
----- - ---- -

REFERENCE

SYSTEM FILES
AND DEVICES
REFERENCE
UNIX® SVR4.2

• ~ ~ UNIX
PRESS

REFERENCE MANUAL DESCRIPTION SECTIONS

Command Reference General-Purpose User Commands 1
(Commands a - I) Basic Networking Commands 1C

Form and Menu Language Interpreter 1F
System Maintenance Commands 1M

Command Reference (same as above)
(Commands m - z)

Operating System API System Calls 2
Reference BSD System Compatibility Library 3

Standard C Library 3C
ETI-curses Library 3curses
Executable and Linking Format Library 3E
General-Purp0l>e Library 3G
Identification and Authentication Library 31
Math Library 3M
Networking Library 3N
Standard I/O Library 3S
Multibyte/wide Character Conversion Library 3W
Specialized Libraries 3X

Windowing System API Desktop Metaphor 3Dt
Reference Drag and Drop 3DnD

MoOLIT 30lit
ETI-curses Library 3curses

System Files and Devices System File Formats 4
Reference Miscellaneous Facilities 5

Special Files (Devices) 7

Device Driver DDI/DKI Driver Data Definitions D1
Reference DDI/DKI Driver Entry Point Routines D2

DDI/DKI Kernel Utility Routines D3
Portable Device Interface (PDI) Routines D3G
SCSI Device Interface (SDI) Routines D31
DDI/DKI Kernel Data Structures D4
SCSI Device Interface (SDI) Data Structures D41
DDI/DKI Kernel Defines D5

SYSTEM FILES
AND DEVICES
REFERENCE

UNIXSVR4.2

Edited by Lynda Feng

UNIX
Press

Copyright © 1992,1991 UNIX System laboratories, Inc.
Copyright © 1990,1989,1988,1987,1986,1985,1984 AT&T
Portions Copyright © 1988-1990 Sun Microsystems, Inc.
Portions Copyright © 1980-1985 Regents of the University of California
Portions Copyright © 19911992 VERITAS Software Corporation
All Rights Reserved
Printed In USA

Published by Prentice-Hall, Inc.
A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any means-graphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in
writing from UNIX System Laboratories, Inc. (USL).

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy and completeness of all information in this
document, USL assumes no liability to any party for any loss or damage caused by errors or omissions
or by statements of any kind in this document, its updates, supplements, or speCial editions, whether
such errors, omissions, or statements result from negligence, accident, or any other cause. USL furth
er assumes no liability ariSing out of the application or use of any product or system described herein;
nor any liability for incidental or consequential damages arising from the use of this document. USL
disclaims all warranties regarding the information contsined herein, whether expressed, implied
or statutory, including Implied warranties of merchantability or fitness for a particular purpose.
usi.. makes no representation that the interconnection of products in the manner described herein will
not infringe on existing or future patent rights, nor do the descriptions contained herein imply the grant
ing of any license to make, use or sell equipment constructed in accordance with this description.

USL reserves the right to make changes to any products herein without further notice.

TRADEMARKS

UNIX is a registered trademark of UNIX System Laboratories, Inc. in the USA and other countries.
WE is a registered trademark of AT&T.
XENIX is a registered trademark of Microsoft Corporation.

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-017682-6

UNIX
PRESS

A Prentice Hall Title

PRENTICE HALL

ORDERING INFORMATION

UNIX@ SYSTEM V RELEASE 4.2 DOCUMENTATION

To order single copies of UNIX@ SYSTEM V Release 4.2 documentation, please
call (515) 284-6761.

ATTENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS:
For bulk purchases in excess of 30 copies, please write to:

Corporate Sales Department
PTR Prentice Hall
113 Sylvan Avenue
Englewood Cliffs, N.J. 07632

or

Phone: (201) 592-2863
FAX: (201) 592-2249

ATTENTION GOVERNMENT CUSTOMERS:

For GSA and other pricing information, please call (201) 461-7107.

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Table of Contents

Introduction

File Formats

a.out(4) .. ELF (Executable and Linking Format) files
acct(4) .. per-process accounting file format
admin(4) .. installation defaults file
aliases, addresses, forward(4) .. (BSD) addresses and aliases for sendmail
ar(4) ... archive file format
archives (4) ... device header file
binarsys(4) .. remote system information for the ckbinarsys command
boot (4) .. boot options
bootparams(4) ... boot parameter data base
compver(4) ... compatible versions file
copyright (4) .. copyright information file
core (4) ... core image file
cron, queuedefs(4) .. option files for crontab and at
depend (4) ... software dependencies files
dfstab (4) .. file containing commands for sharing resources
dirent(4) ... file system independent directory entry
dir (cdfs)(4) format of CD-ROM file system (cdfs) directory data structure
dir (s5)(4) ... format of s5 directories
dir (ufs) (4) .. format of ufs directories
disk.dg(4) ... configuration defaults for mass-storage and SCSI devices
dump (4) .. boot dump timeout file
ethers (4) .. Ethernet address to hostname database or domain
fd(4) .. file descriptor files
filehdr(4) .. file header for common object file (COFF)
fspec(4) .. format specification in text files
fstypes(4) .. file that registers distributed file system packages
fs (bfs)(4) ... format of the bfs file system volume
fs (cdfs)(4) ... format of a cdfs file system
fs (s5) (4) ... format of s5 file system volume
fs (sfs)(4) ... format of sfs file system volume
fs (ufs)(4) .. format of ufs file system volume
fs (vxfs) (4) .. format of vxfs file system volume
gettydefs(4) ... speed and terminal settings used by getty
group (4) .. group file
help (4) .. Desktop help file format

Table of Contents 5

holidays (4) ... accounting file
hosts (4) ... host name data base
hosts.equiv, .rhosts(4) .. trusted hosts by system and by user
inetd.conf(4) ... Internet servers database
Init(4) .. inittab entries for a kernel module
inittab (4) .. script for init
inode (bfs)(4) .. format of a bfs i-node
inode (cdfs)(4) ... format of a cdfs inode
inode (s5)(4) .. format of an s5 i-node
inode (sfs)(4) .. format of a sfs inode
inode (ufs)(4) ... format of a ufs inode
inode (vxfs)(4) ... format of a vxfs inode
interface (4) .. Internet network interface configuration parameters
issue (4) .. issue identification file
lid_and -IJriv (4) ... distributed file system security database
limits (4) ... header file for implementation-specific constants
login (4) .. login default file
loginlog(4) .. log of failed login attempts
mailcnfg(4) .. initialization information for mail and rmail
mailsurr(4) .. surrogate commands for routing and transport of mail
mapchan(4) ... format of tty device mapping files
Master (4) ... generic configuration information for a kernel module
menu (4) .. form description file for menu(l) command
mkdev(4) .. file format for the pdimkdev utility
mnttab (4) .. mounted file system table
Mtune(4) ... tunable parameter definitions
netconfig(4) .. network configuration database
netdrivers(4) .. data file for networking boards to protocols mappings
netmasks(4) ... network mask data base
netrc(4) .. file for ftp remote login data
networks (4) ... network name data base
Node (4) ... device node definitions for a device driver
OHcValues(4) .. Input Context attribute names and value pairs
OHm Values (4) .. a list of 1M attributes
passwd(4) ... password file
pathalias(4) .. alias file for FACE
pkginfo(4) .. package characteristics file
pkgmap(4) .. package contents description file
pnch(4) ... file format for card images
priv(4) .. privilege data file
PrivTable(4) .. privilege table
proc(4) ... process file system
profile (4) ... setting up an environment at login time
protocols (4) ... protocol name data base

6 Table of Contents

prototype (4) .. package information file
publickey(4) .. public key database
Rc (4) ... system startup script
res_major (4) ... reserved major numbers for base system device drivers
resolv.conf(4) ... configuration file for name server routines
rfmaster(4) ... Remote File Sharing name server master file
routing (4) .. system supporting for packet network routing
rpc (4) .. rpc program number data base
rt_ dptbl(4) .. real-time dispatcher parameter table
Sassign(4) .. configurable device variables
sccsfile(4) .. format of SCCS file
Sd (4) ... kernel module system shutdown script
services(4) .. Internet services and aliases
setinfo(4) ... set characteristics file
setsize(4) .. disk space requirements file
shadow (4) .. shadow password file
sharetab(4) .. shared file system table
space (4) ... disk space requirement file
Space.c(4) configuration-dependent kernel module data structure initializations
stat (4) ... (XENIX) data returned by stat system call
strcf(4) ... STREAMS Configuration File for STREAMS TCP lIP
strftime(4) ... language-specific strings
Stubs.c(4) .. stubs for kernel module symbols
stune(4) .. local system settings for tunable parameters
su(4) ... su options file
syslog.conf(4) .. (BSD) configuration file for syslogd system log daemon
System (4) system-specific configuration information for a kernel module
tc.index(4) .. configuration index file for mass-storage devices
term (4) .. format of compiled term file
terminfo(4 N) .. terminal capability data base
timezone(4) .. set default system time zone
ttydefs(4) .. file contains terminal line settings information for ttymon
ttysrch(4) ... directory search list for ttymap and ttyname
unistd (4) .. header file for symbolic constants
updaters(4) configuration file for Network Information Service (NIS) updating
utrnp, wtmp(4) ... utmp and wtmp entry formats
utrnpx, wtmpx(4) ... utrnpx and wtrnpx entry formats
uuencode(4) ... format of an encoded uuencode file
vfstab(4) .. table of file system defaults
Xwincmaps(4) ... XWIN color map file
Xwinconfig(4) .. XWIN configuration file
Xwinfont(4) XWIN font configuration and defaults file (scalable and bitrnapped)
ypfiles(4) the Network Information Service (NIS) database and directory structure

Table of Contents 7

Miscellaneous Facilities

intro(5) ... introduction to miscellany
ascii (5) ... map of ASCII character set
environ (5) ... user environment
eqnchar(5) ... (BSD) special character definitions for eqn
eucioctl(5) ... generic interface to EVC handling tty drivers and modules
fcntl(5) ... file control options
font (5) .. font description files for troff and dpost
iconv(5) ... code set conversion tables
langinfo(5) .. language information constants
man (5) ... macros to format Reference Manual pages
math (5) .. math functions and constants
me (5) .. (BSD) macros for formatting papers
ms(5) .. (BSD) text formatting macros
nl_types(5) .. native language data types
priv(5) ... include file for user-level privilege definitions
privilege (5) .. include file for privilege mechanism definitions
prof (5) .. profile within a function

. regexp: compile, step, advance (5) regular expression compile and match routines
siginfo(5) .. signal generation information
signal (5) ... base signals
stat (5) ... data returned by stat system call
stdarg(5) .. handle variable argument list
term (5) ... conventional names for terminals
types (5) .. primitive system data types
ucontext(5) ... user context
values (5) .. machine-dependent values
varargs (5) .. handle variable argument list
wstat(5) ... wait status

Special Files

intro(7) .. introduction to special files
adsc (7) .. Adaptec 1542A SCSI host adapter subsystem
alp(7) ... algorithm pool management module
ARP(7) .. Address Resolution Protocol
asyc(7) ... asynchronous serial port
clone(7) ... open any major/minor device pair on a STREAMS driver
connld (7) .. line discipline for unique stream connections
console (7) ... STREAMS-based console interface
cram (7) ... CMOS RAM interface

8 Table of Contents

DCD(7) .. Direct-Coupled Disk host adapter SubsystenL
display (7) ... system console display
dpt(7) .. DPT PM2012 SCSI host adapter subsystem
ee16(7) .. EtherExpress 16 Ethernet Adapter Driver
e116(7) ... EtherLink 16 Ethernet Adapter Driver
fd(7) ... diskette (floppy disk)
file system (7) ... file system organization
iS96 (7) ... iS96 Ethernet Driver
ibmtok(7) .. IBM Token Ring Driver
ICMP (7) .. Internet Control Message Protocol
ie6(7) ... 3CS03 3Com Ethernet Driver
if (7) ... general properties of Internet Protocol network interfaces
imxS86 (7) .. IMXLANS86 Intel Ethernet Driver
inet(7) ... Internet protocol family
IP(7) .. Internet Protocol
kbd(7) .. generalized string translation module
keyboard (7) .. system console keyboard
kmem(7) ... perform I/O on kernel memory based on symbol name
Idterm(7) .. standard STREAMS terminal line discipline module
10(7) ... software loopback network interface
log(7) .. interface to STREAMS error logging and event tracing
lp(7) ... parallel port interface
mcis(7) .. MCIS SCSI host adapter driver
mem, kmem (7) ... core memory
mouse(7) .. mouse device driver for bus, serial, and PS/2 mouse devices
null (7) ... the null file
pckt(7) .. STREAMS Packet Mode module
prf(7) .. operating system profiler
ptem(7) .. STREAMS pseudo-terminal emulation module
pty(7) .. STREAMS pseudo-terminal driver
rtc(7) .. real time clock interface
sad(7) .. STREAMS Administrative Driver
sc01(7) ... CD-ROM Target Driver
sd01 (7) .. PDI disk target driver
sockio(7) .. ioctls that operate directly on sockets
st01 (7) .. Portable Device Interface (PDI) tape target driver
streamio (7) .. STREAMS ioctl commands
swOl(7) .. Portable Device Interface (PDI) WORM Target Driver
sxt(7) .. pseudo-device driver
TCP(7) .. Internet Transmission Control Protocol
termio (7) .. general terminal interface
termiox(7) ... extended general terminal interface
ticlts, ticots, ticotsord (7) .. loopback transport providers
timod(7) .. Transport Interface cooperating STREAMS module

Table of Contents 9

tirdwr(7) ... Transport Interface read/write interface STREAMS module
ttcompat(7) ... V7, 4BSD and XENIX STREAMS compatibility module
tty (7) .. controlling terminal interface
UDP(7) .. Internet User Datagram Protocol
vxfsio (7) .. vxfs file system control functions
wd(7) ... Western Digital WD8003 Ethernet Driver
wd7000 (7) ... WD7000 FASST2 host adapter subsystem
zero (7) .. source of zeroes

Permuted Index

10 Table of Contents

Introduction

Computers keep track of thousands and thousands of details. To save the labor of
continuously respecifying these details, information that is used repeatedly is
stored in files, which the operating system references when needed. For example,
when you turn the power on, the operating system reads a file that specifies which
disks to mount; when you log in, it validates your password and sets up your
environment; when you copy files from a remote system, it maps the software
names to the network addresses.

The System Files and Devices Reference describes the system and device files in
the UNIX System, including both special files and regular files. Special files per
tain to a particular hardware device; regular files are hardware-independent. The
book also includes a set of miscellaneous manual pages. Not all of the files and
devices described in this manual are available on every UNIX system. Some of the
features require additional utilities that may not exist on your system.

The System Files and Devices Reference is part of a comprehensive UNIX system
reference set, which describes commands, system calls, libraries, and files. This
book includes all manual pages in sections 4, 5, and 7. References to manual pages
in other sections are found in other books in the reference set. The inner front
cover of this book lists the various section numbers and the books in which they
are found.

Manual Page Format

All manual page entries use a common format, not all of whose parts always
appear:

• The NAME section gives the name(s) of the entry and briefly states its
purpose.

• The SYNOPSIS section summarizes the use of the command, program or
function, or names the relevant special file.

• The DESCRIPTION section describes the utility.

• The EXAMPLE section gives example(s) of usage, where appropriate.

• The FILES section gives the file names that are built into the program.

• The SEE ALSO section gives pointers to related information. Reference to
manual pages with section numbers other than those in this book can be
found in other reference manuals, as listed above.

Introduction 1

• The DIAGNOSTICS section discusses the diagnostic indications that may be
produced. Messages that are intended to be self-explanatory are not listed.

• The NOTES section gives generally helpful hints about the use of the utility.

Request for Comment

A Request for Comment (RFC) is a document that describes some aspect of net
working technology. The RFCs cited in the SEE ALSO section of these manual
pages are available in hardcopy from:

Jon Postel
RFC Editor
USC Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292-6695

Online versions of the RFCs are available by FTP from nic.ddn.mil. To connect
to this host, type:

ftp -n nic.ddn.mil

Log in with the user name anonymous and the password guest. To retrieve the
RFC, type get rfc: rfcnum • txt, where num is replaced by the number of the
RFC. For example, to retrieve RFC 1171, type

get rfc:rfcl171.txt

At the end of the ftp session, type quit to exit.

2 Introduction

a.out(4)

NAME
a.out - ELF (Executable and Linking Format) files

SYNOPSIS
#include <elf.h>

DESCRIPTION
The file name a.out is the default output file name from the link editor, Id(l). The
link editor will make an a. out executable if there were no errors in linking. The
output file of the assembler, as(l), also follows the format of the a.out file
although its default file name is different.

Programs that manipulate ELF files may use the library that el£(3E) describes. An
overview of the file format follows. For more complete information, see the refer
ences given below.

Linking View Execution View
ELF header ELF header

Program header table Program header table
optional

Section 1
... Segment 1

Section n
... Segment 2
..

Section header table Section header table
optional

An ELF header resides at the beginning and holds a "road map" describing the
file's organization. Sections hold the bulk of object file information for the linking
view: instructions, data, symbol table, relocation information, and so on. Segments
hold the object file information for the program execution view. As shown, a seg
ment may contain one or more sections.

A program header table, if present, tells the system how to create a process image.
Files used to build a process image (execute a program) must have a program
header table; relocatable files do not need one. A section header table contains
information describing the file's sections. Every section has an entry in the table;
each entry gives information such as the section name, the section size, and so on.
Files used during linking must have a section header table; other object files mayor
may not have one.

Although the figure shows the program header table immediately after the ELF
header, and the section header table following the sections, actual files may differ.
Moreover, sections and segments have no specified order. Only the ELF header has
a fixed position in the file.

When an a.out file is loaded into memory for execution, three logical segments are
set up: the text segment, the data segment (initialized data followed by uninitial
ized, the latter actually being initialized to all D's), and a stack. The text segment is
not writable by the program; if other processes are executing the same a.out file,
the processes will share a single text segment.

3

a.out (4)

The data segment starts at the next maximal page boundary past the last text
address. (If the system supports more than one page size, the "maximal page" is
the largest supported size.) When the process image is created, the part of the file
holding the end of text and the beginning of data may appear twice. The dupli
cated chunk of text that appears at the beginning of data is never executed; it is
duplicated so that the operating system may bring in pieces of the file in multiples
of the actual page size without having to realign the beginning of the data section to
a page boundary. Therefore, the first data address is the sum of the next maximal
page boundary past the end of text plus the remainder of the last text address
divided by the maximal page size. If the last text address is a multiple of the maxi
mal page size, no duplication is necessary. The stack is automatically extended as
required. The data segment is extended as requested by the brk(2) system calL

SEE ALSO
as(l), brk(2), cc(l), elf(3E), Id(l)

4

acct(4)

NAME
acct - per-process accounting file format

SYNOPSIS
#include <sys/types.h>
#include <sys/acct.h>

DESCRIPTION
Files produced as a result of calling acct(2) have records in the form defined by
sys/acct.h, whose contents are:

typedef ushort COInp_ti /* "floating point" */

struct acct
{

}i

char
char

ac_flagi
ac_stati

uid_t ac_uidi
gid_t aC--9'idi
dev_t ac_ttYi
time_t ac_btimei
COInp_t ac_utimei
comp_t ac_stimei
COInp_t ac_etimei
COInp_t ac_memi
COInp_t ac_ioi
COInp_t ac_rwi
char ac_camm[81i

/* 13-bit fraction, 3-bit exponent */

/* Accounting flag */
/* Exit status */
/* Accounting user ID */
/* Accounting group ID */
/* control typewriter */
/* Beginning time */
/* acctng user time in clock ticks */
/* acctng system time in clock ticks */
/* acctng elapsed time in clock ticks */
/* memory usage in clicks */
/* chars trnsfrd by read/write */
/* number of block reads/writes */
/ * command name * /

extern
extern

struct
struct

acct acctbufi
vnode *acctpi /* vnode of accounting file */

#define AFORK 01 /* has executed fork, but no exec */
#define ASU 02 /* used super-user privileges */
#define ACCTF 0300 /* record type: 00 = acct */
#define AEXPND 040 /* Expanded Record Type*/

In ac_flag, the AFORK flag is turned on by each fork and turned off by an exec.
The ac_camm field is inherited from the parent process and is reset by any exec.
Each time the system charges the process with a clock tick, it also adds to ac_mem
the current process size, computed as follows:

(data size) + (text size) / (number of in-core processes using text)

The value of ac_mem/ (ac_stime+ac_utime) can be viewed as an approximation
to the mean process size, as modified by text sharing.

The structure tacct, which resides with the source files of the accounting com
mands, represents the total accounting format used by the various accounting com
mands:

5

acct(4)

/*
* total accounting (for acct period), also for day
*/

struct tacct {

uid_t ta_uid; /* userid */
char ta_name[8]; /* login name */
float ta_cpu[2] ; /* cum. cpu time, p/np (mins)
float ta_kcore[2]; /* cum kcore-minutes, p/np */

*/

float ta_con[2]; /* cum. connect time, p/np, mins
float ta_du; /* cum. disk usage */
long ta-pc; /* count of processes */
unsigned short ta_sc; /* count of login sessions */
unsigned short ta_dc; /* count of disk samples */
unsigned short ta_fee; /* fee for special services */

} ;

SEE ALSO

NOTES

6

acct(lM), acct(2), acctcom(l), exec(2), fork(2)

The ac_mem value for a short-lived command gives little information about the
actual size of the command, because ac_mem may be incremented while a different
command (for example, the shell) is being executed by the process.

*/

admin(4)

NAME
admin - installation defaults file

DESCRIPTION
admin is a generic name for an ASCII file that defines default installation actions by
assigning values to installation parameters. For example, it allows administrators
to define how to proceed when the package being installed already exists on the
system.

/var/sadm/install/admin/default is the default admin file delivered with your
system. The default file is not writable, so to assign values different from this file,
create a new admin file. There are no naming restrictions for admin files. Name the
file when installing a package with the -a option of pkgadd(lM). If the -a option is
not used, the default admin file is used.

Each entry in the admin file is a line that establishes the value of a parameter in the
following form:

param=value

Eleven parameters can be defined in an admin file. A file is not required to assign
values to all eleven parameters. If a value is not assigned, pkgadd asks the installer
how to proceed.

The eleven parameters and their possible values are shown below except as noted.
They may be specified in any order. Any of these parameters can be assigned the
value ask, which means that, if the situation occurs, the installer is notified and
asked to supply instructions at that time.

basedir Indicates the base directory where relocatable packages are to be
installed. The value may contain $PKGINST to indicate a base direc
tory that is to be a function of the package instance.

mail Defines a list of users to whom mail should be sent following installa
tion of a package. If the list is empty, no mail is sent. If the parameter
is not present in the admin file, the default value of root is used. The
ask value cannot be used with this parameter.

runlevel Indicates resolution if the run level (system state) is not correct for the
installation or removal of a package. Options are:

nocheck Do not check for run level (system state).

quit Abort installation if run level (system state) is not met.

conflict Specifies what to do if an installation expects to overwrite a previ
ously installed file, thus creating a conflict between packages. Options
are:

nocheck Do not check for conflict; files in conflict will be
overwritten.

quit Abort installation if conflict is detected.

nochange Override installation of conflicting files; they will not be
installed.

7

admin(4)

8

setuid

action

Checks for executables which will have setuid or setgid bits enabled
after installation. Options are:

nocheck Do not check for setuid executables.

quit Abort installation if setuid processes are detected.

nochange Override installation of setuid processes; processes will
be installed without setuid bits enabled.

Determines if action scripts provided by package developers contain
possible security impact. Options are:

nocheck Ignore security impact of action scripts.

quit Abort installation if action scripts may have a negative
security impact.

partial Checks to see if a version of the package is already partially installed
on the system. Options are:

nocheck Do not check for a partially installed package.

quit Abort installation if a partially installed package exists.

instance Determines how to handle installation if a previous version of the
package (including a partially installed instance) already exists.
Options are:

idepend

rdepend

quit Exit without installing if an instance of the package
already exists (does not overwrite existing packages).

overwrite Overwrite an existing package if only one instance
exists. If there is more than one instance, but only one
has the same architecture, it overwrites that instance.
Otherwise, the installer is prompted with existing
instances and asked which to overwrite. If an instance
of the package was already fully installed, then it does
not do a space check.

unique Do not overwrite an existing instance of a package.
Instead, a new instance of the package is created. The
new instance will be assigned the next available instance
identifier.

Controls resolution if other packages depend on the one to be
installed. Options are:

nocheck Do not check package dependencies.

quit Abort installation if package dependencies are not met.

Controls resolution if other packages depend on the one to be
removed. Options are:

nocheck Do not check package dependencies.

quit Abort removal if package dependencies are not met.

NOTES

space

admin (4)

Controls resolution if disk space requirements for package are not
met. Options are:

nocheck

quit

Do not check space requirements (installation fails if it
runs out of space).

Abort installation if space requirements are not met.

The value ask should not be defined in an admin file that will be used for non
interactive installation (since by definition, there is no installer interaction). Doing
so causes installation to fail when input is needed.

EXAMPLES
basedir=default
runlevel=quit
conflict=quit
setuid=quit
action=quit
partial=quit
instance=unique
idepend=quit
rdepend=quit
space=quit

SEE ALSO
pkgadd(lM)

9

aliases (4) (BSD System Compatibility)

NAME
aliases, addresses, forward - (BSD) addresses and aliases for sendmail

SYNOPSIS
/usr/ucblib/aliases
/usr/ucblib/aliases.dir
/usr/ucblib/aliases.pag
- / • forward

DESCRIPTION

10

These files contain mail addresses or aliases, recognized by sandmail, for the local
host:

/etc/passwd Mail addresses (usernames) of local users.
/usr/ucblib/aliases

Aliases for the local host, in ASCII format. This file can be
edited to add, update, or delete local mail aliases.

/usr/ucblib/aliases. { dir , pag}
The aliasing information from /usr/ucblib/aliases, in
binary, dl:m format for use by sandmail. The program,
newaliases, maintains these files.

- / • forward Addresses to which a user's mail is forwarded (see
AutCllllatic Forwarding, below).

In addition, the Network Information Service (NIS) aliases map mail.aliases contains
addresses and aliases available for use across the network.

Addresses
As distributed, sandmail supports the following types of addresses:

Local Usernames
username

Each local username is listed in the local host's /etc/passwd file.

Local Filenames
pathname

Messages addressed to the absolute pathname of a file are appended to that file.

Commands
I command

If the first character of the address is a vertical bar, (I), sandmail pipes the mes
sage to the standard input of the command the bar precedes.

DARPA-standard Addresses
username@domain

If domain does not contain any I.' (dots), then it is interpreted as the name of a host
in the current domain. Otherwise, the message is passed to a mailhost that deter
mines how to get to the specified domain. Domains are divided into subdomains
separated by dots, with the top-level domain on the right. Top-level domains
include:

(BSD System Compatibility)

Commercial organizations.

Educational organizations.

Government organizations.

Military organizations.

For example, the full address of John Smith could be:

js@jsmachine.Podunk-u.EDU

if he uses the machine named j smachine at Podunk University.

uucp Addresses
... [host!] host! username

aliases (4)

These are sometimes mistakenly referred to as "Usenet" addresses. uucp provides
links to numerous sites throughout the world for the remote copying of files.

Other site-specific forms of addressing can be added by customizing the sendmail
configuration file. See the sendmail(lM) for details. Standard addresses are
recommended.

Aliases
Local Aliases

/usr/ucblib/aliases is formatted as a series of lines of the form

aliasname: address[, address]

aliasname is the name of the alias or alias group, and address is the address of a reci
pient in the group. Aliases can be nested. That is, an address can be the name of
another alias group. Because of the way sendmail performs mapping from upper
case to lower-case, an address that is the name of another alias group must not con
tain any upper-case letters.

Lines beginning with white space are treated as continuation lines for the preceding
alias. Lines beginning with # are comments.

Special Aliases
An alias of the form:

owner- aliasname : address

directs error-messages resulting from mail to aliasname to address, instead of back to
the person who sent the message.

An alias of the form:

aliasname: : include: pathname

with colons as shown, adds the recipients listed in the file pathname to the aliasname
alias. This allows a private list to be maintained separately from the aliases file.

NIS Domain Aliases
Normally, the aliases file on the master NIS server is used for themail.aliases NIS
map, which can be made available to every NIS client. Thus, the
/usr/ucblib/aliases* files on the various hosts in a network will one day be

11

aliases (4) (BSO System Compatibility)

obsolete. Domain-wide aliases should ultimately be resolved into usernames on
specific hosts. For example, if the following were in the domain-wide alias file:

jsmith:js@jsmachine

then any NIS client could just mail to jsmith and not have to remember the
machine and username for John Smith. If a NIS alias does not resolve to an address
with a specific host, then the name of the NIS domain is used. There should be an
alias of the domain name for a host in this case. For example, the alias:

jsmith:root

sends mail on a NIS client to root@podunk-u if the name of the NIS domain is
podunk-u.

Automatic Forwarding

FILES

When an alias (or address) is resolved to the name of a user on the local host,
sandmail checks for a . forward file, owned by the intended recipient, in that
user's home directory, and with universal read access. This file can contain one or
more addresses or aliases as described above, each of which is sent a copy of the
user's mail.

Care must be taken to avoid creating addressing loops in the . forward file. When
forwarding mail between machines, be sure that the destination machine does not
return the mail to the sender through the operation of any NIS aliases. Otherwise,
copies of the message may "bounce." Usually, the solution is to change the NIS
alias to direct mail to the proper destination.

A backslash before a username inhibits further aliasing. For instance, to invoke the
vacation program, user j s creates a . forward file that contains the line:

\js, "I/usr/ucb/vacation js"

so that one copy of the message is sent to the user, and another is piped into the
vacation program.

/etc/passwd
/usr/ucblib/aliases
-/.forward

SEE ALSO

NOTES

12

dbn(3), newaliases(lM), sandmail(lM), uucp(lC), vacation(l)

Because of restrictions in dbm a single alias cannot contain more than about 1000
characters. Nested aliases can be used to circumvent this limit.

ar(4)

NAME
ar - archive file format

SYNOPSIS
#include <ar.h>

DESCRIPTION
The archive command ar [see ar(l)] is used to combine several files into one.
Archives are used mainly as libraries to be searched by the link editor ld [see ld(l)].

Each archive begins with a unique string identifier called an archive magic string.

#define 1IRMAG " !<arch>\n" /* magic string */
#define SARMAG 8 /* length of magic string */

Following the archive magic string are the archive file members. Each file member
is preceded by a file member header which is of the following format:

#define ARFMAG "'\nll /* header trailer string */

struct ar_hdr /* file member header */
{

char ar_name [16] ; /* '/' terminated file member name */
char ar_date[12]; /* file member date */
char ar_uid[6]; /* file member user identification */
char ar_gid[6]; /* file member group identification */
char ar_mode[8] ; /* file member mode (octal) */
char ar_size[10]; /* file member size */
char ar_fmag[2] ; /* header trailer string */

};

All information in the file member headers is in printable ASCII. The numeric infor
mation contained in the headers is stored as decimal numbers (except for ar _mode
which is in octal). Thus, if the archive contains printable files, the archive itself is
printable.

If the file member name fits, the ar _name field contains the name directly, and is ter
minated by a slash (I) and padded with blanks on the right. If the member's name
does not fit, ar _name contains a slash (I) followed by a decimal representation of the
name's offset in the archive string table described below.

The ar date field is the modification date of the file at the time of its insertion into
the arChive. Common format archives can be moved from system to system as long
as the portable archive command ar is used.

Each archive file member begins on an even byte boundary; a newline is inserted
between files if necessary. Nevertheless, the size given reflects the actual size of the
file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

13

ar (4)

14

Each archive that contains object files [see a.out(4)] includes an archive symbol
table. This symbol table is used by the link editor Id to determine which archive
members must be loaded during the link edit process. The archive symbol table (if
it exists) is always the first file in the archive (but is never listed) and is automati
cally created and/ or updated by ar.

The archive symbol table has a zero length name (that is, ar_name [01 is '/,),
ar_name [1] ==' ',and so on). All "words" in this symbol table have four bytes,
using the machine-independent encoding shown below. (All machines use the
encoding described here for the symbol table, even if the machine's "natural" byte
order is different.)

Ox01020304

The contents of the symbol table are as follows:

1. The number of symbols. Length: 4 bytes.

2. The array of offsets, one per symbol, into the archive file. Length: 4 bytes *
"the number of symbols".

3. The name string table. Length: ar _size - 4 bytes * ("the number of symbols"
+ 1).

As an example, the following symbol table defines 4 symbols. The archive member
at file offset 114 defines name and object. The archive member at file offset 426
defines function and a second version of name.

Offset +0 + 1 +2 +3
o 4 offset entries 4
4
8

12
16
20
24
28
32
36
40
44

n
\0
e
f
t
\0

e

114
114
426
426

a
0

c
u
i
n
\0

m

b
t
n
0

a

e
j
\0

c
n
m

name
object
function
name

The number of symbols and the array of offsets are managed with sgetl and
sputl. The string table contains exactly as many null terminated strings as there
are elements in the offsets array. Each offset from the array is associated with the
corresponding name from the string table (in order). The names in the string table
are all the defined global symbols found in the common object files in the archive.
Each offset is the location of the archive header for the associated symbol.

ar(4)

If some archive member's name is more than 15 bytes long, a special archive
member contains a table of file names, each followed by a slash and a new-line.
This string table member, if present, will precede all "normal" archive members.
The special archive symbol table is not a "normal" member, and must be first if it
exists. The ar _name entry of the string table's member header holds a zero length
name ar_name[O]=='I', followed by one trailing slash (ar_name[l] =='1'), fol
lowed by blanks (ar_name [2] ==' " and so on). Offsets into the string table begin
at zero. Example ar _name values for short and long file names appear below.

Offset +0 +1 +2 +3 +4 +5 +6 +7 +8 +9
o

10
20
30

f i

s a
n g

m e

Member Name

short-name
file_name_sample
longerfilenamexample

1

m

e

x

e -

p 1

r f

a m

ar name

short-namel
10
118

n

e
i
p

a m e -
I \n 1 0

1 e n a

1 e I \n

Note

Not in string table
Offset 0 in string table
Offset 18 in string table

SEE ALSO

NOTES

a.out(4), ar(I), Id(I), sputl(3X), strip(l)

strip will remove all archive symbol entries from the header. The archive symbol
entries must be restored via the -ts options of the ar command before the archive
can be used with the link editor Id.

15

archives (4)

NAME
archives - device header file

DESCRIPTION

16

1* Magic numbers *1

#define CMtCASC Ox070701
#define CMtCBIN 070707
#define CMtCBBS 0143561
#define CMtCCRC Ox070702
#define CMS_ASC "070701"
#define CMS_CHR "070707"
#define CMS_CRC "070702"
#define CMICSEC Ox070703
#define CMS_SEC "070703"
#define CMS_LEN 6

1*
1*
1*
1*
1*
1*
1*
1*
1*
1*

epio Magic Number for AScii header *1
epio Magic Number for Binary header *1
epio Magic Number for Byte-swap header *1
epio Magic Number for CRe header * I
epio Magic String for AScii header * I
epio Magic String for CHR (-c) header *1
epio Magic String for CRC header *1
Tcpio Magic Number of TIlE header *1
Tcpio Magic String of TIlE header *1
epio Magic String LENgth *1

1* Various header and field lengths *1

#define CHRSZ 76 1* -c hdr size minus filename field *1
#define ASCSZ 110 1* ASC and CRC hdr size minus filename field *1
#define TARSZ 512 1* TAR hdr size *1

#define HNAMLEN 256 1* maximum filename length for binary and -c headers *1
#define EXPNLEN 1024 1* maximum filename length for ABC and CRC headers *1
#define HTIMLEN 2 1* length of modification time field *1
#define HSIZLEN 2 1* length of file size field *1

1* cpio binary header definition *1

struct hdr_epio {

} ;

short h_magic,
h_dev;

ushort_t h_ino,

short

char

h_mode,
h_uid,
h-9'id;
h_nlink,
h_rdev,
h_mtime [HTIMLEN] ,
h_namesize,
h_filesize[HSIZLEN];
h_name[HNAMLEN];

1* epio one header format *1

struct c_hdr {
char c_magic[CMS_LEN],

c_dev[6] ,
c_ino[6] ,
c_mode[6] ,
c_uid[6] ,
c-9'id[6] ,
c_n1ink[6] ,
c_rdev[6] ,
c_mtime[l1] ,
c_namesz [6],
c_filesz [11],

1* magic number field *1
1* file system of file *1
1* inode of file *1
1* modes of file *1
1* uid of file *1
1* gid of file *1
1* number of links to file *1
1* maj/min numbers for special files *1
1* modification time of file *1
1* length of filename *1
1* size of file *1
1* filename *1

archives (4)

} ;

1* -c and CRC header format *1

struct Exp_cpio_hdr {

} ;

char E_magic[CMS_LEN],
E_ino[8] ,
E_mode[8] ,
E_uid[8] ,
E.-9id[8] ,
E_nlink [8],
E_mtime[8] ,
E_filesize[8] ,
E_maj[8],
E_min[8] ,
E_rmaj [8],
E_rmin[8] ,
E_namesize[8] ,
E_chksum[8] ,
E_name [EXPNLEN] ;

1* Tar header structure and format *1
#define TBLOCK 512 1* length of tar header and data blocks *1
#define
#define TMODLEN

TNAMLEN

8
100/* maximum length for tar file names *1
1* length of mode field *1

#define TUIDLEN 8 1* length of uid field *1
#define TGIDLEN 8 1* length of gid field *1
#define TSIZLEN 12 1* length of size field *1
#define TTIMLEN
#define TCRCLEN

12
8

1* length of modification time field *1
1* length of header checksum field *1

1* tar header definition *1
union tblock {

char dummy[TBLOCK];
struct tar_hdr {

char t_name [TNAMLEN] ,

t_mode [TMODLEN] ,
1* name of file *1
1* mode of file *1

} tOOf;

t_uid [TUIDLEN] ,
t_gid [TGIDLEN] ,

1* uid of file *1
1* gid of file *1
1* size of file in bytes *1 t_size [TSIZLEN] ,

t_mtime [TTIMLEN] ,
t_cksum[TCRCLEN],
t_typeflag,
t_linkname[TNAMLEN] ,1*
t_magic[TMAGLEN],
t_version[TVERSLEN],
t_uname [32],
t~[32],

t_devmajor[8] ,
t_devminor[8] ,
tJlrefix[155] ;

1* modification time of file *1
1* checksum of header *1

file this file linked with *1

17

archives (4)

1* volcopy tape label format and structure */

18

#define VMAGLEN 8
#define VVOLLEN 6
#define VFILLEN 464
struct vol copy_label

char v_magic [VMAGLEN],
v_volume [VVOLLEN],
v_reels,

long

char
long
int

v_reel;
v_time,

v_length,
v_dens,
v_reelblks,
v_blksize,
v_nblocks;
v_fill [VFILLEN];
v_offset;
v_type;

1* u370 added field *1
1* u370 added field *1
1* u370 added field *1

1* used with -e and -reel
1* does tape have nblocks

options *1
field? *1

binarsys (4)

NAME
binarsys - remote system information for the ckbinarsys command

DESCRIPTION

FILES

binarsys contains lines of the form:

remote_system _name: val

where val is either Y or N. This line indicates whether that particular remote system
can properly deal with messages having binary content. The absence of an entry for
a particular system or absence of the binarsys file altogether will imply No.

Blank lines or lines beginning with # are considered comments and ignored.
Should a line of Default=y be encountered, the default condition for missing
entries described in the previous paragraph is reversed to be Yes. Another line of
Default=n will restore the default condition to No.

mail is distributed with the binarsys file containing only a Default=y line.

/etc/mail/binarsys

SEE ALSO
ckbinarsys(lM), mailsurr(4), mail(l)

19

boot (4)

NAME
boot - boot options

DESCRIPTION

FILES

Options for the boot program can be set or changed with keywords in
/ stand/boot. The following are recognized by boot.

BOOTMSG=string
Change the default boot message to string.

MEMRANGE=range:flag[,range:flag ... J
Tell boot where to look when sizing memory. A range is a pair of decimal
addresses, separated by a dash such as lM-4M. The flag indicates how the
range should be interpreted. The following flags are recognized:

256 - B MEM BASE (OxlOO)
512 - B=MEM=EXPAN (Ox200)
8704 - B_MEM]ORCE (Ox2000) + B_MEM_EXPAN

If / stand/boot does NOT exist, the boot program uses the CMOS values as
the maximum when probing for RAM (default case).

If / stand/boot does exist, use the MEMRANGE entry to override the
CMOS values. Examples:

Probe for the minimum of 4M or the CMOS values:

MEMRANGE=0-640K:256,lM-4M:512

Probe for 64MB and ignore the CMOS values as the maximum:

MEMRANGE=0-640K:256,lM-16M:512,16M-64M:8704

Note: if B_MEM_FORCE is set it will ignore the CMOS setting for that
range. The CMOS setting can only be ignored for memory above 16MB and
only if the initial address of the range is above 16MB.

In addresses, use "M" to indicate megabytes and "K" to indicate kilobytes.
The first address in the pair is inclusive; the last address is exclusive. When
sizing the base memory (0-640K usually) the boot code checks the CMOS
for the current base memory setting. If this value is less than the current
base memory value, the kernel uses this lower value instead of 640K.

variable=value
All other lines of the form variable=value are passed as arguments to the ker
nel as is, via argv[].

/stand/boot
/etc/initprog/boot

SEE ALSO
boot(l)

20

NAME
bootparams - boot parameter data base

SYNOPSIS
bootparams

DESCRIPTION

bootparams (4)

bootparams contains a list of client entries that diskless clients use for booting.
Each entry contains the following information for each diskless client:

name server names and pathnames

The first field contains the name of the diskless client. The subsequent field is a list
of keys, names of servers, and pathnames.

Fields are delineated with TABs.

A client entry in the local bootparams file supersedes an entry in the corresponding
Network Information Service (NIS) map.

EXAMPLE
This is an example of the bootparams file.

clientl root=grpserver:/nfsroot/ clientl \
swap=grpserver: / nfsswap / clientl \
dump=grpserver: / nfsdump / clientl

SEE ALSO
bootparamd(lM)

21

compver(4)

NAME
cOlli>ver - compatible versions file

DESCRIPTION

NOTES

COlli>ver is an ASCII file used to specify previous versions of the associated package
which are upward compatible. It is created by a package developer.

Each line of the file specifies a previous version of the associated package with
which the current version is backward compatible.

Since some packages may require installation of a specific version of another
software package, compatibility information is extremely crucial. Consider, for
example, a package called "A" which requires version "1.0" of application "B" as a
prerequisite for installation. If the customer installing" A" has a newer version of
"B" (1.3), the compver file for "B" must indicate that "1.3" is compatible with
version "1.0" in order for the customer to install package" A."

The comparison of the version string disregards white space and tabs. It is per
formed on a word-by-word basis. Thus 1.3 Enhanced and 1.3 Enhanced would
be considered the same.

EXAMPLE
A sample compver file is shown below.

1.3
1.0

SEE ALSO
depend(4)

22

copyright (4)

NAME
copyright - copyright information file

DESCRIPTION
copyright is an ASCII file used to provide a copyright notice for a package. The
text may be in any format. The full file contents (including comment lines) is
displayed on the terminal at the time of package installation.

23

core (4)

NAME
core - core image file

DESCRIPTION
The UNIX system writes out a core image of a process when it is terminated due to
the receipt of some signals. The core image is called core and is written in the
process's current directory (provided it can be; normal access controls apply). A
process with an effective user ID different from the real user ID will not produce a
core image.

The core file contains all the process information pertinent to debugging: contents
of hardware registers, process status and process data. The format of a core file is
object file specific.

For ELF executable programs [see a.out(4)], the core file generated is also an ELF
file, containing ELF program and file headers. The e_type field in the file header
has type ET_CORE. The program header contains an entry for every loadable and
writable segment that was part of the process address space, including shared
library segments. The contents of the segments themselves are also part of the core
image.

The program header of an ELF core file also contains a NOTE segment. This segment
may contain the following entries. Each has entry name "CORE" and presents the
contents of a system structure:

prstatus_t
The entry containing this structure has a NOTE type of 1. This structure con
tains things of interest to a debugger from the operating system's u-area,
such as the general registers, signal dispositions, state, reason for stopping,
process ID and so forth. The structure is defined in sys/procfs .h.

fpregset_t
This entry is present only if the process used the floating-point hardware. It
has a NOTE type of 2 and contains the floating-point registers. The
fpregset_t structure is defined in sys/regset.h.

prpsinfo_t
The entry containing this structure has a NOTE type of 3. It contains infor
mation of interest to the ps(l) command, such as process status, cpu usage,
"nice" value, controlling terminal, user ID, process ID, the name of the exe
cutable and so forth. The structure is defined in sys/procfs.h.

COFF executable programs produce core files consisting of two parts: the first sec
tion is a copy of the system's per-user data for the process, including the general
registers. The format of this section is defined in the header files sys/user.h and
sys/reg .h. The remainder of a COFF core image represents the actual contents of
the process data space.

The size of the core file created by a process may be controlled by the user [see
getrlimit(2)].

SEE ALSO
a.out(4), crash(lM), elf(3E), getrlimit(2), sdb(l), setuid(2), signal(5)

24

eron (4)

NAME
cron, queuedefs - option files for crontab and at

DESCRIPTION

FILES

Options for cron(lM) can be set or changed with keywords in
/etc/default/cron. The following keywords are recognized by cron:

CRONLOG=YES or NO If CRONLOG is set to YES, all cron jobs are logged in
/usr/lib/cron/log. The default is NO.

Options for crontab(l) and at(l) can be set or changed with keywords in
/etc/cron.d/queuedefs. The format of the file is as follows:

a.4jln
b.2j2n90w

The first line specifies how at(l) jobs are to be handled:

Start a maximum of 4 concurrent jobs per user.

Use a nice(l) value of l.

Do not retry jobs that cannot start because fork(2) fails.

The second line specifies how crontab(l) jobs are to be handled:

Start a maximum of 2 concurrent jobs per user.

Use a nice(l) value of 2.

Wait 90 seconds, then try again to start jobs that cannot start because
fork(2) fails.

/etc/default/cron Control logging of cron jobs.
/etc/cron.d/queuedefs Specify concurrency, priority, and retry interval.

SEE ALSO
at(l), cron(lM), crontab(l)

25

depend (4)

NAME
depend - software dependencies files

DESCRIPTION
depend is an AScn me used to specify information concerning software dependen
cies for a particular package. The file is created by a software developer.

Each entry in the depend file describes a single software package. The instance of
the package is described after the entry line by giving the package architecture
and/ or version. The format of each entry and subsequent instance definition is:

type pkg name
(arch)version
(arch)version

The fields are:

type Defines the dependency type. Must be one of the following charac
ters:

P Indicates a prerequisite for installation, for example, the refer
enced package or versions must be installed.

I Implies that the existence of the indicated package or version
is incompatible.

R Indicates a reverse dependency. Instead of defining the
package's own dependencies, this designates that another
package depends on this one. This type should be used only
when an old package does not have a depend me but it relies
on the newer package nonetheless. Therefore, the present
package should not be removed if the designated old package
is still on the system since, if it is removed, the old package
will no longer work.

pkg Indicates the package abbreviation.

name Specifies the full package name.

(arch)version Specifies a particular instance of the software. A version name can
not begin with a left parenthesis. The instance specifications, both
arch and version, are completely optional but each must begin on a
new line that begins with white space. If no version set is specified,
any version of the indicated package will match. A version pre
ceded by a tilde (-) indicates that any compatible version will be a
match. [See compver(4).]

EXAMPLE
Here is a sample depend file (for the NFS package):

P base Base System
P nsu Networking Support utilities
P inet Internet utilities
P rpc Remote Procedure call utilities
P dfs Distributed File System'Utilities

26

SEE ALSO
cc:xrg;wer(4)

depend(4)

27

dfstab(4)

NAME
dfstal> - file containing commands for sharing resources

DESCRIPTION
dfstal> resides in directory /ete/dfs and contains commands for sharing
resources across a network. dfstal> gives a network administrator a uniform
method of controlling the automatic sharing of local resources.

