

, , ,
, "

, "

1III]mllllllllllllilil~IUlll]llllIili:ll1lllli1WIII" ,
, ,

@[F)~~ [1@@~®
GRAPHICAL USER INTERFACE

PROGRAMMER'S GUIDE

UNIX System Laboratories, Inc.

Copyright© 1992,1991 UNIX System Laboratories, Inc.
Copyright© 1990,1989,1988,1987,1986,1985,1984 AT&T
All Rights Reserved
Printed in USA

Published by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any means-graphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in
writing from UNIX System Laboratories, Inc. (USL).

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy and completeness of all information in this
document, USL assumes no liability to any party for any loss or damage caused by errors or omis
sions or by statements of any kind in this document, its updates, supplements, or special editions,
whether such errors, omissions, or statements result from negligence, accident, or any other cause.
USL further assumes no liability arising out of the application or use of any product or system
described herein; nor any liability for incidental or consequential damages arising from the use of this
document. USL disclaims all warranties regarding the information contained herein, whether
expressed, implied or statutory, including implied warranties of merchantability or fitness for a
particular purpose. USL makes no representation that the interconnection of products in the
manner described herein will not infringe on existing or future patent rights, nor do the descriptions
contained herein imply the granting of any license to make, use or sell equipment constructed in ac
cordance with this description.

USL reserves the right to make changes to any products herein without further notice.

ACKNOWLEDGEMENT

Parts of this book are being reproduced with the permission of the Massachusetts Institute of Tech
nology, O'Reilly and Associates, Inc., Hewlett Packard, and Digital Equipment Corporation.

TRADEMARKS

OPEN LOOK GUI is a registered trademark of UNIX System Laboratories, Inc. in the USA
and other countries

PostScript is a registered trademark of Adobe Systems
UNIX is a registered trademark of UNIX System Laboratories, Inc. in the USA and other countries.
The X Window System is a trademark of the Massachusetts Institute of Technology
X11/NeWS is a registered trademark of Sun MicroSystems
XWIN is a registered trademark of UNIX System Laboratories, Inc. in the USA and other countries

10 9 8 7 6 5 4 3 2

ISBN 0-13-726605-7

UNIX
PRESS

A Prentice Hall Title

PRENTICE HAL L

ORDERING INFORMATION

UNIX® SYSTEM V RELEASE 4 DOCUMENTATION

To order single copies of UNIX® SYSTEM V Release 4 documentation, please
call (201) 767-5937.

ATTENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS:

For bulk purchases in excess of 30 copies, please write to:

Corporate Sales
Prentice Hall
Englewood Cliffs, N.J. 07632

Or call: (201) 461-8441.

ATTENTION GOVERNMENT CUSTOMERS:

For GSA and other pricing information, please call (201) 767-5994.

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

1

2

3

4

Contents

Introduction
Preface

The OPEN LOOK Toolkit
The X Window System and the Xt Intrinsics
The OPEN LOOK Widgets
Widget Functions and Applications
Text Selection Operations

Programming Using the OPEN LOOK
Toolkit
Introduction
How to Write OPEN LOOK Programs
Navigating Through the System
Annotated Sample Programs
Using Flattened Widgets
Programming Caveats

X Window System, Version 11,
Conventions for OPEN LOOK
Introduction
General Considerations
Window Properties
Relationship to Inter-Client Conventions
Workspace and File Manager Conventions

Table of Contents

1-1

2-1

2-2

2-18
2-50

3-1
3-2
3-4
3-6
3-29
3-36

4-1
4-2
4-6
4-14
4-21

Table of Contents

5

6

7

A

B

ii

Miscellaneous Implementation Issues

Mouseless Operations
Overview
Keyboard Traversal
Keyboard Accelerators
Mnemonics

Internationalization
Introduction to Internationalization
The Internationalization of the OPEN LOOK Toolkit

Extensive Widget Sampler Program
Design Objectives
Program Description

Manual Pages: Introduction
Introduction to the Manual Pages
Introduction to General Resources

Manual Pages: Convenience Routines
Introduction to the Convenience Routines
Convenience Routines

4-27

5-1
5-2
5-5
5-7

6-1
6-5

7-1
7-3

A-1
A-4

8-1
8-6

OPEN LOOK GUI Programmer's Guide

______________________ Table of Contents

c

D

G

I

Manual Pages: Widgets
Introduction to the Widgets
Widgets

Manual Pages: Obsolete Routines
Introduction to the Obsolete Routines
Obsolete Routines

Glossary
Glossary

Index
Index

Table of Contents

C-1

C-6

D-1
D-2

G-1

1-1

iii

Figures and Tables

Figure 5-1: Sub-Object Traversal within a Container Object 5-3
Figure 5-2: Oblong Button with and without an Accelerator Visual 5-6
Figure 5-3: Oblong Button with and without a Mnemonic Visual 5-8
Figure 6-1: EUC Code Set Representations 6-2
Figure 6-2: EUC and Corresponding 16-bit Wide-character Representation 6-3
Figure 6-3: EUC and Corresponding 32-bit Wide-character Representation 6-4
Figure 6-4: Four kinds of Input Methods 6-21
Figure 7-1: The Open Look Widget Sampler 7-2
Figure C-1: Sample Manual Page Format C-3

Table of Contents v

1 Introduction

Preface
Purpose
Overview
Document Conventions

Table of Contents

1-1
1-1
1-1
1-2

Preface

Purpose

The purpose of this manual is to provide a guide for programmers using the
OPEN LOOK® Graphical User Interface (GUI). The book is intended for skilled C
language programmers, intending to develop applications using a "windowed"
front-end. While the OPEN LOOK GUI toolkit is built on top of the X Window
System™, you do not need to be familiar with that system to be able to make
effective use of the OPEN LOOK toolkit.

The intention of this manual is to guide programmers in the use of the toolkit.
Reference material and manual pages are also found in this manual.

Overview

Chapter 2 of this manual provides an overall description of the OPEN LOOK
toolkit. The description includes background information on the X Window
System toolkit, called the Xt Intrinsics. The Intrinsics provide an opaque inter
face to the X Window System and some of the Intrinsic functions are necessary
for using the OPEN LOOK toolkit. Of particular importance is the notion of
what a "widget" is.

This provides a basis for describing the specific OPEN LOOK abstractions and a
brief description of each of the OPEN LOOK widgets and important widget
attributes (called "resources").

Chapter 2 also describes the OPEN LOOK functions and how they are generally
used.

Chapter 3 provides a brief description of how to program using the OPEN
LOOK toolkit; how to layout a screen; how to create and manage widgets and
"callbacks." Each of the sample programs that are distributed with the OPEN
LOOK toolkit are presented and described. The applications are presented in
increasing complexity.

Chapter 4 presents conventions for using the OPEN LOOK toolkit so that appli
cations can co-exist and interoperate.

Chapter 5 discusses mouseless operations.

Introduction 1-1

Preface

Chapter 6 presents an extensive example program that demonstrates the use of
most of the OPEN LOOK widgets.

Document Conventions

The OPEN LOOK® Graphical User Interface Programmer's Guide uses certain typo
graphical conventions, such as boldface and italics, to identify different types of
information. The following conventions apply:

1-2

• Commands and pathnames that must be typed on the computer exactly as
shown appear in constant width.

• Variables to those commands and pathnames appear in italic. For exam
ple, in the command

xwd -out file

file will be any name that you select as the file name to be entered.

• Routines, widget names, and procedure names appear in constant
width.

• Structure member names appear in italic.

• Computer output such as prompts and messages appear in computer
style type. Text references to parts of a displayed program or routine
also appear in in this type style. Resource names, resource classes, and
widget classes also appear in this constant width style.

OPEN LOOK GUI Programmer's Guide

2 The OPEN LOOK Toolkit

The X Window System and the Xt
Intrinsics 2-1

The OPEN LOOK Widgets 2-2
Flat Widgets and Gadgets 2-3

• Flat Widgets 2-3
• Gadgets 2-4

Naming Conventions for Widgets 2-5
Resources for Widgets 2-6
Getting and Setting Widget Resources 2-8
Basic Widget Resources 2-9
Specifying Resources for Flattened Widgets 2-12

• Sub-Object Resource Lists 2-13
• Inheriting Resources 2-14
• Ordering Resources in the List 2-14
• Resources for Specifying Sub-Objects in a Flat Widget 2-14

Screen Resolution and Color 2-15
• Low and High End Color 2-15
• Device Resolutions 2-16

Supported Fonts 2-17
• Standard Font 2-17
• Automatic Choice of Font for Resolution 2-17

Widget Functions and Applications 2-18
OPEN LOOK Widget Descriptions 2-19

• Action Widgets 2-19
• Text Control Widgets 2-28
• Container Widgets 2-30
• Popup Choices 2-41

Table of Contents

Table of Contents

OPEN LOOK Routines
• Necessary Xt Intrinsic Routines
• OPEN LOOK Initialization
• Registering Help
• Packed Widgets
• Error Handling Routines
• Controlling Input Focus
• Flat Widget Routines
• Convenience Routines

Applications with Multiple Base Windows

Text Selection Operations
• Setting Insert Point
• Wipe-through Selection
• Adjusted Selection
• Multi-click Selection
• Copying Text
• Cutting Text
• Pasting Text
• Selecting Text with the Keyboard

2-44
2-44
2-45
2-46
2-46
2-46
2-47
2-48
2-49
2-49

2-50
2-50
2-50
2-50
2-51
2-51
2-51
2-51
2-51

ii OPEN LOOK GUI Programmer's Guide

The X Window System and the Xt Intrinsics

The X Window System is a comprehensive mechanism for creating and manag
ing a window environment. Access to the X Window system is usually through
an Application Programmer Interface (API) toolkit, such as the OPEN LOOK
Toolkit. The base level of the X Window System, Xlib, is a collection of C rou
tines that perform fundamental screen and window management operations.
The application programmer would use Xlib directly, for example, for drawing
lines, arcs, rectangles, and so on.

The API toolkit can be separated into two distinct layers:

• Xt Intrinsics

• Widgets

The fundamental layer of the API toolkit is the Xt Intrinsics (Xt is shorthand for
X Toolkit). The Xt Intrinsics are a set of C routines that monitor events related
to end-user interactions and dispatch the correct code to handle those events.

A major function of the Xt Intrinsics is to provide for the creation and manage
ment of "Widgets". A widget is a set of code and data that provides a certain
"look and feel" to an end-user. A widget defines a rectangular area of a screen
that complies with an application interface policy, such as the OPEN LOOK
GUI. A widget is a user-interface component combining an X window with the
necessary semantics to form an object. The object provides an intuitive user
interface abstraction, such as a button or a scrollbar.

The Xt Intrinsics contain facilities to create, customize, organize, and destroy
widgets. They also translate event sequences from the window server into pro
cedure calls, which the application can then interpret. The intrinsics keep track
of the state of a particular widget and negotiate screen real estate when a
widget changes size or position.

The OPEN LOOK Toolkit 2·1

The OPEN LOOK Widgets

The OPEN LOOK Toolkit provides the application programmer with a defined
set of widgets and other user-interface abstractions. The application program
mer is not primarily concerned with defining widgets. You are concerned,
rather, with defining the layout of the screen for a particular application and
designing the code to manage specific end-user interactions with the widgets.
The OPEN LOOK API also gives you the ability to customize applications by
defining sub-classes of the OPEN LOOK widgets. This is achieved by giving
you direct access to the underlying C structures that define the widgets.

Widgets have certain attributes, called resources. At the programming interface
level a resource is a named data item, a named component of a structure
definition. For example, some of the resources associated with widgets are the
background color, the parent widget (all widgets have a parent widget, where
the "topmost" parent is the application's base window), the height and width of
the defined area, and so on.

Some widgets exist only to define an area in which other widgets can be
defined; that is, they are Composite Widgets and exist only as parents to child
widgets. For example, the Bulletin Board widget simply provides a space to
attach other widgets to. A widget with no children is a Primitive Widget.
Primitive widgets are directly associated with an action: they perform a func
tion, enter data, or output data. They do not contain other widgets.

Each time you specify a widget, you can also register the name of the routine(s)
you have written to process that widget; that is, you pass the routine name(s) to
the Xt Intrinsics. These application registered routines are termed "callbacks."
Callbacks manage the semantics of an end-user interaction. The Xt Intrinsics
also monitor application registered, non-graphical events and dispatch applica
tion routines to handle them. These features allow application programmers to
use this implementation of an OPEN LOOK Toolkit in database management,
network management, process control, and other applications requiring
response to external events.

~
The widgets as outlined in this guide, when implemented with the X Toolkit

NOTE Intrinsics in XWIN Release 4i, meet Level 1 compliance with the OPEN
LOOK specification and some Level 2 features, such as the use of color and
menus with more than one type of control.

2-2 OPEN LOOK GUI Programmer's Guide

The OPEN LOOK Widgets

Flat Widgets and Gadgets

The OPEN LOOK Toolkit provides two other abstract interface components:

• Flat Widgets

• Gadgets

These abstractions are very much like widgets. They are designed to enhance
the performance of OPEN LOOK applications by saving time and space. They
minimize the space used by redundant window definitions.

For the most part, the term widget will be used to refer to any of widgets, flat
widgets or gadgets.

Flat Widgets

A Flat Widget is a single widget that maintains a collection of similar user
interface components (sub-objects). The flat widget gives the appearance and
behavior of many widgets. The sub-objects could be defined as widgets, but,
because they share the same basic characteristics, defining them collectively
results in improved performance. Flattened widgets, for instance, consume only
a fraction of the memory that an equivalent hierarchy of widgets requires.

In this version of OPEN LOOK there are three flat widgets:

1. Flat Exclusives, containing the equivalent of RectButton widgets.

2. Flat NonExclusives, also containing the equivalent of RectButton widgets.

3. Flat Checkboxes, equivalent to a nonexclusives widget populated with
Checkbox widgets.

In general, flat widgets (or flattened widgets) have the following attributes:

• They are container objects, responsible for managing the look and feel of
one or more sub-objects.

• After the container is populated, minimal or no manipulation is done on
the sub-objects.

• Each container is simply a region that contains zero or more sub-objects of
a certain type.

The OPEN LOOK Toolkit 2-3

The OPEN LOOK Widgets

• The sub-objects within the container do not have an associated window or
widget structure.

From the end-user's perspective, there is no discernible difference between a
flattened widget interface and the same interface defined as a composite widget
with child widgets.

From the application programmer's perspective, flattened widgets have a dif
ferent interface than traditional widgets or gadgets. Flattened widgets are more
efficient and easier to deal with, particularly when the sub-objects are regularly
spaced and have similar attributes. A single toolkit request can specify an arbi
trary number of sub-objects to the flattened widget, thus achieving a substantial
reduction in the lines of code required to produce a complex graphical interface
component. Additionally, there is a single callback routine for all sub-objects of
the flattened widget.

Chapter 3 includes a detailed description of programming using flattened widg
ets.

Gadgets

A Gadget is a windowless object; that is, it is a widget that uses its parent's
window. For the most part, there is no difference in the application
programmer's handling of a gadget and of the same object defined as a widget.
The only difference is in the widget class (for example, an OblongButton Widget
belongs to the OblongButtonWidgetClass while the OblongButton Gadget
belongs to the OblongButtonGadgetClass).

It is important to note that a gadget is a subclass of the RectObj class while a
widget is a subclass of Core, with a gadget having only a subset of the resources
found associated with the Core class. Thus care should be taken to avoid
referencing fields which exist for widgets but not gadgets, both in writing
gadget code or in converting widget code to gadget code in existing applica
tions.

2·4 OPEN LOOK GUI Programmer's Guide

The OPEN LOOK Widgets

MenuButton gadgets cannot be parents (that is, cannot be used as the
parent parameter when creating a widget or other gadget.

Gadgets share some core fields. But since they are not subclasses of Core,
they do not have all Core fields. In particular, they don't have a name field
or a translation field (so translations cannot be specified/overridden).

Naming Conventions for Widgets

The OPEN LOOK Toolkit programmer may end up dealing with hundreds of
programming particles: widgets, widget resources, Xt intrinsic routines, OPEN
LOOK routines, and so on. A well-defined set of naming conventions has been
adopted to simplify the process of reading and writing applications. The nam
ing conventions are important, and are essential to effective toolkit program
ming and debugging.

The names of structure members are lower-case; underscores are used to join
compound words. Examples of these names are tag, display, and id _type.

Type and procedure names begin with upper-case letters. Capitalization is used
to separate the components of compound words. Examples of this style are:

• XtGetValues

• XtSetArg

• XtSetValues

• ArgList

• OlInitialize

Because of the object-oriented nature of the toolkit, all data structures and most
data types are type-defined ("typedef-ed"). Further stylization is often accom
plished using typedefs for derivatives of these private data types.

Additional conventions stipulate that:

• A resource name will have the prefix XtN. Using this convention, the
resource name XtNbackgroundPixmap will associate with a structure
member background yixmap.

The OPEN LOOK Toolkit 2-5

The OPEN LOOK Widgets

• A resource class will have the prefix Xtc. For example, the resource class
Background will be defined as xtCBackground.

Basic widget naming conventions can, therefore, be thought of according to the
following list:

• Intrinsics procedure names begin with "Xt"

• OPEN LOOK routines start with "01"

• Resource names begin with "XtN"

• Resource class names begin with "XtC"

These conventions are like those used for X Window's Xlib

Resources for Widgets

A resource is a named data item. This section describes how default values for
resources are established. The next section describes how these values are set
and obtained after the widget is created. There is a fundamental distinction
between the nature of a widget, or its "Widget Class" (for example, an Oblong
Button), and a specific widget, or an instance of a widget (for example, This Blue
OblongButton Over Here). Widgets may be defined as sub-classes of other
defined widgets, which are then considered to be their "super-class" widget.

The resource value may be set by a program, specified by a user, or specified as
a default. For example, in the case of the OblongButton widget, some of the
resource items that are specific to a given instant of the widget include fore
ground color, text font, the label string, and label justification. Some of these
resource elements may come from the widget's superclass, such as background
color, border color, and border width.

During initialization of the OPEN LOOK Toolkit (through a call to the
OlInitialize routine), the resources are merged from several sources in the
order shown below. During the merge, unrelated resources are simply added to
the complete set, while overlapping resources are replaced with the latest
values. For instance, if the resource XtNforeground is specified in several
sources, the value of XtNforeground from the last source overrides earlier
values.

2-6 OPEN LOOK GUI Programmer's Guide

The OPEN LOOK Widgets

Resource values may be supplied to an application from the following sources,
in the order given:

1. Internal defaults - Each object in the toolkit has object-specific defaults for
the resources it uses. These defaults are in effect unless overridden from
another source.

2. Application defaults - The application-specific resource file name is con
structed from the class name of the application and points to a site
specific resource file that usually is installed by the site manager when the
application is installed. On UNIX-based systems, the application resource
file is /usr/X/lib/app-defaults/class, where class is the application
class name.

3. Server resource or .Xdefaults file - The next source is the X server's
RESOURCE_MANAGER property, as returned by the XOpenDisplay routine.
If no such property exists, the .Xdefaults file in the user's home direc
tory, if it exists, is loaded in place of the server property.

However, when the OPEN LOOK Workspace Manager (olwsm) is run
ning, the RESOURCE_MANAGER property always exists, and obtains its
values from the .Xdefaults file. This essentially makes moot the differ
ences between these alternate sources. r; A user can make changes to the .Xdefaults file as long as the

NOTE olwsm program is not running. Changes made while the Workspace
Manager is running will be lost.

An application can use the olwsm program to store changes to resource
values. The changes are stored immediately in both the .Xdefaults file
and the RESOURCE_MANAGER property.

4. XENVIRONMENT or .Xdefaults-host file - The user's environment variable
XENVIRONMENT provides the name of the file for the next source. If this
environment variable is not set, the file .Xdefaults-host in the user's
home directory, if present, is used, where host is the name of the user's
host machine.

S. Command line options - The next source is the command line, where the
user can give several standard and application-specific options. The
OlInitialize routine has a table of the standard command line options
for adding resources to the resource database, and it takes as a parameter
additional application-specific resource abbreviations. See "Parsing the

The OPEN LOOK Toolkit 2·7

The OPEN LOOK Widgets

Command Line" in Chapter 4 of the X Toolkit Intrinsics for the format of
this table.

6. Application overriding values - Resource values set within the application
program are the last source. These assignments will override any, and
all, previous assignments. See the next section, "Getting and Setting
Widget Resources", for details on how the application can set resource
values.

Getting and Setting Widget Resources

The intrinsics provide procedures for obtaining a widget's current resource
values and assigning values to a widget's resources. These functions are used
after a widget is created.

The values can be set at initialization time, can be set with a call to -
XtSetValues, can be read with a call to XtGetValues, or can be set in other
ways (see the reference sections of this guide for specific information).

The following table describes the arguments for the XtSetValues and
XtGetValues.

Widget
args

numy,rgs

Widget
args

num_args

XtSetValues

Specifies the widget.
Specifies a variable length argument list of the
name/value parts to be modified.

Specifies the number of entries in the argument list.

XtGetValues

Specifies the widget.
Specifies a variable length argument list of
name/address pairs. The address part is the address
of an object of the type given as name.

Specifies the number of entries in the argument list.

Both functions require the number of arguments (num _ args) to be passed as a
parameter. The function XtNumber (array_name) can be used to return the
number of entries in a fixed length array.

2-8 OPEN LOOK GUI Programmer's Guide

The OPEN LOOK Widgets

Basic Widget Resources

This section describes those widget resources that belong to the Core Widget.
The Core Widget contains the definitions of resources that are common to all
widgets. All widgets are subclasses of Core.

A description of these resources are briefly presented here and in more detail
later in the reference sections of this Guide. These resources are common to all
widgets and you should consult the reference manual before actually using
them.

Resource Set

Name Class Type Access
XtNancestorSensitive XtCSensitive Boolean G*

xtNbackground XtCBackground Pixel SGI

XtNbackgroundPixmap XtCPixmap Pixmap SGI

XtNborderColor XtCBorderColor Pixel SGI

XtNborderPixmap XtCPixmap Pixmap SGI

XtNborderWidth XtCBorderWidth Dimension SGI

XtNdepth XtCDepth Cardinal SG

XtNdestroyCallback XtCCallback XtCallbackList SI

XtNheight XtCHeight Dimension SGI

XtNmappedWhenManaged XtCMappedWhenManaged Boolean SGI

xtNsensitive XtCSensitive Boolean GI*

XtNtranslations XtCTranslations XtTranslations G

xtNwidth XtCWidth Dimension SGI

XtNx XtCPosition position SGI

XtNy XtCPosition Position SGI

The OPEN LOOK Toolkit 2-9

The OPEN LOOK Widgets

The Access column is interpreted as follows:

S Value can be set by XtSetValues

G Value can be read by XtGetV alues

I Value can be set at initialization

* Value set in other ways

XtNancestorSensitive

Range of Values:
TRUE
FALSE

This argument specifies whether the immediate parent of the widget will receive
input events.

XtNbackground

Range of Values:
Any pixel value valid for the current display

This resource specifies the background color of the widget.

XtNbackgroundPixmap

The application can specify a pixmap to be used for tiling the background. This
takes precedence over XtNbackground.

XtNborderColor

Range of Values:
Any pixel valid for the current display

This resource specifies the color of the border.

XtNborderPixmap

The application can specify a pixmap to be used for tiling the border. This
takes precedence over XtNborderColor.

2-10 OPEN LOOK GUI Programmer's Guide

The OPEN LOOK Widgets

XtNborderWidth

Range of Values:
o <= XtNborderWidth <= min (XtNwidth, XtNheight) / 2

This resource sets the width of the border for a widget. A width of zero means
no border will show.

XtNdepth

Range of Values:
o or (any value supported by the current display)

Determines how many bits should be used for each pixel in the widget's win
dow. The value of this resource is used by the Xt Intrinsics to set the depth of
the widget's window when it is created.

xtNdestrqyCallback

This is a pointer to a callback list containing routines to be called when the
widget is destroyed.

XtNheight

Range of Values:
o <= XtNheight

This resource contains the height of the widget's window (in pixels), not count
ing the border area.

XtNmappedWhenManaged

Range of Values:
TRUE
FALSE

If set to TRUE, the widget will be mapped (made visible) as soon as it is both
realized and managed. If set to FALSE, the application program is responsible
for mapping and unmapping the widget. If the value is changed from TRUE to
FALSE after the widget has been realized and managed, the widget is
unmapped.

The OPEN LOOK Toolkit 2·11

The OPEN LOOK Widgets

XtNsensitive

Range of Values:
TRUE
FALSE

This resource determines whether a widget will receive input events. Note that
in the table this resource is marked *. In order to set this resource, you should
use the function XtSetSensitive. This is because this resource affects the
status of any child widgets and the XtSetSeIlSitive function will propagate the
new value to all children.

xtNwidth

Range of Values:
a <= XtNwidth

This resource contains the width of the widget's window in pixels, not including
the border area.

XtNtranslations

This resource should not be set by an application.

XtNx, XtNy

These resources contain the x-coordinate and y-coordinate of the widget's upper
left hand comer, excluding the border, relative to its parent widget.

Specifying Resources for Flattened Widgets

A flattened widget has three kinds of resources:

• Resources that affect the container object; for example, XtNcontainerType
or XtNgravi ty, specifying how the sub-objects in this container are posi
tioned within another container.

2-12 OPEN LOOK GUI Programmer's Guide

The OPEN LOOK Widgets

• Resources that must be specified for each sub-object; for example,
XtNlabel, specifying the label that goes inside the button or checkbox.

• Resources that may be applied to every sub-object or may be applied indi
vidually to each sub-object; for example, height, width, font, background
color, and so on.

This means that resource specification must allow for variation in the number of
specified resources (that is, where the number of specifications is a function of
the number of sub-objects) and also allow for variation in specifying which
resources will be defined for the container and which will be defined for the
sub-objects. This variation is determined by using resource lists for the
specification.

Sub-Object Resource Lists

The resources for the sub-objects of a flat container are specified in list for
mat. This allows the programmer to determine which container resources will
be inherited by the sub-objects and which will be specified individually.

Each list is an array of application-defined records (typically, in a "C" structure
format or as an array), where each record describes a particular sub-object. The
items to be entered on the list are determined by the application programmer.
In the same application, different flat containers can have different lists. For a
given flat container all items on the list are specified in the same format. That
is, for efficiency reasons, each record in the array must have the same form as
the other records in the array; each structure in the list has identical fields.

Every different flat container widget may have a different set of fields for each
record in its sub-object resource list. For example, if an application wanted to
specify an "unselect" callback procedure for one group of exclusives but not for
another, the application would specify an XtNwlselectProc field as an element
field for the first list but not for the second list. For data alignment and parsing
reasons, the fields of each record must use the XtArgVal type (see the code
example in Chapter 3).

The OPEN LOOK Toolkit 2-13

The OPEN LOOK Widgets

Inheriting Resources

Since all sub-object resources are part of a container (parent), sub-objects inherit
any non-specified resource from the parent container. For example, if the appli
cation requires a particular font color for all sub-objects, you do not have to
specify the XtNfontColor resource for each sub-object; you simply set the font
color resource on the parent container and all sub-objects will use that font
color.

Though sub-object resources are part of its container's resource set, none of the
sub-object resources have any direct effect on the container.

Ordering Resources in the List

Since the "form" of the sub-object record is defined within the application's
domain, the container must be given a hint about the record's form so that it
can parse the supplied list. A resource name list is the key to unlocking the
application's sub-object list. While the ordering of fields in each record is not
important, the application must give the resource names in the same sequence
that their associated values appear in the record.

For example, if the records specifying sub-objects of a flat exclusives container
had a "XtNlabel" field followed by the "XtNselectProc" callback field, the
application must supply the container with the XtNlabel resource name fol
lowed by the XtNselectProc resource name. Inconsistent ordering of the fields
will result in undefined behavior when the sub-objects are instantiated.

Resources for Specifying Sub-Objects in a Flat Widget

Five common resources are used by each container class to describe the neces
sary sub-object information:

2·14 OPEN LOOK GUI Programmer's Guide

The OPEN LOOK Widgets

Resource Set
Name Class Type Access

xtNitems XtCltems XtPointer SGI

XtNnumItems XtCNumltems Cardinal SGI

XtNitemFields XtCltemFields String * SGI

XtNnumltemFields XtCNumltemFields Cardinal SGI

XtNitemsTouched XtCltemsTouched Boolean SG

XtNitems This is the list of sub-object items.
XtNnumItems Specifies the number of sub-object items in the list.
XtNitemFields Contains the list of resource names used to parse the

records in the XtNi tems list.
XtNnumltemFields Specifies the number of resource names in XtNitem

Fields.

XtNitemsTouched Values are TRUE or FALSE (the default). Whenever
you modify an item list directly, you must set this as
TRUE to the flat widget container so that it can update
the visual.

Screen Resolution and Color

Low and High End Color

This implementation of an OPEN LOOK toolkit supports the low and high end
color representation, that is, the primary colors, as well as the fine shadings.

If you wish to fine-tune your color choices, you can edit the color resources in
your .Xdefaults file. Note that you should only do so when OPEN LOOK is
not currently running.

The OPEN LOOK Toolkit 2-15

The OPEN LOOK Widgets

RESOURCE AFFECTS

*Background windows and widget background
*TextBackground TextEdit, xterm
*TextFontColor TextEdit, TextField, ScrollingList, xterm
*inputFocusColor cursor, traversal, highlighting
*inputWindowHeader header of window with input focus
olwsm.workspace workspace color
* foreground window title, window menu label, buttons, scrollbars sliders
*borderColor border of widgets and windows
*FontColor TextEdit, TextField and ScrollingList widgets and xterm

~ Refer to the resource sets of widgets in the "Manual Pages: Widgets" y append;x of th;s gu;de.

Device Resolutions

The table below presents the screen formats that are supported with this toolkit.
Assuming 11 inch diagonal and 13 inch diagonal (nominal) monitors are used,
the table also shows the corresponding pixel densities. The numbers are given
in pixels per inch horizontally by pixels per inch vertically.

Adapter Type Format 11" Monitor 13" Monitor
EGA 640 x 350 76 x 55 66 x 48
EGA (AT&T Extended) 640 x 400 76 x 63 66 x 55
VGA 640 x 480 76 x 76 66 x 66
Enhanced VGA 800 x 600 95 x 95 83 x 83

On screens that meet these resolutions, the visuals presented by the toolkit
adhere to the 12-point size visuals required by the OPEN LOOK specification.
However, the toolkit will work with any resolution. On low resolution screens,
such as the eGA format, the visuals will be larger than 12 points; on higher
resolutions, the visuals will be smaller than 12 points.

2-16 OPEN LOOK GUI Programmer's Guide

Supported Fonts

Standard Font

The OPEN LOOK Widgets

The defined OPEN LOOK font "Lucida" is used in labels for all labeled controls
and as the default font in text widgets.

Automatic Choice of Font for Resolution

The toolkit automatically selects the correct default font to match the resolution
of the device. The application can override the font selection, but then the
toolkit does not automatically adjust the font to accommodate a change in
screen resolution.

Note that fonts must be cached on a per screen basis.

The OPEN LOOK Toolkit 2-17

Widget Functions and Applications

This section describes the OPEN LOOK widgets and processing routines. The
widgets defined for the OPEN LOOK GUI are listed below:

2·18

Action Widgets

OblongButton
RectButton
CheckBox
MenuButton (was: ButtonStack)
AbbrevMenuButton (was: AbbrevStack)
Slider
Scrollbar
Stub

Text Control Widgets

StaticText
Text
TextField

Container Widgets

Bullet inBoard
ControlArea
Form
Caption
FooterPanel
Exclusives
Nonexclusives
FlatCheckbox
FlatExclusives
FlatNonExlusives
Scrolled Window
ScrollingList

Popup Choices

Notice
PopupWindow
Menu

OPEN LOOK GUI Programmer'$ Guide

Widget Functions and Applications

OPEN LOOK Widget Descriptions

t~ A reference to a widget class is formed by using the lower case widget
NOTE name followed by "WidgetClass," such as menuButtonWidgetclass and

menuWidgetClass.

Action Widgets

Oblong Button Widget and Gadget

The OblongButton widget is a primitive widget consisting of a label sur
rounded by a rounded oblong border (Figure 1).

Label

Border

Figure 1. Oblong Button Widgets

In a series of Buttons, the default choice is indicated by a double border. The
OblongButton provides a single-action control for the end-user. The user ini
tiates an action each time the Button is selected, unless the Button is marked as
"busy" or "inactive".

The OPEN LOOK Toolkit 2-19

Widget Functions and Applications

The OblongButton is typically incorporated into a Menu, ControlArea, or other
composite widget as part of a set of controls. Because of this, we recommend
you use an OblongButton Gadget instead. This saves both time and space.

RectButton

The RectButton is a primitive widget consisting of a label surrounded by a rec
tangular border. Figure 2 illustrates Rectangular Buttons under several possible
conditions, and using different borders to indicate the condition. While a
RectButton may be used alone, it is generally used as a component child of an
Exclusives or Nonexclusives composite widget. The RectButton is used to
indicate a choice (for example, to set or reset a switch value) in the application.

'----------Va_lue _I IL'::==::=::=I D======efault V======alue =====::::'J11

.. "' .. . · · . .' . · . .' . · . .' . · i Value i Default Value
.' . . ' .

, 0.:::;:: .

I Current Value I Current Value

Figure 2. Rectangular Button Widgets

2-20 OPEN LOOK GUI Programmer's Guide

Widget Functions and Applications

CheckBox

The CheckBox widget consists of a label followed by a check box. The widget
acts as a toggle switch. The first time it is selected a check mark is drawn in the
box. Selecting it again removes the check mark. If it is initially set, the first
time it is selected it will be un-set.

CheckBox widgets may be used alone or as part of another composite, but they
are almost always used as children of the Nonexclusive composite widget. The
Nonexclusi ves widget manages the appearance of the CheckBox. These widg
ets provide the end-user with a way to make one or more selections from a list
of choices in a form that looks like items being checked off a list.

Figure 3 illustrates a CheckBox and specifies each of its components.

Label
CheckBox

Check Mark

CheckBox Widget

Figure 3. CheckBox Widget

The OPEN LOOK Toolkit 2-21

Widget Functions and Applications

MenuButton Widget and Gadget

The MenuButton (ButtonStack in Release 1.0) is a composite widget that pro
vides the look of a regular OblongButton, or "stack" of OblongButtons. The
stack of buttons acts as a visual representation for a menu. It has all the
features that the Menu has and also provides quick access to the menu defaults,
both for selection and previeWing.

Figure 4 illustrates a MenuButton. The inverted triangle (also known as a Menu
mark) visually distinguishes a MenuButton from a primitive Button.

The MenuButton is normally defined as a Gadget for more efficient perfor
mance.

Menu 1~ Re~on

I I

Label

r~~~l

: I I ~ ----:! ~ Sample Stack i'7l ~
• l

t____ ------------------------1[-------------J

Border

MenuButton Widget

Figure 4. MenuButton Widget

2-22 OPEN LOOK GUI Programmer's Guide

Widget Functions and Applications

AbbrevMenuBuUon

The AbbrevMenuButton (AbbrevStack in Release 1.0) composite widget is simi
lar to the MenuButton control. It appears on the screen without a label, taking
up less screen space. The AbbrevMenuButton widget can be used with other
widgets to allow the end user to add new items to the menu.

Figure 5 illustrates an AbbrevMenuButton widget next to a Current Selection
Widget. The Current Selection widget is independently created by the applica
tion. Typically, you would place both widgets side by side in a composite
widget. The AbbrevMenuButton widget only automatically previews the default
selection in the selection widget; the application is responsible for showing any
other selections.

Abbreviated Menu Button

Current Selection Widget

,r
.,.1.1.1.1.1 .I.1.1.1.1.1.1 __ ~

, I
, I
, I 'V I : i
, I
, I
, I
, I

'1'----------'
AbbrevMenuButton Widget

Figure 5. AbbrevMenuBuUon Widget

The OPEN LOOK Toolkit 2-23

Widget Functions and Applications

Slider

The Slider widget provides the graphical equivalent of an analog control,
allowing the end-user to move a slider element to a position that represents a
value along a continuum.

The application specifies the minimum and maximum values as well as the
granularity. Figures 6A and 6B illustrate both a horizontal and vertical Slider
widget and labels each of its components.

Left Anchor Drag Box Right Anchor

I
Shaded Bar Bar

Slider Widget

Figure 6A. Slider Widget (Horizontal)

2-24 OPEN LOOK GUI Programmer's Guide

Widget Functions and Applications

r=:J ~-ioII_---- Top Anchor

::: ---- Slider Widget

~~---- Bar

D ! .. ----- DragBox

.... ----- Shaded Bar

__ c::::::J_~_ioII------ Bottom Anchor

Figure 68. Slider Widget (Vertical)

The OPEN LOOK Toolkit 2-25

Widget Functions and Applications

Scroll bar
The Scrollbar widget has no intrinsic function; it is always associated with an
adjoining window, that contains the "Content" to be scrolled.

The Content is composed of units of data (for example, lines of text), that typi
cally exceed the size of its window (called a window pane). The end-user
scrolls through the Content by selecting and moving the Scrollbar. In appear
ance, the scrollbar looks like an elevator or a cable car that moves back and
forth (or up and down) on a cable. The Content moves through the pane pro
portionately to the movement of the Scrollbar. Figures 7 A and 7B illustrate
different aspects of Scrollbars, showing their components and illustrating fully
extended scrollbars, both horizontal and vertical. Scrollbars can also be
abbreviated (when they are attached to a small window, for example). In this
case the cable component is eliminated.

~J~~r_:~
Drag Area

Right
Arrow

Right Anchor

0111111111111111111111111111 ~~-'-"'T"":"-I'-t ... _

t-
Cable

Proportion Indicator

Figure 7A. Scrollbar Widget (Horizontal)

2·26 OPEN LOOK GUI Programmer's Guide

Widget Functions and Applications

01~1 I~I 1110

Figure 7B. Scrollbar Widget: Elevator and Proportion Indicator at LeftITop Limits

The Scrollbar does not provide semantics for scrolling through any particular
content, but provides an interface for an application or another widget, such as
the ScrolledWindow and widgets, to implement a scrollable window pane.

Stub

The Stub widget is designed to give you increased flexibility in controlling the
screen during execution. It allows you to specify procedures at creation and/ or
xtSetValues time that are normally restricted to a widget's class part. Most of
the class part procedures have been attached to the instance part.

This allows you to use Stub widgets to build local widgets (that is, to design
application-specific widgets). The Stub is particularly useful for drawing
graphics.

The OPEN LOOK Toolkit 2-27

Widget Functions and Applications

Text Control Widgets

StaticText

The StaticText widget implements the OPEN LOOK Message control to pro
vide an uneditable display. The application has some flexibility in laying out
the text within the StaticText widget.

Figure 8 illustrates a typical StaticText widget, showing the resources used to
control the display coloration.

XtNfontColor

, --......... --.. --.... Jr--..................... -------,
i The quick brown fox jumped i
i over the lazy widget. i
'~ •...••..•..••.....••........ ------..... --..•.... ~

XtNborderColor
(XtNborderPixmap)

XtNbackground
(XtNbackgroundPixmap)

Figure 8. StatlcText Widget

TextEdit

The TextEdit widget provides an interface for the end user to enter and edit
text. It provides a basic set of editing controls, including selection control for
text, copy, move, and cut and paste.

TextEdit widgets are often used in conjunction with ScrolledWindows and
Scrollbars to manage text that cannot fit within the provided window frame.

2·28 OPEN LOOK GUI Programmer's Guide

Widget Functions and Applications

TextField

The TextField widget provides a one-line text field, with an application-set
width, for letting the end user enter and edit text. Controls are included for
scrolling long text left and right within the field. Figure 9 illustrates a Text
Field widget with various controls and those resources used to control the
coloration. The left and right arrows are used to indicate the direction of text
overflow; the vertical triangle is the editing cursor.

Input Field

Left Arrow ----I,: ~ r [B1-iI~..--- Right Arrow

'.u .. ·r·u· .. ·In~~~.~'uuuuu ..

TextField Widget

Figure 9. TextField Widget

The OPEN LOOK Toolkit 2-29

Widget Functions and Applications

Container Widgets

BulietinBoard
The BulletinBoard is a composite widget; that is, it contains and manages
other widgets (which may themselves be composites). The BulletinBoard
widget provides minimal management of its widget children, simply providing
a space into which they can be placed. It allows the application to configure the
overall size of the "bounding box" around the child widgets, but does not pro
vide facilities for ordering the widgets. When defining a BulletinBoard you
can specify that it have a fixed screen size, that it have a minimal size Gust large
enough to hold its children), or that it grow to meet its children's needs.

Figure 10 illustrates a BulletinBoard and shows the coloration resources.

2-30

XtNborderColor
CK~borderPixD1Rp)

,..-------------.. , ' , , , ,
, ' , ' , ' , ' , :

X~background
CKtNbackgroundPixmap)

1

(ChUd Widgets Colored Independently)

Figure 10. BulietinBoard Widget (Coloration)

OPEN LOOK GUI Programmer's Guide

Widget Functions and Applications

ControlArea
The ControlArea is a composite widget that manages the layout of its children
on the screen. It allows the controls to be laid out in one of four patterns and
provides column or row alignment. The four patterns are:

• Fixed number of rows in the control area

• Fixed number of columns

• Fixed overall width of the control area

• Fixed overall height

The child widgets are automatically laid out left to right and then top to bottom
in the order that they are added to the ControlArea composite widget. Typical
layouts, coloration and representative resources are illustrated in Figures llA
and llB.

XtNborderColor
(XtNborderPixmap)

XtNbackground
(XtNbackgroundPixmap)

r-- - w_w-w -~-~~- --,

I I
I I
I I

r- ---- -------1 t- ---- ----1
I I I , I
I I , , I

j--------------~
t _____________ ~ ~ _____________ ~

,-------------, ,.-------------~
j I , ,
j , , ,
j , , ,
j , , ,
j , , , , _____________ J L _____________ ~

,--------------, r-------------, , , , , , , , , , , , ,
, , , I , , , ,
,-------------~ ~-------------~

("-------------,
I
I
I
I
I

-------------.'
r - - - - - - - - - - - --,

I
I
I
I

, I

,--------------,

(Child Widgets Colored Independently)

Figure 11 A. ControlArea Widget (Coloration)

The OPEN LOOK Toolkit 2-31

Widget Functions and Applications

(Line

(Square

XtNmeasure
(OL]IXEDWIDTH)

) (Rectangle

) (Circle

~I

) XtNmeasure
(OL _ FIXEDHEIGHT)

)

Figure 11 B. ControlArea Widget (Height and Width Control)

2-32 OPEN LOOK GUI Programmer's Guide

Widget Functions and Applications

Form

The Fonn composite widget provides more sophisticated management of other
widgets than the BulletinBoard composite. It allows the application to specify
the layout of the widgets, so that their position relative to each other remains
consistent in the face of window resizing done by the end user. A Fonn widget
is illustrated in Figure 12.

XtNborderColor
(XtNborderPixmap)

XtNbackground
(XtNbackgroundPixmap)

i -- -- -----------------, 1;-------------i
j , j ,
, • j ,
j I j ,
j I , ,

t __ ___ .. _______ .. ! ~ --- -----,

,---_ -- -- -_ _, , , , , , , , , , ,
,_ ---_ -_ --,
r _____________ " , , , , , , , , , ,
t _____ .. ______ .. !

(Child Widgets Colored Independently)

Figure 12. Form Widget (Coloration)

The OPEN LOOK Toolkit 2-33

Widget Functions and Applications

Caption
The Caption widget provides a convenient way to label other controls. It
allows the application to choose the placement of a text label next to one
widget. The Caption widget is illustrated in Figure 13. Some OPEN LOOK
composite widgets recognize the Caption widgets and will align them specially.

Label Child Widget

Figure 13. Caption Widget

FooterPanel
The FooterPanel composite widget provides a convenient way of getting a
footer at the bottom of an OPEN LOOK window. It allows the application to
use any widget best suited for the content of the footer and handles the resize
management of the footer and the pane above it.

2-34 OPEN LOOK GUI Programmer's Guide

Widget Functions and Applications

Exclusives
The Exclusives is a composite widget that allows the end-user to select one,
and only one, of a series of choices. The Exclusives composite is only used
together with RectButton primitive widgets as children (Figure 14).

The Exclusives widget provides the layout and selection control of the
RectButton widgets, ensuring that the controls align in columns and/or rows,
that only one (or none) of the buttons is set at one time, and that dimmed but
tons are reset if a choice is made.

Exclusives can also be defined as Flattened Widgets. When defined in this
way its children will not be treated as individual widgets. For the most part,
you should use the Flattened Widget definition to improve overall performance.

Strawberry Pear

Apple Plum

I Watermelon I Blueberry

Figure 14. Exclusives Widget Example

The OPEN LOOK Toolkit 2-35

Widget Functions and Applications

Nonexclusives
The Nonexclusi ves is a composite widget that allows the end-user to select one
or more of a series of choices. The Nonexclusive widget can manage either
RectButton or CheckBox primitive widgets.

The Nonexclusi ves widget provides the layout and selection control of the
RectButton or CheckBox widgets, ensuring that the controls align in columns
and/ or rows.

When the container will be populated with RectButtons, the Nonexclusi ves can
also be defined as Flattened Widgets. When defined in this way its children
will not be treated as individual widgets. Use the Flattened Widget definition
to improve overall performance.

Flat CheckBox
The FlatCheckBox widget is equivalent to a NonExclusi ves widget that is
populated entirely by CheckBoxes. The advantages of using this flattened
widget definition is that only a single widget is defined and that resource values
of the container can be inherited by each of the sub-objects.

2-36 OPEN LOOK GUI Programmer's Guide

Widget Functions and Applications

ScroliedWindow

The ScrolledWindow widget can be used as the basis for implementing a scroll
able pane, for example, for a TextEdit widget. However, it has no innate text
or graphics semantics; it must be combined with other widgets for this.

To use the ScrolledWindow you create a widget capable of displaying the entire
Content as a child of the ScrolledWindow widget. The ScrolledWindow
widget positions the child "within" the view of the Content and creates scroll
bars for the horizontal and vertical overflow as needed.

Figure 15 illustrates a Scrolledwindow widget, showing the content (which
does not appear on the screen) and the View of the Content (which does). The
vertical and horizontal ScrollBar widgets are separately defined and are
attached to the ScrolledWindow widget.

View of the Content +--_~

I~ --- ---- ---- ----:

i~--
View Border__..

o
!=:-:DI~=I =I~I'-""'-""-""'-""'-""-""'-::'{=-'J

t
Horizontal Scronbar

Content~.

Figure 15. Scrolled Window Widget

The OPEN LOOK Toolkit 2-37

Widget Functions and Applications

Scrolling List

The ScrollingList widget is another kind of window pane, where the end
user manipulates the list with a Scollbar. The list consists of identifiable items;
that is, there is a "current item" that the end-user selects that is highlighted in
the pane. The list is completely under the control of the application. You can
turn selected items into Exclusives or NonExclusives. You can define
selected items to be editable text. You can add, change or delete items from the
list. You use the callback routines to determine what action, if any, to take with
the current item. Figure 16A illustrates common components of a "typical"
ScrollingList widget and Figure 16B shows the same widget configured to
add a new component to the List.

Current Item Border Border
Surrounding
Current Item

r-

I Edit I
View - Draw ~Scrollbar

Spreadsheet

Calendar

j

- o
Items

Figure 16A. Common ScroliingList Widget Components

2·38 OPEN LOOK GUI Programmer's Guide

Widget Functions and Applications

Edit

Draw

Editable ~I Text Field ...
Spreadsheet

Figure 168. Adding an Element to a Scrolling List

Attaching a Menu to a Scrolling List

D

~

D

A menu can be added to a ScrollingList Widget but it requires some work
on the part of the application. The code required by the application to create a
menu is shown below:

/* Create Menu */
cnt = 0;
XtSetArg(args[cntl, XtNmenuAugment, False); cnt++;
menu = XtCreatePopupShell("menu", menuShellWidgetClass, list_widget, args, cnt);

/* Add callback to catch MENU button */
XtAddCallback(list_widget, XtNconsumeEvent, PopupMenuCB, menu);

/* Get Menu Pane */
XtSetArg (args [01, XtNmenuPane, &menuPane);
XtGetvalues(menu, args, 1);

/* Add buttons to menu pane */
cnt = 0;
XtSetArg(args[cntl, XtNaccelerator, "Ctrl<c>"); cnt++;
XtSetArg(args[cntl, xtNrnnemonic, 'c'); cnt++;

The OPEN LOOK Toolkit 2-39

Widget Functions and Applications

change = XtCreateManagedWidget("change", oblongButtonGadgetClass,
menuPane, args, cnt);

XtAddCallback(change, XtNselect, EditCB, NULL);

cnt = 0;
XtSetArg(args[cntl, XtNaccelerator, "Ctrl<d>"); cnt++;
XtSetArg(args[cntl, XtNmnemonic, 'd'); cnt++;
delete = XtCreateManagedWidget("delete", oblongButtonGadgetClass,

menuPane, args, cnt);
XtAddCallback(delete, XtNselect, DeleteCB, NULL);

static void
PopupMenuCB(w, closure, call_data)

Widget w;
XtPointer closure, call_data;

OIVirtualEvent
position

ve = (OIVirtualEvent) call_data;
X, y;

/* Use OIMenuPopup(w, state, setpos, x, y, pos-proc) */
/* to pop-up menu. See manual page for more details. */

switch (ve->virtual_name)
{

case OL_MENU :
ve->consumed = True;

/* Let Menu determine (x,y) */
OIMenuPopup«Widget)closure, OL_PRESS_DRAG_MENU, False, 0, 0, NULL);
break;

case OL_MENUKEY
ve->consumed = True;

2-40

/* calculate (x,y) here */

OIMenuPopup«Widget)closure, OL_PRESS_DRAG_MENU, True, x, y, NULL);
break;

OPEN LOOK GUI Programmer's Guide

Widget Functions and Applications

Popup Choices

Notice

The Notice widget implements a high-priority pop-up window. Once a Notice
is popped up the end-user must respond to it before they can continue on in
that application (though they can exercise other applications that may be shar
ing the screen). Notices are usually used for messages such as II Are you sure
you want to do that?", coupled to Yes/No buttons (see Figure 17).

The Notice widget automatically handles the window-level creation and
management. It also provides a text widget interface for registering the text to
present to the end user and a control area widget for attaching the buttons the
user needs to dispatch the Notice.

Text Area Control Area
.------------- --- ------------------------~ , , , , , , , , , , , ,
i File exists. Do you want to overwrite? ~ , , , , , ,
~ . ~ , , , , , , , , , , , , , , , ,

l Yes ~ (NO) l , , , , , , , , , , , ,
l____________________ ---------------------f--------------------------------__________ J

Default Button

Notice widget

Figure 17. Notice Widget

The OPEN LOOK Toolkit 2-41

Widget Functions and Applications

PopupWlndow
The PopupWindow widget is used to allow you to create Command and Property
windows. A Command Window is a popup window that allows you to solicit
parameters for a command. A Property Window is a popup window that is
typically used to allow the end-user to specify overall properties of some aspect
of an application. This widget handles the window-level creation and manage
ment, leaving the application to populate the interior of the window with con
trols. Figure 18 shows the various components of a PopupWindow widget.

2·42

t

Pushpin Header

O~--------------E-d-lItL-oa-d----------------~
r-- ----------------, , , , , , , , , , , , ,
! File: ; , , , , , , , ,
----~---------------~-------------------- ----------- -----------~ ~-----------.-.--~----------------------- ------------ ---~.-.------~ , ,
! (Load) !
L ... \ ~
r--Ca~'t-fi~dtheili;---- ---------------- -------------- ---------,
~ __________ _________ M _______________________ M _________ • _______ ,

Lower
Control Area

Upper
Control Area

Resize Corner
(one of four)

Footer Window
Border

Figure 18. PopupWindow Widget

OPEN LOOK GUI Programmer's Guide

Widget Functions and Applications

Menu

The Menu composite widget manages a set of widgets that comprise the items in
the menu. It arranges for the proper response of the menu items to user
generated events like press or click SELECT as opposed to press or click MENU,
and oversees the setting of new defaults by the end user. This widget also
arranges to automatically "pop up" on the screen when the user presses or clicks
MENU on the parent widget, by augmenting the way events are handled for its
parent widget.

A Menu consists of a set of items presented to the end-user for selection. One of
the items is always considered to be the Default item. Menus have a Title, a
Separator, separating the title from the items, a Border and a Pushpin. The
Pushpin is used by the end-user to control whether the menu stays up after it is
used (if the Pushpin is set) or if it pops back down again. Figure 19 illustrates a
typical Menu widget.

TIll. s ... nro,:\~r T-----,
~o-t:J Window

Default Item ___ I
~ (Dismiss t>)

Scale t>
Items

Back t>

Locate Owner

Drop Shadow

Figure 19. Menu Widget

The OPEN LOOK Toolkit 2-43

Widget Functions and Applications

OPEN LOOK Routines

In addition to a widget set, the OPEN LOOK toolkit provides a number of rou
tines to support you in using the widgets and managing your application. The
OPEN LOOK initialization routine is mandatory; the remainder provide addi
tional control, flexibility and convenience in developing applications.

This section presents those routines; it simply presents the function name and
describes its functionality. The reference manual describes its parameters and
usage.

The first part of this section reviews those Xt Intrinsics routines that are neces
sary within the OPEN LOOK toolkit.

Necessary Xt Intrinsic Routines

This section presents a minimal set of Xt Intrinsic routines that are necessary to
develop OPEN LOOK applications. There are a significant number of other rou
tines that are essential for developing applications that create graphic images or
sophisticated text, varying text fonts and sizes. These are not described here,
though a few of them are used in the program lis_sampler" presented in
Appendix A.

XtSetArg

Many intrinsic routines need to be passed pairs of resource names and values.
These are passed as an argument list. This function specifies which pair in the
list to set and what the name and value are.

XtNumber

This function is used to get the number of elements in a fixed array (such as the
size of a resource table).

XtCreateWidget
xtCreateManagedWidget
XtCreatePopupShell

These are the functions used to create specific entities on the screen. The call
gives the class of the Widget (that is, the kind of widget), its label, and so on.

2-44 OPEN LOOK GUI Programmer's Guide

Widget Functions and Applications

XtDisplay
XtPopup

These functions are used to control the display of widgets on the screen.

XtDestroyWidget

Used to destroy a temporarily created widget.

XtAddCallback

This function is used to register a callback routine with the intrinsics and to
associate that callback with a specific widget.

XtRealizeWidget
XtMainLoop

These are generally the last two statements of your main program. All of the
XtCreate. . . and XtSet. . . functions merely get the widgets ready.
Nothing actually appears on the screen until the widgets are made real via the
XtRealize widget function.

The last statement of your program is XtMainLoop. This turns control over to
the X Window System to manage the end-user's interactions with the screen.
The MainLoop manages interactions and dispatches your callback routines as
requested by the end-user.

OPEN LOOK Initialization

The following routine must be used in an application in order for the applica
tion programmer's interface to function properly.

OlInitialize

This routine sets initial values needed by other routines and the widgets, and
registers any resource converters used by the application programmer's inter
face.

The OPEN LOOK Toolkit 2-45

Widget Functions and Applications

Registering Help

OlRegisterHelp

This routine associates help information with either a specific widget, or a
widget class.

You can supply specific Help text with the call; you can name a file containing
the Help text; or you can specify an application defined routine that can imple
ment a more elaborate help procedure.

Packed Widgets

OlCreatePackedWidget

This routine lets the application programmer create a related tree of widgets in
a single call. Child-Parent relationships are handled automatically.

Error Handling Routines

OlError
Olwarning
OlVaDisplayErrorMSg
OlVaDisplayWarningMsg
OlSetErrorHandler
OlSetWarningHandler
OlSetVaDisplayErrorMSgHandler
OlSetVaDisplayWarningMSgHandler

See the error(3W) manual page in the "Manual Pages: Convenience Rou
tines" appendix of this guide.

Because of the non-procedural aspects of "widget programming", there are no
convenient error returns that an application can check. Currently, the default
routines used are OlError and OlWaming. These print messages to the UNIX
standard error channel to convey error conditions.

You can override the default messages by registering your own custom error
messages. The OlSet. . . routines are used to do that.

2-46 OPEN LOOK GUI Programmer's Guide

Widget Functions and Applications

The widgets attempt to continue running whenever they can. This allows you
to discover multiple errors in a single run. They cannot recover from bad
pointers, but when they encounter illegally set resource values, they use the
default value and report on their actions. When unrecoverable errors occur, the
widgets generate an error message and terminate the process.

Controlling Input Focus

These routines allow the application programmer to determine which widget is
receiving input focus and which widget is next to receive input focus. The rou
tines are:

OlCallAcceptFocus
OlGetCUrrentFocusWidget
OlMoveFocus
OlCanAcceptFocus
OlSetlnputFocus
OlHasFocus

The OlHasFocus routine returns true or false depending upon whether the
designated widget currently has the input focus. The OlCanAcceptFocus deter
mines whether a particular widget is able to be designated to get the input
focus.

The OlCallAcceptFocus routine determines whether the widget can accept
input focus and, if it can, moves the focus to it.

The OlMoveFocus routine shifts the focus to the next widget in a specified direc
tion (current, next or previous).

~ Please see the Input_Focus manual page in the "Manual Pages: Conveni
~~':"J ence Rou';nes" chap,er of ,h;s gu;de.

The OPEN LOOK Toolkit 2-47

Widget Functions and Applications

Flat Widget Routines

These two routines are the equivalent of XtGetValues and XtSetValues for
flattened widgets. The only distinction between the Xt routines and the 01 rou
tines is that the index of the sub-object must be specified. These routines are
illustrated in Chapter 3. The routines are:

2-48

OlFlatGetValues
OlFlatSetValues
OlVaFlatGetValues
OlVaFlatSetValues
OlFlatCallAcceptFocus
OlFlatGetFocusltem
OlFlatGetltemIndex
OlFlatGetltemGeametry

See the Flattened widget Utilities(3W) manual page for more infor
mation.

OPEN LOOK GUI Programmer's Guide

Widget Functions and Applications

Convenience Routines

The following routines are not a necessary functional part of the application
programmer's interface, but they make it easier to get certain features:

OlMMToPixel
Ol_MMToPixel
OlPointToPixel
Ol_PointToPixel
OlScreenMMToPixel
Ol_ScreenMMTopixel
OlScreenPointToPixel
Ol_ScreenPointToPixel
OlPixelToMM
Ol_PixelToMM
OlPixelToPoint
Ol_pixelToPoint
OlScreenPixelToMM
Ol_ScreenPixelToMM
OlScreenPixelToPoint
Ol_ScreenPixelToPoint

The first set provides screen independence for sizing and layout of controls, giv
ing conversions between millimeters and pixels, and points and pixels. The
latter converts from virtual OPEN LOOK translations to standard X Toolkit
Intrinsics translations.

Applications with Multiple Base Windows

Every application has a single base window, automatically created by the OlIn
itialize call that initializes the toolkit. If your application needs additional
base windows, they are created with a call to XtCreateApplicationShell. The
widget class pointers that can be used here are transientShellWidgetClass or
applicationShellWidgetClass.

The OPEN LOOK Toolkit 2-49

Text Selection Operations

The StaticText, TextEdit, and TextField widgets use the following opera
tions to copy and move text.

Setting Insert Point

Clicking SELECT sets the insert point at the boundary between two characters
or spaces nearest the pointer. This makes an inactive caret active and highlights
the header of the main window (base window or pop-up window) containing
the specific text widget, to show which window has the input focus. Any active
selection on the screen is deselected.

Wipe-through Selection

Pressing and dragging SELECT marks the bounds of a new selection and
highlights it, and deselects any other active selection on the screen. While
SELECT is pressed, the active or inactive caret that marks the insert point is
invisible, but when SELECT is released, the insert point is left at the position of
the release. This does not make the insert point (caret) active if it isn't already
active.

The selection starts with the character where SELECT is pressed and extends to
the character where SELECT is released. If the pointer moves outside the
widget and the widget can scroll in that direction (that is, there is a scrollbar for
that direction), the widget scrolls additional text into the widget and adds it to
the selection. The rate at which text scrolls into the widget is the same rate at
which pressing SELECT on the arrows of the Scrollbar scrolls the widget.

Deletion of the new selection is pending: new text entered from the keyboard or
pasted from the clipboard replaces the selection.

Adjusted Selection

Clicking SELECT, moving the pointer, and clicking ADJUST marks the bounds
of a selection and highlights it. A subsequent click of ADJUST changes the end
bound of the selection. The ADJUST may also follow a wipe-through selection.
The selection starts with the character where SELECT was clicked and extends
to the character where ADJUST is clicked. The insert point is moved to the
position of the ADJUST. As above, deletion of the new selection is pending.

2-50 OPEN LOOK GUI Programmer's Guide

Text Selection Operations

Multi-click Selection

Double-clicking SELECT selects the word nearest the pointer. In case of a tie,
the word to the left is selected. Triple-clicking SELECT selects the entire line,
and quadruple-clicking selects the entire content. The selection is highlighted
and the insert point is left at the position of the multi-click.

F; Multi-Click Selection does not work with mouseless operations. Please see
NOTE Chapter 7 in the OPEN LOOK User's Guide for more information about CUT,

COPY, and PASTE using the keyboard.

Copying Text

Using COPY copies any selected text to the clipboard and deselects it.

Cutting Text

Using CUT moves any selected text to the clipboard and deletes it from the
Input Field.

Pasting Text

After setting the insert point, using PASTE copies text from the clipboard as
though it were typed in, leaving the insert point at the end of the pasted text.
This will replace any text currently selected in the widget. Note that the data
on the clipboard may have come from outside the Input Field, but it must be
text. If the clipboard is empty, the system beeps.

Selecting Text with the Keyboard

The keyboard can be used to select and adjust text. The SELCHARFWD key
adjusts the selection one character to the right of the insert point and moves the
insert point one character to the right. The SELWORDFWD key adjusts the
selection one word to the right of the insert point and moves the insert point to
the end of the word. The SELLINEFWD key adjusts the selection from the
insert point to the end of the line. The insert point moves to after the last char
acter in the line but before the newline.

The OPEN LOOK Toolkit 2-51

Text Selection Operations

Similar keys adjust the selection backwards. The SELCHARBACK key adjusts
the selection one character to the left of the insert point and moves the insert
point one character to the left. The SEL WORDBACK key adjusts the selection
one word to the left of the insert point and moves the insert point to the begin
ning of the word. The SELLINEBACK key adjusts the selection from the insert
point to the beginning of the line. The insert point moves to before the first
character in the line.

The key SELLINE adjusts the selection to include the entire line in which the
insert pointer is set. The insert pointer is positioned to the right of the last char
acter in the line.

The SELFLIPENDS key moves the insert pointer from one end of the selection
to the other without adjusting the selection.

2·52 OPEN LOOK GUI Programmer's Guide

3 Programming Using the OPEN
LOOK Toolkit

Introduction 3-1

How to Write OPEN LOOK Programs 3-2
Object Oriented Programming 3-2

Navigating Through the System 3-4
Include File Directories 3-4
Libraries 3-4
Compilation Command 3-4
Public and Private Include Files 3-5

Annotated Sample Programs 3-6
Creating a Button Widget 3-7

• Program Description 3-8
Creating a Composite Widget 3-10

• Program Description 3-10
Creating a Menu 3-14

• Program Description 3-14
Excerpted Programming Examples from s _sampler 3-20

• Entering Data 3-20
• Using a Slider Widget 3-22
• Defining and Using a Stub Widget 3-24
• Using a Form Widget 3-26

Table of Contents

Table of Contents

Using Flattened Widgets
Specifying the Container Setting
Callbacks and Flat Widgets
Setting the State of a Sub-Object
Getting the State of a Sub-Object
Obtaining Help on a Sub-Object

Programming Caveats
Naming Conventions
Macro Alerts
Callback Restrictions
Global Name Space Restrictions
Debugging Hints

3-29
3-29
3-30
3-31
3-34
3-34

3-36
3-36
3-36
3-36
3-37
3-37

ii OPEN LOOK GUI Programmer's Guide

Introduction

This chapter provides a practical introduction to how to develop programs
using the OPEN LOOK Toolkit. It consists of five sections:

• How to Write OPEN LOOK programs

• Navigating Through the System

• Annotated Sample Programs

• Using Flattened Widgets

• Programming Caveats

The fundamental assumption of this chapter is that you are a competent
C Programmer, though not necessarily familiar with programming for the X
Window System or Object Oriented programming.

The "How to Write OPEN LOOK Programs" section offers a brief walk-through
of the steps necessary to get started.

The section on "Navigating Through the System" simply lays out the necessary
#include file structure and the library structure for using the OPEN LOOK
Toolkit.

The "Annotated Sample Programs" and "Using Flattened Widgets" sections
present several source programs of increasing complexity that create widgets
and associated callback routines. The intent of this section is to provide coding
models that you can use that will prove to be the base for your own use of the
OPEN LOOK toolkit.

The final section "Programming Caveats" presents tips and warnings.

Programming Using the OPEN LOOK Toolkit 3-1

How to Write OPEN LOOK Programs

Object Oriented Programming

In order to read and write Object Oriented code effectively, you need to be
aware both of the style requirements and the design requirements.

You will notice the programming style differences immediately upon looking at
a listing of OPEN LOOK code: you will be hard pressed to find ints, or longs,
or chars. In Object Oriented Programming things are distinct; a widget is a
Widget; a display is a Display. It is probably a good idea (in general) to look
through the include files and familiarize yourself with the style used to define
and develop the components you work with. After a while the specific typing
of objects will become familiar and you will get over the strangeness and appre
ciate the increased clarity.

The design requirements are critical. You will need to change how you think
about your application. Object Oriented Programs are not sequential. They are
not well-ordered. The program flow is not a function of the input data stream;
rather, it is entirely a function of the end-user's choosing.

Object Oriented programs are usually 1/ event driven." Control is given to a
routine as a function of an event, usually associated with an action taken by the
end-user. In the case of an OPEN LOOK application, the event is a combination
of a particular mouse (or key) action on a particular screen widget. Usually, it
is the selection of a particular option, though the end-user may have requested
help on that widget, may have requested a menu, and so on. Routines are ini
tiated as a combination of a specific action on a specific object.

You need to know that it might not be a sensible action; not necessarily the
correct next-thing-to-do. And you need to program for that. You must also be
aware that because the actions are essentially asynchronous, it may be very hard
to determine when errors have occurred. You will have to think about debug
ging your application taking this form of flow and usage into consideration.

In another way, programming is actually much easier. The notion of object
orientation gives rise to small, relatively stand-alone routines. They can be writ
ten and tested outside of the full application system.

In the simplest sense applications are divided into two distinct parts: laying out
the screen and programming the proper response to specific events. The first
part consists of creating widgets; the second part consists of programming call
backs. Laying out the screen is completely separate from developing the call
back routines. A useful way to proceed is to write your program using dummy

3·2 OPEN LOOK GUI Programmer's Guide

How to Write OPEN LOOK Programs

callbacks that do nothing but return. Once you are satisfied with the screen lay
out and have tested and debugged the screen management you can add the call
backs one at a time.

In the examples, the order of the code is:

• Include Files

• Necessary Global Data Definitions

• Callback Routines

• The Main Routine that Creates the Widgets

• Realizing the Widgets and Exiting to the Xt Main Loop

It was done this way for clarity of presentation. You should probably put the
screen layout section in a separate routine and thereby keep the code that much
cleaner. It also means that the exposition is a bit backwards; the event driven
actions are described before the objects of the event are created.

Programming Using the OPEN LOOK Toolkit 3-3

Navigating Through the System

Include File Directories

The XWIN implementation of the OPEN LOOK Toolkit places all #include files
and libraries in the following directories:

/usr/X/include/Xol holds all include files for the OPEN LOOK widgets

/usr/X/include/Xll holds all include files for the X Toolkit Intrinsics

/usr/X/libl holds all object libraries.

The names of the actual public and private include files for the OPEN LOOK
widgets are listed at the end of this section.

Libraries

The names of the object libraries are:

Object libraries:
/usr/X/lib/Xll.a
/usr/X/lib/libXt.a
/usr/X/lib/libXol.a

Shared libraries:
/usr/X/lib/Xll.so
/usr/X/lib/libXt.so
/usr/X/lib/libXol.so

Compilation Command

The prototypical command for compiling an application built with the XW"IN

implementation of the OPEN LOOK CUI is the following for UNIX System V
Release 4:

cc -I/usr/X/include -I/usr/X/include/Xol -I/usr/X/include/Xll -c

cc -0 ••• -L/usr/X/lib -lXol -lXt -lXmu -lXll -lnsl -ldl -lw

3·4 OPEN LOOK GUI Programmer's Guide

Navigating Through the System

~
There is a dependency upon libw -lw from the MNLS package for Release

NOTE 4. Compilation will not work for pre-Release 4 releases because there is no
MNLS.

For UNIX System V Release 4, it is necessary to set the following flags
as part of the compilation line:

-DUSG -Datt -DSYSV

for Release 4 an additional flag must be added:

Note that the order of linking the libraries is important.

Public and Private Include Files

Include file names are limited to ten characters. For private include files the
character before the ".h" is always "P". The private files give you access to the
internal widget class definitions used in the Toolkit. By having access to the
underlying C structure definitions, you can extend the widget definitions and
define customized, application-specific widgets.

In order to develop OPEN LOOK applications you need to include the
appropriate widget class definition files and the basic Xt Intrinsics and OPEN
LOOK files. The three fundamental files are:

/usr/X/include/Xll/Intrinsic.h
/usr/x/include/xll/StringDefs.h
/usr/x/include/xol/QpenLook.h

For the names of the OPEN LOOK GUI public and private include files, see the
widget manual page in the "Manual Pages: Widgets" appendix of this guide.
Include files are listed at the top of the page.

Programming Using the OPEN LOOK Toolkit 3-5

Annotated Sample Programs

This section presents and analyzes source code that makes use of the OPEN
LOOK Toolkit. It includes three stand-alone programs, and four excerpts from
a comprehensive example, s_sanpler. In each of these examples, we specify
where and how you can choose between defining an object as a widget and
defining the same object as a gadget.

The three stand-alone programs describe the creation and use of:

- a button widget (named s_hutton.c)

- a composite widget (s_caq;lOsite.c)

- and a menu widget (s_menu.c)

Chapter 6 contains of the code for s_sanpler, that illustrates all of the objects in
the OPEN LOOK toolkit. This chapter includes four excerpts from that example
that describe the creation and use of:

- entering data using a textfield widget

- a slider widget

- using a stub widget for drawing

- and defining and placing objects on a form widget

Each program is preceded by a brief explanation. The source code then follows
on the right-hand page with explanations of the source code appearing on the
corresponding left-hand page.

The four stand-alone programs are also available on-line with OPEN LOOK.
The programs are stored in the directory /usr/x/lib/tutorial/Xol. To com
pile one of these programs, such as s_hutton.c, enter that directory and exe
cute the following commands for Release 4:

3·6

00 -I/usr/X/inc1ude -I/usr/X/inc1ude/Xo1 -I/usr/X/inc1ude/Xll -0 s_buttan.o
00 -0 s_button s_button.o /usr/X/1ib/1ibXo1.so /usr/X/1ib/1ibXt.so

/usr/X/1ib/1ibXll.so -lns1 -10

OPEN LOOK GUI Programmer's Guide

Annotated Sample Programs

Creating a Button Widget

The first program introduced here is the easiest of the three programs. It
creates a single Button, labeled Quit. When the end-user presses the button, the
program terminates.

Programming USing the OPEN LOOK Toolkit 3-7

Annotated Sample Programs

Program Description

Lines 1-4 include the header files required by this program. Every program that
uses the OPEN LOOK interface requires the first two general header files, plus a
specific header file (in this case, OblongButt .h) for each widget class used.

Lines 5-11 implement a callback function that is associated with the
OblongButton widget (line 26) and is invoked when the user selects the oblong
button. For consistency, all callback functions define the same set of parameters,
even though, as in this example, they are not always used. This particular call
back function simply causes the application program to exit. All cleanup of
OPEN LOOK resources is handled automatically by the system and the associ
ated screen image is deleted.

Lines 12-16 are the standard declarations for a C program and lines 17-19
declare the data objects used. The args array will be used to contain argument
lists to widget creation functions (line 22). Its size is arbitrary, but should be
large enough to hold the largest argument list used in the program and should
allow for possible future growth of argument lists.

Line 20 initializes the system and creates a top level shell widget. This widget
does not have a visible image on the screen. It serves as a root for the widget
hierarchy about to be created.

Line 22 generates the argument list to be used in creating the OblongButton
widget. The array args stores the argument list, which consists of name-value
pairs. The variable n is used to count the number of arguments present. In this
program, the name of the argument is XtNlabel, and its value is the string
Quit. The syntax shown in these lines is a widely used standard for creating
argument lists. In this example, all arguments other than the button label
assume standard default values.

Lines 23-25 create the OblongButton widget, make it a child of the toplevel
shell widget, and assign it to the widget variable quitButton.

Line 26 adds the callback function defined above to the (previously NULL) list
of functions to be called whenever the quitButton widget is selected by the
user.

Line 27 takes the widget hierarchy defined above, with top level as its root, and
creates the associated windows and displays the image on the screen.

Line 28 invokes the main event loop, which processes events, such as user
inputs through the mouse and keyboard, and invokes the appropriate callback
functions.

3-8 OPEN LOOK GUI Programmer's Guide

Annotated Sample Programs

1 #include <X11/Intrinsic.h>
2 #include <X11/StringDefs.h>
3 #include <Xol/OpenLook.h>
4 #include <Xol/OblongButt.h>

5 void
6 QuitCallback(widget, clientData, callData)
7 Widget widget;
8 caddr_t clientData, callData;
9 {
10 exit(O);
ll}

12 int
13 main(argc, argv)
14 int argc;
15 char **argv;
16

17
18
19

Widget
Arg

int

toplevel, quitButton;
args[10];
n;

20 toplevel OlInitialize ("top", "Top", NULL, 0, &argc, argv);

21 n = 0;
22 XtSetArg(args [n], XtNlabel, "Quit"); n++i

23 quitButton = xtCreateManagedWidget(llbutton",
24 oblongButtonWidgetClass,
25 toplevel, args, n);

26 XtAddCallback(quitButton, XtNselect, QuitCallback, NULL);

27 XtRealizeWidget(toplevel);
28 XtMainLoop () ;
29

Programming Using the OPEN LOOK Toolkit 3-9

Annotated Sample Programs

Creating a Composite Widget

This program is a relatively easy program, although it's slightly more complex
than the previous Quit Button widget program. It introduces the composite
ControlArea widget and puts two Button children in it. The commentary
describes how to modify the program to use gadgets instead of widgets.

The first child Button is the Quit button from the previous program. The
second child Button changes its label when pressed, demonstrating the use of
XtSetValues on an existing widget.

Program Description

Lines 1-5 include the header files required by this program. This program uses
two widget classes, oblong button and control area, and has a header file for
each.

Lines 6-25 implement a callback function, which will be associated with the tog
gle button widget and will be invoked when the user selects the toggle button.

Lines 8-9 define the standard callback parameters, although only one of them
(widget) will be used.

Line 11 declares an array that will contain an argument list (limited to 1 argu
ment).

Lines 15-23 implement a switch statement that chooses a new label for the
widget and updates the variable containing the toggle value based on the
current value of the counter. A switch statement is used so that the program
can be easily extended to cycle among more than the two states currently imple
mented.

Line 24 updates the label field of the specified widget based on the value set in
the argument list in the switch statement above. The updated label is reflected
in the screen image of the widget (in this example, the toggle button).

Lines 26-32 implement the same callback function described in the previous pro
gram.

3-10 OPEN LOOK GUI Programmer's Guide

1 #include <Xll/Intrinsic.h>
2 #include <Xll/StringDefs.h>
3 #include <Xol/OpenLook.h>
4 #include <Xol/OblongButt.h>
5 #include <Xol/ControlAre.h>

6 void
7 ToggleCallback(widget, clientData, callData)
8 Widget widget;
9 caddr_t clientData, callData;

10 {
11 Arg args [1] ;

12 static int value 1;
13 int n;

14 n = 0;

15 switch (value) {
16 case 1:
17
18

19
20 case 2:
21

22

23

XtSetArg(args [n], XtNlabel, "Two");

value++;
break;

XtSetArg(args[n], XtNlabel, "One");
value--;

24 XtSetValues (widget, args, n);
25

26 void
27 QuitCallback(widget, clientData, callData)
28 Widget widget;
29 caddr_t clientData, callData;
30 (
31 exit(O);

32)

Programming Using the OPEN LOOK Toolkit

Annotated Sample Programs

n++i

n++i

3-11

Annotated Sample Programs

Line 37 declares and names the widgets that are used in this application.

Line 40 initializes the OPEN LOOK Graphical User Interface and creates the
toplevel shell widget.

Lines 41-46 create a control area widget as a child of the toplevel widget. The
argument lists in lines 42 and 43 specify that child widgets placed in the control
area will have a layout consisting of a fixed number of columns, and that the
number of columns (xtNmeasure) will be 1. By default, the widgets placed in
this column will have the same size.

Lines 47-52 create an oblong button widget (quitButton) as a child of the con
trol area widget and add the QuitCallback function to the quitButton
widget's list of callback functions. This is the same widget that was presented
in the previous program example.

Lines 53-57 create a second oblong button widget (toggleButton) as a child of
the control area widget and add the ToggleCallback function to
toggleButton's list of callback functions. Based on the definition of the control
area widget above, this button will be placed under the quitButton, forming a
single column, and both buttons will have the same size.

To transform the two button widgets into button gadgets, you simply change
lines 50 and 56 to read "oblongButtonGadgetClass". This results in the but
tons using the control area window and not needing the code required to main
tain their own windows. This is more efficient in both time and space.

Line 59 takes the widget hierarchy defined above, with toplevel as its root,
creates the associated windows, and displays the image on the screen.

Line 60 invokes the main event loop, which processes events, such as user
inputs through the mouse and keyboard, and invokes the appropriate callback
functions.

3-12 OPEN LOOK GUI Programmer's Guide

Annotated Sample Programs

33 int main(argc, argv)
34 int argc;
35 char **argv;
36

37
38
39

widget
Arg
int

toplevel, control, toggleButton, quitButton;
args[10];
n;

40 toplevel OlInitialize ("top", "Top", NULL, 0, &argc, argv);

41 n = 0;
42 xtSetArg(args[n], XtNlayoutType, OL_FlXEDCOLS); n++;
43 xtSetArg(args[n], XtNmeasure, 1); n++;
44 control = XtCreateManagedWidget ("control",
45 controlAreaWidgetClass,
46 toplevel, args, n);

47 n = 0;
48 xtSetArg(args[nJ, xtNlabel, "Quit"); n++;
49 quitButton = XtCreateManagedWidget ("qbutton" ,
50 oblongButtonwidgetClass,
51 control, args, n);

52 XtAddCallback(quitButton, XtNselect, QuitCallback, NULL);

53 n = 0;
54
55

xtSetArg (args [n], XtNlabel, "One");
toggleButton = XtCreateManagedWidget(

n++;
IItbutton",

56 oblongButtonWidgetClass,
57 control, args, n);

58 XtAddCallback(toggleButton, XtNselect, ToggleCallback, NULL);

59 XtRealizewidget(toplevel);
60 XtMainLoop();
61

Programming Using the OPEN LOOK Toolkit 3-13

Annotated Sample Programs

Creating a Menu

This program creates an automatic popup widget, using the MenuButton
widget. The menu has three children, one of which is the Quit Button used in
the previous two programs. The two remaining children share the same two
select and unselect callback functions, but pass different numbers to the func
tions.

Program Description
Lines 1-7 include the header files required by this program. 'This program uses
four widget classes and contains a specific header file for each.

Lines 8-14 define the QuitCallback function from the previous examples.

Lines 15-21 define a callback function that will print a message to the client's
standard out when it is invoked. 'This function is associated with the selection
event of multiple widgets. The clientData parameter will contain a pointer to
an integer value (typecast to caddr_t) identifying which widget invoked it.

Lines 22-28 define a callback function that is similar to the preceding function,
except that it is associated with an unselect event, that is, the clearing of a previ
ous selection.

3·14 OPEN LOOK GUI Programmer's Guide

1 #include <X11/Intrinsic.h>
2 #include <X11/StringDefs.h>
3 #include <Xol/QpenLook.h>
4 #include <Xol/MenuButton.h>
5 #include <Xol/Menu.h>
6 #include <Xol/Exclusives.h>
7 #include <Xol/RectButton.h>

8 void
9 Quitcallback(widget, clientData, callData)

10 Widget widget;
11 caddr_t clientData, ca11Data;
12 {
13 exit (0) ;

14

15 void
16 Se1ectca1lback(widget, clientData, cal1Data)
17 Widget widget;
18 caddr_t clientData, callData;
19 {
20 printf ("Button %d selected\n", *c1ientData);
21

22 void
23 UDselectCallback(widget, clientData, ca11Data)
24 Widget widget;
25 caddr_t clientData, callData;
26 {
27 printf ("Button %d unselected\n", *c1ientData);
28

Programming Using the OPEN LOOK Toolkit

Annotated Sample Programs

3-15

Annotated Sample Programs

Lines 34-38 declare the widgets and the argument list for this application.

Line 39 initializes the OPEN LOOK Graphical User Interface and creates a top
level shell Widget called toplevel.

Lines 40-42 create a menuButton widget as a child of toplevel, and the menu
Button widget creates a composite child widget where menu items can be
attached.

Lines 43-45 obtain the widget ID of the menuButton's composite child widget
and store this id into the menupane variable.

3-16 OPEN LOOK GUI Programmer's Guide

Annotated Sample Programs

22 void
23 UDse1ectCa11back(widget, c1ientData, ca11Data)
24 Widget widget;
25 caddr_t c1ientData, ca11Data;
26 {
27 printf("Button %d unse1ectedO, *c1ientData};
28

29 void
30 main (argC, argv)

31 int argc;
32 char **argv;
33
34 Widget top1eve1,MenuButton;
35 Widget menupane,exc1usives,button1,butt0n2,butt0n3;

36 Arg args[10];
37 int n;
38 int n1, n2;

39 top1eve1 = 01Initia1ize("top", "Top", NULL, 0, &argc, argv);

40
41
42

MenuButton XtCreateManagedWidget(

n = 0;

"MenuButton" ,
MenuButtanwidgetC1ass,
top1eve1, NULL, 0);

43
44 XtSetArg(args [n], XtNmenuPane, &D!enUpane}; n++;

45 XtGetVa1ues (MenuButton, args, n);

Programming Using the OPEN LOOK Toolkit 3-17

Annotated Sample Programs

Lines 47-52 create an exclusives widget as a child of menupane. This exclusives
widget will appear when the mouse menu button is clicked on the menuButton
created above. The argument list specifies that child widgets placed in the con
trol area will have a layout consisting of a fixed number of columns, and that
the number of columns (XtNmeasure) will be l.

Lines 53-68 create three rectangular button widgets as children of the exclusives
widget. These rectButton widgets provide the user-selectable choices in the
pop-up menu of the menuButton.

Lines 53-58 create a rectangular button with the label "ONE" and associate two
callback functions with it. The first, SelectCallback, is invoked when the
associated button is selected. The second, unselectCallback, is invoked when
the button is unselected, that is, the selection is cleared. Both functions are
passed a value for the call Data parameter that identifies the call as being asso
ciated with button 1.

Lines 59-64 are similar to lines 52-56, except the new rectangular button has the
label "TWO," and its callback function is passed a value for call Data identify
ing button 2.

Line 69 takes the widget hierarchy under toplevel and creates the associated
windows and displays the image on the screen.

Line 70 begins the main event loop.

3-18 OPEN LOOK GUI Programmer's Guide

Annotated Sample Programs

46
47
48
49

n = 0;
XtSetArg(args[n],XtNlayout, OL_FIXEDCOLS); n++;

xtSetArg(args[n],XtNmeasure, 1); n++;
xtSetArg(args[n],XtNrecamputeSize, (XtArgVal) TRUE); n++;

50
51
52

exclusives= XtCreateManagedWidget("exclusives",
exclusivesWidgetClass,
menupane, args, n) ;

53 nl = 1;
54 buttonl XtCreateManagedwidget ("ONE",
55 rectButtonWidgetClass,
56 exclusives, NULL, 0);
57 XtAddCallback(buttonl, XtNselect, SelectCallback, &n1);
58 XtAddCallback(button1, XtNunselect, UnselectCallback, &n1);

59
60

n2 = 2;
button2 XtCreateManagedWidget ("TWO",

61 rectButtonwidgetClass,
62 exclusives, NULL, 0);
63 XtAddCallback(button2, XtNselect, SelectCallback, &n2);
64 XtAddCallback(button2, XtNunselect, UnselectCallback, &n2);

65 button3 = XtCreateManagedWidget ("EXIT",
66 rectButtonWidgetClass,
67 exclusives, NULL, 0);
68 XtAddCallback(button3, XtNselect, QuitCallback, NULL);

69 XtRealizeWidget(toplevel);
70 XtMainLOOp () ;

71

Programming Using the OPEN LOOK Toolkit 3-19

Annotated Sample Programs

Excerpted Programming Examples from s _sampler

This section presents four code pieces selected from the comprehensive pro
gramming example, s_sanq;>ler, that appears in Chapter 6. The line numbers
used in the excerpts match those in the appendix so that you can refer to the
program as a whole.

The example in the appendix illustrates all widgets, gadgets, and flats that
comprise the OPEN LOOK Toolkit. The code can be used as a model for
developing OPEN LOOK applications. It is worth mentioning that, with a com
ment density in excess of 25%, the application sampler takes less than 2000 lines
of code.

Entering Data

This section describes how to develop a textfield widget that permits the end
user to enter data. This may be the most common end-user operation and so is
a critical example.

Lines 587 - 601 define the textfield widget callback routine. The callback routine
is invoked whenever the end user completes the entry, which is indicated by
pressing RETURN.

In this case, the callback simply outputs the text that was entered. The value
here is to see how the text is referenced. In the same way, you can capture the
text, convert it (in case it were numeric), and store it for use by other routines.

Lines 763 - 776 create the labeled data entry field. Defining the size and posi
tion of the field is done elsewhere in the example.

3-20 OPEN LOOK GUI Programmer's Guide

Annotated Sample Programs

587 static void
588 textfieldCB(widget,clientData,callData)
589 Widget widget;
590 XtPointer clientData,callData;
591
592 OlTextFieldVerify *tfv = (OlTextFieldVerify *) callData;
593 char buf [MAXBUF] ;
594 Arg arg;
595

596 sprintf(buf,"Footerpanel: TEXTFIELD User Input: %sO,
597 tfv->string) ;
598 FooterMessage(footer_text,buf);

599 XtSetArg(arg,XtNstring, (XtArgVal) "");
600 XtSetValues(widget,&arg,l);
601

763 /*
764 * Make a caption as a label/prompt for the TEXTFIELD.
765 */

766 i=O;
767 XtSetArg(arg[i],XtNlabel,
768 (XtArgVal) "Textfield: type & type <return> :"); i++;
769 widget = XtCreateManagedWidget ("caption",
770 captionwidgetClass,popupca11,arg,i);

771 widget = XtCreateManagedWidget("textfield",
772 textFieldwidgetClass,widget,NULL,O);

773 /*
774 * Callback to "read" user input when <return> typed.
775 */

776 XtAddCallback(widget,XtNverification,textfieldCB,NULL);

Programming Using the OPEN LOOK Toolkit 3-21

Annotated Sample Programs

Using a Slider Widget

This section describes how to develop and use a slider widget.

The use of the slider widget here is both simple and dramatic. The slider is cali
brated to return an integer value over the range of colors for the hardware.
This value is returned to the callback as IcallData." It is used in the XtSet
Values call to set the background color of a stub widget that had been defined
to sit physically above the slider widget on the screen. The effect, therefore, is
to change the color of the stub widget as the end-user moves the slider. The
result is a pretty demonstration of the use of color in graphic applications.

Line 583 accesses the color value established by the slider. Lines 584 and 585
change the value of the background color resource.

Lines 1236 - 1263 define the resources for the slider and associate the callback
with its movement.

The position of the slider on the form is defined elsewhere in the application.

574 static void
575 sliderCB(widget,clientData,callData)
576 Widget widget;
577 XtPointer clientData,callData;
578
579 Arg arg;

580 1*
581 * Slider returns current value.
582 *1
583 arg.value = (XtArgVal) *callData;
584 xtSetArg(arg,XtNbackground,arg.value);
585 xtSetValues(stub,&arg,l);
586

3·22 OPEN LOOK GUI Programmer's Guide

Annotated Sample Programs

1236
1237 Display *display = XtDisplay(toplevel);
1238 int screen = XDefaultScreen(display);
1239 int n, ncolors=2;
1240 Widget w;

1241 n= XDefaultDepth(display,screen);

1242 for(i=l; i<n; i++) {
1243 ncolors= ncolors*2;
1244

1245 ncolors = Deolors -1

1246 i = 0;
1247 xtSetArg(arg[i],X~sitian,(XtArgVal) OL_TOP); i++;
1248 XtSetArg(arg[i],XtNalignment, (XtArgVal) OL_CENTER); i++;
1249 XtSetArg(arg[iJ,XtNlabel, (XtArgVal) "Slider"); i++;
1250 slider_caption = XtCreateManagedWidget("slider_caption",
1251 captionWidgetClass,form,arg,i);

1252 i = 0;
1253 XtSetArg(arg[i], XtNWidth, (XtArgVal) N200_H_PlXELS); i++;
1254 xtSetArg(arg[i],XtNorientatian, (XtArgVal) OL_HORIZONTAL); i++;
1255 xtSetArg(arg[i],XtNsliderMaX, (XtArgVal) ncolors); i++;
1256 xtSetArg(arg[i],XtNgranularity, (XtArgVal) 1); i++;
1257 xtSetArg(arg[i], XtNticks, (XtArgVal) 1); i++;
1258 xtSetArg(arg[iJ, xtNtickUnit, (XtArgVal) OLJLlDERVALUB); i++;
1259 xtSetArg(arg[i], xtNdragCBType, (XtArgVal) OL_RELEASE); i++;
1260 w = XtCreateManagedWidget ("slider",
1261 sliderwidgetClass,slider_caption,arg,i);
1262 xtAddCallback(w,XtNsliderMoved,sliderCB,NULL);
1263

Programming Using the OPEN LOOK Toolkit 3-23

Annotated Sample Programs

Defining and Using a Stub Widget

This section describes how to develop and use a stub widget.

The stub widget provides the application programmer with the flexibility of cus
tomizing a widget's visual appearance and semantics. In this application, select
ing the caption button "RAINBOW" paints the stub widget window by calling
the function, DrawAndPrint. The stub widget itself refreshes the current con
tents of its window when necessary. Lines 1017-1034 illustrate the creation of
the stub widget. Line 1027 registers the function DraWAndPrint, to repaint the
widget when it is exposed. Lines 1033-1034 add an event handler to monitor
the pointer entering and leaving the widget's window. Lines 345-365 present
the function, StubEventHandler. The stub widget also has its own cursor,
which is set with the function, SetStubCursor in lines 331-341. Other related
sections of code are DrawAndPrint (lines 143-223) and GetColors (lines 238-
276). Please see Chapter 6.

1017 1*
1018 * First two arguments scale widget to resolution of screen.
1019 */

1020 i = 0;
1021 XtSetArg(arg[il,XtNheight, (XtArgVal) N100_V_PlXELS); i++;
1022 XtSetArg(arg[il,XtNWidth, (XtArgVal) N100_H_PlXELS); i++;
1023 xtSetArg(arg[il,XtNbackground, skyblue-pixel); i++;
1024 1*
1025 * DrawAndPrint() will be called with an Expose event;
1026 *1
1027 XtSetArg(arg[il,XtNexpose, DraWAndPrint); i++;
1028 stub = XtCreateManagedWidget (" stub" ,stubWidgetClass, form, arg, i) ;

1029 1*
1030 * Add an eventhandler to track when the pointer
1031 * enters and leaves the stub widget window.
1032 *1
1033 XtAddEventHandler(stub,EnterWindowMask I LeaveWindowMask,
1034 FALSE, StubEventHandler, (XtPointer)NULL);

3-24 OPEN LOOK GUI Programmer's Guide

Annotated Sample Programs

345 static void
346 StubEventHandler(widget,clientData,event)
347 Widget widget;
348 XtPointer clientData;
349 XEvent *event;
350
351 XCrossingEvent *xce;

352 /*
353 * The xce pointer allows referencing to event specifics - see Xlib.h
354 */

355 if(event->type==EnterNotify I I event->type==LeaveNotify)
356 xce = (XCrossingEvent *) &(event->xcrossing);
357 else
358 return;

359 if(event->type ==EnterNotify)
360 FooterMessage(footer_text,
361 "Footerpanel: Pointer entered STUB widget");
362 else
363 FooterMessage(footer_text,
364 "Footerpanel: Pointer left STUB widget");
365

331 static void
332 SetStubCursor(widget)
333 Widget widget;
334
335 static CUrsor cursor;

336 /*
337 * See OlCorsor.c for other cursor possibilities.
338 */

339 cursor = GetOlQuestionCUrsor(XtScreen(widget»;
340 XDefineCUrsor(XtDisplay(widget) ,XtWindow(widget) ,cursor);
341

Programming USing the OPEN LOOK Toolkit 3-25

Annotated Sample Programs

Using a Form Widget

This last example shows how to create a form widget and how to position other
widgets on the form. The form is a useful "backdrop" widget; it provides an
empty area on which to position other widgets.

Lines 110 - 117 define some of the constraint resources used to position widgets
on the form. These resources are specified for each widget and are later used to
support positioning the widgets relative to each other. Both XtNxOffset and
XtNyOffset are defined later in the application as a specific number of pixels.
The XtNxOffset indicates that a child widget will be positioned a specific
number of pixels to the right of a reference widget, defined by XtNxRefName.
The XtNYOffset indicates that a child widget will be positioned a specific
number of pixels below a reference widget, defined by XtNyRefName.

While XtNxRefWidget and xtNyRefWidget are also form constraint resources,
XtNXRefName and XtNyRefName are used since they allow specifying the relative
positions of widgets before any of the widgets are created.

The XtNxAddWidth and XtNyAddHeight resources determine whether the refer
ence widget's width or height, that is, XtNXRefWidget's width or
XtNyRefWidget's height, should be added to the offset.

110 static Arg genericARGS[]

111 { XtNxRefName, NULL },
112 { XtNyRefName, NULL },
113 { XtNxOffset, (XtArgVal) 0 }, /* to be initialized below */
114 { XtNYQffset, (XtArgVal) 0 }, /* to be initialized below */
115 { XtNxAddWidth, (XtArgVal) TRUE },
116 { XtNyAddHeight, (XtArgVal) TRUE },
117 };

3-26 OPEN LOOK GUI Programmer's Guide

Annotated Sample Programs

The SetPosition routine sets the resource values in the current widget that
will be used by the Form widget to place the current widget relative to other
widgets already placed on the Form. The way to read the definition of Set Po
sition is "position widget with its upper left hand corner to the right of the
upper left hand corner of xwidget and below the upper left hand corner of
ywidget." How much to the right is determined by XtNxOffset (perhaps plus
xwidget's width) and how much below is determined by XtNyOffset (perhaps
plus ywidget's height). The figure below illustrates the effects of the
xtNxAddWidth and XtNyAddHeight resources on placing NEW widget when both
xwidget and ywidget are the same reference widget:

Both = True

I
reference

widget ~ XOFFSET

Original Form

XtNyAddHeight

reference
widget

FALSE

Original Form

Programming Using the OPEN LOOK Toolkit

XtNxAddwidth = FALSE

I reference I 1 widget

UOFFSET

Original Form

Both = FALSE

reference widget

Original Form

3-27

Annotated Sample Programs

Lines 1470-1473 position the stub on left of the form below the caption.

287 static void
288 SetPosition(widget, xwidget, ywidget)
289 widget widget;
290 char *xwidget, *ywidget;
291 (
292 static int nargs;

293 if(nargs == 0)
294 nargs = XtNumber(genericARGS);

1470
1471

genericARGS[2].value
genericARGS[3].value

(XtArgVal) N10_H_PlXELS;
(XtArgVal) N10_V_PlXELS;

1472 SetPosition(caption, "form", "ca_caption");
1473 SetPosition(stub, "form", "caption");

3·28 OPEN LOOK GUI Programmer's Guide

Using Flattened Widgets

This section presents pieces of code that will serve as examples of how to set
up, create and use Flattened Widgets.

Specifying the Container Setting

The following code fragment illustrates how to create a flat exclusives widget
setting.

In this example, each of the button sub-objects has the same client data
("test case") for the select callback procedure. Because of this, the
XtNclientData resource can be specified for the container only. This allows
each sub-object to inherit this value. If each sub-object wanted a different client
data, the XtNclientData resource would be added to the other sub-object
resources. This would automatically disable the inheriting of the container's
client data value.

To improve the readability of this example, required type casts of the fields in
the FlatExclusives structure initialization have been deliberately omitted.

1* Application Defined Structure *1

typedef struct
XtArgVallabel;

} FlatExclusives;
1* pointer to a string *1

Notice that all the fields in the application-defined structure, FlatExclusives,
have the type XtArgval. An alternate form for specifying the FlatEx
clusi ves type is:

typedef XtArgVal FlatExclusives[#];

where '#' is the number fields per record.

Programming Using the OPEN LOOK Toolkit 3-29

Using Flattened Widgets

String
exc_fields [] {XtNlabel};

static void
OO()
{ 1* This is the callback procedure •••

scmething interesting should go in here *1

CreateObjects(parent)
widget parent;

Arg args[6] ;
static FlatExclusi ves exc_items [] {/* label for each button *1

{ "Choice I" },
{ "Choice 2" },
{ "Choice 3"

};

XtSetArg(args[O] , XtNitems, exc_items);
xtSetArg(args[l] , XtNnumItems , XtNUmber(exc_items»;
xtSetArg(args[2] , XtNitemFields, exc_fields) ;
xtSetArg(args[3] , xtNnumItemFields, XtNUmber(exc_fields»;
XtSetArg(args[4] , XtNselectProc, 00,);
xtSetArg(args[S] , xtNclientData, "test case");

xtCreateManagedWidget ("exclusives" , flatExclusivesWidgetClass,
parent, args, 6);

1* END OF CreateObjects() *1

Callbacks and Flat Widgets

There are two differences in the way callbacks are handled for flat widgets as
opposed to traditional widgets. The first difference is that sub-objects do not
use XtCallback lists; instead, they use a single XtCallbackProc procedure.

Secondly, since the sub-objects of flattened widget containers are not true
widget instances, the widget argument supplied to an application's callback pro
cedure indicates the flat container widget that is ultimately responsible for
managing the sub-object. For example, the flatExclusivesWidget id would
be supplied as the widget id to the callback procedure for all sub-objects within
the flat exclusives container. By maintaining this rule, the application always
has the correct widget handy in the event that the application wishes to modify
the item or its list from within the callback procedure.

3-30 OPEN LOOK GUI Programmer's Guide

Using Flattened Widgets

The value of the XtNclientData resource is supplied as the client _data field to
the callback procedure.

The call_data field is a pointer to a structure that the application can use to
determine information about the sub-object associated with the current callback.
The new structure is as follows:

where:

typedef struct
Cardinal itellLindex;
XtPointer items;
Cardinal num_items;

/* sub-Object initiating callback */
/* Sub-Object list head */
/* number of items */

String * item_fields; /* key of fields for list */
Cardinal num_item_fields; /* number of fields per item */

} OlFlatCallData;

iteIlLindex The index of the item (that is, the specific sub-object)
responsible for initiating this invocation of the callback.

items The head of item list that contains the sub-object ini
tiating the callback

num_items The total number of items in the sub-object list

item_fields The list of resource names used to parse the records in
the sub-objects list.

nUIILitem_fields The number of resource names contained in itemJields.

Setting the State of a Sub-Object

The application can use two methods to change the state of an item: use the
OlFlatSetValues procedure to modify one or more attributes of a sub-object,
or directly modify the item list that the container and the application share.

The first approach is very similar to doing an XtSetValues request on a widget,
except that the OlFlatSetValues routine requires the item index as well as the
widget id, args and num _ args. The routine is defined as:

Programming Using the OPEN LOOK Toolkit 3-31

Using Flattened Widgets

OIFlatSetValues{widget, item_index, args, num_args)
Widget widget; /* flat widget id */

*/ Cardinal
ArgList
Cardinal

item_index; /* item to modify
args;
nmlLargs;

/* new resources */
/* number of new resources */

The following code example uses this routine and illustrates how to change an
item's label from within a callback procedure. The example assumes the new
label was specified as the client data.

Callback {widget, client_data, call_data)
Widget widget; /* FlatExclusives Widget id */
caddr_t client_data; /* the new static label */
caddr_t call_data; /* OIFlatCallData structure pointer */

OIFlatcallData * fop = (OIFlatCallData *)call_data;
Arg args [1] ;

/* Set the label to be the new one passed in
* with the client data field. */

XtSetArg{args [0], xtNlabel, client_data);

OIFlatSetValues{widget, fcp->item_index, args, 1);

/* END OF Callback{) */

Notice that the callback procedure did not have to know the number or the
order of the item fields. The only requirement was that the XtNlabel resource
is among the application-specified item fields, because if it were not, the above
request would be ignored.

If the application does not use the above approach and modifies the item list
directly, the application must ensure that all items within the list have valid
states, since the container literally treats this type of modification as if the con
tainer were given a new list. For example, if an application wished to change a
currently-set exclusive item, the application would have to unset the currently
set item and set the new item. If the application only set the new item, the con
tainer would generate a warning since the item list contains more than one set
item.

3-32 OPEN LOOK GUI Programmer's Guide

Using Flattened Widgets

The following example shows how a callback procedure changes the set item by
modifying the item list. This example makes the first item be the set item
whenever the last item is.selected. Notice that once the list has been touched,
the application must 'inform' the container of the modification. Also notice that
in this example the callback needs to know the structure of the application to
directly change its contents.

/* Application Defined Structure from previous example */

typedef struct {
XtArgVallabel; /* pointer to a string */
XtArgValselect-proc; /* pointer to a callback procedure */
XtArgValset; /* this item is currently set */
XtArgValsensitive;

FlatExclusives;
/* this item is sensitive

Callback (widget, client_data, call_data)
Widget widget; /* FlatExclusives Widget id

*/

*/
XtPointer client_data; /* application's client data */
XtPointer call_data; /* OIFlatCallData structure pointer */

OIFlatCallData * fcp (OIFlatCallData *) call_data;

if (fcp->num_items == (fcp->item_index + 1»

FlatExclusives * fexc_items (FlatExclusives *) fcp->items;
Arg args [1];

/* unset this item and

* set the first one */
fexc_items[fcp->item_index].set = FALSE;
fexc_items[O].set = TRUE;

/* Inform the container that the list
* was modified

xtSetArg(args[O], XtNitemsTouched, TRUE);
XtSetValues(widget, args, 1);

} /* END OF Callback() */

Programming Using the OPEN LOOK Toolkit

*/

3-33

Using Flattened Widgets

Getting the State of a Sub-Object

Obtaining the state of a sub-object can also be achieved in two ways. The first
is by using the OlFlatGetValues routine, specifying the index of the item to be
queried.

OlFlatGetValues(widget, item_index, args, num_args)
widget widget; 1* flat widget id *1
Cardinal item_index; 1* item to query *1
ArgList
Cardinal

args;
num_args;

1* query resources *1
1* nUIllber of query resou=es *1

If this approach is used, the application can query any sub-object resource even
though it does not appear in the item fields. Take the initial example for
instance, the application can query the XtNfontColor resource from any sub
object even though it does not appear in the FlatExclusives structure.

The second method for getting the state of a sub-object is by looking directly
into the sub-object list since both the application and flat container share the
same instance of the sub-object description.

Obtaining Help on a Sub-Object

The application can specify a unique help message for each sub-object in a simi
lar fashion as help is registered for widgets, that is, through the OlRe
gisterHelp routine. Since sub-objects are not real widgets, but are extensions
of the flat widget container, the help registration routine has a complex id:

typedef struct {
Widget widget;
Cardinal item_index;

} OlFlatHelpld;

1* Flat Widget id *1
1* item to register help on *1

The following example registers help on the eighth sub-object in the flat widget:

3-34 OPEN LOOK GUI Programmer's Guide

static String
static String
OlFlatHelpId

help_id.widget

tag = "Item 8";
source = "Item 8's help";
help_id;

= flat_widget;

OlRegisterHelp(OL_FLATjlELP, (XtPointer) &:help_id,
tag, OL_STRING_SOURCE, sou=e);

Programming Using the OPEN LOOK Toolkit

Using Flattened Widgets

3-35

Programming Caveats

Naming Conventions

This may belabor the obvious - but you must pay attention to the naming con
ventions or you will quickly get lost inside your own code.

Notice that each of the examples related the callback name to the widget name
in an organized way. You will find it pays dividends to establish those kinds of
conventions for yourself. For example, if you define a Quit OblongButton
widget, you may find it useful to define the callback routine "QuitCallback" or
"QuitCB" .

Macro Alerts

Do not use auto-increment or auto-decrement in any intrinsic or OPEN LOOK
function calls.

For example, use

xtSetArg{arg[il, ••••); i++;

rather than

XtSetArg{arg[i++l, •••);

Callback Restrictions

Be careful not to use a "long jump" (setjI'I\P(3C» within a callback function. A
long jump is used to bypass the normal function return structure (usually when
an error condition occurs). This will not work from callbacks. The widget
requires a return from the callback to complete updates to internal state tables,
and using a "long jump" skips this return, causing the widget to have incorrect
state information. This, in tum, causes incorrect visuals or program failures.

3·36 OPEN LOOK GUI Programmer's Guide

Programming Caveats

Global Name Space Restrictions

The OPEN LOOK widget library uses a particular convention when naming
external C procedures, variables, and structure. It will always begin with "01"
and may be optionally preceded by an underscore "_." Similarly, preprocessor
symbols (#define's) will begin with "01" or "OL" and may be optionally pre
ceded by an underscore. The global name space is therefore restricted in this
way and you should not choose external names which begin with these prefixes.

Debugging Hints

Use the OPEN LOOK® Graphical User Interface Style Guide. The cleaner and
more user-oriented the screen layout is, the easier it will be to debug.

You can consider developing applications in one of these ways:

• One Object at a Time

First place the object, then check out the callback routine. The advantage
of this is that it is very simple; one step at a time. The difficulty is that
often one callback is really a function of other on-screen activities.

• Place All Objects

First, place all objects on the screen, then debug the callbacks. The advan
tage of this approach is that placement and callback functions are easily
separable functions and that placement is often a developmental check
point. Also, the end-user interface is both logically and functionally dis
tinct from the actual application.

• One Grouping at a Time

Develop a composite and all its constituents, including placement and
callbacks. The advantage of this is that it often corresponds to a func
tional module of the application and, therefore, resembles the "tradi
tional" style of modular development.

In any case, creating a modular development style is probably the single most
valuable aid to program debugging.

Programming Using the OPEN LOOK Toolkit 3-37

!

i
I
I
I

4 X Window System, Version 11,
Conventions for OPEN LOOK

Introduction 4-1

General Considerations 4-2
Methods of Communication 4-2

• Properties 4-2
• Events 4-2

Restrictions 4-3
Nomenclature 4-3
Protocol Notes 4-4

• Extensibility 4-4
• Efficiency 4-4

Property Notation 4-4

Wi ndow Properties 4-6
Window Decorations 4-6
Standard Decorations 4-6
Customizing Decorations 4-8
The Pin State 4-10
Window Colors 4-11
Busy Windows 4-12
Focus Warping 4-13

Relationship to Inter-Client Conventions 4-14
WM NORMAL HINTS 4-14 - -
WM HINTS 4-15
WM PROTOCOLS 4-15

• WM_SAVE_YOURSELF 4-15

Table of Contents

Table of Contents

ii

• WM DELETE WINDOW - -
• WM TAKE FOCUS - -

Window Groups
Input Focus

4-15
4-16
4-16
4-19

Workspace and File Manager Conventions 4-21

Miscellaneous Implementation Issues 4-27
Pinnable Menus and Override-Redirect 4-27
Full Size Window 4-27

OPEN LOOK GUI Programmer's Guide

Introduction

The OPEN LOOK graphical user interface specifies the behavior and appearance
of the entire system. The X Window System, version 11 (X11) is composed of a
server and several clients. Some clients are dedicated to performing particular
tasks, such as window management, while others are application programs.
Therefore, the responsibility for implementing OPEN LOOK under X11 must be
shared among several different clients. This chapter specifies how XU clients
must cooperate in order to implement OPEN LOOK

The X11 protocol was designed using the principle of mechanism, not policy.
The protocol provides only the tools with which to build an environment, but it
doesn't determine how these tools are to be used. If there were no policy
governing the use of the X11 protocol, applications that worked correctly in iso
lation may fail to work when they share an environment with other applica
tions. Therefore, conventions are necessary so that applications can coexist and
interoperate. The standard conventions are described in the XII Inter-Client
Communication Conventions Manual (ICCCM). All X11 clients are required to
conform to these conventions in order to guarantee interoperability.

