the directories allows only the owner to
modify SCCS files contained in the directories. The mode of the SCCS files prevents
any modification at all except by SCCS commands.

admin also makes use of a transient lock file (called z.file), which is used to prevent
simultaneous updates to the SCCS file by different users. See get(1) for further

information.
FILES
x-file see delta(l)
z-file see delta(l)
bdiff program to compute differences between the “gotten’ file and

the g-file [see get(1)]

INTERNATIONAL FUNCTIONS
Characters from supplementary code sets can be used for SCCS filenames, files.
However, they must begin with the s. ASCII characters. SCCS files may also
include characters from supplementary code sets.

SEE ALSO
bdiff(1), delta(l), ed(1), get(1), help(1), prs(l), what(l), sccsfile(4).

Page 4 10/92

admin (1) (Source Code Control System Utilities) admin (1)

DIAGNOSTICS

NOTES

10/92

Use the help command for explanations.

If it is necessary to patch an SCCS file for any reason, the mode may be changed to
644 by the owner allowing use of a text editor. You must run admin -h on the
edited file to check for corruption followed by an admin -z to generate a proper
check-sum. Another admin -h is recommended to ensure the SCCS file is valid.

Page 5

alpq(1) alpq(1)

NAME
alpq - query the ALP STREAMS module
SYNOPSIS
alpg
DESCRIPTION
The alpg command takes no arguments or options. It presents, on its standard
output, a list of the functions currently registered with the alp STREAMS module.

Information on building and using these functions is contained in the manual entry
alp(7).

The output list contains entries like the following:

1 Ucase (Upper to lower case converter)

The first field is a sequence number. The second field is the function’s name (by
which it may be accessed), and the third field is the function’s explanation string,
enclosed in parentheses.

CAVEATS
The alpg command works by pushing the alp STREAMS module querying it via
ioct1(2) and then popping it immediately; its standard input (normally the user’s
tty) must thus be a STREAM.

SEE ALSO
kbdcomp(1M), kbdload(1M), alp(7), kbd(7).

10/92 Page 1

apropos (1) (BSD Compatibility Package) apropos (1)

NAME
apropos - locate commands by keyword lookup

SYNOPSIS
/usr/ucb/apropos keyword . . .

DESCRIPTION
apropos shows which manual sections contain instances of any of the given key-
words in their title. Each word is considered separately and the case of letters is
ignored. Words which are part of other words are considered; thus, when looking
for ‘compile’, apropos will find all instances of ‘compiler’ also.

Try
apropos password
and
apropos editor
If the line starts ‘filename(section) ... you can do ‘man section filename to get the

documentation for it. Try
apropos format
and then
man 3s printf
to get the manual page on the subroutine printf.
apropos is actually just the -k option to the man(1) command.

FILES
/usr/share/man/whatis data base

SEE ALSO
man(1), whatis(1), catman(1M)

10/92 Page 1

ar(1) (Directory and File Management Utilities) ar(1)

NAME

ar - maintain portable archive or library
SYNOPSIS

ar [-V] - key [arg][posname] afile [name. ..]
DESCRIPTION

The ar command maintains groups of files combined into a single archive file. Its
main use is to create and update library files. However, it can be used for any simi-
lar purpose. The magic string and the file headers used by ar consist of printable
ASCII characters. If an archive is composed of printable files, the entire archive is
printable.

When ar creates an archive, it creates headers in a format that is portable across all
machines. The portable archive format and structure are described in detail in
ar(4). The archive symbol table [described in ar(4)] is used by the link editor 14 to
effect multiple passes over libraries of object files in an efficient manner. An archive
symbol table is only created and maintained by ar when there is at least one object
file in the archive. The archive symbol table is in a specially named file that is
always the first file in the archive. This file is never mentioned or accessible to the
user. Whenever the ar command is used to create or update the contents of such
an archive, the symbol table is rebuilt. The s option described below will force the
symbol table to be rebuilt.

The -V option causes ar to print its version number on standard error.

Unlike command options, the key is a required part of the ar command line. The
key is formed with one of the following letters: drgtpmx. Arguments to the key,
alternatively, are made with one of more of the following set: vuaibcls. posname
is an archive member name used as a reference point in positioning other files in the
archive. dfile is the archive file. The names are constituent files in the archive file.
The meanings of the key characters are as follows:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional character u is
used with r, then only those files with dates of modification later than the
archive files are replaced. If an optional positioning character from the set
abi is used, then the posname argument must be present and specifies that
new files are to be placed after (a) or before (b or i) posname. Otherwise
new files are placed at the end.

a Quickly append the named files to the end of the archive file. Optional
positioning characters are invalid. The command does not check whether
the added members are already in the archive. This option is useful to
avoid quadratic behavior when creating a large archive piece-by-piece.

t Print a table of contents of the archive file. If no names are given, all files in
the archive are listed. If names are given, only those files are listed.

o) Print the named files in the archive.

m Move the named files to the end of the archive. If a positioning character is

present, then the posname argument must be present and, as in r, specifies
where the files are to be moved.

10/92 Page 1

ar(1)

X

(Directory and File Management Utilities) ar(1)

Extract the named files. If no names are given, all files in the archive are
extracted. In neither case does x alter the archive file.

The meanings of the other key arguments are as follows:

4

SEE ALSO

Give a verbose file-by-file description of the making of a new archive file
from the old archive and the constituent files. When used with t, give a
long listing of all information about the files. When used with x, print the
filename preceding each extraction.

Suppress the message that is produced by default when afile is created.

This option is obsolete. It is recognized, but ignored, and will be removed
in the next release.

Force the regeneration of the archive symbol table even if ar(l) is not
invoked with a command which will modify the archive contents. This
command is useful to restore the archive symbol table after the strip(1)
command has been used on the archive.

1d4(1), lorder(1), strip(1), a.out(4), ar(4)

NOTES

If the same file is mentioned twice in an argument list, it may be put in the archive

twice.

Since the archiver no longer uses temporary files, the -1 option is obsolete and will
be removed in the next release.

By convention, archives are suffixed with the characters . a.

Page 2

10/92

arch(1) (BSD Compatibility Package) arch (1)

NAME
arch - display the architecture of the current host

SYNOPSIS
/usr/ucb/arch

DESCRIPTION
The arch command displays the architecture of the current host system.

SEE ALSO
mach(1), uname(1).

10/92 Page 1

arp(1M) (TCP/IP) arp(1M)

NAME
arp - address resolution display and control

SYNOPSIS
arp hostname

arp -a[unix [kmem]]

arp -d hostname

arp -s hostname ether_address [temp] [pub][trail]
arp -f filename

DESCRIPTION
The arp program displays and modifies the Internet-to-Ethernet address transla-
tion tables used by the address resolution protocol [arp(7)].

With no flags, the program displays the current ARP entry for hostname. The host
may be specified by name or by number, using Internet dot notation.

The following options are available:

-a Display all of the current ARP entries by reading the table from the file kmem
(default /dev/kmem) based on the kernel file unix (default /stand/unix).

-d Delete an entry for the host called hostname. This option may only be used
by the super-user.

-s Create an ARP entry for the host called hostname with the Ethernet address
ether_address. The Ethernet address is given as six hexadecimal bytes
separated by colons. The entry will be permanent unless the word temp is
given in the command. If the word pub is given, the entry will be pub-
lished, for instance, this system will respond to ARP requests for hostname
even though the hostname is not its own. The word trail indicates that
trailer encapsulations may be sent to this host.

-f Read the file named filename and set multiple entries in the ARP tables.
Entries in the file should be of the form

hostname ether_address [temp] [pub][trail]

with argument meanings as given above.

SEE ALSO
ifconfig(1M), arp(7)

10/92 Page 1

as(1) (C Development Set) as(1)

NAME

as - assembler
SYNOPSIS

as [options] file
DESCRIPTION

The as command creates object files from assembly language source files. The

following flags may be specified in any order:

-o obffile Put the output of the assembly in objfile. By default, the output file
name is formed by removing the .s suffix, if there is one, from the
input file name and appending a . o suffix.

-n Turn off long/short address optimization. By default, address optim-
ization takes place.

-m Run the m4 macro processor on the input to the assembler.

-R Remove (unlink) the input file after assembly is completed.

-dl Obsolete. Assembler issues a warning saying that it is ignoring the
-dl option.

-T Accept obsolete assembler directives.

-V Write the version number of the assembler being run on the standard
error output.

-0y I n} If -Qy is specified, place the version number of the assembler being
run in the object file. The default is -Qn.

-Y [md],dir Find the m4 preprocessor (m) and/or the file of predefined macros (d)
in directory dir instead of in the customary place.

FILES

By default, as creates its temporary files in /var/tmp. This location can be changed
by setting the environment variable TMPDIR [see tempnam in tmpnam(35)].

SEE ALSO
cc(1), 1a(1), m4(1), nm(1), strip(l), tmpnam(3S), a.out(4)

NOTES
If the -m (m4 macro processor invocation) option is used, keywords for m4 [see
m4(1)] cannot be used as symbols (variables, functions, labels) in the input file since
m4 cannot determine which keywords are assembler symbols and which keywords
are real m4 macros.

The .align assembler directive may not work in the .text section when
long/short address optimization is performed.

Arithmetic expressions may only have one forward referenced symbol per expres-
sion.

Whenever possible, you should access the assembler through a compilation system
interface program such as cc.

10/92 Page 1

ascii (5)

NAME

FILES

10/92

ascii - map of ASCII character set
DESCRIPTION

ascii(5)

ascii is a map of the ASCII character set, giving both octal and hexadecimal
equivalents of each character, to be printed as needed. It contains:

stx 1003 etx 1004

| 000 nul |001
/010 bs 011
| 020 dle |021
[030 can |031
[040 sp 1041
[050 (| 051
|060 0 | 061
[070 8 [071
[100 @ 1101
[110 H |111
|120 P [121
1130 X [131
| 140 | 141
[150 h | 151
1160 p |161
[170 x | 171
| 00 nul | 01
| 08 bs | 09
[10 dle | 11
| 18 can | 19
[20 sp | 21
| 28 (| 29
| 30 0 | 31
| 38 8 | 39
| 40 @ | 41
| 48 H | 49
| 50 P | 51
| 58X | 59
| 60 | 61
| 68 h | 69
| 70 p [71
| 78 x | 79
/usr/pub/ascii

soh | 002
ht (012
dcl |022
em [032
| 042
| 052
| 062
1072
| 102
| 112
1122
| 132
| 142
[152
| 162
| 172

KQ R <O H P 0 —

02
Oa
12
la
22

|
|
|
|
|
|
| 32
| 3a
| 42
| 4da
| 52
| 5a
| 62
| 6a
| 72
| 7a

KQ P99 <O H»WRE—

nl
dc2
sub

n

*

2

NRUDNDGW -

stx

dc2
sub

2a *

[\

N RRUONXTGW:-

1013
1023
1033
| 043
053
1063
1073
1103
113
[123
[133
143
[153
1163
1173

| 03
| 0b
| 13
I 1b
| 23
| 2b
[33
| 3b
I 43
| 4b
| 53
| 5b
| 63
| 6b
[73
I 7b

vt
dc3
esc
#

w +

~n x0Q—0n=xQnO-

etx
vt

dc3
esc

H=

w +

~n x0Q—nNn=xAO-

1014
1024
1034
| 044
| 054
| 064
| 074
1104
1114
1124
134
144
| 154
1164
1174

| 04
| Oc
| 14
| 1c
| 24
| 2c
| 34
| 3c
| 44
| 4c
| 54
| 5¢
| 64
| 6¢C
| 74
| 7c

eot
np
dc4
fs
$

— P QO 3 EOA B

eot

83
=

—TP-HEOA RS Ol

1005
1015
1025
[035
| 045
| 055
| 065
075
105
1115
125
[135
| 145
[155
1165
| 175

[05
| 0d
| 15
| 1d
| 25
| 2d
I 35
I 3d
| 45
| 4d
| 55
| 5d
| 65
| 6d
I 75
| 74

eng
cr
nak

0]

~ e 30—l vl eQ

—~Cc 83 0—C=2O™I Ul °Q

1006
1016
| 026
1036
| 046
1056
| 066
1076
106
116
126
1136
1146
1156
1166
176

| 06
| Qe
| 16
| le
| 26
| 2e
| 36
| 3e
| 46
| de
| 56
| Se
| 66
| 6e
| 76
| 7e

ack 1007
so 017
syn | 027
rs 037

&

< Z ™V oo

1< B Hh

ack
so
syn
rs

> Z MV oo

1< B rh

| 047
| 057
1067
1077
1107
[117
1127
1137
1147
| 157
1167
1177

| 07
| Of
[17
| 1f
[27
| 2f
| 37
| 3f
| 47
| 4f
| 57
| 5f
| 67
| 6f
|77
| 7€

Page 1

bel
si
etb

SO Q@ v ~J~

s 0wQ|

N ONARUVEENENN

Q. 5 0@

at(1)

NAME

(User Environment Utilities) at(1)

at, batch - execute commands at a later time

SYNOPSIS

at [-f script] [-m] time [date] [+ increment]
at -1ljob ...]

at -rjob ...

batch

DESCRIPTION

10/92

at and batch read commands from standard input to be executed at a later time.
at allows you to specify when the commands should be executed, while jobs
queued with batch will execute when system load level permits. at may be used
with the following options:

-f script Reads commands to be executed from the named script file.

-1[job] Reports all jobs scheduled for the invoking user, or just the jobs
specified.

-m Sends muail to the user after the job has been completed, indicating that
the job is finished, even if the job produces no output. Mail is sent only
if the job has not already generated a mail message.

-r job Removes specified jobs previously scheduled using at.

Standard output and standard error output are mailed to the user unless they are
redirected elsewhere. The shell environment variables, current directory, umask,
and ulimit are retained when the commands are executed. Open file descriptors,
traps, and priority are lost.

Users are permitted to wuse at if their name appears in the file
/usr/sbin/cron.d/at.allow. If that file does not exist, the file
/usr/sbin/cron.d/at .deny is checked to determine if the user should be denied
access to at. If neither file exists, only root is allowed to submit a job. If only
at.deny exists and is empty, global usage is permitted. The allow/deny files con-
sist of one user name per line. These files can only be modified by the privileged
user.

If the DATEMSK environment variable is set, it points to a template file that at will
use to determine the valid time and date values instead of the values described
below. For more information about using DATEMSK, see the last paragraph of the
DESCRIPTION section.

time may be specified as follows, where /1 is hours and m is minutes: h, hh, hhmm,
h:m, h:mm, hh:m, hh:mm. A 24-hour clock is assumed, unless am or pm is appended
to time. If zulu is appended to time, it means Greenwich Mean Time (GMT). time
can also take on the values: noon, midnight, and now. at now responds with the
error message too late; use now with the increment argument, such as: at now +
1 minute.

An optional date may be specified as either a month name followed by a day
number (and possibly a year number preceded by a comma) or a day of the week.
(Both the month name and the day of the week may be spelled out or abbreviated
to three characters.) Two special “days”, today and tomorrow are recognized. If
no date is given, today is assumed if the given hour is greater than the current hour

Page 1

at(1)

(User Environment Utilities) at(1)

and tomorrow is assumed if it is less. If the given month is less than the current
month (and no year is given), next year is assumed.

The optional increment is simply a number suffixed by one of the following:
minutes, hours, days, weeks, months, or years. (The singular form is also
accepted.) The modifier next may precede the increment; it means “+ 1.”

Thus valid commands include:

at 081l5am Jan 24
at 8:15am Jan 24
at now + 1 day
at now next day
at 5 pm Friday

at and batch write the job number and schedule time to standard error.

at -r removes jobs previously scheduled by at or batch. The job number is the
number returned to you previously by the at or batch command. You can also get
job numbers by typing at -1. You can only remove your own jobs unless you are
the privileged user.

If the environment variable DATEMSK is set, at will use its value as the full path
name of a template file containing format strings. The strings consist of field
descriptors and text characters and are used to provide a richer set of allowable
date formats in different languages by appropriate settings of the environment vari-
able LANG or LC_TIME (see environ(5)). (See getdate(3C) for the allowable list of field
descriptors; this list is a subset of the descriptors allowed by calendar(l) that are
listed on the date(1) manual page.) The formats described above for the time and
date arguments, the special names noon, midnight, now, next, today, tomorrow,
and the increment argument are not recognized when DATEMSK is set.

EXAMPLES

Page 2

The at and batch commands read from standard input the commands to be exe-
cuted at a later time. sh(l) provides different ways of specifying standard input.
Within your commands, it may be useful to redirect standard output.

This sequence can be used at a terminal:

batch
sort filename > outfile
CTRL-d (hold down ‘control” and depress ‘d’)

This sequence, which shows redirecting standard error to a pipe, is useful in a shell
procedure (the sequence of output redirection specifications is significant):

batch <<!
sort filename 2>&1 > outfile | mail loginid
!

To have a job reschedule itself, invoke at from within the shell procedure, by
including code similar to the following within the shell file:

echo "sh shellfile" | at 1900 thursday next week

The following example shows the possible contents of a template file AT. TEMPL in
/var/tmp.

10/92

at(1) (User Environment Utilities) at(1)

%1 %p, the %est of %B of the year %Y run the following job
%I %p, the %end of %B of the year %Y run the following job
%I %p, the %erd of %B of the year %Y run the following job
%I %p, the %$eth of %B of the year %Y run the following job
%$d/%m/ %y
%H:%$M: %S
%1:%M%p

The following are examples of valid invocations if the environment variable
DATEMSK is set to /var/tmp/AT.TEMPL.

at 2 PM, the 3rd of July of the year 2000 run the following job

at 3/4/99
at 10:30:30
at 2:30PM
FILES
/usr/sbin/cron.d main cron directory
/usr/sbin/cron.d/at.allow list of allowed users
/usr/sbin/cron.d/at .deny list of denied users
/usr/sbin/cron.d/queuedefs scheduling information
/var/spool/cron/atjobs spool area
SEE ALSO

atg(l), atrm(1), calendar(l), cron(lIM), crontab(l), date(l), kill(1l), mail(l),
nice(1), ps(1), sh(1), sort(1), getdate(3C), environ(5).

DIAGNOSTICS
Complains about various syntax errors and times out of range.

10/92 Page 3

atq(1) (User Environment Utilities) atq(1)

NAME

atq - display the jobs queued to run at specified times
SYNOPSIS

atg[-c][-n]lusername...]

DESCRIPTION
atq displays the current user’s queue of jobs submitted with at to be run at a later
date. If invoked by the privileged user, atq will display all jobs in the queue.

If no options are given, the jobs are displayed in chronological order of execution.

When a privileged user invokes atqg without specifying username, the entire queue
is displayed; when a username is specified, only those jobs belonging to the named
user are displayed.

The atq command can be used with the following options:

-c Display the queued jobs in the order they were created (that is, the time that
the at command was given).

-n Display only the total number of jobs currently in the queue.

FILES
/var/spool/cron spool area

SEE ALSO
at(1), atrm(1), cron(1M).

10/92 Page 1

atrm(1) (User Environment Utilities) atrm(1)

NAME

atrm - remove jobs spooled by at or batch
SYNOPSIS

atrm[-afi]arg . ..
DESCRIPTION

atrm removes delayed-execution jobs that were created with the at(l) command,
but not yet executed. The list of these jobs and associated job numbers can be
displayed by using ata(1).

arg a user name or job-number. atrmremoves each job-number you specify, and/or

all jobs belonging to the user you specify, provided that you own the indicated
jobs.

Jobs belonging to other users can only be removed by the privileged user.
The atrm command can be used with the following options:

-a All. Remove all unexecuted jobs that were created by the current user. If
invoked by the privileged user, the entire queue will be flushed.
-f Force. All information regarding the removal of the specified jobs is
suppressed.
-i Interactive. atrm asks if a job should be removed. If you respond with ay,
the job will be removed.
FILES
/var/spool/cron spool area
SEE ALSO

at(1), ata(l), cron(1M).

10/92 Page 1

automount (1M) (NFS) automount (1M)

NAME

automount - automatically mount NFS file systems

SYNOPSIS

automount [-nTv] [-D name=value] [-M mount-directory]
[-t sub-options] [directory map [-mount-options]] ...

DESCRIPTION

10/92

automount is a daemon that automatically and transparently mounts an NFS file
system as needed. It monitors attempts to access directories that are associated
with an automount map, along with any directories or files that reside under them.
When a file is to be accessed, the daemon mounts the appropriate NFS file system.
You can assign a map to a directory using an entry in a direct automount map, or
by specifying an indirect map on the command line.

automount uses a map to locate an appropriate NFS file server, exported file sys-
tem, and mount options. It then mounts the file system in a temporary location,
and replaces the file system entry for the directory or subdirectory with a symbolic
link to the temporary location. If the file system is not accessed within an appropri-
ate interval (five minutes by default), the daemon unmounts the file system and
removes the symbolic link. If the indicated directory has not already been created,
the daemon creates it, and then removes it upon exiting.

Since the name-to-location binding is dynamic, updates to an automount map are
transparent to the user. This obviates the need to pre-mount shared file systems for
applications that have hard coded references to files.

If you specify the dummy directory /-, automount treats the map argument that
follows as the name of a direct map. In a direct map, each entry associates the full
pathname of a mount point with a remote file system to mount.

If the directory argument is a pathname, the map argument points to a file called
an indirect map. An indirect map contains a list of the subdirectories contained
within the indicated directory. With an indirect map, it is these subdirectories
that are mounted automatically. The map argument must be a full pathname.

The -mount-options argument, when supplied, is a comma-separated list of
mount (1M) options, preceded by a hyphen (-). If mount options are specified in the
indicated map, however, those in the map take precedence.

The following options are available:

-n Disable dynamic mounts. With this option, references through the auto-
mount daemon only succeed when the target file system has been previ-
ously mounted. This can be used to prevent NFS servers from cross-
mounting each other.

-T Trace. Expand each NFS call and display it on the standard output.
-v Verbose. Log status messages to the console.

-D name=value
Assign value to the indicated automount (environment) variable.

-M mount-directory
Mount temporary file systems in the named directory, instead of /tmp_mnt.

Page 1

automount (1M) (NFS) automount (1M)

-t sub-options
Specify sub-options as a comma-separated list that contains any combination
of the following:

1 duration
Specify a duration, in seconds, that a file system is to remain
mounted when not in use. The default is 5 minutes.

m interval
Specify an interval, in seconds, between attempts to mount a file sys-
tem. The default is 30 seconds.

w interval
Specify an interval, in seconds, between attempts to unmount file
systems that have exceeded their cached times. The default is 1
minute.

ENVIRONMENT
Environment variables can be used within an automount map. For instance, if
SHOME appeared within a map, automount would expand it to its current value for
the HOME variable.

If a reference needs to be protected from affixed characters, enclose the variable
name within braces.

USAGE
Direct/Indirect Map Entry Format
A simple map entry (mapping) takes the form:

directory [-mount-options | location . . .

where directory is the full pathname of the directory to mount when used in a
direct map, or the basename of a subdirectory in an indirect map. mount-options is a
comma-separated list of mount options, and location specifies a remote file system
from which the directory may be mounted. In the simple case, location takes the
form:

host : pathname

Multiple location fields can be specified, in which case automount sends multiple
mount requests; automount mounts the file system from the first host that replies to
the mount request. This request is first made to the local net or subnet. If there is
no response, any connected server may respond.

If location is specified in the form:
host : path : subdir

host is the name of the host from which to mount the file system, path is the path-
name of the directory to mount, and subdir, when supplied, is the name of a sub-
directory to which the symbolic link is made. This can be used to prevent duplicate
mounts when multiple directories in the same remote file system may be accessed.
With a map for /home such as:

able homeboy :/home/homeboy :able
baker homeboy : /home /homeboy : baker

Page 2 10/92

automount (1M) (NFS) automount (1M)

and a user attempting to access a file in /home/able, automount mounts
homeboy : /home /homeboy, but creates a symbolic link called /home/able to the
able subdirectory in the temporarily mounted file system. If a user immediately
tries to access a file in /home/baker, automount needs only to create a symbolic
link that points to the baker subdirectory; /home/homeboy is already mounted.
With the following map:

able homeboy:/home/homeboy/able
baker homeboy : /home/homeboy /baker

automount would have to mount the file system twice.

A mapping can be continued across input lines by escaping the NEWLINE with a
backslash. Comments begin with a # and end at the subsequent NEWLINE.

Directory Pattern Matching
The & character is expanded to the value of the directory field for the entry in
which it occurs. In this case:

able homeboy: /home/homeboy : &
the & expands to able.

The * character, when supplied as the directory field, is recognized as the catch-
all entry. Such an entry resolves to any entry not previously matched. For instance,
if the following entry appeared in the indirect map for /home:

* &:/home/&

this would allow automatic mounts in /home of any remote file system whose loca-
tion could be specified as:

hostname : /home/hostname

Hierarchical Mappings
A hierarchical mapping takes the form:
directory [/ [subdirectory] | [-mount-options] location ...
[/ [subdirectory] [-mount-options] location ...].

The initial /[subdirectory] is optional for the first location list and mandatory for all
subsequent lists. The optional subdirectory is taken as a filename relative to the
directory. If subdirectory is omitted in the first occurrence, the / refers to the direc-
tory itself.

Given the direct map entry:

/arch/src \

/ -ro,intr arch:/arch/src alt:/arch/src \

/1.0 -ro,intr alt:/arch/src/1.0 arch:/arch/src/1.0 \
/1.0/man -ro,intr arch:/arch/src/1.0/man alt:/arch/src/1.0/man

automount would automatically mount /arch/src, /arch/src/1.0 and
/arch/src/1.0/man, as needed, from either arch or alt, whichever host
responded first.

Direct Maps
A direct map contains mappings for any number of directories. Each directory
listed in the map is automatically mounted as needed. The direct map as a whole is
not associated with any single directory.

10/92 Page 3

automount (1M) (NFS) automount (1M)

Indirect Maps
An indirect map allows you to specify mappings for the subdirectories you wish to
mount under the directory indicated on the command line. It also obscures local
subdirectories for which no mapping is specified. In an indirect map, each direc-
tory field consists of the basename of a subdirectory to be mounted as needed.

Included Maps
The contents of another map can be included within a map with an entry of the
form

+mapname
where mapname is a filename.

Special Maps
The -null map is the only special map currently available. The -null map, when
indicated on the command line, cancels a previous map for the directory indicated.

FILES

/tmp_mnt parent directory for dynamically mounted file systems
SEE ALSO

Af(1M), mount (1M), passwd(4)
NOTES

When it receives signal number 1, automount rereads the /etc/mnttab file to
update its internal record of currently-mounted file systems. If a file system
mounted with automount is unmounted by a umount command, automount
should be forced to reread the file.

Shell filename expansion does not apply to objects not currently mounted.

Since automount is single-threaded, any request that is delayed by a slow or non-
responding NFS server will delay all subsequent automatic mount requests until it
completes.

Programs that read /etc/mnttab and then touch files that reside under automatic
mount points will introduce further entries to the file.

Page 4 10/92

autopush (1M) autopush (1M)

NAME

autopush - configure lists of automatically pushed STREAMS modules

SYNOPSIS

autopush -f file
autopush -r -M major -m minor
autopush -g -M major -m minor

DESCRIPTION

This command allows one to configure the list of modules to be automatically
pushed onto the stream when a device is opened. It can also be used to remove a
previous setting or get information on a setting.

The following options apply to autopush:

-f This option sets up the autopush configuration for each driver according to
the information stored in the specified file. An autopush file consists of
lines of at least four fields each where the fields are separated by a space as
shown below:

maj_ min_ last_min_ modl mod2 ... modn

The first three fields are integers that specify the major device number, minor dev-
ice number, and last minor device number. The fields following represent the
names of modules. If min_ is -1, then all minor devices of a major driver specified
by maj_ are configured and the value for last_min_ is ignored. If last_min_ is 0, then
only a single minor device is configured. To configure a range of minor devices for
a particular major, min_ must be less than last_min_.

The last fields of a line in the autopush file represent the list of module names
where each is separated by a space. The maximum number of modules that can be
automatically pushed on a stream is defined to be eight. The modules are pushed
in the order they are specified. Comment lines start with a # sign.

-r This option removes the previous configuration setting of the particular
major and minor device number specified with the -M and -m options respec-
tively. If the values of major and minor correspond to a setting of a range of
minor devices, where minor matches the first minor device number in the
range, the configuration would be removed for the entire range.

-g This option gets the current configuration setting of a particular major and
minor device number specified with the -M and -m options respectively. It
will also return the starting minor device number if the request corresponds
to a setting of a range (as described with the -£ option).

SEE ALSO

10/92

streamio(7).

Page 1

awk (1) (Directory and File Management Utilities) awk (1)

NAME

awk - pattern scanning and processing language

SYNOPSIS

awk [-Fc] [prog | [parameters] | files]

DESCRIPTION

10/92

awk scans each input file for lines that match any of a set of patterns specified in
prog. With each pattern in prog there can be an associated action that will be per-
formed when a line of a file matches the pattern. The set of patterns may appear
literally as prog, or in a file specified as - £ file. The prog string should be enclosed in
single quotes () to protect it from the shell.

Parameters, in the form x=... y=... etc., may be passed to awk.

Files are read in order; if there are no files, the standard input is read. The file name
- means the standard input. Each line is matched against the pattern portion of
every pattern-action statement; the associated action is performed for each matched
pattern.

An input line is made up of fields separated by white space. (This default can be
changed by using FS; see below). The fields are denoted $1, $2, ...; $0 refers to the
entire line.

A pattern-action statement has the form:
pattern { action }

A missing action means print the line; a missing pattern always matches. An action
is a sequence of statements. A statement can be one of the following:

if (conditional) statement [else statement |

while (conditional) statement

for (expression ; conditional4; expression) statement
break

continue

{ [statement] ...}

variable = expression

print [expression-list] [>expression]

printf format [, expression-list | [>expression]

next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new-lines, or right braces. An empty
expression-list stands for the whole line. Expressions take on string or numeric
values as appropriate, and are built using the operators +, -, *, /, %, and concatena-
tion (indicated by a blank). The C operators ++, --, +=, -=, *=, /=, and %= are also
available in expressions. Variables may be scalars, array elements (denoted x[i]) or
fields. Variables are initialized to the null string. Array subscripts may be any
string, not necessarily numeric; this allows for a form of associative memory. String
constants are quoted (").

Page 1

awk(1) (Directory and File Management Utilities) awk (1)

The print statement prints its arguments on the standard output (or on a file if
>expr is present), separated by the current output field separator, and terminated by
the output record separator. The printf statement formats its expression list
according to the format in the printf(3S) manpage.

The built-in function length returns the length of its argument taken as a string, or
of the whole line if no argument. There are also built-in functions exp, log, sqgrt,
and int. The last truncates its argument to an integer; substr(s, m, n) returns the n-
character substring of s that begins at position m. The function sprintf(fmt,
expr , expr, ...) formats the expressions according to the print£(3S) format given
by fmt and returns the resulting string.

Patterns are arbitrary Boolean combinations (!, | |, &&, and parentheses) of regular
expressions and relational expressions. Regular expressions must be surrounded
by slashes and are as in egrep(1). Isolated regular expressions in a pattern apply to
the entire line. Regular expressions may also occur in relational expressions. A pat-
tern may consist of two patterns separated by a comma; in this case, the action is
performed for all lines between an occurrence of the first pattern and the next
occurrence of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is either ~
(for contains) or !~ (for does not contain). A conditional is an arithmetic expression,
a relational expression, or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before the first
input line is read and after the last. BEGIN must be the first pattern, END the last.

A single character ¢ may be used to separate the fields by starting the program
with:

BEGIN{FS=c}
or by using the -Fc option.
Other variable names with special meanings include NF, the number of fields in the
current record; NR, the ordinal number of the current record; FILENAME, the name
of the current input file; OFS, the output field separator (default blank); ORS, the

output record separator (default new-line); and OFMT, the output format for
numbers (default %. 6g).

EXAMPLES

Page 2

Print lines longer than 72 characters:
length > 72
Print first two fields in opposite order:
{ print $2, $1 }
Add up first column, print sum and average:

{ s += %11}
END { print "sum is", s, " average is", s/NR }

10/92

awk (1) (Directory and File Management Utilities) awk(1)

Print fields in reverse order:
{ for (1 =NF; 1 > 0; --1i) print $i }

Print all lines between start/stop pairs:
/start/, /stop/

Print all lines whose first field is different from previous one:
$1 != prev { print; prev = $1 }

Print file, filling in page numbers starting at 5:

/Page/ { $2 = n++; }
{ print }

command line: awk -f program n=>5 input
SEE ALSO
grep(1), lex(1), nawk(1), sed(1), print £(3S).

NOTES
Input white space is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings. To force an expres-
sion to be treated as a number add 0 to it; to force it to be treated as a string con-
catenate the null string (" ") to it.

10/92 Page 3

backup (1M) (System Administration Utilities) backup (1M)

NAME
backup - initiate or control a system backup session
SYNOPSIS
backup -1i [-t table] [-o name] [-muser] [-ne] [-s | -v] [-c week:day | demand]
backup [-a] [-t table] [-o name] [-m user] [-ne] [-c week:day | demand]
backup -S | -R | -C[-uuser | -A | -3 jobid]
DESCRIPTION

Without options, the backup command performs all backup operations specified
for the current day and week of the backup rotation in the backup register. This set
of backup operations is considered a single job and is assigned a backup job id
which can be used to control the progress of the session. As backup operations are
processed, their status is tracked [See bkstatus(1M)]. As backup operations are
completed, they are recorded in the backup history log.

backup may only be executed by a user with superuser privilege.

A backup job can be controlled in three ways. It can be canceled, suspended or
resumed (after being suspended).

Modes of Operator Intervention

Backup operations may require operator intervention to perform such tasks as
inserting volumes into devices or confirming proper volume labels. backup pro-
vides three modes of operator interaction.

backup with no options assumes that an operator is present, but not at the terminal
where the backup command was issued. This mode sends a mail message to the
operator. The mail identifies the device requiring service and the volume required.
The operator reads the mail message, invokes the bkoper command, responds to
the prompts, and the backup operation continues.

backup -1 establishes interactive mode, which assumes that an operator is present
at the terminal where the backup command was issued. In this mode, bkoper is
automatically invoked at the terminal where the backup command was entered.
The operator responds to the prompts as they arrive.

backup -a establishes automatic mode, which assumes that no operator is avail-
able. In this mode, any backup operation that requires operator intervention fails.
Backups that can be satisfied by mounted volume proceed.

Register Validations

10/92

A number of backup service databases must be consistent before the backups listed
in a backup register can be performed. These consistencies can only be validated at
the time backup is initiated. If any of them fail, backup will terminate. Invoking
backup -ne performs the validation checks in addition to displaying the set of
backup operations to be performed. The validations are:

1. The backup method must be a default method or be an executable file in
/bkup/method .

2. The dependencies for an entry are all defined in the register. Circular depen-
dencies (eg., entry abc depends on entry def; entry def depends on entry
abc) are allowed.

Page 1

backup (1M)

(System Administration Utilities) backup (1M)

3. The device group for a destination must be defined in the device group table,
/dgroup. tab [See “Device Management”).

Options
-a

Initiates all backup operations in automatic mode; does not prompt an
operator to service media.

-c week:day | demand

-n

-0 name

-t table

-u user

-V

DIAGNOSTICS

Selects from the backup register only those backup operations for the
specified week and day of the backup rotation, instead of the current
day and week of the rotation. If demand is specified, selects only those
backup operations scheduled to be performed on demand.

This option displays an estimate of the number of volumes required to
perform each backup operation.

Selects interactive operation
Controls only the backup job identified by jobid. jobid is a backup job id.

Sends mail to the named user when all backup operations for the backup
job are complete.

Displays the set of backup operations that would be performed but
does not actually perform the backup operations. The display is
ordered according to the dependencies and priorities specified in the
backup register.

Initiates backup operations only on the named originating object. name
is an item in the following form:
oname | odevice

Displays a "." for each 100 (512-byte) blocks transferred to the destina-
tion device. The dots are displayed while each backup operation is pro-
gressing.
Initiates backup operations described in the specified backup register
instead of the default register, etc/bkup/bkreg.tab . table is a backup
register.

Controls backup jobs started by the named user instead of those started
by the user invoking the command. user is a valid login id.

While each backup operation is progressing, display the name of each
file or directory as soon as it has been transferred to the destination dev-
ice.

Controls backup jobs for all users instead of those started by the user
invoking the command.

Cancels backup jobs.
Resumes suspended backup jobs.
Suspends backup jobs.

The exit codes for the backup command are the following:

Page 2

10/92

backup (1M) (System Administration Utilities) backup (1M)

0 = successful completion of the task

1 = one or more parameters to backup are invalid.

2 = an error has occurred which caused backup to fail to
complete all portions of its task.

EXAMPLES
Example 1:
backup -i -v -c¢ 2:1 -m admin3
initiates those backups scheduled for Monday of the second week in the rotation
period instead of backups for the current day and week. Performs the backup in
interactive mode and displays on standard output the name of each file, directory,
file system slice, or data slice as soon as it is transferred to the destination device.

When all backups are completed, sends mail notification to the user with login id
admin3.

Example 2:
backup -o /usr
initiates only those backups from the usr file system that is mounted on the ori-
ginating device /dev/rdsk/m328_c1d0s2 and is labeled usr.
Example 3:
backup -S
Suspends the backup jobs requested by the invoking user.

Example 4:
backup -R -j back-359
resumes the backup operations included in backup job id back-359.

FILES
/etc/bkup/method/*
/etc/bkup/bkreg.tab
/etc/device.tab
/etc/dgroup.tab
SEE ALSO
bkhistory(1M), bkoper(1M), bkreg(1M), bkstatus(1M)

10/92 Page 3

banner(1) (User Environment Utilities) banner(1)

NAME
banner - make posters

SYNOPSIS
banner strings

DESCRIPTION
banner prints its arguments (each up to 10 characters long) in large letters on the
standard output.

WARNING
Non-ASCII characters specified in strings will not be output correctly.

SEE ALSO
echo(1)

10/92 Page 1

basename (1) (User Environment Utilities) basename (1)

NAME
basename, dirname - deliver portions of path names

SYNOPSIS
basename string [suffix]
dirname string

DESCRIPTION
basename deletes any prefix ending in / and the suffix (if present in string) from
string, and prints the result on the standard output. It is normally used inside sub-
stitution marks (*) within shell procedures. The suffix is a pattern as defined on
the ed(1) manual page.
dirname delivers all but the last level of the path name in string.

EXAMPLES
The following example, invoked with the argument /home/sms/personal /mail
sets the environment variable NAME to the file named mail and the environment
variable MYMATILPATH to the string /home/sms/personal.

NAME=® basename $HOME/personal/mail>
MYMAILPATH= " dirname S$HOME/personal/mail*

This shell procedure, invoked with the argument /usr/src/bin/cat.c, compiles
the named file and moves the output to cat in the current directory:

cc $1

mv a.out ‘“basename $1 .c

N

SEE ALSO
ed(1), sh(1)

10/92 Page 1

basename (1) (BSD Compatibility Package) basename (1)

NAME
basename - display portions of pathnames

SYNOPSIS
/usr/ucb/basename string [suffix |
DESCRIPTION
basename deletes any prefix ending in ‘/” and the suffix, if present in string. It
directs the result to the standard output, and is normally used inside substitution
marks (*) within shell procedures. The suffix is a pattern as defined on the ed(1)
manual page.
EXAMPLE
This shell procedure invoked with the argument /usr/src/bin/cat.c compiles
the named file and moves the output to cat in the current directory:
cc §1
mv a.out "basename $1 .c’

SEE ALSO
ed(1), sh(1).

10/92 Page 1

bc(1) (User Environment Utilities) be(1)

NAME

be - arbitrary-precision arithmetic language
SYNOPSIS

be[-c]l-1]1[fie...]
DESCRIPTION

be is an interactive processor for a language that resembles C but provides unlim-
ited precision arithmetic. It takes input from any files given, then reads the stan-
dard input. bc is actually a preprocessor for the desk calculator program dc, which
it invokes automatically unless the -c option is present. In this case the dc input is
sent to the standard output instead. The options are as follows:

-c Compile only. The output is sent to the standard output.
-1 Argument stands for the name of an arbitrary precision math library.

The syntax for bc programs is as follows: L means letter a-z, E means expression, S
means statement.

Comments
are enclosed in /* and */.

Names
simple variables: L
array elements: L[E]
the words ibase, obase,and scale

Other operands
arbitrarily long numbers with optional sign and decimal point
(E)
sqgrt (E)
length (E) number of significant decimal digits
scale (E) number of digits right of decimal point
L(E,...,E)
Operators
+ - x /% 7
(% is remainder; " is power)
++ -- (prefix and postfix; apply to names)
== <= >= = < >
= =+ == =% =/ =% ="
Statements
E
{S$;...;8}
if (E) S
while (E) S

for (E;E;E)S
null statement
break

quit

10/92 Page 1

be(1)

(User Environment Utilities) bc(1)

Function definitions

defineL (L, ..., L) {
autoL, ..., L
"’ S”";...S

return (E)

}
Functiors in -1 math library

s (x) sine

c(x) cosine

e(x) exponential
1(x) log

a(x) arctangent

j(n,x) Bessel function
All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main operator is
an assignment. Either semicolons or new-lines may separate statements. Assign-
ment to scale influences the number of digits to be retained on arithmetic opera-
tions in the manner of dc. Assignments to ibase or obase set the input and output
number radix respectively.

The same letter may be used as an array, a function, and a simple variable simul-
taneously. All variables are global to the program. auto variables are pushed
down during function calls. When using arrays as function arguments or defining
them as automatic variables, empty square brackets must follow the array name.

EXAMPLE

FILES

Page 2

scale = 20
define e(x){
auto a, b, ¢, i, s

a=1
b=1
s =1
for(i=1; 1==1; 1i++){
a = a*x
b = b*i
c = a/b
if(c == 0) return(s)
S = s+C
}

defines a function to compute an approximate value of the exponential function
and

for(i=1; i<=10; i++) e(i)

prints approximate values of the exponential function of the first ten integers.

/usr/lib/lib.Db mathematical library

10/92

bc(1) (User Environment Utilities) bc (1)

/usr/bin/dc desk calculator proper

SEE ALSO
dc(1)

NOTES
The bc command does not recognize the logical operators && and | |.

The for statement must have all three expressions (E’s).
The quit statement is interpreted when read, not when executed.

10/92 Page 3

bdiff (1) (Directory and File Management Utilities) bdiff(1)

NAME

bdiff -bigdiff

SYNOPSIS

bdiff filel file2 [n] [-s]

DESCRIPTION

FILES

bdiff is used in a manner analogous to diff to find which lines in filel and file2
must be changed to bring the files into agreement. Its purpose is to allow process-
ing of files too large for diff. If filel (file2) is -, the standard input is read.

Valid options to bdiff are:

n The number of line segments. The value of n is 3500 by default. If the
optional third argument is given and it is numeric, it is used as the value for
n. This is useful in those cases in which 3500-line segments are too large for
diff, causing it to fail.

-s Specifies that no diagnostics are to be printed by bdiff (silent option).
Note, however, that this does not suppress possible diagnostic messages
from diff, which bdiff calls.

bdiff ignores lines common to the beginning of both files, splits the remainder of
each file into n-line segments, and invokes diff on corresponding segments. If
both optional arguments are specified, they must appear in the order indicated
above.

The output of bdiff is exactly that of diff, with line numbers adjusted to account
for the segmenting of the files (that is, to make it look as if the files had been pro-
cessed whole). Note that because of the segmenting of the files, bdiff does not
necessarily find a smallest sufficient set of file differences.

SEE ALSO

10/92

diff(1)

Page 1

bfs(1) (Directory and File Management Utilities) bfs(1)

NAME
bfs - big file scanner

SYNOPSIS
bfs [- file

DESCRIPTION
The bfs command is similar to ed except that it is read-only and processes much
larger files. Files can be up to 1024K bytes and 32K lines, with up to 512 characters,
including newline, per line (255 for 16-bit machines). bfs is usually more efficient
than ed for scanning a file, since the file is not copied to a buffer. It is most useful
for identifying sections of a large file where the csplit command can be used to
divide it into more manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of any file writ-
ten with the w command. The optional - suppresses printing of sizes. Input is
prompted with * if P and a carriage return are typed, as in ed. Prompting can be
turned off again by inputting another P and carriage return. Messages are given in
response to errors if prompting is turned on.

All address expressions described under ed are supported. In addition, regular
expressions may be surrounded with two symbols besides / and 2. > indicates
downward search without wrap-around, and < indicates upward search without
wrap-around. There is a slight difference in mark names: only the letters a through
z may be used, and all 26 marks are remembered.