Each line of the dfstal> file consists of a share(lM) command. The dfstal> file can
be read by the shell directly to share all resources, or network administrators can
prepare their own shell scripts to execute particular lines from dfstal>.

The contents of dfstal> are executed automatically when the system enters run
level 3.

SEE ALSO
share(lM), shareal1(lM)

28

dirent(4)

NAME
dirent - file system independent directory entry

SYNOPSIS
#include <sys/types.h>
#include <sys/dirent.h>

DESCRIPTION
Different file system types may have different directory entries. The dirent struc
ture defines a file system independent directory entry, which contains information
common to directory entries in different file system types. A set of these structures
is returned by the getdents(2) system call.

The dirent structure is defined below.

struct dirent {

};

ino_t
off_t
unsigned short
char

d_ino;
d_off;
d_reclen;
d_name[l] ;

The d_ino is a number which is unique for each file in the file system. The field
d_off is the offset of the subsequent directory entry in the actual file system direc
tory. The field d_name is the beginning of the character array giving the name of
the directory entry. This name is null terminated and may have at most MAXNAMLEN
characters. This results in file system independent directory entries being variable
length entities. The value of d_reclen is the record length of this entry. This
length is defined to be the number of bytes between the current entry and the next
one, so that the next structure will be suitably aligned.

SEE ALSO
getdents(2)

29

dir(4) (CD-ROM)

NAME
dir (cdfs) - format of CD-ROM file system (cdfs) directory data structure

SYNOPSIS
#include <sys/fs/iso9660.h>
#include <sys/fs/cdfs_inode.h>

DESCRIPTION

30

In a cdfs file system, the contents of a file or directory are stored in contiguous
physical sectors called an extent. The contents of a directory are stored in a single
extent. The contents of a file may be stored in multiple non-adjacent extents. More
than one file can share the same extent. The first sector of each extent may contain
an Extended Attribute Record (XAR) that describes additional attributes of the file
or directory (such as the User ID, Group ID, permissions).

Each directory in a cdfs filesystem contains two or more Directory Records. These
directory records identify the file and subdirectories owned by the directory. For
each file or subdirectory in the directory, there will exist one Directory Record for
each extent belonging to that file/subdirectory. Each Directory Record is of vari
able length and contains information such as:

the name of the file or subdirectory

the location and size of its extent

a System Use Area

Note: For a multi-extent file, there will be one directory record for each extent in the
file.

Each Directory Record has a System Use Area (SUA) that stores information about
other operating system standards, such as additional file-related information not
defined by the ISO-9660 specification. The SUA can be used to store information
required to support POSIX standards. For example, the SUA can contain the device
file major/minor numbers, which are defined by the POSIX standard. The System
Use Sharing Protocol (SUSP) defines how the information in the SUA is defined.

The Directory Record data structure is defined in the iso9660.h header file. For
each cdfs file and directory currently being referenced, an in-core data structure,
struct cdfs_drec, is used to store the relevant portions of all of the Directory
Records belonging to that file or directory. Each cdfs_drec also stores other infor
mation relating to the extent and/or Directory Record. The cdfs_drec structure is
defined in the cdfs_inode. h header file.

The cdfs_drec structure is as follows:

struct cdfs_drec {
struct cdfs_drec
struct cdfs_drec
uint_t

};

uint_t
uint_t
uint_t
daddr_t
uint_t
timestruc_t
uint_t
uint_t
uint_t
uint_t
uint_t
uint_t
uint_t
uint_t

REFERENCES

(CD-ROM)

*drec_NextDR;
*drec_PrevDR;
drec_Loc;
drec_Offset;
drec_Len;
drec_XarLen;
drec_ExtLoc;
drec_DataLen;
drec_Date;
drec_Flags;
drec_UnitSz;
drec_Interleave;
drec_VolSeqNum;
drec_FileIDLen;
drec_FileIOOff;
drec_SysUseOff;
drec_SysUseSz;

cdfs-specific fs(4), cdfs-specific inode(4)

dir(4)

/* Pointer to next Dir Rec */
/* Pointer to previous Dir Rec */
/* Loc of media DREC (L-Sec #) */
/* # bytes from L-sec start */
/* Len of media Dir Rec (Bytes) */
/* Len of media XAR (Log Blk) */
/* Location of Extent (L-Blk #) */
/* Len of File Sec data */
/* Recording date and time */
/* Flags - See below */
/* File Unit Size */
/* Interleave Gap Size */
/* Volume Sequence Number */
/* Len of File ID String */
/* Dir Rec offset of File ID */
/* Dir Rec offset of Sys Use Area */
/* Size of Sys Use Area */

System Use Sharing Protocol, and Rock Ridge Interchange Protocol from Rock Ridge
Technical Working Group, ISO 9660 Specification, ISO 9660:1988(E), Working Paper
for Information Processing: Volume and File Structure of CD-ROM Information Inter
change in Optical Information Systems magazine, January /February 1987

31

dir (4) (S5)

NAME
dir (s5) - format of s5 directories

SYNOPSIS
#include <sys/types.h>
#include <sys/fs/s5dir.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may write into a
directory. The fact that a file is a directory is indicated by a bit in the mode word of
its i-node entry [see the s5-specific inode(4)]. The structure of a directory entry as
given in the include file is:

#ifndef DIRSIZ
#define DIRSIZ 14
#endif
struct direct
{

};

d_ino; /* s5 inode type */
d_name [DIRSIZ] ;

By convention, the first two entries in each directory are . for the entry itself and •.
for the parent directory. The meaning of •• is modified for the root directory of the
master file system; there is no parent, so • • has the same meaning as • has.

SEE ALSO
s5_specific inode(4)

32

(UFS) dir(4}

NAME
dir (ufs) - format ofufs directories

SYNOPSIS
#include <sys/param.h>
#include <sys/types.h>
#include <sys/fs/ufs_fsdir.h>

DESCRIPTION
A directory consists of some number of blocks of DIRBLKSIZ bytes, where DIRBLK
SIZ is chosen such that it can be transferred to disk in a single atomic operation (for
example, 512 bytes on most machines).

Each DIRBLKSlz-byte block contains some number of directory entry structures,
which are of variable length. Each directory entry has a struct direct at the
front of it, containing its inode number, the length of the entry, and the length of the
name contained in the entry. These are followed by the name padded to a 4 byte
boundary with null bytes. All names are guaranteed null-terminated. The max
imum length of a name in a directory is MAXNAMLEN.
#define DIRBLKSIZ
#define MAXNAMLEN

DEV_BBIZE
256

struct
u_long
u_short
u_short
char

};

SEE ALSO

direct
d_ino;
d_reclen;
d_namlen;
d_name [MAXNAMLEN +

ufs-specific fs(4)

11 ;

/* inode number of entry */
/* length of this record */
/* length of string in d_name */
/* name IIBlst be no longer than this * /

33

disk.efg (4)

NAME
disk. cfg - configuration defaults for mass-storage and SCSI devices

DESCRIPTION

34

Default values used by the pdiadd and pdinn commands can be set or changed
with keywords in /etc/conf/pack.d/* /disk.cfg, where the * represents the
name of any PDI-capable devices supported by your release of the UNIX System.

Environment Variables
The following variables are recognized in disk.cfg:

NAMES Specifies the short name of this device, and is used in the UNIX System
configuration as the directory name for the device, as represented by the *
above. For example,

NAMES=adsc

means that the device driver will be known by the string adsc. The NAMES
variable is required in /etc/conf/pack.d/* /disk.cfg.

NAMEL Specifies the long name of this device in the UNIX System configuration.
For example,

NAMEL="Adaptec Host Adapter"

means that the device driver is an Adaptec Host Adapter. Notice that the
long name must be enclosed in double quotes, because it contains space
characters. This name is used for informational messages. The NAMEL vari
able is required in /etc/conf/pack.d/* /disk.cfg.

SHAR Specifies the value for the ishare flag for this device, and this flag is used in
the UNIX System configuration for the device. For example,

SHAR=l

means that the device driver cannot share interrupts with other devices in
your UNIX System.

lVEC Specifies the value for the interrupt vector used by this device, and is used
in the UNIX System configuration for the device. For example,

lVEC=l

means that the device driver can only be configured at interrupt 1. Another
way that a value for IVEC may be specified is

lVEC="14 15 11"

which means that the device driver can be configured at either interrupt 14,
15, or 11. This line also indicates that interrupt 14 is the default value,
because it is the first value listed. The lVEC variable is required in
/etc/conf/pack.d/* /disk.cfg. If the device does not use interrupts, the
value 0 should be specified.

DMA1 Specifies the value for the DMA channel used by this device, and is used in
the UNIX System configuration for the device. For example,

DMA1=1

disk.efg (4)

means that the device driver can only be configured at DMA channel l.
Another way that a value for DMAl may be specified is

DMAl="5 6 7"

which means that the device driver can be configured at either DMA chan
nelS, 6, or 7. This line also indicates that DMA channelS is the default
value, because it is the first value listed. The DMAl variable is required in
/etc/conf/pack.d/*/disk.cfg. If the device does not use a DMA chan
nel, the value 0 should be specified.

IOADDR
Specifies the value for the I/O addresses used by this device, and is used in
the UNIX System configuration for the device. For example,

IOADDR="170-l7S"

means that the device driver can only be configured at I/O address Ox170,
and needs all addresses up to and including Ox17S. Another way that a
value for IOADDR may be specified is

IOADDR="170-l7S lFO-1FS"

which means that the device driver can be configured at starting I/O
address Ox170 or OxlFO. The value specified after the dash always indicates
the end of the address range required by this device. This line also indicates
that Ox170 is the default value for starting I/O address for this device,
because it is the first value listed. The IOADDR variable is required in
/etc/conf/pack.d/*/disk.cfg if the device uses an address range for
I/O registers. Do not use prefix Ox when specifying values for IOADDR.

MEMADDR
Specifies the value for the memory addresses used by this device, and is
used in the UNIX System configuration for the device. For example,

MEMADDR="CSOOO-C9FFF"

means that the device driver can only be configured at memory address
OXCSOOO and needs all addresses up to and including OXC9FFF. Another
way that a value for MEMADDR may be specified is

MEMADDR="CSOOO-C9FFF D6000-D7FFF"

which means that the device driver can be configured at starting memory
address OXCSOOO or Oxn6000. The value specified after the dash always
indicates the end of the address range required by this device. This line also
indicates that OXCSOOO is the default value for starting memory address for
this device, because it is the first value listed. The MEMADDR variable is
required in /etc/conf/pack.d/*/disk.cfg. If the device does not use an
address range for a boot ROM or other purposes, a value of 0-0" should be
specified. This value is a valid value in a list of acceptable values if the use
of a memory address is optional for this device. The prefix Ox must not be
used in the specification of values for MEMADDR.

35

disk.cfg (4)

36

DEVICE
Specifies the controller type for this device, and is used to control the UNIX
System configuration for the device. For example,

DEVICE=DCD

means that the device is a Directly Coupled Device, while

DEVICE=SCSI

means that the device is a SCSI device. The DEVICE variable is required in
/etc/conf/pack.d/*/disk.cfg. The only allowable values for DEVICE
are DCD and SCSI.

DEVTYPE
Specifies the type of this device, and is used to control the UNIX System
configuration for the device. For example,

DEVTYPE=DISK

means that the device is a disk device, while

DEVTYPE=TAPE

means that the device is a tape device. The DEVTYPE variable is required in
/etc/conf/pack.d/*/disk.cfg if the value of DEVICE is DCD. The only
allowable values for DEVTYPE are DISK or TAPE.

DCD_IPL
Must contain the same value as the default value for the IPL variable. This
variable is used during the configuration process to record the current value
of the IPL variable for this device. For example,

DCD_IPL=5

means that this OCD device is configured at IPL 5 in the current UNIX
System kernel. The DCD_IPL variable is required in
/etc/conf/pack.d/*/disk.cfg if the value of DEVICE is DCD.

DCD_SHAR
Must contain the same value as the default value for the SHAR variable. This
variable is used during the configuration process to record the current value
of the SHAR variable for this device. For example,

DCD_SHAR=3

means that this OCD device is configured at SHAR 3 in the current UNIX
System kernel. The DCD_SHAR variable is required in
/etc/conf/pack.d/*/disk.cfg if the value of DEVICE is DCD.

DCD_IVEC
Must contain the same value as the default value for the IVEC variable. This
variable is used during the configuration process to record the current value
of the IVEC variable for this device. For example,

DCD_IVEC=14

means that this DCD device is configured at IVEC 14 in the current UNIX
System kernel. The DCD_IVEC variable is required in
/etc/conf/pack.d/* /disk.cfg if the value of DEVICE is DCD.

Files
/etc/canf/pack.d/*/disk.cfg

SEE ALSO
pdiadd(lM), pdirm(lM)

disk.cfg (4)

37

dump(4)

NAME
dump - boot dump timeout file

DESCRIPTION

38

The fete/default/dump file contains keywords recognized by the timeout code.
When the system boots, if there is a system dump in the swap device, the system
asks if you want to save the dump. After n seconds, the system assumes that you
do not. The keyword TIME specifies the number of seconds that the system should
wait before timing out.

TIME=n If n is zero, the save the dump question is never asked. If the line is
missing, the system waits forever. Otherwise, the system waits n
seconds.

Files
fete/default/dump

environ (4)

NAME
.environ, .pref, . variables - user-preference variable files for FACE

DESCRIPTION
The . environ, • pref, and . variables files contain variables that indicate user
preferences for a variety of operations. The • environ and • variables files are
located under the user's $HaME/pref directory. The .pref files are found under
$HOME/FlLECABlNET, $HaME/WASTEBASKET, and any directory where preferences
were set via the organize command. Names and descriptions for each variable are
presented below. Variables are listed one per line and are of the form
variable=value.

Variables found in • environ include:

LOGINWIN[1-4] Windows that are opened when FACE is initialized

SORTMODE Sort mode for file folder listings. Values include the following
hexadecimal digits:

DISPLAYMODE

WASTE PROMPT

WASTEDAYS

PRINCMD[1-3]

UMASK

1 sorted alphabetically by name

2 files most recently modified first

800 sorted alphabetically by object type

The values above may be listed in reverse order by "ORing" the
following value:

1000 list objects in reverse order. For example, a value of 1002
will produce a folder listing with files least recently
modified displayed first. A value of 1001 would produce
a "reverse" alphabetical by name listing of the folder

Display mode for file folders. Values include the following hexa
decimal digits:

o file names only

4 file names and brief description

8 file names, description, plus additional information

Prompt before emptying wastebasket (yes/no)?

Number of days before emptying wastebasket

Print command defined to print files.

Holds default permissions that files will be created with.

Variables found in .pref are the following:

SORTMODE

DISPMODE

which has the same values as the SORTMODE variable described in
• environ above.

which has the same values as the DISPLAYMODE variable
described in • environ above.

Variables found in . variables include:

39

environ (4)

FILES

40

EDITOR

PSl

Default editor

UNIX shell prompt

$HOME/pref/.environ
$HOME/pref/.variables
$HOME/FILECABINET/.pref
$HOME/WASTEBASKET/.pref

ethers (4)

NAME
ethers - Ethernet address to hostname database or domain

DESCRIPTION

FILES

The ethers file contains information regarding the known (48 bit) Ethernet
addresses of hosts on the Internet. For each host on an Ethernet, a single line
should be present with the following information:

Ethernet-address official-hast-name

Items are separated by any number of SPACE and/ or TAB characters. A 'I' indicates
the beginning of a comment extending to the end of line.

The standard form for Ethernet addresses is x:x:x:x:x:x where x is a hexadecimal
number between 0 and ff, representing one byte. The address bytes are always in
network order. Host names may contain any printable character other than a
SPACE, TAB, NEWLINE, or comment character. It is intended that host names in the
ethers file correspond to the host names in the hosts(4) file.

The ether_line routine from the Ethernet address manipulation library,
ethers(3N) may be used to scan lines of the ethers file.

fete/ethers

SEE ALSO
ethers(3N), hosts(4)

41

fd(4)

NAME
fd - file descriptor files

SYNOPSIS
/dev/fd/*

DESCRIPTION
These files, conventionally called /dev/fd/O, /dev/fd/l, /dev/fd/2, and so on,
refer to files accessible through file descriptors. If file descriptor n is open, these
two system calls have the same effect:

fd = openC"/dev/fd/n",mode);
fd = dupCn);

On these files creat(2) is equivalent to open, and mode is ignored. As with dup,
subsequent reads or writes on fd fail unless the original file descriptor allows the
operations.

For convenience in referring to standard input, standard output, and standard
error, an additional set of names is provided: /dev/stdin is a synonym for
/dev/fd/O, /dev/stdout for /dev/fd/l, and /dev/stderr for /dev/fd/2.

Errors
open(2) returns -1 and EBADF if the associated file descriptor is not open.

REFERENCES
dup(2), open(2)

42

NAME
filehdr - file header for common object file (COFF)

SYNOPSIS
#include <filehdr.h>

DESCRIPTION

filehdr(4)

The common object file format (COFF) is not generated by the most recent com
pilers provided with UNIX System V. See filehdr.h for information about COFF
header files.

See a. out (4) for information about headers generated by recent compiliers.

SEE ALSO
a.out(4)

43

fspec(4)

NAME
fspee - format specification in text files

DESCRIPTION
It is sometimes convenient to maintain text files with non-standard tabs (that is,
tabs that are not set at every eighth column). Such files must generally be converted
to a standard format, frequently by replacing all tabs with the appropriate number
of spaces, before they can be processed by commands. A format specification
occurring in the first line of a text file specifies how tabs are to be expanded in the
remainder of the file.

A format specification consists of a sequence of parameters separated by blanks and
surrounded by the brackets <: and : >. Each parameter consists of a keyletter, pos
sibly followed immediately by a value. The following parameters are recognized:

ttabs The t parameter specifies the tab settings for the file. The value of tabs
must be one of the following:

1. a list of column numbers separated by commas, indicating tabs set at
the specified columns

2. a - followed immediately by an integer n, indicating tabs at intervals
ofn columns

3. a - followed by the name of a "canned" tab specification

Standard tabs are specified by t-8, or equivalently, t1, 9,17,25, and so
on. The canned tabs that are recognized are defined by the tabs(l) com
mand.

ssize The s parameter specifies a maximum line size. The value of size must be
an integer. Size checking is performed after tabs have been expanded,
but before the margin is prepended.

mmargin The m parameter specifies a number of spaces to be prepended to each
line. The value of margin must be an integer.

d The d parameter takes no value. Its presence indicates that the line con
taining the format specification is to be deleted from the converted file.

e The e parameter takes no value. Its presence indicates that the current
format is to prevail only until another format specification is encountered
in the file.

Default values, which are assumed for parameters not supplied, are t-8 and mO. If
the s parameter is not specified, no size checking is performed. If the first line of a
file does not contain a format specification, the above defaults are assumed for the
entire file. The following is an example of a line containing a format specification:

* <:t5,10,15 s72:> *
If a format specification can be disguised as a comment, it is not necessary to code
the d parameter.

SEE ALSO
ed(l), newform(l), tabs(l)

44

fstypes(4)

NAME
fstypes - file that registers distributed file system packages

DESCRIPTION
fstypes resides in directory /etc/dfs and lists distributed file system utilities
packages installed on the system. The file system indicated in the first line of the
file is the default file system. When Distributed File System (DFS) Administration
commands are entered without the option -F fstypes, the system takes the file sys
tem type from the first line of the fstypes file.

The default package can be changed by editing the fstypes file with any supported
text editor.

SEE ALSO
dfmounts(lM), dfshares(lM), share(lM), shareall(lM), unshare(lM)

45

fs(4) (BFS)

NAME
fs (bfs) - format of the bfs file system volume

SYNOPSIS
#include <sys/types.h>
#include <sys/fs/bfs.h>

DESCRIPTION
The bfs superblock is stored on sector o. Its format is:

struct bfs_bdsuphead
{

};

/*

bh_bfsmagic;
bh_start;
bh_end;

/* Magic number */
/* Filesystem data start offset */
/* Filesystem data end offset */

* The sanity structure is used to promote sanity in compaction. Used
* correctly, a crash at any point during compaction is recoverable.
*/

struct bfs_sanity
{

daddr_t fromblock;
daddr_t toblock;
daddr_t bfromblock;
daddr_t btoblock;

/* "From" block of current transfer */
/* "To" block of current transfer */
/* Backup of "from" block */
(* Backup of "to" block */

};

struct bdsuper
{

};

struct bfs_bdsu~ead bdsup_head;
struct bfs_sanity bdsup_sane;

char bdsup_fsname[6];
char bdsup_volume[6];
long bdsup_filler[118];

/* Header info */
/* Crash recovery info whilst

compacting */
/* file system name */
/* file system volume name */
/* Padding */

#define BFS_MAGIC O~FACE /* bfs magic number */

The sanity structure is used to promote sanity during compaction. It is used by
fsck(lM) to recover from a sYl>tem crash at any point during compaction.

SEE ALSO
bfs-specific inode(4)

46

(CD-ROM) fs(4)

NAME
fs (cdfs) - format of a cdfs file system

SYNOPSIS
#include <sys/fs/iso9660.h>
#include <sys/fs/cdfs_fs.h>

DESCRIPTION
The cdfs file system supports the 150-9660 and High Sierra file system format
specifications. In a cdfs file system, sectors 0-15 are reserved for boot information
(this area is not used). The Volume Descriptor list begins at sector 16. The Volume
Descriptor list contains the Primary Volume Descriptor (PVD) (which is known as
the super-block in other types of file systems). Directory and file data make up the
rest of the file system.

The PVD contains information such as:

The location of the root directory

The size of the file system (in logical blocks)

Various identification strings and time stamps

For each cdfs file system that is mounted, an in-core data structure is used to store
the relevant portions of the PVD. This data structure, called the cdfs structure, also
stores the other file system specific information. The cdfs structure is defined in
the cdfs_fs.h header file. The 150-9660 and High Sierra PVD's are defined in the
iso9660.h header file.

The format of the cdfs file system structure is:
struct cdfs {

uint_t cdfs_Flags;
struct pathname cdfS_MntPnt;
struct pathname cdfs_DevNode;
struct vnode *cdfs_DeVv.node;
struct cdfs_inode *cdfs_RootInode;
struct cdfs_fid cdfs_RootFid;
enum cdfs_type cdfs_Type;
daddr_t cdfs_PvdLoc;
uint_t
uint_t
uint_t
uint_t
uint_t

1*

cdfs_LogSecSz;
cdfS_LogSecMask;
cdfs_LogSecShift;
cdfS_LoQBlkMask;
cdfs_LogBlkShift;

* Relevant PVD Information
*1

uint_t
uint_t
uint_t
uint_t
uint_t
uint_t
uint_t
daddr_t

cdfs_LogBlkSz;
cdfs_VolVer;
cdfs_FileVer;
cdfs_volSetSz;
cdfs_VolSeqNum;
cdfs_VolSpaceSz;
cdfs_pathTabSz;
cdfs_PathTabLoc;

1* State flags for this FS *1
1* Pathname of mount-point *1
1* Pathname of device node *1
1* 'specfs' vnode for the device *1
1 * Inode of CDFS root directory * 1
1* FID of Root Inode *1
1* File system type (9660/Hi-S) *1
1* PVD location (Log Sector #) *1
1* Logical sector size (~es) *1
1* Convert b¥tes to beg of Sect *1
1* Convert b¥tes to Log Sect Num *1
1* Convert b¥tes to beg of Blk * 1
1* Convert b¥tes to Log Blk Num *1

1* Logical block size (Bytes) *1
1* Version # of Vol Descr struct *1
1* Version # of Dir Rec/Path Tbl *1
1* Volume Set size (# of discs) *1
1* Volume Sequence # (Disc #) *1
1* Volume Space Size (Bytes) *1
1* Path Table size (Bytes) *1
1* Path Table loco (Log Block #) *1

47

fs(4)

};

timestruc_t
timestruc_t
timestruc_t
timestruc_t
uchar_t
uint_t
uint_t

1*
* XCDR specific
*/

(CD-ROM)

cdfELCreateDate;
cdfsJ(OdDate;
cdflCExpireDate;
cdfs_BffectDate;
cdfs_VolID[32];
cdfs_RootDirOff;
cdfs.....:RootDirSz;

fields.

/* Volume Creation date/time */
/* Volume Modification date/time * /
/* Volume Expiration date/time *1
1* Volume Bffective date/time *1
/* Volume ID string *1
/* PVD offset of Root Dir Rae */
/* Size (~es) of Root Dir Rae *1

struct cd_defs
uint_t

cdfs_Dflts; /* Default IDs, penDS and modes *1
cdfsJi'8IIIeConV; /* XCDR name conversion mode * /

struct cd_uidmap
struct cd-9idmap

cdfs_UidMap[CD.JIA,XtDIAP); 1* User ID map array *1
cdfs_GidMap[CD_MAXGNAP]; 1* Group ID map array */

1*
* SOSP specific fields.
*1

uint_t cdfs_SuspSkip;

1*
* RRIP specific field(s).
*/

1* value for finding SOFs in ~ *1

uint_t cdfs_DevMap_Cnt; 1* MUm of valid Device mappings*1
struct ~dew1ap cdfsJ)eVMap[CD..J(AXmIAP); 1* Device Node (NUmber) Map *1

REFERENCES

48

cdfs-specific dir(4), cdfs-specific inode(4)
ISO 9660 Specification, Working paper for Information Processing: Volume and File Struc
ture of CD-ROM Information Interchange in Optical Information Systems magazine,
January /February 1987

(55) f5(4)

NAME
fs (s5) - format of s5 file system volume

SYNOPSIS
#include <sys/types.h>
#include <sys/param.h>
#include <sys/fs/s5filsys.h>

DESCRIPTION
Every file system storage volume has a common format for certain vital informa
tion. Every such volume is divided into a certain number of 512-byte long sectors.
Sector 0 is unused and is available to contain a bootstrap program or other informa
tion.

Sector 1 is the super-block. The format of a super-block is:

struct filsys
{

ushort s_isize; /* size in blocks of i-list */
daddr_t s_fsize; /* size in blocks of entire volume */
short s_nfree; /* number of addresses in s_free */
daddr_t s_free[NICFREE]; /* free block list */
short s_ninode; /* number of i-nodes in s_inode */
o_ino_t s_inode[NIClNOD]; /* free i-node list */
char s_flock; /* lock during free list */

/* manipulation * /
char s_ilock; /* lock during i-list manipulation */
char s_fmod; /* super block modified flag */
char s_ronly; /* mounted read-only flag */
time_t s_time; /* last super block update */
short s_dinfo[4]; /* device information */
daddr_t s_tfree; /* total free blocks*/
o_ino_t s_tinode; /* total free i-nodes */
char s_fname[6]; /* file system name */
char s_fpack[6]; /* file system pack name */
long s_fi11[12]; /* ADJUST to make */

/* sizeof filsys be 512 */
long s_state; /* file system state */
long s_magic; /* magic number to denote new file

/* system */
long s_type; /* type of new file system * /

};

#define FsMAGIC Oxfd187e20 /* s_magic number */

#define Fslb 1 /* 512-b¥te block */
#define Fs2b 2 /* 1024-b¥te block */
#define Fs4b 3 /* 2048-b¥te block */

#define FsOKAY Ox7c269d38 /* s_state: clean */
#define FsACTIVE Ox5e72d81a /* s_state: active */

49

f8(4)

50

#define FsBAD
#define FsBADBLK

(55)

Oxcb096f43 /* s_state: bad root */
Oxbadbc14b /* s_state: bad block */

/* corrupted it */

s_type indicates the file system type. Currently, three types of file systems are sup
ported: the original 512-byte logical block, the 1024-byte logical block, and the
2048-byte logical block. s_magic is used to distinguish the s5 file system from
other FSTypes. The s_type field is used to determine the blocksize of the file sys
tem; 512-bytes, 1K, or 2K. The operating system takes care of all conversions from
logical block numbers to physical sector numbers.

s_state is unique for each file system and indicates the state of the file system. The
numerical value of the "file system state" is computed as the sum of s_state and
s_time and will ordinarily be one of FsOKAY, FsACTIVE, or FsBAD. A cleanly
unmounted, undamaged file system is indicated by the FsOKAY state. After a file
system had been mounted for update, the state changes to FsACTIVE. The state
reverts to FsOKAY after a file system has been unmounted. A special case is used for
the root file system. If it appears damaged at boot time, it is mounted but marked
FsBAD.

s_isize is the address of the first data block after the i-list; the i-list starts just after
the super-block, namely in block 2; thus the i-list is s_isize-2 blocks long.
s_fsize is the first block not potentially available for allocation to a file. These
numbers are used by the system to check for bad block numbers; if an "impossible"
block number is allocated from the free list or is freed, a diagnostic is written on the
on-line console. Moreover, the free array is cleared, so as to prevent further alloca
tion from a presumably corrupted free list.

The free list for each volume is maintained as follows. The s_free array contains,
in s_free[l], ... , s_free[s_nfree-l], up to 49 numbers of free blocks.
s_free [0] is the block number of the head of a chain of blocks constituting the free
list. The first long in each free-chain block is the number (up to 50) of free-block
numbers listed in the next 50 longs of this chain member. The first of these 50
blocks is the link to the next member of the chain. To allocate a block: decrement
s_nfree, and the new block is s_free [s_nfree]. If the new block number is 0,
there are no blocks left, so give an error. If s_nfree became 0, read in the block
named by the new block number, replace s_nfree by its first word, and copy the
block numbers in the next 50 longs into the s_free array. To free a block, check if
s_nfree is 50; if so, copy s_nfree and the s_free array into it, write it out, and set
s_nfree to O. In any event set s_free [s_nfree] to the freed block's number and
increment s_nfree.

s_tfree is the total free blocks available in the me system.

s_ninode is the number of free i-numbers in the s_inode array. To allocate an i
node: if s_ninode is greater than 0, decrement it and return s_inode [s_ninode] .
If it was 0, read the i-list and place the numbers of all free i-nodes (up to 100) into
the s_inode array, then try again. To free an i-node, provided s_ninode is less
than 100, place its number into s_inode [s_ninode] and increment s_ninode. If
s_ninode is already 100, do not bother to enter the freed i-node into any table. This
list of i-nodes is only to speed up the allocation process; the information as to
Whether the i-node is really free or not is maintained in the i-node itself.

(55) f5(4)

s_tinode is the total free i-nodes available in the file system.

s_flock and s_ilock are flags maintained in the core copy of the file system while
it is mounted and their values on disk are immaterial. The value of s_fmod on disk
is likewise immaterial; it is used as a flag to indicate that the super-block has
changed and should be copied to the disk during the next periodic update of file
system information.

s_ronly is a read-only flag to indicate write-protection.

s_time is the last time the super-block of the file system was changed, and is the
number of seconds that have elapsed since 00:00 Jan. I, 1970 (UTe). During a
reboot, the s_time of the super-block for the root file system is used to set the
system's idea of the time.

s_fname is the name of the file system and s_fpack is the name of the pack.

I-numbers begin at I, and the storage for i-nodes begins in block 2. Also, i-nodes
are 64 bytes long. I-node 1 is reserved for future use. I-node 2 is reserved for the
root directory of the file system, but no other i-number has a built-in meaning.
Each i-node represents one file. For the format of an i-node and its flags, see
inode(4).

SEE ALSO
fsck(IM), fsdb(IM), sS-specific inode(4), mkfs(IM), mount(2)

51

fs(4) (SFS)

NAME
fs (sfs) - format of sfs file system volume

SYNOPSIS
#include <sys/param.h>
#include <sys/types.h>
#include <sys/fs/sfs_fs.h>

DESCRIPTION

52

Each disk drive contains some number of file systems. A file system consists of a
number of cylinder groups. Each cylinder group has inodes and data.

A file system is described by its super-block, and by the information in the cylinder
group blocks. The super-block is critical data and is replicated before each cylinder
group block to protect against catastrophic loss. This is done at mkfs time; the criti
cal super-block data does not change, so the copies need not normally be referenced
further.

1*
* Super block for a file system.
*1

#define SFS_MAGIC Oxbdl01155
#define UPS_MAGIC OxOl1954
#define FSACTIVE Ox5e72d81a 1* fs_state: mounted *1
#define FSORAY Ox7c269d38 1* fs_state: clean *1
#define FSBAD Oxcb096f43 1* fs_state: bad root *1

struct fs {
struct fs *fs_link; 1* linked list of file systems *1
struct fs *fs_rlink; 1* used for incore super blocks *1
daddr_t fs_sblkno; 1* addr of super-block in filesys *1
daddr_t fS_cblkno; 1* offset of cyl-block in filesys *1
daddr_t fs_iblkno; 1* offset of inode-blocks in filesys *1
daddr_t fs_dblkno; 1* offset of first data after cg *1
long fs_cgoffset; 1* cylinder group offset in cylinder *1
long fs_cgmask; 1* used to calc mod fs_ntrak *1
time_t fs_time; 1* last time written *1
long fs_size; 1* number of blocks in fs *1
long fS_dsize; 1* number of data blocks in fs *1
long fs_neg; 1* number of cylinder groups *1
long fS_bsize; 1* size of basic blocks in fs *1
long fS_fsize; 1* size of frag blocks in fs *1
long fs_frag; 1* number of frags in a block in fs *1

1* these are configuration parameters *1
long fs_minfree; 1* minimum percentage of free blocks *1
long fs_rotdelay; 1* num of ms for optimal next block *1
long fs_rps; 1* disk revolutions per second *1

1* these fields can be computed from the others *1
long fS_bmask; 1* "blkoff" calc of blk offsets *1
long fs_fmask; 1* "fragoff" calc of frag offsets *1
long fs_bshift; 1* "lblkno" calc of logical blkno *1
long fs_fshift; 1* "numfrags" calc number of frags *1

1* these are configuration parameters *1
long fs_maxcontig; 1* max number of contiguous blks *1
long fs_maxbpg; 1* max number of blks per cyl group *1

(SFS) fs(4)

/* these fields can be computed from the others */
long fs_fragshift; /* block to frag shift */
long fs_fsbtodb; /* fsbtodb and dbtofsb shift constant */
long fs_sbsize; /* actual size of super block */
long fs_csmask; /* csum block offset */
long fs_csshift; /* csum block number */
long fs_nindir; /* value of NINDIR */
long fs_inopb; /* value of INOPB */
long fs_nspf; /* value of NSPF */
long fs_optim; /* optimization preference, see below */
long fs_state; /* file system state */
long fs_sparecon[2]; /* reserved for future constants */

/* a unique id for this filesystem (currently unused and unmaintained) */
long fs_id[2]; /* file system id */

/* sizes determined by number of cylinder groups and their sizes */
daddr_t fs_csaddr; /* blk addr of cyl grp summary area */
long fs_cssize; /* size of cyl grp summary area */
long fs_cgsize; /* cylinder group size */

/* these fields should be derived from the hardware */
long fs_ntrak;
long fs_nsect;
long fs_spc;

/* this comes from the disk
long fs_ncyl;

/* tracks per cylinder */
/* sectors per track */
/* sectors per cylinder */

driver partitioning */

/* these fields can be computed
/* cylinders in file system */

from the others */
long fs_cpg; /* cylinders per group */
long fs_ipg; /* inodes per group */
long fs_fpg; /* blocks per group * fs_frag */

/* this data must be re-camputed after crashes */
struct csum fs_cstotal; /* cylinder summary information */

/* these fields are cleared at mount time */
char fs_fmod; /* super block modified flag */
char fs_clean; /* file system is clean flag */
char fs_ronly; /* mounted read-only flag */
char fS_flags; /* currently unused flag */
char fs_fsmnt[MAXMNTLEN]; /* name mounted on */

/* these fields retain the current block allocation info */
fs_cgrotor; /* last cg searched */
csum *fs_csp[MAXCSBUFS];/* list of fs_cs info buffers */
fs_cpc; /* cyl per cycle in postbl */

long
struct
long
short fS-PQstbl[MAXCPG] [NRPOS];/* head of blocks for each rotation */
long fs_magic; /* magic number */
u_char fs_rotbl[l]; /* list of blocks for each rotation */

};

/*
* Cylinder group block for a file system.
*/

#define CG_MAGIC
struct cg {

struct
struct
time_t
long
short

Ox090255

cg *cg_link;
cg *cg_rlink;
cg_time;
cg_cgx;
cg_ncyl;

/* linked list of cyl groups */
/* used for incore cyl groups */
/* time last written */
/* we are the cgx'th cylinder group */
/* number of cyl's this cg */

53

fs(4)

};

SEE ALSO

short
long
struct
long
long
long
long
long
short
char
long
u_char

(SFS)

cO'_niblk; 1* number of in ode blocks this cg *1
cg_ndblk; 1* number of data blocks this cO' *1
csum cg_cs; 1* cylinder summary information *1
cg_rotor; 1* position of last used block *1
cg_frotor; /* position of last used frag *1
cg_irotor; 1* position of last used inode *1
cg_frsum[MAXFRAG] ; 1* counts of available frags * /
cO'_btot[~CPG]; 1* block totals per cylinder *1
cg_b[~CPG] [NRPOS]; 1* positions of free blocks *1
cg_iused[~IPG/NBBY];I* used inode map */
cg_magic; /* magic number *1
cg_free[l]; 1* free block map *1

ufa-specific inode(4)

54

(UFS) fs (4)

NAME
fs (ufs) - format of ufs file system volume

SYNOPSIS
#include <sys/param.h>
#include <sys/types.h>
#include <sys/fs/ufs_fs.h>

DESCRIPTION
Each disk drive contains some number of file systems. A file system consists of a
number of cylinder groups. Each cylinder group has inodes and data.

A file system is described by its super-block, and by the information in the cylinder
group blocks. The super-block is critical data and is replicated before each cylinder
group block to protect against catastrophic loss. This is done at mkfs time; the criti
cal super-block data does not change, so the copies need not normally be referenced
further.

/*
* Super block for a file system.
*/

#define FS_MAGIC
#define
#define
#define

struct

FSACTlVE
FSOKAY
FSBAD

fs {

struct
struct
daddr_t
daddr_t
daddr_t
daddr_t
long
long
time_t
long
long
long
long
long
long

Ox011954
Ox5e72d81a /* fs_state: mounted */
Ox7c269d38 /* fs_state: clean */
Oxcb096f43 /* fs_state: bad root */

fs *fs_Iink; /* linked list of file systems */
fs *fs_rlink; /* used for incore super blocks */
fs_sblkno; /* addr of super-block in filesys */
fs_cblkno; /* offset of cyl-block in filesys */
fs_iblkno; /* offset of inode-blocks in filesys */
fs_dblkno; /* offset of first data after cg */
fs_cgoffset; /* cylinder group offset in cylinder */
fs_cgnlask; /* used to calc mod fs_ntrak */
fs_time; /* last time written */
fs_size; /* number of blocks in fs */
fs_dsize; /* number of data blocks in fs */
fs_ncg; /* number of cylinder groups */
fs_bsize; /* size of basic blocks in fs */
fs_fsize; /* size of frag blocks in fs */
fs_frag; /* number of frags in a block in fs */

/* these are
long
long
long

configuration parameters */

/* these fields
long
long
long
long

fs_minfree; /* minimum percentage of free blocks */
fs_rotdelay; /* num of InS for optimal next block */
fs_rps; /* disk revolutions per second */
can be computed from the others */
fs_bmask; /* "blkoff" calc of blk offsets */
fs_fmask; /* "fragoff" calc of frag offsets */
fs_bshift; /* "lblkno" calc of logical blkno */
fs_fshift; /* "numfrags" calc number of frags */

/* these are
long
long

configuration parameters */
fs_maxcontig; /* max number of contiguous blks */
fs_maxbpg; /* max number of blks per cyl group */

55

fs(4)

56

(UFS)

1* these fields can be computed fram the others *1
lang fs_fragshift; 1* block to frag shift *1
lang fS_fsbtodb; 1* fsbtodb aDd dbtofsb shift constant *1
lang fs_sbsize; 1* actual size of super block *1
lang fs_csmask; 1* csum block offset *1
long fs_csshift; 1* csum block number *1
lang fs_nindir; 1* value of NINDIR *1
long fs_inopb; 1* value of lNOPB * 1
lang fs_nspf; 1* value of NSPF *1
lang fs_optim; 1* optimization preference, see below *1
lang fs_state; 1* file system state *1
lang fs_sparecon[2]; 1* reserved for future constants *1

1* a unique id for this filesystem (currently unused aDd unmaintained) *1
lang fs_id[2]; 1* file system id *1

1* sizes determdned b¥ number of cylinder groups aDd their sizes *1
daddr_t fs_csaddr; 1* blk addr of cyl grp SUXllllary area *1
lang fs_cssize; 1* size of cyl grp SUI\lllary area *1
lang fs_cgsize; 1* cylinder group size *1

1* these fields should be derived fram the hardware *1
lang fs_ntrak; 1* tracks per cylinder * 1
long fs_nsect; 1* sectors per track *1
lang fs_spc; 1* sectors per cylinder *1

1* this comes from the disk driver partitioning *1
long fs_ncyl; 1* cylinders in file system *1

1* these fields can be computed fram the others *1
lang fs_cpg; 1* cylinders per group *1
lang fs_ipg; 1* inodes per group *1
lang fs_fpg; 1* blocks per group * fs_frag *1

1* this data must be re-computed after crashes *1
struct csum fs_cstotal; 1* cylinder summary information *1

1* these fields are cleared at mount time *1
char fs_fmod; 1* super block modified flag *1
char fs_clean; 1* file system is clean flag *1
char fs_ronly; 1* mounted read-only flag *1
char fs_flags; 1* currently unused flag *1
char fs_fsmnt [MAXMNTLEN]; 1* name mounted on * 1

1* these fields retain the current block allocation info *1

};

1*

lang fs_cgrotor; 1* last cg searched *1
struct csum *fs_csp[MAXCSBUFS];I* list of fs_cs info buffers *1
long fs_cpc; 1* cyl per cycle in postbl *1
short fS-PQstbl[MAXCPG] [NRPOS];I* head of blocks for each rotation *1
long fs_magic; 1* magic number *1
u_char fs_rotbl[l]; 1* list of blocks for each rotation *1

* Cylinder group block for a file system.
*1

#define CG_~IC
struct cg {

struct
struct
time_t
long
short

Ox090255

cg *cg_link;
cg *cg_rlink;
cg_time;
cg_cgx;
cg_ncyl;

1* linked list of cyl groups *1
1* used for incore cyl groups *1
1* time last written *1
1* we are the cgx'th cylinder group *1
1* number of cyl's this cg *1

} ;

SEE ALSO

short
long
struct
long
long
long
long
long
short
char
long
u_char

(UFS) f5(4)

/* number of inode blocks this cg */
cg_ndblk; /* number of data blocks this cg */
csum cg_cs; /* cylinder summary information */
cg~otor; /* position of last used block */
cg_frotor; /* position of last used frag */
cg_irotor; /* position of last used inode */
cg_frsum[MAXFRAG]; /* counts of available frags */
cg_btot[MAXCPG]; /* block totals per cylinder */
cg_b[MAXCPG] [NRPOS]; /* positions of free blocks */
cg_iused[MAXIPG/NBBY];/* used inode map */
cg_magic; /* magic number */
cg_free[l]; /* free block map */

ufs-specific inode(4)

57

fs (4) (VXFS)

NAME
fs (vxfs) - format ofvxfs file system volume

SYNOPSIS
#include <sys/types.h>
#include <sys/param.h>
#include <sys/fs/vx_fs.h>

DESCRIPTION

58

The vxfs super-block always begins at byte offset 1024 from the start of the file
system. The super-block location is fixed so utilities know where to look for it.

The super-block contains the following fundamental sizes and offsets:

fs_magic
The magic number for the file system (VX_MAGIC). This number
identifies the file system as being a vxfs FSType.

fs_version
The version number of the file system layout (VX_VERSION),
currently l.

fs_ctime
The creation date of the file system. The time system call supplies
the time.

fs_ectime
This field is a placeholder in instances when the creation date for a
file system is expanded for more precision. It currently is zero.

fs_logstart
The block address of the first Log Area block. It currently is two.

fs_logend
The block address of the last Log Area block. The Log Area size in
blocks may be specified as part of mkfs. If not specified, a default of
256 blocks is used. A minimum size of 32 blocks is enforced.

fs_bsize
The block size of the file system. The current choices are 1024, 2048,
4096, and 8192 bytes.

fs_size
The number of blocks in the file system, expressed as the number of
blocks of size fs _bsize. The fs_size field is a signed 32 bit number.
The maximum number of blocks in a vxfs file system is limited to 31
bits.

fs_dsize
The number of data blocks in the file system. A data block is a block
which may be allocated to a file in the file system.

fs_ninode
The number of inodes in the file system. The number of inodes in
the file system is subject to the following rules:

(VXFS) f5(4)

The fs_ninode field is a signed 32-bit number.

The number of inodes is rounded down such that the inode list in
each allocation unit is an integral number of inode list blocks (see
fs_ilbsize).

The number of inodes may be specified as part of mkfs. If not
specified, the default will be js _ dsize divided by 4.

The number of allocation units in the file system. The number of
allocation units may be specified as part of mkfs.

fs_defiextsize
The default size for indirect data extents, expressed in blocks. This
field is currently unused.

fs_ilbsize
The size of an inode list block, expressed in bytes. This size may be
specified as part of mkfs. If not specified, a default of either 2K or
js _bsize (whichever is larger) is used.

fs_immedlen
The size, in bytes, of the immediate data area in each inode. This
value is 96 for the vxfs file system version l.

fs_ndaddr
The number of direct extents supported by the VJCEXT4 mapping
type (see the section describing inode list). This value is 10 for the
vxfs file system version l.

The preceding fields define the size and makeup of the file system. To reduce the
calculations required in utilities, a number of values are derived from the funda
mental values and placed in the super-block.

The super-block contains the following derived offsets:

fs_aufirst
The address, in blocks, of the first allocation unit. There can be a gap
between the end of the intent log and the first allocation unit. This
gap could be used to align the first allocation unit on a desired boun
dary.

fs_emap
The offset in blocks of the free extent map (emap) from the start of
an allocation unit.

fs_imap
The offset in blocks of the free inode map (imap) from the start of an
allocation unit.

fs_iextop
The offset in blocks of the extended inode operation map from the
start of an allocation unit.

59

1s(4)

60

(VXFS)

fs_istart
The offset in blocks of the inode list (ilist) from the start of an alloca
tion unit.

fs_bstart
The offset in blocks of the first data block from the start of an alloca
tion unit. An allocation unit header may contain padding to align
the first data block.

fs_femap
The offset in blocks of the first free extent map (emap) from the start
of the file system.

fs_fimap
The offset in blocks of the first free inode map (imap) from the start
of the file system.

fs_fiextop
The offset in blocks of the first extended inode operation map from
the start of the file system.

fs_fistart
The offset in blocks of the first ilist from the start of the file system.

fs_fbstart
The offset in blocks of the first data block from the start of the file
system.

fs_nindir
The number of entries in an indirect address extent. An indirect
address extent is currently 8192 bytes in length, making the current
value for fs_nindir 2048.

fs_aulen
The length of an allocation unit in blocks.

fs_auimlen
The length of a free inode map in blocks.

fs_auemlen
The length of a free extent map in blocks.

fs_ailen
The length, in blocks, of the inode list for this allocation unit.

fs_aupad
The length, in blocks, of the allocation unit alignment padding.

fs_aublocks
The number of data blocks in an allocation unit.

fs_maxtier
The log base 2 of fs_aublocks.

fs_inopb
The number of inode entries per fs_bsize block in the inode list.