An OPEN LOOK environment requires the existence of an additional set of con
ventions beyond those described in the ICCCM. The purpose of this chapter,
then, is to detail the conventions necessary to guarantee that OPEN LOOK
applications written by different vendors, using different toolkits and languages,
will interoperate. This is a private set of conventions that must be supported
only by OPEN LOOK applications. OPEN LOOK applications must support the
conventions of the ICCCM as well as those outlined in this chapter.

X Window System, Version 11, Conventions for OPEN LOOK 4-1

General Considerations

Methods of Communication

The xu protocol provides two principal means by which clients can communi
cate with each other: properties and events. Both mechanisms are described in
the xu protocol as having uninterpreted data, that is, data that is transmitted
along with but not interpreted by the protocol. Clients use the uninterpreted
data fields in properties and events to communicate amongst themselves.

Properties
Properties are uninterpreted data that are named, typed, and associated with a
window. Properties are thus useful for storing pieces of a window's state. For
communication between an application and a window manager, the properties
will be placed on the application's top-level window(s). Unless otherwise
specified, all properties will have format 32. This is necessary in order to avoid
byte-order and structure-packing problems.

In XU, any client can write to any property. However, multiple clients writing
to the same property raises the possibility of race conditions. Therefore, this
chapter will usually designate a client that is the owner of each property. Only
the owner of a property will be allowed to write to it.

Events
Events are typically generated by the server to notify a client that user input has
occurred. However, there is a facility whereby clients may generate events and
cause them to be sent to other clients. Events generated in this manner are
called synthetic events because they were synthesized by a client, not necessarily
in response to any real user action.

A special type of event called a Client Message is never created by the server; it
can be synthesized only by a client. Client Messages have enough room for a
small amount of uninterpreted data and are thus useful for sending datagram
like messages between clients. Client Messages are typically used for
notification that an event has occurred; they are not used to transmit state infor
mation.

4·2 OPEN LOOK GUI Programmer's Guide

General Considerations

Restrictions

The rules for using properties and Client Messages as described in this chapter
define a mini-protocol that exists entirely within the Xll protocol. When trying
to communicate with other clients, any client can assume that all other clients
understand the Xll protocol. However, OPEN LOOK clients cannot assume
that other clients will understand the OPEN LOOK mini-protocol. OPEN LOOK
clients must be prepared to deal with this situation. This principle has been
embedded into the design of the mini-protocol by allowing the mini-protocol to
fail gracefully if one of the communicating parties doesn't understand it.

This case may arise if an OPEN LOOK window manager is managing a non
OPEN LOOK application, or if an OPEN LOOK application is being managed
by a non-OPEN LOOK window manager. OPEN LOOK applications must be
able to operate (perhaps with reduced, but acceptable functionality) without the
presence of an OPEN LOOK window manager. By the same token, an OPEN
LOOK window manager must not depend on all of its applications implement
ing this protocol. This restriction precludes a style of transaction where, for
example, an application sends a message to the window manager and waits for
a reply. If the window manager doesn't implement the OPEN LOOK Interface,
the application will never receive this reply. The transactions under this proto
col must be completely asynchronous.

Nomenclature

All properties and Client Message types are named by Xll atoms. The Xll Pro
tocol document (X Windows System Protocol, Release 4, Predefined Atoms) states
that atom names private to a particular vendor or organization should have
unique prefixes that begin with an underscore ("_"). Using the prefix
_OPEN_LOOK_ is the obvious choice, but it makes all of the atoms too long.
Therefore, all atoms unique to the OPEN LOOK interface are prefixed with
OL.

Several terms in this chapter are used in specific ways that don't necessarily
correspond to usage elsewhere. A manager is a dedicated client that manages a
shared resource. Typically there should be exactly one manager of each type.
In this chapter, the term client typically means any ordinary client that is not a
manager. Each client is further divided into two parts, the toolkit and the
application.

X Window System, Version 11, Conventions for OPEN LOOK 4-3

General Considerations

The terms window manager and session manager are used as defined in the
ICCCM. (Note that the window and session managers might be two separate
clients or merged into a single client.) A workspace manager is OPEN LOOK
usage, and is equivalent to a session manager. The file manager is an OPEN
LOOK-specific application that provides a graphic view of the file system.

Protocol Notes

Extensibility

This protocol is designed for extensibility. Atoms are used in fields wherever
possible so that the range of values is not limited. Lists of atoms are preferred
to bitmasks for specifying options. The _OL_PROTOCOLS property is a list of
atoms that indicates which sub-protocols the client supports. This list is extensi
ble.

Efficiency

Each XII protocol request can update only one property at a time. Further
more, each time a property is changed, the server generates a PropertyNotify
event. As more properties are added, correspondingly more requests are
required to update them and more events are generated. Therefore, adding a
new property to the conventions is a very expensive step. If additional data is
necessary, it should be added to existing properties (in an upwardly-compatible
way) in preference to adding new properties.

Property Notation

The Name, Type, and Format headings are self-explanatory. The Owner head
ing indicates which party is responsible for maintaining the contents of the pro
perty. The Reader heading indicates who is responsible for reading and acting
on the property. The Effect heading indicates when changes to this property
take effect. Typical values are immediate, which means that the reader should
track changes at all times; and exit Withdrawn, which means that the window
manager reads the property only when the window leaves the Withdrawn state.

4-4 OPEN LOOK GUI Programmer's Guide

General Considerations

The names of fields within the property are used only for reference purposes
within this chapter. They have no relevance to the Xll protocol. The Default
for a particular field indicates what the reader should assume if the field isn't
present or if the entire property is absent.

X Window System, Version 11, Conventions for OPEN LOOK 4-5

Window Properties

Window Decorations

These properties are used to communicate between clients and the window
manager about how the clients' top-level windows should be decorated. In
addition, the window manager sets some properties to inform the client of cer
tain pieces of state, such as the pushpin, that are under the user's control.
OPEN LOOK currently specifies that there be no window background next to a
scroll bar, if the application has one. There currently is no method for a client
to tell a window manager where its scroll bar is.

E; See the discussion on the OPEN LOOK VendorShell in Appendix A: Introduc
NOTE tion to General Resources for more convenient ways of accessing window pro

perties.

Standard Decorations

The client sets _OL_WIN_ATTR property on each top-level window to tell the
window manager the window's type, along with other decoration options.

Type:
Format:
Length:

4-6

Owner:
Reader:
Effect:

client
window manager
immediate

OPEN LOOK GUI Programmer's Guide

Window Properties

Field Type Value Default Description

1 = win_type this is a bitmask

flags CARD32
2 = menu_type that indicates
4 = pin_state which fields are
8 = cancel present.

_OI._WT_BASE base window
_OI._WT_CMD command window

win_type XA_ATOM _OI._WT_HEI.P _OI._WT_BASE help window
_OI._WT_NOTICE notice window[l]
_OI._WT_OTHER client-specified [2]

_OI._MENU_FUI.I. full menu
menu_type XA_ATOM _OI._MENU_I.IMITED [3] limited menu

_OI._NONE no menu

pin_state
0

0
pin is out

CARD32
1 pin is in

cancel
0

0
dismiss

CARD32
1 cancel

[1] This protocol allows the window manager to support notice frames as
ordinary windows. Toolkits aren't required to use window manager win
dows for their notices. For example, a toolkit might choose to implement
notices by grabbing the server and mapping an override-redirect window.
The window manager doesn't have to know about these at all.

[2] If the win_type field contains _OL_WT_OTHER, the window manager will
provide no decorations by default. The application can add decorations as
it wishes by specifying them in the _OL_DECOR_ADD property (see below).

[3] The default menu type is implied by the window type. For base windows,
the default menu is a full menu. For pop-ups, the default is a limited
menu. For _OL_WT_OTHER, the default is no menu at all.

The following table indicates the default decorations that occur on a window
depending on its type.

X Window System, Version 11, Conventions for OPEN LOOK 4-7

Window Properties

window type header close pin resize
_OL_W'I'_BASE X X X
_OL_W'I'_CMD X X X
_OL_W'I'_NOTICE

_OL_W'I'_HELP X X
_OL_W'I'_OTHER

An "X" indicates the presence of the decoration;
no "X" indicates its absence.

menu
Full
Limited
None
Limited
None

A full menu contains the following entries: Close, Full Size, Properties, Back,
Refresh, Move, Resize, and Quit. A limited menu contains the following entries:
Dismiss/Cancel, Back, Refresh, Move, Resize, and Owner? The Dismiss menu
item changes to Cancel if the client has requested it in the cancel field.

Clients should take care not to make gross changes to decorations while the
window is mapped, such as changing a base window into a notice, because this
would result in flickering that users would likely find objectionable. If a client
really needs to reuse a window for a different purpose, it should unmap the
window, make the changes, and then remap the window.

Customizing Decorations

There are certain cases where the client requires different decorations from those
provided by default. To add or delete decorations from the default set provided
for a window, the client can create one or both of the _OL_DECOR_ADD and
_OL_DECOR_DEL properties. The type of each property should be ATOM. Each
property is a variable-length list of atoms that indicates which decorations
should be added to (in the case of _OL_DECOR_ADD) or deleted from
COL_DECOR_DEL) the default set of decorations on this window.

For example, resize corners are present by default on most windows. An appli
cation could request that a window not be resizable by putting the
_OL_DECOR_RESIZE atom in the _OL_DECOR_DEL property on that window.

4-8 OPEN LOOK GUI Programmer's Guide

Window Properties

You must use the Xlib function, XChangeProperty, in order to place a pro
perty on a window and to change the value of a property on a window.

_OL_DECOR_ADD and _OL_DECOR_DEL

Type: ATOM Owner: client
Format: 32 Reader: window manager
Length: variable Effect: immediate

Atom Description
_OL_DECOR_CLOSE close box
_OL_DECOR_RESIZE resize corners
_OL_DECOR_HEADER window header
_OL_DECOR_PIN pushpin

The preferred implementation of footers is for the client to manage the footer
itself. A typical implementation of a window footer would make it be a small
pane at the very bottom of a stack of panes inside the client's top-level window.
The advantage of this method is that it allows the client maximum flexibility in
managing the footer. For example, the client could make the footer scrollable or
be several lines high.

Clients that implement footers should take care not to select input on any of the
mouse buttons in this window, because this area is logically part of the window
background. Mouse events should be allowed to fall through to be handled by
the window manager.

In certain cases, the application may wish to specify exactly what decorations
occur on a window. To do this, it would specify a window type of
_OL_WT_OTHER in the win _type field of the _OL_WIN_ATTR property, and put the
appropriate decoration atoms in the _OL_DECOR_ADD property.

If the application puts the same atom into both the _OL_DECOR_ADD and
_OL_DECOR_DEL properties, the behavior is undefined. The behavior is also
undefined if the application requests a combination of decorations that doesn't
make sense, such as a closed box and a pushpin.

X Window System, Version 11, Conventions for OPEN LOOK 4·9

Window Properties

The Pi n State

If the current window has a pushpin, the window manager will create and
maintain the property called _OL_PIN_STATE. The window manager is respon
sible for updating this property to reflect the state of the pin whenever the user
changes it. The initial contents of this property are taken from
_OL_WIN_ATTR. pin _state, if it exists.

_OL_PIN_STATE

Type: INTEGER Owner: window manager
Format: 32 Reader: client
Length: 1 Effect: immediate

Value Description
a pin is out
1 pin is in

The client should inspect the state of the pin whenever the user clicks in a but
ton on a pop-up window. If the window is not pinned, the client should with
draw the window after completing the function successfully. The client doesn't
have to withdraw the window if the operation wasn't successful. The client
should not inspect the state of the pin upon receipt of WM_DELETE_WINDOW.

The client shouldn't set this property to try to move the pin itself. It should
instead change the _OL_WIN_ATTR. pin _state field. The window manager should
respond by changing _OL_PIN_STATE.

If the client has requested a pin, but the _OL_PIN_STATE property does not
exist, the client can use whatever state it last requested for the pin. For exam
ple, suppose the client requested the pin's initial state be in by setting
_OL_WIN_ATTR.pin_state appropriately. If a non-OPEN LOOK window manager
is running, it will not set the _OL_PIN_STATE property. If this is the case, the
client can make the decision to withdraw the window based on the pin state
that it last requested.

4-10 OPEN LOOK GUI Programmer's Guide

Window Properties

In the case where the client requested to have the window pinned, there
would be no way to unpin the window. It might be argued that this is a seri
ous problem, because the window could never be removed. This is not the
case. The foreign window manager would presumably have its own user
interface for closing (iconifying) or deleting (with WM_DELETE_WINOOW) the
window. These operations are independent of the state of the pin, so they
will work as expected.

Window Colors

The client can specify different colors for the window background, foreground,
and border. The foreground consists of the header text and window mark. The
border consists of the inside border of the decorator (the one that thickens for
selection highlighting) and the resize comers. The client specifies these colors as
RGB triples in the _OI,-WIN_COLORS property.

~ Border is ignored for this property only.

y
Type: Owner:
Format: Reader:
Length: Effect:

client
window manager
immediate

X Window System, Version 11, Conventions for OPEN LOOK 4-11

Window Properties

Field Type Value Description
1 = foreground This is a bitmask that

flags CARD32 2 = background indicates which fields
4 = border are present.

fgJed CARD32

fg_green CARD32 Reserved for future use.
fg_blue CARD32

bgJed CARD32

bg_green CARD32 Reserved for future use.
bg_blue CARD32

bd red CARD32 RGB values for border (ignored
bd_green CARD32

bd blue CARD32
by this property)

Busy Windows

When it wants to put a window in the busy state, the client should set the
_OL_WIN_BUSY property on that window. If this property is not present, the
window manager will assume that the window is not busy.

_OL_WIN_BUSY

Type: INTEGER Owner: client
Format: 32 Reader: window manager
Length: 1 Effect: immediate

Value Description
0 window is not busy
1 window is busy

4·12 OPEN LOOK GUI Programmer's Guide

Window Properties

When a window becomes busy, the window manager should grayout the win
dow header. The window manager does not trap all keyboard and mouse input
to the window. This is the responsibility of the application that owns that win
dow. The window should beep in response to any input. (It can do this with
one of the flavors of a grab or by mapping an Input Only window.) When a
client is about to become unbusy, it should synchronize with the server and
flush all input immediately prior to setting this property. This will help ensure
that OPEN LOOK clients running in a non-OPEN LOOK environment will
ignore input while they are busy.

Focus Warping

When an application brings up a pop-up window that is eligible for keyboard
input, such as command window or property sheet, the OPEN LOOK Interface
requires that the input focus be transferred there. This is the responsibility of
the window manager.

The window manager should first determine whether the window is eligible to
receive the input focus by checking which focus model the client has chosen for
this window. Clearly, windows using the No Input model should not have the
focus transferred to them. For the other models, the window manager should
then query and save away the window that currently has the input focus. The
window manager should then manipulate the focus as if the user had clicked
SELECT on the window background. This action will be some combination of
sending a WM_TAKE_FOCUS message or setting the focus to that window, depend
ing on the focus model.

When the pop-up goes away, the window manager should attempt to restore
the input focus to its previous location, again using the same focus action it
would take as if the user had clicked SELECT on the window background.

X Window System, Version 11, Conventions for OPEN LOOK 4·13

Relationship to Inter-Client Conventions

All XlI clients should conform to the XlI inter-client conventions. These con
ventions are quite flexible in how window managers are required to deal with
requests from clients. In particular, most of the window manager properties are
called hints because the window manager is free to ignore them as it sees fit.
For most of OPEN LOOK, however, it makes sense for window managers to
honor application hints.

Refer to the Xll Inter-Client Communication Conventions Manual for the detailed
formats of WM_NORMAL_HINTS, WM_HINTS, and WM_PROTOCOLS described below.

WM NORMAL HINTS

The window manager should honor the size of the window as created by the
application.

If the USPosition flag is set, use the initial position of the window. If the USPo
sition flag is not set, the window manager should disregard the initial position
of the window, instead positioning the window according to the standard win
dow layout specified by OPEN LOOK.

The window manager should use the OPEN LOOK standard window layout
policy even if the PPosition flag is set. The rationale for doing this is that quite
a few programs always set the PPosition flag.

The window manager should attempt to honor the minimum, maximum, base,
and incremental sizes. The maximum size, if present, should be used when the
user zooms the window with the Full Size menu item. The base and incremen
tal sizes will be used when the window manager needs to calculate the size of
the window in rows and columns, such as on the window property sheet.

4-14 OPEN LOOK GUI Programmer's Guide

Relationship to Inter·Client Conventions

WM HINTS

Window managers should use the icon window, if one is provided by the client.
If none is provided, then the manager should use the icon pixmap and mask, if
they are provided.

The window manager should honor the icon position, if it is provided. If it
isn't, the window manager should position the icon using OPEN LOOK's
default icon positioning strategy. Clients should generally not set the icon posi
tion fields except under certain circumstances, such as when the user gives
command-line options for positioning.

WM PROTOCOLS

WM SAVE YOURSELF

OPEN LOOK clients should elect for the WM_SAVE_YOURSELF protocol. In
response to this message, they should behave exactly as the ICCCM specifies;
that is, they should write a WM_COMMAND property and go into a quiescent state.
Clients should not attempt user interaction in response to a WM_SAVE_YOURSELF

message. Clients should also not exit of their own accord after receipt of the
WM_SAVE_YOURSELF message.

WM DELETE WINDOW

Assuming the client has elected to receive WM_DELETE_WINDOW messages, the
window manager should send this message when one of the following situa
tions occurs:

• The user selects the Quit item on any base window menu.

• The user selects the Dismiss/Cancel item on a pop-up window menu.

• The user removes the pin from a pop-up window.

For clients that do not request WM_DELETE_WINDOW, the window manager should
issue a Kill Client when the user selects Quit from the window menu. If a client
requests a pop-up window but not WM_DELETE_WINDOW, the window manager
should simply unmap the window when the user pulls the pin or selects the
Dismiss menu item.

X Window System, Version 11, Conventions for OPEN LOOK 4·15

Relationship to Inter-Client Conventions

OPEN LOOK clients should elect to participate in the WlLDELETE_WINDOW proto
col if they need to intercept or ask for user confirmation when the user requests
to dismiss a window or quit an application. If a client receives
WM_DELETE_WINDOW on a pop-up window, the client should withdraw the win
dow. If a client receives WM_DELETE_WINDOW on a base window, the client
should withdraw the base window and its pop-ups (perhaps after requesting
confirmation). It is up to the application whether to exit entirely or just with
draw the base window family in this situation.

WM TAKE FOCUS

OPEN LOOK clients that require keyboard input should participate in the
WlLTAKE_FOCUS protocol. This is explained further on in the section on input
focus.

Window Groups

OPEN LOOK applications should always fill in the window -.$roup field of the
WM_HINTS property on each window that they expect to be managed by an
OPEN LOOK window manager. Base windows should be designated as group
leaders; that is, they should have their own window ID in the window poup
field. Pop-ups (command windows, property sheets, help windows) should
belong to the window group of the base window with which they are associ
ated.

Notice Widgets, PopupWindows and Menus set their own window group so, in
these cases, the application does not have to set the window group.

Windows (both group leaders and followers) can be in one of three states,
according to the Inter-Client Conventions: Withdrawn, Iconic, and Normal.
Two sources can instigate transitions between these states: the user (via the win
dow manager) and the client. The OPEN LOOK Interface specifies that pop-up
windows follow the state transitions of their associated base window. That is, if
you close and reopen a base window, its pop-up windows disappear and re
appear along with the base window. The OPEN LOOK interface further
specifies that a pop-up window cannot appear on the screen unless its base win
dow is also visible.

4-16 OPEN LOOK GUI Programmer's Guide

Relationship to Inter-Client Conventions

The following table lists the permitted combinations of base window (group
leader) and pop-up window (follower) states:

leader is in
Withdrawn
Iconic
Normal

followers can be in
only Withdrawn
Iconic or Withdrawn
Normal or Withdrawn

The basic idea is that windows stay in Withdrawn until the client moves them
to another state. The Withdrawn state means that the client never wants the
window to be displayed unless it is explicitly moved out of the Withdrawn
state. While a group leader is not in Withdrawn, all followers that aren't in
Withdrawn track the state transitions of the group leader.

When a group leader is not in the Withdrawn state, its followers must be in the
same state or in Withdrawn. When the leader is in Normal, the followers can
either be in Normal (present on the screen) or in Withdrawn (not present).
When a group leader is in Iconic, all of its followers must either be in Iconic or
Withdrawn. Only one icon is displayed for the entire group: the group leader's.
All followers are invisible to the user, regardless of whether they are in Iconic
or Withdrawn. The significance of a follower being in Iconic (as opposed to
Withdrawn) is that it will reappear on the screen - in the Normal state -
when its leader is moved to the Normal state, whereas the Withdrawn followers
remain Withdrawn.

In order to simplify things, it is convenient to disallow certain state transitions
on group follower windows (pop-ups) when the base window is in certain
states. The follOWing table shows state transitions that the window manager
should perform on the group follower windows when the group leader window
undergoes a transition.

X Window System, Version 11, Conventions for OPEN LOOK 4-17

Relationship to Inter-Client Conventions

Leader changed Followers
from to that were change to

Withdrawn Normal [1] Withdrawn
Withdrawn Iconic [1] Withdrawn
Normal Withdrawn (any) Withdrawn
Iconic Withdrawn (any) Withdrawn

Normal Iconic
Normal Iconic Withdrawn Withdrawn

Iconic [2]

Iconic Normal
Iconic Normal Withdrawn Withdrawn

Normal [3]

[1] If the leader was in Withdrawn, all followers must have been in
Withdrawn. Moving the leader out of Withdrawn leaves the fol
lowers as they were. The window manager will never implicitly
move any window from the Withdrawn state; the client must do so
explicitly.

[2] If the leader was in Normal, no follower could have been in Iconic.

[3] If the leader was in Iconic, no follower could have been in Normal.

If a client attempts a state transition on a follower that would result in an illegal
combination, the window manager should ignore the request. For example,
suppose a client attempts to change a follower from Normal to Iconic without
changing the leader. This request should be ignored. The group leader must be
in Normal because the follower was in Normal. Changing the follower to Iconic
isn't allowed unless the leader changes to Iconic simultaneously. To do that, the
client should request the transition on the leader, not the follower.

These state transitions can be initiated either by the window manager or the
client. However, the burden of maintaining the states consistently lies on the
window manager. For example, if the client iconifies its base window, the win
dow manager is responsible for moving all Normal pop-up windows into Iconic.
Similarly, if the user iconifies a base window, the window manager is again
responsible for iconifying the pop-ups.

4-18 OPEN LOOK GUI Programmer's Guide

Relationship to Inter-Client Conventions

Input Focus

The OPEN LOOK Interface specifies that focus is transferred with mouse clicks.
Since arbitrary windows (not just top-level windows) may have the input focus,
it is impossible for the window manager to do all the focus management itself.
Therefore, OPEN LOOK clients should use the Globally Active model of input
focus described in the Inter-Client Conventions document. This model
corresponds to WM_HINTS. input having the value False and the presence of the
WM_TAKE_FOCUS atom in the WM_PROTOCOLS property.

Window managers in general, not just OPEN LOOK window managers, will
send a WM_TAKE_FOCUS message to the client when they think the client should
take the input focus. OPEN LOOK clients should respond by setting the input
focus to the last subwindow that had the focus. If no subwindow ever had the
focus, the client should set the focus to the default focus location. In addition,
when the user clicks the SELECT mouse button in a client's subwindow, the
client should set the input focus to that window.

~ The timestamp of the event that caused the focus change should be passed y to the client In the ,",_PROTOCOLS client message.

OPEN LOOK applications will generally not want to use the Locally Active
model of focus, because this leads to unnecessary transfers of focus. In the
Locally Active model, the window manager assigns the focus to the window,
after which the application is free to move the focus around within its subwin
dows. Under this model, clicking in a scroll bar might transfer the focus. This
is incorrect.

In rare cases, an OPEN LOOK application might want to use the Passive model.
In this model, only the top-level window is allowed to have the focus. The win
dow manager will assign the focus to this window as appropriate. If an OPEN
LOOK application has only one top-level window, the application can use this
model. However, most OPEN LOOK applications will want to have more than
one window eligible to receive the focus, or their focus window will not be the
top-level window, so the Passive model will be unsuitable for them.

X Window System, Version 11, Conventions for OPEN LOOK 4-19

Relationship to Inter-Client Conventions

If an OPEN LOOK application doesn't handle keyboard input, it should choose
the No Input model of input focus. This corresponds to WM_HINTS • input having
the value False and the absence of the WM_TAKE_FOCUS atom in WM_PROTOCOLS.

If the window that has the focus disappears (is dismissed or iconified) and the
window manager does not restore the focus to its previous location (either
because the window manager wasn't able to or wasn't supposed to), the input
focus will likely end up as None. In this case, window manager should set the
input focus to somewhere known (perhaps a root window) and beep whenever
a keystroke occurs. (This is required by the OPEN LOOK specification.) The
window manager can detect when this situation occurs by keeping track of
which window has the input focus (by selecting for Focus In and Focus Out
messages).

4-20 OPEN LOOK GUI Programmer's Guide

Workspace and File Manager Conventions

The following OPEN LOOK Communications Conventions have been esta
blished for the OPEN LOOK Workspace Manager and OPEN LOOK File
Manager when communicating with the OPEN LOOK Window Manager and
other OPEN LOOK clients.

To initiate the execution of a process, or other action by the Workspace
Manager, an appropriately formatted request is appended to the _OL_WSM_QUEUE

property of the Root Window. If the request is for process execution, then the
success or failure of the request is reported by the setting of the _OL_WSM_REPLY

property on the window specified in the request. Similarly, the _OL_FM_QUEUE

and _OL_FM_REPLY properties are used to communicate file service requests and
replies. The QUEUE properties may have multiple requests appended; how
ever, the REPLY properties will contain only a single reply at any given time.

The enqueue routine should add requests to the queue using PropModeAppend.
This way, new requests are added to the end of the queue without disturbing
any prior contents.

On the first request, the dequeue routine should allot buffer space for the queue,
move the entire contents of the queue into the buffer, specify True for the delete
argument to XGetWindowProperty, and return the first request in the queue.
For subsequent requests, the dequeue routine should parcel out requests from
its buffer until the buffer is empty. At that time, the dequeue routine would
again read the entire contents of the queue and continue request processing.

Property Format
_OL_WBM_QUEUE <type><window>:<serial>:<sysname>:<nodename>:<uid>:<gid>:

<applname>:<command>:<atoms>:

_OL_WSM_REPLY <type><serial>:<sysname>:<nodename>:<errnol pid>:

_OL_FM_QUEUE <type><window>:<serial>:<sysname>:<nodename>:<uid>:<gid>:
<applname>:<windowgroup>:<directory>:<pattern>:<label>:
<atoms>:

_OL_FM_REPLY <type><serial>:<sysname>:<nodename>:<pathl message>:

X Window System, Version 11, Conventions for OPEN LOOK 4-21

Workspace and File Manager Conventions

~
The _OL_WBM_QUEUE and _OL_FM_QUEUE formats are each a single long

NOTE sequence. In the table above, they were split across two lines due to their
length.

The format of each of the requests and replies is an ASCII character sequence
containing a fixed number of fields. The first field, <type>, is a fixed length one
character field. The remaining fields are variable length character sequences
separated by the ASCII unit separator (Oxlf), which is represented in the table
above by a colon. If the field is numeric, then the characters in the field are all
ASCII digits.

The next several paragraphs define valid values for the type field for both
Workspace Manager and File Manager requests. The remainder of this section
then describes the other fields that are present in the various request and reply
formats.

Field: <type>

The <type> field contains a binary numeric value identifying the type of the
message. Valid values are given in the following two tables.

Message Value Meaning
1 WSM_EXECUTE
2 WSM_TERMlNATE .
3 WSM_SAVE_YOURSELF
4 WSM_EXIT
5 WSM_MERGE_RESOURCES
6 WSM-PELETE_RESOURCES

1 WSM_SUCCESS
2 WSM_FORK_FAILURE
3 WSM_EXEC_FAILURE

4-22 OPEN LOOK GUI Programmer's Guide

Workspace and File Manager Conventions

The properties are specified in the command field of _OL_WSM_QUEUE as described
below:

- WSM_EXECUTE is used by a client to request that a program be executed.
These are the only requests that receive a reply.

- WSM_TERMlNATE and WSM_SAVE_YOURSELF are used by the Window
Manager to request that a window and its associated program(s) be ter
minated; the second form is used if the Save YourselfMessage bit is set.

- WSM_EXIT is used by the Window Manager to denote the end of a
sequence of WSM_TERMINATEs and WSM_SAVE_YOURSELFs at session termi
nation.

- WSM_MERGE_RESOURCES and WSM_DELETE_RESOURCES are used by a client
to request that properties be merged into, or deleted from, the .Xde
faults file.

- WSM_SUCCESS indicates that the request was carried out successfully,
while WSM_FORK_FAILURE and WSM_EXEC_FAILURE indicate failures that
occurred in attempting to fork or execute the specified process.

Message Value Meaning

1 FM_ACTIVATE
_OL_FM_QUEUE

FM_BROWSE

3 FM_COPY
4 FM_MOVE

_OLj'!CREPLY 9 FM_CANCEL
10 FM_ACCEPT
11 FM_INVALID

- FM_ACTlVATE is used by the Workspace Manager to request a stand-alone
File Manager window, while FM_BROWSE is used by other clients to
request a File Manager window in client service mode. All requests
receive a reply.

- FM_COPY and FM_MOVE are used in drop mode to indicate that the user
requested a copy or a move operation.

- FM_CANCEL is used in client service mode to indicate that a user has
selected the cancel button.

X Window System, Version 11, Conventions for OPEN LOOK 4-23

Workspace and File Manager Conventions

- F'M_ACCEPT is used in client service mode to indicate that the request was
accepted and acted upon.

- F'M_INVALID is used to indicate that the corresponding request was
invalid.

Field: <window>

The <window> field contains the window id of the window whose
_OL_WSM_REPLY or _OL_F'M_REPLY property should be set in response to the
current request.

Field: <serial>

The <serial> field contains a unique serial number that is supplied by the
requesting routine for each request it appends. The same serial number is
returned in the subsequent reply so that the reply may be associated with its
corresponding request.

Fields: <sysname> and <nodename>

The <sysname> and <nodename> fields contain the system and node (as given by
the uname(l) command) of the machine originating the request or reply.

Fields: <uid> and <gid>

The <uid> and <gid> fields are reserved for future use.

Field: <applname>

The <applname> field contains the name of the application making the request.

Field: <command>

For WSM_EXECUTE, the <command> field specifies a command to be executed by
Ibin/sh.

4-24 OPEN LOOK GUI Programmer's Guide

Workspace and File Manager Conventions

For WSM_MERGE_RESOURCES and WSM_DELETE_RESOURCES, the
<command> field specifies the resource settings as

name:val ue\n. . . name:value\n

where name is the name of the resource, : is the ASCII colon character, value is
the value assigned to the resource, \n is the ASCII new-line character, and ...
indicates that there may be one or more occurrences of name-value pairs in this
field.

For WSM_DELETE_RESOURCES, value can be null (that is, 0 characters). For types
other than WSM_MERGE_RESOURCES and WSM_DELETE_RESOURCES, this field is
ignored.

Field: <atom>

The <atoms> field is reserved for future use and is currently ignored.

Field: <errnol pid>

The <erma I pid> field contains an error number from the fork(2) or exec(2) sys
tem calls if the the call failed, and the process id of the shell process if it suc
ceeded.

Field: <windowgroup>

The <windowgroup> field contains the window group id associated with the win
dow specified in the window field.

Field: <directory>

The <directory> field contains the full or relative pathname of a file system direc
tory. It may contain shell patterns.

Field: <pattern>

The <pattern> field contains a file name or shell pattern that translates into one
or more file names.

Field: <label>

The <label> field contains the label that will be used for the top button of the file
menu.

X Window System, Version 11, Conventions for OPEN LOOK 4-25

Workspace and File Manager Conventions

Field: <pathl message>

If the request succeeded, the <pathl message> field contains a list of file names of
the form dirname filename . .. filename, where dirname is the full path name of the
directory and filename . .. filename is a list of blank-separated file names within
the directory. If the request failed, the field contains an error message.

4-26 OPEN LOOK GUI Programmer's Guide

Miscellaneous Implementation Issues

Pinnable Menus and Override-Redirect

Currently, the Xll protocol has a deficiency where a window manager cannot
tell when an application has changed the override-redirect window attribute.
This situation comes up in the obvious implementation of pinned menus. Typi
cally, a menu is manipulated with override-redirect set to True. However, when
the menu is pinned, the owner of the menu would like the window manager to
start managing the window. The obvious way to do this is for the client to sim
ply set override-redirect to False. Unfortunately, the Xll protocol doesn't pro
vide for automatic notification of the window manager in this case. A similar
situation occurs when override-redirect is turned on. In this case, the window
manager will simply stop receiving Request events on this window. Typical
window managers will still have resources allocated for this window; these
should be reclaimed.

In both of these situations, we need clients to explicitly tell the window
manager that override-redirect has changed. One possible solution is to have
the client unmap the window before changing override-redirect and map the
window again afterwards. This will always work with all window managers.
However, it forces the client to repaint a window that, from the user's point of
view, should have stayed on the screen.

Another approach might be for the client to use synthetic Map Notify and
UnmapNotify events to notify the window manager after the client has
modified override-redirect. Unfortunately, this technique doesn't work well
visually. Therefore, clients should unmap the window before changing its
override-redirect attribute.

Full Size Window

When the user selects Full Size from the window menu, the window manager
should use the max _width and max_height entries from the WM_NORMAL_HINTS

properties. As per the OPEN LOOK specification, the origin of the window
may have to be moved so that as much as possible of the resized window fits
on the screen. If the client has not provided the maximum size fields, or if it
hasn't provided the WM_NORMAL_HINTS property, the window manager should
set its own policy for determining the dimensions of a full-sized window. Typi
cally, on a large monitor with a landscape-style aspect ratio, the full height
should be the height of the screen, and the width should stay unchanged from

X Window System, Version 11, Conventions for OPEN LOOK 4-27

Miscellaneous Implementation Issues

the current window width. On smaller monitors, the dimensions should be the
full height and width of the screen.

When the user selects Restore Size from the window menu, the window manager
should return the window to the size and location it had before the user
selected Full Size.

4-28 OPEN LOOK GUI Programmer's Guide

5 Mouseless Operations

Overview

Keyboard Traversal

Keyboard Accelerators
Overview

• Examples
• Side Effects

Visual Appearance

Mnemonics
Overview

• Mnemonic Modifier Prefix
• Visual Appearance

Widget Activation/Association
• Widget Activation
• Widget Association

Table of Contents

5-1

5-2

5-5
5-5
5-5
5-5
5-6

5-7
5-7
5-7
5-7
5-8
5-8
5-9

Overview

Mouseless operations is a generic term which encompasses all features at the
user's and programmer's disposal for operating an OPEN LOOK application in
an environment without a mouse. There are four major areas in mouseless
operations:

• Keyboard Traversal

• Keyboard Accelerators

• Keyboard Mnemonics

• Widget Activation and Association

In addition to the above areas, the mouseless operation within the toolkit
depends heavily on the widget's classing scheme and the event handling
mechanism.

Each of the areas are discussed separately in the following sections.

[~ Throughout this section words that are capitalized and begin with "OL_" are
NOTE toolkit tokens used to represent OPEN LOOK commands. For example,

OL_NEXT_FIELD is the toolkit token equivalent of the functional specification
for the NextField command.

Mouseless Operations 5-1

Keyboard Traversal

Keyboard traversal is the ability to use the key sequences to move the keyboard
input focus visual to any control or text-input widget within a top level window
or to move input focus from one top level window to another. Under normal
conditions, there is one top level window on the screen which takes input focus.
This window easily is identified as the window with its header colored with the
input-window color. Within the input focus window, one of the controls or text
widgets will have the input focus. If a control has input focus, the entire control
is highlighted with the input-focus color; or if a text widget has focus, the text
widget's caret is colored with the input focus color and is blinking.

Once input focus is within a top level window, traversal between controls and
text widgets is achieved with the OL_NEXT_FIELD and OL_PREV _FIELD keyboard
commands. By default, these commands are bound to the TAB (and Ctrl-TAB)
and Shift-TAB keys (and Ctrl-Shift-TAB), respectively. As these keys are
pressed, the input focus visual moves to the next control or text widget which
will to accept it.

~ Most read-only text areas such as captions do not accept focus.

y
After traversing to a desired control, the user can activate that control by press
ing the OL_SELECTKEY command (which is typically bound to the Spacebar).
Activating the control with the O~SELECTKEY command yields the same results
as if the user had activated the control with a OL_SELECT mouse button click on
the control.

Whenever focus is within a container widget such as an Exclusives or Nonex
clusives setting or ScrollingList, the OL_MOVERIGHT, OL_MOVELEFT,
OL_MOVEUP and OL_MOVEDOWN commands move focus between the rows and
columns of the contained sub-objects. By default, these commands are bound to
the arrow keys. Similarly, when input focus is within a text widget, the
CHARFWD, CHARBAK, ROWUP and ROWDOWN commands move the input caret among
the characters. By default, these commands also are bound to the arrow keys.
The OL_NEXT_FIELD and OL_PREV_FIELD keys are used to move input focus in
and out of container widgets.

Whenever the last control in a top level window has focus and the
OL_NEXT_FIELD key is pressed or whenever a sub-object located on the con
tainer widget's border has focus and the direction of the traversal command
points outside the container, traversal wrapping occurs. For the control in the top

5-2 OPEN LOOK GUI Programmer's Guide

Keyboard Traversal

level window, traversal wrapping causes focus to move to the first control in the
top level window. For the sub-object located on the border of its container,
focus remains in the container widget but is set to a sub-object in an extreme
row or column opposite the sub-object with focus. The following figure illus
trates intra-container widget focus traversal for three different exclusives set
tings. For the following settings, each sub-object displaying an arrow glyph
indicates the new focus location if a move command (OL_MOVERIGHT,

OL_MOVELEFT, OL_MOVEUP or OL_MOVEDOWN) matching the glyph's direction is
pressed while the focus is on the start sub-object.

Figure 5-1: Sub-Object Traversal within a Container Object

..... .. start ... From an interior sub-object

.....

start
....

From an edge sub-object

.....

....

.....
From an edge sub-object .. start ...

Mouseless Operations 5-3

Keyboard Traversal

Traversal among a large number of sub-objects within a container widget can
become tedious. An example of this scenario is the File Manager's Directory
Pane that often displays directories containing many files. With many files, the
required number of keystrokes needed to reach an arbitrary set of files is typi
cally large. To alleviate this problem, accelerated focus movement between
sub-objects is available through the OL_MULTIRIGHT, OL_MULTILEFT,

OL_MULTlOOWN and OL_MULTIUP commands. Pressing one of these keys has the
same effect as pressing one of the OL_MOVERIGHT, OL_MOVELEFT, OL_MOVEOOWN

or OL_MOVEUP multiple times.

Besides moving focus between controls within a top level window, keyboard
traversal also moves focus between top level windows within an application or
to top level windows of other applications. The OL_NEXTWINOOW and
OL_PREVWINOOW commands move focus between windows within an application
while the OL_NEXTAPP and OL_PREVAPP commands move focus between applica
tions. It should be noted that inter and intra application traversal requires the
OPEN LOOK window manager to be running.

5-4 OPEN LOOK GUI Programmer's Guide

Keyboard Accelerators

Overview

All controls have the capability of having one or more attached accelerators. An
accelerator is a one keystroke sequence that activates a control, giving the same
result as if the control were visible and the OL_SELECT mouse button were
clicked while the pointer was over that control.

An accelerator for an application can be activated if any window within that
application has input focus, even if the control is not in the window with focus.
Therefore, the main advantage of a keyboard accelerator over using a mouse is
that the control does not have to be visible, allowing the user to limit the
number of steps required to activate a particular control.

~
Accelerators do not install key passive grabs on any window by default. If a

NOTE application wants accelerators to install passive grabs, the application must
set the Boolean shell resource XtNacceleratorsDoGrabs to TRUE. If this
resource is set to TRUE, a passive grab for each accelerator is installed on
each shell within the widget's window group.

Examples

Here are two examples of how accelerators work:

• The Quit button on a window menu can be activated even though the
window menu is not popped up.

• A top level window having a popup window descendant with a cancel
button can be activated if an accelerator is bound to that button.

Side Effects

Since accelerators are global to an application, they must be unique for the
entire application. If the application attempts to bind more than one control to
the same accelerator key sequence, a warning is generated and the new accelera
tor is ignored. An application can override any OPEN LOOK standard com
mand (for example, OL_DEFAULTACTION, OL_CANCEL, and so on) simply by bind
ing an accelerator to the same key sequence as the OPEN LOOK command.

Mouseless Operations 5-5

Keyboard Accelerators

Visual Appearance

A workspace Miscellaneous Property Sheet setting indicates whether a string
representation of an accelerator key sequence should appear in a control's label.
When the accelerator text is visible, it appears to the right of the label. The fol
lowing figure shows a Quit button with and without its accelerator text.

Note that even though the accelerator visual may not be shown (by selecting the
On-Don't Show setting), the accelerator still functions.

Figure 5-2: Oblong Button with and without an Accelerator Visual

(QUit)

(Quit Alt+F4)

5-6 OPEN LOOK GUI Programmer's Guide

Mnemonics

Overview

Mnemonics provide a mechanism for traversing to a control and activating it.
Once the control is activated, the control displays the appropriate keyboard
input focus visual since all subsequent keyboard input is directed at that con
trol.

A single keystroke is used to activate a mnemonic. But unlike accelerators
which can be operated when any top level window has keyboard focus, a
mnemonic's keystroke only has meaning if keyboard focus is within the top
level window containing the desired control and mnemonic. By restricting
mnemonics to a top level window, different top level windows can reuse
mnemonics provided they are unique to their top level window and that no top
level window has an accelerator with the same key sequence. Any keystrokes
for mnemonics that exist outside the focus top level window are ignored.

~I Mnemonics never install passive key grabs on any window.

y
Mnemonic Modifier Prefix

A modifier prefix is required for mnemonics when the control is not on a menu.
The modifier prefix is settable from the Workspace Miscellaneous Property
Sheet and has the default binding of Alt. For example, since a property sheet's
Apply button uses the letter" A" for its mnemonic, the keystroke Alt <a> is
required to activate the mnemonic. But, if a control on a menu had a mnemonic
"A," the unmodified keystroke <a> activates that menu control. Note that
mnemonics are case insensitive.

Visual Appearance

A workspace Miscellaneous Property Sheet setting indicates the type of the
mnemonic visual feedback:

On-Underline
On-Highlight
On-Don't Show
Off

Mouseless Operations 5-7

Mnemonics

The figure below and to the left shows two Quit buttons with the mnemonic
visual set to Off, while the figure on the right shows the same Quit buttons
with the mnemonic visual set to On-Underline. (All the Quit buttons also have
a visible accelerator.)

Figure 5-3: Oblong Button with and without a Mnemonic Visual

(Quit) (.Q.u it)

(Quit Alt+F4) (Quit Alt+F4)

If the On-Don't Show visual preference is selected, the mnemonic visual is not
shown, but the mnemonic keystroke still activates the control.

Widget Activation/Association

Widget Activation

All widgets (and gadgets) in the toolkit support programmatic activation
through a convenience routine, OlActivateWidget. Indirect widget activation
is a fundamental feature of the toolkit's event handling scheme. In mouseless
operations, an widget's callbacks often must be activated from the keyboard or
programmatically. In addition to callback activation, many widgets have several
other types of activation. For example, scrollbars have activation types
corresponding to each of its six scrolling operations. See the individual widget
manual pages for their activation types.

Boolean OlActivateWidget(widget, activation_type, activation_data>
Widget widget;
OlVirtualName activation_type;
XtPointer activation_data;

Each widget has a class activation procedure for handling programmatic activa
tion requests. When a widget receives a valid activation request, its class activa
tion procedure does the necessary actions and returns TRUE, indicating that the
request was granted. If a widget cannot satisfy the activation request (for

5-8 OPEN LOOK GUI Programmer's Guide

Mnemonics

example, an activation type or the widget is busy), the widget's class procedure
returns FALSE. If the returned code is FALSE, OlActi vateWidget attempts to
activate any widgets that are associated with the widget that returned FALSE.
This sequence happens recursively until one of the widgets returns TRUE or
there are no more associated widgets.

Widget Association

Widgets are associated with other widgets by calling OlAssociateWidget. A
good example of widget association is that of the ScrolledWindow widget since
it has two child Scrollbar widgets which it associates with itself at creation time.
Since the scrollbars are associated with the ScrolledWindow widget, calling
OlActi vatewidget using the scrolled window widget id and the command
OL_PAGERIGHT, causes the contents of the scrolled window to move one pane to
the right.

Also, when the application adds a child widget to the scrolled window widget,
the scrolled window widget associates itself with that clu1d. This means that
calling OlActi vateWidget on that child with a scrolling command will cause
the view to scroll since the scrollbars are now indirectly associated with that
child.

Since the association feature is used by the toolkit's event handling mechanism,
the child of the scrolled window will scroll automatically if the child has focus
and the user presses Alt+].

~ The leftbracket modified by the Alt key is the default keyboard binding for the y OL_SCROLLRIGBT command.

The scrolling occurs because the toolkit receives the keypress event (which
arrived on the scrolled window widget's child) and attempts to activate that
child by calling OlActivateWidget with the activation type OL_SCROLLRIGHT.
Since the child doesn't know that activation type, OlActivateWidget attempts
to activate the widgets associated with the child. This happens recursively and
eventually, the scrollbar widget is activated and scrolls the view.

Mouseless Operations 5-9

6 Internationalization

Introduction to Internationalization 6-1
• Extended UNIX Code Set (EUC) 6-1
• Multibyte Processing and Wide Character Format 6-2

The Internationalization of the OPEN
LOOK Toolkit 6-5
Changes to the Toolkit 6-5
Localizing OPEN LOOK Applications 6-6
Internationalizing A Client 6-7
Locale Announcement 6-8
The 01 locale def File 6-9 - -

• Default Locale Definition File 6-9
• The Example Japanese Locale Definition File 6-10

Dynamic Help Message Retrieval 6-12
• General Message Handling Design 6-12
• The Class Defines 6-13

Internationalizing 6-14
Internationalizing the Strings in an Application 6-15

• Creating the Application app-defaults Files 6-15
• Processing Text within an Application 6-16

Input Method 6-20
• The Localization Package for the Input Method 6-22
• Structures 6-23
• Functions 6-28

Other Changes 6-30
• TextEdit Widget 6-30
• xterm 6-31

Table of Contents

Introduction to Internationalization

The UNIX operating system has been used extensively in many countries. The
applications developed for it have traditionally provided messages only in
English and have operated using English language conventions.

In order for applications to operate correctly in any language, no assumptions
may be made about language, code set or local conventions. All such informa
tion about "locale" must be stored externally to the application. To do this for
both the UNIX system and the OPEN LOOK interface, library functions had to
be enhanced and new functions provided to support localizing facilities.

UNIX System V Release 3.1 and later has removed the dependency of the UNIX
system on the 7-bit US ASCII code set and includes new extensions which pro
vide support for applications and commands for the non-English speaking user.

The key international capabilities of OPEN LOOK GUI are the following:

• Support of full 8-bit and mult-byte code sets. Commands can handle code
sets in which all 8 bits are used.

• Support of alternative date and time formats.

• Enhanced support for character classification and conversion- functions
which, for any code set, convert characters from upper to lower case or
classify characters as alphabetic, printable, upper or lower case, and so on.

• ANSI C internationalization enhancements, Extended UNIX Characters
(EUC) and multibyte processing.

• UNIX System commands which support the use of EUC and multibyte
processing.

The OPEN LOOK Release 4i Toolkit provides tools to internationalize applica
tions that make no assumptions about language, code set or local conventions.

Extended UNIX Code Set (EUC)

To enable the use of languages which require characters with encodings other
than ASCII, Release 4i provides support for up to four code sets concurrently, at
both file and process level.

The external code set represents the set of characters that can be presented to
the computer system. The internal code set scheme is called the "Extended
UNIX Code" or EUe. EUC comprises a primary code set (code set 0), which is
always assigned to the US 7-bit ASCII character set, and three supplementary
code sets. The choice of the supplementary code sets is at the system

Internationalization 6-1

Introduction to Internationalization

administrator's discretion and EUC can support multiple languages con
currently. EUC is provided mainly to support the huge number of ideograms
needed for I/O in an Asian Language Environment.

For a given character, its EVC code set is distinguished by the value set of the
most significant bit (MSB) of the EUC representation and by single-shift charac
ters. The code sets used at any time (that is, within a single process) are deter
mined by the selected locale. The default locale is the C locale. (See the second
part of this chapter for information about choosing locale.) The primary code
set (code set 0) is always 7-bit US ASCII. Each byte of any character in supple
mentary codes (code sets 1,2, and 3) has the high-order bit set; code sets 2 and 3
are distinguished from code set 1 and each other by their use of a "special shift"
byte before each character. SS2 is represented in hexadecimal by Ox8e, SS3 by
Ox8f.

Figure 6-1: EUC Code Set Representations

Code Set EUC Representation
o Oxxxxxxx

1 lxxxxxxx [lxxxxxxx [•••]]

2 SS21xxxxxxx [lxxxxxxx [•.•]]

3 SS31xxxxxxx [lxxxxxxx [•••]]

Multibyte Processing and Wide Character Format
To work within the constraints of usual computer architectures, characters are
encoded as sequences of bytes, or "multbyte characters." A multibyte character
is character encoded using one or more bytes. An Ascii character is the simplest
example of a multibyte character. Because multibyte characters are of varying
widths, the sequence of bytes needed to encode a character must be self
identifying: regardless of the supplementary code set used, each byte of a multi
byte character will have the high-order bit set; if code sets 2 or 3 are used, each
multibyte character will also be preceded by a shift byte.

UNIX System V Release 3.1 introduced a new data type for C programs
(wchar_t) which allows all the characters from different code sets, including the
primary set, to be represented by codes or wide characters of a uniform length.
wchar_t lets you manipulate variable width characters as uniformly sized data

6-2 Programmer's Guide: OPEN LOOK GUI

Introduction to Internationalization

objects called "wide characters." Use of the wchar_t data type often simplifies
code that deals with characters because the code need not concern itself with the
memory width of every character.

For each wide character there is a corresponding multibyte character and vice
versa; the wide character that corresponds to a regular single-byte Ascii charac
ter is required to have the same value as its single-byte value, including the null
character.

Since there can be thousands or tens of thousands of characters in an Asian
language set, systems should use a 16-bit or 32-bit sized integral value to hold
all members. Implementations provide corresponding 16-bit and 32-bit libraries
with functions that you can use to manage multibyte and wide characters.

Figure 6-2: EUC and Corresponding 16-bit Wide-character Representation

Code Set EUC Code Representation Wide-character
Representation

0 Oxxxxxxx OOOOOOOOOxxxxxxx
1 lxxxxxxx 100000001xxxxxxx

lxxxxxxx 1:xxxxxxx lxxxxxxxlxxxxxxx
2 SS2 1:xxxxxxx OOOOOOOOl.xxxxxxx

SS2 1xxxxxxx 1xxxxxxx Oxxxxxxxl.xxxxxxx
3 SS3 lxxxxxxx 100000000xxxxxxx

SS3 lxxxxxxx l.xxxxxxx lxxxxxxxOxxxxxxx

Internationalization 6-3

Introduction to Internationalization

Figure 6-3: EUC and Corresponding 32-bit Wide-character Representation

Code Set EVC Code Representation Wide-character
Representation

0 O:xxxxxxx ooooooooooooooooooooooooO:xxxxxxx

1 lxxxxxxx OOllOOOOOOooooooooooooooo:xxxxxxx

lxxxxxxxlxxxxxxx OOllOOOOOOoooooooo:xxxxxxx:xxxxxx

l:xxxxxxxlxxxxxxxlxxxxxxx OOllOOOOOOO,ccccccccccccccccCCCCt

2 SS2 lxxxxxxx OOOlOOOOOOooooooooooooooo:xxxxxxx

SS2 lxxxxxxxlxxxxxxx 000100000000000000:xxxxxxx:xxxxxx

SS2 lxxxxxxxlxxxxxxxlxxxxxxx OOOlOOOOOOOXXXXXlCCCtXXXXXXXlCCCCt

3 SS3 lxxxxxxx OOlOOOOOOoooooooooooooooo:xxxxxxx

SS3 lxxxxxxxlxxxxxxx 001000000000000000:xxxxxxx:xxxxxx

SS3 lxxxxxxxlxxxxxxxlxxxxxxx OOloooooooO~cccccccccccccCCCt

6-4 Programmer's Guide: OPEN LOOK GUI

The Internationalization of the OPEN LOOK
Toolkit

A number of internal changes have been made to the OPEN LOOK Toolkit in
order to make it compatible with internationalization requirements. The Toolkit
uses several UNIX-based facilities and and a multilingual messaging system
which permits all help messages, labels and error messages to be displayed in
the end user's language. The Toolkit also has many routines that have been
specifically designed to support an OPEN LOOK Input Method. The OPEN
LOOK Input Method permits the use of a traditional keyboard to handle non
English character requirements.

Internationalization can be divided into two different concepts:

• Internationalization: writing a program that makes no assumptions about
local customs by separating data from the program logic .

• Localization: providing the data specific to a language, cultural conven-
tions, and code sets.

In order to support the former concept the OPEN LOOK Toolkit has been
enhanced to include several routines which retrieve character strings in the end
user's language. The entire widget set was modified to employ these routines.
In addition, all the code set dependencies, such as the assumption that charac
ters are always one byte long, were removed. The locale specific data for a par
ticular language, is to be supplied by the various companies that are localizing
the Toolkit for a particular language group.

Changes to the Toolkit

Several changes or adaptations had to be made to the OPEN LOOK Toolkit in
order to support the concepts of internationalization and localization. They are
as follows:

1. Locale Announcement: The behavior of an X application in an Interna
tionalized environment is governed by information such as, language,
character code set and so on. In order to operate correctly in a "localized"
environment, an application needs to communicate this information to the
underlying operating system. The OPEN LOOK Toolkit provides a locale
announcement mechanism by which applications can ask the operating sys
tem to configure the appropriate environment.

Internationalization 6-5

The Internationalization of the OPEN LOOK Toolkit

2. Text Drawing and Font Grouping Facility: Different languages require
different fonts for drawing characters. In addition, a string in certain
languages may contain characters from more than one character set.
More than one font may be needed to draw such strings. Since existing
XllR4 functions are designed to handle strings from one code set only, a
mechanism was designed that allows applications to specify a group of
fonts to facilitate drawing of strings with characters from multiple code
sets.

3. Compound Text Translation Facility for ICCC: The OPEN LOOK Toolkit
provides a mechanism to translate EUC encoded strings to Compound
Text format (and vice versa) for Inter-Client Communication.

4. Implementation of an Input Method: An Input Method enables mapping
of keystrokes to characters, possibly with additional dictionaries or other
linguistic help. The OPEN LOOK Toolkit provides necessary support for
Input Method implementation.

5. Localized Help Messages and Message Switching: The help registration
facility in the OPEN LOOK Toolkit provides a way for an application to
display help messages in the local language. In addition, all references to
strings in the Toolkit and clients are language independent.

6. End User System Clients: The OPEN LOOK clients in particular, the
Work Space Manager, the Window Manager, the File Manager and xterm
have been modified to operate in a localized environment. This involves
Language and Locale Announcement by the Work Space Manager, support
ing EUC file names in the File Manager and using localized text input
mode in xterm.

Localizing OPEN LOOK Applications

The following section summarizes the changes necessary for localizing the
Toolkit for a particular locale.

6-6

1. Translate OPEN LOOK Toolkit messages (for example xol_msgs) to the
locale language.

Programmer's Guide: OPEN LOOK GUI

The Internationalization of the OPEN LOOK Toolkit

2. Install the message catalogue in the file
/usr /x/ lib/ loca1e/ locale_name /messages /xo1_msgs .

3. Translate all OPEN LOOK client messages files (for example xtenn_msgs)
to the locale language.

4. Install the client messages in
/usr /x/ 1ib/ local/locale_name /xtenn_msgs.

5. Create a locale definition file with resource values for the locale.

6. Install the locale definition file in
/usr /x/ 1ib/ loca1e/ locale_name /ol_loca1e_def

7. Write an input method library for the locale language (optional).

8. Install the library in /usr/x/lib/1oca1e/locale_name/libname.so.

Internationalizing A Client

Use the following steps to internationalize a client:

1. Replace hardcoded ASCII strings with calls to 01GetMessage.

2. Create a default message file containing default (English) versions of mes
sages.

3. Install default messages under /usr/X/lib/app-defaults/appname_msgs
(where appname_msgs is the class name used by the client in calls to
01GetMessage, 01 VaDisp1ayWarningMessage).

4. Replace the use of the XFontstruct data type with the 01FontList data
type (see the following sections in this Chapter that describe the
01FontList data type).

5. Replace intrinsic-based text metric and drawing calls with the following
OPEN LOOK Toolkit routines:

Internationalization 6-7

The Internationalization of the OPEN LOOK Toolkit

Intrinsics Routine OPEN LOOK Routine

XTextWidth OlTextWidth

font --> ascent OIMaxFontInfo

XDrawString OlDrawString

6. Link additional libraries -lw and -ldl (wide character and dynamic link
ing) when building applications. See the OPEN LOOK GUI Programmer's
Guide for a complete description of the routines listed above.

Locale Announcement

The "localized" behavior of an X application in the International environment is
governed by locale specific information such as language, character code set;
and cultural conventions such as numeric,date and time formats. This informa
tion affects the resource file, text input, and fonts used by applications. For an
X application to run correctly in a "localized" environment, it needs to
announce the locale under which it intends to operate.

The OPEN LOOK Toolkit performs the locale announcement with the following
limitations:

6-8

• Multiple locales in the same application are not supported.

• All resource names (as opposed to values) are encoded in the Latin-l
code set.

• The Window Manager always runs in the same locale as the Work Space
Manager.

• Applications must make specific provisions to respond dynamically to a
change in the value of locale specific resources.

Programmer's Guide: OPEN LOOK GUI

The Internationalization of the OPEN LOOK Toolkit

The 01 locale def File

To configure a localized environment, locale specific information is needed. The
system administrator must provide such information in a locale definition file
under the directory /usr /X/ lib/locale/ locale _ name/ ol_locale_def.

The information contained in this file is used to determine the localized environ
ment and to look up default values for certain locale specific resources. The for
mat of this file is shown below:

The entries xnlLanguage, displaying, input lang, numeric and time format
correspond to the setlocale(3C) categories LC_ALL, LC_TYPE, LC_MSGS, LC,
NUMERIC, and LC_TIIm, respectively. Each entry consists of the locale name (to
be passed to setlocale(3C) by the OPEN LOOK Toolkit) and a quoted format
string (to be used by the workspace manager to identify the locale category to
the end user in the setlocale property sheet.

The representation for the date, the time and numeric for a locale
correspond to formats found in files LC_TIME and LC_NUMERIC under
llib/locale/ZocaZe_name. For example, if the date format in the file
LC_TlME is "%m%d%y" then the format string for time format should be
mm/dd/yy.

Also, note that, format strings specified in a locale definition file are intended
to be used by the Work Space Manager only. Actual values of the
resources time format and numeric are specified as a locale name for use
with setlocale () .

Default Locale Definition File

The following default locale definition file ol_locale_def is installed in the
directory /usr/X/lib/locale/C.

Internationalization 6·9

The Internationalization of the OPEN LOOK Toolkit

*xnlLanguage:
*displayLang:
*inputLang:
*numeric:
*timeFormat:
*fontGroup:
*fontGroupDef:
*inputMethod:
*imStatus:
*frontEndString:

C "English"
C "English"
C "English"
C "10,000"
C "5:30PM" "12/31/90"

False

The Example Japanese Locale Definition File
The following is an example locale definition resource file for the Japan locale
that has been included as part of the Toolkit.

*xnlLanguage:
*displayLang:
*inputLang:
*numeric:
*timeFormat:
*fontGroup:
*fontGroupDef:

*inputMethod:
*imStatus:
*frontEndString:

japan "Japan"
japan "Japanese", C "English"
japan "Japanese", English "English"
japan "10000",fr "10.000"
japan "5:30PM 31/12/90",C "17:30 12/31/90"
mincyo, gothic
mincyo=lucida/kanji/kana/hojo, \
gothic=goal/gokan/gokana/gokanji
libolim
True

The resources specified in the local definition file are described below:

xnlLanguage

timeFormat

6-10

This contains the name of the current locale under which an
application operates.

This resource specifies the name of the locale that supports the
desired formats for time and date. The locale name specified
by this resources corresponds to the LC_TlME category of
set locale () .

Programmer's Guide: OPEN LOOK GUI

The Internationalization of the OPEN LOOK Toolkit

input Lang This resource contains the name of the locale that provides the
necessary environment for processing text for the desired
language.

displayLang

numeric

inputMethod

This resource specifies the name of the locale in which the mes
sages should be displayed. It corresponds to the LC_MESSAGES
category of the set locale () function.

This resource specifies the name of the locale that supports
desired format for specifying a numeric value. The value of
this resource corresponds to the LC_NUMERIC category of the
set locale () function.

This resource specifies the name of the Input Method used by
the application for handling text input in local language. It
determines the appropriate localization library name used to
establish a connection with the specified Input Method.

imStatus Some languages need to display status information in text input
mode. The Input Methods developed for such languages need
a window (or widget) to display such information. This
resource specifies a Boolean value to indicate whether or not an
Input Method requires a status window.

fontGroup Text in some languages may be composed of characters from
different code sets and hence requires more than one font to
draw it. The font Group resource provides an alias for the set
of fonts that are used to draw text in those languages.

fontGroupDef
This resource provides a way of associating a single name with
set of fonts (known as a fontGroup). A single fontGroupDef
may contain definitions for multiple font Groups and separated
by commas. It is used in constructing a list of XFontStruct
structures for use by text drawing utilities.

frontEndString
The string that is atomized by the Input Method and used to
identify 1M messages sent to the client.

Internationalization 6-11

The Internationalization of the OPEN LOOK Toolkit

Dynamic Help Message Retrieval

To display help messages in the local language, the help widget was modified
such that it reads a localized help message from the locale specific help message
file. This file(s) resides under the following sub-directory:

/usr/x/lib/1oca1e/locale_name/he1p/app-name.

General Message Handling Design

For upward compatibility, error and warning handling have been implemented
using the current functions, 01vaDisp1ayErrorMsg() and 01VaDisp1ayWar
ningMsg () These functions, as well as others that they call, were modified to
open one or more error databases, retrieve specific localized messages and (if
desired) a custom message prefix, provide defaults for retrieval failures, and
print formatted messages as before. An option is also provided for an applica
tion to silence a Toolkit error or warning message. All Toolkit and client code
using other forms of error and warning handling have been converted to use
one of these two functions. There is a default (locale C) error database
(libo1c . a) for the Toolkit, one for each supported client, one for the client
library, and the capability for any other application to create an error database
for itself.

There is also a general message retrieval function OlGetMessage () so that the
Toolkit or any application can retrieve a localized message and use it for its
own specific purpose.

Visible widget string resources fall into two categories: static and dynamic. An
example of the former is a button label that remains constant for the duration of
a program's execution while an example of the latter is a footer message which
changes periodically at run-time. An application can use its app-defau1ts file
to set static string resources but must use OlGetMessage () for dynamically
changing string resources.

The message retrieval functions (olGetMessage (), 01 VaDisp1ay (») take name,
type, and class arguments to identify a message. The class identifies a file and
is used to differentiate among the Toolkit, supported clients, and other applica
tions.

6-12 Programmer's Guide: OPEN LOOK GUI

The Internationalization of the OPEN LOOK Toolkit

The Class Defines

The reserved class defines for the clients are the following:

#define OleCOIClientOlamMSgs
#define OleCOIClientOlamErrs
#define OleCOIClientOlfmMSgs
#define OleCOIClientOlfmErrs
#define OleCOICOlientOlpixmapMSgs
#define OleCOICOlientOlpixmapErrs
#define OleCOIClientOlprintscreenMsgs
#define OleCOIClientOlprintscreenErrs
#define OleCOIClientOlwmMSgs
#define OleCOIClientOlwmErrs
#define OleCOIClientOlwsmMSgs
#define OleCOIClientOlwsmErrs
#define OleCOIClientXtermMsgs
#define OleCOIClientXtermErrs

"olam_mags"
"olam_errs"
"olfm_mags"
"olfm_errs"
"olpix_mags"
"olpix_errs"
"olps_mags"
"olps_errs"
"oIWIn_mags"
"oIWIn_errs"
"olwsm_msgs"
"olwsm_errs"
"xte:r:nLmags"
"xterm_errs"

An application is free to use any other defined type for class, using the above
file name format. The same is true for a message name and type, though it is
suggested that the name and type be used in an efficient and self-documenting
way.

Other reserved strings are ***_ stop where 1/***" can be any OPEN LOOK sup
ported client.

In addition to the files used by the message retrieval functions, the standard
application app-defaults file is created as usual and contains any static widget
string resources requiring localization. For each locale, the files are placed in
the /usr/X/lib/locale/locale _ name/app-defaults directory.

OPEN LOOK Toolkit files are placed in the
/usr /X/lib/locale/locale _name/messages directory.

Internationalization 6-13

The Internationalization of the OPEN LOOK Toolkit

I nternationalizi ng

There are three types of strings in the OPEN LOOK source code which need
internationalizing: error/warning messages, dynamically changing strings or
non-resource strings such as footer messages and widget resource strings such
as button labels and mnemonics. String conversion is addressed in a number of
ways:

• For both the OPEN LOOK Toolkit and clients, warning and error mes
sages are internationalized using 01 VaDisp1ayWarningMsg () and 01 VaD
isp1ayErrorMsg () calls. Both of these functions take variable argument
lists.

• For both the OPEN LOOK Toolkit and clients, dynamically changing
strings are internationalized with 01GetMessage () calls. Message classes
used include xo1_msg and xterIlLmsgs.

• For the OPEN LOOK Toolkit, application level resource strings are local
ized using 01GetMessage () .

• For clients only, static widget resource strings can be internationalized
using the client's app-defau1ts file.

• Mnemonics should be in the app-defau1ts file also and internationalized,
if desired.

~ A mnemonic is represented by a one byte character.

y
• File names, function names, and resource names are examples of strings

which do not need to be internationalized.

• The UNIX utility exstr is used to determine what strings a source file
contains. Refer to the UNIX System V Release 4 Programmer's Reference
Manual for information on using the exstr(l) utility.

6-14 Programmer's Guide: OPEN LOOK GUI

The Internationalization of the OPEN LOOK Toolkit

Internationalizing the Strings in an Application

You can internationalize the application strings by performing the following:

1. Run the UNIX utility exstr on the application source code to see what
strings exist in the program. See the UNIX System V Release 4
Programmer's Reference Manual for information about exstr(l).

2. Convert all errors and warnings to 01VaDisp1ayErrorMsg() and 01VaD
isp1ayWarningMsg() calls. See the OPEN LOOK GUI Programmer's Guide
and the information provided below.

3. Convert all miscellaneous strings (including string arguments to 01 VaD
isp1ayErrorMsg () and 01 VaDisp1ayWarningMsg (» to 01GetMessage ()
calls.

All three functions require a class, name, and type parameter; this is
explained below.

4. English or default messages can be compiled into the application or reside
in a default database, created by the application programmer, as
explained below.

5. Define widget string resources and mnemonics in the standard app
defaults/file.

Creating the Application app-defaults Files

OPEN LOOK associates a message class, name, and type with each message.
Class is currently used to differentiate among the OPEN LOOK Toolkit, the sup
ported OPEN LOOK clients, and other OPEN LOOK applications. A name and
type pair is used to map to a unique message within a database file. Thus an
entry in an Resource database file for OPEN LOOK has the following format:

*name.type: <default or local error message string>

Internationalization 6·15

The Internationalization of the OPEN LOOK Toolkit

Processing Text within an Application

Languages other than English may require different code set schemes and fonts.
In addition, a text string may contain characters from different code sets. Draw
ing of such text strings requires knowledge of the code set scheme used for a
language and the availability of specific fonts for that language. A facility has
been provided in the Internationalized OPEN LOOK Toolkit to handle the
drawing of encoded strings. See the "Structures" section below.

~
If an application is using a wchar_t string and it calls the function OlDraw

NOTE String () , then it is the responsibility of the application to convert a wchar_t
string to a multibyte string (using wcstombs(3X)) before passing it to the
function.

Structures

The following data structures are used to parse an encoded string and to query
and store code set and font related information to facilitate drawing of encoded
strings. Please see the OPEN LOOK GUI Programmer's Guide for more details.

OlStrSegment

The String Segment Information structure OlStrSegment is primarily intended
to be used by a parsing utility. The parsing utility parses an encoded string and
returns a sub-string in which all characters belong to the same character code
set. The structure definition is as follows:

Typedef struct _OlStrSegment {
unsigned short code_set; 1* EUC code set number *1
int
unsigned char

OlStrSegment;

OlFontList

len;
*str;

1* length of the string segment *1
1* string segment *1

The font list structure OlFontList caches the XFontStructs for locale-specific
groups of fonts specified via the fontGroup resource. The element num contains
the number of entries in the list. This structure is intended to be used with text
drawing routines where the supplied graphics context (gc) needs to be updated
with the font ID Font of the locale specific font before initiating an actual draw
ing request.

6-16 Programmer's Guide: OPEN LOOK GUI

The Internationalization of the OPEN LOOK Toolkit

typedef struct _OlFontList
int num;
XFontStruct ** fontl;
int *cswidth;
char ** csname;
char *fgrpdef;

OlFontList;

Functions

OlDrawString ()

{

/*
/*
/*
/*

number of XFontStruct in the list */
list of XFontStruct for local fonts
list of char. width in csname array
list of char. code set names */

The OlDrawString function is a general purpose text drawing utility meant to
replace the Xlib function XDrawString () for drawing an EVe encoded string.

The function OlDrawString () is meant for drawing a text string only. The
global replacement of XDrawString () with OlDrawString () is not recom
mended to internationalize an existing application if the application uses a
special fonts.

int
OlDrawString(display, drawable, fontlist, gc, x, y, string, len)
Display *display; /* display pointer */
Drawable drawable; /* drawable resource, e.g. window */

*/
*/

OlFontList list XFontStruct of localized fonts */ *fontlist; /*
GC gc to draw */ gc; /*
int
unsigned char
int

OlDrawImageString{)

x, y;
*string;
len;

/*
/*
/*

Initial position for drawing string */
encoded string to be drawn */
length of the string in bytes */

The OlDrawlmageString function is a general purpose text drawing utility
meant to replace the Xlib function XDrawlmageString () for drawing an EVe
encoded string.

Internationalization 6-17

The Internationalization of the OPEN LOOK Toolkit

OIDrawImageString{dpy, drawable, fontlist, gc, x, y, string, len}
Display *display;
Drawable drawable;
OIFontList *fontlist;
GC gc;
int x, y;
unsigned char *string;
int len;

OlGetNextStrSegment()

/*
/*
/*
/*
/*
/*
/*

display pointer */
drawable resource, e.g. window */
list XFontStruct of localized fonts */
gc to draw */
Initial position for drawing string */
encoded string to be drawn * /
length of the string in bytes */

The OlGetNextStrSegment () function is a parsing utility that parses an EUe
encoded string and returns a pre-allocated structure that contains a sub-string
and necessary information about the sub-string to enable caller to identify/draw
it.

int OIGetNextStrSegment{fontlist, parse, str, len}
OIFontList *fontlist;
OIStrSegment *parse;
unsigned char **str;
int *len;

OlCvtFontGroupToFontStructList()

This converter prepares a list of XFontStruct for a specified fontGroup and
returns a pointer to OlFontList structure. The returned font list is intended to
be used by an application with a call to function OlDrawlmageString If
OlFontList is not NULL, then widgets can use the OPEN LOOK text drawing
utilities (for example, OlDrawlmageString ()).

static Boolean
OICVtFontGroupToFontStructList {display, args, num_args, from, to, CacheRef}
Display *display;
XrmValue
Cardinal
XrmValue
XrmValue
XtPointer

6-18

*args;
*num_args;
* from;
*to;
*cache_ref;

Programmer's Guide: OPEN LOOK GUI

The Internationalization of the OPEN LOOK Toolkit

01 TextWidth ()

The 01 TextWidth function computes and returns the length of the given string
in pixels. The functionality is similar to XTextwidth except that the string may
be EVe encoded in multibyte format. The sub-string returned by 01Get
NextStrSegment () is used to compute the length of string in pixels.

int OlTextWidth(fantlist, string, len)
FontList *fantlist;
unsigned char *string;
int len;

01Fontlnfo

This structure keeps track of the maximum values of various font properties for
XFontStruct in the 01FontList structure. It is initialized and returned by the
function 01MaxFontlnfo (). The information is used by Button and Caption
widget drawing routines and may be used by an application to determine max
imum ascent, descent, height and width prior to calling drawing utilities. The
structure definition is as follows:

typedef Struct _OlFontlnfo
{

int ascent;
int descent;
int height;
int width;
} OlFantlnfo;

01MaxFontlnfo ()

This routine is a general purpose routine that returns a 01Fontlnfo structure
that contains maximum values for various font properties, given an
01FontList.

OlFantlnfo
OlMaxFantlnfo(fantlist)
OlFantList * fontlist;

Internationalization 6-19

The Internationalization of the OPEN LOOK Toolkit

Input Method

Unlike English, some languages require several key strokes to enter one charac
ter. Moreover, the same set of key strokes may map to more than one charac
ter. For GUIs to behave correctly with these languages in text input mode, a
mechanism must exist that maps key strokes to characters, possibly with some
linguistic help and user interaction. Such a mechanism is widely known as the
Input Method. The implementation of an Input Method may vary depending
upon the language. However, all Input Methods perform two major tasks:

1. composing characters from key strokes (commonly known as pre-editing)

2. echoing user key strokes somewhere on screen as an acknowledgement of
user action.

Besides variations in the Input Method implementation due to language specific
requirements, a particular implementation may also be influenced by other fac
tors such as, its placement of pre-edit window where user key strokes are
echoed. The following paragraphs discuss various alternatives for pre-editing.

Based upon the placement of the pre-edit window, the pre-editing phase may
be classified into four categories:

on-the-spot In on-the-spot pre-editing, scrolling data lines displayed in
the same window as the completed text. This is achieved by
moving and scrolling data in the window along the caret
every time new key strokes are entered or characters are
composed.

over-the-spot The over-the-spot pre-editing implements a separate win
dow to display pre-edit key strokes. This window overlaps
the text insertion window to provide a visual feedback
which is similar to the on-the-spot. Although, scrolling of
data is not required in this category, the pre-edit window
itself may need to be moved, so as not to obscure newly
completed text.

off-the-spot

6·20

off-the-spot pre-editing is a simplified version of over
the-spot, in which a pre-edit window is placed directly
under the text insertion window. Doing so, does not
require moving of pre-edit window since both pre-edit char
acters and composed characters are visible at the same time
(in different windows).

Programmer's Guide: OPEN LOOK GUI

root window

The Internationalization of the OPEN LOOK Toolkit

The last category, root window is similar to off-the-spot
except that it employs one pre-edit window (usually, at bot
tom of the screen) for all applications.

Figure 6-4: Four kinds of Input Methods

ON-THE SPOT

LOCAL LANGu(illEISH OVER-THE SPOT

IENGUSH OFF-THE SPOT

I LOCAL LANGUAGE I

IENGUSH ROOT WINDOW

I LOCAL LANGUAGE I

The OPEN LOOK Toolkit provides the hooks for the over-the-spot method.

Internationalization 6-21

The Internationalization of the OPEN LOOK Toolkit

Additionally, an Input Method may be implemented either as a front-end or a
back-end localized library. In the front-end implementation, Input Method inter
cepts all key (press) events coming from X server, filters some special keys (for
example, "Compose" key), echoes user key strokes in pre-edit window, and
sends composed characters to the application text insertion window, usually
when a special compose-key is entered by the user. In the back-end implementa
tion, user key strokes go to the application from X server as usual and the appli
cation passes the keys to an Input Method to receive composed character. Both
methods may use a localized library or a server to compose characters from user
key strokes.

The Localization Package for the Input Method

A set of locale dependent functions for the Input Method have been defined.
The following list of routines should be provided by any Input Method that is
designed to work with the OPEN LOOK Toolkit.

OlCloselm
OlOpenIm
OlResetlc
OlImofIc
OlCreatelc
OlDestroylc
OlGetImValues
OlSetlcFocus
OlunsetlcFocus
OlGetlcValues
OlSetlcValues
OlLookupImString
OlDisplayOfIm
OlLocaleOfIm

A library containing these functions for a particular locale should be installed in
usr/Xllib/locale/locale_name. The name of the library must be in the form
im _ name.so. At runtime, the Toolkit will automatically link in the input method
library using the UNIX System V Release 4 dynamic linking facility.

6·22 Programmer's Guide: OPEN LOOK GUI

The Internationalization of the OPEN LOOK Toolkit

~
If you wish to use an alternate path for a dynamic Input Method library, then

NOTE set the shell variable OLIMLIBPATH to the directory path that contains the 1M
library.

Structures
The Toolkit requires additional data structures to support Input Methods.
These data structures communicate information between the client and the Input
Method. They are initialized and manipulated by Input Method functions.

~
Some of the fields provided in the following structure may not be used for a

NOTE particular pre-edit implementation. This design assumes a shared pre-edit
window, that can be used either as an under-the-spot or an over-the-spot.

01 ImStyles

The OlImStyles structure contains supported style for the pre-edit window. A
convenience function OlGetImValues returns a pointer to this structure.

OlIm

typedef unsigned short OlImStyle;
typedef struct _OlImStyles {

short styles_count;
OlImstyle * supported_styles;
} OlImStyles;

The Input Method data structure OlIm contains global information about an
Input Method. It is created by the Input Method function OlOpenIm and des
troyed by the OlCloseIm function when no longer needed. There is one
instance of this structure per application (if the locale under which the applica
tion runs, requires one). The structure definition is as follows.

Internationalization 6·23

The Internationalization of the OPEN LOOK Toolkit

typedef struct _OlIm {

Olle

struct _OIIc
OIImStyles
OIImValuesList
char
char

long
void

} OIIm;

*iclist;
im_styles;
imvalues;
*appl_name;
*appl_class;
version;
*imtype;

1*
1*

1*
1*
1*
1*

Input context list *1
supported pre-edit types *1

application name *1
application class *1
OPEN LOOK version *1
hook for IM specific data *1

The Input Context structure OlIe contains necessary information about a text
window that is needed when the user enters into pre-edit mode. There is one
such structure for each text window in an application. It is used to advise the
Input Method on the placement of pre-edit window, status window, their attri
butes, fonts to use to draw text in the pre-edit window and so on. This struc
ture is initialized by the Input Method OlCreatIe function and is destroyed by
the OlDestroy() function when no longer needed. The structure definition is
as follows.

struct _OlIc {
Window
XRectangle
Window
OlIcWindowAttr
XRectangle
OlICWindowAttr
XRectangle
OIImStyle
XPoint
struct _OIIm
struct _OlIc
void
} OlIc;

01 IeValues

cl_win;
cl_area;

1* client window ID *1
1* client area for pre-edit window *1

focus_win; 1* focus window ID *1
s_attr; 1* attributes for status window *1
s_area;
pre_attr;
pre_area;
style;
spot;
*im;
*nextic;
*ictype;

1* area for status window *1
1* attributes for pre-edit window *1
1* area for pre-edit window *1
1* styles needed for this Ie *1
1* cur. cursor location in text win. *1
1* ptr. to OIIm structure *1
1* ptr. to next in list *1
1* IM specific hook *1

The OlIeValues structure defines a list of input context attribute names and
value pairs. It is used by the following:

6·24 Programmer's Guide: OPEN LOOK GUI

The Internationalization of the OPEN LOOK Toolkit

1. an application to communicate to the Input Method the desired attributes
for its input contexts

2. by TextEdit widget or xterm to alter/retrieve attribute values

The end of the list is indicated by a NULL value for the attribute name.

typedef struct _OlICValues {
char * attr_Dame;
void * attr_value;
} OlICValues;

typedef OlIcValues * OlICValuesList;

Attribute Name Attribute Value Type
01c1ientArea XRectangle
OlclientWindow Window
01c1ientAttributes pointer to OlIm WinAttributes
OlstatusArea XRectAngle
OlstatusAttributes pointer to OUm WinAttributes
OlcursorLocation XPoint
01 ImFontList pointer to OIFontList
OlLineSpacing unsi gn ed short number of p ixels

01 ImFunct ions

This structure contains addresses of locale dependent Input Method functions.
The structure is initialized by an Input Method stub function OlSetuplnput
Method(), at the initialization time (and subsequently when an application
wants to switch Input Method based on a change in its current locale). On
UNIX System V Release 4 systems, the localization package is provided as a
dynamic shared library, and in that case the functions' addresses are initialized
using the dynamic library linker functions from section (3X). The structure
definition is as follows:

Internationalization 6-25

The Internationalization of the OPEN LOOK Toolkit

typedef struct _OllmFunctions {
Ollm *(*OIOpenlm)()i
void (*OICloseIm)()i
Ollc *(*OICreatelc)()i
int
void
void
void
char
char
char
OlIm
Display
char
void

(*OILookuplmString)()i
(*OIDestroylc)()i
(*OISetlcFocus)()i
(*OIUnsetlcFocus)()i

*(*OIGetlcValues)()i
*(*OISetlcValues)()i
*(*Resetlc)()i
* (*OlImOfIc) () i
*(*OIDisplayOfIm)()i
*(*OILocaleOflm)()i

(*OIGetlmValues)()i
} OIImFunctionsi

The following list briefly describes each of the above functions. More informa
tion is offered in the next subsection and in the OPEN LOOK GUI Programmer's
Guide.

OIOpenlmI ()
is responsible for opening the locale dependent Input Method and
initializing the OlIm structure.

OICIoselm()
is responsible for closing the Input Method and destroying data
structure associated with it.

OICreatele ()
is responsible for creating an "input context" within the Input
Method. The function also creates and initializes an Olle struc
ture.

OIDestroyle()
destroys an input context created by OICreatele () function and
removes any data structures associated with it.

OILookupImString()

6-26

is responsible for obtaining a string and/or keysym associated
with user key strokes in pre-edit mode.

Programmer's Guide: OPEN LOOK GUI

The Internationalization of the OPEN LOOK Toolkit

OlSetlcFocus()
sets and keeps track of Input Focus for an input context.

OlUnsetlcFocus ()
unsets the Input Focus from an input context.

OlGetlcValues()
is a convenience function to retrieve input context attributes.

OlSetlcValues ()
is a convenience function to set/alter input context attributes and
description.

OlImofIc()
returns a pointer to an OlIM structure associated with the
specified Input Context.

OlResetlc ()
resets the input context to its initial state.

OlDisplayOfIm()
returns a pointer to the display corresponding to the given Input
Method.

OlLocaleOfIm()
returns a locale name string under which the specified Input
Method runs.

OlGetlmValues ()
returns a list of properties and features supported by the Input
Method.

01 IcWindowAttr

This structure contains some window attributes that are needed by an Input
Method to implement Toolkit-defined look and feel of the pre-edit window (and
perhaps status window). The line _spacing field specifies the space in pixels
between lines in a text window. This information may be used by the Input
Method for proper placement of a pre-edit window. The cursorcolor and color
map information may remain unused. The structure definition is as follows.

Internationalization 6-27

The Internationalization of the OPEN LOOK Toolkit

The OIImCallback structure provides support for the use of on-the-spot
Input Methods. It is used by an application to pass the addresses of pre
editing callback functions to the input method. See OISetIcValues (the
attribute of OINcallbacks) for a description of the callback functions to be
provided. Note that the TextEdit widget supports over-the-spot Input
Methods and does not use pre-edit callbacks.

typedef struct _OIIm.Callback {
OIImValues client_data;
OIImProc callback;
} OIImCallback;

typedef struct _OIIcWindowAttr
Pixel background;
Pixel foreground;
Colormap colormap;
Colormap std_colormap;
Pixmap back-pixmap;
OIFontList fontlist;

/* background pixel */
/* background pixel */
/* colormap for pre-edit to use */

/* background pixmap for IM to use
/* font list for text drawing */

*/

int spacing; /* line spacing for text lines in PE */
CUrsor cursor; /* cursor to use for PE window */
OIImCallback callback[NUM_IM_CALLBACKS];
} OIIcwindowAttr;

Functions
All of the functions described in this section are provided by the localization
library for the Input Method. These functions are used by the TextEdit widget
and the xterm client.

OlCreatelc()

The OlCreatelc () is used to register a client text insertion window with Input
Method. It is responsible for creating a context within an Input Method and ini
tializing necessary data structures for later use by other Input Method functions
that manipulate a pre-edit window or its contents.

OIIc *OICreatelc{im, icvalues_list)
OIIm *im;
OIIcValues *icvalues;

6-28 Programmer's Guide: OPEN LOOK GUI

The Internationalization of the OPEN LOOK Toolkit

OlDestroyle () The OlDestroyle function is responsible for destroying the
input context associated with a text insertion window that was created by the
OlCreatele function. The Input Method destroys all internal data structures
for the input context.

void OIDestroyle(ie)
Olle * ie;

OlSetleFoeus()

The OlSetleFoeus () function should set the internal state of an input method
to indicate that the text insertion window associated with the ie argument has
received the input focus.

void OISetleFoeus(ie)
Olle * ie;

OlUnsetleFoeus()

The OlUnsetleFoeus function should set the internal state of an input method
and indicate that the last insertion window associated with the ie argument has
lost input focus.

void OIUnsetleFoeus(ie)
Olle * ie;

OlGetICValues()

The caller of the OlGetleValues function passes a OlIeValues list with a set of
attribute names whose values are desired. The function fills in the values for
those attributes and returns it to the caller. The input method may unmap the
status window for the input context and ungrab the keyboard.

ehar* OIGetlevaIues(ie, ievalues)
Olle * ie;
OlleVaIues ievalues;

OlSetleValues()

The OlSetleValues function is responsible for setting/altering the fields of the
OlIe structure based on the attribute values passed. The caller of this function
passes an OlIeValues list containing a list of (attribute, value-name,) pairs. The
function updates the OlIe structure appropriately.

Internationalization 6-29

The Internationalization of the OPEN LOOK Toolkit

char
OlSetleValues(ie, ievalues)
OlIe * ie;
OlIeValues ievalues;

OlLookuplmString()

The OlLookuplmString function is similar to the Xlib function, XLookup
String () except that it takes an extra ic argument and mayor may not return
any string for the given key(press) event. It serves as an entry-point into the
Input Method. The function sets up the necessary environment for pre-edit
mode. It returns a composed character when available.

int
OlLookupImString(event, ie, buffer_return, buffer_len,

keysym_return, status_return)
KeyEvent *event;
OlIe *input_eontext;
char *buffer_return;
int buffer_len;
KeySym *keysym_return;
01 ImStatus * status_return;

Other Changes

The following changes are here for your information only. The changes are for
the most part internal to the Toolkit.

TextEdit Widget

The TextEdi t widget provides full text editing functionality in the OPEN
LOOK widget set. The TextEdit widget supports the input and storage of
multibyte characters. It hides details of the Input Method from the application
programmer. All OPEN LOOK utilities that manipulate TextEdit widget data
have been modified to handle multibyte characters. (Backwards compatibility
has been preserved.) The TextEdit widget supports over-the-spot input
methods. (Both front-end and back-end input methods are supported.)

6-30 Programmer's Guide: OPEN LOOK GUI

The Internationalization of the OPEN LOOK Toolkit

xterm
xtenn provides terminal emulation capabilities in the OPEN LOOK environ
ment. It provides users with a UNIX shell environment and text editing ability.
Because xterm is a self-contained application in the sense that it does not rely on
a TextEdit widget for text processing, it provides the same Input Method
mechanism provided by the TextEdit widget. Being an OPEN LOOK applica
tion, xterm uses the Ollnitialize () routine and hence it automatically inherits
the locale announcement mechanism.

Internationalization 6-31

7 Extensive Widget Sampler
Program

Design Objectives

Program Description

Table of Contents

7-1

7-3

Design Objectives

The sampler program includes all of the widgets, gadgets, and flattened widgets
that comprise the OPEN LOOK toolkit.

The program is of value both to the applications programmer and to the end
user. The end-user can get a practical sense of what it is like to work with each
of the widgets. The applications programmer can use it as a springboard for
initial development since it presents a step-by-step approach to creating and
using each one of the OPEN LOOK widgets.

The program is densely commented and, therefore, is not annotated.

Most of the widget definitions use at least a subset of possible resources to
demonstrate some of its functionality. Often, where a particular coding objec
tive could be achieved in several ways, both are used as illustration - for exam
ple, in naming widgets and setting widget resources.

Excerpts from this example appear as a section in Chapter 3 of this document.
The excerpts include the creation and use of the textfield widget to enter data,
the slider widget, the stub widget and the placement of widgets on the form.
The excerpts are heavily annotated.

The source code of the program is included in the product release and can be
found in /usr /X/ lib/tutorial /Xol / s_sampler . c.

The following figure shows the output of the widget sampler.

Extensive Widget Sampler Program 7-1

Design Objectives

Figure 7-1: The Open Look Widget Sampler

Excly;:i'lle;:: _

7-2

Texte-::lit: Thi;: text i~ in textedit
widget nd c n be edited.

So::roliin91i;:t

'.:.:.::.::::J

~
ITEM~

W
...

ITEM! t This text: is in I , ... ;:t ti.::toll;:-:t wi.;lg
ITEMS,

I
in ;:crolled wi

I ITEM £. yo 0:: 1"1 mo:: i
-1I.nd clown or Ie

IT~M E .;.,r.d ri9M't with t
tw¢ ~cfollb r;:. i ITEM !: 1 ~

ITEM {j :J'KI!:l---J

OPEN LOOK GUI Programmer's Guide

Program Description

1 1**

2

3

4

5

6

/*

/*

/*

/*

/*

OPEN LOOK WIDGET SAMPLER : prototype widgets and use of form

Copyright (c) 1989 AT&T

Copyright (c) 1988 Hewlett-Packard Company

Copyright (c) 1988 Massachusetts Institute of Technology

7 1**

8 #include <stdio.h>

9 /*

10 * Headers required for all OPEN LOOK applications.

11 */

12 #include <Xll/Intrinsic.h>

13 #include <Xll/StringDefs.h>

14 #include <Xol/OpenLook.h>

15 /*

16 * Headers required for creating widget instances.

17 */

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

<Xol/AbbrevMenu.h>

<Xol/BulletinBo.h>

<Xol/Button.h>

<Xol/Caption.h>

<Xol/CheckBox.h>

<Xol/ControlAre.h>

<Xol/Exclusives.h>

<X01/FooterPane.h>

<Xol/Form.h>

<X01/Gauge.h>

<Xol/MenuButton.h>

<Xol/Nonexclusi.h>

<Xol/Notice.h>

<Xol/OblongButt.h>

<Xol/PopupWindo.h>

<Xol/RectButton.h>

<Xol/Scrol1bar.h>

Extensive Widget Sampler Program 7-3

Program Description

35

36

37

38

39

40

41

42

#include

#inc1ude

#include

#include

#include

#include

#include

#include

43 /*

<Xol/Scrol1edWi.h>

<Xol/ScrollingL.h>

<Xll/Shell.h>

<Xol/Slider.h>

<Xol/StaticText.h>

<Xol/Stub.h>

<Xol/TextEdit.h>

<Xol/TextField.h>

44 * Headers required for creating flat widget instances.

45 */

46 #include <Xol/FExclusive.h>

47 #include <Xol/FNonexclus.h>

48 #include <Xol/FCheckBox.h>

49 /*

50 * icon.xpm is the pixmap for the application's icon

51 */

52 #include "icon.xpm"

53 /*

54 * Defines.

55 */

56 #define MAXTEXT 1000

57 #define MAXBUF 100

58 /*

59 * OI_PointToPixel scales to the current screen resolution.

60 */

61 #define N1_H_PlXEL OI_PointToPixel(OL_HORIZONTAL,l)

62 #define N1_V_PlXEL OI_PointTopixel(OL_VERTlCAL,l)

63 #define N10_H_PlXELS OI_pointToPixel(OL_HORIZONTAL,10)

64 #define N10_V_PlXELS OI_pointTopixel(OL_VERTlCAL,10)

65 #define N50_V_PlXELS OI_PointToPixel(OL_VERTlCAL,50)

66 #define N100_H_PlXELS OI_PointToPixel(OL_HORIZONTAL,100)

7-4 OPEN LOOK GUI Programmer's Guide

Program Description

67 #define N100_V_PIXELS Ol_PointToPixel(OL_VERTICAL,100)

68 #define N150_H_PIXELS Ol_PointToPixel(OL_HORIZONTAL,l50)

69 #define Nl50_V_PIXELS Ol_PointToPixel(OL_VERTICAL,150)

70 #define N200_H_PIXELS Ol_PointToPixel(OL_HORIZONTAL,200)

71 1*

72 * Global variables.

73 *1

74

75

76

static Pixel

static int

red-pixel,blue-pixel,purple-pixel,green-pixel,

yellow-pixel,orange-pixel,skyblue-pixel;

ii

77 static Boolean rainbow FALSE;

78 1*

79 * Note: In many cases, a widget is labelled py making it the

80 * child of a caption, which itself is a child of the form.

81 *1

static Widget toplevel,

controlarea,cabutton,

form,

gauge,

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

abbmenu_caption, 1* caption for abbreviatedmenubutton

bb_caption, 1* caption for bulletinboard *1

ca_caption, 1* caption for controlarea *1
caption, 1* "True" caption *1
cb_caption, 1* caption for checkbox *1
f_caption, 1* caption for flats *1
fm_caption, 1* caption for form *1
gd_caption, 1* caption for gadgets *1
g_caption, 1* caption for gauge *1

slist_caption, 1* caption for scrollinglist *1
slider_caption, 1* caption for slider *1

te_caption, 1* caption for textedit *1
sw_caption, 1* caption for scrolledwindow *1
nonexclusives,nebutton2,nebutton3,

100 noticeshell,noticebox,

Extensive Widget Sampler Program

*1

7-5

Program Description

101 popupshellO,

102 popupshell1,

103 popupshell2,

104 scrollbar,

105 stub,

106 footer_text;

107 1*

108 * Form constraint resources used for most widgets in application.

109 *1

110 static Arg genericARGS[] = {

111 XtNxRefName, NULL },

112 XtNyRefName, NULL },

113 xtNxOffset,(XtArgVal) 0 }, 1* to be initialized below *1

114 XtNYQffset,(XtArgval) 0 }, 1* to be initialized below *1

115 xtNxAddWidth, (XtArgVal) TRUE },

116 XtNyAddHeight, (XtArgVal) TRUE },

117 };

118 1*

119 * UTILITY FUNCTIONS

120 *1

121 1*

122 * Function to vary value displayed in gauge widget.

123 *1

124 static void

125 ChangeGauge(widget)

126 widget widget;

127

128

129

Arg arg;

int current_value;

130

131

XtSetArg(arg,XtNsliderValue,¤t_value);

XtGetValues(widget,&arg,1);

132 current_value+=10;

7-6 OPEN LOOK GUI Programmer's Guide

Program Description

133 if (current_va1ue>100)

134 current_value=O;

135 /*

136 * The following convenience routine is faster than a SetValues.

137 */

138 OlSetGaugeValue(gauge,current_value);

139

140 /*

141 * Xt and xlib examples to give functionality to the stub widget.

142 */

143 static void

144 DrawAndPrint(widget,xevent,region)

145 Widget widget;

146 XEvent *xevent; /* not used * /

147 Region region; /* not used */

148

149 Display *display;

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

static Window window;

static Boolean done1 FALSE, done2

static GC gc[6];

XGCValues values;

int i, ix5, ix10, coord, axis, finish

static int hpixel,vpixel;

Font fid = (Font) 0;

char *fontname = "*12bluci";

XtGCMask mask;

display = XtDisplay(widget);

window = XtWindow(widget);

if (!done1) {

hpixel

vpixel (int) N1_V_PlXEL;

if (hpixel==O)

hpixel=l;

if (vpixel==O)

vpixel=l;

Extensive Widget Sampler Program

FALSE;

180*64;

7-7

Program Description

168

169

done1 TRUE;

170

171

172

if (rainbow) {

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

7-8

values. line_width 5*hpixel;

if(!done2)

mask = (XtGCMask) (GCForeground I GCLineWidth);

values. foreground = red-pixel;

gc[Ol= XtGetGC(widget,mask, &values);

values. foreground = orange-pixel;

gc[11= XtGetGC(widget,mask, &values);

values. foreground = yel1ow-pixel;

gc[21= XtGetGC(widget,mask, &values);

values. foreground = green-pixel;

gc[31= XtGetGC(widget,mask, &values);

values. foreground = blue-pixel;

gc[41= XtGetGC(widget,mask, &values);

va1ues.foreground = purple-pixel;

gc[51= XtGetGC(widget,mask, &values);

for(i=0;i<6;i++)

ix5 = i*5;

ix10 i*10;

axis = 95 - ix10;

coord = ix5 + 5;

XDrawArc(display, window, gc[il,

coord*hpixel,

coord*vpixel,

(unsigned int) (axis*hpixel),

(unsigned int) (axis*vpixel),

0, finish);

OPEN LOOK GUI Programmer's Guide

Program Description

201 else

202 XClearwindow(display,window);

203 1*

204 * Get font for this screen resolution.

205 *1

206 fontname [0] = OlGetResolution(XtScreen(widget»;

207 fid = XLoadFont(display,fontname);

208 1*

209 * If successful, label the widget.

210 *1

211 if(fid != (Font) 0) {

212 values. font = fid;

213 gc [0] = XtGetGC(widget, (XtGCMask) GCFont, &values);

214 XDrawString(display,window,gc[O],5*hpixel,

215 70*vpixel, "STUB WIDGET",ll);

216 XtReleaseGC(stub,gc[O]);

217 XUhloadFont(display,fid);

218

219 1*

220 * This function merely varies the value displayed in the gauge.

221 *1

222 ChangeGauge(gauge);

223

224 1*

225 * Function for changing the footer message.

226 *1

227 static void FooterMessage(footer_text,buf)

228 Widget footer_text;

229 char buf[];

230

231 Arg arg;

232 XtSetArg(arg,XtNstring,buf);

Extensive Widget Sampler Program 7-9

Program Description

233

234

235 /*

xtSetValues(footer_text,&arg,l);

236 * Function for getting color values for the display.

237 */

238 static void

239 GetColors

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

7-10

Xr.mValue framValue,toValue;

static char *colors[] = {

"purple" ,"blue" , "green ll ,

llyellow", "orange ll , "redll,"skyblue"

};

int ncolors = 7;

for(i=0;i<7;i++) {

framValue.size = sizeof(colors[i]);

framValue.addr = colors[i];

XtConvert(toplevel,

XtRString,&framValue,XtRPixel,&toValue);

switch(i) {

case 0:

purpleJ)ixel *«Pixel *)toValue.addr);

break;

case 1:

blueJ)ixel *«Pixel *)tovalue.addr);

break;

case 2:

greeIl,...llixel *«Pixel *)toValue.addr);

break;

case 3:

yellowJ)ixel *«Pixel *)toValue.addr);

break;

case 4:

orangeJ)ixel *«Pixel *)toValue.addr);

break;

OPEN LOOK GUI Programmer's Guide

Program Description

case 5:

case 6:

red-pixe1

break;

*«Pixe1 *)toVa1ue.addr);

268

269

270

271

272

273

274

275

276

skyb1ue""pixe1= * «Pixel *)toVa1ue.addr);

break;

277 /*

278 * Function for positioning widgets on the form.

279 *

280 * Note: XtNx[y] Ref Name are used instead of XtNx[y]RefWidget so

281 * that resources for each widget can be set in an .Xdefau1ts

282 * file. In addition, this also allows specifying the placement

283 * of any widget on the form without first having to place the

284 * corresponding reference widget(s) on the form. (This would

285 * NOT be the case with the XtNx[y]RefWidget resource).

286 */

287 static void

288 SetPosition(widget, xwidget, yw!dget)

289 Widget widget;

290 char *xwidget, *ywidget;

291

292

293

294

295

296

297

298

299 /*

static int nargs;

if(nargs == 0)

nargs = XtNumber(genericARGS);

genericARGS[0].va1ue = (XtArgVa1) xwidget;

genericARGS[1].va1ue = (XtArgVa1) ywidget;

XtSetVa1ues(widget,genericARGS,nargs);

300 * Function for creating a custom icon for the application.

301 */

Extensive Widget Sampler Program 7·11

Program Description

302 static void

303 SetProgramIcon(tqplevel)

304 Widget tqplevel;

305

306 Pixmap program......icon;

307 Arg arg[2];

308 int i;

309 Screen *screen;

310 screen = xtScreen(tqplevel);

311 1*

312 * "icon_" values fram icon.xpm

313 *1

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328 1*

program_icon XCreatePixmapFramData(XtDisplay(tqplevel),

RootWindowOfScreen{screen),

DefaultColormapOfScreen(screen),

icon_width, icon_height,

DefaultDepthOfScreen(screen),

icon_DColors,

icon_chars-Per-pixel,

icon_colors,

icon-pixels) ;

i=O;
XtSetArg(arg[i],XtNiconPixmap,(xtArgVal) program_icon); i++;

XtSetArg{arg[i],XtNiconName, (xtArgVal) "s_s~ler"); i++;

XtSetValues(tqplevel,arg,i);

329 * Function for creating a special cursor for the stub widget.

330 *1

331 static void

332 SetStubCursor(widget)

333 Widget widget;

334

335 static Cursor cursor;

7·12 OPEN LOOK GUI Programmer's Guide

Program Description

336 1*

337 * See OlCorsor.c for other cursor possibilities.

338 *1

339 cursor = Get01QuestiODCursor(xtScreen(widget»;

340 XDefineCursor(xtDisplay(widget) ,XtWindow(widget) ,cursor);

341

342 1*

343 * Event handler example to give functionality to the stub widget.

344 *1

345 static void

346 StubEventHandler(widget,clientData,event)

347 Widget widget;

348 XtPointer clientData;

349 XEvent *event;

350

351 XCrossingEvent *xce;

352 1*

353 * The xce pointer allows referencing to event specifics - see Xlib.h

354 *1

355 if(event->type==EnterNotify II event->type==LeaveNotify)

356 xce = (XCrossingEvent *) &:(event->xcrossing);

357 else

358 return;

359 if (event->type ==EnterNotify)

360 FooterMessage(footer_text,

361 "Footerpanel: Pointer entered STUB widget");

362

363

364

365

366 1*

else

FooterMessage(footer_text,

"Footerpanel: Pointer left STUB widget");

367 * CALLBACKS FOR WIDGETS

368 *1

Extensive Widget Sampler Program 7·13

Program Description

369 /*

370 * With this callback, each widget passes its index as

371 * clientData and thus maps to its own footerpanel message.

372 */

373 static void

374 genericCB(widget,clientData,callData)

375 Widget widget;

376 xtPointer clientData,callData;

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

7·14

int n = (int) clientData;

switch(n) {

case 1:

Footer.Message(footer_text,

break;

case 2:

case 3:

case 4:

"Footerpanel: OBLONGBUTTON callback");

char buf [MAXBUF] ;

sprintf (buf,

"Footerpanel: [NON] EXCLUSIVES callback for button %Ii" ,n-l);

Footer.Message(footer_text,buf);

break;

case 5:

Footer.Message(footer_text,

"Footerpanel: POPUP apply callback");

break;

case 6:

OPEN LOOK GUI Programmer's Guide

Program Description

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421 static void

FooterMessage{footer_text,

"Footerpanel: POPUP setdefaults callback");

break;

case 7:

FooterMessage{footer_text,

"Footerpanel: POPUP reset callback");

break;

case 8:

FooterMessage{footer_text,

"Footerpanel: POPUP reset factory callback");

break;

case 9:

FooterMessage{footer_text,

"Footerpanel: OBLONGBUTTONGADGET callback");

break;

case 10:

FooterMessage{footer_text,

"Footerpanel: FLAT select callback");

break;

422 checkboxCB{widget,clientData,callData)

423 Widget widget;

424 XtPointer clientData, callData;

425

426

427

428 1*

Arg arg;

OlDefine position;

429 * Get the current value.

Extensive Widget Sampler Program 7-15

Program Description

430 *1

431 xtSetArg(arg,xt~sitian,&positian);

432 xtGetValues (widget,&arg, 1);

433 1*

434 * Toggle it.

435 *1

436 if(positian == (OlDefine) OL_LEFT)

437 xtSetArg(arg,~sition,OL_RIGHT);

438

439

440

441

442 1*

else

XtSetValues(widget,&arg,l);

443 * The MenuSelectCB callback is used ~ the pulldow.n menu

444 * popup menu, and abbreviatedmenubuttan widget and gadget.

445 *1

446 static void

447 menuSelectCB(widget,clientData,callData)

448 Widget widget;

449 xtPointer clientData,callData;

450

451

452

453

454

455

456

int n = (int) clientData;

char buf [MAXBUF] ;

sprintf (buf, "Footerpanel: Button %Ii selected" ,n);

FooterMessage(footer_t~,buf);

457 static void

458 nonexclusivesCB(widget,clientData,callData)

459 Widget widget;

460 xtPointer clientData,callData;

461

462 Widget parent = (Widget) clientData;

463 1*

7-16 OPEN LOOK GUI Programmer's Guide

Program Description

464 * If only "More" button, create "Fewer" button.

465 */

466 if(widget == nebutton2 && nebutton3 == (Widget) 0) {

467 nebutton3 = XtCreateManagedWidget

468 ("Fewer",rectButtonWidgetClass,parent,NULL,O);

469 XtAddCallback(nebutton3,XtNselect,

470 nonexclusivesCB,(XtPointer) nonexclusives);

471 XtAddCallback(nebutton3,XtNselect,

472 genericCB, (XtPointer) 4);

473

474 /*

475 * If all three buttons, delete "Fewer" button.

476 */

477 else if(widget == nebutton3 && nebutton3 != (Widget) 0) {

478 XtDestrqyWidget(nebutton3);

479 nebutton3 = (Widget) 0;

480

481

482 static void

483 noticeCB1(widget,callData,clientData)

484 Widget widget; /* w = emanating button:

485 where notice does popup * /
486 XtPointer callData, clientData;

487

488 Arg arg;

489 XtSetArg(arg, XtNemanateWidget, (XtArgval)widget);

490 XtSetValues(noticebox, &arg, 1);

491 XtPopup(noticeshell, XtGrabExclusive);

492

493 static void

494 noticeCB2(widget,clientData,callData)

495 widget widget;

496 XtPointer clientData,callData;

497

Extensive Widget Sampler Program 7-17

Program Description

498

499

500

FooterMessage(footer_text,"Footerpanel: ADIOS !!!");

exit(O);

501 static void

502 popupCB(widget,clientData,callData)

503 Widget widget;

504 XtPointer clientData,callData;

505

506

507

XtPopup(clientData,XtGrabNone);

508 1*

509 * The rainbowCB callback is for the RAINBOW button.

510 *1

511 static void

512 rainbowCB(widget,clientData,callData)

513 Widget widget;

514 XtPointer clientData,callData;

515

516

517

518

519

520

521

522 1*

if (rainbow)

rainbow=FALSE;

else

rainbow=TRUE;

DrawAndPrint(stub, (XEvent *)O,(Region)O);

523 * This callback is used b¥ all three scrollbars.

524 *1

525 static void

526 scrollbarCB(widget,clientData,callData)

527 Widget widget;

528 XtPointer clientData,callData;

529

530

531

7-18

OlScrollbarVerify *sbv = (OlScrollbarVerify *) callData;

int n = (int) clientData;

OPEN LOOK GUI Programmer's Guide

Program Description

532 char buf [MAXBUF] ;

533 sbv->ok TRUE;

534 switch(n) {

535 case 0:

536 sprintf(buf,

537 "Footerpane1: Form scro11bar moved to 9-od.%%",

538 sbv->new_1ocation);

539 break;

540 case 1:

541 sprintf(buf,

542 "Footerpane1: Scro11edwindow vertical scro11bar moved");

543 break;

544 case 2:

545 sprintf(buf,

546 "Footerpane1: Scro11edwindow horizontal scro11bar moved");

547 break;

548

549 FooterMessage(footer_text,buf);

550 /*

551 * UPdate the form's scro11bar page indicator.

552 */

553 if (widget==scro11bar)

554

555

556 static void

sbv->new""page (int) (sbv->new_1ocation/10) + 1;

557 scro11ing1istCB(widget,c1ientData,ca11Data)

558 Widget widget;

Extensive Widget Sampler Program 7-19

Program Description

559

560

XtPointer clientData,callData;

561 OIListToken token = (OIListToken) callData;

562 OIListItem *selected_listitem;

563 char buf [MAXBUF] ;

564 1*

565 * This macro identifies the item selected.