Thee,g,v,k,p,qw, =, ! and null commands operate as described under ed. Com-
mands such as —---, +++-, +++=, -12, and +4p are accepted. Note that 1,10p and
1,10 both print the first ten lines. The £ command only prints the name of the file
being scanned; there is no remembered filename. The w command is independent
of output diversion, truncation, or crunching (see the xo, xt, and xc commands,
below). The following additional commands are available:
xf file
Further commands are taken from the named file. When an end-of-file
is reached, an interrupt signal is received or an error occurs, reading
resumes with the file containing the xf. The xf commands may be

nested to a depth of 10.
xn List the marks currently in use (marks are set by the k command).
xo [file]

Further output from the p and null commands is diverted to the named
file, which, if necessary, is created with mode 666 (readable and writable
by everyone), unless your umask setting dictates otherwise; see
umask(1). If file is missing, output is diverted to the standard output.
Note that each diversion causes truncation or creation of the file.

: label
This positions a label in a command file. The label is terminated by new-
line, and blanks between the : and the start of the label are ignored.
This command may also be used to insert comments into a command
file, since labels need not be referenced.

10/92 Page 1

bfs (1)

Page 2

(Directory and File Management Utilities) bfs(1)

(., .)xb/regular expression/label
A jump (either upward or downward) is made to label if the command
succeeds. It fails under any of the following conditions:

1. Either address is not between 1 and $.

2. The second address is less than the first.

3. The regular expression does not match at least one line in the
specified range, including the first and last lines.

On success, . is set to the line matched and a jump is made to label.
This command is the only one that does not issue an error message on
bad addresses, so it may be used to test whether addresses are bad
before other commands are executed. Note that the following com-
mand is an unconditional jump:

xb/”/ label

The xb command is allowed only if it is read from someplace other
than a terminal. If it is read from a pipe, only a downward jump is
possible.

xt number
Output from the p and null commands is truncated to, at most,
number characters. The initial number is 255.

xv|digit] [spaces][value]
The variable name is the specified digit following the xv. The com-
mands xv5100 or xv5 100 both assign the value 100 to the variable 5.
The command xv61,100p assigns the value 1, 100p to the variable 6.
To reference a variable, put a % in front of the variable name. For
example, using the above assignments for variables 5 and 6 prints the
first 100 lines:

1,%5p
1,%5
%6

The following globally searches for the characters 100 and prints each
line containing a match:

g/%5/p
To escape the special meaning of %, a \ must precede it.
g/".*\%[cds]/p

could be used to match and list lines containing a printf of charac-
ters, decimal integers, or strings.

Another feature of the xv command is that the first line of output from
a UNIX system command can be stored into a variable. The only
requirement is that the first character of value be an !. For example:

10/92

bfs(1) (Directory and File Management Utilities) bfs(1)

.w junk
xv5lcat junk
!'rm junk

techo "%5"
xvblexpr %6 + 1

puts the current line into variable 5, prints it, and increments the vari-
able 6 by one. To escape the special meaning of ! as the first character
of value, precede it with a \ .

xv7\!date
stores the value !date into variable 7.
xbz label
xbn label

These two commands test the last saved return code from the execu-
tion of a UNIX system command (! command) or nonzero value, respec-
tively, to the specified label. The two examples below both search for
the next five lines containing the string size.

xvb5

1

/size/

xvSlexpr %5 - 1

'if 0%5 != 0 exit 2

xbn 1

xv45

: 1

/size/

xvdlexpr %4 - 1

1if 0%4 = 0 exit 2

xbz 1

xc [switch]
If switch is 1, output from the p and null commands is crunched; if
switch is 0 it is not. Without an argument, xc reverses switch. Initially
switch is set for no crunching. Crunched output has strings of tabs
and blanks reduced to one blank and blank lines suppressed.
INTERNATIONAL FUNCTIONS

bfs can process characters from supplementary code sets in the text as well as
ASCII characters.

bfs can also recognize labels containing characters from supplementary code sets
for :, xb, xbn and xbz commands.

Regular expression searches are performed on characters, not on individual bytes.
Refer to ed(1).

The value designated by number with the xt command must be the number of
displayed columns, not the number of characters.

10/92 Page 3

bfs(1) (Directory and File Management Utilities) bfs(1)

Marks set by the k command must be ASCII characters in the range of a to z, and all
26 marks are remembered.

Size Indication

The size of the file displayed at first and after read /write by the e or w commands is
in bytes, not characters.

SEE ALSO
csplit(l), ed(1), umask(l), regexp(5).

DIAGNOSTICS
? for errors in commands, if prompting is turned off. Self-explanatory error mes-
sages when prompting is on.

Page 4 10/92

biff (1) (BSD Compatibility Package) biff (1)

NAME

biff - give notice of incoming mail messages
SYNOPSIS

/usr/ucb/biff [y | n]
DESCRIPTION

biff turns mail notification on or off for the terminal session. With no arguments,
biff displays the current notification status for the terminal.

The y option allows mail notification for the terminal. The n option disables
notification for the terminal.

If notification is allowed, the terminal rings the bell and displays the header and the
first few lines of each arriving mail message. biff operates asynchronously. For
synchronized notices, use the MAIL variable of sh(1) or the mail variable of csh(l).

A 'biff y’ command can be included in your ~/.login or ~/.profile file for
execution when you log in.

FILES
~/.login
~/.profile
SEE ALSO

csh(1), mail(1), sh(l).

10/92 Page 1

binmail (1M) (Essential Utilities) binmail (1M)

NAME
binmail - an early program for processing mail messages

SYNOPSIS
/usr/ucblib/binmail [-ipq][-f filename] address
/usr/ucblib/binmail recipient ...

DESCRIPTION
This is the old version 7 UNIX system mail program. The default mail com-
mand, /bin/mail is described inmail(1).

binmail is installed on the system to facilitate the local delivery of mail for send-
mail. It is intended to be used only by sendmail. It is not suitable for use by users.

SEE ALSO
mail(l), sendmail(1M), vacation_bsd(1).

10/92 Page 1

biod (1M) (NFS) biod (1M)

NAME
biod - NFS daemon

SYNOPSIS
biod [nservers]

DESCRIPTION
biod starts nservers asynchronous block 1/0 daemons. This command is used on an
NFS client to buffer read-ahead and write-behind. Four is the usual number for
nservers.

The biod daemons are automatically invoked in run level 3.

SEE ALSO
mountd(1M), nfsd(1M), sharetab(4)

10/92 Page 1

bkexcept (1M) (System Administration Utilities) bkexcept(1M)

NAME

bkexcept - change or display an exception list for incremental backups

SYNOPSIS

bkexcept [-t file] [-d patterns]
bkexcept [-t file] -a|-r patterns
bkexcept -C [files]

DESCRIPTION

The bkexcept command displays a list of patterns describing files that are to be
excluded when backup operations occur using incfile. The list is known as the
““exception list.”

bkexcept may be executed only by a user with superuser privilege.
bkexcept -a adds patterns to the list.

bkexcept -ddisplays patterns from the list.

bkexcept -r removes patterns from the list.

Patterns

Patterns describe individual pathnames or sets of pathnames. Patterns must con-
form to pathname naming conventions specified under DEFINITIONS on the
intro(2) page. A pattern is taken as a filename and is interpreted in the manner of
cpio. A pattern can include the shell special characters *, ?, and []. Asterisk (*)
and question mark (?) will match period (.) and slash(/). Because these are shell
special characters, they must be escaped on the command line.

There are three general methods of specifying entries to the exception list:

- To specify all files under a particular directory, specify the directory name
(and any desired subdirectories) followed by an asterisk:

/directory/subdirectories/ *
- To specify all instances of a filename regardless of its location, specify the
filename preceded by an asterisk:
*/filename
- To specify one instance of a particular file, specify the entire pathname to the
file:
/directory/subdirectories/filename

If pattern is a dash (-), standard input is read for a list of patterns (one per line until
EOF) to be added or deleted.

Compatibility

10/92

Prior versions of the backup service created exception lists using ed syntax. bkex-
cept -C provides a translation facility for exception lists created by ed. The trans-
lation is not perfect; not all ed patterns have equivalents in cpio. For those pat-
terns that have no automatic translation, an attempt at translation is made, and the
translated version is flagged with the word QUESTIONABLE. The exception list
translation is directed to standard output. Redirect the standard output to a trans-
lation file, review the contents of the translation file (correcting entries that were
not translated properly and deleting the QUESTIONABLE flags), and then use the
resulting file as input to a subsequent bkexcept -a. For example, if the translated

Page 1

bkexcept (1M) (System Administration Utilities) bkexcept(1M)

file was named checkfile the -a option would appear as follows:
bkexcept -a - < checkfile

Options
-t file The filename used in place of the default file.

-a pattern. . .
Adds pattern to the exception list where pattern is one or more patterns
(comma-separated or blank-separated and enclosed in quotes) describing
sets of paths.

-d pattern. . .

Displays entries in the exception list. If pattern begins with a slash (/), -d
displays all entries whose names begin with pattern. If pattern does not
begin with a slash, -d displays all entries that include pattern anywhere in
the entry. If pattern is a dash (-), input is taken from standard input. pattern
is not a pattern -- it matches patterns. pattern a*b matches /a*b but does
not match /adb. For files containing a carriage return, a null exception list
is returned. For files of zero length (no characters), an error is returned
(search of table failed).

The entries are displayed in ASCII collating sequence order (special charac-
ters, numbers, then alphabetical order).

-r pattern. ..
Removes pattern from the exception list. pattern is one or a list of patterns
(comma-separated or blank-separated and enclosed in quotes) describing
sets of paths. pattern must be an exact match of an entry in the exception
list for pattern to be removed. Patterns that are removed are echoed to stan-
dard output, stdout.

-C [files]
Displays on standard output the translation of each file (a prior version’s
exception list) to the new syntax. Each file contains ed patterns, one per
line.

If file is omitted, the default UNIX exception list, /etc/save.d/except, is
translated. If file is a dash (-), input is taken from standard input, one per
line.

DIAGNOSTICS
The exit codes for the bkexcept command are the following:

0 = the task completed successfully

1 = one or more parameters to bkexcept are invalid

2 = an error has occurred, causing bkexcept to fail to
complete all portions of its task

EXAMPLES
Example 1:
bkexcept -a /tmp/*,/var/tmp/*,/usr/rje/*,*/trash,

adds the four sets of files to the exception list, (all files under /tmp, all files under
/var/tmp, all files under /usr/rje, and any file on the system named trash).

Page 2 10/92

bkexcept(1M) (System Administration Utilities) bkexcept (1M)

Example 2:
bkexcept -d /tmp

displays the following patterns from those added to the exception list in Example 1.
/tmp/*
bkexcept -d tmp

displays the following patterns from those added to the exception list in Example 1.
/tmp/*, /var/tmp/*

displays one per line, with a heading.
Example 3:

bkexcept -r /var/tmp/*,/usr/rje/*
removes the two patterns from the exception list.

Example 4:
bkexcept -C /save.d/old.except > trans.except

translates the file /save.d/old.except from its ed format to cpio format and
sends the translations to the file trans.except. The translations of
/save.d/old.except may be added to the current exception list by using
bkexcept -a as follows:

bkexcept -a - < trans.except

FILES
/etc/bkup/bkexcept.tab the default exception list for UNIX System V Release 4.
/etc/save.d/except the default exception list for pre-UNIX System V
Release 4.
SEE ALSO
backup(1M), cpio(1), ed(1), incfile(1M), sh(1l), intro(2).
10/92 Page 3

bkhistory (1M) (System Administration Utilities) bkhistory (1M)

NAME
bkhistory - report on completed backup operations

SYNOPSIS
bkhistory [-hl] [-£ field_separator] [-d dates] [-o names] [-t tags]
bkhistory -p period

DESCRIPTION
bkhistory without options reports a summary of the contents of the backup his-
tory log, bkhist .tab. Backup operations are sorted alphabetically by tag. For each
tag, operations are listed from most to least recent. backup(1M) updates this log
after each successful backup operation.

bkhistory may be executed only by a user with the superuser privilege.

bkhistory -p assigns a rotation period (in weeks) for the history log; all entries
older than the specified number of weeks are deleted from the log. The default
rotation period is one (1) week.

Options
-d dates
Restricts the report to backup operations performed on the specified dates.
dates are in the date format. day, hour, minute, and year, are optional and
will be ignored. The list of dates is either comma-separated or blank-
separated and surrounded by quotes.

- £ field_separator .
Suppresses field wrap on the display and specifies an output field separator
to be used. The value of ¢ is the character that will appear as the field
separator on the display output. For clarity of output, do not use a separa-
tor character that is likely to occur in a field. For example, do not use the
colon as a field separator character if the display will contain dates that use
a colon to separate hours from minutes. To use the default field separator

"

(tab), specify the null character (") for c.
-h Suppresses header for the reports.

-1 Displays a long form of the report. This produces an 1s -1 listing of the
files included in the backup archive (if backup tables of contents are avail-
able on-line).

-0 names
Restricts the report to the specified originating objects (file systems or data
slices). names is a list of onames and /or odevices. [See bkreg(1M)].

The list of names is either comma-separated or blank-separated and sur-
rounded by quotes.

-p period
Sets the number of weeks of information that will be saved in the backup
history table. The minimum value of period is 1, which is also the default
value. the size of int. By default, period is 1.

-t tags
Restricts the report to backups with the specified tags. tags is a list of tag
values as specified in the backup register. The list of tags is either comma-
separated or blank-separated and surrounded by quotes.

10/92 Page 1

bkhistory (1M) (System Administration Utilities) bkhistory (1M)

DIAGNOSTICS
The exit codes for the bkhistory command are the following:
0= the task completed successfully
1= one or more parameters to bkhistory are invalid
2= an error has occurred, causing bkhistory to fail to complete all por-
tions of its task
EXAMPLES
Example 1:

bkhistory -p 3

sets the rotation period for the history log to three weeks. Entries older than three
weeks are deleted from the log.

Example 2:

bkhistory -t SpoolDai,UsrDaily, TPubsWed
displays a report of completed backup operations for the three tags listed.
Example 3:

bkhistory -1 -o /usr

Displays an 1s -1 listing of the files that were backed up from /usr (the originat-
ing object) if there is a table of contents.

FILES
/etc/bkup/bkhist.tab the backup history log that contains information about
successfully completed backup operations

/etc/bkup/bkreg.tab description of the backup policy established by the
administrator

/var/sadm/bkup/toc list of directories with on-line tables of contents

SEE ALSO
backup(1M), bkreg(1M), date(1), 1s(1).

Page 2 10/92

bkoper(1M) (System Administration Utilities) bkoper (1M)

NAME

bkoper - interact with backup operations to service media insertion prompts

SYNOPSIS

bkoper [-u users]

DESCRIPTION

Backup operations may require an operator to insert media and to confirm proper
volume labels. The bkoper command provides a mailx-like interface for these
operator interactions. It begins by printing a list of headers. Each header describes
a backup operation requiring interaction, the device requiring attention including
the media type and label of the volume to be inserted (see EXAMPLE). The system
displays prompts and the operator issues commands to resolve the backup opera-
tion. Typing a carriage return invokes the current header. If no headers have been
serviced, the current header is the first header on the list. If a header has been
selected and serviced, the current header is the next one following.

bkoper may be executed only by a user with superuser privilege. By default, the
operator may interact only with backup operations that were started by the same
userID.

If the -u users option is given, the operator interacts only with backup operations
started by the specified user(s).

Commands

| shell-command
Escapes to the shell. The remainder of the line after the ! is sent to the
UNIX system shell (sh) to be interpreted as a command.

= Prints the current backup operation number.
? Prints this summary of commands.

[oit][n] Both the p and t options operate in the same way. Either option will
interact with the backup operation described by the n'th header. n
defaults to the current header number.

h Prints the list of backup operations.
a Quits from bkoper.

DIAGNOSTICS

The exit codes for bkoper are the following:

0 = successful completion of the task

1 = one or more parameters to bkoper are invalid.

2 = an error has occurred which caused bkoper to fail to
complete all portions of its task.

EXAMPLE

10/92

A sample header is shown below. Items appearing in the header are listed in the
following order: header number, job-ID, tag, originating device, destination group,
destination device, destination volume labels. [See bkreg(1M) for descriptions of
items.] Not every header contains values for all these fields; if a destination group
is not specified in /etc/bkup/bkreg.tab, then no value for “destination group”
appears in the header.

Page 1

bkoper (1M) (System Administration Utilities) bkoper(1M)

1 back-111 usrsun /dev/dsk/cld0sl disk /dev/dsk/c2dls9 usrsave
2 back-112 fs2daily /dev/dsk/c1d0s8 ctape /dev/ctape/c4d0s2 -

Backup headers are numbered on the basis of arrival; the oldest header has the
lowest number. If the destination device does not have a volume label, a dash is
displayed in the header.

SEE ALSO
bkreg(1M), bkstatus(1M), getvol(1M), mailx(1)

Page 2 10/92

bkreg (1M) bkreg (1M)

NAME

bkreg - change or display the contents of a backup register

SYNOPSIS

bkreg -p period [-w cweek] [-t table]

bkreg -a tag -o orig -c weeks:days | demand -d ddev -m method Imigration
[-b moptions] [-t table] [-D depend] [-P prio]

bkreg -e tag [-o orig] [-c weeks:days|demand] [-m method Imigration] [-d ddev]
[-t table] [-b moptions] [-D depend] [-P prio]

bkreg -r tag[-t table]
bkreg [-Al-0I-R][-hsv] [-t table] [-c weeks[:days] | demand]
bkreg -C fields [-hv] [-t table] [-c weeks[:days] | demand] [-£ c]

DESCRIPTION

A backup register is a file containing descriptions of backup operations to be per-
formed on a system. The default backup register is located in
/etc/bkup/bkreg.tab. Other backup registers may be created.

The bkreg command may be executed only by a user with superuser privilege.

Each entry in a backup register describes backup operations to be performed on a
given disk object (called the originating object) for some set of days and weeks dur-
ing a rotation period. There may be several register entries for an object, but only
one entry may specify backup operations for an object on a specific day and week
of the rotation period. The entry describes the object, the backup method to be
used to archive the object, and the destination volumes to be used to store the
archive. Each entry has a unique tag that identifies it. Tags must conform to file
naming conventions.

Rotation Period

Backups are performed in a rotation period specified in weeks. When the end of a
rotation period is reached, a new period begins. Rotation periods begin on Sun-
days. The default rotation period is one week.

Originating Objects

An originating object is either a raw data slice or a filesystem. An originating object
is described by its originating object name, its device name, and optional volume
labels.

Several backup operations for different originating objects may be active con-
currently by specifying priorities and dependencies. During a backup session,
higher priority backup operations are attempted before lower priority backup
operations. All backup operations of a given priority may proceed concurrently
unless dependencies are specified. If one backup is declared to be dependent on
others, it will not be started until all of its antecedents have completed successfully.

Destination Devices

10/92

Each backup archive is written to a set of storage volumes inserted into a destina-
tion device. A destination device can have destination device group, a destination
device name, media characteristics, and volume labels. Default characteristics for a
medium (as specified in the device table) may be overridden.

Page 1

bkreg (1M) bkreg (1M)

Backup Methods
An originating object is backed up to a destination device archive using a method.
The method determines the amount of information backed up and the representa-
tion of that information. Different methods may be used for a given originating
object on different days of the rotation. Each method accepts a set of options that
are specific to the method.

Several default methods are provided with the Backup service. Others methods
may be added by a system site. For descriptions of the default methods, see
incfile(1M), ffile(1M), £disk(1M), fimage(1M), and £dp(1M).

A backup archive may be migrated to a different destination by specifying migra-
tion as the backup method. The device name of the originating object for a migra-
tion must have been the destination device for a previously successful backup
operation. This form of backup does not re-archive the originating object. It copies
an archive from one destination to another, updating the backup service’s data-
bases so that restores can still be done automatically.

Register Validations
There are items in a single backup register entry and items across register entries
that must be consistent for the backup service to conduct a backup session
correctly. Some of these consistencies are checked at the time the backup register is
created or changed. Others can be checked only at the time the backup register is
used by backup(1M). See backup(1M) for a complete list of validations.

Modes
The bkreg command has two modes: changing the contents of a backup register
and displaying the contents of a backup register.

Changing Contents
bkreg -p changes the rotation period for a backup register. The default rotation
period is one week.

bkreg -a adds an entry to a backup register. This option requires other options
to be specified. These are listed below under Options.

bkreg -e edits an existing entry in a backup register.
bkreg -r removes an existing entry from a backup register.

Displaying Contents
bkreg -C produces a customized display of the contents of a backup register.

bkreg [-A|-R|-0]
produces a summary display of the contents of a backup register.

Options

-a Adds a new entry to the default backup register. Options required with -a
are: tag, originating device, weeks:days, destination device, and method. If other
options are not specified, the following defaults are used: the default
backup register is used, no method options are specified, the priority is 0,
and no dependencies exist between entries.

-b moptions
Each backup method supports a specific set of options that modify its
behavior. moptions is specified as a list of options that are blank-separated
and enclosed in quotes. The argument string provided here is passed to the

Page 2 10/92

bkreg (1M) bkreg (1M)

method exactly as entered, without modification. See the following entries
for a listing of options. fdisk(1M), £dp(1M), ££ile(1M), fimage(1M), and
incfile(1M).

-c weeks:days | demand
Sets the week(s) and day(s) of the rotation period during which a backup
entry should be performed or for which a display should be generated.
weeks is a set of numbers including 1 and 52. The value of weeks cannot be
greater than the value of —pperiod. weeks is specified as a combination of lists
or ranges (either comma-separated or blank-separated and enclosed in
quotes). An example set of weeks is

1 3-10,13""

indicating the first week, each of the third through tenth weeks, and the
thirteenth week of the rotation period.

days is either a set of numbers between 0 (Sunday) and 6 (Saturday), or a set
of abbreviations between s (Sunday) and sa (Saturday). In addition, days
are specified as a combination of lists or ranges (either comma-separated or
blank-separated and enclosed in quotes).

demand indicates that an entry is used only when explicitly requested by

backup -c demand

-d ddev
Specifies ddev as the destination device for the backup operation. ddev is of
the form:

[dgroup] [: [ddevice] [:dchar] [:dmname]]

where either dgroup or ddevice must be specified and dchar and dmname are
optional. (Both dgroup and ddev may be specified together.) Colons del-
ineate field boundaries and must be included as indicated above.

dgroup is the device group for the destination device. [See
devgroup. tab(4).] If omitted, ddevice must be specified.

ddevice is the device name of a specific destination device. [See
device.tab(4).] If omitted, dgroup must be specified and any available
device in dgroup may be used.

dchar describes media characteristics. If specified, they override the default
characteristics for the device and group. dchar is of the form:

keyword=value

where keyword is a valid device characteristic keyword (as it appears in the
device table.) dchar entries may be separated by commas or blanks. If
separated by blanks, the entire string of arguments to ddev must be enclosed
in quotes.

dlabels is a list of volume names of the destination volumes. The list of dla-
bels must be either comma-separated or blank-separated. If blank-
separated, the entire ddev argument must be surrounded by quotes. Each
dlabel corresponds to a volumename specified on the labelit command. If
dlabels is omitted, backup and restore do not validate the volume labels on
this entry.

10/92 Page 3

bkreg (1M)

-fc

-h

bkreg (1M)

Edits an existing entry. If any of the options -b, -c, -d, -m, -0, -D, or -P are
present, they replace the current settings for the specified entry in the regis-
ter.

Overrides the default output field separator. c is the character that will
appear as the field separator on the display output. The default output field
separator is colon (:).

Suppresses headers when generating displays.

-m method |migration

-0 orig

Performs the backup using the specified method. Default methods are:
incfile, ffile, fdisk, fimage, and fdp. If the method to be used is not a
default method, it must appear as the executable file in the standard
method directory /etc/bkup/method. migration indicates that the value
of orig (following the -o option) matches the value of ddev during a prior
backup operation. The originating object is not rearchived; it is simply
copied to the location specified by ddev (following the -d option). The
backup history (if any) and tables of contents (if any) are updated to reflect
the changed destination for the original archive.

Specifies orig as the originating object for the backup operation. orig is
specified in the following format:

oname : odevice [: omname]

where oname is the name of an originating object. For file system slices, it is
the nodename on which the file system is usually mounted, mount. For data
slices, it is any valid path name. This value is provided to the backup
method and validated by backup. The default data slice backup methods,
fdp and f£disk, do not validate this name.

odevice is the device name for the originating object. In all cases, it is a raw
disk slice device name. This name is specified in the following format:
/dev/rdsk/m328_c?d?s?.

olabel is the volume label for the originating object. For file system slices, it
corresponds to the volumename displayed by the 1abelit command. A data
slice may have an associated volume name that appears nowhere except on
the outside of the volume (where it is taped); getvol may be used to have
an operator validate the name.

The special data slice (e.g., /dev/rdsk/m328_c0d2s7) names an entire disk
and is used when disk formatting or reslicing is done to reference the disk’s
volume table of contents (VTOC). [See fmthard(1M) and prtvtoc(1M).]
backup validates this special full disk slice with the disk volume name
specified when the disk was sliced. [See fmthard(1M).] If the disk volume
name is omitted, backup does not validate the volume labels for this ori-
ginating object.

-p period

Page 4

Sets the rotation period (in weeks) for the backup register to period. The
minimum value is 1; the maximum value is 52. By default the current week
of the rotation is set to 1.

10/92

bkreg (1M)

-r

-S

-t table

-V

bkreg (1M)

Removes the specified entries from the register.

Suppresses wrap-around behavior when generating displays. Normal
behavior is to wrap long values within each field.

Uses table instead of the default register, bkreg. tab.

Generates displays using (vertical) columns instead of (horizontal) rows.
This allows more information to be displayed without encountering prob-
lems displaying long lines.

-w cweek

Overrides the default behavior by setting the current week of the rotation
period to cweek. cweek is an integer between 1 and the value of period. The
default is 1.

Displays a report describing all fields in the register. The display produced
by this option is best suited as input to a filter, since in horizontal mode it
produces extremely long lines.

~C fields

Generates a display of the contents of a backup register, limiting the display
to the specified fields. The output is a set of lines, one per register entry.
Each line consists of the desired fields, separated by a field separator charac-
ter. fields is a list of field names (either comma-separated or blank-separated
and enclosed in quotes) for the fields desired. The valid field names are
period, cweek, tag, oname, odevice, olabel, weeks, days,
method, moptions, prio, depend, dgroup, ddevice, dchar, and
dlabel.

-D depend

-fc

-P prio

-R
DIAGNOSTICS

Specifies a set of backup operations that must be completed successfully
before this operation may begin. depend is a list of tag(s) (either comma-
separated or blank-separated and enclosed in quotes) naming the
antecedent backup operations.

Overrides the default output field separator. c is the character that will
appear as the field separator on the display output. The default output field
separator is colon (":").

Displays a summary of all originating objects with entries in the register.

Sets a priority of prio for this backup operation. The default priority is 0; the
highest priority is 100. All backup operations with the same priority may
run simultaneously, unless the priority is 0. All backups with priority 0 run
sequentially in an unspecified order.

Displays a summary of all destination devices with entries in the register.

The exit codes for bkreg are the following:

0 = the task completed successfully

1 = one or more parameters to bkreg are invalid

2 = an error has occurred, causing bkreg to fail to
complete all portions of its task

10/92

Page 5

bkreg (1M) bkreg (1M)

Errors are reported on standard error if any of the following occurs:
1. The tag specified in bkreg -e or bkreg -r does not exist in the backup register.
2. The tag specified in bkreg -a already exists in the register.

EXAMPLES
Example 1:

bkreg -p 15 -w 3

establishes a 15-week rotation period in the default backup register and sets the
current week to the 3rd week of the rotation period.

Example 2:

bkreg -a acct5 -t wklybu.tab \

-0 /usr:/dev/rdsk/m328_cld0s2:usr -c "2 4-6 8 10:0,2,5" \
-m incfile -b -txE \

-d ctape:capacity=1404:acctwklyl,acctwkly2,acctwkly3 \

adds an entry named acct5 to the backup register named wklybu.tab. If
wklybu.tab does not already exist, it will be created. The originating object to be
backed up is the /usr file system on the /dev/rdsk/m328_c1d0s2 device which is
known as usr. The backup will be performed each Sunday, Tuesday, and Friday of
the second, fourth through sixth, eighth, and tenth weeks of the rotation period
using the incfile (incremental file) method. The method options specify that a
table of contents will be created on additional media instead of in the backup his-
tory log, the exception list is to be ignored, and an estimate of the number of
volumes for the archive is to be provided before performing the backup. The
backup will be done to the next available cartridge tape device using the three car-
tridge tape volumes acctwklyl, acctwkly2, and acctwkly3. These volumes
have a capacity of 1404 blocks each.

Example 3:

bkreg -e services2 -t wklybu.tab \
-0 /back:/dev/rdsk/m328_cld0s8:back -m migration \
-c demand -d ctape:/dev/rdsk/m328_c4d0s3 \

changes the specifications for the backup operation named services2 on the
backup table wklybu.tab so that whenever the command backup -c demand is
executed, the backup that was performed to the destination device
back:dev/rdsk/m328_c1d0s2:back will be migrated from that device (now serv-
ing as the originating device) to a cartridge tape.

Example 4:
bkreg -e pubsfri -P 10 -D develfri,marketfri,acctfri

changes the priority level for the backup operation named pubsfri to 10 and
makes this backup operation dependent on the three backup operations develfri,
marketfri, and acctfri. The pubsfri operation will be done only after all
backup operations with priorities greater than 10 have begun and after the devel-
fri, marketfri, and acct fri operations have been completed successfully.

Page 6 10/92

bkreg (1M) bkreg (1M)

Example 5:
bkreg -c 1-8:0-6

provides the default display of the contents of the default backup register, for all
weekdays for the first through eighth weeks of the rotation period. The informa-
tion in the register will be displayed in the following format:

Rotation Period = 10 Current Week = 4

Originating Device: / /dev/root
Tag Weeks Days Method Options Pri Dgroup

Originating Device: /usr /dev/dsk/m328_cld0s2

Tag Weeks Days Method Options Pri Dgroup
usrsp 1-8 0 ffile -bxt 15 ctape
FILES
/etc/bkup/method/ *
/etc/bkup/bkreg.tab describes the backup policy established by the adminis-
trator
/etc/dgroup. tab lists logical groupings of devices as determined by the
administrator
/etc/device.tab describes specific devices and their attributes
SEE ALSO

backup(1M), £fdisk(1M), £dp(1M), incfile(IM), ffile(1M), fimage(1M),
fmthard(1M), getvol(1M), labelit(1M), mkfs(1M), mount(1M), prtvtoc(1M),
restore(1M)

10/92 Page 7

bkstatus (1M) (System Administration Utilities) bkstatus (1M)

NAME

bkstatus - display the status of backup operations

SYNOPSIS

bkstatus [-h] [-£ field_separator] [-7 jobids] [-s states | -a] [-u users]
bkstatus -p period

DESCRIPTION

Without options, the bkstatus command displays the status of backup operations
that are in progress: either active, pending, waiting or suspended. When used
with the -a option, the backup command includes failed and completed backup
operations in the display.

bkstatus -p defines the amount of status information that is saved for display.
bkstatus may only be executed by a user with superuser privilege.

Each backup operation goes through a number of states as described below. The
keyletters listed in parentheses after each state are used with the -s option and also
appear on the display.

pending (p)
backup has been invoked and the operations in the backup register for
the specified day are scheduled to occur.

active(a)
The backup operation has been assigned a destination device and
archiving is currently underway; or a suspended backup has been
resumed.

waiting (w)
The backup operation is waiting for operator interaction, such as insert-
ing the correct volume.

suspended (s)
The backup operation has been suspended by an invocation of backup
-S.

failed(f)
The backup operation failed or has been cancelled.

completed(c)
The backup operation has completed successfully.

The -a and -s options are mutually exclusive.

Options
-a Include failed and completed backup operations in the display. All
backup operations that have occurred within the rotation period are
displayed.

10/92

-f field_separator
Suppresses field wrap on the display and specifies an output field
separator to be used. The value of c is the character that will appear as
the field separator on the display output. For clarity of output, do not
use a separator character that is likely to occur in a field. For example,
do not use the colon as a field separator character if the display will con-
tain dates that use a colon to separate hours from minutes. To use the

Page 1

bkstatus (1M)

-h

-] jobids

-p period

-s states

—-u users

DIAGNOSTICS

(System Administration Utilities) bkstatus (1M)

default field separator (tab), specify the null character (" ") for c.
Suppress header on the display.

Restrict the display to the specified list of backup job ids (either
comma-separated or blank-separated and enclosed in quotes). [See
backup(1M)].

Define the amount of backup status information that is saved and made
available for display as period. period is the number of weeks that infor-
mation is saved in /bkup/bkstatus.tab. Status information that is
older than the number of weeks specified in period is deleted from the
status table. The minimum valid entry is 1. The maximum valid entry
is 52. The default is 1 week.

Restrict the report to backup operations with the specified states. states
is a list of state key-letters (concatenated, comma-separated or blank-
separated and surrounded by quotes). For example,

apf

a,p, f

||a p f"
all specify that the report should only include backup operations that
are active, pending or failed.

Restrict the display to backup operations started by the specified list of
users (either comma-separated or blank-separated and enclosed in
quotes). users must be in the passwd file.

The exit codes for the bkstatus command are the following:

0 = successful completion of the task

1 = one or more parameters to bkstatus are invalid.

2 = an error has occurred which caused bkstatus to fail to
complete all portions of its task.

EXAMPLES

Example 1:

bkstatus -p 4

specifies that backup status information is to be saved for four weeks. Any status
information older than four weeks is deleted from the system.

Example 2:

bkstatus -a -j back-459,back-395

produces a display that shows status for the two backup jobs specified, even if they
have completed or failed.

Page 2

10/92

bkstatus (1M) (System Administration Utilities) bkstatus (1M)

Example 3:
bkstatus -s a,c -u "oper3 oper4d"

produces a display that shows only those backup jobs issued by users oper3 and
oper4 that have a status of either active or completed.

FILES
/etc/bkup/bkstatus.tab lists the current status of backups that have
occurred or are still in progress
/etc/bkup/bkreg.tab describes the backup policy decided on by the Sys-
tem Administrator
SEE ALSO
backup(1M), bkhist(1M), bkreg(1M)
10/92

Page 3

boot (1M) boot (1M)

NAME

boot - bootstrap procedures

DESCRIPTION

Bootstrapping is the process of loading and executing a standalone program. The
term bootstrapping is used to describe the process of loading and executing the
bootable operating system, but any standalone program can be booted instead. The
diagnostic monitor for a machine is a good example of a standalone program other
than the operating system that can be booted.

The bootstrap procedure on most machines consists of the following basic phases.

First, the machine is either turned on, or brought down to firmware mode in any of
a number of ways (hardware reset button, a shutdown or init command, and so
on). On powerup, the boot process is generally begun automatically: a small
firmware program is loaded and executed, and the process moves into the second
phase.

From firmware mode, however, the boot process is not automatic and the user can
request the running of a firmware command, a standalone program (such as the
bootable operating system), or the reconfiguration of the operating system.

Assume that an operating system boot is requested from firmware. The firmware
boot code loads and executes a disk (or other storage media) based boot program.

Next, the boot program loads and executes the bootable operating system. It is at
this point that the UNIX system is started, necessary file systems are mounted [see
vistab(4)], and init is run to bring the system to the initdefault state specified
in /etc/inittab [see inittab(4)].

For the Motorola reference platform, the boot program is called boot. These pro-
grams are taken from the boot slice on disk, and loaded and executed at boot time.
A copy of this program exists in the directory /usr/1ib, for the purpose of copying
it to another hard disk using the dinit command.

The default bootable operating system file is /stand/unix. The /stand slice is
defined in the disk’s VTOC table.

BOOT COMMANDS AND OPTIONS

10/92

For more information about what commands and options the boot supports, issue a
boot command from the BUG but specify a file name of ;help. This help message
will produce output which looks something like that shown below.

188-Bug>bo 6 0;help

Booting from: VME328, Controller 6, Drive 0
Loading: ;help

Volume: $00000000

IPL loaded at: $00700000

System VR4.0 M88K Boot Loader

Boot commands: "bo x y ;command"

make-kernel force a new unix to be built

Page 1

boot (1M) boot (1M)

help obtain these helpful messages

1s list the files in the V_STAND slice
1 an alias for 1ls

? an alias for help

Boot options: "bo x y file;option[;option] ..."

root-slice specify root FS slice; keyword=hex
boot-slice specify V_STAND slice; keyword=hex

noprobe do not run the device probes

one-cpu use only the boot mpu

kdb stop in kernel debugger on boot (if possible)
debug specify the probe output; keyword=hex

halt return to the BUG after loading kernel

h an alias for halt

188-Bug>

The make-kernel command is used to force the system through the auto-
configuration process. It is useful when you change a configurable parameter, for-
get to touch /stand/system, and shut the system down.

The help command lists the help message shown above.

The 1s and 1 commands are used to view the contents of the V_STAND slice to
determine what kernels are available.

The root-slice option specifies the slice on the boot device which is to be used as
the root filesystem (this command is used only in special configurations). Slices are
designated using a single hexadecimal digit [0-9a-fA-F].

The boot-slice option is used to select from the available V_STAND slices on a
disk to locate the probes and the kernel (this command is used only in special
configurations). Slices are designated using a single hexadecimal digit [0-9a-fA-F].

The noprobe option is used to avoid the time spent probing for new devices and
subsequently checking whether the system needs to be reconfigured. No
reconfiguration will occur if noprobe is specified even if one is needed.

On multiprocessor systems, one of the CPUs is used to initialize the majority of the
system and then the remainder of the CPUs are started. Using the one-cpu option
inhibits the starting of the remainder of the CPUs in the system. This option is use-
ful for eliminating multiprocessor affects on the system (e.g., during driver debug-
ging).

The kdb option causes the system to halt in the kernel debugger after the system
has been initialized but before any additional CPUs are started and before the dev-
ices are initialized. If the kernel debugger is not installed, this option has no effect.
See the kdb(1M) manpage for further details about the kernel debugger.

The debug option controls how much output is sent to the console terminal. The
hex value must be between 0 and 7 inclusive and consists of three bits in which 0
indicates off and 1 indicates on. Bit 0 controls diagnostics for successful opera-
tions. Bit 1 controls diagnostics for failed operations. Bit 2 controls diagnostics for
operations which are skipped (e.g., the ignore option in the EDT data file causes the
entry to be skipped).

Page 2 10/92

boot (1M) boot (1M)

The halt and h options return to the ROM debugger after the image is loaded (this
option requires intimate knowledge of how the image operates and should be used
carefully). See the note below when using this option.

DIAGNOSTICS
The following table describes the diagnostics which may be seen when the system
is booted.

equal sign is missing
The option being executed requires an equal sign to separate the keyword
from the value and no equal sign was found.

invalid hex value
The option being executed requires a valid hexadecimal value. These valid

debug value must be <= 7
The debug value must be between 0 and 7 inclusive.

unknown option <option>
An unknown option was specified.

file name too long
Due to limitations of the BFS file system, all files have names containing less
than 14 characters. The file specified contains more than 14 characters.

Unable to open <name>
The file name specified doesn’t exist or can’t be opened.

file <filename>: bad magic
The file specified is not a COFF or ELF executable and thus can not be
loaded.

no compiled in configuration information found
Standard kernels have default configuration information compiled into the
ELF file itself to allow the system to be booted without any probes. The file
specified contained no such information.

cannot open file system
The file /stand /system either doesn’t exist or can’t be opened.

system file more recent than unix
The file /stand/system has been modified more recently than the kernel
being booted and thus a reconfiguration of the kernel is required.

cannot open file edt_data
The file /stand /edt_data either doesn’t exist or can’t be opened.

edt_data file more recent than unix
The file /stand/edt_data has been modified more recently than the kernel
being booted and thus a reconfiguration of the kernel is required.

help may used only with list
The help command was attempted with a command which is not one of the
list commands.

slice <slice> isn’t tagged V_STAND
An attempt was made to boot from a slice which isn’'t tagged as a
V_STAND file system.

10/92 Page 3

boot (1M) boot (1M)

No /stand slice on device
There are no slices on this device which contain any bootable files.

noprobe and debug may not be used together
The commands noprobe and debug may not be used together.

must not specify a file name
A command or option was specified which does not take a file name but a
file name was given.

must specify a file name
A command which requires a file was executed without any file specified.

Name = <kernel_name>, start address = <start_address>
This diagnostic message shows which object is booted and what the address
in the object where execution will begin.

EDT table overflow
The number of devices specified in the EDT data file or found by the probes
exceeds the boot program’s internal table size.

Using In-core EDT built by probe programs
This diagnostic message is issued when the information gathered by the
probes is used (as opposed to the EDT information in the kernel itself).

Program load point <addr> is too near the boot loader
The program, when loaded, would cause the boot loader to be overwritten.

Incore and probed EDT entries differ for <name>, board <num>
A difference between the probe and the previously configuration informa-
tion was found. The kernel should be reconfigured.

Adding required device <device> to EDT
This diagnostic is printed when a required device is added to the
configuration information regardless of whether the device is actually
present in the system.

No probe programs!: using builtin devices
No probe programs were found so the previously configuration informa-
tion will be used by the kernel.

Boot: unable to run this kernel on this CPU
The kernel is not configured to run on the CPU it was booted on.

Boot: kernel configuration information missing
One or more the compiled in configuration sections of the kernel file were
missing from the kernel.

Boot: inappropriate kernel CPU support
The kernel if either configured for a different CPU than the one it was
booted on or it has support for more CPUs than are necessary. The kernel
should be reconfigured.

NOTES
The boot program is not smart enough to differentiate between a bootable kernel or
stand-alone program and a UNIX executable. Booting a UNIX executable will
result in unpredictable results.

Page 4 10/92

boot(1M) boot (1M)

When booting a UNIX kernel using the ;halt option, register 9 must be manually set
to the value of 0xf00D before jumping to the start address of the kernel.

SEE ALSO
dinit(1M), init(1M), kdo(1M), fmthard(1M), prtvtoc(lM), shutdown(1M),
inittab(4), vistab(4).

10/92 Page 5

bootparamd (1M) (NFS) bootparamd (1M)

NAME
bootparamd - boot parameter server

SYNOPSIS
bootparamd [-d]

DESCRIPTION
bootparamd is a server process that provides information to diskless clients neces-
sary for booting. It obtains its information from the /etc/bootparams file.

bootparamd can be invoked either by inetd(1M) or by the user.
The -d option displays the debugging information.

FILES
/etc/bootparams

SEE ALSO
inetd(1IM)

10/92 Page 1

bootpd (1M) bootpd (1M)

NAME
bootpd, in.bootpd - Internet Boot Protocol server
SYNOPSIS
bootpd [-s -t timeout -d] [configfile [dumpfile]]
DESCRIPTION
bootpd implements an Internet Boot Protocol server as defined in RFC 951 and RFC
1048. It is normally run by /etc/inetd by including the following line in the file
/etc/inetd.conf:
bootps dgramudp wait root /etc/bootpd bootpd
This causes bootpd to be started only when a boot request arrives. If bootpd does
not receive another boot request within fifteen minutes of the last one it received, it
will exit to conserve system resources. The -t switch may be used to specify a
different timeout value in minutes (for example -t20). A timeout value of zero
means forever.
It is also possible to run bootpd in a standalone configuration using the -s switch
(for example, at boot time from /etc/rc.local). This is probably the desired
mode of operation for large network installations with many hosts. In this case, the
-t switch has no effect since bootpd will never exit.
Each instance of the -d switch increases the level of debugging output.
Upon startup, bootpd first reads its configuration file, /etc/bootptab, and then
begins listening for BOOTREQUEST packets. The configuration file has a format
similar to that of termcap(3X) in which two-character case-sensitive tag symbols
are used to represent host parameters. These parameter declarations are separated
by colons (:). The general format is:
hostname : tg=value : tg=value : tg=value . . .
where hostname is the actual name of a bootp client and tg is a two-character tag
symbol. Most tags must be followed by an equals-sign and a value as above. Some
may also appear in a boolean form with no value (that is, : tg :). The currently
recognized tags are:
bf Bootfile
bs Bootfile size in 512-octet blocks
cs Cookie server address list
ds Domain name server address list
gw Gateway address list
ha Host hardware address
hd Bootfile home directory
hn Send hostname
ht Host hardware type (see Assigned Numbers RFC)
im Impress server address list
ip Host IP address
lg Log server address list
1p LPR server address list
ns IEN-116 name server address list
rl Resource location protocol server address list
sm Host subnet mask
tc Table continuation (points to similar “template’” host entry)
10/92 Page 1

bootpd (1M) bootpd (1M)

to Time offset in seconds from UTC
ts Time server address list
vm Vendor magic cookie selector

There is also a generic tag, Tn , where n is an RFC 1048 vendor field tag number.
Thus it is possible to immediately take advantage of future extensions to RFC 1048
without being forced to modify bootpd first. Generic data may be represented as
either a stream of hexadecimal numbers or as a quoted string of ASCII characters.
The length of the generic data is automatically determined and inserted into the
proper field(s) of the RFC 1048-style bootp reply.