(VXFS) f5(4)

fs_inopau
The number of inodes in an allocation unit.

fs_inopilb
The number of inode entries per fs_ilbsize block in the inode list.

fs_ndiripau
Expected number of directory inodes per allocation unit.

fs_iaddrlen
The size, in blocks, of an indirect address block. An indirect address
block is 8K bytes. This field will be set to (8K / Js _bsize).

fs_bshift
The log base 2 of Js _bsize. Used to convert a byte offset into a block
offset.

fs_inoshift
The log base 2 of Js _inopb. Used to convert an inode number into a
block offset in the inode list.

fs_bmask
A mask value such that (byte_offset + Js _bmask) rounds the offset to
the nearest smaller block boundary.

fs_ooffmask
A mask value such that (byte_offset + fs_boffmask) yields the offset
from the start of the nearest smaller block boundary.

fs_inomask
A mask value such that (inode _number + fs _inomask) yields the offset
from the start of the containing inode list block of the corresponding
inode list entry.

fs_checksum
A simple checksum of the above fields. A macro, VJCFSCHECKSUM is
provided to verify or calculate the checksum.

The above fields are initialized when the file system is created and do not change
unless the file system is resized. These fields are replicated in each allocation unit
header.

There are additional fields which are considered to be dynamic:

fs_free
The current number of free data blocks.

fs_ifree
The current number of free inodes.

fs_efree
An array of the current number of free extents of each extent size in
the file system.

fs_flags
The following flags are recognized:

61

f8(4)

SEE ALSO

(VXFS)

VJCFULLFSCK
Set when a file system requires a full structural check to
recover from an error. If this flag is set, a full check will be
performed after the replay recovery is finished.

VJCNOLOG
Set when the file system was mounted with the VX_MS_NOLOG
option. If this flag is set, then no log replay recovery will be
performed.

VX_LOGBAD
Set when an I/O error has invalidated the log. If this flag is
set, then no log replay recovery will be performed.

VX_LOGRESET
Set when the log ID runs over VX_MAXLOGID (2~30). The log
ID will be reset at the next appropriate opportunity (such as
a mount or 60-second sync).

VX_RESIZE

fs_mod

Set when a file system resizing is in progress. If an fsck sees
this flag, it will have to perform resize recovery. Refer to
fsadm.(IM) for a description of file system expansion.

Set whenever a mounted file system is modified. It is used to indi
cate if the super-block needs to be written when a sync operation is
performed.

fs_clean
Set to VX_DIRTY when a file system is mounted for read/write
access. Set to VX_CLEAN upon umount or successful fsck. The
mount utility will not allow a file system to be mounted for
read/write if the fs_clean field is VX_DIRTY.

fs_reserved
Reserved for future use.

fs_firstlogid
Starting intent log ID to use when the file system is next mounted.

fs_time
Last time the super-block was written to disk, indicated as the
number of seconds that have elapsed since 00:00 January 1, 1970.

fs_fname
File system name (6 characters).

fs_fpack
File system pack label (6 characters).

fsck(IM), fsdb(IM), vxfs-specific inode(4), mkfs(IM), mount(2)

62

gettydefs (4)

NAME
gettydefs - speed and terminal settings used by getty

DESCRIPTION
The file /usr/lib/saf/ttymondefs contains information used by the getty com
mand to set up the speed and terminal settings for a line. It supplies information on
what the login prompt should look like. It also supplies the speed to try next if the
user indicates the current speed is not correct by typing a break character.

Each entry in ttymondefs has the following format:

label# initial-flags # final-flags # login-prompt #next-Iabel

Each entry is followed by a blank line. The fields can contain quoted characters of
the form \b, \n, \c, etc., as well as \nnn, where nnn is the octal value of the desired
character. The fields are:

label This is the string against which getty tries to match its second argu
ment. It is often the speed, such as 1200, at which the terminal is
supposed to run, but it need not be (see below).

initial-flags These flags are the initial ioctl settings to which the terminal is to
be set if a terminal type is not specified to getty. The flags that
getty understands are the same as the ones listed in the tennio.h
header file [see tennio(7)J. Normally only the speed flag is required
in the initial-flags. getty automatically sets the terminal to raw
input mode and takes care of most of the other flags. The initial-flag
settings remain in effect until getty executes login.

final-flags These flags take the same values as the initial-flags and are set just
before getty executes login. The speed flag is again required. The
composite flag SANE takes care of most of the other flags that need to
be set so that the processor and terminal are communicating in a
rational fashion. The other two commonly specified final-flags are
TAB3, so that tabs are sent to the terminal as spaces, and HUPCL, so
that the line is hung up on the final close.

login-prompt This entire field is printed as the login-prompt. Unlike the above
fields where white space is ignored (a space, tab or new-line), they
are included in the login-prompt field.

next-label If this entry does not specify the desired speed, indicated by the user
typing a break character, then getty searches for the entry with
next-label as its label field and sets up the terminal for those settings.
Usually, a series of speeds are linked together in this fashion, into a
closed set; for instance, 2400 linked to 1200, which in turn is linked
to 300, which finally is linked to 2400.

If getty is called without a second argument, then the first entry of ttymondefs is
used, thus making the first entry of ttymondefs the default entry. It is also used if
getty can not find the specified label. If ttymondefs itself is missing, there is one
entry built into getty that brings up a terminal at 300 baud.

63

gettydefs (4)

FILES

It is strongly recommended that after making or modifying ttymondefs, it be run
through get ty with the check option to be sure there are no errors.

/usr/lib/saf/ttymondefs
/usr/include/sys/teDnio.h

SEE ALSO

NOTES

64

getty(lM), ioctl(2), login(l), stty(l), termio(7)

To support terminals that pass 8 bits to the system (as is typical outside the U.S.),
modify the entries in the ttymondefs file for those terminals as follows: add csa to
initial-flags and replace all occurrences of SANE with the values: BRKINT IGNPAR
ICRNL IXON OPOST ONLCRCSa ISIG lCANON ECHO ECHOK

An example of changing an entry in ttymondefs is illustrated below. All the infor
mation for an entry must be on one line in the file.

Original entry:

CONSOLE # B9600 HUPCL OPOST ONLCR # B9600 SANE lXANY TAB3
HUPCL # Console Login: # console

Modified entry:

CONSOLE # B9600 csa HUPCL OPOST ONLCR # B9600 BRKINT IGNPAR
ICNRL IXON OPOST ONLCR csa ISIG lCANON ECHO ECHOK lXANY TAB3
HUPCL # Console Login: # console

This change permits terminals to pass 8 bits to the system so long as the system is in
multi-user state. When the system changes to single-user state, the getty is killed
and the terminal attributes are lost. So to permit a terminal to pass 8 bits to the sys
tem in single-user state, after you are in single-user state, type [see stty(l)]:

stty -istrip csS

8-bit with parity mode is not supported.

group(4)

NAME
group - group file

DESCRIPTION
The file fete/group contains for each group the following information:

group name
encrypted password
numerical group ID
comma-separated list of all users allowed in the group

group is an ASCII file. The fields are separated by colons; each group is separated
from the next by a new-line.

Because of the encrypted passwords, the group file can and does have general read
permission and can be used, for example, to map numerical group IDs to names.

During user identification and authentication, the supplementary group access list
is initialized sequentially from information in this file. If a user is in more groups
than the system is configured for, {NGROUPS_MAX}, a warning will be given and
subsequent group specifications will be ignored.

SEE ALSO
getgroups(2), groups(l), initgroups(3C), newgrp(lM), passwd(l), unistd(4)

65

help(4)

NAME
help - Desktop help file format

DESCRIPTION

66

The help subsystem can display plain help files as well as formatted help files. For
matted help files must conform to the format described below in order to take
advantage of the hypertext functionality.

Headers
The file header contains information that is global to the file and must appear
before the start of the first section of text. Each line in the file header begins with
the ~ character. The following are the control codes and line formats allowed in the
file header:
~*version~n

The required first line in the file header. Parse the rest of the file according
to the version specified. If n is not specified or is set to 0, the help file is
expected to follow the syntax below. Other values of n are reserved.

~ +definition Jile
Specify the name of a file containing only term definitions. Each definition
is defined using the ~= option defined below. Definitions can also appear in
the file header itself.

~ ?description
A one-line description of the application or object the help file is being writ
ten for. This description is displayed when the icon representing the appli
cation or object in the Help Desk window is selected.

~*title~string

Display the title, string, in the help window title if no section name is found
and a title is not specified in the request to the desktop manager to display
help.

~%keyword~reference

Specify a keyword definition global to the file. Each occurrence of keyword
in the file is highlighted in color. When the user selects the keyword, the
text in the help window's pane area will be switched to the text which refer
ence points to.

reference has the formatfile_name~section_tag. file_name is the name of a help
file and defaults to the current file. section _tag is either a section name or a
section tag associated with a section in the help file and, if not specified,
defaults to the first section of a file. A tag is any ASCn string and can be
used across different locales.

~=term

definition
of term

Define a term global to the file. Each occurrence of term is displayed in italic
font. When a term is selected, a window pops up to display the definition of
the term. definition can comprise multiple lines.

help(4)

Sections
A section comprises a section header followed by help text. A section header
begins with a line of the format ~leversection name=alias. Following this line must
be a section tag, and, optionally, local definitions of terms and keywords, which
override any previous definitions of the same terms or keywords. The same
options are used to define local and global terms and keywords. The rest is con
sidered the body of the section until the end of file is reached or another section is
defined.

~ level ~ section name[=][alias]
Specify section number, section name, and an optional alias to the section
name. level starts at 0 and must be a positive integer. If level is 0, the section
appears in the Table of Contents and help window pane without a level
number. This is to allow having a main section in a file. A level 0 section is
optional. A section typically starts at level l.

section name is used internally by the desktop manager and is in the Table of
Contents but not at the beginning of a section. section name has to be
repeated on a line by itself at the beginning of the help text if you want it to
appear at the start of a section.

alias is optional. If alias is specified, it is used to look up a link; otherwise,
section name is used. This allows a file to have more than one section with
the same name and multiple keywords that are the same but linked to dif
ferent parts of the file. This is useful if section tags are not available at the
time keywords are defined, which may be the case if a tool is used to create
the keywords.

Note that alias is never displayed. In addition, the ~ after section name is
required even if no alias is specified.

~$tag A unique section tag must be defined for each section within a section
header. Since section tags are unique, they can be used to link the same key
word to different sections in a file.

Links
The following constructs are used within the help text to mark defined terms and
hypertext links.

\d (term[, alias])
This indicates that the string term is to be displayed in italics. If alias is not
specified, the definition of term is displayed in a definition popup window;
otherwise, the definition of alias is displayed in the definition window
instead. alias allows multiple terms to share the same definition.

Definitions are specified using the ~= option in a definition file or section
header.

\k (keyword[~reference])
This is used to indicate and set up a link within a section. keyword appears
as part of the section. When a keyword is selected, reference is used to look
up which file and section to jump to.

67

help(4)

reference must be in the format file name~section tag, of which at least file
name or section tag must be specified. The section associated with section
tag in file name will be displayed in the help window when keyword is
selected.

reference allows the same keyword to be associated with the different sec
tions in the same or a different file.

If reference is not specified, keyword will be used to look up a link, which can
be a link defined in the section or file header.

Note that if (and) are used within the definition of a link, the link itself
must be enclosed with curly braces instead of round parentheses and vice
versa. For example:

\k{cat(1)}
\k{cat~~cat(1)}

EXAMPLES

68

~*version~1

~*title~User Setup
~*width~70

~+help.defs

~?Manage user logins
~O~User Setup~

~$10

User Setup

The User Setup window allows you to manage who can log onto your
system by letting you add new or delete \d(logins~login) and change
the properties of existing logins.

There are three main User Setup windows:

\k(User Setup Window)
\k(User Setup: Properties Window [Users])
\k(User Setup: Properties Window [Groups])

~1~User Setup Window~
~$20

\k{User Setup}
1. User Setup Window

The User Setup Window lets you maintain the \d(groups~group) defined
on your system as well as the user and system \d(logins~login).

The buttons available from the User Setup window are:

\k(Edit Button)
\k(View Button)
\k(Help Button)

help (4)

-2-Edit Button-
-$30
1. \k{User Setup Window}

1.1 Edit Button

The Edit Button lets you add, delete, and change properties and
permdssions for the icons shown in the User Setup window. Note that
a user cannot log onto your system until you create a \d(login) for
them through the User Setup Window. Clicking SELECT on the Edit
Button brings up a menu with the following options:

-3-New-
-$40

\k(New)
\k(Delete)
\k(Properties)
\k (Permissions)

1. \k{User Setup Window}
1.1 \k{Edit Button}

1.1.1 New

The New menu option lets you add new users to your system. Clicking
SELECT on the New menu option brings up the User Setup: Add User
window.

More Information:

\k(User Setup: Add User Window)
-3-Delete-
-$50
1. \k{User Setup Window}

1.1 \k{Edit Button}
1.1. 2 Delete

The Delete menu option lets you delete users from your system. Once
a user is deleted, they cannot log onto your system.
-3-Properties-
-$60
1. \k{User Setup Window}

1.1 \k{Edit Button}
1. 1. 3 properties

The Properties menu option lets you change the information associated
with users and groups.

For user and system \d(logins-Iogin) you can change the login name,
comment, group, home directory, shell, and user ID.

For groups you can change the group name and group ID number.

Clicking SELECT on the Properties menu option brings up the User
Setup: Properties window. A different window appears, depending upon
whether user/system icons or group icons are in the User Setup window.

69

help(4)

70

More information:

\k(User Setup: Properties window [Users]
\k(User Setup: Properties Window [Groups]

~3~permissions~

~$70

1. \k{User Setup Window}
1.1 \k{Edit Button}

1.1.4 Permissions

The Permissions menu option is only active when users are displayed
in the User Setup window. This option allows you to make changes to
the various permission categories, however, you must have the correct
permissions to make changes. Clicking SELECT on the Permissions menu
option brings up the Permissions window. The Permissions window
allows the following to be changed:

0 Owner's Administration Account

0 Mount Removable Media

0 Dialup Network Use

0 Dialup Management

0 Printer Management

0 Network Management

0 package Management

0 Share Remote Resources

o Share Local Resources

The Permissions window has four buttons: Apply, Reset, Cancel, and
Help.

o Apply Button: The Apply button immediately applies any changes
made in the Permissions window. After applying the changes, the
Permissions window is closed.

o Reset Button: The Reset button reverses any changes you make in
the Permissions window. The Permissions Window remains open.

o Cancel Button: The Cancel button closes the Permissions window
without making any changes.

o Help Button: The Help Button provides help for the Permissions
window.

~2~view Button~

~$80

1. \k{User Setup Window}
1.2 View Button

The View Button lets you choose whether to view user icons, system
icons, or group icons in the Use Setup window. Clicking SELECT on the
View Button brings up a menu with the following options:

\k{Users}
\k {System.}
\k{Groups}

A3 AUsersA
A$90
1. \k{User Setup Window}

1.2 \k{View Button}
1.2.1 Users

help(4)

The Users menu option lets you view user icons in the User Setup win
dow. When you click SELECT on Users, user icons are displayed in the
User Setup window. If user icons are already displayed in the User
Setup window, then nothing happens when you click SELECT on the Users
menu item..
ArSystem.A
A$100
1. \k{User Setup Window}

1.2 \k{View Button}
1.2.2 System.

The System. menu option lets you view system. icons in the User Setup
window. When you click SELECT on System., system. icons are displayed
in the User Setup window. If system. icons are already displayed in
the User Setup window, then nothing happens when you click SELECT on
the System. menu item..
A3 AGroupsA
A$110
1. \k{User Setup Window}

1.2 \k{View Button}
1.2.3 Groups

The Groups menu option lets you view group icons in the User Setup
window. When you click SELECT on Groups, group icons are displayed
in the User Setup window. If group icons are already displayed in
the User Setup window, then nothing happens when you click SELECT on
the Groups menu item..
A2 AHelp ButtonA
A$120
1. \k{User Setup Window}

1.3 Help Button

The Help button provides online help for the User Setup window.
Clicking SELECT on the Help button brings up a menu with the follow
ing options:

\k{User SetupAAUser Setup Help}
\k{Table of Contents}
\k{Help Desk}

71

help(4)

72

~3~User Setup~User Setup Help
~$130

1. \k{User Setup window}
1.3 \k{Help Button}

1.3.1 User Setup

The User Setup menu option provides help on the User Setup window.
~3~Table of Contents~
~$140

1. \k{User Setup Window}
1.3 \k{Help Button}

1.3.2 Table of Contents

The Table of Contents menu option displays the list of help topics
available for the User Setup window.
~3~Help Desk~

~$150

1. \k{User Setup Window}
1.3 \k{Help Button}

1. 3 . 3 Help Desk

The Help Desk menu option opens the Help Desk window. From there, you
can select the icon for the item you want to find out more about.
~l~User Setup: Properties Window [Users]~

~$160

\k{User Setup}
2. User Setup: properties Window [Users]

The User Setup Properties window (for users) lets you change the
login name, full name (or Comment), login type (Desktop or Nondesktop
login) and other information about users.

The buttons available from the User Setup window are:

\k(Apply Button)
\k(Reset Button)
\k(Cancel Button)
\k(Help Button~~Help Button2)

~2~Apply Button~

~$170

2. \k{User Setup: Properties Window [Users]}
2.1 Apply Button

The Apply button immediately applies any changes made in the User
Setup: Properties window. After applying the changes, the User
Setup: Properties window closes.
~2-Reset Button~

~$180

2. \k{User Setup: Properties Window [Users]}
2.2 Reset Button

help(4)

The Reset button reverses any changes you make. The User Setup Proper
ties Window remains open.
A2 ACancel ButtonA
A$190
2. \k{User Setup: Properties window [Users]}

2.3 Cancel Button

The Cancel button closes the User Setup Properties window without mak
ing any changes.
A2 AHelp ButtonAHelp Button2
A$200
2. \k{User Setup: Properties Window [Users]}

2.4 Help Button

The Help Button provides help for the User Setup: Properties window.
A1 AUser Setup: Properties Window [Groups]A
A$210
\k{User Setup}
3. User Setup: Properties Window [Groups]

The User Setup Properties window (for Groups) lets you change the
group name and group ID number.

The following \d(buttonsAbutton) are available from the User Setup
Properties Window (Groups):

\k(Apply ButtonAAApply Button2)
\k(Reset ButtonAAReset Button2)
\k(Cancel ButtonAACancel Button2)
\k(Help ButtonAAHelp Button3)

A2 AApply ButtonAApply Button2
A$220
3. \k{User Setup: Properties Window [Groups]}

3.1 Apply Button

The Apply button immediately applies any changes made in the User
Setup: Properties window. After applying the changes, the User Setup:
Properties window closes.
A2 AReset ButtonAReset Button2
A$230
3. \k{User Setup: Properties Window [Groups]}

3.2 Reset Button

The Reset button reverses any changes you make. The User Setup Proper
ties Window remains open.
A2 ACancel ButtonACancel Button2
A$240
3. \k{User Setup: Properties Window [Groups]}

3.3 Cancel Button

The Cancel button closes the User Setup Properties window without mak
ing any changes
A2 AHelp ButtonAHelp Button3
A$2S0

73

help(4)

74

3. \k{User Setup: Properties Window [Groups]}
3.4 Help Button

The Help Button provides help for the User Setup: Properties window.

(Advanced Commands) holidays (4)

NAME
holidays - accounting file

DESCRIPTION

FILES

holidays contains information that accounting commands use to identify prime
and non-prime computing hours. This information is used to divide user cpu usage
and connection time into prime and non-prime time.

All lines in the holidays file that begin with an asterisk (*) are comment lines. The
first non-comment line of the holidays file must list the year, the beginning of the
prime-time period, and the end of the prime-time period. Prime time is defined as
time a specified interval that occurs every day, except on Saturdays, Sundays, and
holidays listed in the holidays file. For example, the following line indicates that
the file is for 1992, and that prime time starts at 8:00AM and ends at 6:00PM. Time
is given in 24-hour c1ocktime.

1992 0800 1800

Each of the remaining non-commented lines lists one holiday. These lines must
begin with the date of the holiday in mm/ dd format. All remaining information on
the line is ignored, so a description of the holiday can be given. The following are
examples of holiday lines:

1/1 New Year's Day

5/25 Memorial Day

which is equivalent to

1/1

5/25

The holidays file should be updated at the end of each year. If the holidays file
specifies a year prior to the current year, or the end of the current year is near, then
the accounting commands that use the holidays file will issue a message stating
that it needs to be updated.

/etc/acct/holidays

SEE ALSO
acctCll\S(lM), acctcon(lM), acctprc(lM), runacct(lM)

75

hosts (4)

NAME
hosts - host name data base

SYNOPSIS
letelhosts

DESCRIPTION
The hosts file contains information regarding the known hosts on the DARPA Inter
net. For each host a single line should be present with the following information:

Internet-address official-hast-name aliases

Items are separated by any number of SPACE and! or TAB characters. A '#' indicates
the beginning of a comment; characters up to the end of the line are not interpreted
by routines which search the file. This file is normally created from the official host
data base maintained at the Network Information Control Center (NIc), though
local changes may be required to bring it up to date regarding unofficial aliases
and! or unknown hosts.

Network addresses are specified in the conventional '.' notation using the
inet_addr routine from the Internet address manipulation library, inet(3N). Host
names may contain any printable character other than a field delimiter, NEWLINE,
or comment character.

EXAMPLE
Here is a typical line from the letelhosts file:

192.9.1.20 gaia

FILES
letelhosts

SEE ALSO
gethostent(3N), inet(3N)

76

John Smith

hosts.equiv (4)

NAME
hosts. equi v, . rhosts - trusted hosts by system and by user

DESCRIPTION
The /ete/hosts.equiv file contains a list of trusted hosts. When an rlogin(l) or
rSh(l) request is received from a host listed in this file, and when the user making
the request is listed in the /ete/passwd file, then the remote login is allowed with
no further checking. The library routine ruserok will make this verification. In
this case, rlogin does not prompt for a password, and commands submitted
through rsh are executed. Thus, a remote user with a local user ID is said to have
equivalent access from a remote host named in this file.

The format of the hosts. equi v file consists of a one-line entry for each host, of the
form:

hostname [username]

The hostname field normally contains the name of a trusted host from which a
remote login can be made, and username represents a single user from that host.
However, an entry consisting of a single' +' indicates that all known hosts are to be
trusted for all users. A host name must be the official name as listed in the hosts(4)
database. This is the first name given in the hosts database entry; hostname aliases
are not recognized.

The User .rhosts File

FILES

Whenever a remote login is not allowed by hosts. equi v, the remote login daemon
checks for a • rhosts file in the home directory of the local login. The • rhosts file
controls access only to the specific login where it resides.

The .rhosts file has the same format as the hosts.equiv file, but the username
entry has a different meaning. In the hosts. equi v file, a username entry restricts
remote access to the specified remote user. In the .rhosts file, a username entry
changes the identity of user attempting to log in. The remote user specified by user
name can access the host as the local login and inherit the local login's permissions.

/ete/hosts.equiv
/ete/passwd
-/.rhosts
/ete

SEE ALSO
rlogin(l), rsh(l), hosts(4), passwd(4)

77

inetd.conf (4)

NAME
inetd.conf - Internet servers database

DESCRIPTION

78

The inetd.conf file ~pntains the list of servers that inetd(lM) invokes when it
receives an Internet req1iest over a socket. Each server entry is composed of a single
line of the form: .

service-name socket-typr protocol wait-status uid server-program server-arguments
Fields can be separate~ by either SPACE or TAB characters. A '#' (pound-sign) indi
cates the beginning of a comment; characters up to the end of the line are not inter
preted by routines thqt ~arch this file.

service-name

socket-type

protocol

wait-status

uid

server-program

server-arguments

The name of a valid service listed in the file /etc/services.
For RPC services, the value of the service-name field consists of
the RPC service name, followed by a slash and either a ver
sion number or a range of version numbers (for example,
I!QUD.td/l).

Cfln be one of:
stream for a stream socket,
dgram for a datagram socket,
raw for a raw socket,
segpacket for a sequenced packet socket

Must be a recognized protocol listed in the file
lI~tc/protocols. For RPC services, the field consists of the
s1x,ing rpc followed by a slash and the name of the protocol
<for example, rpc/udp for an RPC service using the UDP pro
tqcol as a transport mechanism).

nowait for all but single-threaded datagram servers -
servers which do not release the socket until a timeout occurs
(l;1uch as comsat(lM) and talkd(lM)). These must have the
I'!tatus wait. Although tftpd(lM) establishes separate
pseudo-connections, its forking behavior can lead to a race
cpndition unless it is also given the status wait.

The user ID under which the server should run. This allows
Servers to run with access privileges other than those for
root.

E~ther the pathname of a server program to be invoked by
~petd to perform the requested service, or the value inter
rml if inetd itself provides the service.

If a server must be invoked with command-line arguments,
the entire command line (including argument 0) must appear
i.p this field (which consists of all remaining words in the
ef1.try). If the server expects inetd to pass it the address of
it~ peer (for compatibility with 4.2BSD executable daemons),
then the first argument to the command should be specified
a,s'%A'.

FILES
/etc/inetd.conf
/etc/services
/etc/protocols

SEE ALSO

inetd.conf (4)

camsat(lM), inetd(lM), rlogin(l), rsh(l), services(4), talkd(lM), tftpd(lM)

79

Init (4)

NAME
Init - inittab entries for a kernel module

SYNOPSIS
Init

DESCRIPTION

80

One of the kernel configuration files, an Init file contains information used by the
idmkinit(lM) command to construct a module's /etc:/inittab entry. When the
Init component of a module's Driver Software Package (DSP) is installed,
idinstall(lM) stores the module's Init file information in
/etc/conf/init.d/module-name, where the file module-name is the name of the
module being installed. Package scripts should never access /etc/conf/init.d
files directly; only the idinstall command should be used.

Init files contain lines consisting of one of three forms:
action:process
rstate:action:process
id:rstate:action:process

All fields are positional and must be separated by colons. Blank lines and lines
beginning with '#' or '.' are considered comments and are ignored.

Lines of the first form should be used for most entries. When presented with a line
of this form, idmkinit:

Copies the action and process field values to the inittab entry

Generates a valid id field value (called a 'tag') and prepends it to the entry

Generates an rstate field with a value of 2, and adds it to the entry, following
the id field

Lines of the second form should be used when an rstate value other than 2 must be
specified. When presented with a line of this form, idmkinit generates only the id
field value and prepends it to the entry.

Lines of the third form should be used with caution. When presented with a line of
this form, idmkinit copies the entry to the inittab file verbatim. It is recom
mended that DSPs avoid specifying lines of this form because, if more than one DSP
or add-on application specifies the same id field value, idmkinit will create multi
ple inittab entries containing this id value. When the /etc/init program
attempts to process the inittab entries with the same id, it will fail with an error
condition.

Note that idmkinit determines which of the three forms is being used by searching
each line for a valid action keyword. Valid action values are:

boot bootwait
initdefault off
once ondemand
powerfail powerwait
respawn sysinit
wait

Init(4)

SEE ALSO
idinstall(lM), idmkinit(lM), inittab(4), init(lM), System(4)

81

inittab(4)

NAME
inittab - script for init

DESCRIPTION

82

The file /etc/inittab controls process dispatching by init. The processes most
typically dispatched by init are daemons.

The inittab file is composed of entries that are position dependent and have the
following format:

id : rs ta te : action: process

Each entry is delimited by a newline, however, a backslash (\) preceding a newline
indicates a continuation of the entry. Up to 512 characters per entry are permitted.
Comments may be inserted in the process field using the convention for comments
described in sh(l). There are no limits (other than maximum entry size) imposed
on the number of entries in the inittab file. The entry fields are:

id This is one to four characters used to uniquely identify an entry.

rstate This defines the run level in which this entry is to be processed. Run-levels
effectively correspond to a configuration of processes in the system. That
is, each process spawned by init is assigned a run level or run levels in
which it is allowed to exist. The run levels are represented by a number
ranging from 0 through 6. As an example, if the system is in run levell,
only those entries having a 1 in the rstate field are processed. When init is
requested to change run levels, all processes that do not have an entry in
the rstate field for the target run level are sent the warning signal SIGTERM
and allowed a 5-second grace period before being forcibly terminated by
the kill signal SIGKILL. The rstate field can define multiple run levels for a
process by selecting more than one run level in any combination from 0
through 6. If no run level is specified, then the process is assumed to be
valid at all run levels 0 through 6. There are three other values, a, band c,
which can appear in the rstate field, even though they are not true run lev
els. Entries which have these characters in the rstate field are processed
only when an init or telinit process requests them to be run (regard
less of the current run level of the system). See init(lM). They differ
from run levels in that init can never enter run level a, b or c. Also, a
request for the execution of any of these processes does not change the
current run level. Furthermore, a process started by an a, b or c command
is not killed when init changes levels. They are killed only if their line in
inittab is marked off in the action field, their line is deleted entirely
from inittab, or init goes into single-user state.

action Key words in this field tell init how to treat the process specified in the
process field. The actions recognized by ini t are as follows:

respawn If the process does not exist, then start the process; do not
wait for its termination (continue scanning the inittab
file), and when the process dies, restart the process. If the
process currently exists, do nothing and continue scanning
the inittab file.

inittab(4)

wait When init enters the run level that matches the entry's
rstate, start the process and wait for its termination. All
subsequent reads of the inittab file while init is in the
same run level cause init to ignore this entry.

once When init enters a run level that matches the entry's
rstate, start the process, do not wait for its termination.
When it dies, do not restart the process. If init enters a
new run level and the process is still running from a previ
ous run level change, the program is not restarted.

boot The entry is to be processed the first time init goes from
single-user to multi-user state after the system is booted.
(If initdefault is set to 2, the process runs right after the
boot.) init starts the process, does not wait for its termi
nation and, when it dies, does not restart the process.

bootwait The entry is to be processed the first time init goes from
single-user to multi-user state after the system is booted.
(If initdefault is set to 2, the process runs right after the
boot.) init starts the process, waits for its termination
and, when it dies, does not restart the process.

powerfail Execute the process associated with this entry only when
init receives a power fail signal, SIGPWR [see signal(2)].

powerwait Execute the process associated with this entry only when
init receives a power fail signal, SIGPWR, and wait until it
terminates before continuing any processing of inittab.

off If the process associated with this entry is currently run
ning, send the warning signal SIGTERM and wait 5 seconds
before forcibly terminating the process with the kill signal
SIGKILL. If the process is nonexistent, ignore the entry.

ondemand This instruction is really a synonym for the respawn
action. It is functionally identical to respawn but is given a
different keyword in order to divorce its association with
run levels. This instruction is used only with the a, b or c
values described in the rstate field.

initdefault An entry with this action is scanned only when init is ini
tially invoked. init uses this entry, if it exists, to deter
mine which run level to enter initially. It does this by tak
ing the highest run level specified in the rstate field and
using that as its initial state. If the rstate field is empty, this
is interpreted as 0123456 and init therefore enters run
level 6. This will cause the system to loop, that is, it will go
to firmware and reboot continuously. Additionally, if
init does not find an initdefault entry in inittab, it
requests an initial run level from the user at reboot time.

83

inittab(4)

sysinit Entries with this action are scanned only when init is ini
tially invoked. Among other things, sysinit entries may
be used to initialize devices on which init might try to ask
the run level question. These entries are executed and
waited for before continuing.

process This is a command to be executed. The entire process field is prefixed
with exec and passed to a forked sh as sh -c 'exec command'. For this
reason, any legal sh syntax can appear in the process field.

NOTICES

FILES

The wsini t command is required to initialize the system console. Do not remove
this file, attempt to run it from the command line, or remove the line invoking it
from /etc/inittab or /etc/conf/init .d/kernel.

Application code should not attempt to modify the /etc/inittab file during a
run-level change, since the etc/init program ignores inittab changes then. In par
ticular, modifying the /etc/inittab file while the system is shutting down will
result in minor root file system damage.

/sbin/wsinit

SEE ALSO
exec(2), init(lM), open(2), sh(l), signal(2), ttymon(lM), who(l)

84

(BFS)

NAME
inode (bfs) - format of a bfs i-node

SYNOPSIS
#include <sys/types.h>
#include <sys/fs/bfs.h>

DESCRIPTION
struct bfs_dirent
{

};

ushort d_ino;
daddr_t d_sblock;
daddr_t d_eblock;
daddr_t d_eoffset;
struct bfsvattr d_fattr;

1* inode number *1
1* Start block *1
1* End block *1

inode(4)

1* EOF disk offset (absolute) *1
1* File attributes *1

For the meaning of the defined type daddr_t see types(5). The bfsvattr structure
appears in the header file sys/fs/bfs .h.

SEE ALSO
bfs-specific fs(4), types(5)

85

inode(4) (CD-ROM)

NAME
inode (cdfs) - format of a cdfs inode

SYNOPSIS
#include <sys/param.h>
#include <sys/types.h>
#include <sys/vnode.h>
#include <sys/fs/cdfs_inode.h>

DESCRIPTION

86

For each file and directory in a cdfs file system that is currently being referenced,
an in-core data structure, struct cdfs_inode, is used to store all of the informa
tion related to that file or directory.

The information includes items such as:

the Group ID and User ID of the file or directory

the number of bytes in the file

the file or directory's permissions (read/ execute)

the date and time the file or directory was created

the type of file (regular, directory, block, character, symbolic link, pipe).

The cdfs_inode structure is defined in the cdfs_inode.h header file, and is as fol
lows:

struct cdfs_inode {
struct cdfs_inode
struct cdfs_inode
struct cdfs_inode
struct cdfs_inode
uint_t
struct cdfs_fid
struct cdfs_fid
uid_t
gid_t
uint_t
uint_t
uint_t
dev_t
ulong_t
short
uint_t
struct vfs
daddr_t
int
long
struct cdfs_drec
struct cdfs_xar
struct cdfs_rrip
struct vnode
timestruc_t
timestruc_t
timestruc_t
timestruc_t

*i_FreeFwd;
*i_FreeBack;
*i_HaShFwd;
*i_HashBack;
i_Flags;
i_Fid;
i_ParentFid;
i_UserID;
i_GroupID;
i_Mode;
i_Size;
i_LinkCnt;
i_DevNum;
i_LockOwner;
i_Count;
i_DRcount;
*i_vfs;
i_NextByte;
i_mapsz;
i_mapcnt;
*i_DirRec;
*i_xar;
*i_Rrip;
*i_Vllode;
i_AcceSSDate;
i_ModDate;
i_CreateDate;
i_ExpireDate;

/* Free list forward link */
/* Free list backward link */
/* Hash list forward link */
/* Hash list backward link * /
/* Inode flags - See CDFS struct */
/* File ID info */
/* Parent's File ID info */
/* User ID */
/* Group ID */
/* File type, Mode, and Perms * /
/* Total # of bytes in file */
/* # of links to file */
/* Device # of BLK/CRR file type*/
/* Process # of owner of lock */
/* # of inode locks by lock owner */
/* # of Directory Records */
/* File sys associated with inode */
/* Next read-ahead offset (Byte) */
/* kmem_alloc'ed size */
/* mappings to file pages */
/* 1st link-list Dir Rec of file */
/* XAR info from last Dir Rec */
/* RRIP info from last Dir Rec */
/* Vllode associated with Inode */
/* File Access date/time */
/* File Modification date/time */
/* File Creation date/time */
/* File Expiration date/time */

(CD-ROM) inode (4)

timestruc_t
timestruc_t
timestruc_t

i_AttrDate;
i_BackupDate;
i_SymLink;
i_DirOffset;
i_VerCode;
i_ReadAhead;

i_EffectDate;/* File Effective date/time */
/* File Attribute Change date/time */
/* File Backup date/time */

struct pathname
off_t
ulong

/* Dir offset of last ref'd entry */
/* version code attribute */

daddr_t /* File offset of read-ahead b¥te */
/*
* The following fields cause storage to be allocated for the
* corresponding data structures. Since each inode will usually
* need each of these structures, this is a simple mechanism for
* getting the needed storage. Reference to these structures should
* be done via the corresponding pointers allocated above. Thus,
* if the storage is to be dynamically allocated, very little
* code needs to change.
*/
struct cdfs_drec i_DirReCStorage; /*
struct
struct
struct

}

REFERENCES

cdfs_xar
cdfs_rrip
vnode

i_XarStorage;
i_RripStorage;
i_VnodeStorage;

cdfs-specific dir(4), cdfs-specific fs(4)

/*
/*
/*

Static storage for i_DirRec */
Static storage for i_Xar */
Static storage for i_Rrip */
Static storage for i_Vnode */

87

inode(4)

NAME
inode (sS) - format of an sS i-node

SYNOPSIS
#include <sys/types.h>
#include <sys/fs/sSino.h>

DESCRIPTION

(55)

An i-node for a plain file or directory in an sS file system has the following struc
ture defined by sys/fs/sSino.h.

/* Inode structure as it appears on a disk block. */

struct1dinode1 1
{

};

/*

o_mode_t
o_nlink_t
o_uid_t
o~id_t
off_t
char

di_mode;
di_nlink;
di_uid;
di~id;

di_size;
di_addr[39];

unsigned char di~en;
time_t di_at~me;

time_t di_mtime;
time_t di_ctime;

* Of the 40 address bytes:
* 39 are used as disk addresses
* 13 addresses of 3 bytes each
* and the 40th is used as a
* file generation number
*/

/ * mode and type of file * /
/ * number of links to file * /
/* owner's user id */
/ * owner's group id * /
/ * number of bytes in file * /
/ * disk block addresses * /
/ * file generation number * /
/ * time last accessed * /
/ * time last modified * /
/ * time status last changed * /

For the meaning of the defined types off_t and time_t see types(5).

SEE ALSO
sS-specific fs(4), stat(2), l3tol(3C), types(5)

88

(SFS) inode(4)

NAME
inode (sfs) - format of a sfs inode

SYNOPSIS
#include <sys/param.h>
#include <sys/types.h>
#include <sys/vnode.h>
#include <sys/fs/sfs_inode.h>

DESCRIPTION
The inode is the focus of all local file activity in UNIX. There is a unique inode allo
cated for each active file, each current directory, each mounted-on file, each map
ping, and the root of the file system. An inode is 'named' by its device/inumber
pair. Data in icommon and isecdata (see below) is read into memory from the per
manent inode on the actual volume. Data is also written to disk from the inode in
memory (the incore inode) when appropriate.

The structure inode represents the incore inode, and contains copies of two disk
inodes, whose formats are the structures icommon and i_secure (structure
i_secure is referenced from structure inode).

The data in icommon and i_secure is common to the incore and disk inodes. Other
information is also stored in the inc ore inode as shown below.

struct inode {

/* Filesystem independent view of this inode. */
struct inode *i _forw; /* hash chain, forward */
struct inode * i_back; /* hash chain, back */
struct inode *i_freef; /* free chain, forward */
struct inode *i_freeb; /* free chain, back */
struct vnode *i_vp; /* ptr to vnode * /
struct idata * i_data; /* pointer to the pool data */

/* Filesystem dependent view of this inode. */
union i_secure *i_secp; /* extra memory for security data */
struct vnode /* vnode for this inode * /

struct
u_short
dev_t
ino_t
off_t

struct
struct

short
short
daddr_t
ulong
long

vnode
i_flag;
i_dev;
i_number;
i_diroff;

/* vnode for block I/O */

/* device where inode resides */
/* i number, I-to-l with device address */
/* offset in dir, where we

found last entry */
fs *i_fs; /* file sys associated with this inode */
dquot *i_dquot; /* quota structure controlling

this file */
i_owner; /* proc index of process locking inode */
i_count; /* nUIDber of inode locks for i _owner */
i_nextr; /* next byte read offset (read-ahead) */
i_vcode; /* version code attribute */
i_mapcnt; /* mappings to file pages */

89

inode(4)

};

struct

};

union

} ;

90

(SFS)

int * i_map; 1* block list for the corresponding file *1
int
lid_t

i_opencnt; 1* count of opens for this inode *1
i_dirofflid;l* last proc changing i_diroff wlo

write access *1
clock_t I*time when inode was modified but not

copied to the buffer cache*1
struct

icammon
o_mode_t ic_smode; 1* 0: mode and type of file *1
short
o_uid_t
o_gid_t
quad
time_t
long
time_t
long
time_t
long
daddr_t
daddr_t
long
long
long
mode_t
uid_t
gid_t
ulong

i_secure {

ic_nlink; 1* 2: number of links to file *1
ic_suid; 1* 4: owner's user id *1
ic_sgid; 1* 6: owner's group id *1
ie_size; 1* 8: number of bytes in file *1
ic_atime; 1* 16: time last accessed *1
ic_atspare;
ic_mtime; 1* 24: time last modified *1
ic_mtspare;
ic_ctime; 1* 32: last time inode changed *1
ic_ctspare;
ic_db[NDADDR1;1* 40: disk block addresses *1
ic_ib[NIADDR1;1* 88: indirect blocks *1
ic_flags; 1* 100: status, currently unused *1
ic_blocks; 1* 104: blocks actually held *1
ic_gen; 1* 108: generation number *1
ic_mode; 1* 112: EFT version of mode*1
ic_uid; 1* 116: EFT version of uid *1
iC--9id; 1* 120: EFT version of gid *1
ic_eftflag; 1* 124: indicate EFT version*1

struct icammon is_com;
struct isecdata {

isd_lid; 1* Level IDentifier
isd_sflags; 1* flags *1
isd_aclcnt; 1* ACL count *1
isd_daclcnt; 1* default ACL count
isd_aclblk; 1* extended ACL disk

lid_t
long
long
long
daddr_t
struct
lid_t

acl isd_acl[NACLI1;1* ACL entries *1

char
} is_secdata;

isd_cmwlid;

isd_filler[81;

char is_size[1281;

1* Level IDentifier
file CMW *1
1* reserved *1

*1

*1
blk

for

*1

(SFS) inode(4)

The structure dinode represents the disk inode; it is 128 bytes long and is the same
as the ufa inode, except that there are two 128-byte inodes allocated on disk for
each directory entry.

struct dinode {

union {

} di_un;
} ;

struct
struct
char

icommon di_icom;
isecdata di_secdata;
di_size[1281;

This" alternate inode" scheme makes it look like only the even-numbered inodes on
disk are used. The first inode (the even-numbered inode) is identical to the ufa
inode, and contains all the information in the structure iC01lIInOn.

The second inode (the "alternate", odd-numbered inode) contains the security
information in the structure iaecdata, shown below.

SEE ALSO
sfs-specific fs(4)

91

inode(4) (UFS)

NAME
inode (ufs) - format of a ufs inode

SYNOPSIS
#include <sys/param.h>
#include <sys/types.h>
#include <sys/vnode.h>
#include <sys/fs/ufs_inode.h>

DESCRIPTION

92

The inode is the focus of all local file activity in UNIX. There is a unique inode allo
cated for each active file, each current directory, each mounted-on file, each map
ping, and the root. An inode is 'named' by its dev/inumber pair. Data in icommon
is read in from permanent inode on the actual volume.
struct inode {
1* Filesystem independent view of this inode. *1

struct inode *i_forw; 1* hash chain, forward */
struct inode *i_back; 1* hash chain, back *1
struct inode *i_freef; 1* free chain, forward */
struct inode *i_freeb; 1* free chain, back * I
struct vnode *i_vp; 1* ptr to vnode *1
struct idata *i_data; 1* pointer to the pool data *1

1* Filesystem dependent view of this inode. *1

};

union i_secure
struct

struct
u_short
dev_t
ino_t
off_t
struct
struct
short
short
daddr_t
ulong
long
int
int
lid_t
clock_t

struct

struct iccmnon
o_mode_t
short
o_uid_t
o~id_t

quad
#ifdef _KERNEL

i_secp; 1 extra memory for security data *1
vnode i_vnode; 1* vnode for this inode *1

vnode *i_devvp; 1* vnode for block 1/0 *1
i_flag; 1* inode flags (see below) *1
i_dev; 1* device where inode resides *1
i_number; 1* i number, I-to-l with device address *1
i_diroff; 1* offset in dir, where we found last entry *1
fs *i_fs; 1* file sys associated with this inode *1
dquot *i_dquot; 1* quota structure controlling this file *1
i_owner; 1* proc index of process locking inode *1
i_count; 1* number of inode locks for i_owner *1
i_nextr; 1* next byte read offset (read-ahead) *1
i_vcode; 1* version code attribute *1
i_lII8PCnt; 1* mappings to file pages *1
i_map; 1 block list for the corresponding file *1
i_opencnt; 1* count of opens for this inode *1
i_dirofflid; 1* last proc changing i_diroff wlo write accesl
i_stamp; 1* time when inode was modified but not copied

ic_smode;
ic_nlink;
ic_suid;
ic_sgid;
ic_size;

* to the buffer cache *1

1* 0, mode and type of file *1
1* 2, number of links to file *1
1* 4, owner's user id *1
1* 6, owner's group id *1
1* 8, number of bytes in file *1

(UFS) inode(4)

struct timeval ic_atime;/* 16: time last accessed */
struct timeval ic_mtime;/* 24: time last modified */
nstruct timeval ic_ctime;/* 32: last time inode changed */

#else
ic_atime; /* 16: time last accessed
ic_atspare;
ic_mtime; /* 24: time last modified
ic_mtspare;

*/

*/

time_t
long
time_t
long
time_t
long

ic_ctime; /* 32: last time inode changed
ic_ctspare;

ic_db [NDADDR] ; /* 40: disk block addresses */
ic_ib [NIADDR] ; /* 88: indirect blocks */

*/

#endif
daddr_t
daddr_t
long
long
long
mode_t
uid_t
gid_t
ulong

ic_flags; /* 100: status, currently unused
ic_blocks; /* 104: blocks actually held */
ic_gen; /* 108: generation number */
ic_mode; /* 112: EFT version of mode*/
ic_uid; /* 116: EFT version of uid */
ic_gid; /* 120: EFT version of gid */
ic_eftflag; /* 124: indicate EFT version*/

} ;

SEE ALSO
ufs-specific fs(4)

*/

93

inode(4) (VXFS)

NAME
inode (vxfs) - format of a vxfs inode

SYNOPSIS
#include <sys/types.h>
#include <sys/fs/~inode.h>

DESCRIPTION

94

The inode list consists of fs _inopau inode entries in each allocation unit. An inode
entry has the following format:

i_mode
The mode and type of file.

i_nlink
The number of links to the file.

i_uid The inode owner.

i~id The inode group.

i_size
The size in bytes of the file. Eight bytes have been allocated. Only
four bytes are used in the first implementation.

i_atime
Time of last access, in timestruc_t format.

i_mtime
Time of last modification, in timestruc_t format.

i_ctime
Time of last inode change, in timestruc_t format.

i_aflags
These flags are used to control the allocation and extension of files.

V)CAF _IFBAD
If this flag is set, the inode is invalid in some way. It should
be cleared when fsck is run.

VX AF_NOEXTEND
If this flag is set, the file may not be extended once the
current reservation is exceeded. The reservation may be
increased by the VX_SETEXT ioctl, but the file will not be
automatically extended.

VX AF_NOGROW
If this flag is set, the file may not be extended once the
current reservation is exceeded. It should be cleared on trun
cation or when setext is run. This flag is usually set
because an I/O error occurs while extending a file.

VX AF_ALIGN
If this flag is set, the file must be allocated in extents of a
fixed size and alignment. If an extent of i_fixextsize
blocks aligned on an i_fixextsize boundary cannot

i_orgtype

(VXFS) inode(4)

be found, then the allocation will fail. The alignment is rela
tive to the beginning of the allocation unit.

Mapping type. Indicates how the inode mapping area is to be inter
preted. Currently there are two mapping types supported:

IORG_EXT4
Mapping area consists of an array of 32-bit extent block
addresses and sizes.

IORG_IMMED

i_eopflags

Mapping area itself is a data block. This mapping is referred
to as Immediate Inode Data.

Extended inode operation flag area.

i_eopdata
Extended inode operation data area.

i_ftarea
This is a union. The contents are determined by file type.

For devices, the following fields are supported:

i_rdev
The device number of a block or character special device.

For directories, the following fields are supported:

i_dot dot
The parent directory inode inumber if the inode is a direc
tory. This replaces the standard " .. " entry in the first direc
tory ,?l~ck. !he vxfs file system does not have explicit "."
and .. entnes.