566 */

567 selected_list item = OIListItemPointer(token);

sprintf(buf,

568

569

570

571

572

573

"Footerpanel: SCROLLING LIST : Item label %s Data stored 'Ynd",

selected_listitem->label,selected_listitem->user_data);

FooterMessage(footer_text,buf);

574 static void

575 sliderCB(widget,clientData,callData)

576 Widget widget;

577 XtPointer clientData,ca1IData;

578

579 Arg arg;

580 /*

581 * Slider returns current value.

582 */

583 arg.value = (XtArgVal) *callData;

584 XtSetArg(arg,XtNbackground,arg.va1ue);

585 XtSetValues(stub,&arg,l);

586

587 static void

588 textfieldCB(widget,clientData,callData)

589 Widget widget;

590 XtPointer clientData,callData;

591

592 OITextFieldVerify *tfv (OITextFieldVerify *) callData;

7-20 OPEN LOOK GUI Programmer's Guide

Program Description

593

594

595

char buf [MAXBUF] ;

Arg arg;

596

597

598

sprintf (buf, "Footerpane1: TEXTFIELD User Input: %sO,

tfv->string) ;

FooterMessage(footer_text,buf);

599

600

601

XtSetArg (arg, XtNstring, (XtArgVa1));

XtSetVa1ues(widget,&arg,1);

602 1*

603 * THE WIDGET TREE:

604 *
* Top1eve1

*
* Footerpane1

* 1 x

* Form Statictext

* 1

605

606

607

608

609

610

611 * Remaining OPEN LOOK widgets, gadgets, and flats

612 *1

613 1*

614 * MAIN

615 *1

616 int main(argc,argv)

617 int argc;

618 char *argv[];

619

620 Arg arg[10];

621 1*

622 * Initialize the environment.

623 *1

624

Extensive Widget Sampler Program 7-21

Program Description

625

626

627

628

629

630

toplevel OIInitialize("s_sampler",

IIs_sampler",

i=O;

(Xr.mQptionDescRec *) NULL,

(Cardinal) 0,

&argc,

argyl ;

631

632 xtSetArg(arg[i),XtNtitle, (XtArgVal) "s_sampler");i++;

633 XtSetValues(toplevel,arg, i);

634 /*

635 * Get colors to use later.

636 */

637 GetColors;

638 /*

639 * Set the pixmap for program icon window

640 */

641 SetProgramIcon(toplevel);

642 /*

643 * Set FORM resources for the specific screen.

644 */

645

646

647

648 /*

genericARGS[2).value

genericARGS[3).value

(XtArgVal) N10_H_PlXELS;

(XtArgVal) N10_V_PlXELS;

649 * Make all the widgets and then do placement on the for.m last.

650 */

651 /*

652 * FOOTERPANEL: This will be the child of toplevel, with

653 * the FORM as the topchild and STATICTEXT as the footer child.

654 */

655

656

7-22

Widget footerpanel;

OPEN LOOK GUI Programmer's Guide

Program Description

657 footerpanel = XtCreateManagedWidget ("footerpanel" ,

658 footerPanelWidgetClass,toplevel,NULL,O);

659 1*

660 * FORM: Form's caption is the top child of the footerpanel.

661 *1

662

663

664

665

i = 0;

XtSetArg{arg[il,Xt~sition,{XtArgVal) OL_TDP); i++;

xtSetArg{arg[il,xtNalignment, (XtArgVal) OL_CENTER); i++;

XtSetArg{arg[il ,XtNlal:lel, (XtArgVal) "Form"); i++;

666 fIn_caption = XtCreateManagedWidget ("fm_caption",

667 captionWidgetClass,footerpanel,arg,i);

668 form = XtCreateManagedWidget (" form" ,

669 fo~idgetClass,fm_caption,NULL,O);

670 1*

671 * Register help for the form, using the file "form. help"

672 *1

673 (void) OlRegisterHelp{ OL_WIDGET_HELP, (XtPointer) form,

674 "Form Widget", OL_DISICSOlJRCE, " lusr IX/lib/tutorial/Xoll form. help") ;

675 1*

676 * Make STATICTEXT as the footer child of the footerpanel.

677 *1

678 i = 0;

679 XtSetArg{arg[il, XtNstring,

680

681

682

683

684

(XtArgVal) "Statictext (read only) for the Footerpanel ••• ");

685 1*

i++;

footer_text = xtCreateManagedWidget{"statictext",

staticTextWidgetClass,footerpanel,arg,i);

686 * All the remaining widgets will be on the form.

687 *1

Extensive Widget Sampler Program 7-23

Program Description

688 1*

689 * CAPTION: to label the controlarea, latter to be created next.

690 *1

691 i = 0;

692 xtSetArg(arg[il ,XtNxResizable, (XtArg'Val) TRUE); i++;

693 XtSetArg(arg[il ,XtNxAttachRight, (XtArg'Val) TRUE); i++;

694 XtSetArg(arg[il ,XtNlabel, (XtArgVal) "Controlarea: "); i++;

695 ca_caption = xtCreateMaIlagedWidget ("ca_caption",

696 captionwidgetClass,fo~,arg,i);

697 1*

698 * CONTROLAREA: the control area contains a README oblongbutton with

699 * with a popup statictext message, a popup cOll'lll1aIld window, a popup

700 * property window, and an EXIT button with a notice widget which pops

701 * up when the button is selected.

702 *1

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

7·24

Widget widget,popupcaOl;

static char stext[~TEXT1;

FILE *fp = (FILE *) NULL;

controlarea = XtCreateMaIlagedWidget("controlarea",

controlAreaWidgetClass,ca_caption,NULL,O);

widget = XtCreateManagedWidget("README",

oblongButtonwidgetClass,controlarea,NULL,O);

i=O;

xtSetArg(arg[il,XtNtitle,"REAIIME"); i++;

popupshellO = XtCreatePopupShell ("popupshellO" ,

popupWindowShellWidgetClass,widget,arg,i);

XtAddCallback(widget,XtNselect,popupCB,popupshellO);

i = 0;

xtSetArg(arg[il, XtNupperControlArea, &popupca01); i++;

xtGetValues (popupshellO, arg, i);

OPEN LOOK GUI Programmer's Guide

Program Description

719 /*

720 * STATICTEXT: This is used as a README for the application.

721 */

722 if((fp=fopen("/usr/X/lib/tutorial/Xol/statictext.text", "r"»)

723 fread(stext, sizeof (char) ,MAXTEXT, fp);

724 fclose(fp);

725

726

727

728

729

730

731

732

733 /*

else

strcpy (stext , "Statictext message for READMEO);

i = 0;

XtSetArg(arg[il, XtNstring, stext); i++;

xtCreateManagedWidget("statictext",

statiCTextWidgetClass,popupca01,arg,i);

734 * POPUP: Used for Command Window.

735 */

736

737 Widget widget,popupca11,popupca12,popupfooter1,popupbutton1;

738 popupbutton1 = xtCreateManagedWidget("Popup: Command Window",

739 oblongButtonWidgetClass,controlarea,NULL,O);

740 /*

741 * Make the popup shell first.

742 */

743 i = 0;

744 XtSetArg(arg[il ,XtNtitle, "Cam:nand Window"); i++;

745 popupshe1l1 = xtCreatePopupShell ("POPUPSHELL",

746 popupWi~IIWidgetClass,popupbutton1,arg,i);

747 /*

748 * Add callback to popup button now that we have popupshell widget ID.

749 */

750 XtAddCallback(popupbutton1, XtNselect, popupCB, popupshe1l1);

Extensive Widget Sampler Program 7·25

Program Description

751 /*

752 * The popup window automatically makes three children: upper and

753 * lower control areas and footer: get widget IDs to populate them.

754

755

*/

i = 0;

756 xtSetArg(arg[iJ, xtNupperControlArea, &:popupca11); i++;

757 xtSetArg(arg[ij, XtNlowerControlArea, &:popupca12); i++;

758 xtSetArg(arg[ij, XtNfooterPane1, &popupfooter1); i++;

759 xtGetValues (popupshe111, arg, i);

760 /*

761 * Populate popup upper control area.

762 */

763 /*

764 * Make a caption as a label/prompt for the TEXTFIELD.

765 */

766 i=O;

767 xtSetArg(arg[ij ,XtNlabe1,

768 (XtArgVal) "'l'extfie1d: type & type <return> :"); i++;

769 widget = XtCreateMa.nagedWidget ("caption",

770 captionWidgetClass,popupca11,arg,i);

771 widget = XtCreateManagedWidget ("textfield",

772 textFieldWidgetC1ass,widget,NDLL,0);

773 /*

774 * Callback to "read" user input when <return> typed.

775 */

776 xtAddCal1back(widget,XtNVerification,textfie1dCB,NDLL);

777 /*

778 * Populate popup lower contro1area with buttons: one must be a default.

779 */

780 i = 0;

781

782

7·26

xtSetArg(arg[ij, xtNdefault, (xtArgVal) TRUE); i++;

XtCreateManagedWidget ("Option 1",

OPEN LOOK GUI Programmer's Guide

Program Description

783 oblongButtonwidgetClass,popupca12,arg,i);

784 XtCreateManagedWidget ("Option 2",

785 oblongButtonWidgetC1ass,popupca12,NULL,0);

786 /*

787 * Add text to the popup footer.

788 */

789 i = 0;

790 xtSetArg(arg[i], XtNborderwidth, 0); i++;

791 XtSetArg(arg[i], XtNstring, "Footer widget for messages"); i++;

792 XtCreateManagedWidget (" footer" ,

793 staticTextWidgetC1ass,popupfooter1,arg,i);

794

795 /*

796 * End of POPUP: Command window.

797 */

798 /*

799 * POPUP: Used for Property Sheet.

800 */

801

802 widget exclusives,widget,popupca21,popupfooter2,popupbutton2;

803 /*

804 * XtCallbackRec used for widget SetValues.

805 */

806 static XtCallbackRec popup_applyCBR[] = {

807

808

809

810

811

812

813

};

genericCB, (xtPointer) 5 },

(XtCallbackProc) NULL, (xtPointer) NULL },

static XtCallbackRec popup_setdefaultsCBR[] = {

genericCB, (XtPointer) 6 },

(XtCallbackProc) NULL, (XtPointer) NULL },

};

Extensive Widget Sampler Program 7-27

Program Description

814 static XtCallbackRec popup_resetCBR[) = {

815 genericCB, (XtPointer) 7 },

816 (XtCallbackProc) NULL, (XtPointer) NULL },

817 };

818 static XtCallbackRec popup_resetfactoryCBR[)

819 genericCB, (xtPointer) 8 },

820 (XtCallbackProc) NULL, (XtPointer) NULL },

821 };

822 popupbutton2 = XtCreateManagedWidget("Popup: Property Window",

823 oblongButtonWidgetClass,controlarea,NULL,O);

824 /*

825 * Make the popup shell first:

826 * NOTE: callbacks must be set for creation of the automatic buttons.

827 * In this example, mapping is to one function but does not have to be.

828 */

829 i = 0;

830

831

832

833

XtSetArg(arg[O) ,XtNtitle, "Property Window"); i++;

XtSetArg(arg[i),XtNreset,(XtArgval) popup_resetCBR); i++;

XtSetArg(arg[i),XtNapply,(XtArgval) popup_applyCBR); i++;

XtSetArg(arg[i) ,

834 XtNresetFactory,(XtArgVal) popup_resetfactoryCBR);i++;

835 XtSetArg(arg[i) ,

836 XtNsetDefaults, (XtArgVal) popup_setdefaultsCBR);i++;

837 popupshel12 = XtCreatepopupShell ("POPUPSHELL" ,

838 popupWindowShellwidgetClass,popupbutton2,arg,i);

839 /*

840 * Add callback to popup button now that we have popupshell widget ID.

841 */

842 XtAddCallback(popupbutton2, XtNselect, popupCB, popupsheI12);

843 /*

844 * Get widget IDs of popup children needed.

845 * Note that lower control area ID not needed

846 * since automatic buttons are created by code above.

847 */

848 i 0;

7·28 OPEN LOOK GUI Programmer's Guide

Program Description

849 XtSetArg(arg[i], XtNupperControlArea, &popupca21); i++;

850 XtSetArg(arg[i], XtNfooterPanel, &popupfooter2); i++;

851 XtGetvalues (popupshe1l2, arg, i);

852 1*

853 * Populate popup upper control area with EXCLUSIVES and NONEXLCUSIVES.

854 * Note that there is no need to populate popup lower controlarea.

855 *1

856 i=O;

857 XtSetArg(arg[i],xtNlayoutTYPe,OL_FlXEDCOLS);i++;

858 XtSetValues (popupca21,arg, i);

859 widget =XtCreateManagedWidget ("Exclusives: ",

860 captionWidgetClass,popupca21,NULL,0);

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

i = 0;

XtSetArg(arg[O],XtNlayoutTYPe, (XtArgVal) OL_FlXEDROWS); i++;

xtSetArg(arg[O],XtNmeasure,(XtArgVal) 1); i++;

exclusives = XtCreateManagedWidget ("exclusives",

exclusivesWidgetClass,widget,arg,i);

i = 0;

XtSetArg(arg[O] ,XtNlabel, (XtArgVal) "Choice 1"); i++;

widget = xtCreateManagedWidget("rbutton",

rectButtODWidgetClass,exclusives,arg,i);

XtAddCallback(widget,XtNselect,genericCB,(XtPointer) 2);

widget = xtCreateManagedWidget ("Choice 2",

rectButtonWidgetClass,exclusives,NULL,O);

XtAddCallback(widget,XtNselect,genericCB,(XtPointer) 3);

widget = XtCreateManagedWidget ("Choice 3",

rectButtonWidgetClass,exclusives,NULL,O);

XtAddCallback(widget,XtNselect,genericCB,(XtPointer) 4);

widget = xtCreateManagedWidget("Nonexclusives: ",

captionWidgetClass,popupca21,NULL,0);

i = 0;

XtSetArg(arg[i],XtNlayoutType,(XtArgVal) OL_FIXEDROWS); i++;

Extensive Widget Sampler Program 7-29

Program Description

881 XtSetArg{arg[i],XtNmeasure,{XtArgVal) 1); i++;

882 nonexclusives = XtCreateManagedWidget("nonexclusives",

883 nonexclusiveswidgetClass,widget,arg,i);

884 widget = XtCreateManagedWidget ("Choice 1",

885 rectButtonWidgetClass,nonexclusives,NULL,O);

886 XtAddCallback{widget,xtNselect,genericCB, (xtPointer) 2);

887 nebutton2 = XtCreateManagedWidget ("More",

888 rectButtonWidgetClass,nonexclusives,NULL,O);

889 XtAddCallback{nebutton2,XtNselect,nonexclusivesCB,nonexclusives);

890 XtAddCallback{nebutton2,XtNselect,genericCB,{xtPointer)3);

891 /*

892 * Add text to the popup footer.

893 */

894 i = 0;

895 XtSetArg{arg[iL XtNborderWidth, 0); i++;

896 XtSetArg{arg[il, XtNstring, "Footer widget for messages"); i++;

897 XtCreateManagedWidget ("footer",

898 staticTextWidgetClass,popupfooter2,arg,i);

899

900 /*

901 * End of POPUP: Property Sheet.

902 */

903 /*

904 * TO MAKE A MENU:

905 *
906 * Widget Tree for creating menu:

907 *
*
*

(parent widget)

I

908

909

910 * menubutton visible/mouse sensitive symbol for menu)

911 *
912

913

914

915

7-30

*
*
*
*

pane (used for placement of menu button set)

/ x
/ x

OPEN LOOK GUI Programmer's Guide

Program Description

916 * button1 button2

917 */

918 /*

919 * Create a mentibutton and menu with a pushpin.

920 */

921

922

923

924

925

static Widget mentibutton,menupane,widget;

i = 0;

XtSetArg(arg[il,XtNPushpin,(X~al) OL_OUT); i++;

XtSetArg(arg[il,XtNlabelType, (XtArgVal) OL_STRING); i++;

926 XtSetArg(arg[il ,XtNlabelJustify, (XtArgVal) OL_LEFT); i++;

927 XtSetArg(arg[il ,XtNreco:JqlUteSize, (XtArgVal) TRUE); i++;

928 menubutton = xtCreateManagedWidget ("Menubutton",

929 menuButtonWidgetClass,controlarea,arg,i);

930 /*

931 * Get the Widget id of the menupane of the menubutton.

932 */

933

934

i = 0;

XtSetArg(arg[il, XtNmenuPane, (xtArgVal) &menupane); i++;

935 XtGetValues (menubutton, arg, i);

936 /*

937 * Make two oblongbuttons on the menupane, with select callbacks.

938 */

939 widget = XtCreateManagedWidget ("One",

940 oblongButtonWidgetClass,menupane,NULL,O);

941 XtAddCallback(widget,XtNselect,menuSelectCB,(XtPointer) 1);

942 widget = xtCreateManagedWidget ("Two" ,

943 oblOngButtonWidgetClass,menupane,NULL,O);

944 XtAddCallback(widget,XtNselect,menuSelectCB, (XtPointer) 2);

945

946 /*

947 * End of MENU

Extensive Widget Sampler Program 7·31

Program Description

948 *1

949 1*

950 * NOTICE: attach to an EXIT button in the control area.

951 *1

952

953 static Widget noticetext;

954 Widget widget;

955 static Arg noticeARGS[] = {
956 {XtNtextArea, (xtArgVal) ¬icetext},

957 {XtNcontrolArea, (xtArgVal) ¬icebox},

958 };

959 cabutton = XtCreateManagedWidget("Exit",

960 OblongButtonwidgetClass,controlarea,NULL,O);

961 1*

962 * Attach notice popup callback to "EXIT" control area button.

963 *1

964 XtAddCallback(cabutton, XtNselect, noticeCB1,NULL);

965 1*

966 * Create notice popup shell.

967 *1

968 noticeshell = XtCreatePopupShell ("notice",

969 noticeShellWidgetClass,cabutton,NULL,O);

970 1*

971 * Get the widget ids of not icebox and textarea of noticebox.

972 *1

973 XtGetValues (noticeshell, noticeARGS, XtNumber(noticeARGS»;

974 1*

975 * Add text to text area of noticebox.

7·32 OPEN LOOK GUI Programmer's Guide

Program Description

976 */

977

978 i = 0;

979 xtSetArg(arg[il,

980

981 i++;

XtNstring, (XtArg'Val) "NOTICE WJ:DGET:Oonfinn EXIT");

982 xtSetValues(noticetext,arg,i);

983 /*

984 * Add two buttons to noticebax.

985 */

986 /*

987 * First button has an exit callback.

988 */

989 widget = XtCreateManagedWidget ("Okay" ,

990 OblongButtonWidgetClass,noticebax,NULL,O);

991 XtAddCallback (widget , XtNselect,noticeCB2,noticebax);

992 /*

993 * Second button is a no-op that pops down

994 * notice widget without exiting.

995 */

996 XtCreateManagedWidget ("Cancel" ,

997 oblongButtonwidgetClass,noticebax,NULL,O);

998

999 /*

1000 * CAPTION

1001 */

1002

1003

1004

1005

1006

1007

static Widget widget;

i = 0;

XtSetArg(arg[il,xt~sition,(XtArgVal) OL_TOP); i++;

XtSetArg(arg[il,XtNalignment,(XtArgval) OL_CENTER); i++;

xtSetArg(arg[il,xtNlabel, (XtArgval) "caption"); i++;

Extensive Widget Sampler Program 7-33

Program Description

1008

1009

1010

1011

1012

1013

1014 /*

caption = xtCreateManagedWidget ("caption",

captionWidgetClass,foDm,arg,i);

widget = XtCreateManagedWidget("*** Rainbow ***",

OblongButtonwidgetClass,caption,NULL,O);

XtAddcallback(widget, XtNselect, rainbowCB, NULL);

1015 * S'l'UB wrOOET: this will be used as a drawing canvas.

1016 */

1017 /*

1018 * First two arguments scale widget to resolution of screen.

1019 */

1020 i = 0;

1021 XtSetArg(arg[il,XtNheight,(X~al) Nl00_V_PlXELS); i++;

1022 xtSetArg(arg[il ,XtNWidth, (X~al) NlOO_H_PlXELS); i++;

1023 xtSetArg(arg[il,XtNbackground, skyblue-pixel); i++;

1024 /*

1025 * DrawAndPrint will be called with an Expose event;

1026 */

1027 XtSetArg(arg[il,XtNexpose, Dra~rint); i++;

1028 stub = xtCreateManagedWidget ("stub" , stubWidgetClass, form, arg, i) ;

1029 /*

1030 * Add an eventhandler to track when the pointer

1031 * enters and leaves the stub widget window.

1032 */

1033 xtAddEventHandler(stub,EnterwinciowMask I LeaveWinciowMask,

1034 FALSE, StubEventHandler, (xtPointer)NULL);

1035 /*

1036 * Set the special cursor for stub widget window

1037 * below once tree realized.

1038 */

1039 /*

7-34 OPEN LOOK GUI Programmer's Guide

1040 * BULLETINBOARD: with ABBREVIATEDMENUBUTTON, CHECKBOX,

1041 * and TEXTEDIT widgets in it, each within a caption

1042 * labelling the widget.

1043 *1

Program Description

1044

1045

1046

1047

1048

1049

1050

1051

widget widget,bulletinboard,abbmenubutton,abbmenupane,checkbox;

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

Dimension

static char

height,yvalue,

xpad (Dimension) NlO_H_PIXELS,

ypad (Dimension) N10_V_PlXELS;

textedit_string[] =

"This text is in a texteditOidget and can be edited.";

1*

* BULLETINBOARD.

*1

1*

i = 0;

xtSetArg(arg [i] ,xtNposition, (XtArg'Va1) OL_TOP); i++;

xtSetArg(arg[i],xtNalignment,(xtArgVal) OL_CENTER); i++;

XtSetArg(arg[i],XtNlabel, (XtArg'Val) "Bulletiriboard"); i++;

bb_caption = XtCreateManagedWidget ("bb_caption" ,

captionWidgetClass,for.m,arg,i);

bullet inboard = XtCreateManagedWidget ("bullet inboard " ,

bulletinBoardWidgetClass,bb_caption,NULL,O);

* Set some resources for the bullet inboard.

*1

i = 0;

xtSetArg(arg[i],XtNborderwidth, (XtArg'Val) 2); i++;

XtSetArg(arg[i],XtNborderColor, (XtArg'Val) orange-pixel); i++;

1069 xtSetValues(bulletinboard,arg,i);

1070 1*

1071 * ABBREVIATEDMENUBOTTON.

1072 * 1

Extensive Widget Sampler Program 7-35

Program Description

1073 yva1ue ypad.;

i = 0; 1074

1075

1076

1077

XtSetArg{arg[i),XtNx, (XtArgVa1) xpad); i++;

xtSetArg{arg[i),Xt~,{XtArgVal) yvalue); i++;

XtSetArg{arg[i) ,XtNlabel, (XtArg'Val) "Abbreviatedlllenubutton: ");

1078 i++;

1079 abbnenu_caption = xtCreateManagedWidget ("ahbmenu_caption",

1080 captionWidgetClass,bulletinboard,arg,i);

1081 ahbmenubutton = XtCreateManagedWidget ("ahbmenubutton" ,

1082 ahbrevMenuButtanWidgetC1ass,ahbmenu_caption,arg,i);

1083 1*

1084 * Get the Widget ID of the menupane of the abbreviated menu button.

1085 *1

1086 i = 0;

1087 xtSetArg{arg[iJ, XtNmenuPane, (XtArg'Val) &:ahbmenupane); i++;

1088 xtGetVa1ues{ahbmenubutton, arg, i);

1089 i = 0;

1090 widget = XtCreateManagedWidget ("Button 1",

1091 OblangButtanWidgetClass,ahbmenupane,arg,i);

1092 XtAddcallback{widget,xtNselect,menuSelectCB,{XtPointer) 1);

1093 i = 0;

1094 widget = XtCreateManagedWidget ("Button 2",

1095 OblongButtonWidgetClass,ahbmenupane,arg,i);

1096 XtAddCallback{widget,XtNselect,menuSelectCB, (XtPointer) 2);

1097 1*

1098 * CHECKBOX.

1099 *1

1100 i=O;

1101

1102

7·36

XtSetArg{arg[i),XtNheight, &:height); i++;

XtGetValues{abbmenubutton,arg,l);

OPEN LOOK GUI Programmer's Guide

Program Description

1103

1104

1105

1106

1107

1108

yva1ue yva1ue + height + ypad;

i = 0;

XtSetArg(arg[i], xtNX,xpad); i++;

XtSetArg(arg[i],XtNY, yva1ue); i++;

XtSetArg(arg[i],XtN1abe1, (XtArg'Va1) "Checkbox: "); i++;

1109 cb_caption = xtCreateManagedWidget ("cb_caption" ,

1110 captionWidgetC1ass,bu11etinboard,arg,i);

1111 i=O;

1112 checkbox = XtCreateManagedWidget ("CHECKBOX_LABEL" ,

1113 checkBoxWidgetC1ass,cb_caption, arg,i);

1114 XtAddCa11back(checkbox,XtNse1ect,checkboxCB,NULL);

1115 /*

1116 * TEXTEDIT WIDGET.

1117 */

1118 i=O;

1119

1120

xtSetArg(arg[i],XtNheight, &height); i++;

XtGetVa1ues(checkbox,arg,1);

yva1ue yva1ue + height + ypad;

i = 0;

XtSetArg(arg[i],XtNX, (XtArgVa1) xpad); i++;

XtSetArg(arg[i],XtNy, (XtArgva1) yva1ue); i++;

xtSetArg(arg[i],XtNa1ignment, (XtArgVa1) OL_TOP); i++;

XtSetArg(arg[i],XtN1abe1, (xtArg'Va1) "Textedit:"); i++;

te_caption = XtCreateManagedWidget("te_caption",

captionWidgetC1ass,bu11etinboard,arg,i);

i = 0;

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

xtSetArg(arg[i],XtNheight, (XtArgVa1) N50_v_PlXELS); i++;

xtSetArg(arg[i],XtNWidth, (XtArg'Va1) N150_H_PlXELS); i++;

xtSetArg(arg[i],XtNsourceType, (XtArgVa1)OL_STRING_SOURCE); i++;

XtSetArg(arg[i],XtNsource, (XtArgVa1) textedit_string); i++;

XtCreateManagedWidget ("textedit",

textEditWidgetC1ass, te_caption, arg, i);

Extensive Widget Sampler Program 7-37

Program Description

1139 1*

1140 * SCROLLINGLIST

1141 *1

1142

1143 static Widget scrollinglist;

1144 static OlListToken (*scrollinglistADDfn);

1145 static OlListltem sl_item[10];

1146 int natoi;

1147 1*

1148 * Use a caption to label the scrollinglist.

1149 *1

1150 i = 0;

1151 XtSetArg(arg[i],XtNPosition, (XtArgVal) OL_TOP); i++;

1152 xtSetArg(arg[i] ,XtNalignment, (XtArgVal) OL_CENTER); i++;

1153 XtSetArg(arg[i] ,XtNlabel, (XtArgVal) "Scrollinglist"); i++;

1154 slist_caption = XtCreateManagedWidget (" slist_caption" ,

1155 captionwidgetClass,form,arg,i);

1156 i = 0;

1157 XtSetArg(arg[i], XtN'viewHeight, (XtArgVal) 7); i++;

1158 scrollinglist = xtCreateManagedWidget (" scrollinglist" ,

1159 scrollingListwidgetClass,slist_caption,arg,i);

1160 1*

1161 * Get the pointer to the scrollinglist function in order to add items.

1162 *1

1163 i = 0;

1164 XtSetArg(arg[i],

1165

1166

1167

1168

1169

7-38

XtNapplAddltem, (XtArgVal) &scrollinglistADDfn); i++;

XtGetValues(scrollinglist,arg,i);

natoi = (int) 'A';

for(i=O; i<10; i++) {

sl_item[i].label_type (OlDefine) OL_STRING;

OPEN LOOK GUI Programmer's Guide

Program Description

1170

1171

1172

sl_item[il.label =
strcpy(XtMalloc((unsigned) 7) ,"ITEM ");

sl_item[il.1abel[51 = natoi;

1173 sl_item[il.mnemonic = tolower(natoi++);

1174 1*

1175 * This field is for storing any type of data desired.

1176 *1

1177 sl_item[il.user_data = (XtPointer) i ;

1178 (*scrollinglistADDfn)

1179 (scrollinglist,NULL,NULL,sl_item[il);

1180

1181 1*

1182 * Callback to be invoked when user selects an item.

1183 *1

1184 XtAddCallback(scrollinglist,

1185 XtNUserMakeCUrrent,scrollinglistCB,NULL);

1186

1187 1*

1188 * SCROLLED WINDOW

1189 *1

1190

1191 static Widget scrolledwindow;

1192 static char swstring[]

1193 "This text is in a\n\

1194 statictext widget\n\

1195 in a scrolled window. \n\

1196 You can move it up\n\

1197 and down or left\n\

1198 and right with the\n\

1199 two scrollbars. \n";

1200 i = 0;

1201 XtSetArg(arg[il,Xt~sition,(XtArgVal) OL_TOP); i++;

Extensive Widget Sampler Program 7-39

Program Description

1202 XtSetArg(arg[i].xtNalignment, (XtArgVa1) OL_CENTER}; i++;

1203 xtSetArg(arg[i] ,XtNlabel, (XtArgVal) "Scrolledwindow"}; i++;

1204 sw_caption = xtCreateManagedWidget ("sw_caption" ,

1205 captionWidgetClass,foDm,arg,i);

1206 i = 0;

1207 XtSetArg(arg[i], XtNheight,Nl50_V_PIXELS}; i++;

1208 XtSetArg(arg[i], XtNwidth, NlOO_H_PIXELS}; i++;

1209 XtSetArg(arg[i], XtNVStepSize, 20}; i++;

1210 XtSetArg(arg[i], XtNhStepSize, 20}; i++;

1211 scrolledwindow = XtCreateManagedWidget ("scrolledwindow",

1212 scrolledWindowWidgetClass,sw_caption,arg,i);

1213 xtAddCallback (scrolledwindow,

1214 xtNVSliderMbved,scrollbarCB,(xtPointer)l};

1215 XtAddCallback(scrolledwindow,

1216 xtNhSliderMbved,scrollbarCB,(xtpointer}2};

1217 /*

1218 * Make a statictext widget in the scrolled window

1219 * to scroll with the scrollbars.

1220 */

1221 i = 0;

1222 xtSetArg(arg[i], XtNb.eight,Nl50_V_PIXELS} 1 i++;

1223 xtSetArg(arg[i], XtNstring, swstring}; i++;

1.224 XtCreateManagedWidget ("statictext" ,

1225 staticTextWidgetClass,scrolledwindow,arg,i);

1226

1227 /*

1228 * SLIDER

1229 */

1230 /*

1231 * The slider will be used to change the background of the stub widget:

1232 * calculate the number of colors for the screen and set the slider

1233 * range from 0 to (N-1) with a granularity of 1; see the sliderCB

1234 * function for the rest of the code/functionality.

1235 */

7·40 OPEN LOOK GUI Programmer's Guide

Program Description

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264 /*

1265 * GAUGE

1266 */

Display *display = XtDisplay(toplevel);

int screen = XDefaultScreen(display);

int n, ncolors=2;

Widget w;

n= XDefaultDepth(displaY,screen);

for(i=1; i<n; i++) {

ncolors= ncolors*2;

ncolors ncolors -1

i = 0;

XtSetArg(arg[il,XtNPosition,(XtArgVal) OL_TOP); i++;

XtSetArg(arg[il,XtNalignment,(XtArgVal) OL_CENTER); i++;

XtSetArg(arg[il,XtNlabel,(XtArgVal) "Slider"); i++;

slider_caption = XtCreateManagedWidget("slider_caption",

captionWidgetClass,form,arg,i);

i = 0;

XtSetArg(arg[il, XtNWidth, (XtArgval) N200_H_PlXELS); i++;

xtSetArg(arg[il,xtNorientation, (XtArgVal) OL_HORIZONTAL); i++;

xtSetArg(arg[il,XtNsliderMaX, (XtArgVal) ncolors); i++;

XtSetArg(arg[il,XtNgranularity, (XtArgVal) 1); i++;

xtSetArg(arg[il, XtNticks, (XtArgVal) 1); i++;

XtSetArg(arg[il, XtNtickUnit, (XtArgval) OL_SLIDERVALUE); i++;

XtSetArg(arg[il, XtNdragCBType, (XtArgVal) OL_RELEASE); i++;

w = XtCreateManagedWidget("slider",

sliderWidgetClass,slider_caption,arg,i);

XtAddCallback(w,XtNsliderMoved,sliderCB,NULL);

1267 i = 0;

1268 XtSetArg(arg[il,XtNposition,(XtArgVal) OL_TOP); i++;

Extensive Widget Sampler Program 7-41

Program Description

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

XtSetArg(arg[ij,XtNalignment, (XtArgVal) OL_CENTER); i++;

XtSetArg(arg[ij,xtNlabel, (XtArgVal) "Gauge"); i++;

g_caption = XtCreateManagedWidget ("g_caption" ,

captionWidgetClass,foDm,arg,i);

i = 0;

XtSetArg(arg[ij,XtNWidth, (XtArgVal) N200_H_PlXELS); i++;

xtSetArg(arg[ij,XtNorientation, (XtArgVal) OL_HORIZONTAL); i++;

xtSetArg(arg[ij,XtNsliderMax, (XtArgVal) 100); i++;

xtSetArg(arg[ij,XtNgranularity, (XtArgVal) 10); i++;

XtSetArg(arg[ij, XtNticks, (XtArgval) 10); i++;

XtSetArg(arg[ij, XtNtickUnit, (XtArgval) OL_SLIDERVALUE); i++;

1280 gauge = XtCreateManagedWidget ("gauge" ,

1281 gaugeWidgetClass,g_caption,arg,i);

1282 1*

1283 * GADGETS: the oblongbutton gadget and menubutton

1284 * gadget are displayed in a bullet inboard, the latter in a

1285 * caption entitled, "Gadgets."

1286 * I

1287

1288

1289

1.290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

7-42

Widget carea,button,menubutton,menupane;

i=O;

XtSetArg(arg[ij,XtNPosition, (XtArgVal) OL_TOP); i++;

xtSetArg(arg[ij,XtNalignment, (XtArgVal) OL_CENTER); i++;

xtSetArg(arg[ij,XtNlabel,(XtArgVal) "Gadgets"); i++;

gd_caption = XtCreateManagedwidget("gd_caption",

captionwidgetClass,foDm,arg,i);

i=O;

xtSetArg(arg[ij,XtNborderwidth, (XtArgVal) 2); i++;

XtSetArg(arg[ij,XtNborderColor, (XtArgVal) orange-pixel); i++;

carea = XtCreateManagedWidget("controlarea",

controlAreaWidgetClass,gd_caption,arg,i);

i=O;

XtSetArg(arg[ij,XtNlabel, (XtArgVal) "Oblongbutton"); i++;

XtSetArg(arg[ij,XtNX, (XtArgVal) N10_H_PlXELS); i++;

OPEN LOOK GUI Programmer's Guide

Program Description

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325 /*

XtSetArg(arg[il, XtNY, (XtArgVal) N10_V_PIXELS); i++;

button = XtCreateManagedWidget("buttongadget",

oblongButtonGadgetClass,carea,arg,i);

XtAddCallback(button,XtNselect,genericCB,(XtPointer) 9);

i = 0;

XtSetArg(arg[il,XtNlabel, (XtArgVal) "Menubutton"); i++;

XtSetArg(arg[il,XtNx, (XtArgVal) N100_H_PIXELS);

XtSetArg(arg[il,XtNY,(XtArgVal) N10_V~IXELS); i++;

menubutton = XtCreateManagedwidget ("menubutton" ,

menuButtonGadgetClass,carea,arg,i);

i = 0;

XtSetArg(arg[il, XtNmenuPane, (XtArgval) &menupane); i++;

XtGetValues(menubutton,arg,i);

i = 0;

button = XtCreateManagedwidget("Button 1",

oblongButtonGadgetClass,menupane,arg,i);

XtAddCallback(button,XtNselect,menuSelectCB, (XtPointer) 1);

i = 0;

button = XtCreateManagedWidget("Button 2",

oblongButtonGadgetClass,menupane,arg,i);

XtAddCallback(button,XtNselect,menuSelectCB, (xtPointer) 2);

1326 * FLAT WIDGETS: the flatexclusives, flatnonexclusives, and

1327 * flatcheckbax are displayed in a bulletinboard, the latter

1328 * in a caption entitled, "Flat widgets."

1329 */

1330

1331 Widget widget,carea;

1332 WidgetClass class;

1333 int nunLsubobjects = 3;

1334 Dimension hspace N10_H_PIXELS,

1335 vspace N10_V_PIXELS;

1336 /*

Extensive Widget Sampler Program 7-43

Program Description

1337 * For f1atexclusives and flatnonexclusives: note "customized" fields.

1338 * /

1339 static String fields1 [] = {

1340 XtNbackground, XtNlabel, XtNselectProc, XtNclientData

1341 };

/* item's background */

/* item's label */

1342

1343

1344

1345

1346

typedef struct {

XtArgValbackground;

XtArgval1abel;

XtArgValselect;

XtArgvalclientData;

/* item's select callback */

/* clientData for callback */

1347 FlatData1;

1348 static FlatData1 *items1;

1349 /*

1350 * For flatcheckbox: note "customized" fields.

1351 */

1352 static String fields2 [] = {

1353 XtNbackground, xtNlabel, XtNset,

1354 XtNselectProc, XtNclientData

1355 };

1356 typedef struct {

1357 XtArgValbackground; /* item's background */

1358 XtArgVallabel; /* item's label */

1359 XtArgValset; /* item's set status */

1360 XtArgValselect; /* item's select callback */

1361 XtArgValclientData; /* clientData for callback */

1362 FlatData2;

1363 static FlatData2 *items2;

1364 items1 = (FlatData1 *)XtMalloc«Cardinal)

1365 (num_subobjects*sizeof(FlatData1»);

1366 items2 = (FlatData2 *)XtMalloc((Cardinal)

1367 (num_subobjects*sizeof(FlatData2»);

7-44 OPEN LOOK GUI Programmer's Guide

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

Program Description

i=O;

xtSetArg(arg[i],XtNPosition, (XtArgVa1) OL_TOP}; i++;

XtSetArg(arg[i],XtNalignment, (XtArgVal) OL_CENTER}; i++;

xtSetArg(arg[il,XtNlabel,(XtArgVal} "Flat widgets"}; i++;

f_caption = XtCreateManagedWidget("f_caption",

captionwidgetClass,form,arg,i};

i=O;

XtSetArg(arg[i],XtNborderWidth, (XtArgVal) 2}; i++;

XtSetArg(arg[i],XtNborderColor, (XtArgVal) orange-pixel}; i++;

XtSetArg(arg[i],XtNhSpace,hspace}; i++;

XtSetArg(arg[i],XtNvSpace,vspace}; i++;

XtSetArg(arg[i],XtNhPad,hspace}; i++;

XtSetArg(arg[i],XtNvPad,vspace}; i++;

carea XtCreateManagedWidget("controlarea",

controIAreaWidgetClass,f_caption,arg,i};

widget =XtCreateManagedWidget("Exclusives: ",

captionWidgetClass,carea,NULL,O};

items1[0].background

items1[1].background

items1[2] .background

items1[0].label =

(XtArgVal) red-pixel;

(XtArgVal) green-pixel;

(XtArgVal) blue-pixel;

items1[1].label = items1[2].label = (XtArgVal)" ";

items1[0] .select = items1[1].select = items1[2].select

= (XtArgval) genericCB;

items1[0].clientData =

items1[1].clientData

items1[2] .clientData (XtArgVal) 10;

class = flatExclusivesWidgetClass;

i=O;

XtSetArg(arg[ij,XtNitems,items1};i++;

XtSetArg(arg[i],XtNnumItems,num_subobjects};i++;

XtSetArg(arg[i],XtNitemFields,fields1}; i++;

xtSetArg(arg[i],XtNnumItemFields,XtNumber(fields1}}; i++;

xtCreateManagedWidget ("flatexclusives",class,widget, arg, i);

Extensive Widget Sampler Program 7-45

Program Description

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425 1*

widget =xtCreateManagedWidget ("Nonexclusi ves : ",

captianwidgetClass,carea,NULL,O);

class = flatNonexclusivesWidgetClass;

xtCreateManagedWidget("flatnonexclusives",class,widget,arg,i);

items2[0].background (XtArgVal) red-pixel;

items2 [1] .background (XtArg'Val) green-pixel;

items2 [2] .background (XtArgVal) blue-pixel;

items2[0].label (XtArgVal) "CheckBoxl";

items2[1].label (XtArgVal) "CheckBox2";

items2 [2] • label (XtArgVal) "CheckBox3";

items2[0].set = items2[1].set = items2[2].set = (XtArgVal) TRUE;

items2[0].select = items2[1].select = items2[2].select

= (xtArg'Val) genericCB;

items2[0].clientData =

items2[1].clientData

items2[2].clientData (XtArgVal) 10;

class = flatCheckBoXWidgetClass;

XtSetArg(arg[i],xtNitems,items2);i++;

XtSetArg(arg[i],XtNnumItems,num_subobjects);i++;

XtSetArg(arg[i],XtNitemFields,fields2); i++;

XtSetArg(arg[i],xtNnumItemFields,XtNUmber(fields2»; i++;

XtCreateManagedWidget("flatcheckbox",class,carea,arg,i);

1426 * SCROLLBAR: attach to the right & bottom of the fODn.

1427 *1

1428

1429 static Arg scrollbarARGS[]

1430 1*

1431 * Widget resources.

1432 *1

7·46 OPEN LOOK GUI Programmer's Guide

Program Description

1433 XtNproportiOnLength, 10 },

1434 XtNshowPage, OL_LEFT },

1435 1*

1436 * Form resources.

1437 *1

1438 XtNyResizable, (xtArgVal) TRUE },

1439 XtNyAttachBottam, (XtArgVal)TRUE },

1440 XtNxAttachRight, (XtArgVal) TRUE },

1441

1442

1443

1444

1445

1446

1447

1448

};

1449 1*

XtNxVaryOffset, (XtArgVal) TRUE },

scrollbar = XtCreateManagedWidget("scrollbar",

scrollbarWidgetClass,form,scrollbarARGS,

XtNUmber(scrollbarARGS»;

XtAddCallback(scrollbar,

XtNsliderMoved,scrollbarCB,(XtPointer) 0);

1450 * Position all the widgets on the form. Note that reference

1451 * names are used. Note that 10 horizontal and vertical pixels

1452 * are used in most cases; in a few cases special values are used.

1453 *1

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

Arg arg;

static Dimension width1, width2;

static position xl, x2;

static Arg getArgs1[] =
xtNX, (XtArgVal) &xl},

{ XtNWidth, (XtArgVal) &width1}

};

static Arg getArgs2[] = {
{ XtNX, (XtArgVal) &x2},

{ XtNWidth, (XtArgVal) &width2}

};

Extensive Widget Sampler Program 7-47

Program Description

1467 genericARGS[2].va1ue = (XtArgVa1) 0;

1468 genericARGS[3].va1ue = (xtArgVa1) 0;

1469 SetPosition(ca_caption, "form", "form");

1470 genericARGS[2].va1ue (xtArgVa1) NlO_H_PIXELS;

1471 genericARGS[3].va1ue = (xtArgVa1) N10_V_PIXELS;

1472 SetPosition(caption, "form", "ca_caption");

1473 SetPosition(stub, "form", "caption");

1474 1*

1475 * position bu11etinboard to right of

1476 * caption or stub, whichever is wider.

1477 *1

1478 XtSetArg(arg,xtNwidth,&:width1);

1479 xtGetVa1ues(caption,&:arg,1);

1480 XtSetArg(arg,XtNwidth,&:width2);

1481 XtGetVa1ues(stub,&:arg,1);

1482 if (widthl>width2)

1483

1484

SetPosition(bb_caption, "caption","ca_caption");

else

1485 SetPosition(bb_caption, "stub", "ca_caption");

1486 SetPosition(slider_caption, "form", "stub");

1487 Set Position (g_caption, "form", "slider_caption");

1488 SetPosition(f_caption, "form", "gd_caption");

1489 SetPosition(slist_caption, "bb_caption", "ca_caption");

1490 SetPosition(sw_caption, "slist_caption", "ca_caption");

1491 genericARGS[2].va1ue = (XtArgVa1) (7 * NlO_H_PIXELS);

1492 SetPosition(gd_caption, "slider_caption", "slist_caption");

1493 genericARGS[2].va1ue = (xtArgVa1) N10_H_PIXELS;

1494 1*

1495 * Position scro11bar to right of flat widgets or scro11edwindow,

1496 * whichever extends further to the right of the form.

1497

1498

7·48

*1

genericARGS[3].va1ue (XtArgVa1) 0;

OPEN LOOK GUI Programmer's Guide

Program Description

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509 1*

XtGetValues(f_caption,getArgsl,XtNumber(getArgsl»;

XtGetValues(sw_caption,getArgs2,XtNumber(getArgs2»;

widthl = widthl + (Dimension) xl;

width2 = width2 + (Dimension) x2;

if (widthl>width2)

SetPosition(scrollbar,"f_caption","ca_caption");

else

SetPosition(scrollbar,"sw_caption","ca_caption");

genericARGS[3].value

1510 * Realize the widget tree.

1511 *1

1512 XtRealizeWidget(toplevel);

1513 1*

1514 * The ~ecial cursor for the stub widget can be set now
1515 * that it has been realized as part of the widget tree.

1516 *1

1517 SetStubCursor(stub);

1518 1*

1519 * Turn control over to the Xt intrinsics and OPEN LOOK.

1520 *1

1521 XtMainLoop;

1522 } 1* MAIN *1

Extensive Widget Sampler Program 7-49

A Manual Pages: Introduction

Introduction to the Manual Pages

Introduction to General Resources
Application Resources

• XtNbackground
• XtNbeep
• XtNbeepVolume
• XtNcontrolName
• XtNlockName
• XtNmod1 Name
• XtNmod2Name
• XtNmod4Name
• XtNmod5Name
• XtNshiftName
• XtNdontCare
• XtNdragRightDistance
• XtNfontColor
• XtNforeground
• XtNhelpDirectory
• XtNhelpModel
• XtNfont
• XtNfontColor
• XtNfontGroup
• XtNforeground
• XtNinputFocusColor
• XtNinputWindowColor
• XtNmenuMarkRegion
• XtNmnemonicPrefix
• XtNmouseDampingFactor
• XtNmouseStatus
• XtNmultiClickTimeout
• XtNmultiObjectCount
• XtNselectDoesPreview

Table of Contents

A-1

A-4
A-4
A-6
A-6
A-6
A-7
A-7
A-7
A-7
A-7
A-7
A-7
A-7
A-a
A-a
A-a
A-a
A-a
A-9
A-9
A-9
A-9
A-10
A-10
A-10
A-10
A-10
A-10
A-10
A-11
A-11

Table of Contents

• XtNshowAccelerators
• XtNshowMnemonics
• XtNtextBackground
• XtNtextFontColor
• XtNthreeD

Core Resources
• XtNancestorSensitive
• XtNaccelerators
• XtNbackground
• XtNbackgroundPixmap
• XtNborderColor
• XtNborderPixmap
• XtNborderWidth
• XtNcolormap
• XtNdepth
• XtNdestroyCaliback
• XtNheight
• XtNmanaged
• XtNmappedWhenManaged
• XtNscreen
• XtNsensitive
• XtNtranslations
• XtNwidth
• XtNx
• XtNy

Flat Widget Layout
• XtNgravity
• XtNhPad/XtNvPad
• XtNhSpace/XtNvSpace
• XtNitemGravity
• XtNitemMaxHeightlXtNitemMaxWidth
• XtNitemMinHeight/XtNitemMinWidth
• XtNlayoutHeight/XtNlayoutWidth
• XtNlayoutType
• XtNmeasure
• XtNsameHeight
• XtNsameWidth

Manager Widget Resources
• XtNconsumeEvent
• XtNreferenceName
• XtNinputFocusColor

A-11
A-11
A-12
A-12
A-12
A-13
A-14
A-14
A-14
A-14
A-15
A-15
A-15
A-16
A-16
A-16
A-16
A-17
A-17
A-17
A-17
A-18
A-18
A-18
A-19
A-19
A-21
A-21
A-21
A-22
A-22
A-22
A-23
A-23
A-24
A-24
A-25
A-25
A-26
A-26
A-27

ii OPEN LOOK Programmer's Guide

Table of Contents

• XtNreferenceWidget A-27
• XtNtraversalOn A-27
• XtNuserData A-27

Primitive Widget Resources A-28
• XtNaccelerator A-28
• XtNacceleratorText A-28
• XtNconsumeEvent A-29
• XtNfont A-29
• XtNfontcolor A-29
• XtNfontGroup A-29
• XtNforeground A-29
• XtNinputFocusColor A-29
• XtNmnemonic A-3D
• XtNreferenceName A-3D
• XtNreferenceWidget A-3D
• XtNtraversalOn A-3D
• XtNuserData A-31

Shell Resources A-31
• Base Windows and Popup Windows A-31

Resource Description A-34
• XtNaliowSheliResize A-34
• XtNbusy A-34
• XtNconsumeEvent A-34
• XtNcreatePopupChildProc A-35
• XtNfocusWidget A-35
• XtNgeometry A-35
• XtNheightlnclXtNwidthlnc A-35
• XtNiconic A-36
• XtNiconMask A-36
• XtNiconName A-36
• XtNiconPixmap A-36
• XtNiconWindow A-36
• XtNiconXlXtNiconY A-37
• XtNinitialState A-37
• XtNinput A-37
• XtNmenuButton A-38
• XtNmenuType A-38
• XtNmaxAspectXlXtNmaxAspectY A-38
• XtNminAspectXlXtNminAspectY A-38
• XtNmaxHeightlXtNmaxWidth/XtNminHeightlXtNminWidth A-39
• XtNoverrideRedirect A-4D

Table of Contents iii

Table of Contents

• XtNpopdownCaliback
• XtNpopupCallback
• XtNpushpin
• XtNresizeCorners
• XtNsaveUnder
• XtNtitle
• XtNtransient
• XtNuserData
• XtNwaitForWm
• XtNwindowGroup
• XtNwindowHeader
• XtNwmProtocol
• XtNwmProtocolinterested
• XtNwmTimeout

iv

A-40
A-40
A-40
A-41
A-41
A-41
A-41
A-42
A-42
A-42
A-42
A-42
A-43
A-43

OPEN LOOK Programmer's Guide

Introduction to the Manual Pages

This part of the OPEN LOOK® Programmer's Guide offers a detailed descrip
tion of the various OPEN LOOK widgets, gadgets, and convenience routines
that are available to programmers writing client applications for the OPEN
LOOK interface. The reference manual is divided into 4 sections.

Section 1 introduces the widgets and routines available to the application pro
grammer and Section 2 discusses General Resources. Resources are the visual
and functional characteristics of a particular widget or gadget. Widgets inherit
resources from common classes. Some of these super-classes are standard
Intrinsics classes such as Core and Shell. Others are OPEN LOOK specific such
as Flat, Manager, and Primitive. The section on General Resources is broken
down into 6 sub-sections. Each sub-section lists resources of a particular class of
widgets. The frequently used resources are grouped as follows:

• Application Resources

• Core Resources

• Common Flat Container Resources

• Manager Widget Resources

• Primitive Widget Resources

• Shell Resources

Section 3 contains the various Convenience Routines available to the application
programmer. These routines are presented in alphabetical order without regard
to upper or lower case distinctions. The introduction to Section 3 lists the rou
tines by functional groups making it easier to find those routines which perform
specific functions such as updating dynamic resources. Other routines work
with specific widgets such as TextField and TextEdit. There are also some spe
cial Convenience Routines useful for performing such activities as creating
widget trees, initializing the OPEN LOOK toolkit, or routines that support input
focus. Examples of the functional groups are as follows:

• Cursor/Bitmap Utilities

• Dynamic Setting Utilities

• Regular Expression Utilities

Manual Pages: Introduction A·1

Introduction to the Manual Pages

• Text Buffer Utilities

• Database Utilities

• and others

See the introduction to Section 3 for a full listing of these routines.

Section 4, offers a complete discussion of each widget in alphabetical order in
formal manual page format. The widgets are presented in the order below:

• AbbreviatedMenuButton

• BulletinBoard

• Caption

• CheckBox

• ControlArea

• Exclusives

• FlatCheckBox

• FlatExclusives

• FlatNonexclusives

• FooterPanel

• Form

• Gauge

• Menu

• MenuButton (Widget and Gadget)

• Nonexclusives

• Notice

• OblongButton (Widget and Gadget)

• PopupWindow

• RectButton

A·2 OPEN LOOK Programmer's Guide

Introduction to the Manual Pages

• Scrollbar

• ScrolledWindow

• ScrollingList

• Slider

• Static Text

• Stub

• TextEdit

• TextField

Section 5, "Obsolete Routines" presents routines and Widgets that were a part
of the toolkit but are no longer supported and being phased out. They are here
for reference only.

Manual Pages: Introduction A-3

Introduction to General Resources

The following section lists and describes the general resources available to
several widgets within a class. We have grouped them here to avoid redun
dancy on each widget manual page. The resources/operations are grouped
according to widget class:

• Application

• Core

• Flat Container

• Manager

• Primitive

• Shell

Application Resources

The OPEN LOOK toolkit uses several resources to determine the state of an
OPEN LOOK application. These can be accessed using the OlGetApplication
Values function [see OlGetApplicationValues(3W)]. In order to maintain a
consistent look and feel between applications running simultaneously on the same
display device, applications do not set these resources directly since the
Workspace Manager preference property sheets are responsible for maintaining
their values by updating the appropriate resource files.

A-4 OPEN LOOK Programmer's Guide

Introduction to General Resources

Application Resource Set
Name Class Type Default Access
XtNbackground XtCBackground Pixel XtDefaultBackground G

XtNbeep XtCBeep OlDefine OL BEEP ALWAYS G

XtNbeep Volume XtCBeepVolume int 0 G

XtNcontrolName XtCControlName String "Ctrl" G

XtNdontCare XtCDontCare OlBitMask LockMaskl Mod2Mask G

XtNdragRightDistance XtCDragRightDistance Dimension 20 (pixels) G

XtNfontColor XtCFontColor Pixel Black G

XtNforeground XtCForeground Pixel XtDefaultForeground G

XtNhelp Directory XtCHelp Directory String (calculated) G

XtNhelpModel XtCHelpModel OIDefine OL POINTER G

XtNinputFocusColor XtCInputFocusColor Pixel Red G

XtNinputWindowColor XtCInputWindowColor Pixel Yellow G

XtNlockName XtCLockName String "Lock" G

XtNmenuMarkRegion XtCMenuMarkRegion Dimension 10 (pixels) G

XtNmnemonicPrefix XtCMnemonicPrefix Modifiers Alt G

XtNmod1Name XtCMod1Name String "Alt" G

XtNmod2Name XtCMod2Name String "Mod2" G

XtNmod3Name XtCMod3Name String "Mod3" G

XtNmod4Name XtCMod4Name String "Mod4" G

XtNmodSName XtCModSName String "ModS" G

XtNMouseDampingFactor XtNmouseDampingFactor Cardinal 4 (points) G
XtNmouseStatus XtCMouseStatus Boolean True G

XtNmultiClickTimeout XtCMultiClickTimeout Cardinal 300 (millisec) G

XtNmultiObjectCount XtCMultiObjectCount Cardinal 3 G

XtN selectDoesPreview XtCNSelectDoesPreview Boolean TRUE G

XtNshiftName XtCShiftName string "Shift" G

XtNshowMnemonics XtCShowMnemonics OlDefine OL UNDERLINE G

XtN show Accelerators XtCShow Accelerators OlDefine OL DISPLAY G

XtNtextBackground XtCTextBackground Pixel XtDefaultBackground G

XtNtextFontColor XtCTextFontColor Pixel XtDefaultForeground G

XtNthreeD XtCThreeD Boolean TRUE G

Manual Pages: Introduction A-5

Introduction to General Resources

XtNbackground

This resource reflects the default background color used by objects which are
, not scrolling lists or textEdit widgets.

XtNbeep

Range of values:

OL_BEEP _NEVER/ "never"
OL_BEEP_ALWAYS/"always"
OL_BEEP_NOTICES/"notices"

This resource determines the type of objects that can generate audible warnings
to the user. OL_BEEP _NEVER implies no objects should generate audible warn
ings. OL_BEEP_ALWAYS implies any object can generate audible warnings.
OL_BEEP_NOTICES implies only Notices should generate audible warnings.

XtNbeepVolume

Range of Values:

-100 to +100

This resource specifies a percentage of the keyboard's normal beep that should
be used when generating audible warnings to the user.

A-6 OPEN LOOK Programmer's Guide

Introduction to General Resources

XtNcontrolName

XtNlockName

XtNmod1 Name

XtNmod2Name

XtNmod4Name

XtNmod5Name

XtNshiftName

These resources define the names used to display the accelerator in buttons and
labels. They are provided as resources so that they can be easily changed for a
particular keyboard. For example, the modlName is usually" Alt," but on
some keyboards it may be labeled "Meta."

XtNdontCare

Range of Values are determined by ORing the following bit masks:

LockMask (typically the mask associated with the CAPS LOCK key)
ModlMask
Mod2Mask (typically the mask associated with the NUM LOCK key)
Mod3Mask
Mod4Mask
ModSMask
ShiftMask
ControlMask

This resource specifies the modifier bits that are ignored when processing mouse
button events. For example, assume the Mod2Mask bit is in the XtNdontcare
bits. Now if the NUM LOCK key is in a set state and the user presses the
SELECT mouse button, the press is interpreted as a SELECT button press
because the Mod2Mask bit is ignored. But if the Mod2Mask bit is not in the
XtNdontCare bits, the press is not interpreted as a SELECT button press because
the internal event handling routine honors the Mod2Mask bit in the XEvent.

Manual Pages: Introduction A·7

Introduction to General Resources

XtNdragRightDistance

This resource represents the number of pixels the pointer must be dragged over
a MenuButton with the MENU mouse button depressed to post the MenuButton's
submenu. The direction of the drag is to the right. This resource only applies
to MenuButtons on press-drag-release menus.

XtNfontColor

This resource reflects the default font color used by objects which are not scrol
ling lists or text widgets.

XtNforeground

This resource reflects the default foreground color used by objects which are not
scrolling lists or textEdit widgets.

XtNhelpDirectory

This resource specifies the directory in which all help files for an application are
located. It is locale-specific. The default value depends on the user's
XFlLESEARCHPATH environment variable and system configuration, but a typical
value is /usr/x/lib/locale/C/help/app-classnaIne, where everything before
"e" is hardcoded somewhere in the XFlLESEARCHPATHDEFAULT variable.

This resource is used by the OlFindHelpFile call and should normally only be
set once per application instance.

XtNhelpModel

Range of Values:

OL_POINTER/ "pointer"
OL_INPUTFOCUS/" input focus"

The OPEN LOOK help model defaults to follow the mouse pointer. So, when
the HELP key is pressed, the item under the pointer is the subject of the help
message. When this resource is set to OL_INPUT_FOCUS, the subject of the help
message follows input focus.

A-a OPEN LOOK Programmer's Guide

Introduction to General Resources

XtNfont

Range of Values:

(any valid return from XLoadQueryFont)

Default:

(chosen to match the scale and screen resolution)

This resource identifies the font to be used to display the text of the widget.

The default value points to a cached font structure; an application should not
expect to get this value with a call to XtGetValues and use it reliably thereafter.

XtNfontColor

Range of Values:

(any Pixel value valid for the current display)/(any name from the rgb.txt file)

This resource specifies the color for the font.

See the note about the interaction of this resource with other color resources
under the description of the XtNbackground resource in Core Resources, "Intro
duction to General Resources" , Appendix A.

XtNfontGroup

Range of Values:

(valid fontgroupname from the ol_locale_def file)

This resource specifies a set of up to 4 fonts to be to be used when drawing
internationalized text with the OPEN LOOK text drawing routines (for example,
OlDrawString,OlTextWidth). The first font should always be an ASCII font.

XtNforeground

This resource defines the foreground color for the widget.

See the note about the interaction of this resource with other color resources
under the description of the XtNbackground resource in Core Resources,
"Manual Pages: Introduction", Appendix A.

Manual Pages: Introduction A-9

Introduction to General Resources

XtNinputFocusColor

This resource reflects the default color that controls display whenever the con
trol has input focus.

XtNinputWindowColor

This resource determines the color of the OPEN LOOK window header when it
has input focus.

XtNmenuMarkRegion

This resource represents the width (in pixels) of the MenuButton's menu mark
region. If the pointer is moved into this region with the MENU mouse button
depressed, the MenuButton's submenu is posted.

XtNmnemonicPrefix

This resource specifies the modifier key that must accompany the mnemonic
character when activating an object from the keyboard if that object is not on a
menu. Note: this value is not settable.

XtNmouseDampingFactor

This resource specifies the number of pixels the pointer can be moved before a
drag operation is initiated.

XtNmouseStatus

This Boolean resource indicates whether there is a mouse on the server.

XtNmultiClickTimeout

This resource specifies the number of milliseconds that determines when two
mouse button clicks is considered a multi-click, provided the pointer does not
move beyond the XtNmouseDampingFactor value.

A-10 OPEN LOOK Programmer's Guide

Introduction to General Resources

XtNmultiObjectCount

This resource determines the number of times the OL_MULTIRIGHT,
OL_MULTILEFT, OL_MULTIUP and OL_MULTlOOWN keys repeat the OL_MOVERIGHT,
OL_MOVELEFT, OL_MOVEUP and OL_MOVEOOWN keys, respectively.

XtNselectDoesPreview

This Boolean resource reflects the behavior of the SELECT mouse button when it
is pressed over a MenuButton or an Abbreviated MenuButton. If its value is
TRUE, pressing SELECT will cause the MenuButton to preview the submenu's
default item and releasing the SELECT button will activate the default item. If
its value is FALSE, pressing SELECT will post the submenu.

XtNshow Accelerators

Range of Values:

OL_DISPLAY /" display"
OL_INACTlVE/"inactive"
OL_NONE/"none"

When this resource is set to OL_DISPLAY, the keyboard accelerators on the con
trols will be displayed. When this resource is set to OL_NONE, the keyboard
accelerators on the controls will not be displayed. Setting this resource to
OL_INACTlVE will cause the keyboard accelerators to not be displayed and will
cause the controls to ignore the accelerator action.

XtNshowMnemonics

Range of Values:

OL_DISPLAy/"display"
OL_HIGHLIGHT/"highlight"
OL_INACTlVE/"inactive"
OL_NoNE/"none"
OL_UNDERLlNE/' 'underline"

This resource determines if the keyboard mnemonics on the controls should be
displayed. Setting it to OL_UNDERLlNE will cause the mnemonics to be
displayed in the primitive children by drawing a line under the character in the
font color. Setting it to OL_HIGHLIGHT will display the mnemonic character with
the background and foreground colors reversed. When highlighting a character

Manual Pages: Introduction A-11

Introduction to General Resources

that is displayed on a pixmap background, the mnemonic character will be
drawn in a solid color. The mnemonic accelerator will not be displayed if this
resource is set to OL_NONE. The resource set to OL_INACTIVE turns off the
mnemonic display as well as making the mnemonic key inactive.

XtNtextBackground

This resource reflects the default color used in the scrolling list and textEdit
widgets.

XtNtextFontColor

This resource reflects the default font color used in the scrolling list and textEdit
widgets.

XtNthreeD

This resource determines how the visuals are rendered. The default value,
TRUE, displays the visuals with a three dimensional look. Setting this resource
to FALSE will cause the visuals to have a two dimensional appearance.

A-12 OPEN LOOK Programmer's Guide

Introduction to General Resources

Core Resources

These are the resources of the Core class, of which all widget classes are subc
lasses. They are described here to avoid repeating their descriptions for each
widget.

Core Resource Set
Name Class Type Access
XtNaccelerators XtCAccelerators XtTranslations G

XtNancestorSensitive XtCSenstitive Boolean G*

XtNbackground XtCBackground Pixel SClt

XtNbackgroundPixmap XtCPixmap Pixmap SCIt

XtNborderColor XtCBorderColor Pixel SCIt

XtNborderPixmap XtCPixmap Pixmap SClt

XtNborderWidth XtCBorderWidth Dimension SCI

XtNcolormap XtCColormap Colormap SCI

XtNdepth XtCDepth Cardinal GI

XtN destroyCallback XtCCallback XtCallbackList SI

XtNheight XtCHeight Dimension SCI

XtNmanaged XtCManaged Boolean SCI

XtNmappedWhenManaged XtCMappedWhenManaged Boolean SCI

XtNscreen XtCScreen int CI

XtNsensitive XtCSensitive Boolean CI*

XtNtranslations XtCTranslations XtTranslations C

XtNwidth XtCWidth Dimension SCI

XtNx XtCPosition Position SCI

XtNy XtCPosition Position SCI

Manual Pages: Introduction A-13

Introduction to General Resources

XtNancestorSensitive

Range of Values:

TRUE
FALSE

This argument specifies whether the immediate parent of the widget will receive
input events. To preserve data integrity, the application should use the
XtSetSensitive routine if it wants to change the resource (see XtNsensitive
below).

XtNaccelerators

This resource should not be set by an application.

XtNbackground

Range of Values:

(any valid current display Pixel value)

This resource specifies the background color for the widget.

Note that the OPEN LOOK workspace manager arranges for a "normal video"
(or "reverse video") effect on monochrome displays by setting the XtNback
ground resource to white (black) and the XtNforeground, XtNfontColor, and
XtNborderColor resources to black (white) where appropriate. The workspace
manager also provides end user access to some of these resources on poly
chrome displays. However, any color set by the application when a widget is
created or in a later call to XtSetValues will override the colors set by the user.
Thus applications should consider this and avoid setting these resources
directly, letting the user have control over them.

XtNbackgroundPixmap

The application can specify a pixmap to be used for tiling the background. The
first tile is placed at the upper left hand corner of the widget's window.

This resource takes precedence over the XtNbackground resource.

A-14 OPEN LOOK Programmer's Guide

Introduction to General Resources

See the note about the interaction of this resource with other color resources
under the description of the XtNbackground resource above.

XtNborderColor

Range of Values:

(any valid current display pixel value)j(any name from the rgb.txt file)

This resource specifies the color of the border.

See the note about the interaction of this resource with other color resources
under the description of the XtNbackground resource above.

XtNborderPixmap

The application can specify a pixmap to be used for tiling the border. The first
tile is placed at the upper left hand comer of the border.

This resource takes precedence over the xtNborderColor resource.

See the note about the interaction of this resource with other color resources
under the description of the XtNbackground resource above.

XtNborderWidth

Range of Values:

o ~ XtNborderwidth ~ min(XtNWidth, XtNheight) / 2

This resource sets the width of the border for a widget. Typically the border
surrounds the widget's window on all four sides, but in some widgets it is
inside the widget, surrounding a view or control area contained in the widget.
The width is specified in pixels, and a width of zero means no border will show.

Manual Pages: Introduction A-15

Introduction to General Resources

XtNcolormap

Range of Values:

StaticGray
GrayScale
StaticColor
PseudoColor
TrueColor
DirectColor

This is the colormap to be used for the widget. While the range of values listed
here is the entire list recognized, the actual valid values depend on the X server
being used.

By default, a widget inherits its parent widget's colormap. If the widget is a top
level shell, the default is the default colormap for the screen (see the XtNscreen
resource).

XtNdepth

Range of Values:

o or (any value supported by the current display)

Determines how many bits should be used for each pixel in the widget's win
dow. The value of this resource is used by the X Toolkit Intrinsics to set the
depth of the widget's window when the widget is created. A value of zero
causes a normal widget to inherit the depth of its parent, or a pop-up widget to
inherit the default depth of the screen.

XtNdestroyCaliback

This is a pointer to a callback list containing routines to be called when the
widget is destroyed.

XtNheight

Range of Values:

o ~ XtNheight

This resource contains the height of the widget's window in pixels, not includ
ing the border area. Programs may request a value at creation or through later

A-16 OPEN LOOK Programmer's Guide

Introduction to General Resources

calls to xtSetValues, but the request may not succeed because of layout
requirements of the parent widget.

The visual representations for some widgets have a fixed height for a given
scale. For these widgets, the XtNheight resource gives the height of the space
that contains the widget's representation; the representation is centered verti
cally in this space unless otherwise specified.

XtNmanaged

Range of Values:

TRUE

FALSE

If this resource is set to TRUE, the widget is included in the geometry calcula
tions of its parent. If FALSE, the widget is ignored by its parent and is not
included in the geometry calculations.

XtNmappedWhenManaged

Range of Values:

TRUE

FALSE

If set to TRUE, the widget will be mapped (made visible) as soon as it is both
realized and managed. If set to FALSE, the program is responsible for mapping
and unmapping the widget. If the value is changed from TRUE to FALSE after
the widget has been realized and managed, the widget is unmapped.

XtNscreen

This resource should not be set by an application.

XtNsensitive

Range of Values:

TRUE

FALSE

This resource determines whether a widget will receive input events. If a
widget is sensitive, the X Toolkit Intrinsic's event manager will dispatch to the

Manual Pages: Introduction A-17

Introduction to General Resources

widget all keyboard, mouse button, motion, window enter/leave, and focus
events. Insensitive widgets do not receive these events. Also, insensitive
widgets that appear on the screen are stippled with a 50% gray pattern to show
that they are inactive, as a visual indication that the user can't interact with the
widget. The 50% gray pattern is one that makes every other pixel of the widget
the background color, in a checkerboard pattern.

An application should use the XtSetSensitive routine if it wants to change
this resource. That way it ensures that if a parent widget has XtNsensitive set
to FALSE, the XtNancestorSensi ti ve flag of all its descendants will be
appropriately set.

XtNtranslations

This resource should not be set by an application.

XtNwidth

Range of Values:

o ~ XtNwidth

This resource contains the width of the widget's window in pixels, not including
the border area. Programs may request a value at creation or through later calls
to XtSetValues, but the request may not succeed because of layout require
ments of the parent widget.

The visual representations for some widgets have a fixed width for a given
scale. For these widgets, the XtNwidth resource gives the width of the space
that contains the widget's representation; the representation is centered horizon
tally in this space unless otherwise specified.

XtNx

Range of Values:

o ~ XtNx

This argument contains the x-coordinate of the widget's upper left hand corner
(excluding the border) relative to its parent widget. Programs may request a
value at creation or through later calls to XtSetValues, but the request may not
succeed because of layout requirements of the parent widget.

A-18 OPEN LOOK Programmer's Guide

Introduction to General Resources

XtNy

Range of Values:

o :os; XtNy

This resource contains the y-coordinate of the widget's upper left hand corner
(excluding the border) relative to its parent widget. Programs may request a
value at creation or through later calls to xtSetValues, but the request may not
succeed because of layout requirements of the parent widget.

Flat Widget Layout

All of the flat containers have the same layout characteristics. The superclass of
all flat widgets is a generic row/column manager. Though each column has its
own width and each row has its own height, all columns can have the same
width and all rows can have the same height, if desired.

~
As a programming note, the efficiency in both processing steps and data

NOTE requirements increases as the grid becomes more regular in shape. For
example, a grid specifying that all rows must have the same height and all
columns must have the same width is the most efficient configuration.

The flat row/column manager lays out each managed sub-object in row-major
order or in column-major order depending on the attributes of the container,
starting with the NorthWest corner of the container.

~
Row-major order implies every column in the current row is filled before

NOTE filling any columns in the next row. Column-major order implies every row in
the current column is filled before filling any rows in the next column.

Sub-objects of flat containers are placed within the grid. If the sub-object's
width (or height) is less than the column's width (or row's height), the sub
object is positioned in accordance to the XtNitemGravity resource. The follow
ing table lists the layout resources of all flat containers:

Manual Pages: Introduction A-19

Introduction to General Resources

See the resource tables for each flat container for a more accurate account
ing of the default/allowable values for each layout resource.

Common Flat Container Layout Resources
Name Class Type Default Access
XtNgravity XtCGravity int CenterGravity SGI

XtNhPad XtCHPad Dimension 0 SGI

XtNhSpace XtCHSpace Dimension 0 SGI

XtNitemGravity XtCItemGravity int NorthWestGravity SGI

XtNitemMaxHeight XtCItemMaxHeight Dimension OL IGNORE SGI

XtNitemMaxWidth XtCItemMaxWidth Dimension OL IGNORE SGI

XtNitemMinHeight XtCItemMinHeight Dimension OL IGNORE SGI

XtNitemMinWidth XtCItemMin Width Dimension OL IGNORE SGI

XtNIayoutHeight XtCLayoutHeight OlDefine OL MINIMIZE SGI

XtNIayoutType XtCLayoutType OlDefine OL FIXEDROWS SGI

XtNIayoutWidth XtCLayoutWidth OlDefine OL MINIMIZE SGI

XtNmeasure XtCMeasure int 1 SGI

XtN sameHeight XtCSameHeight OlDefine OL ALL SGI

XtNsameWidth XtCSameWidth OlDefine OL COLUMNS SGI

XtNvPad XtCVPad Dimension 0 SGI

XtNvSpace XtCVSpace Dimension 0 SGI

A·20 OPEN LOOK Programmer's Guide

XtNgravity

Range of Values:

EastGravityj"east"
westGravity j"west"
CenterGravity j" center"
NorthGravityj"north"
NorthEastGravityj"northEast"
NorthWestGravityj"northWest"
SouthGravityj"south"
SouthEastGravityj"southEast"
SouthWestGravityj"southWest"

Introduction to General Resources

The gravity resource specifies the position of all sub-objects (that is, as a group)
whenever a tight-fitting bounding box that surrounds the sub-objects has a
width, or height, less than the container's width or height, respectively. Essen
tially, this resource specifies how the sub-objects, as a group, float within its
container.

XtNhPad/XtNvPad

Range of Values:

o ::;; XtNhPad
o ::;; XtNvPad

These resources specify the minimum spacing to leave round the edges of the
container, left and right, and top and bottom, respectively.

XtNhSpace/XtNvSpace

Range of Values:

o ::;; XtNhSpace
o ::;; XtNvSpace

These resource specify the amount of space to leave between sub-objects hor
izontally and vertically, respectively. If the sub-objects are of different sizes in a
row or column, the spacing applies to the widest or tallest dimension all sub
objects in the row or column.

Manual Pages: Introduction A-21

Introduction to General Resources

XtNitemGravity

Range of Values:

EastGravity/"east"
westGravity/"west"
CenterGravity /" center"
NorthGravity / "north"
NorthEastGravity/"northEast"
NorthWestGravity/"northWest"
SouthGravity/"south"
SouthEastGravity/"southEast"
SouthWestGravity/"southWest"

This resource specifies how an item fits into its row or column whenever the
item's width or height is less than the column's width or the row's height. The
values of XtNsameWidth and XtNsameHeight govern the column's width and
the row's height.

XtNitemMaxHeight/XtNitemMaxWidth

Range of Values:

OL_IGNORE != XtNitemMaxHeight
OL_IGNORE != XtNitemMaXWidth

These resources specify the maximum allowable width and height (respectively)
of all sub-objects. If either of these resources have a value of OL_IGNORE, the
maximum size constraint is ignored.

XtNitemMinHeight/XtNitemMinWidth

Range of Values:

OL_IGNORE != XtNitemMinHeight
OL_IGNORE != XtNitemMinWidth

These resources specify the minimum allowable width and height (respectively)
of all sub-objects. If either resource has a value of OL_IGNORE, it is ignored.

A-22 OPEN LOOK Programmer's Guide

XtNlayoutHeight/XtNlayoutWidth

Range of Values:

OL_MINIMIZE/"minimize"
OL_MAXIMIZE/ "maximize"
OL_IGNORE/" ignore"

Introduction to General Resources

These resources specify the resize policy of flat containers whenever a sub-object
is added, removed or altered. These resources have no affect when an external
force applies a size change to the container, for example, if the application
resizes a container. The explanation of the values are:

The container will modify its width (or height) to be just large
enough to tightly wrap around its sub-objects regardless of its
current width (or height). Thus the container will grow and
shrink depending on the size needs of its sub-objects.

The container will increase its width (or height) to be just
large enough to tightly wrap around its sub-objects regardless
of its current width (or height), but will not give up extra
space. Thus the container will grow but never shrink depend
ing on the size needs of its sub-objects.

The container will honor its own width and height, for exam
ple, it will not grow or shrink in response to the addition,
deletion or altering of its sub-objects.

XtNlayoutType

Range of Values:

OL_FlXEDCOLS/"fixedcols"
OL_FlXEDROWS /" fixedrows"

This resource controls the number of rows and columns used to layout the sub
objects.

OL_FlXEDCOLS The layout should have a maximum number of columns equal
to the value specified by the XtNmeasure resource, and there
will be enough rows to hold all sub-objects. Sub-objects are
placed in row-major order, for example, the columns of the
current row are filled before filling any columns in the next
row.

Manual Pages: Introduction A-23

Introduction to General Resources

OL_FIXEDROWS The layout should have a maximum number of rows equal to
the value specified by the XtNmeasure resource, and there
will be enough columns to hold all sub-objects. Sub-objects
are placed in column-major order, for example, the rows of
the current column are filled before filling any rows in the
next column.

XtNmeasure

Range of Values:

o < XtNmeasure

This resource gives the number of rows or columns that were requested from
the XtNlayoutType resource.

XtNsameHeight

Range of Values:

OL_ALL/"all"
OL_ROWS/"rows"
OL_NONE/"none"

This resource defines which sub-objects are forced to be the same height within
the container:

A-24

All sub-objects are to be the same height.

All sub-objects appearing in the same row should be the same
height.

The sub-objects are placed in fixed-height rows but the height
of each item is left alone. The height of each row is the
height of the tallest sub-object.

OPEN LOOK Programmer's Guide

Introduction to General Resources

XtNsameWidth

Range of Values:

OL_ALLj"all"
OL_COLUMNSj "columns"
OL_NDNEj"none"

This resource defines that sub-objects are forced to be the same width within the
container:

All sub-objects are to be the same width.

All sub-objects appearing in the same column should be the
same width.

The sub-objects are placed in fixed-width columns but the
width of each item is left alone. The width of each column is
the width of the widest sub-object.

Manager Widget Resources

The following resources are available to the widgets that are a subclass of the
Manager class.

Manager Resource Set
Name Class Type Default Access
XtNconsumeEvent XtCConsumeEvent XtCallbackList NULL SG

XtNinputFocusColor XtCInputFocusColor Pixel red SGI

XtNreferenceName XtCReferenceName String NULL GI

XtNreferenceWidget XtCReferenceWidget Widget NULL GI

XtNtraversalOn XtCTraversalOn Boolean TRUE SGI

XtNuserData XtCUserData XtPointer NULL SGI

Manual Pages: Introduction A-25

Introduction to General Resources

XtNconsumeEvent
The resource overrides the OPEN LOOK handling of events. Whenever an
event is processed by the standard OPEN LOOK translation table, the XtNCon
sUIDeEvent list is called for the widget in question allowing the application to
consume the XEvent. To consume an event, the application should turn on (set
to TRUE) the consumed field in the call_data argument when a given event is
processed. If the XEvent is consumed, the widget doesn't use it. If it is not
consumed the widget uses it.

typedef struct {
Boolean
XEvent
Modifiers
OlVirtualName
KeySym

String
Cardinal

consumed;
xevent;
dont_care;
virtual_name;
keysym;

buffer;
length;

Cardinal item_index;
} OlVirtualEventRec, *OlVirtualEvent;

XtNreferenceName
Range of Values:

valid name of a widget

This resource specifies a position for inserting this widget in its managing
ancestor's traversal list. If the named widget exists in the managing ancestor's
traversal list, this widget will be inserted in front of it. Otherwise, this widget
will be inserted at the end of the list.

If both the XtNreferenCeName and XtNreferencewidget resources are set, they
must refer to the same widget. If not, a warning is issued and the widget
referred to by name is used.

A-26 OPEN LOOK Programmer's Guide

Introduction to General Resources

XtNinputFocusColor

Range of Values:

(valid Pixel value for the display)j(valid color name)

This resource specifies the color used to show that the widget has input focus.
Normally, this color is derived from the value of xtNinputFocusColor resource
and is dynamically maintained. This dynamic behavior is abandoned if the
application explicitly sets this resource either at initialization or through a call to
XtSetValues.

XtNreferenceWidget

This resource specifies a position for inserting this widget in its managing
ancestor's traversal list. If the reference widget is non-null and exists in the
managing ancestor's traversal list, this widget will be inserted in front of it.
Otherwise, this widget will be inserted at the end of the list.

If both the XtNreferenceName and XtNreferenceWidget resources are set, they
must refer to the same widget. If not, a warning is issued and the widget
referred to by name is used.

XtNtraversalOn

This resource specifies whether this widget is accessible through keyboard
traversal.

XtNuserData

This resource provides storage for application-specific data. It is not used or set
by the widget.

Manual Pages: Introduction A-27

Introduction to General Resources

Primitive Widget Resources

The following resources are available to the Widgets that are a subclass of the
Primitive class.

Primitive Resource Set
Name Class Type Default Access
XtNaccelerator XtCAccelerator String NULL SGr

XtNacceleratorText XtCAcceleratorText String Dynamic SGr

XtNconsumeEvent XtCConsumeEvent XtCallbackList NULL SGr

XtNFont XtCFont XFontStruct* (OPEN LOOK font) sr

XtNfontColor XtCFontColor Pixel Black* SGr

XtNfontGroup XtCFontGroup OlFontList NULL SGr

XtNforeground XtCForeground Pixel XtDefaultForeground SGr

XtNinputFocusColor XtCInputFocusColor Pixel Black SGr

XtNmnemonic XtCMnemonic unsigned char NULL SGr

XtNreferenceN arne XtCReferenceName String NULL SGr

XtNreference Widget XtCReference Widget Widget NULL SGr

XtNtraversalOn XtCTraversalOn Boolean TRUE SGr

XtNuserData XtCUserData XtPointer NULL SGr

XtNaccelerator

This resource is used to define a single KeyPress event that will select a Primi
tive widget. The format of this string is identical to the translation manager
syntax. Virtual Keys can be used in this translation.

XtNacceleratorText

This resource specifies a string that describes the Primitive's accelerator. For
example, a Help button may set the resource to the string "FI" to remind the
users that function key I is the HELP button. This text will be displayed to the
right of the Primitive's label or image if the return from OlQueryAccelerator
Display is OL_DISPLAY.

A-28 OPEN LOOK Programmer's Guide

Introduction to General Resources

This resource defaults to the XtNaccelerator string with "+"s inserted
between multiple key sequences.

XtNconsumeEvent

The resource overrides the OPEN LOOK handling of events. Whenever an
event is processed by the standard OPEN LOOK translation table, the XtNCon
sumeEvent list is called for the widget in question allowing the application to
consume the XEvent. To consume an event, the application should turn on (set
to TRUE) the consumed field in the call_data argument when a given event is
processed. If the XEvent is consumed, the widget doesn't use it. If it is not
consumed the widget uses it.

typedef struct {
Boolean
XEvent
Modifiers

consumed;
xevent;
d~nt_care;

OIVirtual Name virtual_name;
KeySym keysym;
String
Cardinal

buffer;
length;

Cardinal item_index;
} OIVirtualEventRec, *OIVirtuaIEvent;

XtNfont

XtNfontcolor

XtNfontGroup

XtNforeground

XtNinputFocusColor

Range of Values:

(valid Pixel value for the display)/(valid color name)

This resource specifies the color used to show that the widget has input focus.
Normally, this color is derived from the value of XtNinputFocusColor resource
and is dynamically maintained. This dynamic behavior is abandoned if the
application explicitly sets this resource either at initialization or through a call to
XtSetValues.

Manual Pages: Introduction A-29

Introduction to General Resources

XtNmnemonic

This resource is a single character that is used as a mnemonic accelerator for
keyboard operation. Typing this character modified with the xtNmnemonic
Prefix will be equivalent to clicking select on the Primitive widget. Note that
in a Menu shell, the mnemonicPrefix modifier is not needed. The Primitive
widget may visually display this character.

XtNreferenceName

Range of Values:

(the name of a widget already created in the traversal list)

This resource specifies a position for inserting this widget in its managing
ancestor's traversal list. If the the named widget exists in the managing
ancestor's traversal list, this widget will be inserted in front of it. Otherwise,
this widget will be inserted at the end of the list.

If both the XtNreferenceName and XtNreferencewidget resources are set, they
must refer to the same widget. If not, a warning is issued and the widget
referred to by name is used.

XtNreferenceWidget

This resource specifies a position for inserting this widget in its managing
ancestor's traversal list. If the reference widget is non-null and exists in the
managing ancestor's traversal list, this widget will be inserted in front of it.
Otherwise, this widget will be inserted at the end of the list.

If both the XtNreferenceName and XtNreferenceWidget resources are set, they
must refer to the same widget. If not, a warning is issued and the widget
referred to by name is used.

XtNtraversalOn

This resource specifies whether this widget is accessible through keyboard
traversal.

A-30 OPEN LOOK Programmer's Guide

Introduction to General Resources

XtNuserData

This resource provides storage for application-specific data. It is not used or set
by the widget.

Shell Resources

These are resources that are common to all widget classes that are subclasses of
Shell. They are described here to avoid repeating their descriptions for each
shell widget.

~ The behavior described for many of these resources assume the OPEN
I N~TE I LOOK window manager for the X Window System is being used

Base Windows and Popup Windows

All OPEN LOOK base windows are created using one of the routines: OlIni
tialize or xtCreateApplicationShell. OPEN LOOK pop-up windows (the
Popupwindow, Menu, and Notice widgets) are created using XtCreatePopup
Shell. An application may define other pop-up windows that can be created
using XtCreatePopupShell.

The following table lists generic resources available to the base windows (that is,
TopLevelShell and ApplicationShell widgets):

Base WindowShell Resource Set
Name Class Type Access
XtNiconic XtCIconic Boolean CI

XtNiconMask XtCIconMask Pixmap SCI

XtNiconName XtCIconName String SCI

XtNiconPixmap XtCIconPixmap Pixmap SCI

XtNicon Window XtCIcon Window Window SCI

XtNiconX XtCIconX Position CI

XtNiconY XtCIconY Position CI

The following resources are typical of base windows and generic pop-up win
dows, but not all are available for the pop-up windows defined in this toolkit.

Manual Pages: Introduction A-31

Introduction to General Resources

See the list of resources for the PopupWindow, Menu, and Notice widgets to see
which are available. The Access column in this table identifies the access for
base windows only.

Pop-up and Base Window Resource Set
Access

Name Class Type (Base Window)

XtNallowShellResize XtCAllowShellResize Boolean SCI

XtNgeometry XtCCeometry String CI

XtNheightInc XtCHeightInc int SCI

XtNinitialState XtCInitialState int CI

XtNinput XtCInput Boolean C

XtNmaxAspectX XtCMaxAspectX Position SCI

XtNmaxAspectY XtCMaxAspectY Position SCI

XtNmaxHeight XtCMaxHeight Dimension SCI

XtNmaxWidth XtCMaxWidth Dimension SCI

XtNminAspectX XtCMinAspectX Position SCI

XtNminAspectY XtCMinAspectY Position SCI

XtNminHeight XtCMinHeight Dimension SCI

XtNminWidth XtCMinWidth Dimension SCI

XtN overrideRedirect XtCOverrideRedirect Boolean SCI

XtNpopdownCallback XtCCallback XtCallbackList SI

XtNpopupCallback XtCCallback XtCallbackList SI

XtNsaveUnder XtCSaveUnder Boolean SCI

XtNtitle XtCTitle String SCI

XtNtransient XtCTransient Boolean SCI

XtNwaitForWm XtCWaitForWm Boolean C

XtNwidthlnc XtCWidthlnc int SCI

XtNwindowCroup XtCWindowCroup Window SCI

XtNwmTimeout XtCWmTimeout int C

The previous two tables listed generic resources available to most shells. The
table below, however, lists resources necessary to support the OPEN LOOK look
and feel. These resources are implemented in the VendorShell widget class;
and therefore, apply only to shells which are subclasses of the VendorShell
widget class (that is, TransientShell, MenuShell, PopupwindowShell, Notice
Shell, TopLevelShell and ApplicationShell). Since some of these resources

A-32 OPEN LOOK Programmer's Guide

Introduction to General Resources

do not apply to all shells (for example, XtNresizeCorners on menus), see the
individual manual pages for a more accurate description of the applicable
resources and their default values.

OPEN LOOK look and feel Resource Set
(VendorSh.ell and its subclasses)

Name Class Type
XtNbusy XtCNBusy Boolean

XtNconsumeEvent XtCConsumeEvent XtCallbackList

XtNfocus Widget XtCFocus Widget Widget

XtNmenuButton XtCMenuButton Boolean

XtNmenuType XtCMenuType OlDefine

XtNpushpin XtCPushpin OlDefine

XtNresizeComers XtCResizeComers Boolean

XtNuserData XtCUserData XtPointer

XtNwindowHeader XtCWindowHeader Boolean

XtNwmProtocol XtCWMProtocol XtRCallbackList

XtNwmProtocolInterested XtCWMProtocolInterested int

t Access value is conditional. Please see resource description for more information.

Access
FALSE

SGI

SGI

GI

SGI

SGI

SGI

SGI

GI

SGIt

It

[~J
OlAddCallback must be used instead of XtAddCallback when adding call
backs to the XtNconsumeEvent and XtNwmProtocol callback lists. This res
triction is due to a limitation in the Release 4 X Toolkit Intrinsics class exten
sion mechanism with respect to callback lists. Likewise, OlRemoveCall
back, OlHasCallbacks and OlCallCallbacks should be used instead of
XtRemoveCallback, XtHasCallbacks and XtCallCallbacks, respectively.
All four of these OPEN LOOK routines has the same arguments and seman
tics of their Intrinsic's counterparts.

Manual Pages: Introduction A-33

Introduction to General Resources

Resource Description

XtNaliowShellResize

Range of Values:

TRUE

FALSE

This resource controls whether the shell widget is allowed to resize itself in
response to a geometry request from its child. H set to TRUE, it will attempt to
resize itself as requested by the child. The attempt may be refused by the win
dow manager, which will cause the shell widget to refuse the geometry manage
ment request of its child. Otherwise, it accepts the request. H the
XtNallowShellResize request is set to FALSE, the shell widget will immedi
ately refuse the geometry management request.

XtNbusy

Setting this resource to TRUE makes the application window associated with
this shell busy. When a window becomes busy, the window manager grays the
window header (if there is one). Setting the XtNbusy resource back to FALSE

causes the window to return to its normal appearance and event processing.

~ Neither the window manager or the toolkit grabs mouse or keyboard events y when an application window becomes busy.

XtNconsumeEvent

The resource overrides the OPEN LOOK handling of events. Whenever an
event is processed by the standard OPEN LOOK translation table, the XtNCon

sumeEvent list is called for the widget in question allowing the application to
consume the XEvent. To consume an event, the application should tum on (set
to TRUE) the consumed field in the call_data argument when a given event is
processed.

A-34 OPEN LOOK Programmer's Guide

Introduction to General Resources

~ OlAddCallback must be used instead of XtAddCallback when adding cally backs to the XtNc_t callback list.

XtNcreatePopupChildProc

This resource defines a pointer to a single function (not a callback list) that is
called during the process of popping up the shell widget. It is called after the
XtNpopupCallback callbacks are issued but before the shell widget is realized
and mapped. The function is passed a single argument, the ID of the shell
widget.

XtNfocusWidget

This resource controls which widget gets the input focus when a pop-up or base
window gains input focus. If this resource is non-NULL, focus is set it. If this
resource is NULL or the widget to which it refers is unwilling to accept input
focus, the pop-up or base window sets focus to either the default widget in the
window or the first widget willing to accept focus. As focus changes within the
shell, this resource is updated to reflect the last widget with focus.

A resource converter will translate widget names specified in a resource file to a
widget id for this resource.

XtNgeometry

Range of Values:

(any syntactically correct argument to the XParseGeometry function)

This resource can be used to specify the size and position of the shell widget
when it pops up.

XtNheightinc/XtNwidthlnc

Range of Values:

o ~ XtNheightlnc
o :::; XtNwidthlnc

Manual Pages: Introduction A-35

Introduction to General Resources

These resources define an arithmetic progression of sizes, from XtNminHeight
and XtNminwidth to XtNmaxHeight and XtNmaxWidth, into which the shell
widget prefers to be resized by the window manager.

XtNiconic

Range of Values:

TRUE

FALSE

This resource provides an equivalent method of setting the XtNinitialState
resource to IconicState.

XtNiconMask

This resource defines an image that specifies which pixels of the XtNiconPi:xmap
resource should be used for the base window's icon. This image must be a sin
gle plane pixmap.

XtNiconName

This resource defines a name that the window manager will display in the shell
widget's icon. If the xtNtitle resource is not defined or is NULL, this resource
is used instead. If this resource is NULL, the name of the application is used in
its place.

XtNiconPixmap

This resource defines the image to be used as the base window's icon. It must
be a single plane pixmap.

XtNiconWindow

Range of Values:

(10 of any existing window)

This resource defines the ID of a window that the window manager should use
for the base window's icon, in place of XtNiconPi:xmap. The XtNiconWindow
takes precedence over the XtNiconPi:xmap resource.

A-36 OPEN LOOK Programmer's Guide

Introduction to General Resources

XtNiconX/XtNicon Y
Range of Values:

-1 :::;; XtNicoDX
-1 :::;; XtNiconY

These resources define the location where the base window's icon should
appear. If the value of one of these resources is -1, the window manager
automatically picks a value, according to its icon placement requirements.

XtNinitialState
Range of Values:

NormalState/"1"
IconicState/ "3"

This resource defines how the base window (and associated pop-up windows)
appears when the application starts up.

NormalState

IconicState

When set to this value, the application starts up with its
base window open.

When set to this value, the application starts up with its
base window closed into an icon.

Other values are defined by the X Window System for this resource, but the
OPEN LOOK window manager recognizes only the iconic and normal states.

XtNinput
This resource controls the type of input focus behavior of the application. It
should not be set by an application.

Manual Pages: Introduction A·37

Introduction to General Resources

XtNmenuButton

This Boolean resource determines if the menu button decoration should be
drawn in the upper left comer of the shell window's header The default, TRUE,

indicates that it should be drawn. If the xtNpushpin resource is not OL_NONE,

this resource is ignored.

XtNmenuType

Range of Values:

OL_MENU_FULL/"full"

OL_MENU_LIMITED/"limited"

OL_MENU_CANCEL/"cancel"

OL_NONE/"none"

This resource provides the application access to the type of window menu that
the OPEN LOOK window manager creates. The default value is OL_MENU_FULL

for a base shell. This full menu contains the following entries: Close, Full Size,
Properties, Back, Refresh, and Quit. Setting this resource to OL_MENU_LIMITED

results in a window menu with the following buttons: Dismiss (a MenuButton),
Back, Refresh, and Owner? PopupWindow and Help shells set this resource to
OL_MENU_LIMlTED. The menu type OL_MENU_CANCEL provides the same menu
as the OL_MENU_LIMITED with the exception that the Dismiss button is replaced
with a Cancel button. When the XtNm.enuType resource is OL_NONE, the window
manager does not create a menu or a menu mark.

XtNmaxAspectX/XtNmaxAspectY

XtNminAspectXlXtNminAspectY

Range of Values:

-1 = XtNmaxAspectX, 1 ::;; XtNmaxAspectX

-1 = XtNmaxAspecty, 1 ::;; XtNmaxAspecty

-1 = XtNminAspectX, 1 ::;; XtNminAspectX

-1 = xtNminAspectY, 1 ::;; xtNminAspectY

xtNlllinAspectX ::;; XtNi:naxAspectX

xtNlllinAspectY XtNi:naxAspectY

A-3S OPEN LOOK Programmer's Guide

Introduction to General Resources

These resources define the range of aspect ratios allowed for the size of the shell
widget's window. Assuming the width and height of the window are given by
width and height, the following relation shows how the window size is con
strained:

XtNminAspectX < width < XtNmaxAspectX

XtNminAspecty - height - XtNmaxAspecty

If the end user tries to resize the window to a narrower or wider aspect ratio
than allowed by these resources, the window manager adjusts the window to
the closest allowed aspect ratio. If possible, it will do this by increasing the
width or height to compensate. The XtNmaxHeight and XtNmaxWidth resources
may force the window manager to reduce the width or height instead.

If the values of these resources are -1, the window manager does not constrain
the size of the window to any aspect ratio.

~
An application should either set all values to -1 (the default) or should set all

NOTE to a positive value. An application should never set a value of zero to any of
these resources.

XtNmaxHeight/XtNmaxWidth/XtNminHeight/XtNminWidth

Range of Values:

XtNminHeight ~ xtNmaxHeight
XtNminwidth ~ XtNmaxWidth
(or OL_IGNORE for any of these resources)

These resources define the range allowed for the size of the shell widget's win
dow. If the end user tries to resize the window smaller or larger than these
values allow, the window manager adjusts the width and/or height to compen
sate.

The default value of OL_IGNORE keeps the window manager from constraining
the window's size.

Manual Pages: Introduction A-39

Introduction to General Resources

XtNoverrideRedirect

Range of Values:

TRUE
FALSE

This resource controls whether the shell widget's window is managed by the
window manager. Since this OPEN LOOK toolkit is designed to have a certain
pop-up window behavior, this resource should not be set by an application for
the shell widgets defined in this toolkit (Menu, Notice, and PopupWindow).

XtNpopdownCallback

This resource defines callbacks automatically issued right after the shell widget's
window has been unmapped (that is, popped down.)

XtNpopupCallback

This resource defines callbacks automatically issued right before the shell widget
is realized and mapped (that is, popped up.)

XtNpushpin

Range of Values:

OL_NONE/"none"
OL_OUT/"out"
OL_IN/"in"

This resource controls whether the pushpin is included in the window's decora
tions. The default for the base shell type is OL_NONE, indicating that the push
pin is not included in the window's decorations. Setting this resource to OL_OUT
adds the pushpin to the window's decorations, and sets its state to be unpinned.
OL_OUT is the default value for this resource in PopupWindow shells. Setting
this resource to OL_IN adds the pushpin to the window's decorations, and sets
its state to be pinned. OL_IN is the default value for this resource in Help shells.
Applications can query the state of the pushpin by getting the value of this
resource, since it is updated when the pushpin's state changes.

A-40 OPEN LOOK Programmer's Guide

Introduction to General Resources

If the shell does not have an OPEN LOOK header (XtNW"indowHeader set to
FALSE), then XtNpushpin is always OL_NONE, and attempts to change the value
are ignored.

XtNresizeCorners

This Boolean resource determines if the OPEN LOOK resize comers should be
part of the window decorations. The default for the base shell is TRUE, that
resize comers are present. PopupWindow also defaults to having resize comers,
but Notice, Help and Menu shells do not have resize corners.

XtNsaveUnder

Range of Values:

TRUE

FALSE

This resource directs the shell widget to instruct the server to attempt to save
the contents of windows obscured by the shell when it is mapped, and to
restore the contents when the shell widget is unmapped.

XtNtitie

This resource gives the title to include in the header of the base or pop-up win
dow. Widgets of other classes besides Shell may have a resource with the
same name.

XtNtransient

Range of Values:

TRUE

FALSE

This resource controls whether the shell widget's window is "transient" and is
to be unmapped when the associated base window is iconified (see XtNW"indow
Group). Since this OPEN LOOK toolkit is designed to have a certain pop-up
window behavior, this resource should not be set by an application for the shell
widgets defined in this toolkit (Menu, Notice, and PopupWindow).

Manual Pages: Introduction A-41

Introduction to General Resources

XtNuserData

This resource provides storage for application-specific data. It is not used or set
by the widget. Its default value is NULL.

XtNwaitForWm

This resource should not be set by an application.

XtNwindowGroup

Range of Values:

(ID of any existing window)

This resource identifies the base window associated with this shell widget's win
dow. When the end user closes the base window, all its associated windows are
unmapped (pop-up windows or other shell widget windows with XtNtran

sient set to TRUE) or closed (base windows with XtNtransient set to FALSE).

XtNwindowHeader

This Boolean resource determines if the window manager should provide a
header for the window. The header is the area of the window that contains the
pushpin, title, and window mark. The default for the base shell is TRUE, that
the window does have a header. The Popup Window and Help shells also have
default headers, but the Notice shell would default to FALSE. This resource can
only be set at initialization.

XtNwmProtocol

Range of Values:

OL_WM_TAKELFOCUS

OL_WM_SAVE_YOURSELF

OL_WM_DELETE_WINDOW

This resource controls the action that is taken whenever a shell widget (which is
a subclass of a VendorShell widget class) receives WM_PROTOCOL messages. If
no callback list is specified, the shell performs its default action(s). If a callback
list is specified, it is invoked and no default action(s) is taken. The application

A-42 OPEN LOOK Programmer's Guide

Introduction to General Resources

can, however, simulate the default action(s) at its convenience by calling OlWM

ProtocolAction with the action parameter set to OL_DEFAULTACTION. (See
OlWMProtocolAction(3W) for more information on this routine.)

When the application's callback procedure is invoked, the call_data field is a
pointer to the following structure:

typedef struct {

int msgtypei

XEvent * xeventi
} OlWMProtocolverifYi

/* type of WM msg */

The field msgtype is an integer constant indicating the type of protocol message
which invoked the callback and has a range of values of:

OL_WM_TAKE_FOCUS

OL_WM_SAVE_YOURSELF

OL_WM_DELETE_WINDOW

OlAddCallback must be used instead of XtAddCallback when adding call
backs to the XtNwmProtocol callback list.

XtNwmProtocollnterested

This specifies the types of protocol messages that interest the application. By
default, it is both OL_WM_DELETE_WINDOW and OL_WM_TAKE_FOCUS. Furthermore,
these two types are always turned on and cannot be turned off. Thus, setting
XtNwmProtocolInterested to OL_WM_SAVE_YOURSELF will get all three types.

XtNwmTimeout

This resource should not be set by an application.

Manual Pages: Introduction A-43

B Manual Pages: Convenience
Routines

Introduction to the Convenience Routines B-1
General Routines B-1
Dynamic Settings Utilities B-2
Text Buffer Utilities B-2

• Regular Expression Utilities B-3
• Database Routines B-4
• Gauge Widget Routines B-4
• Routines to Support Input Method B-4
• TextEdit Routines B-4
• TextField Routines B-5
• Obsolete Routines B-5

Convenience Routines B-6

Table of Contents

Introduction to the Convenience Routines

This section describes the format of the man pages for convenience routines.
Each routine starts on a new page and has the layout described below.

• The top of the first page for each major feature gives the feature name on
both the top left and top right of the page, followed by a I/3W" in
parentheses. (3W is the numbering convention assigned to all OPEN
LOOK programming manual pages.) Many of the routines are grouped
by similar function (for example, Dynamic Setting or a Cursor Utility).
The group name appears directly under the page header. When the rou
tine has several variations a general or meaningful form was used for the
page header.

• Some manual pages have several versions of a routine each with its own
syntax and function. See the Synopsis or Description sub-sections for
explanation.

• A synopsis is given that shows, briefly, how to invoke the function.

• Most routines have a description.

• The description is sometimes broken up into minor features, each starting
with a separate heading.

• Some routine pages have SEE ALSO sections which direct you towards
other commands that deal with a similar function.

• As a final item, some of the routines have an associated return value.

General Routines

Error
Flattened Widget Utilities
Input Focus
Mnemonic/AcceleratorDisplay
OlGetApplicationvalues
OlInitialize
OlRegisterHelp
OlWMProtocolAction
OlWidgetToClassName
OlWidgetClassToClassName
PackedWidget

Manual Pages: Convenience Routines 8-1

Introduction to the Convenience Routines

Pixel Conversion
Widget Activation/Association

Dynamic Settings Utilities

GetOlMoveCUrsor
GetOlDuplicateCUrsor
GetOlBusyCursor
GetOlPanCursor
GetOlQuestionCUrsor
GetOlTargetCUrsor
GetOlStandardCUrsor
OlGet50PercentGrey
OlGet75PercentGrey
OlGrabDragPointer
OlUngrabDragPointer
OlDragAndDrop
OlRegisterDynamicCallback
OlunregisterQynarnicCallback
OlCallDynamicCallbacks

Text Buffer Utilities

Buffer Macros
AllocateBuffer
AllocateTextBuffer
BackwardScanTextBuffer
CopyBuffer
COpyTextBufferBlock
EndCUrrentTextBufferWord
ForwardScanTextBuffer
FreeBuffer
FreeTextBuffer
GetTextBufferBlock
GetTextBufferBuffer
GetTextBufferChar
GetTextBufferLine

8-2 OPEN LOOK GUI Programmer's Guide

GetTextBuf ferLocat ion
GrowBuffer
IncrementTextBufferLocation
Insert IntoBuf fer
LastTextBufferLocation
LastTextBufferPosition
LineOfPosition
LocationOfPosition
Next Location
NextTextBufferWord
positionOfLine
positionOfLocation
PreviousLocation
PreviousTextBufferWord
ReadFileIntoTextBuffer
ReadFileIntoBuffer
ReadStringIntoBuffer
ReadStringIntoTextBuffer
ReplaceCharInTextBuffer
ReplaceBlockInTextBuffer
RegisterTextBufferScanFunctions
RegisterTextBufferUpdate
RegisterTextBufferWordDefinition
SaveTextBuffer
StartCurrentTextBufferWord
stropen
strgetc
strclose
TextBuffer Macros
UnregisterTextBufferUpdate

Regular Expression Utilities

strexp
strrexp
streexp

Manual Pages: Convenience Routines

Introduction to the Convenience Routines

8-3

Introduction to the Convenience Routines

Database Routines

OlGetApplication Values
OlClassSearchIEDB
OlClassSearchTextDB
OlLookuplnputEvent
OlwidgetSearchIEDB
OlwidgetSearchTextDB
OlUpdateDisplay

Gauge Widget Routines

OlSetGaugevalue

Routines to Support Input Method

01 ImValues
OlResetlc
OlCloselm
OlCreatelc
OlDisplayOfIm
OlDestroylc
OlGetlcValues
OlGetImValues
OlIcValues
OlImOfIc
OlLookUplmString
OlLocaleOfIm
OlOpenlm
OlSetlcFocus
OlSetlcValues
OlUnSetlcFocus

TextEdit Routines

OlTextEditClearBuffer
OlTextEditCopyBuffer
OlTextEditCopySelection
OlTextEditGetCUrsorPosition
OlTextEditGetLastPosition
OlTextEditlnsert

8-4 OPEN LOOK GUI Programmer's Guide

Introduction to the Convenience Routines

OlTextEditPaste
OlTextEditReadSUbString
OlTextEditRedraw
OlTextEditSetCUrsorPosition
OlTextEditBuffer
OlTextEditUpdate

TextField Routines

OlTextFieldCqpyString
OlTextFieldGetString

Obsolete Routines

~ Please see the "Manual Pages: Obsolete Routines" chapter in this guide for y descriptions of routinos thaI aro no longor supported.

Abbrevstack Widget
Buttonstack Widget
LookupOllnputEvent
OlDetermineMbuseAction
OlGetApplicationResources
OlReplayBtnEvent
Text widget
Virtual Key/Button

Manual Pages: Convenience Routines 8-5

AliocateBuffer (3W) AliocateBuffer (3W)

Text Buffer Utilities

NAME
AllocateBuffer

SYNOPSIS
#include <buffutil.h>

extern Buffer * AllocateBuffer(element_size, initial_size)
int element_size;
int initial_size;

DESCRIPTION
The AllocateBuffer function allocates a Buffer for elements of the given
element_size. The used member of the Buffer is set to zero and the size member
is set to the value of initial_size. If initial_size is zero the pointer p is set to
NULL, otherwise the amount of space required (initial_size * element_size)
is allocated and the pointer p is set to point to this space. The function returns the
pointer to the allocated Buffer.

SEE ALSO
FreeBuffer(3W)

3/91 Page 1

AliocateTextBuffer (3W) AliocateTextBuffer (3W)

Text Buffer Utilities

NAME
AllocateTextBuffer

SYNOPSIS
#include <textbuff.h>

extern TextBuffer * AllocateTextBuffer(filename, f, d)
char * filename;
TextupdateFunction f;
caddr_t d;

DESCRIPTION
The AllocateTextBuffer function is used to allocate a new TextBuffer. After it
allocates the structure itself, initializes the members of the structure, allocating
storage, setting initial values, etc. The routine also registers the update function
provided by the caller. This function normally need not be called by an application
developer since the ReadFilelntoTextBuffer and ReadStringlntoTextBuffer
functions call this routine before starting their operation. The routine returns a
pointer to the allocated TextBuffer.

The FreeTextBuffer function should be used to deallocate the storage allocated
by this routine.