The following tags take a whitespace-separated list of IP addresses: cs, ds, gw, im,
1g, 1p, ns, rl, and ts. The ip and sm tags each take a single IP address. All IP
addresses are specified in standard Internet ““dot” notation and may use decimal,
octal, or hexadecimal numbers (octal numbers begin with 0, hexadecimal numbers
begin with ‘0x” or ‘0X").

The ht tag specifies the hardware type code as either an unsigned decimal, octal, or
hexadecimal integer or one of the following symbolic names: ethernet or ether
for 10Mb Ethernet, ethernet3 or ether3 for 3Mb experimental Ethernet, ieece802,
tr, or token-ring for IEEE 802 networks, pronet for Proteon ProNET Token Ring,
or chaos, arcnet, or ax.25 for Chaos, ARCNET, and AX.25 Amateur Radio net-
works, respectively. The ha tag takes a hardware address which must be specified
in hexadecimal; optional periods and/or a leading ‘0x’ may be included for reada-
bility. The ha tag must be preceded by the ht tag (either explicitly or implicitly; see
tc below).

The hostname, home directory, and bootfile are ASCII strings which may be option-
ally surrounded by double quotes ("). The client’s request and the values of the hd
and bf symbols determine how the server fills in the bootfile field of the bootp
reply packet.

If the client specifies an absolute pathname and that file exists on the server
machine, that pathname is returned in the reply packet. If the file cannot be found,
the request is discarded; no reply is sent. If the client specifies a relative pathname,
a full pathname is formed by prepending the value of the hd tag and testing for
existence of the file. If the hd tag is not supplied in the configuration file or if the
resulting boot file cannot be found, then the request is discarded.

Clients which specify null boot files will always elicit a reply from the server. The
exact reply will again depend upon the hd and bf tags. If the bf tag gives an abso-
lute pathname and the file exists, that pathname is returned in the reply packet.
Otherwise, if the hd and bf tags together specify an accessible file, that filename is
returned in the reply. If a complete filename cannot be determined or the file does
not exist, the reply will contain a zeroed-out bootfile field.

In all these cases, existence of the file means that, in addition to actually being
present, the file must have its public read access bit set, since this is required by
tftpd(1M) to permit the file transfer. Also, all filenames are first tried as
filename.hostname and then simply as filename, thus providing for individual per-
host bootfiles.

Page 2 10/92

bootpd (1M) bootpd (1M)

10/92

The time offset to may be either a signed decimal integer specifying the client’s
time zone offset in seconds from UTC, or the keyword auto which uses the server’s
time zone offset. Specifying the to symbol as a boolean has the same effect as
specifying auto as its value.

The bootfile size bs may be either a decimal, octal, or hexadecimal integer specify-
ing the size of the bootfile in 512-octet blocks, or the keyword auto which causes
the server to automatically calculate the bootfile size at each request. As with the
time offset, specifying the bs symbol as a boolean has the same effect as specifying
auto as its value.

The vendor magic cookie selector (the vm tag) may take one of the following key-
words: auto (indicating that vendor information is determined by the client’s
request), rfc1048 (which always forces an RFC 1048-style reply), or cmu (which
always forces a CMU-style reply).

The hn tag is strictly a boolean tag; it does not take the usual equals-sign and value.
It’s presence indicates that the hostname should be sent to RFC 1048 clients.
bootpd attempts to send the entire hostname as it is specified in the configuration
file; if this will not fit into the reply packet, the name is shortened to just the host
field (up to the first period, if present) and then tried. In no case is an arbitrarily-
truncated hostname sent (if nothing reasonable will fit, nothing is sent).

Often, many host entries share common values for certain tags (such as name
servers, etc.). Rather than repeatedly specifying these tags, a full specification can
be listed for one host entry and shared by others via the tc (table continuation)
mechanism. Often, the template entry is a dummy host which doesn’t actually
exist and never sends bootp requests. This feature is similar to the tc feature of
termcap(3X) for similar terminals. Note that bootpd allows the tc tag symbol to
appear anywhere in the host entry, unlike termcap which requires it to be the last
tag. Information explicitly specified for a host always overrides information
implied by a tc tag symbol, regardless of its location within the entry. The value of
the tc tag may be the hostname or IP address of any host entry previously listed in
the configuration file.

Sometimes it is necessary to delete a specific tag after it has been inferred via tc.
This can be done using the construction tag@ which removes the effect of tag as in
termcap(3X). For example, to completely undo an IEN-116 name server
specification, use “:ns@:” at an appropriate place in the configuration entry. After
removal with @, a tag is eligible to be set again through the tc mechanism.

Blank lines and lines beginning with “#” are ignored in the configuration file. Host
entries are separated from one another by newlines; a single host entry may be
extended over multiple lines if the lines end with a backslash (\). It is also accept-
able for lines to be longer than 80 characters. Tags may appear in any order, with
the following exceptions: the hostname must be the very first field in an entry, and
the hardware type must precede the hardware address.

Page 3

bootpd (1M) bootpd (1M)

An example /etc/bootptab file follows:

Sample bootptab file

defaultl:\
:hd=/usr/boot :bf=null:\
:ds=128.2.35.50 128.2.13.21:\
:ns=0x80020b4d 0x80020ffd:\
:£s=0x80020b4d 0x80020ffd:\
:sm=255.255.0.0:gw=0x8002fe24:\
:hn:vm=auto:to=-18000:\
:T37=0x12345927AD3BCF:T99="Special ASCII string":

carnegie:ht=6:ha=7FF8100000AF:ip=128.2.11.1:tc=defaultl:
baldwin:ht=1:ha=0800200159C3:ip=128.2.11.10:tc=defaultl:
wylie:ht=1:ha=00DD00CADF00:1ip=128.2.11.100:tc=defaultl:
arnold:ht=1:ha=0800200102AD:ip=128.2.11.102:tc=defaultl:
bairdford:ht=1:ha=08002B02A2F9:ip=128.2.11.103:tc=defaultl:
bakerstown:ht=1:ha=08002B0287C8:1p=128.2.11.104:tc=defaultl:

Special domain name server for next host
butlerjct:ht=1:ha=08002001560D:1p=128.2.11.108:ds=128.2.13.42:tc=defaultl:

gastonville:ht=6:ha=7FFF81000A47:1ip=128.2.11.115:tc=defaultl:
hahntown:ht=6:ha=7FFF81000434:1p=128.2.11.117:tc=defaultl:
hickman:ht=6:ha=7FFF810001BA:ip=128.2.11.118:tc=defaultl:
lowber:ht=1:ha=00DD00CAF000:ip=128.2.11.121:tc=defaultl:
mtoliver:ht=1:ha=00DDO0FE1600:ip=128.2.11.122:tc=defaultl:

bootpd looks in /etc/services to find the port numbers it should use. Two
entries are extracted: bootps -- the bootp server listening port, and bootpc -- the
destination port used to reply to clients. If the port numbers cannot be determined
this way, they are assumed to be 67 for the server and 68 for the client.

bootpd rereads its configuration file when it receives a hangup signal, SIGHUP, or
when it receives a bootp request packet and detects that the file has been updated.
Hosts may be added, deleted or modified when the configuration file is reread. If
bootpd is compiled with the -DDEBUG option, receipt of a SIGUSR1 signal causes
it to dump its memory-resident database to the file /etc/inet/bootpd.dump or
the command-line-specified dumpfile.

USER CONSIDERATIONS
Individual host entries must not exceed 1024 characters.

FILES
/etc/bootptab
/etc/inet /bootpd . dump
/etc/services

SEE ALSO
inetd(1M)
RFC 951, RFC 1048, RFC 1084

Page 4 10/92

brc (1M) (Essential Utilities) brc (1M)

NAME

brec, bcheckrc - system initialization procedures

SYNOPSIS

/sbin/brc
/sbin/bcheckrc

DESCRIPTION

These shell procedures are executed via entries in /etc/inittab by init when-
ever the system is booted.

First, the bcheckrc procedure checks the status of the root file system. If the root
file system is found to be bad, bcheckrc repairs it.

Then, bckeckre mounts the /stand, /proc, and /var (if it exists) file systems
(/var may exist as a directory in the root file system, or as a separate file system).

The brc script performs administrative tasks related to file sharing.

After these two procedures have executed, init checks for the initdefault value
in /etc/inittab. This tells init in which run level to place the system. If, for
example, initdefault is set to 2, the system will be placed in the multi-user state
via the rc2 procedure.

Note that bcheckrc should always be executed before brc. Also, these shell pro-
cedures may be used for several run-level states.

SEE ALSO

10/92

fsck(IM), init(IM), rc2(1M), shutdown(1M), inittab(4), mnttab(4)

Page 1

buildsys (1M) buildsys (1M)

NAME

buildsys - operating system configuration script

SYNOPSIS

/sbin/buildsys [-s]

DESCRIPTION

NOTES

The buildsys shell script performs the activities necessary to build a new bootable
operating system from single user mode. buildsys is executed by the shell script
rc6 or during a powerup if the configuration of a new bootable operating system is
necessary. Normally, buildsys will not be called if the file /stand/noautoconfig
exists. The bootable operating system resides in /stand and is generally referred to
as unix.

Building a new operating system is usually required by hardware and system
software changes made to your system. These changes must be incorporated into
the bootable operating system so that it has complete and correct knowledge of the
system configuration.

buildsys performs the following activities:
checks and mounts the file systems listed in /etc/boot_tab
optionally saves the current bootable unix (see NOTES below)
runs cunix to create a new unix
unmounts all file systems previously mounted

optionally reboots the system; a reboot is requested if buildsys was run
during a powerup (that is, the -s option was specified); if it was run by rc6
(no -s option), control is returned to rc6

If an error occurs during the configuration of a new unix, buildsys exits to a shell;
this gives the user a chance to fix any problems that might have caused the
configuration process to fail, or to copy a version of unix to /stand/unix that is
known to work in order to reboot the system. Exiting this shell (using ctrl-d or
exit), puts the machine in firmware mode. The machine can then be rebooted
from firmware.

If the kernel debugger module, KDB, is listed in the system file, buildsys will
automatically run dbsym(1M) and dbcmd(1M). These programs will load the kernel
symbols and macros into the new kernel so they will be accessible to the debugger.

buildsys overwrites /stand/unix. To prevent loss of the bootable unix
corresponding to a crash dump when an autoconfigure runs during a crash
recovery, a procedure to save the current bootable unix may be enabled by editing
/sbin/buildsys and following the instructions contained therein.

SEE ALSO

10/92

crashconf(1M), cunix(1M), docmd(1M), dbsym(1M), init(1M), kdb(1M), rc6(1M),
shutdown(1M), vistab(4).

Page 1

cal(1) (User Environment Utilities) cal(1)

NAME
cal - print calendar

SYNOPSIS
cal [[month] year]

DESCRIPTION
cal prints a calendar for the specified year. If a month is also specified, a calendar
just for that month is printed. If neither is specified, a calendar for the present
month is printed. The month is a number between 1 and 12. The year can be
between 1 and 9999. The calendar produced is that for England and the United
States.

NOTES
An unusual calendar is printed for September 1752. That is the month 11 days were
skipped to make up for lack of leap year adjustments. To see this calendar, type:
cal 9 1752
The command cal 83 refers to the year 83, not 1983.

The year is always considered to start in January even though this is historically
naive.

10/92 Page 1

calendar(1) (User Environment Utilities) calendar(1)

NAME

calendar - reminder service

SYNOPSIS

calendar [-]

DESCRIPTION

calendar consults the file calendar in the current directory and prints out lines
that contain today’s or tomorrow’s date anywhere in the line. Most reasonable
month-day dates such as Aug. 24, august 24, 8/24, and so on, are recognized, but
not 24 August or 24/8. On weekends “tomorrow” extends through Monday.
calendar can be invoked regularly by using the crontab(1) or at(1) commands.

When an argument is present, calendar does its job for every user who has a file
calendar in his or her login directory and sends them any positive results by
mail(l). Normally this is done daily by facilities in the UNIX operating system (see
cron(1M)).

If the environment variable DATEMSK is set, calendar will use its value as the full
path name of a template file containing format strings. The strings consist of field
descriptors and text characters and are used to provide a richer set of allowable
date formats in different languages by appropriate settings of the environment vari-
able LANG or LC_TIME (see environ(5)). (See date(1) for the allowable list of field
descriptors.)

EXAMPLES

FILES

The following example shows the possible contents of a template:
%B $eth of the year %Y
$B represents the full month name, %e the day of month and %Y the year (4 digits).
If DATEMSK is set to this template, the following calendar file would be valid:
March 7th of the year 1989 < Reminder>

/usr/lib/calprog program used to figure out today’s and tomorrow’s dates
/etc/passwd
/tmp/cal*

SEE ALSO

NOTES

10/92

at(1), cron(IM), crontab(1), date(l), mail(l), environ(5).

Appropriate lines beginning with white space will not be printed.
Your calendar must be public information for you to get reminder service.
calendar’s extended idea of ““‘tomorrow’’ does not account for holidays.

Page 1

captoinfo (1M) (Terminal Information Utilities) captoinfo (1M)

NAME

captoinfo — convert a termcap description into a terminfo description

SYNOPSIS

captoinfo [-v...] [-V][-1] [-wwidth] file . ..

DESCRIPTION

FILES

NOTES

captoinfo looks in file for termcap descriptions. For each one found, an
equivalent terminfo description is written to standard output, along with any
comments found. A description which is expressed as relative to another descrip-
tion (as specified in the termcap tc = field) will be reduced to the minimum
superset before being output.

If no file is given, then the environment variable TERMCAP is used for the filename or
entry. If TERMCAP is a full pathname to a file, only the terminal whose name is
specified in the environment variable TERM is extracted from that file. If the
environment variable TERMCAP is not set, then the file /usr/share/lib/termcap is
read.

-V print out tracing information on standard error as the program runs. Speci-
fying additional -v options will cause more detailed information to be
printed.

-V print out the version of the program in use on standard error and exit.

-1 cause the fields to print out one to a line. Otherwise, the fields will be
printed several to a line to a maximum width of 60 characters.

-w change the output to width characters.
/usr/share/lib/terminfo/?/* Compiled terminal description database.

captoinfo should be used to convert termcap entries to terminfo entries because
the termcap database (from earlier versions of UNIX System V) may not be sup-
plied in future releases.

SEE ALSO

10/92

curses(3X), infocmp(1M), terminfo(4)

Page 1

cat(1) (Essential Utilities) cat(1)

NAME
cat - concatenate and print files

SYNOPSIS
cat [-u] [-s] [-v [-t] [-e]] file...
DESCRIPTION
cat reads each file in sequence and writes it on the standard output. Thus:

cat file
prints £ile on your terminal, and:
cat filel file2 >file3
concatenates filel and file2, and writes the results in file3.

If no input file is given, or if the argument - is encountered, cat reads from the
standard input file.

The following options apply to cat:
-u The output is not buffered. (The default is buffered output.)
-s cat is silent about non-existent files.

-v Causes non-printing characters (with the exception of tabs, new-lines and
form-feeds) to be printed visibly. ASCII control characters (octal 000 - 037)
are printed as “n, where n is the corresponding ASCII character in the range
octal 100 - 137 (@, A, B,C, ..., X, Y, Z, [, \,], ", and _); the DEL character
(octal 0177) is printed ~2. Other non-printable characters are printed as M-x,
where x is the ASCII character specified by the low-order seven bits.

When used with the -v option, the following options may be used:

-t Causes tabs to be printed as "“I’s and formfeeds to be printed as "L's.
-e Causes a $ character to be printed at the end of each line (prior to the new-
line).

The -t and -e options are ignored if the -v option is not specified.
SEE ALSO

cp(1), pa(1), pr(1)
NOTES

Redirecting the output of cat onto one of the files being read will cause the loss of
the data originally in the file being read. For example,

cat filel file2 >filel
causes the original data in filel to be lost.

INTERNATIONAL FUNCTIONS
cat can read and write files containing characters from supplementary code sets.

When invoked with the —v option, cat considers all characters from supplementary
code sets to be printable.

10/92 Page 1

catman (1M) (BSD Compatibility Package) catman (1M)

NAME
catman - create the cat files for the manual

SYNOPSIS
/usr/ucb/catman [-nptw] [-Mdirectory] [-T tmac.an] [sections]

DESCRIPTION
The catman commands creates the preformatted versions of the on-line manual
from the nroff(1) input files. Each manual page is examined and those whose pre-
formatted versions are missing or out of date are recreated. If any changes are
made, catman recreates the whatis database.

If there is one parameter not starting with a ‘-, it is taken to be a list of manual sec-
tions to look in. For example

catman 123
only updates manual sections 1, 2, and 3.
The following options are available:

-n Do not (re)create the whatis database.
-p Print what would be done instead of doing it.
-t Create troffed entries in the appropriate fmt subdirectories instead of

nroffing into the cat subdirectories.
-w Only create the whatis database. No manual reformatting is done.

-M Update manual pages located in the specified directory
(/usr/share/man by default).

-T Use tmac. an in place of the standard manual page macros.

ENVIRONMENT
TROFF The name of the formatter to use when the -t flag is given. If not set,
‘troff’is used.

FILES
/usr/share/man default manual directory location
/usr/share/man/man?/*.* raw (nroff input) manual sections
/usr/share/man/cat?/*.* preformatted nroffed manual pages
/usr/share/man/fmt?/*.* preformatted troffed manual pages
/usr/share/man/whatis whatis database location
/usr/ucblib/makewhatis command script to make whatis database

SEE ALSO
man(1l), nrof£(1), troff£(1l), whatis(l)

DIAGNOSTICS

man?/xxx.? (.so’ed from man?/yyy.?): No such file or directory
The file outside the parentheses is missing, and is referred to by the file
inside them.

target of .so in man?/xxx.? must be relative to /usr/man
catman only allows references to filenames that are relative to the directory
/usr/share/man.

10/92 Page 1

catman(1M) (BSD Compatibility Package) catman (1M)

opendir:man?: No such file or directory
A harmless warning message indicating that one of the directories catman
normally looks for is missing.

.: No such file or directory
A harmless warning message indicating catman came across an empty
directory.

Page 2 10/92

cb(1) (Advanced C Utilities) cb(1)

NAME
cb - C program beautifier

SYNOPSIS
cb [-s] [-3] [-lleng]l [-V] [file . . .]

DESCRIPTION
The cb comand reads syntactically correct C programs either from its arguments or
from the standard input, and writes them on the standard output with spacing and
indentation that display the structure of the C code. By default, cb preserves all
user new-lines.

cb accepts the following options.

-s Write the code in the style of Kernighan and Ritchie found in The C
Programming Language.

-J Put split lines back together.
-1 leng Split lines that are longer than leng.
-V Print on standard error output the version of cb invoked.

NOTES
cb treats asm as a keyword.

The format of structure initializations is unchanged by cb.

Punctuation that is hidden in preprocessing directives causes indentation errors.
SEE ALSO
cc(l)

Kernighan, B. W., and Ritchie, D. M., The C Programming Language, Second Edition,
Prentice-Hall, 1988

10/92 Page 1

cc(1) (C Programming Language Utilities) cc(1)

NAME
cc - configurable C compiler

SYNOPSIS
cc |options] file . . .

DESCRIPTION
/usr/bin/cc is the interface to a choice of C compilation systems. There are two
supported compilation systems available: GNU C, and the ABI (Application
Binary Interface) compilation system. Regardless of which underlying compilation
system is used, the command line syntax will always be the syntax described in this
manual page.

cc will use GNU C by default, or you may actively choose which compilation sys-
tem to execute by setting the environment variable CCCOMPILER to either gnu or
abi. Compilation systems other than GNU C or ABI can also be used with the
configurable cc command.

Because cc usually creates files in the current directory during the compilation pro-
cess, it is necessary to run cc in a directory in which the output files can be created.

Components
The compilation tools conceptually consist of a preprocessor, compiler, optimizer,
basic block analyzer, assembler, and link editor. cc processes the supplied options
and then executes the various tools with the proper arguments. cc accepts several
types of files as arguments.

Files whose names end with .c are taken to be C source files and may be prepro-
cessed, compiled, optimized, instrumented for profiling, assembled, and link
edited. The compilation process may be stopped after the completion of any pass if
the appropriate options are supplied. If the compilation process runs through the
assembler, then an object file is produced whose name is that of the source with .o
substituted for .c. However, the .o file is normally deleted if a single C file is com-
piled and then immediately link edited. In the same way, files whose names end in
.s are taken to be assembly source files; they may be assembled and link edited.
Files whose names end in .1i are taken to be preprocessed C source files, and they
may be compiled, optimized, instrumented for profiling, assembled, and link
edited. Files whose names do notend in .c, .s, or .1 are handed to the link editor,
which produces a dynamically linked executable whose name by default is a. out.

When cc is put in a file prefixcc, the prefix will be recognized and used to prefix the
names of each tool executed. For example, OLDcc will execute OLDacomp, OLD-
newoptim, OLDbasicblk, OLDas, and OLD1d. Therefore, be careful when moving cc
around, and be sure you already have in place the prefixed versions of the compila-
tion components. The prefix applies to the compiler, optimizer, basic block
analyzer, assembler, and link editor.

Options
The following options are interpreted by cc:
-A name| (tokens) |
Associate name as a predicate with the specified tokens as if by a #assert
preprocessing directive.

10/92 Page 1

cc(1)

Page 2

-C

-C

(C Programming Language Utilities) cc(1)

Preassertions: system(unix)
cpu (m68k or m88k)
machine (m68k or m88k)

Cause all predefined macros (other than those that begin with __) and
predefined assertions to be forgotten.

¢ can be either dynamic or static. -B dynamic causes the link editor to
look for files named 1ibx.so and then for files named 1ibx.a when given
the -1x option. -B static causes the link editor to look only for files
named libx.a. This option may be specified multiple times on the com-
mand line as a toggle. This option and its argument are passed to 1d.

Cause the preprocessing phase to pass along all comments other than those
on preprocessing directive lines.

Suppress the link editing phase of the compilation and do not remove any
produced object files.

-D name|=tokens]

-Idir

-J sfm

Associate name with the specified tokens as if by a #define preprocessing
directive. If no =tokens is specified, the token 1 is supplied.

Predefinitions: m68k or m88k

unix
c can be either y or n. -dy specifies dynamic linking, which is the default, in
the link editor. -dn specifies static linking in the link editor. This option
and its argument are passed to 1d.

Only preprocess the named C files and send the result to the standard out-
put. The output will contain preprocessing directives for use by the next
pass of the compilation system.

This option is obsolete and will be ignored.

Direct the link editor to produce a shared object rather than a dynamically
linked executable. This option is passed to 1d. It cannot be used with the
-dn option.

Cause the compiler to generate additional information needed for the use of
tbx. Use of tbx on a program compiled with both the -g and -0 options is
not recommended unless you understand the behavior of optimization.

Print, one per line, the path name of each file included during the current
compilation on the standard error output.

Alter the search for included files whose names do not begin with / to look
in dir prior to the usual directories. The directories for multiple -I options
are searched in the order specified.

Not supported on Motorola 68000 and 88000 systems. A warning to this
effect will be printed.

-K [mode,goal, PIC, minabi]

10/92

cc(1)

10/92

-Ldir

(C Programming Language Utilities) cc(1)

-K mode Not supported on Motorola 68000 and 88000 systems. A
warning to this effect will be printed.

-K goal Not supported on Motorola 68000 and 88000 systems. A
warning to this effect will be printed.

-K PIC Cause position-independent code (PIC) to be generated.

-K minabi Direct the compilation system to use a version of the C library
that minimizes dynamic linking, without changing the
application’s ABI conformance (or non-conformance, as the
case may be). Applications that use the Network Services
Library or the X library may not use -K minabi.

The -K option can accept multiple arguments. For example, -K PIC,
minabi can be used instead of -K PIC -K minabi.

Add dir to the list of directories searched for libraries by 1d. This option
and its argument are passed to 1d.

-1 name

-0

Search the library libname.so or libname.a. Its placement on the com-
mand line is significant as a library is searched at a point in time relative to
the placement of other libraries and object files on the command line. This
option and its argument are passed to 1d.

Arrange for compilation phase optimization. This option has no effect on
.s files.

-o pathname

P

-qc

Produce an output object file pathname, instead of the default a.out. This
option and its argument are passed to 1d.

Only preprocess the named C files and leave the result in corresponding
files suffixed .i. The output will not contain any preprocessing directives,
unlike -E.

Arrange for the compiler to produce code that counts the number of times
each routine is called; also, if link editing takes place, profiled versions of
libc.a and libm.a (with the -1m option) are linked if the -dn option is
used. A mon.out file will then be produced at normal termination of execu-
tion of the object program. An execution profile can then be generated by
use of prof.

¢ can be either y or n. If cisy, identification information about each invoked
compilation tool will be added to the output files (the default behavior).
This can be useful for software administration. Giving n for ¢ suppresses
this information.

c can be either 1 or p. -gl causes the invocation of the basic block analyzer
and arranges for the production of code that counts the number of times
each source line is executed. A listing of these counts can be generated by
use of 1Iprof. -gp is a synonym for -p.

Compile, optimize (if -0 is present), and do not assemble or link edit the
named C files. The assembler-language output is left in corresponding files
suffixed .s.

Page 3

cc(1)

Page 4

(C Programming Language Utilities) cc(1)

-U name

-V

-V

Cause any definition of name to be forgotten, as if by a #undef preprocess-
ing directive. If the same name is specified for both -D and -U, name is not
defined, regardless of the order of the options.

Cause each invoked tool to print its version information on the standard
error output.

Cause the compiler to perform more and stricter semantic checks, and to
enable certain 1int-1ike checks on the named C files.

-W tool , argl[, argy ..]

-Xc

Hand off the argument(s) arg; each as a separate argument to tool. Each
argument must be separated from the preceding by only a comma. (A
comma can be part of an argument by escaping it by an immediately
preceding backslash (\) character; the backslash is removed from the result-
ing argument.) tool can be one of the following;:

preprocessor
compiler

optimizer

basic block analyzer
assembler

link editor

For example, -Wa, -o, objfile passes -o and objfile to the assembler, in that
order; also -W1,-I,name causes the linking phase to override the default
name of the dynamic linker, /usr/1ib/libc.so.1.

R Mol SNk]

The order in which the argument(s) are passed to a tool with respect to the
other specified command line options may change.

Specify the degree of conformance to the ANSI C standard. ¢ can be one of
the following:

t (transition)
The compiled language includes all new features compatible with
older (pre-ANSI) C (the default behavior). The compiler warns
about all language constructs that have differing behavior between
the new and old versions and uses the pre-ANSI C interpretation.
This includes, for example, warning about the use of trigraphs the
new escape sequence \a, and the changes to the integral promotion
rules.

a (ANSI)
The compiled language includes all new features of ANSI C and
uses the new interpretation of constructs with differing behavior.
The compiler continues to warn about the integral promotion rule
changes, but does not warn about trigraph replacements or new
escape sequences.

¢ (conformance)
The compiled language and associated header files are ANSI C con-
forming, but include all conforming extensions of -Xa. Warnings
will be produced about some of these. Also, only ANSI defined
identifiers are visible in the standard header files.

10/92

cc(1)

FILES

10/92

(C Programming Language Utilities)

cc(1)

The predefined macro __STDC__ has the value 0 for -Xt and -Xa, and 1 for
-Xc. All warning messages about differing behavior can be eliminated in
-Xa through appropriate coding; for example, use of casts can eliminate the
integral promotion change warnings.

An additional option, -Xn, is also recognized. This option is identical to -xt
except that the application is required to provide the definition of the run-
time variable _lib_version. The provision of this option is to accommodate
test suites. The usage of the -Xn option by applications is not encouraged,

because it may not be portable to other Release 4 systems.

-Y item, dir

Specify a new directory dir for the location of item. item can consist of any of
the characters representing tools listed under the -W option or the following

characters representing directories containing special files:

F obsolete. Use -YP instead.

wacnH

directory searched last for include files: INCDIR (see -TI)
directory containing the start-up object files: LIBDIR

obsolete. Use -YP instead.
obsolete. Use -YP instead.
Change the default directories used for finding libraries. dir is a

colon-separated path list.

If the location of a tool is being specified, then the new path name for the
tool will be dir/tool. If more than one -Y option is applied to any one item,
then the last occurrence holds.

cc recognizes -a, -B, -e, -h -m, -o, -r, -s, -t, -u, and -z and passes these options
and their arguments to 1d. cc also passes any unrecognized options to 1d without

any diagnostic.

file.
file.
file.
file.s

a.out
LIBDIR/*crti.o
LIBDIR/*crtl.o
LIBDIR/*crtn.o
TMPDIR/ *
/usr/bin/cc
LIBDIR/ .compilerc
BINDIR /gcc

LIBDIR /gcc-cpp
LIBDIR/gcc-ccl
LIBDIR /gcc-include
LIBDIR /gcc-gnulib
LIBDIR /cpp

LIBDIR /basicblk

O F- 0

C source file

preprocessed C source file
object file

assembly language file
link-edited output

startup initialization code
startup routine

last startup routine
temporary files

configurable compiler driver
default compiler configuration file
GNU C compiler driver
GNU C preprocessor

GNU C compiler

GNU C include directory
GNU C library

USL CI5 preprocessor

basic block analyzer

Page 5

cc(1)

NOTES

Page 6

BINDIR/ as
BINDIR/14d
LIBDIR/1ibc.so
LIBDIR/1libc.a

INCDIR
LIBDIR
BINDIR
TMPDIR

(C Programming Language Utilities) cc(1)

assembler

link editor

shared standard C library
archive standard C library

usually /usr/include

usually /usr/ccs/1ib

usually /usr/ccs/bin

usually /var/tmp but can be redefined by setting the
environment variable TMPDIR (see tempnam in
tmpnam(3S)).

Kernighan, B. W., and Ritchie, D. M., The C Programming
Language, Second Edition, Prentice-Hall, 1988

American National Standard for Information Systems -
Programming Language C, X3.159-1989

Obsolescent but still recognized cc options include -f and -F. The -gl and -0
options do not work together; -0 will be ignored.

SEE ALSO
as(1), 1a(1), 1int(1), 1prof(1l), prof(1l), tbx(1) monitor(3C), tmpnam(3S).

10/92

cc(1) (BSD Compatibility Package) cc(1)

NAME
cc - C compiler

SYNOPSIS
/usr/ucb/cc [options]

DESCRIPTION
/usr/ucb/cc is the C compiler for the BSD Compatibility Package. The behavior of
/usr/ucb/cc is identical to /usr/ccs/bin/cc (see cc(l)) except that BSD header
files are used and BSD libraries are linked before System V libraries.

/usr/ucb/cc accepts the same options as /usr/ccs/bin/cc, with the following
exceptions:

-Idir Search dir for included files whose names do not begin with a */’, prior
to the usual directories. The directories for multiple -I options are
searched in the order specified. The preprocessor first searches for
#include files in the directory containing sourcefile, and then in direc-
tories named with -I options (if any), then /usr/ucbinclude, and
finally, in /usr/include.

-Ldir Add dir to the list of directories searched for libraries by /usr/bin/cc.
This option is passed to /usr/bin/1d. Directories specified with this
option are searched before /usr/ucbliband /usr/1lib.

-Y LU, dir Change the default directory used for finding libraries.

FILES
/usr/ucblib
/bin/1d
/usr/ucblib/libucb.a
/usr/lib/libucb.a

NOTES
The -y LU, dir option may have unexpected results, and should not be used. This
option is not in the UNIX System V base.

SEE ALSO
1d(1), as(l), ar(l), cc(l), 1d(l), lorder(l), ranlib(l), strip(l),
tsort(l), a.out(4)

10/92 Page 1

cd(1) (Essential Utilities) cd(1)

NAME
cd - change working directory

SYNOPSIS
cd [directory]

DESCRIPTION
If directory is not specified, the value of shell parameter $HOME is used as the new
working directory. If directory specifies a complete path starting with /, ., or . .,
directory becomes the new working directory. If neither case applies, cd tries to find
the designated directory relative to one of the paths specified by the SCDPATH shell
variable. SCDPATH has the same syntax as, and similar semantics to, the SPATH shell
variable. cd must have execute (search) permission in directory.

Because a new process is created to execute each command, cd would be ineffective
if it were written as a normal command; therefore, it is recognized by and is internal
to the shell.

SEE ALSO
pwd(1), sh(1), chdir(2).

10/92 Page 1

cdc (1) (Enhanced Programming Utilities) cdc(1)

NAME

cdc - change the delta comment of an SCCS delta
SYNOPSIS

cdc -r SID [-m([mrlist])] [-y[comment]] file...
DESCRIPTION

cdc changes the delta comment, for the SID (SCCS identification string) specified by
the -r keyletter, of each named SCCS file.

The delta comment is the Modification Request (MR) and comment information
normally specified via the -m and -y keyletters of the delta command.

If file is a directory, cdc behaves as though each file in the directory were specified
as a named file, except that non-SCCS files (last component of the path name does
not begin with s.) and unreadable files are silently ignored. If a name of - is
given, the standard input is read (see the NOTES section) and each line of the stan-
dard input is taken to be the name of an SCCS file to be processed.

Arguments to cdc, which may appear in any order, consist of keyletter arguments
and file names.

All the described keyletter arguments apply independently to each named file:

-xSID Used to specify the SCCS IDentification (SID) string of a delta for
which the delta comment is to be changed.

-mrlist If the SCCS file has the v flag set [see admin(1)] then a list of MR
numbers to be added and/or deleted in the delta comment of the
SID specified by the -r keyletter may be supplied. A null MR list
has no effect.

mrlist entries are added to the list of MRs in the same manner as
that of delta. In order to delete an MR, precede the MR number
with the character ! (see the EXAMPLES section). If the MR to be
deleted is currently in the list of MRs, it is removed and changed
into a comment line. A list of all deleted MRs is placed in the com-
ment section of the delta comment and preceded by a comment
line stating that they were deleted.

If -m is not used and the standard input is a terminal, the prompt
MRs? is issued on the standard output before the standard input is
read; if the standard input is not a terminal, no prompt is issued.
The MrRs? prompt always precedes the comments? prompt (see -y
keyletter).

mrlist entries in a list are separated by blanks and/or tab charac-
ters. An unescaped new-line character terminates the MR list.

Note that if the v flag has a value [see admin(1)], it is taken to be
the name of a program (or shell procedure) that validates the
correctness of the MR numbers. If a non-zero exit status is
returned from the MR number validation program, cdc terminates
and the delta comment remains unchanged.

10/92 Page 1

cdc(1) (Enhanced Programming Utilities) cde(1)

-ylcomment] Arbitrary text used to replace the comment(s) already existing for
the delta specified by the -r keyletter. The previous comments are
kept and preceded by a comment line stating that they were
changed. A null comment has no effect.

If -y is not specified and the standard input is a terminal, the
prompt comments? is issued on the standard output before the
standard input is read; if the standard input is not a terminal, no
prompt is issued. An unescaped new-line character terminates the
comment text.

If you made the delta and have the appropriate file permissions, you can change its
delta comment. If you own the file and directory you can modify the delta com-
ment.

EXAMPLES
cdc -rl.6 -m"bl88-12345 !b187-54321 bl89-00001" -ytrouble s.file

adds bl88-12345 and bl89-00001 to the MR list, removes bl87-54321 from the MR list,
and adds the comment troubletodeltal.6of s.file.

Entering:
cdc -rl.6 s.file

MRs? !b187-54321 bl88-12345 b189-00001
comments? trouble

produces the same result.

FILES
x-file [see delta(l)]
z-file [see delta(l)]
SEE ALSO
admin(1), delta(l), get(1), help(l), prs(l), sccsfile(4)
DIAGNOSTICS
Use help for explanations.
NOTES

If SCCS file names are supplied to the cdc command via the standard input (- on
the command line), then the -m and -y keyletters must also be used.

Page 2 10/92

ce_bds(1M) ce_bds(1M)

NAME
ce_bds - Common Environment board status

SYNOPSIS
ce_bds [-s] [-h]

DESCRIPTION
ce_bds prints information for each board in the Common Environment, in the for-
mat:

cpu type addr board state
where:
cpu is the board cpu id,
type is the board type (e.g. 374 = Ethernet controller)
addr is the base address for the board
board is a;l index from the first board in the Common Environment (i.e. first board
is 0
state is either "communicating” or "failure"
The options are defined as follows:
-s short format output:
cpu type board
-h no headers (prints the information without the column headers)

FILES
/etc/ce_bds

10/92 Page 1

ce_reset(1M) ce_reset(1M)

NAME
ce_reset - Common Environment reset utility

SYNOPSIS
ce_reset dst_cpu

DESCRIPTION
ce_reset recreates the Common Environment Message Channel to the destination
CPU. It directs the Common Environment driver to gather all the shared memory
resources (BPEs, EPBs, and BUFs), reinitialize them into their original resource
pools, and then recreate the Message Channel with the destination CPU given by
dst_cpu.

10/92 Page 1

cflow(1) (Advanced C Utilities) cflow(1)

NAME

cflow - generate C flowgraph

SYNOPSIS

cflow [-r] [-ix] [-i_] [-dnum] files

DESCRIPTION

10/92

The cflow command analyzes a collection of C, yacc, lex, assembler, and object
files and builds a graph charting the external function references. Files suffixed
with .y, .1, and .c are processed by yacc, 1lex, and the C compiler as appropriate.
The results of the preprocessed files, and files suffixed with .i, are then run
through the first pass of 1int. Files suffixed with .s are assembled. Assembled
files, and files suffixed with .o, have information extracted from their symbol
tables. The results are collected and turned into a graph of external references that
is written on the standard output.

Each line of output begins with a reference number, followed by a suitable number
of tabs indicating the level, then the name of the global symbol followed by a colon
and its definition. Normally only function names that do not begin with an under-
score are listed (see the -i options below). For information extracted from C
source, the definition consists of an abstract type declaration (e.g., char *), and,
delimited by angle brackets, the name of the source file and the line number where
the definition was found. Definitions extracted from object files indicate the file
name and location counter under which the symbol appeared (e.g., text). Leading
underscores in C-style external names are deleted. Once a definition of a name has
been printed, subsequent references to that name contain only the reference
number of the line where the definition may be found. For undefined references,
only < > is printed.

As an example, suppose the following code isin file.c:

int 1i;

The command
cflow -ix file.c
produces the output

1 main: int (), <file.c 4>
f: int(), <file.c 11>
h: <>
i: int, <file.c 1>
g: <>

U wN

Page 1

cflow (1) (Advanced C Utilities) cflow (1)

When the nesting level becomes too deep, the output of cflow can be piped to the
pr command, using the -e option, to compress the tab expansion to something less
than every eight spaces.

In addition to the -D, -I, and -U options [which are interpreted just as they are by
cc], the following options are interpreted by cflow:

-r Reverse the ““caller:callee’’ relationship producing an inverted listing show-
ing the callers of each function. The listing is also sorted in lexicographical
order by callee.

-ix Include external and static data symbols. The default is to include only
functions in the flowgraph.

-1 Include names that begin with an underscore. The default is to exclude
these functions (and data if -ix is used).

-dnum The num decimal integer indicates the depth at which the flowgraph is cut
off. By default this number is very large. Attempts to set the cutoff depth
to a nonpositive integer will be ignored.

SEE ALSO
as(1), cc(1), lex(1), 1int(1), nm(1), pr(1), yacc(l).
DIAGNOSTICS
Complains about multiple definitions and only believes the first.

NOTES
Files produced by lex and yacc cause the reordering of line number declarations,
which can confuse cflow. To get proper results, feed cflow the yacc or lex input.

Page 2 10/92

checkfsys (1M) (Essential Utilities) checkfsys (1M)

NAME
checkfsys - check a file system

SYNOPSIS
checkfsys

DESCRIPTION
The checkfsys command allows you to check for and optionally repair a damaged
file system. The command invokes a visual interface (the check task available
through the sysadm command). The initial prompt allows you to select the device
that contains the filesystem. Then you are asked to specify the type of checking.
The following choices are available:

check only
Check the file system. No repairs are attempted.

interactive fix
Repair the file system interactively. You are informed about each instance
of damage and asked if it should be repaired.

automatic fix

Repair the file system automatically. The program applies a standard repair
to each instance of damage.

The identical function is available under the sysadm menu:

sysadm check

NOTES
While automatic and interactive checks are generally successful, they can occasion-
ally lose a file or a file’s name. Files with content but without names are put in the
file-system/1lost +found directory.
If it is important not to lose data, check the file system first to see if it appears to be
damaged. If it does, use one of the repair options of the task.

DIAGNOSTICS
The checkfsys command exits with one of the following values:

0 Normal exit.
2 Invalid command syntax. A usage message is displayed.
7 The visual interface for this command is not available because it cannot

invoke fmli. (The FMLI package is not installed or is corrupted.)

SEE ALSO
fsck(1M), makefsys(1M), mount fsys(1M), sysadm(1M)

10/92 Page 1

checknr(1) (BSD Compatibility Package) checknr(1)

NAME
checknr - check nroff and troff input files; report possible errors

SYNOPSIS
/usr/ucb/checknr [-fs][-a .x1 .yl .x2.y2... .xn .yn]
[-c.x1.x2 .x3... .xn]][filename . ..]

DESCRIPTION
The checknr command checks a list of nroff or troff input files for certain kinds
of errors involving mismatched opening and closing delimiters and unknown com-
mands. If no files are specified, checknr checks the standard input. Delimiters
checked are:

Font changes using \fx ... \fP.
Size changes using \sx ... \s0.

Macros that come in open ... close forms, for example, the .TS and
.TE macros which must always come in pairs.

checknr knows about the ms and me macro packages.

checknr is intended to be used on documents that are prepared with checknr in
mind. It expects a certain document writing style for \f and \s commands, in that
each \ fx must be terminated with \ fP and each \sx must be terminated with \s0.
While it will work to directly go into the next font or explicitly specify the original
font or point size, and many existing documents actually do this, such a practice
will produce complaints from checknr. Since it is probably better to use the \fP
and \s0 forms anyway, you should think of this as a contribution to your docu-
ment preparation style.

The following options are available:
-f Ignore \ £ font changes.
-s Ignore \s size changes.

-a .x1.yl...
Add pairs of macros to the list. The pairs of macros are assumed to be those
(such as .DS and .DE) that should be checked for balance. The -a option
must be followed by groups of six characters, each group defining a pair of
macros. The six characters are a period, the first macro name, another
period, and the second macro name. For example, to define a pair .BS and
.ES,use -a.BS.ES

-c .x1...
Define commands which checknr would otherwise complain about as
undefined.
SEE ALSO
ean(l), nroff(l), troff(l), me(7), ms(7)

NOTES
There is no way to define a one-character macro name using the -a option.

10/92 Page 1

chgrp(1) (Essential Utilities) chgrp (1)

NAME
chgrp - change the group ownership of a file

SYNOPSIS
chgrp [-R] [-h] group file . ..

DESCRIPTION
chgrp changes the group ID of the files given as arguments to group. The group
may be either a decimal group ID or a group name found in the group ID file,
/etc/group.

You must be the owner of the file, or be the super-user to use this command.
The operating system has a configuration option {_POSIX_CHOWN_RESTRICTED}, to
restrict ownership changes. When this option is in effect, the owner of the file may

change the group of the file only to a group to which the owner belongs. Only the
super-user can arbitrarily change owner IDs whether this option is in effect or not.

chgrp has one option:

-R Recursive. chgrp descends through the directory, and any subdirectories,
setting the specified group ID as it proceeds. When symbolic links are
encountered, they are traversed.

-h If the file is a symbolic link, change the group of the symbolic link. Without
this option, the group of the file referenced by the symbolic link is changed.

FILES
/etc/group
SEE ALSO
chmod(1), chown(1), id(1M), chown(2), group(4), passwd(4).

NOTES
In a Remote File Sharing environment, you may not have the permissions that the
output of the 1s -1 command leads you to believe.

10/92 Page 1

chkey (1) chkey(1)

NAME
chkey - change user encryption key

SYNOPSIS
chkey [-£f]

DESCRIPTION
The chkey command prompts for a password and uses it to encrypt a new user
encryption key. The encrypted key is stored in the publickey(4) database.

The -£ option is used to force an encryption key entry into the database for a user
who doesn’t already have an entry.

This command should be executed only on the master server for the publickey(4)
database.

SEE ALSO
keylogin(1), keylogout(1), publickey(4), keyserv(1M), newkey(1)

10/92 Page 1

chkyn (1) (Essential Utilities)

NAME
chkyn - get yes/no response from user or check answer to question
SYNOPSIS
chkyn [-ynfeid!] [-D defaultvalue] [-k pid]
[-a inputvalue] [-Q aliasname]

chkyn(1)

DESCRIPTION

10/92

[-h helpstring] [-H helpmessage] [-m number] Prompt String

chkyn [-c] Prompt String answer . . .

chkyn [-r] Prompt String answer message . . .

chkyn [-R] Prompt String answer message . . .

chkyn is primarily used by the sysadm (system administration) package. This util-
ity is useful in a variety of shell script applications.

chkyn prints out the Prompt String, followed by the possible answers, and asks the
user for input. The handling of user input is controlled by the command line

options.

chkyn exits with an exit value of 0 for yes or 1 for no.