For regular files, the following fields are supported:

i_reserve
The number of data blocks reserved for exclusive use by the
file (preallocation). A preallocation may be requested using
ioctl. [See vxfsio(7).]

i_fixextsize

i_blocks

Set when the inode has a fixed extent size. The default is to
have a variable extent size allocation policy. A fixed extent
size may be specified using ioctl. [See vxfsio(7).]

The number of blocks currently allocated to the file, including any
blocks allocated for indirect address extents.

i_gen The generation number. A serial number which is incremented
whenever the inode is freed and reallocated. It is designed to pro
vide a "handle" for stateless servers such as NFS.

95

inode(4}

SEE ALSO

(VXFS)

i_serial
A count of the number of times the inode metadata has been
modified. This field is a 64-bit number.

ie_~rg

The mapping area. This field is a union based on the value of
i_orgtype and the file system type.

For the vxfs IORG_IMMED organization type, the following structure is used:

i_innned
The Immediate Inode data area, NIMMED_N (currently 96)
bytes in length (see fs_immedlen). Any directory or sym
bolic link which is <= 96 bytes in length will be stored
directly in the inode.

For the vxfs IORG_EXT4 organization type, the following structure is used:

i_spare
Four bytes of padding, not used.

i_ies Indirect extent size. This is the size in blocks of the indirect
data extents in the file.

i_ie Array of indirect address extents. There are NIADDR
(currently 2) indirect address extents. The indirect address
extents are 8192 bytes long. Each indirect address extent
may contain up to 2048 extent addresses. The first indirect
address extent is used for single indirection. With single
indirection, each entry in the indirect address extent indicates
the starting block number of a data extent. The second
indirect address extent is a double indirect address extent.
With double indirection, each entry in the indirect address
extent indicates the starting block number of a single indirect
address extent.

reserved

An array of structures containing the direct extent addresses
and sizes. Up to NDADDR_N (currently ten) direct extents are
supported. Since a variable length extent allocation policy is
used, each direct extent may have a different size. Each
structure contains the following elements:

i_de Direct extent address.

i_des Direct extent size.

There are 80 bytes reserved for future use.

vxfs-specific fs(4), stat(2), types(5)

96

(INET) interface (4)

NAME
interface - Internet network interface configuration parameters

SYNOPSIS
/ete/eonfnet.d/inet/interfaee

DESCRIPTION
The /ete/eonfnet .d/inet/interfaee file is used to store network interface
parameters used at boot time. Each line of data in the interface file contains
enough information to configure an IP transport provider. This information is
passed on to the slink [see slink(lM)] and ifeonfig [see ifeonfig(lM)]
programs at boot time by /ete/eonfnet.d/inet/eonfig.boot.sh. The
/ete/eonfnet .d/inet/interfaee file can be maintained by running
/ete/eonfnet.d/eonfigure -i [see eonfigure(lM)] in interactive mode, which
will call /ete/eonfnet .d/inet/eonfigure -i [see INET-specific
eonfigure(lM)].

The format of the /ete/eonfnet.d/inet/interfaee line is a collection of colon (:)
separated fields.

prefix: unit#: address: device: ifconfig_opts: slink_opts

Each field and its defaults (if any) are defined below.

prefix is an identifier for a driver's netstat [see netstat(lM)] statistics.
Traditionally this value corresponds to the common name used for a particular
device. This field can not be null and it has no default.

unit# is the index per prefix type in the IP internal netstat array, where zero is the
first element's index. This field should consist of only 0-9. This field can not be null
and it has no default.

address is used by ifeonfig to initialize the transport provider. This may be the
internet name from /ete/hosts [see hosts(4)] or an address in Internet standard
dot notation. Null is expanded to the system nodename, obtained by searching
/ete/hosts for the /usr/bin/uname -n entry. Note the system nodename should
be used for only one interface line.

device is the device node name of the transport provider. It is allocated from avail
able network devices listed in /ete/eonfnet.d/netdrivers [see netdrivers(4)]
through the /ete/eonfnet.d/eonfigure script. This field can not be null and it
has no default.

ifconfig_opts is used to customize the ifeonfig options used at boot time and may
contain any options defined for ifeonfig on ifeonfig(lM). The constructed com
mand line will take the form:

ifeonfig PrefixUnit# Converted_Address ifconfig_opts up

where PrefixUnit# is the result of concatenating prefix and unit#. PrefixUnit#
result may be used as the interface parameter given to ifeonfig and
netstat. Converted Address is the /ete/hosts value for the address
field. ifconfig_opts can be null and has no default, but it is traditionally
populated with -trailers (needed by SVR4 transport providers). See
ifeonfig(lM) and !NET-specific eonfigure(lM).

97

interface (4) (INET)

A case where ifconfig_opts is null is when the transport provider is 10,
(10ea1host in /ete/hosts). 10ea1host requires no additional ifeonfig
options at boot time.

slink_opts and the /ete/stref file [see stref(4)] is used by slink to initialize the
device into the TCP lIP protocol stack. slink _opts defines the strcf function and its
first arguments (it is not limited to one word). add _interface is the default slink_opts
value. Additional arguments will be appended to slink _opts to make the final form
of the slink operation:

Files

slink_opts ip device Prefix Unit

where ip will be an open file descriptor to /dev/ip. device and PrefixUnit
are defined in the current interface entry. For a standard Ethernet board,
slink _opts may be null; the defaults will take care of all arguments.

/dev/ip
/ete/eonfnet.d/eonfigure
/ete/eonfnet.d/inet/eonfig.boot.sh
/ete/eonfnet.d/inet/eonfigure
/ete/eonfnet.d/inet/interfaee
/ete/eonfnet.d/netdrivers
/ete/hosts
/usr/bin/uname

USAGE
Examples

The entry:

10:0:10calhost: I dev Iloop:netmask OxffOOOOOO:add _loop

from /ete/eonfnet .d/inet/interfaee will generate the following line to be
used by slink:

slink_opts ip device Prefix Unit

The following ifconfig command would also be generated for boot time:

ifconfig 100127.0.0.1 netmask OxffOOOOOO up

Note that the netmask arguments are present only for the purpose of this example.

REFERENCES

98

generic eonfigure(lM), INET-specific eonfigure(lM), hosts(4), ifeonfig(lM),
netdrivers(4), netinfo(lM), slink(lM), stref(4)

issue (4)

NAME
issue - issue identification file

DESCRIPTION
The file fete/issue contains the issue or project identification to be printed as a
login prompt. issue is an ASCII file that is read by program getty and then writ
ten to any terminal spawned or respawned from the lines file.

FILES
fete/issue

SEE ALSO
login(l)

99

lid _and _priv (4)

NAME
lid_and-pri v - distributed file system security database

DESCRIPTION
lid_and-priv is the distributed file system (DFS) security database, located in
/ete/dfs. The lid_and-priv database acts as a mechanism that allows network
administrators to control access to RFS and NFS resources on a server.

File entries have the format

domain name hostname level_name priv Jist

where

domain name indicates the name of an RFS client's domain. A dash (-) in the
field indicates that the domain is the same as the server's local
domain. The domainname field is ignored by NFS.

hostname indicates the client's machine name.

level name indicates the security label, or its alias, assigned to requests from
a client. A dash (-) in the level name field indicates the default
behavior. -

priv Jist is a comma-separated list of privileges that the server will accept
from the client. If the network administrator wants to accept the
same privileges assigned to the process on the client side, then
the field should contain the entry allpri vs. See the intro(2)
manual page for a complete list of privileges and their meanings.

The special character * can be used in a file entry to set up new default values. By
specifying * in the domainname and hostname fields, the network administrator indi
cates that the values in the level_name and priv Jist fields in that same entry are to be
used as defaults, overriding the system-defined defaults.

The special character - is a placeholder. It can be used in a file entry in either or
both of the fields level_name and priv Jist to indicate that the label and/ or privileges
assigned to the client are the same as the defaults.

The contents of lid_and-pri v must be loaded into the kernel whenever changes
are made to the file. A network administrator loads the contents of the file into the
kernel by running the lidload(lM) command. When lidload in run, all changes
in the database immediately affect all NFS resources. All RFS resources
are affected immediately as well, with the exception of those with open files, which
are affected once the files are closed and re-opened.

SEE ALSO

NOTES

100

intro(2), lidload(lM)

It is possible for the same RFS client to have more than one entry in lid_and-priv,
with a different domain indicated in each entry. NFS clients should have only one
entry each. If an NFS client has two entries in the file, a warning message is printed
and NFS acts on the information in the first entry.

limits(4)

NAME
limits - header file for implementation-specific constants

SYNOPSIS
#include <limits.h>

DESCRIPTION
The header file limits.h is a list of minimal magnitude limitations imposed by a
specific implementation of the operating system.

ARG_MAX
CHAR_BIT
CHAR_MAX
CHAR_MIN
CHILD_MAX
CLK_TCK
DBL_DIG
DBL_MAX
DBL_MIN
FCHR_MAX
FLT_DIG
FLT_MAX
FLT_MIN
!NT_MAX
INT_MIN

5120 /* max length of arguments to exec */
8 /* max # of bits in a "char" */
127 /* max value of a "char" */
-128 /* min value of a "char" */
25 /* max # of processes per user id */
_sysconf(3) /* clock ticks per second */
15 /* digits of precision of a "double" */
1.7976931348623157E+308 /* max decimal value of a "double"*/
2.2250738585072014E-308 /* min decimal value of a "double"*/
1048576 /* max size of a file in bytes */
6
3.40282347e+38F
1. 17549435E-38F
2147483647
(-2147483647-1)

LINK_MAX 1000
LOGNAME_MAX 8
LONG_BIT
LONG_MAX
LONG_MIN
MAX_CANON

32
2147483647
(-2147483647-1)
256

NAME_MAX 14
NGROUPS_MAX 16
NL_ARGMAX 9

NL_LANGMAX 14
NL_MSGMAX 32767
NL_NMAX 1

NL_SETMAX 255
NL_TEXTMAX 255
NZERO 20
OPEN_MAX 60

/* digits of precision of a "float" */
/* max decimal value of a "float" */
/* min decimal value of a "float" */
/* max value of an "int" */
/* min value of an "int" */
/* max # of links to a single file */
/* max # of characters in a login name */
/* # of bits in a "long" */
/* max value of a "long int" */
/* min value of a "long int" */
/* max bytes in a line for canonical
processing */
/* max size of a char input buffer */
/* max # of bytes in a multibyte
character */
/* max # of characters in a file name */
/* max # of groups for a user */
/* max value of "digit" in calls to the
NLS printf() and scanf() */
/* max # of bytes in a LANG name */
/* max message number */
/* max # of bytes in N-to-1 mapping
characters */
/* max set number */
/* max # of bytes in a message string */
/* default process priority */
/* max # of files a process can have
open */
/* max # of characters in a password */

101

limits (4)

102

PATH_MAX
PID_MAX
PIPE_BUF
PIPE_MAX

SCHAR_MAX
SCHAR_MIN
SHRT_MAX
SHRT_MIN
SSIZE_MAX
STD_BLK
SYS_NMLN

UCHAR_MAX
UID_MAX
UINT_MAX
ULONG_MAX
USHRT_MAX
USI_MAX
WORD_BIT

1024
30000
5120
5120

127
(-128)
32767
(-32768)
INT_MAX
1024
257

1

17576

255
60000
4294967295
4294967295
65535
4294967295
32

1* max # of characters in a path name *1
1* max value for a process ID */
1* max # bytes atomic in write to a pipe *1
1* max # bytes written to a pipe
in a write *1
1* max value of a "signed char" *1
1* min value of a "signed char" *1
/* max value of a "short int" *1
1* min value of a "short int" *1
1* max value of an "int" *1
1* # bytes in a physical 1/0 block *1
1* 4.0 size of utsname elements */
/* also defined in sys/utsname.h */
1* max pid of system processes *1
1* max # of unique names generated
by tmpnam *1
1* max value of an "unsigned char" *1
1* max value for a user or group ID *1
1* max value of an "unsigned int" *1
1* max value of an "unsigned long int" */
/* max value of an "unsigned short int" *1
/* max decimal value of an "unsigned" *1
/* # of bits in a "word" or "int" *1

The following POSIX definitions are the most restrictive values to be used by a POSIX
conformant application. Conforming implementations shall provide values at least
this large.

_POSIX_ARG_MAX 4096
_POSIX_CHILD_MAX 6
_POSIX_LINK_MAX 8
_POSIX_MAX_CANON 255
_POSIX_MAX_INPUT 255

_POSIX_NAME_MAX 14
_POSIX_NGROUPS_MAX 0
_POSIX_OPEN_MAX 16
_POSIX_PATH_MAX 255
_POSIX_PIPE_BUF 512

1* max length of arguments to exec *1
/* max # of processes per user ID */
1* max # of links to a single file *1
1* max # of bytes in a line of input *1
I * max # of bytes in terminal
input queue *1
1* # of bytes in a filename *1
/* max # of groups in a process *1
1* max # of files a process can have open *1
/* max # of characters in a pathname *1
1* max # of bytes atomic in write
to a pipe *1

32767 1* min value stored in object of
type ssize_t *1
1* min number of streams (stdio)
that one process can have open at a time * /
1* max number of bytes supported
for name of a timezone (not the TZ variable) *1

login (4)

NAME
login -login default file

DESCRIPTION
Options for the login program can be set or changed with keywords in
fete/default/login. The following keywords are recognized by login.

CONSOLE If set, a privileged user may log in only on the terminal defined by the
CONSOLE keyword. For example,

CONSOLE=/dev/eonsole

means the privileged user may log in only on the integral display
device attached to /dev/eonsole. If CONSOLE is not in
fete/default/login, a privileged user may log in on any terminal.

ALTSHELL If the user's shell is defined in /ete/passwd and this keyword is set to
YES, the SHELL environment variable is set to the user's shell. If set to
NO, the names of nonstandard shells are not put in the SHELL environ
ment variable. The default value of this keyword is NO. For increased
security, set it to YES.

PASSREQ If set to YES, all users must have a password. Any user without a
password is asked for one at the first opportunity permitted by the
password aging set for that user. (That is, users without passwords
may not change their NULL passwords if password aging is enabled
for them and the minimum time before a password can be changed
has not elapsed.)

MANDPASS When set to YES, this keyword makes passwords mandatory for all
logins (overriding PASSREQ).

TIMEZONE This keyword sets the TZ variable in the environment of the user. It
must match the format of the timezone set in /ete/TIMEZONE.

HZ This keyword sets the environment variable HZ, the rate of the system
clock, for the user logging in. The default is 100.

PATH This keyword sets a default path for an unprivileged user. The
default is /usr/bin.

SUPATH This keyword sets the default path for the privileged user logging in.
Another default path for the privileged user is in /ete/default/su,
which is set for privileged users who did not log in as such. The
default is /sbin: /usr/sbin: /usr/bin: fete.

ULIMIT This keyword sets the maximum file size for a user. It is in units of
512-byte blocks.

UMASK This keyword is the default umask for users. The default is 077.

IDLEWEEKS This keyword is the number of weeks an account may remain idle
before its login is disabled.

TIMEOUT This keyword is the length of time, in seconds, that login waits for a
password after receiving a user name. The default is 60.

103

login (4)

FILES

MAXTRYS This keyword sets the maximum number of login attempts permitted.
The default is 5.

LOGFAILURES
This keyword sets the number of failed login attempts permitted
before a record is made. The default is 5. [See loginlog(4).]

DlSABLETIME
This keyword sets the number of seconds to sleep after MAXTRYS or
LOGFAILURES failed logins. The default is 20.

SLEEPTIME This keyword sets the number of seconds to sleep before printing an
error message. The default is 1.

OPT_FPM This keyword is the pathname of a regular, non-executable file con
taining a site-specific message to a user without a password, asking
that user to pick a password. The default message is Choose one.

DELAYEDEXIT
This keyword is used to delay the exit from the login process, for the
specified number of seconds, so the user logging in has time to read
messages before the screen is cleared. Its value can be set to any
number between 0 and 10; the default value is o. (If you try to assign
a value greater than the default-10-the value will be set to 10.)

fete/default/login

SEE ALSO
defadm(lM),loginlog(4)

104

loginlog (4)

NAME
loginlog -log of failed login attempts

DESCRIPTION

FILES

After LOGFAILURES unsuccessful login attempts, where LOGFAILURES is 5 if not
defined in tete/default/login, all the attempts are logged in the file
/var/adm/loginlog. This file contains one record for each failed attempt. Each
record contains the login name, tty specification, and time.

This is an ASCII file. Each entry is separated from the next by a new-line. Within
each entry, each field is separated from the next by a colon.

By default, loginlog does not exist, so no logging is done. To enable logging, the
log file must be created with read and write permission for owner only. The owner
must be root; the group, sys.

/var/adm/loginlog
tete/default/login

SEE ALSO
defadm(lM), login(l), login(4), passwd(l)

105

mailcnfg (4)

NAME
mailcnfg - initialization information for mail and nnail

DESCRIPTION

106

The /etc/mail/mailcnfg file contains initialization information for the mail and
nnail commands. This file must be created initially by the administrator. Each
entry in mai lcnfg consists of a line of the form

Keyword = Value

Leading whitespace, whitespace surrounding the equal sign, and trailing whi
tespace is ignored. Keyword may not contain embedded whitespace, but whitespace
may appear within Value. Undefined keywords or badly formed entries are silently
ignored. Lines beginning with "#" are ignored.

The mailcnfg file must be world readable.

Keyword Definitions
ADD_DATE If a message which originated on the local machine does not

have a Date: header, and ADD_DATE has a value, one will be
added.

DEBUG

CLUSTER

RENOTEFROM

FAILSAFE

If a message which originated on the local machine does not
have a From: header, and ADD_FROM has a value, one will be
added.

If a message is received which has no Received: header, and
ADD_RECEIVED has a value, one will be added.

Takes the same values as the -x invocation option of mail.
This provides a way of setting a system-wide debug/tracing
level. Typically DEBUG is set to a value of 2, which provides
minimal diagnostics useful for debugging mail and rmail
failures. The value of the -x mail invocation option will
override any specification of DEBUG in mailcnfg.

To identify a closely coupled set of systems by one name to
all other systems, set Value to the cluster name. This string is
used in place of the rather than the local system nodename
returned by uname(2), such as in the surrogate file processing
or for supplying the ••• remote from •.• information on the
From UNIX postmark header line.

This string may be set in the event that you wish to use a
slightly different string in the ••• remote from ••• informa
tion on the From header line UNIX postmark header line than
either the cluster name or system name.

In the event that the /var /mail directory is accessed via RFS
or NFS within a cluster (see CLUSTER above), provisions must
be made to allow for the directory not being available when
local mail is to be delivered (remote system crash, RFS or
NFS problems, etc.). Value is a string that indicates where to
forward the current message for delivery. Typically this is
the remote system that actually owns /var/mail. In this
way, the message is queued for delivery to that system when

mailcnfg (4)

it becomes available. For example, assume a cluster of sys
tems (sysa, sysb, sysc) where Ivar/mail is physically
mounted on sysc and made available to the other machines
via RFS or NFS. If sysc were to crash, the RFS /NFS
accessible Ivar/mail would become unavailable and local
deliveries of mail would go to Ivar lmail on the local sys
tem. When Ivar/mail is re-mounted via RFS/NFS, all mes
sages deposited in the local directory would be hidden and
essentially lost. To prevent this, if FAILSAFE is defined in
mailcnfg, mail and rmail check for the existence of
Ivar/mail/:saved, a required subdirectory. If this sub
directory does not exist, mail assumes that the RFS/NFS
accessible lvar/mail is not available and invokes the failsafe
mechanism of automatically forwarding the message to
Value. In this example Value would be sysc! %no The %n key
word is expanded to be the recipient name [see mail(1) for
details] and thus the message would be forwarded to
sysc!recipient _name. Because sysc is not available, the mes
sage remains on the local system until sysc is available, and
then sent there for delivery.

DEL_EMPTY_MFILE If not specified, the default action of mail and rmail is to
delete empty mailfiles if the permissions are 0660 and to
retain empty mailfiles if the permissions are anything else. If
Value is yes, empty mailfiles are always deleted, regardless
of file permissions. If Value is no, empty mailfiles are never
deleted.

DOMAIN This string is used to supply the system domain name in
place of the domain name returned by sysinfo(2).

SMARTERHOST This string may be set to a smarter host which may be refer
enced within the mail surrogate file via %X.

ARG_MAX The maximum size of the argument list and environment to
be used for surrogate commands. This overrides the kernel
settable ARG_MAX parameter. On most systems, the max
imum size will be 5120 bytes.

BURR_EXPORT A comma separated list of environment variables to be
passed through to surrogate commands.

CNFG_EXPORT A comma separated list of mail configuration variables to be
passed through to surrogate commands as environment vari
ables.

NOCOMPILEDSURRFILE
Normally, mail will create a compiled version of the surro
gate file, named letc/mail/Cmailsurr, whenever the sur
rogate file or configuration file changes, and then subse
quently use the compiled version. If this variable is set to
any value, mail will ignore the compiled surrogate file.

107

mailcnfg (4)

FILES

%mailsurr Jeyletter As described in mailsurr(4), certain pre-defined single letter
keywords are textually substituted in surrogate command
fields before they are executed. While none of the predefined
keyletters may be changed in meaning, new ones may be
defined to provide a shorthand notation for long strings
(such as /usr/lib/mail/surrcmd) which may appear
repeatedly within the mailsurr file. Upper case letters are
reserved for future use and will be ignored if encountered
here.

/etc/mail/mailcnfg
/etc/mail/mailsurr
/etc/mail/Cmailsurr
/var/mail/:saved
/usr/lib/mail/surrcmd

SEE ALSO

NOTES

108

mail(l), mailsurr(4), sysconf(3C), sysinfo(2), uname(2)

If /var/mail is accessed via RFS or NFS and the subdirectory /var/mail/:saved
is not removed from the local system, the FAILSAFE mechanism will be subverted.

mailsurr (4)

NAME
mailsurr - surrogate commands for routing and transport of mail

DESCRIPTION
The mailsurr file contains routing and transport surrogate commands used by the
mail command. Each entry in mailsurr has three (or four) whitespace-separated,
single quote delimited fields:

, sender' , recipient' , command' [' batch']

or a line that begins with either of

Defaults:
Translate-Defaults:

Entries and fields may span multiple lines, but leading whitespace on field con
tinuation lines is ignored. Fields must be less than 1024 characters long after expan
sion (see below). Case is always ignored for making comparisons.

The sender and recipient fields are regular expressions. If the sender and recipient
fields match those of the message currently being processed, the associated com
mand is invoked.

The command field may have one of the following forms:

A[ccept]
D[eny] [message]
L[ocal]
T[ranslate] [B", ••. ; S"' •.. ;P", •.. ;T", ..• ;L", ... ;] R=[I]string
< [B", ••• ;s= ••• ;c= ••• ;F= .•• ;] command
> [B= ••• ;w= ••• ;] command
E[rrors] [B= ••• ;w= ••• ;] command

The mailsurr file must be world readable. If a batching specification (B= ••• ;) is
given, then the batch field must also be given; this fourth field is discussed in the
"Batching" section.

Regular Expressions
The sender and recipient fields are composed of regular expressions (REs) which
are digested by the regexp(5) cOIlllile and advance procedures in the C library.
The regular expressions matched are those from ed(l), with simple parentheses ()
playing the role of \ (\) and the addition of the +, ? and I operators from egrep(l).
Any single quotes embedded within the REs must be escaped by prepending them
with a backslash or the RE is not interpreted properly.

The mail command prepends a circumflex (~) to the start and appends a dollar sign
($) to the end of each RE so that it matches the entire string. Therefore it would be
an error to use ~RE$ in the sender and recipient fields. To provide case insensi
tivity, all REs are converted to lower case before compilation, and all sender and
recipient information is converted to lower case before comparison. This conver
sion is done only for the purposes of RE pattern matching; the information con
tained within the message's header is not modified.

109

mailsurr (4)

110

The sub-expression pattern matching capabilities of regexp may be used in the
command field, that is, \ \n, where 1 :::; n:::; 9. Any occurrences of \ \n in the replace
ment string are themselves replaced by the corresponding parenthesized (...) sub
string in the matched pattern. The sub-expression fields from both the sender and
recipient fields are accessible, with the fields numbered 1 to 9 from left to right.

Accept and Deny Commands
Accept instructs rmail to continue its processing with the mailsurr file, but to
ignore any subsequent matching Deny. That is, unconditionally accept this message
for delivery processing. Deny instructs rmail to stop processing the mailsurr file
and to send a negative delivery notification, along with the optional message, to the
originator of the message. Whichever is encountered first takes precedence.

< Delivery command
The intent of a < command is that it is invoked as part of the transport and delivery
mechanism, with the ready-for-delivery message available to the command at its
standard input. As such, there are three conditions possible when the command
exits:

Success The command successfully delivered the message. What actually consti
tutes successful delivery may be different within the context of different
surrogates. The rmail process assumes that no more processing is
required for the message for the current recipient.

Continue The command performed some function (logging remote message
traffic, for example) but did not do what would be considered message
delivery. The rmail process continues to scan the mailsurr file looking
for some other delivery mechanism.

Failure The command encountered some catastrophic failure. The rmail pro
cess stops processing the message and sends to the originator of the
message a non-delivery notification that includes any stdout and
stderr output generated by the command.

The semantics of the < command field in the mailsurr file allow the specification of
exit codes that constitute success, continue, and failure for each surrogate command
individually. See the section below on "Exit State Specifications" for details.

Surrogate commands are executed by rmail directly. If any shell syntax is required
(metacharacters, redirection, and so on), then the surrogate command must be of
the form:

sh -c "shell command line . .. "

Special care must be taken to properly escape any embedded back-slashes and other
characters special to the shell as stated in the "Translate" section above.

If there are no matching < commands, or all matching < commands exit with a con
tinue indication, rmail attempts to deliver the message itself by assuming that the
recipient is local and delivering the message to Ivar/maillrecipient.

Translate Command
Translate allows optional on-the-fly translation of recipient address information.
The recipient replacement string is specified as R=string.

mailsurr (4)

For example, given a command line of the form

'.+' '([~!l+)@(.+)\.EUO\.ATT\.cam' 'Translate R=attmail!\\2!\\1'

and a recipient address of rob@sysa.EUO.ATT.COM the resulting recipient address
would be attmail!sysa!rob.

Should the first character after the equal sign be a 'I', the remainder of the string is
taken as a command line to be directly executed by rmail. If any sh(l) syntax is
required (metacharacters, redirection, and so on), then the surrogate command
must be of the form:

sh -c "shell command line . .. "

Special care must be taken to escape properly any embedded back-slashes and sin
gle or double quotes, since rmail uses double quoting to group whitespace delim
ited fields that are meant to be considered as a single argument to execl() [See
exec(2)]. As stated above, any occurrences of \ \n are replaced by the appropriate
substring before the command is executed.

It is assumed that the executed command will write one or more replacement
strings on stdout. The exit code of the command is examined to determine the
outcome of the translation:

Success

Failure

The command successfully translated the address. If the invoked com
mand does not return at least one replacement string (no output or just a
newline), the original address is not modified. If the original address
itself is returned as one of the translations, the translations are added to
the list of addresses and the original address is not modified.

The command encountered some catastrophic failure. Any translations
read from stdout will be used, but the rmail process will send to the
originator of the message a non-delivery notification that includes any
stderr output generated by the command.

The semantics of the Translate command field in the mailsurr file allow the
specification of exit codes that constitute success and failure for each surrogate com
mand individually. See the section below on "Exit State Specifications" for details.

The output of the translation command consists of one or more lines of output con
taining the new addresses, one or more per line, separated by white space. If batch
ing is enabled (see the section on "Batching" below), the output of the translation
command consists of the new addresses, but each line of output must begin with
the address for which that line of output is the translation.

This mechanism is useful for mailing list expansions. For example, the command
line

'.+' '(.+)' 'Translate R=lfindpath \\1'
allows local routing decisions to be made.

If the recipient address string is modified, mailsurr is rescanned from the begin
ning with the new addressees), and any prior determination of Accept (see above)
is discarded.

111

mailsurr (4)

112

When a recipient has been translated, the new recipient may again be passed
through the translation command for further translation. (Recursive mailing lists
are thus possible.) Some translation commands can guarantee that their output is
fully translated and cannot be further translated. For these commands, the state
specification T=1; should be given. (If the resulting address should not be pro
cessed further within the surrogate file, the state specification L=1; should be given.
Local delivery to Ivar/maillrecipient will then be attempted.)

If a recipient address translates into a recipient address previously seen, it will not
be placed onto the recipient list again unless the name was translated recursively
back to itself.

If the returned recipient address begins with an exclamation point "!" and E=1; is
given, then all leading exclamation points will be stripped. Because the default sur
rogate file treats leading exclamation points as special, careful consideration should
be given as to whether stripping should be performed. If a recipient address is
passed in to the translate command with a leading exclamation point, the exclama
tion point should not be stripped.

Local Command
Local instructs rmail to stop processing this address within the surrogate file and
attempt local delivery to Ivar/maillrecipient. It is equivalent to a Translate com
mand with the state specification L=1; and a null translation string.

Exit State Specifications
The syntax of the exit state specification is:

[state _id=ec[, ec[,. ..]];][state _id=ec[,ec[,. ..]]; [...]]]

Whitespace may precede the exit state specification, but must follow. state_ids can
be specified in any order. exit_state _id can have the value s, C, or F, and are used on
Delivery < and Translation commands. The special state _ id of T may be used in
Translation commands, and is described in that section. The special state _id of w
may be used in Postprocessing, > and Errors, commands, and is described in those
sections. The special state _id of B may be used to specify batched processing and is
described in the section "Batching".

eccan be:

any integer 0 $ n $ 255 [Negative exit values are not possible. See exit(2)
and wait(2).}

a range of integers of the form lower Jimit-upper _limit where the limits are ;:::
o and::;; 255, and

*, which implies anything

For example, a command field of the form:

'< S=1-5,99;C=O,12;F=*; command %R'

indicates that exit values of 1 through 5, and 99, are to be considered success, values
of 0 (zero) and 12 indicate continue, and that anything else implies failure.

It may be possible for ambiguous entries to exist if two exit states have the same
value, for example, S=12, 23;C=* ;F=23, 52; or S=* ;C=9;F=*;. To account for this,
rmail looks for explicit exit values (that is, not "*") in order of success, continue,
failure. Not finding an explicit match, rmail then scans for "*" in the same order.

mailsurr (4)

It is possible to eliminate an exit state completely by covering all possible values
with a different default or setting a state's value to an impossible number. (Since
exit values must be between 0 and 255 (inclusive), a value of 256 is a good one to
use.) For example, if you had a surrogate command that was to log all message
traffic, a mailsurr entry of

'(.+)' '(.+)' '<C=*; logger \\1 \\2'

could never indicate success or failure.

Defaults: and Translate-Defaults: Lines
If not explicitly supplied, default exit code settings are 8=0 i C=*; for < commands
and 8=0; F=*; for Translate commands. The default exit code settings for
delivery and translation commands may be redefined by creating a separate line in
the mailsurr file of one of these forms:

Defaults: [8= ... ; j[C= ... ; j[F= ... ; 1
Translate-Defaults: [8= ... ; j[F= ... ; 1

Defaults: lines are honored and the indicated default values redefined when the
line is encountered during the normal processing of the mailsurr file. Therefore,
to redefine the defaults globally, the Defaults: line should be the first line in the
file. It is possible to have multiple Defaults: lines in the mailsurr file, where
each subsequent line overrides the previous one.

> Postdelivery command
The intent of a > command is that it is invoked after a successful delivery to do any
post-delivery processing that may be required. Matching> commands are executed
only if some < command indicates a successful delivery (see the previous section) or
local delivery processing is successful. The mailsurr file is rescanned and all
matching> commands, not just those following the successful < command, are exe
cuted in order. The exit status of an > command is ignored.

Some commands exit quickly, while others may take a while. The rmail command
normally waits for the > command to exit before continuing its processing. If it is
better not to wait for a particular command, the state specification W=1; should be
given.

Errors command
The intent of a Errors command is that it is invoked after an unsuccessful delivery
to do any post-delivery processing that may be required. Matching Errors com
mands are executed only if some < or Translate command indicates a failed
delivery, or local delivery processing is unsuccessful. The mailsurr file is res
canned and all matching Errors commands, not just those following the failed < or
Translate command, are executed in order. The exit status of an Errors com
mand is ignored. The state specification W=1; may be used just as for the> com
mand.

Batching
Some commands may be combined together for multiple recipients. For example,
the delivery commands

113

mailsurr (4)

114

uux - sysa!rmail (tony)
uux - sysa!rmail (rob)

may be combined together into the single delivery command

uux - sysa!rmail (tony) (rob)

Note that there are essentially two parts to each of the above commands, the non
varying left-hand part, and the varying right-hand part. Combining two delivery
lines going to a common system just requires the use of the non-varying left-hand
side paired with all the remaining right-hand sides. Combining the commands
together allows for the more efficient delivery of mail.

Note also that there are two possible limitations to be imposed on such commands:
the maximum size of the command line as limited by the UNIX system, and the
maximum size of buffers used within the command. The first limitation is an
administerable kernel parameter, usually 5120 bytes, for the combination of the
parameters and environment (the command-line length limitation); the second limi
tation is a function of the command being used and varies from command to com
mand. For example, the internal buffers of most versions of uux limit the command
line to 1024 bytes. (Note also that there are limitations on both sides of the network;
even if the limit for uux were raised on the local side, the limit must remain at 1024
to be portable.)

To specify that a surrogate command is to be batched, the batching specification of
B=number is given along with any exit code specifications. The number is the max
imum size of the command line to be used. It may also be specified as *, in which
case the system command-line limitations are used. (The system command-line
limitations may be overridden by using the mailcnfg variable ARG_MAX.)

If batching is specified, then in addition to the command field, a fourth batch field
must also be specified. The command field specifies the non-varying left-hand part,
and the batch field specifies the varying right-hand part. For example, a specification
for uux might be:

'.+' '([A!@]+)!(.+)' '< B=1024; uux - \ \1!rmail' '(\\2)'

All surrogate commands which permit a UNIX command to be executed may be
batched.

Surrogate Command Keyletter Replacement.
Certain special sequences are textually-substituted in surrogate commands before
they are invoked:

'Yoe value of the Content-Type: header line if present.
%C "text" or "binary", depending on an actual scan of the con

tent. This is independent of the value of any Content-Type
header line encountered (useful when calling ckbinarsys.)

'Yon the local domain name. This will be either DOMAIN from
mailcnfg, or the value returned by sysinfo(2).

%H the size of the message header in bytes.
'YoL the local system name. This will be either CLUSTER from

mailcnfg or the value returned by uname.

mailsurr (4)

%1 value of the Content-Length: header line: the size of the mes-
sage body in bytes.

~oIl the recipient's name (address).
~oO the recipient's original address before any translation
~oR the full return path to the originator (useful for sending replies,

delivery failure notifications, and so on)
%S the value of the Subj ect: header line, if present.
%u the local system name, as returned by uname.
~oX the value of SMARTERHOST in mailcnfg.
\ \n as described above, the corresponding (...) substring in the

matched patterns. This implies that the regexp limitation of 9
substrings is applied to the sender and recipient REs collec
tively.

~okeyletters Other lowercase keyletters as specified in
/etc/mail/mailcnfg. See mailcnfg(4).

The sequences ~oL, %U, ~oD, and ~okeyletters are permitted within the sender and reci
pient fields as well as in the command fields.

Mail Surrogate Examples
Some examples of mail surrogates include the distribution of message-waiting
notifications to LAN-based recipients and lighting Message-Waiting Lamps, the
ability to mail output to printers, and the logging of all rmail requests between
remote systems (messages passing through the local system). The following is a
sample mai1surr file:

Same common remote mail surrogates follow. To activate any
or all of them, remove the '#' (comment indicators) from
the beginning of the appropriate lines. Remember that they
will be tried in the order they are encountered in the file,
so put preferred surrogates first.

Prevent all shell meta-characters
, • +' , • * [, ; & I ~ <> ()] • *' 'Deny'

Map all names of the form local-machine!user -> user
'.+' '~oL! (.+)' 'Translate R=\\l'

Map all names of the form uname!user -> user
Must be turned on when using mail in a cluster environment.
#' .+' '%U! (.+)' 'Translate R=\\l'

Map all names of the form user@host -> host!user
'.+' '([~!@]+)@(.+)' 'Translate R=\\2!\\1'

Map all names of the form host.uucp!user -> host!user
, .+' , ([~ !@]+)\\.uucp! (.+) , 'Translate R=\\l! \\2'

Map all names of the form host.local-domain!user -> host!user
DOMAIN= within /etc/mail/mailcnfg will override sysinfo(2).
'.+' '([~!@]+)~oD!(.+)' 'Translate R=\\l!\\2'

115

mailsurr (4)

116

Allow access to 'attmail' from remote system 'sysa'
'sysa!.*' 'attmail! .+' 'Accept'

Deny access to 'attmail' from all other remote systems
'.+!.+' 'attmail!.+' 'Deny No access to AT&T Mail'

Send mail for 'laser' to attached laser printer
Make certain that failures are reported via return mail.
'.+' 'laser' '< S=O;F=*; lp -dlaser'

Run all local names through the mail alias processor

'Translate B=*; R=lmailalias' '~on'

If you wish to support a user name space of user@local-domain in
addition to user@host.local-domain, then add the following translation,
where DOMAIN is the local domain, and HOST.DOMAIN is where to send the
mail. Note that ~oD contains a leading dot, so it cannot be used in the
first regular expression.
#'.+' '!DOMAIN!(.+)' 'Translate R=!HOST"/oD!\1'

For remote mail via nusend
#'.+' ,([A!]+)!(.+), '< nusend -d \\1 -s -e -!"rmail \\2"-'

For remote mail via usend
'.+' ,([A!]+)!(.+),

'< usend -s -d\\1 -uNoLogin -!"rmail \\2" - ,

For remote mail via uucp
'.+' '([A!@]+)!.+, '<S=256;C=O;

ckbinarsys -t ~oC -s \\1'
'.+' ,([A!@]+)!(.+), '< uux - \\1!rmail (\\2)'

For remote mail via smtp
'< smtpqer %R \\1 \\2'

If none of the above work, then let a router change the address.
#' .+' '.*[!@].*' 'Translate R=lsmail -A %n'

If none of the above work, then ship remote mail off to a smarter host.
Make certain that SMARTERHOST= is defined within /etc/mail/mailcnfg.
#'.+' '.*[!@].*' 'Translate R=~aX!~on'

If you have a flat name space across multiple machines, but user-names only
exist on disjoint machines, this entry will forward any name not known
locally off to the given host.

'Translate T=1; R=llocalmail -p -S @HOST.DOMAIN' '%n'

Log successful message deliveries
, (• +)' '(. +)' '> logger \\1 \\2'

mailsurr (4)

Note that invoking mail to read mail does not involve the mailsurr file or any sur
rogate processing.

Security
Surrogate commands execute with the permissions of rmail (user ID of the invoker,
group ID of mail). This allows surrogate commands to validate themselves, check
ing that their effective group ID was mail at invocation time. This requires that all
additions to mailsurr be scrutinized before insertion to prevent any unauthorized
access to users' mail files. (Note that some versions of the shell turn off the effective
group ID. If the surrogate command is a shell script and it requires group mail per
missions, the shell may be explicitly invoked in the surrogate command with the -p
option: sh -p shell. script.) All surrogate commands are executed with the path
/usr/lib/mail/surrcmd:/usr/bin, and an environment consisting of the
SHELL=/usr/bin/sh, HOME, TZ and LOGNAME variables. Other environment vari
ables may be passed by listing them in the mailcnfg variable SURR_EXPORT as a
comma-separated list (e.g. SURR_EXPORT=TERM,LINES,COLUMNS).

Debugging New mailsurr Entries

FILES

To debug mailsurr files, use the -T option of the mail command. The -T option
requires an argument that is taken as the pathname of a test mailsurr file. If null
(as in -T ""), the system mailsurr file is used. Enter

mail -T test yle recipient

The result of using the -T option is displayed on standard output and shows the
inputs and resulting transformations as mailsurr is processed by the mail com
mand for the indicated recipient.

Mail messages will never be sent or delivered when using the -T option.

The -d and -# option may also be used to debug the system surrogate files.

/etc/mail/mailsurr
/usr/lib/mail/surrcmd/* surrogate commands
/etc/mail/mailcnfg initialization information for mail

SEE ALSO

NOTES

ckbinarsys(lM), ed(l), egrep(l), exec(2), exit(2), mail(l), mail (1),
mailalias(l), mailcnfg(4), popen(3S), regexp(5), sh(l), smtpqer(lM),
sysinfo(2), uname(l), uux(lC), wait(2)

It would be unwise to install new entries into the system mailsurr file without ver
ifying at least their syntactical correctness via 'mail -T ... ' as described above.

117

mapchan(4)

NAME
mapchan - format of tty device mapping files

DESCRIPTION
mapchan configures the mapping of information input and output of UNIX.

Each unique channel map requires a 2048-byte buffer for mapping the input and
output of characters. No buffers are required if no channels are mapped.

A method of sharing maps is implemented for channels. that have the same map in
place. Each additional, unique map allocates an additional buffer. The maximum
number of map buffers available on a system is configured in the kernel, and is
adjustable via the link kit NEMAP parameter. Buffers of maps no longer in use are
returned for use by other maps.

EXAMPLES OF A MAP FILE

118

The internal character set used by UNIX System V /386 is defined by the right
column of the input map, and the first column of the output map in place on that
line. The default internal character set is the 8-bit ISO 8859/1 character set, which is
also known as dpANS X3.4.2 and ISO /TC97 /SC2. It supports the Latin alphabet
and can represent most European languages.

Any character value not given is assumed to be a straight mapping. Only the differ
ences are shown in the mapfile [see mapchan(lM)]. The left hand column must be
unique. More than one occurrence of any entry is an error. Right hand column
characters can appear more than once. This is many to one mapping. Nulls can be
produced with compose sequences or as part of an output string.

It is recommended that no mapping be enabled on the channel used to create or
modify the mapping files. This prevents any confusion of the actual values being
entered due to mapping. It is also recommended that numeric rather than character
representations be used in most cases, as these are not likely to be subject to map
ping. Use comments to identify the characters represented. Refer to the ascii(5)
manual page and hardware reference manual of the device being mapped for the
values to assign.

#sharp/pound/cross-hatched is the comment character
#however, a quoted # ('#') is Ox23, not a comment

#beep, input, output, dead, compose and control
#are special keywords and should appear as shown.

beep
input

ab
cd

dead p
qr
s t

dead u
vw

#sound bell when errors occur

P followed by q yields r.
p followed by s yields t.

u followed by v yields w.

mapchan(4)

compose x
yza

x is the compose key (only one allowed).

BCD

output
ef
g h i j
klmno

control

input
El

output
FG2

x followed b¥ B and C yields D.

e is mapped to f.
g is mapped to hij- one to many.
k is mapped Imno

The control must be last

The character E is followed b¥ 1 or more
unmapped character

The characters FG are followed b.Y 2 more
unmapped characters

All of the single letters above preceding the control section must be in one of these
formats:

56
045
Oxfa
b'
'\076'
'\x4a'

decimal
octal
hexadecimal
quoted char
quoted octal
quoted hex

All of the above formats are translated to a single byte values.

The control sections (which must be the last in the file) contain specifications of
character sequences which should be passed through to or from the terminal device
without going through the normal mapchan processing. These specifications consist
of two parts: a fixed sequence of one or more defined characters indicating the start
of a no-map sequence, followed by a number of characters of which the actual
values are unspecified.

To illustrate this, consider a cursor-control sequence which should be passed
directly to the terminal without being mapped. Such a sequence would typically
begin with a fixed escape sequence instructing the terminal to interpret the follow
ing two characters as a cursor position; the values of the following two characters
are variable, and depend on the cursor position requested. Such a control sequence
would be specified as:

E= 2 # CUrsor control: escape = <x> <y>

There are two subsections under the control section: the input section, which is
used to filter data sent from the terminal to UNIX System V /386, and the output
section, which is used to filter data sent from UNIX System V /386 to the terminal.
The two fields in each control sequence are separated by white space, that is the
SPACE or TAB characters. Also the # (HASH) character introduces a comment,
causing the remainder of the line to be ignored. Therefore, if any of these three
characters are required in the specification itself, they should be entered using one
of alternative means of entering characters, as follows:

119

mapchan(4)

AX The character produced by the terminal on pressing the CONTROL and
x keys together.

E or \ The ESCAPE character, octal 033.

\c Where c is one of b, f, 1, n, r or t, produces BACKSPACE, FORMFEED,
LINEFEED, NEWLINE, CARRIAGE RETURN or TAB characters, respec
tively.

o Since the NULL character can not be represented, this sequence is not
stored as the character with octal value 0200, which behaves as a NULL
on most terminals.

o or On Specifies the octal value of the character directly.

Followed by any any other character is interpreted as that character.
This can be used to enter SPACE, TAB, or HASH characters.

DIAGNOSTICS

FILES

NOTES

120

mapchan performs these error checks when processing the mapfile:

more than one compose key
characters mapped to more than one thing
syntax errors in the byte values
missing input or output keywords
dead or compose keys also occurring in the input section
extra information on a line
mapping a character to null
starting an output control sequence with a character that is already mapped

If characters are displayed as the 7-bit value instead of the 8-bit value, use stty -a
[see stty(l)] to verify that -strip is set. Make sure input is mapping to the 8859
character set. Dead and compose sequences are input mapping and should be
going to 8859.

/etc/defau1t/mapchan
/usr/1ib/mapchan/*

Some non-U.S keyboards and display devices do not support characters commonly
used by UNIX command shells and the C programming language. Do not attempt
to use such devices for system administration tasks.

Not all terminals or printers can display all the characters that can be represented
using this utility. Refer to the device's hardware manual for information on the
capabilities of the peripheral device.

Use of mapping files that specify a different internal character set per-channel, or a
set other than the 8-bit ISO 8859 set supplied by default can cause strange side
effects. It is especially important to retain the 7-bit ASCn portion of the character
set [see ascii(5)] UNIX System V /386 utilities and applications assume these
values. Media transported between machines with different internal code set map
pings may not be portable as no mapping is performed on block devices, such as
tape and floppy drives. trchan can be used to translate from one internal character
set to another.

mapchan(4)

Do not set ISTRIP [see stty(l)] on channels that have mapping that includes eight
bit character set.

see ALSO
ascii(5), keyboard(7), lp(7), mapchan(lM), mapkey(lM), stty(l), trchan(l),
tty(7)

121

Master (4)

NAME
Master - generic configuration information for a kernel module

SYNOPSIS
Master

DESCRIPTION

122

One of the ID /TP kernel configuration files, a Master file describes a kernel module
that can potentially be configured into the system. Configuration information for
the individual kernel modules that are actually to be included in the next system to
be built is described in the System file [see System(4»).

When the Master component of a module's Driver Software Package (DSP) is
installed, idinstall(lM) stores the module's Master file information in
/etc/conf/mdevice.d/module-name, where the file module-name is the name of the
module being installed. Package scripts should never access
/etc/conf/mdevice.d files directly; only the idinstall and idcheck(lM)
commands should be used.

Master files contain lines of the form:

$version version-number
$entry entry-point-list
$depend module-name-list
$modtype loadable-module-type-name
module-name prefix characteristics order bmaj cmaj

Blank lines and lines beginning with '#' or '*' are considered comments and are
ignored.

The first four types of lines are as follows:

$version

$entry

If present in the file, this line must appear as the first non
comment line. The line specifies the version number of the
Master file format. The Master file format being described here
is version 1. If this line is omitted, version 0 (the old Master file
format) is assumed.

Specifies the names of the entry point routines included in the
module. One or more $entry lines may be used to specify the
entry point names. If a single $entry line specifies more than one
entry point name, the multiple names must be separated by white
space.