SEE ALSO

3/91

FreeTextBuffer(3W)
ReadFilelntoTextBuffer(3W)
ReadStringlntOTextBuffer(3W)

Page 1

BackwardScanTextBuffer (3W) BackwardScanTextBuffer (3W)

NAME
BackwardScanTextBuffer

SYNOPSIS
#include <textbuff.h>

Text Buffer Utilities

extern ScanResult BackwardScanTextBuffer(text, exp, location)
TextBuffer * text;
char * exp;
TextLocation * location;

DESCRIPTION
The BackwardScanTextBuffer function is used to scan, towards the beginning of
the buffer, for a given expression in the TextBuffer starting at location. A Scan
Result is returned which indicates

SCAN_NOTFOUND
SCAN_WRAPPED
SCAN_FOUND
SCAN_INVALID

The scan wrapped without finding a match.
A match was found at a location after the start location.
A match was found at a location before the start location.
Either the location or the expression was invalid.

SEE ALSO
ForwardScanTextBuffer(3W)

3/91 Page 1

Buffer Macros (3W) Buffer Macros (3W)

NAME
Buffer_Macros: BufferFi1led, BufferLeft, BufferEnpty

SYNOPSIS
include <buffutil.h>

BufferFi1led (buffer)
BufferLeft (buffer)
BufferEnpty(buffer)

DESCRIPTION

3/91

These macros are provided for use with the Buffer Utilities.

BufferFilled returns a flag indicating whether buffer is filled.

BufferLeft returns the number of unused elements in buffer.

BufferEnpty returns a flag indicating whether buffer is empty.

Page 1

CopyBuffer (3W)

NAME
CopyBuffer

SYNOPSIS
#include <buffutil.h>

Text Buffer Utilities

extern Buffer * CopyBuffer(buffer)
Buffer * buffer;

DESCRIPTION

CopyBuffer (3W)

The CopyBuffer function is used to allocate a new Buffer with the same attributes
as the given buffer and to copy the data associated with the given buffer into the
new Buffer. A pointer to the newly allocated and initialized Buffer is returned. It
is the responsibility of the caller to free this storage when appropriate.

SEE ALSO
AllocateBuffer(3W)
FreeBuffer(3W)
InsertlntoBuffer(3W)

3/91 Page 1

CopyTextBufferBlock (3W)

NAME
CqpyTextBufferBlock

SYNOPSIS
#include <textbuff.h>

CopyTextBufferBlock (3W)

Text Buffer Utilities

extern int CopyTextBufferBlock(text, buffer, start-PQsitian,
end-PQsition)

TextBuffer * text;
char * buffer;
TextPositian start-PQsition;
TextPosition end-position;

DESCRIPTION
The CopyTextBufferBlock function is used to retrieve a text block from the text
TextBuffer. The block is defined as the characters between start-PQsition and
end-position inclusive. It returns the number of bytes copied; if the parameters
are invalid the return value is zero (0).

SEE ALSO
GetTextBufferLocation(3W)
GetTextBufferchar(3W)
GetTextBufferLine(3W)

NOTES

3/91

The storage for the copy is allocated by the caller. It is the responsibility of the
caller to ensure that enough storage is allocated to copy end -position -
start -position + 1 bytes.

Page 1

EndCurrentTextBufferWord (3W) EndCurrentTextBufferWord (3W)

Text Buffer Utilities

NAME
EndCurrentTextBufferword

SYNOPSIS
#include <textbuff.h>

extern TextLocatian EndCurrentTextBufferword(textBuffer, current)
TextBuffer * textBuffer;
TextLocatian current;

DESCRIPTION
The EndCUrrentTextBufferword function is used to locate the end of a word in
the TextBuffer relative to a given current location. The function returns the loca
tion of the end of the current word. Note: this return value will equal the given
current value if the current location is already at the end of a word.

SEE ALSO
PreviousTextBufferword(3W)
NextTextBufferword(3W)

3/91 Page 1

Error (3W) Error (3W)

NAME
Error: OIError, Olwarning, OIVaDisplayErrorMSg, OIVaDisplay
WarningMsg, OISetErrorHandler, OISetWarningHandler, OISetVaDisplay
ErrorMSgHandler, OISetVaDisplayWarningMsgHandler - error and warning
message handling

SYNOPSIS

3/91

#include <Intrinsic.h>
#include <QpenLook.h>

void OIError(mag)
String mag;

void OIWarning(mag)
String mag;

void OIVaDisplayErrorMsg(dpy,
Display * dpy;
String name;
String type;
String class;
String default_mag;

1* error message string

1* warning message string

name, type, class, default_mag,
1* Display pointer or NULL
1* message name
/* message type
1* message class
1* message format string
1* variable arguments for
1* the message format string

*1

*1

...)
*1
*1
*1
*1
*1
*1
*1

void OIVaDisplayWarningMsg(dpy, name, type, class, default_mag, ••.)
Display * dpy; 1* Display pointer or NULL *1
String name; 1* message name * I
String type; 1* message type * I
String class; 1* message class *1
String default_mag; 1* message format string */

1* variable arguments for *1
1* the message format string *1

OIErrorHandler
OISetErrorHandler(handler)

OIErrorHandler handler; 1* handler or NULL *1

OIWarningHandler
OISetWarningHandler(handler)

OIWarningHandler handler; 1* handler or NULL *1

OIVaDisplayErrorMsgHandler
OISetVaDisplayErrorMsgHandler(handler)

OIVaDisplayErrorMsgHandler handler;

OIVaDisplayWarningMsgHandler
OISetVaDisplayWarningMsgHandler(handler)

1* handler or NULL*I

OIVaDisplayWarningMSgHandler handler; 1* handler or NULL*I

Page 1

Error (3W) Error (3W)

typeder void
String

(*01ErrorHand1er){
msg /* error message string */

) ;

typeder void
String

(*01WarningHand1er) (
msg /* warning message string */

) ;

typedef void (*01VaDisp1ayErrorMSgHand1er){
Display * dpy, /* Display pointer or NULL */
String name, /* message name * /
String type, /* message type * /
String class, /* message class */
String defau1t_msg, /* message format string */
va_list ap /* variable arguments for */

/* the message format string */
) ;

typedef void (*01VaDisp1ayWarningMsgHand1er){
Display * dpy, /* Display pointer or NULL */
String name, /* message name * /
String type, /* message type * /
String class, /* message class */
String defau1t_msg, /* message format string */
va_list ap /* variable arguments for * /

/* the message format string */
) ;

DESCRIPTION
OIError

01Error writes a simple string to stderr and then exits.

OIWarning
01Warning writes a simple string to stderr and then returns.

OIVaDisplayErrorMsg

Page 2

01 VaDisp1ayErrorMsg writes an error to stderr and exits. The error message is
looked up in the error database by calling XtAppGetErrorDatabaseText using
the name, type, and class arguments. If no message is found in the error database,
the defau1t_msg string is used. The application context is determined by calling
XtDisp1ayToApplicationContext with the supplied Display pointer. If the
display pointer is NULL, the display created at application startup is used to
determine the application context.

An application programmer can choose to customize the text in an error message
prefix. The following shows what the prefix is in an example message and which
is the standard substituted string in the prefix:

3/91

Error (3W) Error (3W)

"application class" OPEN LOOK Toolkit Error: m e s sag e
To customize the prefix, put the following line in the client's *** _lI\Sgs file,
where *** is the name of the client:

*message.prefix: t ext %s t ext %s t ext

where the first %s will be the application name and the second will be
the content of the message.

If the prefix is not customized, the current prefix will be supplied
as the default.

To silence any toolkit error, put a corresponding "NULL"
message in the client app-defaults/*** _lI\Sgs file:

For example, to silence:

*invalidResource.setValues: SetValues: widget

Put the line

*invalidResource.setValues:

in the *** _lI\Sgs file.

Note that 01 VaDisplayErrorMsg will still cause the client application to exit.

OIVaDisplayWarningMsg

3/91

OlVaDisplayWarningMsg has the same semantics as OlVaDisplayErrorMsg
except it returns instead of exiting.

An application programmer can choose to customize the text in a warning mes
sage prefix. The following shows what the prefix is in an example message and
the standard substituted strings in the prefix:

"application class" OPEN LOOK Toolkit warning: me s sag e
To customize the prefix, put the following line in the client's *** _lI\Sgs file:

*message.prefix: t ext %s t ext %s t ext

where the first %s will be the application name and the second will be the type of
message.

If the prefix is not customized, the current prefix will be supplied as the default.

To silence any toolkit warning, put a corresponding "NULL" message in the client
app-defaults/*** _msgs file:

For example, to silence:

*invalidResource.setValues: SetValues: widget

Put the line

*invalidResource.setValues:

in the *** _lI\Sgs file.

Page 3

Error (3W) Error (3W)

Others

NOTES

OlSetErrorHandler, OlSetWarningHandler, OlSetVaDisplayErrorMsg
Handler, and OlSetVaDisplayWarningMsgHandler allow an application to over
ride the various warning and error handlers. These routines return a pointer to
the previous handler. If NULL is supplied to any of these routines, the default
handler will be used.

Since the error routines normally exit the program, application-supplied error
handlers should do the same since continuation of an application will result in
undefined behavior.

Most programs should not use OlError and OlWarning since they don't allow
for customization and internationalization.

Since OpenLook.h does not include stdarg.h (or varargs.h), an application
using OlSetVaDisplayErrorMSgHandler or OlSetVaDisplaywarningMsg
Handler should include one of these two headers before including OpenLook. h
to insure the correct function prototype will be used for the application's
error/warning handler.

SEE ALSO
OlGetMessage(3W)

Page 4 3/91

Flattened Widget Utilities (3W) Flattened Widget Utilities (3W)

NAME
Flattened Widget utilities: OlFlatCallAcceptFocus, OlFlatGetFocus
Item, OlFlatGetItemIndex, OlFlatGetItemGeametry, OlFlatGetValues,
OlFlatSetValues, OlVaFlatGetValues OlVaFlatSetValues - queries and
manipulates flattened widget attributes

SYNOPSIS

3/91

There are several convenience routines for querying or manipulating flattened
widget attributes. All of these routines issue a warning if the Widget id is not a
subclass of a flattened widget.

Boolean OlFlatCallAcceptFocus(widget, index, time)
Widget widget; 1* Flattened widget id *1
Cardinal index; 1* Item's index *1
Time time; 1* time of request * I

Cardinal OlFlatGetFocusItem(widget)
Widget widget; 1* Flattened widget id *1

Cardinal OlFlatGetItemIndex(widget, x, y)
Widget widget; 1* Flattened widget id *1
Position x; 1* x location within widget *1
Position y; 1* y location within widget *1

void OlFlatGetItemGeametry(widget, index, x_ret, y_ret, w_ret,
Widget widget; 1* Flattened widget id *1
Cardinal index; 1* Item's index *1
Position * x_ret; 1* returned x coordinate *1
Position * y_ret; 1* returned y coordinate *1
Dimension w_ret; 1* returned width *1
Dimension * ~ret; 1* returned height *1

Getting and Setting Flattened Widget Item State
void OlFlatGetValues(widget, index, args, num_args)

Widget widget; 1* Flattened widget id *1
Cardinal index; 1* Item's index *1
ArgList args; 1* attributes to query *1
Cardinal num_args; 1* number of args * I

void OlFlatSetValues(widget,
Widget widget;
Cardinal index;
ArgList args;
Cardinal num_args;

index, args, num_args)
1* Flattened widget id
1* Item's index
1* attributes to set
1* number of args

void OlVaFlatGetValues(wldget, index, .•.)
Widget widget; 1* Flattened widget id

*1
*1
*1
*1

*1

h_ret)

Page 1

Flattened Widget Utilities (3W) Flattened Widget Utilities (3W)

Cardinal index; 1* Item's index * 1
1* variable name/value pairs *1

void OlVaFlatSetValues(widget, index, ...)
Widget widget; 1* Flattened widget id *1
Cardinal index; 1* Item's index *1

1* variable name/value pairs *1

DESCRIPTION
OIFlatCallAcceptFocus

If specified item is capable of accepting input focus, focus is assigned to the item
and function returns TRUE; otherwise, FALSE is returned.

OIFlatGetFocusltem
Returns the item within the flattened widget which has focus. OL NO ITEM is
returned if no item within the widget has focus.

OIFlatGetltemlndex
Returns the item that contains the given x and y coordinates. OL NO ITEM is
returned otherwise if no item contains the coordinate pair.

OIFlatGetltemGeometry
Returns the location and width/height of an item with respect to its flattened
widget container. If the supplied item index is invalid, a warning is issued and
the return values are set to zero.

OIFlatGetValues
Queries attributes of an item. This routine is very similar to XtGetValues.
Applications can query any attribute of an item even if the attribute was not
specified in the XtNitemFields resource of the flat widget container. Also see
OlVaFlatGetValues.

OIFlatSetValues
Sets attributes of an item. This routine is very similar to XtSetValues. Applica
tions can set values of item attributes only even if the attribute name was
specified in the XtNitemFields resource of the flat widget container or if the
item's attribute is always maintained (Le., implicitly) by the flat widget container
regardless of the xtNitemFields entries. For example, since the FlatEx
clusives Widget always maintains the value of an item's XtNset attribute even
if XtNset was not in the XtNitemFields resource (see FlatExclusives(3W».
Therefore, an application can set the value of XtNset even though XtNset was
not specified explicitly in the XtNitemFields resource for the widget. XtNfont,
on the otherhand, is not implicitly maintained by the FlatExclusives Widget, so an
application must specify XtNfont in the XtNitemFields resource if that applica
tion wants to change the font value via OlFlatSetValues. Also see
OlVaFlatSetValues.

OIVaFlatGetValues

Page 2

Variable argument interface to OlFlatGetValues. The variable length list of
resource name/value pairs is terminated by a NlJLL resource name.

3/91

Flattened Widget Utilities (3W) Flattened Widget Utilities (3W)

3/91

OIVaFlatSetValues
Variable argument interface to OlFlatSetValues. The variable length list of
resource name/value pairs is terminated by a NULL resource name.

Page 3

ForwardScanTextBuffer (3W) ForwardScanTextBuffer (3W)

Text Buffer Utilities

NAME
ForwardScanTextBuffer

SYNOPSIS
#include <textbuff.h>

extern ScanResult ForwardScanTextBuffer(text, exp, location}
TextBuffer * text;
TextLocation * location;
char * exp;

DESCRIPTION
The ForwardScanTextBuffer function is used to scan, towards the end of the
buffer, for a given expression in the TextBuffer starting at location. A ScanResult
is returned which indicates

SCAN_NOTFOUND The scan wrapped without finding a match.
SCAN_WRAPPED A match was found at a location before the start location.
SCAN_FOUND A match was found at a location after the start location.
SCAN_INVALID Either the location or the expression was invalid.

SEE ALSO
BackwardScanTextBuffer(3W)

3/91 Page 1

FreeBuffer (3W)

Text Buffer Utilities

NAME
FreeBuffer

SYNOPSIS
#include <buffutil.h>

extern void FreeBuffer(buffer)
Buffer * buffer;

DESCRIPTION

FreeBuffer (3W)

The FreeBuffer procedure is used to deallocate (free) storage associated with the
given buffer pointer.

SEE ALSO
AllocateBuffer(3W)

3/91 Page 1

FreeTextBuffer (3W)

Text Buffer Utilities

NAME
FreeTextBuffer

SYNOPSIS
#include <textbuff.h>

extern void FreeTextBuffer(text, f, d)
TextBuffer * text;
TextupdateFunction f;
caddr_t d;

DESCRIPTION

FreeTextBuffer (3W)

The FreeTextBuffer procedure is used to deallocate storage associated with a
given TextBuffer. Note: the storage is not actually freed if the TextBuffer is still
associated with other update function/data pairs.

SEE ALSO

3/91

AllocateTextBuffer(3W)
RegisterTextBufferupdate(3W)

Page 1

GetOIBusyCursor (3W)

NAME
Get01BusyCursor

SYNOPSIS
#include <OlCUrsors.h>

Cursor/Bitmap Utilities

extern CUrsor Get01BusyCursor(screen)
Screen * screen;

DESCRIPTION

GetOIBusyCursor (3W)

The Get01BusyCursor function is used to retrieve the Cursor id for screen that
complies with the OPEN LOOK specification of the Busy cursor.

SEE ALSO
Get01MoveCUrsor(3W)
Get01DuplicateCUrsor(3W)
Get01PanCUrsor(3W)
Get01QuestionCUrsor(3W)
Get01TargetCUrsor(3W)
Get01StandardCUrsor(3W)

RETURN VALUE
The Cursor id is returned.

3/91 Page 1

GetOIDuplicateCursor (3W)

NAME
Get01DuplicateCUrsor

SYNOPSIS
#include <OlCUrsors.h>

Cursor/Bitmap Utilities

extern CUrsor Get01DuplicateCUrsor(screen)
Screen * screen;

DESCRIPTION

GetOIDuplicateCursor (3W)

The Get01DuplicateCUrsor function is used to retrieve the Cursor id for screen
that complies with the OPEN LOOK specification of the Duplicate cursor.

SEE ALSO
GetOlMoveCUrsor(3W)
Get01BusyCursor(3W)
Get01PanCUrsor(3W)
Get01Questioncursor(3W)
GetOl Targetcursor(3W)
Get01StandardCursor(3W)

RETURN VALUE
The Cursor id is returned.

3/91 Page 1

GetOIMoveCursor (3W)

NAME
GetOlMoveCursor

SYNOPSIS
#include <OlCursors.h>

Cursor/Bitmap Utilities

extern Cursor GetOlMoveCursor(screen)
Screen * screen;

DESCRIPTION

GetOIMoveCursor (3W)

The GetOlMoveCursor function is used to retrieve the Cursor id for screen that
complies with the OPEN LOOK specification of the Move cursor.

SEE ALSO
GetOlDuplicateCursor(3W)
GetOlBusyCursor(3W)
GetOlPanCursor(3W)
GetOlQuestionCursor(3W)
GetOlTargetCursor(3W)
GetOlStandardCursor(3W)

RETURN VALUE
The Cursor id is returned.

3/91 Page 1

GetOIPanCursor (3W)

NAME
Get01PanCUrsor

SYNOPSIS
#include <OlCUrsors.h>

Cursor/Bitmap Utilities

extern CUrsor Get01PanCUrsor(screen)
Screen * screen;

DESCRIPTION

GetOIPanCursor (3W)

The Get01PanCUrsor function is used to retrieve the Cursor id for screen that com
plies with the OPEN LOOK specification of the Pan cursor.

SEE ALSO
Get01MoveCUrsor(3W)
Get01DuplicateCUrsor(3W)
Get01BusyCursor(3W)
Get01QuestionCUrsor(3W)
GetOl TargetCUrsor(3W)
Get01StandardCUrsor(3W)

RETURN VALUE
The Cursor id is returned.

3/91 Page 1

GetOIQuestionCursor (3W)

NAME
Get01QuestionCursor

SYNOPSIS
#include <OlCursors.h>

Cursor/Bitmap Utilities

extern Cursor Get01QuestionCursor(screen}
Screen * screen;

DESCRIPTION

GetOIQuestionCursor (3W)

The Get01QuestionCursor function is used to retrieve the Cursor id for screen
that complies with the OPEN LOOK specification of the Question cursor.

SEE ALSO
Get01MoveCursor(3W)
Get01DuplicateCursor(3W)
Get01BusyCursor(3W)
Get01PanCursor(3W)
GetOl TargetCursor(3W)
Get01StandardCursor(3W)

RETURN VALUE
The Cursor id is returned.

3/91 Page 1

GetOIStandardCursor (3W)

NAME
GetOlStandardCursor

SYNOPSIS
#include <OlCursors.h>

Cursor/Bitmap Utilities

extern Cursor GetOlStandardCursor(screen)
Screen * screen;

DESCRIPTION

GetOIStandardCursor (3W)

The GetOlStandardCursor function is used to retrieve the Cursor id for screen
that complies with the OPEN LOOK specification of the Standard cursor.

SEE ALSO
GetOlMoveCursor(3W)
GetOlDuplicateCursor(3W)
GetOlBusyCursor(3W)
GetOlPanCursor(3W)
GetOlQuestionCursor(3W)
GetOl TargetCursor(3W)

RETURN VALUE
The Cursor id is returned.

3/91 Page 1

GetOITargetCursor (3W)

NAME
GetOlTargetCursor

SYNOPSIS
#include <OlCursors.h>

Cursor/Bitmap Utilities

extern Cursor GetOlTargetCursor(screen)
Screen * screen;

DESCRIPTION

GetOITargetCursor (3W)

The GetOl TargetCursor function is used to retrieve the Cursor id for screen that
complies with the OPEN LOOK specification of the Target cursor.

SEE ALSO
GetOlMoveCursor(3W)
GetOlDu.plicateCursor(3W)
GetOlBusyCursor(3W)
GetOlPanCursor(3W)
GetOlQuestionCursor(3W)
GetOlStandardCursor(3W)

RETURN VALUE
The Cursor id is returned.

3/91 Page 1

GetTextBufferBlock (3W)

NAME
GetTextBufferBlock

SYNOPSIS
#include <textbuff.h>

GetTextBufferBlock (3W)

Text Buffer Utilities

extern char * GetTextBufferBlock(text, start_location, end_location)
TextBuffer * text;
TextLocation start_location;
TextLocation end_location;

DESCRIPTION
The GetTextBufferBlock function is used to retrieve a text block from the text
TextBuffer. The block is defined as the characters between start_location and
end_location inclusive. It returns a pointer to a string containing the copy. If
the parameters are invalid NULL is returned.

SEE ALSO
GetTextBufferLocation(3W)
GetTextBufferChar(3W)
GetTextBufferLine(3W)

NOTES

3/91

The storage for the copy is allocated by this routine. It is the responsibility of the
caller to free this storage when it becomes dispensable.

Page 1

GetTextBufferBuffer (3W) GetTextBufferBuffer (3W)

NAME
GetTextBufferBuffer

SYNOPSIS
#include <textbuff.h>

Text Buffer Utilities

extern Buffer * GetTextBufferBuffer(text, line)
TextBuffer * text;
Text Line line;

DESCRIPTION
The GetTextBufferBuffer function is used to retrieve a pointer to the Buffer
stored in TextBuffer text for line. This pointer is volatile; subsequent calls to any
TextBuffer routine may make it invalid. If a more permanent copy of this Buffer is
required the Buffer Utility CopyBuffer can be used to create a private copy of it.

SEE ALSO
GetTextBufferBlock(3W)
GetTextBufferLocation(3W)

3/91 Page 1

GetTextBufferChar (3W)

NAME
GetTextBufferChar

SYNOPSIS
#include <textbuff.h>

Text Buffer Utilities

int GetTextBufferChar(text, location)
TextBuffer * text;
TextLocation location;

DESCRIPTION

GetTextBufferChar (3W)

The GetTextBufferChar function is used to retrieve a character stored in the text
TextBuffer at location. It returns either the character itself or EOF if location is out
side the range of valid locations within the TextBuffer.

SEE ALSO
GetTextBufferLocation(3W)
GetTextBufferBlock(3W)
GetTextBufferLine(3W)

3/91 Page 1

GetTextBufferLine (3W) GetTextBufferLine (3W)

Text Buffer Utilities

NAME
GetTextBufferLine

SYNOPSIS
#include <textbuff.h>

extern char * GetTextBufferLine(text, lineindex)
TextBuffer * text;
TextLine lineindex;

DESCRIPTION
The GetTextBufferLine function is used to retrieve the contents of line from the
text TextBuffer. It returns a pointer to a string containing the copy of the contents
of the line or NULL if the line is outside the range of valid lines in text.

SEE ALSO
GetTextBufferLocation(3W)
GetTextBufferChar(3W)
GetTextBufferBlock(3W)

NOTES
The storage for the copy is allocated by this routine. It is the responsibility of the
caller to free this storage when it becomes dispensable.

3/91 Page 1

GetTextBufferLocation (3W) GetTextBufferLocation (3W)

Text Buffer Utilities

NAME
GetTextBufferLocatian

SYNOPSIS
#include <textbuff.h>

extern char * GetTextBufferLocatian(text, line_number, location)
TextBuffer * text;
TextLine line_number;
TextLocation * location;

DESCRIPTION
The GetTextBufferLocation function is used to retrieve the contents of the
given line within the TextBuffer. It returns a pointer to the character string. If
the line number is invalid a NULL pointer is returned. If a non-NULL TextLoca
tion pointer is supplied in the argument list the contents of this structure are
modified to reflect the values corresponding to the given line.

SEE ALSO
GetTextBufferBlock(3W)

3/91 Page 1

GrowBuffer (3W)

NAME
GrowBuffer

SYNOPSIS
#include <buffutil.h>

Text Buffer Utilities

extern void GrowBuffer(buffer, increment)
Buffer * buffer;
int increment;

DESCRIPTION

GrowBuffer (3W)

The GrowBuffer procedure is used to expand (or compress) a given buffer size by
increment elements. If the increment is negative the operation results in a reduction
in the size of the Buffer.

SEE ALSO
A11ocateBuffer(3W)

3/91 Page 1

IncrementTextBufferLocation (3W) IncrementTextBufferLocation (3W)

Text Buffer Utilities

NAME
IncrementTextBufferLocation

SYNOPSIS
#include <textbuff.h>

extern TextLocation IncrementTextBufferLocation(text, location, line,
offset)

TextBuffer * text;
TextLocation location;
TextLine line;
TextPosition offset;

DESCRIPTION
The IncrementTextBufferLocation function is used to increment a location by
either line lines and/or offset characters. It returns the new location. Note: if line
or offset are negative the function performs a decrement operation. If the starting
location or the resulting location is invalid the starting location is returned
without modification; otherwise the new location is returned.

SEE ALSO

3/91

NextLocation(3W)
PreviousLocation(3W)

Page 1

Input Focus (3W) Input Focus (3W)

NAME
Input Focus: OlCallAcceptFocus, OlCanAcceptFocus,
OlGetCUrrentFocusWidget, OlHasFocus, OlMoveFocus, OlSetInputFocus
manipulates input focus for widgets and gadgets.

SYNOPSIS
Six convenience routines are available for manipulating input focus. Each of
these routines work with widgets or gadgets.

Boolean OlCallAcceptFocus (w, time)
Widget w;
Time time;

Boolean OlCanAcceptFocus(W, time)
Widget w;
Time time;

void OlSetInputFocus(w, revert_to, time)
Widget w;
int revert_to;
Time time;

Widget OlGetCurrentFocusWidget(w)
Widget w;

Boolean OlHasFocus(w)
Widget w;

Widget OlMoveFocus (w, direction, time)
Widget w;
OlVirtualName direction;
Time time;

DESCRIPTION

3/91

OICaliAcceptFocus
If widget w currently is capable of accepting input focus, focus is assigned to w
and the function returns TRUE; otherwise, FALSE is returned. Time specifies the
X server time of the event that initiated this accept focus request.

OICanAcceptFocus
If the widget can accept focus, TRUE is returned; otherwise, FALSE is returned.
Acceptance of focus is determined by the following:

The widget is not being destroyed.

The widget is managed

The widget is mapped when managed (if it's not a gadget)

Page 1

Input Focus (3W) Input Focus (3W)

The widget is realized, or for a gadget, the gadget's parent must be real
ized

The widget and its ancestors are sensitive

A query window attributes is successful and the widget's window is view
able (Le., the window and all its ancestor windows are mapped)

Otherwise, FALSE is returned.

OISetlnputFocus
OlSetInputFocus sets focus to a widget. Applications should use this routine
instead of XSetInputFocus since this routine checks the current focus model and
before setting focus.

OIGetCurrentFocusWidget
OlGetCUrrentFocusWidget returns the id of the widget which currently has
focus in the window group of the specified widget. If no widget in the window
group has focus, NULL is returned.

OIHasFocus
This function is simply a convenience function that calls
OlGetCUrrentFocusWidget and compares the result of that call to the supplied
widget id.

OIMoveFocus

Page 2

This function moves the input focus from one widget to another and returns the
id of the new focus widget. The routine OlCallAcceptFocus is used to move
the input focus. If the function is unable to move input focus, NULL is returned.

When moving input focus between widgets contained within an exclusives or
non-exclusives widget, valid values for direction are:

Note: For the OL MULTI directions below, the value of m is the value of the
application resource XtNmultiObjectCount.

OL IMMEDIATE
Set focus to the next widget that will accept it, starting with w.

OL MOVERIGHT
Set focus to the widget in the next column (and same row) that will accept
it, starting with the first column after w's column. If w is located in the
extreme right column, focus is set to the widget in the extreme left column
of the same row.

OL MOVELEFT
- Set focus to the widget in the previous column (and same row) that will

accept it, starting with the first column before w's column. If w is located
on the extreme left column, focus is set to the Widget in the extreme right
column of the same row. (The widget columns are searched in reverse
order.)

OL MOVEUP
- Set focus to the widget in the next row (and same column) that will accept

it, starting with the first row after w's row. If w is located in the top row,
focus is set to the widget in the bottom row of the same column. (The
widget rows are searched in reverse order.)

3/91

Input Focus (3W) Input Focus (3W)

3/91

OL MOVEDOWN
Set focus to the widget in the previous row (and same column) that will
accept it, starting with the first row before w's row. If w is located in the
bottom row, focus is set to the widget in the top row of the same column.

OL MULTIRIGHT
Set focus to the widget in the next column (and same row) that will accept
it, starting with the first column m columns after w's column. If m is
greater than the number of objects between wand the extreme right
column, focus is set to the widget in the extreme left column of the same
row.

OL MULTILEFT
Set focus to the widget in the next column (and same row) that will accept
it, starting with the first column m columns before w's column. If m is
greater than the number of objects between wand the extreme left
column, focus is set to the widget in the extreme right column of the same
row. (The widget columns are searched in reverse order.)

OL MULTIUP
Set focus to the widget in the next row (and same column) that will accept
it, starting with the first row m rows after w's row. If m is greater than
the number of objects between wand the extreme bottom row, focus is set
to the widget in the extreme top row of the same column. (The widget
rows are searched in reverse order.)

OL MULTIDOWN
Set focus to the widget in the next row (and same column) that will accept
it, starting with the first row m rows before w's row. If m is greater than
the number of objects between wand the extreme bottom row, focus is set
to the widget in the extreme bottom row of the same column. When
moving between widgets in a base window or popup window, valid
values for direction are:

OL IMMEDIATE
Set focus to the next object that will accept it, starting with w.

OL NEXTFIELD
Set focus to the next object that will accept it, starting with the first object
after w.

OL PREVFIELD
- Set focus to the next object that will accept it, starting with the first object

before w. (The list is searched in reverse order.)

OL MOVERIGHT
- Behaves like OL NEXTFIELD direction.

OL MOVELEFT
- Behaves like OL PREVFIELD direction.

OL MOVEUP
- Behaves like OL PREVFIELD direction.

Page 3

Input Focus (3W) Input Focus (3W)

Page 4

OL MOVEDOWN
- Behaves like OL NEXTFIELD direction.

OL MUL TIRIGHT
Set focus to the next object that will accept it, starting with the first object
m objects after w.

OL MULTILEFT
Set focus to the next object that will accept it, starting with the first object
m objects before w. (The list is searched in reverse order.)

OL MULTIUP
- Behaves like OL MULTILEFT direction.

OL MULTIDOWN
- Behaves like OL MULTIRIGHT direction.

3/91

InsertlntoBuffer (3W) InsertlntoBuffer (3W)

NAME
InsertlntoBuffer

SYNOPSIS
#include <buffutil.h>

Text Buffer Utilities

extern int InsertlntoBuffer(target, source, offset)
Buffer * target;
Buffer * source;
int offset;

DESCRIPTION
The InsertlntoBuffer function is used to insert the elements stored in the source
buffer into the target buffer before the element stored at offset. If the offset is
invalid or if the source buffer is empty the function returns zero; otherwise it
returns one after completing the insertion.

SEE ALSO
ReadStringlntoBuffer(3W)
ReadFilelntoBuffer(3W)
BufferMacros(3W)

3/91 Page 1

LastTextBufferLocation (3W) LastTextBufferLocation (3W)

Text Buffer Utilities

NAME
LastTextBufferLocation

SYNOPSIS
#include <textbuff.h>

extern TextLocation LastTextBufferLocation(text)
TextBuffer * text;

DESCRIPTION
The LastTextBufferLocation function returns the last valid TextLocation in the
TextBuffer associated with text.

SEE ALSO
LastTextBufferPosition(3W)
FirstTextBufferLocation(3W)

3/91 Page 1

LastTextBufferPosition (3W) LastTextBufferPosition (3W)

NAME
LastTextBufferPosition

SYNOPSIS
#include <textbuff.h>

Text Buffer Utilities

extern TextPosition LastTextBufferPosition(text)
TextBuffer * text;

DESCRIPTION
The LastTextBufferPosition function returns the last valid TextPosition in the
TextBuffer associated with text.

SEE ALSO
LastTextBufferLocation(3W)
FirstTextBufferLocation(3W)

3/91 Page 1

LineOfPosition (3W)

Text Buffer Utilities

NAME
LineOfPosition

SYNOPSIS
#include <textbuff.h>

extern int LineOfPosition(text, position)
TextBuffer * text;
TextPosition position;

DESCRIPTION

LineOfPosition (3W)

The LineOfPosition function is used to translate a position in the text TextBuffer
to a line index. It returns the translated line index or EOF if the position is invalid.

SEE ALSO

3/91

LineOfPosition(3W)
PositionOfLocation(3W)
LocationOfPosi tion(3W)

Page 1

LocationOfPosition (3W) LocationOfPosition (3W)

Text Buffer Utilities

NAME
LocationOfPosition

SYNOPSIS
#include <textbuff.h>

extern TextLocation LocationOfPosition(text, position)
TextBuffer * text;
TextPosition position;

DESCRIPTION
The LocationOfPosition function is used to translate a position in the text
TextBuffer to a TextLocation. It returns the translated TextLocation. If the posi
tion is invalid the Buffer pointer buffer is set to NULL and the line and offset
members are set the last valid location in the TextBuffer; otherwise buffer is set to a
non-NULL (though useless) value.

SEE ALSO

3/91

LineOfPosi tion(3W)
PositionOfLocation(3W)
LocationOfPosi tion(3W)

Page 1

Mnemonic/ AcceleratorDisplay (3W) Mnemonic/AcceleratorDisplay (3W)

NAME
Mnemonic/AccleratorDisplay: OlQueryMnemonicDisplay
OlQueryAcceleratorDisplay - Controls mnemonic and accelerator displays

DESCRIPTION

3/91

Query Mnemonic Display for Screen
OlDefine OlQueryMnemonicDisplay(w)
Widget Wi

Range of Values:

OL_UNDERLINE
OL_HIGHLIGHT
OL_NONE
OL_INACTIVE

This function queries how the keyboard mnemonics on the controls should be
displayed. The default value is OL _UNDERLINE; the mnemonics should be
displayed in the Primitive controls by drawing a line under the character in the
font color. OL _HIGHLIGHT will display the mnemonic character with the back
ground and foreground colors reversed. When highlighting a character that is
displayed on a pixmap background, the mnemonic character will be drawn in a
solid color. The mnemonic accelerator will not be displayed and will not activate
the control if this function returns OL INACTIVE.

Query Accelerator Display for Screen
OlDefine OlQueryAcceleratorDisplay(w)
Widget Wi

Range of Values for return:

OL_DISPLAY
OL_NONE
OL_INACTIVE

When this function returns OL _ DISPLAY, the keyboard accelerators should be
displayed. When this function returns OL _NONE, the keyboard accelerators
should not be displayed. the return value OL_INACTIVE means the keyboard
accelerators should not be displayed and the controls should ignore the accelera
tor action.

Page 1

NextLocation (3W) NextLocation (3W)

Text Buffer Utilities

NAME
NextLocation

SYNOPSIS
#include <textbuff.h>

extern TextLocation NextLocation(textBuffer, current}
TextBuffer * textBuffer;
TextLocation current;

DESCRIPTION
The NextLocation function returns the TextLocation which follows the given
current location in a TextBuffer. If the current location points to the end of the
TextBuffer this function wraps.

SEE ALSO
PreviousLocation(3W)

3/91 Page 1

NextTextBufferWord (3W) NextTextBufferWord (3W)

Text Buffer Utilities

NAME
NextTextBufferWord

SYNOPSIS
#include <textbuff.h>

extern TextLocation NextTextBufferword(textBuffer, current)
TextBuffer * textBuffer;
TextLocation current;

DESCRIPTION
The NextTextBufferword function is used to locate the beginning of the next
word from a given current location in a TextBuffer. If the current location is within
the last word in the TextBuffer the function wraps to the beginning of the
TextBuffer.

SEE ALSO

3/91

PreviOUSTextBufferword(3W)
StartCurrentTextBufferword(3W)

Page 1

OICaliDynamicCalibacks (3W)

NAME
OlCall~cCallbacks

SYNOPSIS
#include <OpenLook.h>

Dynamic Settings

extern void OlCall~cCallbacks()

DESCRIPTION

OICaliDynamicCalibacks (3W)

The OlCall~cCallbacks procedure is used to trigger the calling of the func
tions registered on the dynamic callback list. This procedure is called automati
cally whenever the RESOURCE_MANAGER property of the RootWindow is
updated. It may also be called to force a synchronization of the dynamic settings,
though applications rarely need to do this explicitly.

SEE ALSO
OlRegister~cCallback(3W)
Olunregister~cCallback(3W)

3/91 Page 1

OIClassSearchlEDB (3W) (Database Utilities) OIClassSearchlEDB (3W)

NAME
OlClassSearchIEDB - register a given database on a specific widget class

SYNOPSIS
#include <Xol/OpenLook.h>

void
OlClassSearchIEDB(wc, db)

WidgetClass wc;
OlVirtualEventTable db;

DESCRIPTION
The OlClassSearchIEDB procedure is used to register a given database on a
specific widget class. The db value was returned from a call to
OlCreatelnputEventDB(3W).

Once a database is registered with a given widget class, the
OlLookuplnputEvent(3W) procedure (if db JIag is OL_DEFAULT_IE or db) will
include this database in the search stack if the given widget id is a subclass of
this widget class.

NOTES
The registering order determines the searching order when doing a lookup.

SEE ALSO
OlClassSearchTextDB(3W)
OlCreatelnputEventDB(3W)
OlLookuplnputEvent(3W)
OlwidgetSearchIEDB(3W)
OlWidgetSearchTextDB(3W)

EXAMPLE
/* To create a client application database */
#include <Xol/OpenLook.h>
#include <Xol/Stub.h>

/* start with a big value to avoid */
/* the "virtual_name" collision */

#define OL_MY_BASE 1000
#define OL_MY_DRAWLlNEBTN OL_MY_BASE+O
#define OL_MY_DRAWARCBTN OL_MY_BASE+l
#define OL_MY_REDISPLAYKEY OL_MY_BASE+2
#define OL_MY_SAVEPARTKEY OL_MY_BASE+3

#define XtNmyDrawLineBtn "myDrawLineBtn"
#define XtNmyDrawArcBtn "myDrawArcBtn"
#define XtNmyRedisplayKey "myRedisplayKey"
#define XtNmySavePartKey "mySavePartKey"

static OlKeyOrBtnRec OlMyBtnlnfo[] = {
/*name default_value virtual_name */

XtNmyDrawLineBtn,
XtNmyDrawArcBtn,

"c<Buttonl>", OL_MY_DRAWLlNEBTN},
"s<myDrawLineBtn>", OL_MY_DRAWARCBTN } ,

3/91 Page 1

OIClassSearchlEDB (3W) (Database Util ities) OIClassSearchlEDB (3W)

Page 2

};

static OIKeyOrBtnRec
/*name

OIMyKeylnfo [] =
default_value */

{ XtNmyRedisplayKey, "c<FS>",
{XtNmySavePartKey, "c<FS>",

OL_MY_REDISPLAYKEY },
OL_MY_SAVEPARTKEY },

};

static OIVirtualEventTable OIMyDB;

OIMyDB OICreatelnputEventDB(

) ;

w,
OIMyKeylnfo, XtNumber(OIMyKeylnfo),
OIMyBtnlnfo, XtNumber(OIMyBtnlnfo)

/* assume: all stub widgets are interested in OIMyDB */
OIClassSearchIEDB(stubWidgetClass, OIMyDB);

/* once this step is done, all stub widget instances */
/* will receive the OIMyDB commands after a call to */
/* OILookuplnputEvent (), or in the XtNconsumeEvent * /
/* callback's OIVirtualEvent structure supplied with */
/* the call_data field. */

3/91

OIClassSearchTextDB (3W) (Database Utilities) OIClassSearchTextDB (3W)

NAME
OIClassSearchTextDB - register the OPEN LOOK TEXT database on a specific
widget class

SYNOPSIS
#include <XOI/QpenLook.h>

void
OIClassSearchTextDB (we)

WidgetClass we;

DESCRIPTION
The OIClassSearchTextDB procedure is used to register the OPEN LOOK TEXT
database on a specific widget class.

Once the OPEN LOOK TEXT database is registered with a given widget class, the
OILookuplnputEvent(3W) procedure (if db Jlag is OL_DEFAULT_IE or
OL_TEXT_IE) will include this database in the search stack if the given widget id
is a subclass of this widget class.

NOTES
The registering order determines the searching order when doing a lookup.

SEE ALSO
OIClassSearchIEDB(3W)
OICreatelnputEventDB(3W)
OILookuplnputEvent(3W)
OlwidgetSearchIEDB(3W)
olwidgetSearchTextDB(3W)

EXAMPLE

3/91

#include <Xol/QpenLook.h>
#include <Xol/Stub.h>

/* assume: all stub widgets are interested in the */
/ * OPEN LOOK TEXT database * /

OIClassSearchTextDB(stUbWidgetClass);
/* once this step is done, all stub widget instances */
/* will receive OPEN LOOK TEXT commands after a */
/* call to OILookuplnputEvent(), or in the */
/* XtNconsumeEvent callback's OIVirtualEvent */
/* structure supplied with the call_data field. */

Page 1

OICloseDatabase (3W) OICloseDatabase (3W)

NAME
OlCloseDatabase - responsible for closing a database opened with OlOpenData
base

SYNOPSIS
void OlCloseDatabase(name, database)

String name;
xrmoatabase database;

DESCRIPTION
This function is responsible for closing a database opened by OlOpenDatabase.
Both functions expect the database to be in XrmDatabase format.

The function will resolve the pathname of the database according to the current
locale.

SEE ALSO
OlOpenDatabase(3W)
OlGetMessage(3W)

3/91 Page 1

OICloselm (3W)

NAME
OlCloselm - responsible for closing the Input Method

SYNOPSIS
void OlCloseIm(im)

OlIm *im;

DESCRIPTION

OICloselm (3W)

This function is responsible for closing the Input Method (1M). Its functionality is
implementation dependent. Some common steps that are performed by all imple
mentations include:

• Destroying all ICs (Input Contexts) associated with the 1M and de
allocating storage used by these ICs.

• De-allocating storage used by the Ollm structure.

SEE ALSO

3/91

OlOpenIm(3W)
OlGetImValues(3W)
OlDisplayOfIm(3W)
OlLocaleOfIm(3W)
OlImOfIc(3W)

Page 1

OICreatelc (3W) OICreatelc (3W)

NAME
OICreateIc - Create an Input Context to register a client's text insertion window
with an 1M

SYNOPSIS
typedef struct _OIIdWindowAttr {

pixel background;
Pixel foreground;
Colormap colormap;
Colormap std_colormap;
Pixmap back-pixmap;
OlFontList fontlist;
int spacing;
Cursor
OIImCallback

} OIIdWindowAttr;

cursor;
callback [NOM_IM_CALLBACKS];

typedef struct _OIIc
Window cl_win;
XRectangle cl_area;
Window focus_win;
XRectangle s_area;
Window s_attr;
XRectangle pre_area;
Window pre_attr;
OIImStyle style;
XPoint spot;
struct_OlIm *im;
struct_OIIc *nextic;
void *ictype;

} OlIc;

OIIc * OICreateIc(im, icvalues)
OIIm *im;
OIIdValues icvalues;

DESCRIPTION

3/91

This function creates an Input Context for the client's text insertion window with
Input Method (1M). im is a pointer to the OlIm structure returned by the func
tion OIOpenIm. icvalues points to a variable list of attribute name value pairs
to be associated with the IC (Input Context). (See OlIdValues for the description
of valid OlIcValues attributes.) One attribute, XtNclientWindow must always
be specified at creation time.

The function creates and initializes the OlIc structure, containing the context
information about a particular text area. This includes information about client
and focus windows, pre-edit and status areas, pre-edit and status attributes, a
pointer to the OlIm structure associated with the IC, and a pointer to the next IC
associated with the same 1M. The function returns a pointer to this structure.

Page 1

OICreatelc (3W) OICreatelc (3W)

If for any reason the function fails to create an Input Context, it should return a
null value. The ictype field is a hook for attaching implementation dependent
data structures.

SEE ALSO

Page 2

OlDestroyIc(3W)
OlGetIcValues(3W)
OlICValues(3W)
OlImOfIc(3W)
OlSetICFocus(3W)
OlSetIcValues(3W)
OlunSetICFocus(3W)
OlResetIc(3W)

3/91

OICreatelnputEventDB (3W) OICreatelnputEventDB (3W)

Database Utilities

NAME
OlCreateInputEventDB - create a client specific Key and/or Button database

SYNOPSIS
#include <Xol/OpenLook.h>

OlVirtualEventTable
OlCreateI:nputEventDB(w, key_info, num_key_info, btn_info, num_btn_info)

Widget w;
OlKeyOrBtnInfo key_info;
int num_key_info;
OlKeyBtnInfo btn_info;
int num_btn_info;

DESCRIPTION
The OlCreateInputEventDB function is used' to create a client specific Key
and/ or Button database. This function returns a database pointer if the call to this
function is successful otherwise a NULL pointer is returned.

Mapping for a new virtual command can be composed from the mappings of a
previously defined virtual command.

The returned value from this function is an opaque pointer (OlVirtualEvent
Table). A client application should use this pointer when registering and/or
looking up this database.

typedef struct _OlvirtualEventInfo *OlVirtualEventTable;

The key_info and btn_info parameters are a pointer to an OlKeyOrBtnRec struc
ture.

typedef struct {
String name;
String default_value; /* "," separate string */
OlVirtualName virtual_name;

OlKeyOrBtnReC, *OlKeyOrBtnInfo;

Caveat
A client application can create a Key only database by having the NULL btn _info.
The same applies to a Button only database.

Each virtual command can have two different bindings because the OPEN LOOK
toolkit allows the alternate key or button sequence.

The OPEN LOOK toolkit already has a set of predefined OPEN LOOK virtual
names. It is important that the virtuat name value of a client application database
starts with a big value to avoid the virtual_name collision.

SEE ALSO
OlClassSearchIEDB(3W)
OlClassSearchTextDB(3W)
OlLoo]ruPInputEvent(3W)
olwidgetSearchIEDB(3W)
OlwidgetSearchTextDB(3W)

3/91 Page 1

OICreatelnputEventDB (3W) OICreatelnputEventDB (3W)

EXAMPLE

Page 2

1* To create a client application database *1

#include <Xol/QpenLook.h>

1* start with a big value to avoid *1
1* the "virtual_name" collision *1

#define OLJ(Y_BABE 1000
#define OL_MY_DRAWLlNEBTN OL_MY_BABE+O
#define OL_MY_DRAWARCBTN OL_MY_BASE+l
#define OL_MY_REDISPLAYKEY OL_MY_BASE+2
#define OL_MY_SAVEPARTKEY OL_MY_BASE+3

#define Xt~rawLineBtn "Il\l{DrawLineBtn"
#define Xt~rawArcBtn "Il\l{DrawArcBtn"
#define XtNmyRedisplayKey "ll\l{RedisplayKey"
#define XtNmySavePartKey "Il\l{SavepartKey"

OlMyBtnlnfo[] = { static OlKeyOrBtnRec
I*name default_value virtual_name

{ XtNmyDrawLineBtn, "c<Buttonl>", OL_MY_DRAWLlNEBTN
{ XtNmyDra~cBtn, "s<ll\l{DrawLineBtn>", OL_MY_DRAWARCBTN

};

static OlKeyOrBtnRec OlMyKeylnfo [] =
I*name default_value virtual_name

*1

},
},

*1

{ XtNmyRedisplayKey, "C<FS>",
{XtNmySavePartKey, "c<FS>",

OL_MY_REDISPLAYKEY },
OL_MY_SAVEPARTKEY } ,

};

static OlVirtualEventTable OlMyDB;

OlMyDB = OlCreatelnputEventDB(

} ;

w,
OlMYKeylnfo, XtNumber(OlMYKeylnfo},
OlMyBtnlnfo, XtNumber(OlMyBtnlnfo}

3/91

OICtToEuc (3W) OICtToEuc (3W)

NAME
OICtToEuc - returns a nu1l~terminated string

SYNOPSIS
int OICtToEuc(ctstr,

XctString
XctString
int
OIPontList

eucstr, euc_Ien, fontl)
ctstr;
eucstr;
euc_Ien;
*fontl;

DESCRIPTION
Given a null~terminated compound text encoded string in the ctstr argument,
this function returns a semantically equivalent nu1l~terminated string in the
eucstr argument that conforms to the EUe syntax. Equivalence implies that the
characters in both strings are the same and are stored in the same logical order.
The code set scheme syntax is the only difference in the two strings. The fontl
argument provides this function with information about supplemental Eue code
set support in the current locale. If during the conversion OICtToEuc(3W)
encounters a character from an unsupported code set, it generates an error by
returning ~1. Optional directional information provided in the compound text
encoded string is ignored as Eue does not support directional rendering.

The memory tor storing the EUe encoded string must be pre~allocated prior to
the function call. Doing this, rather than making the function allocate the
memory every time it is called, results in better performance, because pr~
allocated memory could be easily re~used in case of repeated calls to
OICtToEuc (3W). The euc_Ien argument specifies the length of the eucstr and
is required to prevent buffer overflow. If the number of bytes indicated by
euc_Ien is too small to store the converted string, -1 is returned.

This function returns the length, in bytes (not counting the terminating null char
acter), of the EUe encoded string on success, or -Ion failure.

SEE ALSO
OIEucToCt(3W)

3/91 Page 1

OICvtFontGroupToFontStructList (3W) OICvtFontGroupToFontStructList (3W)

NAME
OlCvtFontGroupToFontStructList - converts a fontGroup string into a
font list

SYNOPSIS
#include <OpenLook.h>
#include <OlStrings.h>
#include <Converters.h>

OlFontList * font_list;

static XtResource resources[]
{

}

{ XtNfontGroup, XtCFontGroup, OlROlFontList, sizeof(OlFontList *),
&font_list, XtRString, (XtPointer)NULL

},

static Boolean
CvtFontGroupToFontStrucList (display, args, num_args, from, to, XtCacheRef)
Display display;
Xr.mValueptr args = NULL;
Cardinal num_args = 0;
char * fontGroup;
Cardinal num_args=O;
Xr.mValue from;
Xr.mValue to;
XtCacheRef *cache_ref_return = NULL;

from.addr = (XtPointer) fontGroup;
from.size = strlen(fontGroup);
to.addr = (XtPointer) &font_list;
to.size = sizeof(OlFontList *);
XtCallConverter(dpy,

OlCvtFontGroupToFontStruct,
args,
num_args,
&fram,
&to,
cache_ref_return);

DESCRIPTION

3/91

The OlCvtFontGroupToFontStruct OPEN LOOK converter converts a font
Group string into corresponding OlFontList for use with internationalized text
drawing.

Page 1

OICvtFontGroupToFontStructList (3W) OICvtFontGroupToFontStructList (3W)

The converter can be invoked in two ways:

1 By specifying the source type of a fontGroup as a string and destination type
as OlFontList (01R01FontList) in the XtResource array. The converter, in
this case is automatically invoked and, if successful, a pointer to the
OlFontList structure is returned in font_list.

2 The converter can be directly invoked by the application to obtain a pointer to
OlFontList by calling the Xt Intrinsics function XtCallConverter as shown
above.

The font _list returned in either case can then be passed to text drawing utilities
OlDrawString, OlDrawImageString, 01 Textwidth, OlGetNextStrSeg
ment.

SEE ALSO

NOTES

Page 2

XtCa11Converter
01DrawString(3W)
01DrawImageString(3W)
01 textWidth(3W)
01getNextStrSegment(3W)

The storage for the OlFontList is allocated by the converter in both cases. Invo
cation by specifying different source and destination types in the XtResource array
will cause Intrinsics to keep track of reference count and manage the cache.
Hence the user does not need to free storage explicitly. However, in case of
direct invocation via XtCallConverter(), it is the caller's responsibility to free
the storage for OlFontList.

3/91

OIDragAndDrop (3W) OIDragAndDrop (3W)

NAME
OIDragAndDrop

SYNOPSIS
#include <QpenLook.h>

Dynamic Settings

extern void OIDragAndDrop(w, window, xPosition, yPosition)
Widget w;
Window * window;
position * xPosition;
position * yposition;

DESCRIPTION
The OIDragAndDrop function is used to monitor a direct manipulation operation;
returning, when the operation is completed, the drop_window and the x and y
coordinates corresponding to the location of the drop. These return values will
reflect the highest (in the stacking order) window located under the pointer at the
time of the button release.

SEE ALSO
OIGrabDragPointer(3W)
OIUngrabDragpointer(3W)

EXAMPLE
The following code provides a sample of the use of the facilities:
OILookuplnputEvent, OIDetermineMbuseAction, OIGrabDragPointer,
OIDragAndDrop, OIUngrabDragPointer, and OIReplayBtnEvent

static void ButtonConsumeCB (w, client_data, call_data)
Widget w;
XtPointer client_data;
XtPointer call_data;

Window drop_window;
Position x;
Position y;
OIVirtualEvent ve;

ve = (OIVirtuaIEvent) call_data

switch (ve->virtual_name) {
case OL_SELECT:

OIGrabDragPointer(GetOIMbveCUrsor(XtScreen(widget»,

3/91

None) ;
OIDragAndDrop(&:drop_window, &:X, &:y);
DropOn (drop_window, x, y,);
OIUngrabDragPointer();
break;

Page 1

OIDestroylc (3W)

NAME
OlDestroyle - destroys a specified IC

SYNOPSIS
void OlDestroyle(ie)

OlIe *ie;

DESCRIPTION

OIDestroylc (3W)

This function will destroy the specified Input Context (lC). It will remove it from
the ie_list maintained by the Input Method (1M), and then de-allocate memory
used by the OlIe structure.

SEE ALSO

3/91

OlCreatele(3W)
OlIcvalues(3W)
OlIrnOfle(3W)
OlSetleFocus(3W)
OlSetleValues(3W)
OlunSetIeFocus(3W)

Page 1

OIDisplayOflm (3W)

NAME
OlDisplayOfIm - queries a display associated with an 1M

SYNOPSIS
Display * OlDisplayOfIm(im)

OlIm *im;

DESCRIPTION

OIDisplayOflm (3W)

This function returns a pointer to the Display corresponding to the given Input
Method.

SEE ALSO

3/91

OlOpenIm{3W)
XOpenDisplay(3W)

Page 1

OIDrawlmageString (3W) OIDrawlmageString (3W)

NAME
OlDrawImageString - a Toolkit drawing function that draws EVC encoded text

SYNOPSIS
OlDrawlmageString(display, drawable, fontlist, gc, x, y, string, len)

Display *display;
Drawable drawable;
OlFontList *fontlist;
GC gc;
int x,y;
unsigned char *string;
int len;

DESCRIPTION

NOTES

OlDrawlmageString is a general purpose text drawing utility to draw an interna
tionalized string which may be composed of characters from different code sets.
It replaces the Xlib function XDrawImageString. The argument list is the same as
XDrawlmageString with the exception of one additional argument called
''fontlist.'' The fontlist specifies a list of XFontStructs. This utility considers the
string to be composed of several segments in which characters belong to the same
code set. Each string segment is drawn using the appropriate XFontStruct from
the fontlist. Although, the font information in the gc is not used by the function,
we recommend that the gc contain font information for default fonts or ASCII
fonts to preserver backward compatibility and to optimize drawing for LATIN-l
characters.

The len argument specifies the length of string in bytes (not characters) as
returned by w_charstrlenstring*.

This function assumes that the string passed to it is a multibyte string.

This function will update the font stored in the GC argument and will not restore
the font before returning. If a client relies on a particular font being present in a
GC, it must restore the font in the GC after calling of OlDrawlmageString.

SEE ALSO

3/91

XDrawImageString
XDrawlmageString16
OlGetNextStrSegment(3W)
OlDraWString(3W)

Page 1

OIDrawString (3W) OIDrawString (3W)

NAME
OIDraWString - a Toolkit drawing function that draws EVC encoded text

SYNOPSIS
OIDraWString(display, drawable, fontlist, gc, x, y, string, len)

Display *displaYi
Drawable drawablei
OIFontList *fontlisti
GC gCi

int X,Yi

unsigned char *stringi
int leni

DESCRIPTION

NOTES

OIDraWString is a general purpose text drawing utility to draw an international
ized string which may be composed of characters from different code sets. It
replaces the Xlib function XDrawString. The argument list is the same as XDraw
String with the exception of one additional argument called 'fontlist." The
fontlist specifies a list of XFontStructs. This utility considers the string to be
composed of several segments in which characters belong to the same code set.
Each string segment is drawn using the appropriate XFontStruct from the
fontlist. Although, the font information in the ge is not used by the function, we
recommend that the ge contain font information for default fonts or ASCII fonts
to preserver backward compatibility and to optimize drawing for LATIN-l char
acters.

The len argument specifies the length of string in bytes (not characters) as
returned by w_chartstrlenstring*.

This function assumes that the string passed to it is a multibyte string and not a
wide character.

This function will update the font stored in the ge argument and will not restore
the font before returning. If a client relies on a particular font being present in a
ge, it must restore the font in the ge after calling of OIDraWString.

SEE ALSO

3/91

XDraWString
OIDrawString(3W)
OIGetNextStrSegment(3W)

Page 1

OIEucToCt (3W) OIEucToCt (3W)

NAME
OlEucToCt - returns a null-terminated string

SYNOPSIS
int OlEucToCt(eucstr, ctstr, ct_len, fontl)

char *eucstr;
char *ctstr;
int ct_len;
OlFontList *fontl;

DESCRIPTION
Given a null-terminated EVC encoded string in the argument eucstr, this func
tion returns a semantically equivalent null-terminated string in the argument
ctstr that conforms to the compound text syntax. Equivalence implies that the
characters in both strings are the same and are stored in the same logical order.
The code set scheme syntax is the only difference in the two strings.
OlEucToCt (3W) will retrieve necessary EVC code set mapping information from
the fontl structure.

The memory for storing the ctstr string must be pre-allocated prior to the func
tion call. Doing this, rather than making the function allocate the memory every
time it is called, will result in a better performance, because pre-allocated memory
could be easily re-used in case of repeated calls to OlEucToCt (3W). The ct_len
argument specifies the length of the ctstr and is required to prevent buffer
overflow. If the number of bytes indicated by ct_len is too small to store the
converted string, -1 is returned.

This function returns the length, in bytes (not counting the terminating null char
acter), of the Compound Text encoded string on success, -Ion failure.

SEE ALSO
OlCtToEuc(3W)

3/91 Page 1

OIFindHelpFile (3W) OIFindHelpFile (3W)

NAME
OlFindHelpFile - used to find the locale-specific help file

SYNOPSIS
String OlFindHelpFile(widget, filename)

Widget widget; 1* for getting display info */
String filename; /* file to retrieve */

DESCRIPTION

3/91

The OlFindHelpFile procedure is used to retrieve the full name of the passed in
base filename in the current locale. It accesses the application's help directory
resource to create the full name. The help directory resource is created using the
XFILESEARCHP ATH environment variable.

Page 1

OlGet50PercentGrey (3W)

NAME
OlGet50PercentGrey

SYNOPSIS
#include <OlCUrsors.h>

Cursor/Bitmap Utilities

extern pixmap OlGet50PercentGrey(screen)
Screen * screen;

DESCRIPTION

OlGet50PercentGrey (3W)

The OlGet50PercentGrey function is used to retrieve the id of a 50 percent grey
Pixmap for screen.

RETURN VALUE
The Pixmap id is returned.

3/91 Page 1

OlGet75PercentGrey (3W)

NAME
OlGet75PercentGrey

SYNOPSIS
#include <OlCursors.h>

Cursor/Bitmap Utilities

extern Pixmap OlGet75PercentGrey(screen)
Screen * screen;

DESCRIPTION

OlGet75PercentGrey (3W)

The OlGet75PercentGrey function is used to retrieve the id of a 75 percent grey
Pixmap for screen.

RETURN VALUE
The Pixmap id is returned.

3/91 Page 1

OIGetApplicationValues (3W) OIGetApplicationValues (3W)

NAME
OlGetApplicationValues - used to retrieve application resources

SYNOPSIS
void OlGetApplicationValues(widget, args, num_args)

Widget widget; /* for getting display info */
ArgList args; /* args to query */
Cardinal nUDLargs; /* number of args */

DESCRIPTION
The OlGetApplicationValues procedure is used to retrieve the application
resources that are accessible from the OPEN LOOK toolkit. The semantics is
similar to the xtGetValues call.

Application resources are resources that all OPEN LOOK applications have in
common. Their values are updated dynamically by changing preferences in the
WorkSpace Manager's property sheets. Therefore, it's recommended that an
application query the values each time it needs them.

SEE ALSO

3/91

See the section, Application Resources, in the Appendix "Manual Pages: Introduc
tion" in this Programmer's Guide.

Page 1

OIGetlcValues (3W) OIGetlcValues (3W)

NAME
OlGetIcValues - used for reading Input Context (Ie) attributes

SYNOPSIS
char* OlGetIcValues(ic, icvalues)

OlIc *ic;
OlIcValues icvalues;

DESCRIPTION
This function is used for reading IC attributes. icvalues must point to a loca
tion where the values will be stored. The function returns NULL if no error
occurs; otherwise it returns the name of the first argument that could not be
obtained. The end of the icvalues list must be indicated by a NULL value for
the attribute name. This function will allocate memory to store the values and it
is the caller's responsibility to free the storage.

SEE ALSO

3/91

OlCreateIc(3W)
OlDestroyIc(3W)
OlIcValues(3W)
OlImOfIC(3W)
OlSetIcFocus(3W)
OlSetIcValues(3W)
OlUnSetIcFocus(3W)

Page 1

OIGetlmValues (3W) OIGetlmValues (3W)

NAME
OlGetlmValues - returns a list of properties and features supported by the
Input Method

SYNOPSIS
#define OlDmNeedNothing 000
#define OlImPreEditArea 001
#define OlImPreEditCallbacks 002
#define OlImPreEditPosition 004
#define OlImBtatusArea 010
#define OlImBtatusCallbacks 020
#define OlImFocusTracks 040

typedef unsigned short OlImStyle;

typedef struct _OlImStyles {
unsigned short styles_count;
OlImBtyle *supported_styles;

OlImBtyles;

void OlGetImValues(im, ~alues)
OlIm *im;
OlImValues *~alues;

DESCRIPTION

NOTES

This function returns a list of properties and features supported by the 1M. The
end of the list is indicated by a NULL value for the attribute name in the
~alues list. Only one attribute, XtNQuerylnputStyle, is defined at this time
It is used to query input styles supported by the 1M.

A client should always query the 1M to find out what styles are supported, to
determine if they match the styles that the clients intend to support. If there are
no matches, the client should either chose another 1M or terminate the execution.

The ~alues attr_value field must be a pointer to the OlImStyles structure,
which contains a count and an array of supported styles. The ~lues
attr_name field should contain the string XtNQuerylnputStyle. Each element
in that array is a bitmask in which 1M indicates its requirements should a particu
lar style to be selected.

Clients are responsible for freeing OlImBtyles using XFree.

Not all style combinations are allowed.

SEE ALSO

3/91

OlOpenIm(3W)
OlImValues (3W)

Page 1

OIGetMessage (3W) OIGetMessage (3W)

NAME
01GetMessage - responsible for providing a localized message or a default mes
sage.

SYNOPSIS
char *01GetMessage(disp1ay,buf,bufsiz,name,type,c1ass,defau1t_msg,database)

Display *disp1ay;
char *buf;
int bufsiz;
String name;
String type;
String class;
String defau1t_msg;
XrmDatabase database;

DESCRIPTION
01GetMessage will get a unique localized message where the class of the message
corresponds to the filename and the name and type of message maps to a unique
message in that XrmDatabase format file.

If a message is found and a buffer is supplied, the message is copied into the
buffer and the pointer to this buffer returned.

If a message is found and a buffer is not supplied, the pointer returned
is the Xt pointer to that message and should not be freed.

If a message is not found and a buffer is supplied, the pointer to that buffer
is returned, with the default message copied into it.

If a message is not found and a buffer is not supplied, the pointer returned
is a toolkit pointer to the default message and should not be freed.

SEE ALSO
01OpenDatabase(3W)
01C1oseDatabase(3W)

3/91

01 VaDisp1ayWarningMessage(3W)
01 VaDisp1ayErrOrMeSsage(3W)

Page 1

OIGetNextStrSegment (3W) OIGetNextStrSegment (3W)

NAME
OlGetNextStrSegment - a string parsing utility to obtain string segments in
which all characters belong to the same code set

SYNOPSIS
typedef struct _OlStrSegment {

unsigned short code_set;
int len;
unsigned char *segment;

} OlStrSegment;

1* EUe code set number *1
1* length of the string segment *1
1* string segment *1

int OlGetNextStrSegment(fontlist, segment, str, len)
FontList *fontlist;
OlStrSegment *segment;
unsigned char **str;
int *len;

DESCRIPTION

3/91

This function identifies the code set to which the first character (not byte) of the
string belongs and copies all subsequent contiguous characters in this string that
belong to the same code set into the segment field of the OlStrSegment struc
ture, until a character belonging to another code set is identified. The auxiliary
characters such as single shift two and single shift three (552 and 5S3) that
identifies the code set of a character in the EVe scheme will not be copied. A
large enough space to store a string segment into the segment field must be allo
cated by the caller. The fontlist contains information about the code sets
being used. str points to the original string that must be parsed and moves this
pointer to the first character belonging to a different code set. len points to an
integer for length (in bytes) of the str. It is also modified to reflect the length
of the remaining part of the string.

The function returns -1 if an error occurs, a otherwise.

The following example shows how one could obtain string segments from a string
using this function.

char *str; I*a string is parsed into segment *1
int len; I*holds limited length of string *1
OlFontList *fontlist; I*see CVt01GetFontGroupToFontStringList *1
OlStrSegment *parse; 1* Large enough must have been pre-allocated *1
while (len> 0)

{

OlGetNextStrSegment (fontlist, parse, &str, &len)

do something useful with parse -> str - it points to string
segment

}

Page 1

OIGrabDragPointer (3W) OIGrabDragPointer (3W)

Dynamic Settings

NAME
OlGrabDragPointer

SYNOPSIS
#include <QpenLook.h>

extern void OlGrabDragPointer(w, cursor, window)
Widget w;
CUrsor cursor;
window window;

DESCRIPTION
The OlGrabDragPointer procedure is used to effect an active grab of the mouse
pointer. This function is normally called after a mouse drag operation is experi
enced and prior to calling the OlDragAndDrop procedure which is used to monitor
a drag operation.

SEE ALSO

3/91

OlDragAndDrop(3W)
OlUngrabDragPointer(3W)

Page 1

OllcValues (3W) OllcValues (3W)

NAME
OlIcValues - contains a list of IC attribute names and value pairs

SYNOPSIS
typedef struct _OlIcValues

char *attr_name;
void *attr_value;

OlIcValues;

typedef OlIcValues * OlIcValuesList;

typedef void (*OlImProc){);
typedef void * OlImValue;

typedef struct
OlImValues
01 ImProc

01 ImCallback;

_OlImCallback
client_data;
callback;

DESCRIPTION

3/91

OlIcValuesList contains a list of Input Context (IC) attribute names and value
pairs. It is used for getting and setting various IC attributes. The supported IC
attributes are shown in the table below. The end of the list is indicated by a
NULL value in the attribute name.

Input Context Attributes
Attribute Name Attribute Value Type

OlNclientWindow Window*
OINClientArea XRectangle*
OINinputStyle OlImStyle*
OINfocus Window Window*
OINpreeditArea XRectangle*
OINstatusArea XRectangle*
OINspotLocation XPoint*
OINresourceDatabse XrmDatabase*
OINpreeditAttributes OlIcWindow Attr*
OINstatusAttributes OlIcWindow Attr*

Page 1

OllcValues (3W) OllcValues (3W)

Page 2

Attributes for Preedit and Status Windows
Attribute Name Attribute Value Tvpe

OINcolormap Colormap
OINstdColormap Colormap
OINbackground Pixel
OINforeground Pixel
OINbackgroundPixmap Pixmap
OINfontset OIFontList
OINlineSpacing int
OINcursor Cursor
Callbacks OlImCallback

OINclientWindow

specifies the client window in which the 1M may display data or create subwin
dows. Dynamic changes of client window are not supported; this argument must
be set at the IC creation time and cannot be changed later. It is a static attribute
that is required by OlCreateIe. The value is a pointer to a window.

OINClientArea

specifies the client area in which 1M may display data or create subwindows. 1M
will establish its own pre-edit and status geometry accordingly. When this attri
bute is left unspecified, 1M will default usable client area to actual client window
geometry. It is a dynamic attribute that can be modified via calls to OlSet
IeValues. The value is a pointer to an XReetangle.

OINinputStyle

specifies the input style to be used. The value of this argument must be one of
the supported styles returned by the OlGetImValues function, otherwise
OlCreatIe will fail. If you do not specify this attribute, 1M will use an imple
mentation defined default style. OPEN LOOK does not support Dynamic
changes of 1M style. This argument must be set at the IC creation time and can
not be changed later. The value is a pointer to OlImStyle.

OINfocus Window

specifies to 1M the window XID of the focus window. The input method may
possibly affect that window: select events on it, send events to it, modify its pro
perties, and grab the keyboard within that window.

When this attribute is left unspecified, 1M will default from the focus window to
the client window. Setting this attribute explicitly to NULL has a specific mean
ing: when the focus window is set explicitly from a non NULL value to NULL,
the Input Method is required to clear any displayed data in the status area
corresponding to the focus window. It is a dynamic attribute that can be
modified via calls to OlSetIeValues. The value is a pointer to a window.

3/91

OllcValues (3W) OllcValues (3W)

OINpreeditArea

the area where pre-edit data should be displayed. The value of this argument is
a pointer to XRectangle, relative to the client window. 1M mayor not create a
preedit window in this area, using the specified geometry, as a child of a client
window.

When you leave OlNpreedi tArea unspecified, 1M will default from the preedit
area to an implementation defined area. This area shall be contained within the
client area.

If you specify this attribute for root or XimPreEditCallbacks Input Method, it is
ignored.

If you specify this attribute for an XimPreEditArea Input Method, the width and
height determine the size of the area within the "over-the-spot" window that is
now available for pre-edit.

OINstatusArea

specifies to the 1M the usable area to display Ie state information. The value of
this argument is a pointer to XRectangle, relative to the client window.

The 1M mayor not create a status window in this area, using the specified
geometry, as a child of the client window.

When OlNstatusArea is left unspecified, The 1M defaults to the status area
defined by the 1M implementation. This area is contained within the client area.
This is a dynamic attribute that can be modified via calls to OlSetlcValues.

Important Note: if a client leaves all areas unspecified, the 1M may not be able to
run properly. Some implementations will generate errors if none of the focus win
dow, focus area, client area, preedit area, and status area are defined. At best, it
may behave randomly using any area in the client window, possibly clearing the
whole window or erasing any region.

OIN spotLocation

specifies to 1M the coordinates of the "spot" (the current cursor position in the
text insertion window), to be used by the "over-the-spot" or "on-the-spot" IMs.
The type is a pointer to Xpoint. The x coordinate specifies the position where
the next character would be inserted. The y coordinate is the position of the
baseline used by current text line in the focus window.

SEE ALSO

3/91

OlCreatelc(3W), OlDestroylc(3W), OlGetlcValues(3W), OlImOfIc(3W),
OlSetlcFocus(3W), OlSetlcValues(3W), olunsetICFOcus(3W), OlReSetlc(3W)

Page 3

OlimOtlc (3W)

NAME
OllmOfle - returns a pointer to Ollm

SYNOPSIS
OIIm * OllmOfle(ie)

Olle *ie;

DESCRIPTION

OlimOtlc (3W)

This function returns a pointer to the OIIm structure associated with the specified
Input Context. A Null value is returned if an invalid ie is specified.

SEE ALSO
OICreatele(3W)

3/91 Page 1

OllmValues (3W) OllmValues (3W)

NAME
OlImValues - contains a list of 1M attributes

SYNOPSIS
typedef struct {

DESCRIPTION

unsigned short count_styles;
OlIMStyle * supported_styles;
} OlIMStyles

OlImValues contains a list of Input Method values or attributes returned by
OlIMStyles structure. The OlIMStyles structure contains in its field count_styles
the number of input styles supported. This is also the size of the array in the
field supported _styles. Each element in the array represents a different input style
supported by this Input Method. It is a bitmask in which the Input Method indi
cates its requirements, should this style be selected. These requirements fall into
the following categories:

OlImPreEditArea If chosen the Input Method requires the client to pro
vide some area values for preediting. Refer to the
Input Context Attribute OlNpreeditArea.

OlIMPreditPosition If chosen, the Input Method requires the client to pro
vide positional values. Refer to IC attributes
OlNspotLocation and OlNfocusWindow.

OlImPreEditCallbacks If chosen, the Input Method requires the client to
define the set of preedit callbacks. Refer to IC values
OlNPreEditStartCallback, OlNPreEditDoneCall
back, OlNPreEditDraWCallback, OlNPreEditCaret
Callback.

01 ImNeedNothing If chosen, the Input Method can function without any
PreEdit values.

OlIMStatusArea The input method requires the client to provide some
area values for it to do its Status feedback. Refer to
OlNArea and OlNAreaNeeded.

OlIMStatusCallbacks The Input Method requires the client to define the set
of status callbacks.

OlImStatusArea The Input Method requires the client to provide some
area values for it to do its Status feedback. Refer to
OlNArea and OlNAreaNeeded.

3/91 Page 1

Ollnitialize (3W) Ollnitialize (3W)

NAME
OlInitialize - a mandatory routine that must be called by every application

SYNOPSIS
#include <Xlih.h>
#include <OpenLook.h>

widget OlInitialize(shell_name, classname, urlist, num_urs, argc, argv)
char *shell~ame;

char *classname;
XrmQptionDescRec *urlist;
Cardinal num_urs;
Cardinal *argc;
char *argv[] ;

DESCRIPTION

3/91

This initialization routine must be called by each application before any OPEN
LOOK widgets are created or other OPEN LOOK routines are used.

The arguments to this routine are similar to the arguments to the standard
Xtlnitialize routine.

Ollnitialize also does the following:

• A call to the OlLocalelnitialize routine to set the locale categories in
accordance with the Workspace Manager locale announcement;

• OlInitialize sets up communication with an input method library if the
locale set by OlLocalelnitialize requires and input method.

The following resources are set by the Workspace Manager as part of its locale
announcement scheme.

*xnlLanguage

• *inputLang

• *displayLang

• *numeric

• *timeFormat

Ollnitialize maps the values of these resources to locale categories, through
the set locale function using the following locale category map.

Locale Category Map
X Toolkit Locale Category

*xnlLanguage LC ALL
*displayLang LC MESSAGES
*numeric LC NUMERIC
*time LC TIME
*inputLang LC CTYPE

Page 1

Ollnitialize (3W) Ollnitialize (3W)

Page 2

Locale names (the right hand side values of these resources) announced by the
Workspace Manager must match the underlying system locale names.

3/91

OILocaleOflm (3W)

NAME
OlLocaleOfIm - queries locale for the input method

SYNOPSIS
char * OlLocaleOfIm(im)

OlIm *im;

DESCRIPTION

OILocaleOflm (3W)

This function returns a locale name string under which the specified input
method runs.

3/91 Page 1

OILookUplmString (3W) OILookUplmString (3W)

NAME
OILookuplmString - localized version of Xlib XLookupString function but maps
a keypress event to a language string, a keysym, or OIComposeStatus

SYNOPSIS
typedef enum _OIImStatus {

XBufferOverflow,
XLookupNone,
XLookupChars,
XLookupKeysyIll,
XLookupBoth

} OllmStatus;

int OILookuplmString(event, ic, buffer_return, buffer_len,
keysyIll_return, status_ret>

KeyEvent *event;
Ollc *ic;
char *buffer_return;
int buf_Ien;
KeySyIll *keysyIll_return;
OllmStatus *status_return;

DESCRIPTION

3/91

This function is similar to Xlib function XLookupString except that it takes an
extra ic argument and mayor may not return any string for a key press event.
Instead, it will return a composed character when one is available. If an existing
program that uses XLookupString is modified to use OILookuplmString, the
program should check for any string that has been returned by the function. The
value returned in the status_return value indicates what has been returned in
the other arguments. The return value is the length, in bytes, of the string
returned in buffer Jeturn if a string has been returned.

•

•

•

•

XBufferOverflow means that the input string to be returned is too large
for the supplied buffer_return. The required size is returned as the
value of the function, and the contents of buffer_return and
keysyIll_return are not modified. The client should call the function
again with the same event and a buffer of adequate size in order to obtain
the string.

XLookupNone means that no consistent input has been composed so far.
The contents of buffer_return and keysyIll_return are not modified,
and the function returns zero as a value.

XStringReturned means some input string has been composed. It is
placed in buffer_return and the string length is returned as the value of
the function. The string is encoded in the locale bound to the Input Con
text. The contents of keysyIll_return is not modified.

XLookupKeySym means a KeySym has been returned instead of a string.
The KeySym is returned in keysyIll_return. The contents of
buffer_return is not modified, and the function returns zero.

Page 1

OILookUplmString (3W) OILookUplmString (3W)

• XLookupBoth means that both a KeySym and a string are returned, in
buffer Jeturn and keysym Jeturn respectively.

It is not necessary for the Input Context passed as an argument to OlLookuplm
String to have focus. Input can be composed within this Input Context before it
loses focus and that input is returned by the function even though it no longer
has keyboard focus. This result is dependent on the 1M implementation and may
not be true in all cases.

SEE ALSO
OlDrawlmString(3W)
XLookupString(3W)
XLookupKeYSym(3W)
XKeysymToString(3W)
XstringToKeysym(3W)

Page 2 3/91

OILookuplnputEvent (3W) (Database Utilities) OILookuplnputEvent (3W)

NAME
OlLookupInputEvent - translates an X event to an OPEN LOOK virtual event

SYNOPSIS
#include <Xol/OpenLook.h>

void
OlLookupInputEvent{w, xevent, virtual_event_ret, db_flag)

Widget w;
XEvent *
OlVirtualEvent
XtPointer

xevent;
virtual_event_ret;
db_flag;

DESCRIPTION

3/91

The OlLookupInputEvent procedure is used to translate a X event to an OPEN
LOOK virtual event. The X event (xevent) could be a KeyPress, ButtonPress,
ButtonRelease, EnterNotify, LeaveNotify, or MotionNotify event. The pro
cedure attempts to translate this event based on the setting of the OPEN LOOK
defined dynamic databases.

The virtual_event Jet parameter is a pointer to an 01 VirtualEventRec structure:

typedef struct
Boolean consumed;
XEvent * xevent;
Modifiers dont_care;
OlVirtualName virtual_name;
KeySym keysym;
String buffer;
Cardinal length;
Cardinal item_index;

OlvirtualEventRec, *OlVirtualEvent;

If the X event is a KeyPress, the keysym, buffer, and length, information will
be included in virtual event ret. The information was returned from a call to
XLookupString(3X). - -

The db Jlag parameter is an XtPointer type. The valid values are
OL_DEFAULT_IE, OL_CORE_IE, OL_TEXT_IE, or the return value from a
01CreateInputEventDB(3W) call.

The (w, dbJlag) pair determines the searching database(s). If the dbJlag value is
not OL_DEFAULT_IE then only the given database (for example, OL_TEXT_IE
means: search the OPEN LOOK TEXT database) will be searched, otherwise a
search stack will be built. This stack is based on the widget information (w) and
the registering order [see 01SearchClassIEDB(3W), 01SearchclassTextDB(3W),
01SearchwidgetIEDB(3W), and 01SearchwidgetTextDB(3W) for details] to
determine the searching database(s). Once this stack is built, the procedure uses
the LIFO (Last In First Out) fashion to perform the search.

All widgets have an XtNconsumeEvent callback. When this callback is called, the
call_data field is a pointer to an OlVirtualEventRec structure which is filled in
with the results of calling OlLookupInputEvent with the db Jlag set to
OL_DEFAULT_IE.

Page 1

OILookuplnputEvent (3W) (Database Utilities) OILookuplnputEvent (3W)

OPEN LOOK Defined Databases
NOTE: For readability, we have abbreviated the following keys in the Default
Bindings column:

Key Abbreviation
Shift key s
Alt key a
Ctrl key c

Core Database (OL_CORE_IE)

Command Name Virtual Expression Virtual Event Default Binding

ADTUST adjustBtn OL ADJUST <Button2>

ADTUSTKEY adjustKey OL ADJUSTKEY c s<ampersand>

CANCEL cancelKey OL CANCEL <Escape>

CONSTRAIN constrainBtn OL CONSTRAIN c<Buttonl>

COpy copyKey OL COPY c<Insert>

CUT cutKey OL CUT s<Delete>

DEFAULTACTTON defaultActionKey OL DEFAULTACTION <Retum>,c<Retum>

DRAG dragKey OL DRAG <FS>

DROP dropKey OL DROP <F2>

DUPLICATEKEY duplicateKey OL DUPLICATEKEY s<space>

HELP helpKey OL HELP <Fl>

HSBMENU horizSBMenuKey OL HSBMENU a c<r>

MENU menuBtn OL MENU <Button3>

MENUDEFAULT menuDefaultBtn OL MENUDEFAULT s<Button3>

MENUDEFAULTKEY menuDefaultKey OL MENUDEFAULTKEY c<M>,s<F4>

MENUKEY menuKey OL MENUKEY c<m>,<F4>

MOVEDOWN downKey OL MOVEDOWN <Down>

MOVELEFT leftKey OL MOVELEFT <Left>

MOVERIGHT rightKey OL MOVERlGHT <Right>

MOVEUP upKey OL MOVEUP <Up>

MULTIDOWN multiDownKey OL MULTIDOWN c<Down>

MULTILEFT multiLeftKey OL MULTILEFT c<Left>

MULTIRlGHT multiRightKey OL MUL TIRlGHT c<Right>

MULTIUP multiUpKey OL MULTIUP c<Up>

NEXTAPP nextAppKey OL NEXTAPP a<Escape>

NEXT FIELD nextFieldKey OL NEXT FIELD <Tab>,c<Tab>

NEXTWINDOW nextWinKey OL NEXTWINDOW a<F6>

PAGEDOWN pageDownKey OL PAGEDOWN c<Next>

PAGELEFT pageLeftKey OL PAGELEFT c<bracketleft>

PAGERIGHT pageRightKey OL PAGERlGHT c<bracketright>

PAGEUP pageUpKey OL PAGEUP c<Prior>

PAN panBtn OL PAN a<Buttonl>

PASTE pasteKey OL PASTE s<Insert>

Page 2 3/91

OILookuplnputEvent (3W) (Database Util ities) OILookuplnputEvent (3W)

Core Database (OL_CORE_IE)

Command Name Virtual Expression Virtual Event Default Binding

PREVAPP prevAppKey OL PREVAPP a s<Escape>

PREV FIELD prevFieldKey OL PREV FIELD s<Tab>,c s<Tab>

PROPERTY propertiesKey OL PROPERTY c<p>

SCROLLBOTTOM scrollBottomKey OL SCROLLBOTTOM a<Next>

SCROLLDOWN scrollDownKey OL SCROLLDOWN <Next>

SCROLLLEFT scrollLeftKey OL SCROLLLEFT a<bracketleft>

SCROLLLEFTEDGE scrollLeftEdgeKey OL SCROLLLEFTEDGE a s<braceleft>

SCROLLRIGHT scrollRightKey OL SCROLLRIGHT a<bracketright>

SCROLLRIGHTEDGE scrollRightEdgeKey OL SCROLLRIGHTEDGE a s<braceright>

SCROLLTOP scrollTopKey OL SCROLLTOP a<Prior>

SCROLLUP scrollUpKey OL SCROLLUP <Prior>

SELCHARBAK selCharBakKey OL SELCHARBAK s<Left>

SELCHARFWD selCharFwdKey OL SELCHARFWD s<Right>

SELECT selectBtn OL SELECT <Button1>

SELECTKEY selectKey OL SELECTKEY <space>,c<space>

SELFLIPENDS selFlipEndsKey OL SELFLIPENDS a<lnsert>

SELLINE selLineKey OL SELLINE c a<Left>

SELLINEBAK selLineBakKey OL SELLINEBAK s<Home>

SELLINEFWD selLineFwdKey OL SELLINEFWD s<End>

SELWORDBAK selWordBakKey OL SELWORDBAK c s<Left>

SELWORDFWD selWordFwdKey OL SELWORDFWD c s<Right>

STOP stopKey OL STOP C<8>

TOGGLEPUSHPIN togglePushpinKey OL TOGGLEPUSHPIN c<t>

UNDO undoKey OL UNDO a<BackSpace>

VSBMENU vertSBMenuKey OL VSBMENU c<r>

WINDOWMENU windowMenuKey OL WINDOWMENU s<Escape>

WORKSPACEMENU workspaceMenuKey OL WORKSPACEMENU c<w>

3/91 Page 3

OILookuplnputEvent (3W) (Database Utilities) OILookuplnputEvent (3W)

Text Database (OL TEXT IE)
Command Name Virtual Expression

CHARBAK charBakKey

CHARFWD charFwdKey

DELCHARBAK delCharBakKey

DELCHARFWD delCharFwdKey

DELLINE delLineKey

DELLINEBAK delLineBakKey

DELLINEFWD delLineFwdKey

DELWORDBAK delWordBakKey

DELWORDFWD delWordFwdKey

DOCEND docEndKey

DOCSTART docStartKey

LINEEND lineEndKey

LINESTART lineStartKey

PANEEND paneEndKey

PANESTART paneStartKey

RETURN returnKey

ROWDOWN rowDownKey

ROWUP rowUpKey

WORDBAK wordBakKey

WORDFWD wordFwdKey

SEE ALSO
OlCreatelnputEventDB(3W)
OlClassSearchIEDB(3W)
OlClassSearchTextDB(3W)
OlwidgetSearchIEDB(3W)
OlwidgetSearchTextDB(3W)

Virtual Event

OL CHARBAK

OL CHARFWD

OL DELCHARBAK

OL DELCHARFWD

OL DELLINE

OL DELLINEBAK

OL DELLINEFWD

OL DELWORDBAK

OL DELWORDFWD

OL DOCEND

OL DOCSTART

OL LINEEND

OL LINESTART

OL PANEEND

OL PANESTART

OL RETURN

OL ROWDOWN

OL ROWUP

OL WORDBAK

OL WORDFWD

Default Button

<Left>

<Right>

<BackSpace>

<Delete>

a s<Delete>

c<BackSpace>

c<Delete>

c s<BackSpace>

c s<Delete>

c<End>

c<Home>

<End>

<Home>

c s<End>

c ,<Home>

<Return>

<Down>

<Up>

c<Left>

c<Right>

XtNconsumeEvent discussion in "Primitive Widget Resources" section

EXAMPLE

Page 4

#include <Xol/OpenLook.h>

OlVirtualEventRec ve;

/* To look up the OPEN LOOK CORE database */
OlLookuplnputEvent(w, xevent, &ve, OL_CORE_IE};
switch (ve.virtual_name)
{

break;
case OL_UNKNOWN_BTN_INPUT:

break;

3/91

OILookuplnputEvent (3W) (Database Utilities) OILookuplnputEvent (3W)

3/91

break;
case OL_ADUUST:

printf ("pressed the adjustBtn \n") ;

break;
case OL_ADUUSTKEY:

printf ("pressed the adjustKey\n");

break;

#include <Xol/OpenLook.h>

OIVirtualEventRec ve;
/* To look up the OPEN LOOK TEXT database */

OILookuplnputEvent(w, xevent, &ve, OL_TEXT_IE};
switch (ve.virtual_name)
{

case OL_OOCEND:
printf ("pressed the docEndKey\n");

break;
case OL_LlNEENO:

printf ("pressed the lineEndKey\n");

break;

#include <Xol/OpenLook.h>

OIVirtualEventRec ve;
/* To look up all possible databases */
/* assume: "w" is a textfield widget */

OILookuplnputEvent(w, xevent, &ve, OL_DEFAULT_IE};
switch (ve.virtual_name)
{

case OL_ADUUST:
printf ("pressed the adjustBtn\n");

break;
case OL_ADUUSTKEY:

printf ("pressed the adjustKey\n");

Page 5

OILookuplnputEvent (3W) (Database Utilities) OILookuplnputEvent (3W)

break;

case OL_DOCEND:
printf ("pressed the docEndKey\n");

break;
case OL_LINEEND:

printf ("pressed the lineEndKey\n");

break;

Page 6 3/91

OIMaxFontinfo (3W) OIMaxFontlnfo (3W)

NAME
OlMaxFontInfo - queries the maximum values of font related attributes from all
fonts in fontlist

SYNOPSIS
typedef struct _OlFontInfo

int ascent;
int descent;
int height;
int width;

OlFontInfo;

OlFontInfo *
OlMaxFontInfo (font1ist)
OlFontList *font1ist;

DESCRIPTION

NOTES

This routine determines the maximum values for the four font related attributes
from all fonts in the variable fontlist. It then allocates an 01 Font Info struc
ture and fills in the structure with those values. This routine is useful to keep
track of character positions in a string composed of characters from different code
sets.

The caller must free memory of the returned structure by calling XFree.

SEE ALSO
CVt01FontGroupToFontStructLists(3W)
01FreeFontList(3W)
01GetFontList(3W)
01MaxFontInfo(3W)

3/91 Page 1

OIOpenDatabase (3W) OIOpenDatabase (3W)

NAME
OlOpenDatabase - responsible for opening a localized Xrmdatabase format data
base.

SYNOPSIS
Xr.rnDatabase OlOpenDatabase(display, filename)

Display *display;
String filename;

DESCRIPTION
This function is responsible for opening a localized version of a database in
Xr.rnDatabase format. The function will resolve the pathname according to the
current locale.

If the function call is successful, the Xr.rnDatabase pointer will be returned; if
unsuccessful, (Xr.rnDatabase) NULL is returned.

If the database has already been opened by OlOpenDatabase, the cached Xr.rnDa
tabase pointer is returned.

SEE ALSO
OlCloseDatabase(3W)
OlGetMesSage(3W)
OlOpenDatabase(3W)

3/91 Page 1

OIOpenlm (3W) OIOpenlm (3W)

NAME
OlOpen1m - opens a connection to the Input Method

SYNOPSIS
typedef struct _Ol1mValues

char * attr_name;
void * attr_value;

Ol1mValues;

typedef Ol1mValues * Ol1mValuesList;

typedef struct _Ol1m
OlIc
OlImStyles
Ol1mValues*
char
char
long
void

OlIm;

*iclist;
*im_styles;
*imvalues;
*appl_name;
*appl_class;
version
*imtype;

I*input context list *1
I*supported re-edit types *1
I*current 1M attributes *1
I*application name *1
I*application class *1
I*OPEN LOOK version *1
I*hook for 1M specific data*1

Ol1m *OlOpen1m(dpy, rdb, res_name, res_class)
Display dpy;
XrmDatabase rdb;
String

DESCRIPTION
This is an 1M dependent routine responsible for opening a connection to the
Input Method. Depending on a particular implementation it may have to start an
Input Method server, establish a connection with an already running server, set
up a STREAMS connection, or simply create an OlIm structure.

The routine returns a pointer to the OlIm structure, a pointer to a list of OlIc
structures, information about supported 1M styles, and the Toolkit's version
number (to be used by some IMs).

The imtype field is a hook for attaching implementation dependent data struc
tures.

SEE ALSO

3/91

OlClose1m(3W)
OlDisplayOfIm(3W)
OlGet1mValues(3W)
OlImOf1c(3W)
OlLocaleOfIm(3W)

Page 1

OIRegisterDynamicCallback (3W) OIRegisterDynamicCaliback (3W)

Dynamic Settings

NAME
OlRegisterDynamicCallback

SYNOPSIS
#include <OpenLook.h>

extern void OlRegisterDynamicCallback(CB, data)
OlDynamicCallbackProc CB;
XtPointer data;

DESCRIPTION
The OlRegisterDynamicCallback procedure is used to add a function to the list
of registered callbacks to be called whenever the procedure OlCallDynamicCall
backs is invoked. The OICallDynamicCallback procedure is invoked whenever the
RESOURCE_MANAGER property of the Root Window is updated. The
OICallDynamicCallbacks procedure may also be called directly by either the appli
cation or other routines in the widget libraries. The callbacks registered are
guaranteed to be called in FIFO order of registration and will be called as

(*CB) (data);

SEE ALSO
OlUnregisterDynamicCallback(3W)
OlCallDynamicCallbacks(3W)

3/91 Page 1

OIRegisterHelp (3W) OIRegisterHelp (3W)

NAME
OlRegisterHelp - associates help information with either a widget instance or
class

SYNOPSIS
#include <Intrinsic.h>
#include <OpenLook.h>

void OlRegisterHelp(id_type, id, tag, source_type, source};
OlDefine id_type;
XtPointer id;
String tag;
OlDefine source_type;
xtPointer source;

DESCRIPTION

3/91

These resources define the look of the Help window.

Default Window Decorations
Resource Type Default

XtNmenuButton Boolean FALSE

XtNpushpin OlDefine OL IN

XtNresizeCorners Boolean FALSE

XtNwindowHeader Boolean TRUE

Associating Help with Widgets or Gadgets
The OlRegisterHelp routine associates help information with either a widget
instance or a widget class. The widget ID or widget class pointer is given in id,
and id_type identifies whether it is a widget or a widget class using one of the
values OL_WIDGET_HELP, OL_CLASS_HELP, or OL_FLAT_HELP, respectively. Use
OL_WIDGET_HELP to register help on gadgets.

The tag value is shown in the title of the help window, as suggested below:

app-name: tag Help

where app-name is the name of the application. More than one help message can
be registered with the same tag. tag can be null, in which case only app-name:
Help is printed.

Help for Flat Widgets
To set the same help message for all items in a flat widget container, use the
OlRegisterHelp routine with id_type set to OL_WIDGET_HELP.

To register help for individual items in a flat widget container, use
OlRegisterHelp with id_type set to OL_FLAT_HELP. Use the following struc
ture to specify object that gets the help message:

typedef struct {
Widget
Cardinal

OlFlatHelpld;

widget;
item_index;

Page 1

OIRegisterHelp (3W) OIRegisterHelp (3W)

Format of the Help

Page 2

The help message is identified in source; source_type identifies the form of the
help message:

OL_STRING_SOURCE
The source is of type String and contains simple text with embedded
newlines. The OlRegisterHelp routine does not copy this source; the
application is expected to maintain the original as long as it is registered
with a tag.

OL_DISK_SOURCE
The source is also of type String, but contains the name of a file that
contains the text. The OlRegisterHelp routine does not copy this
filename; the application is expected to maintain the original as long as it
is registered. The file content is considered to be simple text with
embedded newlines.

OL_INDIRECT_SOURCE
The source is of type void (*) and is a pointer to an application defined
routine. The routine is called after HELP has been clicked. The applica
tion is expected to define the type of source in the routine. After the
routine has returned, the help information is displayed.

The routine is called as follows:

(*source) (id_type,id,src_x,src-y,&source_type,&source);

id_type
id are the values for the widget class or widget instance that was

under the pointer when HELP was pressed. These are the same
values registered with the tag.

src_x
src-y are the coordinates of the pointer when HELP was pressed.

These are relative to the upper-left corner of the window.

source_type
source are pointers to values the application's routine should set for

the help source it wants to display. The only source_type
values accepted are OL_STRING_SOURCE and OL_DISK_SOURCE.

OL_TRANSPARENT_SOURCE
The source is of type void (*) and is a pointer to an application defined
routine. The routine is called after HELP has been invoked. The appli
cation is expected to handle the HELP event completely. This might be
used by an application that does not want the standard help window
(for example, xtenn simply generates an escape sequence).

The routine is called as follows:

(*source)(id_type, id, src_x, src-y);

id_type

3/91

OIRegisterHelp (3W) OIRegisterHelp (3W)

3/91

id are the values for the widget class or widget instance that was
under the pointer when HELP was pressed. These are the same
values registered with the tag.

src_x
src""y are the coordinates of the pointer when HELP was pressed.

These are relative to the upper-left comer of the window.

The help window is automatically popped up for the OL_STRING_SOURCE,
OL_DISILSOURCE, and OL_INDlRECT_SOURCE help sources. (It is popped up after
the indirect routine returns for the OL_INDlRECT_SOURCE help source.) The
application is responsible for popping up a help window (if needed) for the
OL_TRANSPARENT_SOURCE help source.

Handling the Help Key Event
When the end user clicks HELP, if the event occurs within a widget or window
registered with the OlRegisterHelp routine, the corresponding help message is
automatically displayed (for source types OL_STRING_SOURCE and
OL_DISK_SOURCE) or the application routine is called (for source types
OL_INDlRECT_SOURCE and OL_TRANSPARENT_SOURCE). If the event occurs else
where, a default help message is displayed.

If the help key is pressed on a widget, the help routine attempts to look up help
on that widget of type OL_WIDGET_HELP. If no help is found, the help routine
searches up the widget tree (Le., goes to the widget's parent) looking for the first
widget that has help of type OL_WIDGET_HELP registered. If it finds help
registered on one of the original widget's ancestors, the help message for the
ancestor will be used. If help is not found, the help routine looks for help of type
OL_CLASS_HELP on the original widget. If no help is found, the default message is
used.

Separate Help per Application
An application will have, at most, one help message displayed. However, several
applications can display their separate help messages simultaneously, in different
help windows.

Displaying the Help Message
A help source of type OL_STRING_SOURCE and OL_DISK_SOURCE is displayed in a
help window that is 50 ens wide and 10 lines tall. (An en is 5/2 points, where S is
the current point size.) Lines longer than 50 ens are wrapped at the space(s)
between words, or at the nearest character boundary if there is no space at which
to wrap. Lines are also wrapped at embedded newlines regardless of their
length.

Only spaces and newlines are recognized for format control; all other non
printable characters are silently ignored.

Up to ten lines of the message are visible at once. Messages longer than ten lines
have a scrollbar control that allows scrolling non-visible lines into view.

Static Variables
The tag and source values should be statically defined (or allocated and not
freed). Using automatic variables here will almost always fail.

Page 3

OIResetlc(3W) 01 Resetlc (3W)

NAME
OlResetlc - resets the state of an input context to the initial state

SYNOPSIS
char *OlResetIC{ic)

OlIc *ic */specifies the IC to be reset*/

DESCRIPTION
OlResetlc resets the input context to its initial state. Any input pending on that
context is deleted. Input method is required to clear the pre-edit area, if any, and
update the status accordingly. Calling OlResetlc does not change the focus.

SEE ALSO

3/91

OlCreatelc(3W)
OlDstryIc(3W)
OlGetlcValues(3W)
OlImOfIc(3W)
OlIcValus(3W)
OlSetlcFocus(3W)
OlSetlcValues(3W)
OlUnSetlcFocus(3W)

Page 1

OISetGaugeValue

NAME
OlSetGaugeValue

SYNOPSIS
extern void OlSetGaugeValue(w, value>
Widget w;
int value;

DESRIPTION

OISetGaugeValue

This function is an alternate and faster way of setting the slider value of a gauge
widget.

SEE ALSO
Gauge(3W)

3/91 Page 1

OISetApplicationValues (3W) OISetApplicationValues (3W)

NAME
OlSetApplicationValues - used to set application resources

SYNOPSIS
void OlSetApplicationValues(widget, args, num_args)

widget widget; /* for getting display info */
ArgList args; /* args to query */
cardinal num_args; /* number of args */

DESCRIPTION
The OlSetApplicationValues procedure is used to set the application resources
that are accessible from the OPEN LOOK toolkit. The semantics is similar to the
XtSetValues call.

Application resources are resources that all OPEN LOOK applications have in
common. Their values are updated dynamically by changing preferences in the
WorkSpace Manager's property sheets.

SEE ALSO

3/91

See the section "Application Resources" for the types and descriptions of avail
able application resources in the Appendix, "Manual Pages: Introduction" in this
Programmer's Guide.

Page 1

OISetlcFocus (3W) OISetlcFocus (3W)

NAME
OlSetlcFocus - notifies the Input Method that the focus window attached to the
"ic" argument has received keyboard focus

SYNOPSIS
void OlSetlcFocus(ic)

OlIc *ic;

DESCRIPTION
This function informs the 1M that the text area associated with a particular IC
now has the input focus and should receive all the keyboard events. Its imple
mentation depends on the Input Method. Depending on the implementation, this
function may update the status information and provide appropriate feedback.
For an input method style that includes the OlImFocusTracks mask, the client
must call OlSetlcFocus (ic) in response to a FocusOut event on the widget
associated with the Input Context.

SEE ALSO
OlunsetFocus(3W)

3/91 Page 1

OISetlcValues (3W) OISetlcValues(3W)

NAME
OlSetIcVaiues -sets Input Context attributes

SYNOPSIS
char * OlSetIcVaiues(ic, icvaiues)

OlIc *ic;
OlIcVaiues* icvaiues;

DESCRIPTION
This function sets IC attributes. ic specifies the input context to be changed.
icvalues is a pointer to a list of attribute names and new value pairs. All values
must be appropriate data type, matching the data type imposed by the semantics
of the argument. The function returns NULL if all arguments can be set, other
wise it returns the name of the first argument that can not be set. The end of the
icvalues list will be indicated by a NULL value for the attribute name.

SEE ALSO

3/91

OlCreat~Ic(3W)
OlDestroyIc(3W)
OlGetIcVaiues(3W)
OlIcValues(3W)

Page 1

OITextWidth (3W)

NAME
01 TextWidth - get the width in pixels of a localized string

SYNOPSIS
int OlTextWidth(fontlist, string, len)

FontList *fontlist;
unsigned char *string;
int len;

DESCRIPTION

OITextWidth (3W)

This function returns the width of an EUe string in pixels and as such replaces
the Xlib function XtextWidth. The fontlist is a pointer to a list from
XFontStruct; string, specifies a string whose width in pixels is to be computed,
and the len argument specifies the length of string in bytes (not characters). Upon
successful completion, the function returns the width of the string in pixels, or
otherwise O.

SEE ALSO
XTextWidth
XTextWidth16

3/91 Page 1

OITextEditClearBuffer (3W)

NAME
01TextEditC1earBuffer

SYNOPSIS
#inc1ude <buffuti1.h>
#inc1ude <textbuff.h>
#inc1ude <TextEdit.h>

extern Boolean 01TextEditC1earBuffer{ctx)
TextEditWidget ctxi

DESCRIPTION

OITextEditClearBuffer (3W)

The 01TextEditC1earBuffer function is used to delete all of the text associated
with the TextEdit widget ctx.

RETURN VALUE
FALSE is returned if the widget supplied is not a TextEdit Widget or if the clear
operation fails; otherwise TRUE is returned.

SEE ALSO·

3/91

01 TextEdi tUpdate(3W)
TextEdit(3W)

Page 1

OITextEditCopyBuffer (3W) OITextEditCopyBuffer (3W)

NAME
OlTextEditCopyBuffer

SYNOPSIS
#include <buffutil.h>
#include <textbuff.h>
#include <TextEdit.h>

extern Boolean OlTextEditCopyBuffer(ctx, buffer)
TextEditWidget ctx;
char ** buffer;

DESCRIPTION
The OlTextEditCopyBuffer function is used to retrieve a copy of the TextBuffer
associated with the TextEdit Widget ctx. The storage required for the copy is
allocated by this routine; it is the responsibility of the caller to free this storage
when appropriate.

RETURN VALUE
FALSE is returned if the widget supplied is not a TextEdit Widget or if the buffer
cannot be read; otherwise TRUE is returned.

SEE ALSO

3/91

01 TextEdi tReadSubString(3W)
TextEdit(3W)

Page 1

OITextEditCopySelection (3W) OITextEditCopySelection (3W)

NAME
OlTextEditCopySelection

SYNOPSIS
#include <buffutil.h>
#include <textbuff.h>
#include <TextEdit.h>

extern Boolean OlTextEditCopySelection(ctx, delete)
TextEditWidget ctx;
int delete;

DESCRIPTION
The OlTextEditCopySelection function is used to Copy or Cut the current
selection in the TextEdit ctx. If no selection exists or if the TextEdit cannot
acquire the CLIPBOARD, FALSE is returned. Otherwise the selection is copied to
the CLIPBOARD then, if the delete flag is non-zero, the text is then deleted from
the TextBuffer associated with the TextEdit widget (Le., a CUT operation is per
formed). Finally, TRUE is returned.

RETURN VALUE
FALSE is returned if the widget supplied is not a TextEdit Widget or if the opera
tion fails; otherwise TRUE is returned.

SEE ALSO

3/91

01 TextEdi tUpdate(3W)
01TextEditGetCUrsorPosition(3W)
01TextEditSetCUrsorPosition(3W)
01 TextEdi tReadSUbString(3W)
01TextEditCopyBuffer(3W)
TextEdit(3W)

Page 1

OITextEditGetCursorPosition (3W) OITextEditGetCursorPosition (3W)

NAME
OlTextEditGetCUrsorPosition

SYNOPSIS
#include <buffutil.h>
#include <textbuff.h>
#include <TextEdit.h>

extern Boolean OlTextEditGetCUrsorPosition
(ctx, start, end, cursorPosition)

TextEditWidget ctx;
TextPosition * start;
TextPosition * end;
TextPosition * cursorPosition;

DESCRIPTION
The OlTextEditGetCUrsorPosition function is used to retrieve the current
selection start and end and cursorPosition. If there is no current selection start and
end will both be equal to cursorPosition.

RETURN VALUE
FALSE is returned if the widget supplied is not a TextEdit Widget; otherwise
TRUE is returned.

SEE ALSO

3/91

01 TextEdi tSetCUrsorPosi tion(3W)
TextEdit

Page 1

OITextEditGetLastPosition (3W) OITextEditGetLastPosition (3W)

NAME
OlTextEditGetLastPositian

SYNOPSIS
#include <buffutil.h>
#include <textbuff.h>
#include <TextEdit.h>

extern Boolean OlTextEditGetLastPosition(ctx, position)
TextEditWidget ctx;
TextPositian * position;

DESCRIPTION
The OlTextEditGetLastPosition function is used to retrieve the position of the
last character in the TextBuffer associated with the TextEdit widget ctx.

RETURN VALUE
FALSE is returned if the widget supplied is not a TextEdit Widget; otherwise
TRUE is returned.

SEE ALSO

3/91

01 TextEditGetCUrsorPosi tion(3W)
TextEdit(3W)

Page 1

OITextEditlnsert (3W) OITextEditinsert (3W)

NAME
OlTextEditlnsert

SYNOPSIS
#include <buffutil.h>
#include <textbuff.h>
#include <TextEdit.h>

extern Boolean OlTextEditlnsert(ctx, buffer, length)
TextEditWidget ctx;
String buffer;
int length;

DESCRIPTION
The OlTextEditInsert function is used to insert a NULL-terminated buffer con
taining length bytes in the TextBuffer associated with the TextEdit widget ctx.
The inserted text replaces the current (if any) selection.

Note: The value of length is not used internally, but is passed on as the length
field in the XtNmodifyVerification callback.

RETURN VALUE
FALSE is returned if the widget supplied is not a TextEdit Widget or if the insert
operation fails; otherwise TRUE is returned.

SEE ALSO
OlTextEditGetCursorPosition(3W)
TextEdi t(3W)

3/91 Page 1

OITextEditPaste (3W) OITextEditPaste (3W)

NAME
OlTextEditPaste

SYNOPSIS
#include <buffutil.h>
#include <textbuff.h>
#include <TextEdit.h>

extern Boolean OlTextEditpaste(ctx)
TextEditWidget ctx;

DESCRIPTION
The OlTextEditPaste function is used to paste the contents of the CLIPBOARD
into the TextEdit widget ctx. The current (if any) selection is replaced by the con
tents of the CLIPBOARD,

RETURN VALUE
FALSE is returned if the widget supplied is not a TextEdit Widget; otherwise
TRUE is returned.

SEE ALSO

3/91

01 TextEdi tCopyselection(3W)
TextEdi t(3W)

Page 1

OITextEditReadSubString (3W) OITextEditReadSubString (3W)

NAME
OlTextEditReadSubString

SYNOPSIS
#include <buffutil.h>
#include <textbuff.h>
#include <TextEdit.h>

extern Boolean OlTextEditReadSubString(ctx, buffer, start, end}
TextEditWidget ctx;
char ** buffer;
TextPosition start;
TextPosition end;

DESCRIPTION
The OlTextEditReadSubString function is used to retrieve a copy of a substring
from the TextBuffer associated with the TextEdit Widget ctx between positions
start through end inclusive. The storage required for the copy is allocated by this
routine; it is the responsibility of the caller to free this storage when appropriate.