The following command line options are supported by chkyn:

-y Default answer to prompt is yes.

-n Default answer to prompt is no.

-f Force an answer. If the answer supplied by the user is not valid, ask the
question again, and continue asking until a valid answer is obtained.

-e Echo the answer. This allows a shell script to capture the response

which the user typed in.

-c Prompt String answer . . .

Check a list. This is often used in conjunction with the -f option, which
forces an answer. chkyn prompts the user with the prompt string
(which does not automatically include a question mark), then expects a
reply that matches one of the answer fields. The exit code of chkyn indi-
cates which item from the list of answers was chosen; an exit code higher
than the number of items in the list indicates the user’s entry did not
match any of the list items.

-r Prompt answer message . . .

Accept matching regular expressions. This is most useful with the -f
option, which forces an answer. The user supplies a regular expression
in answer; chkyn prints message if a nonmatching answer is given.

Reject matching regular expressions. This works the same as -r, except
that if an answer from the list is matched, chkyn prints the corresponding
message and considers this an invalid answer.

Match an integer expression. This requires the bs utility, which is not
supported on SYSTEM V/88.

Page 1

chkyn(1) (Essential Utilities) chkyn(1)

-d Match a decimal expression. This requires the bs utility, which is not
supported on SYSTEM V/88.

-Dovalue The default value for an empty input. Must be accompanied by a -c, -r,
-1 or -d option.

-k pid Quit sends SIGTERM to this process id. Used with the -g or -Q options,
which define quit.

~qinput Input that causes quit.

-Qalias Alias name for quit.

-h helpstring
String to request help. -h and -H must both be specified.

-H helpmessage
Help message to display. -h and -H must both be specified.

-m number
Maximum number of times to ask a question.

-! Permit shell escapes from prompt.

DIAGNOSTICS
Exit value from chkyn is basically 0 for true or 1 for false. When a list of acceptable
answers is provided (as with the -c option), the exit code points to the matched
item in the list. A higher exit code indicates no item was matched.

NOTES
Since chkyn is part of the sysadm package, the options and command syntax may
change in future releases to support the requirements of sysadm. User scripts that
depend on certain functions of chkyn would need to be rewritten at that time.

The meaning of multiple answer/message pairs with the -r option is not clear.

Page 2 10/92

chmod (1) (Essential Utilities) chmod(1)

NAME

chmod - change file mode

SYNOPSIS

chmod [-R] modefile . . .
chmod [ugoa [{+ | - | =}[rwx1stugo] file. ..

DESCRIPTION

10/92

chmod changes or assigns the mode of a file. The mode of a file specifies its permis-
sions and other attributes. The mode may be absolute or symbolic.

An absolute mode is specified using octal numbers:
chmod nnnn file . . .

where 7 is a number from 0 to 7. An absolute mode is constructed from the OR of
any of the following modes:

4000 Set user ID on execution.

20#0 Set group ID on execution if #is 7,5, 3, or 1.
Enable mandatory locking if #1is 6, 4, 2, or 0.
This bit is ignored if the file is a directory; it may be set or
cleared only using the symbolic mode.

1000 Turn on sticky bit [(see chmod(2)].

0400 Allow read by owner.

0200 Allow write by owner.

0100 Allow execute (search in directory) by owner.

0070 Allow read, write, and execute (search) by group.

0007 Allow read, write, and execute (search) by others.

A symbolic mode is specified in the following format:
chmod [who] operator [permission(s)] file . . .

who is zero or more of the characters u, g, o, and a specifying whose permissions are
to be changed or assigned:

u user’s permissions

g group’s permissions

o others’ permissions

a all permissions (user, group, and other)

If who is omitted, it defaults to a.
operator is one of +, —, or =, signifying how permissions are to be changed:

+ Add permissions.
- Take away permissions.
= Assign permissions absolutely.

Unlike other symbolic operations, = has an absolute effect in that it resets all other
bits. Omitting permission(s) is useful only with = to take away all permissions.

permission(s) is any compatible combination of the following letters:

r read permission
w write permission

Page 1

chmod(1) (Essential Utilities) chmod (1)

execute permission

user or group set-ID

sticky bit

mandatory locking

u, g, o indicate that permission is to be taken from the current user,
group or other mode respectively.

Hn X

Permissions to a file may vary depending on your user identification number (UID)
or group identification number (GID). Permissions are described in three sequences
each having three characters:

User Group Other
rwx WK rwx

This example (user, group, and others all have permission to read, write, and exe-
cute a given file) demonstrates two categories for granting permissions: the access
class and the permissions themselves.

Multiple symbolic modes separated by commas may be given, though no spaces
may intervene between these modes. Operations are performed in the order given.
Multiple symbolic letters following a single operator cause the corresponding
operations to be performed simultaneously.

The letter s is only meaningful with u or g, and t only works with u.

Mandatory file and record locking (1) refers to a file’s ability to have its reading or
writing permissions locked while a program is accessing that file. It is not possible
to permit group execution and enable a file to be locked on execution at the same
time. In addition, it is not possible to turn on the set-group-ID bit and enable a file
to be locked on execution at the same time. The following examples, therefore, are
invalid and elicit error messages:

chmod g+x, +1 file
chmod g+s, +1 file

Only the owner of a file or directory (or the super-user) may change that file’s or
directory’s mode. Only the super-user may set the sticky bit on a non-directory file.
If you are not super-user, chmod will mask the sticky-bit but will not return an
error. In order to turn on a file's set-group-ID bit, your own group ID must
correspond to the file's and group execution must be set.

The -R option recursively descends through directory arguments, setting the mode
for each file as described above.

EXAMPLES

Page 2

Deny execute permission to everyone:
chmod a-x file
Allow read permission to everyone:
chmod 444 file
Make a file readable and writable by the group and others:

chmod go+rw file
chmod 066 file

10/92

chmod (1) (Essential Utilities) chmod(1)

Cause a file to be locked during access:
chmod +1 file
Allow everyone to read, write, and execute the file and turn on the set group-ID.

chmod =rwx, g+s file
chmod 2777 file

Absolute changes don’t work for the set-group-ID bit of a directory. You must use
g+sorg-s.

SEE ALSO
1s(1) chmod(2).

NOTES
chmod permits you to produce useless modes so long as they are not illegal (for
example, making a text file executable).

10/92 Page 3

chown (1) (Essential Utilities) chown(1)

NAME

chown - change file owner
SYNOPSIS

chown [-R] [-h] owner file ...
DESCRIPTION

chown changes the owner of the files to owner. The owner may be either a decimal

user ID or a login name found in /etc/passwd file.

If chown is invoked by other than the super-user, the set-user-ID bit of the file

mode, 04000, is cleared.

Only the owner of a file (or the super-user) may change the owner of that file.

Valid options to chown are:

-R Recursive. chown descends through the directory, and any subdirectories,
setting the ownership ID as it proceeds. When symbolic links are encoun-
tered, they are traversed.

-h If the file is a symbolic link, change the owner of the symbolic link. Without
this option, the owner of the file referenced by the symbolic link is changed.

The operating system has a configuration option {_POSIX_CHOWN_RESTRICTED}, to

restrict ownership changes. When this option is in effect the owner of the file is

prevented from changing the owner ID of the file. Only the super-user can arbi-
trarily change owner IDs whether this option is in effect or not.
FILES
/etc/passwd
SEE ALSO
chgrp(1), chmod(1), chown(2), passwd(4).
NOTES

In a Remote File Sharing environment, you may not have the permissions that the

output of the 1s -1 command leads you to believe.

10/92 Page 1

chown (1) (BSD Compatibility Package) chown(1)

NAME
chown - change file owner

SYNOPSIS
/usr/ucb/chown [-£hR] owner| . group] file . . .
DESCRIPTION
chown changes the owner of the files to owner. The owner may be either a decimal

user ID or a login name found in /etc/passwd file. The optional . group suffix may
be used to change the group at the same time.

If chown is invoked by other than the super-user, the set-user-ID bit of the file

mode, 04000, is cleared.

Only the super-user may change the owner of a file.

Valid options to chown are:

-f Suppress error reporting

-h If the file is a symbolic link, change the owner of the symbolic link. Without
this option, the owner of the file referenced by the symbolic link is changed.

-R Descend recursively through directories setting the ownership ID of all files
in each directory entered.
FILES
/etc/group
/etc/passwd
NOTES
In a Remote File Sharing environment, you may not have the permissions that the
output of the 1s -1 command leads you to believe.
SEE ALSO
chgrp(1), chmod(1), chown(2), passwd(4).

10/92 Page 1

chroot (1M) chroot(1M)

NAME

chroot - change root directory for a command

SYNOPSIS

/usr/sbin/chroot newroot command

DESCRIPTION

chroot causes the given command to be executed relative to the new root. The
meaning of any initial slashes (/) in the path names is changed for the command
and any of its child processes to newroot . Furthermore, upon execution, the initial
working directory is newroot .

Notice, however, that if you redirect the output of the command to a file:
chroot mnewroot command >x
will create the file x relative to the original root of the command, not the new one.

The new root path name is always relative to the current root: even if a chroot is
currently in effect, the newroot argument is relative to the current root of the run-
ning process.

This command can be run only by the super-user.

SEE ALSO

NOTES

10/92

cd(1), chroot(2).

One should exercise extreme caution when referencing device files in the new root
file system.

Page 1

chrtbl (1M) (System Administration Utilities) chrtbl (1M)

NAME

chrtbl - generate character classification and conversion tables

SYNOPSIS

chrtbl [file]

DESCRIPTION

10/92

The chrtbl command creates two tables containing information on character
classification, upper/lower-case conversion, character-set width, and numeric for-
matting. One table is an array of (257+2) + 7 bytes that is encoded so a table lookup
can be used to determine the character classification of a character, convert a char-
acter [see ctype(3C)], and find the byte and screen width of a character in one of
the supplementary code sets. The other table contains information about the for-
mat of non-monetary numeric quantities: the first byte specifies the decimal delim-
iter; the second byte specifies the thousands delimiter; and the remaining bytes
comprise a null terminated string indicating the grouping (each element of the
string is taken as an integer that indicates the number of digits that comprise the
current group in a formatted non-monetary numeric quantity).

chrtbl reads the user-defined character classification and conversion information
from file and creates three output files in the current directory. To construct file, use
the file supplied in /usr/lib/locale/C/chrtbl_C as a starting point. You may
add entries, but do not change the original values supplied with the system. For
example, for other locales you may wish to add eight-bit entries to the ASCI
definitions provided in this file.

One output file, ctype. c (a C-language source file), contains a (257*2)+7-byte array
generated from processing the information from file. You should review the con-
tent of ctype.c to verify that the array is set up as you had planned. (In addition,
an application program could use ctype.c.) The first 257 bytes of the array in
ctype.c are used for character classification. The characters used for initializing
these bytes of the array represent character classifications that are defined in
/usr/include/ctype.h; for example, _L means a character is lower case and
_S| _B means the character is both a spacing character and a blank. The second 257
bytes of the array are used for character conversion. These bytes of the array are
initialized so that characters for which you do not provide conversion information
will be converted to themselves. When you do provide conversion information, the
first value of the pair is stored where the second one would be stored normally, and
vice versa; for example, if you provide <0x41 0x61>, then 0x61 is stored where
0x41 would be stored normally, and 0x61 is stored where 0x41 would be stored
normally. The last 7 bytes are used for character width information for up to three
supplementary code sets.

The second output file (a data file) contains the same information, but is structured
for efficient use by the character classification and conversion routines (see
ctype(3C)). The name of this output file is the value you assign to the keyword
LC_CTYPE read in from file. Before this file can be used by the character
classification and conversion routines, it must be installed in the
/usr/lib/locale/locale directory with the name LC_CTYPE by someone who is
super-user or a member of group bin. This file must be readable by user, group,
and other; no other permissions should be set. To use the character classification

Page 1

chrtbl (1M) (System Administration Utilities) chrtbl (1M)

and conversion tables in this file, set the LC_CTYPE environment variable appropri-
ately (see environ(5) or set locale(3C)).

The third output file (a data file) is created only if numeric formatting information
is specified in the input file. The name of this output file is the value you assign to
the keyword LC_NUMERIC read in from file. Before this file can be used, it must be
installed in the /usr/lib/locale/locale directory with the name LC_NUMERIC by
someone who is super-user or a member of group bin. This file must be readable
by user, group, and other; no other permissions should be set. To use the numeric
formatting information in this file, set the LC_NUMERIC environment variable
appropriately (see environ(b) or setlocale(3C)).

The name of the locale where you install the files LC_CTYPE and LC_NUMERIC
should correspond to the conventions defined in file. For example, if French con-
ventions were defined, and the name for the French locale on your system is
french, then you should install the files in /usr/1ib/locale/french.

If no input file is given, or if the argument "-" is encountered, chrtbl reads from

standard input.

The syntax of file allows the user to define the names of the data files created by
chrtbl, the assignment of characters to character classifications, the relationship
between upper and lower-case letters, byte and screen widths for up to three sup-
plementary code sets, and three items of numeric formatting information: the
decimal delimiter, the thousands delimiter and the grouping. The keywords recog-
nized by chrtbl are:

LC_CTYPE name of the data file created by chrtbl to contain character
classification, conversion, and width information

isupper character codes to be classified as upper-case letters

islower character codes to be classified as lower-case letters

isdigit character codes to be classified as numeric

isspace character codes to be classified as spacing (delimiter) characters
ispunct character codes to be classified as punctuation characters
iscntrl character codes to be classified as control characters

isblank character code for the blank (space) character

isxdigit character codes to be classified as hexadecimal digits

ul relationship between upper- and lower-case characters

cswidth byte and screen width information (by default, each is one char-

acter wide)

LC_NUMERIC name of the data file created by chrtbl to contain numeric for-
matting information

decimal_point decimal delimiter
thousands_sep thousands delimiter

grouping string in which each element is taken as an integer that indicates
the number of digits that comprise the current group in a for-
matted non-monetary numeric quantity.

Page 2 10/92

chrtbl (1M) (System Administration Utilities) chrtbl (1M)

Any lines with the number sign (#) in the first column are treated as comments and
are ignored. Blank lines are also ignored.

Characters for isupper, islower, isdigit, isspace, ispunct, iscntrl, isblank,
isxdigit, and ul can be represented as a hexadecimal or octal constant (for exam-
ple, the letter a can be represented as 0x61 in hexadecimal or 0141 in octal). Hexa-
decimal and octal constants may be separated by one or more space and/or tab
characters.

The dash character (-) may be used to indicate a range of consecutive numbers.
Zero or more space characters may be used for separating the dash character from
the numbers.

The backslash character (\) is used for line continuation. Only a carriage return is
permitted after the backslash character.

The relationship between upper- and lower-case letters (ul) is expressed as ordered
pairs of octal or hexadecimal constants: <upper-case_character lower-case_character>.
These two constants may be separated by one or more space characters. Zero or
more space characters may be used for separating the angle brackets (< >) from the
numbers.

The following is the format of an input specification for cswidth:
nl:s1,n2:s2,n3:53

where,
nl byte width for supplementary code set 1, required s1 screen width
for supplementary code set 1 n2 byte width for supplementary code set 2
s2 screen width for supplementary code set 2 n3 byte width for sup-
plementary code set 3 53 screen width for supplementary code set 3

decimal_point and thousands_sep are specified by a single character that gives
the delimiter. grouping is specified by a quoted string in which each member may
be in octal or hex representation. For example, \3 or \x3 could be used to set the
value of a member of the string to 3.

EXAMPLE

10/92

The following is an example of an input file used to create the USA-ENGLISH code
set definition table in a file named usa and the non-monetary numeric formatting
information in a file name num-usa.
ILC_CTYPE usa
isupper 0x41 - 0x5a
islower 0x61 - 0x7a
isdigit 0x30 - 0x39
isspace 0x20 0x9 - Oxd
ispunct 0x21 - Ox2f Ox3a - 0x40 \
0x5b - 0x60 0x7b - 0x7e
iscntrl 0x0 - Ox1f 0x7f
isblank 0x20
isxdigit O0x30 - 0x39 0x61 - 0x66 \
0x41 - 0x46
ul <0x41 0x61> <0x42 0x62> <0x43 0x63>
<0x44 0x64> <0x45 0x65> <0x46 0x66>
<0x47 0x67> <0x48 0x68> <0x49 0x69>
<Oxda Oxba> <0x4b Ox6b> <Ox4c 0x6C>

P

Page 3

chrtbl (1M) (System Administration Utilities) chrtbl (1M)

FILES

<0x4d 0x6d> <Oxde Ox6e> <0x4f Ox6f>
<0x50 0x70> <0x51 0x71> <0x52 0x72>
<0x53 0x73> <0x54 0x74> <0x55 0x75>
<0x56 0x76> <0x57 0x77> <0x58 0x78>
<0x59 0x79> <0x5a O0x7a>

cswidth 1:1,0:0,0:0

LC_NUMERIC num usa

decimal_point

thousands_sep ,

grouping "\3"

~

/usr/lib/locale/locale/L.C_CTYPE
data files containing character classification, conversion, and
character-set width information created by chrtbl
/usr/1lib/locale/locale/ LC_NUMERIC
data files containing numeric formatting information created by
chrtbl
/usr/include/ctype.h
header file containing information used by character
classification and conversion routines
/usr/lib/locale/C/chrtbl_C
input file used to construct LC_CTYPE and LC_NUMERIC in the
default locale.

SEE ALSO

ctype(3C), setlocale(3C), environ(5).

DIAGNOSTICS

NOTES

Page 4

The error messages produced by chrtbl are intended to be self-explanatory. They
indicate errors in the command line or syntactic errors encountered within the
input file.

Changing the files in /usr/lib/locale/C will cause the system to behave

unpredictably.
Only lower case hex values are allowed in input specification.

10/92

ckbinarsys (1M) (Essential Utilities) ckbinarsys (1M)

NAME

ckbinarsys - determine whether remote system can accept binary messages

SYNOPSIS

ckbinarsys [-S] -s remote_system_name -t content_type

DESCRIPTION

FILES

Because rmail can transport binary data, it may be important to determine
whether a particular remote system (typically the next hop) can handle binary data
via the chosen transport layer agent (uux, SMTP, and so on)

ckbinarsys consults the file /etc/mail/binarsys for information on a specific
remote system. ckbinarsys returns its results via an appropriate exit code. An
exit code of zero implies that it is OK to send a message with the indicated content
type to the system specified. An exit code other than zero indicates that the remote
system cannot properly handle messages with binary content.

The absence of the binarsys file will cause ckbinarsys to exit with a non-zero
exit code.

Command-line arguments are:

-s remote_system_name
Name of remote system to look up in /etc/mail/binarsys

-t content_type Content type of message to be sent. When invoked by rmail,
this will be one of two strings: text or binary, as determined
by mail independent of any Content-Type: header lines that
may be present within the message header. All other arguments
are treated as equivalent to binary.

-S Normally, ckbinarsys will print a message (if the binary mail
is rejected) which would be suitable for rmail to return in the
negative acknowledgement mail. When -5 is specified, no mes-
sage will be printed.

/etc/mail/binarsys
/usr/lib/mail/surrcmd/ckbinarsys

SEE ALSO

10/92

mail(l), uux(1l), binarsys(4), mailsurr(4).

Page 1

ckbupscd (1M) ckbupscd (1M)

NAME

ckbupscd - check file system backup schedule
SYNOPSIS

ckbupscd [-m]
DESCRIPTION

ckbupscd consults the file /etc/bupsched and prints the file system lists from
lines with date and time specifications matching the current time. If the -m flag is
present, an introductory message in the output is suppressed so that only the file
system lists are printed. Entries in the bupsched file are printed under the control
of cron.

The file bupsched should contain lines of four or more fields, separated by spaces
or tabs. The first three fields (the schedule fields) specify a range of dates and
times. The rest of the fields constitute a list of names of file systems to be printed if
ckbupscd is run at some time within the range given by the schedule fields. The
general format is:

timel,time] day [,day] month[,month] fsyslist

where:

time Specifies an hour of the day (0 through 23), matching any time within that
hour, or an exact time of day (0: 00 through 23:59).

day Specifies a day of the week (sun through sat) or day of the month (1
through 31).

month Specifies the month in which the time and day fields are valid. Legal
values are the month numbers (1 through 12).

fsyslist The rest of the line is taken to be a file system list to print.

Multiple time, day, and month specifications may be separated by commas, in

which case they are evaluated left to right.

An asterisk (*) always matches the current value for the field in which it appears.

A line beginning with a sharp sign (#) is interpreted as a comment and ignored.

The longest line allowed (including continuations) is 1024 characters.

EXAMPLES
The following are examples of lines which could appear in the /etc/bupsched file.

06:00-09:00 fri 1,2,3,4,5,6,7,8,9,10,11 /applic
Prints the file system name /applic if ckbupscd is run between 6:00 A.M.
and 9:00 AM. any Friday during any month except December.

00:00-06:00,16:00-23:59 1,2,3,4,5,6,7 1,8 /
Prints a reminder to backup the root (/) file system if ckbupscd is run
between the times of 4:00 PM. and 6:00 AM. during the first week of
August or January.

FILES
/etc/bupsched specification file containing times and file system to back up

10/92 Page 1

ckbupscd (1M) ckbupscd (1M)

NOTES
ckbupscd will report file systems due for backup if invoked any time in the win-
dow. It does not know that backups may have just been done.

ckbupscd will be removed in the next release of System V.

SEE ALSO
cron(1M), echo(1), sh(1), sysadm(1).

Page 2 10/92

ckdate (1) (Essential Utilities) ckdate (1)

NAME

ckdate, errdate, helpdate, valdate - prompts for and validates a date

SYNOPSIS

ckdate [-Q] [-W width] [- £ format] [-d default] [-h help] [-e error] [-p prompt]
[-k pid [-s signal]]

errdate [-W] [-e error] [-£ format]
helpdate [-W] [-h help] [-£ format]
valdate [-£ format] input

DESCRIPTION

10/92

ckdate prompts a user and validates the response. It defines, among other things,
a prompt message whose response should be a date, text for help and error mes-
sages, and a default value (which will be returned if the user responds with a car-
riage return). The user response must match the defined format for a date.

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -W
option cancels the automatic formatting. When a tilde is placed at the beginning or
end of a message definition, the default text will be inserted at that point, allowing
both custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) will be displayed.

Three visual tool modules are linked to the ckdate command. They are errdate
(which formats and displays an error message), helpdate (which formats and
displays a help message), and valdate (which validates a response). These
modules should be used in conjunction with FML objects. In this instance, the FML
object defines the prompt. When format is defined in the errdate and helpdate
modules, the messages will describe the expected format.

The options and arguments for this command are:

-Q Specifies that quit will not be allowed as a valid response.
-Wwidth Specifies that prompt, help and error messages will be formatted to a
line length of width.

-f format Specifies the format against which the input will be verified. Possible
formats and their definitions are:
%b = abbreviated month name

$B = full month name

%d = day of month (01 - 31)

$D = date as %m/%d/%y (the default format)

%e = day of month (1 - 31; single digits are preceded by a blank)
$h = abbreviated month name (jan, feb, mar)

gm = month number (01 - 12)

%y = year within century (e.g. 89)

%Y = year as CCYY (e.g. 1989)
-d default Defines the default value as default.
The default does not have to meet the format criteria.

Page 1

ckdate (1) (Essential Utilities) ckdate (1)

-h help Defines the help messages as help.

-e error Defines the error message as error.

-p prompt Defines the prompt message as prompt.

-k pid Specifies that process ID pid is to be sent a signal if the user chooses
to abort.

-s signal Specifies that the process ID pid defined with the -k option
is to be sent signal signal when quit is chosen. If no signal is
specified, SIGTERM is used.

input Input to be verified against format criteria.

EXIT CODES
0 = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)
4 = Garbled format argument

NOTES
The default prompt for ckdate is:

Enter the date [?,q]:
The default error message is:

ERROR - Please enter a date, using the following format: <for-
mat>.

The default help message is:
Please enter a date, using the following format: <format>.

When the quit option is chosen (and allowed), g is returned along with the return
code 3. The valdate module will not produce any output. It returns zero for suc-
cess and non-zero for failure.

Page 2 10/92

ckgid (1) (Essential Utilities) ckgid (1)

NAME
ckgid, errgid, helpgid, valgid - prompt for and validate a group ID
SYNOPSIS
ckgid [-Q][-Wwidth][-m] [-d default 1 [-h help 1 [-e error] [-p prompt]
[-k pid [-s signal 1]
errgid [-Wwidth] [-e error]
helpgid [-Wwidth | [-m][-h help]
valgid input
DESCRIPTION
ckgid prompts a user and validates the response. It defines, among other things, a
prompt message whose response should be an existing group ID, text for help and
error messages, and a default value (which is returned if the user responds with a
RETURN).
All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -W
option cancels the automatic formatting. When a tilde is placed at the beginning or
end of a message definition, the default text is inserted at that point, allowing both
custom text and the default text to be displayed.
If the prompt, help or error message is not defined, the default message (as defined
under NOTES) is displayed.
Three visual tool modules are linked to the ckgid command. They are errgid
(which formats and displays an error message), helpgid (which formats and
displays a help message), and valgid (which validates a response). These modules
should be used in conjunction with FML objects. In this instance, the FML object
defines the prompt.
The options and arguments for this command are:
-Q Do not allow quit as a valid response.
-W Use width as the line length for prompt, help, and error messages.
-m Display a list of all groups when help is requested or when the user makes
an error.
-d The default value is default. The default is not validated and so does not
have to meet any criteria.
-h The help message is help.
-e The error message is error.
-p The prompt message is prompt.
-k Send process ID pid a signal if the user chooses to abort.
-s When quit is chosen, send signal to the process whose pid is specified by the
-k option. If no signal is specified, use SIGTERM.
input Input to be verified against /etc/group
10/92 Page 1

ckgid (1) (Essential Utilities) ckgid (1)

EXIT CODES
0 = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)
NOTES
The default prompt for ckgid is:
Enter the name of an existing group [?,d]
The default error message is:
ERROR - Please enter the name of an existing group.
(if the -m option of ckgid is used, a list of valid groups is displayed here)
The default help message is:
Please enter an existing group name.
(if the -m option of ckgid is used, a list of valid groups is displayed here)

When the quit option is chosen (and allowed), g is returned along with the return
code 3. The valgid module does not produce any output. It returns zero for suc-
cess and non-zero for failure.

Page 2 10/92

ckint(1) (Essential Utilities) ckint(1)

NAME
ckint - display a prompt; verify and return an integer value

SYNOPSIS
ckint [-Q][-Wwidth][-b base]| [-d default 1 [-h help] [-e error]

[-pprompt }[-k pid [-s signal]]

errint [-Wwidth][-b base] [-e error]
helpint [-Wwidth][-b base] [-h help]
valint [-b base] input

DESCRIPTION
ckint prompts a user, then validates the response. It defines, among other things,
a prompt message whose response should be an integer, text for help and error
messages, and a default value (which is returned if the user responds with a
RETURN).
All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -W
option cancels the automatic formatting. When a tilde is placed at the beginning or
end of a message definition, the default text is inserted at that point, allowing both
custom text and the default text to be displayed.
If the prompt, help or error message is not defined, the default message (as defined
under NOTES) is displayed.
Three visual tool modules are linked to the ckint command. They are errint
(which formats and displays an error message), helpint (which formats and
displays a help message), and valint (which validates a response). These modules
should be used in conjunction with FML objects. In this instance, the FML object
defines the prompt. When base is defined in the errint and helpint modules, the
messages includes the expected base of the input.
The options and arguments for this command are:
-Q Do not allow quit as a valid response.
-W Use width as the line length for prompt, help, and error messages.
-b The base for input is base. Must be 2 to 36, default is 10.
-d The default value is default. The default is not validated and so does not

have to meet any criteria.
-h The help message is help.
-e The error message is error.
-p The prompt message is prompt.
-k Send process ID pid a signal if the user chooses to abort.
-s When quit is chosen, send signal to the process whose pid is specified by the
-k option. If no signal is specified, use SIGTERM.

input Input to be verified against base criterion.

10/92 Page 1

ckint(1) (Essential Utilities) ckint(1)

EXIT CODES
0 = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)

NOTES
The default base 10 prompt for ckint is:

Enter an integer (?,q]
The default base 10 error message is:

ERROR - Please enter an integer.
The default base 10 help message is:

Please enter an integer.

The messages are changed from “integer” to “base base integer” if the base is
set to a number other than 10.

When the quit option is chosen (and allowed), g is returned along with the return
code 3. The valint module does not produce any output. It returns zero for suc-
cess and non-zero for failure.

Page 2 10/92

ckitem(1) (Essential Utilities) ckitem(1)

NAME

ckitem - build a menu; prompt for and return a menu item

SYNOPSIS

ckitem[-Q] [-Wwidth][-uno] [-£ file] [-1 label]
[[-iinvis][-1invis]...][-mmax][-ddefault][-h help] [-e error]
[-pprompt][-k pid [-s signal] 1 [choicel choice2 ...]

erritem|[-Wwidth | [-e error] [choicel choice2 . ..]

helpitem [-W width] [-h help] [choicel choice2 . ..]

DESCRIPTION

10/92

ckitem builds a menu and prompts the user to choose one item from a menu of
items. It then verifies the response. Options for this command define, among
other things, a prompt message whose response is a menu item, text for help and
error messages, and a default value (which is returned if the user responds with a
RETURN).

By default, the menu is formatted so that each item is prepended by a number and
is printed in columns across the terminal. Column length is determined by the
longest choice. Items are alphabetized.

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -W
option cancels the automatic formatting. When a tilde is placed at the beginning or
end of a message definition, the default text is inserted at that point, allowing both
custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) is displayed.

Two visual tool modules are linked to the ckitem command. They are erritem
(which formats and displays an error message) and helpitem (which formats and
displays a help message). These modules should be used in conjunction with FML
objects. In this instance, the FML object defines the prompt. When choice is defined
in these modules, the messages describe the available menu choice (or choices).

The options and arguments for this command are:

-Q Do not allow quit as a valid response.

-W Use width as the line length for prompt, help, and error messages.
-u Display menu items as an unnumbered list.

-n Do not display menu items in alphabetical order.

-0 Return only one menu token.

-f file contains a list of menu items to be displayed. [The format of this file is:
token<tab>description. Lines beginning with a pound sign (“#") are com-
ments and are ignored.]

-1 Print label above the menu.

-1 invis specifies invisible menu choices (choices not to be printed in the
menu). For example, “all” used as an invisible choice would mean it is a
valid option but does not appear in the menu. Any number of invisible
choices may be defined. Invisible choices should be made known to a user

Page 1

ckitem(1) (Essential Utilities) ckitem (1)

either in the prompt or in a help message.
-m The maximum number of menu choices allowed is m.

-d The default value is default. The default is not validated and so does not
have to meet any criteria.

-h The help message is help.

-e The error message is error.

-p The prompt message is prompt.

-k Send process ID pid a signal if the user chooses to abort.

-s When quit is chosen, send signal to the process whose pid is specified by the
-k option. If no signal is specified, use SIGTERM.

choice Defines menu items. Items should be separated by white space or newline.

EXIT CODES
0 = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)
4 = No choices from which to choose

NOTES

The user may input the number of the menu item if choices are numbered or as
much of the string required for a unique identification of the item. Long menus are
paged with 10 items per page.

When menu entries are defined both in a file (by using the -f option) and also on
the command line, they are usually combined alphabetically. However, if the -n
option is used to suppress alphabetical ordering, then the entries defined in the file
are shown first, followed by the options defined on the command line.

The default prompt for ckitem is:
Enter selection [?,??,q]:

One question mark gives a help message and then redisplays the prompt. Two
question marks gives a help message and then redisplays the menu label, the menu
and the prompt.

The default error message is:

ERROR - Does not match an available menu selection.

Enter one of the following:

— the number of the menu item you wish to select

— the token associated withe the menu item,

— partial string which uniquely identifies the token
for the menu item

— ?? to reprint the menu

The default help message is:

Enter one of the following:

— the number of the menu item you wish to select

— the token associated with the menu item,

— partial string which uniquely identifies the token

Page 2 10/92

ckitem(1) (Essential Utilities) ckitem(1)

for the menu item
— ?? to reprint the menu

When the quit option is chosen (and allowed), g is returned along with the return
code 3.

10/92 Page 3

ckkeywd (1) (Essential Utilities) ckkeywd (1)

NAME

ckkeywd - prompt for and validate a keyword

SYNOPSIS

ckkeywd [-Q 1 [-Wwidth][- default | [-h help | [-e error] [-p prompt]
[-kpid[-ssignal 1][keyword . ..]

DESCRIPTION

ckkeywd prompts a user and validates the response. It defines, among other things,
a prompt message whose response should be one of a list of keywords, text for help
and error messages, and a default value (which is returned if the user responds
with a RETURN). The answer returned from this command must match one of the
defined list of keywords.

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -w
option cancels the automatic formatting. When a tilde is placed at the beginning or
end of a message definition, the default text is inserted at that point, allowing both
custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) is displayed.

-Q Do not allow quit as a valid response.

-W Use width as the line length for prompt, help, and error messages.

-d The default value is default. The default is not validated and so does not
have to meet any criteria.

-h The help message is help.

-e The error message is error.

-p The prompt message is prompt.

-k Send process ID pid a signal if the user chooses to abort.

-s When quit is chosen, send signal to the process whose pid is specified by

the -k option. If no signal is specified, use SIGTERM.

keyword The keyword, or list of keywords, against which the answer is to be
verified is keyword.

EXIT CODES

NOTES

10/92

0 = Successful execution

1 = EOF on input

2 = Usage error

3 = User termination (quit)

4 = No keywords from which to choose

The default prompt for ckkeywd is:
Enter appropriate value [keyword[, ...],?,q]
The default error message is:

Page 1

ckkeywd (1) (Essential Utilities) ckkeywd (1)

ERROR - Please enter one of the following keywords:
keyword([, . ..]

The default help message is:

Please enter one of the following keywords:
keyword(, ...]

When the quit option is chosen (and allowed), g is returned along with the return
code 3.

Page 2 10/92

ckpath (1) (Essential Utilities) ckpath (1)

NAME
ckpath - display a prompt; verify and return a pathname

SYNOPSIS
ckpath [-Q][-Wwidth][-al 1]| file_options] [-rtwx] [-d default]
[-hhelp][-eerror] [-p prompt][-k pid [-s signal]]

errpath [-Wwidth | [-al 1][file_options] [-rtwx] [-e error]
helppath [-Wwidth][-al 1][file_options][-rtwx][-h help |
valpath[-al 1][file_options] [-rtwx] input

DESCRIPTION
ckpath prompts a user and validates the response. It defines, among other things,
a prompt message whose response should be a pathname, text for help and error
messages, and a default value (which is returned if the user responds with a
RETURN).

The pathname must obey the criteria specified by the first group of options. If no
criteria are defined, the pathname must be for a normal file that does not yet exist.
If neither -a (absolute) or -1 (relative) is given, then either is assumed to be valid.

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -w
option cancels the automatic formatting. When a tilde is placed at the beginning or
end of a message definition, the default text is inserted at that point, allowing both
custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) is displayed.

Three visual tool modules are linked to the ckpath command. They are errpath
(which formats and displays an error message), helppath (which formats and
displays a help message), and valpath (which validates a response). These
modules should be used in conjunction with FACE objects. In this instance, the
FACE object defines the prompt.

The options and arguments for this command are:

-Q Do not allow quit as a valid response.

-W Use width as the line length for prompt, help, and error messages.

-a Pathname must be an absolute path.

-1 Pathname must be a relative path.

-r Pathname must be readable.

-t Pathname must be creatable (touchable). Pathname is created if it does not
already exist.

-w Pathname must be writable.

-x Pathname must be executable.

-d The default value is default. The default is not validated and so does not
have to meet any criteria.

10/92 Page 1

ckpath (1) (Essential Utilities) ckpath (1)

-h The help message is help.

-e The error message is error.

-p The prompt message is prompt.

-k Send process ID pid a signal if the user chooses to abort.

-s When quit is chosen, send signal to the process whose pid is specified by the
-k option. If no signal is specified, use SIGTERM.

input Input to be verified against validation options.

file_options are:

-b Pathname must be a block special file.

-c Pathname must be a character special file.

-f Pathname must be a regular file.

-y Pathname must be a directory.

-n Pathname must not exist (must be new).

-o Pathname must exist (must be old).

-z Pathname must be a file with the size greater than 0 bytes.

The following file_options are mutually exclusive: -bcfy, -no, -nz, -bz, -cz.

EXIT CODES
0 = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)
4 = Mutually exclusive options
NOTES
The text of the default messages for ckpath depends upon the criteria options that
have been used. An example default prompt for ckpath (using the -a option) is:

Enter an absolute pathname [?,q]
An example default error message (using the -a option) is:
ERROR - Pathname must begin with a slash (/).
An example default help message is:

A pathname is a filename, optionally preceded by parent
directories. The pathname you enter:

— must contain 1 to NAME_MAX characters

— must not contain a spaces or special characters

NAME_MAX is a system variable is defined in 1imits.h.

When the quit option is chosen (and allowed), q is returned along with the return
code 3. The valpath module does not produce any output. It returns zero for suc-
cess and non-zero for failure.

Page 2 10/92

ckrange (1) (Essential Utilities) ckrange (1)

NAME

ckrange - prompts for and validates an integer

SYNOPSIS

ckrange [-Q] [-W width] [-1 lower] [-u upper] [-b base] [-a default] [-h help]
[-e error] [-p prompt] [-k pid [-s signal]]

errange [-W] [-1 lower] [-u upper] [-e error]
helprange [-W] [-1 lower] [-u upper] [-h help]
valrange [-1 lower] [-u upper] [-b base] input

DESCRIPTION

10/92

ckrange prompts a user and validates the response. It defines, among other things,
a prompt message whose response should be an integer in the range specified, text
for help and error messages, and a default value (which will be returned if the user
responds with a carriage return).

This command also defines a range for valid input. If either the lower or upper
limit is left undefined, then the range is bounded on only one end.

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -w
option cancels the automatic formatting. When a tilde is placed at the beginning or
end of a message definition, the default text will be inserted at that point, allowing
both custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) will be displayed.

Three visual tool modules are linked to the ckrange command. They are errange
(which formats and displays an error message), helprange (which formats and
displays a help message), and valrange (which validates a response). These
modules should be used in conjunction with FACE objects. In this instance, the
FACE object defines the prompt.

The options and arguments for this command are:

-Q Specifies that quit will not be allowed as a valid response.

-W Specifies that prompt, help and error messages will be formatted to a line
length of width.

-1 Defines the lower limit of the range as lower. Default is the machine’s largest

negative integer or long.

-u Defines the upper limit of the range as upper. Default is the machine’s larg-
est positive integer or long.

-b Defines the base for input. Must be 2 to 36, default is 10.

-d Defines the default value as default. The default is not validated and so does
not have to meet any criteria.

-h Defines the help messages as help.
-e Defines the error message as error.

Page 1

ckrange (1) (Essential Utilities) ckrange(1)

-p Defines the prompt message as prompt.
-k Specifies that process ID pid is to be sent a signal if the user chooses to abort.

-s Specifies that the process ID pid defined with the -k option is to be sent sig-
nal signal when quit is chosen. If no signal is specified, SIGTERM is used.

input Input to be verified against upper and lower limits and base.

EXIT CODES

NOTES

Page 2

0 = Successful execution

1 = EOF on input

2 = Usage error

3 = User termination (quit)

The default base 10 prompt for ckrange is:
Enter an integer between lower_bound and upper_bound [q,?]:
The default base 10 error message is:

ERROR - Please enter an integer between lower_bound and
upper_bound.

The default base 10 help message is:

Please enter an integer between lower_bound and upper_bound.

The messages are changed from "integer” to "base base integer” if the base is set to a
number other than 10.

When the quit option is chosen (and allowed), g is returned along with the return
code 3. The valrange module will not produce any output. It returns zero for suc-
cess and non-zero for failure.

10/92

ckstr(1) (Essential Utilities) ckstr(1)

NAME

ckstr - display a prompt; verify and return a string answer

SYNOPSIS

ckstr [-Q][-Wwidth | [[-x regexp][-r regexp]...]1[-1 length]
[-adefault] [-hhelp][-e error] [-p prompt | [-k pid [-s signal]]

errstr [-Wwidth | [-eerror] [[-x regexp][-x regexp]...][-1 length]
helpstr [-Wwidth | [-hhelp] [[-x regexp][-r regexp]...][-1 length]
valstrinput [[-rregexp][-xr regexp]...][-1 length]

DESCRIPTION

10/92

ckstr prompts a user and validates the response. It defines, among other things, a
prompt message whose response should be a string, text for help and error mes-
sages, and a default value (which is returned if the user responds with a RETURN).

The answer returned from this command must match the defined regular expres-
sion and be no longer than the length specified. If no regular expression is given,
valid input must be a string with a length less than or equal to the length defined
with no internal, leading or trailing white space. If no length is defined, the length
is not checked. Either a regular expression or a length must be given with the com-
mand.

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -Ww
option cancels the automatic formatting. When a tilde is placed at the beginning or
end of a message definition, the default text is inserted at that point, allowing both
custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) is displayed.

Three visual tool modules are linked to the ckstr command. They are errstr
(which formats and displays an error message), helpstr (which formats and
displays a help message), and valstr (which validates a response). These modules
should be used in conjunction with FACE objects. In this instance, the FACE object
defines the prompt.

The options and arguments for this command are:

-Q Do not allow quit as a valid response.

-W Use width as the line length for prompt, help, and error messages.

-r Validate the input against regular expression regexp. May include white
space. If multiple expressions are defined, the answer need match only one
of them.

-1 The maximum length of the input is length.

-d The default value is default. The default is not validated and so does not
have to meet any criteria.

-h The help message is help.

Page 1

ckstr(1) (Essential Utilities) ckstr(1)

-e The error message is error.
-p The prompt message is prompt.
-k Send process ID pid a signal if the user chooses to abort.

-s When quit is chosen, send signal to the process whose pid is specified by the
-k option. If no signal is specified, use SIGTERM.

input Input to be verified against format length and/or regular expression criteria.

EXIT CODES

NOTES

Page 2

0 = Successful execution

1 = EOF on input

2 = Usage error

3 = User termination (quit)

The default prompt for ckstr is:
Enter an appropriate value [?,d]

The default error message is dependent upon the type of validation involved. The
user is told either that the length or the pattern matching failed.

The default help message is also dependent upon the type of validation involved.
If a regular expression has been defined, the message is:

Please enter a string which matches the following pattern:
regexp

Other messages define the length requirement and the definition of a string.

When the quit option is chosen (and allowed), q is returned along with the return
code 3. The valstr module does not produce any output. It returns zero for suc-
cess and non-zero for failure.

Unless a “q”” for ““quit” is disabled by the -Q option, a single ““q” to the following
ckstr -rqgq
is treated as a “‘quit’”” and not as a pattern match.

10/92

cktime (1) (Essential Utilities) cktime (1)

NAME
cktime - display a prompt; verify and return a time of day

SYNOPSIS
cktime [-Q][-Wwidth][-£ format][-d default | [-hrhelp] [-e error]
[-p prompt][-k pid [-s signal]]
errtime [-Wwidth][-e error] [-£ format]
helptime [-Wwidth][-hhelp | [-£ format]
valtime [-f format] input

DESCRIPTION
cktime prompts a user and validates the response. It defines, among other things,
a prompt message whose response should be a time, text for help and error mes-
sages, and a default value (which is returned if the user responds with a RETURN).
The user response must match the defined format for the time of day.

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -w
option cancels the automatic formatting. When a tilde is placed at the beginning or
end of a message definition, the default text is inserted at that point, allowing both
custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) is displayed.

Three visual tool modules are linked to the cktime command. They are errtime
(which formats and displays an error message), helptime (which formats and
displays a help message), and valtime (which validates a response). These
modules should be used in conjunction with FMLI objects. In this instance, the
FMLI object defines the prompt. When format is defined in the errtime and help-
time modules, the messages describe the expected format.

The options and arguments for this command are:

-Q Do not allow quit as a valid response.
-W Use width as the line length for prompt, help, and error messages.
-f Verify the input against format. Possible formats and their definitions are:

%H = hour (00 - 23)

%I = hour (00 - 12)

$M = minute (00 - 59)

%p = ante meridian or post meridian

%r = time as $1:3M:%S %p

%R = time as $H: %M (the default format)
%S = seconds (00 - 59)

$T = time as $H:%M: %S

-d The default value is default. The default is not validated and so does not
have to meet any criteria.

-h The help message is help.