The function names are constructed by appending the entry point
name to the module's prefix. Only functions explicitly listed on
$entry lines will be called directly by the kernel. The following
entry points are supported (note that some of the supported entry
points apply only to certain module types):

_init chpoll close core exec halt init intr ioctl
kenter kexit mmap msgio open poll print read segmap
size start strategy write

$depend

Master (4)

Used for dynamically loadable kernel modules only, the line
specifies the names of the loadable modules (if any) that contain
symbols referenced by this loadable module. One or more
$depend lines may be used to specify the module names. If a
single $depend line specifies more than one module name, the
multiple names must be separated by white space.

$modtype This line is used for dynamically loadable kernel modules only.
The line specifies the character string (maximum of 40 characters,
including white space characters) to be used to identify the type
of this module in error messages.

The last line of the Master file contains the follOWing six fields. Each field must be
separated by white space and specify a value.

module-name

prefix

characteristics

Specifies the internal name of the module (maximum of 14 char
acters). The first character must be alphabetic; the remaining
characters may be letters, digits or underscores.

Specifies the character string prepended to all entry-point rou
tines and variable names associated with this module (maximum
of 8 characters). During the kernel build process, an all upper
case version of this string will also be used to construct the
#define symbolic constants accessible to the module's Space.c
file [see idbuild(lM)].

If the module has no entry-points or special variables, this field
may contain a dash; in this case, no #define symbols will be gen
erated.

Defines a set of flags that indicate the characteristics of the
module. If none of the characteristics listed below apply to the
module, the characteristics field must contain a dash. Valid field
values are:

b The module is a 'block' device driver.

c The module is a (STREAMS or non-STREAMS) character
device driver.

d The module is a dispatcher class module.

e The module is an exec object-specific module.

h The module controls hardware, but is not a device driver;
that is, the module requires hardware I/O resources (for
example, interrupts or bus addresses), but does not
require switch table entries.

k Keep majors flag. This flag is intended for device drivers
supplied with the base system only. It indicates that
idinstall should use the major numbers specified by the
bmaj and/or cmaj fields in the module's Master file,
instead of automatically assigning major numbers to the
module. These reserved major numbers must also be
specified in the res_major file [see res_major (4)].

123

Master (4)

order

bmaj

cmaj

124

m The module is a STREAMS module.

o The module may have only one System file entry.

r The module is required in all configurations of the kernel.
This flag is intended for device drivers supplied with the
base system only. Note that, once made, a required
module's device nodes (special files in the Idev directory)
are not removed [see idmknod(lM)].

t The module is a non-STREAMS tty driver.

u The module is a device driver which requires identical
block major numbers and character major numbers. Note
that both the b and c flags must also be set when using
this flag; if they are not set, the u flag is ignored.

D The module is a hardware module which can share its
DMA channel(s) with other drivers.

F The module is a VFS file system module.

o The lOA range of this device may overlap that of another
device.

S The module is a STREAMS driver and/or STREAMS
module.

Specifies a decimal numeric value used to control the order by
which the module's init and start routines are called, and the
order of execsw entries. Higher-numbered values come first. For
most modules, the order is unimportant, and this field should be
O.

Specifies the block major number(s) for this module. This field
should contain either a single decimal number, or two numbers
separated by a dash to indicate an inclusive range of values
("multiple majors"). The (first) value should normally be zero
prior to installation with idinstall(lM). For example, to
request four major numbers, this field would be initialized to
"0-3" in the DSP Master file.

If the b flag is set-and the k flag is not set-in the characteristics
field, idinstall will automatically assign block major numbers
for the device. If the b flag and the k flags are both set, the bmaj
field value will be used.

Specifies the character major number(s) for this module. This
field should contain either a single decimal number, or two
numbers separated by a dash to indicate an inclusive range of
values ("multiple majors"). The (first) value should normally be
zero prior to installation with idinstall(lM). For example, to
request four major numbers, this field would be initialized to
"0-3" in the DSP Master file.

NOTES

Master (4)

If the c flag is set-and the k flag is not set-in the characteristics
field, idinstall will automatically assign character major
numbers for the device. If the c flag and the k flags are both set,
the cmaj field value will be used.

Specifying STREAMS Devices and Modules
STREAMS modules and drivers are treated in a slightly different way from other
drivers, and their configuration reflects this difference. To specify a STREAMS
device driver, its Master file should specify both an s and a c flag in the characteris
tics field. This indicates that it is a STREAMS driver and that it requires an entry in
the cdevsw table, where STREAMS drivers are normally configured into the system.

A STREAMS module that is not a device driver, such as a line discipline module,
requires both an s and an m flag in the characteristics field of its Master file; it should
not specify a c flag, as a device driver does.

In cases where a module contains both a STREAMS module and a STREAMS
driver, the s, c and m flags should all be specified.

Compatibility Considerations
For compatibility with existing add-on DSP packages, idinstall also accepts the
old (version 0) mdevice file format, which had a single non-comment line that con
tained the following nine fields:

name Juncs characteristics prefix bmaj cmaj min_unit max_unit dmachan

When presented with a version 0 mdevice file, idinstall converts the file to
version 1 Master file format. During mdevice file conversion:

The Juncs field is converted into Sentry lines

The following characteristics flags are ignored as obsolete: a, i, n, s, G,
H, M, N, R (the f flag in the version 0 mdevice file will still be recognized,
but should not be used in a version 1 Master file)

The min _unit and max_unit fields are ignored as obsolete

The dmachan field is moved to the System file

Because cross-dependencies exist in the version 0 mdevice and sdevice files for
exec modules, idinstall cannot convert these files to version 1 files. They must be
converted manually before using idinstal1.

Note that idinstall also accepts obsolete mfsys files and converts them to version
1 Master file format.

SEE ALSO
idbuild(lM), idcheck(lM), idinstall(lM), Master(4), modadmin(lM),
res_major(4), Space.c(4), system(4)

125

menu (4)

NAME
menu - form description file for menu(l) command

DESCRIPTION
menu is a menu and form generator that creates file-driven, full-screen forms and
menus for accepting user input and displaying information. The form or menu to
be displayed is specified in a form description file that allows text, lists, input fields,
contents of files, and output from commands to be displayed.

The form description file consists of a number of keywords, each denoting the start
of a new section of the form description. Each section of the form description
corresponds to a different part of the menu described. For example, there is a key
word .top which specifies that the text that follows will be placed at the top of the
screen. The text in each section of the form description file can be hard-coded in the
form description file, or it may be redirected from a file or command.

110 Redirection
In the form description file, text may be included from another file. This is handled
by specifying a less than «) character in the first column of the form description
file, followed by the name of a file to include. The text included from the file will be
included verbatim; that is, no keywords will be processed, and no I/O redirection
or command substitution will be performed on the input redirected from a file.

Command Substitution
In the form description file, text may be the output from a shell command. This is
handled by enclosing a command to be executed in backquotes. Note that no more
than one command will be parsed per input line of the form description file, and no
command may span more than one line of the form description file. Again, the text
included from the output of the command will be included verbatim; that is, no
keywords will be processed, and no I/O redirection or command substitution will
be performed on the input given by the output of a command.

Comments
The form description file may contain comments, which will be ignored. Comment
lines are specified by placing a pound sign (#) in the first column.

SEE ALSO
menu(l), menu_colors. sh(l)

126

mkdev(4)

NAME
mkdev - file format for the pdimkdev utility

DESCRIPTION
The pdimkdev utility is executed when the system transitions from single-user to
multi-user mode to create special device file entries for any newly configured PDI
peripheral hardware. The pdimkdev utility allows for provision of special device
file naming conventions by the application.

The naming convention for a PDI peripheral device is described in a mkdev tem
plate file. Additional mkdev template files may be provided for new device types
that require a different naming convention than the one already being used.

Template File Overview
Each device type has a corresponding template file that is, by convention, placed in
the directory /etc/scsi/mkdev.d. The template file allows for special device files
to be created in up to four directories. These are the character and block special
directories and the corresponding simple administration directories. The permis
sions of the special device files may also be specified.

Device Naming Template Syntax
The following tables show the syntax for the mkdev template files. The lines up to
the separator "DATA" are for user messages that may be device specific.

STRING MEANING

QUERY If the QUERY string in the template file is a string other than
"-", then the query will be issued to the user under low inode
conditions. The set of device files to be created will be deter-
mined based on the response. The only currently known
application for this feature is to determine whether a disk
device is a boot device.

POSTMSG The POSTMSG string is printed after the naming of a new
device. For SCSI tape devices, this message is "-", which
mkdev ignores. For disk devices, the message instructs the
user to use sysadm partitioning if necessary.

The next line provides the directory names for the block and character devices as
well as the simple administration equivalents for these. On the remaining lines the
first three fields provide the key, minor number and mode. The fourth and fifth
fields provide, respectively, the block and character device files. The sixth and
seventh fields provide the block and character simple administration names, which
are linked to the files in fields four and five, respectively. Below is a key showing
the use and meaning of characters and keywords in the templates that follow.

127

mkdev(4)

KEY The key field is a single character from the set "_", "M", or
"Y". The meanings are explained below.

Y Under low inode conditions (less than 200 available in the root
filesystem) these device files will be created if answer to
QUERY is "yes". For disks, this will denote Logical Unit (LU) is
bootable and files must be created for a bootable LU.

M Device file is mandatory and is created in low inode condi-
tions.

- Special device file is to be created under normal situations
(that is, more than 200 available inodes on the root filesystem).

Minor Number Calculation
The information available to the pdimkdev utility about each device is host adaptor
slot number (C), target controller number (T), Logical Unit number (L), and major
number. A formula, using the information available to the pdimkdev utility, is pro
vided in the template file and is used to generate the minor number. The major and
minor number are used in calls to mknod(2) to create the special device file.

STRING MEANING

MINOR : [constant I ciT I L] [+1 xl *] MINOR The minor field is a
string that may contain any of the characters 'C', 'T', or 'L'.
When calculating the minor number, the values for these vari-
ables are substituted in the expression given in the string. The
expression for the minor number is evaluated right to left.
(For example, 3+L*16 is 19 when L=l)

C Host adaptor slot number.

T Target controller SCSI 10.

L Logical Unit number.

REFERENCES
pdimkdev(lM)

128

mnttab(4)

NAME
mnttab - mounted file system table

SYNOPSIS
#include <sys/mnttab.h>

DESCRIPTION

NOTES

The file /etc/mnttab contains information about devices that have been mounted
by the mount command. The information is in the following structure, defined in
sys/mnttab.h:

struct mnttab
char ~t_special;

char *mnt_mountp;
char *mnt_fstype;
char *mnt_mntopts;
char ~t_time;

};

The fields in the mount table are space-separated and show the block special device,
the mount point, the file system type of the mounted file system, the mount options,
and the time at which the file system was mounted.

Do not store information in the mnttab file other than the fields described above;
fields may be added to this file in future releases and are reserved for future use.

SEE ALSO
getmntent(3C), mount (1M), setmnt(lM)

129

Mtune(4)

NAME
Mtune - tunable parameter definitions

SYNOPSIS
Mtune

DESCRIPTION

NOTES

One of the ID /TP kernel configuration files, an Mtune file contains definitions of
tunable parameters, including default values, for a kernel module type. System
specific tunable values are stored in stune. When the Mtune component of a
module's Driver Software Package (DSP) is installed, idinstall(lM) stores the
module's Mtune file information in /etc/conf/mtune.d/module-name, where the
file module-name is the name of the module being installed. Package scripts should
never access /etc/conf/mtune.d files directly; only the idinstall and idtune
commands should be used.

Each tunable parameter is specified on a separate line of the form:

parameter-name default-value minimum-value maximum-value

All fields are positional and must be separated by white space. Blank lines and
lines beginning with '#' or I.' are considered comments and are ignored.

The Mtune file fields are:

parameter-name A string (maximum of 20 characters) used to construct the
preprocessor #defines that pass the value for this parameter to
the system when the system is built [see Space. c(4)].

default-value Specifies the default value for this tunable parameter. If the value
is not overridden by the stune(4) file, this value will be used
when the system is built.

minimum-value Specifies the minimum allowable value for this tunable parame
ter. If the parameter is set in the stune(4) file, the configuration
tools will check that the value specified in the stune file is equal
to or greater than this value.

maximum-value Specifies the maximum allowable value for this tunable parame
ter. If the parameter is set in the stune(4) file, the configuration
tools will check that the value specified in the stune file is equal
to or less than this value.

For detailed information on Mtune parameters, refer to the advanced features sec
tions on tunable parameters in your system administration documentation.

Compatibility Considerations

130

For compatibility with existing add-on DSP packages, idbuild(lM) maintains a flat
file, /etc/conf/cf .d/mtune, which contains all of the tunable parameters. Pack
ages may read this file to find existing values, and may add new tunables to the file.
This mechanism is discouraged, however; new packages should use the idinstall
and idtune commands.

Mtune(4)

SEE ALSO
idbuild(lM), idinstall(lM), idtune(lM), Space. c(4), stune(4)

131

netconfig (4)

NAME
netconfig - network configuration database

SYNOPSIS
#include <netconfig.h>

DESCRIPTION

132

The network configuration database, /etc/netconfig, is a system file used to store
information about networks connected to the system and available for use. The
netconfig database and the routines that access it [see getnetconfig(3N)] are
part of the UNIX System V Network Selection component. The Network Selection
component also includes the environment variable NETPATH and a group of routines
that access the netconfig database using NETPATH components as links to the
netconfig entries. NETPATH is described in sh(l); the NETPATH access routines are
discussed in getnetpath(3N).

netconfig contains an entry for each network available on the system. Entries are
separated by newlines. Fields are separated by whitespace and occur in the order
in which they are described below. Whitespace can be embedded as "\blank" or
"\tab." Backslashes may be embedded as "\ \". Each field corresponds to an ele
ment in the struct netconfig structure. struct netconfig and the identifiers
described on this manual page are defined in lusr I include/netconfig . h.

network ID
A string used to uniquely identify a network. network ID consists of non
null characters, and has a length of at least 1. No maximum length is
specified. This namespace is locally significant and the local system
administrator is the naming authority. All network IDs on a system must be
unique.

semantics
The semantics field is a string identifying the "semantics" of the network,
that is, the set of services it supports, by identifying the service interface it
provides. The semantics field is mandatory. The following semantics are
recognized.

tpi_clts

tpi_cots

Transport Provider Interface, connectionless

Transport Provider Interface, connection oriented

tpi_cots_ord Transport Provider Interface, connection oriented, supports
orderly release.

tpi_raw Transport Provider Interface, raw

flag The flag field records certain two-valued ("true" and "false") attributes of
networks. flag is a string composed of a combination of characters, each of
which indicates the value of the corresponding attribute. If the character is
present, the attribute is "true." If the character is absent, the attribute is
"false." "-" indicates that none of the attributes is present. Two characters
are currently recognized:

v Visible ("default") network. Used when the environment variable
NETPATH is unset.

netconfig (4)

b Enable RPC broadcast.

protocol family
The protocol family and protocol name fields are provided for protocol-specific
applications.

The protocol family field contains a string that identifies a protocol family.
The protocol family identifier follows the same rules as those for network IDs,
that is, the string consists of non-null characters; it has a length of at least 1;
and there is no maximum length specified. A" -" in the protocol family field
indicates that no protocol family identifier applies, that is, the network is
experimental. The following are examples:

loopback Loopback (local to host).
inet Internetwork: UDP, TCP, and so on
implink ARPANET imp addresses
pup PUP protocols: for example, BSP
chaos MIT CHAOS protocols
ns XEROX NS protocols
nbs NBS protocols
ecma European Computer Manufacturers Association
datakit DATAKIT protocols
ccitt CCITT protocols, X.2S, and so on
sna IBMSNA
decnet DECNET
dli Direct data link interface
lat LAT
hylink NSC Hyperchannel
appletalk Apple Talk
nit Network Interface Tap
ieee802 IEEE 802.2; also ISO 8802
osi Umbrella for all families used by OSI (for example,

x25
osinet
gosip

protocol name

protosw lookup)
CCITT X.2S in particular
API = 47, IDI = 4
U.S. Government OSI

The protocol name field contains a string that identifies a protocol. The proto
col name identifier follows the same rules as those for network IDs, that is, the
string consists of non-NULL characters; it has a length of at least 1; and there
is no maximum length specified. The following protocol names are recog
nized. A" -" indicates that none of the names listed applies.

tcp Transmission Control Protocol

udp User Datagram Protocol

icmp Internet Control Message Protocol

network device
The network device is the full pathname of the device used to connect to the
transport provider. Typically, this device will be in the Idev directory. The
network device must be specified.

133

netconfig (4)

FILES

directory lookup libraries
The directory lookup libraries support a "directory service" (a name-to
address mapping service) for the network. This service is implemented by
the UNIX System V Name-to-Address Mapping feature. If a network is not
provided with such a library, the netdir feature will not work. A" -" in this
field indicates the absence of any lookup libraries, in which case name-to
address mapping for the network is non-functional. The directory lookup
library field consists of a comma-separated list of full pathnames to dynami
cally linked libraries. Commas may be embedded as "\, "; backslashs as
"\ \".

Lines in /etc/netconfig that begin with a sharp sign (#) in column 1 are treated as
comments.

The struct netconfig structure includes the following members corresponding
to the fields in in the netconfig database entries:

char * nc_netid Network rD, including NULL terminator

unsigned long nc_semantics

unsigned long nc_flag

char * nc-protofmly

char * nc-proto

char * nc_device

unsigned long nc_nlookups

char ** nc_lookups

unsigned long nc_unused[9]

Semantics

Flags

Protocol family

Protocol name

Full pathname of the network device

Number of directory lookup libraries

Full pathnames of the directory lookup
libraries themselves

Reserved for future expansion (not advertised
to user level)

The nc_semantics field takes the following values, corresponding to the semantics
identified above:

NC_TPI_CLTS
NC_TPI_COTS
NC_TPI_COTS_ORD
NC_TPI_RAW

The nc_flag field is a bitfield. The following bit, corresponding to the attribute
identified above, is currently recognized. NC_NOFLAG indicates the absence of any
attributes.

NC_VISIBLE

/etc/netconfig
/usr/include/netconfig.h

SEE ALSO

134

getnetconfig(3N), getnetpath(3N), icmp(7), ip(7), netconfig(4),
netdir_getbynameO [see netdir (3N) 1

netdrivers (4)

NAME
netdri vers - data file for networking boards to protocols mappings

SYNOPSIS
/etc/confnet.d/netdrivers

DESCRIPTION

Files

The netdrivers file contains a list of hardware devices installed on the system and
the protocols mapped to each board. The format of the file is:

<device><whitespace><protocol>

where <device> is the name of the device in /dev and <protocol> is a string matching
the directory name in / etc / confnet . d where the conf igure script for the proto
col can be found. Multiple lines will exist for any board that is being used for mul
tiple protocols. Lines starting with "#" will be ignored.

Manipulation of the netdri vers file should be via the net info command.

/etc/confnet.d/netdrivers

REFERENCES
generic configure(lM),INET-specific configure(lM), protocol-specific
configure(lM), interface(4), netdrivers(4), netinfo(lM)

135

netmasks (4)

NAME
netmasks - network mask data base

DESCRIPTION
The netmasks file contains network masks used to implement IP standard subnet
ting. For each network that is subnetted, a single line should exist in this file with
the network number, any number of SPACE or TAB characters, and the network
mask to use on that network. Network numbers and masks may be specified in the
conventional IP '.' notation (like IP host addresses, but with zeroes for the host
part). For example,

128.32.0.0 255.255.255.0

can be used to specify that the Class B network 128.32.0.0 should have eight bits of
subnet field and eight bits of host field, in addition to the standard sixteen bits in
the network field.

SEE ALSO
ifconfig(lM)

136

netrc(4)

NAME
netrc - file for ftp remote login data

DESCRIPTION
The . netrc file contains data for logging in to a remote host over the network for
file transfers by ftp(l). This file resides in the user's home directory on the
machine initiating the file transfer. Its permissions should be set to disallow read
access by group and others [see clunod(l)].

The following tokens are recognized; they may be separated by SPACE, TAB, or NEW
LINE characters:

machine name
Identify a remote machine name. The auto-login process searches the
. netrc file for a machine token that matches the remote machine specified
on the ftp command line or as an open command argument. Once a match
is made, the subsequent . netrc tokens are processed, stopping when the
EOF is reached or another machine token is encountered.

login name
Identify a user on the remote machine. If this token is present, the auto
login process will initiate a login using the specified name.

password string
Supply a password. If this token is present, the auto-login process will sup
ply the specified string if the remote server requires a password as part of
the login process. Note: if this token is present in the . netrc file, ftp will
abort the auto-login process if the .netrc is readable by anyone besides the
user.

account string
Supply an additional account password. If this token is present, the auto
login process will supply the specified string if the remote server requires an
additional account password, or the auto-login process will initiate an ACCT
command if it does not.

macdef name
Define a macro. This token functions as the ftp macdef command func
tions. A macro is defined with the specified name; its contents begin with
the next .netrc line and continue until a NULL line (consecutive NEWLINE
characters) is encountered. If a macro named init is defined, it is automati
cally executed as the last step in the auto-login process.

EXAMPLE

FILES

A . netrc file containing the following line:

machine ray login demo password mypassword

allows an autologin to the machine ray using the login name demo with password
mypassword.

- / .netrc

137

netrc(4)

SEE ALSO
chmod(l), ftp(l), ftpd(lM)

138

networks (4)

NAME
networks - network name data base

DESCRIPTION

FILES

The networks file contains information regarding the known networks which
comprise the DARPA Internet. For each network a single line should be present
with the following information:

official-network-name network-number aliases

Items are separated by any number of SPACE and/ or TAB characters. A '#' indicates
the beginning of a comment; characters up to the end of the line are not interpreted
by routines which search the file. This file is normally created from the official net
work data base maintained at the Network Information Control Center (NrC),
though local changes may be required to bring it up to date regarding unofficial
aliases and/ or unknown networks.

Network number may be specified in the conventional ' .' notation (for example,
193.4.56.0) using the inet_network routine from the Internet address manipula
tion library, inet(7). Network names may contain any printable character other
than a field delimiter, NEWLINE, or comment character.

The networks file allows the usage of symbolic names instead of an IP address in
the output of networking commands (for example, netstat -r).

/etc/networks

SEE ALSO

NOTES

getnetent(3N), inet(7), netstat(lM)

A name server should be used instead of a static file. A binary indexed file format
should be available for fast access.

139

Node(4)

NAME
Node - device node definitions for a device driver

SYNOPSIS
Node

DESCRIPTION

140

One of the kernel configuration files, a Node file contains definitions used by the
idmknod(lM) command to create the device nodes (block and character special
files) associated with a device driver module. When the Node component of a
module's Driver Software Package (DSP) is installed, idinstall(lM) stores the
driver's Node me information in /ete/eonf/node.d/module-name, where module
name is the name of the driver being installed. Package scripts should never access
/ete/eonf/node.d files directly; the idinstall command should be used instead.

Each device node for the driver is specified on a separate line of the form:
module-name node-name type minor user group permissions

All fields are positional and must be separated by white space. The first four fields
are required; the last three fields are optional. Blank lines and lines beginning with
'#' or '*' are considered comments and are ignored.

The node file fields are:

module-name

node-name

type

Identifies the device to which this node applies. The name must
match the name specified for the device in the module-name field
of the Master(4) me. The device must be defined as a block
and/ or character device (Master file characteristics flag set to b or
e). When the device node is created, the Master file bmaj or cmaj
field values will be used as the major number for the created
node.

Specifies the name of the Node file to be created, relative to /dev.
If this field specifies a pathname containing subdirectories, idmk
nod will automatically create these subdirectories.

Identifies the type of node to be created. The character b indi
cates that the node is a block device; the character e indicates
character device. The value for this field must match one of the
flags specified for the device in the mdeviee me characteristics
field.

In cases where a device has multiple major numbers, the Node file
type field must provide additional information used to identify
which device nodes belong to which major. To do this, you
specify a value of the form:

type:offset
where type is the type of node (b,or e) and offset gives the offset to
this particular device within the range of major numbers specified
for this device type in the Master me. For example, the value
"e: 2" refers to a character major offset 2, which, given a major
device type specification of "15-18", would translate to a charac
ter major number of 17.

minor

user

group

permissions

USAGE
Examples

Node (4)

Specifies the minor device number. This field can be coded in one
of three ways:

If this field specifies a (decimal) numeric value, the value
is used as the minor device number for the created node.

If this field specifies a non-numeric value, the value is
assumed to be a request for a clone node, and the minor
number will be set to the major number of the device
whose module-name is the value of the field.

If this field specifies a non-numeric value and the Node file
type field specifies an offset value, the offset will be
applied to the minor number instead of the major number
when the node is created.

This field is optional. If used, it specifies the user ID of the user
that will own the node to be created. The user ID must be
specified as decimal integer value.

This field is optional. If used, it specifies the group ID of the
group that will own the node to be created. The group ID must
be specified as decimal integer value.

This field is optional. If used, it specifies, in octal form, tye per
missions for the node to be created, as given to the chmod(l) com
mand (example: 0777).

The following sample Node file entries are provided as coding examples:

iasy ttyOO c 0
Makes Idev/ttyOO for character device asy using minor device O.

clone net/nau/clone c nau
Makes ldev/net/nau/clone for character device clone. The minor
device number is set to the major device number of device nau.

clone imx586_l c:l imx586

SEE ALSO

Makes Idev/imx:586_l for character device clone. The minor device
number is set to the major device number of device imx586 plus 1.

idinstall(lM), idmknod(lM)

141

OllcValues (4)

NAME
OlIcValues - Input Context attribute names and value pairs

SYNOPSIS
#include <Xol/OpenLook.h>

typedef OlICValues *OlICV~~q~SList;

typedef void (*OlImProc)();
typedef void *OlImValue;

DESCRIPTION

142

OlIcValuesList contains a list qf Input Context attribute names and value pairs.
It is used for getting and setting various Input Context attributes.

The OlIcValues structure includeli/ the follOWing members:

char *attr_name;
void *attr_value;

The OlImCallback structure incllJ.qes the following members:

01 ImValues client_data;
OlImProc callbac~;

The supported Input Context attributes are shown in the table below. The end of
the list is indicated by a NULL vaille in the attribute name.

InPlJ.t Context Attributes
Attribute N,nne Attribute Value Type

OlNclientwinCiow Window*
OlNClientAre/il, XRectangle*
OlNinputSty+\!! OlImStyle*
OlNfocusWindow Window*
OlNPreedit:~efL XRectangle*
OlNstatusArea XRectangle*
OlNspotLocat;ioQ XPoint*
OlNresource~~~se xrmDatabase*
OlNPreeditAttributes OlIcWindowAttr*
OlNstatusAttr~butes 01 IcWindowAttr*

OllcValues (4)

Attributes for Preedit artd Status Windows
Attribute Name Attribute Value Type

OlNcolormap Colormap
OlNstdColormap Colormap
OlNbackground Pixel
OlNforeground Pixel
OlNbackgroundPixmap Pixmap
OlNfontset OlFontList
OlNlineSpacing int
OlNcursor Cursor
Callbacks OlImcallback

OlNclientWindow
specifies the client window in which the Input Method may display data
or create subwindows. Dynamic changes of client window are not sup
ported; this argument must be set at the Input Context creation time and
cannot be changed later. It is a static attribute required by OlCreatelc.
The value is a pointer to a window.

OlNClientArea
specifies the client area in which the Input Method may display data or
create subwindows. The Input Method will establish its own pre-edit and
status geometry accordingly. When this attribute is left unspecified, The
Input Method will default usable client area to actual client window
geometry. This is a dynamic attribute that can be modified via calls to
OlSetlcYalues. The value is a pointer to an XRectangle.

OlNinputStyle
specifies the input style to be used. The value of this argument must be
one of the supported styles returned by the OlGetlmValues function, oth
erwise OlCreatlc will fail. If this attribute is unspecified, the Input
Method uses an implementation defined default style. MooLIT does not
support Dynamic changes of Input Method style. This argument must be
set at the Input Context creation time and cannot be changed later. The
value is a pointer to OlImStyle.

OlNfocusWindow
specifies to the Input Method the window XID of the focus window. The
input method may affect that window: select events on it, send events to it,
modify its properties, and grab the keyboard within that window.

When this attribute is unspecified, the Input Method will default from the
focus window to the client window. Explicitly setting this attribute from a
non NULL value to NULL, forces the Input Method to clear any displayed
data in the status area corresponding to the focus window. This is a
dynamic attribute that can be modified via calls to OlSetlcValues. The
value is a pointer to a window.

143

OllcValues (4)

OlNpreeditArea
the area where pre-edit data should be displayed. The value of this argu
ment is a pointer to XRectangle, relative to the client window. The Input
Method may create a preedit window in this area, using the specified
geometry, as a child of a client window.

When OlNpreeditArea is unspecified, the Input Method will default from
the preedit area to an implementation defined area. This area is contained
within the client area.

If you specify this attribute for root or XimPreEditCallbacks Input
Method, it is ignored.

If you specify this attribute for an XimPreEditArea Input Method, the
width and height determine the size of the area within the "over-the-spot"
window now available for pre-edit.

OlNstatusArea
specifies to the Input Method the usable area to display Input Context
state information. The value of this argument is a pointer to XRectangle,
relative to the client window.

The Input Method mayor not create a status window in this area, using
the specified geometry, as a child of the client window.

When OlNstatusArea is unspecified, the Input Method defaults to the
status area defined by the Input Method implementation. The status area
is contained within the client area. This is a dynamic attribute that can be
modified via calls to OlSetlcValues.

Note that if a client leaves all areas unspecified, the Input Method may not
be able to run properly. Some implementations will generate errors if
none of the focus window, focus area, client area, preedit area, and status
area are defined. At best, it may behave randomly using any area in the
client window, possibly clearing the whole window or erasing any region.

OlNspotLocation
specifies the coordinates of the "spot" (the current cursor position in the
text insertion window), to be used by the "over-the-spot" or "on-the-spot"
Input Methods. The type is a pointer to Xpoint. The x coordinate
specifies the position where the next character would be inserted. The y
coordinate is the position of the baseline used by current text line in the
focus window.

SEE ALSO

144

Olcreatelc(30lit), OlDestroylc(30lit), OlGetIcValues(30lit), OlImOfIc(30Iit),
OlImValues(4), OlSetICFocus(30Iit), OlSetlcValues(30Iit),
OlunsetlcFocus(30Iit),OlResetlc(30lit)

OllmValues (4)

NAME
OlImValues - a list of 1M attributes

SYNOPSIS
#include <Xol/OpenLook.h>

DESCRIPTION
OlImValues contains a list of Input Method values or attributes returned by the
OlImStyles structure. The OlImStyles structure includes the following members:

unsigned short count_styles; /* the number of input styles
supported */ OlImStyle *supported_styles;

count_styles is also the size of the array in the supported_styles field. Each
element in the array represents a different input style supported by this Input
Method. It is a bitmask in which the Input Method indicates its requirements,
should this style be selected. These requirements fall into the following categories:

OlImPreEditArea require the client to provide some area values for
preediting. Refer to the Input Context attribute
OlNpreedi tArea.

OlIMPreditPosition require the client to provide positional values. Refer to
Input Context attributes OlNspotLocation and OlN
focusWindow.

OlImPreEditCallbacks require the client to define the set of preedit callbacks.
Refer to Input Context attributes OlNPreEditStart
Callbac~ OlNPreEditDoneCallbac~ OlNPreEdit
DrawCallback, and OlNPreEdi tCaretCallback.

OlImNeedNothing function without any preedit values.

OlImStatusArea require the client to provide some area values for status
feedback. Refer to OlNArea and OlNAreaNeeded.

OlImStatusCallbacks require the client to define the set of status callbacks.

SEE ALSO
OlCreateIc(30Iit), OlDestroyIc(30Iit), OlGetIcValues(30lit), OlIcValues(4),
OlImOfIc(30lit), OlSetIcFocus(30Iit), OlSetIcValues(30lit),
OlUnsetICFocus(30lit), OlResetIc(30lit)

145

ott(4)

NAME
.ott -FACE object architecture information

DESCRIPTION

FILES

146

The FACE object architecture stores information about object-types in an ASCII file
named .ott (object type table) that is contained in each directory. This file
describes all of the objects in that directory. Each line of the .ott file contains
information about one object in pipe-separated fields. The fields are (in order):

name the name of the actual UNIX System file.

dname the name that should be displayed to the user, or a dot if it is
the same as the name of the file.

description the description of the object, or a dot if the description is the
default (the same as object-type).

object-type the FACE internal object type name.

flags object specific flags.

mod time the time that FACE last modified the object. The time is given
as number of seconds since 1/1/1970, and is in hexadecimal
notation.

object information an optional field, contains a set of semi-colon separated
name=value fields that can be used by FACE to store any other
information necessary to describe this object.

.ott is created in any directory opened by FACE.

passwd(4)

NAME
passwd - password file

SYNOPSIS
/ete/passwd

DESCRIPTION

FILES

/ete/passwd is an ASCII file that contains basic information about each user's
account. This file contains a one-line entry, for each authorized user, of the form:

login_name: password: uid : gid : comment: home _dir : login _shell

where:

login_name

password

uid

gid

comment

home dir

login_shell

is the name specified by the user when logging in. This field con
tains no uppercase characters, should not be more than eight char
acters long, and should begin with a non-numeric character (that
is, any alphabetic or special character except colon).

contains the character x. This field remains only for compatibility
reasons. Password information is contained in the file
fete/shadow [see shadow(4)].

is the user's numerical ill for the system, which should be unique.

is the numerical ID of the group to which the user belongs.

is any information you think might be useful to a user of this file
which is not included elsewhere in the file.

is the pathname of the directory in which the user is initially posi
tioned upon logging in.

is the user's initial shell program. If this field is empty, the default
shell is /usr /bin/ sh.

Fields are separated by a colon; entries, by a new-line. Comment lines (lines pre
ceded by the # (pound) character) are not allowed in the /ete/passwd file.

/ete/passwd has general read permission on all systems, and can be used by
routines that map numerical user IDs to names.

/ete/passwd
fete/shadow
/usr/lib/loeale/locale/LC_MESSAGES/uxeore.abi

language-specific message file [See LANG on environ(5).]

SEE ALSO
getpwent(3C), group(4), login(l), passwd(l), putpwent(3C), pwconv(lM),
shadow(4), unistd(4), useradd(lM), userdel(lM), usermod(lM)

147

pathalias (4)

NAME
pathalias - alias file for FACE

DESCRIPTION

NOTES

FILES

148

The pathalias files contain lines of the form alias=path where path can be one or
more colon-separated directories. Whenever a FACE user references a path not
beginning with a "I," this file is checked. If the first component of the pathname
matches the left-hand side of the equals sign, the right-hand side is searched much
like $PATH variable in the UNIX System. This allows Users to reference the folder
$HOME/FILECABlNET by typing filecabinet.

There is a system-wide pathalias file called $VMSYS/pathalias, and each user
can also have local alias file called $HOME/pref Ipathalias. Settings in the user
alias file override settings in the system-wide file. The system-wide file is shipped
with several standard FACE aliases, such as filecabinet, wastebasket, prefer
ences, other_users, and so on.

Unlike command keywords, partial matching of a path alias is not permitted, how
ever, path aliases are case insensitive. The name of an alias should be alphabetic,
and in no case can it contain special characters like" I," "\," or "=." There is no
particular limit on the number of aliases allowed. Alias files are read once, at login,
and are held in core until logout. Thus, if an alias file is modified during a session,
the change will not take effect until the next session.

$HOME/pref/pathalias
$VMSYS/pathalias

pkginfo(4)

NAME
pkginfo - package characteristics file

DESCRIPTION
pkginfo is an ASCII file that describes the characteristics of the package along with
information that helps control the flow of installation. It is created by the software
packag developer.

Each entry in the pkginfo file is a line that establishes the value of a parameter in
the following form:

PARAM="value"

There is no required order in which the parameters must be specified within the
file. Each parameter is described below. Only fields marked with an asterisk are
mandatory.

PKG*

NAME *

ARCH

VERSION*

CATEGORY*

PKG is the parameter to which you assign an abbreviation for the
name of the package being installed. The abbreviation must be a
short string (no more than nine characters long) and it must con
form to file naming rules. All characters in the abbreviation must
be alphanumeric and the first may not be numeric. install, new,
and all are reserved abbreviations.

Text that specifies the package name (maximum length of 256
ASCII characters).

A comma-separated list of alphanumeric tokens that indicate the
architecture (for example, ARCH=m68k, i386) associated with the
package. The pkgmk tool may be used to create or modify this
value when actually building the package. The maximum length
of a token is 16 characters and it cannot include a comma. ARCH is
not a mandatory field. Therefore, if it is not specified or if it is
specified as NULL, it is ignored.

Text that specifies the current version associated with the
software package. The maximum length is 256 ASCII characters
and the first character cannot be a left parenthesis. The pkgmk
tool may be used to create or modify this value when actually
building the package.

A comma-separated list of categories under which a package may
be displayed. There are six categories: "application", "graphics",
"system", "utilities", "set", and "patch." If you choose, you can
also assign a package to one or more categories that you define.
Categories are case-insensitive and may contain only
alphanumerics. Each category is limited in length to 16 charac
ters.

For a Set Installation Package (SIP), this field must have the value
"set". A SIP is a special purpose package that controls the instal
lation of a set of packages.

149

pkginfo(4)

DESC

VENDOR

HOTLINE

EMAIL

VSTOCK

CLASSES

I STATES

RSTATES

BASEDIR

ULIMIT

ORDER

MAXINST

PSTAMP

150

Text that describes the package (maximum length of 256 ASCII
characters).

Used to identify the vendor that holds the software copyright
(maximum length of 256 ASCII characters).

Phone number and/ or mailing address where further informa
tion may be received or bugs may be reported (maximum length
of 256 ASCII characters).

An electronic address where further information is available or
bugs may be reported (maximum length of 256 ASCII characters).

The vendor stock number, if any, that identifies this product
(maximum length of 256 ASCII characters).

A space-separated list of classes defined for a package. The order
of the list determines the order in which the classes are installed.
Classes listed first will be installed first (on a medium-by-medium
basis). This parameter may be modified by the request script. In
this way, the request script may be used to select which classes in
the package get installed on the system.

A list of allowable run states for package installation (for exam
ple, "S s 1").

A list of allowable run states for package removal (for example,
"S s 1").

The pathname to a default directory where "relocatable" files
may be installed. If BASEDIR is not specified and basedir in the
admin(4) file (lvarisadm/install/admin/default) is set to
default, then BASEDIR is set to I by default. An administrator
can override the value of BASEDIR by setting basedir in the admin
file.

If set, this parameter is passed as an argument to the ulimit
command, which establishes the maximum size of a file during
installation.

A list of classes defining the order in which they should be put on
the medium. Used by pkgmk in creating the package. Classes not
defined in this field are placed on the medium using the standard
ordering procedures.

The maximum number of package instances that should be
allowed on a machine at the same time. By default, only one
instance of a package is allowed. This parameter must be set in
order to have multiple instances of a package.

Production stamp used to mark the pkgmap file on the output
volumes. Provides a means for distinguishing between produc
tion copies of a version if more than one is in use at a time. If
PSTAMP is not defined, the default is used. The default consists of
the UNIX system machine name followed by the string
"YYMMDDHHmm" (year, month, date, hour, minutes).

INTONLY

PREDEPEND

SERIALNUM

pkginfo(4)

Indicates that the package should be installed interactively only
when set to any non-NULL value.

Used to maintain compatibility with dependency checking on
packages delivered earlier than System V Release 4. Pre-Release 4
dependency checks were based on whether or not the name file
for the required package existed in the /usr/options directory.
This directory is not maintained for Release 4 and later packages
because the depend file is used for checking dependencies. How
ever, entries can be created in this directory to maintain compati
bility. This is done automatically by pkgmk. This field is to be
assigned the package instance name of the package.

A serial number, if any, that uniquely identifies this copy of the
package (maximum length of 256 ASCII characters).

EXAMPLES

NOTES

Here is a sample pkginfo file:

PKG="oam"
NAME="OAM Installation Utilities"
VERSION="3"
VENDOR= "AT&T"
HOTLINE="1-800-ATT-BUGS"
EMAIL="attunix!olsen"
VSTOCK="0122c3f5566"
CATEGORY="system.essential"
ISTATES="S 2"
RSTATES="S 2"

Developers may define their own installation parameters by adding a definition to
this file. A developer-defined parameter should begin with a capital letter.

SEE ALSO
admin(4), pkgmk(l)

151

pkgmap(4)

NAME
pkgmap - package contents description file

DESCRIPTION

152

pkgmap is an ASCII file that provides a complete listing of the package contents. It is
automatically generated by pkgmk(l) using the information in the prototype file.

Each entry in pkgmap describes a single "deliverable object file." A deliverable
object file includes shell scripts, executable objects, data files, directories, and so on.
The entry consists of several fields of information, each field separated by a space.
The fields are described below and must appear in the order shown.

part A field designating the part number in which the object resides. A part
is a collection of files, and is the atomic unit by which a package is pro
cessed. A developer can choose the criteria for grouping files into a part
(for example, based on class). If no value is defined in this field, part 1 is
assumed.

Jtype A one-character field that indicates the file type. Valid values are:

f a standard executable or data file
e a file to be edited upon installation or removal
v volatile file (one whose contents are expected to change)
d directory
x an exclusive directory (See NOTES)
1 linked file
p named pipe
c character special device
b block special device
i installation script or information file
a symbolic link

Once a file has the file type attribute v, it will always
be volatile. For example, if a file being installed already exists and has
the file type attribute v, then even if the version of the file being installed
is not specified as volatile, the file type attribute will remain volatile.

class The installation class to which the file belongs. This name must contain
only alphanumeric characters and be no longer than 12 characters. It is
not specified if the ftype is i (information file).

pathname The pathname where the object will reside on the target machine, such
as /uar /bin/mail. Relative pathnames (those that do not begin with a
slash) indicate that the file is relocatable.

For linked files (ftype is either 1 or a), pathname must be in the form of
path1=path2, with pathl specifying the destination of the link and path2
specifying the source of the link.

For symbolically linked files, when path2 is a relative pathname starting
with • / or •• /, path2 is not considered relocatable. For example, if you
enter a line such as

a /foo/bar/etc/mount= •• /uar/abin/mount

pathl (lfoo/bar/etc/mount) will be a symbolic link to
•. /uar/abin/mount.

major

minor

mode

owner

group

pkgmap(4)

pathname may contain variables which support relocation of the file. A
$parameter may be embedded in the pathname structure. $BASEDIR can
be used to identify the parent directories of the path hierarchy, making
the entire package easily relocatable. Default values for parameter and
BASEDIR must be supplied in the pkginfo ille and may be overridden at
installation.

Special characters, such as an equal sign (=), are included in pathnames
by surrounding the entire pathname in single quotes (as in, for example,
, lusr/libr=').

The major device number. The field is only specified for block or charac
ter special devices.

The minor device number. The field is only specified for block or char
acter special devices.

The octal mode of the file (for example, 0664). A question mark (?) indi
cates that the mode will be left unchanged, implying that the file already
exists on the target machine. This field is not used for linked illes, pack
aging information illes or non-installable files.

The owner of the ille (for example, bin or root). The field is limited to
14 characters in length. A question mark (?) indicates that the owner
will be left unchanged, implying that the ille already exists on the target
machine. This field is not used for linked illes or non-installable files. It
is used optionally with a package information ille. If used, it indicates
with what owner an installation script will be executed.

Can be a variable specification in the form of $ [A-Z]. Will be resolved
at installation time (see NOTES).

The group to which the ille belongs (for example, "bin" or "sys"). The
field is limited to 14 characters in length. A question mark (?) indicates
that the group will be left unchanged, implying that the file already
exists on the target machine. This field is not used for linked files or
non-installable files. It is used optionally with a package information
file. If used, it indicates with what group an installation script will be
executed.

Can be a variable assignment in the form of $ [A-Z]. Will be resolved at
installation time (see NOTES).

size The actual size of the file in bytes. This field is not specified for named
pipes, special devices, directories or linked illes.

cksum The checksum of the file contents. This field is not specified for named
pipes, special devices, directories or linked files.

modtime The time of last modification, as reported by the stat(2) function call.
This field is not specified for named pipes, special devices, directories or
linkedilles.

153

pkgmap(4)

Each pkgmap must have one line that provides information about the number and
maximum size (in 512-byte blocks) of parts that make up the package. This line is
in the following format:

: number _ofyarts maximum yart _size

Lines that begin with "#" are comment lines and are ignored.

When files are saved during installation before they are overwritten, they are nor
mally just copied to a temporary pathname. However, for files whose mode
includes execute permission (but which are not editable), the existing version is
linked to a temporary pathname and the original file is removed. This allows
processes which are executing during installation to be overwritten.

EXAMPLES

NOTES

154

The following is an example of a pkgmap file.

:2 500
1 i pkginfo 237 1179 541296672
1 b class1 /dev/diskette 17 134 0644 root other
1 c class1 /dev/rdiskette 17 134 0644 root other
1 d none bin 0755 root bin
1 f none bin/INSTALL 0755 root bin 11103 17954 541295535
1 f none bin/REMOVE 0755 root bin 3214 50237 541295541
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2

1 none bin/UNINSTALL=bin/REMOVE
f none bin/cmda 0755 root bin 3580 60325 541295567
f none bin/cmdb 0755 root bin 49107 51255 541438368
f class1 bin/cmdc 0755 root bin 45599 26048 541295599
f class1 bin/cmdd 0755 root bin 4648 8473 541461238
f none bin/cmde 0755 root bin 40501 1264 541295622
f class2 bin/cmdf 0755 root bin 2345 35889 541295574
f none bin/cmdg 0755 root bin 41185 47653 541461242
d class2 data 0755 root bin
p class1 data/apipe 0755 root other
d none log 0755 root bin 1 NULL NULL
v none log/logfile 0755 root bin 41815 47563 541461333
d none save 0755 root bin
d none spool 0755 root bin
d none tmp 0755 root bin

The pkgmap file may contain only one entry per unique pathname.

An exclusive directory type (file) type x) specifies directories that are constrained to
contain only files that appear in the installation software database
(lvar/sadm/install/contents). If there are other files in the directory, they will
be removed by pkgchk -fx as described on the pkgchk(lM) manual page.

Variable specifications for the owner and group fields are defined in the pkginfo file.
For example, owner could be $OWNER in the pkgmap file; if OWNER is defined as root
in the pkginfo file, $OWNER will get the value root when the file is installed.

pnch(4)

NAME
pnch - file format for card images

DESCRIPTION
The PNCH format is a convenient representation for files consisting of card images
in an arbitrary code.

A PNCH file is a simple concatenation of card records. A card record consists of a
single control byte followed by a variable number of data bytes. The control byte
specifies the number (which must lie in the range 0-80) of data bytes that follow.
The data bytes are 8-bit codes that constitute the card image. If there are fewer than
80 data bytes, it is understood that the remainder of the card image consists of trail
ingblanks.

155

priv(4)

NAME
pri v - privilege data file

DESCRIPTION
A privilege data file entry has the following format:

dev: fid : valid: %fixed privs : pathname

Each field in the entry is separated by a colon (:) character. The dev (see stat(2»
and fid are, respectively, the ID of the device containing a directory entry for this
file, and a unique.file identification number for this file. These are stored as decimal
strings. The valid field is the last file status change time (see stat(2» contained in
the inode of the named file and stored as a decimal string. The fixed privileges field
begins with a (%) delimiter and contains character strings which have comma (,)
separated privilege names for each field. The pathname is the absolute path name of
the privileged file.

The privilege data file is /etc/security/tcb/privs.

SEE ALSO
filepriv(lM), initprivs(lM), intro(2), stat(2)

156

PrivTable (4)

NAME
PrivTable - privilege table

DESCRIPTION
Pri vTable is a list of permissions that can be granted users through the desktop
User_Setup client. Each entry includes a list of commands a user with permission
will be able to execute with privilege, along with specific granted privileges. These
privileges are granted the user using TFM (Trusted Facilities Management).

The privilege table contains lines of the format:

[CatalogFile: Index:]CheckboxString<T AB>EntryList<TAB>HelpFile

CheckboxString
label to use for the checkbox in User _Setup. If the checkbox is checked,
EntryList will be registered with TFM

[CatalogFile:Index:]
translate CheckboxString. CatalogFile is the file of locale specific translations.
index is the line number of the translation.