RETURN VALUE
FALSE is returned if the widget supplied is not a TextEdit Widget or if the opera
tion fails; otherwise TRUE is returned.

SEE ALSO

3/91

01 TextEdi tCopyBuffer(3W)
TextEdit(3W)

Page 1

OITextEditRedraw (3W) OITextEditRedraw (3W)

NAME
01TextEditRedraw

SYNOPSIS
#inc1ude <buffuti1.h>
#inc1ude <textbuff.h>
#inc1ude <TextEdit.h>

extern Boolean 01TextEditRedraw(ctx)
TextEditWidget ctx;

DESCRIPTION
The 01TextEditRedraw function is used to force a complete refresh of the Tex
tEdit widget display. This routine does nothing if the TextEdit widget is not real
ized or if the update state is set to FALSE.

RETURN VALUE
FALSE is returned if the widget supplied is not a TextEdit Widget or if the
widget is not realized or if the update state is FALSE; otherwise TRUE is
returned.

SEE ALSO

3/91

01 TextEdi tUpdate(3W)
TextEdit(3W)

Page 1

OITextEditSetCursorPosition (3W) OITextEditSetCursorPosition (3W)

NAME
OlTextEditSetCursorPosition

SYNOPSIS
#include <buffutil.h>
#include <textbuff.h>
#include <TextEdit.h>

extern Boolean OlTextEditSetCursorPosition
(ctx, start, end, cursorPosition)

TextEditWidget ctx;
TextPosition start;
TextPosition end;
TextPosition cursorPosition;

DESCRIPTION
The OlTextEditSetCursorPosition function is used to change the current selec
tion start and end and cursorPosition. The function does NOT check (for
efficiency) the validity of the positions. If invalid values are given results are
unpredictable. The function attempts to ensure that the cursorPosition is visible
by scrolling the display.

RETURN VALUE
FALSE is returned if the widget supplied is not a TextEdit Widget; otherwise
TRUE is returned.

SEE ALSO

3/91

OlTextEditGetCursorPosit ion(3W)
TextEdit(3W)

Page 1

OITextEditTextBuffer (3W) OITextEditTextBuffer (3W)

NAME
OlTextEditTextBuffer

SYNOPSIS
#include <buffutil.h>
#include <textbuff.h>
#include <TextEdit.h>

extern TextBuffer * OlTextEditTextBuffer(ctx}
TextEditWidget ctx;

DESCRIPTION
The OlTextEditTextBuffer function is used to retrieve the TextBuffer pointer
associated with the TextEdit widget ctx. This pointer can be used to access the
facilities provided by the Text Buffer Utilities module.

SEE ALSO
TextBufferUtilities(3W)
TextEdit(3W)

3/91 Page 1

OITextEditUpdate (3W)

NAME
OlTextEditupdate

SYNOPSIS
#include <buffutil.h>
#include <textbuff.h>
#include <TextEdit.h>

extern Boolean OlTextEditUpdate(ctx, state)
TextEditWidget ctx;
Boolean state;

DESCRIPTION

OITextEditUpdate (3W)

The OlTextEditUpdate function is used to set the updateS tate of a TextEdit
Widget. Setting the state to FALSE turns screen update off; setting the state to
TRUE turns screen updates on and refreshes the display.

RETURN VALUE
FALSE is returned if the widget supplied is not a TextEdit Widget; otherwise
TRUE is returned.

SEE ALSO

3/91

01 TextEditRedraw(3W)
TextEdi t(3W)

Page 1

OITextFieldCopyString (3W) OITextFieldCopyString (3W)

NAME
01TextFie1dCopyString

SYNOPSIS
#inc1ude <buffuti1.h>
#inc1ude <textbuff.h>
#inc1ude <TextFie1d.h>

extern int 01TextFie1dCopyString(tfw, string)
TextFie1dWidget tfw;
char * string;

DESCRIPTION
The 01TextFie1dCopyString function is used to copy the string associated with
the TextField widget tfw into the user supplied area pointed to by string. The
function returns the length of this string.

SEE ALSO

3/91

01 TextFie1dGetString(3W)
TextFie1d widget(3W)

Page 1

OITextFieldGetString (3W) OITextFieldGetStrlng (3W)

NAME
01TextFie1dGetString

SYNOPSIS
#inc1ude <buffuti1.h>
#inc1ude <textbuff.h>
#inc1ude <TextFie1d.h>

extern char * 01TextFie1dGetString(tfw, size)
TextFie1dWidget tfw;
int * size;

DESCRIPTION
The 01 TextFie1dGetString function is used to retrieve a new copy of the string
associated with the TextField widget tfw. The function returns a pointer to the
newly allocated string copy. Optionally, if size is not NULL, the function returns
in size the length of the string.

SEE ALSO
TextFie1d widget(3W)
01 TextFie1dCopyString(3W)

3/91 Page 1

OIUngrabDrag Pointer (3W)

NAME
OlUngrabDragPointer

SYNOPSIS
#include <OpenLook.h>

Dynamic Settings

extern void OlUngrabDragPointer(w)
Widget w;

DESCRIPTION

OIUngrabDragPointer (3W)

The OlUngrabDragPointer procedure is used to relinquish the active pointer grab
which was initiated by the OIGrabDragPointer procedure. This function simply
ungrabs the pointer.

SEE ALSO
OlDetermineMouSeAction(3W)
OlGrabDragPointer(3W)
OlDragAndDrop(3W)

3/91 Page 1

OIUnregisterDynamicCaliback (3W) OIUnregisterDynamicCaliback (3W)

Dynamic Settings

NAME
OlUnregisterDynamicCallback

SYNOPSIS
#include <OpenLook.h>

extern int OlUnregisterpynamicCallback(CB, data)
OlpynamicCallbackProc CB;
Xtpointer data;

DESCRIPTION
The OlUnregisterpynamicCallback procedure is used to remove a function from
the list of registered callbacks to be called whenever the procedure OlCallDynam
icCallbacks is invoked.

SEE ALSO
OlRegisterpynamicCallback(3W)
OlCallpynamicCallbacks(3W)

RETURN VALUE
Zero (0) is returned if the dynamic callback cannot be removed; otherwise one (1)
is returned.

3/91 Page 1

OIUnSetlcFocus (3W) OIUnSetlcFocus (3W)

NAME
OlUnSetIcFocus - notifies the Input Method that the focus area attached to the
ic no longer has input focus

SYNOPSIS
void OlUnsetIcFocus(ic)

OlIc *iCi

DESCRIPTION
This function informs the Input Method that the text insertion window associated
with a particular Ie no longer has the input focus and should not receive the key
board events. Its implementation depends on the Input Method. The input
method may choose to give some visual feedback to indicate loss of focus (for
example, change color of cursor in pre-edit text).

SEE ALSO
OlSetIcFocus(3W)

3/91 Page 1

OIWidgetToClassName (3W) OIWidgetToClassName (3W)

NAME
OlWidgetToClassName - finds the class name for a widget

SYNOPSIS
String OlWidgetToClassName(w)

Widget w;

DESCRIPTION
Given a widget, the function returns the classname of the widget.

SEE ALSO
olwidgetClassToClassName(3VV)

3/91 Page 1

OIWidgetClassToClassName (3W) OIWidgetClassToClassName (3W)

NAME
OlWidgetClassToClassName - finds the classname for a widget class

SYNOPSIS
String OlWidgetClassToClassName(wc)

WidgetClass wc;

DESCRIPTION
Given a widget class, the function returns the classname of the widget.

SEE ALSO
OlwidgetToClassName(3VV)

3/91 Page 1

OIWidgetSearchTextDB (3W) (Database Uti lities) OIWidgetSearchTextDB (3W)

NAME
OIWidgetSearchTextDB - register the OPEN LOOK TEXT database on a specific
widget instance

SYNOPSIS
#include <Xol/OpenLook.h>

void
OIWidgetSearchTextDB(w)

Widget w;

DESCRIPTION
The OIWidgetSearchTextDB procedure is used to register the OPEN LOOK
TEXT database on a specific widget instance.

Once the OPEN LOOK TEXT database is registered with a given widget instance,
the OILookuplnputEvent(3W) procedure (if db Jiag is OL_DEFAULT_IE or
OL_TEXT_IE) will include this database in the search stack if the given widget id
is this widget instance.

NOTES
The registering order determines the searching order when doing a lookup.

SEE ALSO
OIClassSearchIEDB(3W),
OIClassSearchTextDB(3W),
OICreatelnputEventDB(3W),
OILookuplnputEvent(3W),
olwidgetSearchIEDB(3W)

EXAMPLE

3/91

#include <Xol/OpenLook.h>

/* assume: "w" is a stub widget that is interested in */
/* the OPEN LOOK TEXT database * /

OIWidgetSearchTextDB(w);
/* once this step is done, this widget instance will */
/* receive OPEN LOOK TEXT commands after a call */
/* to OILookuplnputEvent(), or in the XtNconsumeEvent */
/* callback's OIVirtualEvent structure supplied with */
/* the call_data field. */

Page 1

OIWidgetSearchlEDB (3W) (Database Utilities) OIWidgetSearchlEDB (3W)

NAME
OlWidgetSearchIEDB - register a given database on a specific widget instance

SYNOPSIS
#include <Xol/OpenLook.h>

void
OlWidgetSearchIEDB(w, db)

Widget Wi

OlVirtualEventTable dbi

DESCRIPTION
The OlWidgetSearchIEDB procedure is used to register a given database on a
specific widget instance. The db value was returned from a call to
OlCreatelnputEventDB(3W).

Once a database is registered with a given widget instance, the
OlLookuplnputEvent(3W) procedure (if db Jlag is OL_DEFAULT_IE or db) will
include this database in the search stack if the given widget id is this widget
instance.

NOTES
The registering order determines the searching order when doing a lookup.

SEE ALSO
OlClassSearchIEDB(3W)
OlClassSearchTextDB(3W)
OlCreatelnputEventDB(3W)
OlLookuplnputEvent(3W),
OlwidgetSearchTextDB(3W)

EXAMPLE
/* To create a client application database */

3/91

#include <Xol/OpenLook.h>

/* start with a big value to avoid */
/* the "virtual_name" collision */

#define OL_MY_BASE 1000
#define OL_MY_DRAWLlNEBTN OL_MY_BASE+O
#define OL_MY_DRAWARCBTN OL_MY_BASE+1
#define OL_MY_REDISPLAYKEY OL_MY_BASE+2
#define OL_MY_SAVEPARTKEY OL_MY_BASE+3

#define XtNrnyDrawLineBtn "myDrawLineBtn"
#define XtNrnyDrawArcBtn "myDrawArcBtn"
#define XtNmyRedisplayKey "myRedisplayKey"
#define Xt~SavePartKey "mySavePartKey"

static OlKeyOrBtnRec
/*name

OlMyBtnlnfo[] = {
default_value

{ Xt~DrawLineBtn, "c<Button1>",

*/

},

Page 1

OIWidgetSearchlEDB (3W) (Database Util ities) OIWidgetSearchlEDB (3W)

Page 2

{ Xt~DrawArcBtn,
} i

static OIKeyOrBtnRec
I*name

"s<myDrawLineBtn>", OL_MY_DRAWARCBTN },

OIMYKeylnfo[] = {
default_value virtual_name *1

Xt~RedisplayKey, "c<FS>",
Xt~SavePartKey, "c<FS>",

OL_MY_REDISPLAYKEY },
OL_MY_SAVEPARTKEY },

};

static OIVirtualEventTable OIMyDB;

OIMyDB

) ;

OICreatelnputEventDB(
w,
OIMyKeylnfo, XtNUmber(OIMYKeylnfo),
OIMyBtnlnfo, XtNumber(OIMyBtnlnfo)

1* assume: "w" is a stub widget that is interested in *1
1* OIMyDB *1

OIWidgetSearchIEDB(w, OIMyDB)i
1* once this step is done, this widget instance will *1
1* receive OIMyDB commands after a call to *1
1* OILookuplnputEvent(), or in the XtNconsumeEvent *1
1* callback's OIVirtualEvent structure supplied with *1
1* the call_data field. *1

3/91

OIWMProtocolAction (3W) OIWMProtocolAction (3W)

NAME
OlWMProtocolAction - simulates a response to any window manager's protocol
messages

SYNOPSIS
void OlWMProtocolAction(w, st, action)

where:

Widget w;
OlWMProtocolVerify * st;
OlDefine action;

typedef struct {
int msgtype;
XEvent * xevent;

OlWMProtocolVerify;

1* type of WM msg *1

DESCRIPTION
This routine can be used to simulate a response to any window manager's proto
col messages. The OlWMProtocol Verify field msgtype is an integer constant
indicating the type of protocol message which invoked the callback and has a
range of values of:

OL_WM_TAKE_FOCUS
OL_WM_SAVE_YOURSELF
OL_WM_DELETE_WINDOW

The w parameter must be a widget that is a subclass of the VendorShell. Other
wise, no action will be taken.

The action parameter can be:

OL_QUIT: quit the application immediately.

OL_DEFAULTACTION: perform the action that is appropriate for each subclass of
VendorShell.

OL_DESTROY: destroy the shell widget.

OL_DISMISS: dismiss or unmap the shell widget.

SEE ALSO

3/91

See the section on "Shell Resources" in the Appendix "Manual Pages: Introduc
tion" in this Programmer's Guide.

Page 1

OIUpdateOisplay (3W) OIUpdateOisplay (3W)

NAME
OlUpdateDisplay - process all pending exposure events immediately

SYNOPSIS
#include <Xol/QpenLook.h>

void
OlUpdateDisplay(w)

Widget w;

DESCRIPTION
The OlUpdateDisplay procedure is used to process all pending exposure events
so that the appearance of a given widget can be updated right away.

Normally, an operation is accomplished by a set of callback functions. If one of
the callback functions performs a time-consuming action, it is possible that the
portion of an application window will not be redrawn right away after a XtSet
Values call. This is because the normal exposure processing does not occur until
all callback functions have been invoked. This situation can be resolved by calling
this function before starting a time-consuming action.

EXAMPLE

3/91

#include <Xol/OpenLook.h>

extern Widget 1* a staticText widget *1

void
fooCB(w, client_data, call_data)

Widget w;
XtPointer client_data;
XtPointer call_data;
{

Arg args [5] ;

1* display the status in the footer area *1
1* before the actual operation *1

XtSetArg(args[O], XtNstring,
"Start the operation, please wait ... ");

XtSetValues(status_area, args, 1);
1* show the status in the footer area right away*1

OlUpdateDisplay(status_area);

1* now we can start the actual operation *1

return;
}

Page 1

Packed Widgets (3W) Packed Widgets (3W)

NAME
Packed_Widget: OlCreatePackedWidgetList, OlPackedWidget - a conveni
ence routine that allows an application to create a widget tree or subtree in one
call

SYNOPSIS
#include <Intrinsic.h>
#include <StringDefs.h>
#include <OpenLook.h>

typedef struct {
Widget widget_returned;
String name;
WidgetClass *class-ptr;
Widget *parent-ptr;
String descendant;
ArgList resources;
Cardinal num_resources;
Boolean managed;

OlPackedWidget;

Widget = OlCreatePackedWidgetList(pw_list, num-pw)
OlPackedWidget *pw_list;
Cardinal num-pw;

DESCRIPTION

3/91

Create Widget (Sub)Trees in One Call
The OlCreatePackedWidgetList routine and its associated OlPackedWidget
structure allow an application to create a widget tree or subtree in one call.

The tree is pointing to pw_list. Each element in this array is of the type
OlPackedWidget. This structure gives all the information needed to create a new
widget:

widget_returned
will contain the ID of the newly created Widget.

name is the name of the widget that will be created.

class-ptr
is a pointer to the WidgetClass pointer for the new widget. This gives
the class of widget to create. It is a pointer to the pointer because typi
cally the pointer itself is an external value that is not suitable for using in
an array initialization; the pointer to the pointer is.

parent-ptr
is a pointer to the widget ID of the intended parent of the new widget or
the ID of an indirect widget that "knows who the parent is" (see below).
This value may point to a . widget member in another packedWidget
item; if the parent is an indirect widget, it must appear earlier in the list.

descendant
is the name of a resource available in the widget identified by
parent-ptr. The value of this resource is the ID of the real parent for
the new widget.

Page 1

Packed Widgets (3W) Packed Widgets (3W)

Page 2

If the .descendant value is not zero, .parent is expected to identify an
indirect parent that is interrogated for the ID of the real parent. If this
value is zero, .parent is expected to identify the real parent.

resources
is the resource array to use when creating the new widget.

nUDLresources

managed

is the number of resources in the array.

is TRUE if the new widget should be managed when created, FALSE
otherwise.

The OlCreatePackedWidgetList is passed a pointer to an OlPackedWidget
array and the number of elements in the array. It creates widgets starting from
the first element in the array, and returns the ID of the topmost widget.

3/91

Pixel Conversion (3W) Pixel Conversion (3W)

NAME
Pixel_Conversion - a group of routines which examine the data structures that
describe the physical dimensions and the pixel resolution of a screen

SYNOPSIS
#include <Xlih.h>
#include <OpenLook.h>

Screen *OlDefaultScreen;
Display *OlDefaultDisplay;

Axis axis;
Screen screen;

OlMMToPixel(axis, millimeters);
Ol_MMToPixel(axis, millimeters);

OlPointToPixel(axis, points);
Ol_PointToPixel(axis, points);

OlScreenMMToPixel(axis, millimeters, screen);
Ol_ScreenMMToPixel(axis, millimeters, screen);

OlScreenPointToPixel(axis, points, screen);
Ol_ScreenPointToPixel(axis, points, screen);

OlPixelToMM(axis, pixels);
Ol_pixelToMM(axis, pixels);

OlPixelToPoint(axis, pixels);
Ol_PixelToPoint(axis, pixels);

OlScreenPixelToPoint(axis, pixels, screen);
Ol_ScreenPixelToPoint(axis, pixels, screen);

OlScreenPixelToMM(axis, pixels, screen);
Ol_ScreenPixelToMM(axis, pixels, screen);

DESCRIPTION

3/91

All the X-based OPEN LOOK widgets refer to pixels in coordinates and dimen
sions for compatibility with other X Window System widgets. However, this
puts the burden on the application programmer to convert between externally
useful measures, such as points or millimeters, and pixels as applied to the screen
at hand. These routines examine the data structures that describe the physical
dimensions and the pixel resolution of a screen and convert among millimeters,
points, and pixels for that screen.

Which Screen?
The shorter forms of these routines (the ones without the word Screen in their
names) work for the default screen. This is the screen that is active when the
X Toolkit Intrinsics are started. The longer forms of these routines take a Screen
* type argument that refers to a particular screen.

The macros OlDefaultScreen and OlDefaultDisplay identify the current
screen and display being used by the Intrinsics. Although the SYNOPSIS above
implies these are variables of type Screen * and Display *, respectively, they
are really macros that produce values of these types.

Page 1

Pixel Conversion (3W) Pixel Conversion (3W)

Note: Use After Toolkit Initialization
These routines make use of data structures that are initialized when the Toolkit is
initialized (see Ollnitialize later in this document). Therefore, using them
before Toolkit initialization (for example, as an initial value to a statically defined
variable) will result in a run time error.

Axis Argument
The first argument of all the routines is the direction in which the measurement is
made. This is necessary because not all screens have equivalent resolution in the
horizontal and vertical axes. The axis argument can take one of the two values:
OL_HORIZONTAL or OL_ VERTICAL. These routines are not directly usable in com
puting a diagonal measure. (Find the diagonal with the Pythagorean Theorem:
a2 + b2 = c2)

Implemented as Macros

Page 2

All these routines are implemented as macros, so they can take any reasonable
type value for the millimeters, points, and pixels. The macros cast the
values into the proper type needed for the conversion. However, only a single
type value can be "returned". The routines without an underscore in their names
produce values of type int (the values are rounded to the nearest integer). The
routines with an underscore in their names produce values of type double (these
values have not been rounded, leaving it up to the application to round up,
round down, or truncate as needed). Given the small size of the units involved,
the integer returning routines should be sufficient for many applications.

Because these routines are implemented as macros, there are no function
addresses available.

3/91

PositionOfLine (3W) PositionOfLine (3W)

Text Buffer Utilities

NAME
PositionOfLine

SYNOPSIS
#include <textbuff.h>

extern TextPosition positionOfLine(text, lineindex}
TextBuffer * text;
TextLine line index;

DESCRIPTION
The PositionOfLine function is used to translate a lineindex in the text
TextBuffer to a TextPosition. It returns the translated TextPosition or EOF if the
line index is invalid.

SEE ALSO

3/91

LineOfPosi tion(3W)
PositionOfLocation(3W)
LocationOfPosi tion(3W)

Page 1

PositionOfLocation (3W) PositionOfLocation (3W)

Text Buffer Utilities

NAME
PositionOfLocation

SYNOPSIS
#include <textbuff.h>

extern TextPosition positionOfLocation(text, location)
TextBuffer * text;
TextLocation location;

DESCRIPTION
The PositionOfLocation function is used to translate a location in the text
TextBuffer to a TextPosition. The function returns the translated TextPosition or
EOF if the location is invalid.

SEE ALSO

3/91

Posi tionOfLine(3W)
LocationOfPosi tion(3W)

Page 1

PreviousLocation (3W) PreviousLocation (3W)

Text Buffer Utilities

NAME
PreviousLocatian

SYNOPSIS
#include <textbuff.h>

extern TextLocatian PreviousLocatian(textBuffer, current)
TextBuffer * textBuffer;
TextLocatian current;

DESCRIPTION
The PreviousLocatian function returns the Location which precedes the given
current location in a TextBuffer. If the current location points to the beginning of
the TextBuffer this function wraps.

SEE ALSO
NextLocatian(3W)

3/91 Page 1

PreviousTextBufferWord (3W) PreviousTextBufferWord (3W)

Text Buffer Utilities

NAME
PreviousTextBufferWord

SYNOPSIS
#include <textbuff.h>

extern TextLocation PreviousTextBufferword(textBuffer, current)
TextBuffer * textBuffer;
TextLocation current;

DESCRIPTION
The PreviousTextBufferword function is used to locate the beginning of a word
in a TextBuffer relative to a given current location. It returns the location of the
beginning of the word which precedes the given current location. If the current
location is within a word this function will skip over the current word. If the
current word is the first word in the TextBuffer the function wraps to the end of
the buffer.

SEE ALSO
PreviousTextBufferword(3W)

3/91 Page 1

ReadFilelntoBuffer (3W)

Text Buffer Utilities

NAME
ReadFileIntoBuffer

SYNOPSIS
#include <buffutil.h>

extern int ReadFileIntoBuffer(fp, buffer)
FILE * fp;
Buffer * buffer;

DESCRIPTION

ReadFilelntoBuffer (3W)

The ReadFileIntoBuffer function reads the file associated with fp and inserts the
characters read into the buffer. The read operation terminates when either EOF is
returned when reading the file or when a NEWLINE is encountered. The function
returns the last character read to the caller (either EOF or NEWLINE).

SEE ALSO
ReadStringIntoBuffer(3W)

3/91 Page 1

ReadFilelntoTextBuffer (3W) ReadFilelntoTextBuffer (3W)

NAME
ReadFilelntoTextBuffer

SYNOPSIS
#include <textbuff.h>

Text Buffer Utilities

extern TextBuffer * ReadFilelntoTextBuffer(filename, f, d)
char * filename;
TextUpdateFunction f;
caddr_t d;

DESCRIPTION
The ReadFilelntoTextBuffer function is used to read the given file into a newly
allocated TextBuffer. The supplied TextUpdateFunction and data pointer are asso
ciated with this TextBuffer.

SEE ALSO
ReadStringlntoTextBuffer(3W)

3/91 Page 1

ReadStringlntoBuffer (3W)

NAME
ReadStringlntoBuffer

SYNOPSIS
#include <buffutil.h>

Text Buffer Utilities

extern int ReadStringlntoBuffer(sp, buffer)
Buffer * sp;
Buffer * buffer;

DESCRIPTION

ReadStringlntoBuffer (3W)

The ReadStringlntoBuffer function reads the buffer associated with sp and
inserts the characters read into buffer. The read operation terminates when either
EOF is returned when reading the buffer or when a NEWLINE is encountered.
The function returns the last character read to the caller (either EOF or NEWLINE).

SEE ALSO
ReadFilelntoBuffer(3W)

3/91 Page 1

ReadStringlntoTextBuffer (3W) ReadStringlntoTextBuffer (3W)

NAME
ReadStringlntoTextBuffer

SYNOPSIS
#include <textbuff.h>

Text Buffer Utilities

extern TextBuffer * ReadStringlntoTextBuffer(string, f, d)
char * string;
TextUpdateFunction f;
caddr_t d;

DESCRIPTION
The ReadStringlntoTextBuffer function is used to copy the given string into a
newly allocated TextBuffer. The supplied TextUpdateFunction and data pointer
are associated with this TextBuffer.

SEE ALSO
ReadFilelntoTextBuffer(3W)

3/91 Page 1

RegisterTextBufferScanFunctions (3W) RegisterTextBufferScanFunctions (3W)

Text Buffer Utilities

NAME
RegisterTextBufferScanFunctions

SYNOPSIS
#include <textbuff .h>

extern void RegisterTextBufferScanFunctions(forward, backward)
char * (*forward)();
char * (*backward) () ;

DESCRIPTION

3/91

The RegisterTextBufferScanFullctions procedure provides the capability to
replace the scan functions used by the ForwardScanTextBuffer and BackwardScan
TextBuffer functions. These functions are called as:

(*forward) (string, curp, expression);
(*backward) (string, curp, expression);

and are responsible for returning either a pointer to the beginning of a match for
the expression or NULL.

Calling this procedure with NULL function pointers reinstates the default regular
expression facility.

Page 1

RegisterTextBufferUpdate (3W) RegisterTextBufferUpdate (3W)

Text Buffer Utilities

NAME
RegisterTextBufferupdate

SYNOPSIS
#include<textbuff.h>

extern void RegisterTextBufferUpdate(text, f, d)
TextBuffer * text;
TextupdateFunction f;
caddr_t d;

DESCRIPTION
The RegisterTextBufferupdate procedure associates the TextUpdateFunction f
and data pointer d with the given TextBuffer text. This update function will be
called whenever an update operation is performed on the TextBuffer. See Repla
ceBlockInTextBuffer for more details.

SEE ALSO
UnregisterTextBufferUpdate(3VV)
ReadStringlntoTextBuffer(3VV)
ReadFilelntoTextBuffer(3VV)

NOTES

3/91

Calling this function increments a reference count mechanism used to determine
when to actually free the TextBuffer. Calling the function with a NULL value for
the function circumvents this mechanism.

Page 1

RegisterTextBufferWordDefinition (3W) RegisterTextBufferWordDefinition (3W)

Text Buffer Utilities
NAME

RegisterTextBufferwordDefinitian

SYNOPSIS
#inelude <textbuff.h>

extern void RegisterTextBufferwordDefinition(word_definition)
int (*word_definition}();

DESCRIPTION

3/91

The RegisterTextBufferwordDefinition procedure provides the capability to
replace the word definition function used by the TextBuffer Utilities. This function
is called as:

(*word_definitian) (e);

The function is responsible for returning non-zero if the character c is considered a
character that can occur in a word and zero otherwise.

Calling this function with NULL reinstates the default word definition which
allows the following set of characters: a-zA-ZO-9 _

Page 1

ReplaceBlocklnTextBuffer (3W) ReplaceBlocklnTextBuffer (3W)

Text Buffer Utilities

NAME
RepIaceBIocklnTextBuffer

SYNOPSIS
#include <textbuff.h>

extern EditResuIt RepIaceBIocklnTextBuffer(text, startIoc, endIoc,
string, f, d)

TextBuffer * text;
TextLocation * startIoc;
TextLocation * endIoc;
char * string;
TextUpdateFunction f;
caddr_t d;

DESCRIPTION
The RepIaceBIocklnTextBuffer function is used to update the contents of the
TextBuffer associated with text. The characters stored between startloc and
endloc are deleted and the string is inserted after startloc. If the edit succeeds
the TextUpdateFunction f is called with the parameters: d, text, and 1; then any
other different update functions associated with the TextBuffer are called with
their associated data pointer, text, and O.

This function records the operation performed in TextUndoItem structures. The
contents of these structures can be used to implement an undo function. The
contents can also be used to determine the type of operation performed. A struc
ture is allocated for both the delete and insert information.

The hints provided in these structures is the inclusive or of:

TEXT BUFFER NOP
TEXT-BUFFER-INSERT LINE
TEXT-BUFFER-INSERT-SPLIT LINE
TEXT-BUFFER -INSERT -CHARS
TEXT-BUFFER-DELETE-START LINE
TEXT -BUFFER -DELETE -END LINE
TEXT-BUFFER-DELETE-START CHARS
TEXT-BUFFER -DELETE-END CHARS
TEXT=BUFFER=DELETE}OIN=LINE
TEXT BUFFER DELETE SIMPLE - - -

SEE ALSO
RepIaceCharlnTextBuffer(3W)

3/91 Page 1

ReplaceCharlnTextBuffer (3W) ReplaceCharlnTextBuffer (3W)

Text Buffer Utilities

NAME
ReplaceCharInTextBuffer

SYNOPSIS
#include <textbuff.h>

extern EditResult ReplaceCharInTextBuffer(text, location, c, f, d)
TextBuffer * text;
TextLocation * location;
int c;
TextupdateFunction f;
caddr_t d;

DESCRIPTION
The ReplaceCharInTextBuffer function is used to replace the character in the
TextBuffer text at location with the character c.

SEE ALSO
ReplaceBlockInTextBuffer(3W)

3/91 Page 1

SaveTextBuffer (3W)

NAME
SaveTextBuffer

SYNOPSIS
#include <textbuff.h>

Text Buffer Utilities

extern SaveResult SaveTextBuffer(text, filename)
TextBuffer * text;
char * filename;

DESCRIPTION

SaveTextBuffer (3W)

The SaveTextBuffer function is used to write the contents of the text TextBuffer
to the file filename. It returns a SaveResult which can be:

3/91

SAVE_FAILURE
SAVE_SUCCESS

Page 1

StartCurrentTextBufferWord (3W) StartCurrentTextBufferWord (3W)

Text Buffer Utilities

NAME
StartCurrentTextBufferWord

SYNOPSIS
#include <textbuff.h>

extern TextLocation StartCurrentTextBufferWord(textBuffer, current)
TextBuffer * textBuffer;
TextLocation current;

DESCRIPTION

NOTES

The StartCurrentTextBufferWord function is used to locate the beginning of a
word in the TextBuffer relative to a given current location. The function returns
the location of the beginning of the current word.

The return value will equal the given current value if the current location is the
beginning of a word.

SEE ALSO
PreviousTextBufferword(3VV)
NextTextBufferWord(3VV)

3/91 Page 1

TextBuffer Macros (3W) TextBuffer Macros (3W)

NAME
TextBuffer Macros: TextBufferUserData, TextBufferName, TextBuffer
Modified, TextBufferEmpty, TextBufferNamed, LineslnTextBuffer, Last
TextBufferLine, LastCharacterlnTextBufferLine, LengthOfTextBuffer
Line,SameTextLocation

SYNOPSIS
include <textbuff.h>

TextBufferUserData (text, line)
TextBufferName (text)
TextBufferModified(text)
TextBuf ferEmpty (text)
TextBuf ferNamed (text)
LineslnTextBuffer (text)
LastTextBufferLine (text)
LastCharacterlnTextBufferLine (text, line)
LengthOfTextBufferLine (text, line)
SameTextLocation(x,y)

DESCRIPTION

3/91

These macros are provided for use with the Text Buffer Utilities.

TextBufferUserData

TextBufferName

TextBufferModified

TextBufferEmpty

TextBufferNamed

LineslnTextBuffer

LastTextBufferLine

used to access the per-line user data.

returns the filename associated with text.

returns a flag indicating whether text has been modified
since last saved.

returns a flag indicating whether text is empty.

returns a flag indicating whether text is associated with
a filename.

returns the number of lines in text.

returns the line number of the last line in text.

LastCharacterlnTextBufferLine
returns the offset of the last character in text on line.

LengthOfTextBufferLine

SameTextLocation

returns the length of line in text.

returns a flag indicating whether location x and yare the
same.

Page 1

UnregisterTextBufferUpdate (3W) UnregisterTextBufferUpdate (3W)

Text Buffer Utilities

NAME
UnregisterTextBufferUpdate

SYNOPSIS
#include<textbuff.h>

extern int UnregisterTextBufferUpdate{text, f, d)
TextBuffer * text;
TextupdateFunction f;
caddr_t d;

DESCRIPTION
The UnregisterTextBufferUpdate function disassociates the TextUpdateFunc
tion f and data pointer d with the given TextBuffer text. If the function/data
pointer pair is not associated with the given TextBuffer zero is returned otherwise
the association is dissolved and one is returned.

SEE ALSO
RegisterTextBufferUpdate(3W)
FreeTextBuffer(3W)

3/91 Page 1

strclose (3W)

NAME
strclose

SYNOPSIS
#include <buffutil.h>

extern void strclose(sp)
Buffer * sp;

DESCRIPTION

strclose (3W)

Text Buffer Utilities

The strclose procedure is used to close a string Buffer which was opened using
the stropen function.

SEE ALSO
stropen(3W)
strgetc(3W)

3/91 Page 1

streexp(3W)

NAME
streexp

SYNOPSIS
#include <regexp.h>

Regular Expression Utilities

extern char * streexp ()

DESCRIPTION

streexp (3W)

The streexp function is used to retrieve the pointer of the last character in a match
found following a strexp / strrexp function call.

SEE ALSO
strexp(3W)
strrexp(3W)

3/91 Page 1

strexp{3W)

NAME
strexp

SYNOPSIS
#include <expcmp.h>

Regular Expression Utilities

extern char * strexp(string, curp, expression)
char * string;
char * curp;
char * expression;

DESCRIPTION

strexp{3W)

The strexp function is used to perform a regular expression forward scan of string
for expression starting at curp.

THE REGULAR EXPRESSION LANGUAGE USED IS
c - match c

[<set>] - match any character in <set>
[!<set>] - match any character not in <set>

* - match any character(s)
" - match must start at curp

RETURN VALUE
NULL is returned if expression cannot be found in string; otherwise a pointer to
the first character in the substring which matches expression is returned. The func
tion streexp(3W) can be used to get the pointer to the last character in the match.

SEE ALSO
strrexp(3W)
streexp(3W)

3/91 Page 1

strgetc (3W)

NAME
strgetc

SYNOPSIS
#include <buffutil.h>

extern int strgetc(sp)
Buffer * SPi

DESCRIPTION

strgetc (3W)

Text Buffer Utilities

The strgetc function is used to read the next character stored in the string buffer.
The function returns the next character in the Buffer. When no characters remain
the routine returns EOF.

SEE ALSO
stropen(3W)
strclose(3W)

3/91 Page 1

stropen (3W)

NAME
stropen

SYNOPSIS
#include <buffutil.h>

Text Buffer Utilities

extern Buffer * stropen(string)
char * string;

DESCRIPTION

stropen (3W)

The stropen function copies the string into a newly allocated Buffer. This string
buffer can be read using the strgetc function and closed using the strclose pro
cedure. The strclose function frees the buffer allocated by stropen.

SEE ALSO
strclose(3W)
strgetc(3W)

3/91 Page 1

strrexp (3W)

NAME
strrexp

SYNOPSIS
#include <expcmp.h>

Regular Expression Utilities

extern char * strrexp(string, curp, expression)
char * string;
char * curp;
char * expression;

DESCRIPTION

strrexp (3W)

The strrexp function is used to perform a regular expression backward scan of
string for expression starting at curp.

THE REGULAR EXPRESSION LANGUAGE USED IS
c - match c

[<set>] - match any character in <set>
[!<set>] - match any character not in <set>

* - match any character(s)
A - match must start at curp

RETURN VALUE
NULL is returned if expression cannot be found in string; otherwise a pointer to
the first character in the substring which matches expression is returned. The func
tion streexp can be used to get the pointer to the last character in the match.

SEE ALSO
strexp(3W)
streexp(3W)

3/91 Page 1

Widget_Activation! Association (3W) Widget_Activation! Association (3W)

NAME
OlActivateWidget, OlAssociateWidget, OlUDassociateWidget tlrree
routines for activating widget based on widget type

SYNOPSIS
#include <QpenLook.h>

Boolean OlActivateWidget (widget, activation_type, data)
Widget widget;
OlVirtualName activation_type;
XtPointer data;

Boolean OlAssociateWidget (leader, follower, disable_traversal)
Widget leader;
Widget follower;
Boolean disable_traversal;

void OlUDassociateWidget <follower)
Widget follower;

DESCRIPTION

NOTES

3/91

OlActivateWidget programmatically activates a widget using the specified type.
(See the widget manual pages for valid activation types.) 'The function returns
TRUE if the activation type was accepted by the supplied widget or one of its
associated followers; otherwise, FALSE is returned. When activating a widget, if
the initially-supplied widget does not accept the activation request, OlActiva
teWidget recursively ,attempts to activate all associated follower widgets until
one of them accepts the activation type.

OlAssociateWidget associates a widget (the follower) with another widget (the
leader). Associating a widget with a lead widget effectively expands the number
of ways the lead widget can be activated since OlActivateWidget automatically
activates any follower widgets if the lead widget does not accept the supplied
activation type. 'This routine returns TRUE if the association was successful; oth
erwise FALSE is returned. Attempts to create an association-cycle is illegal and
produces a warning. It's typically desirable to prevent keyboard traversal into
widgets which are associated with other widgets. 'The disable _traversal parameter
is a convenient interface to setting the follower widget's XtNtraversalon resource
to FALSE.

OlUDassociateWidget removes a follower widget from a previous association
with another lead widget. No warning is generated if the supplied widget was
not previously associated with another widget.

The above routines accept gadget arguments also.

Page 1

C Manual Pages: Widgets

Introduction to the Widgets
The List of Widget Manual Pages
Sample Widget Manual Page

Widgets
Widget Naming Conventions

Table of Contents

C-1
C-1
C-2

C-6
C-6

Introduction to the Widgets

The List of Widget Manual Pages

The following is a list of all widgets available to the application programmer.

Action Widgets

Text Control Widgets

Manager Widgets

Container Widgets

Popup Choices

Manual Pages: Widgets

OblongButton
RectButton
CheckBox
MenuButton (was: ButtonStack)
AbbrevMenuButton (was: AbbrevStack)
Slider
Gauge
Scrollbar
Stub

StaticText
TextEdit
TextField

Bullet inBoard
ControlArea
Form
FooterPanel

Caption
Exclusives
Nonexclusives
FlatCheckbox
FlatExclusives
FlatNonExlusives
ScrolledWindow
ScrollingList

Notice
PopupWindow
Menu

C-1

Introduction to the Widgets

Sample Widget Manual Page

This section contains the widget manual pages in alphabetical order. The for
mat of the page is described below.

C·2 OPEN LOOK GUI Programmer's Guide

Introduction to the Widgets

Figure C-1: Sample Manual Page Format

CD
®
®

®

®
®

BulietinBoard (3W) BulietinBoard (3W)

NAME
BulietinBoard

SYNOPSIS
#include <Intrinsics.h>
#include <StringDefs.h>
#include <OpenLook.h>
#include <BulietinBo.h>

widget = XtCreateWidget (name, bulietinBoardWidgetClass ...);

DESCRIPTION
Simple Composite Widget
The BulietinBoard widget is a composite widget that
enforces no ordering on its children. It is up to the
application to specify the x- and y- coordinates of each
child inserted; otherwise, it will be placed in the upper
left corner of the BulietinBoard widget.

SUBSTRUCTURE
Name:
Class:

RESOURCES

BulietinBoard Resource Set

Name Class Tvoe

GV @

XtNlayout

Range of Values:
OL MINIMIZEl"minimize"
OL - MAXIMIZEl"maximze"
OL=IGNOREl"ignore"

©

Default

@

Access

@

This resource identifies the layout policy of the BulietinBoard ...

Manual Pages: Widgets C-3

Introduction to the Widgets

The numbers in circles refer to the following notes:

1. The top of the first page for each widget page gives the widget name on
both the top left and top right of the page, followed by a "3W" in
parentheses. (3W is the numbering convention assigned to all OPEN
LOOK programming manual pages.)

2. The NAME for the widget is given here. The various ways of referring to
the widget, including the name of the C header file, are based on this root
name.

3. A synopsis is given that shows, briefly, how to create an instance of the
widget.

4. All widgets have a description.

S. The description is typically broken up into minor features, each starting
with a separate heading.

6. If the widget is automatically built up of additional widgets, a description
of the application and end-user interface to this substructure is given.

7. A complete list of resources available for the widget is given in alphabeti
cal order. The resources are not broken up into their class groupings, to
avoid suggesting a particular implementation of the class hierarchy. (Of
course, some of the hierarchy is built into the "X Toolkit Intrinsics.")
Many of the resources listed in these tables are part of the superclasses of
which all widgets are subclasses; the general resources are described in
Section 2 General Resources.

C-4

~ Do not use a General resource for a widget if the resource is not y listed for that particular widget.

The table lists five attributes for each resource:

1. the resource name;

2. the class to which the resource belongs;

3. the type of values handled by the resource;

OPEN LOOK GUI Programmer's Guide

Introduction to the Widgets

4. the default value given to the resource by the widget if the
application does not set a value or sets an illegal value;

5. the access to the base window allowed:

I

S

G

the value can be set at initialization time;

the value can be set with a call to XtSetValues;

the value can be read with a call to xtGetValues;

* the value is set in other ways - see the description of the
resource for information;

t the access is conditional - see the description of the
resource for information.

As defined in the "X Toolkit Intrinsics," each resource is referred to in
resource files by stripping off the XtN prefix from the name for direct
reference or the XtC prefix from the class name for reference by class.

8. The resources that are unique to a widget are described after the list of
resources.

9. The range of values that each resource can take are listed immediately
after the resource name, if the resource can be set or initialized by an
application. Exceptions are resources that take pointer values: the pointer
cannot be validated, so no range is given.

The values are listed using C language bindings (for example, a variable
or macro name like OL_LEFT). If the resource file bindings differ, they
follow the C bindings, separated with a slash and enclosed in double
quotes (for example, OL_LEFT/"left").

Manual Pages: Widgets C-5

Widgets

Widget Naming Conventions

The following guidelines provide a vehicle by which programmers can create
new widgets and organize a collection of widgets into an application. To ensure
that applications need not deal with as many styles of capitalization and spel
ling as the number of widget classes it uses, the following guidelines should be
followed when writing new widgets:

c-s

• Use the X naming conventions that are applicable. For example, a record
component name is all lowercase and uses underscores (J for compound
words (for example, background-pixmap). Type and procedure names
start with uppercase and use capitalization for compound words (for
example, ArgList or xtSetValues).

• A resource name string is spelled identically to the field name except that
compound names use capitalization rather than underscore. To let the
compiler catch spelling errors, each resource name should have a macro
definition prefixed with XtN. For example, the background -pixmap field
has the corresponding resource name identifier xtNbackgroundPi:xmap,
which is defined as the string "backgroundPixmap". Many predefined
names are listed in Xll/StringDefs.h. Before you invent a new name,
you should make sure that your proposed name is not already defined or
that there is not already a name that you can use.

• A resource class string starts with a capital letter and uses capitalization
for compound names (for example,"BorderWidth"). Each resource class
string should have a macro definition prefixed with XtC (for example,
XtCBorderWidth).

• A resource representation string is spelled identically to the type name
(for example, "TranslationTable"). Each representation string should
have a macro definition prefixed with XtR (for example, XtRTransla
tionTable).

• New widget classes start with a capital and use uppercase for compound
words. Given a new class name AbcXyz you should derive several names:

- Partial widget instance structure name AbcXyzPart

- Complete widget instance structure names AbcXyzRec and
_AbcXyzRec

OPEN LOOK GUI Programmer's Guide

Widgets

- Widget instance pointer type name AbcXyzWidget

- Partial class structure name AbcXyzClassPart

- Complete class structure names AbcXyzClassRec and
_ AbcXyzClassRec

- Class structure variable abcXyzClassRec

- Class pointer variable abcXyzWidgetClass

• Action procedures available to translation specifications should follow the
same naming conventions as procedures. That is, they start with a capital
letter and compound names use uppercase (for example, "Highlight" and
"N otifyClient").

Manual Pages: Widgets C-7

AbbreviatedMenuButton (3W) AbbreviatedMenuButton (3W)

NAME
AbbrevMenuButton - a widget that creates a button with a menu mark and
menu allowing the user to select items from the menu

SYNOPSIS
#include <Intrinsic.h>
#include <StringDefs.h>
#include <OpenLook.h>
#include <AbbrevMenu.h>

static Widget stack, menupane, w;

Arg args[l];

stack = XtCreateWidget(name, abbrevMenuButtonWidgetClass, ...);
XtSetArg (args [0], xtNmenuPane, &menupane);
XtGetValues(stack, args, 1);

w = XtCreateWidget(name, widget-class, menupane, ...);

DESCRIPTION

3/91

The AbbrevMenuButton widget provides the end user the same features' as the
MenuButton widget (menu default selection, menu previewing, menu selection),
plus current selection viewing, and the ability to add a new selection by typing in
its name.

AbbreviatedMenubutton Components
Each abbreviated menu button has a menu. An application typically identifies an
additional component, the Current Selection Widget, where previewing of the
default menu choice can be done.

Page 1

AbbreviatedMenuBuHon (3W) AbbreviatedMenuButton (3W)

Abbreviated Menu Button

Current Selection Widget

,r

Figure 1. Abbreviated Menu Button

Each abbreviated menu button also has the components of a Menu widget. These
are not shown in Figure l.

AbbreviatedMenuButton Sensitive Area

Page 2

While on the Abbreviated Menu Button and the power-user option is on:

- Pressing SELECT previews the default menu item (if a preview widget exists),
and releasing it will activate the default menu item.

- Clicking SELECT briefly previews the default menu item (if a preview widget
exists) and then activates the default menu item.

- Pressing MENU brings up a pop-up menu.

- Clicking MENU produces a stayup menu.

If the power-user option is off:

- Pressing SELECT or MENU brings up a pop-up menu.

- Clicking SELECT or MENU produces a stayup menu.

(The power-user option is set in the Miscellaneous property sheet of the
Workspace Manager. See the OPEN LOOI(fM GUI User's Guide for more informa
tion on setting this option.)

3/91

AbbreviatedMenuButton (3W) AbbreviatedMenuButton (3W)

3/91

All Features of Menu Button Widget
The AbbrevHenuButton widget includes all the features of the MenuButton
widget, except for the previewing (done instead in the Current Selection Widget)
and the behavior in a menu (the AbbrevMenuButton widget cannot be used in a
menu). The features of the MenuButton widget apply here.

Current Selection Widget
The Current Selection Widget is created by the application. Typically, the
Current Selection Widget and the AbbrevMenuButton widget are placed together
in a composite widget that manages their side-by-side placement. The Abbrev
MenuButton widget uses the Current Selection Widget only for previewing the
default item in the menu. The application is responsible for using it to implement
the OPEN LOOK user interface needs of showing the current menu selection and
acquiring a new item to add to the menu, as appropriate.

AbbreviatedMenuButton Coloration
On a monochrome display, the AbbrevMenuButton widget indicates that it has
input focus by inverting the foreground and background colors of the control.

On color displays, when the AbbrevMenuButton widget receives the input focus,
the background color is changed to the input focus color set in the XtNinput
FocusColor resource.

EXCEPTIONS:

If the input focus color is the same as the Input Window Header Color and
the active control is in the window header, then invert the colors.

If the input focus color is the same as the window background color, then
the AbbrevMenuButton widget inverts the foreground and background colors
when it has input focus.

Figure 2 illustrates the resources that affect the coloration of the AbbrevMenuBut
ton widget.

Page 3

AbbreviatedMenuButton (3W) AbbreviatedMenuButton (3W)

XtNbackground
(XtNbackgroundPixmap)

I I .d[-~--1
\1 1

XtNforeground 1 =J

Parent's XtNbackground
(XtNbackgroundPixmap)

Figure 2. Abbreviated Menu Button Coloration

Keyboard Traversal

Page 4

The default value of the XtNtraversalOn resource is True.

The action of the SELECTKEY depends on whether the user has selected the
power-user option. (The power-user option is set in the property sheet of the
Workspace Manager. See the GUI User's Guide for more information on set
ting this option.) While on the AbbrevMenuButton and the power-user option is
on, clicking the SELECTKEY activates the default menu item. If the power-user
option is off, pressing the SELECTKEY posts the stayup menu.

The AbbrevMenuButton does not control the keyboard traversal between the
AbbrevMenuButton widget and the Current Selection widget. The Current Selec
tion widget's traversal resources can be set up to allow for traversal between it
and the AbbrevMenuButton, but it is recommended that the XtNtraversalOn
resource on the Current Selection widget be False. Normal menu traversal can
always be used to access the Current Selection widget.

Keyboard traversal within a Menu is done using the PREY]IELD, NEXT_FIELD,
MOVEUP, MOVEDOWN, MOVELEFT and MOVERIGHT keys. The
PREY _FIELD, MOVEUP, and MOVELEFT keys move the input focus to the pre
vious Menu item with keyboard traversal enabled. If the menu is not pinned, the
MOVELEFT key will dismiss the menu. If the input focus is on the first item of
the Menu, then pressing one of these keys will wrap to the last item of the Menu
with keyboard traversal enabled. The NEXT_FIELD, MOVEDOWN, and
MOVERIGHT keys move the input focus to the next Menu item with keyboard

3/91

AbbreviatedMenuButton (3W) AbbreviatedMenuButton (3W)

traversal enabled. If the input focus is on the last item of the Menu, then press
ing one of these keys will wrap to the first item of the Menu with keyboard
traversal enabled. If input focus is on a MenuButton within a Menu, pressing the
MENUKEY will post the cascading Menu associated with the MenuButton, and
input focus will be on the first Menu item with traversal enabled.

To traverse out of the menu, the following keys can be used:

CANCEL dismisses the menu and returns focus to the AbbrevMenuButton

NEXTWINDOW moves to the next window in the application

PREVWINDOW moves to the previous window in the application

NEXTAPP moves to the first window in the next application

PREY APP moves to the first window in the previous application

The DEFAULTACTION key will activate the default control in the AbbrevMenu
Button widget as if the user clicked the SELECT button on the control.

The MENUDEF AUL TKEY can be used by the user to change the default control
in the AbbrevMenuButton widget. When the user presses the MENUDEFAULT
KEY, the control which has input focus will become the default control.

Abbreviated MenuButton Activation Types
Activation Type Expected Results
OL SELECTKEY See discussion below
OCMENUKEY Popup the AbbrevMenuButton's submenu

Display of Keyboard Mnemonic
The AbbrevMenuButton does not display the mnemonic accelerator. If the
AbbrevMenuButton is the child of a Caption widget, the Caption widget can be
used to display the mnemonic.

SUBSTRUCTURE
Application Resources

Name Class Type Default Access

'XtNcenter XtCCenter Boolean TRUE I

'XtNhPad XtCHPad Dimension 4 I

'XtNhSpace XtCHSpace Dimension 4 I

'XtNlayoutType XtCLayoutType OlDefine OL FIXEDROWS I

'XtNmeasure XtCMeasure int 1 I

XtNpushpin XtCPushpin OlDefine OL NONE I

XtNpushpinDefault XtCPushpinDefault Boolean FALSE I

'XtNsameSize XtCSameSize OlDefine OL COLUMNS I

XtNtitie XtCTitie String (widget's name) I

'XtNvPad XtCVPad Dimension 4 I

*XtNvSpace XtCVSpace Dimension 4 I

* See the Menu and ControlArea WIdgets for more mformatIon on these resources.

3/91 Page 5

AbbreviatedMenuButton (3W) AbbreviatedMenuButton (3W)

RESOURCES
AbbrevMenuButton Resource Set

Name Class Type Default

XtNaccelerator XtCAccelerator String NULL

XtNacceleratorText XtCAcceleratorText String (calculated)

XtNancestorSensitive XtCSenstitive Boolean TRUE

XtNbackground XtCBackground Pixel XtDefaultBackground

XtNbackgroundPixmap XtCPixmap Pixmap (none)

XtNconsumeEvent XtCConsumeEvent XtCallbackList NULL

XtNdestroyCallback XtCCallback XtCallbackList NULL

XtNforeground XtCForeground Pixel XtDefaultForeground

XtNheight XtCHeight Dimension (calculated)

XtNinputFocusColor XtClnputFocusColor Pixel Red

XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE

XtNmenuPane XtCMenuPane Widget (none)

XtNpreviewWidget XtCPreviewWidget Widget NULL

XtNreferenceName XtCReferenceName String NULL

XtNreferenceWidget XtCReferenceWidget Widget NULL

XtNsensitive XtCSensitive Boolean TRUE

XtNtraversalOn XtCTraversalOn Boolean TRUE

XtNuserData XtCUserData XtPointer NULL

XtNwidth XtCWidth Dimension (calculated)

XtNx xtCPosition Position 0

XtNy XtCPosition Position 0

XtNforeground
This resource defines the foreground color for the widget.

See the note about the interaction of this resource with other color resources
under the description of the XtNbackground resource in Core Resources,
"Manual Pages: Introduction", Appendix A.

XtNmenuPane
This is the widget where menu items can be attached; its value is available once
the AbbrevMenuButton widget has been created.

XtNpreviewWidget
Range of Values:

Page 6

(ID of existing widget)

This resource identifies the Current Selection Widget that the AbbrevMenuButton
can use for previewing the Default Item.

When the end user presses SELECT over the AbbrevMenuButton widget, the
AbbrevMenuButton widget uses the location and size of the Current Selection
Widget to display the label of the Default Item. The preview is constrained to be
within the height and width of the Current Selection Widget.

3/91

Access

SGI

SCI

G*

SGlt

SGlt

SGI

SI

SGlt

SGI

SGI

SGI

G

SGI

SGI

SGI

GI*

SGI

SGI

SCI

SGI

SGI

AbbreviatedMenuButton (3W) AbbreviatedMenuButton (3W)

If the Current Selection Widget is not defined or is not mapped, previewing does
not take place.

NOTE:
The previewing feature is not accessible with keyboard only operation.

SEE ALSO
MenuShell "Programmatic Menu Popup and Popdown"

3/91 Page 7

BulietinBoard (3W) BulietinBoard (3W)

NAME
BulletinBoard - a simple manager widget

SYNOPSIS
#include <Intrinsic.h>
#include <StringDefs.h>
#include <OpenLook.h>
#include <BulletinBo.h>
#include <.h>

widget = XtCreateWidget(name, bulletinBoardWidgetClass, .•.);

DESCRIPTION

3/91

Simple Composite Widget
The BulletinBoard widget is a composite widget that enforces no ordering on
its children. It is up to the application to specify the x- and y-coordinates of each
child inserted; otherwise, it will be placed in the upper left comer of the Bul
let inBoard widget.

No Children
The BulletinBoard can be mapped with no children. It displays an empty
space, possibly surrounded by a border.

BulietinBoard Coloration
Figure 1 illustrates the resources that affect the coloration of the BulletinBoard
widget.

Figure 1. Bulletin Board Coloration

Page 1

BulietinBoard (3W)

Keyboard Traversal

XtNborderColor
(XtNborderPixmap)

.--------------,
, :

XtNbackground
(XtNbackgroundPixmap)

1
-.- - - --- -.- -. - - -- - --,

I
I
I ,
I
I ,
I ------______ '

(Child Widgets Colored Independently)

BulietinBoard (3W)

The BulletinBoard widget is a composite widget and cannot be accessed via
keyboard traversal. Input focus moves between the Primitive children of this
widget.

RESOURCES
BulletinBoard Resource Set

Name Class Type Default

XtNancestorSensitive XtCSenstitive Boolean TRUE

XtNbackground XtCBackground Pixel XtDefaultBackground

XtNbackgroundPixmap XtCPixmap Pixmap (none)

XtNborderColor XtCBorderColor Pixel XtDefaultForeground

XtNborderPixmap XtCPixmap Pixmap (none)

XtNborderWidth XtCBorderWidth Dimension 0

XtNconsumeEvent XtCConsumeEvent XtCallbackList NULL

XtNdepth XtCDepth int (parent's)

XtNdestroyCaUback XtCCaUback XtCallbackList NULL

XtNheight XtCHeight Dimension (calculated)

XtNinputFocusColor XtCInputFocusColor Pixel Red

XtNlayout XtCLayout OlDefine OL MINIMIZE

XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE

XtNsensitive XtCSensitive Boolean TRUE

Page 2 3/91

Access

G*

SGIt

SGIt

SGIt

SGIt

SGI

SG

CI

SI

SCI

SGI

SCI

SGI

CI*

BulietinBoard (3W) BulietinBoard (3W)

BulletinBoard Resource Set (cont'd)
Name Class Type Default

XtNuserData XtCUserData XtPointer NULL

XtNwidth XtCWidth Dimension (calculated)

XtNx XtCPosition Position a
XtNy XtCPosition Position a

XtNlayout
Range of Values:

3/91

OL_MINIMIZE/"minimize"
OL_MAXIMIZE/"maximize"
OL_IGNORE/" ignore"

This resource identifies the layout policy the BulletinBoard widget is to follow:

OL_MINIMIZE
The BulletinBoard widget will always be just large enough to contain
all its children, regardless of any provided width and height values.
Thus the BulletinBoard widget will grow and shrink depending on the
size needs of its children.

OL_IGNORE
The BulletinBoard widget will honor its own width and height; it will
not grow or shrink in response to the addition, deletion, or altering of its
children.

OL_MAXIMIZE
The BulletinBoard widget will ask for additional space when it needs
it for new or altered children, but will not give up extra space.

Page 3

Access

SCI

SCI

SCI

SCI

Caption (3W) Caption (3W)

NAME
Caption - creates a caption or label for any widget

SYNOPSIS
#include <Intrinsic.h>
#include <StringDefs.h>
#include <OpenLook.h>
#include <Caption.h>

widget = XtCreateWidget{name, captionWidgetClass, ... };

DESCRIPTION

3/91

Caption Components
The Caption composite widget provides a convenient way to label an arbitrary
widget. It has only two parts: the Label and the Child Widget.

Label Child Widget

~--------"'"----------- ---, -----------------...-,-----..-....-,--------....-'-----1

~ r------------ ----------------- , , r , r
, r , #
f i , i
, i , t
~ i , i
, i , i

: Caption: : : :
, i , i

~ ~ : ~
~ ~ : ~
, i , r
~ i , i

! ---------------------f~::::::::::::::::::::::::::::::J

Caption Widget

Figure 1. Caption Widget

Layout Control
The application can determine how the Label is placed next to the Child Widget
(by specifying that it goes above, below, to the left, or to the right), and by speci
fying how far away the Label is to be placed.

Child Constraints
The Caption composite allows at most one child; attempts to add more than one
are refused with a warning. If the Caption widget is mapped without a Child
Widget, or if the Child Widget is not managed, only the Label is shown.

Page 1

Caption (3W) Caption (3W)

Caption Coloration
Figure 2 illustrates the resources that affect the coloration of the Caption widget.

XtNfontColor
Coloration of
Child Widget

~..- -.. ..-..-..--"'"- ...-..-"'-..-.. -..-..-..-. ..-..-. ..-".-....-..-....- ... '_..-_'..-_""..-..-..-..-..- ---"'- ... -..--..-...--..-..--..----....-----..--..-~

~ ~-..-..----..-----------..----------~ ~ ~ ~ ~ ~
~ ~ ~ I , , , ,
1 Caption: 1 ! ! , , , , , , , , , , , , : f ~ ~~ , , , ,
: ~--------------------------~ ,
~--------- --)

Parent's XtNbackground
(XtNbackgroundPixmap)

Figure 2. Caption Coloration

Keyboard Traversal
The Caption is a special Manager widget that can be used to display the
mnemonic for its single child. However, the label used as a caption to the child
is not accessible via keyboard traversal. The Caption has the XtNmnemonic
resources which should be set to the child widget's corresponding values. The
return of the OlQueryMnemonicDisplay () on the Caption is used to determine if
the Caption should display the mnemonic for the child.

The action of a mnemonic on a Caption widget is used for traversal only since
clicking the SELECT button on a caption does not have an affect.

Display of Keyboard Mnemonic

Page 2

The Caption widget displays the mnemonic for its child as part of its label. If
the mnemonic character is in the label, then that character is highlighted accord
ing to the value of the application resource XtNshowMneumonics () . If the
mnemonic character is not in the label, it is displayed to the right of the label in
parenthesis and highlighted according to the value of the application resource
XtNshowMneumonics().

If truncation is necessary, the mnemonic displayed in parenthesis is truncated as
a unit.

3/91

Caption (3W) Caption (3W)

Display of Keyboard Accelerators
The Caption widget displays the keyboard accelerator for its child as part of its
label. The string in the XtNacceleratorText resource is displayed to the right
of the label (or mnemonic) separated by at least one space. The acceleratorText is
right justified.

RESOURCES

3/91

Caption Resource Set
Name

XtNalignment

XtNancestorSensitive

XtNconsumeEvent

XtNdepth

XtNdestroyCallback

XtNfont

XtNfontColor

XtNfontGroup

XtNheight

XtNlabel

XtNmnemonic

XtNmappedWhenManaged

XtNposition

XtNsensitive

XtNspace

XtNtraversalOn

XtNuserData

XtNwidth

XtNx

XtNy

XtNalignment
Range of Values:

Class Type

XtCAlignment OlDefine

XtCSenstitive Boolean

XtCConsumeEvent XtCallbackList

XtCDepth int

XtCCallback XtCallbackList

XtCFont XFontStruct *

XtCFontColor Pixel

XtCFontGroup OIFontList

XtCHeight Dimension

XtCLabel String

XtCMnemonic unsigned char

XtCMappedWhenManaged Boolean

XtCPosition OlDefine

XtCSensitive Boolean

XtCSpace Dimension

XtCTraversalOn Boolean

XtCUserData XtPointer

XtCWidth Dimension

XtCPosition Position

XtCPosition Position

If XtNposition is OL_LEFT or OL_RIGHT:

OL_TOP/"top"
OL_CENTER/"center"
OL_BOTTOM/"bottom"

If XtNposition is OL_TOP or OL_BOTTOM:

OL_LEFT/"left"
OL_CENTER/"center"
OL_RIGHT/"right"

Default Access

OL CENTER SGI

TRUE G*

NULL SG

(parent's) GI

NULL SI

(OPEN LOOK font) SI

Black* SGI

NULL SGI

(calculated) SGI

NULL SGI

\0 SGI

TRUE SGI

OL LEFT SGI

TRUE GI*

4 SGI

TRUE SGI

NULL SGI

(calculated) SGI

0 SGI

0 SGI

This specifies how the Label is to be aligned relative to the Child Widget, as
described below:

Page 3

Caption (3W) Caption (3W)

The left edge of the Label is aligned with the left edge of the Child
Widget.

The top edge of the Label is aligned with the top edge of the Child
Widget.

OL_CENTER The center of the Label is aligned with the center of the Child
Widget.

OL_RIGHT The right edge of the Label is aligned with the right edge of the
Child Widget.

OL_BOTTOM The bottom edge of the Label is aligned with the bottom edge of the
Child Widget.

XtNlabel
This resource gives the string to use for the Label. If NULL, the size of the Cap
tion widget will be identical to the size of the child widget.

Note that the Label is displayed as given; no punctuation (such as a colon) is
added.

Control characters (other than spaces) are ignored without warning. For exam
ple, embedded newlines do not cause line breaks.

XtNposition
Range of Values:

OL_LEFT/"left"
OL_RIGHT/"right"
OL_TOP/lltopll
OL_BOTTOM/"bottom"

This resource determines on which side of the Child Widget the Label is to be
placed. The value may be one of OL_LEFT, OL_RIGHT, OL_TOP, or OL_BOTTOM to
indicate that the Label is to be placed to the left, to the right, above, or below the
Child Widget, respectively.

XtNspace

Page 4

Range of Values:
o ::; XtNspace

This resource gives the separation of the Label from the child widget, in pixels, as
suggested by Figure 3.

3/91

Caption (3W) Caption (3W)

r-- - - ----- - - - - - - -- ---I , ,
--------------------~ I I

Label Bounds i i Child Widget i ----. ---------=i f=BOU.ndll .. j

~--------------------, , , ,
i Child Widget i
L ____ ~~_~~~~ ____ J +

XtNspace

r---~~~~;~~:~~~---rT
, '

~-----------------------~
XtNspace

Figure 3. Label and Child Widget Spacing

3/91 Page 5

CheckBox (3W) CheckBox (3W)

NAME
CheckBox - creates a label button with a check box to act as a toggle switch

SYNOPSIS
#include <Intrinsic.h>
#include <StringDefs.h>
#include <QpenLook.h>
#include <CheckBox.h>

widget = xtCreatewidget(name, checkBoxWidgetClass, ...);

DESCRIPTION

3/91

CheckBox Components
The CheckBox widget implements one of the OPEN LOOK button widgets. It
consists of a Label next to a Check Box; the Check Box will have a Check Mark, if
selected.

Label
Check Box

: :
1 Choice #1 I-+!--
l ~ J

Check Mark

CheckBox Widget

Figure 1. CheckBox Widget

Page 1

CheckBox (3W) CheckBox (3W)

Figure 2 shows several buttons, in unselected and selected, as well as normal and
dim states.

Value Value

Current Value Current Value

Figure 2. CheckBoxes

Typical Use of Check Boxes
Check Boxes may be used alone, but are usually used in the Nonexclusives
composite widget, where they are used to implement a several-of-many selection.
Making the CheckBox widget a child of a different composite widget will not
produce an error, but proper layout is not guaranteed.

Operating on Check Boxes
A CheckBox widget has two states: "set" and "not set". When set, the Check
Mark is visible. Toggling this state alternates a resource (XtNset) between "true"
and "false" and starts an action associated with the check box. Clicking SELECT
on a check box toggles the state associated with it. Pressing SELECT, or moving
the pointer into the check box while SELECT is pressed, adds or removes the
Check Mark to reflect the state the check box would be in if SELECT was
released. Releasing SELECT toggles the state. Moving the pointer off the check
box before releasing SELECT restores the original CheckBox, but does not toggle
the state. Clicking or pressing MENU does not do anything in the CheckBox
widget; the event is passed up to an ancestor widget.

Bounds on SELECT

Page 2

Only the CheckBox box and Check Mark respond to SELECT, as shown in Figure
3.

3/91

CheckBox (3W) CheckBox (3W)

3/91

Active Region

Figure 3. Active Region for a CheckBox

CheckBox Coloration
On a monochrome display, the CheckBox widget indicates that it has input focus
by inverting the foreground color and parent's background colors within the
bounding box of the widget.

On color displays, when the CheckBox widget receives the input focus, the back
ground color within the bounding box of the widget is changed to the input
focus color set in the XtNinputFocusColor resource. When the CheckBox
widget loses the input focus, the background color reverts to its parent's
XtNbackground color or XtNbackgroundPixmap.

EXCEPTIONS:

If the input focus color is the same as the parent's background color, then the
CheckBox widget inverts the foreground and background colors when it has
input focus.

If the input focus color is the same as the font color or foreground color, then
the CheckBox widget inverts the foreground and background colors when it
has input focus.

Figure 4 illustrates the resources that affect the coloration of the CheckBox
widget.

Page 3

CheckBox (3W) CheckBox (3W)

XtNforeground

Parent's XtNbackground
(XtNbackgroundPixmap)

Figure 4. CheckBox Coloration

Keyboard Traversal

Page 4

The default value of the XtNtraversalOn resource is TRUE.

The CheckBox widget responds to the following keyboard navigation keys:

NEXT FIELD moves to the next traversable widget in the window

PREY FIELD

MOVEUP

MOVEDOWN

MOVELEFT

MOVERIGHT

NEXTWINDOW

PREVWINDOW

moves to the previous traversable widget in the window

moves to the CheckBox above the current widget in the
Nonexclusives composite

moves to the CheckBox below the current widget in the
Nonexclusives composite

moves to the CheckBox to the left of the current widget
in the Nonexclusives composite

moves to the CheckBox to the right of the current widget
in the Nonexclusives composite

moves to the next window in the application

moves to the previous window in the application

3/91

CheckBox (3W) CheckBox (3W)

NEXTAPP

PREVAPP

Activation Type
OL SELECTKEY -

moves to the first window in the next application

moves to the first window in the previous application

CheckBox Widget Activation Types
Expected Results
Update its visual to reflect the new state and call the
appropriate callback list

Display of Keyboard Mnemonic
The CheckBox widget displays the mnemonic accelerator as part of its label. If
the mnemonic character is in the label, then that character is highlighted accord
ing to the value returned by OIQueryMnemonicDisplayO. If the mnemonic char
acter is not in the label, it is displayed to the right of the label in parenthesis and
highlighted according to the value returned by OIQueryMnemonicDisplayO.

If truncation is necessary, the mnemonic displayed in parenthesis is truncated as
a unit.

Display of Keyboard Accelerators
The CheckBox widget displays the keyboard accelerator as part of its label. The
string in the XtNacceleratorText resource is displayed to the right of the label
(or mnemonic) separated by at least one space. The acceleratorText is right
justified.

If truncation is necessary, the accelerator is truncated as a unit. The accelerator is
truncated before the mnemonic or the label.

RESOURCES
CheckBox Resource Set

Name Class Type Default Access

XtNaccelerator XtCAccelerator String NULL SGI

XtNacceleratorText XtCAcceleratorText String (calculated) SCI

XtNancestorSensitive XtCSenstitive Boolean TRUE G*

XtNconsumeEvent XtCConsumeEvent XtCallbackList NULL SGI

XtNdepth XtCDepth int (parent's) GI

XtNdestroyCallback XtCCallback XtCallbackList NULL 51

XtNdim XtCDim Boolean FALSE SGI

XtNfont XtCFont XFontStruct * (OPEN LOOK font) 51

XtNfontColor XtCFontColor Pixel Black* SCI

XtNfontGroup XtCFontGroup OIFontList NULL SGI

XtNforeground XtCForeground Pixel XtDefaultForeground SGIt

XtNheight XtCHeight Dimension (calculated) SGI

XtNinputFocusColor xtCInputFocusColor Pixel Red SGI

XtNlabel XtCLabel String (class name) SGI

XtNlabelImage XtCLabelImage XImage * (class name) SGI

XtNlabeIJustify XtCLabelJustify OlDefine OL LEFT SGI

XtNlabelTile XtCLabelTile Boolean FALSE SGI

3/91 Page 5

CheckBox (3W)

Name

XtNlabelType

XtNmappedWhenManaged

XtNrrmemonic

XtNposition

XtNrecomputeSize

XtNreferenceName

XtNreferenceWidget

XtNselect

XtNsensitive

XtNset

XtNtraversalOn

XtNunselect

XtNuserData

XtNwidth

XtNx

XtNy

XtNdim
Range of Values:

TRUE
FALSE

CheckBox (3W)

CheckBox Resource Set
Class Type Default Access

XtCLabelType int OL STRING SGI

XtC~ppedWhe~anaged Boolean TRUE SGI

XtCMnemonic unsigned char NULL SGI

XtCPosition OlDefine OL LEFT SGI

XtCRecomputeSize Boolean TRUE SGI

XtCReferenceName String NULL SGI

XtCReferenceWidget Widget NULL SGI

XtCCailback XtCailbackList NULL SI

XtCSensitive Boolean TRUE GI"

xtCSet Boolean TRUE SGr

XtCTraversalOn Boolean TRUE SGI

XtCCallback XtCailbackList NULL SI

XtCUserData XtPointer NULL SGI

XtCWidth Dimension (calculated) SGI

XtCPosition Position 0 SGI

XtCPosition Position 0 SGI

If this resource is TRUE, the check box border is dimmed to show that the check
box represents the state of one or more of several objects that, as a group, are in
different states.

XtNlabel
This resource is a pointer to the text for the Label. This resource is ignored if the
XtNlabel Type resource has the value OL_lMAGE.

XtNlabelimage
This resource is a pointer to the image for the Label of the CheckBox widget.
This resource is ignored unless the XtNlabelType resource has the value
OL_IMAGE.

If the image is smaller than the space available for it next to the Check Box, it is
centered vertically and either centered or left-justified horizontally depending on
the value of the XtNlabelJ'ustify resource. If the image is larger than the space
available for it, it is clipped so that it does not stray outside the space.

XtNlabelJustify
Range of Values:

Page 6

OL_LEFT/"left"
OL_RIGHT/"right"

3/91

CheckBox (3W) CheckBox (3W)

3/91

This resource dictates whether the Label should be left- or right-justified within
the space left before or after the Check Box, if the XtNwidth resource gives more
space than needed.

XtNlabelTile
Range of Values:

TRUE
FALSE

This resource augments the XtNlabelIrnage/XtNlabelPixmap resource to allow
tiling of the sub-object's background. For an image/pixmap that is smaller than
the sub-object's background, the label area is tiled with the image/pixmap to fill
the sub-object's background if this resource is TRUE; otherwise, the label is
placed as described by the XtNlabelImage resource.

The XtNlabel Tile resource is ignored for text labels.

XtNlabelType
Range of Values:

OL_STRING/"string"
OL_lMAGE/"image"

This resource identifies the form that the Label takes. It can have the value
OL_STRING or OL_IMAGE for text or image, respectively.

XtNposition
Range of Values:

OL_LEFT/"left"
OL_RIGHT/"right"

This resource determines on which side of the Check Box the Label is to be
placed. The value may be one of OL_LEFT or OL~IGHT to indicate that the Label
is to be placed to the left or to the right of the Check Box, respectively.

XtNrecomputeSize
Range of Values:

TRUE
FALSE

This resource indicates whether the CheckBox widget should calculate its size and
automatically set the XtNheight and XtNwidth resources. If set to TRUE, the
CheckBox widget will do normal size calculations that may cause its geometry to
change. If set to FALSE, the CheckBox widget will leave its size alone; this may
cause truncation of the visible image being shown by the CheckBox widget if the
fixed size is too small, or may cause padding if the fixed size is too large. The
location of the padding is determined by the XtNlabelJ'ustify resource.

XtNselect
This is the list of callbacks invoked when the widget is selected.

XtNset
Range of Values:

TRUE
FALSE

Page 7

CheckBox (3W) CheckBox (3W)

This resource reflects the current state of the check box. The Check Mark is
present if XtNset is TRUE and is absent otherwise.

XtNunselect
This is the list of callbacks invoked when a CheckBox widget is toggled into the
"unset" mode by the end user to make XtNset be FALSE. Note that simply set
ting XtNset to FALSE with a call to XtSetValues () does not issue the
XtNunselect callbacks.

XtNdim and XtNset Interaction
The XtNdim and XtNset resources can be set independently, as the state table in
Figure 5 shows.

XtNset XtNdim Check Box Appearance

TRUE TRUE
-- --.'

TRUE FALSE ~
- - -- -,

FALSE TRUE
-- --

FALSE FALSE D

Figure 5. Check Box Appearance with Set/Default/Dim

Label and Check Box Appearance

Page 8

The XtNwidth, XtNheight, XtNrecomputeSize, and XtNlabelJustify resources
interact to produce a truncated, clipped, centered, left-justified, or right-justified

3/91

CheckBox (3W) CheckBox (3W)

3/91

Label and Check Box as shown in Figure 6.

XtNwidth

any value

needed
>Ior label

> needed
lor label

needed
<lor label

XtNheight

any value

needed
>Ior label

needed
<lor label

XtNrecomputeSize XINlabelJustily

TRUE any

FALSE OL-LEFT

FALSE OL-RIGHT

FALSE
any

XINrecomputeSize XtNlabelJustify

TRUE any

FALSE any

FALSE any

Result

................. ;--:-/.
: Just Fils ~:

······························F/'·.
: Right Justllied ~: " .

;;~~~~~~~ ~
~ "

Result

.................. ~ / ..
: Just Fils ~I:

: ~/.:

: Centered ~:
...............................

i.cii·~~~.d.·.·.·.·.rji..:

Figure 6. Label and Check Box Appearance

When the label is left-justified, right-justified, or centered the extra space is filled
with the background color of the CheckBox widget's parent, as determined by the
XtNbackground and XtNbackgroundPixmap resources of the parent.

See also the XtNlabel Tile resource for how it affects the appearance of a label.

Page 9

ControlArea (3W) Control Area (3W)

NAME
ControlArea - manages a number of child widgets in rows or columns

SYNOPSIS
#include <Intrinsic.h>
#include <StringDefs.h>
#include <OpenLook.h>
#include <ControlAre.h>

widget = XtCreateWidget(name, controlAreaWidgetClass, ...);

DESCRIPTION

3/91

ControlArea Components
The ControlArea widget has zero or more Child Widgets and an optional
Border.

Layout Control
The ControlArea composite widget arranges its child widgets, presenting them
to the end-user as a group of "controls". The application can choose one of four
simple layout schemes: Fixed number of columns in the control pane, fixed
number of rows, fixed overall width of the control area, and fixed overall height.
The application can also specify the inter-control spacing and the size of the mar
gin around the children.

Equal Height Rows
The children in each row align at the top of the row. The distance between the
top of one row and the next is the height of the tallest control in the row plus the
application specified inter-row spacing.

ControlArea Coloration
Figure 1 illustrates the resources that affect the coloration of the ControlArea
widget.

Page 1

ControlArea (3W)

RESOURCES

Name

XtNalignCaptions

XtNancestorSensitive

XtNbackground

XtNbackgroundPbanap

XtNborderColor

XtNborderPixmap

XtNborderWidth

XtNcenter

XtNconsumeEvent

XtNdepth

XtNdestroyCallback

XtNhPad

XtNhSpace

XtNheight

XtNIayoutType

XtNmappedWhenManaged

XtNmeasure

Page 2

XtNborderColor
(XtNborderPixmap)

-----------.----, , , ,

.. -------------.. , ,

r------------- .. , , ,

XtNbackground
(XtNbackgroundPixmap)

r-------------, 1 r -------- --- --,
ii, I

ii, •
i j , I

j-------------~ ,-------------~
j-------------j
/ /
/ /
/ /
/ /
/ / i _____________ ..J

j-------------j
/ /
/ /
/ /
/ /
/ / i ______ .. _____J

,--------------;
/ ,
/ ,
/ ' , ' , ' I _____________ ..J

,-------------, , , ,
~------ .. ----

(Cbild Widgets Colored Independently)

Figure 1. Control Area Coloration

ControlArea Resource Set
Class Type

XtCAlignCaptions Boolean

XtCSenstitive Boolean

XtCBackground Pixel

XtCPixmap Pixmap

XtCBorderColor Pixel

XtCPixmap Pixmap

XtCBorderWidth Dimension

XtCCenter Boolean

XtCConsumeEvent XtCallbackList

XtCDepth int

XtCCallback XtCallbackList

XtCHPad Dimension

XtCHSpace Dimension

XtCHeight Dimension

XtCLayoutType OIDefine

XtC~appedWhenManaged Boolean

XtC~easure int

ControlArea (3W)

Default Access

FALSE SGI

TRUE G*

XtDefaultBackground SGlt

(none) SGlt

XtDefaultForeground SGIt

(none) SGIt

0 SGI

FALSE SGI

NULL SG

(parent's) GI

NULL 51

4 SGI

4 SGI

(calculated) SGI

OL FIXEDROWS SGI

TRUE SGI

1 SGI

3/91

ControlArea (3W) ControlArea (3W)

3/91

Name

XtNsameSize

XtNsensitive

XtNuserData

XtNvPad

XtNvSpace

XtNwidth

XtNx

XtNy

XtNalignCaptions
Range of Values:

TRUE
FALSE

ControlArea Resource Set
Class Type

XtCSameSize OlDefine

XtCSensitive Boolean

XtCUserData XtPointer

XtCVPad Dimension

XtCVSpace Dimension

XtCWidth Dimension

XtCPosition Position

XtCPosition Position

Default Access

OL COLUMNS SCI

TRUE CI*

NULL SCI

4 SCI

4 SCI

(calculated) SCI

0 SCI

0 SCI

This resource controls how the ControlArea widget aligns widgets of the Cap
tion class. If set to TRUE, the ControlArea will align all Caption widgets in
each column so that their captions are right justified. This may affect the width
calculation for a column: The effective width for the Caption widgets in a
column becomes the sum of the width of the widest caption, plus the largest
caption/ child widget separation and child Widget width.

This alignment is only for groups of Caption widgets with all their captions on
the left or the right. Mixed orientation, or captions above or below, cannot be
aligned well.

Page 3

ControlArea (3W) ControlArea (3W)

All captions on left,
alignment OK

+
:----------I--I-=--:-=--=--=--=-~:
, ",
; Caption Onel : : :
: _________ J_~~-:r _________ .)J

;----------,--,:.-;.-;.-.-.-.-.-.-.-.--j/
) Caption Two I , I

, ___ - ___ - _.J. ~-_-_-_-_-_-_-_-_-_-_ _!.!

All captions on right,
alignment OK

+
~ r-":::::::::. ~ ----r -----------:
i ; : Faption Three :

:~:.:.:.:.:.:.:. - -- ~ -----------~

Figure 2. Aligning Captions

Mixed caption orientation,
alignment not OK

+
:;':-:.-·--:.--:.-i------ -------l
: : : Caption Five ,
: : ____ J 1 , ___________________ oJ

.. -----. --- ------ ----I : r-----: :
paptian Six : : J
I , ______ ~ :

--------------- ______ '

If the XtNalignCaption resource is set to FALSE, the ControlArea will align all
Caption widgets the same as other widgets-by their overall width.

This resource takes precedence over the XtNcenter resource, but only for Cap
tion widgets.

XtNcenter

Page 4

Range of Values:
TRUE
FALSE

This resource controls how the ControlArea widget orients each widget within a
column (although see also XtNalignCaptions). If set to TRUE, the ControlArea
will center each widget with each column; if set to FALSE, the ControlArea will
left justify each widget within each column, unless the XtNalignCaptions
resource is TRUE. XtNhPad
XtNvPad

Range of Values:
o ::; XtNhPad
o ::; XtNvPad

These resources give the amount of padding, in pixels, to leave around the edges
of the control area, left and right, and top and bottom, respectively, as suggested
by Figure 3.

3/91

ControlArea (3W) ControlArea (3W)

3/91

XtNhPad
--..j ~

I I
I I

I

XtNhPad
....... i.-

I I 1 ii,
I I

XtNhSpace
XtNvSpace

:L _________________ , __________ ;'" _______ -! __ _
, ,
,----------_- ____ 1

~------- - --I

------------------------ ______ ' ___ ...!.... __ ---~-----

Figure 3. Padding Around Controls

Range of Values:
o ~ XtNhSpace
o ~ XtNvSpace

XtNvPad

XtNvPad

These resources give the amount of space, in pixels, to leave between controls
horizontally and vertically, respectively. If the controls are of different sizes in a
row or column, the spacing applies to the widest or tallest dimension of all the
controls.

Page 5

ControlArea (3W) ControlArea (3W)

-----------------: :--------------- : •
----------------L---------~:..:::..:::..:::..:::..:::..:::..::.:..---r_---,

, XtNvSpace

-- -------- ------ ---- -- ------- -r - --1-----;--- --- - -to
I L _________ :

-----------------------------~ I
, ,

--..' , ,
, ,
'..,
,

XtNhSpace

Figure 4. Spacing Between Controls

XtNlayoutType

Page 6

Range of Values:
OL_FlXEDROWS/"fixedrows"
OL_FlXEDCOLS/"fixedcols"
OL_FlXEDWID'l'H/"fixedwidth"
OL_FlXEDHEIGHT/"fixedheight"

This resource controls the layout of the child widgets by the ControlArea com
posite. The choices are to specify the number of rows or columns, or to specify
the overall height or width of the layout area. Only one of these dimensions can
be specified directly; the other is determined by the number of controls added.
For instance, if the application specifies that the control area should have four
columns, the number of rows will be the number of controls divided by four.

The values of the XtNlayoutType resource can be:

OL_FlXEDROWS if the layout should have a fixed number of rows and enough
columns to hold all the controls;

if the layout should have a fixed number of columns and
enough rows to hold all the controls;

if the layout should be of a fixed width but tall enough to
hold all the controls;

3/91

ControlArea (3W) ControlArea (3W)

3/91

OL_FIXEDHEIGHT if the layout should be of a fixed height but wide enough to
hold all the controls.

The XtNm.easure resource gives the number of rows or columns or the fixed
height or width.

XtNmeasure
Range of Values:

Default:

o < XtNmeasure

If XtNlayoutType is OL_FIXEDROWS or OL_FIXEDCOLS: 1
If XtNlayoutType is OL_FIXEDWIDTH or OL_FIXEDHEIGHT:

width or height of widest or tallest widget, depending on
XtNlayoutType.

This resource gives the number of rows or columns in the layout of the child
widgets, or the fixed width or height of the control area. When XtNlayoutType
is OL_FIXEDWIDTH or OL_FIXEDHEIGHT, the measure includes the padding on
both edges and the inter-control spacing, as suggested by Figure 5.

I ..

(Line

(Square

XtNsameSize

XtNmeasure
(OL]IXEDWIDTH)

) (Rectangle

) (Circle

~I

)

)

Figure 5. XtNmeasure

Range of Values:
OL_NONE/"none"
OL_COLUMNS/"columns"
OL_ALL/"all"

XtNmeasure
(OL]IXEDHEIGHT)

Page 7

ControlArea (3W) ControlArea (3W)

Page 8

This resource controls which controls, if any, are forced to be the same width
withln the ControlArea widget:

OL_NONE The controls are placed in fixed-width columns, but the size of each
control is left alone. The width of each column is the width of the
widest control in the column.

OL_COLUMNS Controls of the same class in each column are made the same width
as the widest of them. The width of each column is thus the width
of the widest control in the column.

OL_ALL All controls are made the same width, the width of the widest con
trol in the ControlArea widget.

3/91

Exclusives (3W) Exclusives (3W)

NAME
Exclusives - allows the end-user to select one of a set of choices

SYNOPSIS
#include <Intrinsic.h>
#include <StringDefs.h>
#include <OpenLook.h>
#include <Exclusives.h>

widget = XtCreateWidget(name, exclusivesWidgetClass, ••.);

DESCRIPTION

3/91

The Exclusives widget provides a simple way to build a one-of-many button
selection object. It manages a set of rectangular buttons, providing layout
management.

Grid Layout and Button Labels
The Exclusives widget lays out the rectangular buttons in a grid in the order
they are added as child widgets by the application. The number of rows or
columns in this grid can be controlled by the application. If the grid has more
than one row, the Exclusives widget forces the buttons in each column to be the
same size as the widest in the column, and forces their labels to be left-justified.
(Note: If the grid has a single row, each button will be only as wide as necessary
to display the label.)

Strawberry Pear

Apple Plum

I Watermelon I Blueberry

Figure 1. Example of Exclusive Buttons

Page 1

Exclusives (3W) Exclusives (3W)

Selection Control-one Set

In one mode of operation (for example, XtNnoneSet is FALSE), exactly one but
ton in an Exclusives widget must be "set" (for example, the xtNset resource set
to TRUE). An error is generated if an Exclusives is configured with two or
more rectangular buttons set or with no button set. The Exclusives widget
maintains this condition by ensuring that when a button is set by the user click
ing SELECT over it, the button that was set is cleared and its XtNunselect call
backs are invoked. However, clicking SELECT over a button that was already set
does nothing.

Selection Control-None Set
In the other mode of operation (for example, XtNnoneSet is TRUE), at most one
button in an Exclusives widget can be set. An error is generated if an
Exclusives is configured with two or more rectangular buttons set, but not if
configured with no button set. The Exclusives widget maintains this condition
by ensuring that when a button is set by the user clicking SELECT over it, or by
the application programmer with the XtNset resource, any button that was previ
ously set is cleared. Also, clicking SELECT over a button that was already set
will unset it. Clearing a button in either case invokes its XtNunselect callbacks.

Use in a Menu
The Exclusives widget can be added as a single child to a menu pane to imple
ment a one-of-many menu choice.

Child Constraint
The Exclusives widget constrains its child widgets to be of the class rectBut
tonWidgetClass.

Exclusives Coloration
There is no explicit foreground or background in the Exclusives composite
widget; each rectangular button has its own coloration.

Keyboard Traversal

Page 2

The Exclusives widget manages the traversal between a set of RectButtons. When
the user traverses to a Exclusives widget, the first RectButton in the set will
receive input focus. The MOVEUP, MOVEDOWN, MOVERIGHT, and
MOVELEFT keys move the input focus between the RectButtons. To traverse out
of the Exclusives widget, the following keys can be used:

NEXT FIELD moves to the next traversable widget in the window

PREY FIELD moves to the previous traversable widget in the window

NEXTWINDOW moves to the next window in the application.

PREVWINDOW moves to the previous window in the application.

NEXTAPP moves to the first window in the next application.

PREY APP moves to the first window in the previous application.

The SELECTKEY acts as if the SELECT button had been clicked on the RectBut
ton with input focus. The MENUKEY acts as if the MENU button had been
clicked on the RectButton with input focus.

3/91

Exclusives (3W) Exclusives (3W)

RESOURCES

3/91

Exclusives Resource Set
Name

XtNancestorSensitive

XtNconsumeEvent

XtNdepth

XtNdestroyCallback

XtNheight

XtNlayoutType

XtNmappedWhe~anaged

XtNmeasure

XtNnoneSet

XtNreferenceName

XtNreferenceWidget

XtNsensitive

XtNtraversalOn

XtNuserData

XtNwidth

XtNx

XtNy

XtNlayoutType
Range of Values:

Class

XtCSenstitive

XtCConsumeEvent

XtCDepth

XtCCallback

XtCHeight

XtCLayoutType

XtC~appedWhe~anaged

XtC~easure

XtCNoneSet

XtCReferenceName

XtCReferenceWidget

XtCSensitive

XtCTraversalOn

XtCUserData

XtCWidth

XtCPosition

XtCPosition

OL_FlXEDROWS/"fixedrows"
OL_FlXEDCOLS/"fixedcols"

Type

Boolean

XtCallbackList

int

XtCallbackList

Dimension

OlDefine

Boolean

int

Boolean

String

Widget

Boolean

Boolean

XtPointer

Dimension

Position

Position

Default Access

TRUE G'

NULL SC

(parent's) GI

NULL SI

(calculated) SCI

OL FIXEDROWS SCI

TRUE SGI

1 SGI

FALSE SGI

NULL GI

NULL GI

TRUE GI'

TRUE SCI

NULL SCI

(calculated) SCI

0 SCI

0 SCI

This resource controls the type of layout of the child widgets by the Exclusives
composite. The choices are to specify the number of rows or the number of
columns. Only one of these dimensions can be specified directly; the other is
determined by the number of child widgets added, and will always be enough to
show all the child widgets.

The values of the XtNlayoutType resource can be

OL_FlXEDROWS if the layout should have a fixed number of rows;

OL_FlXEDCOLS if the layout should have a fixed number of columns.

XtNmeasure
Range of Values:

o < XtNmeasure

This resource gives the number of rows or columns in the layout of the child
widgets. If there are not enough child widgets to fill a row or column, the
remaining space is left blank. If there is only one row (column), and it is not
filled with child widgets, the remaining "space" is of zero width (height).

Page 3

Exclusives (3W) Exclusives (3W)

XtNnoneSet

Page 4

Range of Values:
TRUE
FALSE

This resource controls whether the buttons controlled by the Exclusives compo
site can be toggled into an unset mode directly. 1£ set to FALSE, at all times
exactly one button must be set. Attempting to select the currently set button
does nothing. 1£ set to TRUE, at all times no more than one button can be set.
However, the user can select the currently set button again to toggle it back into
an unset mode.

3/91

FlatCheckBox (3W) FlatCheckBox (3W)

NAME
FlatCheckBox - is a performance improvement over the NonExclusives widget
that is populated with CheckBox widgets

SYNOPSIS
#include <Intrinsic.h>
#include <StringDefs.h>
#include <OPenLook.h>
#include <FCheckBox.h>

widget = XtCreateWidget(name, flatCheckBoxWidgetClass, ...);

DESCRIPTION

3/91

Keyboard Traversal
The FlatCheckbox widget is a Primitive widget that manages the traversal
between a set of sub-objects. When the user traverses to a FlatCheckbox widget,
the first sub-object in the set will display itself as having input focus (see the
CheckBox Widget for a description of this appearance.) The MOVEUP, MOVE
DOWN, MOVERIGHT, and MOVELEFT keys move the input focus between the
sub-objects. To traverse out of the FlatCheckbox widget, the following keys can
be used:

NEXT FIELD

PREY FIELD

NEXTWINDOW

PREVWINDOW

NEXTAPP

PREVAPP

Keyboard Operation

Activation Type

OL SELECTKEY

moves to the next traversable widget in the window

moves to the previous traversable widget in the window

moves to the next window in the application.

moves to the previous window in the application.

moves to the first window in the next application.

moves to the first window in the previous application.

Flat CheckBox Activation Types
Expected Results

These controls have two states: "set" and "not set". (When
set, its border is thickened.) Pressing the SELECTKEY while
a flat checkbox item has focus will toggle the checkbox's
current state. If the control is "set", then toggling the control
will call the XtNunselect callback list. If the control is "not
set", then toggling the control will call the XtNselect call-
back list.

Display of Keyboard Mnemonic
The FlatCheckbox widget displays the mnemonic accelerator of a sub-object as
part of the sub-object's label. If the mnemonic character is in the label, then that
character is highlighted according to the value of the application resource
XtNshowMneumonics () . If the mnemonic character is not in the label, it is
displayed to the right of the label in parenthesis and highlighted according to the
value of the application resource XtNshowMneumonics () .

Page 1

FlatCheckBox (3W) FlatCheckBox (3W)

If truncation is necessary, the mnemonic displayed in parenthesis is truncated as
a unit.

Display of Keyboard Accelerators
The FlatCheckbox widget displays the keyboard accelerator as part of the sub
object's label. The string in the XtNacceleratorText resource is displayed to the
right of the label (or mnemonic) separated by at least one space. The accelerator
Text is right justified.

If truncation is necessary, the accelerator is truncated as a unit. The accelerator is
truncated before the mnemonic or the label.

Label
Check Box

I'~------~---I

! .. ~~~~----
l Choice #1 !
L''''''''''''---''-''''''''-l''''''''-''-''''''-'

Check Mark

CheckBox Widget

Figure 1. Flat CheckBox Item

FlatCheckbox Coloration

Page 2

The FlatCheckBox container inherits its background color from the container's
parent widget. Setting the background color affects only the sub-objects' back
ground.

On a monochrome display, the FlatCheckbox widget indicates that it has input
focus by inverting the foreground color and parent's background colors within
the bounding box of the first sub-object.

On color displays, when the FlatCheckbox widget receives the input focus, the
background color within the bounding box of the first sub-object is changed to
the input focus color set in the XtNinputFocusColor resource. When the
FlatCheckbox sub-object loses the input focus, the background color reverts to its
parent's XtNbackground color or XtNbackgroundPixmap.

3/91

FlatCheckBox (3W) FlatCheckBox (3W)

EXCEPTIONS:

If the input focus color is the same as the parent's background color, then the
FlatCheckbox widget inverts the foreground and background colors of the
sub-object when it has input focus.

If the input focus color is the same as the font color or foreground color, then
the FlatCheckbox widget inverts the foreground and background colors of
the sub-object when it has input focus.

RESOURCES

3/91

The following table lists the resources for the FlatCheckBox. Resources that
have a bullet (.) in the Access column denote sub-object resources. If these
resources are not included in the XtNitemFields list, they are inherited from the
container widget. An application can change the default values for sub-object
resources by setting them directly on the container. Even though a sub-object
resource is not included in the xtNitemFields list, the application can query the
value of any sub-object resource with OlFlatGetValues () .

Flat CheckBox Resource Set
Name Class Type Default Access

XtNaccelerator XtCAccelerator String NULL SGI.

XtNacceleratorText XtCAcceleratorText String (calculated) SGI.

XtNancestorSensitive XtCSensitive Boolean TRUE G·
XtNbackground XtCBackground Pixel XtDefaultBackground SGI.

XtNbackgroundPixmap XtCPixmap Pixmap None SGI·

XtNborderWidth XtCBorderWidth Dimension 0 SGI.

XtNclientData XtCClientData XtPointer NULL SGI.

XtNconsumeEvent XtCConsumeEvent XtCailbackList NULL SGI

XtNdepth XtCDepth Cardinal (parent's) GI

XtNfont XtCFont XFontStruct * (OPEN LOOK font) SI·

XtNfontColor XtCFontColor Pixel XtDefauitForeground SGI·

XtNforeground XtCForeground Pixel XtDefauitForeground SGI

XtNgravity XtCGravity int CenterGravity SGI

XtNhPad XtCHPad Dimension 0 SGI

XtNhSpace XtCHSpace Dimension (calculated) SGI

XtNheight XtCHeight Dimension (calculated) SGI

XtNinputFocusColor XtCInputFocusColor Pixel Black SGI.

XtNitemFields XtCItemFields String * NULL GI

XtNitemGravity XtCItemGravity int NorthWestGravity SGI

XtNitemMaxHeight XtCItemMaxHeight Dimension OL IGNORE SGI

XtNitemMaxWidth XtCItemMaxWidth Dimension OL IGNORE SGI

XtNitemMinHeight XtCItemMinHeight Dimension OL IGNORE SGI

XtNitemMinWidth XtCItemMinWidth Dimension OL IGNORE SGI

XtNitems XtCItems XtPointer NULL SGI

XtNitemsTouched XtCItemsTouched Boolean FALSE SG

Page 3

FlatCheckBox (3W) FlatCheckBox (3W)

Flat CheckBox Resource Set
Name Class I Type Default Access

XtNlabel XtCLabel String NULL SGI-

XtNlabelImage XtCLabelImage XImage * NULL SGI-

XtNlabelJustify XtCLabelJustify OIDefine OL LEFT SGI-

XtNlabelTile XtCLabelTile Boolean FALSE SGI-

XtNlayoutHeight XtCLayoutHeight OlDefine OL MINIMIZE SGI

XtNlayoutType XtCLayoutType OlDefine OL FIXEDROWS SGI

XtNlayoutWidth XtCLayoutWidth OlDefine OL MINIMIZE SGI

XtNmanaged XtCManaged Boolean TRUE SGI

XtNmappedVVhenManaged XtCMappedVVhenManaged Boolean TRUE SGI-

XtNmeasure XtCMeasure int 1 SGI

XtNmnemonic XtCMnemonic unsigned char NULL SGI-

XtNnumItemFields XtCNumItemFields Cardinal 0 SGI

XtNnumItems XtCNumItems Cardinal 0 SGI

XtNposition XtCPosition OIDefine OL LEFT SGI-

XtNreferenceName XtCReferenceName String NULL SGI

XtNreferenceWidget XtCReferenceWidget Widget NULL SGI

XtNsameHeight XtCSameHeight OlDefine OL ALL SGI

XtNsameWidth XtCSameWidth OIDefine OL COLUMNS SGI

XtNselectProc XtCCallbackProc XtCallbackProc NULL SGI-

XtNsensitive XtCSensitive Boolean TRUE SGI-

XtNset XtCSet Boolean FALSE SGlt-

XtNtraversalOn XtCTraversalOn Boolean TRUE SGI-

XtNunselectProc XtCCallbackProc XtCallbackProc NULL SGI-

XtNuserData XtCUserData XtPointer NULL SGI-

XtNvPad XtCVPad Dimension 0 SGI

XtNvSpace XtCVSpace Dimension (calculated) SGI

XtNwidth XtCWidth Dimension (calculated) SGI

XtNx XtCPosition Position 0 SGI

XtNy XtCPosition Position 0 SGI

XtNancestorSensitive
Range of Values:

TRUE/"true"
FALSE/"false"

This resource indicates the sensitivity of the sub-object's ancestors. If TRUE, all
the sub-object's ancestors are sensitive and the sub-object is sensitive to user
input. If FALSE, one or more of the sub-object's ancestors are insensitive, so the
sub-object displays an inactive visual and is not sensitive to user input.

XtNbackground
This is the pixel color used to fill in the background of the check box.

Page 4 3/91

FlatCheckBox (3W) FlatCheckBox (3W)

3/91

XtNbackgroundPixmap
This resource specifies the pixmap that is displayed as the sub-object's label. Any
supplied pixmap must have the same depth as the flat widget's depth. Pixmaps
of None and ParentRelative are not considered valid values. If either Xt
Nlabel or XtNlabellmage has a non-NULL value, this resource is ignored.

XtNclientData
This is the client data supplied to all callback procedures.

XtNitems
This is the list of sub-object items. This value must point to a static list since flat
containers reference this list after initialization but do not cache its information.

XtNitemFields
This is the list of resource names used to parse the records in the XtNi terns list.
This resource does not have to point to static information since the flat container
does not use this information after initialization. Though the flat container does
not reference this resource's value after initialization, it holds onto it for respond
ing to an XtGetValues () request and supplying it in the OlFlatCallData struc
ture during callbacks. Therefore, if the application plans on querying this
resource, it's recommended that the application make this resource point to static
information.

XtNitemsTouched
Range of Values:

TRUE
FALSE

Whenever the application modifies an item list directly, it must supply this
resource (with a value of TRUE) to the flat widget container so that the container
can update the visual. If the resource value is supplied, the flat widget container
treats its current item list as a new list and hence, updates its entire visual. Since
the list is treated as a new list, the flat container may request a change in
geometry from its parent.

Note:
It is not necessary to use this resource if the application modifies the list with the
OlFlatSetValues procedure; nor is it necessary to use this resource whenever
the application supplies a new list to the flat container.

XtNlabel
This is the text string that appears in the sub-object.

XtNlabelimage
This is an Xlmage pointer that can appear in a sub-object. This resource is
ignored if XtNlabel is non-NULL.

XtNlabelJustify
Range of Values:

OL_LEFT/"left"
OL_CENTER/"center"
OL_RIGHT/"right"

This resource specifies the justification of the label or XImage that appears within
a sub-object.

Page 5

FlatCheckBox (3W) FlatCheckBox (3W)

XtNlabelTile
Range of Values:

TRUE
FALSE

This resource augments the XtNlabellmage/XtNlabelPixmap resource to allow
tiling of the sub-object's background. For an image/pixmap that is smaller than
the sub-object's background, the label area is tiled with the image/pixmap to fill
the sub-object's background if this resource is TRUE; otherwise, the label is placed
as described by the XtNlabelJustify resource.

The XtNlabel Tile resource is ignored for text labels.

XtNmappedWhenManaged
Range of Values:

TRUE/"true"
FALSE/"false"

This resource specifies whether or not a managed sub-object is displayed.
Regardless of this resource's value, all managed sub-objects will be included
when determining the layout.

Note:
This resource is never inherited from the container, so its default value is always
TRUE.

XtNnumltems
This resource specifies the number of sub-object items.

XtNnumltemFields
This resource indicates the number of resource names contained in XtNitem
Fields.

XtNposition
Range of Values:

OL_LEFT/"left"
OL_RIGHT/"right"

This resource determines on which side of the check box the label is to be placed.
The value of OL_LEFT or OL_RIGHT indicates the label is placed to the left or to
the right of the check box, respectively.

XtNsameHeight
Range of Values:

Page 6

OL_ALL/"all"
OL_ROWS/"rows"
OL_NONE/"none"

This resource specifies the rows that are forced to the same height.

3/91

FlatCheckBox (3W) FlatCheckBox (3W)

3/91

XtNsameWidth
Range of Values:

OL_ALL/"all"
OL_COLUMNS/"columns"
OL_NONE/"none"

This resource specifies the columns that are forced to the same width.

XtNselectProc
This callback procedure is called whenever the sub-object becomes selected by
user input.

XtNsensitive
Range of Values:

TRUE/"true"
FALSE/"false"

If TRUE, the sub-object is sensitive to user input. If FALSE, the sub-object is insen
sitive to user input and an inactive visual is displayed to indicate this state.

Note:
This resource is never inherited from the container, so its default value is always
TRUE.

XtNset
Range of Values:

TRUE/"true"
FALSE/"false"

This resource reflects the current state of the sub-object.

Note:
This resource is never inherited from the container, so its default value is always
FALSE.

Even if the application does not use XtNset in its item fields list, the container
will correctly maintain the set item and the application can change the set item
via OlFlatSetValues.

XtNunselectProc
This callback procedure is called whenever the sub-object becomes unselected by
user input.

Page 7

FlatExclusives (3W) FlatExclusives (3W)

NAME
FlatExclusives - allows the user to select one of a series of choices

SYNOPSIS
#include <Intrinsic.h>
#include <StringDefs.h>
#include <OPenLook.h>
#include <FExclusive.h>

widget XtCreateWidget(name, flatExclusivesWidgetClass, ...);

DESCRIPTION

3/91

Strawberry Pear

Apple Plum

I Watermelon I Blueberry

Figure 1. Flat Exclusives Widget

Selection Control - One Set
In one mode operation (Le., XtNnoneSet is FALSE), exactly one sub-object in a
FlatExclusives widget must be "set," i.e., the XtNset resource is TRUE for one
of the sub-objects. A warning is generated if two or more sub-objects are set. If
no items are set, the FlatExclusives makes the first sub-object that is both
managed and mapped when managed be the set item. No warning is produced
in this case. The FlatExclusi ves maintains this condition by ensuring that
when a sub-object is set by the user clicking SELECT over it, the sub-object that
was set is cleared and its XtNUnselectProc procedure is called and the sub
object under the pointer is made to be set and its XtNselectProc procedure is

Page 1

FlatExclusives (3W) FlatExclusives (3W)

called. However, clicking SELECT over a sub-object that is already set does noth
ing.

Selection Control - None Set
In the other mode of operation (Le., XtNnoneSet is TRUE), at most one sub-object
in a FlatExclusives widget can be "set." A warning is generated if two or
more sub-objects are set. The FlatExclusives maintains this condition by
ensuring that when a sub-object is set by the user clicking SELECT over it, the
sub-object that was set is cleared and its XtNunselectProc procedure is called
and the sub-object under the pointer is made to be set and its XtNselectProc
procedure is called. Clicking SELECT over a sub-object that is already set clears
it and its XtNunselectProc procedure is called.

Use in a Menu
The FlatExclusives widget can be added as child in a menu pane to implement
a one-of-many menu choice.

FlatExclusives Coloration
The FlatExclusives container inherits its background color from the container's
parent widget. Setting the background color affects only the sub-objects' back
ground.

Keyboard Traversal
The FlatExclusives widget is a Primitive widget that manages the traversal
between a set of sub-objects. When the user traverses to a FlatExclusives widget,
the first sub-object in the set will display itself as having input focus (see the
RectButton Widget for a description of this appearance.) The MOVEUP, MOVE
DOWN, MOVERIGill, and MOVELEFT keys move the input focus between the
sub-objects. To traverse out of the FlatExclusives widget, the following keys can
be used:

NEXT FIELD

PREY FIELD

NEXTWINDOW

PREVWINDOW

NEXTAPP

PREVAPP

moves to the next traversable widget in the window

moves to the previous traversable widget in the window

moves to the next window in the application.

moves to the previous window in the application.

moves to the first window in the next application.

moves to the first window in the previous application.

Keyboard Operation
Flat Exclusives Activation Types

Activation Type Expected Results
OL _ MENUDEFAU LTKEY It the FlatExclusives is on a menu, this command

will set the item with focus to be menu's default;
otherwise, this command is ignored.

OL SELECTKEY This command acts as if the SELECT mouse button
had been clicked on the RectButton with focus.
See "Selection Control" sections above.

Page 2 3/91

FlatExclusives (3W) FlatExclusives (3W)

Display of Keyboard Mnemonic
The FlatExclusives widget displays the mnemonic accelerator of a sub-object as
part of the sub-object's label. If the mnemonic character is in the label, then that
character is highlighted according to the value of the application resource
XtNshowMneumonics () . If the mnemonic character is not in the label, it is
displayed to the right of the label in parenthesis and highlighted according to the
value of the application resource XtNshowMneumonics () .

If truncation is necessary, the mnemonic displayed in parenthesis is truncated as
a unit.

Display of Keyboard Accelerators
The FlatExclusives widget displays the keyboard accelerator as part of the
sub-object's label. The string in the XtNacceleratorText resource is displayed
to the right of the label (or mnemonic) separated by at least one space. The
acceleratorText is right justified.

If truncation is necessary, the accelerator is truncated as a unit. The accelerator is
truncated before the mnemonic or the label.

RESOURCES

3/91

The following table lists the resources for the FlatExclusives. Resources that
have a bullet (.) in the Access column denote sub-object resources. If these
resources are not included in the xtNitemFields list, they are inherited from the
container widget. An application can change the default values for sub-object
resources by setting them on the container directly. Even though a sub-object
resource is not included in the XtNitemFields list, the application can query the
value of any sub-object resource with OlFlatGetValues () .

Flat Exclusives Resource Set
Name Class Type Default Access

XtNaccelerator XtCAccelerator String NULL SGI.

XtNacceleratorText XtCAcceleratorText String (calculated) SGI.