10/92 Page 1

cktime

(1) (Essential Utilities) cktime(1)

-e The error message is error.
-p The prompt message is prompt.
-k pid Send process ID pid a signal if the user chooses to abort.

-s signal
When quit is chosen, send signal to the process whose pid is specified by the
-k option. If no signal is specified, use SIGTERM.

input Input to be verified against format criteria.

EXIT CODES

NOTES

Page 2

0 = Successful execution

1 = EOF on input

2 = Usage error

3 = User termination (quit)

4 = Garbled format argument

The default prompt for cktime is:

Enter a time of day [?,q]
The default error message is:

ERROR - Please enter the time of day. Format is format.
The default help message is:

Please enter the time of day. Format is format.

When the quit option is chosen (and allowed), g is returned along with the return
code 3. The valtime module does not produce any output. It returns zero for suc-
cess and non-zero for failure.

10/92

ckuid (1) (Essential Utilities) ckuid (1)

NAME
ckuid - prompt for and validate a user ID
SYNOPSIS
ckuid[-Q][-Wwidth][-m] [-ddefault][-h help] [-e error] [-p prompt]
[-k pid [-s signal]]
erruid | -Wwidth | [-e error]
helpuid [-Wwidth] [-m][-hhelp]
valuid input
DESCRIPTION
ckuid prompts a user and validates the response. It defines, among other things, a
prompt message whose response should be an existing user ID, text for help and
error messages, and a default value (which is returned if the user responds with a
RETURN).
All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -W
option cancels the automatic formatting. When a tilde is placed at the beginning or
end of a message definition, the default text is inserted at that point, allowing both
custom text and the default text to be displayed.
If the prompt, help or error message is not defined, the default message (as defined
under NOTES) is displayed.
Three visual tool modules are linked to the ckuid command. They are erruid
(which formats and displays an error message), helpuid (which formats and
displays a help message), and valuid (which validates a response). These modules
should be used in conjunction with FML objects. In this instance, the FML object
defines the prompt.
The options and arguments for this command are:
-Q Do not allow quit as a valid response.
-W Use width as the line length for prompt, help, and error messages.
-m Display a list of all logins when help is requested or when the user makes an
error.
-d The default value is default. The default is not validated and so does not
have to meet any criteria.
-h The help message is help.
-e The error message is error.
e The prompt message is prompt.
-k Send process ID pid a signal if the user chooses to abort.
-s When quit is chosen, send signal to the process whose pid is specified by the
-k option. If no signal is specified, use SIGTERM.
input Input to be verified against /etc/passwd.
10/92 Page 1

ckuid (1) (Essential Utilities) ckuid (1)

EXIT CODES
0 = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)

NOTES
The default prompt for ckuid is:

Enter the login name of an existing user [?,q]
The default error message is:

ERROR - Please enter the login name of an existing user.
(If the -m option of ckuid is used, a list of valid users is also displayed.)

The default help message is:

Please enter the login name of an existing user.
(If the -m option of ckuid is used, a list of valid users is also displayed.)

When the quit option is chosen (and allowed), g is returned along with the return
code 3. The valuid module does not produce any output. It returns zero for suc-
cess and non-zero for failure.

Page 2 10/92

ckyorn(1) (Essential Utilities) ckyorn (1)

NAME
ckyorn - prompt for and validate yes/no

SYNOPSIS
ckyorn [-Q][-wwidth][-d default][-h help | [-e error] [-p prompt |
[-k pid [-s signal |]
erryorn [-Wwidth][-e error]
helpyorn [-Wwidth][-h help |
valyorn input
DESCRIPTION
ckyorn prompts a user and validates the response. It defines, among other things,

a prompt message for a yes or no answer, text for help and error messages, and a
default value (which is returned if the user responds with a RETURN).

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -w
option cancels the automatic formatting. For the -h and -e options, placing a tilde
at the beginning or end of a message definition causes the default text to be
inserted at that point. This allows both custom text and the default text to be
displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) is displayed.

Three visual tool modules are linked to the ckyorn command. They are erryorn
(which formats and displays an error message), helpyorn (which formats and
displays a help message), and valyorn (which validates a response). These
modules should be used in conjunction with FACE objects. In this instance, the
FACE object defines the prompt.

The options and arguments for this command are:
-Q Do not allow quit as a valid response.
-W Use width as the line length for prompt, help, and error messages.

-d The default value is default. The default is not validated and so does not
have to meet any criteria.

-h The help message is help.

-e The error message is error.

-p The prompt message is prompt.

-k Send process ID pid a signal if the user chooses to abort.

-s When quit is chosen, send signal to the process whose pid is specified by the
-k option. If no signal is specified, use SIGTERM.

input Input to be verified as y, yes, Y, Yes, YES or n, no, N, No, NO.

10/92 Page 1

ckyorn(1) (Essential Utilities) ckyorn(1)

EXIT CODES
0 = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)

NOTES
The default prompt for ckyorn is:

Yes or No [y,n,?,q]
The default error message is:

ERROR - Please enter yes oOr no.
The default help message is:

Enter y or yes if your answer is yes;
or no if your answer is no.

When the quit option is chosen (and allowed), g is returned along with the return
code 3. The valyorn module does not produce any output. It returns zero for suc-
cess and non-zero for failure.

Page 2 10/92

clear(1) (Terminal Information Utilities) clear(1)

NAME
clear - clear the terminal screen

SYNOPSIS
clear

DESCRIPTION
clear clears your screen if this is possible. It looks in the environment for the ter-
minal type and then in the terminfo database to figure out how to clear the screen.

SEE ALSO
tput(1), terminfo(4)

10/92 Page 1

cmp(1) cmp(1)

NAME
cmp - compare two files

SYNOPSIS
cmp [-1][-s 1filel file2 [skip1] [skip2]

DESCRIPTION
The two files are compared. (If filel is -, the standard input is used.) Under default
options, cmp makes no comment if the files are the same; if they differ, it announces
the byte and line number at which the difference occurred. If one file is an initial
subsequence of the other, that fact is noted. skipl and skip2 are initial byte offsets
into filel and file2 respectively, and may be either octal or decimal; a leading 0
denotes octal.

Options:
-1 Print the byte number (decimal) and the differing bytes (octal) for each
difference.
-s Print nothing for differing files; return codes only.

FILES
/usr/lib/locale/locale/1.C_MESSAGES/uxcore.abi
language-specific message file [See LANG on environ(5).]
SEE ALSO
comm(1), dif£(1)
DIAGNOSTICS
Exit code 0 is returned for identical files, 1 for different files, and 2 for an in-
accessible or missing argument.

10/92 Page 1

cof2elf (1) (C Development Set) cof2elf(1)

NAME

cof2elf - COFF to ELF object file translation

SYNOPSIS

cof2elf [-iqVv] [-Q{yn}] [-s directory] files

DESCRIPTION

cof2elf converts one or more COFF object files to ELF. This translation occurs in
place, meaning the original file contents are modified. If an input file is an archive,
each member will be translated as necessary, and the archive will be rebuilt with its
members in the original order. cof2elf does not change input files that are not
COFF.

Options have the following meanings.

-1 Normally, the files are modified only when full translation occurs.
Unrecognized data, such as unknown relocation types, are treated as
errors and prevent translation. Giving the -i flag ignores these par-
tial translation conditions and modifies the file anyway.

-a Normally, cof2elf prints a message for each file it examines, telling
whether the file was translated, ignored, etc. The -qg flag (for quiet)
suppresses these messages.

-Qarg If arg is v, identification information about cof2elf will be added to
the output files. This can be useful for software administration. Giv-
ing n for arg explicitly asks for no such information, which is the
default behavior.

-sdirectory As mentioned above, cof2elf modifies the input files. This option
saves a copy of the original files in the specified directory, which must
exist. cof2elf does not save files it does not modify.

-V This flag tells cof2elf to print a version message on standard error.

SEE ALSO

NOTES

10/92

14(1), e1£(3E), a.out(4), ar(4)

Some debugging information is discarded. Although this does not affect the
behavior of a running program, it may affect the information available for symbolic
debugging.

cof2elf translates only COFF relocatable files. It does not translate executable or
static shared library files for two main reasons. First, the operating system supports
executable files and static shared libraries, making translation unnecessary. Second,
those files have specific address and alignment constraints determined by the file
format. Matching the constraints with a different object file format is problematic.

When possible, programmers should recompile their source code to build new
object files. cof2elf is provided for those times when source code is unavailable.

Page 1

col (1) (Directory and File Management Utilities) col(1)

NAME
col - filter reverse line-feeds

SYNOPSIS
col [-b] [-£] [-x] [-p]

DESCRIPTION
col reads from the standard input and writes onto the standard output. It per-
forms the line overlays implied by reverse line feeds (ASCII code ESC-7), and by for-
ward and reverse half-line-feeds (ESC-9 and ESC-8). col is particularly useful for
filtering multicolumn output made with the .rt command of nroff and output
resulting from use of the tb1(1) preprocessor.

If the -b option is given, col assumes that the output device in use is not capable
of backspacing. In this case, if two or more characters are to appear in the same
place, only the last one read will be output.

Although col accepts half-line motions in its input, it normally does not emit them
on output. Instead, text that would appear between lines is moved to the next
lower full-line boundary. This treatment can be suppressed by the -£ (fine) option;
in this case, the output from col may contain forward half-line-feeds (ESC-9), but
will still never contain either kind of reverse line motion.

Unless the -x option is given, col will convert white space to tabs on output wher-
ever possible to shorten printing time.

The ASCII control characters SO (\017) and SI (\016) are assumed by col to start
and end text in an alternate character set. The character set to which each input
character belongs is remembered, and on output SI and SO characters are generated
as appropriate to ensure that each character is printed in the correct character set.

On input, the only control characters accepted are space, backspace, tab, return,
new-line, SI, SO, VT (\013), and ESC followed by 7, 8, or 9. The VT character is an
alternate form of full reverse line-feed, included for compatibility with some earlier
programs of this type. All other non-printing characters are ignored.

Normally, col will ignore any escape sequences unknown to it that are found in its
input; the -p option may be used to cause col to output these sequences as regular
characters, subject to overprinting from reverse line motions. The use of this option
is highly discouraged unless the user is fully aware of the textual position of the
escape sequences.

SEE ALSO
nroff(1), tbl(1), ascii(5).

NOTES
The input format accepted by col matches the output produced by nroff with
either the -T37 or -T1p options. Use -T37 (and the -f option of col) if the ulti-
mate disposition of the output of col will be a device that can interpret half-line
motions, and -T1p otherwise.
col cannot back up more than 128 lines or handle more than 800 characters per line.

Local vertical motions that would result in backing up over the first line of the
document are ignored. As a result, the first line must not have any superscripts.

10/92 Page 1

colltbl (1M) (System Administration Utilities) colltbl (1M)

NAME

colltbl - create collation database

SYNOPSIS

colltbl [file | -]

DESCRIPTION

10/92

The colltbl command takes as input a specification file, file, that describes the col-
lating sequence for a particular language and creates a database that can be read by
strxfrm(3C) and strcoll(3C). strxfrm(3C) transforms its first argument and
places the result in its second argument. The transformed string is such that it can
be correctly ordered with other transformed strings by using strcmp(3C),
strnemp(3C) or memcmp(3C). strcoll(3C) transforms its arguments and does a
comparison.

If no input file is supplied, stdin is read.

The output file produced contains the database with collating sequence informa-
tion in a form usable by system commands and routines. The name of this output
file is the value you assign to the keyword codeset read in from file. Before this file
can be used, it must be installed in the /usr/1ib/locale/locale directory with the
name LC_COLLATE by someone who is super-user or a member of group bin. locale
corresponds to the language area whose collation sequence is described in file. This
file must be readable by user, group, and other; no other permissions should be set.
To use the collating sequence information in this file, set the LC_COLLATE environ-
ment variable appropriately (see environ(5) or setlocale(3C)).

The colltbl command can support languages whose collating sequence can be
completely described by the following cases:

Ordering of single characters within the codeset. For example, in Swedish,
V is sorted after U, before X and with W (v and W are considered identical as
far as sorting is concerned).

Ordering of "double characters” in the collation sequence. For example, in
Spanish, ch and 11 are collated after c and 1, respectively.

Ordering of a single character as if it consists of two characters. For exam-
ple, in German, the "sharp s", B, is sorted as ss. This is a special instance of
the next case below.

Substitution of one character string with another character string. In the
example above, the string B is replaced with ss during sorting.

Ignoring certain characters in the codeset during collation. For example, if -
were ignored during collation, then the strings re-locate and relocate
would be equal.

Secondary ordering between characters. In the case where two characters
are sorted together in the collation sequence, (i.e., they have the same "pri-
mary" ordering), there is sometimes a secondary ordering that is used if two
strings are identical except for characters that have the same primary order-
ing. For example, in French, the letters e and & have the same primary ord-
ering but e comes before & in the secondary ordering. Thus the

Page 1

colltbl (1M) (System Administration Utilities) colltbl (1M)

Page 2

word lever would be ordered before 1&ver, but 1éver would be sorted
before levitate. (Note that if e came before & in the primary ordering,
then 1&ver would be sorted after levitate.)

The specification file consists of three types of statements:

1.

codeset filename
filename is the name of the output file to be created by colltbl.
order is order_list

order_list is a list of symbols, separated by semicolons, that defines the collating
sequence. The special symbol, ..., specifies symbols that are lexically
sequential in a short-hand form. For example,

order is a;b;c;d; .. .;%x;v52
would specify the list of lower_case letters. Of course, this could be further
compressed to just a; . . . ; z.

A symbol can be up to two bytes in length and can be represented in any one
of the following ways:

the symbol itself (for example, a for the lower-case letter a),
in octal representation (for example, \141 or 0141 for the letter a), or

in hexadecimal representation (for example, \x61 or 0x61 for the letter
a).

Any combination of these may be used as well.

The backslash character, \ , is used for continuation. No characters are permit-
ted after the backslash character.

Symbols enclosed in parenthesis are assigned the same primary ordering but
different secondary ordering. Symbols enclosed in curly brackets are assigned
only the same primary ordering. For example,

order is a;bjcich;d; (e;&);f;...;z;\
{1;...;9};2;...;2

In the above example, e and & are assigned the same primary ordering and
different secondary ordering, digits 1 through 9 are assigned the same primary
ordering and no secondary ordering. Only primary ordering is assigned to the
remaining symbols. Notice how double letters can be specified in the collating
sequence (letter ch comes between c and d).

If a character is not included in the order is statement it is excluded from the
ordering and will be ignored during sorting.

substitute string with repl

The substitute statement substitutes the string string with the string repl.
This can be used, for example, to provide rules to sort the abbreviated month
names numerically:

10/92

colltbl (1M)

10/92

substitute
substitute

(System Administration Utilities)

"Jan" with "01"
"Feb" with

"o

substitute "Dec" with "12"

A simpler use of the substitute statement that was mentioned above was to
substitute a single character with two characters, as with the substitution of

with ss in German.

colitbl (1M)

The substitute statement is optional. The order is and codeset statements
must appear in the specification file.

Any lines in the specification file with a # in the first column are treated as com-
ments and are ignored. Empty lines are also ignored.

EXAMPLE
The following example shows the collation specification required to support a
hypothetical telephone book sorting sequence.

The sorting sequence is defined by the following rules:

a. Upper and lower case letters must be sorted together, but upper case
letters have precedence over lower case letters.

b. All special characters and punctuation should be ignored.

Digits must be sorted as their alphabetic counterparts (for example, 0 as

zero, 1 as one).

d. The Ch, ch, CH combinations must be collated between C and D.
e. Vv and W, v and w must be collated together.

The input specification file to col1ltbl will contain:

codeset

order is

substitute
substitute
substitute
substitute
substitute
substitute
substitute
substitute
substitute
substitute

telephone
A;a;B;b;C;c;CH;Ch;ch;D;d;E;e; F; £;\
G;g;H;h:I;1;J7;3;K:;k;L;1;M;m;N;n;0;0;P;p
Q;qiR;r;S;s; T ;U u; {ViW); {viw}; Xix;Y;
"0" with "zero"

"1" with "one"

"2" with "two"

"3" with "three"

"4" with "four"

"5" with "five"

"6" with "six"

"7" with "seven"

"8" with "eight"

"9" with "nine"

i\
;7

’ ;Z

Page 3

colltbl (1M) (System Administration Utilities) colltbl (1M)

FILES
/1ib/locale/locale /L.C_COLLATE
LC_COLLATE database for locale

/usr/lib/locale/C/colltbl_C
input file used to construct LC_COLLATE in the default locale.

SEE ALSO
memory(3C), setlocale(3C), strcoll(3C), string(3C), strxfrm(3C), environ(5).

Page 4 10/92

comb (1) (Enhanced Programming Utilities) comb (1)

NAME

comb - combine SCCS deltas

SYNOPSIS

comb [-0] [-s] [-pSID] [-clist] files

DESCRIPTION

FILES

comb generates a shell procedure [see sh(1)] that, when run, reconstructs the given
SCCs files. The reconstructed files are typically smaller than the original files. The
arguments may be specified in any order, but all keyletter arguments apply to all
named SCCS files. If a directory is named, comb behaves as though each file in the
directory were specified as a named file, except that non-SCCS files (last component
of the path name does not begin with s.) and unreadable files are silently ignored.
If a name of - is given, the standard input is read; each line of the input is taken to
be the name of an SCCS file to be processed; non-SCCS files and unreadable files are
silently ignored. The generated shell procedure is written on the standard output.

The keyletter arguments are as follows. Each argument is explained as if only one
named file is to be processed, but the effects of any keyletter argument apply
independently to each named file.

-0 For each get -e, this argument causes the reconstructed file to be accessed
at the release of the delta to be created, otherwise the reconstructed file
would be accessed at the most recent ancestor. Use of the -o keyletter may
decrease the size of the reconstructed SCCS file. It may also alter the shape
of the delta tree of the original file.

-s This argument causes comb to generate a shell procedure that, when run,
produces a report that gives for each file: the file name, size (in blocks) after
combining, original size (also in blocks), and percentage change computed
by:

100 * (original - combined) / original
It is recommended that before any SCCS files are actually combined, one
should use this option to determine exactly how much space is saved by the
combining process.

-pSID The SCCS identification string (SID) of the oldest delta to be preserved. All
older deltas are discarded in the reconstructed file.

-clist A list of deltas to be preserved. All other deltas are discarded. See get(1)
for the syntax of a list.

If no keyletter arguments are specified, comb preserves only leaf deltas and the
minimal number of ancestors needed to preserve the tree.

s.COMB the reconstructed SCCS file
comb????? temporary file

SEE ALSO

admin(1), delta(l), get(l), help(l), prs(l), sh(l), sccsfile(4).

DIAGNOSTICS

10/92

Use help(1) for explanations.

Page 1

comb (1) (Enhanced Programming Utilities) comb(1)

NOTES
comb may rearrange the shape of the tree of deltas.

comb may not save any space; in fact, it is possible for the reconstructed file to be
larger than the original.

Page 2 10/92

comm(1) (Directory and File Management Utilities) comm (1)

NAME

comm - select or reject lines common to two sorted files
SYNOPSIS

comm [- [123]] filel file2
DESCRIPTION

comm reads filel and file2, which should be ordered in ASCII collating sequence [see
sort(1)], and produces a three-column output: lines only in filel; lines only in file2;
and lines in both files. The file name - means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comm -12
prints only the lines common to the two files; comm -23 prints only lines in the first
file but not in the second; comm -123 prints nothing.

SEE ALSO
cmp(1), dif£(1), sort(1), unig(l)

10/92 Page 1

compress (1) (Directory and File Management Utilities) compress (1)

NAME
compress, uncompress, zcat - compress, expand or display expanded files

SYNOPSIS
compress [-cfv][-bbits][filename...]
uncompress [-cv][filename. ..]
zcat [filename. ..]

DESCRIPTION
compress reduces the size of the named files using adaptive Lempel-Ziv coding.
Whenever possible, each file is replaced by one with a . Z, extension. The owner-
ship modes, access time and modification time will stay the same. If no files are
specified, the standard input is compressed to the standard output.

The amount of compression obtained depends on the size of the input, the number
of bits per code, and the distribution of common substrings. Typically, text such as
source code or English is reduced by 50-60%. Compression is generally much better
than that achieved by Huffman coding [as used in pack(1)], and takes less time to
compute. The bits parameter specified during compression is encoded within the
compressed file, along with a magic number to ensure that neither decompression
of random data nor recompression of compressed data is subsequently allowed.

Compressed files can be restored to their original form using uncompress.

zcat produces uncompressed output on the standard output, but leaves the
compressed . Z file intact.

OPTIONS
-c Write to the standard output; no files are changed. The nondestructive
behavior of zcat is identical to that of ‘uncompress -c’.

-f Force compression, even if the file does not actually shrink, or the
corresponding . Z file already exists. Except when running in the back-
ground (under /usr/bin/sh), if -f is not given, prompt to verify whether
an existing . Z file should be overwritten.

-v Verbose. Display the percentage reduction for each file compressed.
-b bits Set the upper limit (in bits) for common substring codes. bits must be

between 9 and 16 (16 is the default). Lowering the number of bits will result
in larger, less compressed files.

FILES
/usr/bin/sh
SEE ALSO
pack(1)
A Technique for High Performance Data Compression, Terry A. Welch, IEEE Computer,
vol. 17, no. 6 (June 1984), pp. 8-19.

DIAGNOSTICS
Exit status is normally 0. If the last file was not compressed because it became
larger, the status is 2. If an error occurs, exit status is 1.

Usage: compress [-fvc] [-b maxbits] [filename...]
Invalid options were specified on the command line.

10/92 Page 1

compress (1) (Directory and File Management Utilities) compress (1)

Missing maxbits
Maxbits must follow -b.

filename: not in compressed format
The file specified to uncompress has not been compressed.

filename: compressed withxxbits, can only handle yybits
filename was compressed by a program that could deal with more bits
than the compress code on this machine. Recompress the file with
smaller bits.

filename: already has .Z suffix -- no change
The file is assumed to be already compressed. Rename the file and try
again.

filename: already exists; do you wish to overwrite (y or n)?
Respond y if you want the output file to be replaced; n if not.

uncompress: corrupt input
A SIGSEGV violation was detected, which usually means that the input
file is corrupted.

Compression: xx.xx%
Percentage of the input saved by compression. (Relevant only for -v.)

-- not a regular file: unchanged
When the input file is not a regular file, (such as a directory), it is left
unaltered.

- - has xx other links: unchanged
The input file has links; it is left unchanged. See 1n(1) for more informa-
tion.

- - file unchanged
No savings are achieved by compression. The input remains
uncompressed.

NOTES

Although compressed files are compatible between machines with large memory,

-b12 should be used for file transfer to architectures with a small process data space

(64KB or less).

compress should be more flexible about the existence of the . z suffix.

Page 2 10/92

comsat(1M) (TCP/IP) comsat(1M)

NAME
comsat, in.comsat - biff server

SYNOPSIS
in.comsat

DESCRIPTION
comsat is the server process which listens for reports of incoming mail and notifies
users who have requested to be told when mail arrives. It is invoked as needed by
inetd(1M), and times out if inactive for a few minutes.
comsat listens on a datagram port associated with the biff service specification
[see services(4)] for one line messages of the form

user@mailbox -offset

If the user specified is logged in to the system and the associated terminal has the
owner execute bit turned on (by a biff y), the offset is used as a seek offset into the
appropriate mailbox file and the first 7 lines or 560 characters of the message are
printed on the user’s terminal. Lines which appear to be part of the message header
other than the From, To, Date, or Subject lines are not printed when displaying the
message.

FILES
/var/adm/utmp who's logged on and on what terminals

SEE ALSO
services(4), inetd(1M).

NOTES
The message header filtering is prone to error.

10/92 Page 1

coproc (1F) (Form and Menu Language Interpreter Utilities) coproc (1F)
NAME
cocreate, cosend, cocheck, coreceive, codestroy - communicate with a process
SYNOPSIS
cocreate [-r rpath] [-w wpath] [-1 id] [-R refname] [-s send_string]
[-e expect_string] command

cosend [-n] proc_id string

cocheck proc_id

coreceive proc_id

codestroy [-R refname] proc_id [string]

DESCRIPTION

These co-processing functions provide a flexible means of interaction between

FMLI and an independent process; especially, they enable FMLI to be responsive to

asynchronous activity.

The cocreate function starts command as a co-process and initializes communica-

tions by setting up pipes between FMLI and the standard input and standard out-

put of command. The argument command must be an executable and its arguments

(if any). This means that command expects strings on its input (supplied by cosend)

and sends information on its output that can be handled in various ways by FMLL

The following options can be used with cocreate.

-r rpath If -r is specified, rpath is the pathname from which FMLI reads
information. This option is usually used to set up communica-
tion with processes that naturally write to a certain path. If -r is
not specified, cocreate will choose a unique path in /var/tmp.

-w wpath If -w is specified, wpath is the pathname to which cosend writes
information. This option is usually used so that one process can
talk to many different FMLI processes through the same pipe. If
-w is not specified, cocreate will choose a unique path in
/var/tmp.

-iid If -1 is specified, id is an alternative name for the co-process ini-
tialized by this cocreate. If -i is not specified, id defaults to
command. The argument id can later be used with the other co-
processing functions rather than command. This option is typi-
cally used, since it facilitates the creation of two or more co-
processes generated from the same command. (For example,
cocreate -i ID1 program args and cocreate -i ID2 pro-
gram different_args.)

-R refname If -R is specified, refname is a local name for the co-process. Since
the cocreate function can be issued more than once, a refname is
useful when the same co-process is referenced a second or subse-
quent time. With the -R option, if the co-process already exists a
new one will not be created: the same pipes will be shared. Then,
refname can be used as an argument to the -R option to codes-
troy when you want to end a particular connection to a co-
process and leave other connections undisturbed. (The co-
process is only killed after codestroy -R has been called as
many times as cocreate -R was called.)

10/92 Page 1

coproc (1F) (Form and Menu Language Interpreter Utilities) coproc (1F)

<

-ssend_string The -s option specifies send_string as a string that will be
appended to all output sent to the co-process using cosend. This
option allows a co-process to know when input from FMLI has
completed. The default send_string is a newline if -s is not
specified.

-e expect_string The -e option specifies expect_string as a string that identifies the
end of all output returned by the co-process. (Note: expect_string
need only be the initial part of a line, and there must be a newline
at the end of the co-process output). This option allows FMLI to
know when output from the co-process has completed. The
default expect_string is a newline if -e is not specified.

The cosend function sends string to the co-process identified by proc_id via the pipe
set up by cocreate (optionally wpath), where proc_id can be either the command or
id specified in cocreate. By default, cosend blocks, waiting for a response from
the co-process. Also by default, FMLI does not send a send_string and does not
expect an expect_string (except a newline). That is, it reads only one line of output
from the co-process. If -e expect_string was not defined when the pipe was created,
then the output of the co-process is any single string followed by a newline: any
other lines of output remain on the pipe. If the -e option was specified when the
pipe was created, cosend reads lines from the pipe until it reads a line starting with
expect_string. All lines except the line starting with expect_string become the output
of cosend. The following option can be used with cosenad:

-n If the -n option is specified, cosend will not wait for a response from the
co-process. It simply returns, providing no output. If the -n option is not
used, a co-process that does not answer will cause FMLI to permanently
hang, waiting for input from the co-process.

The cocheck function determines if input is available from the process identified
by proc_id, where proc_id can be either the command or id specified in cocreate. It
returns a Boolean value, which makes cocheck useful in if statements and in other
backquoted expressions in Boolean descriptors. cocheck receives no input from
the co-process; it simply indicates if input is available from the co-process. You
must use coreceive to actually accept the input. The cocheck function can be
called from a reread descriptor to force a frame to update when new data is avail-
able. This is useful when the default value of a field in a form includes coreceive.

The coreceive function is used to read input from the co-process identified by
proc_id, where proc_id can be either the command or id specified in cocreate. It
should only be used when it has been determined, using cocheck, that input is
actually available. If the -e option was used when the co-process was created,
coreceive will continue to return lines of input until expect_string is read. At this
point, coreceive will terminate. The output of coreceive is all the lines that
were read excluding the line starting with expect_string. If the -e option was not
used in the cocreate, each invocation of coreceive will return exactly one line
from the co-process. If no input is available when coreceive is invoked, it will
simply terminate without producing output.

The codestroy function terminates the read/write pipes to proc-id, where proc_id
can be either the command or id specified in cocreate. It generates a SIGPIPE sig-
nal to the (child) co-process. This kills the co-process, unless the co-process ignores
the SIGPIPE signal. If the co-process ignores the SIGPIPE, it will not die, even after

Page 2 10/92

coproc (1F) (Form and Menu Language Interpreter Utilities) coproc (1F)

the FMLI process terminates (the parent process id of the co-process will be 1).

The optional argument string is sent to the co-process before the co-process dies. If
string is not supplied, a NULL string is passed, followed by the normal send_string
(newline by default). That is, codestroy will call cosend proc_id string: this
implies that codestroy will write any output generated by the co-process to stdout.
For example, if an interactive co-process is written to expect a "quit" string when
the communication is over, the close descriptor could be defined;

close="codestroy ID ’‘quit’ | message’

and any output generated by the co-process when the string quit is sent to it via
codestroy (using cosend) would be redirected to the message line.

The codestroy function should usually be given the -R option, since you may
have more than one process with the same name, and you do not want to kill the
wrong one. codestroy keeps track of the number of refnames you have assigned to
a process with cocreate, and when the last instance is killed, it kills the process
(id) for you. codestroy is typically called as part of a close descriptor because
close is evaluated when a frame is closed. This is important because the co-
process will continue to run if codestroy is not issued.

When writing programs to use as co-processes, the following tips may be useful. If
the co-process program is written in C language, be sure to flush output after writ-
ing to the pipe. (Currently, awk(l) and sed(1) cannot be used in a co-process pro-
gram because they do not flush after lines of output.) Shell scripts are well-
mannered, but slow. C language is recommended. If possible, use the default
send_string, rpath and wpath. In most cases, expect_string will have to be specified.
This, of course, depends on the co-process.

In the case where asynchronous communication from a co-process is desired, a co-
process program should use vsig to force strings into the pipe and then signal
FMLI that output from the co-process is available. This causes the reread descrip-
tor of all frames to be evaluated immediately.

EXAMPLE

10/92

init="cocreate -i BIGPROCESS initialize-
close="codestroy BIGPROCESS®

reread="cocheck BIGPROCESS®
name="cosend -n BIGPROCESS fieldl®

name="Receive field"
inactive=TRUE
value="coreceive BIGPROCESS"

Page 3

coproc (1F) (Form and Menu Language Interpreter Utilities) coproc (1F)

NOTES

Co-processes for trusted FMLI applications should use named pipes created by the
application with the appropriate permissions; the default pipes created by FMLI
are readable and writable by everyone. Handshaking can also be used to enhance
security.

If cosend is used without the -n option, a co-process that does not answer will
cause FMLI to permanently hang.

The use of non-alphabetic characters in input and output strings to a co-process
should be avoided because they may not get transferred correctly.

SEE ALSO

Page 4

vsig(1F)
awk(1), cat(1), sed(1).

10/92

copy(1) (Application Compatibility Package) copy (1)

NAME

copy - copy groups of files
SYNOPSIS

copy [option] . .. source. .. dest
DESCRIPTION

The copy command copies the contents of directories to another directory. It is
possible to copy whole file systems since directories are made when needed.

If files, directories, or special files do not exist at the destination, then they are
created with the same modes and flags as the source. In addition, the super-user
may set the user and group ID. The owner and mode are not changed if the desti-
nation file exists. Note that there may be more than one source directory. If so, the
effect is the same as if the copy command had been issued for each source directory
with the same destination directory for each copy.

All of the options must be given as separate arguments, and they may appear in
any order even after the other arguments. The arguments are:

-a Asks the user before attempting a copy. If the response does not begin
with a “y”’, then a copy is not done. This option also sets the ad option.

-1 Uses links instead whenever they can be used. Otherwise a copy is
done. Note that links are never done for special files or directories.

-n Requires the destination file to be new. If not, then the copy command
does not change the destination file. The -n flag is meaningless for
directories. For special files an -n flag is assumed (that is, the destina-
tion of a special file must not exist).

-o If set then every file copied has its owner and group set to those of
source. If not set, then the file’s owner is the user who invoked the pro-
gram.

-m If set, then every file copied has its modification time and access time set

to that of the source. If not set, then the modification time is set to the
time of the copy.

-r If set, then every directory is recursively examined as it is encountered.
If not set, then any directories that are found are ignored.

-ad Asks the user whether an -r flag applies when a directory is discovered.
If the answer does not begin with a “y,” then the directory is ignored.

-v If the verbose option is set, messages are printed that reveal what the
program is doing.

source This may be a file, directory or special file. It must exist. If it is not a
directory, then the results of the command are the same as for the cp
command.

dest The destination must be either a file or directory that is different from

the source. If source and destination are anything but directories, then
copy acts just like a cp command. If both are directories, then copy
copies each file into the destination directory according to the flags that
have been set.

10/92 Page 1

copy(1) (Application Compatibility Package) copy(1)

NOTES
Special device files can be copied. When they are copied, any data associated with
the specified device is not copied.

Page 2 10/92

cp(1) (Essential Utilities) cp(1)

NAME
cp - copy files

SYNOPSIS
co[-1][-p][-r]filel[file2...] target

DESCRIPTION
The cp command copies filen to target. filen and target may not have the same
name. (Care must be taken when using sh(l) metacharacters.) If target is not a
directory, only one file may be specified before it; if it is a directory, more than one
file may be specified. If target does not exist, cp creates a file named target. If target
exists and is not a directory, its contents are overwritten. If target is a directory, the
file(s) are copied to that directory.

The following options are recognized:

-1 cp will prompt for confirmation whenever the copy would overwrite an
existing target. Ay answer means that the copy should proceed. Any other
answer prevents cp from overwriting target.

-p cp will duplicate not only the contents of filen, but also preserves the
modification time and permission modes.

-r If filen is a directory, cp will copy the directory and all its files, including
any subdirectories and their files; target must be a directory.

If filen is a directory, target must be a directory in the same physical file system. tar-
get and filen do not have to share the same parent directory.

If filen is a file and target is a link to another file with links, the other links remain
and target becomes a new file.

If target does not exist, cp creates a new file named target which has the same mode
as filen except that the sticky bit is not set unless the user is a privileged user; the
owner and group of target are those of the user.

If target is a file, its contents are overwritten, but the mode, owner, and group asso-
ciated with it are not changed. The last modification time of target and the last
access time of filen are set to the time the copy was made.

If target is a directory, then for each file named, a new file with the same mode is
created in the target directory; the owner and the group are those of the user mak-
ing the copy.
NOTES

A - - permits the user to mark the end of any command line options explicitly, thus
allowing cp to recognize filename arguments that begin with a -. If a -- and a -
both appear on the same command line, the second will be interpreted as a
filename.

SEE ALSO
chmod(1), cpio(1), 1n(1), mv(1), rm(1)

10/92 Page 1

cpio(1) (Essential Utilities) cpio(1)

NAME
cpio - copy file archives in and out

SYNOPSIS
cpio -i[bBedfkmrsStuvveé] [-C size] [-E file] [-H hdr] [-T file [-M message]] [-R
ID]] [pattern ...]

cpio -o[aABcLvV]|[-C size] [-H hdr] [-0 file [-M message]]
cpio -p[adlLmuvV] [-R ID]] directory

DESCRIPTION
The -1, -0, and -p options select the action to be performed. The following list
describes each of the actions (which are mutually exclusive).

cpio -i (copy in) extracts files from the standard input, which is assumed to be
the product of a previous cpio -o. Only files with names that match patterns are
selected. patterns are regular expressions given in the filename-generating notation
of sh(1). In patterns, meta-characters ?, *, and [...] match the slash (/) character,
and backslash (\) is an escape character. A ! meta-character means not. (For exam-
ple, the !abc* pattern would exclude all files that begin with abc.) Multiple pat-
terns may be specified and if no patterns are specified, the default for patterns is *
(i-e., select all files). Each pattern must be enclosed in double quotes; otherwise, the
name of a file in the current directory might be used. Extracted files are condition-
ally created and copied into the current directory tree based on the options
described below. The permissions of the files will be those of the previous cpio
-o. Owner and group permissions will be the same as the current user unless the
current user is super-user. If this is true, owner and group permissions will be the
same as those resulting from the previous cpio -o. NOTE: If cpio -i tries to
create a file that already exists and the existing file is the same age or younger
(newer), cpio will output a warning message and not replace the file. (The -u
option can be used to overwrite, unconditionally, the existing file.)

cpio -o (copy out) reads the standard input to obtain a list of path names and
copies those files onto the standard output together with path name and status
information. Output is padded to a 512-byte boundary by default or to the user
specified block size (with the -B or -C options) or to some device-dependent block
size where necessary (as with the CTC tape).

cpio -p (pass) reads the standard input to obtain a list of path names of files that
are conditionally created and copied into the destination directory tree based on the
options described below.

The meanings of the available options are

-a Reset access times of input files after they have been copied. Access times
are not reset for linked files when cpio -pla is specified (mutually
exclusive with -m).

-A Append files to an archive. The -A option requires the -O option. Valid
only with archives that are files, or that are on floppy diskettes or hard disk
slices.

-b Reverse the order of the bytes within each word. (Use only with the -i
option.)

10/92 Page 1

cpio(1)

Page 2

(Essential Utilities) cpio(1)

Input/output is to be blocked 5,120 bytes to the record. The default buffer
size is 512 bytes when this and the -C options are not used. (-B does not
apply to the pass option; -B is meaningful only with data directed to or
from a character special device, e.g. /dev/rmt /ctapel.)

Read or write header information in ASCII character form. The -c option
implies expanded device numbers. This option is mutually exclusive with
-Hand -6.

-C bufsize

-1 file

Input/output is to be blocked bufsize bytes to the record, where bufsize is
replaced by a positive integer. The default buffer size is 512 bytes when this
and -B options are not used. (-C does not apply to the pass option; -C is
meaningful only with data directed to or from a character special device,
e.g. /dev/rmt/ctapel.)

Directories are to be created as needed.

Specify an input file (file) that contains a list of filenames to be extracted
from the archive (one filename per line).

Copy in all files except those in patterns. (See the paragraph on cpio -i for
a description of patterns.)

Read or write header information in hdr format. This option should be used
when the origin and destination machines are different types. (mutually
exclusive with -c and -6). Valid values for hdr are:

crc or CRC - ASCII header with expanded device numbers and an additional
per-file checksum

ustar or USTAR - IEEE/P1003.1 Data Interchange Standard tar header and
format

tar or TAR - tar header and format

odc - ASCII header with small device numbers, IEEE/P1003.1 Data Inter-
change Standard cpio header and format.

See the NOTES section for additional information.

Read the contents of file as an input archive. If file is a character special dev-
ice, and the current medium has been completely read, replace the medium
and press RETURN to continue to the next medium. This option is used only
with the -1 option.

Attempt to skip corrupted file headers and I/O errors that may be encoun-
tered. If you want to copy files from a medium that is corrupted or out of
sequence, this option lets you read only those files with good headers. (For
cpio archives that contain other cpio archives, if an error is encountered
cpio may terminate prematurely. cpio will find the next good header,
which may be one for a smaller archive, and terminate when the smaller
archive’s trailer is encountered.) Used only with the -1 option.

10/92

cpio(1) (Essential Utilities) cpio(1)

10/92

-1 Whenever possible, link files rather than copying them. (Usable only with
the -p option.)

-L Follow symbolic links. The default is not to follow symbolic links.

-m Retain previous file modification time. This option is ineffective on direc-
tories that are being copied (mutually exclusive with -a).

-M message
Define a message to use when switching media. When you use the -0 or -1
options and specify a character special device, you can use this option to
define the message that is printed when you reach the end of the medium.
One %d can be placed in message to print the sequence number of the next
medium needed to continue.

-0Ofile Direct the output of cpio to file. If file is a character special device and the
current medium is full, replace the medium and type a carriage return to
continue to the next medium. Use only with the -o option.

-r Interactively rename files. If the user types a carriage return alone, the file is
skipped. If the user types a “’.” the original pathname will be retained.
(Not available with cpio -p.)

-RID Reassign ownership and group information for each file to user ID (ID must
be a valid login ID from /etc/passwd). This option is valid only for the
super-user.

-s Swap bytes within each half word.
-S Swap halfwords within each word.

-t Print a table of contents of the input. No files are created (mutually
exclusive with -V).

-u Copy unconditionally (normally, an older file will not replace a newer file
with the same name).

-V Verbose: causes a list of file names to be printed. When used with the -t
option, the table of contents looks like the output of an 1s -1 command
[see 1s(1)].

-V Special Verbose: print a dot for each file read or written. Useful to assure

the user that cpio is working without printing out all file names.

-6 Process a UNIX System Sixth Edition archive format file. Use only with the
-1 option (mutually exclusive with -c and -H)).

NOTE: cpio assumes four-byte words.

If, when writing to a character device (-o) or reading from a character device (-1),

cpio reaches the end of a medium (such as the end of a diskette), and the -0 and -1
options aren’t used, cpio will print the following message:

If you want to go on, type device/file name when ready.

To continue, you must replace the medium and type the character special device
name (/dev/rmt/ctapel for example) and press RETURN. You may want to con-
tinue by directing cpio to use a different device. For example, if you have two
floppy drives you may want to switch between them so cpio can proceed while
you are changing the floppies. (Simply pressing RETURN causes the cpio process

Page 3

cpio(1) (Essential Utilities) cpio(1)

to exit.)

EXAMPLES

The following examples show three uses of cpio.

When standard input is directed through a pipe to cpio -o, it groups the files so
they can be directed (>) to a single file (. ./newfile). The -c option insures that
the file will be portable to other machines (as would the -H option). Instead of
1s(1), you could use £ind(1), echo(l1), cat(l), and so on, to pipe a list of names to
cpio. You could direct the output to a device instead of a file.

ls | cpio -oc > ../newfile

cpio -i uses the output file of cpio -o (directed through a pipe with cat in the
example below), extracts those files that match the patterns (memo/al, memo/b*),
creates directories below the current directory as needed (-d option), and places the
files in the appropriate directories. The -c option is used if the input file was
created with a portable header. If no patterns were given, all files from newfile
would be placed in the directory.

cat newfile | cpio -icd "memo/al" "memo/b*"

cpio -p takes the file names piped to it and copies or links (-1 option) those files
to another directory (newdir in the example below). The -d option says to create
directories as needed. The -m option says retain the modification time. (It is impor-
tant to use the -depth option of £ind(1l) to generate path names for cpio. This
eliminates problems cpio could have trying to create files under read-only direc-
tories.) The destination directory, newdir, must exist.

find . -depth -print | cpio -pdlmv newdir

Note that when you use cpio in conjunction with find, if you use the -L option
with cpio then you must use the -follow option with find and vice versa. Other-
wise there will be undesirable results.

SEE ALSO

NOTES

Page 4

ar(1), cat(1), echo(1), £ind(1), 1s(1), tar(l), archives(4).

An archive created with the -c option on a Release 4 system cannot be read on Sys-
tem V Release 3.2 systems, or earlier. The -H odc header in Release 4 is equivalent
to the -c header in earlier System V Releases.

The following table illustrates important capabilities of the supported archive for-
mats. In the table, support for expanded device types indicates that the format can
accommodate minor numbers greater than 255 and major numbers greater than 127.

10/92

cpio(1) (Essential Utilities)
Pathname length Supports Expanded Readable on
Option (in bytes) device types SVR3.2
(default) 256 No Yes
-c 1024 Yes No
-Hodc 256 No Yes
-Here 1024 Yes No
-Htar 256 Yes tar-Yes, cpio-No
-Hustar 256 Yes tar-Yes, cpio-No

Only the super-user can copy special files.
Blocks are reported in 512-byte quantities.

If a file has 000 permissions, contains more than 0 characters of data, and the user is
not root, the file will not be saved or restored.

INTERNATIONAL FUNCTIONS

cpio(1)

cpio can process files containing characters from supplementary code sets. In pat-
tern processing using metacharacters, matching is performed on characters, not

bytes.

message with the -M option can include characters from supplementary code sets.

10/92

Page 5

crash(1M) crash (1M)

NAME

crash - examine system images

SYNOPSIS

/usr/sbin/crash [-d dumpfile | [-n namelist] [-w]

DESCRIPTION

10/92

The crash command is used to examine the system memory image of a running or
a crashed system by formatting and printing control structures, tables, and other
information. Command line arguments to crash are dumpfile, namelist, and
outputfile.

dumpfile is the file containing the system memory image. The default dumpfile is
/dev/mem.

The text file namelist contains the symbol table information needed for symbolic
access to the system memory image to be examined. The default namelist is
/stand/unix. If a system image from another machine is to be examined, the
corresponding text file must be copied from that machine.

When the crash command is invoked, a session is initiated. The output from a
crash session is directed to outputfile. The default outputfile is the standard output.