EntryList
comma seperated list of entries. This takes the form

entrynamel :fullpath :privl :priv2: . .. , entryname2 ...

HelpFile
help file to use with this privilege checkbox. This may be a full path name
or a locale-specific file in /usr/X/lib/locale/locale/help/LoginMgr.

Files
/ etc / securi ty /tfm/users / user

/usr/X/desktop/LoginMgr/PrivTable

SEE ALSO
dtprivilege(lM), make-owner(lM), tfadmin(lM)

157

proc(4)

NAME
proc - process file system

DESCRIPTION

158

/proc is a file system that provides access to the image of each active process in the
system. The name of each entry in the /proc directory is a decimal number
corresponding to the process ID. The owner of each "file" is determined by. the
process's user-ID.

Standard system call interfaces are used to access /proc files: open, close, read,
write, and ioctl. An open for reading and writing enables process control; a
read-only open allows inspection but not control. As with ordinary files, more than
one process can open the same /proc file at the same time. Exclusive open is pro
vided to allow controlling processes to avoid collisions: an open for writing that
specifies O_EXCL fails if the file is already open for writing; if such an exclusive open
succeeds, subsequent attempts to open the file for writing, with or without the
O_EXCL flag, fail until the exclusively-opened file descriptor is closed. (Exception: a
super-user open that does not specify O_EXCL succeeds even if the file is exclusively
opened.) There can be any number of read-only opens, even when an exclusive
write open is in effect on the file.

Data may be transferred from or to any locations in the traced process's address
space by applying Iseek to position the file at the virtual address of interest fol
lowed by read or write. The PIOCMAP operation can be applied to determine the
accessible areas (mappings) of the address space. A contiguous area of the address
space may appear as multiple mappings due to varying read/write/execute per
missions. I/O transfers may span contiguous mappings. An I/O request extending
into an unmapped area is truncated at the boundary.

Information and control operations are provided through ioctl. These have the
form:

#include <sys/types.h>
#include <sys/signal.h>
#include <sys/fault.h>
#include <sys/syscall.h>
#include <sys/procfs.h>
void *p;
retval = ioctl(fildes, code, p);

The argument p is a generic pointer whose type depends on the specific ioctl code.
Where not specifically mentioned below, its value should be zero. sys/procfs.h
contains definitions of ioctl codes and data structures used by the operations.
Certain operations can be performed only if the process file is open for writing;
these include all operations that affect process control.

Process information and control operations involve the use of sets of flags. The set
types sigset_t, fltset_t, and sysset_t correspond, respectively, to signal, fault,
and system call enumerations defined in sys/signa1.h, sys/fault .h, and
sys/ syscall. h. Each set type is large enough to hold flags for its own enumera
tion. Although they are of different sizes, they have a common structure and can be
manipulated by these macros:

proc(4)

prfillset(&set); /* turn on all flags in set */
premptyset(&set); /* turn off all flags in set */
praddset(&set, flag) ; /* turn on the specified flag */
prdelset(&set, flag) ; /* turn off the specified flag */
r = prismember(&set, flag) ; /* != 0 iff flag is turned on */

One of prfiHset or premptyset must be used to initialize set before it is used in
any other operation. flag must be a member of the enumeration corresponding to
set.

The allowable ioctl codes follow. Those requiring write access are marked with
an asterisk (*). Except where noted, an ioctl to a process that has terminated eli
cits the error ENOENT.

PIOCSTATUS
This returns status information for the process; p is a pointer to a prstatus struc
ture:

typedef struct prstatus
long pr_flags; /* Process flags */
short pr_why; /* Reason for process stop (if stopped) */
short pr_what; /* More detailed reason */
struct siginfo pr_info; /* Info associated with signal or fault *1
short pr_cursig; /* Current signal */
sigset_t pr_sigpend; /* Set of other pending signals */
sigset_t pr_sighold; /* Set of held signals */
struct sigaltstack pr_altstack; /* Alternate signal stack info */
struct sigaction pr_action; /* Signal action for current signal */
pid_t pr-pid; /* Process id */
pid_t pr-ppid; /* Parent process id */
pid_t pr-pgrp; /* Process group id */
pid_t pr_sid; /* Session id */
timestruc_t pr_utime; /* Process user cpu time */
timestruc_t pr_stime; /* Process system cpu time *1
timestruc_t pr_cutime; /* Sum of children's user times */
timestruc_t pr_cstime; /* Sum of children's system times */
char pr_clname[8]; /* Scheduling class name */
long pr_filler[20];/* Filler area for future expansion *1
long pr_instr; /* Current instruction */
gregset_t pr_reg; /* General registers */
prstatus_t;

pr_flags is a bit-mask holding these flags:

PR_STOPPED process is stopped
PR_ISTOP process is stopped on an event of interest (see PIOCSTOP)
PR_DSTOP process has a stop directive in effect (see PIOCSTOP)
PR_ASLEEP process is in an interruptible sleep within a system call
PR_FORK process has its inherit-on-fork flag set (see PIOCSFORK)
PR_RLC process has its run-on-last-close flag set (see PIOCSRLC)

159

proc(4)

160

PR_PTRACE
PR_PCINVAL
PR_ISSYS

process is being traced via ptrace
process program counter refers to an invalid address
process is a system process (see PIOCSTOP)

pr_why and pr_what together describe, for a stopped process, the reason that the
process is stopped. Possible values of pr_why are:

PR_REQUESTED indicates that the process stopped because PIOCSTOP was
applied; pr_what is unused in this case.

PR_SIGNALLED indicates that the process stopped on receipt of a signal (see
PIOCSTRACE); pr_what holds the signal number that caused the stop (for a
newly-stopped process, the same value is in pr_cursig).

PR_FAULTED indicates that the process stopped on incurring a hardware
fault (see PIOCSFAULT); pr_what holds the fault number that caused the
stop.

PR_SYSENTRYand PR_SYSEXIT indicate a stop on entry to or exit from a sys
tem call (see PIOCSENTRY and PIOCSEXIT); pr_what holds the system call
number.

PR_JOBCONTROL indicates that the process stopped due to the default action
of a job control stop signal (see sigaction); pr_what holds the stopping
signal number.

pr_info, when the process is in a PR_SIGNALLED or PR_FAULTED stop, contains
additional information pertinent to the particular signal or fault (see
sys/siginfo.h).

pr_cursig names the current signal-that is, the next signal to be delivered to the
process. pr_sigpend identifies any other pending signals. pr_sighold identifies
those signals whose delivery is being delayed if sent to the process.

pr_altstack contains the alternate signal stack information for the process (see
sigaltstack). pr_action contains the signal action information pertaining to the
current signal (see sigaction); it is undefined if pr_cursig is zero.

pr-pid, pr-ppid, pr-P9rp, and pr_sid are, respectively, the process ID, the ID of
the process's parent, the process's process group ID, and the process's session ID.

pr_utime, pr_stime, pr_cutime, and pr_cstime are, respectively, the user CPU
and system CPU time consumed by the process, and the cumulative user CPU and
system CPU time consumed by the process's children, in seconds and nanoseconds.

pr_clname contains the name of the process's scheduling class.

The pr_filler area is reserved for future use.

pr_instr contains the machine instruction to which the program counter refers.
The amount of data retrieved from the process is machine-dependent. In general,
the size is that of the machine's smallest instruction. If the program counter refers
to an invalid address, PR_PCINVAL is set and pr_instr is undefined.

pr_reg is an array holding the contents of the general registers. The constants
defined in sys/regset.h can be used as indices to refer to the general registers.

proc(4)

PIOCSTOP*,PIOCWSTOP
PIOCSTOP directs the process to stop and waits until it has stopped; PIOCWSTOP
simply waits for the process to stop. These operations complete when the process
stops on an event of interest, immediately if already so stopped. If p is non-zero it
points to an instance of prstatus_t to be filled with status information for the
stopped process.

An "event of interest" is either a PR_REQUESTED stop or a stop that has been
specified in the process's tracing flags (set by PIOCSTRACE, PIOCSFAULT,
PIOCSENTRY, and PIOCSEXIT). A PR_JOBCONTROL stop is specifically not an event
of interest. (A process may stop twice due to a stop Signal, first showing
PlLSIGNALLED if the signal is traced and again showing PR_JOBCONTROL if the pro
cess is set running without clearing the signal.) If the process is controlled by
ptrace, it comes to a PR_SIGNALLED stop on receipt of any signal; this is an event
of interest only if the signal is in the traced signal set. If PIOCSTOP is applied to a
process that is stopped, but not on an event of interest, the stop directive takes
effect when the process is restarted by the competing mechanism; at that time the
process enters a PR_REQUESTED stop before executing any user-level code.

ioctls are interruptible by signals so that, for example, an alann can be set to
avoid waiting forever for a process that may never stop on an event of interest. If
PIOCSTOP is interrupted, the stop directive remains in effect even though the ioctl
returns an error.

A system process (indicated by the PR_ISSYS flag) never executes at user level, has
no user-level address space visible through Iproc, and cannot be stopped. Apply
ing PIOCSTOP or PIOCWSTOP to a system process elicits the error EBUSY.

PIOCRUN*
The traced process is made runnable again after a stop. If p is non-zero it points to a
prrun structure describing additional actions to be performed:

typedef struct prrun {
long pr_flags;
sigset_t pr_trace;
sigset_t pr_sighold;
fltset_t pr_fault;

1* Flags *1
1* Set of signals to be traced *1
1* Set of signals to be held *1
1* Set of faults to be traced *1

pr_vaddr; 1* Virtual address at which to resume *1
pr_filler[8]; 1* Filler area for future expansion *1

} PrrllD_t;

pr_flags is a bit-mask describing optional actions; the remainder of the entries are
meaningful only if the appropriate bits are set in pr_flags. pr_filler is reserved
for future use; this area must be IDled with zeros by the user's program.

Flag definitions:

PRCSIG clears the current signal, if any (see PIOCSSIG).

PRCFAULT clears the current fault, if any (see PIOCCFAULT).

PRSTRACE sets the traced signal set to pr_trace (see PIOCSTRACE).

161

proc(4)

162

PRSHOLD sets the held signal set to pr_sighold (see PIOCSHOLD).

PRSFAULT sets the traced fault set to pr_fault (see PIOCSFAULT).

PRSVADDR sets the address at which execution resumes to pr_vaddr.

PRSTEP directs the process to single-step-i.e., to run and to execute a single
machine instruction. On completion of the instruction, a hardware trace
trap occurs. If FLTTRACE is being traced, the process stops, otherwise it is
sent SIGTRAP; if SIGTRAP is being traced and not held, the process stops.
This operation requires hardware support and may not be implemented on
all processors.

PRSABORT is meaningful only if the process is in a PR_SYSENTRY stop or is
marked PR_ASLEEP; it instructs the process to abort execution of the system
call (see PIOCSENTRY, PIOCSEXIT).

PRSTOP directs the process to stop again as soon as possible after resuming
execution (see PIOCSTOP). In particular if the process is stopped on
PR_SIGNALLEDor PR_FAULTED, the next stop will show PR_REQUESTED, no
other stop will have intervened, and the process will not have executed any
user-level code.

PIOCRUN fails (EBUSY) if applied to a process that is not stopped on an event of
interest. Once PIOCRUN has been applied, the process is no longer stopped on an
event of interest even if, due to a competing mechanism, it remains stopped.

PIOCSTRACE*
This defines a set of signals to be traced: the receipt of one of these signals causes
the traced process to stop. The set of signals is defined via an instance of sigset_t
addressed by p. Receipt of SIGKILL cannot be traced.

If a signal that is included in the held signal set is sent to the traced process, the
signal is not received and does not cause a process stop until it is removed from the
held signal set, either by the process itself or by setting the held signal set with
PIOCSHOLD or the PRSHOLD option of PIOCRUN.

PIOCGTRACE
The current traced signal set is returned in an instance of sigset_t addressed by p.

PIOCSSIG*
The current signal and its associated signal information are set according to the con
tents of the siginfo structure addressed by p (see sys/siginfo.h). If the
specified signal number is zero or if p is zero, the current signal is cleared. The
semantics of this operation are different from those of kill or PIOCKILL in that the
signal is delivered to the process immediately after execution is resumed (even if it
is being held) and an additional PR_SIGNALLED stop does not intervene even if the
signal is traced. Setting the current signal to SIGKILL terminates the process
immediately, even if it is stopped.

PIOCKILL*
A signal is sent to the process with semantics identical to those of kill; p points to
an int naming the signal. Sending SIGKILL terminates the process immediately.

proc(4)

PIOCUNKILL*
A signal is deleted, i. e. it is removed from the set of pending signals; the current
signal (if any) is unaffected. p points to an int naming the signal. It is an error to
attempt to delete SIGKILL.

PIOCGHOLD,PIOCSHOLD*
PIOCGHOLD returns the set of held signals (signals whose delivery will be delayed if
sent to the process) in an instance of sigset_t addressed by p. PIOCSHOLD
correspondingly sets the held signal set but does not allow SIGKILL or SIGSTOP to
beheld.

PIOCMAXSIG,PIOCACTION
These operations provide information about the signal actions associated with the
traced process (see sigaction). PIOCMAXSIG returns, in the int addressed by p,
the maximum signal number understood by the system. This can be used to allo
cate storage for use with the PIOCACTION operation, which returns the traced
process's signal actions in an array of sigaction structures addressed by p. Signal
numbers are displaced by 1 from array indices, so that the action for signal number
n appears in position n-l of the array.

PIOCSFAULT*
This defines a set of hardware faults to be traced: on incurring one of these faults
the traced process stops. The set is defined via an instance of fltset_t addressed
by p. Fault names are defined in sys/fault.h and include the following. Some of
these may not occur on all processors; there may be processor-specific faults in
addition to these.

FLTILL
FLTPRIV
FLTBPT
FLTTRACE
FLTACCESS
FLTBOUNDS
FLTIOVF
FLTIZDIV
FLTFPE
FLTSTACK
FLTPAGE

illegal instruction
privileged instruction
breakpoint trap
trace trap
memory access fault
memory bounds violation
integer overflow
integer zero divide
floating-point exception
unrecoverable stack fault
recoverable page fault

When not traced, a fault normally results in the posting of a signal to the process
that incurred the fault. If the process stops on a fault, the signal is posted to the
process when execution is resumed unless the fault is cleared by PIOCCFAULT or by
the PRCFAULT option of PIOCRUN. FLTPAGE is an exception; no signal is posted.
There may be additional processor-specific faults like this. pr_info in the
prstatus structure identifies the signal to be sent and contains machine-specific
information about the fault.

PIOCGFAULT
The current traced fault set is returned in an instance of fltset_t addressed by p.

163

proc(4)

164

PIOCCFAULT*
The current fault (if any) is cleared; the associated signal is not sent to the process.

PIOCSENTRY*,PIOCSEXIT*
These operations instruct the process to stop on entry to or exit from specified sys
tem calls. The set of syscalls to be traced is defined via an instance of sysset_t
addressed by p.

When entry to a system call is being traced, the traced process stops after having
begun the call to the system but before the system call arguments have been fetched
from the process. When exit from a system call is being traced, the traced process
stops on completion of the system call just prior to checking for signals and return
ing to user level. At this point all return values have been stored into the traced
process's saved registers.

If the traced process is stopped on entry to a system call (PR_SYSENTRY) or when
sleeping in an interruptible system call (PR_ASLEEP is set), it may be instructed to
go directly to system call exit by specifying the PRSABORT flag in a PIOCRUN request.
Unless exit from the system call is being traced the process returns to user level
shoWing error EINTR.

PIOCGENTRY,PIOCGEXIT
These return the current traced system call entry or exit set in an instance of
sysset_t addressed by p.

PIOCSFORK*,PIOCRFORK*
PIOCSFORK sets the inherit-an-fork flag in the traced process: the process's tracing
flags are inherited by the child of a fork. PIOCRFORK turns this flag off: child
processes start with all tracing flags cleared.

PIOCSRLC*,PIOCRRLC*
PIOCSRLC sets the run-on-last-close flag in the traced process: when the last writ
able /proc file descriptor referring to the traced process is closed, all of the
process's tracing flags are cleared, any outstanding stop directive is canceled, and if
the process is stopped, it is set running as though PIOCRUN had been applied to it.
PIOCRRLC turns this flag off: the process's tracing flags are retained and the process
is not set running when the process file is closed.

PIOCGREG,PIOCSREG*
These operations respectively get and set the saved process registers into or out of
an array addressed by p; the array has type gregset_t. Register contents are acces
sible using a set of predefined indices (see PIOCSTATUS). For security, certain bits of
the processor-status word cannot be modified by PIOCSREG. There may be other
privileged registers that cannot be modified at all. PIOCSREG fails (EBusy) if
applied to a process that is not stopped on an event of interest.

PIOCGFPREG,PIOCSFPREG*
These operations respectively get and set the saved process floating-point registers
into or out of a structure addressed by p; the structure has type fpregset_t. An
error (EINVAL) is returned if there is no floating-point hardware on the machine.
PIOCSFPREG fails (EBUSY) if applied to a process that is not stopped on an event of
interest.

proc(4)

PIOCNlCE*
The traced process's nice priority is incremented by the amount contained in the
int addressed by p. Only the super-user may better a process's priority in this
way, but any user may make the priority worse.

PIOCPSINFO
This returns miscellaneous process information such as that reported by ps(l). pis
a pointer to a prpsinfo structure containing at least the following fields:

typedef struct prpsinfo {
char pr_state; /* numeric process state (see pr_sname) */
char pr_sname; /* printable character representing pr_state * /
char pr_zomb; /* !=O: process terminated but not waited for */
char pr_nice; /* nice for cpu usage */
u_long pr_flag; /* process flags */
uid_t pr_uid; /* real user id */
gid_t pr~id; /* real group id */
pid_t pr-pid; /* unique process id */
pid_t pr-ppid; /* process id of parent */
pid_t pr-Pgrp; /* pid of process group leader */
pid_t pr_sid; /* session id */
caddr_t pr_addr; /* physical address of process */
long pr_size; /* size of process image in pages */
long pr_rssize; /* resident set size in pages */
caddr_t pr_wchan; /* wait addr for sleeping process */
timestruc_t pr_start; /* process start time, sec+nsec since epoch */
timestruc_t pr_time; /* usr+sys cpu time for this process */
long pr-pri; /* priority, high value is high priority */
char pr_oldpri; /* pre-SVR4, low value is high priority */
char pr_cpu; /* pre-SVR4, cpu usage for scheduling */
dev_t pr_ttydev; /* controlling tty device (PRNODEV if none) */
char pr_clname[8]; /* Scheduling class name */
char pr_fname [16] ; /* last c~t of execed patbname * /
char pr-psargs[PRARGSZ]; /* initial characters of arg list */
long pr_filler[20]; /* for future expansion */

} prpsinfo_t;

Some of the entries in prpsinfo, such as pr_state and pr_flag, are system
specific and should not be expected to retain their meanings across different ver
sions of the operating system. pr_addr is a vestige of the past and has no real
meaning in current systems.

PIOCPSINFO can be applied to a zombie process (one that has terminated but whose
parent has not yet performed a wait on it).

PIOCNMAP, PIOCMAP
These operations provide information about the memory mappings (virtual address
ranges) associated with the traced process. PIOCNMAP returns, in the int addressed
by p, the number of mappings that are currently active. This can be used to allocate
storage for use with the PIOCMAP operation, which returns the list of currently
active mappings. For PIOCMAP, p addresses an array of elements of type prmap_t;
one array element (one structure) is returned for each mapping, plus an additional

165

proc(4}

166

element containing all zeros to mark the end of the list.

typedef struct prmap {
caddr_t pr_vaddr; 1* Virtual address base *1

1* Size of mapping in bytes *1

long
long
prmap_t;

pr_size;
pr_off;
pr_mflags;
pr_filler [4] ;

1* Offset into mapped object, if any *1
1* Protection and attribute flags *1
1* Filler for future expansion *1

pr_ vaddr is the virtual address base (the lower limit) of the mapping within the
traced process and pr_size is its size in bytes. pr_off is the offset within the
mapped object (if any) to which the address base is mapped.

pr_mflags is a bit-mask of protection and attribute flags:

MA_READ mapping is readable by the traced process
MA_WRITE mapping is writable by the traced process
MA_EXEC mapping is executable by the traced process
MA_SHARED mapping changes are shared by the mapped object
MA_BREAK mapping is grown by the brk system call
MA_STACK mapping is grown automatically on stack faults

PIOCOPENM
The return value retval provides a read-only file descriptor for a mapped object
associated with the traced process. If p is zero the traced process's execed file (its
a.out file) is found. This enables a debugger to find the object file symbol table
without having to know the path name of the executable file. If p is non-zero it
points to a caddr_t containing a virtual address within the traced process and the
mapped object, if any, associated with that address is found; this can be used to get
a file descriptor for a shared . library that is attached to the process. On error
(invalid address or no mapped object for the designated address), -1 is returned.

PIOCCRED
Fetch the set of credentials associated with the process.
prcred_t, which is filled by the operation:

P points to an instance of

typedef struct prcred {
uid_t pr_euid;
uid_t pr_ruid;
uid_t pr_suid;
uid_t pr_egid;
uid_t pr_rgid;
uid_t pr_sgid;

} prcred_t;

PIOCGROUPS

1* Effective user id *1
1* Real user id *1
1* Saved user id (from exec) *1
1* Effective group id *1
1* Real group id *1
1* Saved group id (from exec) *1
1* Number of supplementary groups *1

Fetch the set of supplementary group IDs associated with the process. p points to
an array of elements of type uid_t, which will be filled by the operation. PIOCCRED
can be applied beforehand to determine the number of groups (pr_ngrOUPs) that
will be returned and the amount of storage that should be allocated to hold them.

proc(4)

PIOCGETP~PIOCGETU

NOTES

FILES

These operations copy, respectively, the traced process's proc structure and user
area into the buffer addressed by p. They are provided for completeness but it
should be unnecessary to access either of these structures directly since relevant
status information is available through other control operations. Their use is
discouraged because a program making use of them is tied to a particular version of
the operating system.

PIOCGETPR can be applied to a zombie process (see PIOCPSINFO).

Each operation (ioctl or I/O) is guaranteed to be atomic with respect to the traced
process, except when applied to a system process.

For security reasons, except for the super-user, an open of a /proc file fails unless
both the user-ID and group-ID of the caller match those of the traced process and
the process's object file is readable by the caller. Files corresponding to setuid and
setgid processes can be opened only by the super-user. Even if held by the super
user, an open process file descriptor becomes invalid if the traced process performs
an exec of a setuid/ setgid object file or an object file that it cannot read. Any
operation performed on an invalid file descriptor, except close, fails with EAGAIN.
In this situation, if any tracing flags are set and the process file is open for writing,
the process will have been directed to stop and its run-on-Iast-close flag will have
been set (see PIOCSRLC). This enables a controlling process (if it has permission) to
reopen the process file to get a new valid file descriptor, close the invalid file
descriptor, and proceed. Just closing the invalid file descriptor causes the traced
process to resume execution with no tracing flags set. Any process not currently
open for writing via /proc but that has left-over tracing flags from a previous open
and that execs a setuid/setgid or unreadable object file will not be stopped but will
have all its tracing flags cleared.

For reasons of symmetry and efficiency there are more control operations than
strictly necessary.

/proc
/proc/nnnnn

directory (list of active processes)
process image

SEE ALSO
open(2), ptrace(2), sigaction(2), signal(2)

DIAGNOSTICS
Errors that can occur in addition to the errors normally associated with file system
access:

ENOENT

EIO

EBADF

EBUSY

The traced process has exited after being opened.

1/ 0 was attempted at an illegal address in the traced process.

An I/O or ioctl operation requiring write access was attempted on a
file descriptor not open for writing.

PIOCSTOP or PIOCWSTOP was applied to a system process; an exclusive
open was attempted on a process file already already open for writ
ing; an open for writing was attempted and an exclusive open is in
effect on the process file; PIOCRUN, PIOCSREG or PIOCSFPREG was

167

proc(4)

ENOSYS

DAULT

EINVAL

EIN'l'R

EAGAIN

168

applied to a process not stopped on an event of interest; an attempt
was made to mount /proc when it is already mounted.

Someone other than the super-user attempted to better a process's
priority by issuing PIOCNICE.

An attempt was made to perform an unsupported operation (such as
create, remove, link, or unlink) on an entry in /proc.

An I/O or ioctl request referred to an invalid address in the control
ling process.

In general this means that some invalid argument was supplied to a
system call. The list of conditions eliciting this error includes: the
ioctl code is undefined; an ioctl operation was issued on a file
descriptor referring to the /proc directory; an out-of-range signal
number was specified with PIOCSSIG, PIOCKILL, or PIOCtJNKILL;
SIGKILL was specified with PIOCtJNKILL; an illegal virtual address
was specified in a PIOCOPENM request; PIOCGPPREG or PIOCSFPREG
was issued on a machine without floating-point hardware.

A signal was received by the controlling process while waiting for the
traced process to stop via PIOCS'l'OP or PIOCWS'1'OP.

The traced process has performed an exec of a setuid/ setgid object
file or of an object file that it cannot read; all further operations on the
process file descriptor (except close) elicit this error.

profile (4)

NAME
profile - setting up an environment at login time

SYNOPSIS
/etc/profile
$HOME/ . profile

DESCRIPTION
All users who have the shell, sh(l), as their login command have the commands in
these files executed as part of their login sequence.

/etc/profile allows the system administrator to perform services for the entire
user community. Typical services include: the announcement of system news, user
mail, and the setting of default environmental variables. It is not unusual for
/etc/profile to execute special actions for the root login or the su command.
Computers running outside the U.S. Eastern time zone should have the line

. /etc/TlMEZONE

included early in /etc/profile [see timezone(4)].

The file $HOME/ .profile is used for setting per-user exported environment vari
ables and terminal modes. The following example is typical (except for the com
ments):

Make some environment variables global
export MAIL PATH TERM
Set file creation mask
UllIask 022
Tell me when new mail comes in
MAIL=/var/mail/$LOGNAME
Add my bin directory to the shell search sequence
PATH=$PATH:$HOME/bin
Set termdnal type
TERM=${LO:-u/n/k/n/o/w/n}
while :
do

done

if [-f ${TERMINFO:-/usr/share/lib/termdnfo}/?/$TERM
then break
elif [-f /usr/share/lib/termdnfo/?/$TERM
then break
else echo "invalid term $TERM" 1>&2
fi
echo "termdnal: \c"
read TERM

Set the erase character to backspace
stty erase '~H' echoe

169

profile (4)

FILES
/ete/TIMEZONE
$HOME/ . profile
fete/profile

timezone environment
user-specific environment
system-wide environment

SEE ALSO

NOTES

170

env(l), environ(5), login(l), mail(l), sh(l), stty(l), su(lM), term(5),
tenninfo(4), timezone(4), tput(l)

Care must be taken in providing system-wide services in fete/profile. Personal
.profile files are better for serving all but the most global needs.

protocols (4)

NAME
protocols - protocol name data base

SYNOPSIS
/etc/protocols

DESCRIPTION
The protocols file contains information regarding the known protocols used in the
DARPA Internet. For each protocol a single line should be present with the follow
ing information:

officml-protocol-name protocol-number almses

Items are separated by any number of blanks and/or TAB characters. A '#' indi
cates the beginning of a comment; characters up to the end of the line are not inter
preted by routines which search the file.

Protocol names may contain any printable character other than a field delimiter,
NEWLINE, or comment character.

The protocols file is used to initialize commands and protocols with these
reserved values.

EXAMPLE
The following is a sample database:

Internet (IP) protocols

ip 0 IP
iClll> 1 ICMP
ggp 3 GGP
tcp 6 TCP
pup 12 PUP
udp 17 UDP

FILES
/etc/protocols

SEE ALSO
getprotoent(3N)

NOTES

internet protocol, pseudo protocol
internet control message protocol
gateway-gateway protocol
transmission control protocol
PARe universal packet protocol
user datagram protocol

number

A name server should be used instead of a static file. A binary indexed file format
should be available for fast access.

171

prototype (4)

NAME
prototype - package information file

DESCRIPTION

172

prototype is an ASCII file used to specify package information. Each entry in the
file describes a single deliverable object. An object may be a data file, directory,
source file, executable object, etc. This file is generated by the package developer.

Entries in a prototype file consist of several fields of information separated by
white space. Comment lines begin with a //#// and are ignored. The fields are
described below and must appear in the order shown.

part An optional field designating the part number in which the object
resides. A part is a collection of files, and is the atomic unit by which a
package is processed. A developer can choose criteria for grouping files
into a part (for example, based on class). If this field is not used, part 1 is
assumed.

ftype A one·character field which indicates the file type. Valid values are:

f a standard executable or data file
e a file to be edited upon installation or removal
v volatile file (one whose contents are expected to change)
d directory
x an exclusive directory (See NOTES)
1 linked file
p named pipe
c character special device
b block special device
i installation script or information file
s symbolic link

Once a file has the file type attribute v, it will always be volatile. For
example, if a file being installed already exists and has the file type attri·
bute v, then even if the version of the file being installed is not specified
as volatile, the file type attribute will remain volatile.

class The installation class to which the file belongs. This name must contain
only alphanumeric characters and be no longer than 12 characters. The
field is not specified for installation scripts. (admin and all classes begin
ning with capital letters are reserved class names.)

pathname The pathname where the file will reside on the target machine, for exam
ple, /usr/bin/mail or bin/ras'-"proc. Relative pathnames (those that
do not begin with a slash) indicate that the file is relocatable. The form
pathl=path2 may be used for two purposes: to define a link and to define
local pathnames.

For linked files, pathl indicates the destination of the link and path2 indi
cates the source file. (This format is mandatory for linked files.)

For symbolically linked files, when path2 is a relative pathname starting
with . / or .• /, path2 is not considered relocatable. For example, if you
enter a line such as

s /foo/bar/etc/mount= .. /usr/sbin/mount

major

minor

mode

owner

group

prototype (4)

pathl (lfoo/bar/etc/mount) will be a symbolic link to
.. /usr/sbin/mount.

For local pathnames, pathl indicates the pathname an object should have
on the machine where the entry is to be installed and path2 indicates
either a relative or fixed pathname to a file on the host machine which
contains the actual contents.

A pathname may contain a variable specification, which will be resolved
at the time of installation. This specification should have the form
$ [A-Z] (see NOTES).

Special characters, such as an equal sign (=), are included in pathnames
by surrounding the entire pathname in single quotes (as in, for example,
, /usr/libr=').

The major device number. The field is only specified for block or charac
ter special devices.

The minor device number. The field is only specified for block or char
acter special devices.

The octal mode of the file (for example, 0664). A question mark (?) indi
cates that the mode will be left unchanged, implying that the file already
exists on the target machine. If the directory doesn't exist, the default is
0755. If it's a file, the default is 0644. This field is not used for linked files
or packaging information files.

The owner of the file (for example, bin or root). The field is limited to
14 characters in length. A question mark (?) indicates that the owner
will be left unchanged, implying that the file already exists on the target
machine. If it doesn't exist, owner defaults to root. This field is not used
for linked files or packaging information files.

Can be a variable specification in the form of $ [A-Z] (see NOTES). Will
be resolved at installation time.

The group to which the file belongs (for example, bin or sys). The field
is limited to 14 characters in length. A question mark (?) indicates that
the group will be left unchanged, implying that the file already exists on
the target machine. If it doesn't exist, group defaults to other. This field
is not used for linked files or packaging information files.

Can be a variable specification in the form of $ [A-Z] (see NOTES). Will
be resolved at installation time.

An exclamation point (!) at the beginning of a line indicates that the line contains a
command. These commands are used to incorporate files in other directories, to
locate objects on a host machine, and to set permanent defaults. The following
commands are available:

search Specifies a list of directories (separated by white space) to search
for when looking for file contents on the host machine. The
basename of the path field is appended to each directory in the
ordered list until the file is located. This command should not be

173

prototype (4)

include

specified in prototype files for packages that are to be
compressed.

Specifies a pathname which points to another prototype file to
include. Note that search requests do not span include files.

default Specifies a list of attributes (mode, owner, group, mac, fixed, and
inherited) to be used by default if attribute information is not pro
vided for prototype entries which require the information. If
either the mode, owner, or group attribute is supplied, all three of
these attributes must be supplied.

The defaults do not apply to entries in include prototype files.

param=va[ue Places the indicated parameter in the current environment.

The above commands may have variable substitutions embedded within them, as
demonstrated in the two example prototype files below.

Before files are overwritten during installation, they are copied to a temporary
pathname. The exception to this rule is files whose mode includes execute permis
sion, unless the file is editable (that is, ftype is e). For files which meet this excep
tion, the existing version is linked to a temporary pathname, and the original file is
removed. This allows processes which are executing during installation to be
overwritten.

EXAMPLES

174

Example 1:

IPROJDIR=/usr/proj
lBIN=$PROJDIR/bin
lCFG=$PROJDIR/cfg
lLIB=$PROJDIR/lib
lHDRS=$PROJDIR/hdrs
lsearch /usr/m¥Qame/usr/bin /usr/myname/src /usr/myname/hdrs
i pkginfo=/usr/myname/wrap/pkginfo
i depend=/usr/m¥Qame/wrap/depend
i version=/usr/~/wrap/version
d none /usr/wrap 0755 root bin
d none /usr/wrap/bin 0755 root bin

search $BIN
f none /usr/wrap/bin/INSTALL 0755 root bin
f none /usr/wrap/bin/REMOVE 0755 root bin
f none /usr/wrap/bin/addpkg 0755 root bin
ldefault 755 root bin
f none /usr/wrap/bin/audit
f none /usr/wrap/bin/listpkg
f none /usr/wrap/bin/pkgmk
The logfile starts as a zero length file, since the source
file has zero length. Later, the size of logfile grows.
v none /usr/wrap/logfile=/usr/wrap/log/zero_length 0644 root bin
the following specifies a link (dest=src)
1 none /usr/wrap/src/addpkg=/usr/wrap/bin/rmpkg

search $SRC

!default 644 root other
f src /usr/wrap/src/INSTALL.sh
f src /usr/wrap/src/REMOVE.sh
f src /usr/wrap/src/addpkg.c
f src /usr/wrap/src/audit.c
f src /usr/wrap/src/listpkg.c
f src /usr/wrap/src/pkgmk.c
d none /usr/wrap/data 0755 root bin
d none /usr/wrap/save 0755 root bin
d none /usr/wrap/spool 0755 root bin
d none /usr/wrap/tmp 0755 root bin
d src /usr/wrap/src 0755 root bin

Example 2:

prototype (4)

this prototype is generated by 'pkgproto' to refer
to all prototypes in my src directory
!PROJDIR=/usr/dew/projx
!include $PROJDIR/src/cmd/prototype
!include $PROJDIR/src/cmd/audmerg/protofile
!include $PROJDIR/src/lib/proto

SEE ALSO

NOTES

pkginfo(4), pkgmk(l)

Normally, if a file is defined in the prototype file but does not exist, that file is
created at the time of package installation. However, if the file pathname includes a
directory that does not exist, the file will not be created. For example, if the proto
type file has the following entry:

f none /usr/dev/bin/command

and that file does not exist, it will be created if the directory /usr/dev/bin already
exists or if the prototype also has an entry defining the directory:

d none /usr/dev/bin

An exclusive directory type (file) type x) specifies directories that are constrained to
contain only files that appear in the software installation database
(lvar/sadm/install/contents). If there are other files in the directory, they will
be removed by pkgchk -fx as described on the pkgchk(lM) man page.

Variable specifications for the patlmame, owner, and group fields are defined in the
pkginfo file. For example, owner could be $OWNER in the pkgmap file; if OWNER is
defined as root in the pkginfo file, $OWNER will get the value root when the file
gets installed.

175

publickey(4)

NAME
publickey - public key database

SYNOPSIS
/etc/publickey

DESCRIPTION
/etc/publickey is the public key database used for secure RPc. Each entry in the
database consists of a network user name (which may either refer to a user or a
hostname), followed by the user's public key (in hex notation), a colon, and then the
user's secret key encrypted with a password (also in hex notation).

This file is altered either by the user through the chkey(l) command or by the sys
tem administrator through the newkey(lM) command.

SEE ALSO
chkey(l), newkey(lM), publickey(3N)

176

Rc(4)

NAME
Rc - system startup script

SYNOPSIS
Rc

DESCRIPTION
One of the kernel configuration files, an Rc file is an optional file that executes when
the system is booted to initialize an installed kernel module. [Normally, this is a
shell script (see sh(l).]

When the Rc component of a module's Driver Software Package (DSP) is installed,
idinstall(lM) stores the module's Rc file in /etc/conf/rc.d/module-name,
where module-name is the name of the module being installed. Package scripts
should never access /etc/conf/rc.d files directly; the idinstall command
should be used instead.

The contents of the /etc/conf/rc.d directory are linked to /etc/idrc.d when
ever a new configuration of the kernel is first booted. On this initial reboot, and on
all subsequent reboots, the module's Rc file is invoked upon entering init level 2
[see init(lM)].

SEE ALSO
idinstall(lM), init(lM), Sd(4)

res major (4)

NAME
res_major - reserved major numbers for base system device drivers

SYNOPSIS
res_major

DESCRIPTION
One of the ID/TP kernel configuration files, the res_major file defines the major
numbers that are reserved for use by device drivers supplied with the base system.
When the idinstall(lM) command allocates major numbers for an add-on driver,
it examines the contents of the file /etc/conf/cf.d/res_major to make sure the
major number it intends to allocate to the add-on driver is not already reserved for
allocation to a base system driver. This file should not be used by add-on drivers.

Any base system driver that sets a k (keep majors) flag in the characteristics field of
its Master(4) file must add its major numbers to the res_major file. Each
res_major file entry provides information about one type of base system driver,
specified on a line of the form:

device-type major-number module-name

All fields are positional and must be separated by tabs.

The res_major file fields are:

device-type Identifies the type of base system device driver. The character b
indicates that the driver is a block device driver; the character c
indicates that the driver is a character device driver. If the driver
is both a block device driver and a character device driver, the
driver must define two separate res_major entries, with one

major-number

module-name

entry for each device type.

Specifies the major number(s) reserved by the base system device
driver. If the device has multiple major numbers, this field
should be specified as two numbers separated by a dash to indi
cate an inclusive range of reserved values. The value for this field
must match the value specified in the bmaj or cmaj field in the
driver's Master file.

Identifies the base system device driver for which the major
number(s) are reserved. The name must match the name
specified for the driver in the module-name field of the Master file.

SEE ALSO
idinstall(lM), Master(4)

178

resolv.conf (4)

NAME
resol v . conf - configuration file for name server routines

DESCRIPTION

FILES

'The resolver configuration file contains information that is read by the resolver rou
tines the first time they are invoked in a process. 'The file is designed to be human
readable and contains a list of keyword-value pairs that provide various types of
resolver information.

keyword value

'The different configuration options are:

nameserver address 'The Internet address (in dot notation) of a name server that
the resolver should query. At least one name server should
be listed. Up to MAXNS (currently 3) name servers may be
listed, in that case the resolver library queries tries them in
the order listed. 'The algorithm used is to try a name server,
and if the query times out, try the next, until out of name
servers, then repeat trying all the name servers until a max
imum number of retries are made.

domain name 'The default domain to append to names that do not have a
dot in them.

address address An Internet address (in dot notation) of any preferred net
works. 'The list of addresses returned by the resolver will be
sorted to put any addresses on this network before any oth
ers.

'The keyword-value pair must appear on a single line, and the keyword (for
instance, nameserver) must start the line. 'The value follows the keyword,
separated by white space.

letc/resolv.conf

SEE ALSO
gethostent(3N), named(lM), resol ver(3N)

179

rfmaster (4)

NAME
rfmaster - Remote File Sharing name server master file

DESCRIPTION

180

Each transport provider used by Remote File Sharing has an associated rfmaster
file that identifies the primary and secondary name servers for that transport pro
vider. The rfmaster file Ascn contains a series of records, each terminated by a
newline; a record may be extended over more than one line by escaping the newline
character with a backslash ("\"). The fields in each record are separated by one or
more tabs or spaces. Each record has three fields:

name type data
The type field, which defines the meaning of the name and data fields, has three pos
sible values. These values can appear in upper case or lower case:

p The p type defines the primary domain name server. For this type, name is
the domain name and data is the full host name of the machine that is the pri
mary name server. The full host name is specified as domain.nodename. There
can be only one primary name server per domain.

s The s type defines a secondary name server for a domain. name and data are
the same as for the p type. The order of the s entries in the rfmaster file
determines the order in which secondary name servers take over when the
current domain name server fails.

a The a type defines a network address for a machine. name is the full domain
name for the machine and data is the network address of the machine. The
network address can be in plain AScn text or it can be preceded by a \x or \X
to be interpreted as hexadecimal notation. (See the documentation for the
particular network you are using to determine the network addresses you
need.)

If a line in the rfmaster file begins with a # character, the entire line is treated as a
comment.

There are at least two lines in the rfmaster file per domain name server: one p and
one a line, to define the primary and its network address.

This file is created and maintained on the primary domain name server. When a
machine other than the primary tries to start Remote File Sharing, this file is read to
determine the address of the primary. If the associated rfmaster for a transport
provider is missing, use

rfstart -p primary_name _server_address

to identify the primary name server's address for that transport provider. After
that, a copy of the primary's rfma.ster file is automatically placed on the machine.

Domains not served by the primary can also be listed in the rfmaster file. By
adding primary, secondary, and address information for other domains on a net
work, machines served by the primary will be able to share resources with
machines in other domains.

rfmaster (4)

A primary name server may be a primary for more than one domain. However, the
secondaries must then also be the same for each domain served by the primary.
There is an rfmaster file for each transport provider.

Files
/ etc/ rf s / <transport> / rfmaster

USAGE
Examples

An example of an rfmaster file, using TCP lIP addresses, is shown below. (The
network address shown are for illustration purposes only. Do not use these in your
rfmaster file.)

ccs p
ccs s
ccs.c0IIQ;)2 a
ccs • cOIIIi>l a

REFERENCES
rfstart(lM)

ccs.cOIIIi>l
ccs.c0IIIi>2
\x00020ACEAE026E380000000000000000
\x00020ACEAE026E480000000000000000

181

routing (4)

NAME
routing - system supporting for packet network routing

DESCRIPTION

182

The network facilities provide general packet routing. Routing table maintenance
may be implemented in applications processes.

A simple set of data structures compose a routing table used in selecting the
appropriate network interface when transmitting packets. This table contains a sin
gle entry for each route to a specific network or host. The routing table was
designed to support routing for the Internet Protocol (IP), but its implementation is
protocol independent and thus it may serve other protocols as well. User programs
may manipulate this data base with the aid of two ioctl(2) commands, SIOCADDRT
and SIOCDELRT. These commands allow the addition and deletion of a single rout
ing table entry, respectively. Routing table manipulations may only be carried out
by privileged user.

A routing table entry has the following form, as defined in
/usr/include/net/route.h:

struct rtentry {
u_long rt_hash;
struct sockaddr rt_dst;
struct sockaddr rt_gateway;
short rt_flags;
short rt_refcnt;
u_long rt_use;

#ifdef STRNET
struct ip-provider *rt-prov;

#else
struct ifnet *rt_ifp;

#endif 1* STRNET *1
};

with rt Jlags defined from:

1* to speed lookups *1
1* key *1
1* value *1
1* up/down?, host/net *1
1* # held references *1
1* raw # packets forwarded *1

1* the answer: provider to use *1

1* the answer: interface to use *1

#define RTF_UP Oxl 1* route usable *1
#define RTF_GATEWAY Ox2 1* destination is a gateway *1
#define RTF_HOST Ox4 1* host entry (net otherwise) *1

Routing table entries come in three flavors: for a specific host, for all hosts on a
specific network, for any destination not matched by entries of the first two types (a
wildcard route). Each network interface installs a routing table entry when it it is
initialized. Normally the interface specifies the route through it is a direct connec
tion to the destination host or network. If the route is direct, the transport layer of a
protocol family usually requests the packet be sent to the same host specified in the
packet. Otherwise, the interface may be requested to address the packet to an
entity different from the eventual recipient (that is, the packet is forwarded).

Routing table entries installed by a user process may not specify the hash, reference
count, use, or interface fields; these are filled in by the routing routines. If a route is
in use when it is deleted (rt_refcnt is non-zero), the resources associated with it
will not be reclaimed until all references to it are removed.

FILES

routing (4)

User processes read the routing tables through the /dev/kmem device.

'The rt _use field contains the number of packets sent along the route. This value is
used to select among multiple routes to the same destination. When multiple
routes to the same destination exist, the least used route is selected.

A wildcard routing entry is specified with a zero destination address value. Wild
card routes are used only when the system fails to find a route to the destination
host and network. The combination of wildcard routes and routing redirects can
provide an economical mechanism for routing traffic.

/dev/kmem

SEE ALSO
ioctl(2), route(lM), routed(lM)

DIAGNOSTICS
EEXIST

ESRCH

ENOBUFS

A request was made to duplicate an existing entry.

A request was made to delete a non-existent entry.

Insufficient resources were available to install a new route.

183

rpc(4)

NAME
rpc - rpc program number data base

SYNOPSIS
rpc

DESCRIPTION

184

The rpc program number database contains user readable names that can be used
in place of RPC program numbers. Each line has the following information:

name of server for the RPC program
RPC program number
aliases

Items are separated by any number of blanks and/or tab characters. A # indicates
the beginning of a comment; characters up to the end of the line are not interpreted
by routines which search the file.

Below is an example of an RPC database:

rpc

rpcbind 100000
rusersd 100002
nfs 100003
mountd 100005
walld 100008
sprayd 100012
llockmgr 100020
nlockmgr 100021
status 100024
bootparam 100026
keyserv 100029

portmap sunrpc portmapper
rusers
nfsprog
mount showmount
rwall shutdown
spray

keyserver

NAME
rt_dptbl- real-time dispatcher parameter table

DESCRIPTION
The process scheduler (or dispatcher) is the portion of the kernel that controls allo
cation of the CPU to processes. The scheduler supports the notion of scheduling
classes where each class defines a scheduling policy, used to schedule processes
within that class. Associated with each scheduling class is a set of priority queues
on which ready to run processes are linked. These priority queues are mapped by
the system configuration into a set of global scheduling priorities which are avail
able to processes within the class. (The dispatcher always selects for execution the
process with the highest global scheduling priority in the system.) The priority
queues associated with a given class are viewed by that class as a contiguous set of
priority levels numbered from 0 (lowest priority) to n (highest priority-a
configuration dependent value). The set of global scheduling priorities that the
queues for a given class are mapped into might not start at zero and might not be
contiguous (depending on the configuration).

The real-time class maintains an in-core table, with an entry for each priority level,
giving the properties of that level. This table is called the real-time dispatcher
parameter table (rt_dptbl). The rt_dptbl consists of an array of parameter struc
tures (struct rt_dpent), one for each of the n priority levels. The properties of a
given priority level i are specified by the ith parameter structure in this array
(rt_dptbli).

A parameter structure consists of the following members. These are also described
in the /usr/include/sys/rt.hheader file.

rt~lobpri The global scheduling priority associated with this priority level.
The mapping between real-time priority levels and global
scheduling priorities is determined at boot time by the system
configuration. The rt_globpri values cannot be changed with
dispadmin(lM).

rt_quantum The length of the time quantum allocated to processes at this level
in ticks (HZ). The time quantum value is only a default or start
ing value for processes at a particular level as the time quantum
of a real-time process can be changed by the user with the
priocntl command or the priocntl system call.

An administrator can affect the behavior of the real-time portion of the scheduler by
reconfiguring the rt_dptbl. There are two methods available for doing this.

DISPADMIN CONFIGURATION FILE
The rt_quantum values in the rt_dptbl can be examined and modified on a run
ning system using the dispadmin(lM) command. Invoking dispadmin for the
real-time class allows the administrator to retrieve the current rt_dptbl
configuration from the kernel's in-core table, or overwrite the in-core table with
values from a configuration file. The configuration file used for input to dispadmin
must conform to the specific format described below.