XtNancestorSensitive XtCSensitive Boolean TRUE G·

XtNbackground XtCBackground Pixel XtDefaultBackground SGI·

XtNbackgroundPixmap XtCPixmap Pixmap None SGI·

XtNborderWidth XtCBorderWidth Dimension 0 SGI·

XtNclientData XtCClientData XtPointer NULL SGI·

XtNconsumeEvent XtCConsumeEvent XtCallbackList NULL SGI

XtNdefault XtCDefault Boolean FALSE SGIt·

XtNdepth xtCDepth Cardinal (parent's) GI

XtNdim xtCDim Boolean FALSE SGI·

XtNfont XtCFont XFontStruct • (OPEN LOOK font) 51.

XtNfontColor XtCFontColor Pixel XtDefaultForeground SGI·

XtNforeground XtCForeground Pixel XtDefaultForeground SGI

XtNgravity XtCGravity int CenterGravity SGI

XtNinputFocusColor xtCInputFocusColor Pixel Black SGI·

Page 3,

FlatExclusives (3W)

Name

XtNhPad

XtNheight

XtNitemFields

XtNitemMaxHeight

XtNitemMaxWidth

XtNitemMinHeight

XtNitemMinWidth

XtNitems

XtNitemsTouched

XtNlabel

XtNlabelImage

XtNlabelJustify

XtNlabelTile

XtNlayoutHeight

XtNlayoutType

XtNlayoutWidth

XtNmanaged

XtNmappedWhenManaged

XtNmeasure

XtNmnemonic

XtNnoneSet

XtNnumItemFields

XtNnumItems

XtNreferenceName

XtNreferenceWidget

XtNsameHeight

XtNsameWidth

XtNselectProc

XtNsensitive

XtNset

XtNtraversalOn

X tNunselectProc

XtNuserData

XtNvPad

XtNwidth

XtNx

XtNy

XtNancestorSensitive
Range of Values:

Page 4

Flat Exclusives Resource Set
Class

XtCHPad

XtCHeight

XtCItemFields

XtCItemMaxHeight

XtCItemMaxWidth

XtCItemMinHeight

XtCItemMinWidth

XtCItems

XtCItemsTouched

XtCLabel

XtCLabelImage

XtCLabelJustify

XtCLabelTile

XtCLayoutHeight

XtCLayoutType

XtCLayoutWidth

XtCManaged

XtCMappedWhenManaged

XtCMeasure

XtCMnemonic

XtCNoneSet

XtCNumItemFields

XtCNumItems

XtCReferenceName

XtCReferenceWidget

XtCSameHeight

XtCSameWidth

XtCCallbackProc

XtCSensitive

XtCSet

XtCTraversalOn

XtCCallbackProc

XtCUserData

XtCVPad

XtCWidth

XtCPosition

XtCPosition

TRUE/"true"
FALSE/"false"

Type

Dimension

Dimension

String *
Dimension

Dimension

Dimension

Dimension

XtPointer

Boolean

String

Xlmage *

OlDefine

Boolean

OlDefine

OlDefine

OlDefine

Boolean

Boolean

int

unsigned char

Boolean

Cardinal

Cardinal

String

Widget

OlDefine

OlDefine

XtCallbackProc

Boolean

Boolean

Boolean

XtCallbackProc

XtPointer

Dimension

Dimension

Position

Position

FlatExclusives (3W)

Default Access

0 SGI

(calculated) SGI

NULL GI

OL IGNORE SGI

OL IGNORE SCI

OL IGNORE SGI

OL IGNORE SGI

NULL SGI

FALSE SG

NULL SGI-

NULL SGI-

OL LEFT SGI-

FALSE SGI-

OL MINIMIZE SGI

OL FIXEDROWS SGI

OL MINIMIZE SGI

TRUE SGI

TRUE SGI-

1 SGI

NULL SGI-

FALSE SGI

0 SCI

0 SCI

NULL SGI

NULL SGI

OL ALL SGI

OL COLUMNS SGI

NULL SGI-

TRUE SGI-

FALSE SGlt-

TRUE SGI-

NULL SCI-

NULL SCI-

0 SGI

(calculated) SGI

0 SCI

0 SGI

3/91

FlatExclusives (3W) FlatExclusives (3W)

This resource indicates the sensitivity of the sub-abject's ancestors. If TRUE, all
the sub-abject's ancestors are sensitive and the sub-object is sensitive to user
input. If FALSE, one or more of the sub-abject's ancestors are insensitive, so the
sub-object displays an inactive visual and is not sensitive to user input.

XtNbackground
This is the pixel color used to fill in the background of the sub-object.

XtNbackgroundPixmap
This resource specifies the pixmap that is displayed as the sub-abject's label. Any
supplied pixmap must have the same depth as the flat widget's depth. Pixmaps
of None and ParentRelative are not considered valid values. If either Xt
Nlabel or XtNlabellmage has a non-NULL value, this resource is ignored.

XtNclientData
This is the client data supplied to all callback procedures.

XtNdefault
Range of Values:

TRUE/"true"
FALSE/"false"

When used on the sub-object, this resource specifies whether or not the sub-object
is a default item. If more than one item is a set as a default item, a warning is
generated and all but the first default item is unselected.

3/91

When used on the container, this resource indicates whether or not one of the
sub-objects is a default item. If a sub-object is a default item, XtNdefault has a
value of TRUE; else it has a value of FALSE. Setting this resource on the con
tainer widget indicates whether or not one of the sub-objects should be a default
item. If the application sets this value to TRUE on the container, the container
will set the first managed and mapped sub-object as the default item if a default
item does not exist. If the application sets this value to FALSE, the container will
unset its default item if one exists.

Even if the application does not use XtNdefault in its item fields list, the con
tainer will correctly maintain the default item and the application can change the
default item via OlFlatSetValues.

XtNdim
Range of Values:

TRUE/"true"
FALSE/"false"

If TRUE, the sub-object shows a dimmed visual indicating that the item
represents the state of one or more objects, that as a group, are in different states.

XtNitemFields
This is the list of resource names used to parse the records in the XtNi terns list.
This resource does not have to point to static information since the flat container
does not use this information after initialization. Though the flat container does
not reference this resource's value after initialization, it holds onto it for respond
ing to an XtGetValues () request and supplying it in the OlFlatCallData struc
ture during callbacks. Therefore, if the application plans on querying this

Page 5

FlatExclusives (3W) FlatExclusives (3W)

resource, it's recommended that the application make this resource point to static
information.

XtNitemsTouched
Range of Values:

TRUE
FALSE

Whenever the application modifies an item list directly, it must supply this
resource (with a value of TRUE) to the flat widget container so that the container
can update the visual. If the resource value is supplied, the flat widget container
treats its current item list as a new list and hence, updates its entire visual. Since
the list is treated as a new list, the flat container may request a change in
geometry from its parent.

Note: It is not necessary to use this resource if the application modifies the list
with the OlFlatSetValues procedure; nor is it necessary to use this resource
whenever the application supplies a new list to the flat container.

XtNlabel
This is the text string that appears in the sub-object.

XtNlabellmage
This is an Xlmage pointer that can appear in a sub-object. This resource is
ignored if XtNlabel is non-NULL.

XtNlabelJustify
Range of Values:

OL_LEFT/"left"
OL_CENTER/"center"
OL_RIGHT/"right"

This resource specifies the justification of the label or Xlmage that appears within
a sub-object.

XtNlabelTile
Range of Values:

TRUE/"true"
FALSE/"false"

This resource augments the XtNlabellmage/XtNlabelPixmap resource to allow
tiling of the sub-abject's background. For an image/pixmap that is smaller than
the sub-abject's background, the label area is tiled with the image/pixmap to fill
the sub-abject's background if this resource is TRUE; otherwise, the label is
placed as described by the XtNlabelJustify resource.

The XtNlabel Tile resource is ignored for text labels.

XtNmappedWhenManaged
Range of Values:

Page 6

TRUE/"true"
FALSE/" false II

3/91

FlatExclusives (3W) FlatExclusives (3W)

3/91

This resource specifies whether or not a managed sub-object is displayed.
Regardless of this resource's value, all managed sub-objects will be including
when determining the layout.

Note: This resource is never inherited from the container, so its default value is
always TRUE.

XtNnoneSet
Range of Values:

TRUE/"true"
FALSE/" false"

This resource controls whether the settings can be toggled into an unset mode
directly. If set to FALSE, exactly one sub-object must be in the set state always.
Attempting to select the currently set sub-object does nothing. If set to TRUE, no
more than one sub-object can be set at any time. However, the user can select the
currently set sub-object and toggle it back to an unset state.

XtNnumltems
This resource specifies the number of sub-object items.

XtNnumltemFields
This resource indicates the number of resource names contained in XtNitem
Fields.

XtNsameHeight
Range of Values:

OL_ALL/"all"
OL_ROWS/"rows"

This resource specifies the rows that are forced to the same height.

XtNsameWidth
Range of Values:

OL_COLUMNS/"columns"

This resource specifies the columns that are forced to the same width.

XtNselectProc
This callback procedure is called whenever the sub-object becomes selected by
user input.

XtNsensitive
Range of Values:

TRUE/"true"
FALSE/" false"

If TRUE, the sub-object is sensitive to user input. If FALSE, the sub-object is
insensitive to user input and an inactive visual is displayed to indicate this state.

Note: This resource is never inherited from the container, so its default value is
always TRUE.

Page 7

FlatExclusives (3W) FlatExclusives (3W)

XtNset
Range of Values:

TRUE/"true"
FALSE/" false"

This resource reflects the current state of the sub-object.

Note: This resource is never inherited from the container, so its default value is
always FALSE.

Even if the application does not use XtNset in its item fields list, the container
will correctly maintain the set item and the application can change the set item
via OlFlatSetValues.

XtNunselectProc

Page 8

This callback procedure is called whenever the sub-object becomes unselected by
user input.

3/91

FlatNonexclusives (3W) FlatNonexclusives (3W)

NAME
FlatNonexclusives - a Primitive widget allowing the user to select one or more
choices

SYNOPSIS
#include <Intrinsic.h>
#include <StringDefs.h>
#include <QpenLook.h>
#include <FNonexclus.h>

widget = xtCreateWidget(name, flatNonexclusivesWidgetClass, •••);

DESCRIPTION
Default Spacing

3/91

The default spacing between items is 50% of the prevailing point size for the
container's font.

L--v_a_lu_e ______ -----.J1 II Default Value II
.. ". .. . · . · · . · . · . · . · . · . · . · .

~ Default Value ~ · . ~ Value
· " .. .

I Current Value I Current Value

Figure 1. Example of Flat Nonexclusive Buttons

Selection Control
Clicking the SELECT mouse button over an object that is set will cause the object
to become unset and its XtNunselectProc procedure is called. If the object is
unset, clicking the SELECT mouse button over it causes it to become set and its
XtNselectproc procedure is called.

Page 1

FlatNonexclusives (3W) FlatNonexclusives (3W)

Use in a Menu
The FlatNonexclusi ves can be added as a child in a menu pane to implement a
several-of-many menu choice.

FlatNonexclusives Coloration
The FlatNonexclusives container inherits its background color from the
container's parent widget. Setting the background color affects only the sub
objects' background.

Keyboard Traversal
The FlatNonexclusives widget is a Primitive widget that manages the traversal
between a set of sub-objects. When the user traverses to a FlatNonexclusives
widget, the first sub-object in the set will display itself as having input focus (see
the RectButton Widget for a description of this appearance.) The MOVEUP,
MOVEDOWN, MOVERlGHT, and MOVELEFT keys move the input focus
between the sub-objects. To traverse out of the FlatNonexclusives widget, the fol
lowing keys can be used:

NEXT FIELD moves to the next traversable widget in the window

PREY FIELD

NEXTWINDOW

PREVWINDOW

NEXTAPP

PREVAPP

moves to the previous traversable widget in the window

moves to the next window in the application.

moves to the previous window in the application.

moves to the first window in the next application.

moves to the first window in the previous application.

Keyboard Operation
Flat Nonexclusives Activation Types

Activation Type Expected Results

OL MENUDEFAULTKEY If the FlatNonexclusives is on a menu, this com-
mand will set the item with focus to be menu's
default; otherwise, this command is ignored.

OL SELECTKEY This command acts as if the SELECT mouse button
had been clicked on the RectButton with focus.
See "Selection Control" section above.

Display of Keyboard Mnemonic

Page 2

The FlatNonexclusi ves widget displays the mnemonic accelerator of a sub
object as part of the sub-object's label. If the mnemonic character is in the label,
then that character is highlighted according to the value of the application
resource XtNshowMneumonics (). If the mnemonic character is not in the label, it
is displayed to the right of the label in parenthesis and highlighted according to
the value of the application resource XtNshowMneumonics () .

If truncation is necessary, the mnemonic displayed in parenthesis is truncated as
a unit.

3/91

FlatNonexclusives (3W) FlatNonexclusives (3W)

Display of Keyboard Accelerators
The FlatNonexclusives widget displays the keyboard accelerator as part of the
sub-object's label. The string in the XtNacceleratorText resource is displayed
to the right of the label (or mnemonic) separated by at least one space. The
acceleratorText is right justified.

If truncation is necessary, the accelerator is truncated as a unit. The accelerator is
truncated before the mnemonic or the label.

RESOURCES

3/91

The following table lists the resources for the FlatNonexclusi ves. Resources
that have a bullet (.) in the Access column denote sub-object resources. If these
resources are not included in the xtNitemFields list, they are inherited from the
container widget. An application can change the default values for sub-object
resources by setting them directly on the container. Even though a sub-object
resource is not included in the XtNitemFields list, the application can query the
value of any sub-object resource with OlFlatGetValues () .

Flat Nonexclusives Resource Set
Name Class Type Default Access

XtNaccelerator XtCAccelerator String NULL SCI-

XtNacceleratorText XtCAcceleratorText String (calculated) SCI-

XtNancestorSensitive XtCSensitive Boolean TRUE C-

XtNbackground XtCBackground Pixel XtDefaultBackground SCI-

XtNbackgroundPixmap XtCPixmap Pixmap None SCI-

XtNborderWidth XtCBorderWidth Dimension 0 SCI-

XtNclientData XtCClientData XtPointer NULL SCI-

XtNconsumeEvent XtCConsumeEvent XtCallbackList NULL SCI

XtNdefault XtCDefault Boolean FALSE SCIt-

XtNdepth XtCDepth Cardinal (parent's) CI

XtNdim XtCDim Boolean FALSE SCI-

XtNfont XtCFont XFontStruct * (OPEN LOOK font) SI-

XtNfontColor XtCFontColor Pixel XtDefaultForeground SCI-

XtNforeground XtCForeground Pixel XtDefaultForeground SCI

XtNgravity XtCCravity int CenterCravity SCI

XtNhPad XtCHPad Dimension 0 SCI

XtNhSpace XtCHSpace Dimension (calculated) SCI

XtNheight XtCHeight Dimension (calculated) SCI

XtNinputFocusColor XtClnputFocusColor Pixel Black SCI-

XtNitemFields XtCItemFields String * NULL CI

XtNitemCravity XtCItemCravity int NorthWestGravity SCI

XtNitemMaxHeight XtCItemMaxHeight Dimension OL ICNORE SCI

XtNitemMaxWidth XtCItemMaxWidth Dimension OL ICNORE SCI

XtNitemMinHeight XtCItemMinHeight Dimension OL ICNORE SCI

XtNitemMin Width XtCItemMinWidth Dimension OL ICNORE SCI

XtNitems XtCItems XtPointer NULL SCI

Page 3

FlatNonexclusives (3W) FlatNonexclusives (3W)

Flat Nonexc1usives Resource Set
Name Class Type Default Access

XtNitemsTouched XtCItemsTouched Boolean FALSE SG

XtNlabel XtCLabel String NULL SGIo

XtNlabelImage XtCLabelImage XImage * NULL SGIo

XtNlabelJustify XtCLabelJustify OlDefine OL LEFT SGIo

XtNlabelTile XtCLabelTile Boolean FALSE SGIo

XtNlayoutHeight XtCLayoutHeight OlDefine OL MINIMIZE SGI

XtNlayoutType XtCLayoutType OIDefine OL FIXEDROWS SGI

XtNlayoutWidth XtCLayoutWidth OlDefine OL MINIMIZE SGI

XtNmanaged XtCManaged Boolean TRUE SGI

XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE SGIo

XtNmeasure XtCMeasure int 1 SGI

XtNmnemonic XtCMnemonic unsigned char NULL SGIo

XtNnumItemFields XtCNumItemFields Cardinal 0 SGI

XtNnumItems XtCNumItems Cardinal 0 SGI

XtNreferenceName XtCReferenceName String NULL SGI

XtNreferenceWidget XtCReferenceWidget Widget NULL SGI

XtNsameHeight XtCSameHeight OlDefine OL ALL SGI

XtNsameWidth XtCSameWidth OlDefine OL COLUMNS SGI

XtNselectProc XtCCallbackProc XtCallbackProc NULL SGIo

XtNsensitive XtCSensitive Boolean TRUE SGIo

XtNset XtCSet Boolean FALSE SGIto

XtNtraversalOn XtCTraversalOn Boolean TRUE SGIo

XtNunselectProc XtCCallbackProc XtCallbackProc NULL SGIo

XtNuserData XtCUserData XtPointer NULL SGIo

XtNvPad XtCVPad Dimension 0 SGI

XtNvSpace XtCVSpace Dimension (calculated) SGI

XtNwidth XtCWidth Dimension (calculated) SGI

XtNx XtCPosition Position 0 SGI

XtNy XtCPosition Position a SGI

XtNancestorSensitive
Range of Values:

TRUE/"t:rue"
FALSE/"false"

This resource indicates the sensitivity of the sub-abject's ancestors. If TRUE, all
the sub-abject's ancestors are sensitive and the sub-object is sensitive to user
input. If FALSE, one or more of the sub-abject's ancestors are insensitive, so the
sub-object displays an inactive visual and is not sensitive to user input.

XtNbackground
This is the pixel color used to fill in the background of the sub-object.

Page 4 3/91

FlatNonexclusives (3W) FlatNonexclusives (3W)

3/91

XtNbackgroundPixmap
This resource specifies the pixmap that is displayed as the sub-object's label. Any
supplied pixmap must have the same depth as the flat widget's depth. Pixmaps
of None and ParentRelative are not considered valid values. If either Xt
Nlabel or XtNlabelImage has a non-NULL value, this resource is ignored.

XtNclientData
This is the client data supplied to all callback procedures.

XtNdefault
Range of Values:

TRUE/"true"
FALSE/" false"

When used on the sub-object, this resource specifies whether or not the sub-object
is a default item. If more than one item is a set as a default item, a warning is
generated and all but the first default item is unselected.

When used on the container, this resource indicates whether or not one of the
sub-objects is a default item. If a sub-object is a default item, XtNdefault has a
value of TRUE; else it has a value of FALSE. Setting this resource on the con
tainer widget indicates whether or not one of the sub-objects should be a default
item. If the application sets this value to TRUE on the container, the container
will set the first managed and mapped sub-object as the default item if a default
item does not exist. If the application sets this value to FALSE, the container will
unset its default item if one exists.

Even if the application does not use XtNdefault in its item fields list, the con
tainer will correctly maintain the default item and the application can change the
default item via OlFlatSetValues.

XtNdim
Range of Values:

TRUE/"true"
FALSE/"false"

If TRUE, the sub-object shows a dimmed visual indicating that the item
represents the state of one or more objects, that as a group, are in different states.

XtNitems
This is the list of sub-object items. This value must point to a static list since flat
containers reference this list after initialization but do not cache its information.

XtNitemFields
This is the list of resource names used to parse the records in the XtNitems list.
This resource does not have to point to static information since the flat container
does not use this information after initialization. Though the flat container does
not reference this resource's value after initialization, it holds onto it for respond
ing to an XtGetValues () request and supplying it in the OlFlatCallData struc
ture during callbacks. Therefore, if the application plans on querying this
resource, it's recommended that the application make this resource point to static
information.

Page 5

FlatNonexclusives (3W) FlatNonexclusives (3W)

XtNitemsTouched
Range of Values:

TRUE
FALSE

Whenever the application modifies an item list directly, it must supply this
resource (with a value of TRUE) to the flat widget container so that the container
can update the visual. If the resource value is supplied, the flat widget container
treats its current item list as a new list and hence, updates its entire visual. Since
the list is treated as a new list, the flat container may request a change in
geometry from its parent.

Note: It is not necessary to use this resource if the application modifies the list
with the OlFlatSetValues procedure, nor is it necessary to use this resource
whenever the application supplies a new list to the flat container.

XtNlabel
This is the text string that appears in the sub-object.

XtNlabelimage
This is an Xlmage pointer that can appear in a sub-object. This resource is
ignored if XtNlabel is non-NULL.

XtNlabelJustify
Range of Values:

OL_LEFT/"left"
OL_CENTER/"center"
OL_RIGHT/"right"

This resource specifies the justification of the label or Xlmage that appears within
a sub-object.

XtNlabelTile
Range of Values:

TRUE/"true"
FALSE/"false"

This resource augments the XtNlabelImage/XtNlabelPixmap resource to allow
tiling of the sub-object's background. For an image/pixmap that is smaller than
the sub-object's background, the label area is tiled with the image/pixmap to fill
the sub-object's background if this resource is TRUE; otherwise, the label is
placed as described by the XtNlabelJustify resource.

The XtNlabelTile resource is ignored for text labels.

XtNmappedWhenManaged
Range of Values:

Page 6

TRUE/"true"
FALSE/"false"

This resource specifies whether or not a managed sub-object is displayed.
Regardless of this resource's value, all managed sub-objects will be including
when determining the layout.

3/91

FlatNonexclusives (3W) FlatNonexclusives (3W)

3/91

Note: This resource is never inherited from the container, so its default value is
always TRUE

XtNnumltems
This resource specifies the number of sub-object items.

XtNnumltemFields
This resource indicates the number of resource names contained in XtNitem
Fields.

XtNsameHeight
Range of Values:

OL_ALL/"all"
OL_ROWS/"rows"
OL_NONE/"none"

This resource specifies the rows that are forced to the same height.

XtNsameWidth
Range of Values:

OL_ALL/"all"
OL_COLUMNS/"columns"
OL_NONE/"none"

This resource specifies the columns that are forced to the same width.

XtNselectProc
This callback procedure is called whenever the sub-object becomes selected by
user input.

XtNsensitive
Range of Values:

TRUE/"true"
FALSE/" false"

If TRUE, the sub-object is sensitive to user input If FALSE, the sub-object is insen
sitive to user input and an inactive visual is displayed to indicate this state.

Note: This resource is never inherited from the container, so its default value is
always TRUE.

XtNset
Range of Values:

TRUE/"true"
FALSE/"false"

This resource reflects the current state of the sub-object.

Note:
This resource is never inherited from the container, so its default value is always
FALSE.

Page 7

FlatNonexclusives (3W) FlatNonexclusives (3W)

Even if the application does not use XtNset in its item fields list, the container
will correctly maintain the set item and the application can change the set item
via OlFlatSetValues.

XtNunselectProc

Page 8

This callback procedure is called whenever the sub-object becomes unselected by
user input.

3/91

FooterPanel (3W) FooterPanel (3W)

NAME
FooterPanel - provides a convenient way to put a footer at the bottom of a
window

SYNOPSIS
#include <Intrinsic.h>
#include <StringDefs.h>
#include <QpenLook.h>
#include <FooterPane.h>

widget = XtCreateWidget(name, footerPanelWidgetClass, .•.);

DESCRIPTION

3/91

Consistent Interface for Attaching Footer
The FooterPanel widget is a simple composite that provides a consistent inter
face for attaching a footer message to the bottom of a base window. The Footer
Panel composite accepts two children: a Top Child and a Footer Child. (These
are attached to the top and bottom of the FooterPanel widget, respectively.)
The children are identified in the order they are added: the Top Child is the first
child added; the Footer Child is the second.

Initial Size
The initial height of the FooterPanel widget is the sum of the initial heights of
its children. The initial width is the widest of the initial widths of its children.

Sizing
The FooterPanel widget attempts to allow its children to grow or shrink to any
size, by asking its parent to allow it to grow to the width of the widest child and
the height of the sum of its children's height. When it is not allowed to grow to
this desired size, or when it is resized smaller by its parent, the FooterPanel
imposes the size restriction as follows: It resizes both children to its width, but
forces the Top Child to absorb all the height restriction; it does not resize the
height of the Footer Child. Conversely, when it is resized larger by its parent, the
FooterPanel widget gives all the height increase to the Top Child and resizes
both children to the new width.

The FooterPanel widget never overlaps its children. If necessary, it will resize
the Top Child to zero height. If its height becomes too small to accommodate the
Footer Child's height, it clips the Footer Child.

If queried by its parent about its preferred size, it in turn queries its children.
The width in this query is the same for each child: the width in the parent's
query. The height in the query of the Footer Child is the child's existing height,
and the height in the query of the Top Child is the height in the parent's query
minus the existing height of the Footer Child. The FooterPanel widget's
response, then, to its parent's query is a width equal to the wider preference of its
children and a height equal to the sum of their preferred heights.

Works with All Children
The FooterPanel composite widget works with all the widgets defined in this
document, except those that are sub-classed from the Shell widget class.

Page 1

FooterPanel (3W) FooterPanel (3W)

FooterPanel Coloration
The FooterPanel widget is "invisible" in that it imposes no coloration of its own.

RESOURCES
FooterPanel Resource Set

Name Class Type Default

XtNancestorSensitive XtCSenstitive Boolean TRUE

XtNconsumeEvent XtCConsumeEvent XtCallbackList NULL

XtNdepth XtCDepth int (parent's)

XtNdestroyCallback XtCCallback XtCallbackList NULL

XtNheight XtCHeight Dimension (calculated)

XtNmappedWhenManaged XtC~appedWhen~anaged Boolean TRUE

XtNsensitive XtCSensitive Boolean TRUE

XtNstring XtCString String NULL

XtNuserData XtCUserData XtPointer NULL

XtNwidth XtCWidth Dimension (calculated)

XtNx XtCPosition Position a
XtNy XtCPosition Position a

XtNstring

Page 2

This resource is the string that will be drawn. The string must be null ter
minated.

See Appendix A, "General Resources," for a description of the other Footer
Panel resources.

3/91

Access

G*

SG

G1

SI

SGI

SGI

GI*

SGI

SGI

SCI

SGI

SGI

Form (3W) Form (3W)

NAME
Form - a composite widget allowing sophisticated management of other widgets
in its boundaries

SYNOPSIS
#include <Intrinsic.h>
#include <StringDefs.h>
#include <OpenLook.h>
#include <Form.h>

widget = XtCreateWidget(name, formWidgetClass, ...)i

DESCRIPTION

3/91

The Form widget is a constraint-based manager that provides a layout language
used to establish spatial relationships between its children. It then manipulates
these relationships when the Form is resized, new children are added to the
Form, or its children are moved, resized, unmanaged, remanaged, rearranged, or
destroyed.

Spanning Constraints
A widget can be created with a set of constraints in such a manner that it spans
the width or height of a form. Constraints that cause a widget to span both the
width and height of a form can also be specified.

Row Constraints
Sets of widgets can be set up as a row so that resizing a form may increase or
decrease the spacing between the widgets. The form may also make the widgets
smaller if desired.

Column Constraints
Sets of widgets can be displayed in a single column or in multiple columns. The
form may increase or decrease the spacing between widgets or resize the widgets.

Automatic Form Resizing
The form calculates new sizes or positions for its children whenever they change
size or position. The new form size thus generated is passed as a geometry
request to the parent of the form. Once resized, the form, using its children's
constraints, tries to rearrange its children as intelligently as possible.

Managing, Unmanaging and Destroying Children
When a widget within a form is unmanaged or destroyed, it is removed from the
constraint processing and the constraints are reprocessed to reposition and/or
resize the form and its contents. Any widgets that referenced it are rereferenced
to the widget that it had been referencing. For the unmanaged case, if the widget
is remanaged, the widgets that were previously referencing it are rereferenced to
it, thereby reestablishing the original layout.

Works with All Children
The Form composite widget works with all the widgets defined in this document,
except those that are sub-classed from the Shell widget class.

Form Coloration
Figure 1 illustrates the resources that affect the coloration of the Form widget.

Page 1

Form (3W)

RESOURCES

Name
XtNancestor5ensitive

XtNbackground

XtNborderColor
(XtNborderPixmap)

XtNbackground
(XtNbackgroundPixmap)

r----------------:
, ' , ' , ' , '
I~ - - - - - - - - - - - - - - __ ,

~---------------------, ' , ' , ' , , , , , L ____________________ ~

r-------------1 , , , , , , , , , ,
L _____________ !

(Child Widgets Colored Independently)

Figure 1. Form Coloration

Form Resource Set
Class Type
XtCSenstitive Boolean

XtCBackground Pixel

XtNbackgroundPixmap XtCPixmap Pixmap

XtNborderColor XtCBorderColor Pixel

XtNborderPixmap XtCPixmap Pixmap

XtNborderWidth XtCBorderWidth Dimension

XtNconsumeEvent XtCConsumeEvent XtCallbackList

XtNdepth XtCDepth int

XtNdestroyCallback XtCCallback XtCallbackList

XtNheight XtCHeight Dimension

XtNmappedWhenManaged XtC~appedWh~anaged Boolean

XtN sensitive XtCSensitive Boolean

XtNuserData XtCUserData XtPointer

XtNwidth XtCWidth Dimension

XtNx XtCPosition Position

XtNy XtCPosition Position

Page 2

Form (3W)

Default Access
TRUE G"

White SGIt

(none) SGIt

XtDefaultForeground SGIt

(none) SGIt

0 SGI

NULL 5G

(parent's) GI

NULL 51

(calculated) 5GI

TRUE SGl

TRUE GI"

NULL 5Gl

(calculated) SGI

0 SGI

0 SGI

3/91

Form (3W) Form (3W)

CONSTRAINT RESOURCES

3/91

Each child widget attached to the Fonn composite widget is constrained by the
following resources: (In essence, these resources become resources for each child
widget and can be set and read just like any other resources defined for the
child.)

Name
XtNxAddWidth
XtNxAttachOffset
XtNxAttachRight
XtNxOffset
XtNxRefName
XtNxRefWidget
XtNxResizable
XtNxVaryOffset
XtNy AddHeight
XtNy AttachBottom
XtNy AttachOffset
XtNyOffset
XtNyRefName
XtNyRefWidget
XtNyResizable
XtNyVaryOffset

XtNxAddWidth
XtNyAddHeight

Range of Values:
TRUE
FALSE

Fonn Constraint Resource Set
Class Type Default Access
XtCXAddWidth Boolean FALSE SCI
XtCXAttachOffset int 0 SCI
XtCXAttachRight Boolean FALSE SCI
XtCXOffset int 0 SCI
XtCXRefName String NULL SCI
XtCXRefWidget Widget (form) SCI
XtCXResizable Boolean FALSE SCI
XtCXVaryOffset Boolean FALSE SCI
XtCY AddHeight Boolean FALSE SCI
XtCYAttachBottom Boolean FALSE SCI
XtCYAttachOffset int 0 SCI
XtCYOffset int 0 SCI
XtCYRefName String NULL SCI
XtCYRefWidget Widget (form) SCI
XtCYResizable Boolean FALSE SCI
XtCYVaryOffset Boolean FALSE SCI

These resources indicate whether to add the width or height of the corresponding
reference widget to a widget'S location when determining the widget's position.

XtNxAttachOffset
XtNy AttachOffset

Range of Values:
o ~ XtNxAttachOffset
o ~ XtNyAttachOffset

When a widget is attached to the right or bottom edge of the form, the separation
between the widget and the form defaults to zero pixels. These resources allow
that separation to be set to some other value. Also, for widgets that are not
attached to the right or bottom edge of the form, these resources specify the
minimum spacing between the Widget and the form.

Page 3

Form (3W) Form (3W)

XtNxAttachRight
XtNyAttachBottom

Range of Values:
TRUE
FALSE

Widgets are normally referenced from "form left" to "form right" or from "form
top" to "form bottom." These resources allow this reference to occur on the
opposite edges of the form. When used with the XtNxVaryOffset and
XtNyVaryOffset resources, they allow a widget to float along the right or bot
tom edge of the form. This is done by setting both the XtNxAttachRight
(XtNyAttachBottom) and XtNxVaryOffset (XtNyVaryOffset) resources to
TRUE. A widget can also span the width (height) of the form by setting the
XtNxAttachRight (XtNyAttachBottom) resource to TRUE and the
XtNxvaryOffset (XtNyVaryOffset) resource to FALSE.

XtNxOffset
XtNyOffset

Range of Values:
o ~ XtNxOffset
o ~ XtNyOffset

The location of a widget is determined by the widget it references. As the
default, a widget's position on the form exactly matches its reference widget's
location. There are two additional data used to determine the location. These
resources define integer values representing the number of pixels to add to the
reference widget's location when calculating the widget's location.

XtNxRefName
XtNyRefName

Range of Values:
(the name of a widget already created as a child of the form)

When a widget is added as a child of the form, its position is determined by the
widget it references. These resources allow the name of the reference widget to
be given. The form converts this name to a widget to use for the referencing.
Any widget that is a direct child of the form or the form widget itself can be used
as a reference widget.

If one of these resources is set and the corresponding resource, XtNxRefWidget
or XtNyRefWidget, is also set, they must agree: the name given in XtNxRefName
or XtNyRefName must match the name of the identified widget. The advantage of
using these resources rather than XtNxRefWidget and XtNyRefWidget is that the
references can be used before the Widget instances are made.

XtNxRefWidget
XtNyRefWidget

Range of Values:
(the ID of a widget already created as a child)

Page 4 3/91

Form (3W) Form (3W)

3/91

Instead of naming the reference widget, an application can give the reference
widget's ID using these resources.

If both a widget ID and a widget name is given for a reference in the same
dimension (x or y), they must refer to the same widget. If not, a warning is made
and the widget ID is used.

XtNxResizable
XtNyResizable

Range of Values:
TRUE
FALSE

These resources specify whether the form can resize (expand or shrink) a widget.
When a form's size becomes smaller, the form will resize its children only after
resizing all the inter-widget spacing of widgets with their XtNXVaryOffset
(xtNyVaryOffset) resource set to TRUE. The form keeps track of a widget's ini
tial size or its size generated through calls to XtSetValues (), so that when the
form then becomes larger, the widget will grow to its original size and no larger.

XtNxVaryOffset
XtNyVaryOffset

Range of Values:
TRUE
FALSE

When a form is resized, it processes the constraints contained within its children.
These resources allow the spacing between a widget and the widget it references
to vary (either increase or decrease) when a form's size changes. For widgets that
directly reference the form widget, these resources are ignored. The spacing
between a widget and its reference widget can decrease to zero pixels if the
XtNxAddWidth (XtNyAddHeight) resource is FALSE or to one pixel if
XtNxAddWidth (XtNyAddHeight) is TRUE.

Page 5

Gauge (3W)

NAME
Gauge - the graphical equivalent of a read only analog control

SYNOPSIS
#include <Intrinsic.h>
#include <StringDefs.h>
#include <OpenLook.h>
#include <Gauge.h>

widget = XtCreateWidget(name, gaugeWidgetClass, •.• }

DESCRIPTION
Gauge Components

Gauge (3W)

The Gauge widget is merely an indicator of amount of space available in any con
tainer it is measuring.

3/91

It consists of the following elements:

Bar (typically)

Shaded Bar (typically)

Current Value (not visible)

Minimum Value (not visible)

Maximum Value (not visible)

Figure 1. Horizontal Gauge Widget

Page 1

Gauge (3W) Gauge (3W)

Application Notification
The application is responsible for providing any feedback to the end user deemed
appropriate, such as updating the Current Value in a text field.

RESOURCES
Gauge Resource Set

Name Class Type Default Access

XtNancest01'5ensitive XtCSenstitive Boolean TRUE G"

XtNbackground XtCBackground Pixel XtDefaultBackground SGIt

XtNbackgroundPixmap XtCPixmap Pixmap (none) SGIt

XtNconsumeEvent XtCConsumeEvent XtCallbackList NULL SGI

XtNdestroyCallback XtCCallback XtCallbackList NULL SI

XtNfont XtCFont FontStruct • (OPEN LOOK default) SGI

XtNfontColor XtCFontColor Pixel Black SGI

XtNfontGroup XtCFontGroup OIFontList NULL SGI

XtNforeground XtCForeground Pixel XtDefaultForeground SGIt

XtNheight XtCHeight Dimension (calculated) SGI

XtNgranularity XtCGranularity int 1 SGI

XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE SGI

XtNminLabel XtCLabel String NULL SGI

XtNmaxLabel XtCLabel String NULL SGI

XtNorientation XtCOrientation OlDefine OL VERTICAL GI

XtNrecomputeSize XtCRecomputeSize Boolean FALSE SGI

XtNsensitive XtCSensitive Boolean TRUE GI"

XtNsliderMax XtCSliderMax int 100 SGI

XtNsliderMin XtCSliderMax int 0 SGI

XtNsliderValue XtCSliderValue int 0 SGI

XtNspan XtCSpan Dimension OL IGNORE SGI

XtNticks XtCTicks int 0 SGI

XtNtickUnit XtCTickUnit OIDefine OL NONE SGI

XtNuserData XtCUserData XtPointer NULL SGI

XtNwidth XtCWidth Dimension (calculated) SGI

XtNx XtCPosition Position 0 SGI

XtNy XtCPosition Position 0 SGI

XtNminLabel
This is the label to be placed next to the minimum value position. For a vertical
gauge, the label is placed to the right of the minimum value position. If there is
not enough space for the entire label and XtNreconputeSize is FALSE, the label
will be truncated from the end. If there is not enough space for the entire label
and XtNreconputeSize is TRUE, then the widget will request for more space to
show the entire label.

Page 2 3/91

Gauge (3W) Gauge (3W)

3/91

For an horizontal gauge, the label is placed centered and below the minimum
value position. If there is not enough room to center the label and XtNrecompu
teSize is set to FALSE, the beginning of the label will be aligned with the left
anchor and is drawn to the right. If this label collides with the max label, some
part of the labels will overlap. If there is not enough room to center the label and
XtNrecomputeSize is set to TRUE, the widget will request for more space to
center the label below the minimum value position.

XtNmaxLabel
This js the JilheJ to he pJilced ne.xt tD the maximllm vilJlle posihon_ FOT il veTtjcilJ
gauge, the label is placed to the right of the minimum value position. If there is
not enough space for the entire label and xtNrecomputeSize is FALSE, the label
will be truncated from the end. If there is not enough space for the entire label
and XtNrecomputeSize is TRUE, then the widget will request for more space to
show the entire label.

For an horizontal gauge, the label is placed centered and below the maximum
value position. If there is not enough room to center the label and XtNrecompu
teSize is set to FALSE, the end of the label will be aligned with the left anchor. If
this label collides with the min label, some part of the labels will overlap. If there
is not enough room to center the label and XtNrecomputeSize is set to TRUE,
the widget will request for more space to center the label below the maximum
value position.

XtNorientation
Range of Values:

OL_HORIZONTAL/"horizontal"
OL_VERTlCAL/"vertical"

This resource defines the direction for the visual presentation of the widget.

XtNsliderMax
XtNsliderMin

Range of Values:
XtNsliderMin < XtNsliderMax

These two resources give the range of values tracked by the Gauge widget.
Mathematically, the range is open on the right; that is, the range is the following
subset of the set of integers:

XtNsliderValue
Range of Values:

XtNsliderMin ~ range ~ XtNsliderMax

XtNsliderMin ~ XtNsliderValue ~ XtNsliderMax

This resource gives the current position of the Drag Box, in the range [XtNslid
erMin , XtNsliderMax J. The Gauge Widget keeps this resource up to date.

XtNticks
This is the interval between tick marks. The unit of the interval value is deter
mined by XtNtickUnit.

Page 3

Gauge (3W) Gauge (3W)

XtNtickUnit
Range of values:

OL NONE/"none"
OL -SLIDERVALUE/"slidervalue"
OL =PERCENT /"percent"

This resource can have one of the values: OL NONE, OL SLIDERV ALVE, and
OL]ERCENT. If it is OL _NONE, then no tick marks Will be displayed and
xtNticks is ignored. If it is OL_PERCENT, then XtNticks is interpreted as the
percent of the gauge value range. If it is OL_SLlDERVALVE, the XtNticks is
interpreted as the same unit as gauge value.

Note: To be consistent with the scrollbar widget, we recommend that the effective
spacing between tick marks, designated in XtNticks and xtNtickunit be less
than or equal to the spacing in XtNgranulari ty.

- 10(----------0

Figure 2. Gauge Widget with Tick Marks

XtNrecomputeSize
This resource, if set to TRUE, allows the gauge widget to resize itself whenever
needed, to compensate for the space needed to show the tick marks and the
labels. The gauge widget uses the xtNspan, the sizes of the labels, and
XtNtickunit to determine the preferred size.

XtNfont

Page 4

This resource specifies the font used to draw the labels. It defaults to the OPEN
LOOK standard font.

3/91

Gauge (3W) Gauge (3W)

3/91

XtNfontcolor
This resource specifies the color used to draw the labels. It defaults to the fore
ground color of the gauge widget.

XtNspan
If XtNrecOIIq)UteSize is set to TRUE, then XtNspan should be set to reflect the
preferred length of the gauge, not counting the space needed for the labels. The
gauge widget uses the span value, the sizes of the labels, and XtNtickUnit to
determine the preferred size.

Page 5

MenuButton (3W) MenuBuHon (3W)

NAME
MenuButton - provides a button with a MenuShell attached

SYNOPSIS
#include <Intrinsic.h>
#include <StringDefs.h>
#include <OpenLook.h>
#include <MenuButton.h>

static Widget button, menupane, w;

Arg args[l];

button = XtCreateWidget(name, MenuButtonwidgetClass, ...);
OR
button = XtCreateWidget(name, menubuttonGadgetClass, ...);
XtSetArg (args [0], XtNmenuPane, &:menupane);
XtGetValues(button, args, 1);

w = XtCreatewidget (name, widget-class, menupane, ...);

DESCRIPTION
'The MenuButton widget provides the features of menu default selection and
menu previewing as well as the features of the Menu widget.

3/91

MenuButton Components
Each menu button has the following parts:

Label

Border

Page 1

MenuButton (3W) MenuButton (3W)

Menu~rR~on

I I

Label

r------------------------------------+--+---, , ,
: I I :

-----:1~ ... ~ Sample Stack p! 1 , , , , , ,
l___ ------------------------r-----------J

Border

MenuButton Widget

Figure 1. Menu Button

Each menu button also has the components of a Menu widget. These are not
shown in Figure 1.

All Features of the Menu Widget
The MenuButton widget includes all the features of the Menu widget; the features
of that widget apply here.

Selecting the Default Item

Page 2

As an interface to a menu, each MenuButton widget has a Default Item. If the
power-user option is on, this Default Item is selected by clicking SELECT over the
MenuButton widget. If the Default Item is inactive (its XtNsensitive resource is
FALSE), or busy (its XtNbusy resource is TRUE), the system beeps. (If the
power-user option is off, clicking SELECT brings up a pop-up menu. The
power-user option is set in the property sheet of the Workspace Manager. See
the OPEN LOOKTM GUI User's Guide for more information on setting the power
user option.)

Since the Default Item may be the MenuButton widget itself, selecting it really
selects its Default Item; this recurses through the menu tree until a
non-MenuButton widget is found as the Default Item. The Default Item may be
the pushpin in a menu.

3/91

MenuButton (3W) MenuButton (3W)

If a pushpin is the Default Item, the menu is brought up as a pinned menu.

Previewing the Default Item
If the menu button is not in a pop-up menu and the power-user option is on,
pressing SELECT, or moving the pointer into the menu button while SELECT is
pressed, displays the highlighted label of the Default Item in place of the menu
button's label. Releasing SELECT restores the original colors and label, and
selects the Default Item as described above. Moving the pointer off the menu
button before releasing also restores the original colors and label, but does not
select the Default Item. (If the power-user option is off, pressing SELECT and
releasing it displays a stayup menu. See Selecting the Default Item above
for comments about the power-user option.)

3/91

This Default Item is the one in the menu directly under the menu button, not
necessarily the Default Item at the end of the menu tree, that is activated when
the Default Item is selected (see above).

NOTE:
The previewing feature is not accessible with keyboard only operation. This
feature functions only when using a mouse to SELECT an item.

Popping Up the Menu-Not in a Menu
When the MenuButton widget is in a control area, pressing or clicking MENU
when the pointer is within or on the Border pops up the menu button's menu in
the direction of the menu mark.

Popping Up the Menu-As a Menu Button in a Menu
When the MenuButton widget is in a stay-up menu, pressing or clicking MENU
when the pointer is within or on the Border pops up the menu button's menu in
the direction of the menu mark. When the MenuButton widget is in a pop-up
menu, moving the pointer into the menu mark region pops up the menu in the
direction of the menu mark. The position is computed when the movement into
the menu mark region is first detected, but rapid pointer motion and internal
delays in popping up the menu may let the pointer wander.

Moving the pointer out of the MenuButton widget, but not directly into the
newly popped up menu, causes that menu to be popped down. This occurs even
if the pointer is moved into and out of the newly popped up menu in the interim.

Menu Placement When There is No Room
If the right or bottom edge of the screen is too close to allow the menu placement
described above, the menu pops up aligned with the edge of the screen and the
pointer is shifted horizontally to keep it four points from the left edge of the
menu items. If the left edge of the screen is too close, the menu pops up four
points from the edge and the pointer is shifted to lie on the edge. The pointer
does not jump back after the menu is dismissed.

MenuButton Coloration
On a monochrome display, the MenuButton widget indicates that it has input
focus by inverting the foreground and background colors of the control.

Page 3

MenuButton (3W) MenuButton (3W)

On color displays, when the MenuButton widget receives the input focus, the
background color is changed to the input focus color set in the XtNinput
FocusColor resource.

EXCEPTIONS:

If the input focus color is the same as the font color for the control labels,
then the coloration of the active control is inverted.

If the input focus color is the same as the Input Window Header Color and
the active control is in the window header, then invert the colors.

If the input focus color is the same as the window background color, then
the MenuButton widget inverts the foreground and background colors when
it has input focus.

Figure 2 illustrates the resources that affect the coloration of the MenuButton
widget. Events that occur outside the Border (but within the MenuButton
widget) are still in the domain of the menu button.

XtNforeground

Parent's XtNbackground
(XtNbackgroundPixmap)

X:~~O_~~ __ mmmmmmmL_:
i Ci~p'e Stack ~ I

l
.......................... .J

XtNbackground
(XtNbackgroundPixmap)

Figure 2. Menu Button Coloration

Label Appearance

Page 4

The XtNwidth, XtNheight, XtNrecomputeSize, and XtNlabelJustify resources
interact to produce a truncated, clipped, centered, or left-justified label as shown
in Figure 3.

3/91

MenuButton (3W) MenuButton (3W)

3/91

XtNwidth XtNrecomputeSize XtNlabelJustily Result

any value TRUE any (Just Fits v)

needed
>for label

FALSE OL_LEFT (Left Justified v)

> needed FALSE OL_CENTER (Centered v)
for label

needed FALSE (Trunq,v) <lor label any

XtNheight XtNrecomputeSize XtNlabelJustily Result

any value TRUE any (Just Fits v)

>needed any (Centeredv)
for label FALSE

needed
<for label FALSE any (Cli~~edv)

Figure 3. Label Appearance

When the label is centered or left-justified, the extra space is filled with the back
ground color of the MenuButton widget, as determined by the XtNbackground
and XtNbackgroundPixmap resources.

When a text label is truncated, the truncation occurs at a character boundary and
a solid-white triangle is inserted to show that part of the label is missing. The
triangle, of course, requires that more of the label be truncated than would
otherwise be necessary. If the width of the button is too small to show even one
character with the triangle, only the triangle is shown. If the width is so small
that the entire triangle cannot be shown, the triangle is clipped on the right.

Keyboard Traversal
The default value of the XtNtraversalOn resource is True.

Keyboard traversal within a Menu is done using the PREV_FIELD, NEXT]IELD,
MOVEUP, MOVEDOWN, MOVELEFT and MOVERIGHT keys. The
PREY _FIELD, MOVEUP, and MOVELEFT keys move the input focus to the pre
vious Menu item with keyboard traversal enabled. If the input focus is on the
first item of the Menu, then pressing one of these keys will wrap to the last item
of the Menu with keyboard traversal enabled. The NEXT]IELD, MOVEDOWN,
and MOVERIGHT keys move the input focus to the next Menu item with key
board traversal enabled. If the input focus is on the last item of the Menu, then
pressing one of these keys will wrap to the first item of the Menu with keyboard
traversal enabled.

Page 5

MenuButton (3W) MenuButton (3W)

To traverse out of the menu, the following keys can be used:

NEXTWINDOW moves to the next window in the application

PREVWINDOW

NEXTAPP

PREVAPP

moves to the previous window in the application

moves to the first window in the next application

moves to the first window in the previous application

Keyboard Operation
The action of the SELECTKEY depends on whether the user has selected the
power-user option. (The power-user option is set in the property sheet of the
Workspace Manager. See the GUI User's Guide for more information on set
ting this option.) While focus is on the MenuButton and the power-user option is
on, pressing the SELECTKEY activates the default menu item. If the power-user
option is off, pressing the SELECTKEY posts the stayup menu.

The DEFAULTACTION key will activate the default control in the MenuButton
widget as if the user clicked the SELECT button on the control. To dismiss a
MenuButton's submenu while focus is with the submenu, the CANCEL key is
used.

The MENUDEFAULTKEY can be used by the user to change the default control
in the MenuButton widget. When the user presses the MENUDEFAULTKEY, the
control which has input focus will become the default control.

MenuButton/MenuGadget Activation Types
Activation Type Expected Results
OL MENUKEY Popup the MenuButton's submenu and set focus to

the menu's default item.
OL MENUDEFAULTKEY If the MenuButton is on a menu, this sets the Menu-

Button to be the menu's default.
OL SELECTKEY See the above discussion of SELECTKEY.

Display of Keyboard Mnemonic
The MenuButton widget displays the mnemonic accelerator for its child as part of
its label. If the mnemonic character is in the label, then that character is
highlighted according to the value of the application resource XtNshowMneu
monics. If the mnemonic character is not in the label, it is displayed to the right
of the label in parenthesis and highlighted according to the value of the applica
tion resource XtNshowMneumonics.

If truncation is necessary, the mnemonic displayed in parenthesis is truncated as
a unit.

Display of Keyboard Accelerators

Page 6

The MenuButton widget displays the keyboard accelerator as part of its label.
The string in the XtNacceleratorText resource is displayed to the right of the
label (or mnemonic) separated by at least one space. The acceleratorText is right
justified.

3/91

MenuButton (3W) MenuButton (3W)

If truncation is necessary, the accelerator is truncated as a unit. The accelerator is
truncated before the mnemonic or the label.

MenuButton Gadgets
MenuButton gadgets cannot be parents (i.e. cannot be used as the parent parame
ter when creating a widget or other gadget.

Gadgets share some core fields. But since they are not subclasses of Core, they do
not have all Core fields. In particular, they don't have a name field or a transla
tion field (so translations cannot be specified/ overridden).

SUBSTRUCTURE
Menu Component

Name: menu
Class: Menu

Name

*XtNcenter

*XtNhPad

*XtNhSpace

*XtNlayoutType

*XtNmeasure

XtNpushpin

XtNpushpinDefault

*XtNsameSize

XtNtitie

*XtNvPad

*XtNvSpace

Application Resources
Class Type

XtCCenter Boolean

XtCHPad Dimension

XtCHSpace Dimension

XtCLayoutType OlDefine

XtCMeasure int

XtCPushpin OlDefine

XtCPushpinDefault Boolean

XtCSameSize OlDefine

XtCTitie String

XtCVPad Dimension

XtCVSpace Dimension

Default Access

TRUE I

4 I

4 I

OL FIXEDROWS I

1 I

OL NONE I

FALSE I

OL COLUMNS I

(widget's name) I

4 I

4 I

* See the Menu and ControlArea widgets for more information on these resources.

RESOURCES
MenuButton Resource Set

Name Class Type Default Access

XtNaccelerator XtCAccelerator String NULL SCI

XtNacceleratorText XtCAcceleratorText String (calculated) SCI

XtNancestorSensitive XtCAncestorSenstitive Boolean TRUE C*

XtNbackground XtCBackground Pixel XtDefaultBackground SClt

:j: XtNbackgroundPixmap XtCPixmap Pixmap (none) SCIt

XtNconsumeEvent XtCConsumeEvent XtCallbackList NULL SCI

XtNdefault XtCDefault Boolean FALSE SCI

:j: XtNdepth XtCDepth int (parent's) CI

XtNdestroyCailback XtCCallback XtCallbackList NULL SI

XtNfontGroup XtCFontCroup Pixel XtDefauitForeground SCI

XtNheight XtCHeight Dimension (calculated) SCI

XtNinputFocusColor XtCInputFocusColor Pixel Red SCI

3/91 Page 7

MenuButton (3W)

MenuButton Resource Set
Name Class Type

XtNlabel XtCLabel String

XtNlabelJustify XtCLabelJustify OlDefine

:j: XtNmappedWhenManaged XtC11appedWhe~anaged Boolean

XtNmenu11ark XtC11enu11ark OlDefine

XtNmenuPane XtC11enuPane Widget

XtNmnemonic XtC11nemonic unsigned char

XtNrecomputeSize XtCRecomputeSize Boolean

XtNreferenceName XtCReferenceName String

XtNreferenceWidget XtCReferenceWidget Widget

XtNsensitive XtCSensitive Boolean

XtNtraversalOn XtCTraversalOn Boolean

XtNuserData XtCUserData XtPointer

XtNwidth XtCWidth Dimension

XtNx XtCPosition Position

XtNy XtCPosition Position

:j: These resources are not available to MenuButton gadgets.

XtNdefault
Range of Values:

TRUE
FALSE

MenuButton (3W)

Default Access

(class name) SGI

OL LEFT SGI

TRUE SGI

(calculated) SGI

(none) G

NULL SGI

TRUE SGI

NULL SGI

NULL SGI

TRUE GI*

TRUE SGI

NULL SGI

(calculated) SGI

0 SGI

0 SGI

If this resource is TRUE, the Border is doubled to two lines to show that the
menu button contains the default choice of several buttons.

XtNlabel
This resource is a pointer to the text for the Label of the MenuButton widget.

XtNlabelJustify
Range of Values:

OL_LEFT/" left "
OL_CENTER/"center"

This resource dictates whether the Label should be left-justified or centered
within the widget width.

XtNmenuMark
Range of Values:

OLDOWN
OL-RlGHT

This resource specifies the direction of the menu arrow.

XtNmenuPane
This is the widget where menu items can be attached; its value is available once
the MenuButton widget has been created.

Page 8 3/91

MenuButton (3W) MenuButton (3W)

XtNrecomputeSize
Range of Values:

TRUE
FALSE

This resource indicates whether the MenuButton widget should calculate its size
and automatically set the XtNheight and XtNWidth resources. If set to TRUE,
the MenuButton widget will do normal size calculations that may cause its
geometry to change. If set to FALSE, the MenuButton widget will leave its size
alone,: this may cause truncation of the vi.'libJe .image be.ing shown by the.Menu
Button widget if the fixed size is too small, or may cause padding if the fixed
size is too large. The location of the padding is determined by the XtNlabelJus
tify resource.

SEE ALSO
MenuShell "Programmatic Menu Popup and Popdown"

3/91 Page 9

MenuSheli MenuSheli

NAME
MenuShe11- used to create a menu not associated with a menu button

SYNOPSIS
#inc1ude <Intrinsic.h>
#inc1ude <StringDefs.h>
#inc1ude <OpenLook.h>
#inc1ude <Menu.h>

static Widget menu, menupane, w;

Arg args[l];

menu = xtCreatePopupShe11(name, menuShe11widgetC1ass, ...);
XtSetArg(args [0], XtNm.enuPane, &menupane);
XtGetVa1ues(menu, args, 1);

w = XtCreateWidget (name, widget-class, menupane, ...);

DESCRIPTION

3/91

Menu versus MenuButton
The Menu widget is used to create a menu not associated with either a menu but
ton or an abbreviated menu button. For example, a Menu widget can be attached
to a button, such as an Ob10ngButton widget, but this does not make the button
into a menu button. However, all the features of the Menu widget (except those
related to menu creation) also pertain to the MenuButton menu.

Menu Components
A menu contains a set of Items that are presented to the end user for his or her
selection. These are specified by the application as widgets attached to the menu.
One of these Items is a Default Item. (A menu always has exactly one Default
Item.) The Items are laid out in a Control Area. A menu also has a Title, a Title
Separator, a Border or Window Border, and an optional Pushpin. Sometimes it
also has a Drop Shadow. See Figure l.

The application chooses the label for the Title and whether a menu has a Pushpin.

Sub-class of the Shell Widget
The Menu widget is a sub-class of the Shell widget. Therefore, as the SYNOPSIS
shows, the XtCreatepopupShell () routine is used to create a menu instead of
the normal XtCreateWidget () .

The following table lists the VendorShell resources and defaults for the OPEN
LOOK Menu Shell. The Menu Shell is also a subclass of VendorShell.

Default Window Decorations
Resource Type Default
XtNmenuButton Boolean FALSE
XtNpushpin OIDefine OL NONE
XtNresizeComers Boolean FALSE
XtNwindowHeader Boolean TRUE

Page 1

MenuSheli MenuSheli

Menu Pane
The Menu Pane is not described as a separate widget in these requirements; the
only interface to it for the application programmer is as a parent widget to which
the widgets comprising the menu items are attached. The menu items are not
attached directly to the Menu widget, since a shell widget can take only one child.
The SYNOPSIS shows how the widget ID of the Menu Pane is obtained from the
Menu widget.

Connecting a Menu to a Widget
A menu can be connected to any widget, including primitive widgets. The con
nection is made by creating the menu widget as a child of the other widget. Of
course, being a shell widget, the Menu widget is not a normal widget-child of its
parent, but a pop-up child. If the application allows it, the menu augments the
parent's event list so that the popping-up of the menu is handled automatically.

Popup Control
Pressing MENU when the pointer is over the parent of the Menu widget causes
the menu to be popped up. The menu is presented as a pop-up menu, where the
Items are available for a press-drag-release type of selection (see below). Clicking
MENU when the pointer is over the parent of the Menu widget also causes the
menu to be popped up, but the menu is presented as a stay-up menu, where the
Items are available for a click-move-click type of selection, instead (see below). A
"slow click" (a press with a noticeable delay before the release) may show the
menu as a pop-up on the press, then as a stay-up on the release.

Use of the Pushpin
The Pushpin is presented to the end user like any of the items to be selected from
the menu, except that it is always the top-most item, and is presented visually as
an "adornment" of the header, next to the Title (if present). The end user selects
the Pushpin, pushing it in to cause the menu to remain on the display as an
OPEN LOOK window or pinned menu, and pulling it out to make the menu a
stay-up menu. To the end user, a pinned menu behaves indistinguishably from a
command window.

The Default Item
If none of the menu items are explicitly set as the default item, the menu picks
the first menu item to be the default item. If the menu contains a pushpin and
no other menu item is explicitly set as the default item, the pushpin is chosen as
the default item.

Components Shown when Popped Up

Page 2

A pop-up or stay-up menu shows the Title, Border, Pushpin (if available), Items,
and Drop Shadow. The Title is left out if the menu is from either a menu button
or an abbreviated menu button. A pinned menu shows the Window Border,
Title, Pushpin, Items, but no Drop Shadow.

3/91

MenuShell MenuShell

3/91

TItI, s,Pa<at",:\~r T----...,
~ u-L=J Window

Default Item ____ I
~ (Dismiss I>)

Scale I>
Items

Back I>

Locate Owner

Drop Shadow

Figure 1. Menu Components

Popup Position
If the menu is not from a menu button, the menu pops up so that the Default
Item is vertically centered four points to the right of the pointer. If the right or
bottom edge of the screen is too close to allow this placement, the menu pops up
with the Drop Shadow aligned with the edge of the screen, and the mouse
pointer is shifted horizontally to keep it four points from the left edge of the
Default Item.

For the pop-up position when the menu is from a menu button, see Menu
Button(3W).

Programmatic Menu Popup and Popdown
Four convenience routines are provided to programmatically control the mapping
and unmapping of menus.

void OlMenupoPUP(menu, emanate, item _index, state, set yosition, x, y, position yroc)
Widget menu;
Widget emanate;
Cardinal item_index
OlDefine
Boolean
position
Position
OlMenuPositionProc

state;
set.J)osition;
x;
y;
position.J)roc;

Page 3

MenuSheli MenuSheli

Page 4

menu

emanate

item index

state

set yosition

xy

position yroc

A menuShellWidget id obtained by creating a menu explicitly.

This field specifies the object that the menu is currently associ
ated with and it is supplied to the position yroc when the menu
positioning is done. If this field is NULL, the menu's parent
object is used as the emanate object for later positioning calcula
tions.

If emanate is a flattened widget this parameter specifies the par
ticular item.

Range of values:
OL_PINNED_MENU
OL_PRESS_DRAG_MENU
OL_STAYUP_MENU

This specifies the state the menu should be in when it visibly
appears on the screen.

A Flag indicating whether the following two arguments (x and
y) are used to help position the menu. If the flag is NULL the
current Pointer Location is used to initialize x and y.

These coordinates are used by the positioning routine. Typi
cally, these values represent the pointer with respect to the
RootWindow. For example, xevent->xbutton.x_root and
xevent->xbutton.y_root. However, if the menu's state is
OL_PINNED_MENU, these coordinates represent the desired
upper-left hand corner of the pinned menu.

Procedure called to determine the menu's position if the menu's
state is either OL PINNED MENU or OL STAYUP MENU. If
the menu's state- is OL)'INNED_MENU, the position""proc
value is ignored. If this procedure is NULL, the default posi
tioning routine (that is, the one associated with the emanate
widget or the menu's parent) is used. The type of this pro
cedure is:

void (*OlMenuPositionProcl (menu, emanate, item_index, state, mx, my, px, pyl
Widget menUi
Widget emanatei
Cardinal item_index
OlDefine statei
Position * I mxi
position * I IlIYi
Position * I PXi
position * I pXi

menu MenuShellWidget id to be positioned.

emanate Menu's emanate widget.

3/91

MenuSheli MenuSheli

3/91

item index

state

Emanate item index or OL NO ITEM - --
menu's state, either OL PRESS DRAG MENU or

mx

my

px

py

- - -
OL STAYUP MENU - -
Pointer containing the menu's current x location. If the position
routine wants to move the menu, it should change this value.
The position routine should

Pointer containing the menu's current y location. If the position
routine wants to move the menu, it should change this value.
The position routine should not move the menu explicitly.

Represents the x location supplied to the OIMenuPopup routine.
If the position routine changes this value, the pointer is warped
to the new x location.

Represents the y location supplied to the OIMenuPopup rou
tine. If the position routine changes this value, the pointer is
warped to the new y location.

void OlMenuPost(menu)
Widget menu;

A convenience routine that is equivalent to OlMenuPopup (menu, NULL,
OL_STAYUP_MENU, FALSE, 0, 0, (OlMenuPositionProc) NULL.

void OlMenuPopdown (menu, dismiss yinned)
Widget menu;
Boolean dismiss-pinned;

This routine pops down a menu. If a menu is pinned, a value of TRUE for
dismiss yin ned is required to dismiss it. If a menu does not have a pushpin or the
menu is not pinned, the dismiss yinned field is ignored.

void OlMenuUnpost(menu)
Widget menu;

A convenience routine that is equivalent to OlMenuPopdown(menu, FALSE).

Press-Drag-Release vs Click-Move-Click Selection Control
The Menu arranges for its children to respond to either the press-drag-release or
the click-move-click type of selection. With the press-drag-release type of control,
the user keeps MENU pressed and moves the pointer to the Item of choice;
releasing MENU selects the Item and pops the menu down. If the pointer is not
over an Item when MENU is released, the menu simply pops down. With the
click-move-c1ick type of control, the user moves the pointer to the Item of choice
(MENU has already been released to end a click); clicking SELECT or MENU
selects the Item and pops the menu down. If the pointer is not over an Item
when SELECT or MENU is clicked, the menu simply pops down.

These selection methods apply to all menu items except menu buttons. For
example, in Figure 1 above, Locate Owner can be selected using the methods
described here. For the other items in Figure 1 (which are menu buttons), see
MenuButton(3W) for the explanation of menu button selection behavior.

Page 5

MenuShell MenuShell

Converting a Stay-up Menu to a Pop-up Menu
Pressing MENU in a stay-up menu converts it to a pop-up menu. Thus the
click-move-click selection control becomes a press-drag-release selection control.

Highlighting of Menu Items
In the press-drag-release type of selection control, each menu Item highlights
while the pointer is over it. The form of the highlighting depends on the type of
widget making up the Item. Again, the Menu widget arranges for its children to
respond in this way. No highlighting occurs when the click-move-click type of
selection control is used.

Menu Coloration
Figure 2 illustrates the resources that affect the coloration of the Menu widget.

XtNborderColor ./
(XtNborderPixmap)

(Dismiss t»

Scale

Back

Locate Owner

As Per Widget

!Ii XtNforeground
XtNbackground

(XtNbackgroundPixmap)
I::::....-(Transparent Over

... "" ... "" "" ... ", ... "" "" "" ", "" "' "" ", "" ... "'."" ... ", ... ""':tt Parent's Background)

Figure 2. Menu Coloration

Keyboard Traversal

Page 6

By default, all Menus will allow traversal among the traversable controls added
to the widget.

Popping up a Menu via the keyboard is done by traversing to a MenuButton,
using NEXT]IELD, PREV_FIELD, MOVEUP, MOVEDOWN, MOVERIGHT, or
LEFT, and pressing the MENUKEY key. If a Menu is attached to a control
besides a MenuButton, it can be popped up by traversing to that control and
pressing the MENUKEY.

3/91

MenuShell MenuShell

Keyboard traversal within a Menu is done using the PREV]IELD, NEXT]IELD,
MOVEUP, MOVEDOWN, MOVELEFT and MOVERIGHT keys. The
PREY _FIELD, MOVEUP, and MOVELEFT keys move the input focus to the pre
vious Menu item with keyboard traversal enabled. If the input focus is on the
first item of the Menu, then pressing one of these keys will wrap to the last item
of the Menu with keyboard traversal enabled. The NEXT_FIELD, MOVEDOWN,
and MOVERIGHT keys move the input focus to the next Menu item with key
board traversal enabled. If the input focus is on the last item of the Menu, then
pressing one of these keys will wrap to the first item of the Menu with keyboard
traversal enabled.

To traverse out of the menu, the following keys can be used:

CANCEL dismisses the menu and returns focus to the originating
control

NEXTWINDOW

PREVWINDOW

NEXTAPP

PREVAPP

Keyboard Operation

moves to the next window in the application

moves to the previous window in the application

moves to the first window in the next application

moves to the first window in the previous application

If input focus is on a MenuButton with in a Menu, pressing the MENUKEY will
post the cascading Menu associated with the MenuButton, and input focus will be
on the first Menu item with traversal enabled.

The DEFAULTACTION key will activate the default control in the Menu Widget
as if the user clicked the SELECT button on the control.

The MENUDEFAULTKEY can be used by the user to change the default control
in the Menu widget. When the user presses the MENUDEFAULTKEY, the con
trol which has input focus will become the default control.

The TOGGLEPUSHPIN key changes the state of the pushpin in the window
header. If the pushpin is in, TOGGLEPUSHPIN will pull the pin out and dismiss
the window. If the pushpin is out, TOGGLEPUSHPIN will stick the pin in.

MenuShell Activation Types
Activation Tvpe Expected Results
OL_CANChL Dismiss this menu and any other menus cascading

off of it.
OL DEFAULTACTION Calls OlActivateWidget for the default item with

the activation_type as OL_SELECTKEY.
OL TOGGLEPUSHPIN Same semantics as TOGGLEPUSHPIN above.

SUBSTRUCTURE
Menu Pane component

3/91 Page 7

MenuShell MenuShell

Application Resources
Name Qass Type Default Access

XtNcenter XtCCenter Boolean TRUE I

XtNhPad XtCHPad Dimension 4 I

XtNhSpace XtCHSpace Dimension 4 I

XtNlayoutType XtCLayoutType OIDefine OL FIXEDROWS I

XtNmeasure XtCMeasure int 1 I

XtNsameSize XtCSameSize OIDefine OL COLUMNS I

XtNvPad XtCVPad Dimension 4 I

XtNvSpace XtCVSpace Dimension 4 I

RESOURCES
Menu Resource Set

Name Class Type Default Access

XtNallowShellResize XtCAilowShellResize Boolean TRUE SGI

XtNancestorSensitive XtCSenstitive Boolean TRUE G"

XtNbackground XtCBackground Pixel XtDefaultBackground SGlt

XtNbackgroundPixmap XtCPixmap Pixmap (none) SGlt

XtNconsumeEvent XtCConsumeEvent XtCailbackList NULL SGI

XtNcreatePopupChiidProc XtCCreatePopupChildProc XtCreatePopupChildProc NULL SGI

XtNdepth XtCDepth int (parent's) GI

XtNdesrroyCallback XtCCailback XtCallbackList NULL SI

XtNfocusWidget XtCFocusWidget Widget NULL SGI

XtNheight XtCHeight Dimension (calculated) SGI

XtNheightlnc XtCHeightlnc int -1 SGI

XtNinput xtClnput Boolean FALSE G

XtNmaxAspectX XtCMaxAspectX Position -1 SGI

XtNmaxAspectY XtCMaxAspectY Position -1 SGI

XtNmaxHeight XtCMaxHeight Dimension OL IGNORE SGI

XtNmaxWidth XtCMaxWidth Dimension OL IGNORE SGI

XtNmenuAugment XtCMenuAugment Boolean TRUE GI

XtNmenuPane XtCMenuPane Widget (none) G

XtNminAspectX xtCMinAspectX Position -1 SGI

XtNminAspectY XtCMinAspectY Position -1 SGI

XtNminHeight XtCMinHeight Dimension OL IGNORE SGI

XtNminWidth XtCMinWidth Dimension OL IGNORE SGI

XtNpopdownCallback XtCCallback XtCallbackList NULL SI

XtNpopupCallback XtCCallback XtCallbackList NULL SI

XtNpushpin XtCPushpin OIDefine OL NONE GI

XtNpushpinDefault XtCPushpinDefauit Boolean FALSE GI

XtNsaveUnder XtCSaveUnder Boolean FALSE SGI

XtNsensitive XtCSensitive Boolean TRUE GI"

XtNtitie XtCTitie Srring (widget's name) SGI

Page 8 3/91

MenuShell MenuShell

3/91

Menu Resource Set
Name Class Type Default

XtNuserData XtCUserData XtPointer NULL

XtNwidth XtCWidth Dimension (calculated)

XtNwidthInc XtCWidthInc int -1

XtNfocusWidget
This is the ID of the widget to get focus the next time this shell takes focus.
Therefore, as a user traverses objects via the keyboard or explicitly sets focus to
an object (for example, clicking SELECT), the value of the XtNfocusWidget
resource is updated to reflect this as the object with focus.

XtNmenuAugment
Range of Values:

TRUE
FALSE

If this resource is TRUE, the Menu widget will augment its parent's event han
dling so that the pressing or clicking of MENU automatically pops up the menu.
If FALSE, the application is responsible for detecting when the menu should be
popped up. (Please see the earlier section on "Programmatic Menu Popup and
Popdown.")

XtNmenuPane
This is the widget where menu items can be attached; its value is available once
the Menu widget has been created.

XtNpushpin
Range of Values:

OL_NONE/"none"
OL_OUT/"out"

This resource controls whether the Menu widget has a pushpin. If set to OL_NONE,
no pushpin will be included in the list of menu items, which means the user can
not pin the menu to keep it around. If set to OL_OUT, a pushpin will be included
as an item the user can select; if the end user selects the pushpin, the menu will
be made into an OPEN LOOK window. Note that the pushpin item is always at
the top of the menu list. (This resource is also available in other widgets, but
with three allowed values, including OL_IN. This third value is not allowed for
the Menu widget.)

XtNpushpinDefault
Range of Values:

TRUE
FALSE

Setting this resource to TRUE makes the Pushpin the Default Item.

Note:
If a menu has a pushpin and none of the menu pane items have been designated
as the default, the pushpin automatically becomes the menu's Default Item.

Page 9

Access

SCI

SCI

SCI

MenuShell MenuShell

XtNtitle
This resource gives the Title of the Menu widget.

Page 10 3/91

Nonexclusives (3W) Nonexclusives (3W)

NAME
Nonexclusives - allows the end-user to select one or more of a set of choices

SYNOPSIS
#include <Intrinsic.h>
#include <StringDefs.h>
#include <OpenLook.h>
#include <Nonexclusi.h>

widget = XtCreateWidget(name, nonexclusivesWidgetClass, ...);

DESCRIPTION

3/91

The Nonexclusives widget provides a simple way to build a several-of-many
button selection object. It manages a set of rectangular buttons or check boxes,
providing layout management and selection control.

Grid Layout and Button Labels
The Nonexclusives widget lays out the rectangular buttons or check boxes in a
grid in the order they are added as child widgets by the application. The number
of rows or columns in this grid can be controlled by the application. If the grid
has more than one row, the Nonexclusives widget forces the rectangular but
tons or check boxes in each column to be the same size as the widest in the
column. (Note: If the grid is a single row, each button will be only as wide as
necessary to display the label.)

I Value I II Default Value
~------------------------~

I
: .. :
· . · . · . · .
: Value

I Current Value i

... ..

~ ~ Default Value
... .. .

Current Value

Figure 1. Example of Nonexclusive Buttons

Page 1

Nonexclusives (3W) Nonexclusives (3W)

Use in a Menu
The Nonexclusi ves widget can be added as a single child to a menu pane to
implement a several-of-many menu choice. Only RectButton widgets can be
used in a Nonexclusi ves widget in a menu.

Child Constraint
The Nonexclusives widget constrains its child widgets to be of class rectBut
tonWidgetClass or checkBoXWidgetClass. Additionally, all the child widgets
must be of the same class.

Nonexclusives Coloration
There is no explicit foreground or background in the Nonexclusives composite
widget; each rectangular button has its own foreground and background. The
space between the rectangular buttons or check boxes is the same color or pix
map as the parent of the Nonexclusives widget.

Keyboard Traversal
The Nonexclusives widget manages the traversal between a set of RectButtons.
When the user traverses to a Nonexclusives widget, the first RectButton in the set
will receive input focus. The MOVEUP, MOVEDOWN, MOVERIGHT, and
MOVELEFT keys move the input focus between the RectButtons. To traverse out
of the Nonexclusives widget, the following keys can be used:

NEXT FIELD moves to the next traversable widget in the window

PREY FIELD moves to the previous traversable widget in the window

NEXTWINDOW moves to the next window in the application.

PREVWINDOW

NEXTAPP

PREVAPP

moves to the previous window in the application.

moves to the first window in the next application.

moves to the first window in the previous application.

These controls have two states: "set" and "not set". Pressing the SELECTKEY on
a nonexclusive control will toggle the current state. If the control is in a Menu,
then the MENUKEY will also toggle the current state. If the control is "set", then
toggling the control will call the XtNunselect callback list. If the control is "not
set", then toggling the control will call the XtNselect callback list.

RESOURCES
Nonexclusives Resource Set

Name Class Type Default Access

XtNancestorSensitive XtCSenstitive Boolean TRUE G*

XtNconsumeEvent XtCConsumeEvent XtCallbackList NULL SG

XtNdepth XtCDepth int (parent's) GI

XtNdestroyCallback XtCCallback X tCallbackList NULL SI

XtNheight XtCHeight Dimension (calculated) SGI

XtNlayoutType XtCLayoutType OlDefine OL FIXEDROWS SGI

XtNmappedWhenManaged XtC11appedWhenManaged Boolean TRUE SGI

XtNmeasure XtC11easure int 1 SGI

XtNreferenceName XtCReferenceName String NULL GI

Page 2 3/91

Nonexclusives (3W) Nonexclusives (3W)

3/91

Nonexclusives Resource Set (cont'd)
Name

XtNreferenceWidget

XtNsensitive

XtNtraversalOn

XtNuserData

XtNwidth

XtNx

XtNy

XtNlayoutType
Range of Values:

Class

XtCReferenceWidget

XtCSensitive

XtCTraversalOn

XtCUserData

XtCWidth

XtCPosition

XtCPosition

OL_FlXEDROWS/"fixedrows"
OL_FlXEDCOLS/"fixedcols"

Type

Widget

Boolean

Boolean

XtPointer

Dimension

Position

Position

Default Access

NULL CI

TRUE CI*

TRUE SCI

NULL SCI

(calculated) SCI

0 SCI

0 SCI

This resource controls the type of layout of the child widgets by the Nonex
clusi ves composite. The choices are to specify the number of rows or the
number of columns. Only one of these dimensions can be specified directly; the
other is determined by the number of child widgets added, and will always be
enough to show all the child widgets.

The values of the XtNlayoutType resource can be

OL_FlXEDROWS if the layout should have a fixed number of rows;

OL_FlXEDCOLS if the layout should have a fixed number of columns.

XtNmeasure
Range of Values:

o < XtNmeasure

This resource gives the number of rows or columns in the layout of the child
widgets. If there are not enough child widgets to fill a row or column, the
remaining space is left blank. If there is only one row (column), and it is not
filled with child widgets, the remaining "space" is of zero width (height).

Page 3

NoticeShell (3W) NoticeShell (3W)

NAME
NoticeShell - contains a message area which is used for user confirmation

SYNOPSIS
#include <Intrinsic.h>
#include <StringDefs.h>
#include <OpenLook.h>
#include <Notice.h>

static Widget notice, textarea, controlarea, w;

Arg args[2];

notice = XtCreatePopupShell(name, noticeShellWidgetClass, ...);
xtSetArg(args[O], XtNtextArea, &textarea);
xtSetArg(args[l], XtNcontrolArea, &controlarea);
XtGetValues(notice, args, 2);

w = XtCreateWidget (name, widget-class, controlarea, ...);

XtPopup(notice, XtGrabExclusive);

DESCRIPTION

3/91

Notice Components
The Notice widget has three components: a Text Area where the message to the
end user is displayed; a Control Area containing one or more widgets that the
end user uses to control how to continue with an application; and a Default But
ton. Another important element is the Emanate Widget, which is typically the
control activated by the end user that requires immediate attention. The applica
tion identifies the Emanate Widget to the Notice widget.

Page 1

NoticeShell (3W) NoticeShell (3W)