Input during a crash session is of the form:
function | argument. ..]

where function is one of the crash functions described in the “FUNCTIONS” subsec-
tion of this manual page, and arguments are qualifying data that indicate which
items of the system image are to be printed.

The default for process-related items is the current process for a running system or
the process that was running at the time of the crash for a crashed system. If the
contents of a table are being dumped, the default is all active table entries.

The following function options are available to crash functions wherever they are
semantically valid.

-e Display every entry in a table.

-f Display the full structure.

-p Interpret all address arguments in the command line as physical
addresses. If they are not physical addresses, results are incon-
sistent.

-s process Specify a process slot other than the default.

-w file Redirect the output of a function to file.

The functions mode, defproc, and redirect correspond to the function options -p,
-s, and -w. The mode function may be used to set the address translation mode to
physical or virtual for all subsequently entered functions; defproc sets the value of
the process slot argument for subsequent functions; and redirect redirects all sub-
sequent output.

Output from crash functions may be piped to another program in the following
way:

Page 1

crash(1M) crash(1M)

function [argument. ..]\ shell_command
For example,
mount ! grep rw

writes all mount table entries with an rw flag to the standard output. The redirec-
tion option (-w) cannot be used with this feature.

Depending on the context of the function, numeric arguments are assumed to be in
a specific radix. Counts are assumed to be decimal. Addresses are always hexade-
cimal. Table address arguments larger than the size of the function table are inter-
preted as hexadecimal addresses; those smaller are assumed to be decimal slots in
the table. Default bases on all arguments may be overridden. The C conventions
for designating the bases of numbers are recognized. A number that is usually
interpreted as decimal is interpreted as hexadecimal if it is preceded by 0x and as
octal if it is preceded by 0. Decimal override is designated by 04, and binary by Ob.

Aliases for functions may be any uniquely identifiable initial substring of the func-
tion name. Traditional aliases of one letter, such as p for proc, remain valid.

Many functions accept different forms of entry for the same argument. Requests for
table information accept a table entry number, a physical address, a virtual address,
a symbol, a range, or an expression. A range of slot numbers may be specified in the
form a-b where a and b are decimal numbers. An expression consists of two
operands and an operator. An operand may be an address, a symbol, or a number;
the operator may be +, -, *, /, &, or | . An operand that is a number should be pre-
ceded by a radix prefix if it is not a decimal number (0 for octal, 0x for hexadecimal,
0b for binary). The expression must be enclosed in parentheses. Other functions
accept any of these argument forms that are meaningful.

Two abbreviated arguments to crash functions are used throughout. Both accept
data entered in several forms. They may be expanded into the following:

table_entry = table entry | address | symbol | range | expression
start_addr = address | symbol | expression

FUNCTIONS

? [-wfile]
List available functions.

command
Escape to the shell and execute command.

as[-e] [-£] [-wfile] [proc...]
Print information on process segments.

base [-w file] number . ..
Print number in binary, octal, decimal, and hexadecimal. A number in a radix
other than decimal should be preceded by a prefix that indicates its radix as
follows: 0x, hexadecimal; 0, octal; and Ob, binary.

buffer [-wfile] [-format] buffersiot

butfer [-wfile] [-format] [-p]start_addr
Alias: b.
Print the contents of a buffer in the designated format. The following format
designations are recognized: -b, byte: -c, character; -d, decimal; -x,

Page 2 10/92

crash(1M) crash(1M)

10/92

hexadecimal; -o, octal; and, -1, inode. If no format is given, the previous
format is used. The default format at the beginning of a crash session is
hexadecimal.

bufhdr [-£] [-wfile] [[-p]table_entry...]
Alias: buf.
Print system buffer headers. The -f option produces different output
depending on whether the buffer is local or remote (contains RFS data).

callout [-wfile]
Alias: c.
Print the callout table.

class [-wfile] [table_entry...]
Print information about process scheduler classes.

dbfree [-wfile] [class...]
Print free streams data block headers. If a class is entered, only data block
headers for the class specified is printed.

dblock[-e] [-wfile] [-cclass...]

dblock [-e] [-wfile] [[-p] table_entry...]
Print allocated streams data block headers. If the class option (-c) is used,
only data block headers for the class specified is printed.

defproc [-wfile] [-c]

defproc [-wfile] [slot]
Set the value of the process slot argument. The process slot argument may
be set to the current slot number (-c) or the slot number may be specified.
If no argument is entered, the value of the previously set slot number is
printed. At the start of a crash session, the process slot is set to the current
process.

dis[-wfile] [-a] start_addr [count]

dis[-wfile] [-a] -c [count]
Disassemble count instructions starting at start_addr. The default count is 1.
The absolute option (-a) specifies a non-symbolic disassembly. The -c

option can be used in place of start_addr to continue disassembly at the
address at which a previous disassembly ended.

dispa[-wfile] [table_entry...]
Print the dispatcher (scheduler) queues.
ds [-w file] virtual_address . . .
Print the data symbol whose address is closest to, but not greater than, the
address entered.
file[-e] [-wfile] [[-p]table_entry...]
Alias: f.
Print the file table.

findaddr [-wfile] table slot
Print the address of slot in table. Only tables available to the size function
are available to findaddr.

Page 3

crash(1M) crash(1M)

findslot [-w file] virtual_address . . .
Print the table, entry slot number, and offset for the address entered. Only
tables available to the size function are available to findslot.

fs[-wfile] [[-p]table_entry...]
Print the file system information table.
gdp[-e] [-£] [-wfile] [[-p]table_entry...]
Print the gift descriptor protocol table.
help [-wfile] function . ..
Print a description of the named function, including syntax and aliases.
inode[-e] [-f] [-wfile] [[-p]table_entry...]
Alias: 1.
Print the inode table, including file system switch information.
kfp [-wfile] [-s process] [-r]
kfp [-wfile] [-s process] [value]
Print the kernel frame pointer (kfp) for the start of a kernel stack trace. The
kfp value can be set using the value argument or the reset option (-r),
which sets the kfp from the saved kfp in the dumpfile. If no argument is
entered, the current value of the kfp is printed.
kmastat [-wfile]
Print kernel memory allocator statistics.
lck[-e] [-wfile] [[-p]ltable_entry...]
Alias: 1.
Print record locking information. If the -e option is used or table address
arguments are given, the record lock list is printed. If no argument is
entered, information on locks relative to inodes is printed.
linkblk[-e] [-wfile] [[-p]table_entry...]
Print the linkblk table.
major [-wfile] [entry...]
Print the MAJOR table.
map [-w file] mapname . . .
Print the map structure of the given mapname.
mbfree [-wfile]
Print free streams message block headers.
mblock[-e] [-wfile] [[-p]table_entry...]
Print allocated streams message block headers.
mode [-wfile] [mode]
Set address translation of arguments to virtual (v) or physical (p) mode. If
no mode argument is given, the current mode is printed. At the start of a
crash session, the mode is virtual.
mount [-e] [-wfile] [[-p]table_entry...]
Alias: m, vfs.
Print information about mounted file systems.

Page 4 10/92

crash(1M) crash(1M)

10/92

nm [-w file] symbol . . .
Print value and type for the given symbol.

nvram [-wfile]Juser|0lnet|1los|3lbugl5lconfiglélalll?

Print out the contents of non-volatile RAM. Using a numerical section
identifier causes the values to be printed in hexadecimal byte and ascii for-
mats. Using the section name causes the values to be printed in formatted
form if a specific format is defined for that section of non-volatile RAM and
in hexadecimal byte and ascii formats if no specific format has been defined.
Currently, only the config section has a specific format. The nvram com-
mand may not be available on all systems since some systems may not have
any non-volatile RAM.

od[-pl [-wfile] [-format] [-mode] [-s process] start_addr [count]

Alias: rd.

Print count values starting at start_addr in one of the following formats:
character (-c), decimal (-d), hexadecimal (-x), octal (-o0), ASCII (-a), or
hexadecimal/character (-h), and one of the following modes: long (-1),
short (-t), or byte (-b). The default mode for character and ASCII formats
is byte; the default mode for decimal, hexadecimal, and octal formats is
long. The format -h prints both hexadecimal and character representations
of the addresses dumped; no mode needs to be specified. When format or
mode is omitted, the previous value is used. At the start of a crash session,
the format is hexadecimal and the mode is long. If no count is entered, 1 is
assumed.

page [-e] [-wfile] [[-p] table_entry . .]
Print information about pages.

pcb [-wfile] [process]
Print the process control block. If no arguments are given, the active pcb for
the current process is printed. This applies to M88000 family of processors.

prnode [-e] [-wfile] [[-p] table_entry...]
Print information about the private data of processes being traced.

proc [-e] [-£] [-wfile] [[-p]table_entry ... #procid...]

proc [-£] [-wfile] [-r]
Alias: p.
Print the process table. Process table information may be specified in two
ways. First, any mixture of table entries and process IDs may be entered.
Each process ID must be preceded by a #. Alternatively, process table infor-
mation for runnable processes may be specified with the runnable option
(-1).

ptbl [-wfile] [-sprocess] ste[count]

ptbl [-wfile] [-sprocess] [-p] addr [count]
Print information on page descriptor tables, where ste is the segment table
entry.

oty [-f] [-e] [-wfile] [-s] [-h] [-1]
Print the pseudo ttys presently configured. The -1, -s and -h options give
information about the STREAMS modules 1dterm, ptem and pckt, respec-
tively.

Page 5

crash (1M) crash(1M)

grun [-w file]
Print the list of scheduled streams queues.

queue [-e] [-wfile] [[-p]table_entry...]
Print streams queues.

quit Alias: q.
Terminate the crash session.

rcvd[-e] [-£] [-wfile] [[-p]table_entry...]
Print the receive descriptor table.

rduser [-e] [-£f] [-wfile] [[-p]table_entry...]
Print the receive descriptor user table.

regs [-wfile] [-g] [-s] [-m] [-£] [-a]
Print Motorola M68000 or M88000 family of processors and co-processor
registers including the general, supervisor, mmu, and floating point regis-
ters. The (-a) option prints all of the register groups.

redirect [-wfile] [-c]

redirect [-wfile] [newfile]
Used with a file name, redirects output of a crash session to newfile. If no
argument is given, the file name to which output is being redirected is
printed. Alternatively, the close option (-c) closes the previously set file
and redirects output to the standard output.

resource [-e] [-wfile] [[-p]table_entry...]
Print the advertise table.

rtdptbl [-wfile] [table_entry...]
Print the real-time scheduler parameter table. See rt_dptbl(4).

rtproc [-wfile]
Print information about processes in the real-time scheduler class.

sdt [-e] [-wfile] [-s process] [-p start_addr] [count]
The segment descriptor table for the named memory section is printed.
Alternatively, the segment descriptor table starting at start_addr for count
entries is printed. If no count is given, a count of 1 is assumed.

search[-p] [-wfile] [-mmask] [-s process] pattern start_addr length
Print the words in memory that match pattern, beginning at the start_addr
for length words. The mask is ANDed (&) with each memory word and the
result compared against the pattern. The mask defaults to OxfE££fEFE.

size[-wfile] [-x] [structure_name...]
Print the size of the designated structure. The (-x) option prints the size in
hexadecimal. If no argument is given, a list of the structure names for
which sizes are available is printed.

sndd [-e] [-£] [-wfile] [[-p]table_entry...]
Print the send descriptor table.

snode [-e] [-£] [-wfile] [[-p]table_entry...]
Print information about open special files.

Page 6 10/92

crash(1M) crash(1M)

10/92

srmount [-e] [-wfile] [[-p]table_entry...]
Print the server mount table.

stat [-wfile]
Print out the system status. This consists of general information about the
system itself, information about when the system crashed (or the current
time if used on a running system) and how long the system was running
before a crash (or has been running).

stack [-wfile] [-u] [process]
stack [-wfile] [-k] [process]

stack[-wfile] [[-p]-1i start_addr]
Alias: s.
Dump the stack. The (-u) option prints the user stack. The (-k) option
prints the kernel stack. The (-i) option prints the interrupt stack. If no
arguments are entered, the kernel stack for the current process is printed.
The interrupt stack and the stack for the current process are not available on
a running system.

stream[-e] [-£] [-wfile] [[-p]table_entry...]
Print the streams table.

strstat [-wfile]
Print streams statistics.

trace [-wfile] [-r] [process]

trace [-wfile] [[-p]-istart_addr]
Alias: t.
Print stack trace. The kfp value is used with the -r option; the kfp function
prints or sets the kfp (kernel frame pointer) value. The interrupt option
prints a trace of the interrupt stack beginning at start_addr. The interrupt
stack trace and the stack trace for the current process are not available on a
running system.

ts [-w file] virtual_address . ..
Print text symbol closest to the designated address.

tsdptbl [-wfile] [table_entry...]
Print the time-sharing scheduler parameter table. See ts_dptbl(4).

tsproc [-w file]
Print information about processes in the time-sharing scheduler class.

tty [-e] [-£] [-1] [-wfile] [-ttypel[-p]ltable_entry...]]

tty [-e]l [-£] [-1] [-wfile] [[-p]start_addr]
Valid types: iu.
Print the tty table. If no arguments are given, the tty table for the console tty
type is printed. If the -t option is used, the table for the single tty type
specified is printed. If no argument follows the type option, all entries in
the table are printed. A single tty entry may be specified using start_addr.
The -1 option prints the line discipline information.

Page 7

crash(1M) crash (1M)

uinode [-e] [-£] [-wfile] [[-p]table_entry...]

Alias: ui.

Print the ufs inode table.
user [-£] [-wfile] [process]

Alias: u.

Print the ublock for the designated process.
var [-wfile]

Alias: v.

Print the tunable system parameters.
vis[-e] [-wfile] [[-p]table_entry...]

Alias: mount, m.

Print information about mounted file systems.

vEssw[-wfile] [[-p]table_entry...]
Print information about configured file system types.

vnode [-w file] [[-p]vnode_addr...]
Print information about vnodes.

vtop [-wfile] [-s process] start_addr. ..
Print the physical address translation of the virtual address start_addr.

FILES /dev/mem system image of currently running system
/dev/rmt /ctapel used to access system image on cartridge tape
/dev/swap used to access system image in swap slice

SEE ALSO
1dsysdump(1M)

Page 8 10/92

crashconf(1M) crashconf (1M)

NAME
crashconf - enable/disable crash dumps

SYNOPSIS
/usr/sbin/crashconf [-a] special_device

DESCRIPTION
The crashconf command with arguments configures the crash dump system to
take a crash dump to the special_device if the operating system should panic. The
special_device must follow the conventions for device specific files as given in
intro(7). If a disk slice, it must also be tagged with V_SWAP.

If the -a option is given, the crash dump system will be in automatic mode and will
not prompt the user before beginning the crash dump when the system panics; oth-
erwise, the crash dump system will be in manual mode and prompts the user to
prepare the crash dump device prior to beginning the crash dump. Manual mode
also allows the user to attempt to recover if a failure occurs if the device supports
recovery.

The crashconf command with no arguments disables the crash dump system and
no crash dump will be taken.

The buildsys(1M) manpage contains information regarding preservation of the
bootable unix corresponding to a crash dump.

EXAMPLES
This example shows a disk slice being configured as the crash dump device with no
user intervention requested.

$crashconf -a /dev/rdsk/m328_c0d0sl

$
FILES
/etc/init.d/CRASHDUMP script to configure crash dumps during boot
/dev/rdsk/prefix_cndnsn device used for disk slice
/dev/rmt /prefix_cndn device used for tapes
SEE ALSO
buildsys(1M), crash(lM), fmthard(IM), 1ldsysdump(lM), sysm68k(2),
sysm88Kk(2).
DIAGNOSTICS

If the crash dump system can not be configured to the device special_device for some
reason, crashconf will print explanatory messages and the exit value will be 1.
The exit value is 0 upon success.

NOTES
The special_device must be large enough to accommodate the entire physical
memory of the system or data may be lost.

If the special_device also serves as a swap slice, it may need to be significantly larger
than the amount of physical memory to keep from corrupting the crash dump
image after reboot.

10/92 Page 1

cron(1M) (Essential Utilities) cron(1M)

NAME
cron - clock daemon

SYNOPSIS
/usr/sbin/cron

DESCRIPTION
The cron command starts a process that executes commands at specified dates and
times. Regularly scheduled commands can be specified according to instructions
found in crontab files in the directory /var/spool/cron/crontabs. Users can
submit their own crontab file via the crontab command. Commands which are to
be executed only once may be submitted via the at command.

cron only examines crontab files and at command files during process initializa-
tion and when a file changes via the crontab or at commands. This reduces the
overhead of checking for new or changed files at regularly scheduled intervals.

Since cron never exits, it should be executed only once. This is done routinely
through /sbin/rc2.d/S75cron at system boot time. /etc/cron.d/FIFO is used
as a lock file to prevent the execution of more than one cron.

To keep a log of all actions taken by cron, CRONLOG=YES (by default) must be
specified in the /etc/default/cron file. If CRONLOG=NO is specified, no logging
is done. Keeping the log is a user configurable option since cron usually creates
huge log files.

FILES
/usr/sbin/cron.d main cron directory

/etc/default/cron used to maintain a log
/etc/cron.d/FIFO used as a lock file
/var/cron/log accounting information
/var/spool/cron spool area

SEE ALSO
at(1), crontab(1), sh(1).

DIAGNOSTICS
A history of all actions taken by cron are recorded in /var/cron/log.

10/92 Page 1

crontab(1) (User Environment Utilities) crontab (1)

NAME

crontab - user crontab file

SYNOPSIS

crontab [file]

crontab -e [username]
crontab -r [username |
crontab -1 [username]

DESCRIPTION

10/92

crontab copies the specified file, or standard input if no file is specified, into a
directory that holds all users’ crontabs. The -e option edits a copy of the current
user’s crontab file, or creates an empty file to edit if crontab does not exist. When
editing is complete, the file is installed as the user’s crontab file. If a username is
given, the specified user’s crontab file is edited, rather than the current user’s
crontab file; this may only be done by a privileged user. When invoked with the
-e option, the editor used is determined by first checking the environment variable
VISUAL, then EDITOR . If neither is set, it defaults to ed(1). The -r option removes
a user’s crontab from the crontab directory. crontab -1 will list the crontab file for
the invoking user. Only a privileged user can specify a username following the -r or
-1 options to remove or list the crontab file of the specified user.

Users are permitted to use crontab if their names appear in the file
/etc/cron.d/cron.allow. If that file does not exist, the file
/etc/cron.d/cron.deny is checked to determine if the user should be denied
access to crontab. If neither file exists, only root is allowed to submit a job. If
cron.allow does not exist and cron.deny exists but is empty, global usage is per-
mitted. The allow /deny files consist of one user name per line.

A crontab file consists of lines of six fields each. The fields are separated by spaces
or tabs. The first five are integer patterns that specify the following:

minute (0-59),

hour (0-23),

day of the month (1-31),

month of the year (1-12),

day of the week (0-6 with 0=Sunday).

Each of these patterns may be either an asterisk (meaning all legal values) or a list
of elements separated by commas. An element is either a number or two numbers
separated by a minus sign (meaning an inclusive range). Note that the specification
of days may be made by two fields (day of the month and day of the week). If both
are specified as a list of elements, both are adhered to. For example, 0 0 1,15 * 1
would run a command on the first and fifteenth of each month, as well as on every
Monday. To specify days by only one field, the other field should be set to * (for
example, 0 0 * * 1 would run a command only on Mondays).

The sixth field of a line in a crontab file is a string that is executed by the shell at the
specified times. A percent character in this field (unless escaped by \) is translated
to a new-line character. Only the first line (up to a % or end of line) of the command
field is executed by the shell. The other lines are made available to the command as
standard input.

Page 1

crontab (1) (User Environment Utilities) crontab (1)

Any line beginning with a # is a comment and will be ignored.

The shell is invoked from your $HOME directory with an arg0 of sh. Users who
desire to have their .profile executed must explicitly do so in the crontab file.
cron supplies a default environment for every shell, defining HOME, LOGNAME,
SHELL (=/bin/sh),and PATH (=: /bin: /usr/bin: /usr/lbin).

If you do not redirect the standard output and standard error of your commands,
any generated output or errors will be mailed to you.

FILES
/usr/sbin/cron.d main cron directory
/var/spool/cron/crontabs spool area
/usr/sbin/cron.d/log accounting information
/etc/cron.d/cron.allow list of allowed users
/etc/cron.d/cron.deny list of denied users

SEE ALSO

NOTES

Page 2

atg(1), atrm(1), sh(1), su(1), vi(1) cron(1M)

If you inadvertently enter the crontab command with no argument(s), do not
attempt to get out with a CTRL-D. This will cause all entries in your crontab file to
be removed. Instead, exit with a DEL.

If a privileged user modifies another user’s crontab file, resulting behavior may be
unpredictable. Instead, the privileged user should first su(IM) to the other user’s
login before making any changes to the crontab file.

10/92

crypt(1) (Encryption Utilities) crypt(1)

NAME

crypt - encode/decode

SYNOPSIS

crypt [password]
crypt [-k]

DESCRIPTION

FILES

crypt reads from the standard input and writes on the standard output. The pass-
word is a key that selects a particular transformation. If no argument is given,
crypt demands a key from the terminal and turns off printing while the key is
being typed in. If the -k option is used, crypt will use the key assigned to the
environment variable CRYPTKEY. crypt encrypts and decrypts with the same key:

crypt key <clear >cypher
crypt key <cypher | pr

Files encrypted by crypt are compatible with those treated by the editors ed(1),
edit(l), ex(1), and vi(1) in encryption mode.

The security of encrypted files depends on three factors: the fundamental method
must be hard to solve; direct search of the key space must be infeasible; “sneak
paths” by which keys or clear text can become visible must be minimized.

crypt implements a one-rotor machine designed along the lines of the German
Enigma, but with a 256-element rotor. Methods of attack on such machines are
known, but not widely; moreover the amount of work required is likely to be large.

The transformation of a key into the internal settings of the machine is deliberately
designed to be expensive, that is, to take a substantial fraction of a second to com-
pute. However, if keys are restricted to (say) three lower-case letters, then
encrypted files can be read by expending only a substantial fraction of five minutes
of machine time.

If the key is an argument to the crypt command, it is potentially visible to users
executing ps(1) or a derivative. The choice of keys and key security are the most
vulnerable aspect of crypt.

/dev/tty for typed key

SEE ALSO

NOTES

10/92

ed(1), edit(l), ex(1), makekey(1l), nrof£(1), pa(l), ps(1), stty(l), vi(l)

This command is provided with the Encryption Utilities, which is only available in
the United States. If two or more files encrypted with the same key are con-
catenated and an attempt is made to decrypt the result, only the contents of the first
of the original files will be decrypted correctly.

If output is piped to nroff and the encryption key is not given on the command
line then do not pipe crypt through pg(1) or any other program that changes the
tty settings. Doing so may cause crypt to leave terminal modes in a strange state
[see stty(1)].

Page 1

cscope (1) (Enhanced Programming Utilities) cscope (1)

NAME

cscope - interactively examine a C program
SYNOPSIS

cscope [options] files . . .
DESCRIPTION

cscope is an interactive screen-oriented tool that allows the user to browse through

C source files for specified elements of code.

By default, cscope examines the C (.c and .h), 1ex (.1), and yacc (.y) source files

in the current directory. cscope may also be invoked for source files named on the

command line. In either case, cscope searches the standard directories for

#include files that it does not find in the current directory. cscope uses a symbol

cross-reference, cscope.out by default, to locate functions, function calls, macros,

variables, and preprocessor symbols in the files.

cscope builds the symbol cross-reference the first time it is used on the source files

for the program being browsed. On a subsequent invocation, cscope rebuilds the

cross-reference only if a source file has changed or the list of source files is different.

When the cross-reference is rebuilt, the data for the unchanged files are copied from

the old cross-reference, which makes rebuilding faster than the initial build.

The following options can appear in any combination:

-b Build the cross-reference only.

-C Ignore letter case when searching.

-c Use only ASCII characters in the cross-reference file, that is, do not
compress the data.

-d Do not update the cross-reference.

-e Suppress the “e command prompt between files.

-f reffile Use reffile as the cross-reference file name instead of the default
cscope.out.

- I incdir Look in incdir (before looking in INCDIR, the standard place for
header files, normally /usr/include) for any #include files
whose names do not begin with / and that are not specified on the
command line or in namefile below. (The #include files may be
specified with either double quotes or angle brackets.) The incdir
directory is searched in addition to the current directory (which is
searched first) and the standard list (which is searched last). If
more than one occurrence of -I appears, the directories are
searched in the order they appear on the command line.

-1 namefile Browse through all source files whose names are listed in namefile
(file names separated by spaces, tabs, or new-lines) instead of the
default (cscope.files). If this option is specified, cscope
ignores any files appearing on the command line.

-L Do a single search with line-oriented output when used with the
-num pattern option.

10/92 Page 1

cscope(1)

Page 2

-1
-num pattern
-P path

(Enhanced Programming Utilities) cscope(1)

Line-oriented interface (see ‘‘Line-Oriented Interface’’ below).
Go to input field num (counting from 0) and find pattern.

Prepend path to relative file names in a pre-built cross-reference
file so you do not have to change to the directory where the cross-
reference file was built. This option is only valid with the -d
option.

Display the last n file path components instead of the default (1).
Use 0 to not display the file name at all.

Look in dir for additional source files. This option is ignored if
source files are given on the command line.

Use only the first eight characters to match against C symbols. A
regular expression containing special characters other than a
period (.) will not match any symbol if its minimum length is
greater than eight characters.

Do not check file time stamps (assume that no files have changed).

Unconditionally build the cross-reference file (assume that all files
have changed).

Print on the first line of screen the version number of cscope.

The -1, -p, and -T options can also be in the cscope. files file.

Requesting the Initial Search
After the cross-reference is ready, cscope will display this menu:

Find this C symbol:

Find this function definition:

Find functions called by this function:
Find functions calling this function:
Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

Press the TAB key repeatedly to move to the desired input field, type the text to
search for, and then press the RETURN key.

Issuing Subsequent Requests
If the search is successful, any of these single-character commands can be used:

1-9 Edit the file referenced by the given line number.

SPACE

Display next set of matching lines.

+ Display next set of matching lines.

Display previous set of matching lines.
e Edit displayed files in order.
Append the displayed list of lines to a file.

| Pipe all lines to a shell command.

10/92

cscope (1)

(Enhanced Programming Utilities) cscope (1)

At any time these single-character commands can also be used:

TAB
RETURN
“n

e

Y%

~“b

~f

~d

Move to next input field.

Move to next input field.

Move to next input field.

Move to previous input field.

Search with the last text typed.

Move to previous input field and search pattern.
Move to next input field and search pattern.

Toggle ignore/use letter case when searching. (When ignoring letter
case, search for FILE will match File and file.)
Rebuild the cross-reference.

Start an interactive shell (type "d to return to cscope).
Redraw the screen.

Give help information about cscope commands.

Exit cscope.

Note: If the first character of the text to be searched for matches one of the above
commands, escape it by typing a \ (backslash) first.

Substituting New Text for Old Text
After the text to be changed has been typed, cscope will prompt for the new text,

and then it will display the lines containing the old text. Select the lines to be
changed with these single-character commands:

1-9

%
SPACE
+

a

~d
ESCAPE
1

~1

)

Special Keys

Mark or unmark the line to be changed.

Mark or unmark all displayed lines to be changed.
Display next set of lines.

Display next set of lines.

Display previous set of lines.

Mark all lines to be changed.

Change the marked lines and exit.

Exit without changing the marked lines.

Start an interactive shell (type ~d to return to cscope).
Redraw the screen.

Give help information about cscope commands.

If your terminal has arrow keys that work in vi(l), you can use them to move
around the input fields. The up-arrow key is useful to move to the previous input
field instead of using the TAB key repeatedly. If you have CLEAR, NEXT, or PREV
keys they will act as the "1, +, and - commands, respectively.

Line-Oriented Interface
The -1 option lets you use cscope where a screen-oriented interface would not be
useful, for example, from another screen-oriented program.

10/92

Page 3

cscope(1) (Enhanced Programming Utilities) cscope(1)

cscope will prompt with >> when it is ready for an input line starting with the
field number (counting from 0) immediately followed by the search pattern, for
example, 1lmain finds the definition of the main function.

If you just want a single search, instead of the -1 option use the -L and -num pat-
tern options, and you won’t get the >> prompt.
For -1, cscope outputs the number of reference lines

cscope: 2 lines

For each reference found, cscope outputs a line consisting of the file name, func-
tion name, line number, and line text, separated by spaces, for example,

main.c main 161 main(argc, argv)
Note that the editor is not called to display a single reference, unlike the screen-
oriented interface.
You can use the r command to rebuild the database.

cscope will quit when it detects end-of-file, or when the first character of an input
lineis "dorq.

ENVIRONMENT VARIABLES

EDITOR Preferred editor, which defaults to vi(1).

INCLUDEDIRS Colon-separated list of directories to search for #include files.

HOME Home directory, which is automatically set at login.

SHELL Preferred shell, which defaults to sh(1).

SOURCEDIRS Colon-separated list of directories to search for additional source
files.

TERM Terminal type, which must be a screen terminal.

TERMINFO Terminal information directory full path name. If your terminal is

not in the standard terminfo directory, see curses(3X) and ter-
minfo(4) for how to make your own terminal description.

TMPDIR Temporary file directory, which defaults to /var/tmp.

VIEWER Preferred file display program [such as pg], which overrides EDI-
TOR (see above).

VPATH A colon-separated list of directories, each of which has the same

directory structure below it. If VPATH is set, cscope searches for
source files in the directories specified; if it is not set, cscope
searches only in the current directory.

FILES
cscope.files Default files containing -I, -p, and -T options and the list of
source files (overridden by the -i option).
cscope.out Symbol cross-reference file, which is put in the home directory if it
cannot be created in the current directory.
ncscope.out Temporary file containing new cross-reference before it replaces
the old cross-reference.
INCDIR Standard directory for #include files (usually /usr/include).
SEE ALSO

Page 4

curses, terminfo.

10/92

cscope(1) (Enhanced Programming Utilities) cscope(1)

NOTES

10/92

cscope recognizes function definitions of the form:
fname blank (args) white arg_decs white {

where:

frname is the function name

blank is zero or more spaces or tabs, not including newlines
args is any string that does not contain a " or a newline
white is zero or more spaces, tabs, or newlines

arg_decs are zero or more argument declarations (arg_decs may include com-
ments and white space)

It is not necessary for a function declaration to start at the beginning of a line. The
return type may precede the function name; cscope will still recognize the declara-
tion. Function definitions that deviate from this form will not be recognized by
cscope.

The Function column of the search output for the menu option Find functions
called by this function: input field will only display the first function called
in the line, that is, for this function

e()

{

return (£() + g());

}
the display would be

Functions called by this function: e

File Function Line
a.c f 3 return(f() + g());

Occasionally, a function definition or call may not be recognized because of braces
inside #1if statements. Similarly, the use of a variable may be incorrectly recog-
nized as a definition.

A typedef name preceding a preprocessor statement will be incorrectly recognized
as a global definition, for example,

LDFILE *

#if ARI6WR

Preprocessor statements can also prevent the recognition of a global definition, for
example,

char flag

#ifdef ALLOCATE_STORAGE

= -1

#endif
A function declaration inside a function is incorrectly recognized as a function call,
for example,

£0)

{

Page 5

cscope(1) (Enhanced Programming Utilities) cscope(1)

Page 6

void g();
}
is incorrectly recognized asa call to g ().

cscope recognizes C++ classes by looking for the class keyword, but doesn’t recog-
nize that a struct is also a class, so it doesn't recognize inline member function
definitions in a structure. It also doesn’t expect the class keyword in a typedef, so
it incorrectly recognizes X as a definition in

typedef class X * Y;

It also doesn’t recognize operator function definitions

Bool Feature::operator==(const Feature & other)
{

}

10/92

csh(1) (User Environment Utilities) csh(1)

NAME

csh - shell command interpreter with a C-like syntax
SYNOPSIS

csh [-becefinstvvxX] [argument . ..]
DESCRIPTION

csh, the C shell, is a command interpreter with a syntax reminiscent of the C
language. It provides a number of convenient features for interactive use that are
not available with the standard (Bourne) shell, including filename completion,
command aliasing, history substitution, job control, and a number of built-in com-
mands. As with the standard shell, the C shell provides variable, command and
filename substitution.

Initialization and Termination

When first started, the C shell normally performs commands from the .cshrc file
in your home directory, provided that it is readable and you either own it or your
real group ID matches its group ID. If the shell is invoked with a name that starts
with ‘-, as when started by login(1), the shell runs as a login shell. In this case,
after executing commands from the .cshrc file, the shell executes commands from
the .login file in your home directory; the same permission checks as those for
.cshrc are applied to this file. Typically, the .login file contains commands to
specify the terminal type and environment.

As a login shell terminates, it performs commands from the .logout file in your
home directory; the same permission checks as those for . cshrc are applied to this
file.

Interactive Operation
After startup processing is complete, an interactive C shell begins reading com-
mands from the terminal, prompting with hostname% (or hostname# for the
privileged user). The shell then repeatedly performs the following actions: a line of
command input is read and broken into words. This sequence of words is placed on
the history list and then parsed, as described under USAGE, below. Finally, the shell
executes each command in the current line.

Noninteractive Operation
When running noninteractively, the shell does not prompt for input from the termi-
nal. A noninteractive C shell can execute a command supplied as an argument on
its command line, or interpret commands from a script.

The following options are available:

-b Force a break from option processing. Subsequent command-line arguments
are not interpreted as C shell options. This allows the passing of options to
a script without confusion. The shell does not run a set-user-ID script
unless this option is present.

-c Read commands from the first filename argument (which must be present).
Remaining arguments are placed in argv, the argument-list variable.

-e Exit if a command terminates abnormally or yields a nonzero exit status.

-f Fast start. Read neither the .cshrc file, nor the .login file (if a login shell)
upon startup.

10/92 Page 1

csh(1) (User Environment Utilities) csh(1)

-1 Forced interactive. Prompt for command-line input, even if the standard
input does not appear to be a terminal (character-special device).

-n Parse (interpret), but do not execute commands. This option can be used to
check C shell scripts for syntax errors.

-s Take commands from the standard input.

-t Read and execute a single command line. A “\" (backslash) can be used to
escape each newline for continuation of the command line onto subsequent
input lines.

-v Verbose. Set the verbose predefined variable; command input is echoed
after history substitution (but before other substitutions) and before execu-
tion.

-V Set verbose before reading . cshrec.

-X Echo. Set the echo variable; echo commands after all substitutions and just

before execution.
-X Set echo before reading . cshrc.

Except with the options -c, -1, -s or -t, the first nonoption argument is taken to be
the name of a command or script. It is passed as argument zero, and subsequent
arguments are added to the argument list for that command or script.

USAGE
Filename Completion
When enabled by setting the variable filec, an interactive C shell can complete a
partially typed filename or user name. When an unambiguous partial filename is
followed by an ESC character on the terminal input line, the shell fills in the remain-
ing characters of a matching filename from the working directory.

If a partial filename is followed by the EOF character (usually typed as CTRL-d), the
shell lists all filenames that match. It then prompts once again, supplying the
incomplete command line typed in so far.

When the last (partial) word begins with a tilde (7), the shell attempts completion
with a user name, rather than a file in the working directory.

The terminal bell signals errors or multiple matches; this can be inhibited by setting
the variable nobeep. You can exclude files with certain suffixes by listing those
suffixes in the variable fignore. If, however, the only possible completion includes
a suffix in the list, it is not ignored. £ignore does not affect the listing of filenames
by the EOF character.

Lexical Structure
The shell splits input lines into words at space and tab characters, except as noted
below. The characters &, |, ;, <, >, (,and) form separate words; if paired, the pairs
form single words. These shell metacharacters can be made part of other words,
and their special meaning can be suppressed by preceding them with a "\’
(backslash). A newline preceded by a \ is equivalent to a space character.

In addition, a string enclosed in matched pairs of single-quotes (*), double-quotes
("), or backquotes ("), forms a partial word; metacharacters in such a string,
including any space or tab characters, do not form separate words. Within pairs of
backquote () or double-quote (") characters, a newline preceded by a ‘\’
(backslash) gives a true newline character. Additional functions of each type of

Page 2 10/92

csh(1) (User Environment Utilities) csh (1)

quote are described, below, under Variable Substitution, Command Substitu-
tion, and Filename Substitution.

When the shell’s input is not a terminal, the character # introduces a comment that
continues to the end of the input line. Its special meaning is suppressed when pre-
ceded by a \ or enclosed in matching quotes.

Command Line Parsing
A simple command is composed of a sequence of words. The first word (that is not
part of an I/O redirection) specifies the command to be executed. A simple com-
mand, or a set of simple commands separated by | or | & characters, forms a pipeline.
With |, the standard output of the preceding command is redirected to the stan-
dard input of the command that follows. With | &, both the standard error and the
standard output are redirected through the pipeline.

Pipelines can be separated by semicolons (;), in which case they are executed
sequentially. Pipelines that are separated by && or | | form conditional sequences in
which the execution of pipelines on the right depends upon the success or failure,
respectively, of the pipeline on the left.

A pipeline or sequence can be enclosed within parentheses ‘()’ to form a simple
command that can be a component in a pipeline or sequence.

A sequence of pipelines can be executed asynchronously, or in the background by
appending an ‘&’; rather than waiting for the sequence to finish before issuing a
prompt, the shell displays the job number (see Job Control, below) and associ-
ated process IDs, and prompts immediately.

History Substitution

History substitution allows you to use words from previous command lines in the
command line you are typing. This simplifies spelling corrections and the repeti-
tion of complicated commands or arguments. Command lines are saved in the his-
tory list, the size of which is controlled by the history variable. The most recent
command is retained in any case. A history substitution begins with a ! (although
you can change this with the histchars variable) and may occur anywhere on the
command line; history substitutions do not nest. The ! can be escaped with \ to
suppress its special meaning.

Input lines containing history substitutions are echoed on the terminal after being
expanded, but before any other substitutions take place or the command gets exe-
cuted.

Event Designators
An event designator is a reference to a command-line entry in the history list.
! Start a history substitution, except when followed by a space
character, tab, newline, = or (.
tl Refer to the previous command. By itself, this substitution
repeats the previous command.

'n Refer to command-line n .)
1-n Refer to the current command-line minus n.
Istr Refer to the most recent command starting with str.

1?str[?] Refer to the most recent command containing str.

10/92 Page 3

csh(1) (User Environment Utilities) csh(1)

) Insulate a history reference from adjacent characters (if neces-
sary).
Word Designators

A" (colon) separates the event specification from the word designator. It can be
omitted if the word designator begins with a *, §, *, - or %. If the word is to be
selected from the previous command, the second ! character can be omitted from
the event specification. For instance, ! !:1 and !:1 both refer to the first word of
the previous command, while ! !$ and !$ both refer to the last word in the previ-
ous command. Word designators include:

The entire command line typed so far.

0 The first input word (command).

n The n’th argument.

~ The first argument, that is, 1.

$ The last argument.

% The word matched by (the most recent) ?s search.

x-y A range of words; -y abbreviates 0-y.

* All the arguments, or a null value if there is just one word in the
event.

x* Abbreviates x-$.

x- Like x* but omitting word $.

Modifiers
After the optional word designator, you can add a sequence of one or more of the
following modifiers, each preceded by a :.

h Remove a trailing pathname component, leaving the head.

r Remove a trailing suffix of the form . xxx’, leaving the basename.
e Remove all but the suffix.

s/l/r[/] Substitute r for L.

t Remove all leading pathname components, leaving the tail.
& Repeat the previous substitution.
g Apply the change to the first occurrence of a match in each word,

by prefixing the above (for example, g&).

P Print the new command but do not execute it.

a Quote the substituted words, escaping further substitutions.

b Like ¢, but break into words at each space character, tab or new-
line.

Unless preceded by a g, the modification is applied only to the first string that
matches /; an error results if no string matches.

The left-hand side of substitutions are not regular expressions, but character
strings. Any character can be used as the delimiter in place of /. A backslash
quotes the delimiter character. The character &, in the right hand side, is replaced
by the text from the left-hand-side. The & can be quoted with a backslash. A null
uses the previous string either from a ! or from a contextual scan string s from ! »s.
You can omit the rightmost delimiter if a newline immediately follows r; the right-
most ? in a context scan can similarly be omitted.

Page 4 10/92

csh(1) (User Environment Utilities) csh(1)

Without an event specification, a history reference refers either to the previous
command, or to a previous history reference on the command line (if any).

Quick Substitution
~Ir[*] Thisis equivalent to the history substitution: !:s"I"r["].

Aliases

The C shell maintains a list of aliases that you can create, display, and modify using
the alias and unalias commands. The shell checks the first word in each com-
mand to see if it matches the name of an existing alias. If it does, the command is
reprocessed with the alias definition replacing its name; the history substitution
mechanism is made available as though that command were the previous input
line. This allows history substitutions, escaped with a backslash in the definition,
to be replaced with actual command-line arguments when the alias is used. If no
history substitution is called for, the arguments remain unchanged.

Aliases can be nested. That is, an alias definition can contain the name of another
alias. Nested aliases are expanded before any history substitutions is applied. This
is useful in pipelines such as

alias 1m "1s -1 \!* | more’
which when called, pipes the output of 1s(1V) through more(1).

Except for the first word, the name of the alias may not appear in its definition, nor
in any alias referred to by its definition. Such loops are detected, and cause an error
message.

/0 Redirection
The following metacharacters indicate that the subsequent word is the name of a
file to which the command’s standard input, standard output, or standard error is
redirected; this word is variable, command, and filename expanded separately from
the rest of the command.

< Redirect the standard input.

<<word Read the standard input, up to a line that is identical with word,
and place the resulting lines in a temporary file. Unless word is
escaped or quoted, variable and command substitutions are per-
formed on these lines. Then, invoke the pipeline with the tem-
porary file as its standard input. word is not subjected to variable,
filename, or command substitution, and each line is compared to it
before any substitutions are performed by the shell.

10/92 Page 5

csh(1)

(User Environment Utilities) csh(1)

> >! >& >&! Redirect the standard output to a file. If the file does not exist, it is
created. If it does exist, it is overwritten; its previous contents are
lost.

When set, the variable noclobber prevents destruction of existing
files. It also prevents redirection to terminals and /dev/null,
unless one of the ! forms is used. The & forms redirect both stan-
dard output and the the standard error (diagnostic output) to the
file.

>> >>& >>! >>&!
Append the standard output. Like >, but places output at the end
of the file rather than overwriting it. If noclobber is set, it is an
error for the file not to exist, unless one of the ! forms is used.
The & forms append both the standard error and standard output
to the file.

Variable Substitution

Page 6

The C shell maintains a set of variables, each of which is composed of a name and a
value. A variable name consists of up to 20 letters and digits, and starts with a letter
(the underscore is considered a letter). A variable’s value is a space-separated list of
zero or more words.

To refer to a variable’s value, precede its name with a ‘$’. Certain references
(described below) can be used to select specific words from the value, or to display
other information about the variable. Braces can be used to insulate the reference
from other characters in an input-line word.

Variable substitution takes place after the input line is analyzed, aliases are
resolved, and I/0O redirections are applied. Exceptions to this are variable refer-
ences in I/0O redirections (substituted at the time the redirection is made), and
backquoted strings (see Command Substitution).

Variable substitution can be suppressed by preceding the $ with a \, except within
double-quotes where it always occurs. Variable substitution is suppressed inside of
single-quotes. A $ is escaped if followed by a space character, tab or newline.

Variables can be created, displayed, or destroyed using the set and unset com-
mands. Some variables are maintained or used by the shell. For instance, the argv
variable contains an image of the shell’s argument list. Of the variables used by the
shell, a number are toggles; the shell does not care what their value is, only whether
they are set or not.

Numerical values can be operated on as numbers (as with the @ built-in). With
numeric operations, an empty value is considered to be zero; the second and subse-
quent words of multiword values are ignored. For instance, when the verbose
variable is set to any value (including an empty value), command input is echoed
on the terminal.

Command and filename substitution is subsequently applied to the words that
result from the variable substitution, except when suppressed by double-quotes,
when noglob is set (suppressing filename substitution), or when the reference is
quoted with the :g modifier. Within double-quotes, a reference is expanded to
form (a portion of) a quoted string; multiword values are expanded to a string with
embedded space characters. When the :q modifier is applied to the reference, it is
expanded to a list of space-separated words, each of which is quoted to prevent

10/92

csh(1) (User Environment Utilities) csh(1)

subsequent command or filename substitutions.
Except as noted below, it is an error to refer to a variable that is not set.

Svar

${var} These are replaced by words from the value of var, each separated
by a space character. If var is an environment variable, its value is
returned (but ‘:’ modifiers and the other forms given below are
not available).