185

rt_ dptbl (4)

Blank lines are ignored and any part of a line to the right of a # symbol is treated as
a comment. The first non-blank, non-comment line must indicate the resolution to
be used for interpreting the time quantum values. The resolution is specified as

RES=res

where res is a positive integer between 1 and 1,000,000,000 inclusive and the resolu
tion used is the reciprocal of res in seconds. (For example, RES=1000 specifies mil
lisecond resolution.) Although very fine (nanosecond) resolution may be specified,
the time quantum lengths are rounded up to the next integral multiple of the sys
tem clock's resolution. The system clock's resolution is hardware-dependent; this
resolution can be calculated from the value of HZ, which is defined in the file
/usr/include/sys/param.h. HZ gives the number of clock ticks per second of the
system clock. For example, an HZ of 100 specifies 100 clock ticks per second, or one
tick every 10 milliseconds (that is, this system clock has a resolution of 10 mil
liseconds). If the -t and -r options are used to specify a time quantum of 34 mil
liseconds, it is rounded up to 4 ticks (40 milliseconds) on a machine with an HZ of
100.

The remaining lines in the file are used to specify the rt_quantum values for each of
the real-time priority levels. The first line specifies the quantum for real-time level
0, the second line specifies the quantum for real-time levell, etc. There must be
exactly one line for each configured real-time priority level. Each rt_quantum
entry must be either a positive integer specifying the desired time quantum (in the
resolution given by res), or the symbol RT_TQINF indicating an infinite time quan
tum for that level.

EXAMPLE

186

The following excerpt from a dispadmin configuration file illustrates the format.
Note that for each line specifying a time quantum there is a comment indicating the
corresponding priority level. These level numbers indicate priority within the real
time class, and the mapping between these real-time priorities and the correspond
ing global scheduling priorities is determined by the configuration specified in the
rt master file. The level numbers are strictly for the convenience of the administra
tor reading the file and, as with any comment, they are ignored by dispadmin on
input. dispadmin assumes that the lines in the file are ordered by consecutive,
increasing priority level (from 0 to the maximum configured real-time priority).
The level numbers in the comments should normally agree with this ordering; if for
some reason they don't, however, dispadmin is unaffected.

Real-Time Dispatcher Configuration File
RES=1000

FILES

TIME QUANTUM
(rt_quantum)

100
100
100
100
100
100

90
90

10
10

/usr/include/sys/rt.h

SEE ALSO
dispadmin(lM), priocntl(l), priocntl(2)

PRIORITY
LEVEL

0
1
2
3
4
5
6
7

58
59

187

Sassign(4)

NAME
Sassign - configurable device variables

SYNOPSIS
Sassign

DESCRIPTION

NOTES

188

One of the kernel configuration files, the Sassign file gives system administrators
the ability to assign specific actual devices to logical device names used by the ker
nel. One example is rootdev, which is the device that contains the root file system.
At present, the Sassign file only supports block devices.

If the system administrator wants to assign a different actual device to perform a
function, the administrator remaps the logical device name for that function to
specify another configured device in the sassign file. Note that the kernel must be
rebuilt and rebooted for the new assignment to take affect.

Each logical device name in the Sassign file is specified (in
/ete/eonf/sassign.d) on a separate line of the form:

device-variable-prefix device-module-name minor node-name

All fields are positional and must be separated by white space. Blank lines and
lines beginning with '#' or '.' are considered comments and are ignored.

The Sassign file fields are:

device-variable-prefix
Specifies a prefix identifier to be used to construct the logical name by which
the device is known. When the kernel is rebuilt, the suffix deY will be
appended to this identifier to form the full logical device name.

The logical device name will be used to create a global variable of type
dev_t during the kernel rebuild process. Any module that needs to refer
ence the logical device should include an extern dev_t declaration for the
logical device name variable.

device-module-name
Identifies the name of actual device that is to perform the function associ
ated with this logical device name. The name must match the name defined
for the device in the module-name field of its Master(4) file.

minor Specifies the minor device number which is to be assigned to this logical
device name. The major number for the logical device is the major number
defined for the device identified in the device-module-name field.

node-name
This field is used for the swap device only. The field specifies the full path
name of the block special file for the swap device.

To create a variable which is intended to always refer to the same device, define it
as a variable in the device's Spaee.e file, using the PRFX_BMAJOR_X symbol from
/ete/eonf/ef .d/eonfig .h, instead of using an Sassign file.

Sassign(4)

SEE ALSO
idbuild(lM), Master(4), space.c(4)

189

sccsfile (4)

NAME
sccsfile - format of sees file

DESCRIPTION

190

An sees (Source Code Control System) file is an ASen file. It consists of six logical
parts: the checksum, the delta table (contains information about each delta), user
names (contains login names and/or numerical group IDs of users who may add
deltas), flags (contains definitions of internal keywords), comments (contains arbi
trary descriptive information about the file), and the body (contains the actual text
lines intermixed with control lines).

Throughout an sees file there are lines which begin with the AseII SOH (start of
heading) character (octal 001). This character is hereafter referred to as the control
character and will be represented graphically as @. Any line described below that is
not depicted as beginning with the control character is prevented from beginning
with the control character.

Entries of the form DDDDD represent a five-digit string (a number between 00000
and 99999).

Each logical part of an sees file is described in detail below.

Checksum
The checksum is the first line of an sees file. The form of the line is:

@hDDDDD

The value of the checksum is the sum of all characters, except those of the first line.
The@hprovides a magic number of (octal) 064001, depending on byte order.

Delta Table
The delta table consists of a variable number of entries of one of the following
forms:

@sDDDDD/DDDDD/DDDDD
@d <type> <sees ID> yr/mo/da hr:mi:se <pgmr> DDDDD DDDDD
@iDDDDD ...
@xDDDDD •••
@gDDDDD •••
@In <MR number>

@c <comments> ...

@e

The first line (@s) contains the number of lines inserted/deleted/unchanged,
respectively. The second line (@d) contains the type of the delta (normal: D or
removed: R), the sees ID of the delta, the date and time of creation of the delta, the
login name corresponding to the real user ID at the time the delta was created, and
the serial numbers of the delta and its predecessor, respectively.

The @i, @x, and @g lines contain the serial numbers of deltas included, excluded,
and ignored, respectively. These lines are optional.

sccsfile (4)

The @m lines (optional) each contain one MR number associated with the delta; the
@c lines contain comments associated with the delta. The @e line ends the delta
table entry.

User Names
The list of login names and/ or numerical group IDs of users who may add deltas to
the file, separated by new-lines. The lines containing these login names and/or
numerical group IDs are surrounded by the bracketing lines @u and @u. An empty
list allows anyone to make a delta. Any line starting with a ! prohibits the
succeeding group or user from making deltas.

Flags
Keywords used internally. See admin(l) for more information on their use. Each
flag line takes the form:

@f <flag> <optional text>

The following flags are defined:

@f t <type of program>
@f v <program name>
@f i <keyword string>
@f b
@f m <module name>
@f f <floor>
@f c <ceiling>
@f d <default-sid>
@f n
@f j
@f 1 <lock-releases>
@f q <user defined>
@f z <reserved for use in interfaces>

The t flag defines the replacement for the %Y"-f, identification keyword. The v flag
controls prompting for MR numbers in addition to comments; if the optional text is
present it defines an MR number validity checking program. The i flag controls the
warning/ error aspect of the "No id keywords" message. When the i flag is not
present, this message is only a warning; when the i flag is present, this message
causes a fatal error (the file will not be "gotten", or the delta will not be made).
When the b flag is present the -b keyletter may be used on the get command to
cause a branch in the delta tree. The m flag defines the first choice for the replace
ment text of the 'YoM% ,identification keyword. The f flag defines the floor release; the
release below which no deltas may be added. The c flag defines the ceiling release;
the release above which no deltas may be added. The d flag defines the default SID
to be used when none is specified on a get command. The n flag causes delta to
insert a null delta (a delta that applies no changes) in those releases that are skipped
when a delta is made in a new release (for example, when delta 5.1 is made after
delta 2.7, releases 3 and 4 are skipped). The absence of the n flag causes skipped
releases to be completely empty. The j flag causes get to allow concurrent edits of
the same base SID. The 1 flag defines a list of releases that are locked against edit
ing. The q flag defines the replacement

191

sccsfile (4)

for the %Q% identification keyword. The z flag is used in specialized interface pro
grams.

Comments
Arbitrary text is surrounded by the bracketing lines @t and @T. The comments sec
tion typically will contain a description of the file's purpose.

Body
The body consists of text lines and control lines. Text lines do not begin with the
control character, control lines do. There are three kinds of control lines: insert,
delete, and end, represented by:

@IDDDDD
@DDDDDD
@EDDDDD

respectively. The digit string is the serial number corresponding to the delta for the
control line.

SEE ALSO
admin(l), delta(l), get(l), prs(l)

192

Sd(4)

NAME
Sd - kernel module system shutdown script

SYNOPSIS
Sd

DESCRIPTION
One of the kernel configuration files, a Sd file is an optional file that executes when
the system is shut down to perform any cleanup required for an installed kernel
module. Normally, this is a shell script [see sh(l)].

When the Sd component of a module's Driver Software Package (DSP) is installed,
idinstall(lM) stores the driver's Sd file information in /etc/conf/sd.d/module
name, where module-name is the name of the module being installed. Package scripts
should never access /etc/conf/sd.d files directly; only the idinstall command
should be used.

The contents of the /etc/conf/sd.d directory are linked to /etc/idsd.d when
ever a new configuration of the kernel is first booted. On the next system
shutdown-and all subsequent system shutdowns-the module's Sd file is executed
upon entering init level 0, 5, or 6 [see init(lM)].

SEE ALSO
idinstall(lM), init(lM), shutdown(lM), Rc(4)

193

services (4)

NAME
services - Internet services and aliases

DESCRIPTION

FILES

The services file contains an entry for each service available through the DARPA
Internet. Each entry consists of a line of the form:

service-name port / protocol aliases

service-name

port / protocol

This is the official Internet service name.

This field is composed of the port number and protocol
through which the service is provided (for instance,
Sl2/tcp).

aliases This is a list of alternate names by which the service might be
requested.

Fields can be separated by any number of SPACE and/or TAB characters. A 'I'
(pound-sign) indicates the beginning of a comment; characters up to the end of the
line are not interpreted by routines which search the file.

Service names may contain any printable character other than a field delimiter,
NEWLINE, or comment character.

The services file is used to initialize commands and protocols with these tradi
tional and reserved values.

/etc/services

SEE ALSO
getservent(3N), inetd. conf(4), RFC 1060

194

setinfo (4)

NAME
setinfo - set characteristics file

DESCRIPTION
set info is an ASCII file that describes the characteristics of the set along with infor
mation that helps control the flow of installation. It is created by the software set
developer and is included in the Set Installation Package (SIP). A SIP is a special
purpose package that controls the installation and removal of a set of packages.

Each entry in the set info file is a line that consists of predefined fields. Each entry
corresponds to a package belonging to the set and must contain the following
<tab>-separated fields:

1. Package Abbr
This field contains the abbreviated name of the package. The abbrevia
tion must be a short string (no more than nine characters long) and
must conform to the file naming rules. All characters in the abbrevia
tion must be alphanumeric and the first character cannot be numeric.
install, new, and all are reserved.

This abbreviated name must be the same as the one used in pkginfo(4).

2. Parts This field specifies the number of parts this package consists of.

3. Default This field contains the character 'y' indicating that the package is to be
installed as a default. Conversely, an 'n' indicates that the package will
not be installed.

4. Category
The category under which the package belongs. Release 4 defines four
categories: "application," "graphics," "system" and "utilities." All
packages must be assigned to one of these categories. If you choose,
you can also assign a package to a category you defined. Categories are
case-insensitive and may contain only alphanumerics. Each category is
limited to 16 characters.

5. Package Full-Name

EXAMPLES

Text that specifies the package name (maximum length of 256 ASCII charac
ters). This field must be the same as NAME in pkginfo(4).

set info file for set admin:

#ident "@(#)set:cmn/set/admin/setinfo 1.2"
#ident "$Header: $"

Format for the set info file.
pkg parts default category
abbr yin

oam 4
bkrs 1
face 1

y
y
y

application
system
application

Field separator is: <tab>
pkg full-name

OA&M
Extended Backup and Restore
FACE

195

setinfo(4)

NOTES
The order of the packages listed in the setinfo file must reflect any package depen
dencies (if any) and must represent the order in which the packages will occur on
the media (in the case of datastream). Any package for which there exists a depen
dency must be listed prior to the package(s) that depends on it.

SEE ALSO
pkginfo(4)

196

setsize (4)

NAME
setsize - disk space requirements file

DESCRIPTION
This set information file defines disk space requirements for the target environment.
It contains information about all of the packages in the set. This file describes the
disk space taken up by installed files as well as extra space needed for dynamically
created files, as described in each package's space(4) file.

The generic format of a line in this file is:

pathname blocks inodes

Definitions for each field are as follows:

pkg The short, or abbreviated, name of a package in the set. This name
describes which package of the set requires the amount of space
described by the rest of the data on this line in the setsize file.

pathname Names a directory in which there are objects that will be installed or that
will require additional space. The name may be the mountpoint for a
filesystem. Names that do not begin with a slash (/) indicate relocatable
directories.

blocks Defines the number of 512 byte disk blocks required for installation of
the files and directory entries contained in the pathname. (Do not
include filesystem-dependent disk usage).

inodes Defines the number of inodes required for the installation of the files
and directory entries contained in the pathname.

At installation time, the set installation calls setsizecvt(l), which reduces the
setsize file for a set to a space(4) file containing entries for only the packages that
are selected. It is this resulting space(4) file against which space checking for the
set is performed.

EXAMPLE
space required by packages in the Networking Set
inet:/usr/adm 46 2
nfs:/etc 197 17

SEE ALSO
setsizecvt(l), space(4)

197

shadow (4)

NAME
shadow - shadow password file

DESCRIPTION

FILES

letc/shadow is an access-restricted ASCII system file that contains an entry for each
user on the system. The fields within each entry are separated by colons; each entry
is separated from the next by a new-line. Unlike the letc/passwd file,
letc/shadow does not have general read permission.

Here are the fields in letc/shadow:

login_name The name by which a user identifies himself or herself when log
ging in.

password A 13-character encrypted password for the user, a lock string to
indicate the login is not accessible, or no string to show that there
is no password for the login.

lastchanged The number of days between January I, 1970, and the date that the
password was last modified.

minimum The minimum number of days required between password
changes.

maximum

warn

inactive

expire

flag

The maximum number of days the password is valid.

The number of days before password expires that the user is
warned.

The number of days of inactivity allowed for that user.

An absolute date specifying when the login may no longer be
used.

A character identifying a password generator.

The encrypted password consists of 13 characters chosen from a 64-character alpha
bet (., I, 0-9,A-Z, a-z).

To update this file, use the passwd, useradd, usermod, or userdel command.

letc/shadow

SEE ALSO

198

get spent (3C), login(I), passwd(I), passwd(4), putspent(3C), useradd(IM),
userdel(IM), usermod(IM)

sharetab (4)

NAME
sharetab - shared file system table

DESCRIPTION
share tab resides in directory /ete/dfs and contains a table of local resources
shared by the share command.

Each line of the file consists of the following fields:

pathname resource fstype specific _options description

where

pathname Indicates the pathname of the shared resource.

resource Indicates the symbolic name by which remote systems can
access the resource.

fstype Indicates the file system type of the shared resource.

specific _options Indicates file-system-type-specific options that were given to
the share command when the resource was shared.

description Is a description of the shared resource provided by the sys
tem administrator when the resource was shared.

SEE ALSO
share(lM)

199

space (4)

NAME
space - disk space requirement file

DESCRIPTION
space is an Ascn file that gives information about disk space requirements for the
target environment. It defines space needed beyond that which is used by objects
defined in the prototype file-for example, files which will be installed with the
installf command. It should define the maximum amount of additional space
which a package will require.

The generic format of a line in this file is:

pathname blocks inodes

Definitions for the fields are as follows:

path name Specifies a directory name which mayor may not be the mount point for
a filesystem. Names that do not begin with a slash (I) indicate relocat
able directories.

blocks Defines the number of disk blocks required for installation of the files
and directory entries contained in the pathname (using a 512-byte block
size).

inodes Defines the number of inodes required for installation of the files and
directory entries contained in the pathname.

EXAMPLE
extra space required by config data which is
dynamically loaded onto the system
data 500 1

SEE ALSO
installf(lM), prototype(4)

200

Space.c(4)

NAME
Space. c - configuration-dependent kernel module data structure initializations

SYNOPSIS
Space.c

DESCRIPTION
One of the kernel configuration files, the Space. c file contains storage allocations
and initializations for data structures associated with a kernel module, when the
size or initial value of the data structures depend on configurable parameters, such
as the number of subdevices configured for a particular device or a tunable parame
ter. For example, the Space.c file gives a driver the ability to allocate storage only
for the subdevices actually being configured, by referencing symbolic constants
defined in the conf ig . h file.

When the Space.c component of a module's Driver Software Package (DSP) is
installed, idinstall(lM) stores the module's Space.c file information in
/etc/conf/pack.d/module-name/space.c, where module-name is the name of the
module being installed.

Package scripts should never access Space. c files directly; only the idinstall
command should be used.

The config.h file is a temporary file created in /etc/conf/cf.d during the system
reconfiguration process. The file contains #define statements that can be used to
specify the following information about the module:

Per module #defines:

#define PRFX Set to 1 if module is configured
#define PRFX_CNTLS NUmber of configured entries in System file
#define PRFX_UNITS NUmber of subdevices (sum of unit fields)
#define PRFX_CMAJORS Number of character major numbers supported
#define PRFX_CMAJOR_O Character major numbers supported; the first

major is PRFX_CKAJOR_O, the second
PRFX_CMAJOR_1, and so forth

Per instance #defines (PRFX_o represents the first configured
instance, followed by PRFX_1, and so on if more than one
instance is configured):

#define PRFX_O
#define PRFX_O_VECT
#define PRFX_O_T'iPE
#define PRFX_O_IPL
#define PRFX_O_SIOA
#define PRFX_O_EIOA
#define PRFX_O_SCMA
#define PRFX_O_ECMA
#define PRFX_O_CHAN

Unit field value
Interrupt vector used
Interrupt vector type
Interrupt priority level
Starting input/output address
Ending input/output address
Starting controller memory address
Ending controller memory address
DMA channel used (-1 if none)

201

Space.c(4)

NOTES

Since the module is installed as an object file, the module itself can not reference the
#defines for the configurable device parameters in config.h. However, the
module's Space.c is a C language source file, and as such, can define variables
which can take on the values of the #defines in config.h. When the next system
configuration is built, the idbuild(lM) command uses the list of arguments to
cc(l) defined in letclconf/cf .d/deflist to compile the module's Space.c file
before linking the module to the kernel.

The following two #defines are generated for the Space. c file only if their values
are identical for all instances:

#define PRFX_CHAN DMA channel used (-1 if none)
#define PRFX_TYPE Interrupt vector type used

SEE ALSO
idbuild(lM). Master(4), System(4)

EXAMPLES

202

#include <config.h>

struct strtty lp_tty[LP_CNTLS];
time_t last_time[LP_CNTLS];

struct lpcfg lpcfg[LP_CNTLS]
0,
LP_O_SIOA+O,
LP_0_SIOA+1,
LP_0_SIOA+2,
LP_O_VECT

#ifdef LP_1

0,
LP_1_SIOA+O,
LP_1_SIOA+1,
LP_1_SIOA+2,
LP_1_VECT

#endif 1* LP_1 *1
#ifdef LP_2

{

1* tty structs for each device *1
1* output char watchdog timeout *1

1* state *1
1* data register port address *1
1* status register port address *1
1* control register port address *1
1* interrupt vector *1

1* next structure *1

0,
LP_2_SIOA+O,
LP_2_SIOA+l,
LP_2_SIOA+2,
LP_2_VECT

#endif
} ;

Space.c(4)

/* next structure */

203

stat(4) (XENIX System Compatibility)

NAME
stat - (XENIX) data returned by stat system call

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

DESCRIPTION

204

The system calls stat, lstat and fstat return data in a stat structure, which is
defined in stat. h:

struct stat
{

dev_t st_dev;
ioo_t st_ioo;
mode_t st_mode;
nlink_t st_nlink.;
uid_t st_uid;
gid_t st-9id;
dev_t st_Mev;
off_t st_size;
time_t st_atime;
time_t st_mtime;
t~t st_ctime;

};

The constants used in the st_mode field are also defined in this file:

#define S_IFMT
#define S_IAMB
#define S_IFlFO
#define S_IFCHR
#define S_IFDIR
#define S_IFNAM
#define S_INSEH
#define S_INSBM
#define S_IFBLK
#define S_IFREG
#define S_IFLNK
#define S_ISUID
#define S_ISGID
#define S_ISVTX
#define S_IREAD
#define S_rwRlTE
#define S_IEXEC
#define S_BNFMT
#define S_IRWXU
#define S_IRUSR
#define S_IWOSR
#define S_IXUSR

OxFOOO
OxlFF
Oxl000
Ox2000
Ox4000
OxSOOO
Oxl
0x2
Ox6000
Ox8000
OxAOOO
04000
02000
01000
00400
00200
00100
S_ISGID
00700
00400
00200
00100

/* type of file * /
/ * access mode bits * /
/* fiio */
/ * character special * /
/ * directory * /
/ * XENIX special named file * /
/ * XENIX semaphore subtype of IFNAM * /
/ * XENIX shared data subtype of IFNAM * /
/ * block special * /
/ * regular * /
/ * symbolic link * /
/ * set user id on execution * /
/ * set group id on execution * /
/ * save swapped text even after use * /
/ * read permission, owner * /
/ * write permission, owner * /
/ * execute / search permission, owner * /
/ * record locking enforcement flag * /
/ * read, write, execute: owner * /
/ * read permission: owner * /
/ * write permission: owner * /
/ * execute permission: owner * /

(XENIX System Compatibility)

SEE ALSO

#define S_IRWXG
#define S_IRGRP
#define S_IWGRP
#define S_IXGRP
#define S_IRWXO
#define S_IROTH
#define S_IWOTH
#define S_IXOTH

stat(2), types(S)

00070
00040
00020
00010
00007
00004
00002
00001

/ * read, write, execute: group * /
/ * read permission: group * /
/ * write permission: group * /
/* execute permission: group * /
/* read, write, execute: other * /
/* read permission: other * /
/* write permission: other * /
/* execute permission: other * /

stat (4)

205

stref (4)

NAME
strcf - STREAMS Configuration File for STREAMS TCP lIP

DESCRIPTION

206

/etc/strcf contains the script that is executed by slink(lM) to perform the
STREAMS configuration operations required for STREAMS Tep lIP.

The standard /etc/strcf file contains several functions that perform various
configuration operations, along with a sample boot function. Normally, only the
boot function must be modified to customize the configuration for a given install
ation. In some cases, however, it may be necessary to change existing functions or
add new functions.

The following functions perform basic linking operations:

The tp function is used to set up the link between a transport provider, such as Tep,
andIP.

tp - configure transport provider (that is, tcp, udp, icmp)
usage: tp devname

tp {

p = open $1
ip = open /dev/ip
link p ip

The linkint function links the specified streams and does a sifname operation
with the given name.

linkint - link interface to ip or arp
usage: linkint top bottom ifname

linkint {

x = link $1 $2
sifname $1 x $3

The aplinkint function performs the same function as linkint for an interface
that uses the app module.

aplinkint - like linkint, but app is pushed on dev
usage: aplinkint top bottom ifname

aplinkint {

}

push $2 app
linkint $1 $2 $3

strcf(4)

The following functions are used to configure different types of Ethernet interfaces:

The uenet function is used to configure an Ethernet interface for a cloning device
driver that uses the unit select ioctl to select the desired interface. The interface
name is constructed by concatenating the supplied prefix and the unit number.

uenet - configure ethernet-type interface for cloning driver using
unit select
usage: uenet ip-fd devname ifprefix unit

uenet {

ifname = strcat $3 $4
dev = open $2
unitsel dev $4
aplinkint $1 dev ifname
dev = open $2
unitsel dev $4
arp = open /dev/arp
linkint arp dev ifname

The denet function performs the same function as uenet, except that DL_ATTACH is
used instead of unit select.

denet - configure ethernet-type interface for cloning driver using

DL_ATTACH

usage: denet ip-fd devname ifprefix unit

denet {
ifname = strcat $3 $4
dev = open $2
dlattach dev $4
aplinkint $1 dev ifname
dev = open $2
dlattach dev $4
arp = open /dev/arp
linkint arp dev ifname

The cenet function is used to configure an Ethernet interface for a cloning device
driver that uses a different major number for each interface. The device name is
formed by concatenating the supplied device name prefix and the unit number.
The interface name is formed in a similar manner using the interface name prefix.

cenet - configure ethernet-type interface for cloning driver with
one major per interface
usage: cenet ip-fd devprefix ifprefix unit

cenet {

devname strcat $2 $4

207

strcf(4)

208

}

ifname = strcat $3 $4
dey = open devname
aplinkint $1 dey ifname
dey = open devname
arp = open /dev /arp
linkint arp dey ifname

The senet function is used to configure an Ethernet interface for a non-cloning
device driver. Two different device nodes must be specified for IP and ARP.

senet - configure ethernet-type interface for non-cloning driver
usage: senet ip-fd ipdevname arpdevname ifname

senet {

}

dey = open $2
aplinkint $1 dey $4
dey = open $3
arp = open /dev /arp
linkint arp dey $4

The senetc function is like senet, except that it allows the specification of a con
vergence module to be used with the Ethernet driver (such as, for the 3B2 emd
driver).

senetc - configure ethernet-type interface for non-cloning driver
using convergence module
usage: senetc ip-fd convergence ipdevname arpdevname ifname

senetc {

}

dey = open $3
push dey $2
aplinkint $1 dey $5
dey = open $4
push deY $2
arp = open /dev / arp
linkint arp dey $5

The loopback function is used to configure the loopback interface.

loopback - configure loopback device
usage: loopback ip-fd

loopback

}

dey = open /dev/loop
linkint $1 dey 100

FILES

strcf(4)

The slip function is used to configure a SLIP interface. This function is not nor
mally executed at boot time.

slip - configure slip interface
usage: slip unit

slip

}

ip = open /dev/ip
s = open /dev/slip
ifname = strcat sl $1
unitsel s $1
linkint ip s ifname

The boot function is called by default when slink is executed. Normally, only the
interfaces section and possibly the queue params section will have to be customized
for a given installation. Examples are provided for the various Ethernet driver
types.

boot - boot time configuration

boot {

queue params

initqp /dev/udp rq 8192 40960
initqp /dev/ip muxrq 8192 40960 rq 8192 40960

transport

tp /dev/tcp
tp /dev/udp
tp /dev/icnq;>
tp /dev/rawip

/etc/strcf

SEE ALSO
slink(lM)

209

strftime (4)

NAME
strftime - language-specific strings

DESCRIPTION
There can exist one printable file per locale to specify its date and time formatting
information. These files must be kept in the directory
/usr/lib/locale/<locale>/LC_TIME. The contents of these files are:

1. abbreviated month names (in order)

2. month names (in order)

3. abbreviated weekday names (in order)

4. weekday names (in order)

5. default strings that specify formats for locale time (%X) and locale date (%x)

6. default format for cftime, if the argument for cftime is zero or null

7. ante meridian string

8. post meridian string

9. default format for date command output

Each string is on a line by itself. All white space is significant. The order of the
strings in the above list is the same order in which they must appear in the file.

EXAMPLE

FILES

Here are the contents of /usr/lib/locale/C/LC_TIME:

Jan
Feb

January
February

Sun
Mon

Sunday
Monday

%H:'%M:%S
%m/%d/%y
%a %b %d %T %Z %Y
AM
PM
%a %b %d %T %Z %Y

/usr /lib/locale/ <locale> /LC_TIME

SEE ALSO
ctime(3C), setlocale(3C), strftime(3C)

210

Stubs.c (4)

NAME
Stubs. c - stubs for kernel module symbols

SYNOPSIS
Stubs.c

DESCRIPTION
One of the kernel configuration files, a Stubs. c file is an optional C language
source file that can be installed and compiled into the system as a "place holder"
for a kernel module that will not be installed in the system. Its purpose is to enable
the kernel to resolve references to the absent module's symbols.

When the Stubs.c component of a module's Driver Software Package (DSP) is
installed, idinstal1(lM) stores the module's Stubs. c file information in
/etc/conf/pack.d/module-name/stubs.c where module-name is the name of the
module being installed. Package scripts should never access Stubs. c files directly;
only the idinstall command should be used.

A module's Stubs.c file contains function name and variable definition stubs for
symbols defined in the module that can be referenced by other kernel modules
being configured into the system. At compile time, the definitions in the Stubs. c
file give the kernel the ability to resolve references made to the absent module's
symbols.

SEE ALSO
idinstal1(lM)

211

stune(4)

NAME
stune -local system settings for tunable parameters

SYNOPSIS
stune
stune. current

DESCRIPTION
The /etc/conf/cf .d/stune file contains tunable parameters for the kernel
modules to be configured into the next system to be built [see idbuild(lM)]. The
parameter settings in the stune file are used to override the default values specified
in the Mtune file.

The cohtents of the stune file will only affect the next kernel rebuild. Once the new
kernel has been installed to / stand and booted, the stune file is copied to
stune. current. Any change made to the stune. current file using the
idtune(lM) command with the -c option will affect all the loadable kernel
modules subsequently configured into the running system.

Package scripts should never access /etc/conf/cf.d/stune or
/etc/conf/cf.d/stune.current files directly; only the idtune(lM) command
should be used.

The stune and stune. current files contain one line for each parameter to be set.
Each line contains two positional fields separated by white space:

parameter-name new-value

Blank lines and lines beginning with 'I' or '.' are considered comments and are
ignored.

The stune and stune. current fields are:

parameter-name The name of the tunable parameter, as defined in the Mtune file.

new-value Specifies the new value to be used to override the default value
specified for this tunable parameter in the Mtune file. This value
must fall within the valid range of values specified for this param
eter in the Mtune file.

For detailed information on stune parameters, refer to the advanced features sec
tions on tunable parameters in your system administration documentation.

SEE ALSO
idbuild(lM), idtune(lM), Mtune(4)

212

su(4)

NAME
su - su options file

DESCRIPTION

FILES

Options for the su command [see su(lM)] can be set or changed with keywords in
Jete/default/suo The following keywords are recognized by su:

SOLOG=filename Log (in filename) successful and unsuccessful attempts to exe
cute su.

CONSOLE=device

PATH=path Jist

SOPATH=path Jist

PROMPT:

If a user executes su to become a privileged user on a device
other than device, a printed message will appear on device to
inform the administrator of that fact.

When a user executes su to become an unprivileged user, the
user's path will be set to pathJist. The default is
/usr/bin:/usr/ees/bin.

When a user executes su to become a privileged user, the
user's path will be set to path _list. The default is
/sbin:/usr/sbin:/usr/bin:/ete:/usr/ees/bin.

If this parameter exists and is set to No, the su command does
not prompt for a password (even if one is defined for
login_name). The invoking user, however, must still have
appropriate privilege to execute su successfully. If this
parameter does not exist, or is set to anything other than No
(including NULL), su prompts for a password when invoked
and validates the password (if one is defined for login_name).

/ete/default/su

SEE ALSO
su(lM)

213

syslog.conf (4) (BSO System Compatibility)

NAME
syslog. conf - (BSD) configuration file for syslogd system log daemon

SYNOPSIS
/etc/syslog.conf

DESCRIPTION

214

The file /etc/syslog.conf contains information used by the system log daemon,
syslogd(lM), to forward a system message to approp~iate log files and/or users.
syslog preprocesses this file through m4(1) to obtain the correct information for
certain log files.

A configuration entry is composed of two TAB-separated fields:

"selector action"

The selector field contains a semicolon-separated list of priority specifications of the
form:

facility • level [i facility .level]

where facility is a system facility, or comma-separated list of facilities, and level is an
indication of the severity of the condition being logged. Recognized values for facil
ity include:

user Messages generated by user processes. This is the default priority for
messages from programs or facilities not listed in this file.

kern Messages generated by the kernel.

mail The mail system.

daemon System daemons, such as ftpd(lM), routed(lM), and so on.

auth The authorization system: login(l), su(lM), getty(lM), and so on.

lpr The line printer spooling system: lpr(l), lpc(lM), and so on.

news Reserved for the USENET network news system.

uucp Reserved for the UUCP system; it does not currently use the syslog
mechanism.

cron The cron/at facility; crontab(l), at(l), cron(lM), and so on.

localO-7 Reserved for local use.

mark

*

For timestamp messages produced internally by syslogd.

An asterisk indicates all facilities except for the mark facility.

Recognized values for level are (in descending order of severity):

emerg

alert

crit

err

For panic conditions that would normally be broadcast to all users.

For conditions that should be corrected immediately, such as a
corrupted system database.

For warnings about critical conditions, such as hard device errors.

For other errors.

(BSD System Compatibility) syslog.conf (4)

warning For warning messages.

notice For conditions that are not error conditions, but may require special
handling.

info Informational messages.

debug For messages that are normally used only when debugging a program.

none Do not send messages from the indicated facility to the selected file. For
example, a selector of

*.debug;mail.none

will send all messages except mail messages to the selected file.

The action field indicates where to forward the message. Values for this field can
have one of four forms:

A filename, beginning with a leading slash, which indicates that messages
specified by the selector are to be written to the specified file. The file will be
opened in append mode.

The name of a remote host, prefixed with an @, as with: @server, which indi
cates that messages specified by the selector are to be forwarded to the
syslogd on the named host.

A comma-separated list of usernames, which indicates that messages
specified by the selector are to be written to the named users if they are
logged in.

An asterisk, which indicates that messages specified by the selector are to be
written to all logged-in users.

Blank lines are ignored. Lines for which the first nonwhite character is a '#' are
treated as comments.

EXAMPLE
With the following configuration file:

*.notice;mail.info
*.crit
kern, mark. debug
kern. err

/var/log/notice
/var/log/critical
/dev/console
@server

*.emerg *
*.alert root, operator
*.alert;auth.warning /var/log/auth

syslogd will log all mail system messages except debug messages and all notice
(or higher) messages into a file named /var/log/notice. It logs all critical
messages into /var/log/critical, and all kernel messages and 20-minute marks
onto the system console.

Kernel messages of err (error) severity or higher are forwarded to the machine
named server. Emergency messages are forwarded to all users. The users root and
operator are informed of any alert messages. All messages from the authorization
system of warning level or higher are logged in the file /var/log/auth.

215

syslog.conf (4)

FILES
/etc/syslog.conf

SEE ALSO

(BSD System Compatibility)

at{l), cron{lM), crontab{l), getty(lM), login{l), lp{l), m4(1), syslog(3),
syslogd{lM), su{lM)

216

System(4)

NAME
System - system-specific configuration information for a kernel module

SYNOPSIS
System

DESCRIPTION
One of the ID jTP kernel configuration files, a System file contains information
needed to incorporate a particular kernel module into the next system
configuration. General configuration information about the module type is
described in the Master file. When the System component of a module's Driver
Software Package (DSP) is installed, idinstall(lM) stores the module's System
file information in /etc/conf/sdevice.d/module-name, where the file module-name
is the name of the module being installed. Package scripts should never access
System files directly; only the idinstall and idcheck(lM) commands should be
used.

System files typically contain data in the following format:

$version version-number
$loadable module-name
module-name configure unit ipl itype ivec sioa eioa scma ecma dmachan

Blank lines and lines beginning with 'fj:' or '.' are considered comments and are
ignored.

The first two entries are described as follows:

$version

$loadable

If present in the file, this line must appear as the first non
comment line. The line specifies the version number of the Sys
tem file format. The System file format being described here is
version 1. If this line is omitted, version 0 (the old sdevice file
format) is assumed.

Indicates that the module is to be configured as a loadable
module [see modadmin(lM)].

This line is used for dynamically loadable kernel modules only.
When the line is present in the file:

The module-name specified on the $loadable line must
match the module-name specified in the first field of each
instance line of this file.

At least one instance of the module must specify the value
"y" in the configure field.

The module must be coded in loadable form (requires
creation of speCial initialization "wrapper" code for load
able modules).

To statically link a loadable module to the base kernel, the
module's $loadable line should be commented out by inserting
the character fj: in column one.

217

System (4)

218

The third type of entry in the System file contains configuration information for
each instance of the module. For example, if two instances of a device were to be
configured, the device would require two lines of System file definitions.

The third entry type contains the following 11 fields. Each field must be delimited
by white space and specify a value. Note that, except for the first two fields
(module-name and configure), the remaining fields on this line are used for
hardware-related modules only. That is, these fields apply to modules that have b,
c, or h chiJracteristics flags set in their Master files (one exception to this is exec
modules, described below). In cases where a field does not apply to the module
regardless of the module type-the unused field must contain the value 0 (an
unused dmachan field must contain the value -1).

module-name

configure

unit

ipl

itype

Identifies the internal name of the module. The field value must
match the module name specified in the module's Master file.

Indicates (Y or N) whether idbuild(lM) should configure this
instance of the module into the system. Note that this field can be
used to configure statically linked modules or to configure
dynamically loadable modules.

This field can be used to encode an arbitrary, module-dependent
numeric value. The field is typically used to specify the number
of subdevices attached to a controller or pseudo device. If this
field is not used it should contain the value O.

This field specifies the interrupt priority level for the device con
trolled by this module, and the priority at which the module's
interrupt handler will run. Valid values are 1 (lowest priority) to
7 (highest priority); priority 8 is reserved for the clock tick inter
rupt. If the module is not a hardware module or does not have
an interrupt handler, this field should contain the value O.

Indicates the type of interrupt sharing (if any) this hardware
module supports. Note that if a module supports a number of
interrupt schemes, it will require multiple system lines, with each
line specifying a different itype field value.

Valid values are:

o This instance of the device does not use interrupts.

1 This instance of the device uses an interrupt vector which
cannot be shared, not even with another instance of the
same module.

2 This instance of the device uses an interrupt vector which
can be shared with another instance of the same module,
but can not be shared with other modules.

3 This instance of the device uses an interrupt vector which
can be shared with any instance of any hardware
modules.

vector

sioa

eioa

sema

eema

dmaehan

System (4)

4 This instance of the device uses an EISA level-sensitive
interrupt vector which can be shared with any instance of
any hardware module.

If this field is not used it should contain the value o.
Specifies the interrupt vector number used by this instance of the
device. Valid values are a decimal number from 0 through the
value of the highest interrupt vector number supported by the
system. If the itype field specifies 0 (no interrupts used), this field
should also specify o.
Note that more than one device can share an interrupt vector
number if the devices use the same itype interrupt, and that inter
rupt is of a type that can be shared. Note also that every instance
of every module that shares an interrupt vector number must
specify the same ipl values. If this field is not used it should con
tain the value o.
The start I/O address field. Specifies the lowest I/O port address
through which the device communicates. Valid values are a hex
adecimal number from 0 through FFFF. For non-hardware
modules or devices without I/O ports, this field should contain
the value o.
The end I/O address field. Specifies the highest (inclusive) I/O
port address through which the device communicates. Valid
values are a hexadecimal number from 1 through FFFF. Note
that the value of the eioa field must be greater than or equal to the
value of the sioa field. For non-hardware modules or devices
without I/O ports, this field should contain the value o.
The start memory controller address field. Specifies the lowest
address in memory through which the device communicates.
Valid values are a hexadecimal number from 10000 through
FFFFFFFF. For non-hardware drivers or devices without con
troller memory, this field should contain the value O.

The end memory controller address field. Specifies the highest
(inclusive) address in memory through which the device com
municates. Valid values are a hexadecimal number from 10000
through FFFFFFFF. Note that the value of the eema field must be
greater than or equal to the value of the sema field. For non
hardware modules or devices without controller memory, this
field should contain the value O.

For hardware modules that use DMA channels, this field specifies
the DMA channel number. Valid values are a decimal number
from 0 through 7. For non-hardware modules or devices that
don't use DMA, this field should contain the value-1.

219

System (4)

NOTES
Specifying exec Modules

For exec object-specific modules used to support various executable file formats
(modules with e characteristic flags set in their Master files, two System file fields
have special meanings:

The unit field specifies the number of magic numbers supported by the
module. Magic numbers are the first two bytes of an executable file, which
are used to dispatch to the appropriate exec module. The module is respon
sible for defining an array of type short to hold the magic numbers. This
array must be called xxxmagic, where xxx is the module's prefix, as defined
in the Master(4) file. All of the execsw entries are processed in order,
according to the order field of the Master file, calling the appropriate
handlers if the magic number matches, until one returns 0 for success or an
error other than ENOEXEC.

The itype field controls whether a wild card execsw entry should be gen
erated for the module. If itype is non-zero, an additional entry will be gen
erated for the module, following the entries for the explicit magic numbers.
This additional entry will have a NULL magic number pointer. This tells
the system to call the handler no matter what the magic number is.

Compatibility Considerations
For compatibility with existing add-on DSP packages, idinstall also accepts the
old (version 0) sdevice file format, which it converts to version 1 format before ins
talling the file in /etc/conf/sdevice.d. Since the version 1 System file format
now includes the dmachan field that formerly appeared in the version 0 mdevice
file, version 0 sdevice files and version 0 mdevice files must be installed together,
using a single invocation of the idinstall command. This allows idinstall to
move the dmachan field from the module's mdevice file to its System file during
conversion.

Because cross-dependencies exist in the version 0 mdevice and sdevice files for
exec modules, idinstall cannot convert these files to version 1 files. They must be
converted manually before using idinstall.

Note that idinstall also accepts obsolete sfsys files and converts them to version
1 System file format.

SEE ALSO
idbuild(lM), idcheck(lM), idinstall(lM), Master(4)

220

tc.index (4)

NAME
tc. index - configuration index file for mass-storage devices

DESCRIPTION
The tc. index file provides the correlation between device-specific inquiry strings
and the files used by pdimkdev, pdimkdtab, and disksetup to control their execu
tion. If no matching inquiry string is found in tc. index, generic entries found at
the end of the file are used.

The generic entries should be sufficient for most types of mass-storage devices.
Before spending time to generate a device-specific entry for a new mass-storage
device, you should try the existing generic entry. If the generic entry works, no
device-specific entry is required.

File Format
tc. index is a plain-text file consisting of keywords/value pairs. Keywords start in
column 1. The value of a keyword is the rest of the text line after the keyword and
any white space. A keyword/value pair must be separated by white space, either
spaces or tabs. By convention, the value is separated from the keyword by a single
tab. The device-specific entries in this file must be first, before any generic entries.

Keywords
The following keywords are recognized in tc. index:

TCINQ Marks the beginning of a device-specific entry in the tc. index file.

MKDEV

FORMAT

GENERIC

The remainder of this entry consists of the lines in the file after this
keyword, up to the next TCINQ or GENERIC keyword.

The inquiry string for the device in question must be duplicated
character-by-character as the value of this keyword. Embedded
spaces, special characters and the case of letters are all significant.
The first 8 characters of the inquiry string represent the vendor
identification string. The next 16 characters represent the product
name. Taken together, these 24 characters are considered the inquiry
string.

Used by pdimkdev and pdimkdtab, the name of the template file to
use to create device nodes and device table entries for this device.

Used by disksetup and diskformat, the name of the format
specification file to use when preparing this device for use by the
system.

Marks the beginning of an entry that will be used for a given type of
device if no device-specific entry is found. Generic entries are
currently provided for random, sequential, CD-ROM and WORM
devices. The keyword values for each of these device types are,
respectively, RANDOM, TAPE, ROM, and WORM. This remainder of this
entry consists of the lines in the file after this keyword up to the next
GENERIC keyword or until the end-of-file.

Used to imbed comments in the tc. index file.

221

tc.index (4)

REFERENCES
diskadd(lM), disksetup(lM), pdimkdev(lM), pdimkdtab(lM)

222

term (4)

NAME
term - format of compiled term file

SYNOPSIS
/usr/lib/share/terminfo

DESCRIPTION
Compiled terminfo(4) descriptions are placed under the directory
/usr/share/lib/terminfo. In order to avoid a linear search of a huge UNIX sys
tem directory, a two-level scheme is used: /usr/share/lib/terminfo/c/name
where name is the name of the terminal, and c is the first character of name. Thus,
att4425 can be found in the file /usr/share/lib/terminfo/a/att4425.
Synonyms for the same terminal are implemented by multiple links to the same
compiled file.

The format has been chosen so that it is the same on all hardware. An 8-bit byte is
assumed, but no assumptions about byte ordering or sign extension are made.
Thus, these binary terminfo files can be transported to other hardware with 8-bit
bytes.

Short integers are stored in two 8-bit bytes. The first byte contains the least
significant 8 bits of the value, and the second byte contains the most significant 8
bits. (Thus, the value represented is 256*second+first.) The value -1 is represented
by 0377,0377, and the value -2 is represented by 0376,0377; other negative
values are invalid. The -1 generally means that a capability is missing from this ter
minal. The -2 means that the capability has been canceled in the terminfo source
and also is to be considered missing.

The compiled file is created from the source file descriptions of the terminals (see
the -I option of infocmp) by using the terminfo compiler, tic, and read by the
routine setupterm [see curses(3curses).] The file is divided into six parts in the
following order: the header, terminal names, boolean flags, numbers, strings, and
string table.

The header section begins the file. This section contains six short integers in the for
mat described below. These integers are (1) the magic number (octal 0432);
(2) the size, in bytes, of the names section; (3) the number of bytes in the boolean
section; (4) the number of short integers in the numbers section; (5) the number of
offsets (short integers) in the strings section; (6) the size, in bytes, of the string table.

The terminal names section comes next. It contains the first line of the terminfo
description, listing the various names for the terminal, separated by the bar (I)
character (see term(5)). The section is terminated with an ASCII NUL character.

The boolean flags have one byte for each flag. This byte is either 0 or 1 as the flag is
present or absent. The value of 2 means that the flag has been canceled. The capa
bilities are in the same order as the file <term.h>.

Between the boolean section and the number section, a null byte is inserted, if
necessary, to ensure that the number section begins on an even byte offset. All
short integers are aligned on a short word boundary.

223

term (4)

224

The numbers section is similar to the boolean flags section. Each capability takes up
two bytes, and is stored as a short integer. If the value represented is -1 or -2, the
capability is taken to be missing.

The strings section is also similar. Each capability is stored as a short integer, in the
format above. A value of -lor -2 means the capability is missing. Otherwise, the
value is taken as an offset from the beginning of the string table. Special characters
in AX or \c notation are stored in their interpreted form, not the printing representa
tion. Padding information ($<nn» and parameter information (%x) are stored
intact in uninterpreted form.

The final section is the string table. It contains all the values of string capabilities
referenced in the string section. Each string is null terminated.

Note that it is possible for setupterm to expect a different set of capabilities than
are actually present in the file. Either the database may have been updated since
setupterm has been recompiled (resulting in extra unrecognized entries in the file)
or the program may have been recompiled more recently than the database was
updated (resulting in missing entries). The routine setupterm must be prepared
for both possibilities-this is why the numbers and sizes are included. Also, new
capabilities must always be added at the end of the lists of boolean, number, and
string capabilities.