Text Area Control Area
~~~---------- -------------------------------------------- ----------------------~ 
• • • • • • • • • • • • 
1 File exists. Do you want to overwrite? ! 
• • • • • • I ............................................................... I 

• • • • • • • • · . · . I • 

! Yes ~ (NO) 1 · " . • • • • • • • • • • · . 
l ____ ---- ----- -- --- - -- ---------- --------t------- --------- ------ -- -- ---------- --- ---.:. 

Default Button 

Notice widget 

Figure 1. Notice Widget 

Sub-class of the Shell Widget 
The Notice widget is a sub-class of the Shell widget. Therefore, as the 
SYNOPSIS shows, the XtCreatePopupShell () routine is used to create a notice 
instead of the normal XtCreateWidget ( ) . 

The following table lists the VendorShell resources and defaults for the Notice 
Shell. The Notice Shell is also a subclass of the OPEN LOOK VendorShell. 

Default Window Decorations 
Resource Type Default 
XtNmenuButton Boolean FALSE 
XtNpushpin OlDefine OL NONE 
XtNresizeCorners Boolean FALSE 
XtNwindowHeader Boolean FALSE 

Popping the Notice Up/Down 

Page 2 

The application controls when the Notice widget is to be displayed or popped 
up. As shown in the SYNOPSIS, the XtPopup () routine can be used for this. 

However, the application does not need to control when the Notice widget is to 
be popped down. The widget itself detects when to pop down: the end user 
clicks SELECT on an OblongButton widget in the Control Area. This behavior 
requires that there be at least one OblongButton Widget in the Control Area. If 
other types of controls are used instead, the application can "manually" pop the 
notice down using a routine such as XtPopdown ( ) . 

3/91 



NoticeShell (3W) NoticeShell (3W) 

3/91 

Busy Button, Busy Application 
When the Notice pops up, it "freezes" the entire application except the Notice to 
prevent the end user from interacting with any other part of the application. As 
feedback of this to the user, the Notice causes the headers of all the base win
dows and pop-up windows to be stippled in the "busy" pattern, and causes a 
stipple pattern in the Emanate Widget. The latter stipple pattern is caused by 
setting the XtNbusy resource to TRUE in the Emanate Widget. If the widget does 
not recognize this resource, nothing will happen. 

On popping down, the Notice widget clears all stipple patterns and "unfreezes" 
the application. 

Text and Control Areas 
The Text and Control Areas are handled by separate widget interfaces. The 
SYNOPSIS shows how the widget IDs of the Text Area (textarea) and the Con
trol Area (controlarea) are obtained from the Notice widget. 

The Text and Control Areas abut so that there is no space between the two. An 
application can control the distance between the text and the controls by setting 
margins in the Control Area. 

Notice Coloration 
Figure 2 illustrates the resources that affect the coloration of the Notice widget. 

XtNborderColor 
(XtNborderPixmap) 

File exists. Do you want to overwrite it? 

(Per Individual Widget) 

No ) 

XtNbackground 
(XtNbackgroundPixmap) 

Figure 2. Notice Coloration 

Page 3 



NoticeShell (3W) NoticeShell (3W) 

Keyboard Traversal 
The Notice widget limits keyboard traversal of the application to the buttons 
within the ControlArea. The user can traverse between the controls in the Con
trolArea using the NEXT ]IELD, PREV]IELD, MOVEUP, MOVEDOWN, 
MOVERlGHT, and MOVELEFT keys. The NEXTAPP key will traverse to the 
next application, and the PREY APP key will traverse to the the previous applica
tion, but the NEXTWINDOW and PREVWINDOW keys are disabled. When key
board traversal is used to move back to the Notice's application, focus goes to the 
Notice. 

Notice Activation Types 
Activation Type Expected Results 
OL CANCEL Beep 
OL -DEFAULTACTION Call OlActi vatewidget for the default widget with 

SUBSTRUCTURE 
Control Area component 

Name: controlarea 
Class: ControlArea 

parameter OL _ SELECTKEY 

Application Resources 
Name Class Type Default 
XtNhPad XtCHPad Dimension a 
XtNhSpace XtCHSpace Dimension 4 

XtNlayoutType XtCLayoutType OllDefine OL FIXEDROWS 

XtNmeasure XtCMeasure int 1 

XtNsameSize XtCSameSize OlDefine OL COLUMNS 

XtNvPad XtCVPad Dimension a 
XtNvSpace XtCVSpace Dimension 4 

Access 
I 

I 

I 

I 

I 

I 

I 

See the ControlArea widget for the descriptions of these resources. 

Text Area component 
Name: textarea 
Class: StaticText 

Application Resources\*( cO 
Name Class Type Default 
XtNalignment XtCAlignment int OL LEFT 
XtNfont XtCFont XFontStruct * (OPEN LOOK font) 
XtNfontColor XtCFontColor Pixel XtDefaultForeground 
XtNfontGroup XtCFontGroup OIFontList NULL 
XtNlineSpace XtCLineSpace int 0 
XtNstring XtCString String NULL 
XtNstrip XtCStrip Boolean TRUE 
XtNwrae XtCWrar> Boolean TRUE 

See the StaticText widget for the descriptions of these resources. 

Page 4 

Access 
I 
SI 
SG1 
SG1 
I 
I 
I 
I 

3/91 



NoticeShell (3W) NoticeShell (3W) 

RESOURCES 

3/91 

Notice Resource Set 
Name Class Type Default 

XtNallowShellResize XtCAllowShellResize Boolean TRUE 

XtNancestorSensitive XtCSenstitive Boolean TRUE 

XtNbackground XtCBackground Pixel XtDefaultBackground 

XtNbackgroundPixmap XtCPixmap Pixmap (none) 

XtNborderColor XtCBorderColor Pixel XtDefaultForeground 

XtNborderPixmap XtCPixmap Pixmap (none) 

XtNconsumeEvent XtCConsumeEvent XtCallbackList NULL 

XtNcontrolArea XtCControlArea Widget (none) 

XtNcreatePopupChildProc XtCCreatePopupChildProc XtCreatePopupChildProc NULL 

XtNdepth XtCDepth int (parent's) 

XtNdestroyCallback XtCCallback XtCallbackList NULL 

XtNemanateWidget XtCEmanateWidget Widget (parent's) 

XtNfocus Widget XtCFocus Widget Widget NULL 

XtNgeometry XtCGeometry String NULL 

XtNheight XtCHeight Dimension (calculated) 

XtNpopdownCallback XtCCallback XtCallbackList NULL 

XtNpopupCallback XtCCallback XtCallbackList NULL 

XtNsaveUnder XtCSaveUnder Boolean FALSE 

XtNsensitive XtCSensitive Boolean TRUE 

XtNtextArea XtCTextArea Widget (none) 

XtNuserData XtCUserData XtPointer NULL 

XtNwidth XtCWidth Dimension (calculated) 

XtNx XtCPosition Position 0 

XtNy XtCPosition Position 0 

XtNcontrolArea 
This is the widget ID of the ControlArea class composite child widget where 
controls can be attached; its value is available once the Notice widget has been 
created. 

Any widgets of the class OblongButton added to the Control Area are assumed 
to be window disposition controls; that is, when the end user activates one of 
them, the Notice widget pops itself down. 

XtNemanateWidget 
Range of Values: 

(ID of existing widget) 

This resource identifies the Emanate Widget. On popping up, the Notice widget 
attempts to set this widget to be busy, by making its XtNbusy resource TRUE; if 
the Widget doesn't recognize the resource, nothing happens. On popping down, 
the Notice widget clears the XtNbusy resource. 

Page 5 

Access 

SGI 

G* 

SGIt 

SGIt 

SGIt 

SGIt 

SGI 

G 

SGI 

GI 

SI 

SGI 

SGI 

GI 

SGI 

SI 

SI 

SGI 

GI* 

G 

SGI 

SGI 

SGI 

SGI 



NoticeShell (3W) NoticeShell (3W) 

When the Notice widget pops up, it tries not to cover this widget; this may fail 
depending on its location and the size of the Notice widget. 

The default for this resource is the parent. The parent, however, cannot be a 
Gadget (OblongButtonGadget, for instance). To emanate a Notice from a Gadget, 
specify another widget as the parent and set XtNemanateWidget to the Gadget. 

XtNtextArea 

Page 6 

This is the widget ID of the StaticText class child widget that controls the Text 
Area; its value is available once the Notice widget has been created. 

3/91 



Oblong Button (3W) Oblong Button (3W) 

NAME 
OblongButton - a one-choice element or button used to execute a command 

SYNOPSIS 
#include <Intrinsic.h> 
#include <OPenLook.h> 
#include <StringDefs.h> 
#include <OblongButt.h> 

widget XtCreateWidget(name, oblongButtonWidgetClass, ••. )i 
OR 
widget XtCreateWidget(name, oblongButtonGadgetClass, •.• )i 

DESCRIPTION 

3/91 

OblongButton Components 
The OblongButton consists of a Label surrounded by a rounded oblong, Border. 

Label 

Border 

Figure 1. Oblong Buttons 

Busy Button while Action Takes Place 
Each OblongButton is associated with an application-defined action implemented 
as a list of callbacks. To let the end user know that an action is still taking place, 
the OblongButton stipples the area inside the border before issuing the callbacks. 
When the last callback returns, the OblongButton restores its original appear
ance. If the application's action continues to be "busy" after the callbacks return, 
the application should set the XtNbusy resource to TRUE before returning from 
the callbacks, then reset it to FALSE when the action is no longer taking place. 

Page 1 



Oblong Button (3W) Oblong Button (3W) 

The "busy" stipple pattern is designed to show enough dots to gray the button 
noticeably, while still leaving a text label legible. 

Oblong Buttons in a Pop-up Menu 
Entering an oblong button while MENU is depressed previews the set appearance 
of the button. Releasing MENU then restores the original appearance and 
invokes the action for the button as described above. Leaving the button before 
releasing MENU restores the appearance but does not invoke the action. 

Oblong Buttons not in a Pop-up Menu 
Clicking SELECT on an oblong button starts the action associated with the but
ton. Pressing SELECT, or moving the pointer into the button while SELECT is 
pressed, previews the set appearance of the button. Releasing SELECT restores 
the appearance and invokes the action for the button as described above. Moving 
the pointer off the button before releasing SELECT also restores the appearance, 
but does not invoke the action. 

If the oblong button is in a stay-up menu, clicking or pressing MENU works the 
same as SELECT. If the oblong button is not in a stay-up (or pop-up) menu, 
clicking or pressing MENU does not do anything; the event is passed up to an 
ancestor Widget. 

Oblong Button Gadgets 
OblongButton gadgets cannot be parents (i.e., be used as the parent parameter 
when creating a widget or other gadget). 

Correct button behavior is not guaranteed if gadgets are positioned so that they 
overlap. 

Gadgets share some core fields but, since they are not subclasses of Core, do not 
have all Core fields. In particular, they don't have a name field or a translation 
field (so translations cannot be specified/overriden). 

Event Handlers cannot be added to gadgets using XtAddEventHandler. 

Label Appearance 

Page 2 

The XtNwidth, XtNheight, XtNrecomputeSize, and XtNlabelJustify resources 
interact to produce a truncated, clipped, centered, or left-justified label as shown 
in Figure 3. 

3/91 



OblongButton (3W) OblongButton (3W) 

3/91 

XtNwidth XtNrecomputeSize XtNlabelJustily Result 

any value TRUE any ( Just FitS) 

>needed 
lor label 

FALSE OL_LEFT ( Left Justilied ) 

>needed FALSE OL_CENTER ( Centered ) 
lor label 

needed 
<for label 

FALSE ( Trun<1> ) any 

XtNheight XtNrecomputeSize XtNlabelJustify Result 

any value TRUE any ( Just Fits ) 
>needed 

lor label FALSE any ( Centered ) 

needed 
<lor label FALSE any ( Clipped ) 

Figure 3. Label Appearance 

When the label is centered or left-justified, the extra space is filled with the back
ground color of the OblongButton widget, as determined by the XtNbackground 
and XtNbackgroundPiJanap resources. 

When a text label is truncated, the truncation occurs at a character boundary and 
a solid triangle is inserted to show that part of the label is missing. The triangle 
requires that more of the label be truncated than would otherwise be necessary. 
If the width of the button is too small to show even one character with the trian
gle, only the triangle is shown. If the width is so small that the entire triangle 
cannot be shown, the triangle is clipped on the right. 

An image label is simply truncated; no triangle is shown. 

See also the XtNlabelTile resource for how it affects the appearance of a label 
image. 

Oblong Button Coloration 
Figure 2 illustrates the resources that affect the coloration of the OblongButton 
widget. 

Note: Events that occur outside the Border (but within the OblongButton widget) 
are still in the domain of the button. 

On a monochrome display, the OblongButton widget indicates that it has input 
focus by inverting the foreground and background colors of the control. 

Page 3 



Oblong Button (3W) Oblong Button (3W) 

On color displays, when the OblongButton widget receives the input focus, the 
background color is changed to the input focus color set in the XtNinput
FocusColor resource. 

EXCEPTIONS: 

If the input focus color is the same as the font color for the control labels, 
then the coloration of the active control and fonts is inverted. 

If the input focus color is the same as the Input Window Header Color and 
the active control is in the window header, then the colors are inverted. 

If the input focus color is the same as the window background color, then 
the OblongButton widget inverts the foreground and background colors 
when it has input focus. 

XtNforeground 

XtNfontColor XtNbackground 
(XtNbackgroundPixmap) 

Parent's XtNbackground 
(XtNbackgroundPixmap) 

Figure 2. Oblong Button Coloration 

Keyboard Traversal 
The default value of the XtNtraversalOn resource is True. 

The OblongButton widget responds to the following keyboard navigation keys: 

NEXT FIELD, MOVEDOWN, and MOVERIGHT 
- move to the next traversable widget in the window 

PREY FIELD, MOVEUP, and MOVELEFT 
- move to the previous traversable widget in the window 

Page 4 3/91 



OblongButton (3W) Oblong Button (3W) 

NEXTWINDOW moves to the next window in the application 

PREVWINOOW moves to the previous window in the application 

NEXTAPP moves to the first window in the next application 

PREY APP moves to the first window in the previous application 

The OblongButton will respond to the SELECTKEY by acting as if the SELECT 
buttons had been clicked. 

Oblon~ Button/Gadget Activation Types 
Activation Type Expected Results 
OL MENUDEFAULTKEY Set the sub-object as the shell's default object (if on a 

menu) 
OL SELECTKEY Call its callbacks 

Display of Keyboard Mnemonic 
The OblongButton widget displays the mnemonic accelerator for its child as part 
of its label. If the mnemonic character is in the label, then that character is 
displayed/highlighted according to the If the mnemonic character is not in the 
label, value of the application resource XtNshowMneumonics. it is displayed to 
the right of the label in parenthesis and displayed/highlighted according to the 
value of the application resource XtNshowMneUlllOnics. 

If truncation is necessary, the mnemonic displayed in parenthesis is truncated as 
a unit. 

Display of Keyboard Accelerators 
The OblongButton widget displays the keyboard accelerator as part of its label. 
The string in the XtNacceleratorText resource is displayed to the right of the 
label (or mnemonic) separated by at least one space. The acceleratorText is right 
justified. 

If truncation is necessary, the accelerator is truncated as a unit. The accelerator is 
truncated before the mnemonic or the label. 

RESOURCES 
OblongButton Resource Set 

Name Class Type Default Access 

XtNaccelerator XtCAccelerator String NULL SGI 

XtN acceleratorText XtCAcceleratorText String (calculated) SGI 

XtNancestorSensitive XtCSenstitive Boolean TRUE G" 

XtNbackground XtCBackground Pixel XtDefauItBackground SGlt 

:j: XtNbackgroundPixmap XtCPixmap Pixmap (none) SGa 

XtNbusy XtCBusy Boolean FALSE SGI 

XtNconsumeEvent XtCConsumeEvent XtCallbackList NULL SGI 

XtNdefault XtCDefauIt Boolean FALSE SGI 

XtNdestroyCallback XtCCaIlback XtCallbackList NULL SI 

XtNfont XtCFont XFontStruct " (OPEN LOOK font) SI 

XtNfontColor XtCFontColor Pixel Black" SGI 

3/91 Page 5 



Oblong Button (3W) Oblong Button (3W) 

OblongButton Resource Set 
Name Class Type Default Access 

XtNforeground XtCForeground Pixel XtDefaultForeground SGrt 

XtNheight XtCHeight Dimension (calculated) SGr 

XtNinputFocusColor XtCrnputFocusColor Pixel Red SGr 

XtNlabel XtCLabel String (class name) SGr 

XtNlabelImage XtCLabelImage Xrmage" NULL SGr 

XtNlabelJustify XtCLabelJ ustify OlDefine OL LEFT SGr 

XtNlabelTile XtCLabelTile Boolean FALSE SGr 

XtNlabelType XtCLabelType OlDefine OL STRING SGr 

:j: XtNmappedWhenManaged XtC~appedWhen~anaged Boolean TRUE SGr 

XtNmnemonic XtC~nemonic unsigned char NULL SGr 

XtNrecomputeSize XtCRecomputeSize Boolean TRUE SGr 

XtNreferenceName XtCReferenceName String NULL SGr 

XtNreferenceWidget XtCReferenceWidget Widget NULL SGr 

XtNselect XtCCallback XtCallbackList NULL sr 

XtNsensitive XtCSensitive Boolean TRUE Gr" 

XtNtraversalOn XtCTraversalOn Boolean TRUE SGI 

XtNuserData XtCUserData XtPointer NULL SGr 

XtNwidth XtCWidth Dimension (calculated) SGI 

XtNx XtCPosition Position a SGr 

XtNy XtCPosition Position a SGI 

* These resources are not available to OblongButton gadgets. 

XtNbusy 
Range of Values: 

TRUE 
FALSE 

This resource controls whether the button interior should be stippled to show 
that the action associated with the button is "busy." While XtNbusy is TRUE, the 
system will beep if the end user attempts to select the button; the attempt is 
refused and no callbacks are invoked. 

XtNdefault 
Range of Values: 

TRUE 
FALSE 

If this resource is TRUE, and the button is in a menu, an oval ring is drawn 
around the button to show that the button is the default choice of one or more 
buttons. 

XtNlabel 

Page 6 

This resource is a pointer to the text for the Label. This resource is ignored if the 
XtNlabelType resource has the value OL_IMAGE. 

3/91 



Oblong Button (3W) Oblong Button (3W) 

XtNlabelimage 
This resource is a pointer to the image for the Label. This resource is ignored 
unless the XtNlabel Type resource has the value OL_lMAGE. 

If the image is of type XYBitrnap, the image is highlighted when appropriate by 
reversing the 0 and 1 values of each pixel (Le. by "'xor'ing" the image data). If 
the image is of type XYPixmap or zPixmap, the image is not highlighted, although 
the space around the image inside the Border is highlighted. 

If the image is smaller than the space available for it inside the Border and 
xtNlabelTile is FALSE, the image is centered vertically and either centered or 
left-justified horizontally, depending on the value of the XtNlabelJustify 
resource. If the image is larger than the space available for it, it is clipped so that 
it does not stray outside the Border. If the XtNdefault resource is TRUE so that 
the Border is doubled, the space available is that inside the inner line of the 
Border. 

XtNlabelJustify 
Range of Values: 

OL_LEFT/"left" 
OL_CENTER/"center" 

This resource dictates whether the Label should be left-justified or centered 
within the widget width. 

XtNlabelTile 
Range of Values: 

TRUE 
FALSE 

This resource augments the XtNlabelIrnage/XtNlabelPixmap resource to allow 
tiling the sub-abject's background. For an image/pixmap that is smaller than the 
sub-abject's background, the label area is tiled with the image/pixmap to fill the 
sub-abject's background if this resource is TRUE; otherwise, the label is placed as 
described by the XtNlabelJustify resource. 

The XtNlabelTile resource is ignored for text labels. 

XtNlabelType 
Range of Values: 

OL_STRING/"string" 
OL_lMAGE/"irnage" 
OL_POPUP/"popup" 

This resource identifies the form that the Label takes. It can have the value 
OL_STRING for text, OL_lMAGE for an image, or OL_POPUP for text followed by an 
ellipsis (such as label •.• ). 

3/91 

XtNrecomputeSize 
Range of Values: 

TRUE 
FALSE 

Page 7 



Oblong Button (3W) Oblong Button (3W) 

This resource indicates whether the OblongButton widget should calculate its 
size and automatically set the XtNheight and xtNWidth resources. If set to 
TRUE, the OblongButton widget will do normal size calculations that may cause 
its geometry to change. If set to FALSE, the OblongButton widget will leave its 
size alone; this may cause truncation of the visible image being shown by the 
OblongButton widget if the fixed size is too small, or may cause padding if the 
fixed size is too large. The location of the padding is determined by the XtNla
belJustify resource. 

XtNselect 
This is the list of callbacks invoked when the widget is selected. 

Page 8 3/91 



PopupWindowShell (3W) PopupWindowShell (3W) 

NAME 
PopupWindowShell - creates an OPEN LOOK property window or command 
window 

SYNOPSIS 

3/91 

#include <Intrinsic.h> 
#include <StringDefs.h> 
#include <QpenLook.h> 
#include <PopupWindo.h> 

static void 
Apply (w, client_data, call_data) 
Widget w; 
XtPointer client_data, call_data; 
{ 

printf ("Apply callback!\n"); 
} 

Arg args [3]; 
Widget popupwindow, parent; 
widget upper, lower, panel; 

static XtCallbackRec applycalls[] { 
{ Apply, NULL }, 
{ NULL, NULL }, 

}; 

xtSetArg(args[O], XtNapply, (XtArgVal) applycalls); 

popupwindow = XtCreatePopupShel1 ( name, 
popup WindowShellWidgetClass, 
parent, args, 1); 

XtSetArg(args[Ol, XtNupperControlArea, &upper); 
XtSetArg(args[11, XtNlowerControlArea, &lower); 
XtSetArg(args[21, XtNfooterPanel, &panel); 

XtGetValues(popupshell, args, 3); 

w = XtCreatewidget (name, widget-class, upper, ••• ); 
w = XtCreateWidget (name, widget-class, lower, ••• ); 
w = XtCreateWidget (name, widget-class, panel, 

XtPopup (popupwindow, XtGrabNone); 

Page 1 



PopupWindowShell (3W) PopupWindowShell (3W) 

DESCRIPTION 
Controls not Automatically Related to Selected Objects 

The PopupWindow widget can be used to implement the OPEN LOOK property 
window. It manages the creation of a property window and provides a simple 
interface for populating the window with controls. However, it has no innate 
semantics to relate the controls with a selected object; this must be handled by the 
application. For example, the application must dim all the controls if an object 
selected by the end user is incompatible with a displayed property window. 

PopupWindow Components 

Page 2 

The PopupWindow widget has the following parts: 

Upper Control Area 

Lower Control Area 

Window Border 

Popup Window Menu 

Settings Menu (Conditional) 

Apply Button (Conditional) 

Reset Button (Conditional) 

Reset to Factory Button (Conditional) 

Set Defaults Button (Conditional) 

Header 

Window Mark 

Pushpin (Optional) 

Resize Corners (Optional) 

Footer (Optional) 

The Window Border, Popup Window Menu, Header, Window Mark, and Push
pin provide the end user with window management controls over the popupwin
dow widget. The Apply, Reset, Reset to Factory, and Set Defaults Buttons are 
automatically created, if needed, to help create a standard layout of a property 
window. The application controls which of these, if any, appear in the pop-up 
window. 

3/91 



PopupWindowShell (3W) PopupWindowShell (3W) 

3/91 

t 

Pushpin Header 

O~--------------E-dit~L-oa-d--------------~~ 
c _________________________________________________ , , , , , , , , , , , 

~""""":~::""::::"":::;.::"""::::"::::":::::·t-"""""""" """""""",,! 
, ~ , 
: Load : , ' 
,------------------ ------------ ---------- -------' 

l~~~~~~~ j!~~!~~!i!~ ~ ~ -__ ~ ~ -_ ~ ~ ~ ~ ~ ~ ~ ~ ~ _ ~ ~ ~ ~ ~ ~ -_ ~ ~ ~ _ -~ ~ ~ ~ ~ -, 

Lower 
Control Area 

Resize Corner 
(one offour) 

Footer Window 
Border 

Figure 1. PopupWindow 

Automatic Addition of Buttons, Settings Menu 
To aid in the creation of a property window, the PopupWindow has several call
backs typically used in such a pop-up window, for applying, resetting, etc. For 
each of these callbacks that the application sets in the argument list used for crea
tion of the PopupWindow, the PopupWindow widget automatically creates a button 
in the Lower Control Area, and the same button in the Settings Menu. If none of 
the callbacks are defined, no buttons are automatically created and no Settings 
Menu is created. 

If the application is building a command window, it has to create whatever but
tons and menus are needed. 

Sub-class of the Shell Widget 
The PopupWindow Widget is a sub-class of the Shell widget. Therefore, as the 
SYNOPSIS shows, the xtCreatePopupShell {} routine is used to create a pop-up 
window instead of the normal XtCreateWidget { } . 

The following table lists the VendorShell resources and defaults for the 
PopupWindowShell. The PopupWindowShell is also a subclass of the OPEN 
LOOK VendorShell. 

Page 3 



PopupWindowShell (3W) PopupWindowShell (3W) 

Default Window Decorations 
Resource Type Default 
XtNmenuButton Boolean FALSE 
XtNpushpin OlDefine OL OUT 
XtNresizeComers Boolean FALSE 
XtNwindowHeader Boolean TRUE 

Popping the Pop-up Window Up/Down 
The application controls when the PopupWindow widget is to be displayed, or 
popped up. As indicated in the SYNOPSIS, the XtPopup () routine can be used 
for this. 

The application also has the responsibility for raising a mapped pop-up window 
to the front if the user attempts to pop it up and it's already up. This can be 
accomplished using the XRaiseWindow function. 

However, the application cannot control when the popupWindow widget is to be 
popped down, since the end user may have pinned it up with the intent that it 
stays up until he or she dismisses it. The widget itself detects when to pop 
down: the end user clicks SELECT on an OblongButton widget in the Lower 
Control Area, or the end user dismisses the pop-up window using the Popup 
Window Menu or pushpin. 

Upper and Lower Control Areas 
The Upper and Lower Control Areas are handled by separate widget interfaces. 
The SYNOPSIS shows how the widget IDs of the control areas (upper and lower) 
and footer container (panel) are obtained from the PopupWindow widget. 

The two Control Areas and the Footer abut so that there is no space between 
them. An application can control the distance between the controls in the Control 
Areas by setting margins in each area. 

If the PopupWindow widget automatically creates the Apply, Reset, Reset to Fac
tory, or Set Defaults Buttons, it puts them in that order in the Lower Control 
Area. No space is left for a missing button. These buttons will also appear 
before any buttons added to the Lower Control Area by the application. 

PopupWindow Coloration 

Page 4 

Figure 2 illustrates the resources that affect the coloration of the PopupWindow 
widget. 

3/91 



PopupWindowShell (3W) PopupWindowShell (3W) 

3/91 

XtNborderColor 

t 
r' o-{::J 

File: 

Can't find the file 
'-, 

XtNbackground 
(XtNbackgroundPixmap) 

L 
Edit: Load l' 

( Load ) 

J,r 

Figure 2. Popup Window Coloration 

Keyboard Traversal 
The PopupWindow widget has a number of components which the user can 
traverse between. The buttons in the Lower Control Area and in the Settings 
Menu have the following mnemonics. 

Resource Button Name Mnemonic 
XtNapply Apply A 
XtNreset Reset R 
XtNresetFactory Reset to Factory F 
XtNsetDefaults Set Defaults S 

These mnemonics will be displayed in the button labels according to the value 
returned by OIQueryMnemonicDisplayO. The buttons are created with 
XtNtraversalOn set to True. 

The TOGGLEPUSHPIN key changes the state of the pushpin in the window 
header. If the pushpin is in, TOGGLEPUSHPIN will pull the pin out and pop 
down the window. If the pushpin is out, TOGGLEPUSHPIN will stick the pin in. 

Page 5 



PopupWindowShell (3W) PopupWindowShell (3W) 

PopupWindow Activation Types 
Activation Type Expected Results 
OL CANCEL Popdown window 
OL -DEFAULTACTION Call OlActivateWidget for the default widget with 

parameter OL _ SELECTKEY 
OL TOGGLEPUSHPIN Toggle pushpin state 

SUBSTRUCTURE 
Lower Control Area and Upper Control Area components 

Names: lower, upper 
Class: ControlArea 

The following resources are directed to both Control Area components. To set 
different values for the same resources in the different Control Areas, the applica
tion must access the resources using the appropriate Control Area widget IDs. 

Application Resources 
Name Class Type Default Access 

XtNalignCaptions XtCAlignCaptions Boolean t I 

XtNcenter XtCCenter Boolean FALSE I 

XtNhPad XtCHPad Dimension 4 I 

XtNhSpace XtCHSpace Dimension 4 I 

XtNlayoutType XtCLayoutType OlDefine * I 

XtNmeasure XtCMeasure int 1 I 

XtNsameSize XtCSameSize OlDefine OL COLUMNS I 

XtNuserData XtCUserData XtPointer NULL SGI 

XtNvPad XtCVPad Dimension 4 I -

XtNvSpace XtCVSpace Dimension 4 I 

t The default is TRUE for the Upper Control Area and FALSE for the Lower Control Area. 

:j: The default is OL_FlXEDCOLS for the Upper Control Area and OL_FlXEDROWS for the 
Lower Control Area. 

Footer 
Names: panel 
Class: FooterPanel 

RESOURCES 

Name 

XtNallowShellResize 

XtNancestorSensitive 

XtNapply 

XtNbackground 

XtNbackgroundPixmap 

Page 6 

PopupWindow Resource Set 
Class Type Default 

XtCAllowShellResize Boolean TRUE 

XtCSensitive Boolean TRUE 

XtCCallback XtCallbackList NULL 

XtCBackground Pixel XtDefaultBackground 

XtCPixmap Pixmap (none) 

3/91 

Access 

SGr 

G* 

I 

SGIt 

SGIt 



PopupWindowShell (3W) PopupWindowShell (3W) 

3/91 

PopupWindow Resource Set 
Name Class Type Default 

XtNborderColor XtCBorderColor Pixel XtDefauitForeground 

XtNborderPixmap XtCPixmap Pixmap (none) 

XtNborderWidth XtCBorderWidth Dimension 0 

XtNconsumeEvent XtCConsumeEvent XtCalibackUst NULL 

XtNcreatePopupChildProc XtCCreatePopupChildProc XtCreatePopupChildProc NULL 

XtNdepth XtCDepth int (parent's) 

XtNdestroyCaliback XtCCaliback XtCalibackUst NULL 

XtNfooterPanel XtCFooterPanel Widget (none) 

XtNgeometry XtCGeometry String NULL 

XtNheight XtCHeight Dimension (calculated) 

XtNheightInc XtCHeightInc int -1 

XtNfocusWidget XtCFocusWidget Widget NULL 

XtNinput XtCInput Boolean FALSE 

XtNlowerControlArea XtCLowerControlArea Widget (none) 

XtNmaxAspectX XtCMaxAspectX int -1 

XtNmaxAspectY XtCMaxAspectY int -1 

XtNmaxHeight XtCMaxHeight int OL IGNORE 

XtNmaxWidth XtCMaxWidth int OL IGNORE 

XtNminAspectX XtCMinAspectX int -1 

XtNminAspectY XtCMinAspectY int -1 

XtNminHeight XtCMinHeight int OL IGNORE 

XtNminWidth XtCMinWidth int OL IGNORE 

XtNpopdownCailback XtCCaliback XtCailbackUst NULL 

XtNpopupCaliback XtCCaliback XtCalibackUst NULL 

XtNpushpin XtCPushpin OIDefine OL OUT 

XtNresetButton XtCResetButton Widget NULL 

XtNresetFactory XtCCailback XtCailbackUst NULL 

XtNresizeCorners XtCResizeComers Boolean True 

XtNsaveUnder XtCSaveUnder Boolean FALSE 

XtNsensitive XtCSensitive Boolean TRUE 

XtNsetDefauits XtCCaliback XtCalibackList NULL 

XtNtitie XtCTitle String NULL 

XtNupperControlArea XtCUpperControiArea Widget (none) 

XtNuserData XtCUserData XtPointer NULL 

XtNverify XtCCaliback XtCailbackUst NULL 

XtNwidth XtCWidth Position (calculated) 

XtNwidthInc XtCWidthInc Position -1 

XtNx XtCPosition Position 0 

XtNy XtCPosition Position 0 

The following resources provide the widget identifier for the buttons that are 
created in the PopupWindow widget. The application can add an accelerator to 

Page 7 

Access 

SClt 

SClt 

SGI 

SGI 

SCI 

GI 

SI 

G 

GI 

SCI 

SGI 

SCI 

G 

G 

SGI 

SGI 

SCI 

SGI 

SGI 

SGI 

SGI 

SGI 

SI 

SI 

GI 

G 

I 

SCI 

SCI 

GI' 

I 

SGI 

G 

SGI 

I 

SGI 

SCI 

SCI 

SCI 



PopupWindowSheli (3W) PopupWindowSheli (3W) 

these buttons, or change the default mnemonic by accessing the Button's 
resources. 

XtNfooterPanel 
This is the widget ID of the FooterPanel class composite child widget that han
dles the Footer; its value is available once the PopupWindow widget has been 
created. If the application wants a footer, it can add one to the composite 
identified by this resource. 

XtNlowerControlArea 
XtNupperControlArea 

These are the widget IDs of the ControlArea class composite child widgets that 
handle the Lower Control Area and Upper Control Area, respectively. The appli
cation can use each widget ID to populate the PopupWindow with controls. These 
widget IDs are available once the PopupWindow widget has been created. 

Any widgets of the class OblongButton added to the Lower Control Area are 
assumed to be window disposition controls; that is, when the end user activates 
one of them the PopupWindow widget should pop itself down, if allowed by the 
application and the state of the pushpin. 

XtNverify 

Page 8 

This resource defines the callbacks to be invoked when the PopupWindow attempts 
to pop itself down. The call_data parameter is a pointer to a variable of type 
Boolean. It is initially set to TRUE, and the application should set a value that 
reflects whether the pop-down is allowed. Typically, the application will use this 
to prevent a pop-down so that an error message can be displayed. 

Since more than one callback routine may be registered for this resource, each 
callback routine can first check the value pointed to by the call_data parameter 
to see if a previous callback in the list has already rejected the pop-down attempt. 
If one has, the subsequent callback need not continue evaluating whether a pop
down is allowed. If the value is still TRUE after the last callback returns, the 
pop-down continues. 

Since these callbacks are issued before the PopupWindow checks the state of the 
pushpin, the application should not assume that the pop-down will occur even 
though it has allowed it. 

3/91 



RectButton (3W) RectButton (3W) 

NAME 
RectButton - a primitive widget consisting of a label surrounded by a rectangu
lar border 

SYNOPSIS 
#include <Intrinsic.h> 
#include <StringDefs.h> 
#include <OpenLook.h> 
#include <RectButton.h> 

widget = XtCreatewidget(name, rectButtonWidgetClass, ••• }; 

DESCRIPTION 

3/91 

RectButton Components 
The RectButton widget implements one of the OPEN LOOK button widgets. It 
consists of a Label surrounded by a rectangular Border. The Border can change 
to reflect that the button may be a default of several buttons (double border), or 
represents a current state of an object (thick border), or represents a current state 
of one of several objects with different states (dimmed border). 

Figure 1 shows several buttons, in normal, default, and current states (two ver
sions). 

I L-_v_a_lu_e ______ ----'1 II Default Value II 
.................................................. , . · . , . · . , , 

~ Value 
· , , ................................................ .. 

I Current Value I 

~ ..................................... , ............ . . .................................................. . 
.' . 
" . " , 

~~ Default Value ~ 
.' . ................................................... : ..................................................... 

Current Value 

Figure 1. Rectangular Buttons 

Use of Rectangular Buttons 
Rectangular buttons are not used alone but in one of the Exclusives or Non
exclusives composite widgets for implementing a one-of-many or several-of-

Page 1 



RectButton (3W) RectButton (3W) 

many selection. Making this widget a child of a different composite widget will 
not produce an error message, but proper behavior is not guaranteed. 

Toggling the State 
A RectButton widget has two states: "set" and "not set". (When set, its border is 
thickened.) Toggling this state alternates a resource (XtNset) between "true" and 
"false" and starts an action associated with the button. The RectButton widget is 
typically toggled by the user using SELECT or MENU, except that it is possible to 
disable user toggling of a button that is already set. 

Work in Exclusives/Nonexclusives Only 
If a RectButton widget is not the child of an Exclusives or NonExclusives 
widget, it will toggle between set and unset status, as in Nonexclusi ves . 

Rectangular Buttons in a Pop-up Menu 
Entering a rectangular button while MENU is depressed changes the appearance 
of the button from unset to set state or vice versa, to reflect the state the button 
would be in if MENU were released. Releasing MENU toggles the state associ
ated with the button. Leaving the button before releasing MENU restore the ori
ginal state appearance and does not toggle the button. 

Rectangular Buttons Not in a Pop-up Menu 
Clicking SELECT on a rectangular button toggles the state associated with it. 
Pressing SELECT, or moving the pointer into the button while SELECT is 
pressed, changes the border from unset to set state or vice versa, to reflect the 
state the button would be in if SELECT were released. Releasing SELECT toggles 
the state. Moving the pointer off the button before releasing SELECT restores the 
state appearance and does not toggle the button. but does not toggle the state. 

If the button is in a stay-up menu, clicking or pressing MENU works the same as 
SELECT. If the button is not in a stay-up (or pop-up) menu, clicking or pressing 
MENU does not do anything; the event is passed up to an ancestor widget. 

XtNdim 
Range of Values: 

TRUE 
FALSE 

If this resource is TRUE, then the button border is dimmed to show that the but
ton represents the state of one or more of several objects that, as a group, are in 
different states. 

XtNlabel 
This resource is a pointer to the text for the Label. This resource is ignored if the 
XtNlabelType resource has the value OL_IMAGE. 

XtNlabelimage 

Page 2 

This resource is a pointer to the image for the Label. This resource is ignored 
unless the XtNlabel Type resource has the value OL_IMAGE. 

If the image is of type XYBitmap, the image is highlighted when appropriate by 
reversing the a and 1 values of each pixel (for example, by "'xor'ing" the image 
data). If the image is of type XYPixmap or ZPixmap, the image is not highlighted, 
although the space around the image inside the Border is highlighted. 

3/91 



RectButton (3W) RectButton (3W) 

3/91 

If the image is smaller than the space available for it inside the Border and 
XtNlabel Tile is FALSE, the image is centered vertically and either centered or 
left-justified horizontally, depending on the value of the XtNlabelJu.stify 
resource. If the image is larger than the space available for it, it is clipped so that 
it does not stray outside the Border. If the XtNdefault resource is TRUE so that 
the Border is doubled, the space available is that inside the inner line of the 
Border. 

XtNlabelJustify 
Range of Values: 

OL_LEFT/" left" 
OL_CENTER/"center" 

This resource dictates whether the Label should be left-justified or centered 
within the widget width. 

XtNlabelTile 
Range of Values: 

TRUE 
FALSE 

This resource augments the XtNlabellmage/XtNlabelPixmap resource to allow 
tiling of the sub-object's background. For an image/pixmap that is smaller than 
the sub-object's background, the label area is tiled with the image/pixmap to fill 
the sub-object's background if this resource is TRUE; otherwise, the label is 
placed as described by the XtNlabelJustify resource. 

The XtNlabel Tile resource is ignored for text labels. 

XtNlabelType 
Range of Values: 

OL_STRING/"string" 
OL_lMAGE/"image" 

This resource identifies the form that the Label takes. It can have the value 
OL_STRING or OL_lMAGE for text or image, respectively. 

XtNrecomputeSize 
Range of Values: 

TRUE 
FALSE 

This resource indicates whether the RectButton widget should calculate its size 
and automatically set the XtNheight and XtNwidth resources. If set to TRUE, 
the RectButton widget will do normal size calculations that may cause its 
geometry to change. If set to FALSE, the RectButton Widget will leave its size 
alone; this may cause truncation of the visible image being shown by the 
RectButton widget if the fixed size is too small, or may cause padding if the 
fixed size is too large. The location of the padding is determined by the XtNla
belJustify resource. 

XtNselect 
This is the list of callbacks invoked when the widget is selected. 

Page 3 



RectButton (3W) RectButton (3W) 

XtNset 
Range of Values: 

TRUE 
FALSE 

This resource reflects the current state of the button. The button's border is thick
ened to show a TRUE state. 

XtNunselect 
This is the list of callbacks invoked when a RectButton widget is toggled into 
the "unset" mode by the end user to make XtNset be FALSE. Note that simply 
setting XtNset to FALSE with a call to XtSetValues () does not issue the XtNun
select callbacks. 

XtNdim, XtNdefault, XtNset 
The XtNdim, XtNdefault, and XtNset resources can be set independently; how
ever, all these states cannot be reflected in the visual appearance of the rectangu
lar button, as the state table in Figure 3 shows. 

XINsel XINdefaul1 XINdim Border appearance 

............................................ 
TRUE TRUE/FALSE TRUE Dimmed ........................................... 

TRUE TRUE/FALSE FALSE I Thickened I 
._-

FALSE TRUE TRUE Open 
" --

FALSE TRUE FALSE II Open II 
-- --- ---

FALSE FALSE TRUE Normal 
--- "------- - - - - ~ 

FALSE FALSE FALSE 
I 

Normal 
I 

Figure 3. Rectangular Button Appearance when Set/Default/Dim 

Label Appearance 

Page 4 

The XtNwidth, XtNheight, XtNrecomputeSize, and XtNlabelJustify resources 
interact to produce a truncated, clipped, centered, or left-justified label as shown 
in Figure 4. 

3/91 



RectButton (3W) RectButton (3W) 

3/91 

XtNwldth XtNrecomputeSlze XtNlabelJustlly Result 

any value TRUE any I Just Fits I 

>r.,e::=1 FALSE OL_LEFT I Left Justified I 

:;r::=1 FALSE OL_CENTER I Centered I 
<,eedad 

rlabel FALSE any I Trun~ I 
XtNheight XtNrecomputeSlze XtNlabelJustl1y Result 

any value TRUE any I Just FH·I 
)f:;!~~1 FALSE I Centered I any 

C ded 
FALSE I ClinnAt'l1 rlabel any 

Figure 4. Label Appearance 

When the label is centered or left-justified, the extra space is filled with the back
ground color of the RectButton widget, as determined by the XtNbackground 
and XtNbackgroundPixmap resources. 

When the label is truncated, a solid-black triangle is inserted to show that part of 
the label is missing. The triangle requires that more of the label be truncated 
than would otherwise be necessary. If the width of the button is too small to 
show even one character with the triangle, only the triangle is shown. If the 
width is so small that the entire triangle cannot be shown, the triangle is clipped 
on the right. 

See also the XtNlabel Tile resource for how it affects the appearance of a label. 

RectButton Coloration 
Figure 2 illustrates the resources that affect the coloration of the RectButton 
widget. 

On a monochrome display, the RectButton widget indicates that it has input focus 
by inverting the foreground and background colors of the control. 

On color displays, when the RectButton widget receives the input focus, the back
ground color is changed to the input focus color set in the XtNinputFocusColor 
resource. 

Page 5 



RectButton (3W) RectButton (3W) 

EXCEPTIONS: 

If the input focus color is the same as the font color for the control labels, 
then the coloration of the active control is inverted. 

If the input focus color is the same as the Input Window Header Color and 
the active control is in the window header, then invert the colors. 

If the input focus color is the same as the window background color, then 
the RectButton widget inverts the foreground and background colors when it 
has input focus. 

XtNforeground 

XtNfontColor 
XtNbackground 

(XtNbackgroundPixmap) 

Sample Button 

Figure 2. Rectangular Button Coloration 

Keyboard Traversal 

Page 6 

The default value of the XtNtraversalOn resource is True. 

The RectButton widget responds to the following keyboard navigation keys: 

NEXT FIELD moves to the next traversable widget in the window 

PREY FIELD 

MOVEUP 

MOVEOOWN 

moves to the previous traversable widget in the window 

moves to the RectButton above the current widget in the 
Nonexclusives or Exclusives composite 

moves to the RectButton below the current widget in the 
Nonexclusives or Exclusives composite 

3/91 



RectButton (3W) RectButton (3W) 

LEFT 

MOVERIGHT 

NEXTWINDOW 

PREVWINDOW 

moves to the RectButton to the left of the current widget 
in the Nonexclusives or Exclusives composite 

moves to the RectButton to the right of the current 
widget in the Nonexclusives or Exclusives composite 

moves to the next window in the application 

moves to the previous window in the application 

NEXTAPP moves to the first window in the next application 

PREY APP moves to the first window in the previous application 

The RectButton will respond to the SELECTKEY by acting as if the SELECT but
tons had been clicked. 

RectButton Activation Types 
Activation Type Expected Results 
OL MENUDEFAULTKEY Set the sub-object as the shell's default object (if on a 

menu) 
OL SELECTKEY Call its callbacks 

Display of Keyboard Mnemonic 
The ReetButton widget displays the mnemonic accelerator for its child as part of 
its label. If the mnemonic character is in the label, then that character is 
highlighted according to the value of the application resource XtNshowMneumon
ies. If the mnemonic character is not in the label, it is displayed to the right of 
the label in parenthesis and highlighted according to the value of the application 
resource XtNshowMneumonies. 

If truncation is necessary, the mnemonic displayed in parenthesis is truncated as 
a unit. 

Display of Keyboard Accelerators 
The ReetButton Widget displays the keyboard accelerator as part of its label. 
The string in the XtNaeeeleratorText resource is displayed to the right of the 
label (or mnemonic) separated by at least one space. The acceleratorText is right 
justified. 

If truncation is necessary, the accelerator is truncated as a unit. The accelerator is 
truncated before the mnemonic or the label. 

RESOURCES 
ReetButton Resource Set 

Name Class Type Default Access 

XtNaccelerator XtCAccelerator String NULL SGI 

XtNacceleratorText XtCAcceleratorText String (calculated) SGI 

XtNancestorSensitive XtCSenstitive Boolean TRUE G* 

XtNbackground XtCBackground Pixel XtDefaultBackground SGIt 

XtNbackgroundPixmap XtCPixmap Pixmap (none) SGIt 

XtNconsumeEvent XtCConsumeEvent XtCallbackList NULL SGI 

3/91 Page 7 



RectButton (3W) 

Name 

XtNdefault 

XtNdepth 

XtNdestroyCallback 

XtNdim 

XtNfont 

XtNfontColor 

XtNfontGroup 

XtNforeground 

XtNheight 

XtNinputFocusColor 

XtNlabel 

XtNlabelImage 

XtNlabelJustify 

XtNlabelTile 

XtNlabelType 

XtNmappedVVhe~anaged 

XtNmnemonic 

XtNreferenceName 

XtNreferenceWidget 

XtNrecomputeSize 

XtNselect 

XtNsensitive 

XtNset 

XtNtraversalOn 

XtNunselect 

XtNuserData 

XtNwidth 

XtNdefault 
Range of Values: 

TRUE 
FALSE 

RectButton (3W) 

RectButton Resource Set 
Class Type Default Access 

XtCDefault Boolean FALSE SGI 

XtCDepth int (parent's) GI 

XtCCallback XtCallbackList NULL SI 

XtCDim Boolean FALSE SGI 

XtCFont XFontStruct • (OPEN LOOK font) SI 

XtCFontColor Pixel Black' SGI 

XtCFontGroup 

XtCForeground Pixel XtDefaultForeground SGlt 

XtCHeight Dimension (calculated) SGI 

XtCInputFocusColor Pixel Red SGI 

XtCLabel String (class name) SGI 

XtCLabelImage XImage' NULL SGI 

XtCLabelJustify OlDefine OL LEFT SGI 

XtCLabelTile Boolean FALSE SGI 

XtCLabelType int OL STRING SGI 

XtC11appedVVh~anaged Boolean TRUE SGI 

XtC11nemonic unsigned char NULL SGI 

XtCReferenceName String NULL SGI 

XtCReferenceWidget Widget NULL SGI 

XtCRecomputeSize Boolean TRUE SGI 

XtCCallback XtCallbackList NULL SI 

XtCSensitive Boolean TRUE GI' 

xtCSet Boolean TRUE SGI 

XtCTraversalOn Boolean TRUE SGI 

XtCCallback XtCallbackList NULL SI 

XtCUserData XtPointer NULL SGI 

XtCWidth Dimension (calculated) SGI 

If this resource is TRUE, the Border is doubled to two lines, to show that the but
ton is the default choice of one or more buttons. 

Page 8 3/91 



Scroll bar (3W) Scroll bar (3W) 

NAME 
Scrollbar - moves or scrolls the view of an associated pane 

SYNOPSIS 
#include <Intrinsic.h> 
#include <StringDefs.h> 
#include <OpenLook.h> 
#include <Scrollbar.h> 

static Widget scrollbar, menupane, w; 

Arg args[l]; 

scrollbar = XtCreateWidget (name, scrollbarWidgetClass, ... ); 

/*use the following instruction to add a button to the 
scrollbar menu*/ 

XtSetArg (args [0], XtNmenuPane, &menupane); 
XtGetValues(scrollbar, args, 1) 
w = XtCreateWidget(name, widget-class, menupane, ... ); 

DESCRIPTION 

3/91 

Scrollbar Components 
Each full scrollbar has the following parts: 

Top (Left) Anchor 

Bottom (Right) Anchor 

Up (Left) Arrow 

Down (Right) Arrow 

Drag Area 

Elevator 

Cable 

Proportion Indicator 

Scrollbar Menu 

Page Indicator (optional) 

A scrollbar consists of two Anchors, an Elevator, a Cable, a Proportion Indicator, 
a Menu, and optionally a Page Indicator. The Anchors are located at both ends 
of the cable. They are used to move the view to the corresponding extreme of 
the item or list of items being viewed. The Elevator, which slides along the 
length of the cable, consists of the Up Arrow, Down Arrow, and a Drag Area in 
the middle for moving the view. The arrow boxes are used to move the view in 
the direction of the arrow by one unit of granularity. The Drag Area is used to 
move the view by tracking the position of the mouse pointer relative to the 
scrollbar. The Proportion Indicator moves along with the Elevator to indicate the 
size of the view and its position relative to the entire item or list of items being 
viewed. The optional Page Indicator located next to the Drag Area indicates the 
page number of the content being viewed. The Page Indicator will be displayed 
only when the SELECT button is pressed in the Drag Area. 

Page 1 



Scrollbar (3W) 

Left Anchor Left 
Arrow 

Drag Area 
Right 

J ... Arrow 

o II 11111111111 III 1111 II 11111 IIIIII!I_!II 

t···~------
Cable 

Proportion Indicator 

Scroll bar (3W) 

Right Anchor 

"'f""""'" .... 
Cable t 

ScrollBar Widget 

Figure 1. Horizontal Scroll Bar 

Page 2 3/91 



Scrollbar (3W) Scroll bar (3W) 

3/91 

Top Anchor ___ ~"~D ....... _--~ScroIlBar Widget 

=~"'''I'---- Cable 

Proportion Indicator ___ -.._1 

Page Number .. ~ 

Elevator ... 

~,----- Up Arrow 

~'----- Drag Area 
+-,-,----- Down Arrow 

Proportion Indicator ---__ ·1 

§ : i ......... ---- Cable 

Bottom Anchor---I"~D 

Figure 2. Vertical Scroll Bar 

Because a scrollbar can be seen and used horizontally as well as vertically, the 
parts Top Anchor and Bottom Anchor have the aliases Left Anchor and Right 
Anchor, respectively. 

Each scrollbar is associated with a Content, as defined by the application. The 
Content is composed of Units (for example, lines of text) that are visible in a 
viewing area. For a scrollbar to be useful, the Content typically has more Units 
than can fit in the viewing area. Hence, "scrolling" the Content brings Units into 
view as other Units move out of view. The amount of the Content that is visible 
at one time is called a pane in the descriptions below. 

Abbreviated Scrollbar 
The Scrollbar widget responds to a parent's request to resize smaller by shor
tening the Cable (and Proportion Indicator) but leaving the other elements full
sized. The Scrollbar widget will eliminate the Cable and drag area entirely, if 
necessary, to meet a resize request. These abbreviated scrollbars are shown in 
Figure 3. 

Page 3 



Scrollbar(3W) Scroll bar (3W) 

DI~I~ID 
Figure 3. Abbreviated Scroll Bars 

Minimum Scroll bar 
If necessary, the Scrollbar widget will eliminate the anchors (in addition to the 
Cable and drag area) to meet a resize request to form a minimum scrollbar. 

Elevator Motion 
As visual feedback to the user, the Elevator moves up and down (or left and 
right) along the line of the Cable as the Content scrolls or changes panes. The 
range of motion of the Elevator is not necessarily the full distance between the 
Anchors. The application decides how far the Elevator can be moved by evaluat
ing each attempt to move it. 

The user manipulates the scrollbar by pressing or clicking SELECT. The action 
performed depends on the position of the pointer and whether the application is 
willing to scroll the Content. 

Scrolling One Unit 

Page 4 

Clicking SELECT on one of the Up, Down, Left, or Right Arrows moves the 
Elevator in the direction of the arrow, moves the pointer to stay on the Arrow, 
and changes the Content to move one Unit out of view and another Unit into 
view, such that the view scrolls in the opposite direction of the Elevator motion. 
If the application cannot scroll this time, the Elevator and pointer do not move, 
and the view does not change. 

3/91 



Scroll bar (3W) Scroll bar (3W) 

3/91 

Pressing SELECT on an Arrow repeats the action described above. 

When SELECT is clicked or pressed, the Arrow highlights while the scrolling 
action takes place. If SELECT is pressed, the highlighting stays until SELECT is 
released. 

When the Elevator has reached the end of a Cable, the Arrow in that direction is 
made inactive. 

Scrolling Several Units 
Dragging SELECT on the Drag Area moves the Elevator along the Cable, to track 
the component of the pointer motion parallel to the Cable. The Content scrolls in 
the opposite direction, bringing one or more Units into view as other Units move 
out of view. 

If granularity is enforced and the Elevator is moved to a position that represents 
a non-integral number of Units, the closest integral number of Units is considered 
instead. If granularity is not enforced, the Elevator is moved by the non-integral 
number of Units. The XtNsliderMoved callback allows the application to enforce 
granularity. 

When the application reaches the limit that it can scroll, the view no longer 
changes and the Elevator stops moving. 

While dragging SELECT, the Drag Area highlights. The pointer is constrained to 
stay within the Drag Area as the Elevator moves. 

ScrOlling to Limits 
Clicking SELECT on one of the Top, Bottom, Left, or Right Anchors causes the 
view of the Content to change to the top-most, bottom-most, left-most, or right
most pane, respectively, and moves the Elevator to the limit in the direction of 
the Anchor. If the Elevator is already at the limit, nothing happens. 

Clicking SELECT on an Anchor highlights the Anchor while the scrolling action 
takes place. 

Scrolling a Pane of Units 
Clicking SELECT on the Cable above/left-of or below/right-of the Elevator 
causes the view of the Content to change to the previous or next pane, respec
tively. The pointer is moved along the direction of the Elevator travel to keep it 
off the Elevator. If only a partial pane remains before the limit of the Content is 
reached, the effect is as if the user clicked SELECT on the corresponding Anchor. 
If the application cannot move to another pane, the view does not change and the 
Elevator and pointer do not move. 

Pressing SELECT on the Cable repeats the action described above. 

Elevator Approaching Limits 
The application calibrates the scrollbar so that the position of the elevator on the 
scrollbar is in units useful to the application. In general, these units will not be 
pixels or points. If the scrollbar is close enough to an Anchor, the separation in 
application units may equate to zero pixels, because of the discrete nature of pix
els. Here, the elevator is kept away from the Anchor so that two points of the 
Cable length are visible. The Elevator is placed at the limit of motion only when 
the user explicitly moves the elevator to an Anchor by clicking SELECT on the 
Anchor, or drags the Elevator until it reaches the limit. 

Page 5 



Scrollbar (3W) Scroll bar (3W) 

Indicating View Proportion 

Page 6 

The Proportion Indicator gives a gross measure of what part of the Content is in 
view. Its size relative to the length of the Cable is the same as the size of the 
pane relative to the size of the Content. However, the scrollbar widget does not 
maintain this relation but relies on the application to provide the length of the 
Proportion Indicator. 

The Proportion Indicator moves with the Elevator such that both reach the limits 
together. When the Content is scrolled to the beginning, the proportion indicator 
and the elevator align at the left or top end of the scrollbar, as in Figure 4. When 
the Content is scrolled to the end, the proportion indicator and the elevator align 
at the right or bottom end of the scrollbar, as in Figure 5. For intermediate posi
tions, the Elevator is pOSitioned proportionally between the ends of the Propor
tion Indicator. Thus, as the Content is scrolled at a constant rate (for example, by 
dragging SELECT), the Elevator creeps from one end of the Proportion Indicator 
to the other at a constant rate. 

01 ~ 1 1 ~ 111 ______ 11111111111111111111111111111111111111110 

Figure 4. Elevator and Proportion Indicator at Left/Top Limits 

3/91 



Scroll bar (3W) Scroll bar (3W) 

3/91 

1 

01111111111111111111111111111111111111 I~I I~IO 
Figure 5. Elevator and Proportion Indicator at Right/Bottom Limits 

Scroll bar Menu 
The Scrollbar Menu (not shown in the figures) pops up when the user presses 
MENU anywhere over the scrollbar widget. The menu has three default choices 
depending on the scrollbar orientation. 

Here to Top 
Here to Left This choice scrolls the Content so that the Unit next to the 

pointer is placed at the top or left of the viewing area. 

Top to Here 
Left to Here This choice scrolls the Content so that the Unit at the top or left 

of the viewing area is placed next to the pointer. 

Previous This choice scrolls the Content to restore the previous view. The 
scrollbar widget remembers only the last two scroll positions, so 
repeated access to this choice alternates the Content between two 
views. Note: If the Scrollbar menu was invoked from the key
board, then only the "Previous" button is usable. In this case, the 
"Here To" button and the "To Here" button are not sensitive. 

An application can add choices to this menu, using the same technique for popu
lating other menus (see MENU WIDGET(3W)). The ID of the menu widget is avail
able as a resource of the scrollbar. 

Page 7 



Scrollbar (3W) Scrollbar (3W) 

Scrollbar Coloration 
When the Scrollbar widget receives the input focus through keyboard traversal, 
the background color of the widget changes to the input focus color, found in the 
resource XtNinputFocusColor. If the user traverses out of the Scrollbar widget, 
the background of the widget reverts to its original background color. 

EXCEPTION: If the input focus color is the same as either the foreground or 
background color, then the widget shows input focus by switching the back
ground and foreground colors. 

Figure 6 illustrates the resources that affect the coloration of the Scrollbar 
widget. 

XtNforeground 

XtNbackground 
(XtNbackgroundPixmap) 

,< ........... . 
Parent's XtNbackground 
(XtNbackgroundPixmap) 

Figure 6. Scrollbar Coloration 

Keyboard Traversal 

Page 8 

The Scrollbar's default values of the XtNtraversalOn resource is True. 

The user can operate the Scrollbar by using the keyboard to move the Elevator 
and access the Anchors. The following keys manipulate the Scrollbar: 

SCROLLUP and SCROLLDOWN (SCROLLLEFT and SCROLLRIGHT for hor
izontal Scrollbars) move the Elevator one Unit in the given direction. The 
Content changes to move one Unit out of view and another Unit into view, 
such that the view scrolls in the opposite direction of the Elevator motion. If 
the application cannot scroll at this time, the Elevator does not move and the 
view does not change. 

3/91 



Scroll bar (3W) Scroll bar (3W) 

3/91 

The appropriate arrow in the Elevator highlights while the scrolling action takes 
place. 

SCROLLTOP and SCROLLBOTTOM (SCROLLLEFTEDGE and SCROLL
RlGHTEDGE for horizontal Scrollbars) cause the view of the Content to 
change to the top-most, bottom-most, left-most, or right-most pane respec
tively. The Elevator moves to the limit in the direction of the Anchor. 

These keys cause the appropriate Anchor to highlight while the scrolling action 
takes place. 

P AGEUP and P AGEDOWN (P AGELEFT and P AGERlGHT for horizontal 
Scrollbars) cause the view of the Content to change to the previous or next 
pane, respectively. 

MENUKEY posts the Scrollbar's Menu. 

Vertical Scrollbar Activation Types 
Activation Type Expected Results 
OL MENUKEY, or 
OL-YSBMENU Popup the scrollbar menu 
OL-PAGEUP Scrolls up one view 
OL -PAGEDOWN Scrolls down one view 
OL - SCROLLUP Scrolls up one Unit 
OL - SCROLLDOWN Scrolls down one Unit 
OL -SCROLLTOP Scrolls to top edge of pane 
OL SCROLLBOTTOM Scrolls to bottom edge of pane 

Horizontal Scrollbar Activation Types 
Activation Type Expected Results 
OL MENUKEY, or 
OL-HSBMENU Popup the scrollbar menu 
OL -P AGELEFT Scrolls left one view 
OL - P AGERlGHT Scrolls right one view 
OL - SCROLLRIGHT Scrolls right one Unit 
OL - SCROLLLEFT Scrolls left one Unit 
OL - SCROLLRlGHTEDGE Scrolls to right edge of pane 
OL SCROLLLEFTEDGE Scrolls to left edge of pane 

The Scrollbar widget responds to the following keyboard navigation keys: 

NEXT FIELD, MOYEDOWN, and MOYERlGHT move to the next traversable 
widget in the window 

PREY]IELD, MOYEUP, and MOYELEFT move to the previous traversable 
widget in the window 

NEXTWINDOW moves to the next window in the application 

PREYWINDOW moves to the previous window in the application 

Page 9 



Scrollbar (3W) Scrollbar (3W) 

NEXTAPP moves to the first window in the next application 

PREY APP moves to the first window in the previous application 

Operating the Scrollbar with keyboard disables any pointer warping. 

Scrollbar Menu 
The default choices in the Scrollbar Menu are created with xtNtraversalon set 
to True and XtNmnemonic set to the first character of their label. 

When the Scrollbar Menu is posted via keyboard traversal, the "Here to Top" and 
"Top to Here" buttons are not sensitive. These buttons depend on the position of 
the pointer when the menu is posted, and so they are not applicable when the 
menu is posted from the keyboard. 

Display of Keyboard Mnemonic 
The Scrollbar does not display the mnemonic accelerator. If the Scrollbar is 
the child of a Caption widget, the Caption widget can be used to display the 
Scrollbar's mnemonic. 

Display of Keyboard Accelerators 
The Scrollbar does not respond to a keyboard accelerator because clicking the 
SELECT button on a Scrollbar activates depending on the pointer position. So, 
the Scrollbar does not display a keyboard accelerator. 

SUBSTRUCTURE 
Scrollbar Menu component 

Name: ScrollMenu 
Class: Menu 

Application Resources 
Name Class Type Default Access 

'XtNcenter XtCCenter Boolean lRUE I 

'XtNhPad XtCHPad Dimension 4 I 

'XtNhSpace XtCHSpace Dimension 4 I 

'XtNIayoutType XtCLayoutType OIDefine OL FlXEDROWS I 

'XtNmeasure XtCMeasure int 1 I 

XtNpushpin XtCPushpin OlDefine OL NONE I 

XtNpushpinDefault XtCPushpinDefault Boolean FALSE I 

'XtNsameSize XtCSameSize OlDefine OL COLUMNS I 

XtNtitle XtCTitle String "Scrollbar" I 

'XtNvPad XtCVPad Dimension 4 I 

'XtNvSpace XtCVSpace Dimension 4 I 

*See the Menu and ControlArea widgets for the descriptions of these resources. 

Page 10 3/91 



Scrollbar (3W) Scroll bar (3W) 

RESOURCES 
Scrollbar Resource Set 

Name Class Type Default Access 

XtNancestorSensitive XtCAncestorsensitive Boolean TRUE G' 

XtNbackground XtCBackground Pixel XtDefaultbackground SGIt 

XtNbackgroundPbcrnap XtCBackgroundPbcrnap Pbcrnap (none) SGIt 

XtNconsumeEvent XtCConsumeEvent XtCallbackList NULL SGI 

XtNcurrentPage XtCCurrentPage int 1 SGIT 

XtNdestroyCallback XtCDestroyCallback XtCallbackUst NULL SI 

XtNdragCBType XtCDragCBType OlDefine OL CONTINUOUS SGI 

XtNfontGroup XtCFontGroup 

XtNforeground XtCForeground Pixel XtDefaultForeground SGI 

XtNgranularity XtCGranularity int 1 SGI 

XtNheight XtCHeight Dimension (calculated) SGI 

XtNinputFocusColor XtCInputFocusColor Pixel Red SGI 

XtNinitialDelay XtCInitialDelay int 500 SGI 

XtNmappedVVhen11anaged XtC~ppedVVhe~anaged Boolean TRUE SGI 

XtNmenuPane XtCMenuPane Widget (none) G 

XtNorientation XtCOrientation OlDefine OL VERTICAL GI 

XtNproportionLen~ XtCProportionLen~ int (variable) SGI 

XtNreferenceName XtCReferenceName String NULL SGI 

XtNreferenceWidget XtCReferenceWidget Widget NULL SGI 

XtNrepeatRate XtCRepeatRate int 100 SGI 

XtNsensitive XtCSensitive Boolean TRUE GI' 

XtNshowPage XtCShowPage OlDefine OL NONE SGI 

XtNslider~ XtCSliderMax int 100 SGI 

XtNsliderMin XtCSliderMin int 0 SGI 

XtNsliderMoved XtCSliderMoved XtCallbackUst NULL SI 

XtNsliderValue XtCSliderValue int 0 SGI 

XtNstopPosition XtCStopPosition OlDefine OL ALL SGI 

XtNtraversalOn XtCTraversalOn Boolean TRUE SGI 

XtNuserData XtCUserData XtPointer NULL SGI 

XtNwidth XtCWidth Dimension (calculated) SGI 

XtNx XtCPosition Position 0 SGI 

XtNy XtCPosition Position 0 SGI 

XtNbackground 
Whenever this resource is changed, the Anchors, the Elevator, and the Proportion 
Indicator will be redisplayed with the new color. 

3/91 Page 11 



Scrollbar (3W) Scroll bar (3W) 

XtNcurrentPage 
This resource is typically not selectable. However, there are two exceptions. If 
XtNshowPage is set via SetValuesO, XtNcurrentPage should also be set in the 
same call. If XtNshowPage is already set, and later XtNsliderValue is changed 
via SetValuesO, XtNcurrentPage should also be set in the same call. 

XtNdragCBType 
Range of values: 

OL CONTINUOUS/"continuous" 
OL=GRANULARITY/"granularity" 
OL _RELEASE/ "release" 

This resource determines the frequency of issuing XtNsliderMoved callbacks. If 
set to OL_CONTlNUOUS, callbacks will be issued continuously Gust like in Xt+ 2.0). 
If set to OL_GRANULARITY, callbacks will only be issued when the drag box 
crosses any granularity positions. If set to OL_RELEASE, callback will only be 
issued once when the SELECT button is released. 

XtNgranularity 
Range of Values: 

1 ~ XtNgranularity ~ XtNsliderMax - XtNsliderMin 

Clicking or pressing SELECT an an Vp, Left, Dawn, or Right Arrow attempts to 
change the position of the Elevator by the distance given in this resource. Nor
mally, the drag operation does not honor granularity unless enforcement is set in 
the XtNsliderMoved callback procedure. 

XtNinitialDelay 
Range of Values: 

o < XtNinitialDelay 

This resource gives the time, in milliseconds, before the first action occurs when 
SELECT is pressed on the Cables or Arrows. Note that millisecond timing preci
sion may not be possible for all implementations, so the value may be rounded 
up to the nearest available unit by the toolkit. 

XtNmenuPane 
This is the widget where scrollbar menu items can be attached; its value is set 
once the scrollbar is created. Menu items can be added to this widget just as they 
are to a menu pane for a Menu or MenuButton widget. 

The menu initially contains the items 

Here to Top (Here to Left) 

- Top to Here (Left to Here) 

- Previous 

If these items are removed from the menu by the application, a warning is gen
erated (see Error(3W) in the Convenience Routines section). 

XtNorientation 
Range of Values: 

Page 12 

OL_HORIZONTAL/"horizontal" 
OL_VERTlCAL/"vertical" 

3/91 



Scroll bar (3W) Scrollbar(3W) 

This resource defines the direction for the visual presentation of the widget. This 
resource cannot be changed via Setvalues ( ) . 

XtNproportionLength 
Range of Values: 

1 ~ XtNProportianLength ~ (XtNslider.Max - XtNs1 iderMin) 

Default: 

(xtNsliderMax - XtNsliderMin) 

This resource gives the size of the Proportion Indicator. The application uses the 
XtNslider.Max and XtNsliderMin resources to calibrate the scrollbar, making its 
overall length correspond to the overall length of the Content, and uses the 
XtNProportionLength resource to indicate how much of the Content is visible. 

While this resource gives the overall length of the Proportion Indicator, the Eleva
tor always covers part of it. If the Elevator would completely hide the Proportion 
Indicator, 3-point sections of it are shown above and below (or left of and right 
of) the Elevator. If the Elevator is too close to an Anchor to show all of a 3-point 
section, as much as possible of the section is shown on that side (this may be a 
zero-length section). 

For example, if you have 100 items to be displayed and only one item is viewable 
in the pane at a time, then set XtNsliderMin to 0, XtNsliderMax to 100, and 
XtNproportionLength to 1. The possible sliderValues are from a to 99, inclusive. 
Another example, 100 items, but 25 items viewable at a time, then set XtNslider
Min to 0, XtNsliderMax to 100, XtNproportionLength to 25. The possible slider
Values are from a to 75, inclusive. 

XtNrepeatRate 
Range of Values: 

o < XtNrepeatRate 

This resource ,gives the time, in milliseconds, between repeated actions when 
SELECT is pressed on the Cables or Arrows. Note that millisecond timing preci
sion may not be possible for all implementations, so the value may be rounded 
up to the nearest available unit by the toolkit. 

3/91 

XtNshowPage 
Range of Values: 

OL_NONE/ "none" 
OL_LEFT/ "left" 
OL_RIGHT/ "right" 

If XtNshowPage changes from OL_NONE to one of the other values, a pop-up win
dow for the page indicator is created. If the value changes to OL_NONE, then the 
pop-up is destroyed. 

This value is checked when dragging is initiated. If it is not set to OL_NONE, the 
page indicator will be popped to the screen. While dragging, the page number in 
the indicator is constantly updated. 

NOTE: 
The page indicator feature is not popped to the screen when using the keyboard 
rather than the mouse for drag operations. 

Page 13 



Scroll bar (3W) Scroll bar (3W) 

XtNsliderMax 
XtNsliderMin 

Range of Values: 
XtNsliderMin < XtNsliderMax 

These two resources are used to calibrate the Scrollbar widget. An application 
should set their values to correspond to the range of the Content, and should set 
the value of the XtNproportionLength resource to the length of the view into 
the Content. This calibrates the scrollbar. 

The Scrollbar uses the calibration to convert the pixel location of the Elevator 
into a value in the range 

XtNsliderMin ~ range ~ XtNsliderMax - xtNproportionLength 

The explanation for this range relation follows: First, an application calibrates the 
scrollbar as described above, so that XtNsliderMin and XtNsliderMax span the 
length of the Content and XtNproportionLength gives the length of the view of 
the Content. Consider that the Elevator tracks a fixed position in the view; the 
position is arbitrary, but remains the same as the view is scrolled over the Con
tent. This can be the first line in the view. As Figure 7 shows, when the view is 
at the top of the Content, the Elevator is at the top of the scrollbar and the cali
brated position of the first line is XtNsliderMin. However, when the view is at 
the bottom of the content, the Elevator is at the bottom of the scrollbar and the 
calibrated position of the first line is XtNsliderMax - xtNproportionLength. 

XtNsliderMin -- r::-,-=-_-=-_-=-_ -=-_ -=-_ -=-_ =-_ =-__ =-_=-_:-:_:-:_:-:_:-:_::1-, 
, 

View of the Content' ' , ' Elevator 
L _______________ l 

Scrollbar 

XtNproportionLength 

XtNsliderMax_~_'=========='.J 

Content 

Figure 7. Elevator Range of Movement 

Page 14 3/91 



Scroll bar (3W) Scrollbar (3W) 

XtNsliderMoved 

3/91 

This resource defines the callback lists used when the scrollbar is manipulated in 
various ways. The Scrollbar widget passes the final location of the Elevator, as 
an integer between XtNsliderMin and XtNsliderMax inclusive, in a structure 
pointed to by the call_data parameter. The structure, OIScrollbarVerify, 
looks like this: 

typedef struct _OIScrollbarVerify 
int new_Iocationi 
int new-pagei 
Boolean Oki 

int slider_mini 
int slider_maxi 
int deltai 
Boolean move_cb-pendingi 

OIScrollbarVerifYi 

new_location 
When the XtNsliderMoved callbacks are made, the new_location 
member gives the position of the attempted scroll. This will be the new 
value of the XtNsliderValue resource if the scroll attempt is successful; 
however, the XtNsliderValue resource is not updated until after the 
callbacks return. 

new-page 
This will be the new value of the XtNcurrentPage resource if the scroll 
attempt is successful. new-page is used to set the page number. To see 
the page number, you have to set XtNshowPage to OL_LEFT or 
OL_RIGHT. 

ok The ok member of this structure is initially set to TRUE; the application 
should set a value that reflects whether the scroll attempt is allowed. 
Since more than one callback routine may be registered for these 
resources, each callback routine can first check the ok member to see if a 
previous callback routine in the list has already rejected the scroll 
attempt. The scrollbar will complete the scroll attempt only if, after the 
last callback has returned, the ok member is still TRUE. 

If the ok member is FALSE after the last callback returns, the Scrollbar 
restores the Elevator to the position it was in before the user attempted 
to move it. This is required only when the Elevator has been dragged. 
The Scrollbar does not move the Elevator for other scrollbar manipula
tions until the scroll attempt has been verified. 

slidermin 
slidennax 

These are the same values as in the XtNsliderMin and xtNsliderMax 
resources. 

del ta This is the distance between the new scroll position and the old, as a 
signed value: 

delta = new_location - old location 

Page 15 



Scroll bar (3W) Scrollbar(3W} 

A callback can change the new_location value to reflect a partial scroll. 
For example, if the scrolling granularity causes a scroll attempt past the 
end of an application's partially full buffer, the application should adjust 
new_location to a value representing the end of the buffer. The 
adjusted value must lie between the values present before the attempted 
scroll and the new values given in the OlScrollbarVerify structure. 

move_cb-pending 
The boolean, move_cb-pending, is set to TRUE, if more callbacks are 
pending. If an application received a callback with this set to TRUE, it is 
guaranteed that a callback with move_cb-pending set to FALSE will fol
low shortly, before or when an operation is completed. Currently, 
move_cb-pending is set to TRUE only during a drag operation. 

The XtNsliderMoved callbacks are issued when the Elevator position 
has been conditionally changed by the user 

clicking or pressing SELECT on the Up/Left or Down/Right 
arrow buttons; 

moving the Elevator to a new position by dragging SELECT 
on the Drag Area; 

clicking SELECT on the Top/Left or Bottom/Right Anchors; 

clicking or pressing SELECT on the Cable. 

XtNsliderValue 
Range of Values: 

XtNsliderMin ~ XtNsliderValue ~ XtNsliderMax - XtNproportionLength 

This resource gives the current position of the Elevator. The Scrollbar widget 
keeps this resource up to date. 

XtNstopPosition 
Range of values: 

OL_ALL/"all" 
OL_GRANULARITY /"granularity" 

This resource determines the disposition of the drag box at the end of an drag 
operation. If set to OL_ALL, upon the release of the SELECT button in a drag 
operation, the drag box will be positioned at where it stops. If set to 
OL_GRANULARITY, the drag box will snap to the nearest granularity position. 

Page 16 3/91 



ScrolledWindow (3W) ScrolledWindow (3W) 

NAME 
ScrolledWindow - used as the basis for implementing a scrollable pane 

SYNOPSIS 
#include <Intrinsic.h> 
#include <StringDefs.h> 
#include <OpenLook.h> 
#include <ScrolledWi.h> 

static widget scrolledwindow, controlareal, controlarea2, w; 

Arg args[2]; 

scrolledwindow = XtCreateWidget(name, scrolledWindowWidgetClass, ••. ); 

/*Use the following instructions to add two buttons to the 
scrolling window. */ 

XtSetArg(args[O], XtNhMenuPane, &controlareal); 
XtSetArg(args[ll, XtNvMenuPane, &controlarea2); 
XtGetValues(scrolledwindow, args, 2); 
w = XtCreateWidget (name, widget-class, controlareal, .•. ); 
w = XtCreateWidget (name, widget-class, controlarea2, ... ); 

DESCRIPTION 

3/91 

No Text or Graphics Semantics 
The ScrolledWindow can be used as the basis for implementing an OPEN LOOK 
scrollable text or graphics pane. However, it has no innate text or graphics 
semantics. "Window" does not refer to an OPEN LOOK pop-up window or base 
window; it is a general term used because the ScrolledWindow widget provides 
a "window" onto a larger widget. 

ScrolledWindow Components 
The ScrolledWindow widget has the following components: 

Vertical Scrollbar (typically) 

Horizontal Scrollbar (typically) 

Content (not all visible) 

View of the Content (visible part of Content) 

View Border 

Page 1 



ScroliedWindow (3W) ScroliedWindow (3W) 

View of the Content +---_ 
I ~ -~~~~:C~I-s-c~o~,~~r-l 

- I 
: I 
: I 
: I 
:: I 
: I 

:: ~ 
:: I 

View Border--. 

o : 
~JI~=I=I~I-""'-""'-""-""'-""-""'~"'O~ i 

i t i 
~ Horizontal Scrollbar I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Content~~ 
I 
I 
I 
I 
I 
I I 

L ___________________________________________ J 

Figure 1. Scrolled Window 

View Border 
The View Border is a l-point outline around the View of the Content. 

View onto Larger Data Display 
The ScrolledWindow widget incorporates the features of the ScrollBar class of 
widgets to implement a visible window (the View of the Content) onto another, 
typically larger, data display (the Content). The View of the Content can be 
scrolled through the Content using the scroll bars. 

Child Widget as Content 

Page 2 

To use the ScrollWindow, the application creates a widget capable of displaying 
the entire Content as a child of the ScrolledWindow widget. The ScrolledWin
dow widget positions the child widget "within" the View of the Content, and 
creates scroll bars for the horizontal and/or vertical dimensions, as needed. 
When the end user performs some action on the scroll bars, the child widget will 
be repositioned accordingly within the View of the Content. 

The word "within" is used strictly in the widget sense: the larger child widget is 
positioned within the smaller View of the Content part of the ScrolledWindow 
widget, which necessarily forces the child widget to display only the visible part 
of itself. The protocol for this is through normal widget geometry interactions. 

3/91 



ScroliedWindow (3W) ScroliedWindow (3W) 

3/91 

Upper Left Corner Fixed on Resize 
If the ScrolledWindow widget is resized, the upper left corner of the View stays 
fixed over the same spot in the Content, unless this would cause the View to 
extend past the right or bottom edge of the Content. If necessary, the upper left 
corner will shift left or up only enough to keep the View from extending past the 
right or bottom edge. 

View Never Larger than Content 
The View of the Content is never made larger than needed to show the Content. 
Unless forced to appear, a scrollbar is removed from the side where it is no 
longer needed. Remaining scrollbars stay a fixed distance from the View. 

Scrolling Sensitivity 
The scrollbars are configured to scroll integer values, in pixels, through the width 
and length of the Content. This allows the finest degree of control of the posi
tioning of the View of the Content. However, the application can set the step 
rate through these values to avoid a large number of view updates as the end 
user scrolls through the Content. 

ScrolledWindow Coloration 
Figure 2 illustrates which resources affect the coloration of the ScrolledWindow 
widget. 

Parent's XtNbackground 
(XtNbackgroundPixmap) 

Content's --+--_ 
Coloration 

/D~"""""""""""' ........ D 
XtNborderColor 

(XtNborderPixmap) 

Figure 2. Scrolled Window Coloration 

Scrollbar 
Coloration 

Page 3 



ScroliedWindow (3W) ScroliedWindow (3W) 

Application Controlled Scrolling 
The ScrolledWindow widget also provides support for the application to control 
the scrolling of the content data within the view. In this mode of operation, the 
application creates a content window no larger than the view window. The 
application monitors user interaction with the Scrollbars and displays the 
appropriate data in the content window. 

This mode of operation supports the scrolling of large amounts of data such as 
text. 

The application specifies this mode of operation by setting the XtNvAutoScroll 
and/or XtNhAutoScroll resources to FALSE. Normally, these settings are com
bined with the setting of the XtNVSliderMoved and/or XtNhSliderMoved call
backs. Also, the application will specify an XtNcOlTputeGeometries callback 
which is used to layout the ScrolledWindow. 

Keyboard Traversal 

Page 4 

The ScrolledWindow controls the keyboard traversal between the Content, the 
Horizontal Scrollbar, and the Vertical Scrollbar. The Scrollbars that are created 
by the ScrolledWindow have the XtNtraversalOn resource set to False. A Con
tent widget added to the ScrolledWindow with traversal enabled will be added to 
the traversalab1e widgets in the window with t.lre Scrallbars so that the user can 
move between them with the NEXT FIELD (or MOVEUP or MOVELEFT) and 
PREV]IELD (or MOVEDOWN or MOVERIGHT) keys. 

Scrolled Window Activation Types 
(if it has a Vertical Scrollbar) 

Activation Type Expected Results 
OL_VSBMENU Popup the vertical scrollbar menu 
OL PAGEUP Scrolls up one view 
OL -PAGEDOWN Scrolls down one view 
OCSCROLLUP Scrolls up one Unit 
OCSCROLLDOWN Scrolls down one Unit 
oC SCROLL TOP Scrolls to top edge of pane 
OL SCROLLBOTTOM Scrolls to bottom edge of pane 

Scrolled Window Activation Types 
(if it has a Horizontal Scrollbar) 

Activation Type Expected Results 
OL_HSBMENU Popup the horizontal scrollbar menu 
OL PAGELEFT Scrolls left one view 
OCPAGERIGHT Scrolls right one view 
oC SCROLLRIGHT Scrolls right one Unit 
oC SCROLLLEFT Scrolls left one Unit 
OL-SCROLLRIGHTEDGE Scrolls to right edge of pane 

I OL _ SCROLLLEFTEDGE Scrolls to left edge of pane 

3/91 



ScroliedWindow (3W) ScroliedWindow (3W) 

SUBSTRUCTURE 
Vertical Scroll bar and Horizontal Scroll bar components 

Names: HScrollbar, VScrollbar 
Class: Scrollbar 

See the regular resource list for alternate names used for some key Scrollbar 
resources. 

RESOURCES 
ScrolledWindow Resource Set 

Name Class Type Default 

XtNalignHorizontal XtCAlignHorizontal int OL BOTTOM 

XtN align Vertical XtCAlign Vertical int OL RIGHT 

XtNancestorSensitive XtCSenstitive Boolean TRUE 

XtNborderColor XtCBorderColor Pixel XtDefaultbackground 

XtNborderPixmap XtCPixmap Pixmap (none) 

XtNcomputeGeometries XtCComputeGeometries Function Null Function 

XtNconsumeEvent XtCConsumeEvent XtCallbackList NULL 

XtNcurrentPage XtCCurrentPage int 1 

XtNdepth XtCDepth int (parent's) 

XtNdestroyCallback XtCCallback XtCallbackList NULL 

XtNforceHorizontalSB XtCForceHorizontalSB Boolean FALSE 

XtNforce VerticalSB XtCForce VerticalSB Boolean FALSE 

XtNforeground XtCForeground Pixel Black 

XtNhAutoScroll XtCHAutoScroll Boolean TRUE 

XtNhInitiaIDelay XtCHInitiaIDelay int 500 

XtNhMenuPane XtCHMenuPane Widget (none) 

XtNhRepeatRate XtCHRepeatRate int 100 

XtNhScrollbar XtCHScrollbar Widget (none) 

XtNhSliderMoved XtCHSliderMoved XtCallbackList NULL 

XtNhStepSize XtCHStepSize int 1 

XtNheight XtCHeight Dimension (calculated) 

XtNinitialX XtClnitialX Position 0 

XtNinitialY XtClnitialY Position 0 

XtNinputFocusColor XtCInputFocusColor Pixel Red 

XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE 

XtNrecomputeHeight XtCRecomputeHeight Boolean TRUE 

XtNrecomputeWidth XtCRecomputeWidth Boolean TRUE 

XtNreferenceName XtCReferenceName String NULL 

XtNreferenceWidget XtCReferenceWidget Widget NULL 

XtNsensitive XtCSensitive Boolean TRUE 

XtNshowPage XtCShowPage OIDefine OL NONE 

XtNtraversalOn XtCTraversalOn Boolean TRUE 

XtNuserData XtCUserData XtPointer NULL 

XtNviewHeight XtCViewHeight Dimension (n/a) 

3/91 Page 5 

Access 

SGI 

SGI 

G* 

SGI 

SGI 

SGI 

SG 

SGI 

GI 

SI 

SGI 

SGI 

SGI 

SGI 

SGI 

G 

SGI 

G 

SI 

SGI 

SGI 

GI 

GI 

SGI 

SGI 

SGI 

SGI 

GI 

GI 

GI* 

SGI 

SGI 

SGI 

SGI 



ScroliedWindow (3W) ScroliedWindow (3W) 

ScrolledWindow Resource Set 
Name Class Type Default 

XtNviewWidth XtCViewWidth Dimension (n/a) 

XtNv AutoScroll XtCV AutoScroll Boolean TRUE 

XtNvInitiaiDelay XtCVInitiaiDelay int 500 

XtNvMenuPane XtCVMenuPane Widget (none) 

XtNvRepeatRate XtCVRepeatRate int 100 

XtNvScrollbar XtCVScrollbar Widget (none) 

XtNvSliderMoved XtCVSliderMoved XtCallbackList NULL 

XtNvStepSize XtCVStepSize int 1 

XtNwidth XtCWidth Dimension (calculated) 

XtNx XtCPosition Position 0 

XtNy XtCPosition Position 0 

XtNalignHorizontal 
Range of values: 

OL BOTTOM/"bottom" 
OL=TOP/"top" 

This resource is used to specify whether the horizontal scrollbar should be placed 
at the top or bottom of the ScrolledWindow. The default placement is at the 
bottom. 

XtNalignVertical 
Range of values: 

OL _RIGHT I "right" 
OL _LEFT I "left" 

This resource is used to specify whether the vertical scrollbar should be placed at 
the left or right of the ScrolledWindow. The default placement is at the right. 

XtNcomputeGeometries 

Page 6 

This resource is used to allow intelligent cooperation during the layout stage 
between the ScrolledWindow and its content widget. The content widget sets 
this resource to a pointer to a function which is to be called whenever the 
ScrolledWindow needs to layout its children. The function is called as: 

typedef struct 
Widget 
Widget 
widget 
Dimension 
Dimension 
Dimension 
Dimension 
Dimension 
Dimension 
Dimension 
Dimension 
Dimension 

_OlSWGeometries 
SWi 

VSbi 
hsbi 
bb_border_widthi 
vsb_widthi 
vsb_min_heighti 
hsb_height; 
hsb_min_width; 
sw_view_width; 
sw_view_height; 
bbc_width; 
bbc_height; 

3/91 

Access 

SCI 

SCI 

SCI 

C 

SCI 

C 

SI 

SCI 

SCI 

SCI 

SCI 



ScroliedWindow (3W) 

Dimension 
Dimension 
Boolean 
Boolean 
OlSWGeometries; 

bbc_real_width; 
bbc_real_height; 
force_hsb; 
force_vsb; 

(*function) (content widget id, geometries) 
Widget content widget id; 
OlSWGeometries * geometries; 

ScroliedWindow (3W) 

The ScrolledWindow widget populates the values in this structure prior to the 
call and examines them after the call to perform the layout operation. 

The callback function is responsible for populating the bbc_width, bbc_height 
elements of this structure with the desired size of its window; the 
bbc_real_width, bbc_real_height elements with the logical size of the data, 
and force_hsb, force_vsb flags to indicate which scrollbars the Scrolled
Window should include in the layout. 

XtNcurrentPage 
The value of this resource is passed through to the vertical scrollbar of the 
ScrolledWindow. See a SCROLLBAR WIDGET(3W) for more details. 

3/91 

XtNshowPage 
These resources are directed to the vertical scrollbar in the ScrolledWindow 
widget. See ScrollBar(3W) for more detail. 

XtNforceHorizontalSB 
XtNforceVerticalSB 

Range of Values: 
TRUE 
FALSE 

When the child widget is created and positioned within the ScrolledWindow, its 
width and height are examined. If the entire child widget will fit within the 
width (length) of the ScrolledWindow, the horizontal (vertical) scrollbar will not 
be created, since there is no need to scroll in that direction. Setting these 
resources to TRUE disables this checking and will force a horizontal (vertical) 
scrollbar to be attached to the window regardless of the dimension of the child 
widget. If a scrollbar is forced but not needed because the Content fits within the 
View, the scrollbar is made insensitive. 

XtNhAutoScroll 
XtNv AutoScroll 

This resource is used to set the scrolling mode in the horizontal (vertical) direc
tion. When set to TRUE, the ScrolledWindow widget is responsible for all 
interaction with the scrollbar and the positioning of the content window within 
the view. When set to FALSE, the application is responsible for all scrollbar 
interaction and scrolling of the data within the content window. 

Page 7 



ScroliedWindow (3W) ScroliedWindow (3W) 

XtNhlnitialDelay 
XtNvlnitialDelay 

These resources are used to specify the time in milliseconds of the initial repeat 
delay to be used when the scrolling arrows of the horizontal (vertical) scrollbar 
component of the ScrolledWindow are pressed. 

XtNhMenuPane 
XtNvMenuPane 

These resources mimic the XtNmenuPane resources for the horizontal and vertical 
scrollbars, respectively. See ScrollBar(3W) for more details. 

XtNhRepeatRate 
XtNvRepeatRate 

These resources are used to specify the time in milliseconds of the repeat delay to 
be used when the scrolling arrows of the horizontal (vertical) scrollbar component 
of the ScrolledWindow are pressed. 

XtNhScrolibar 
XtNvScrolibar 

These resources provide the Widget id's of the horizontal and vertical scrollbars. 
An application can use these values to set scrollbars' characteristics, such as 
coloration. 

XtNhSliderMoved 
XtNvSliderMoved 

An application may track the position of the child within the ScrolledWindow by 
linking into these callbacks. They mimic the XtNsliderMoved resources of the 
horizontal and vertical scrollbars, respectively. 

The call_data parameter for these callbacks is a pointer to an OlScrollBar
Verify structure, as in the Scrollbar widget. The application can validate a 
scroll attempt before the ScrolledWindow widget will reposition the View of the 
Content, and can update the page number and adjust the scrollbar elevator posi
tion. See ScrollBar(3W) for more details. 

XtNhStepSize 
XtNvStepSize 

Range of Values: 

Page 8 

o < XtNhStepSize 
o < XtNStepSize 

These resources are related to the XtNgranularity resource for the horizontal 
and vertical scrollbars, respectively, but have an important distinction: their 
values are the size in pixels of the minimum scrollable unit in the Content. For 
instance, to allow the end user to scroll a single pixel in either direction, these 
values would be 1. Or, to allow the end user to scroll a character at a time hor
izontally and a line at a time vertically, these values would be the width of a 
character and the height of a line, respectively. (Scrolling a character at a time 
requires a constant width font, of course.) The ScrolledWindow widget uses 

3/91 



ScroliedWindow (3W) ScroliedWindow (3W) 

3/91 

these values to calibrate the minimum scrolling step, XtNgranularity, of the 
scrollbars. 

XtNinitialX 
XtNinitialY 

Range of Values: 
XtNinitialX ~ 0 
XtNinitialY ~ 0 

The child widget is initially positioned at the upper left corner (x,y coordinates 
0,0). This positioning can be changed by specifying a new x,y location. The 
scrollbars are adjusted to give a visual indication of the offset specified in these 
resources. 

Note that the Content is positioned within the View of the Content, so as the 
View of the Content moves progressively further through the Content, the coordi
nates of the position become more negative. Thus the initial coordinates given in 
these resources should be zero or negative to assure proper operation of the 
scrolled window. 

XtNrecomputeHeight 
XtNrecomputeWidth 

Range of Values: 
TRUE 
FALSE 

These resources control how the ScrolledWindow widget should respond to 
requests to resize itself. Where one of these resources is TRUE, the ScrolledWin
dow shrinks the View of the Content in the corresponding direction to absorb the 
change in the ScrolledWindow widget's size. Where one of these resources is 
FALSE, the ScrolledWindow does not shrink the View in that direction. 

These resources, together with the XtNViewwidth and XtNviewHeight resources, 
are typically used to set a preferred dimension in a direction that should not be 
scrolled. 

XtNviewHeight 
XtNviewWidth 

Range of Values: 
o ~ XtNViewHeight 
o ~ xtNvieWWidth 

These resources define the preferred size of the View of the Content in pixels. 
For each, if a nonzero value is given, the corresponding XtNheight or XtNwidth 
resource is computed by adding the thickness of any scrollbar that appears. Any 
value in the xtNheight or XtNWidth resource is overwritten. If a zero value is 
given in the XtNviewHeight or XtNVieWWidth resource, the corresponding 
XtNheight or XtNWidth resource is used instead. 

Page 9 



ScroliedWindow (3W) ScroliedWindow (3W) 

Regardless of which resources identify the preferred height or width, the height 
or width of the View is never smaller than any scrollbar next to it. 

These resources also represent the maximum size of the View. While the 
ScrolledWindow may resize the View smaller than indicated in these resources 
(d. XtNrecomputeHeight and XtNrecornputeWidth), it will never resize the 
View larger than indicated. 

Page 10 3/91 



Scrolling List (3W) ScrollingList (3W) 

NAME 
ScrollingList - a pane containing a scrollable list of text items 

SYNOPSIS 
#include <Intrinsic.h> 
#include <StringDefs.h> 
#include <QpenLook.h> 
#include <ScrollingL.h> 

static widget scrollinglist, textfield; 

Args args[l]; 

scrollinglist = XtCreateWidget(name, scrollingListWidgetClass, ... }; 
XtSetArg(args[O], XtNtextField, &textfield}; 
XtGetValues(scrollinglist, args, 1); 

DESCRIPTION 
Scrolling List Components 

Each ScrollingList widget has the following parts: 

Border 

3/91 

Current Item 

Current Item Border 

Items 

Scrollbar 

View 

Page 1 



Scrolling List (3W) Scrolling List (3W) 

Page 2 

Current Item Border Border 
S d" urroun mg 
Current Item 

-

~ Edit I 
View - Draw ..- Scrollbar 

Spreadsheet 

Calendar 

- o 
Items 

Figure 1. Common Scrolling List Components 

If the application allows the list to be edited in place (in the View), the Scrol
lingList widget uses the following components: 

- Editable Text Field 

3/91 



Scrolli ng List (3W) Scrolling List (3W) 

Edit 

Draw 

Editable I 
Text Field-:-----I~~L._ ...... __ ------------' 

Spreadsheet 

Figure 2. Editable Scrolling List Additional Components 

Editable Scrolling List 
The application can choose whether to allow the end user to add, change, and/or 
delete the items in a scrolling list. The Editable Text Field is the interface for 
entering, or changing the Item, and is described later. Other aspects of the user 
interface for editing are controlled by the application. For example, the applica
tion can attach a menu to the scrolling list to allow the end user to select where a 
new Item is to be inserted, and can employ pop-up windows to gather additional 
information about a new Item. 

Editing Directly in the List-the Editable Text Field 
The application can request that the ScrollingList widget manage part of the 
visual aspect of changing an existing Item in the View. The ScrollingList 
widget automatically creates a widget of class TextField that implements the 
Editable Text Field. The ScrollingList widget manages the Editable Text Field 
widget as follows: 

• The application asks the ScrollingList widget to "open" and "close" the 
Editable Text Field. Opening the Editable Text Field widget maps it and 
positions it so that, as the end user types in the name of a new or changed 
Item, the name lines up with the existing Item names. Closing the Editable 
Text Field widget unmaps it. (As described below, there may be times when 
the widget is unmapped yet still open.) If an existing Item is being edited, 
the application requests the Editable Text Field to overlay the Item. If a new 
Item is being inserted, the application requests Items to be scrolled down in 
the View to accommodate the Editable Text Field. 

3/91 Page 3 



Scrolling List (3W) Scrolli ng List (3W) 

• The ScrollingList widget maps and unmaps the Editable Text Field 
widget; the application does not. 

• If the end user scrolls the list while the Editable Text Field is still open, the 
ScrollingList widget scrolls it with the rest of the Items. If it has to be 
scrolled out of the View, it is scrolled out entirely, causing it to be unmapped 
but not closed. The application should not try to remap the child since it 
will be remapped when the list is scrolled back again. 

• If the end user attempts to make a selection or set a Current Item, the Edit-
able Text Field is automatically closed. 

The application is responsible for handling the verification callbacks of the Edit
able Text Field and for telling the ScrollingList widget to add a new Item or 
change an existing Item as a result of the user input. 

Selectable Scrolling List 
The application can choose whether to allow the end user to select Items from a 
scrolling list. If Items can be selected, they can be copied elsewhere as text, and 
may be deletable ("cut"); see below for details. 

Deleting Selected Items 
The end user can delete selected Items. The ScrollingList widget provides 
some deletion capabilities through the selection mechanisms (see the discussion 
under "Selecting and Operating on the Items" below), and the application can 
provide other capabilities, such as with a pop-up menu choice. The application 
verifies that each selected Item can be deleted; it is responsible for providing 
feedback to the end user for any Items it will not delete. The ScrollingList 
widget updates the View to remove any deleted Items. 

Virtual List 
The ScrollingList widget "virtualizes" the list to allow the application to use 
list data structures best suited to its needs. The ScrollingList widget provides 
routines the application uses to build and maintain a version of the list for the 
ScrollingList widget to use. With these routines, the application: 

adds new Items to the list; 

deletes Items from the list; 

edit items and mark them as changed; 

shifts the View to show a particular Item; 

and opens and closes the Editable Text Field for a new or changed Item. 

The application is responsible for defining callbacks that the ScrollingList 
widgets invoke when the end user attempts to change a Current Item, or cuts 
Items from the list. Each Item is identified by the Item name that is shown in the 
View for the end user, a token assigned by the ScrollingList widget that 
uniquely identifies the Item, and an attributes bit-vector that identifies if the Item 
is a Current Item. 

Order of Items in the Virtual List 

Page 4 

The list is assumed to have an order defined by the application. As it adds Items, 
the application tells the ScrollingList widget where to insert them: either 
before or after an Item already in the list. 

3/91 



Scrolling List (3W) Scrolli ng List (3W) 

3/91 

Changeable List 
The application may change the content of a list at any time, including while it is 
displayed. The widget updates the View, if necessary, to reflect the changed list. 
To avoid unnecessary updates to the View when several changes need to be 
made, the application can tell the ScrollingList widget to avoid updates until 
the changes are finished. 

Setting a Current Item 
The end user can make one or more of the Items a Current Item, as determined 
by the application, by 

clicking or pressing SELECT over it, 

- or moving the input focus inside the Border and typing the first letter of the 
Item's name. 

Either of these actions causes a callback to the application, which can decide if the 
Item should be made a Current Item, remain a Current Item, or be changed to a 
regular Item, depending on the current state of the Item and the needs of the 
application. Thus, the application can make the scrolling list behave as a set of 
exclusive or nonexclusive Items. 

Clicking or pressing SELECT also starts a selection, as described below. 

Selecting and Operating on the Items 
The ScrollingList widget allows selection operations on the Items. Items that 
are moved or copied from the View are treated as a newline-separated list of text 
items, in the order they appear in the scrolling list, with no leading or trailing 
blanks on any Item. 

selecting a single Item 
Clicking SELECT on an Item selects it and deselects any other active 
selection on the screen. 

selecting other Items 
Clicking ADJUST on an Item toggles its state, making an unselected Item 
selected and a selected Item unselected. 

wipe-through selection, with SELECT 
Pressing and dragging SELECT over Items selects them and deselects 
any other active selection on the screen. The selection starts with the 
Item where SELECT is pressed and extends to the Item where SELECT is 
released. If the pointer moves above or below the View, the View scrolls 
additional Items into the View, selecting them as well. The rate at which 
Items scroll into the View is the same as when pressing SELECT on the 
up or down arrows of the Scrollbar. The pointer can move out of the 
View to the left or right without interrupting the selection. 

wipe-through selection, with ADJUST 
Pressing and dragging ADJUST marks the bounds of a selection the 
same way as pressing and dragging SELECT, except that the Items 
covered are "toggled". (Previously selected Items are deselected and pre
viously unselected Items are selected.) 

Page 5 



ScrollingList (3W) Scrolling List (3W) 

copying Items 
Pressing COPY copies any selected Items to the clipboard and deselects 
them. 

cutting Items 
Pressing CUT moves any selected Items to the clipboard and deletes 
them from the list. This operation is allowed only if the scrolling list is 
editable. 

Coloration 

Page 6 

On a monochrome display, the ScrollingList widget indicates that it has input 
focus by inverting foreground and background colors. When an editable Text 
Field has input focus, it shows that it has input focus by showing an active caret. 

On color displays, the ScrollingList widget shows that the Current Item has input 
focus by filling the background of the Current Item with the input focus color set 
in the XtNinputFocusColor resource. When a selected item has input focus, the 
label is drawn with the input focus color. When an item is both Selected and 
Current, it shows that it has input focus by drawing the text of the label in the 
input focus color. When an editable Text Field has input focus, it shows that it 
has input focus by showing an active caret in the input focus color. 

EXCEPTIONS: 

If the input focus color is the same as either the background, foreground, or font 
color, then revert to the monochrome coloration scheme. 

Figures 3 and 4 illustrate the resources that affect the coloration of the Scrol
lingList widget. 

XtNfontColor 

XtNbackground 
(XtNbackgroundPixmap) 

Figure 3. Scrolling List Coloration 

(As for Scrollbar) 

3/91 



Scrolling List (3W) Scrolling List (3W) 

3/91 

r _____________________________ , , , , , , , 
Selected Item ~! jtit : 

7----------------\i 
XtNbackgrouud XtNfontColor 

r _____________________________ , , , , , 

U"~_ -J}':~:~-~----\! 
XtNfontColor XtNbackground 

(XtNbackgroundPixmap) 

Figure 4. Selected Item and Unseleeted Item Coloration 

Keyboard Traversal 
The default value of the XtNtraversalOn resource is True. 

The ScrollingList widget responds to the following keyboard navigation keys: 

NEXT FIELD moves to the next traversable widget in the window 

PREY FIELD 

NEXTWlNDOW 

PREVWlNDOW 

NEXTAPP 

PREVAPP 

MOVEUP 

MOVEDOWN 

PANESTART 

PANEEND 

SCROLLUP 

SCROLLDOWN 

moves to the previous traversable widget in the window 

moves to the next window in the application 

moves to the previous window in the application 

moves to the first window in the next application 

moves to the first window in the previous application 

moves the input focus up one line 

moves the input focus down one line 

moves the input focus to the first item in the pane 

moves the input focus to the last item in the pane 

scrolls up one item in the list 

scrolls down one item in the list 

Page 7 



Scrolling List (3W) ScrollingList (3W) 

SCROLLTOP 

SCROLLBOTTOM 

PAGEUP 

scrolls to the first item in the list 

scrolls to the last item in the list 

scrolls up one page so that the first item visible is the last 
item visible in the pane 

P AGEDOWN scrolls down one page so that the last item visible is the 
first item visible in the pane 

When an Editable Text Field is in the ScrollingList, the keyboard traversal keys 
defined for TextField widgets apply. 

The SELECTKEY selects the Current Item and unselects any other active selection 
on the screen. The ADJUSTKEY toggles the Current Item's state, making an 
unselected Item selected and a selected Item unselected. 

Note that the scrolling keys of interest are defined with in the ScrollingList and 
traversal to the Scrollbar is not necessary to manipulate the Scrolling List. 

Scrolling List Activation Types 
Activation Type I Expected Results 
OL MENUKEY I Popup scrolling List menu 

Display of Keyboard Mnemonic 

Page 8 

The ScrollingList widget displays the mnemonic accelerator for each item as 
part of its label. If the mnemonic character is in the label, then that character is 
displayed/highlighted according to the value of the application resource 
XtNshowMneumonics. If the mnemonic character is not in the label, it is 
displayed to the right of the label in parenthesis and highlighted according to the 
value of the application resource XtNshowMneumonics. 

If truncation is necessary, the mnemonic displayed in parenthesis is truncated as 
a unit. 

3/91 



Scrolling List (3W) 

SUBSTRUCTURE 
Scroll bar component 

Name: scrollbar 
Class: Scrollbar 

Editable Text Field component 
Name: textfield 
Class: TextField 

Application Resources 
Name Class Type 

XtNfont XtCFont XFontStruct * 

XtNfontColor XtCFontColor Pixel 

XtNforeground XtCForeground Pixel 

XtNmaximumSize XtCLength int 

XtNstring XtCString String 

XtNverification XtCCallback XtCallbackList 

Scrolling List (3W) 

Default Access 

* SI 

* I 

* I 

(none) I 

NULL I 

NULL I 

:j: The defaults are set to agree with the values of these resources for the Scrol
lingList widget itself. 

RESOURCES 
ScrollingList Resource Set 

Name Class Type Default Access 

XtNancestorSensitive XtCSenstitive Boolean TRUE G* 

XtNapplAddItem XtCApplAddItem OIListToken(*)O (n/a) G 

XtN applDeleteItem XtCApplDeleteItem void(*)O (n/a) G 

XtNapplEditClose XtCApplEditClose void(*)O (n/a) G 

XtNapplEditOpen XtCApplEditClose void(*)O (n/a) G 

XtNappITouchItem XtCAppITouchItem void(*)O (n/a) G 

XtNapplUpdateView XtCApplUpdateView void(*)O (n/a) G 

XtNapplViewItem XtCApplViewItem void(*)O (n/a) G 

XtNbackground XtCBackground Pixel XtDefaultbackground SGIt 

XtNbackgroundPixmap XtCPixmap Pixmap (n/a) SGIt 

XtNborderColor XtCBorderColor Pixel XtDefaultForeground SGIt 

XtNborderPixmap XtCPixmap Pixmap (n/a) SGIt 

XtNconsumeEvent XtCConsumeEvent XtCallbackList NULL SG 

XtNdestroyCallback XtCCallback XtCallbackList NULL SI 

XtNfont XtCFont XFontStruct * (OPEN LOOK font) SI 

XtNfontColor XtCFontColor Pixel Black* SGI 

XtNfontGroup XtCFontGroup OIFontList NULL SGI 

XtNforeground XtCForeground Pixel XtDefaultForeground SGlt 

XtNheight XtCHeight Dimension (calculated) SGI 

XtNinputFocusColor XtCInputFocusColor Pixel Red SGI 

XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE SGI 

XtNrecomputeWidth XtCRecomputeWidth Boolean TRUE SGI 

3/91 Page 9 



Scrolling List (3W) Scrolling List (3W) 

ScrollingList Resource Set (cont'd) 
Name Class Type Default Access 

XtNreferenceName XtCReferenceName String NULL GI 

XtNreferenceWidget XtCReferenceWidget Widget NULL GI 

XtNselectable XtCSelectable Boolean TRUE SGI 

XtNsensitive XtCSensitive Boolean TRUE GI* 

XtNtextField XtCTextField Widget (none) G 

XtNtraversalOn XtCTraversalOn Boolean TRUE SGI 

XtNuserData XtCUserData XtPointer NULL SGI 

XtNuserDeleteltems XtCCallback XtCallbackList NULL 51 

XtNuserMakeCurrent XtCCallback XtCallbackList NULL 51 

XtNviewHeight XtCViewHeight Cardinal (none) 51 

XtNwidth XtCWidth Dimension (calculated) SGI 

XtNx XtCPosition Position 0 SGI 

XtNy XtCPosition Position 0 SGI 

OIListitem Structure 
Several of the resources defined below use the following OlListltem structure: 

typedef struct _OlListltem { 

} OlListltem; 

label_type 

OlDefine label_type; 
XtPointer label; 
XImage *glyph; 
OlBitMask attr; 
XtPointer user_data; 
unsigned char mnemonic; 

identifies the type of label to display for the Item in the View. It can 
have one of the values 

OL_STRING 
for a text label; 

OL_lMAGE 
for an image label. 

Note: 
Only text labels are supported in this version of the ScrollingList widget, so 
the only value allowed is OL_STRING. Any other legal values generate an error 
message that tells the application programmer that the value is not yet supported. 
Any illegal values generate a different error message. 

label is what to display for the Item in the View. The type of the value of this 
member depends on the value of the label_type member: 

Page 10 

OL_STRING 
String 

3/91 



ScroliingList (3W) Scrolling List (3W) 

OL_lMAGE 
Xlmage* 

glyph is currently unused. 

attr defines attributes of the Item. It is a bit vector with the bit references: 

OL_LIST_ATTR_APPL 
for application use. This is a mask of 16 contiguous bits that 
can be subdivided as the application sees fit. These are the low 
16 bits of the value, so no shifting is necessary to access the bits 
as an integer value. 

OL_LIST_ATTR_CURRENT 
if the Item is a Current Item. 

Other bit values are undefined but should not be used by the applica
tion. 

mnemonic 
is a single character that is used as a mnemonic accelerator for keyboard 
traversal. 

OIListToken Structure 
The ScrollingList widget identifies each Item with a "token" of type OlList
Token. The ScrollingList widget assigns the token when an Item is added by 
the application, and the application uses the token in later references to the Item. 
A zero value is allowed in some contexts where an OlListToken is expected, as a 
way to refer to no Item. 

As a convenience to the application, the function OlListItemPointer(token) 
converts an OlListToken value into a pointer to the corresponding OlListltem. 
The application can change the values of the OlListltem members, but should 
let the ScrollingList widget know that they have changed, using the 
XtNapplTouchltem routine. No checking is done for incorrect OlListToken 
arguments to the OlListItemPointer () function. 

The OlListToken value can be coerced into the type XtPointer and back 
without loss of precision. 

XtNapplAddltem 
This resource gives a pointer to a routine the application can call when it adds a 
new Item to the list. This routine is also used to build the list from scratch. 

Synopsis: 

OlListToken (*applAddltem)(), token; 

static Arg query [] = { 
{ XtNapplAddltem, (XtArgVal)&applAddltem 

} ; 

XtGetValues(widget, query, XtNumber(query»; 

token = (*applAddltem) (widget, parent, reference, item) 
Widget widget; 
OlListToken parent, reference; 
OlListltem item; 

3/91 Page 11 



Scrolling List (3W) Scrolling List (3W) 

widget identifies the ScrollingList widget instance. 

parent should be set to 0, for compatibility with future changes. 

reference 
identifies an Item before which to insert the new Item. This value can be 
zero to append the new Item to the list. 

item describes the new Item. The content of the OlListltem structure is 
copied by the ScrollingList widget into space that it maintains; how
ever, the data pointed to by the label and glyph members are not 
copied. The application can access the copied data directly, using the 
OlListltemPointer () function to get a pointer to the OlListltem 
structure for the Item. If it changes the data, the application should use 
the XtNapplTouchltem routine to let the ScrollingList widget know 
the data has changed. 

If mapped and if allowed by the application (see XtNapplUpdateView), the 
ScrollingList widget updates the View if the new Item will be in the View. 
The View is changed as little as possible: if the new Item is in the upper half of 
the View, the Items above it are scrolled up and the top Item is scrolled off; if the 
new Item is in the lower half of the View, the Items below it are scrolled down 
and the bottom Item is scrolled off. 

XtNapplDeleteltem 
This resource gives a pointer to a routine the application can call when it deletes 
an Item from the list. 

Synopsis: 

void (*applDeleteltem)(); 

static Arg query[] = { 
{ XtNapplDeleteltem, (XtArgVal)&applDeleteltem 

}; 
XtGetValues(widget, query, XtNumber(query»; 

(*applDeleteltem)(widget, token) 
Widget widget; 
OlListToken token; 

widget identifies the ScrollingList widget instance. 

token identifies the deleted Item. 

If mapped and if allowed by the application (see XtNapplUpdateView), the 
ScrollingList widget updates the View if the deleted Item was visible. The 
View is changed as little as possible: if the deleted Item was in the upper half of 
the View, Items above it are scrolled down and an Item is scrolled in from the 
top; if the deleted Item was in the lower half of the View, Items below it are 
scrolled up and an Item is scrolled in from the bottom. If the View is already at 
the top or bottom, the additional Item is scrolled in from the other end, if possi
ble. 

Page 12 3/91 



Scrolling List (3W) ScrollingList (3W) 

XtNapplEditClose 
This resource gives a pointer to a routine the application can call when the user 
has finished editing an Item in the View. 

Synopsis: 

void (*applEditClose}(); 

static Arg query [] = { 
{XtNapplEditClose, (XtArgVal}&applEditClose 

}; 
XtGetValues(widget, query, XtNumber(query}}; 

(*applEditClose) (widget) 
Widget widget; 

widget identifies the ScrollingList widget instance. 

When this routine is called, the ScrollingList widget unmaps the Editable Text 
Field widget, scrolling up the Items below it if they had been scrolled down to 
allow an insert. The application is responsible for calling the XtNapplAddltem 
routine to add the new Item, or calling the XtNappl Touchltem routine to mark 
the Item as changed. To avoid unnecessary updates to the View, the application 
should add the new Item (XtNapplAddltem) or mark the changed Item (XtNap
plTouchltem) before closing the Editable Text Field. 

A later call to the XtNapplEditClose routine without an intervening call to the 
xtNapplEdi tOpen routine is ignored. 

If mapped, the ScrollingList widget updates the View, even if the application 
had halted updates (see XtNapplupdateView). If the application had halted 
updates, they will continue to be halted afterwards. 

XtNapplEditOpen 
This resource gives a pointer to a routine the application can call when it wants 
to allow the end user to insert a new Item or change an existing Item in the View. 

Synopsis: 

void (*applEditOpen}(); 

static Arg query[] = { 
{ XtNapplEditOpen, (XtArgVal}&applEditOpen 

} ; 

XtGetValues(widget, query, XtNumber(query}}; 

(*applEditOpen}(widget, insert, reference) 
Widget widget; 
Boolean insert; 
OlListToken reference; 

widget identifies the ScrollingList widget instance. 

insert tells whether Items should be scrolled down to make room for inserting 
a new Item. A value of FALSE implies that an Item is being edited in 
place and no Items are to be scrolled. 

3/91 Page 13 



Scrolli ng List (3W) ScrollingList (3W) 

reference 
identifies an Item before which a new Item is to be inserted (insert is 
TRUE) or identifies the Item that is being changed (insert is FALSE). If 
insert is TRUE, this value can be zero to append a new Item at the end 
of the list. If insert is FALSE, this value must refer to an existing Item. 
The referenced Item does not have to be in the View-see below. 

If a new Item is being inserted, the ScrollingList widget makes room for the 
Editable Text Field by scrolling down the referenced Item and any Items below it. 
If the referenced Item is not in the View, it is automatically made visible just as if 
the application had called the XtNapplViewItem routine first. 

The XtNapplEdi tOpen routine can be called again before an intervening call to 
the XtNapplEditClose routine. The effect is as if the XtNapplEditClose routine 
was called, but without multiple updates to the View. For example, this allows 
the application to let the end user insert several new Items in succession: the Edit
able Text Field moves down as each Item is inserted, but is never removed from 
the View. 

If mapped, the ScrollingList widget updates the View, even if the application 
had halted updates (see XtNapplUpdateView). If the application had halted 
updates, they will continue to be halted afterwards. 

XtNapplTouchltem 
This resource gives a pointer to a routine the application can call when it changes 
an Item in the list. 

Synopsis: 

void (*applTouchItem){); 

static Arg query[] = { 
{ XtNapplTouchItem, {XtArgVal)&applTouchItem 

}; 
XtGetValues{widget, query, XtNumber{query»; 

(*applTouchItem){widget, token) 
Widget widget; 
OlListToken token; 

widget identifies the ScrollingList widget instance. 

token identifies the Item that has changed. 

If mapped and if allowed by the application (see XtNapplUpdateView), the 
ScrollingList widget updates the View if the changed Item is visible. 

XtNapplUpdateView 
This resource gives a pointer to a routine the application can call to keep the 
ScrollingList widget from updating the View, or to let it update the View 
again. 

Synopsis: 

Page 14 

void (*applUpdateView){); 

static Arg query[] = { 

3/91 



Scrolling List (3W) Scrolling List (3W) 

3/91 

{XtNapplUpdateView, (XtArgVal)&applupdateView} 
}i 
XtGetValues(widget, query, XtNumber(query»i 

(*applUpdateView) (widget, ok) 
Widget widgeti 
Boolean Oki 

ok is either TRUE or FALSE, depending on whether the ScrollingList can 
update the View as it changes, or not, respectively. 

From the time the XtNapplupdateView routine is called with a FALSE argument 
until it is called with a TRUE argument, the ScrollingList does not update the 
View in response to application-made changes, except: 

if the application opens or closes the Editable Text Field (cf XtNapplEditO
pen and XtNapplEditClose); 

if the end user manipulates the list by scrolling it, selecting an Item, cutting, 
etc. 

The ScrollingList widget updates the View once for each of these exceptions, 
each time an exception occurs. 

An application should use this routine to bracket a set of changes to avoid spuri
ous changes to the View. This routine is not needed if only one change is made 
to the list. The following example illustrates the use of the XtNapplUpdateView 
routine. 

1* 
* Stop View updates. 
*1 

(*applUpdateView) (widget, FALSE)i 

1* 
* Make same changes. 
*1 

(*applDeleteItem) (widget, •.• )i 
(*applDeleteItem) (widget, •.• )i 
(*applDeleteItem) (widget, ..• )i 
(*applAddItem) (widget, ..• )i 
(*applTouchItem) (widget, •.. )i 

1* 
* Allow the View to be updated again. 
*1 

(*applUpdateView)(widget, TRUE)i 

XtNapplViewltem 
This resource gives a pointer to a routine the application can call when it wants a 
particular Item placed in the View. 

Synopsis: 

void (*applViewItem)()i 

static Arg query[] = { 

Page 15 



Scrolling List (3W) Scrolling List (3W) 

{ XtNapplViewltem, (XtArgVal}&applViewltem 
} ; 

XtGetValues(widget, query, XtNumber(query}}; 

(*applViewltem}(widget, token) 
Widget widget; 
OlListToken token; 

widget identifies the ScrollingList widget instance. 

token identifies the Item to move into the View. 

The Item is moved into the View in a way that minimizes the change to the View. 
If the Item is currently in the View, nothing is changed. If scrolling the list up or 
down brings the Item into the View while keeping at least one previously viewed 
Item in the View, the list is scrolled. Otherwise, the Item is placed at the top of 
the View, or as close to the top as possible if there aren't enough Items in the 
current Level to fill the View below it. 

If mapped and if allowed by the application (see XtNapplUpdateView), the 
ScrollingList widget updates the View. 

XtNrecomputeWidth 
Range of Values: 

TRUE 
FALSE 

This resource controls how the ScrollingList widget should respond to 
requests to resize itself. If this resource is TRUE, the ScrollingList shrinks the 
View of the Content in the corresponding direction to absorb the change in the 
ScrollingList widget's size. If this resource is FALSE, the ScrollingList 
does not shrink the View in that direction. 

This resource, together with the XtNViewHeight resource, are typically used to 
set a preferred dimension in a direction that should not be scrolled. 

XtNselectable 
Range of Values: 

TRUE 
FALSE 

This resource controls whether the end user can select Items in the scrolling list. 
If set to TRUE, then Items can be selected with SELECT and ADJUST and copied 
with the COpy key. Items may be deleted with the CUT key, although the appli
cation can stop some or all selected Items from being deleted. If set to FALSE, 
then Items cannot be selected and the COPY and CUT keys have no effect. 

XtNtextField 
This is the widget 10 of the Editable Text Field widget; its value is available once 
the ScrollingList widget has been created. 

The ScrollingList widget resets the following values before returning from 
each invocation of the XtNapplEditOpen routine: 

Page 16 3/91 



Scrolling List (3W) Scrolling List (3W) 

3/91 

Editable Text Field Reset Values 
Name Class Value 

XtNwidth XtCWidth (width available in View) 

XtNstring XtCString (name of Item to be changed) 

XtNtraversalOn 
This resource specifies whether this widget is selectable during traversal. 

XtNuserDeleteltems 
This resource defines the callbacks issued when the end user tries to delete Items 
from the list. (Currently, the only way the ScrollingList widget handles dele
tions is through a cut operation.) 

The call_data parameter points to a structure OlListDelete that looks like 
this: 

typedef struct _OlListDelete 
OlListToken *tokens 
Cardinal num_tokens; 

OlListDelete; 

tokens is a list identifying the Items to be deleted. The application is expected 
to act on each Item separately, calling the XtNapplDeleteItem routine 
to delete each from the list. The application may refuse to delete some 
or all of the Items, and is responsible for providing any feedback to the 
end-user. 

nllllLtokens 
is the number of Items to delete. 

XtNuserMakeCurrent 
This resource defines the callbacks issued when the end user presses SELECT 
over an Item. 

The call_data parameter is the OlListToken value that identifies the Item. The 
application is expected to decide if the Current Item status of this Item should 
change. The attr member of the OlListItem structure for this Item. is not 
automatically changed by the ScrollingList widget. 

XtNviewHeight 
Range of Values: 

o ~ XtNviewHeight 

This resource gives the preferred height of the View as the number of Items to 
show. If a nonzero value is given, the corresponding XtNheight resource is com
puted. by converting this number to pixels and adding any padding or border 
thickness. In this case, any value given in the XtNheight resource is overwritten. 

If a zero value is given in the XtNviewHeight resource, the XtNheight resource 
is used as an estimate. The View is sized to show an integral number of Items, 
such that the overall height of the ScrollingList widget is less than or equal to 
XtNheight, if possible. However, the View is always large enough to show at 
least one Item, and is no shorter than the minimum scrollbar size. 

Page 17 



Scrolling List (3W) Scrolling List (3W) 

If neither the XtNviewHeight resource nor the XtNheight resource is set, or both 
are set to zero, the View is made as small as possible, limited as described above. 

Page 18 3/91 



Slider (3W) Slider (3W) 

NAME 
Slider - sets a numeric value and gives a visual indication of the setting range 

SYNOPSIS 
#include <Intrinsic.h> 
#include <StringDefs.h> 
#include <QpenLook.h> 
#include <Slider.h> 

widget = XtCreateWidget(name, sliderWidgetClass, •.• ) 

DESCRIPTION 

3/91 

Slider Components 
The Slider widget implements a simple control used to change a numeric value. 
It consists of the following elements: 

Top (Left) Anchor (optional) 

Bottom (Right) Anchor (optional) 

Drag Box 

Bar (typically) 

Shaded Bar (typically) 

Current Value (not visible) 

Minimum Value (not visible) 

Minimum Value Label (optional) 

Maximum Value (not visible) 

Maximum Value Label (optional) 

Tick Marks (optional) 

The Current Value is the numeric value a user attempts to change with the 
Slider widget. 

Right Anchor 

Shaded Bar 

mj 
r ... . .......... . 
B~ 1 

Slider Widget 

Figure 1. Horizontal Slider 

Page 1 



Slider (3W) Slider (3W) 

t::::i •. : .. I---- Top Anchor 

:: ..... 1---- Slider Widget 

l4'----Bar 

D!.. Drag Box 

tt---
.. r:::::::J ..... i .. ---- Bottom Anchor 

Figure 2. Vertical Slider 

Drag Box Motion 
As visual feedback to the user, the Drag Box moves up or down (or left or right) 
along the Bar as the Current Value changes. 

Dragging SELECT 