Svar[index]

${var(index]} These select only the indicated words from the value of var. Vari-
able substitution is applied to index, which may consist of (or
result in) a either single number, two numbers separated by a ’-’,
or an asterisk. Words are indexed starting from 1; a ‘*’ selects all
words. If the first number of a range is omitted (as with
Sargv[-2]), it defaults to 1. If the last number of a range is omit-
ted (as with $argv[1-1), it defaults to $#var (the word count). It
is not an error for a range to be empty if the second argument is
omitted (or within range).

S#name

$ {#name} These give the number of words in the variable.

$0 This substitutes the name of the file from which command input is
being read. An error occurs if the name is not known.

sn

${n} Equivalent to $argv(n].

$* Equivalent to $argv[*].

The modifiers :e, :h, :q, :r, :t and :x can be applied (see History Substitu-
tion), as can :gh, :gt and :gr. If { } (braces) are used, then the modifiers must
appear within the braces. The current implementation allows only one such
modifier per expansion.

The following references may not be modified with : modifiers.

2
2 ;[z?nzl;zr} Substitutes the string 1 if var is set or 0 if it is not set.
$?0 Substitutes 1 if the current input filename is known, or 0 if it is not.
$$ Substitute the process number of the (parent) shell.
$< Substitutes a line from the standard input, with no further interpretation

thereafter. It can be used to read from the keyboard in a C shell script.

Command and Filename Substitutions
Command and filename substitutions are applied selectively to the arguments of
built-in commands. Portions of expressions that are not evaluated are not
expanded. For non-built-in commands, filename expansion of the command
name is done separately from that of the argument list; expansion occurs in a sub-
shell, after I/O redirection is performed.

10/92 Page 7

csh(1) (User Environment Utilities) csh(1)

Command Substitution

A command enclosed by backquotes (*...") is performed by a subshell. Its stan-
dard output is broken into separate words at each space character, tab and newline;
null words are discarded. This text replaces the backquoted string on the current
command line. Within double-quotes, only newline characters force new words;
space and tab characters are preserved. However, a final newline is ignored. It is
therefore possible for a command substitution to yield a partial word.

Filename Substitution

Unquoted words containing any of the characters *, ?, [or {, or that begin with ~,
are expanded (also known as globbing) to an alphabetically sorted list of filenames,
as follows:

* Match any (zero or more) characters.
? Match any single character.
[...] Match any single character in the enclosed list(s) or range(s). A

list is a string of characters. A range is two characters separated
by a minus-sign (-), and includes all the characters in between
in the ASCII collating sequence [see ascii(7)].

{ str, str, ... } Expand to each string (or filename-matching pattern) in the
comma-separated list. Unlike the pattern-matching expres-
sions above, the expansion of this construct is not sorted. For
instance, {b,a} expands to ‘b’ ‘a’, (not ‘a’ ‘'b’). As special
cases, the characters { and }, along with the string { }, are
passed undisturbed.

~[user] Your home directory, as indicated by the value of the variable
home, or that of user, as indicated by the password entry for
use.

Only the patterns *, » and [...] imply pattern matching; an error results if no
filename matches a pattern that contains them. The *.” (dot character), when it is
the first character in a filename or pathname component, must be matched expli-
citly. The / (slash) must also be matched explicitly.

Expressions and Operators

Page 8

A number of C shell built-in commands accept expressions, in which the operators
are similar to those of C and have the same precedence. These expressions typically
appear in the @, exit, if, set and while commands, and are often used to regulate
the flow of control for executing commands. Components of an expression are
separated by white space.

Null or missing values are considered 0. The result of all expressions are strings,
which may represent decimal numbers.

The following C shell operators are grouped in order of precedence:
(...) grouping
~ one’s complement
! logical negation
* / % multiplication, division, remainder (These are right
associative, which can lead to unexpected results.
Group combinations explicitly with parentheses.)

10/92

csh(1)

(User Environment Utilities) csh(1)
+ - addition, subtraction (also right associative)
<< >> bitwise shift left, bitwise shift right
< > <= >= less than, greater than, less than or equal to, greater

than or equal to

= = = ! equal to, not equal to, filename-substitution
pattern match (described below), filename-
substitution pattern mismatch

& bitwise AND

~ bitwise XOR (exclusive or)
| bitwise inclusive OR

&& logical AND

[

l logical OR

The operators: ==, !=, =7, and !~ compare their arguments as strings; other opera-
tors use numbers. The operators =~ and !~ each check whether or not a string to
the left matches a filename substitution pattern on the right. This reduces the need
for switch statements when pattern-matching between strings is all that is
required.

Also available are file inquiries:

- filename Return true, or 1 if the user has read access. Otherwise it
returns false, or 0.

-w filename True if the user has write access.

-x filename ~ True if the user has execute permission (or search permission
on a directory).

-efilename True if file exists.

-o filename True if the user owns file.

-z filename True if file is of zero length (empty).

-f filename True if file is a plain file.

-dfilename True if file is a directory.

If file does not exist or is inaccessible, then all inquiries return false.
An inquiry as to the success of a command is also available:

{ command } If command runs successfully, the expression evaluates to
true, 1. Otherwise it evaluates to false 0. (Note that, con-
versely, command itself typically returns 0 when it runs suc-
cessfully, or some other value if it encounters a problem. If
you want to get at the status directly, use the value of the
status variable rather than this expression).

Control Flow

10/92

The shell contains a number of commands to regulate the flow of control in scripts,
and within limits, from the terminal. These commands operate by forcing the shell
either to reread input (to loop), or to skip input under certain conditions (to branch).

Each occurrence of a foreach, switch, while, if...then and else built-in must
appear as the first word on its own input line.

If the shell’s input is not seekable and a loop is being read, that input is buffered.
The shell performs seeks within the internal buffer to accomplish the rereading
implied by the loop. (To the extent that this allows, backward goto commands will
succeed on nonseekable inputs.)

Page 9

csh(1) (User Environment Utilities) csh(1)

Command Execution

If the command is a C shell built-in, the shell executes it directly. Otherwise, the
shell searches for a file by that name with execute access. If the command-name
contains a /, the shell takes it as a pathname, and searches for it. If the command-
name does not contain a /, the shell attempts to resolve it to a pathname, searching
each directory in the path variable for the command. To speed the search, the shell
uses its hash table (see the rehash built-in) to eliminate directories that have no
applicable files. This hashing can be disabled with the -c or -t, options, or the
unhash built-in.

As a special case, if there is no / in the name of the script and there is an alias for
the word shell, the expansion of the shell alias is prepended (without
modification), to the command line. The system attempts to execute the first word
of this special (late-occurring) alias, which should be a full pathname. Remaining
words of the alias’s definition, along with the text of the input line, are treated as
arguments.

When a pathname is found that has proper execute permissions, the shell forks a
new process and passes it, along with its arguments to the kernel (using the
execve(2) system call). The kernel then attempts to overlay the new process with
the desired program. If the file is an executable binary (in a.out(4) format) the ker-
nel succeeds, and begins executing the new process. If the file is a text file, and the
first line begins with #!, the next word is taken to be the pathname of a shell (or
command) to interpret that script. Subsequent words on the first line are taken as
options for that shell. The kernel invokes (overlays) the indicated shell, using the
name of the script as an argument.

If neither of the above conditions holds, the kernel cannot overlay the file (the
execve(2) call fails); the C shell then attempts to execute the file by spawning a
new shell, as follows:

e If the first character of the file is a #, a C shell is invoked.
e Otherwise, a standard (Bourne) shell is invoked.

Signal Handling
The shell normally ignores QUIT signals. Background jobs are immune to signals
generated from the keyboard, including hangups (HUP). Other signals have the
values that the C shell inherited from its environment. The shell’s handling of
interrupt and terminate signals within scripts can be controlled by the onintr
built-in. Login shells catch the TERM signal; otherwise this signal is passed on to
child processes. In no case are interrupts allowed when a login shell is reading the
. logout file.

Job Control
The shell associates a numbered job with each command sequence, to keep track of
those commands that are running in the background or have been stopped with
TSTP signals (typically CTRL-z). When a command, or command sequence (semi-
colon separated list), is started in the background using the & metacharacter, the
shell displays a line with the job number in brackets, and a list of associated process
numbers:

Page 10 10/92

csh(1) (User Environment Utilities) csh(1)

[1] 1234

To see the current list of jobs, use the jobs built-in command. The job most
recently stopped (or put into the background if none are stopped) is referred to as
the current job, and is indicated with a ‘+’. The previous job is indicated with a ’-’;
when the current job is terminated or moved to the foreground, this job takes its
place (becomes the new current job).

To manipulate jobs, refer to the bg, £g, kill, stop and % built-ins.

A reference to a job begins with a ‘%”. By itself, the percent-sign refers to the current

job.

% %+ %% The current job.

%- The previous job.

%] Refer to job j as in: ‘’kill -9 &j’. j can be a job number, or a
string that uniquely specifies the command-line by which it was
started; ‘fg %vi’ might bring a stopped v1i job to the foreground,
for instance.

$?string Specify the job for which the command-line uniquely contains
string.

A job running in the background stops when it attempts to read from the terminal.

Background jobs can normally produce output, but this can be suppressed using

the ‘stty tostop’ command.

Status Reporting

While running interactively, the shell tracks the status of each job and reports
whenever a finishes or becomes blocked. It normally displays a message to this
effect as it issues a prompt, so as to avoid disturbing the appearance of your input.
When set, the notify variable indicates that the shell is to report status changes
immediately. By default, the notify command marks the current process; after
starting a background job, type not ify to mark it.

Built-in Commands

10/92

Built-in commands are executed within the C shell. If a built-in command occurs as
any component of a pipeline except the last, it is executed in a subshell.

: Null command. This command is interpreted, but performs no action.
alias [name [def]] ’
Assign def to the alias name. def is a list of words that may contain
escaped history-substitution metasyntax. name is not allowed to be

alias or unalias. If def is omitted, the alias name is displayed along
with its current definition. If both name and def are omitted, all aliases

are displayed.
bg [%job] . . .
Run the current or specified jobs in the background.
break Resume execution after the end of the nearest enclosing foreach or

while loop. The remaining commands on the current line are executed.
This allows multilevel breaks to be written as a list of break commands,
all on one line.

Page 11

csh(1) (User Environment Utilities) csh(1)

breaksw Break from a switch, resuming after the endsw.

case label :
A label in a switch statement.

cd [dir]

chdir [dir]
Change the shell’s working directory to directory dir. If no argument is
given, change to the home directory of the user. If dir is a relative path-
name not found in the current directory, check for it in those directories
listed in the cdpath variable. If dir is the name of a shell variable whose
value starts with a /, change to the directory named by that value.

continue Continue execution of the nearest enclosing while or foreach.

default: Labels the default case in a switch statement. The default should come
after all case labels. Any remaining commands on the command line
are first executed.

dirs[-1]
Print the directory stack, most recent to the left; the first directory
shown is the current directory. With the -1 argument, produce an
unabbreviated printout; use of the ~ notation is suppressed.

echo [-n] list
The words in list are written to the shell’s standard output, separated by
space characters. The output is terminated with a newline unless the -n
option is used.

eval argument ...
Reads the arguments as input to the shell, and executes the resulting
command(s). This is usually used to execute commands generated as
the result of command or variable substitution, since parsing occurs
before these substitutions. See tset(1l) for an example of how to use
eval.

exec command
Execute command in place of the current shell, which terminates.

exit [(expr)]
The shell exits, either with the value of the STATUS variable, or with the
value of the specified by the expression expr.

fg % [job]
Bring the current or specified job into the foreground.

foreach var (wordlist)

end The variable var is successively set to each member of wordlist. The
sequence of commands between this command and the matching end is
executed for each new value of var. (Both foreach and end must
appear alone on separate lines.)

The built-in command continue may be used to continue the loop
prematurely and the built-in command break to terminate it prema-
turely. When this command is read from the terminal, the loop is read
up once prompting with ? before any statements in the loop are

Page 12 10/92

csh(1)

10/92

(User Environment Utilities) csh(1)

executed.

glob wordlist

goto label

hashstat

Perform filename expansion on wordlist. Like echo, but no \ escapes are
recognized. Words are delimited by NULL characters in the output.

The specified label is filename and command expanded to yield a label.
The shell rewinds its input as much as possible and searches for a line of
the form label : possibly preceded by space or tab characters. Execution
continues after the indicated line. It is an error to jump to a label that
occurs between a while or for built-in, and its corresponding end.

Print a statistics line indicating how effective the internal hash table has
been at locating commands (and avoiding execs). An exec is
attempted for each component of the path where the hash function indi-
cates a possible hit, and in each component that does not begin with a
’‘ //‘

history[-hr][n]

Display the history list; if n is given, display only the n most recent

events.

-r Reverse the order of printout to be most recent first rather than
oldest first.

-h Display the history list without leading numbers. This is used to
produce files suitable for sourcing using the -h option to source.

if (expr) command

if (expr)

If the specified expression evaluates to true, the single command with
arguments is executed. Variable substitution on command happens
early, at the same time it does for the rest of the if command. command
must be a simple command, not a pipeline, a command list, or a
parenthesized command list. Note: I/O redirection occurs even if expr
is false, when command is not executed (this is a bug).

then

else if (expr2) then

else

endif

jobs[-1]

"

If expr™ is true, commands up to the first else are executed. Other-
wise, if expr2 is true, the commands between the else if and the
second else are executed. Otherwise, commands between the else
and the endif are executed. Any number of else if pairs are allowed,
but only one else. Only one endif is needed, but it is required. The
words else and endif must be the first nonwhite characters on a line.
The if must appear alone on its input line or after an else.)

List the active jobs under job control.
-1 List process IDs, in addition to the normal information.

Page 13

csh(1) (User Environment Utilities) csh(1)

kill [-sig][pid][%job]...

kill -1 Send the TERM (terminate) signal, by default, or the signal specified, to
the specified process ID, the job indicated, or the current job. Signals are
either given by number or by name. There is no default. Typing kill
does not send a signal to the current job. If the signal being sent is
TERM (terminate) or HUP (hangup), then the job or process is sent a
CONT (continue) signal as well.

-1 List the signal names that can be sent.

limit [-h][resource | max-use]]
Limit the consumption by the current process or any process it spawns,
each not to exceed max-use on the specified resource. If max-use is omit-
ted, print the current limit; if resource is omitted, display all limits.

-h Use hard limits instead of the current limits. Hard limits impose
a ceiling on the values of the current limits. Only the privileged
user may raise the hard limits.

resourceis one of:

cputime Maximum CPU seconds per process.

filesize Largest single file allowed.

datasize Maximum data size (including stack) for
the process.

stacksize Maximum stack size for the process.

coredumpsize Maximum size of a core dump (file).
max-use is a number, with an optional scaling factor, as follows:

nh Hours (for cputime).

nk n kilobytes. This is the default for all but cputime.
nm n megabytes or minutes (for cputime).

mm:ss Minutes and seconds (for cput ime).

login [username | -p |
Terminate a login shell and invoke login(l). The .logout file is not
processed. If username is omitted, Login prompts for the name of a user.

-p Preserve the current environment (variables).
logout Terminate a login shell.

nice[+n | -n][command]

Increment the process priority value for the shell or for command by n.
The higher the priority value, the lower the priority of a process, and the
slower it runs. When given, command is always run in a subshell, and
the restrictions placed on commands in simple if commands apply. If
command is omitted, nice increments the value for the current shell. If
no increment is specified, nice sets the process priority value to 4. The
range of process priority values is from -20 to 20. Values of n outside
this range set the value to the lower, or to the higher boundary, respec-
tively.

Page 14 10/92

csh(1)

10/92

(User Environment Utilities) csh(1)
+n Increment the process priority value by n.
-n Decrement by n. This argument can be used only by the

privileged user.

nohup [command]
Run command with HUPs ignored. With no arguments, ignore HUPs
throughout the remainder of a script. When given, command is always
run in a subshell, and the restrictions placed on commands in simple 1f
commands apply. All processes detached with & are effectively
nohup’d.

notify[%job]...
Notify the user asynchronously when the status of the current, or of
specified jobs, changes.

onintr [- | label]
Control the action of the shell on interrupts. With no arguments,
onintr restores the default action of the shell on interrupts. (The shell
terminates shell scripts and returns to the terminal command input
level). With the - argument, the shell ignores all interrupts. With a label
argument, the shell executes a goto label when an interrupt is received
or a child process terminates because it was interrupted.

popd [+n] Pop the directory stack, and cd to the new top directory. The elements of
the directory stack are numbered from 0 starting at the top.

+n Discard the n’th entry in the stack.

pushd [+n | dir]
Push a directory onto the directory stack. With no arguments, exchange
the top two elements.

+n Rotate the n’th entry to the top of the stack and cd to it.
dir Push the current working directory onto the stack and change to
dir.
rehash Recompute the internal hash table of the contents of directories listed in
the path variable to account for new commands added.

repeat count command
Repeat command count times. command is subject to the same restrictions
as with the one-line if statement.

set [var [= value]]

set var[n] =word
With no arguments, set displays the values of all shell variables. Multi-
word values are displayed as a parenthesized list. With the var argu-
ment alone, set assigns an empty (null) value to the variable var. With
arguments of the form var = value set assigns value to var, where value

is one of:
word A single word (or quoted string).
(wordlist) A space-separated list of words enclosed in
parentheses.

Page 15

csh(1) (User Environment Utilities) csh(1)

Values are command and filename expanded before being assigned.
The form set wvar(n] = word replaces the n'th word in a multiword
value with word.

setenv [VAR [word]]

With no arguments, setenv displays all environment variables. With
the VAR argument sets the environment variable VAR to have an empty
(null) value. (By convention, environment variables are normally given
upper-case names.) With both VAR and word arguments setenv sets the
environment variable NAME to the value word, which must be either a
single word or a quoted string. The most commonly used environment
variables, USER, TERM, and PATH, are automatically imported to and
exported from the csh variables user, term, and path; there is no need
to use setenv for these. In addition, the shell sets the PWD environment
variable from the csh variable cwd whenever the latter changes.

shift [variable]
The components of argv, or variable, if supplied, are shifted to the left,
discarding the first component. It is an error for the variable not to be
set, or to have a null value.

source [-h | name
Reads commands from name. source commands may be nested, but if
they are nested too deeply the shell may run out of file descriptors. An
error in a sourced file at any level terminates all nested source com-
mands.

-h Place commands from the the file name on the history list
without executing them.

stop [%job]...
Stop the current or specified background job.

suspend Stop the shell in its tracks, much as if it had been sent a stop signal with
~z. This is most often used to stop shells started by su.

switch (string)
case label :

breaksw
default:

breaksw

endsw Each label is successively matched, against the specified string, which is
first command and filename expanded. The file metacharacters *, > and
[...] may be used in the case labels, which are variable expanded. If
none of the labels match before a default label is found, execution
begins after the default label. Each case statement and the default
statement must appear at the beginning of a line. The command
breaksw continues execution after the endsw. Otherwise control falls
through subsequent case and default statements as with C. If no
label matches and there is no default, execution continues after the
endsw.

Page 16 10/92

csh(1) (User Environment Utilities) csh(1)

time [command]
With no argument, print a summary of time used by this C shell and its
children. With an optional command, execute command and print a sum-
mary of the time it uses.

umask [value |
Display the file creation mask. With value set the file creation mask.
value is given in octal, and is XORed with the permissions of 666 for files
and 777 for directories to arrive at the permissions for new files. Com-
mon values include 002, giving complete access to the group, and read
(and directory search) access to others, or 022, giving read (and direc-
tory search) but not write permission to the group and others.

unalias pattern
Discard aliases that match (filename substitution) pattern. All aliases are
removed by unalias *.

unhash Disable the internal hash table.

unlimit [-h][resource]
Remove a limitation on resource. If no resource is specified, then all
resource limitations are removed. See the description of the 1imit com-
mand for the list of resource names.

-h Remove corresponding hard limits. Only the privileged user
may do this.

unset pattern
Remove variables whose names match (filename substitution) pattern.
All variables are removed by ‘unset *’; this has noticeably distasteful
side-effects.

unsetenv variable
Remove variable from the environment. Pattern matching, as with
unset is not performed.

wait Wait for background jobs to finish (or for an interrupt) before prompt-
ing.

while (expr)

end While expr is true (evaluates to non-zero), repeat commands between

the while and the matching end statement. break and continue may
be used to terminate or continue the loop prematurely. The while and
end must appear alone on their input lines. If the shell’s input is a ter-
minal, it prompts for commands with a question-mark until the end
command is entered and then performs the commands in the loop.

s[job][&]
Bring the current or indicated job to the foreground. With the amper-
sand, continue running job in the background.

@ [var =expr]

10/92 Page 17

csh(1)

@ [var (n]

(User Environment Utilities) csh(1)

=expr]

With no arguments, display the values for all shell variables. With
arguments, the variable var, or the n’th word in the value of var , to the
value that expr evaluates to. (If [n] is supplied, both var and its n’'th
component must already exist.)

If the expression contains the characters >, <, & or |, then at least this
part of expr must be placed within parentheses.

The operators *=, +=, etc., are available as in C. The space separating the
name from the assignment operator is optional. Spaces are, however,
mandatory in separating components of expr that would otherwise be
single words.

Special postfix operators, ++ and -- increment or decrement name,
respectively.

Environment Variables and Predefined Shell Variables
Unlike the standard shell, the C shell maintains a distinction between environment
variables, which are automatically exported to processes it invokes, and shell vari-
ables, which are not. Both types of variables are treated similarly under variable
substitution. The shell sets the variables argv, cwd, home, path, prompt, shell,
and status upon initialization. The shell copies the environment variable USER
into the shell variable user, TERM into term, and HOME into home, and copies each
back into the respective environment variable whenever the shell variables are
reset. PATH and path are similarly handled. You need only set path once in the

.cshrc or

.login file. The environment variable PWD is set from cwd whenever the

latter changes. The following shell variables have predefined meanings:

argv

cdpath

cwd
echo

fignore

filec

hardpaths

Page 18

Argument list. Contains the list of command line arguments sup-
plied to the current invocation of the shell. This variable determines
the value of the positional parameters $1, $2, and so on.

Contains a list of directories to be searched by the cd, chdir, and
popd commands, if the directory argument each accepts is not a sub-
directory of the current directory.

The full pathname of the current directory.
Echo commands (after substitutions), just before execution.

A list of filename suffixes to ignore when attempting filename com-
pletion. Typically the single word . o".

Enable filename completion, in which case the CTRL-d character

CTRL-d) and the ESC character have special significance when typed

in at the end of a terminal input line:

EOT Print a list of all filenames that start with the preceding
string.

ESC Replace the preceding string with the longest unambiguous
extension.

If set, pathnames in the directory stack are resolved to contain no
symbolic-link components.

10/92

csh(1)

10/92

histchars

history

home

ignoreeof

mail

nobeep

noclobber

noglob

nonomatch

notify

path

prompt

savehist

(User Environment Utilities) csh(1)

A two-character string. The first character replaces ! as the history-
substitution character. The second replaces the carat (") for quick
substitutions.

The number of lines saved in the history list. A very large number
may use up all of the C shell’s memory. If not set, the C shell saves
only the most recent command.

The user’s home directory. The filename expansion of ~ refers to the
value of this variable.

If set, the shell ignores EOF from terminals. This protects against
accidentally killing a C shell by typing a CTRL-d.

A list of files where the C shell checks for mail. If the first word of
the value is a number, it specifies a mail checking interval in seconds
(default 5 minutes).

Suppress the bell during command completion when asking the C
shell to extend an ambiguous filename.

Restrict output redirection so that existing files are not destroyed by
accident. > redirections can only be made to new files. >> redirec-
tions can only be made to existing files.

Inhibit filename substitution. This is most useful in shell scripts
once filenames (if any) are obtained and no further expansion is
desired.

Returns the filename substitution pattern, rather than an error, if the
pattern is not matched. Malformed patterns still result in errors.

If set, the shell notifies you immediately as jobs are completed,
rather than waiting until just before issuing a prompt.

The list of directories in which to search for commands. path is ini-
tialized from the environment variable PATH, which the C shell
updates whenever path changes. A null word specifies the current
directory. The default is typically: (. /usr/ucb /usr/bin). If
path becomes unset only full pathnames will execute. An interac-
tive C shell will normally hash the contents of the directories listed
after reading .cshrc, and whenever path is reset. If new com-
mands are added, use the rehash command to update the table.

The string an interactive C shell prompts with. Noninteractive
shells leave the prompt variable unset. Aliases and other commands
in the .cshrc file that are only useful interactively, can be placed
after the following test: ‘if ($?prompt == 0) exit’, to reduce
startup time for noninteractive shells. A ! in the prompt string is
replaced by the current event number. The default prompt is host-
name% for mere mortals, or hostname# for the privileged user.

The number of lines from the history list that are saved in ~/.his-
tory when the user logs out. Large values for savehist slow down
the C shell during startup.

Page 19

csh(1)

shell

status

time

verbose

FILES

~/.cshrc
~/.login

~/ .logout
~/.history
/usr/bin/sh
/tmp/sh*
/etc/passwd

SEE ALSO

(User Environment Utilities) csh(1)

The file in which the C shell resides. This is used in forking shells to
interpret files that have execute bits set, but that are not executable
by the system.

The status returned by the most recent command. If that command
terminated abnormally, 0200 is added to the status. Built-in com-
mands that fail return exit status 1, all other built-in commands set
status to 0.

Control automatic timing of commands. Can be supplied with one
or two values. The first is the reporting threshold in CPU seconds.
The second is a string of tags and text indicating which resources to
report on. A tag is a percent sign (%) followed by a single upper-case
letter (unrecognized tags print as text):

oe
@)

Average amount of unshared data space used in
Kilobytes.

Elapsed (wallclock) time for the command.

Page faults.

Number of block input operations.

Average amount of unshared stack space used in
Kilobytes.

Maximum real memory used during execution of the
process.

Number of block output operations.

Total CPU time — U (user) plus S (system) — as a
percentage of E (elapsed) time.

Number of seconds of CPU time consumed by the
kernel on behalf of the user’s process.

Number of seconds of CPU time devoted to the user’s
process.

Number of swaps.

Average amount of shared memory used in Kilo-
bytes.

oe 0P 00 o o°
= N Hm™Mm

[
g O

o o oe
a 0

o
X =

o

The default summary display outputs from the $U, S, $E, %P, $X, %D,
%1, %0, $F and %W tags, in that order.

Display each command after history substitution takes place.

Read at beginning of execution by each shell.

Read by login shells after .cshrc at login.

Read by login shells at logout.

Saved history for use at next login.

Standard shell, for shell scripts not starting with a “#'.
Temporary file for ‘<<’.

Source of home directories for ‘~name’.

login(1), sh(l) access(2), exec(2), fork(2), pipe(2), a.out(4), environ(4), ter-
mio(4), ascii(b).

Page 20

10/92

csh(1) (User Environment Utilities) csh(1)

DIAGNOSTICS
You have stopped jobs.
You attempted to exit the C shell with stopped jobs under job control. An
immediate second attempt to exit will succeed, terminating the stopped
jobs.

NOTES
Words can be no longer than 1024 characters. The system limits argument lists to
1,048,576 characters. However, the maximum number of arguments to a command
for which filename expansion applies is 1706. Command substitutions may expand
to no more characters than are allowed in the argument list. To detect looping, the
shell restricts the number of alias substitutions on a single line to 20.

When a command is restarted from a stop, the shell prints the directory it started in
if this is different from the current directory; this can be misleading (that is, wrong)
as the job may have changed directories internally.

Shell built-in functions are not stoppable/restartable. Command sequences of the
forma ; b ; care also not handled gracefully when stopping is attempted. If you
suspend b, the shell never executes c. This is especially noticeable if the expansion
results from an alias. It can be avoided by placing the sequence in parentheses to
force it into a subshell.

Multiline shell procedures should be provided, as they are with the standard
(Bourne) shell.

Commands within loops, prompted for by ?, are not placed in the history list.

Control structures should be parsed rather than being recognized as built-in com-
mands. This would allow control commands to be placed anywhere, to be com-
bined with |, and to be used with & and ; metasyntax.

It should be possible to use the : modifiers on the output of command substitu-
tions. There are two problems with : modifier usage on variable substitutions: not
all of the modifiers are available, and only one modifier per substitution is allowed.

The g (global) flag in history substitutions applies only to the first match in each
word, rather than all matches in all words. The the standard text editors con-
sistently do the latter when given the g flag in a substitution command.

Quoting conventions are confusing. Overriding the escape character to force vari-
able substitutions within double quotes is counterintuitive and inconsistent with
the Bourne shell.

Symbolic links can fool the shell. Setting the hardpaths variable alleviates this.

‘set path’ should remove duplicate pathnames from the pathname list. These
often occur because a shell script or a .cshrc file does something like ‘set
path=(/usr/local /usr/hosts $path)’ to ensure that the named directories
are in the pathname list.

The only way to direct the standard output and standard error separately is by
invoking a subshell, as follows:

example% (command > outfile) >& errotfile

10/92 Page 21

csh(1) (User Environment Utilities) csh(1)

Although robust enough for general use, adventures into the esoteric periphery of
the C shell may reveal unexpected quirks.

Page 22 10/92

csplit(1) (Directory and File Management Utilities) csplit(1)

NAME

csplit - context split
SYNOPSIS

csplit [-s] [-k] [-£ prefix] fileargl [... argn]
DESCRIPTION

csplit reads file and separates it into n+1 sections, defined by the arguments
argl ...argn. By default the sections are placed in xx00...xxn (n may not be
greater than 99). These sections get the following pieces of file:

00: From the start of file up to (but not including) the line referenced by arg1.
01: From the line referenced by argl up to the line referenced by arg?2.

n: From the line referenced by argn to the end of file.
If the file argument is a -, then standard input is used.
The options to csplit are:

-s csplit normally prints the character counts for each file created. If
the -s option is present, csplit suppresses the printing of all charac-
ter counts.

-k csplit normally removes created files if an error occurs. If the -k

option is present, csplit leaves previously created files intact.

-fprefix If the -f option is used, the created files are named
prefix00 . . . prefixn. The default is xx00...xxn. Characters from
supplementary code sets can be used for prefix.

The arguments (argl ... argn) to csplit can be a combination of the following:

/rexp/ A file is to be created for the section from the current line up to (but
not including) the line containing the regular expression rexp. The
current line becomes the line containing rexp. This argument may be
followed by an optional + or - some number of lines (e.g., /Page/-5).
See ed(1) for a description of how to specify a regular expression.

%rexp% This argument is the same as /rexp /, except that no file is created for
the section.

Inno A file is to be created from the current line up to (but not including)
Inno. The current line becomes Inno.

{num}) Repeat argument. This argument may follow any of the above argu-
ments. If it follows a rexp type argument, that argument is applied
num more times. If it follows Inno, the file will be split every Inno
lines (num times) from that point.

Enclose all rexp type arguments that contain blanks or other characters meaningful
to the shell in the appropriate quotes. Regular expressions may not contain embed-
ded new-lines. csplit does not affect the original file; it is the user’s responsibility
to remove it if it is no longer wanted.

EXAMPLES

10/92 Page 1

csplit(1) (Directory and File Management Utilities) csplit(1)

csplit -f cobol file ’/procedure division/’ /par5./ /parlé6./

This example creates four files, cobol00...cobol03. After editing the “split” files,
they can be recombined as follows:

cat cobol0[0-3] > file
Note that this example overwrites the original file.
csplit -k file 100 {99}
This example splits the file at every 100 lines, up to 10,000 lines. The -k option

causes the created files to be retained if there are less than 10,000 lines; however, an
error message would still be printed.

csplit -k prog.c ‘%main(%” ’/"~}/+1’ {20}

If prog.c follows the normal C coding convention (the last line of a routine con-
sists only of a } in the first character position), this example creates a file for each
separate C routine (up to 21) in prog. c.

INTERNATIONAL FUNCTIONS
csplit can process characters from supplementary code sets. In regular expres-
sions, searches are performed on characters, not bytes.
The indicated size of the files created is in bytes, not the number of characters.

SEE ALSO
ed(1), sh(1).

DIAGNOSTICS
Self-explanatory except for:
arg - out of range

which means that the given argument did not reference a line between the current
position and the end of the file.

Page 2 10/92

ct(1C) (Basic Networking Utilities) ct(1C)

NAME
ct - spawn login to a remote terminal

SYNOPSIS
ct [options] telno . ..

DESCRIPTION

ct dials the telephone number of a modem that is attached to a terminal and
spawns a login process to that terminal. Telno is a telephone number, with equal
signs for secondary dial tones and minus signs for delays at appropriate places.
(The set of legal characters for telno is 0 through 9, -, =, **, and #. The maximum
length of telno is 31 characters). If more than one telephone number is specified, ct
tries each in succession until one answers; this is useful for specifying alternate
dialing paths.

ct tries each line listed in the file /etc/uucp/Devices until it finds an available

line with appropriate attributes, or runs out of entries. ct uses the following

options:

-h Normally, ct hangs up the current line so it can be used to answer the
incoming call. The -h option prevents this action. The -h option also
waits for the termination of the specified ct process before returning
control to the user’s terminal.

-s speed The data rate may be set with the -s option. speed is expressed in
baud rates. The default baud rate is 1200.

-V If the -v (verbose) option is used, ct sends a running narrative to the
standard error output stream.

-wn If there are no free lines ct asks if it should wait for one, and if so, for
how many minutes it should wait before it gives up. ct continues to
try to open the dialers at one-minute intervals until the specified limit
is exceeded. This dialogue may be overridden by specifying the -w n
option where 7 is the maximum number of minutes that ct is to wait
for a line.

-Xn This option is used for debugging; it produces a detailed output of
the program execution on standard error. n is a single number
between 0 and 9. As 7 increases to 9, more detailed debugging infor-
mation is given.

After the user on the destination terminal logs out, there are two things that could

occur, depending on what type of port monitor is monitoring the port. In the case

of no port monitor, ct prompts: Reconnect? If the response begins with the letter

n, the line is dropped; otherwise, t tymon is started again and the login: prompt is

printed. In the second case, where a port monitor is monitoring the port, the port

monitor reissues the login: prompt.

The user should log out properly before disconnecting.

FILES
/etc/uucp/Devices
/var/adm/ctlog

10/92 Page 1

ct(1C) (Basic Networking Utilities) ct(1C)

SEE ALSO
cu(1C), login(1), uucp(1C), ttymon(1M).

NOTES
The ct program will not work with a DATAKIT Multiplex interface.

For a shared port, one used for both dial-in and dial-out, the ttymon program run-
ning on the line must have the -r and -b options specified [see t tymon(1M)].

Page 2 10/92

ctags(1) (Editing Utilities) ctags (1)

NAME

ctags - create a tags file for use with vi

SYNOPSIS

ctags [~aBFtuvwx | [- £ tagsfile | filename . . .

DESCRIPTION

10/92

ctags makes a tags file for ex(1) from the specified C, Pascal, FORTRAN, YACC, and
LEX sources. A tags file gives the locations of specified objects (in this case func-
tions and typedefs) in a group of files. Each line of the tags file contains the object
name, the file in which it is defined, and an address specification for the object
definition. Functions are searched with a pattern, typedefs with a line number.
Specifiers are given in separate fields on the line, separated by SPACE or TAB charac-
ters. Using the tags file, ex can quickly find these objects definitions.

Normally ctags places the tag descriptions in a file called tags; this may be over-
ridden with the - £ option.

Files with names ending in .c or .h are assumed to be C source files and are
searched for C routine and macro definitions. Files with names ending in .y are
assumed to be YACC source files. Files with names ending in .1 are assumed to be
LEX files. Others are first examined to see if they contain any Pascal or FORTRAN
routine definitions; if not, they are processed again looking for C definitions.

The tag main is treated specially in C programs. The tag formed is created by
prepending M to filename, with a trailing . c removed, if any, and leading pathname
components also removed. This makes use of ctags practical in directories with
more than one program.

The following options are available:

-a Append output to an existing tags file.

-B Use backward searching patterns (... ?).

-F Use forward searching patterns (/... /) (default).
-t Create tags for typedefs.

-u Update the specified files in tags, that is, all references to them are deleted,
and the new values are appended to the file. Beware: this option is imple-
mented in a way which is rather slow; it is usually faster to simply rebuild
the tags file.

-v Produce on the standard output an index listing the function name, file
name, and page number (assuming 64 line pages). Since the output will be
sorted into lexicographic order, it may be desired to run the output through

sort -f.
-w Suppress warning diagnostics.
-x Produce a list of object names, the line number and file name on which each

is defined, as well as the text of that line and prints this on the standard out-
put. This is a simple index which can be printed out as an off-line readable
function index.

Page 1

ctags (1) (Editing Utilities) ctags (1)

FILES
tags output tags file

USAGE
The -v option is mainly used with vgrind which will be part of the optional BSD
Compatibility Package.

SEE ALSO
ex(1), vagrind(1), vi(1)

NOTES
Recognition of functions, subroutines and procedures for FORTRAN and Pascal
is done is a very simpleminded way. No attempt is made to deal with block struc-
ture; if you have two Pascal procedures in different blocks with the same name you
lose.

The method of deciding whether to look for C or Pascal and FORTRAN functions is
a hack.

ctags does not know about #ifdefs.

ctags should know about Pascal types. Relies on the input being well formed to
detect typedefs. Use of -tx shows only the last line of typedefs.

Page 2 10/92

ctrace (1) (Advanced C Utilities) ctrace (1)

NAME

ctrace - C program debugger

SYNOPSIS

ctrace [options] [file]

DESCRIPTION

10/92

The ctrace command allows the user to monitor the sequential execution of a C
program as each program statement executes. The effect is similar to executing a
shell procedure with the -x option. ctrace reads the C program in file (or from
standard input if the user does not specify file), inserts statements to print the text
of each executable statement and the values of all variables referenced or modified,
and writes the modified program to the standard output. The output of ctrace
must be placed into a temporary file because the cc(1) command does not allow the
use of a pipe. This file can then be compiled and executed.

As each statement in the program executes, it will be listed at the terminal, fol-
lowed by the name and value of any variables referenced or modified in the state-
ment; these variable names and values will be followed by any output from the
statement. Loops in the trace output are detected and tracing is stopped until the
loop is exited or a different sequence of statements within the loop is executed. A
warning message is printed after each 1000 loop cycles to help the user detect
infinite loops. The trace output goes to the standard output so the user can put it
into a file for examination with an editor or the bfs(1) or tail(l) commands.

The options commonly used are:

-f functions ~ Trace only these functions.
-v functions ~ Trace all but these functions.

The user may want to add to the default formats for printing variables. Long and
pointer variables are always printed as signed integers. Pointers to character arrays
are also printed as strings if appropriate. char, short, and int variables are also
printed as signed integers and, if appropriate, as characters. double variables are
printed as floating point numbers in scientific notation. The user can request that
variables be printed in additional formats, if appropriate, with these options:

-0 Octal

-x Hexadecimal
-u Unsigned

-e Floating point

These options are used only in special circumstances:

-1n Check n consecutively executed statements for looping trace output,
instead of the default of 20. Use 0 to get all the trace output from loops.

-s Suppress redundant trace output from simple assignment statements and
string copy function calls. This option can hide a bug caused by use of the
= operator in place of the == operator.

-tn Trace n variables per statement instead of the default of 10 (the maximum
number is 20). The diagnostics section explains when to use this option.

-pP Preprocess the input before tracing it. The user can also use the -D, -I, and
-U cc(1) options.

Page 1

ctrace(1) (Advanced C Utilities) ctrace(1)

-p strin
gChange the trace print function from the default of printf. For example,
fprintf (stderr, would send the trace to the standard error output.

-rf Use file f in place of the runtime.c trace function package. This replace-
ment lets the user change the entire print function, instead of just the name
and leading arguments (see the -p option).

-V Prints version information on the standard error.

-Qarg If arg isy, identification information about ctrace will be added to the out-
put files. This can be useful for software administration. Giving n for arg
explicitly asks for no such information, which is the default behavior.

EXAMPLE

Page 2

If the file 1c. c contains this C program:

1 #include <stdio.h>
2 main() /* count lines in input */
3 {
4 int ¢, nl;
5
6 nl = 0;
7 while ((c = getchar()) != EOF)
8 if (¢ = '\n’")
9 ++nl;
10 printf ("$d\n", nl);
11 }
these commands and test data are entered:
cc lc.c
a.out
1
(cntl-d)

the program will be compiled and executed. The output of the program will be the
number 2, which is incorrect because there is only one line in the test data. The
error in this program is common, but subtle. If the user invokes ctrace with these
commands:

ctrace lc.c >temp.c

cc temp.c
a.out

the output will be:

2 main()
6 nl = 0;
/* nl == 0 */
7 while ((c = getchar()) != EOF)

The program is now waiting for input. If the user enters the same test data as
before, the output will be:

/* ¢ == 49 or '1’ */

8 if (¢ = "\n")
/¥ ¢ == 10 or '\n’ */
9 ++nl;

10/92

ctrace (1) (Advanced C Utilities) ctrace(1)

/* nl == 1 */

7 while ((c = getchar()) != EOF)
/* ¢ == 10 or '\n’ */
3 if (¢ = '\n’)
/* ¢ == 10 or '\n’ */
9 ++nl;
/* nl == 2 %/
7 while ((c = getchar()) != EOF)
If an end-of-file character (cntl-d) is entered, the final output will be:
/¥ ¢ == -1 */

10 printf ("%d\n", nl);
/* nl == 2 %/2
return

Note the information printed out at the end of the trace line for the nl variable fol-
lowing line 10. Also note the return comment added by ctrace at the end of the
trace output. This shows the implicit return at the terminating brace in the func-
tion.

The trace output shows that variable c is assigned the value "1’ in line 7, but in line
8 it has the value "\n’. Once user attention is drawn to this if statement, he or she
will probably realize that the assignment operator (=) was used in place of the
equality operator (==). This error can easily be missed during code reading.

EXECUTION-TIME TRACE CONTROL

10/92

The default operation for ctrace is to trace the entire program file, unless the -f or
-v options are used to trace specific functions. The default operation does not give
the user statement-by-statement control of the tracing, nor does it let the user turn
the tracing off and on when executing the traced program.

The user can do both of these by adding ctrof£() and ctron() function calls to the
program to turn the tracing off and on, respectively, at execution time. Thus, com-
plex criteria can be arbitrarily coded for trace control with if statements, and this
code can even be conditionally included because ctrace defines the CTRACE
preprocessor variable. For example:

#ifdef CTRACE
if (¢ == "' && 1 > 1000)
ctron () ;
#endif

These functions can also be called from tbx(1) if they are compiled with the -g
option. For example, to trace all but lines 7 to 10 in the main function, enter:

tbhx a.out

associate main:7 "call ctroff"
associate main:11 "call ctron"
run

The trace can be turned off and on by setting static variable tr_ct_ to 0 and 1,

respectively. This on/off option is useful if a user is using a debugger that can not
call these functions directly.

Page 3

ctrace(1) (Advanced C Utilities) ctrace(1)

FILES

/usr/ccs/lib/ctrace/runtime.c run-time trace package

DIAGNOSTICS

This section contains diagnostic messages from both ctrace and cc(1), since the
traced code often gets some cc warning messages. The user can get cc error mes-
sages in some rare cases, all of which can be avoided.

ctrace Diagnostics

NOTES

warning: some variables are not traced in this statement
Only 10 variables are traced in a statement to prevent the C compiler "out of
tree space; simplify expression" error. Use the -t option to increase this
number.

warning: statement too long to trace
This statement is over 400 characters long. Make sure that tabs are used to
indent the code, not spaces.

cannot handle preprocessor code, use -P option
This is usually caused by #ifdef/#endif preprocessor statements in the
middle of a C statement, or by a semicolon at the end of a #define prepro-
cessor statement.

'if ... else if’ sequence too long
Split the sequence by removing an else from the middle.

possible syntax error, try -P option
Use the -P option to preprocess the ctrace input, along with any appropri-
ate -D, -I, and -U preprocessor options.

Defining a function with the same name as a system function may cause a syntax
error if the number of arguments is changed. Just use a different name.

ctrace assumes that BADMAG is a preprocessor macro, and that EOF and NULL are
#defined constants. Declaring any of these to be variables, e.g., "int EOF;", will
cause a syntax error.

Pointer values are always treated as pointers to character strings.

ctrace does not know about the components of aggregates like structures, unions,
and arrays. It cannot choose a format to print all the components of an aggregate
when an assignment is made to the entire aggregate. ctrace may choose to print
the address of an aggregate or use the wrong format (e.g., 3.149050e-311 for a
structure with two integer members) when printing the value of an aggregate.

The loop trace output elimination is done separately for each file of a multi-file pro-
gram. Separate output elimination can result in functions called from a loop still
being traced, or the elimination of trace output from one function in a file until
another in the same file is called.

SEE ALSO

Page 4

bfs(1), tbx(1), tail(1), ctype(3C), fclose(3S), print £(3S), string(3C).