The user can change the Current Value by dragging the Drag Box with SELECT. 
The pressing of SELECT must start with the pointer in the Drag Box, but the 
Drag Box (and the Current Value) track the pointer motion regardless of where it 
goes while SELECT is pressed. This means it is not possible for the user to 
change the Current Value by first pressing SELECT outside the Drag Box and 
then moving the pointer into it. Only the component of the pointer motion paral
lel to the Bar is tracked, and the motion of the Drag Box (and change in the 
Current Value) are limited by the length of the Bar. 

Clicking SELECT 
Clicking SELECT above the Drag Box for a vertical slider, or to the right for a 
horizontal slider, increases the Current Value by an application-specified amount, 
moves the Drag Box to correspond to the new Current Value, and moves the 
pointer to keep it on the Drag Box. Clicking SELECT to the other side of the 
Drag Box decreases the value by the same amount and moves the Drag Box and 
pointer accordingly. Pressing SELECT repeats this action. 

Moving Drag Box to Limits 

Page 2 

Clicking SELECT on one of the Bottom/Left or Top/Right Anchors causes the 
Current Value to take on the Minimum Value or Maximum Value, respectively, 

3/91 



Slider (3W) Slider (3W) 

and moves the Drag Box to the limit in the direction of the Anchor. If the Drag 
Box is already at the limit, nothing happens. 

Clicking SELECT on an Anchor highlights the Anchor while the Current Value is 
changed. 

Application Notification 
The application finds out about a change in the Current Value on the release of 
SELECT for either the drag or click. It is responsible for providing any feedback 
to the end user deemed appropriate, such as updating the Current Value in a text 
field. 

Coloration 
When the Slider widget receives the input focus through keyboard traversal, the 
background color of the widget changes to the input focus color, found in the 
resource XtNinputFocusColor. If the user traverses out of the Slider widget, the 
background of the widget shall revert to its original background color. 

3/91 

EXCEPTION: 

If the input focus color is the same as either the foreground or background color, 
then the widget shows input focus by switching the background and foreground 
colors. 

Figure 3 illustrates the resources that affect the coloration of the Slider widget. 

XtNforeground 

XtNbackground 
(XtNbackgroundPixmap) 

........ ~ ............ . 

Parent's XtNbackground 
(XtNbackgroundPixmap) 

Figure 3. Slider Coloration 

Page 3 



Slider (3W) Slider (3W) 

Keyboard Traversal 

Page 4 

The Slider's default values of the XtNtraversalOn resource is TRUE. 

The user can operate the Slider by using the keyboard to move the Drag Box and 
access the Anchors. The following keys manipulate the Current Value: 

SCROLLUP and SCROLLRIGHT increase the Current Value by an 
application-specified amount, and moves the Drag Box to correspond to the 
new Current Value. 

SCROLLDOWN and SCROLLLEFT decrease the Current Value by an 
application-specified amount, and moves the Drag Box to correspond to the 
new Current Value. 

SCROLL TOP and SCROLLRIGHTEDGE cause the Current Value to take on 
the Maximum Value, and moves the Drag Box to a vertical slider's top 
anchor or a horizontal slider's right anchor. The anchor is briefly highlighted 
while the Current Value is changed and the Drag Box is moved. 

SCROLLBOTTOM and SCROLLLEFTEDGE cause the Current Value to take 
on the Minimum Value, and moves the Drag Box to a vertical slider's bottom 
anchor or a horizontal slider's left anchor. The anchor is briefly highlighted 
while the Current Value is changed and the Drag Box is moved. 

Vertical Slider Activation Types 
Activation Type Expected Results 
OL SCROLLUP Drag Box moves up one Unit 
OL - SCROLLDOWN Drag Box moves down one Unit 
OLSCROLLTOP Drag Box moves to top anchor 
OL SCROLLBOTTOM Drag Box moves to bottom anchor 

Horizontal Slider Activation Types 
Activation Type Expected Results 
OL SCROLLRIGHT Drag Box moves right one Unit 
OL -SCROLLLEFT Drag Box moves left one Unit 
OL-SCROLLRIGHTEDGE Drag Box moves to right anchor 
OL SCROLLLEFTEDGE Drag Box moves to left anchor 

The Slider widget responds to the following keyboard navigation keys: 

NEXT FIELD, MOVEDOWN, and MOVERIGHT move to the next traversable 
widget in the window 

PREV]IELD, MOVEUP, and MOVELEFT move to the previous traversable 
widget in the window 

NEXTWINDOW moves to the next window in the application 

PREVWINDOW moves to the previous window in the application 

3/91 



SJider(3W) SJider(3W) 

NEXTAPP moves to the first window in the next application 

PREY APP moves to the first window in the previous application 

Display of Keyboard Mnemonic 
The Slider does not display the mnemonic accelerator. If the Slider is the 
child of a Caption widget, the Caption widget will display the mnemonic as 
part of the label. 

Display of Keyboard Accelerators 
The Slider does not respond to a keyboard accelerator because clicking the 
SELECT button on a Slider activates depending on the pointer position. So, the 
Slider does not display a keyboard accelerator. 

RESOURCES 
Slider Resource Set 

Name Class Type Default Access 

XtNancestorSensitive XtCSenstitive Boolean TRUE G* 

XtNbackground XtCBackground Pixel XtDefaultForeground SGrt 

XtNbackgroundPixmap XtCPixmap Pixmap (none) SGrt 

XtNconsumeEvent XtCConsumeEvent XtCalibackList NULL SGr 

XtNdestroyCaliback XtCCaliback XtCalibackList NULL sr 

XtNdragCBType XtCDragCBType OIDefine OL CONTINUOUS SGr 

XtNendBoxes XtCEndBoxes Boolean TRUE SGr 

XtNfont XtCFont FontStruct * (OPEN LOOK default) SGr 

XtNfontColor XtCFontColor Pixel Black* SGr 

XtNforeground XtCForeground Pixel XtDefaultForeground SGrt 

XtNgranularity XtCGranularity int 1 SGr 

XtNheight XtCHeight Dimension (calculated) SGr 

XtNinitialDelay XtCInitialDelay int 500 SGr 

XtNinputFocusColor XtCrnputFocusColor Pixel Red SGr 

XtNmappedWhenManaged XtC11appedWhen11anaged Boolean TRUE SGr 

XtNminLabel XtCLabel String NULL SGr 

XtNmaxLabel XtCLabel String NULL SGr 

XtNorientation XtCOrientation OlDefine OL VERTICAL Gr 

XtNrecomputeSize XtCRecomputeSize Boolean FALSE SGr 

XtNreferenceName XtCReferenceName String NULL SGr 

XtNreferenceWidget XtCReferenceWidget Widget NULL SGr 

XtNrepeatRate XtCRepeatRate int 100 SGI 

XtNsensitive XtCSensitive Boolean TRUE GI* 

XtNslider11ax XtCSlider11ax int 100 SGI 

XtNslider11in XtCSlider11ax int a SGr 

XtNslider110ved XtCCaliback XtCalibackList NULL SI 

XtNsliderValue XtCSliderValue int a SGr 

XtNspan XtCSpan Dimension OL IGNORE SGr 

XtNstopPosition XtCStopPosition OlDefine OL ALL SGI 

3/91 Page 5 



Slider (3W) Slider (3W) 

Slider Resource Set (cont'd) 
Name Class Type Default Access 
XtNticks XtCTicks int 0 SGI 
XtNtickUnit XtCTickUnit OIDefine OL NONE SGI 
XtNtraversalOn XtCTraversalOn Boolean TRUE SGI 
XtNuserData XtCUserData XtPointer NULL SGI 
XtNwidth XtCWidth Dimension (ca1cula ted) SGI 
XtNx XtCPosition Position 0 SGI 
XtNy XtCPosition Position 0 SGI 

XtNendBoxes 
This resource selects the display of the end boxes. 

XtNgranularity 
Range of Values: 

1 ~ XtNgranularity ~ (XtNsliderMax - XtNsliderMin) 

Clicking SELECT on the Bar or Shaded Bar attempts to change the Current Value 
by the amount given in this resource. Dragging the Drag Box with SELECT 
changes the Current Value by this amount before the XtNsliderMoved callbacks 
are issued. 

XtNinitialDelay 
Range of Values: 

o < XtNinitialDelay 

This resource gives the time, in milliseconds, before the first action occurs when 
SELECT is pressed on the Bar or Shaded Bar. Note that millisecond timing preci
sion may not be possible for all implementations, so the value may be rounded 
up to the nearest available unit by the toolkit. 

XtNminLabel 
This is the label to be placed next to the maximum value position. For a vertical 
slider, the label is placed to the right of the minimum value position. If there is 
not enough space for the entire label and XtNrecomputeSize is FALSE, the label 
will be truncated from the end. If there is not enough space for the entire label 
and XtNrecomputeSize is TRUE, then the widget will request for more space to 
show the entire label. 

For an horizontal slider, the label is placed centered and below the minimum 
value position. If there is not enough room to center the label and XtNrecompu
teSize is set to FALSE, the beginning of the label will be aligned with the left 
anchor and is drawn to the right. If this label collides with the max label, some 
part of the labels will overlap. If there is not enough room to center the label and 
XtNrecomputeSize is set to TRUE, the widget will request for more space to 
center the label below the minimum value position. 

XtNmaxLabel 

Page 6 

This is the label to be placed next to the maximum value position. For a vertical 
slider, the label is placed to the right of the minimum value position. If there is 
not enough space for the entire label and XtNrecomputeSize is FALSE, the label 
will be truncated from the end. If there is not enough space for the entire label 

3/91 



Slider (3W) Slider (3W) 

3/91 

and XtNrecomputeSize is TRUE, then the widget will request for more space to 
show the entire label. 

For an horizontal slider, the label is placed centered and below the maximum 
value position. If there is not enough room to center the label and XtNrecompu
teSize is set to FALSE, the end of the label will be aligned with the left anchor. If 
this label collides with the min label, some part of the labels will overlap. If there 
is not enough room to center the label and XtNrecomputeSize is set to TRUE, 
the widget will request for more space to center the label below the maximum 
value position. 

XtNorientation 
Range of Values: 

OL_HORIZONTAL/"horizontal" 
OL_VERTlCAL/"vertical" 

This resource defines the direction for the visual presentation of the widget. 

XtNrepeatRate 
Range of Values: 

o < XtNrepeatRate 

This resource gives the time, in milliseconds, between repeated actions when 
SELECT is pressed on the Bar or Shaded Bar. Note that millisecond timing preci
sion may not be possible for all implementations, so the value may be rounded 
up to the nearest available unit by the toolkit. 

XtNsliderMax 
XtNsliderMin 

Range of Values: 
XtNsliderMin < XtNsliderMax 

These two resources give the range of values tracked by the Slider widget. 
Mathematically, the range is open on the right; that is, the range is the following 
subset of the set of integers: 

XtNsliderMin ~ range ~ XtNsliderMax 

This is independent of the Drag Box displayed in the Slider widget. The 
Slider widget is responsible for taking into account the size of the Drag Box 
when relating the physical range of movement to the range of values. 

Page 7 



Slider (3W) Slider (3W) 

XtNsliderMax --.--.-- r···· ..... , 

. . 
~ ...... ....... : 

(Range of Movement) 

XtNsliderMin ----'--+-- .--L..L.-..., 

(Overall Length) 

Figure 4. Drag Box Range of Movement 

Slider or DI 

XtNsliderMoved 
This resource defines the callback list used when the Slider widget is manipu
lated. The call_data parameter is a pointer to the Current Value; an XtGet
Value () inside the callback will return the previous value. 

XtNsliderValue 
Range of Values: 

XtNsliderMin ~ XtNsliderValue ~ XtNsliderMax 

This resource gives the current position of the Drag Box, in the range 
[XtNsliderMin, XtNsliderMax]. The Slider widget keeps this resource up to 
date. 

XtNticks 
This is the interval between tick marks. The unit of the interval value is deter
mined by XtNtickUnit. 

XtNtickUnit 

Page 8 

Range of values: 
OL NONE/"none" 
OL -SLIDERVALVE/"slidervalue" 
OL =PERCENT / "percent" 

This resource can have one of the values: OL NONE, OL SLIDERV ALVE, and 
OL_PERCENT. If it is OL_NONE, then no tick marks Will be displayed and 
XtNticks is ignored. If it is OL_PERCENT, then XtNticks is interpreted as the 

3/91 



Slider (3W) Slider (3W) 

percent of the slider value range. If it is OL _ SLIDERV ALUE, the XtNticks is 
interpreted as the same unit as slider value. 

XtNdragCBType 
Range of values: 

OL CONTINUOUS/"continuous" 
OL = GRANULARITY /" granularity" 
OL _ RELEASE/"release" 

This resource determines the frequency of issuing XtNsliderMoved callbacks dur
ing a drag operation. If set to OL _CONTINUOUS, callbacks will be issued con
tinuously. If set to OL _GRANULARITY, callbacks will only be issued when the 
drag box crosses any granularity positions. If set to OL _RELEASE, callback will 
only be issued once when the SELECT button is released. 

3/91 

XtNstopPosition 
Range of values: 

OL ALL/"all" 
OL -TICKMARK/"tickmark" 
OL = GRANULARITY /"granularity" 

This resource determines the behavior of the drag box at the end of an drag 
operation. If set to OL _ALL, upon the release of the SELECT button in a drag 
operation, the drag box will be positioned at where it stops. If set to 
OL _ TICKMARK, the drag box will snap to the nearest tickmark position. If set 
to OL _GRANULARITY, the drag box will snap to the nearest granularity posi
tion. 

XtNrecomputeSize 
This resource, if set to TRUE, allows the slider widget to resize itself whenever 
needed, to compensate for the space needed to show the tick marks and the 
labels. The slider widget uses the XtNspan, the sizes of the labels, and 
XtNtickunit to determine the preferred size. 

XtNfont 
This resource specifies the font used to draw the labels. It defaults to the OPEN 
LOOK standard font. 

XtNfontcolor 
This resource specifies the color used to draw the labels. It defaults to the fore
ground color of the slider widget. 

XtNspan 
If XtNrecOIl\PUteSize is set to TRUE, then XtNspan should be set to reflect the 
preferred length of the slider, not counting the space needed for the labels. The 
slider widget uses the span value, the sizes of the labels, and xtNtickunit to 
determine the preferred size. 

Page 9 



StaticText (3W) StaticText (3W) 

NAME 
StaticText - displays read-only text 

SYNOPSIS 
#include <Intrinsic.h> 
#include <StringDefs.h> 
#include <OpenLook.h> 
#include <StaticText.h> 

widget = XtCreateWidget(name, staticTextWidgetClass, ... ); 

DESCRIPTION 

3/91 

The StaticText widget provides a way to present an uneditable block of text 
using a few simple layout controls. 

Word Wrapping 
If the text is too long to fit in the width provided by the StaticText widget, the 
text may be "wrapped" if the application requests it. The wrapping occurs at a 
space between words, if possible, leaving as many words on a line as will fit. If a 
word is too long for the width, it is wrapped between characters. An embedded 
newline will always cause a wrap. 

Text Clipping-In Width 
If the text is not wrapped, it will be truncated if it cannot fit in the width of the 
StaticText widget. The application can choose whether the truncation occurs 
on the left, right, or evenly on both sides of each line of the text. 

Text Clipping-In Height 
If the text is too large to fit in the height provided by the StaticText widget, the 
text is clipped on the bottom. The clipping falls on a pixel boundary, not 
between lines, so that it is possible that only the upper part of the last line of text 
may be visible. 

Stripping of Spaces 
The application can choose to have leading spaces, trailing spaces, or both leading 
and trailing space stripped from the text before display, or can choose to have no 
stripping done. 

Selecting and Operating on the Text 
The StaticText widget allows text to be selected in several ways and then 
copied. See Text Selection earlier in this manual for the description of these 
operations. 

Coloration 
Figure 1 illustrates the resources that affect the coloration of the StaticText 
widget. 

Page 1 



StaticText (3W) StaticText (3W) 

XtNfontColor 

c------------------------~---------------------------, ! The quick brown fox jumped 1 
, I 

: over the lazy widget. ! 
':;;t'--------------------------------------------~ 

XtNborderColor 
(XtNborderPixmap) 

XtNbackground 
(XtNbackgroundPixmap) 

Figure 1. Static Text Coloration 

Keyboard Traversal 
The default value of the XtNtraversalOn resource is False. 

The widget responds to the following keyboard navigation keys: 

NEXT FIELD moves to the next traversable widget in the window 

PREY FIELD 

NEXTWINDOW 

PREVWINDOW 

NEXTAPP 

moves to the previous traversable widget in the window 

moves to the next window in the application 

moves to the previous window in the application 

moves to the first window in the next application 

PREY APP moves to the first window in the previous application 

Display of Keyboard Mnemonic And Accelerator 

Page 2 

The StaticText does not have keyboard mnemonic or keyboard accelerator 
capabilities. 

3/91 



StaticText (3W) StaticText (3W) 

RESOURCES 

3/91 

StaticText Resource Set 
Name Class 

XtNalignment XtCAlignment 

XtNancestorSensitive XtCSenstitive 

XtNbackground XtCBackground 

XtNbackgroundPixmap XtCPixmap 

XtNborderColor XtCBorderColor 

XtNborderPixmap XtCPixmap 

XtNborderWidth XtCBorderWidth 

XtNconsumeEvent XtCConsumeEvent 

XtNdepth XtCDepth 

XtNdestroyCallback XtCCallback 

XtNfont XtCFont 

XtNfontColor XtCFontColor 

XtNfontGroup XtCFontGrouG 

XtNforeground XtCForeground 

XtNgravity XtCGravity 

XtNheight XtCHeight 

XtNinputFocusColor XtCInputFocusColor 

XtNlineSpace XtCLineSpace 

XtNmappedWhenManaged XtCMappedWhenManaged 

XtNrecomputeSize XtCRecomputeSize 

XtNsensitive XtCSensitive 

XtNstatusWidget XtCstatus Widget 

XtNstring XtCString 

XtNstrip XtCStrip 

XtNuserData XtCUserData 

XtNwidth XtCWidth 

XtNwrap XtCWrap 

XtNx XtCPosition 

XtNy XtCPosition 

XtNalignment 
Range of Values: 

OL_LEFT/"left" 
OL_CENTER/"center" 
OL_RIGHT/"right" 

Type 

OlDefine 

Boolean 

Pixel 

Pixmap 

Pixel 

Pixmap 

Dimension 

XtCallbackList 

int 

XtCallbackList 

XFontStruct * 

Pixel 

Pixel 

int 

OlDefine 

Pixel 

int 

Boolean 

Boolean 

Boolean 

Widget 

String 

Boolean 

XtPointer 

Dimension 

Boolean 

Position 

Position 

Default Access 

OL LEFT SGI 

TRUE G* 

XtDefaultBackground SGIt 

(none) SGIt 

XtDefaultForeground SGIt 

(none) SGIt 

a SGI 

NULL SGI 

(parent's) GI 

NULL SI 

(OPEN LOOK font) SI 

Black* SGI 

XtDefaultForeground SGIt 

CenterGravity SGI 

(calculated) SGI 

Red SGI 

a SGI 

TRUE SGI 

TRUE SGI 

TRUE GI* 

NULL I 

NULL SGI 

TRUE SGI 

NULL SGI 

(calculated) SCI 

TRUE SGI 

a SGI 

a SGI 

This specifies the alignment to be applied when drawing the text, as described 
below: 

OL_LEFT 
OL_CENTER 
OL_RIGHT 

causes the left sides of the lines to be vertically aligned 
causes the centers of the lines to be vertically aligned 
causes the right sides of the lines to be vertically aligned 

Page 3 



StaticText (3W) StaticText (3W) 

XtNgravity 

Page 4 

Range of Values: 
CenterGravity 
NorthGravity 
SouthGravity 
EastGravity 
WestGravity 
NorthWestGravity 
NorthEastGravity 
SouthWestGravity 
SouthEastGravity 

The application can set a width and height to the StaticText widget that 
exceeds the size needed to display the string. This resource controls the use of 
any extra space with the StaticText widget: 

CenterGravity 
The string is centered vertically and horizontally in the extra space. 

NorthGravity 
The top edge of the string is aligned with the top edge of the space and 
centered horizontally. 

SouthGravity 
The bottom edge of the string is aligned with the bottom edge of the 
space and centered horizontally. 

EastGravity 
The right edge of the string is aligned with the right edge of the space 
and centered vertically. 

WestGravity 
The left edge of the string is aligned with the left edge of the space and 
centered vertically. 

NorthWestGravity 
The top and left edges of the string are aligned with the top and left 
edges of the space. 

NorthEastGravity 
The top and right edges of the string are aligned with the top and right 
edges of the space. 

SouthWestGravity 
The bottom and left edges of the string are aligned with the bottom and 
left edges of the space. 

SouthEastGravity 
The bottom and right edges of the string are aligned with the bottom 
and right edges of the space. 

3/91 



StaticText (3W) StaticText (3W) 

3/91 

XtNlineSpace 
Range of Values: 

-100 ~ XtNlineSpace 

This resource controls the amount of space between lines of text. It is specified as 
a percentage of the font height, and is the distance between the baseline of one 
text line and the top of the next font line. Thus, the distance between successive 
text baselines, in percentage of the font height, is 

XtNrecomputeSize 
Range of Values: 

TRUE 
FALSE 

XtNlineSpace+100 

This resource indicates whether the StaticText widget should calculate its size 
and automatically set the xtNheight and XtNwidth resources. If set to TRUE, 
the StaticText widget will do normal size calculations that may cause its 
geometry to change. If set to FALSE, the StaticText widget will leave its size 
alone; this may cause truncation of the visible image being shown by the Sta
ticText widget if the fixed size is too small, or may cause centering if the fixed 
size is too large. 

XtNstatusWidget 
This resource allows an internationalized application to specify an area in order 
to create a status window via Input Method. 

XtNstring 
This resource is the string that will be drawn. The string must be null ter
minated. 

XtNstrip 
Range of Values: 

TRUE 
FALSE 

This resource controls the stripping of leading and trailing spaces during the lay
out of the text string. 

XtNstrip 

TRUE 

FALSE 

XtNwrap 
Range of Values: 

TRUE 
FALSE 

XtNalignment Spaces stripped 
OL LEFT Leading spaces stripped. 
OL RIGHT Trailing spaces stripped. 
OL_CENTER Both leading and trailing spaces stripped. 
(any) None. 

This resource controls the wrapping of lines that are too long to fit in the width 
of the StaticText widget. 

Page 5 



StaticText (3W) StaticText(3W) 

XtNwrap XtNalignment Wrap action 
OL LEFT Clipped on the right 

FALSE OL_RIGHT Clipped on the left 
OL_CENTER Clipped equally on both left and right 

Long text is broken at spaces between words 
TRUE (any) so that each line of the displayed text has 

as many words as can fit. 

Page 6 3/91 



Stub (3W) Stub(3W) 

NAME 
Stub - used for widget prototyping 

SYNOPSIS 
#include <Intrinsic.h> 
#include <StringDefs.h> 
#include <OpenLook.h> 
#include <Stub.h> 

Widget parent, stub; 

stub = XtCreateWidget(name, stubWidgetClass, ..• ); 

DESCRIPTION 

3/91 

The Stub widget is essentially a method-driven widget that allows the application 
to specify procedures at creation and/or XtSetValues () time which normally 
are restricted to a widget's class part. Most class part procedures have been 
attached to the instance part. For example, with the stub widget, it's possible to 
set the procedure that's called whenever an exposure occurs. It's also possible to 
set the SetValues and Initialize procedures. 

Build Unique Widgets within an application 
By allowing the application to specify procedures outside the widget class struc
ture, applications can use the stub widget to build local Widgets without having 
to go through the formal steps. For example, suppose an application wanted to 
create a menu separator widget that inherits its parent's background color at crea
tion time. It would be wasteful to create a new widget to perform these trivial 
tasks. Instead, the application would use a stub widget and specify an Initialize 
procedure for it. 

Graphics Applications 
The stub widget also implements graphics applications. Since the application has 
direct access to the widget's internal expose procedure, the application can take 
advantage of the exposure compression provided with the region argument. 
This field is not accessible if the application used an Event Handler to trap expo
sures. Also, since the application has access to the SetValues and SetValuesHook 
procedures, the application can programmatically modify graphic-related 
resources of the stub widget. 

Inheriting Procedures from Existing Widgets 
Once a stub widget is created, other stub widgets can inherit its methods without 
the application having to specify them again. All the application has to do is 
specify a reference stub widget in the creation Arg list and the new stub widget 
will inherit all instance methods from the referenced stub Widget. 

Wrapping Widgets around an existing Window 
The Stub widget also allows the application to give widget functionality to exist
ing X windows. For example, if the application wanted to track button presses 
on the root window, the application would create a stub widget using the 
RootWindow id as the XtNwindow resource. Once this has been done, the appli
cation can monitor events on the root window by attaching event handlers to the 
stub widget. 

Page 1 



Stub (3W) Stub (3W) 

Keyboard Traversal 
The Stub is a Primitive widget and it inherits the translations for traversal actions 
from the Primitive class. The user of a Stub Widget should add translations for 
dealing with the navigation events listed in the section of VIRTUAL 
KEYS/BUTTONS that apply to the particular use of the Stub. 

Display of Keyboard Mnemonic 
The Stub does not display the mnemonic accelerator. If the Stub is the child of a 
Caption widget, the Caption widget can be used to display the Stub's 
mnemonic. 

Display of Keyboard Accelerators 
The Stub does not display the keyboard accelerator. If the Stub is the child of a 
Caption widget, the Caption widget can be used to display the Stub's accelera
tor as part of the label. 

Coloration 
The Stub widget should display a state which indicates that it has input focus. 
The general heuristic used for this display in widgets is that the background 
color is replaced with the input focus color found in the resource XtNinput
FocusColor. 

RESOURCES 
The following table lists the resources available to the stub widget. 

Stub Resource Set 
Name Class Type Default Access 

XtNacceptFocusFunc XtCAcceptFocus XtRFunction NULL SGI 

XtNaccelerator XtCAccelerator String NULL SGI 

XtNacceleratorText XtCAcceleratorText String (calculated) SGI 

XtNactivatefunc XtCActivateFunc Function NULL SGI 

XtNancestorSensitive XtCSensitive Boolean TRUE G 

XtNbackground XtCBackground Pixel XtDefaultBackground SGI 

XtNbackgroundPixmap XtCBackgroundPixmap Pixmap (none) SGI 

XtNborderColor XtCBorderColor Pixel XtDefaultForeground SGI 

XtNborderWidth XtCBorderWidth Dimension 0 SGI 

XtNconsumeEvent XtCConsumeEvent XtCallbackList NULL SGI 

XtNdepth XtCDepth Cardinal (parent's) GI 

XtNdestroy XtCDestroy Function NULL SGI 

XtNdestroyCallback XtCDestroyCallback XtCallbackList NULL I 

XtNexpose XtCExpose Function NULL SGI 

XtNgetValuesHook XtCGetValuesHook Function NULL SGI 

XtNhighlightHandlerProc XtCHighIightHandler XtRFunction NULL SGI 

XtNinputFocusColor XtCInputFocusColor Pixel Red SGI 

XtNheight XtCHeight Dimension 0 SGI 

XtNinitia1ize XtCInitialize Function (private) GI 

XtNinitia1izeHook XtCInitializeHook Function NULL GI 

Page 2 3/91 



Stub (3W) Stub (3W) 

3/91 

Stub Resource Set 
Name Class Type Default Access 

XtNmappedWhenManaged XtC~appedWhenManaged Boolean TRUE SGI 

XtNmnemonic XtC~emonic unsigned char NULL SGI 

XtNqueryGeometry XtCQueryGeometry Function NULL SGI 

XtNrealize XtCRealize Function (private) SGI 

XtNreferenceName XtCReferenceName String NULL SGI 

XtNreferenceStub XtCReferenceStub Widget NULL GI 

XtNreferenceWidget XtCReferenceWidget Widget NULL SGI 

XtNregisterFocusFunc XtCRegisterFocus XtRFunction Null SGI 

XtNresize XtCResize Function NULL SGI 

XtNsensitive XtCSensitive Boolean TRUE GI 

XtNsetValues XtCSetVaIues Function NULL SGI 

XtNsetValuesAlmost XtCSetValuesAlmost Function (superclass) SGI 

XtNsetValuesHook XtCSetValuesHook Function NULL SGI 

XtNtraversalHandlerFunc XtCTraversalHandlerFunc Function NULL SGI 

XtNtraversalOn XtCTraversalOn Boolean FALSE SGI 

XtNuserData XtCUserData XtPointer NULL SGI 

XtNwidth XtCWidth Dimension a SGI 

XtNwindow XtCWindow Window NULL GI 

XtNx XtCPosition Position a SGI 

XtNy XtCPosition Position a SGI 

XtNacceptFocusFunc 
This procedure has the same semantics as the XtAcceptFocusFunc Core Widget 
Class procedure and it's called by the Stub Widget Class's accept focus class pro
cedure. Applications that want to override the default accept focus procedure 
should use this function. When overriding the default accept focus procedure, 
the convenience routine OlCanAcceptFocus () can be used to check the widget's 
focus-taking eligibility. OlSetInputFocus should be used instead of XSetlnput
Focus when explicitly setting focus to a window. (See the section "Input Focus" 
for more on setting and accepting focus.) 

XtNactivateFunc 
void activateProc(w, activation_type, data) 

Widget w; 
OlVirtualName activation_type; 
XtPointer data; 

This procedure is called whenever OlActivateWidget() is called with the stub 
widget id for which this routine was assigned. The procedure has the following 
declaration: 

Boolean (*OlActivateFunc) (w, activation_type, data) 
Widget w; 
OlVirtualName activation_type; 
XtPointer data; 

Page 3 



Stub (3W) Stub (3W) 

If the activation_type is valid, the routine should take the appropriate action 
and return TRUE; otherwise, the routine should return FALSE. 

XtNdestroy 
void destroy (w) 

Widget w; 

Specifies the procedure called when this stub instance is destroyed. 

XtNexpose 
void expose(w, xevent, region) 

Widget w; 
XEvent * xevent; 
Region region; 

Procedure called whenever the a stub instance receives an exposure event. Since 
the Stub Widget class has requested exposure compression, the region field is 
valid. 

XtNgetValuesHook 
void getVa[uesHook(w, args, num_args) 

Widget w; 
ArgList args; 
Cardinal * num_args; 

Procedure called whenever the application does an XtGetValues () call on a stub 
widget instance. 

XtNhighlightHandlerProc 
This procedure has the same semantics as the OlHighlightProc class procedure 
and it is called by the Stub Widget Class's HighlightProc class procedure. 
Applications that have Stub widgets which accept focus should set this routine so 
that the Stub widget can display an appropriate visual whenever it gains or loses 
focus. 

XtNinitialize 
void initialize(request, new) 

Widget request; 
Widget new; 

Procedure called by XtCreateWidget () for a stub widget instance. The default 
initialize procedure knows how to deal with the xtNWindow resource (see the sec
tion on XtNWindow). If the application supplies its own initialize procedure, it's 
the application's responsibility to deal with the XtNWindow resource. 

When the XtNWindow resource is non-NULL, the default initialize procedure fills 
in XtNX, XtNy, XtNWidth and xtNheight with the attributes specified by the 
XtNWindow id. 

XtNinitializeHook 
void initializeHook(w, args, num_args) 

Widget w; 
ArgList args; 
Cardinal * num_args; 

Page 4 3/91 



Stub (3W) Stub (3W) 

3/91 

This procedure is called by XtCreateWidget () for a stub widget instance after 
the initialize procedure has been called. The application can access the creation 
arg list through this routine. The widget specified with the W argument is the new 
widget from the initialize procedure. 

XtNqueryGeometry 
XtGeometryResult queryGeometry(w, request, preferred_return) 

Widget w; 
XtWidgetGeometry * request; 
XtWidgetGeometry * preferred Jeturn; 

Procedure called whenever the application does an XtQueryGeometry() request 
on a stub widget instance. 

XtNrealize 
void realize (w, value_mask, attributes) 

Widget Wi 

XtValueMask * value_maski 
xSetWindowAttributes * attributesi 

Procedure called to realize a stub widget instance. The default realize procedure 
knows how to deal with the XtNwindow resource (see the section on XtNwindow). 
If the application supplies its own realize procedure, it's the application's respon
sibility to deal with the XtNwindow resource. 

When XtNwindow is non-NULL, the realize procedure uses this window for the 
widget instance instead of creating a new window. The default realize procedure 
gives an error message if another widget in its process space is referencing the 
window already. Note, the default realize procedure does not reparent the 
specified window, if one is supplied. 

XtNreferenceStub 
This is a pointer to an existing Stub widget. If this pointer is non-NULL, the new 
Stub will inherit all instance methods from the referenced stub widget. An 
XtSetValues request on the new Stub widget should be used to change any 
inherited methods. 

XtNresize 
void resize (w) 

Widget Wi 

Procedure called whenever a stub widget instance is resized. 

XtNregisterFocusFunc 
This is a Stub Widget resource that points to a function of type 
void (*OIRegisterFocusFunc) (w) 

Widget Wi 

Whenever a stub widget gains focus this procedure is called and the stub's shell 
sets the "current focus widget" (See OIGetCurrentFocusWidget) to the value 
returned by it. If this function is NULL or returns NULL, the stub widget is set 
to the current focus widget. This is the typical case. If this procedure returns a 
widget id other than the stub widget's, that id is used to update the current focus 
widget so that a subsequent call to OIGetCurrentFocusWidget would return it. 

Page 5 



Stub (3W) Stub (3W) 

Note, returning a widget id other than the stub widget's will not move the focus 
away from the stub widget. 

XtNsetValues 
Boolean setValues (current, request, new) 

Widget currenti 
Widget requesti 
Widget neWi 

Procedure called whenever the application does an XtSetValues () call on a stub 
widget instance. 

XtNsetValuesAlmost 
void setValuesAlmost(w, new_widget, request, reply) 

Widget Wi 

Widget new_widgeti 
XtwidgetGeametry * requesti 
XtWidgetGeametry * reply; 

This procedure is called when the application attempts to set a stub widget's 
geometry via an XtSetValues () call and the stub widget's parent did not accept 
the requested geometry. The default setValuesAlmost procedure simply accepts 
the suggested compromise. 

XtNsetValuesHook 
Boolean setValuesHook(w, args, num_args) 

Widget w; 
ArgList argsi 
Cardinal * num_args; 

This procedure is called whenever the application does an XtSetValues () on a 
stub widget instance. Since this procedure is called after the set Values procedure, 
the widget specified by the w argument is the new widget from the setValues pro
cedure. 

XtNtraversalHandlerFunc 

Page 6 

If an application wants the stub widget to process traversal commands whenever 
the stub widget has focus, this resource is used to supply the traversal routine. 
An example of a case when this is desirable is when a stub widget is used to 
implement a spread-sheet. In this case the stub widget would trap the 
OL MOVERIGHT, OL MOVELEFT, etc. commands to move focus between the 
celis in the spread-sheet. The traversal handling routine has the following 
declaration: 

Widget (*OlTraversalFunc) (w, start, direction, time) 
Widget Wi /* Stub widget id */ 
Widget starti /* Stub widget id */ 
OlVirtualName directioni 
Time time; 

If the traversal routine can process the traversal command, it returns the id of the 
widget which now has focus. (Note: the widget id returned can be the stub 
widget'S id. This is the case when the traveral command was processed, but 
focus did not leave the stub widget.) If the traversal routine cannot process the 

3/91 



Stub (3W) Stub(3W) 

given command, it should return NULL. (See the section "Input Focus" for a dis
cussion on valid direction values and focus movement.) 

XtNwindow 
This resource specifies a window id that the Stub widget should associate with its 
instance data at realization time. The XtNwindow resource can be specified at ini
tialization time only. If a window id is supplied, that stub widget instance will 
trap events on the given window. After the stub widget instance is realized, the 
function XtWindow () will return this window id. 

If the stub widget is managed by its parent widget, the supplied window will be 
included in geometry calculations even though the stub widget (by default) does 
not reparent the supplied window to be a child of the parent widget'S window. 

Explicit calls to XtMoveWidget, XtResizeWidget, XtConfigureWidget, or XtSet
Values can be used to modify the window's attributes. 

Note: When the stub widget instance is destroyed, the window will be des
troyed along with it. 

XtNwidth 
XtNheight 

If the Stub widget is managed, the window ID supplied with XtNwindow 
will be included in the geometry calculation causing undesireable 
reconfiguration. This is an anomoly that exists only with this resource. 

If XtNwindow has a NULL value, the application must insure that the dimensions 
of xtNwidth and XtNheight are non-NULL. The application can specify the 
width and height with an Arg list or specify an initialize procedure that sets them 
with non-NULL values. If either of these dimensions are NULL when the appli
cation attempts to realize the stub widget, an error will result. 

EXAMPLE 

3/91 

The following example illustrates how an application can use the stub widget to 
perform some particular type of exposure handling. Since an initialize procedure 
was not specified and the XtNwindow resource was not used, the initial Arg list 
includes non-NULL values for the widget'S width and height. 

static void 
Redisplay(w, xevent, region) 

Widget w; 
XEvent * xevent; 
Region region; 

/* 
* do something interesting here 
*/ 

} /* END OF Redisplay() */ 

main(. .. ) 
{ 

Widget base; 
Widget stub; 
static Arg args[] 

Page 7 



Stub (3W) 

}; 

XtNexpose, 
XtNwidth, 
XtNheight, 

(XtArgVal) Redisplay}, 
(XtArgVal) 1 }, 
(XtArgVal) 1 } 

base OlInitialize( .•. ); 

Stub (3W) 

stub XtCreateManagedWidget("graphics pane", stubWidgetClass, 
base, args, XtNumber(args»; 

} /* END OF maine) */ 

SEE ALSO 
Input Focus for a discussion on keyboard focus manipulation 

Page 8 3/91 



TextEdit TextEdit 

NAME 
TextEdit - provides multiple line editing 

SYNOPSIS 
#include <stdio.h> 
#include <buffutil.h> 
#include <textbuff.h> 
#include <Intrinsic.h> 
#include <OpenLook.h> 
#include <TextEdit.h> 

widget = XtCreatewidget(name, textEditWidgetClass, ... ); 

DESCRIPTION 

3/91 

The TextEdit widget provides an n-line text editing facility that has both a cus
tomizable user interface and a programmatic interface. It can be used for single 
line string entry as well as full-window editing. It provides a consistent editing 
paradigm for textual data. 

The TextEdit widget provides three text wrap modes: wrapoff, wrapany, and 
wrapwhitespace. 

The TextEdit widget provides several distinct callback lists used to monitor the 
state of the textual data: insertion cursor movement, modification of the text, and 
post modification notification. Each of these callbacks provide information to the 
application regarding the intended action. The application can simply examine 
this information to maintain its current state or can disallow the action and per
form any of the programmatic manipulations instead. 

The TextEdit widget also provides distinct callback lists for user input: mouse 
button down and key press. The call data for these callbacks decodes the input 
for the application. The application can examine the input and either consume 
the action, and perform any of the programmatic manipulations, or allow the 
widget to act upon it. 

The TextEdit widget also provides the application with a callback list used when 
the widget is redisplayed. With this callback the application can add callbacks 
whiCh can be used to display information in the margins of the TextEdit such as 
line numbers or update marks. 

Editing Capabilities 
The TextEdit widget provides editing capabilities to move the insert point, select 
text, delete text, scroll the display, perform cut, copy, paste, and undo operations, 
and refresh the text display. All of these capabilities are bound to global 
resources stored in the X server. Many of these settings can be Changed using the 
property windows available in the OPEN LOOK Workspace Manager. All of 
these settings dynamically change immediately after new settings are stored in the 
server. The following table lists all of the key bindings used by the TextEdit 
widget: 

Page 1 



TextEdit TextEdit 

Hierarchical Text 
Text is considered to be hierarchically composed of white space, spans, lines, 
paragraphs, within a document. Whitespace is defined as any non-empty sequence 
of the ASCII characters space, tab, linefeed, or carriage return (decimal values 32, 
9, 10, 13; respectively); a span is any non-empty sequence of characters bounded 
by whitespace. A source line is any (possibly empty) sequence of characters 
bounded by newline characters; a display line is any (possibly empty) sequence of 
characters appearing on a single screen display line. A paragraph is any sequence 
of characters bounded by sets of two or more adjacent newline characters. A 
document is the entire content of the text. 

In all cases, the beginning or end of the edit text is an acceptable bounding ele
ment in the previous definitions. 

Sizing the Display 
When making display decisions, the TextEdit widget first will use either the 
application specified width and height or, if these values are not specified, calcu
late width and height by applying the values of the XtNcharsVisible and 
XtNlinesVisible resources. Once the width and height are determined the -
TextEdit widget will request an appropriate size from its parent (considering the 
margins). If the request is denied or only partially satisfied, no future growth 
requests will be made unless there is an intervening resize operation externally 
imposed. 

Once the size of the display is settled, the TextEdit widget calculates the display 
lines based on this size, the various margins, the font, tab table, and wrap mode. 

Wrapping 
If the wrap mode is OL _WRAP_ANY, as many characters from the source line as 
will entirely fit before the right margin are written to the current display line, 
then the next character starts at the left margin of the next display line, and so 
on. If the wrap mode is OL _WRAP_WHITE _SPACE, the line wrap occurs at the 
first whitespace character that follows the last full word that does fit on the 
current display line. If, however, under OL_WRAP_WHITE_SPACE, the first full 
word that does not fit is the first word on the display line, the wrap is made as if 
OL_WRAP_ANY were selected. If the wrap mode is OL_WRAP_OFF the lines 
are not wrapped but are clipped at the right margin. In this mode the text is hor
izontally scrollable. 

ScroliedWindow 

Page 2 

The application can place the TextEdit widget within a ScrolledWindow widget. 
When this arrangement is used, the text is easily scrollable using the Scrollbars 
provided by the ScrolledWindow. 

The proportion indicators on the scrollbars show relatively how much of the text 
is currently in the display. 

As the user enters text, the view automatically scrolls when the insert point 
moves beyond a margin boundary (right or bottom) to keep the insert point in 
view. 

3/91 



TextEdit TextEdit 

Application Access 
'The TextEdit widget provides complete programmatic control of the text and its 
display. 

Keyboard Traversal 
'The default value of the XtNtraversalon resource is True. 

'The widget responds to the following keyboard navigation keys: 

NEXT FIELD moves to the first control in the next group 

PREY FIELD 

NEXTWINDOW 

PREVWINDOW 

NEXTAPP 

PREVAPP 

ROWUP 

ROWDOWN 

CHARBAK 

CHARFWD 

WORDFWD 

WORDBAK 

LINESTART 

UNEEND 

PANESTART 

PANEEND 

OOCSTART 

moves to the first control in the previous group 

moves to the next window in the application 

moves to the previous window in the application 

moves to the first window in the next application 

moves to the first window in the previous application 

moves the caret up one line in the current column 

moves the caret down one line in the current column 

moves the caret backward one character 

moves the caret forward one character 

moves the caret forward one word 

moves the caret back one word 

moves the caret to the beginning of the line 

moves the caret to the end of the line 

moves the caret to the first row and column 
display 

moves the caret to the last row and column 
display 

moves the caret to the beginning of the document 

on 

on 

DOCEND moves the caret to the end of the document 

the 

the 

Note: It is expected that the user will use the alternate bindings for NEXT_FIELD 
and PREV_FIELD because the primary binding, TAB and SHIFTTab, are valid 
characters in a Text pane. 

'The TextEdit widget responds to the following selection keys: 

SELCHARFWD adjusts the selection one character forward 

SELWORDFWD adjusts the selection to the end of the current (or next) 
word 

SELLINEFWD adjusts the selection to the end of the current (or next) line 

SELCHARBAK adjusts the selection one character backward 

3/91 Page 3 



TextEdit TextEdit 

SELWORDBAK adjusts the selection to the begiruting of the current (or 
previous) word 

SELLINEBAK adjusts the selection to the begiruting of the current (or 
previous) line 

SELLINE adjusts the selection to include the entire current line 

SELFLIPENDS reverses the "anchor" and cursor position of the selection 

The TextEdit widget responds to the following scrolling keys: 

SCROLLUP scroll the view up one screen line 

SCROLLDOWN 

PAGEUP 

PAGEDOWN 

PAGERIGHT 

PAGELEFT 

scroll the view down one screen line 

scroll to the next page up 

scroll to the next page down 

scroll to the next page to the right 

scroll to the next page to the left 

SCROLLLEFT scroll the view one screen to the left 

SCROLLRIGHT scroll the view one screen to the right 

SCROLLTOP scroll to the begiruting of the document 

SCROLLBOTTOM scroll to the end of the document 

SCROLLLEFTEDGE 
scroll to the left edge of the document 

SCROLLRIGHTEDGE 
scroll to the right edge of the document 

The TextEdit widget responds to the following edit keys: 

DELCHARFWD deletes the character to the right of the caret 

DELCHARBAK deletes the character to the left of the caret 

DELWORDFWD deletes the word to the right of the caret 

DELWORDBAK deletes the word to the left of the caret 

DELLINEFWD deletes to the end of the line from the caret 

DELLINEBAK deletes from the beginning of the line to the caret 

DELLINE deletes the line containing the caret 

UNDO undoes the previous edit operation 

Coloration 
When this widget receives the input focus, it changes the text caret in the text 
field to the active caret and the color specified in XtNinputFocusColor. 

Display of Keyboard Mnemonic 

Page 4 

The TextEdit widget does not display the mnemonic. If the TextEdit widget is 
the child of a Caption widget, the Caption widget can be used to display the 
mnemonic. 

3/91 



TextEdit TextEdit 

RESOURCES 
TextEdit Resource Set 

Name Class Type Default Access 

XtNancestorSensitive XtCSensitive Boolean TRUE G 

XtNbackground XtCBackground Pixel XtDefaultBackground SGI 

XtNbackgroundPixmap XtCPixmap Pixmap Unspecified SGI 

XtNblinkRate XtCBlinkRate Int 1000 SGI 

XtNborderColor XtCBorderColor Pixel XtDefaultForeground SGI 

XtNborderPixmap XtCPixmap Pixmap Unspecified SGI 

XtNborderWidth XtCBorderWidth Dimension 0 SGI 

XtNbottomMargin XtCMargin Dimension 4 SGI 

XtNcharsVisible XtCChars Visible Int 50 GI 

XtNcolorrnap XtCColormap Pointer DYNAMIC G 

XtNconsumeEvent XtCConsumeEvent XtCallbackList NULL SGI 

XtNcursorPosition XtCTextPosition Int 0 SGI 

XtNdepth XtCDepth Int DYNAMIC GI 

XtNdisplayPosition XtCTextPosition Int 0 SGI 

XtNeditType XtCEditType OlEditType OL _TEXT_EDIT SGI 

XtNfont XtCFont FontStruct NULL SGI 

XtNfontColor XtCFontColor Pixel XtDefaultForeground SGI 

XtNfontGroup XtCFontGroup 

XtNheight XtCHeight Dimension 0 SGI 

XtNinputFocusColor XtCInputFocusColor Pixel Red SGI 

XtNinsertTab XtClnsertTab Boolean TRUE SGI 

XtNIeftMargin XtCMargin Dimension 4 SGI 

XtNlines Visible XtCLinesVisible Int 16 GI 

XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE SGI 

XtNmargin XtCCaliback XtCallbackList NULL SGI 

XtNmodifyVerification XtCCaliback XtCalibackList NULL SGI 

XtNmotion Verification XtCCaliback XtCallbackList NULL SGI 

XtNpostModifyNotification XtCCaUback XtCalibackList NULL SGI 

XtNreferenceN ame XtCReferenceName String NULL SGI 

XtNreferenceWidget XtCReferenceWidget Widget NULL SGI 

XtNrightMargin XtCMargin Dimension 4 SGI 

XtNselectEnd XtCTextPosition Int 0 SGI 

XtNselectStart XtCTextPosition Int 0 SGI 

XtNsensitive XtCSensitive Boolean TRUE GI 

XtNsource XtCSource String NULL SGI 

XtNsourceType XtCSourceType OlSourceType OL STRING SOURCE SGI 

XtNtabTable XtCTabTable Pointer NULL SGI 

XtNtopMargin XtCMargin Dimension 4 SGI 

XtNtraversalOn XtCTraversalOn Boolean TRUE SGI 

XtNuserData XtCUserData Pointer NULL SGI 

3/91 Page 5 



TextEdit Text Ed it 

TextEdit Resource Set 
Name Class Type Default Access 

XtNwidth XtCWidth Dimension a SGI 

XtNwrapMode XtCWrapMode OIWrapMode OL WRAP WHlTE SPACE SGI 

XtNx XtCPosilion Position a SGI 

XtNy XtCPosilion Position a SGI 

XtNblinkRate 
This resource is used to specify the rate that the active input caret blinks. The 
value of this resource is interpreted as the number of milliseconds between 
blinks. Setting this value to zero (0) turns the blink effect off. 

XtNbottomMargin 
Range of Values: 
1 <= XtNbottomMargin <= height - XtNtopMargin - font_height 

This resource specifies the number of pixels used for the bottom margin. Note: 
the range is relative to the top margin value. 

XtNcharsVisible 
This resource is used to specify the initial width of the text in terms of characters. 
It overrides the xtNwidth resource setting. The XtNwidth is recalculated to be 
the value of XtNcharsVisible multiplied by the width of the 'n' (en) character in 
the font plus the values for the left and right margins. The value of this resource 
changes to reflect the effects of geometry changes imposed by the widget tree and 
the user. SetValues for this resource is ignored. 

XtNcursorPosition 
Range of Values: 0 <= cursorPosition < size of buffer 

This resource is used to specify the relative character position in the text source of 
the insert cursor. Changing the value of this resource may affect the 
XtNdisplayPosition resource if the cursorPosition is not visible in the pane. 

XtNdisplayPosition 
Range of Values: 

Page 6 

o <= displayPosition < size of buffer 

This resource contains the position in the text source that will be displayed at the 
top of the pane. A value of 0 indicates the beginning of the text source. When 
the position is near the end of the buffer, this position is recalculated to ensure 
that the last line in the buffer appears as the last line in the pane. 

XtNeditType 

Range of Values: 
OL_TEXT_READ/"textread" 
OL_TEXT_EDIT/"textedit" 

This resource controls the edit state of the source: 

OL TEXT READ 
The source is read-only; the end-user cannot edit it. 

3/91 



TextEdit TextEdit 

3/91 

OL TEXT EDIT 
The source is fully editable. 

XtNinputFocusColor 
Range of Values: 
(Valid Pixel value for the display)/(Valid color name) 

This resource specifies the color of the input caret. Normally, this color is 
derived from the value of the XtNinputFocusColor resource and is dynamically 
maintained. This dynamic behavior is abandoned if the application explicitly sets 
this resource either at initialization or through a SetValues. 

XtNinsertTab 
If this resource is set to FALSE, a TAB character is not insertable. Setting this 
resource to FALSE makes traversal of the controls easier if the TAB key is bound 
as OL_NEXT]IELD; if set to TRUE, a TAB character is insertable. 

XtNmargin 
This is the NULL terminated callback list of XtCallbackList used when the 
pane is redisplayed. The call_data parameter is a pointer to an 01 TextMar
ginCallData structure: 

typedef enum { 
OL_MARGIN_EXPOSED, 
OL_MARGIN_CALCULATED, 
OlTextMarginHint; 

typedef struct { 
OlTextMarginHint hint; 
XRectangle * rect; 

OlTextMarginCallData, *OlTextMarginCallDataPointer; 

The OlTextMarginHint indicates whether the area to be redrawn was explicitly 
known because of an exposure event (OL_MARGIN_EXPOSED) or if the rectan
gle was calculated relative to the textual display (OL_MARGIN_CALCULATED). 
The margin callback should respond to the OL _MARGIN _EXPOSED hint by 
repainting the area defined by the XRectangle recto The margin callback may 
wish to calculate its own rectangle in the OL_MARGIN_CALCULATED case. It 
can freely use the rectangle structure passed in with the call data for this purpose. 

This callback can be used to repair the margins for the text. 

For example, this callback may be used to display line numbers for the text in the 
left margin. 

XtNmodifyVerification 
This is the NULL terminated callback list of type XtCallbackList used when a 
modification of the buffer is attempted. The call_data parameter is a pointer to 
an OlTextModifyCallData structure: 

Page 7 



TextEdit TextEdit 

typedef struct { 
Boolean 
TextPosition 
TextPosition 
TextPosition 
TextPosition 
TextPosition 
TextPosition 

ok; 
current_cursor; 
select_start; 
select_end; 
new_cursor; 
new_select_start; 
new_select_end; 

char * text; 
int text_length; 
OlTextModifyCallData, *OlTextModifyCallDataPointer; 

All of the fields in this structure, with the exception of the ok flag, are treated as 
read-only information. The application can return without changing the value of 
the ok flag, in which case the update will occur. The application can also set 
the ok flag to FALSE, perform any other operations it desires, and return, in 
which case the update will not be performed. 

XtNmotionVerification 

Page 8 

This NULL terminated callback list of type XtCallbackList is used whenever 
the cursor position moves within the Widget. The call_data parameter is a 
pointer to an OlTextMotionCallData structure: 

typedef struct { 
Boolean 
TextPosition 
TextPosition 
TextPosition 

ok; 
current_cursor; 
new_cursor; 
select_start; 

TextPosition select_end; 
OlTextMotionCallData, *OlTextMotionCallDataPointer; 

This callback list is used whenever the cursor position changes due to cursor 
movement operations or by modification of the text. 

The application can distinguish between a simple cursor movement and a modify 
operation by comparing the current_cursor and new_cursor values. 

When these values are equal the callback is the result of a modify operation. In 
this case the ok field is ignored and the application should not attempt to per
form updates to the text or its display during this callback. 

If the values of current_cursor and new_cursor are different, the application is 
guaranteed that the operation is the result of a cursor movement. In this mode 
all of the fields in this structure, with the exception of the ok flag, are treated as 
read-only information. The application can return without changing the value of 
the ok flag, in which case the movement will occur. The application can also set 
the ok flag to FALSE, perform any other operations it desires, and return, in 
which case the movement will not be performed. 

3/91 



TextEdit TextEdit 

3/91 

XtNpostModifyNotification 
This is the NULL terminated callback list of type XtCallbackList used after a 
buffer update has completed. The call_data parameter is a pointer to an 
01 TextFocusCallData structure: 

typedef struct { 
Boolean 
TextPosition 
TextPosition 
TextPosition 
char * 
char * 
TextLocation 
TextLocation 
TextLocation 
TextLocation 

requestor; 
new_cursor; 
new_select_start; 
new_select_end; 
inserted; 
deleted; 
delete_start; 
delete_end; 
insert_start; 
insert_end; 

TextLocation cursor-position; 
OlTextFocusCallData, *OlTextFocusCallDataPointer; 

This callback is used to synchronize the application with the text once a modify 
operation is completed. For example, the application may record successful edit 
operations in an undo buffer to provide multi-level undo functionality. The data 
provided in this callback is considered read-only and volatile (for example, the 
application should copy what it needs from this structure before returning). 

XtNrightMargin 
Range of Values: 

1 <= XtNrightMargin <= width - XtNleftMargin - font_width 

This resource specifies the number of pixels used for the right margin. Note: the 
range is relative to the left margin value. 

XtNselectEnd 
This resource is used to specify the last character position selected in the text. It 
is used along with the XtNselectStart and XtNcursorPosition resources to 
specify a selection. To be effective, the XtNselectStart value must be less than 
or equal to XtNselectEnd and the XtNcursorPosition must be equal to either 
XtNselectStart or XtNselectEnd. If either of these tests fails then 
XtNselectStart and XtNselectEnd are set equal to the value of the XtNcur
sorPosition. 

XtNselectStart 
This resource is used to specify the first character position selected in the text. It 
is used along with the XtNselectEnd and XtNcursorPosition resources to 
specify a selection. To be effective, the XtNselectStart value must be less than 
or equal to XtNselectEnd and the XtNcursorPosition must be equal to either 
XtNselectStart or XtNselectEnd. If either of these tests fails then 
XtNselectStart and XtNselectEnd are set equal to the value of the XtNcursor
Position. 

Page 9 



TextEdit 

XtNsource 
Range of Values: 

<string> for OL_STRING_SOURCE 
<name of file> for OL_DISK_SOURCE 

TextEdit 

<pointer to an existing TextBuffer> for OL_TEXT_BUFFER_SOURCE 

This resource is used in tandem with the XtNsourceType resource to specify the 
source. See the XtNsourceType resource for a full description of these resources. 

XtNsourceType 
Range of Values: 

OL_STRING_SOURCE/"stringsource" 
OL_DISK_SOURCE/"disksource" 
OL_TEXT_BUFFER,....SOURCE/NA 

This resource controls the interpretation of the XtNsource resource value. When 
set to OL _ STRING _SOURCE the XtNsource value is interpreted as the string to 
be used as the source, when set to OL DISK SOURCE the XtNsource value is 
interpreted as the name of the file-containing the source, when set to 
OL _TEXT_BUFFER _SOURCE the XtNsource value is interpreted as a pointer to a 
previously initialized TextBuffer (see the TextBuffer utilities manual page 
for a description of TextBuffers). 

XtNtabTable 
This resource is used to specify a pointer to an array of tab Positions. These tab 
positions are specified in terms of pixels and must be terminated by a zero (O) 
entry. The widget calculates tabs by finding the next tab table entry that exceeds 
the current x offset for the line. If no such entry exists in the table or if the 
pointer to the tab table is NULL, the tab is set to the next greater multiple of 
eight (8) times the size of the 'n' (en) character in the font. 

XtNtopMargin 
Range of Values: 

1 <= XtNtopMargin <= height - XtNbottomMargin - font_height 

This resource specifies the number of pixels used for the top margin. Note: the 
range is relative to the bottom margin value. 

XtNwrapMode 
Range of Values: 

OL_WRAP_WHlTE_SPACE/"wrapwhitespace" 
OL_WRAP _ANY / "wrapany" 
OL_WRAP _OFF / "wrapoff" 

This resource is used to control how the source is wrapped in the pane. When 
OL _WRAP_ANY, lines are wrapped at the last character before the right margin; 
when set to OL _WRAP_WHITE _SPACE, lines are wrapped at the last white space 
before the right margin or as in OL _WRAP_ANY if the line does not contain any 
white space; when OL _WRAP_OFF, lines are not wrapped and the pane may hor
izontally scroll. 

Page 10 3/91 



TextField (3W) TextField (3W) 

NAME 
TextField - provides a one-line editable text field 

SYNOPSIS 
#include <Intrinsic.h> 
#include <StringDefs.h> 
#include <OpenLook.h> 
#include <TextField.h> 

widget = XtCreateWidget(name, textFieldWidgetClass, ... ); 

DESCRIPTION 

3/91 

TextField Components 
The TextField widget is a one-line input field for text data that contains the fol
lowing elements: 

Input Caret 

Input Field 

Left Arrow (conditional) 

Right Arrow (conditional) 

Input Field 

Left Arrow 

'mlm,~~c~,m 
TextField Widget 

Figure 1. One-Line Text Field 

Keyboard Input 

~--- Right Arrow 

Once the input focus has been moved to the Input Field, keyboard entry is 
allowed. The TextField widget does not validate the input, leaving that up to 
the application. 

Page 1 



TextField (3W) TextField (3W) 

Keyboard Traversal 
The default value of the XtNtraversalOn resource is TRUE. 

The TextField widget responds to the following keyboard navigation keys: 

NEXT FIELD and DOWN 
move to the next traversable widget in the window 

PREY FIELD and UP 
move to the previous traversable widget in the window 

NEXTWINDOW moves to the next window in the application 

PREVWINDOW moves to the previous window in the application 

NEXTAPP moves to the first window in the next application 

PREY APP moves to the first window in the previous application 

CHARBAK moves the caret backward one character 

CHARFWD moves the caret forward one character 

WORDFWD moves the caret forward one word 

WORDBAK moves the caret back one word 

LINEST ART moves the caret to the beginning of the display 

LINEEND moves the caret to the end of the display 

The MENUKEY posts the menu attached to the TextField. 

The TextField widget responds to the following selection keys: 

SELCHARFWD adjusts the selection one character forward 

SELWORDFWD 

SELLINEFWD 

SELCHARBAK 

SELWORDBAK 

SELLINEBAK 

SELLINE 

SELFLIPENDS 

adjusts the selection to the end of the current (or next) 
word 

adjusts the selection to the end of the current (or next) line 

adjusts the selection one character backward 

adjusts the selection to the beginning of the current (or 
previous) word 

adjusts the selection to the beginning of the current (or 
previous) line 

adjusts the selection to include the entire current line 

reverses the "anchor" and cursor position of the selection 

The TextField widget responds to the following scrolling keys: 

SCROLLLEFT scroll the view one screen to the left 

SCROLLRIGHT scroll the view one screen to the right 

Page 2 3/91 



TextField (3W) TextField (3W) 

3/91 

SCROLLLEFTEDGE 
scroll to the left edge of the textfield 

SCROLLRIGHTEDGE 
scroll to the right edge of the textfield 

The TextField widget responds to the following edit keys: 

DELCHARFWD deletes the character to the right of the caret 

DELCHARBAK 

DELWORDFWD 

DELWORDBAK 

DELLINEFWD 

DELLINEBAK 

DELLINE 

UNDO 

deletes the character to the left of the caret 

deletes the word to the right of the caret 

deletes the word to the left of the caret 

deletes to the end of the line from the caret 

deletes from the beginning of the line to the caret 

deletes the line containing the caret 

undoes the last edit 

Display of Keyboard Mnemonic 
The TextField does not display the mnemonic. If the TextField is the child of 
a Caption widget, the Caption widget can be used to display the mnemonic. 

Display of Keyboard Accelerators 
The TextField does not respond to a keyboard accelerator because clicking the 
SELECT button on a TextField activates depending on the pointer position. So, 
the TextField does not display a keyboard accelerator. 

Scrolling Long Text Input 
If an input value exceeds the length of the Input Field, the Left Arrow and/or 
Right Arrow appear and the input value is visually truncated on the left and/or 
the right to show only as many characters as can fit in the Input Field. The trun
cation is at a character boundary. Since the Arrows take up space that would 
otherwise be used for the input, the truncation is more severe than would be 
necessary if they were not visible. An Arrow is present only if characters are hid
den in the direction expressed by the arrow. 

The user can scroll to show the hidden parts of the input by clicking or pressing 
SELECT on the Left or Right Arrow. Clicking SELECT on the Left Arrow scrolls 
the input one character to the right to show the next character that was hidden to 
the left. Clicking SELECT on the Right Arrow scrolls the input one character to 
the left to show the next character that was hidden to the right. Pressing SELECT 
scrolls continuously, with a user-adjustable wait between changes. 

The text does not scroll beyond its limits, so that the left-most character never 
moves beyond the right edge of the TextField widget and the right-most charac
ter never moves beyond the left edge. If the user attempts to scroll beyond the 
limits by clicking SELECT, the system beeps. If the user is pressing SELECT 
when the limit is reached, the text stops scrolling but the system does not beep. 
If the user releases SELECT and then presses SELECT again to exceed the scrol
ling limit, the system beeps once regardless of how long SELECT is pressed. 

Page 3 



TextField (3W) TextField (3W) 

Input Validation 
A validation callback list can be used to perform limited per-field validation. This 
callback is used when the end-user hits the RETURN, PREY FIELD, or 
NEXT ]IELD. It is not called if the user mouses the focus to another input area. 

Position of the Input Caret 
As characters are entered from the keyboard, the Input Caret moves to the right 
until it reaches the right end of the Input Field. As additional characters are 
typed the text scrolls to the left (the Left Arrow appears as discussed above) and 
the Input Caret moves relative to the text but remains stationary on the screen. 

Selecting and Operating on the Input Field 
The TextField widget allows text to be copied or moved to and from the Input 
Field. See TEXT SELECTION(3W) earlier in this manual for the description of 
these operations. 

Coloration 

Page 4 

When this widget receives the input focus, it changes the text caret in the text 
field to the active caret. 

Figure 2 illustrates the resources that affect the coloration of the TextField 
widget. 

XtNforeground 

-----------------------. 

[Ej 

Figure 2. Text Field Coloration 

3/91 



TextField (3W) TextField (3W) 

3/91 

SUBSTRUCTURE 
TextEdit component 

Name: Textedit 
Class: TextEdit 

TextField Initialize Resources Passed from TextField Widget to TextEdit Widget 
At creation time, the following resources are passed from the textfield to the text
edit widget: 

Name Value 
XtNbackground (textfield XtNbackground) 
XtNbottomMargin 3 
XtNcharsVisible (depends on size of textfield) 
XtNfont (textfield font) 
XtNinsertTab (textfield XtNinsertTab) 
XtNleftMargin 1 
XtNlinesVisible 1 
XtNregisterFocusFunc (textfield private routine EditsRegisterFocus(» 
XtNrightMargin 1 
XtNtopMargin 1 
XtNwidth (width of textfield) 
XtNwrapMode OL_WRAP_OFF 

TextField SetValues Resources Passed from TextField Widget to TextEdit Widget 

At SetValues time, XtNstring is passed to the TextEdit widget as XtNsource 
and the following resources are set: 

Name Value 
XtNbackground (TextField XtNbackground) 
XtNcursorPosition 0 
XtNinsertTab (TextField XtNinsertTab) 
XtNselectStart 0 
XtNselectEnd 0 
XtNsourceType OL STRING SOURCE 

Page 5 



TextField (3W) TextField (3W) 

RESOURCES 

TextField Resource Set 
Name Class Type Default Access 

XtNancestorSensitive XtCSensitive Boolean TRUE G* 

XtNbackground XtCBackground Pixel XtDefaultBackground SG1t 

XtNbackgroundPixmap XtCPixmap Pixmap (none) SG1t 

XtNcharsVisible XtCChars Visible int a G1 

XtNconsumeEvent XtCConsumeEvent XtCallbackList NULL SG 

XtNdepth XtCDepth int (parent's) G1 

XtNdestroyCallback XtCCallback XtCallbackList NULL S1 

XtNfont XtCFont XFontStruct * (OPEN LOOK font) SI 

XtNfontColor XtCFontColor Pixel Black* SG1 

XtNforeground XtCForeground Pixel XtDefaultForeground SG1t 

XtNheight XtCHeight Dimension (calculated) SG1 

XtNinputFocusColor XtC1nputFocusColor Pixel Red SG1 

XtNinitiaIDelay XtCInitiaIDelay int 500 SG1 

XtNinsertTab XtCInsertTab Boolean FALSE SGI 

XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE SG1 

XtNmaximumSize XtCMaximumSize int a SG1 

XtNreferenceName XtCReferenceName String NULL G1 

XtNreferenceWidget XtCReferenceWidget Widget NULL G1 

XtNrepeatRate XtCRepeatRate int 100 SG1 

XtNsensitive XtCSensitive Boolean TRUE G1* 

XtNstring XtCString String NULL SG1 

XtNtextEditWidget XtCTextEditWidget Widget NULL G 

XtNtraversalOn XtCTraversalOn Boolean TRUE SG1 

XtNuserData XtCUserData XtPointer NULL SG1 

XtNverification XtCCallback XtCallbackList NULL SG1 

XtNwidth XtCWidth Dimension (calculated) SG1 

XtNx XtCPosition Position a SG1 

XtNy XtCPosition Position a SG1 

XtNcharsVisible 
This resource is used to specify the initial width of the list in terms of characters. 
It overrides the xtNwidth resource setting. The XtNwidth is recalculated to be 
the value of XtNcharsVisible multiplied by the width of the 'n' (en) character in 
the font plus the values for the internal left and right margins. The value of this 
resource changes to reflect the effects of geometry changes imposed by the widget 
tree and the user. SetValues for this resource is ignored. 

XtNinitialDelay 
Range of Values: 

o < XtNinitialDelay 

Page 6 3/91 



TextField (3W) TextField (3W) 

3/91 

This resource gives the time, in milliseconds, before the first action occurs when 
SELECT is pressed on an Arrow. Note that millisecond timing precision may not 
be possible for all implementations, so the value may be rounded up to the 
nearest available unit by the toolkit. 

XtNinitialDelay 
This resource is used to specify the time in milliseconds of the initial repeat delay 
to be used when the scrolling arrows are pressed. 

XtNinsertTab 
If this resource is set to FALSE, a TAB character is not insertable; Setting this 
resource to FALSE makes traversal of controls easier if the TAB key is bound as 
OL_NEXT]IELD. If set to TRUE, a TAB character is insertable. 

XtNmaximumSize 
Range of Values: 

o $ XtNmaximumSize 

This resource is the maximum number of characters that can be entered into the 
internal buffer. If this value is not set or is zero, the internal buffer will increase 
its size as needed limited only by the space limitations of the process. 

XtNreferenceWidget 
This resource specifies a position for inserting the current widget in its managing 
ancestor's traversal list. If the reference widget is non-null and exists in the 
managing ancestor's traversal list, the current widget will be inserted in front of 
it. Otherwise, the current widget will be inserted at the end of the list. 

XtNrepeatRate 

This resource is used to specify the time in milliseconds of the repeat delay to be 
used when the scrolling arrows are pressed. 

XtNstring 

This is the content of the Input Field. On being set a copy of the value is made in 
an internal buffer. Using XtGetValues() on this resource gets a new copy that 
the application is responsible for freeing when no longer needed. 

XtNtextEditWidget 
This resource is used to retrieve the TextEdit widget associated with the Text
Field. This value can be used to directly access the underlying TextEdit Widget 
(and its TextBuffer) used to manage the textual display. 

XtNtraversalOn 
Range of Values: 

TRUE 
FALSE 

This resource specifies whether this widget is selectable during traversal. 

XtNverification 
This is the callback list used when the end-user hits the RETURN, PREV FIELD, 
or NEXT_FIELD. The call_data parameter is a pointer to an OlTextField
Verify structure: 

Page 7 



TextField (3W) TextField (3W) 

Page 8 

typedef enum { 
OlTextFieldReturn, 
OlTextFieldPrevious, 
OlTextFieldNext 

} OlTextVerifyReason; 

typedef struct { 
OlTextVerifyReason 
String 
Boolean 

reason; 
string; 
ok; 

OlTextverifyReason reason; 
OlTextFieldVerify, *OlTextFieldVerifyPointer; 

This callback list can be used to perform per-field validation. Note: the callback 
is called only when a key is used to traverse from the field; it is not called when 
the user mouses the focus to another input area, therefore applications will still 
need to perform per-form validation. 

3/91 



D Manual Pages: Obsolete Routines 

Introduction to the Obsolete Routines 0-1 
List of Obsolete Routines and Widgets 0-1 

Obsolete Routines 0-2 

Table of Contents 





Introduction to the Obsolete Routines 

The routines included in this section have been made obsolete for various rea
sons. Usually they have been replaced with more updated versions. The docu
mentation for these routines has been made available to you for three reasons: 

• We wish to remain consistent with Intrinsics documentation from other 
sources including the XConsortium. 

• You are given an opportunity to remove these obsolete routines from 
your application program conveniently. 

• You have the opportunity to compare the description of the old routine 
with its replacement. 

List of Obsolete Routines and Widgets 

The obsolete routines and widgets for this release are as follows: 

Abbrevstack Widget 
Buttonstack Widget 
LookupOlInputEventO 
OlDetermineMouSeActionO 
OlGetApplicationResourcesO 
OlReplayBtnEventO 
Text widget 
Virtual Key/Button 

Manual Pages: Obsolete Routines 0-1 





AbbrevButtonStack (3W) AbbrevButtonStack (3W) 

NAME 

3/91 

AbbrevStack - no longer used 

The AbbreviatedButtonStack Widget is no longer an Xol toolkit widget, but it 
will be supported for compatibility reasons. Since it has the exact functionality 
and resources as the AbbreviatedMenuButton widget, refer to the 
AbbreviatedMenuButton(3W) manual page for a discussion of its use. 

Page 1 



ButtonStack (3W) ButtonStack (3W) 

NAME 

3/91 

ButtonStack - no longer used 

The ButtonStack widget is no longer an Xol toolkit widget, but it will be sup
ported for compatibility reasons. Since it has the exact functionality and 
resources as the MenuButton widget, refer to the MenuButton(3W) manual page 
for a discussion of its use. 

Page 1 



LookupOlinputEvent (3W) LookupOlinputEvent (3W) 

Dynamic Settings 

NAME 
LookupOllnputEvent 

SYNOPSIS 
#include <Dynamic.h> 

extern OlInputEvent LookupOllnputEvent(w, event, keysym, buffer, length) 
Widget w; 
XEvent * event; 
KeySym * keysym; 
char ** buffer; 

DESCRIPTION 
The LookupOlInputEvent function is used to decode the event for widget w to an 
01 InputEvent. The event passed should be a ButtonPress, ButtonRelease, or 
KeyPress event. The function attempts to decode this event based on the settings 
of the OPEN LOOK defined dynamic mouse and keyboard settings. 

If the event is a KeyPress, the function may return the keysym, buffer, and/or 
length of the buffer returned from a call to XLookupString(3X). It returns these 
values if non-NULL values are provided by the caller. 

SEE ALSO 

3/91 

LookupOlColors(3W) 
OlReplayBtnEvent(3W) 
OlDetermineMouseAction(3W) 

Page 1 



OIDetermineMouseAction (3W) OIDetermineMouseAction (3W) 

Dynamic Settings 

NAME 
OIDeter.mineMouseAction 

SYNOPSIS 
#include <QpenLook.h> 
#include <Dynamic.h> 

extern ButtonAction OIDeter.mineMouSeAction(w, event) 
Widget W; 
XEvent * event; 

DESCRIPTION 
The OIDeter.mineMouSeAction function is used to determine the kind of mouse 
gesture that is being attempted: MOUSE_CLICK, MOUSE _ MULTI_CLICK, or 
MOUSE _MOVE. This function is normally called immediately upon receipt of a 
mouse button press event. It uses the current settings for mouseDampingFactor 
and multiClickTimeout to determine the kind of gesture being made. 

SEE ALSO 

NOTES 

OIDragAndDrop(3W) 
OIGrabDragPointer(3W) 
OIUngrabDragPointer(3W) 

This function performs an active pointer grab. This grab is released for the CLICK 
type actions but not for MOUSE _MOVE. It is the responsibility of the caller to 
ungrab the pointer if the action is MOUSE_MOVE. 

EXAMPLE 

3/91 

static void ButtonConsumeCB (w, client_data, call_data) 
widget W; 

XtPointer client_data; 
XtPointer call_data; 
{ 

Window drop_window; 
position x; 
Position y; 
OIVirtualEvent ve; 

ve = (OIVirtualEvent) call_data 

switch (ve -> virtual_name) 
{ 

case OL_SELECT:-
switch (OIDeter.mineMouseAction (widget, event» 

Page 1 



OIDetermineMouseAction (3W) OIDetermineMouseAction (3W) 

Page 2 

case MOUSE_MOVE:-
OlGrabDragPointer(widget, OlGetMoveCursor(XtScreen(widget), 

None) ; 
OlDragAndDrop(widget, &drop_window, &x, &y); 
DropOn(widget, drop_window, x, y, ..•. ); 
OlUngrabDragPointer(widget); 
break; 

case MOUSE_CLICK:
ClickSelect(widget, ..•. ); 
break; 

case MOUSE_MULTI_CLICK:
MultiClickSelect(widget, .... ); 
break; 

default:-
Panic (widget, .•.. ); 
break; 

break; 
default:-

OlReplayBtnEvent(widget, NULL, event); 
break; 

3/91 



OIReplayBtnEvent (3W) OIReplayBtnEvent (3W) 

NAME 
OlReplayBtnEvent 

SYNOPSIS 

Dynamic Settings 

extern void OlReplayBtnEvent(w, client_data, event) 
Widget Wi 

caddr_t client_datai 
XEvent * eventi 

DESCRIPTION 
The OlReplayBtnEvent procedure is used to replay a button press event to the 
next window (towards the root) that is interested in button events. This provides a 
means of propagating events up a window tree. 

SEE ALSO 
LookupOl InputEvent (3W) 

3/91 Page 1 



Virtual Key/Button (3W) Virtual Key/Button (3W) 

NAME 
Virtual_Key/Button: OlConvertVirtualTranslation - takes a virtual trans
lation string as input and returns a Standard X Toolkit translation string 

Note: this routine is obsolete since translation tables cannot support dynamic 
rebinding of keys and buttons. OILookupInputEvent should be used instead. 

SYNOPSIS 
#include <Intrinsic.h> 
#include <OpenLook.h> 

char *OlConvertVirtualTranslation(virtual_translation) 
char *virtual_translation; 

DESCRIPTION 

3/91 

Converts Virtual Translations into Standard Translations 
OlConvertVirtualTranslation takes a virtual translation string as input and 
returns a standard X Toolkit Intrinsic's translation string. The function parses the 
input string replacing any virtual key or button expressions with their real 
representation(s). A virtual translation string has the same format as a standard 
X Toolkit Intrinsics translation string, except that virtual expressions can appear 
as modifiers or event types. (However, a virtual expression cannot appear as an 
event type detail.) 

Reference: See "Appendix A" in the X Toolkit Intrinsics-C Language Inter
face, X Window System, X Version 11" for more information on the transla
tion string. 

Virtual Expressions 
Virtual expressions are key or mouse button names that are independent of any 
physical mapping of the keyboard or mouse buttons. For instance, MENU 
(which in this document refers to the mouse button used to pop up menus) has 
the virtual expression menuBtn in a virtual translation. If the end user has 
assigned mouse button three to be MENU, then the OlConvertVirtualTransla
tion routine would convert a virtual translation that contains the expression 
menuBtn into a standard translation containing the expression Button3. 

The following is the list of virtual expressions for the various keys and mouse 
buttons defined in the OPEN LOOK user interface. The left column gives the 
name used in this document. 

Name Virtual Expression Virtual Event 
ADJUST adjustBtn OL ADJUST 
ADJUSTKEY adjustKey OL ADJUSTKEY 
CANCEL cancelKey OL CANCEL 
CHARBACK charBakKey OL CHARBAK 
CHARFWD charFwdKey OL CHARFWD 
CONSTRAIN constrainBtn OL CONSTRAIN 
COpy copyKey OL COPY 

Page 1 



Virtual Key/Button (3W) Virtual Key/Button (3W) 

Name Virtual Expression Virtual Event 
CUT cutKey OL CUT 
DEFAULTACTION defaultAdionKey OL DEFAULTACTION 
DELCHARBACK delCharBakKey OL DELCHARBAK 
DELCHARFWD delCharFwdKey OL DELCHARFWD 
DELLINE delLineKey OL DELLINE 
DELLINEBACK delLineBakKey OL DELLINEBAK 
DELLINEFWD delLineFwdKey OL DELLINEFWD 
DELWORDBACK delWordBakKey OL DELWORDBAK 
DELWORDFWD delWordFwdKey OL DELWORDFWD 
DOCEND docEndKey OL DOCEND 
DOCSTART docStartKey OL DOCSTART 
DOWN downKey OL DOWN 
DRAG dragKey OL DRAG 
DROP dropKey OL DROP 
DUPLICATE duplicateBtn OL DUPLICATE 
DUPLICATEKEY duplicateKey OL DUPLICATEKEY 
HELP helpKey OL HELP 
HORIZSBMENU horizSDMenuKey OL HSBMENU 
LEFT leftKey OL LEFT 
LINEEND lineEndKey OL LINEEND 
LINESTART lineStartKey OL LINESTART 
MENU menuBtn OL MENU 
MENUKEY menuKey OL MENUKEY 
MENUDEFAULT menuDefaultBtn OL MENUDEFAULT 
MENUDEFAULTKEY menuDefaultKey OL MENUDEFAULTKEY 
NEXTAPP nextAppKey OL NEXTAPP 
NEXTFIELD nextFieldKey OL NEXT 
NEXTWINDOW nextWinKey OL NEXTWINDOW 
PAGEDOWN pageDownKey OL PAGEDOWN 
PAGELEFT pageLeftKey OL PAGELEFT 
PAGERIGHT pageRightKey OL P AGERIGHT 
PAGEUP pageUpKey OL PAGEUP 
PAN panBtn OL PAN 
PANEEND paneEndKey OL PANEEND 
PANESTART paneStartKey OL PANESTART 
PASTE pasteKey OL PASTE 
PREVAPP prey AI'pKey OL PREVAPP 
PREVFIELD prevFieldKey OL PREY 
PREVWINDOW j?revWinKey OL PREVWINDOW 
PROPERTY propertiesKey OL PROPERTY 
RIGHT rightKey OL RIGHT 
ROWDOWN rowDownKey OL ROWDOWN 

Page 2 3/91 



Virtual Key/Button (3W) Virtual Key/Button (3W) 

3/91 

Name Virtual Expression Virtual Event 
ROWUP rowUpKey OL ROWUP 
SCROLLBOTTOM scrollBottomKey OL SCROLLBOTTOM 
SCROLLDOWN scrollDownKey OL SCROLLDOWN 
SCROLLLEFT scrollLeftKey OL SCROLLLEFT 
SCROLLLEFTEDGE scrollLeftEdgeKey OL SCROLLLEFTEDGE 
SCROLLRlGHT scrollRigptKey OL SCROLLRIGHT 
SCROLLRlGHTEDGE scrollRightEdgeKey OL SCROLLRIGHTEDGE 
SCROLLTOP scrollTopKey OL SCROLLTOP 
SCROLLUP scrollUpKey OL SCROLLUP 
SELECT selectBtn OL SELECT 
SELECTKEY selectKey OL SELECTKEY 
SELECTCHARBACK selCharBakKey OL SELCHARBAK 
SELECTFLIPENDS selFlipEndsKey OL SELFLIPENDS 
SELECTLINE selLineKey OL SELLINE 
SELECTLINEBACK selLineBakKey OL SELLINEBAK 
SELECTWORDBACK selWordBakKey OL SELWORKBAK 
SELECTCHARFWD selCharFwdKey OL SELCHARFWD 
SELECTLINEFWD selLineFwdKey OL SELLINEFWD 
SELECTWORDFWD selWordFwdKey OL SELWORDFWD 
STOP stopKey OL STOP 
TOGGLEPUSHPIN togglePushpinKey OL TOGGLEPUSHPIN 
UNDO undoKey OL UNDO 
UP up Key OL UP 
VERTSBMENU vertSBMenuKey OL VSBMENU 
WINDOWMENU windowMenuKey OL WINDOWMENU 
WORDBACK wordBakKey OL WORDBAK 
WORDFWD wordFwdKey OL WORDFWD 
WORKSPACEMENU workspaceMenuKey OL WORKSPACEMENU 

The following example illustrates a virtual translation that contains three produc
tions. (The Message production does not involve any virtual translations but is 
included for illustration.) 

" ! selectBtn <selectBtnUp>: 
<Message>: 
<copyKeyDown> : 

Space Allocated Only If Necessary 

notify() \n 
checkClientMessage() \n 
copyToClipboard ( ) " 

If the input string does not contain any virtual expressions, the original string is 
returned. If the input string contains at least one valid virtual production, the 
function allocates memory for the returned string. The application is responsible 
for checking this difference and freeing the allocated memory, if appropriate. 

Invalid Productions Dropped 
If the input string contains a valid virtual production, any invalid virtual produc
tions are not included in the returned string. If the input string contains no vir
tual productions, error checking is not done. 

Page 3 



Virtual Key/Button (3W) 

SEE ALSO 
OlLookuplnputEvent(3W) 

Page 4 

Virtual Key/Button (3W) 

3/91 



Text (3W) Text (3W) 

NAME 
Text - provides an interface for the end-user to enter and edit text 

Note: The Text widget is obsolete -- use the TextEdit widget instead. 

SYNOPSIS 
#include <Intrinsic.h> 
#include <StringDefs.h> 
#include <OpenLook.h> 
#include <Text.h> 

widget = XtCreateWidget(name, textWidgetClass, ... ); 

DESCRIPTION 

3/91 

The Text widget provides a single and multi-line text editor that has both a cus
tomizable user interface and a programmatic interface. It can be used for single
line string entry, forms entry with verification procedures, multiple-page docu
ment viewing, and full-window editing. It provides an application with a con
sistent editing paradigm for entry of textual data. 

The display of the textual data on the screen can be adjusted to scroll, wrap, or 
grow automatically as the user reaches the edge of the view of the text. 

The Text widget provides separate callback lists to verify insertion cursor move
ment, modification of the text, and leaving the Text widget. Each of these call
backs provides the verification function with the widget instance, the event that 
caused the callback, and a data structure specific to the verification type. From 
this information, the function can verify if the application considers this to be a 
legitimate state change and signal the widget whether to continue with the action. 
The verification function can also manipulate the widget through the class 
methods defined by the Text widget class. The verification callback lists are 
explained in detail below. 

Editing Capabilities 
The Text widget provides the editing capabilities listed in the following table. 

Name 

CHARFWD 
CHARBAK 
ROWDOWN 
ROWUP 
WORDFWD 
WORDBAK 
LINESTART 
LINEEND 
DOCSTART 
DOCEND 
DELCHARFWD 
DELCHARBAK 

Editing Action 

Move the caret forward one character 
Move the caret back one character 
Move the caret down one line in the current column 
Move the caret up one line in the current column 
Move the caret forward one word 
Move the caret back one word 
Move the caret to the beginning of the current display line 
Move the caret to the end of the current display line 
Move the caret to the beginning of the source 
Move the caret to the end of the source 
Delete the character to the right of the caret 
Delete the character to the left of the caret 

Page 1 



Text (3W) 

Name 

DELWORDFWD 
DELWORDBAK 
DELLINEFWD 
DELLINEBAK 

Editing Action 

Delete the word to the right of the caret 
Delete the word to the left of the caret 

Text (3W) 

Delete to the end of the current display line from the caret 
Delete to the beginning of the current display line from the 
caret 

This second table displays the virtual expressions and keyboard equivalents for the 
editing functions. See VIRTUAL KEY/BUTTON(3W) earlier in this guide for more infor
mation on virtual expressions. 

Name Virtual Expression Keyboard Equivalents 

CHARFWD charFwdKey CTRL-F, -7 
CHARBAK charBakKey CTRL-B, f-

ROWDOWN rowDownKey CTRL-N, .L 
ROWUP rowUpKey CTRL-P, i 
WORDFWD wordFwdKey ALT-F, ALT- -7 
WORDBAK wordBakKey ALT-B, ALT- f-

LINESTART lineStartKey CTRL-A, CTRL- f-

LINEEND lineEndKey CTRL-E, CTRL--7 
DOCSTART docStartKey ALT-i, ALT- < 
DOCEND docEndKey ALT-.L, ALT- > 
DELCHARFWD delCharFwdKey CTRL-D, DELETE 
DELCHARBAK delCharBakKey CTRL-H, BACKSPACE 
DELWRDFWD delWordFwdKey ALT-D 
DELWORDBAK delWordBakKey ALT-H 
DELLINEFWD delLineFwdKey CTRL-K 
DELLINEBAK delLineBakKey ALT-K 

Hierarchical Text 
Text is considered to be hierarchically composed of white space, words, lines and 
paragraphs. White space is defined as any non-empty sequence of the ASCII 
characters space, tab, linefeed or carriage return (decimal values of 32, 9, 10, 13, 
respectively); a word is any non-empty sequence of characters bounded on both 
sides by whitespace. A source line is any (possibly empty) sequence of characters 
bounded by newline characters; a display line is any (possibly empty) sequence of 
characters appearing on a single screen display line. A source paragraph is any 
sequence of characters bounded by sets of two or more adjacent newline charac
ters. A display paragraph is any (possibly empty) sequence of characters 
bounded by newline characters (Note: This is identical to the definition of a 
source line.) 

Page 2 

In all cases, the beginning or end of the edit text is an acceptable bounding ele
ment in the previous definitions. 

3/91 



Text (3W) Text (3W) 

3/91 

Sizing the Display 
When making display decisions, the Text widget first determines whether all the 
text will fit in the current display. If it does not, and growing is enabled, the 
widget will request a resize from its parent. If the request is denied or only par
tially satisfied, no future growth requests will be made unless there is an inter
vening resize operation externally imposed. 

If any source line is still too long to fit in the display after growing is attempted, 
wrapping is checked. If wrapping is disabled, one display line is drawn for each 
source line. If a source line is too long for the display, it is truncated at the right 
margin after the last full character that fits. If wrapping is enabled, a new display 
line will be started with the first word that does not fit on the current line. If the 
wrap break option is OL_WRAP_ANY, as many characters from that word as will fit 
before the right margin are written to the current display line, then the next char
acter starts at the left margin of the next display line. If the wrap break option is 
OL_WRAP_WHITE_SPACE, the line break is instead made after the first whitespace 
character that follows the last full word that does fit on the current display line. 
If, however, under white space break, the first full word that does not fit is also 
the first word on the line, the wrap break is made as if OL_WRAP _ANY were 
selected. 

Scrolled Window 
The application can decide if the Text widget can have a scrollbar at the side. 
With a scrollbar, the end user can move through the text easily. Without a 
scrollbar, the Text widget either grows its window, if possible, to show the com
plete content, or wraps a long line onto another line. 

The proportion indicators on the scrollbar show how much of the text the user 
can see at once, compared with the entire text buffer or file. 

As the user enters text, the view will automatically scroll left to keep the insert 
point in view, unless the Text widget is operating in a wrap or grow mode. 

Application Callbacks 
Three types of verification callbacks are supported by the Text Widget: 

one for motion operations, to verify a new insert position; 

one for modifying operations, to verify insertion, deletion or replacement of 
text; and 

one for widget exit, to verify state consistency on loss of focus by the widget. 
The call_data value is a pointer to an 01 TextVerifyCD structure. The C 
data types used here are: 

Page 3 



Text (3W) 

typedef enum { 
mot ionVeri fy, 
modVerify, 
1eaveVerify 

01VerifyOpType; 

typedef struct 
int firstPos; 
int length; 
unsigned char *ptr; 

01TextB1ock, *01TextB1ockPtr; 

typedef struct { 
XEvent 
01VerifyOpType 
Boolean 

*xevent; 
operation; 
doit; 

01TextPosition currInsert, newInsert; 
01TextPosition startPos, endPos; 
01TextB1ock *text; 

01TextVerifyCD, *OlTextVerifyPtr; 

The elements of an 01 TextB10ck structure are as follows: 

firstPos 

length 

ptr 

the offset of the starting character in the text block. 

the size of the text block. 

a pointer to the text block. 

Text (3W) 

Before the verification callbacks are issued for any given operation, a structure of 
type 01TextVerifyCD is initialized. The initial values are: 

xevent for a leave operation, the current event pointer. 

operation element of 01 VerifyOpType signifying the type of verification 
operation. 

doit TRUE. 

currInsert current position of the insert point. 

newInsert for a motion operation, the position the user is attempting to move 
the insert point to; otherwise, the same value as currInsert. 

startPos for a modify operation, the beginning position in the current source 
of the text about to be deleted or replaced, or where new text will 
be inserted. If not a modify operation, it will have the same value 
as currInsert 

endPos for a modify operation, the ending position in the current source of 
the text about to be deleted or replaced. If no text is being 
removed, it will have the same value as startPos. If not a modify 
operation, the same value as currInsert. 

Page 4 3/91 



Text (3W) Text (3W) 

3/91 

text for a modify operation with new text to be inserted, a pointer to a 
structure of type OlTextBlock, that references the text to be 
inserted. Otherwise, NULL. 

It is possible for the client to register more than one callback procedure for any of 
these callback types. Since there can be more than one callback, each verification 
procedure should first check the doit field. 

On return from the last callback, the Text widget will look at the doit member 
of the OlTextVerifyCD structure. If it is false, a callback has already rejected the 
operation, so there is no need for further evaluation. If it is still true, the Text 
widget will proceed with the operation; otherwise, it will not. Any user feedback 
for the rejected operation is the responsibility of the verification procedure. 

Verification callbacks are permitted to modify some of the data in the OlTextVer
ifyCO structure. The Text widget will only look at certain fields on return, 
though, according to the operation type: 

For a motion operation, only the newInsert position will be looked at. 

For a modify operation, only startPos, endPos, and text will be examined 
for changes. 

For a leave operation, no fields will be examined. 

There is no mechanism for preventing a verification callback from making other 
changes to the editing state through the documented interface, but the results of 
such behind-the-back actions are undefined. 

Application Access to Text 
The Text has several resources that identify entry points that the application can 
use to access the internal buffer that the Text widget manages. For example, if 
the widget is being used to enter a string, the program can get a copy of the 
string (that is, the internal buffer) with the function under the resources 
XtNtextCopyBuffer or XtNtextReadSubString. 

Selecting and Copying the Text 
Text can be moved or copied to and from the Text widget. See TEXT 
SELECTION(3W) earlier in this manual for the description of these operations. 

Coloration 
When this widget receives the input focus, it changes the text caret in the text 
field to the active caret. 

Figure 1 illustrates the resources that affect the coloration of the Text widget. 

Page 5 



Text (3W) 

Selected Text 

XtNborderColor 

(XtNborderPixmap) 

XtNfontColor 

XtNbackground 

(XtNbackgroundPixmap) 

SUBSTRUCTURE 

XtNbackground 

L.... ________ ..... CJ 

Figure 1. Text Coloration 

Vertical Scrollbar component 

Names: verticalscrollbar 
Class: Scrollbar 

Text (3W) 

Scrollbar 
Coloration 

See the regular resource list for alternate names used for some key Scrollbar 
resources. 

RESOURCES 
Text Resource Set 

Name Class Type Default Access 

XtNancestorSensitive XtCSensitive Boolean TRUE G* 

XtNbackground XtCBackground Pixel White SGlt 

XtNbackgroundPixmap XtCPixmap Pixmap (none) SGlt 

XtNborderColor XtCBorderColor Pixel Black SGlt 

XtNborderPixmap XtCPixmap Pixmap (none) SGlt 

XtNborderWidth XtCBorderWidth Dimension 0 SGI 

XtNbottomMargin XtCMargin Dimension 0 SGI 

XtNconsumeEvent XtCConsumeEvent XtCallbackList NULL SGI 

XtNcursorPosition XtCTextPosition OITextposition 0 SGI 

XtNcurrentpage XtCCurrentpage int 1 SGI 

Page 6 3/91 



Text (3W) Text (3W) 

Text Resource Set 
Name Class Type Default Access 

XtNdepth XtCDepth int (parent's) GI 

XtNdestroyCallback XtCCallback XtCallbackList NULL 51 

XtNdisplayPosition XtCTextPosition OITextPosition a SGI 

XtNeditType XtCEditType OlDefine OL TEXT EDIT SGI 

XtNfile XtCFile String NULL SGI 

XtNfont XtCFont XFontStruct ' (OPEN LOOK font) 51 

XtNfontColor XtCFontColor Pixel Black' SGI 

XtNforeground XtCForeground Pixel Black SGlt 

XtNgrow XtCGrow OlDefine OL GROW OFF SGI 

XtNhorizontalSB XtCHorizontalSB Boolean FALSE SGI 

XtNinputFocusColor XtCInputFocusColor Pixel Black SGI 

XtNleave Verification XtCCallback XtCallbackList NULL 51 

XtNleftMargin XtCMargin Dimension a SGI 

XtNmappedWhenManaged XtCMappedWhenManaged Boolean TRUE SGI 

XtNmaximumSize XtCLength int (none) SGI 

XtNmodifyVerification XtCCallback XtCallbackList NULL 51 

XtNmotion Verification XtCCallback XtCallbackList NULL 51 

XtNrecomputeSize XtCRecomputeSize Boolean TRUE SGI 

XtNrightMargin XtCMargin Dimension a SGI 

XtNsensitive XtCSensitive Boolean TRUE SGI 

XtNshowPage XtCShowPage OIDefine OL NONE SGI 

XtNsourceType XtCSourceType OIDefine OL STRING SRC SGI 

XtNstring XtCString String NULL SGI 

XtNtextClearBuffer XtCTextClearBuffer void(')O (n/a) G 

XtNtextCopyBuffer XtCTextCopyBuffer unsigned char(')O (n/a) G 

XtNtextGetInsertPoint XtCTextGetInsertPoint OITextPosition(')O (n/a) G 

XtNtextGetLastPos XtCTextGetLastPos OlTextPosition(')O (n/a) G 

XtNtextlnsert XtCTextInsert void(')O (n/a) G 

XtNtraversalOn XtCTraversaIOn Boolean TRUE SGI 

XtNtextReadSubStr XtCTextReadSubStr int(*)O (n/a) G 

XtNtextRedraw XtCTextRedraw void(*)O (n/a) G 

XtNtextReplace XtCTextReplace int (n/a) G 

XtNtextSetInsertPoint XtCTextSetInsertPoint void(')O (n/a) G 

XtNtextUpdate XtCTextUpdate void(*)O (n/a) G 

XtNtopMargin XtCMargin Dimension a SGI 

XtNtraversalOn XtCTraversaIOn Boolean TRUE SGI 

XtNuserData XtCUserData XtPointer NULL SGI 

XtNverticalSB XtCVerticalSB Boolean FALSE SGI 

XtNviewHeight XtCViewHeight Dimension (calculated) SGI 

XtNwidth XtCWidth Dimension (calculated) SGI 

XtNwrap XtCWrap Boolean TRUE SGI 

3/91 Page 7 



Text (3W) Text (3W) 

Text Resource Set 
Name Class Type Default Access 

XtNwrapBreak XtCWrapBreak OIDefine OL WRAP WHITE SPACE SGr 

XtNx 

XtNy 

XtNbottomMargin 
Range of Values: 

XtCPosition 

XtCPosition 

o ~ XtNbottomMargin 

Position 0 

Position 0 

This resource is the number of pixels used for the bottom margin. 

XtNcursorPosition 
Range of Values: 

o ~ XtNcursorPosition < (current size of the text) 

This resource is the position in the text source of the insert cursor. 

XtNdisplayPosition 
Range of Values: 

o ~ XtNdisplayPosition 

SGr 

SGr 

This resource contains the position in the text source that will be displayed at the 
top of the screen. A value of 0 indicates the start of the text source. 

Note: 
The specified position must correspond to the first character position of a source 
line (that is, it must be 0, or it must be a position immediately following a new
line character). Otherwise, correct behavior is not guaranteed. 

XtNeditType 
Range of Values: 

OL_TEXT_READ/"read" 
OL_TEXT_EDIT/"edit" 

This resource controls the edit state of the source: 

OL_TEXT_READ The source is read-only; the end user cannot edit it. 

OL_TEXT_EDIT The source is fully editable. 

Note: 
This option is available for text buffers only; text files cannot be edited. 

XtNfile 
This resource is used only if the XtNsourceType resource has the value 
OL_DISK_SOURCE. It is the absolute pathname of a disk file to be viewed. 

XtNfont 
Range of Values: 

(any valid return from XLoadQueryFont () ) 

Default: 

(chosen to match the scale and screen resolution) 

Page 8 3/91 



Text (3W) Text (3W) 

3/91 

This resource identifies the font to be used to display the text. 

The default value points to a cached font structure; an application should not 
expect to get this value with a call to XtGetValuesO and use it reliably thereafter. 

XtNfontColor 
Range of Values: 

(any Pixel value valid for the current display}/(any name from the 
rgb. txt file) 

This resource specifies the color for the font. If not set, the color from the 
XtNforeground resource, if available, is used for the font. 

See the note about the interaction of this resource with other color resources 
under the description of the XtNbackground resource in CORE(3W}. 

XtNforeground 

This resource defines the foreground color for the widget. 

See the note about the interaction of this resource with other color resources 
under the description of the XtNbac!tground resource in CORE(3W}. 

XtNgrow 
Range of Values: 

OL_GROW_OFF/"off" 
OL_GROW_HORIZONTAL/ "horizontal" 
OL_GROW_ VERTICAL/ "vertical" 
OL_GROW_BOTH/"both" 

This resource controls if the widget will try to resize its window when it needs 
more height or width to display the text: 

OL_GROW_OFF It will not resize itself. 

OL_GROW_HORIZONTAL 
It will attempt to change its width when lines are too long for 
the current screen width. 

OL_GROW_VERTICAL 
it will attempt to resize its height when the number of text lines 
is greater than can be displayed with the current screen height. 

OL_GROW_BOTH It will attempt resizes in both dimensions. 

XtNverticalSB 
Range of Values: 

TRUE 
FALSE 

These resources determine if the Text widget will have a scrollbar along the side. 

XtNleaveVerification 
This is the callback list used when the input focus leaves the Text widget. The 
call_data parameter is a pointer to an OlTextVerifyCD structure described ear
lier in TEXT. 

Page 9 



Text (3W) 

XtNleftMargin 
Range of Values: 

o ~ XtNleftMargin 

This resource is the number of pixels used for the left margin. 

XtNmaximumSize 
Range of Values: 

o ~ XtNmaximumSize 

Text (3W) 

This resource is used only if the XtNsourceType resource has the value 
OL_STRING_SOURCE. It is the maximum number of characters that can be entered 
into the internal buffer. If this value is not set, then the internal buffer will 
increase its size as needed, limited only by the space limitations of the process. 

XtNmodifyVerification 
This callback list is called before text is deleted from or inserted into the text 
source. The call_data parameter is a pointer to an OlTextVerifyCD structure 
described earlier. 

XtNmotionVerification 
This callback list is called before the insertion cursor is moved to a new position. 
The call_data parameter is a pointer to an OlTextVerifyCD structure described 
earlier in TEXT. 

XtNrecomputeSize 
Range of Values: 

TRUE 
FALSE 

This resource indicates whether the Text widget should calculate its size and 
automatically set the XtNheight and XtNWidth resources. If set to TRUE, the 
Text widget will do normal size calculations that may cause its geometry to 
change. If set to FALSE, the Text widget will leave its size alone. 

This resource is ignored for each dimension that has an associated scrollbar. 

XtNrightMargin 
Range of Values: 

o ~ XtNrightMargin 

This resource is the number of pixels used for the right margin. 

XtNshowPage 
This resource is directed to the vertical scrollbar in the Text widget. See 
SCROLLBAR for more detail. 

XtNsourceType 

Range of Values: 
OL_STRING_SOURCE/"stringsrc" 
OL_DISK_SOURCE/"disksrc" 

This resource defines the type of the text source. 

Page 10 3/91 



Text (3W) Text (3W) 

3/91 

XtNstring 
This resource is used only if the XtNsourceType resource has the value 
OL_STRING_SOURCE. This is the string to be viewed and/or edited. A copy is 
made into an internal buffer allocated by the Text widget. A call to XtGet
valuesO on this resource will return a copy of the internal buffer. The applica
tion program is responsible for freeing the space allocated by this copy. 

XtNtextClearBuffer 
Synopsis: 

void (*textClearBuffer)(); 

static Arg query[] = { 
{ XtNtextClearBuffer, (XtArgVal)&textClearBuffer } 

} ; 

XtGetValues(widget, query, XtNumber(query»; 

(*textClearBuffer)(w) 
Widget w; 

This function clears the internal buffer. After this call, all characters in the buffer 
have been removed. 

XtNtextCopyBuffer 
Synopsis: 

unsigned char * (*textCopyBuffer) (), *buf; 

static Arg query[] = { 
{ XtNtextCopyBuffer, (XtArgVal)&textCopyBuffer 

}; 
XtGetValues(widget, query, XtNumber(query»; 

buf = (*textCopyBuffer)(w) 
Widget w; 

This function uses XtMallocO to create space for copying the internal buffer and 
returns the pointer to that copy. The application is responsible for freeing the 
space. 

XtNtextGetinsertPoint 
Synopsis: 

OlTextPosition (*textGetInsertPoint)(), pos; 

static Arg query [] = { 
{ XtNtextGetInsertPoint,(XtArgVal)&textGetInsertPoint 

} ; 

XtGetValues(widget, query, XtNumber(query»; 

pos = (*textGetInsertPoint) (w) 
Widget w; 

This function returns the insertion position. 

Page 11 



Text (3W) Text (3W) 

XtNtextGetLastPos 
Synopsis: 

OlTextPosition (*textGetLastPos)(), pos; 

static Arg query [] = { 
{XtNtextGetLastPos, (XtArgVal)&textGetLastPos 

}; 
XtGetValues(widget, query, XtNumber(query»; 

pos = (*textGetLastPos)(w, lastPos) 
Widget w; 
OltextPosition lastpos; 

This function returns the last character position in the buffer. 

XtNtextinsert 
Synopsis: 

void (*textlnsert)(); 

static Arg query[] = { 
{ XtNtextlnsert, (XtArgVal)&textlnsert 

}; 

XtGetValues(widget, query, XtNumber(query»; 

(*textlnsert)(w, string) 
Widget w; 
unsigned char *string; 

This function inserts the string at the current insertion position and advances the 
insertion position to the end of the string. 

XtNtextReadSubString 
Synopsis: 

int (*textReadSUbString)(); 

static Arg query[] = { 
{ XtNtextReadSubString, (XtArgVal)&textReadSubString 

}; 
XtGetValues(widget, query, XtNumber(query»; 

(*textReadSubString) (w,startpos,endpos,target,tsize,tu sed) 
Widget w; 
OltextPosition startpos, endpos; 
unsigned char *target; 
int tsize, *tused; 

This function will move characters from the buffer into the caller's space. The 
caller must provide the space to copy into and its size in bytes. The routine will 
return the number of positions moved. The value of tused returns the number 
of bytes used in the target string by the move. 

Page 12 3/91 



Text (3W) Text (3W) 

3/91 

XtNtextRedraw 
Synopsis: 

void (*textRedraw)()i 

static Arg query[] = { 
{ XtNtextRedraw, (XtArgVal)&textRedraw 

}i 
XtGetValues(widget, query, XtNumber(query»i 

(*textRedraw) (w) i 

Widget Wi 

This function refreshes the widget's window. 

XtNtextReplace 
Synopsis: 

OlEditResult (*textReplace)(), resulti 

static Arg query[] = { 
{ XtNtextReplace, (XtArgVal)&textReplace 

}; 
XtGetValues (widget, query, XtNumber(query»; 

result = (*textReplace)(w, startPos, endPos, text) 
Widget w; 
OltextPosition startPos, endPos; 
unsigned char *texti 

This function removes text in the source from startPos to endPos and inserts 
the string text starting at startPos. If startPos and endPos are the same, the 
action is an insertion. If text is the empty string, the action is a deletion. 

XtNtextSetinsertPoint 
Synopsis: 

void (*textSetlnsertPoint)()i 

static Arg query [] = { 
{ XtNtextSetlnsertPoint, (XtArgVal)&textSetlnsertPoint 

} ; 

XtGetValues(widget, query, XtNumber(query»i 

(*textSetlnsertPoint)(w, position) 
Widget Wi 
OltextPosition positioni 

This function sets the insertion point. 

Page 13 



Text (3W) 

XtNtextUpdate 
Synopsis: 

void (*textUpdate)(); 

static Arg query[] = { 
{ XtNtextupdate, (XtArgVal)&textUpdate 

} ; 
XtGetValues(widget, query, XtNumber(query»; 

(*textupdate)(w, status) 
Widget w; 
Boolean status; 

Text (3W) 

This function turns the widget's screen updating function on and off. If the 
application needs to make a sequence of source change calls, a call to 
OlTextupdate(FALSE) will prevent screen flash. After the sequence of calls the 
application calls OlTextUpdate (TRUE) to update the window and resume normal 
updating. Note that it is not necessary to turn off updating for functions that 
only get values from the widget, nor is it necessary to turn it off if the application 
only makes one call that changes the widget. 

XtNtopMargin 
Range of Values: 

o $ XtNtoPMargin 

This resource is the number of pixels used for the top margin. 

XtNviewHeight 
Range of Values: 

o $ XtNviewHeight 

This resource gives the preferred height, in lines, of the text pane. If a nonzero 
value is given, the corresponding XtNheight resource is computed by converting 
this number to pixels and adding the thickness of any scrollbar and border that 
appears. In this case, any value in the XtNheight resource is overwritten. 

If a zero value is given in the XtNviewHeight resource, the XtNheight resource 
is used as an estimate. The text pane is sized to show an integral number of 
lines, such that the overall height of the Text widget is less than or equal to 
XtNheight, if possible. However, the text pane is always large enough to show 
at least one line and is no shorter than the minimum scroll bar size. 

If neither the XtNviewHeight resource nor the XtNheight resource is set, or both 
are set to zero, the text pane is made as small as possible, limited as described 
above. 

XtNtraversalOn 
Range of Values: 

TRUE 
FALSE 

This resource specifies whether this widget is selectable during traversal. 

Page 14 3/91 



Text (3W) Text (3W) 

XtNwrap 
Range of Values: 

TRUE 
FALSE 

This resource specifies how the widget displays lines longer than the screen 
width. When set to FALSE, the lines may extend off screen to the right. When 
set to TRUE, the lines will be wrapped at the right margin, with the position 
determined by the resource XtNwrapBreak. 

XtNwrapBreak 
Range of Values: 

OL_WRAP_ANY/"wrapany" 
OL_WRAP_WHITE_SPACE/"wrapwhitespace" 

This resource specifies how the wrap position is determined. When set to 
OL_WRAP _ANY, the wrap will happen at the character position closest to the right 
margin. When set to OL_WRAP_WHITE_SPACE, the wrap will happen at the last 
white space before the right margin. If the line does not have white space, it will 
be wrapped as OL_WRAP _ANY. 

SEE ALSO 
TextEdit(3W) 

3/91 Page 15 





G Glossary 

Glossary G-1 

Table of Contents 





Glossary 

The italicized words refer to entries within this glossary. 

ADJUST 

anchor 

button 

cable 

callback 

click 

click-move-click 

Glossary 

The mouse button or keyboard equivalent used to adjust 
a selection (d. SELECT); usually the middle button on a 
right hand mouse. 

Either end of a Scrollbar widget or a Slider widget. 
The part of the widget that remains fixed while the 
elevator or drag box moves along. 

Generic term for any of several widgets, specifically 
RectButton widgets and OblongButton widgets. The 
RectButtons are implicitly defined in flattened widgets, as 
well. A button, when pressed usually initiates certain 
actions, like popping up a menu or executing an appli
cation routine. 

In a Scrollbar widget, the cable is the "line" on which 
the elevator moves. One end of the cable is connected to 
the anchor and the other is connected to the elevator. 

A callback routine is a routine written by an application 
programmer and associated with a specific widget 
resource. The callback routine is invoked as a result of a 
specific activity associated with that widget (that is, the 
widget calls back the program via that routine). For 
example, the XtNselect resource contains the name of 
the callback routine that is entered when a button is 
pushed or when a CheckBox is selected; the XtNverifi
cation resource contains the name of the callback rou
tine to invoke when a TextField widget is exited. The 
act of associating the name of a callback routine with a 
widget resource is called registration. 

The act of pressing and releasing a mouse button 
without moving the mouse pointer more than a few 
pixels. 

A method of user interaction with a set of objects where 
the user clicks MENU to display the objects, moves the 
pointer over the one of interest, then clicks MENU or 
SELECT to select or activate the object. 

G-1 



Glossary 

composite widget 

container 

control area 

dimmed 

double click 

drag area 

drag box 

dragging 

elevator 

flat widget 

flattened widget 

focus 

gadget 

G-2 

See widget. A widget that is a parent of other widgets, 
that physically contains other widgets. 

A widget that defines a region that holds zero or more 
sub-objects of a given type. 

The area located directly under the header of a window. 
It is used to display "command buttons," if the applica
tion in the window provides them. 

A visual effect on an object. A control, such as a button, 
is dimmed if its visible manifestation represents the state 
of just one of several objects that are in inconsistent 
states. When such a control is manipulated (for exam
ple, by clicking SELECT over the button), it is no longer 
dimmed because the manipulation sets the state for all 
the objects. 

To press and release a mouse button twice in succession. 

In a Scrollbar widget, the drag area is the center por
tion of the elevator that is moved by the mouse. 

In a Slider widget, the drag box is the portion of the 
slider that is moved by the mouse. 

The act of moving the pointer while a mouse button or 
keyboard equivalent is pressed. 

The center portion of a Scrollbar widget; that part 
which moves along the cable. 

See widget. A single widget that maintains a collection 
of similar user-interface components that together give 
the appearance and behavior of many widgets. 

Same as flat widget. 

To specify a particular area of the screen. (See input 
focus and keyboard focus). 

A windowless object; an object that could be defined as 
a widget but, instead, is defined as having its parent's 
window resources. 

OPEN LOOK GUI Programmer's Guide 



grab 

HELP 

highlighted 

icon 

input focus 

instance 

keyboard focus 

MENU 

menu 

pane 

pinned menu 

pixel 

pixmap 

Glossary 

Glossary 

To position the mouse pointer on a resize corner and take 
hold of it for the purpose of resizing the window. 

The mouse button or keyboard equivalent used to bring 
up an OPEN LOOK Help window. 

A visual indication that an object is in a special state. 
For two-color ("monochrome") objects, the colors are 
exchanged. Multi-color objects cannot be highlighted. 

The state where an application base window and all its 
pop ups are removed from the screen and replaced with 
a single, small figure that represents the application. 
Icon also refers to this small figure. 

To have the cursor on a particular field, designating that 
field as "next." 

A specific realization of a widget; one particular widget 
as opposed to a class of widgets. 

The area of the screen that will accept the next input 
from the keyboard. 

The mouse button or keyboard equivalent used to 
display (pop up) a menu. 

When unqualified, any of the three states of an OPEN 
LOOK menu: popup menu, stay-up menu, or pinned menu. 

The rectangular area within a window where an applica
tion displays text or graphics. 

An OPEN LOOK menu that has a pushpin that is "in." 
This menu behaves much like a control area in a pinned 
command window. 

An addressable point on the screen. 

A bitmap of an area of the screen stored within the pro
gram. A "pixmap" is also a defined data type in the Xt 
Intrinsics. 

G-3 



Glossary 

pointer 

pop up 

popup menu 

press 

press-drag-release 

primitive widget 

push a button 

pushpin 

G-4 

The screen representation of the location of the mouse or 
equivalent. 

As a noun, pop up is a generic term referring to an 
OPEN LOOK window other than the base window. As 
a verb, this phrase is the act of making a menu or OPEN 
LOOK popup window visible. As an adjective, it is 
used to refer to a window that can be popped up and is 
spelled with or without a dash, as in "popup menu" or 
"pop-up menu." 

An OPEN LOOK menu that was brought up by pressing 
MENU. While MENU remains pressed, the menu 
remains a popup menu and operates in a press-drag
release mode. 

The act of pressing a mouse button or keyboard key. 
This is distinct from the act of releasing the button or 
key, so that both can be discussed separately. Thus 
"press SELECT" means to press, but not release, the 
SELECT mouse button or keyboard equivalent key. 

A method of user interaction with a set of objects where 
the user presses MENU to display the objects, drags the 
pointer over the objects until it is over the one of 
interest, then releases MENU to select or activate the 
object. 

See widget. A widget that does not have any child 
widgets; one that either performs a specific action, 
allows input or allows output. 

The act of moving the pointer to a button widget and then 
selecting the button. 

A screen object that is part of a popup menu. It can be 
pointed to and selected. When it is first selected, it is 
"pushed in" and causes the menu to stay up after the 
user moves out of it. When it is again selected, it is 
pulled out and the menu pops down. 

OPEN LOOK GUI Programmer's Guide 



realized 

register, registration 

release 

resize corners 

resource 

screen 

select 

SELECT 

stay-up menu 

Glossary 

Glossary 

In the context of the X Toolkit Intrinsics, the point at 
which all the data structures of a widget have been allo
cated. Windows and other information are not created 
when the widget is created with the xtCreateWidget 
routine, but are created in a later call to xtReal
izewidget on the widget itself or on an ancestor 
widget. 

To make a routine name known to the API. When the 
application programmer develops a callback routine, that 
routine needs to be registered when the widget is 
created so that it can be properly invoked. 

The act of releasing a pressed button or keyboard key, 
as in "release MENU." 

Hollow, L-shaped symbols located on all four corners of 
a window which, when grabbed, are used to change the 
size of the window. 

An attribute of a widget or a widget class. A resource is 
a named data value in the defining structure of a 
widget. 

The surface on your computer monitor where informa
tion is displayed. 

To move the pointer to an object and press the SELECT 
mouse button. The result is to initiate either an applica
tion action or a change in the window content or struc
ture. 

The mouse button or keyboard equivalent used to select 
and move an object, manipulate an OPEN LOOK con
trol, or set the input focus. 

An OPEN LOOK menu that was brought up and made 
to stay on the screen for one round of use. The controls 
in this menu behave like controls in an unpinned com
mand window, except that the menu is removed from 
the screen even if nothing is selected from the menu. 

G-5 



Glossary 

sub-object 

toggle 

whitespace 

widget 

widget class 

window 

G-6 

A sub-object is the equivalent of a primitive widget con
tained in a flattened widget. In a Flat Exclusives or F 
NonExclusives widget, the sub-objects are the 
equivalents of RectButtons. In a Flat CheckBox, the 
sub-objects are the equivalents of CheckBox widgets. 

This is an action performed on an object with two states; 
it is the switching from one state to the other. 

Typically any characters that have no visible form. For 
this toolkit, these characters are space, tab, newline, and 
carriage return. 

A specific example or realization of a widget class. 

A collection of code and data structures that provides a 
generic implementation of a part of a look-and-feel. 

A work area on the screen that you use to run and 
display an application. 

OPEN LOOK GUI Programmer's Guide 



Index 

A 
API 2: 1 

application defaults 2: 7 

Application Programmer Interface 
2: 1 

application resource values 2: 8 

assigning widget values 2: 8 

atom names 4: 3 

B 
base windows, multiple 2: 49 

c 
callback 

definition 2: 2 
function 3: 8,10,14 

parameters 3: 10 

registering 2: 2 

client 
definition 4: 3 

message 4: 2 

color representation 2: 15 

command line options 2: 7 

command window 2: 42 

communication conventions 
file manager 4: 21 

workspace manager 4: 21 

compilation command, prototype 
3:4 

compile command, on-line programs 
3:6 

composite child widget 3: 16 

composite widget 2: 2 
container 2: 3 

Index 

convenience routines 2: 49 

core widget, definition 2: 9 

customized window decorations 4: 8 

o 
default font 2: 17 

default window decorations 4: 7 

directory 
/usr/X/include/Xll 3:4 
/usr/x/include/Xol 3:4 
/usr/X/lib 3: 4 

E 
efficiency 4: 4 

error handling 2: 46 

errors, warnings 2: 46 

events 4: 2 

exclusives widget, sample 3: 18 

F 
file manager 4: 4 

communication conventions 4: 21 

flat widget, definition 2: 3 

flattened widgets 2: 3 

focus model 
globally active 4: 19 

locally active 4: 19 

no input 4: 20 

passive 4: 19 

font, default 2: 17 

full size window 4: 27 

1-1 



Index 

G 
gadget 

ButtonStack 2: 22 

definition 2: 4 

OblongButton 2: 19 

gadget class 2: 4 

globally active focus model 4: 19 

graphical user interface, definition 
4: 1 

H 
header files 3: 8, 10, 14 

help, text 2: 46 

icon mask 4: 15 

icon pixmap 4: 15 

icon window 4: 15 

include files 3: 4-5 
input focus 2: 47, 4: 19-20 

transfer 4: 13 

internal defaults 2: 7 

intrinsics 2: 1 

L 
library 

/usr/X/lib/libXt.a 3:4 

/usr/X/libXol.a 3:4 

locally active focus model 4: 19 

long jump 3: 36 

1-2 

M 
main event loop 3: 8 

manager 
definition 4: 3 

file 4: 4 

session 4: 4 

window 4: 4 

workspace 4: 4 

mapped, definition 2: 11 

multiple base windows 2: 49 

N 
naming conventions 2: 5 

no input focus model 4: 20 

o 
object, definition 2: 1 

object libraries 3: 4 

Object Oriented Programming 3: 1 

object-specific defaults 2: 7 

obtaining widget values 2: 8 

_OL-PECOR_ADD property 4: 8 

_OL_DECOR_DEL property 4: 8 

_OL_FM_QUEUE property 4: 21 

_OL_FM_REPLY property 4: 21 

OlInitialize routine 2: 45 
_OL_PIN_STATE property 4: 10-11 

_OL_WIN_ATTR property 4: 6 

_OL_WIN_BUSY property 4: 12 

_OL_WIN_COLORS property 4: 11 

olwsm program 2: 7 
_OL_WSM_QUEUE fields 4: 21-26 

_OL_WSM_QUEUE property 4: 21 

_OL_WSM_REPLY property 4: 21 

OPEN LOOK GUI Programmer's Guide 



on-line programs 
compile commands 3: 6 

pathnames 3: 6 

OPEN LOOK 
conventions 4: 1 

muu-protocol 4:3 

Workspace Manager program 2: 7 

overlapping resources 2: 6 

override-redirect window 4: 27 

overriding values 2: 8 

p 
pane 2: 26 

passive focus model 4: 19 

pathnames, on-line programs 3: 6 
pinned menus 4: 27 

pixel densities 2: 16 

PPosition flag 4: 14 

primitive widget 2: 2 

procedure names 2: 5 

properties 4: 2 

property windows 2: 42 

protocol, extensibility 4: 4 

R 
resource 

definition 2: 2 

server 2:7 

values 2: 7 

widget 2: 6 

resource class 2: 6 

resource name 2: 5 
routine, OlInitialize 2: 45 

routines 
convenience 2:49 

Index 

error 2: 46 

s 
screen formats 2: 16 

server resource 2: 7 

session manager 4: 4 

standard font 2: 17 

structure member names 2: 5 

sub-object 2: 3 

switch statement 3: 10 

T 
type names 2: 5 

type-defined 2: 5 

u 
uninterpreted data 4: 2 

unrelated resources 2: 6 

Index 

USPosition flag 4: 14 

/usr/X/include/Xll directory 3: 4 

/usr/X/include/Xol directory 3: 4 

/usr/X/lib directory 3: 4 

/usr/X/lib/libXt.a library 3: 4 
/usr/x/libXol.a library 3: 4 

w 
widget 

AbbrevStack 2: 23 

BulletinBoard 2: 30 

ButtonStack 2: 22 

Caption 2: 34 

CheckBox 2: 21 

1-3 



Index 

class 2: 6 

composite 2: 2 

ControlArea 2: 31 

core 2: 9 

definition 2: 1 

Exclusives 2: 35 

FooterPanel 2: 34 

Form 2: 33 

Menu 2: 43 

Nonexclusives 2: 36 

Notice 2: 41 

OblongButton 2: 19 

PopupWindow 2: 42 

primitive 2: 2 
RectButton 2: 20 

resources 2: 6 

Scrollbar 2: 26 

ScrolledWindow 2: 37 

ScrollingList 2: 38 

Slider 2: 24 

StaticText 2: 28 

stub 2: 27 

Text 2: 28 

TextField 2: 29 

widget class 2: 4 

widgets 
composite 2: 30 

packed 2: 46 

window colors 4: 11 

window decorations 
customized 4: 8 

default 4: 7 

standard 4: 6 

window footer 4: 9 

window groups 4: 16-18 
window manager 4: 4 

WM_DELETE_WINDOW protocol 4: 15 

WM_HINTS property 4: 15 

WM_NORMAL_HINTS property 4: 14 

WM_SAVE_YOURSELF protocol 4: 15 

WM_TAKE_FOCUS message 4: 13 

WM_TAKE_FOCUS protocol 4: 16 

workspace manager 4: 4 

communication conventions 4: 21 

x 
X Window System, description 4: 1 

XlI atoms 4: 3 

XlI protocol 4: 1 

XENVIRONMENT variable 2: 7 
Xlib 2: 1 

Xt Intrinsics 2: 1 

XtGetValues function 2: 8 
XtSetValues function 2: 8 

1-4 OPEN LOOK GUI Programmer's Guide 



INCLUDES INTERNATIONALIZATION FEATURES 

UNIX 
PRESS 

@[P~~ [1@@[K 
GRAPHICAL USER INTERFACE 

PROGRAMMER'S GUIDE 

UNIX System Laboratories, Inc. 

The OPEN LOOK® Graphical User Interface (GUI) is a user:.friendly front
end to the UN IX® operating system and is available on many major workstation 
platforms. The latest release features 3D visuals and mouseless operation. 
The OPEN LOOK GUI Toolkit (often referred to as OLiT or XH) is based 
on Release X11 R4 of the MIT Intrinsics. 

Written for experienced C language programmers, this manual is a 
comprehensive step-by-step guide to using the OLiT toolkit and covers: 

• Xt Intrinsic functions 
• widget resources 
• how to implement OPEN LOOK GUI functions 
• programming procedures 
• conventions for using the toolkit 

This manual also features advice for screen layout, offers hints for creating 
and managing widgets and callbacks, and includes a complete reference 
manual to OPEN LOOK GUI widgets, gadgets, convenience routines, and 
the high-performance flattened widgets. A sample program using all the 
widgets is included. 

UNIX and OPEN LOOK are registered trademarks of UNIX System Laboratories, Inc. 

ISBN 0-13-726605-7 

9 a a a 0> 

A Prentice Hall Title 9 780 