10/92

cu(1C) (Basic Networking Utilities) cu(1C)

NAME

cu - call another UNIX system

SYNOPSIS

cu [options] [destination]

DESCRIPTION

cu calls up another UNIX system, a terminal, or possibly a non-UNIX system. It
manages an interactive conversation with possible transfers of files. It is con-
venient to think of cu as operating in two phases. The first phase is the connection
phase in which the connection is established. cu then enters the conversation
phase. The -d option is the only one that applies to both phases.

-d Causes diagnostic traces to be printed.

Connection Phase

10/92

cu uses the same mechanism that uucp does to establish a connection. This means
that it will use the wuucp «control files /etc/uucp/Devices and
/etc/uucp/Systems. This gives cu the ability to choose from several different
media to establish the connection. The possible media include telephone lines,
direct connections, and local area networks (LAN). The Devices file contains a list
of media that are available on your system. The Systems file contains information
for connecting to remote systems, but it is not generally readable.

The destination parameter from the command line is used to tell cu what system
you wish to connect to. destination can be blank, a telephone number, a system
name, or a LAN specific address. A telephone number is a string consisting of the
tone dial characters (the digits 0 through 9, *,and #) plus the special characters =
and -. The equal sign designates a secondary dial tone and the minus sign creates a
4 second delay. A system name is the name of any computer that uucp can call; the
uuname command prints a list of these names. The documentation for your LAN
will show the form of the LAN specific address.

If cu’s default behavior is invoked (not using the -c or -1 options), cu will use des-
tination to determine which medium to use. If destination is a telephone number, cu
will assume that you wish to use a telephone line and it will select an automatic
call unit (ACU). If the destination is not a telephone number, then cu will assume
that it is a system name. cu will follow the uucp calling mechanism and use the
Systems and Devices files to obtain the best available connection. Since cu will
choose a speed that is appropriate for the medium that it selects, you may not use
the -s option when destination is a system name.

The -c and -1 options modify this default behavior. -c is most often used to select
a LAN by specifying a Type field from the Devices file. Here, destination is
assumed to be a system name. If the connection attempt to system name fails, a
connection will be attempted using destination as a LAN specific address. The -1
option is used to specify a device associated with a direct connection. If the con-
nection is truly a direct connection to the remote machine, then there is no need to
specify a destination . This is the only case where a blank destination is allowed. On
the other hand, there may be cases in which the specified device connects to a
dialer, so it is valid to specify a telephone number as a destination. The -c and -1
options should not be specified on the same command line.

Page 1

cu(1C)

(Basic Networking Utilities) cu(1C)

cu accepts many options. The -c, -1, and -s options play a part in selecting the
medium,; the remaining options are used in configuring the line.

-sspeed

-ctype

-lline

-bn

-t

Specifies the transmission speed (300, 1200, 2400, 4800, 9600). The
default value is "Any" speed which will depend on the order of the
lines in the /etc/uucp/Devices file. Most modems are either 300,
1200, or 2400 baud. Directly connected lines may be set to a speed
higher than 2400 baud.

The first field in the Devices file is the "Type" field. The -c option
forces cu to only use entries in the "Type" field that match the user
specified type. The specified type is usually the name of a local area
network.

Specifies a device name to use as the communication line. This can be
used to override the search that would otherwise take place for the
first available line having the right speed. When the -1 option is used
without the -s option, the speed of a line is taken from the Devices
file record in which 1ine matches the second field (the Line field).
When the -1 and -s options are both used together, cu will search the
Devices file to check if the requested speed for the requested line is
available. If so, the connection will be made at the requested speed,
otherwise, an error message will be printed and the call will not be
made. In the general case where a specified device is a directly con-
nected asynchronous line (for example, /dev/term/ab), a telephone
number (telno) is not required. The specified device need not be in the
/dev directory. If the specified device is associated with an auto
dialer, a telephone number must be provided. If destination is used
with this option, it must be a telephone number.

Forces 1 to be the number of bits processed on the line. 7 is either 7 or
8. This allows connection between systems with different character
sizes. By default, the character size of the line is set to the same as the
current local terminal.

Set an EVEN data parity. This option designates that EVEN parity is
to be generated for data sent to the remote system.

Set communication mode to half-duplex. This option emulates the
local echo(1) command in order to support calls to other computer
systems that expect terminals to be set to half-duplex mode.

Request user prompt for telephone number. For added security, this
option will prompt the user to provide the telephone number to be
dialed, rather than taking it from the command line.

Set an ODD data parity. This option designates that ODD parity is to
be generated for data sent to the remote system.

Used to dial a terminal which has been set to auto answer. Appropri-
ate mapping of carriage-return to carriage-return-line-feed pairs is set.

Conversation Phase
After making the connection, cu runs as two processes: the transmit process reads
data from the standard input and, except for lines beginning with ~, passes it to
the remote system; the receive process accepts data from the remote system and,

Page 2

10/92

cu(1C)

10/92

(Basic Networking Utilities) cu(1C)

except for lines beginning with ~, passes it to the standard output. Normally, an
automatic DC3/DC1 protocol is used to control input from the remote so the buffer
is not overrun. Lines beginning with ~ have special meanings.

The transmit process interprets the following user initiated commands:

~!
~lemd. ..
~Semd.. ..
~%cd

~%take from [to]

~%put from [to]

~~ line

~%break
~%debug
~t

~1.

~%ifc

~%ofc

~%divert

~%0ld

terminate the conversation.

escape to an interactive shell on the local system.

run cmd on the local system (via sh -c).

run cmd locally and send its output to the remote system.

change the directory on the local system. Note: ~!cd will
cause the command to be run by a sub-shell, probably not
what was intended.

copy file from (on the remote system) to file to on the local
system. If to is omitted, the from argument is used in both
places.

copy file from (on local system) to file fo on remote system.
If to is omitted, the from argument is used in both places.

send the line ~ line to the remote system.

transmit a BREAK to the remote system (which can also be
specified as ~%b).

toggles the -d debugging option on or off (which can also be
specified as ~%d).

prints the values of the termio structure variables for the
user’s terminal (useful for debugging).

prints the values of the termio structure variables for the
remote communication line (useful for debugging).

toggles between DC3/DC1 input control protocol and no
input control. This is useful when the remote system does
not respond properly to the DC3 and DC1 characters. (can
also be specified as ~%nostop).

toggles the output flow control setting. When enabled, out-
going data may be flow controlled by the remote host (can
also be specified as ~%noostop).

allow /disallow unsolicited diversions. That is, diversions
not specified by ~%take.

allow /disallow old style syntax for received diversions.

The receive process normally copies data from the remote system to the standard
output of the local system. It may also direct the output to local files.

The use of ~%put requires stty(l) and cat(l) on the remote side. It also requires
that the current control characters on the remote system be identical to the current
control characters on the local system. Backslashes are inserted at appropriate
places for these control characters.

Page 3

cu(1C) (Basic Networking Utilities) cu(1C)

The use of ~%take requires the existence of echo(1) and cat(1) on the remote sys-
tem. Also, tabs mode [see stty(1)] should be set on the remote system if tabs are
to be copied without expansion to spaces.

When cu is used on system X to connect to system Y and subsequently used on sys-
tem Y to connect to system Z, commands on system Y can be executed by using ~.
Executing a tilde command reminds the user of the local system uname. For exam-
ple, uname can be executed on Z, X, and Y as follows:

uname
Z

~[X] !uname
X

~7[Y] 'uname
Y

In general, ~ causes the command to be executed on the original machine.
causes the command to be executed on the next machine in the chain.

EXAMPLES
To dial a system whose telephone number is 9 1 201 555 1234 using 1200 baud
(where dialtone is expected after the 9):

cu -s1200 9=12015551234
If the speed is not specified, "Any" is the default value.

To login to a system that is on a Datakit VCS local area network, but which has not
been defined by your administrator (i.e., is not entered in the /etc/uucp/Systems
file(s)):

cu -c DK address

DK is the name of the Datakit local area network, and address is the Datakit address
which is of the form, /area/exchange/machine.

To login to a system connected by a direct line:
cu -1 /dev/term/XX
or
cu -1 term/XX
To dial a system with a specific line and speed:
cu -s1200 -1 term/XX
To dial a system using a specific line associated with an auto dialer:
cu -1 culXX 9=12015551234
To use a system name:
cu systemname

FILES
/etc/uucp/Sysfiles
/etc/uucp/Systems
/etc/uucp /Devices
/var/spool/locks/*

Page 4 10/92

cu(1C) (Basic Networking Utilities) cu(1C)

SEE ALSO

cat(1), ct(1C), echo(1), stty(1), uucp(1C), uname(1), uuname(1)

DIAGNOSTICS

NOTES

10/92

Exit code is zero for normal exit, otherwise, one.

The cu command does not do any integrity checking on data it transfers. Data
fields with special cu characters may not be transmitted properly. Depending on
the interconnection hardware, it may be necessary to use a ~. to terminate the
conversion, even if stty 0 has been used. Non-printing characters are not depend-
ably transmitted using either the ~%put or “$take commands. cu, between an
IMBR1 and a PENRIL modem, will not return a login prompt immediately upon
connection. A carriage return will return the prompt.

~%put and ~%$take cannot be used over multiple links. Files must be moved one
link at a time.

There is an artificial slowing of transmission by cu during the ~%put operation so
that loss of data is unlikely. Files transferred using ~%take or ~%put must contain
a trailing newline, otherwise, the operation will hang. Entering a CTRL-d command
usually clears the hang condition.

Page 5

cunix (1M) cunix (1M)

NAME
cunix - configure a new bootable operating system
SYNOPSIS

cunix [-a "ld_args”] [-b boot_dir] [-c config_dir] [-d] [-e edtfile]

[-£ system] [-g] [-1 loader_directive_file] [-] assembler] [-1 link_ed]

[-o outfile] [-s script_file] [-v] [-x multiplier] [-z "as_args”] [-E] [-I]

DESCRIPTION

The cunix command creates a new bootable operating system file from the object
files (drivers) specified in the given systen file.
The configuration of a new bootable operating system is usually done when new
hardware or software is added to or removed from the system; most frequently it is
done during a powerup or reboot of the system. The cunix command allows this
procedure to be performed at the user level, without a powerdown or system
reboot. The options to cunix also allow the user to create customized input files
for the configuration process, and to choose the location for the resulting bootable
operating system. The ICDDEV: field in the system(4) file directs cunix to incor-
porate an In-Core Disk (ICD) image within the bootable operating system.

Both COFF and ELF format object files can be used as input to cunix.

The options to cunix are as follows:

-a Pass the specified Id_args as arguments to the link editor; the entire set of
arguments must be enclosed in double quotes, with each argument sur-
rounded by white space. By default (no -a specified), -x is passed to the
link editor as an argument for COFF format object files (directs the link
editor to omit local symbols from the output symbol table, saving some
space in the output file); if one or more object files is in ELF format, then
no loader arguments are passed by default. The link editor 1d is used by
default, unless another is specified with the -1 option (see below).

-b boot_dir specifies the directory where driver object files reside; the default
is /boot.

e config_dir specifies the directory that contains working files for cunix; the
default is /config.

-d Build the operating system with debug mode on; the default is debug
mode off. Debug mode populates the sysm68ksym or sysm88ksym symbol
table with symbols from the kernel object file and drivers specified in the
systen file. The -d option causes cunix to use more disk space and time.
The sysm68ksym table is accessible through the sysmé68k system call; the
sysm88ksym table is accessible through the sysm88k system call.

-e Use the EDT data from edtfile rather than /stand/edt_data.

-f system specifies the file that contains configuration information; the
default is /stand/system.

-g Do not remove the config_dir/conf .o or config_dir/conf .s files after the
bootable operating system has been created; the default is to remove
conf.o and conf.s. The directory config_dir is either /config or the
directory specified by -c, above.

10/92 Page 1

cunix(1M)

NOTES

FILES

Page 2

-I

cunix(1M)

loader_directive_file to be used for configuration; a loader_directive_file
specifies memory locations for loading the operating system at boot time.
A loader_directive_file for a COFF system is called an ifile, while a
loader_directive_file for an ELF system is called a mapfile. Normally, it is
not necessary to specify a loader_directive_file. Only use the -1i option with
a custom loader_directive_file.

Use the assembler to assemble conf.s. By default, as is invoked as if it
had been typed as a command to the terminal.

Use the link_ed link editor to bind object files; the link editor 1d is used by
default. The PATH- variable is searched for the 1d program. See NOTES.

outfile specifies the output file name for the bootable operating system; the
default is /stand/unix_test.

Run the script file after creating conf . s but before invoking the assembler.
Script_file may be a shell script or an executable object. The script file may
be used to massage conf.s before the assembler is invoked. In this use,
script_file must reference conf. s explicitly since cunix does not pass it as
an argument to script_file.

Verbose mode on; cunix displays all the modules and drivers being
linked. The default is verbose mode off.

Cunix must allocate certain areas of the kernel being built with fixed sizes.
This option specifies a multiplier that will be applied to the compiled in
sizes so the areas can be made sufficiently large. Use this option if the
error Internal space problems when building conf.o, try ’'-x
<number> option occurs.

Pass the specified “as_args” to the assembler. The entire set of arguments
must be enclosed in double quotes, with each argument surrounded by
white space. No flags are passed by default.

Use only the EDT data file. Do not read the in-core EDT. Normally cunix
reads the in-core EDT and then the EDT data file and combines them,
ignoring entries in the data file that duplicate entries in the in-core EDT
and replacing entries in the in-core EDT with corresponding entries from
the data file, if they match on name and board fields, but differ otherwise.
By default cunix reads /stand/edt_data for the data file. Use the -e flag
to change this.

Use only the in-core EDT. Do not use the EDT data file.

Do not execute a separate 1d ... -o /stand/unix command for the operating
system; the output file is processed by cunix after loading. cunix calls the
setrlimit system call to set the file size limit to infinity. It proceeds without com-
plaint if setrlimit fails.

/boot_dir / * drivers to be configured into the operating system
/config_dir/conf.o object file created by cunix

10/92

cunix (1M) cunix (1M)

/config_dir/ifile* loader directive file(s) for COFF system
/config_dir /mapfile* loader directive file(s) for ELF system
/stand/system system file
/stand/unix bootable operating system
/dev/rsSA/diskl default location of root file system

SEE ALSO

buildsys(1M), 1d4(1), mkboot (1M), rc6(1M), sysm68k(2), sysm88k(2), system(4).

10/92 Page 3

cut(1) (Directory and File Management Utilities) cut(1)

NAME
cut - cut out selected fields of each line of a file

SYNOPSIS
cut -clist [file ...]
cut -flist [-dchar] [-s] [file ...]

DESCRIPTION
Use cut to cut out columns from a table or fields from each line of a file; in database
parlance it implements the projection of a relation. The fields as specified by list
can be fixed-length, i.e., character positions as on a punched card (-c option) or the
length can vary from line to line and be marked with a field delimiter character like
tab (-f option). cut can be used as a filter; if no files are given, the standard input
is used. In addition, a filename of “-"" explicitly refers to standard input.

The options are as follows:

list A comma-separated list of integer field numbers (in increasing order), with
optional - to indicate ranges [e.g., 1,4,7;1-3,8; -5, 10 (short for 1-5,10);
or 3- (short for third through last field)].

-clist The list following -c (no space) specifies column positions (e.g., -c1-72
would pass the first 72 column positions of each line). When multibyte
characters are split at a specified position, the remaining column positions
are filled with an appropriate number of ASCII spaces instead of characters.

-flist The list following -£ is a list of fields assumed to be separated in the file by
a delimiter character (see -d); e.g., -£1, 7 copies the first and seventh field
only. Lines with no field delimiters will be passed through intact (useful
for table subheadings), unless -s is specified.

-dchar The character following -d is the field delimiter (- £ option only). Default is
tab. Space or other characters with special meaning to the shell must be
quoted. The field delimiter char can be a character from a supplementary
code set.

-s Suppresses lines with no delimiter characters in case of -f option. Unless
specified, lines with no delimiters will be passed through untouched.

Either the -c or - f option must be specified.

Use grep(1) to make horizontal “cuts’” (by context) through a file, or paste(1) to
put files together column-wise (i.e., horizontally). To reorder columns in a table,
use cut and paste.

EXAMPLES
cut -d: -f1,5 /etc/passwd mapping of user IDs to names

name="who am i | cut -f1 -d" "° to set name to current login name

DIAGNOSTICS
ERROR: line too long
A line can have no more than 1023 characters or fields, or
there is no new-line character.

ERROR: bad list for c/f option
Missing -c or - £ option or incorrectly specified list . No error
occurs if a line has fewer fields than called for by the list .

10/92 Page 1

cut(1) (Directory and File Management Utilities) cut(1)

ERROR: no fields The list is empty.
ERROR: no delimiter
Missing char on -d option.
ERROR: cannot handle multiple adjacent backspaces
Adjacent backspaces cannot be processed correctly.

WARNING: cannot open <filename>
Either filename cannot be read or does not exist. If multiple
filenames are present, processing continues.

INTERNATIONAL FUNCTIONS
cut can process characters from supplementary code sets.

SEE ALSO
grep(1), paste(1).

Page 2 10/92

cvtomflib (1) cvtomflib (1)

NAME
cvtomflib - convert OMF (XENIX) libraries to ELF
SYNOPSIS
cvtomflib [-v] [-o outfile] library [library. . .]
DESCRIPTION
cvtomflib converts libraries of OMF objects to libraries of ELF objects. It is
intended for use with application packages that provide only OMF libraries that
could not otherwise be used with the Standard C Development Environment.
The options have the following meanings.
-v Verbose output is produced for each converted object. Without this option,
cvtomflib does its work silently.
-0 This option allows the user to specify a new name, outfile, for the converted
library without changing the original. This option is only available when a
single library is being converted.
NOTES

The original order of objects within the library is retained.

Each library is converted in the directory in which it’s located. Without the -o
option, the converted library will overwrite the original; therefore, you may want to
copy the original library before conversion.

10/92 Page 1

cxref (1)

NAME

cxref(1)

cxref - generate C program cross-reference

SYNOPSIS

cxref [options] files

DESCRIPTION

The cxref command analyzes a collection of C files and builds a cross-reference
table. cxref uses a special version of cc to include #define’d information in its
symbol table. It generates a list of all symbols (auto, static, and global) in each indi-
vidual file, or, with the -c option, in combination. The table includes four fields:
NAME, FILE, FUNCTION, and LINE. The line numbers appearing in the LINE
field also show reference marks as appropriate. The reference marks include:

assignment =
declaration -
definition *

If no reference marks appear, you can assume a general reference.

OPTIONS

cxref interprets the -D, -I, -U options in the same manner that cc does. In addi-
tion, cxref interprets the following options:

10/92

Combine the source files into a single report. Without the -c option,
cxref generates a separate report for each file on the command line.

Disables printing declarations, making the report easier to read.

Does not print local variables. Prints only global and file scope statistics.
Direct output to file.

Operates silently; does not print input file names.

Format listing for 80-column width.

Width option that formats output no wider than num (decimal) columns.
This option will default to 80 if num is not specified or is less than 51.

Runs only the first pass of cxref, creating a .cx file that can later be
passed to cxref. This is similar to the -c option of cc or lint.

Prints the full path of the referenced file names.

Modifies the number of columns in the LINE field. If you do not specify a
number, cxref defaults to five columns.

Prints version information on the standard error.

Page 1

cxref(1)

-Wname file, function, line
Changes the default width of at least one field. The default widths are:

cxref(1)

Field Characters
NAME 15
FILE 13
FUNCTION 15
LINE 20 (4 per column)
FILES
TMPDIR/tcx. * temporary files
TMPDIR/cx. * temporary files
LIBDIR /xref accessed by cxref
LIBDIR usually /usr/ccs/1ib
TMPDIR usually /var/tmp but can be redefined by setting the
environment variable TMPDIR [see tempnam in tmpnam(3S)].
EXAMPLE
a.c
1 main ()
2 {
3 int i;
4 extern char c;
5
6 i=65;
7 c=(char)i;
8 }

Resulting cross-reference table:

NAME FILE
c a.c
i a.c

main a.c
u3b2 predefined
unix predefined

SEE ALSO
cc(1), 1int(1)

DIAGNOSTICS

FUNCTION

main

LINE

4- 7=

3% 6= 7
2%

0*

0*

Error messages usually mean you cannot compile the files.

Page 2

10/92

date(1)

NAME

(Essential Utilities) date(1)

date - print and set the date

SYNOPSIS

date[-n][-u]l[+format]
date[-n][-all-1sss.ff1[-ull[mmdd] HHMM | mmddHHMM] cc]yy]

DESCRIPTION

If no argument is given, or if the argument begins with +, the current date and time
are printed. Otherwise, the current date is set (only by super-user). If in.timed is
running, the date will be set via the time daemon. Otherwise, it will be set locally.

-al-]sss.fif

mm
dd
HH
MM
cc

vy

+ format

Slowly adjust the time by sss.fff seconds (fff represents fractions of a
second). This adjustment can be positive or negative. The system’s
clock will be sped up or slowed down until it has drifted by the
number of seconds specified.

Do not set the date via the time daemon.

Display (or set) the date in Greenwich Mean Time (GMT—universal
time), bypassing the normal conversion to (or from) local time.

Month number

Day number in the month
Hour number (24 hour system)
Minute number

Century minus one

Last 2 digits of the year number

The month, day, year, and century may be omitted; the current values
are supplied as defaults. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default
because no year is supplied. The system operates in GMT. date takes
care of the conversion to and from local standard and daylight time.
Only the super-user may change the date. After successtully setting
the date and time, date displays the new date according to the
default format. The date command uses TZ to determine the correct
time zone information [see environ(5)].

If the argument begins with +, the output of date is under the control
of the user. Each Field Descriptor, described below, is preceded by %
and is replaced in the output by its corresponding value. A single % is
encoded by %%. All other characters are copied to the output without
change. The string is always terminated with a new-line character. If
the argument contains embedded blanks it must be quoted (see the
EXAMPLE section).

Specifications of native language translations of month and weekday names are
supported. The month and weekday names used for a language are based on the
locale specified by the environment variables LC_TIME and LANG (see environ(5)).

10/92

Page 1

date(1) (Essential Utilities) date(1)

The current date and time can be set and displayed using single-byte or multibyte
characters in accordance with the customary local format. Characters from supple-
mentary code sets can be used in +format .

The month and weekday names used for a language are taken from a file whose
format is specified in strftime(4). This file also defines country-specific date and
time formats such as %c, which specifies the default date format. The following
form is the default for %c:

%a %b %e T %Z %Y

e.g., Fri Dec 23 10:10:42 EST 1988

Field Descriptors (must be preceded by a %):

abbreviated weekday name

full weekday name

abbreviated month name

full month name

country-specific date and time format

day of month - 01 to 31

date as $m/%d/%y

day of month - 1 to 31 (single digits are preceded by a blank)
abbreviated month name (alias for %b)

hour - 00 to 23

hour - 01 to 12

day of year - 001 to 366

month of year - 01 to 12

minute - 00 to 59

insert a new-line character

string containing ante meridiem or post meridiem indicator (by default,
AM or PM)

time as $I1:3M:%S %p

time as %H: M

second - 00 to 61, allows for leap seconds

insert a tab character

time as $H: $M: %S

week number of year (Sunday as the first day of the week) - 00 to 53
day of week - Sunday =0

week number of year (Monday as the first day of the week) - 00 to 53
Country-specific date format

Country-specific time format

year within century - 00 to 99

year as ccyy (4 digits)

timezone name

TBRBYUHISOUOQONWO O

NKN XX =g adHdanohs

Date and Time Daemon Interaction

The following summarizes the effects of setting the date on a machine which is run-
ning a time daemon.

Page 2 10/92

date(1) (Essential Utilities) date (1)

On a machine on which the time daemon is running as a master, you type:

date some_date
The time is propagated to the slaves immediatedly.

date -n some_date
The time is not propagated to the slaves immediately but will be pro-
pagated on the next master initiated network time synchronization.

On a machine on which the time daemon is running as a slave, you type:

date some_date
The time is propagated to, and resets the master’s notion of network
time.

date -n some_date
The local time is set to some_date, but only until the next network time
synchronization at which point the machine’s time will revert to net-
work time.

EXAMPLE
The command

date '+DATE: %m/%d/%y%nTIME: %H:%M:%S’
generates as output:

DATE: 08/01/76
TIME: 14:45:05

DIAGNOSTICS
Exit Codes: 0 - success; 1 - failure; 2 - failed setting the date via the time daemon so
the date was set locally.
No permission You are not the super-user and you try to change the date.
bad conversion The date set is syntactically incorrect.

NOTES
Should you need to change the date while the system is running multi-user, use the
datetime command of sysadm(1M).

If you attempt to set the current date to one of the dates that the standard and alter-
nate time zones change (for example, the date that daylight time is starting or end-
ing), and you attempt to set the time to a time in the interval between the end of
standard time and the beginning of the alternate time (or the end of the alternate
time and the beginning of standard time), the results are unpredictable.

The current date and time can be set and displayed using single-byte or multibyte
characters in accordance with the customary local format. Characters from supple-
mentary code sets can be used in +format .

SEE ALSO
sysadm(1M), in.timed(1M), strftime(4), environ(5).

10/92 Page 3

dbemd (1M) (Multiprocessing) dbemd (1M)

NAME
dbemd - load command and macro files into a kernel executable file

SYNOPSIS
dberd file macro

DESCRIPTION
dbcmd loads the contents of the specified macros into the kernel executable file. The
next time the kernel is rebooted with file, the loaded commands are part of the ker-
nel debugger.

SEE ALSO
kdb(1M), dbsym(1M), kcrash(1M)

10/92 Page 1

dbsym(1M) (Multiprocessing) dbsym (1M)

NAME
dbsym - add symbols to kernel debugger
SYNOPSIS
dbsym [-v] filel file2
DESCRIPTION
dbsym extracts the symbolic names and addresses from the kernel executable file,
filel, and enters the data into file2. When the system is rebooted with file2, the sym-

bolic information can now be used by the kernel debugger. Note that filel and file2
can be the same.

-v The verbose option , -v, displays various symbol information.

SEE ALSO
kdb(1M), dbcmd(1M), kcrash(1M)

10/92 Page 1

dc(1) (User Environment Utilities) dc (1)

NAME
dc - desk calculator

SYNOPSIS
dc [file]
DESCRIPTION
dc is an arbitrary precision arithmetic package. Ordinarily it operates on decimal
integers, but one may specify an input base, output base, and a number of frac-
tional digits to be maintained. [bc is a preprocessor for dc that provides infix nota-
tion and a C-like syntax that implements functions. bc also provides reasonable
control structures for programs. See bc(1).] The overall structure of dc is a stacking
(reverse Polish) calculator. If an argument is given, input is taken from that file
until its end, then from the standard input. The following constructions are recog-
nized:
number
The value of the number is pushed on the stack. A number is an unbroken
string of the digits 0-9. It may be preceded by an underscore (_) to input a
negative number. Numbers may contain decimal points.
+ -/ x5 "
The top two values on the stack are added (+), subtracted (-), multiplied (*),
divided (/), remaindered (%), or exponentiated (*). The two entries are
popped off the stack; the result is pushed on the stack in their place. Any
fractional part of an exponent is ignored.

sx The top of the stack is popped and stored into a register named x, where x
may be any character. If the s is capitalized, x is treated as a stack and the
value is pushed on it.

1x The value in register x is pushed on the stack. The register x is not altered.
All registers start with zero value. If the 1 is capitalized, register x is treated
as a stack and its top value is popped onto the main stack.

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains unchanged.
Interprets the top of the stack as an ASCII string, removes it, and prints it.
All values on the stack are printed.

Q Hh "woo

Exits the program. If executing a string, the recursion level is popped by
two.

Q Exits the program. The top value on the stack is popped and the string exe-
cution level is popped by that value.

x Treats the top element of the stack as a character string and executes it as a
string of dc commands.

X Replaces the number on the top of the stack with its scale factor.

L.]
Puts the bracketed ASCII string onto the top of the stack.

10/92 Page 1

dc(1)

(User Environment Utilities) dc(1)

<X >X =X

’

EXAMPLE

The top two elements of the stack are popped and compared. Register x is
evaluated if they obey the stated relation.

Replaces the top element on the stack by its square root. Any existing frac-
tional part of the argument is taken into account, but otherwise the scale fac-
tor is ignored.

Interprets the rest of the line as a UNIX system command.
All values on the stack are popped.

The top value on the stack is popped and used as the number radix for
further input.

Pushes the input base on the top of the stack.

The top value on the stack is popped and used as the number radix for
further output.

Pushes the output base on the top of the stack.

The top of the stack is popped, and that value is used as a non-negative scale
factor: the appropriate number of places are printed on output, and main-
tained during multiplication, division, and exponentiation. The interaction
of scale factor, input base, and output base will be reasonable if all are
changed together.

The stack level is pushed onto the stack.
Replaces the number on the top of the stack with its length.

A line of input is taken from the input source (usually the terminal) and exe-
cuted.

are used by bc(1) for array operations.

This example prints the first ten values of n!:

SEE ALSO
be(1)

DIAGNOSTICS

[lal+dsa*plalO>y]sy
Osal
lyx

X 1s unimplemented: x is an octal number.

stack empty: not enough elements on the stack to do what was asked.

Out of space: the free list is exhausted (too many digits).

Out of headers: too many numbers being kept around.

Out of pushdown: too many items on the stack.

Nesting Depth: too many levels of nested execution.

Page 2

10/92

dcon(1M) dcon(1M)

NAME
dcon - control dual console operation
SYNOPSIS
dcon [on|off|get|help]
DESCRIPTION
The utility command dcon is used to control and report the dual console state of
the system.
on Starts dual console mode. If dual console mode is already started this fact
is reported and no state change occurs. This operation can only be per-
formed by root. This command must be performed on the terminal port
which will eventually become the dual console.
off Stops dual console mode. If dual console mode is not started then this fact
is reported and no state change occurs. This operation can only be per-
formed by root.
get Report the dual console state. This is the default operation if no specific

operation is specified.
help Print out the usage for the command dcon.

DIAGNOSTICS
Dual console is ON.
Dual console is ON and was started at system boot.
Dual console is already ON.
Dual console is OFF.
Dual console is already OFF.
Dual console mode can’t be started from the system console.
Dual console mode must be stopped from the system console.
Dual console state can only be changed by ROOT.
Open of /dev/conctl failed, errno = <errno>.
The system console is not open.
GC_DCON_GET ioctl failed, errno = <errno>.
GC_DCON_ON ioctl failed, errno = <errno>.
GC_DCON_OFF ioctl failed, errno = <errno>.

EXIT VALUES
0 Desired operation completed successfully.

dcon command was given too many arguments.

N =

dcon command was given an unknown argument.

W

One of the required ioctl operations failed.

'S

The open of /dev/conctl failed.

FILES
/dev/conctl
/dev/console

SEE ALSO
console(7)

10/92 Page 1

dcopy (1M) dcopy (1M)

NAME
dcopy (generic) - copy file systems for optimal access time

SYNOPSIS
dcopy [-F FSType] [-V] [current_options] [-o specific_options] inputfs outputfs
DESCRIPTION
dcopy copies file system inputfs to outputfs. inputfs is the device file for the existing
file system; outputfs is the device file to hold the reorganized result. For the most
effective optimization inputfs should be the raw device and outputfs should be the
block device. Both inputfs and outputfs should be unmounted file systems.

current_options are options supported by the s5-specific module of dcopy. Other
FSTypes do not necessarily support these options. specific_options indicate subop-
tions specified in a comma-separated list of suboptions and/or keyword-attribute
pairs for interpretation by the FSType-specific module of the command. See
dcopy_FSType(1M) for details.

The options are:

-F Specify the FSType on which to operate. The FSType should either be
specified here or be determinable from /etc/vfstab by matching the
inputfs (device) with an entry in the table.

-V Echo the complete command line, but do not execute the command.
The command line is generated by using the options and arguments
provided by the user and adding to them information derived from
/etc/vEstab. This option should be used to verify and validate the
command line.

-0 Specify FSType-specific options.

NOTE
This command may not be supported for all FSTypes.

FILES
/etc/vistab list of default parameters for each file system

SEE ALSO
dcopy_s5(1M), vEstab(4).

10/92 Page 1

dcopy (1M)

NAME

(s5) dcopy (1M)

dcopy (s5) - copy s5 file systems for optimal access time

SYNOPSIS

dcopy [-F s5] [generic_options] [-sX] [-an] [-d] [-v] [-£fsize[:isize]] inputfs outputfs

DESCRIPTION

generic_options are options supported by the generic dcopy command.

With no options, dcopy copies files from inputfs compressing directories by remov-
ing vacant entries, and spacing consecutive blocks in a file by the optimal rotational

gap.

The options are:

-F s5

-sX

-an

- £ fsize[:isize]

Specifies the s5-FSType. Need not be supplied if the information
may be obtained from /etc/vfstab by matching the inputfs device
with an entry in the file.

Supply device information for creating an optimal organization of
blocks in a file. X must be of the form cylinder size:gap size.

Place the files not accessed in n days after the free blocks of the des-
tination file system If no # is specified then no movement occurs.

Leave order of directory entries as is. The default is to move sub-
directories to the beginning of directories.

Reports how many files were processed and how big the source and
destination freelists are.

Specify the outputfs file system (fsize) and inode list (isize) sizes in
logical blocks. If the suboption (or :isize) is not given, the values
from inputfs are used.

dcopy catches interrupts and quits and reports on its progress. To terminate dcopy,
send a quit signal followed by an interrupt or quit.

NOTES

fsck should be run on the new file system created by dcopy before it is mounted.

FILES
/etc/mnttab

SEE ALSO

list of file systems currently mounted

generic dcopy(1M), £sck(1M), mkfs(1M)

10/92

Page 1

dd (1M)

NAME

(Essential Utilities) dd (1M)

dd - convert and copy a file
SYNOPSIS

dd [option=value] ...

DESCRIPTION
dd copies the specified input file to the specified output with possible conversions.
The standard input and output are used by default. The input and output block
sizes may be specified to take advantage of raw physical 1/O.

10/92

option
if=file
of=file
ibs=n
obs=n
bs=n

cbs=n
files=n

skip=n
iseek=n

oseek=n
seek=n
count=n
conv=ascii
ebcdic
ibm
block
unblock

lcase
ucase
swab
noerror

sync

’

values

input file name; standard input is default

output file name; standard output is default

input block size n bytes (default 512)

output block size n bytes (default 512)

set both input and output block size, superseding ibs and obs;
also, if no conversion is specified, preserve the input block
size instead of packing short blocks into the output buffer
(this is particularly efficient since no in-core copy need be
done)

conversion buffer size (logical record length)

copy and concatenate n input files before terminating (makes
sense only where input is a magnetic tape or similar device)
skip n input blocks before starting copy (appropriate for mag-
netic tape, where iseek is undefined)

seek n blocks from beginning of input file before copying
(appropriate for disk files, where skip can be incredibly slow)
seek n blocks from beginning of output file before copying
identical to oseek, retained for backward compatibility

copy only n input blocks

convert EBCDIC to ASCII

convert ASCII to EBCDIC

slightly different map of ASCII to EBCDIC

convert new-line terminated ASCII records to fixed length
convert fixed length ASCII records to new-line terminated
records

map alphabetics to lower case

map alphabetics to upper case

swap every pair of Rytes

do not stop processing on an error (limit of 5 consecutive
errors)

pad every input block to ibs

several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may end with
k, b, or w to specify multiplication by 1024, 512, or 2, respectively; a pair of numbers
may be separated by x to indicate multiplication.

cbs is used only if ascii, unblock, ebcdic, ibm , or block conversion is specified. In the
first two cases, cbs characters are copied into the conversion buffer, any specified
character mapping is done, trailing blanks are trimmed and a new-line is added
before sending the line to the output. In the latter three cases, characters are read

Page 1

dd(1M) (Essential Utilities) dd (1M)

into the conversion buffer and blanks are added to make up an output record of
size cbs. If cbs is unspecified or zero, the ascii, ebcdic, and ibm options convert the
character set without changing the block structure of the input file; the unblock and
block options become a simple file copy.

After completion, dd reports the number of whole and partial input and output
blocks.

EXAMPLE

This command will read an EBCDIC tape blocked ten 80-byte EBCDIC card images
per tape block into the ASCII file x:

dd if=/dev/rmt/0h of=x ibs=800 obs=8k cbs=80
conv=ascii,lcase

Note the use of raw magnetic tape. dd is especially suited to I/O on the raw physi-
cal devices because it allows reading and writing in arbitrary block sizes.

SEE ALSO

NOTES

cp(1)

Do not use dd to copy files between filesystems having different block sizes.

Using a blocked device to copy a file will result in extra nulls being added to the
file to pad the final block to the block boundary.

DIAGNOSTICS

Page 2

f+p records in(out) numbers of full and partial blocks read(written)

10/92

ddefs (1M) ddefs (1M)

NAME

ddefs - disk definition information manager

SYNOPSIS

/etc/ddefs [-dddefsdir] -n [diskname]
/etc/ddefs [-dddefsdir] -erpdiskname

DESCRIPTION

10/92

The ddefs utility is used to add to or modify the information that describes disks.
The disk definitions are contained in files in the /etc/dskdefs directory. The files
in /etc/dskdefs are read by the dinit(1M) program to obtain format information
about the disks.

To specify the directory, use the -d option followed by a directory name on the
command line, as shown in the SYNOPSIS section. If no ddefsdir is given, the
default is /etc/dskdefs.

The diskname is either a ““device”, specified as /dev /rdsk/devicename, or a “‘ddefs file”
in the directory ddefsdir.

The ddefs program provides several options both for interactive and non-interactive
use. UNIX System V/68 and UNIX System V/88 only support the 182Mb CDC
WREN and the 390Mb ITI ESDI drives with a MVME323 controller, however this
command contains additional options for other controllers and drives. The options
are:

-n [diskname]

(Interactive) Create a new disk definition, where diskname corresponds to
the type values listed for dinit(1M) (for example, m323182 for a 182Mb
CDC ESDI drive). If a name is given that already exists, the program
automatically shifts to edit mode (-e option). If no diskname is given, the
user is prompted for a name. When creating a new definition, ddefs will
prompt for the name of a ““template’” disk. The template disk is usually one
with similar, but not identical, attributes.

-e diskname
(Interactive) Edit an existing disk definition. If the diskname given does not
exist, the program switches automatically to create mode (-n option).

-r diskname
(Interactive) Edit an existing disk definition (read-only).

-p diskname
(Non-interactive) Print an existing disk definition.

For every type of operation, the user has the option of specifying a directory for the
disk definition file. If an existing definition is being edited, this is the directory
where the definition file can be found. If a new definition is being created, this is
the directory where the definition file will be placed. It is also the directory where
the template can be found when this feature is used.

Each disk definition is formatted as a series of lines, each line giving a parameter
name followed by a value. To modify a definition, move the cursor to the appropri-
ate line and type the new value. When creating a new definition file, ddefs will not
write the definition until all parameters are initialized (changed).

Page 1

ddefs (1M) ddefs (1M)

To obtain ““help’” information about a parameter, type a ? after the parameter name.
The elements of the definition file and the help information for each are given in the
following paragraphs.

When diskname is a ““ddefs file”, all parameters are readable and writeable. When
diskname is a device, the following conventions are used to indicate how a parame-
ter may be accessed: a single asterisk (*) following a parameter name indicates that
the user has read access in interactive mode; a double asterisk (**) indicates that the
parameter may be read and written in interactive mode; no asterisk indicates that
the parameter is not applicable for a raw device (that is, the parameter exists only in
the ddefs file).
Comment
This information is general comments. It cannot contain more than one line.
Usually, the comment information is a description of the drive type sup-
ported by the definition file. If no comment is desired, type none.

Disk type **
This value is any unique integer that is used to identify the disk drive type.
Each size drive on each controller should have a different type.

Format command
The format program, if specified, is called by dinit(IM) to format a disk
drive. The format program line should specify all options necessary to for-
mat the disk. All drives supported by UNIX System V/68 and UNIX Sys-
tem V/88 can be formatted directly by dinit(1M). Therefore this field
should be specified as none.

Diagnostic tracks *
To reserve diagnostic tracks, type yes. If not, type no.

Bad spot strategy *
If the controller only supports perfect media, type perfect.

BAD TRACKS: If bad track replacement is done by the bad track
replacement software, type software. If the controller automati-
cally performs bad track replacement, type hardware.

BAD SECTORS: If the controller supports automatic bad sector
replacement and requires the cylinder, head, and sector of each bad
sector, then type sector.

BAD SPOTS: If the controller supports automatic bad spot replace-
ment and requires the cylinder, head, and byte offset of each bad
spot, then type spot.

Maximum number of bad spots
This value is the maximum number of bad spots expected on a disk of this
type. This many alternate spots (sectors or tracks) will be allocated for this
drive.

Number of sectors **
This value is the total number of sectors on the disk drive.

Page 2 10/92

ddefs (1M) ddefs (1M)

10/92

Sector size (in bytes) **
This value is the disk sector size (specified in bytes). Currently, it must be
128, 256,0r 512 bytes.

Sectors per track **
This value is the number of usable sectors per track on the formatted media.

Cylinders **
This value is the total number of cylinders on the disk media.

Heads **
This value is the number of read /write heads on the drive. It is equivalent
to the number of tracks per cylinder.

Precompensation cylinder **
This value is the disk cylinder number to start write precompensation.

Sector interleave **
This value is the sector interleave factor used during disk formatting. For
no interleave (or one-to-one interleave), type 1. Some controllers will
automatically select an appropriate interleave factor when given an inter-
leave value of 0.

Spiral offset *
This value is the spiral offset applied when formatting disks. If no spiral
offset is wanted, then type 0.

Step rate **
This value is the seek step rate used when accessing the disk. Some con-
trollers will automatically select an appropriate step rate when given a step
rate of 0.

Starting head number **
This value is the starting head number of the drive. Most drives and con-
trollers require a starting head number of zero.

ECC error length **
This value is the error correcting code data burst length.

Attributes mask (hex) **
This value is the disk attributes mask. Bits in this mask determine which
bits in the attributes word are valid.

Extended attributes mask (hex) **
This value is the extended attributes mask.

Attributes word (hex) **
This value is the disk attributes word. The (hexadecimal) bit definitions are:

NAME BIT FIELD USE BITOFF BIT ON
ATWAS 0x0400 Alternate sectors? no yes
ATWFS 0x0200 Floppy size 5.25" 8"
ATWPC 0x0100 Precomp style pre-write post-read
ATWSK 0x0080 Seek after head change? no yes

Page 3

ddefs (1M) ddefs (1M)

ATWDD 0x0040 Track density of drive single double
ATWEN 0x0020 Encoding method M MFM
ATWDT 0x0010 Disk type floppy hard
ATWSN 0x0008 Sector Numbering Motorola IBM
ATWDS 0x0004 Number of sides single double
ATWTD 0x0002 Track density of floppy 8"floppy 5.25" floppy
ATWMF 0x0001 Data density of medium single double

Extended attributes word (hex) **
This value is the extended attributes word.

Gap byte 1 (hex) **
This value is the first ‘gap byte’ required for formatting a disk. This parame-
ter is controller-and drive-specific and may not be used by some controllers.

Gap byte 2 (hex) **
This value is the second ‘gap byte’ required for formatting a disk. This
parameter is controller-and drive-specific and may not be used by some
controllers.

Gap byte 3 (hex) **
This value is the third ‘gap byte’ required for formatting a disk. This param-
eter is controller-and drive-specific and may not be used by some controll-
ers.

Gap byte 4 (hex) **
This value is the fourth ‘gap byte’ required for formatting a disk. This
parameter is controller-and drive-specific and may not be used by some
controllers.

Controller attribute (hex) **
This value is controller-and drive-specific information and may not be used
by some controllers.

Unformatted sector size **
This value is the unformatted sector size on the disk including the headers,
gaps, ECC, and data. This parameter is controller and drive-specific, and
may not be used by some controllers.

Sector slip count **
This value is the sector slip count used while formatting to implement con-
troller supported sector slipping. This count is the number of ‘slip’ sectors
per track.

Slice count *
This value is the dynamic slice count. If zero, the driver will not use
dynamic slicing. Legal non-zero slice counts are 8, 16, 32, 64, and 128. Some
controllers support only a subset of these legal slice counts.

Root file system offset *
This value is the 1024-byte block offset of the root file system.

Root file system size
This value, if non-zero, is the size of the root file system (in 512-byte
blocks) created on slice zero of the drive after it is formatted. If no file sys-
tem is desired, then type 0.

Page 4 10/92

ddefs (1M) ddefs (1M)

NOTES

10/92

/usr file system size
This value, if non-zero, is the size of the /usr file system (in 512-byte
blocks) created in slice one or two after the drive is formatted. If no /usr
file system is desired, type 0. The /usr file system is created only if a root
file system is also created.

/usr file system slice
This value specifies the slice for the /usr file system. This value must not
be zero but may coincide with the swap slice.

Swap size
This value, if non-zero, specifies the size of the system swap space (in 512-
byte blocks). The swap space will be placed following the root file