As an example, here is terminal information on the AT&T Model 37 KSR terminal as
output by the infocmp -I tty37 command:

37 Itty37 I AT&T model 37 teletype,
he, os, xon,
bel=~G, er=\r, eub1=\b, eud1=\n, euu1=\E7, hd=\E9,
hu=\E8, ind=\n,

And here is an octal dump of the term file, produced by the od -e
/usr /share/lib/terminfo/t/tty37 command:

0000000 032 001 \0 032 \0 013 \0 021 001 3 \0 3 7
0000020 t y 3 7 I A T & T m 0 d e 1
0000040 3 7 t e 1 e t y P e \0 \0 \0 \0
0000060 \0 \0 \0 001 \0 \0 \0 \0 \0 \0 \0 001 \0 \0 \0
0000100 001 \0 \0 \0 \0 \0 377 377 377 377 377 377 377 377 377
0000120 377 377 377 377 377 377 377 377 377 377 377 377 377 377 &
0000140 \0 377 377 377 377 377 377 377 377 377 377 377 377 377
0000160 377 377 \0 377 377 377 377 (\0 377 377 377 377 377
0000200 377 377 0 \0 377 377 377 377 377 377 377 377 \0 377
0000220 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377

*
0000520 377 377 377 377 377 377 377 377 377 377 377 377 377 377 $
0000540 377 377 377 377 377 377 377 377 377 377 377 377 377 377 *
0000560 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377

*

t

\0
\0

377
\0

377
377
377
377

\0
\0

377

FILES

term(4)

0001160 377 377 377 377 377 377 377 377 377 377 377 377 377 377 3
0001200 I t t Y 3 7 I A T & T m 0 d
0001220 1 3 7 t e 1 e t y P e \0 \r
0001240 \n \0 \n \0 007 \0 \b \0 033 8 \0 033 9 \0 033
0001260 \0 \0
0001261

Some limitations: total compiled entries cannot exceed 4096 bytes; all entries in the
name field cannot exceed 128 bytes.

/usr/lib/share/terminfo compiled terminal description database

/usr/include/term.h terminfo header file

SEE ALSO
curses(3curses), info~(lM), term(5), terminfo(4)

225

7
e

\0
7

terminfo (4)

NAME
terminfo - terminal capability data base

SYNOPSIS
/usr/share/1ib/terminfo/?/*

DESCRIPTION

226

terminfo is a database produced by tic that describes the capabilities of devices
such as terminals and printers. Devices are described in terminfo source files by
specifying a set of capabilities, by quantifying certain aspects of the device, and by
specifying character sequences that effect particular results. This database is often
used by screen oriented applications such as vi and curses programs, as well as by
some UNIX system commands such as 1s and more. This usage allows them to
work with a variety of devices without changes to the programs.

terminfo source files consist of one or more device descriptions. Each description
consists of a header (beginning in column 1) and one or more lines that list the
features for that particular device. Every line in a terminfo source file must end in
a comma (,). Every line in a terminfo source file except the header must be
indented with one or more white spaces (either spaces or tabs).

Entries in terminfo source files consist of a number of comma-separated fields.
White space after each comma is ignored. Embedded commas must be escaped by
using a backslash. The following example shows the format of a terminfo source
file.

alias} I alias2 I ... I alias n Ilongname,
<white space> am, lines #24,
<white space> home=\Eeh,

The first line, commonly referred to as the header line, must begin in column one
and must contain at least two aliases separated by vertical bars. The last field in the
header line must be the long name of the device and it may contain any string.
Alias names must be unique in the terminfo database and they must conform to
UNIX system file naming conventions [see tic(lM)]; they cannot, for example, con
tain white space or slashes.

Every device must be assigned a name, such as "vt100". Device names (except the
long name) should be chosen using the following conventions. The name should
not contain hyphens because hyphens are reserved for use when adding suffixes
that indicate special modes.

These special modes may be modes that the hardware can be in, or user prefer
ences. To assign a special mode to a particular device, append a suffix consisting of
a hyphen and an indicator of the mode to the device name. For example, the -w
suffix means "wide mode"; when specified, it allows for a width of 132 columns
instead of the standard 80 columns. Therefore, if you want to use a vt100 device set
to wide mode, name the device "vt100-w." Use the following suffixes where possi
ble.

terminfo (4)

Suffix Meaning Example

-w Wide mode (more than 80 columns) 5410-w
-am With auto. margins (usually default) vt100-am
-nam Without automatic margins vt100-nam
-n Number of lines on the screen 2300-40
-na No arrow keys (leave them in local) c100-na
-np Number of pages of memory c100-4p
-rv Reverse video 4415-rv

The terminfo reference manual page is organized in two sections: "DEVICE
CAPABILITIES" and "PRINTER CAP ABILITIES."

PART 1: DEVICE CAPABILITIES
Capabilities in terminfo are of three types: Boolean capabilities (which show that a
device has or does not have a particular feature), numeric capabilities (which quan
tify particular features of a device), and string capabilities (which provide
sequences that can be used to perform particular operations on devices).

In the following table, a Variable is the name by which d c programmer accesses a
capability (at the terminfo level). A Capname is the short name for a capability
specified in the terminfo source file. It is used by a person updating the source file
and by the tput command. A Termcap Code is a two-letter sequence that
corresponds to the te:r:mcap capability name. (Note that te:r:mcap is no longer
supported.)

Capability names have no real length limit, but an informal limit of five characters
has been adopted to keep them short. Whenever possible, capability names are
chosen to be the same as or similar to those specified by the ANSI X3.64-1979
standard. Semantics are also intended to match those of the ANSI standard.

All string capabilities listed below may have padding specified, with the exception
of those used for input. Input capabilities, listed under the Strings section in the
following tables, have names beginning with key _. The #i symbol in the descrip
tion field of the following tables refers to the ith parameter.

Booleans
Cap- Termcap

Variable name Code Description

auto_left_margin bw bw cubl wraps from column 0 to

last column

auto_right_margin am am Terminal has automatic margins

back_color_erase bee be Screen erased with background color

can_change cce ec Terminal can re-define existing color

eeol_standout~liteh xhp xs Standout not erased by overwriting (hp)

eol_addr~liteh xhpa YA Only positive motion for hpa/mhpa caps

cpi_changes_res cpix YF Changing character pitch changes

resolution

cr_cancels_mdcro_mode enan YB Using er turns off micro mode

227

terminfo (4)

Cap- Termcap
Variable name Code Description

eat_newline~litch xenl XII Newline ignored after 80 columns

(Concept)
erase_overstrike eo eo Can erase overstrikes with a blank
generic_type gn gn Generic line type (e.g., dialup, switch)
hard_copy hc hc Hardcopy terminal
hard_cursor chts HC Cursor is hard to see
has_meta_key kin kin Has a meta key (shift, sets parity bit)
has-print_wheel daisy YC Printer needs operator to change

character set
has_status_Iine he hs Has extra "status line"
hue_Iightness_saturation hls hI Terminal uses only HLS color

notation (Tektronix)
insert_null~litch in in Insert mode distinguishes nulls
lpi_changes_res lpix YG Changing line pitch changes resolution
memo:ty _above da da Display may be retained above the screen
memo:ty_below db db Display may be retained below the screen
move_insert_mcde mir mi Safe to move while in insert mode
move_standout_mode msgr ms Safe to move in standout modes
needs_xon_xcff nxon rue Padding won't work, xon/xoff required
no_esc_ctlc xsb xb Beehive (£1 =escape, f2=ctrl C)
non_rev _=p nrllllC NR smcup does not reverse llIICUP
no-.psd_char npc NP Pad character doesn't exist
over_strike os os Terminal overstrikes on hard-copy

terminal
prtr_silent mcSi Si Printer won't echo on screen

row_addr~litch xvpa YD Only positive motion for vpa/lIIIIP'l caps
semi_auto_right_margin sam YE Printing in last column causes cr
status_Iine_esc_ok eslok es Escape can be used on the status line
dest_tabs_magic_SDlSo xt xt Destructive tabs, magic SDlSO char (tl061)
tilde~litch hz hz Hazeltine; can't print tilde n
transparent_underline ul ul Underline character overstrikes
xcn_xoff xon xc Terminal uses xon/xoff handshaking

Numbers
Cap- Termcap

Variable name Code Description

buffer_capacity bufsz Ya Number of bytes buffered before printing

buttons btns BT Number of buttons on the mouse
columns cols co Number of columns in a line
dot_vert_spacing spinv Yb Spacing of pins vertically in pins per inch
dot_horz_spacing spinh Yc Spacing of dots horizontally in dots per inch
init_tabs it it Tabs inltially every # spaces
label_height lh lh Number of rows in each label
label_width lw lw Number of columns in each label

228

Variable

lines
lines_of_memory

magic_cookie-91itch

max_colors

max_micro_address
max_micro--.:jump

max-Pairs

micro col_size

micro_line_size

no_color_video

number_ofJ>ins

nUlILlahels
output_res_char

output_res_line

output_res_horz_inch

output~es_vert_inch

padding_baud_rate

virtual_terminal
wide_char_size

Strings

Variable

acs_chars

alt_scancode_esc

back_tab

bell
bit_image~epeat

bit_image_newline

bit_image_carriage_return

carriage_return
change_charJ>itch

change_lineJ>itch
change_res_horz

change_res_vert

change_scroll_region

charJ)adding
char_set_names

Cap-
name

lines

1m

XlIIC

colors

maddr
mjump

pairs

mes
mls

ncv

npins

nlab

orc
orl

orhi

orvi
pb

vt

widcs

wel

terminfo (4)

Termcap
Code Description

li Number of lines on a screen or a page
1m Lines of memory if> lines; 0 means varies
sg Number of blank characters left by

smso or rmso

Co Maximum number of colors on the screen

Yd Maximum value in micro_ ., ._address

Ye Maximum value in parnL ... _micro
pa Maximum number of color-pairs on the

screen
yf Character step size when in micro mode
Yg Line step size when in micro mode
NC Video attributes that can't be used

with colors

Yh Number of pins in print-head

Nl Number of labels on screen (start at 1)

Yi Horizontal resolution in units per character
Yj Vertical resolution in units per line
Yk Horizontal resolution in units per inch

Yl Vertical resolution in units per inch
pb Lowest baud rate where padding needed

vt Virtual terminal number (UNIX system)
Yn Character step size when in double

wide mode
ws Number of columns in status line

Cap- Termcap
name Code Description

acsc ac Graphic charset pairs aAbBcC
scesca S8 Alternate escape for scancode emulation

(default is for vt100)

cbt bt Back tab
bel bl Audible signal (bell)
birep Zy Repeat bit-image cell #1 #2 times (use tparm)

binel Zz Move to next row of the bit image (use tparm)
bicr Yv Move to beginning of same row (use tparm)
cr cr Carriage return
cpi ZA Change number of characters per inch
Ipi ZB Change number of lines per inch

chr ZC Change horizontal resolution

cvr ZD Change vertical resolution

csr cs Change to lines #1 through #2 (vt100)

DIP rP Like ip but when in replace mode

csnm Zy List of character set names

229

terminfo (4)

Cap- Termcap
Variable name Code Description

clear all_tabs tbc ct Clear all tab stops
clear_margins mgc Me Clear all margins (top, bOllom,

and sides)
clear_screen clear cl Clear screen and home cursor
clr_bol ell cb Clear to beginning of line, inclusive
clr_eol el ce Clear to end of line
cIr_6os ed cd Clear to end of display
code set_init cain ci !nit sequence for multiple codesets
color_names colo= Yw Give name for color #1
column_address hpa ch Horizontal position absolute
command_character cmdch CC Terminal sellable cmd character

in prototype
cursor_address cup em Move to row #1 col #2
cursor_down cud1 do Down one line
cursor_home home ho Home cursor (if no cup)
cursor_invisible civis vi Make cursor invisible
cursor_left cub1 Ie Move left one space.
cursor_mem_address mrcup CM Memory relative cursor addressing
cursor_nonnal cnonn ve Make cursor appear normal

(undo vs/vi)
cursor_right cufl nd Non-destructive space (cursor or

carriage right)
cursor_to_11 11 11 Last line, first column (if no cup)
cursor_up cuu1 up Upline (cursor up)
cursor_visible cvvis vs Make cursor very visible
define_bit_image_region defbi YX Define rectangular bit-image region

(use tpann)
define_char defc ZE Define a character in a character set t
delete_character dch1 dc Delete character
delete_line dll dl Delete line
device_type devt dv Indicate language/ codeset support
dis_status_line dsl ds Disable status line
display -pc_char dispc Sl Display PC character
down_half_line hd hd Half-line down (forward 1I2linefeed)
ena_aes enacs eA Enable alternate character set
end_bit_image_region endbi Yy End a bit-image region (use tpann)
enter_alt_charset_mode emacs as Start alternate character set
enter_am_mode SlIlallI SA Turn on automatic margins
enter_blink_mode blink mb Turn on blinking
enter_bold_mode bold rod Turn on bold (extra bright) mode
enter_ca_mode smcup ti String to begin programs that use cup
enter_delete_mode smdc dIn Delete mode (enter)
enter_dim_mode dim mh Turn on half-bright mode
enter_doublewide_mode swidIn ZF Enable double wide printing
enter_draft_quality sdrfq ZG Set draft quality print

230

terminfo (4)

Cap- Termcap
Variable name Code Description

enter_insert_mode smir jm Insert mode (enter)
enter_italics_mode sitm ZH Enable italics
enter_leftward_mode s1m ZI Enable leftward carriage motion
enter_micro_mode smicm ZJ Enable micro motion capabilities
enter_near_letter_~lity snlq ZK Set near-letter quality print
enter_normal_~lity snrmq ZL Set normal quality print
enter-pc_charset_mode smpch sa Enter PC character display mode
enter-protected_mode prot mp Tum on protected mode
enter_reverse_mode rev mr Tum on reverse video mode
enter_scancode_mode smsc S4 Enter PC scancode mode
enter_secure_mode invis mk Turn on blank mode

(characters invisible)
enter_shadow_mode ssbIn ZM Enable shadow printing
enter_standout_mode smso so Begin standout mode
enter_subscript_mode ssutm ZN Enable subscript printing
enter_superscript_mode ssupm zo Enable superscript printing
enter_UDderline_mode SIIlUl us Start underscore mode
enter_upward_mode sum zp Enable upward carriage motion
enter_xon_mode smxon SX Tum on xon/xoff handshaking
erase_chars ech ec Erase #1 characters
exit_alt_cbarset_mode rmacs ae End altemate character set
exit_am_mode rmam RA Tum off automatic margins
exit_attribute_mode sgrO me Tum off all attributes
exit_ca_mode rmcup te String to end programs that use cup
exit_delete_mode nndc ed End delete mode
exit_douhlewide_mode rwidm ZQ Disable double wide printing
exit_insert_mode rmir ei End insert mode
exit_italics_mode ritm ZR Disable italics
exit_leftward_mode rlm ZS Enable rightward (normal)

carriage motion
exit_micro_mode rmicm ZT Disable micro motion capabilities
exit-pc_charset_mode rmpch S3 Disable PC character display mode
exit_scancode_mode :mISC S5 Disable PC scancode mode
exit_shadow_mode rsbIn ZU Disable shadow printing
exit_standout_mode rmso se End standout mode
exit~Ubscript_mode rsubm zv Disable subscript printing
exit_superscript_mode rsupm zw Disable superscript printing
exit_UDderline_mode =1 ue End underscore mode
exit_upward_mode rum ZX Enable downward (normal)

carriage motion
exit---""",_mode rmxon RX Tum off xon/xoff handshaking
flash_screen flash vb Visible bell (may not move cursor)
form_feed ff ff Hardcopy terminal page eject
from~tatus_line fsl fs Retum from status line
get_mouse getm GIn Curses should get button events

231

terminfo(4)

232

Cap- Termcap
Variable name Code Description

init_lstricg isl il Terminal or printer initialization string
init_2stricg is2 is Terminal or printer initialization string
init_3stricg is3 i3 Terminal or printer initialization string
init_file if if Name of initialization file
init-prog iprog iP Path name of program for initialization
initialize_color initc Ic Initialize the definition of color
initialize-.Pair initp Ip Initialize color-pair
insert_character ielll ic Insert character
insert_line ill al Add new blank line
insert~ ip ip Insert pad after character inserted

The "key_" strings are sent by specific keys. The "key-" descriptions include the
macro, defined in curses.h, for the code returned by the curses routine getch
when the key is pressed [see curs--9"etch(3curses)].

key_al kal In KEY_Al, upper left of keypad
key_a3 ka3 K3 KEY_A3, upper right of keypad
key_b2 kb2 K2 KEY_52, center of keypad
key_backspace kbs kb KEY_BACKSPACE, sent by backspace key
key-beg kbeg @l KEY_BEG, sent by beg(inning) key
key_btab kcbt kB KEY_BTAB, sent by back-tab key
key_cl kcl K4 KEY_Cl, lower left of keypad
key_c3 kc3 K5 KEY_C3, lower right of keypad
key_cancel kcan @2 KEY_CANCEL, sent by cancel key
key_catab ktbc ka KEY_CATAB, sent by clear-ail-tabs key
key_clear kclr kC KEY_CLEAR, sent by clear-screen or

erase key
key_close kclo @3 KEY_CLOSE, sent by close key
key _cCllll1alld kcxnd @4 KEY_COMMl\ND, sent by cmd (command)

key
key_copy kcpy @5 KEY_COPY, sent by copy key
key_create kcrt @6 KEY_CREATE, sent by create key
key_ctab kctab kt KEY_CTAB, sent by clear-tab key
key_de kdchl. kD KEY_DC, sent by delete-character key
key_dl kdll kL KEY_DL, sent by delete-line key
key_down kcudl ltd KEY_DONN, sent by terminal

down-arrow key
key_eic krmir kH KEY_EIC, sent by nair or smir in

insert mode
key_Blld kBlld @7 KEY_END, sent by end key
key_enter kent @8 KEY_ENTER, sent by enter/send key
key_eol kel kE KEY_EOL, sent by clear-to-end-of-line

key
key_eos ked kS KEY_EOS, sent by clear-to-end-of-screen

key

terminfo (4)

Cap- Termcap
Variable name Code Description

key_exit kext @9 KEY_EXIT, sent by exit key
key_fO kfO kO KEY_F (0) , sent by function key fa
key_fl kfl k1 KEY_F (1) , sent by function key fl
key_f2 kf2 k2 KEY_F (2) , sent by function key f2
key_f3 kf3 k3 KEY_F (3) , sent by function key f3
key_f4 kf4 k4 KEY_F (4) , sent by function key f4
key_fs kfs ks KEY] (5) , sent by function key f5
key_f6 kf6 k6 KEY] (6) , sent by function key f6
key_f7 kf7 k7 KEY_F (7) , sent by function key f7
key_fS kf8 k8 KEY] (8) , sent by function key f8
key_f9 kf9 k9 KEY_F (9), sent by function key f9
key_flO kflO k; KEY_F (10) , sent by function key flO
key_fll kfl1 F1 KEY_F (11) , sent by function key f11
key_fl2 kfl2 F2 KEY] (12) , sent by function key £12
key_fl3 kfl3 F3 KEY_F (13) , sent by function key £13
key_fl4 kfl4 F4 KEY] (14) , sent by function key £14
key_fls kf1s Fs KEY_F (15) , sent by function key £15
key_fl6 kf16 F6 KEY_F(16), sent by function key £16

key_fl7 kf17 F7 KEY_F(17) , sent by function key £17

key318 kf18 F8 KEY_F (18), sent by function key £18
key_fl9 kfl9 F9 KEY_F (19) , sent by function key £19
key_f20 kf20 FA KEY_F (20) , sent by function key f20
key_f21 kf21 FB KEY_F(21), sent by function key f21
key_f22 kf22 Fe KEY_F (22) , sent by function key f22
key_f23 kf23 FD KEY_F (23) , sent by function key f23

key_f24 kf24 FE KEY_F (24) , sent by function key f24
key_f2s kf25 FF KEY_F (25), sent by function key f25
key_f26 kf26 FG KEY_F(26), sent by function key f26
key_f27 kf27 FH KEY_F (27) , sent by function key f27
key_f28 kf28 FI KEY_F(28) , sent by function key f28
key_f29 kf29 FJ KEY_F (29) , sent by function key f29
key_f30 kf30 FK KEY_F(30) , sent by function key f30
key_f31 kf31 FL KEY_F(31), sent by function key f31
key_f32 kf32 FM KEY_F(32), sent by function key f32
key_f33 kf33 FN KEY] (13) , sent by function key fl3
key_f34 kf34 FO KEY] (34) , sent by function key f34
key_f35 kf35 FP KEY] (35) , sent by function key f35
key_f36 kf36 Fa KEY_F(36), sent by function key f36
key_f37 kf37 FR KEY] (37) , sent by function key f37

key_f38 kf38 FS KEY_F(38), sent by function key f38
key_f39 kf39 FT KEY_F(39), sent by function key f39
key_f40 kf40 FU KEY_F(40), sent by function key f40
key_f41 kf41 FV KEY_F(41), sent by function key f41
key_f42 kf42 PW KEY_F (42) , sent by function key f42
key_f43 kf43 FX KEY_F(43), sent by function key f43

233

terminfo (4)

Cap- Termcap
Variable name Code Description

key_f44 kf44 FY KEY] (44) , sent by function key f44
key_f45 kf45 FZ KEY_F (45) , sent by function key f45
key_f46 kf46 Fa KEY_F (46), sent by function key f46
key_f47 kf47 Fb KEY] (47), sent by function key f47
key_f48 kf48 Fc KEY] (48), sent by function key f48
key_f49 kf49 Fd KEY] (49), sent by function key f49
key_f50 kf50 Fe KEY] (50) , sent by function key f50
key_f51 kf51 Ff KEY] (51) , sent by function key f51
key_f52 kf52 Fg KEY] (52), sent by function key f52
key_f53 kf53 Fh KEY] (53), sent by function key f53
key_f54 kf54 Fi KEY] (54) , sent by function key f54
key_f55 kf55 Fj KEY] (55), sent by function key f55
key_f56 kf56 Fk KEY] (56) , sent by function key f56
key_f57 kf57 Fl KEY] (57) , sent by function key f57
key_f58 kf58 FIn KEY] (58) , sent by function key f58
key_f59 kf59 Fn KEY_F (59) , sent by function key f59
key_f60 kf60 Fo KEY_F (60) , sent by function key f60
key_f61 kf61 Fp KEY_F(61), sent by function key f61
key362 kf62 Fq KEY_F(62) , sent by function key f62
key_f63 kf63 Fr KEY_F (63) , sent by function key f63
key_find kfnd @O KEY_FIND, sent by find key
key_help khlp '1--01 KEY_HELP, sent by help key
key_home khome kh KEY_HOME, sent by home key
key_ic kich1 kI KEY_Ie, sent by ins-char I enter

ins-mode key
key_il kill kA KEY_IL, sent by insert-line key
key_left kcub1 kl KEY_LEFT, sent by terminal left-arrow

key
key_ll kll kH KEY_LL, sent by home-down key
key_mark kmrk '1--.,2 KEY_MARK, sent by mark key
key_message kmsg %3 KEY_MESSAGE, sent by message key
key_mouse kmous KIn Mouse event has occurred
key_move kmov '1--04 KEY_MOVE, sent by move key
key_next knxt %5 KEY_NEXT, sent by next-object key
key_npage knp kN KEY_NPAGE, sent by next-page key
key_open kopn %6 KEY_OPEN, sent by open key
key_options kopt %7 KEY_OPTIONS, sent by options key
key-'-ppage kpp kP KEY_PPAGE, sent by previous-page key
key-previous kprv %8 KEY_PREVIOUS, sent by previous-object

key
key-print kprt %9 KEY_PRINT, sent by print or copy key
key_redo krdo %0 KEY_REDO, sent by redo key
key_reference kref &1 KEY_REFERENCE, sent by ref(erence) key
key_refresh krfr &2 KEY_REFRESH, sent by refresh key
key_replace krpl &3 KEY_REPLACE, sent by replace key

234

terminfo (4)

Cap- Termcap
Variable name Code Description

key_restart krst &4 KEY_RESTART, sent by restart key
key_resume kres &5 KEY_RESIJME, sent by resume key
key_right kcufl kr KEY_RIGHT, sent by terminal

right-arrow key
key_save ksav &6 KEY_SAVE, sent by save key
key_sbeg kBEG &9 KEY_SBEG, sent by shifted beginning key
key_scancel kCAN &0 KEY_SCANCEL, sent by shifted cancel key
key jlcomnand kCMD *1 KEY_SCOMMAND, sent by shifted

command key
key_scopy kCPY *2 KEY_SCOPY, sent by shifted copy key
key_screate kCRT *3 KEY_SCREATE, sent by shifted create key
key_sdc kDC *4 KEY_SDC, sent by shifted delete-char key
key_sdl kDL *5 KEY_SDL, sent by shifted delete-line key
keyjlelect kslt *6 KEY_SELECT, sent by select key
key_send kENO *7 KEY_SEND, sent by shifted end key
keyjleol kEOL *8 KEY_SEOL, sent by shifted clear-line key
key_sexit kEXT *9 KEY_SEXIT, sent by shifted exit key
key_sf kind kF KEY_SF, sent by scroll-forward/ down

key
key_sfiDd kFND *0 KEY_SFINO, sent by shifted find key
key_shelp kHLP #1 KEY_SHELP, sent by shifted help key
key_shane k:I!<»4 #2 KEY_SHOMB, sent by shifted home key
keyjlic kIC #3 KEY_SIC, sent by shifted input key
key_sleft kLFT #4 KEY_SLEFT, sent by shifted left-arrow

key
key _Sl\1essage kMSG %a. KEY_BMESSAGE, sent by shifted message

key
key_amove kKW %b KEY_S!«JVE, sent by shifted move key
keyjllleXt kNXT %c KEY_SNEXT, sent by shifted next key
key JIOPtions kePT %d KEY_SOPTIONS, sent by shifted options

key
key_sprevious kPRV %e KEY_SPREVIOUS, sent by shifted prev

key
key_sprint kPRT %f KEY_SPRINT, sent by shifted print key
key_sr kri kR KEY_SR, sent by scroll-backward/up

key
key_srede kRDO %g KEY_SREDO, sent by shifted redo key
keyjlreplace kRPL %h KEY--.-BREPLACE, sent by shifted replace

key
keyjlright kRIT %i KEY_BRIGHT, sent by shifted

right-arrow key
key_srsume kRES %j KEY_SRSUME, sent by shifted resume

key
keyjlsave kSAV 11 KEY_SSAVE, sent by shifted save key
key_ssuspend kSPD 12 KEY_SSUSPEND, sent by shifted suspend

235

terminfo(4)

Cap- Termcap
Variable name Code Description

key
key_stab khts ItT KEY_STAB, sent by set-tab key
key_sUDdo kUND !3 KEY_SUNDO, sent by shifted undo key
key_suspend kspd &7 KEY_suSPEND,sentby

suspend key
key_undo kund &8 KEY_tlNOO, sent by undo key
key_up kcuu1 ku KEY_UP, sent by terminal up-arrow key
keypad_local :tmkx ke Out of "keypad-transmit" mode
keypacLxmit smkx ks Put terminal in "keypad-transmit" mode
lab_fO lfO 10 Labels on function key fO if not fO
lab_fl lf1 11 Labels on function key fl if not fl

lab32 lf2 12 Labels on function key f2 if not f2

lab_f3 lf3 13 Labels on function key f3 if not f3
lab_f4 If4 14 Labels on function key f4 if not f4
lab_fs lfs 15 Labels on function key f5 if not f5
lab36 lf6 16 Labels on function key f6 if not f6
lab_f7 lf7 17 Labels on function key f7 if not f7

lab_f8 If8 18 Labels on function key f8 if not f8
lab_f9 lf9 19 Labels on function key f9 if not f9

lab_flO lf10 la Labels on function key flO if not flO

label_off rmln LF Turn off soft labels
label_on smln LO Turn on soft labels
meta_off D1III. 1110 Turn off "meta mode"
meta_OIl SlIm II1II Tum on "meta mode" (8th bit)

micro_colUIIIILaddress mbpa. zy Like colUllDl_address for micro
adjustment

micro_down mcud1 ZZ like cursor_dawn for micro adjustment
micro_left mcub1 za like cursor_left for micro adjustment
micro_right mcuf1 Zb Like cursor_right for micro

adjustment
micro_ro",,-address mvpa ZC Like row_address for micro adjustment

micro_lIP mcuu1 Zd like cursor_lIP for micro adjustment
mouse_info minfo iii Mouse status information

newline nel nw Newline (behaves like cr followed

bylf)
order_of-llins porder Ze Matches software bits to print-head pins
orig_colors oc oc Set all color(-pair)s to the original ones
orig-.l)air op op Set default color-pair to the original one
pad_char pad pc Pad character (rather than nUll)
panluich doh DC Delete #1 chars
pa%m_delete_line dl or. Delete #1 lines
pa%DLdown_cursor cud DO Move down #1 lines.
parDI_dawn_micro mcud Zf Like pa%m_down_cursor for micro

adjust.
parDI_iob iob Ie Insert #1 blank chars

236

terminfo (4)

Cap- Termcap
Variable name Code Description

paJ:1ILindex indn SF Scroll forward #1 lines.
pa=_insert_Iine il AL Add #1 new blank lines
pa=_left_cursor cub LE Move cursor left #1 spaces
P8J:lU_Ieft_micro meub Zg Like P8J:lU_Ieft_cursor for micro

adjust.
P8J:lU_right_cursor cuf RI Move right #1 spaces.
parm_right_micro mcuf Zh Like P8J:lU_right_cursor for micro

adjust.
parm_rindex rin SR Scroll backward #1 lines.
P8J:lU_up_cursor cuu UP Move cursor up #1 lines.
P8J:lU_up_micro mcuu Zi Like P8J:lU_up_cursor for micro adjust.
pc_term_optians pct= S6 PC terminal options
pkey_key pfkey pk Prog funct key #1 to type string #2

pkey_Iocal pfloc pI Prog funct key #1 to execute string #2
pkey...plab pfxl xl Prog key #1 to xmit string #2 and show string #3
pkey_xmit pfx px Prog funct key #1 to xmit string #2
plab_no= pIn pn Prog label #1 to show string #2
print_screen mea ps Print contents of the screen
prtr_non mcSp pO Turn on the printer for #1 bytes
prtr_off me4 pf Turn off the printer
prtr_an meS po Turn on the printer
repeat_char rep rp Repeat char #1 #2 times
re<Lfor_input rfi RF Send next input char (for ptys)

re<Lmouse...POB reqDql RQ Request mouse position report
reset_lstring rsl rl Reset terminal completely to sane modes
reset_2string rs2 r2 Reset terminal completely to sane modes
reset_3strixlg rs3 r3 Reset terminal completely to sane modes
reset_file rf rf Name of file containing reset string
restore_cursor = rc Restore cursor to position of last sc
rOil ,-address vpa cv Vertical position absolute
save_cursor sc sc Save cursor position
scancode_escape seese S7 Escape for scancode emulation
scroll_forward ind sf Scroll text up
scroll_reverse ri sr Scroll text down
select_char_set scs Zj Select character set
setO_des_seq sOds sa Shift into codeset 0 (EVC set 0, ASCII)
setl_des_seq slds sl Shift into codeset 1
set2_des....seq s2ds s2 Shift into codeset 2
set3_des_seq s3ds s3 Shift into codeset 3
set_a_background setab AB Set background color using ANSI escape
set_a_foreground setaf A:F Set foreground color using ANSI escape
set_attributes sgr sa Define the video attributes #1-#9
set_background setb Sb Set current background color
set_bottom_margin smg'b Zk Set bottom margin at current line
set_bottom_margin...ParDl smgbp Zl Set bottom margin at line #1 or #2

237

terminfo (4)

238

Cap- Termcap
Variable name Code Description

lines from bottom
set_color_band setcolorYz Change to ribbon color #1
set_color--P8.ir sop sp Set current color-pair
set_foreground setf Sf Set current foreground color1
set_left_margin engl ML Set left margin at current line
set_left_margin~ smglp Zln Set left (right) margin at column #1 (#2)
set_lr_margin englr ML Sets both left and right margins
set--P8.ge_length slines YZ Set page length to #1 lines (use tpazm)
set--I>9'len_inch slength YI Set page length to #1 hundredths of an inch (use tpazm)
set_right_margin engr MR Set right margin at current column
set_right_margin~ engrp zn Set right margin at column #1
set_tab hts st Set a tab in all rows, current column
set_tb_margin engtb MT Sets both top and bottom margins
set_tap_margin sngt zo Set top margin at current line
set_tap_margin--P8.rm smgtp zp Set top (bottom) margin at line #1 (#2)
set_window wind wi Current window is lines #1-#2 cols #3-#4
start_bit_image shim Zq Start printing bit image graphics
start_char_set_def scsd Zr Start definition of a character set
stop_bit_image rbim zs End printing bit image graphics
stap_char_set_def =sd zt End definition of a character set
subscript_characters sllbcs Zu List of "subscript-able" characters
superscriPt_characters supcs Zv List of "superscript-able" characters

tab ht ta Tab to next 8-space hardware tab stop
these_cause_cr doer zw Printing any of these chars causes cr
to_status_line tsl ts Go to status line, col #1
underline_char uc uc Underscore one char and move past it
up_half_line hu hu Half-line up (reverse 1/2linefeed)
xoff_character xoffc XF X-off character
xon_character xonc XN X-on character
zero_motion zerom ZX No motion for the subsequent character

Sample Entry
The following entry, which describes the AT&T 610 terminal, is among the more
complex entries in the terminfo file as of this writing.

610 I 610bct I ATT610 I att610 I AT&T 610; 80 column; 98key keyboard
am, eslok, hs, mir, msgr, xenl, xon,
cols#80, it#8, lh#2, lines#24, lW#8, nlab#8, wsl#80,
acsc="aaffggjjkkllmmnnooppqqrrssttuuvvww.xxyyzz{{II}}--,
bel=AG, blink=\E[Sm, bold=\E[lm, cbt=\E[Z,
civis=\E[?2S1, clear=\E [H\E [J, cnorm=\E[?2Sh\E[?121,
cr=\r, csr=\E[%i%p1%d;%p2%dr, cub=\E[%p1%dD, cub1=\b,
cud=\E[%P1%dB, cud1=\E[B, cuf=\E[%p1%dC, cuf1=\E[C,
cup=\E[%i%p1%d;%p2%dH, cuu=\E[%p1%dA, cuu1=\E[A,
cvvis=\E[?12;2Sh, dch=\E[%p1%dP, dch1=\E[P, d~\E[2m,
dl=\E[%p1%dM, dl1=\E[M, ed=\E[J, el=\E[K, el1=\E[lK,
flash=\E[?Sh$<200>\E[?Sl, fsl=\E8, hame=\E[H, ht=\t,

terminfo(4)

ich=\E[%pl%d@, il=\E[%pl~odL, ill=\E[L, ind=\ED, .ind=\ED$<9>,
invis=\E[8m,
isl=\E[8;0 I \E[?3;4;5;13;15l\E[13;20l\E[?7h\E[12h\E(B\E}0,
is2=\E[OmAO, is3=\E(B\E}0, kLFT=\E[\s@, kRIT=\E[\SA,
kbS=AH, kcbt=\E[Z, kclr=\E[2J, kcubl=\E[D, kcudl=\E[B,
kcufl=\E[C, kcuul=\E[A, kfl=\EOc, kflO=\ENp,
kfll=\ENq, kf12=\ENr, kf13=\ENs, kf14=\ENt, kf2=\EOd,
kf3=\EOe, kf4=\EOf, kf5=\EOg, kf6=\EOh, kf7=\EOi,
kf8=\EOj, kf9=\ENo, khame=\E[H, kind=\E[S, kri=\E[T,
11=\E[24H, mc4=\E[?4i, mc5=\E[?5i, nel=\EE,
pfxl=\E[%Pl~od;%P2%1%02dq%?%pl%{9}%<%t\s\s\s~~1%ld\s\s\s\s\s

\s\s\s\s\s\s%;%p2%s,
pln=\E[%pl%d;0;0;0q%p2%:-16.16s, rc=\E8, rev=\E[7m,
ri=\EM, rmacs=AO, rmdr=\E[4l, rmln=\E[2p, rmso=\E[m,
r.mul=\E[m, rs2=\Ec\E[?3l, sc=\E7,
sgr=\E [0%?%p6%t; 1%;%?%p5%t;2%;%?%p2%t;4%;%?%p4%t; 5%;

%?%p3%Pl% I %t;7%;%?%p7%t;8%;m%?%p9%tA~~AQP~;,
sgrO=\E[mAO, smacS=AN, smir=\E[4h, smln=\E[p,
smso=\E[7m, smul=\E[4m, tsl=\E7\E[25;%i%pl%dx,

Types of Capabilities in the Sample Entry
The sample entry shows the formats for the three types of terminfo capabilities
listed: Boolean, numeric, and string. All capabilities specified in the termdnfo
source file must be followed by commas, including the last capability in the source
file. In termdnfo source files, capabilities are referenced by their capability names
(as shown in the previous tables).

Boolean capabilities are specified simply by their comma separated cap names.

Numeric capabilities are followed by the character '#' and then a positive integer
value. Thus, in the sample, cols (which shows the number of columns available on
a device) is assigned the value 80 for the AT&T 610. (Values for numeric capabili
ties may be specified in decimal, octal, or hexadecimal, using normal C program
ming language conventions.)

Finally, string-valued capabilities such as el (clear to end of line sequence) are
listed by a two- to five-character capname, an '=', and a string ended by the next
occurrence of a comma. A delay in milliseconds may appear anywhere in such a
capability, preceded by $ and enclosed in angle brackets, as in el=\EK$<3>. Pad
ding characters are supplied by tput. The delay can be any of the following: a
number, a number followed by an asterisk, such as 5*, a number followed by a
slash, such as 5/, or a number followed by both, such as 5 * /. A' *, shows that the
padding required is proportional to the number of lines affected by the operation,
and the amount given is the per-affected-unit padding required. (In the case of
insert characters, the factor is still the number of lines affected. This is always 1
unless the device has in and the software uses it.) When a '*, is specified, it is
sometimes useful to give a delay of the form 3. 5 to specify a delay per unit to
tenths of milliseconds. (Only one decimal place is allowed.)

239

terminfo (4)

240

A '/' indicates that the padding is mandatory. If a device has xon defined, the pad
ding information is advisory and will only be used for cost estimates or when the
device is in raw mode. Mandatory padding will be transmitted regardless of the
setting of xon. If padding (whether advisory or mandatory) is specified for bel or
flash, however, it will always be used, regardless of whether xon is specified.

terminfo offers notation for encoding special characters. Both \E and \e map to
an ESCAPE character, AX maps to a control x for any appropriate x, and the
sequences \n, \1, \r, \t, \h, \f, and \s give a newline, linefeed, return, tab,
backspace, formfeed, and space, respectively. Other escapes include: \ ~ for caret
0; \ \ for backslash (\); \, for comma (,); \: for colon (:); and \0 for null. (\0 will
actually produce \200, which does not terminate a string but behaves as a null
character on most devices, providing CS7 is specified. [See stty(l).] Finally, char
acters may be given as three octal digits after a backslash (for example, \ 123).

Sometimes individual capabilities must be commented out. To do this, put a period
before the capability name. For example, see the second ind in the example above.
Note that capabilities are defined in a left-to-right order and, therefore, a prior
definition will override a later definition.

Preparing Descriptions
The most effective way to prepare a device description is by imitating the descrip
tion of a similar device in terminfo and building up a description gradually, using
partial descriptions with vi to check that they are correct. Be aware that a very
unusual device may expose deficiencies in the ability of the terminfo file to
describe it or the inability of vi to work with that device. To test a new device
description, set the environment variable TERMINFO to the pathname of a directory
containing the compiled description you are working on and programs will look
there rather than in /usr/share/lih/terminfo. To get the padding for insert-line
correct (if the device manufacturer did not document it) a severe test is to comment
out xon, edit a large file at 9600 baud with vi, delete 16 or so lines from the middle
of the screen, and then press the u key several times quickly. If the display is
corrupted, more padding is usually needed. A similar test can be used for
insert-character.

Section 1-1: Basic Capabilities
The number of columns on each line for the device is given by the cols numeric
capability. If the device has a screen, then the number of lines on the screen is given
by the lines capability. If the device wraps around to the beginning of the next
line when it reaches the right margin, then it should have the am capability. If the
terminal can clear its screen, leaving the cursor in the home position, then this is
given by the clear string capability. If the terminal overstrikes (rather than clear
ing a position when a character is struck over) then it should have the os capability.
If the device is a printing terminal, with no soft copy unit, specify both hc and os.
If there is a way to move the cursor to the left edge of the current row, specify this
as cr. (Normally this will be carriage return, control M.) If there is a way to pro
duce an audible signal (such as a bell or a beep), specify it as bel. If, like most
devices, the device uses the xon-xoff flow-control protocol, specify xon.

terminfo (4)

If there is a way to move the cursor one position to the left (such as backspace), that
capability should be given as cool. Similarly, sequences to move to the right, up,
and down should be given as cufl, cuul, and cudl, respectively. These local
cursor motions must not alter the text they pass over; for example, you would not
normally use" cufl= \s" because the space would erase the character moved over.

A very important point here is that the local cursor motions encoded in terminfo
are undefined at the left and top edges of a screen terminal. Programs should never
attempt to backspace around the left edge, unless bw is specified, and should never
attempt to go up locally off the top. To scroll text up, a program goes to the bottom
left comer of the screen and sends the ind (index) string.

To scroll text down, a program goes to the top left comer of the screen and sends
the ri (reverse index) string. The strings ind and ri are undefined when not on
their respective comers of the screen.

Parameterized versions of the scrolling sequences are indn and rin. These versions
have the same semantics as ind and ri, except that they take one parameter and
scroll the number of lines specified by that parameter. They are also undefined
except at the appropriate edge of the screen.

The am capability tells whether the cursor sticks at the right edge of the screen when
text is output, but this does not necessarily apply to a cufl from the last column.
Backward motion from the left edge of the screen is pOSSible only when bw is
specified. In this case, cool will move to the right edge of the previous row. If bw
is not given, the effect is undefined. This is useful for drawing a box around the
edge of the screen, for example. If the device has switch selectable automatic mar
gins, am should be specified in the terminfo source file. In this case, initialization
strings should tum on this option, if possible. If the device has a command that
moves to the first column of the next line, that command can be given as nel (new
line). It does not matter if the command clears the remainder of the current line, so
if the device has no cr and If it may still be possible to craft a working nel out of
one or both of them.

These capabilities suffice to describe hardcopy and screen terminals. Thus the
AT&T 5320 hardcopy terminal is described as follows:

53201att53201AT&T 5320 hardcopy terminal,
am, hc, os,
cols#132,
bel=AG, cr=\r, cOOl=\b, cndl=\n,
dchl=\E[P, dll=\E[M,
ind=\n,

while the Lear Siegler ADM-3 is described as

adm3 I lsi adm3,
am, bel=AG, clear=AZ, cols#80, cr=AM, cOOl=AH,
cUdl=AJ, ind=AJ, lines#24,

Section 1-2: Parameterized Strings
Cursor addressing and other strings requmng parameters are described by a
parameterized string capability, with printf-like escapes ('YoX) in it. For example, to
address the cursor, the cup capability is given, using two parameters: the row and
column to address to. (Rows and columns are numbered from zero and refer to the

241

terminfo(4)

242

physical screen visible to the user, not to any unseen memory.) If the terminal has
memory relative cursor addressing, that can be indicated by mrcup.

The parameter mechanism uses a stack and special % codes to manipulate the stack
in the manner of Reverse Polish Notation (postfix). Typically a sequence will push
one of the parameters onto the stack and then print it in some format. Often more
complex operations are necessary. Operations are in postfix form with the
operands in the usual order. That is, to subtract 5 from the first parameter, one
would use %pl%{5}%-.

The % encodings have the following meanings:

%% outputs '%'

%[[:]j1ags][width[.precision]][doxXs]
as in printf, flags are [-+#] and space

%c print pop gives %c

%P[1-9]
push ith parm

%P[a-z]
set dynamic variable [a-z] to pop

%g[a-z]
get dynamic variable [a-z] and push it

%P[A-Z]
set static variable [a-zl to pop

%g[A-Z]
get static variable [a-zl and push it

% I C I push char constant c

%{nn} push decimal constant nn

%1 push strlen(pop)

%+ %- %* %/ %m
arithmetic (%In is mod): push(pop integer2 op pop integerl) where integer I is
the top of the stack

%& %1 %A
bit operations: push(pop integer2 op pop integerl)

%= %> %<
logical operations: push(pop integer2 op pop integerl)

%A %0 logical operations: and, or

%! %- unary operations: push(op pop)

%i (for ANSI terminals) add 1 to first parm, if one parm present, or first two
parms, if more than one parm present

%? expr %t thenpart %e elsepart %;
if-then-else, %e elsepart is optional; else-if's are possible ala Algol 68: %? c1
%t b 1 %e ~2 %t b 2 %e c 3. %t b 3 'Y.,e c 4 %t b 4 %e b 5%;
ci are condItions, b i are bOGIes.

terminfo (4)

If the "-" flag is used with "%[doxXs]", then a colon (:) must be placed between the
"%" and the "-" to differentiate the flag from the binary "%-" operator, for ex
ample, "%: -16 .16s".

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12, needs to
be sent \E&a12c03Y padded for 6 milliseconds. Note that the order of the rows and
columns is inverted here, and that the row and column are zero-padded as two
digits. Thus its cup capability is:

cup=\E&a%p2%2.2dc%p1%2.2dY$<6>

The Micro-Term ACT-IV needs the current row and column sent preceded by a -T,
with the row and column simply encoded in binary, "cup=-T%p1%c%p2%e".
Devices that use "%e" need to be able to backspace the cursor (cubl), and to move
the cursor up one line on the screen (cuu1). This is necessary because it is not
always safe to transmit \n, -D, and \r, as the system may change or discard them.
(The library routines dealing with terminfo set tty modes so that tabs are never
expanded, so \ t is safe to send. This turns out to be essential for the Ann Arbor
4080.)

A final example is the LSI ADM-3a, which uses row and column offset by a blank
character, thus "cup=\E=%P1%'\s'%+%e%p2%'\s'%+%e". After sending "\E=", this
pushes the first parameter, pushes the ASCII value for a space (32), adds them
(pushing the sum on the stack in place of the two previous values), and outputs that
value as a character. Then the same is done for the second parameter. More c
omplex arithmetic is possible using the stack.

Section 1-3: Cursor Motions
If the terminal has a fast way to home the cursor (to very upper left corner of
screen) then this can be given as home; similarly a fast way of getting to the lower
left-hand comer can be given as 11; this may involve going up with cuu1 from the
home position, but a program should never do this itself (unless 11 does) because it
can make no assumption about the effect of moving up from the home position.
Note that the home position is the same as addressing to (0,0): to the top left corner
of the screen, not of memory. (Thus, the \EH sequence on Hewlett-Packard termi
nals cannot be used for home without losing some of the other features on the termi
nal.)

If the device has row or column absolute-cursor addressing, these can be given as
single parameter capabilities hpa (horizontal position absolute) and vpa (vertical
position absolute). Sometimes these are shorter than the more general two
parameter sequence (as with the Hewlett-Packard 2645) and can be used in prefer
ence to cup. If there are parameterized local motions (for example, move n spaces
to the right) these can be given as cud, cub, cuf, and cuu with a single parameter
indicating how many spaces to move. These are primarily useful if the device does
not have cup, such as the Tektronix 4025.

If the device needs to be in a special mode when running a program that uses these
capabilities, the codes to enter and exit this mode can be given as smcup and nncup.
This arises, for example, from terminals, such as the Concept, with more than one
page of memory. If the device has only memory relative cursor addressing and not
screen relative cursor addressing, a one screen-sized window must be fixed into the
device for cursor addressing to work properly. This is also used for the Tektronix

243

terminfo(4)

244

4025, where smcup sets the command character to be the one used by terminfo. H
the smcup sequence will not restore the screen after an :rmcup sequence is output (to
the state prior to outputting rmcup), specify nrDIIC.

Section 1-4: Area Clears
If the terminal can clear from the current position to the end of the line, leaving the
cursor where it is, this should be given as el. If the terminal can clear from the
beginning of the line to the current position inclusive, leaving the cursor where it is,
this should be given as ell. If the terminal can clear from the current position to
the end of the display, then this should be given as ed. ed is only defined from the
first column of a line. (Thus, it can be simulated by a request to delete a large
number of lines, if a true ed is not available.)

Section 1-5: Insert/Delete Line
If the terminal can open a new blank line before the line where the cursor is, this
should be given as ill; this is done only from the first position of a line. The cursor
must then appear on the newly blank line. H the terminal can delete the line which
the cursor is on, then this should be given as dll; this is done only from the first
position on the line to be deleted. Versions of ill and dll which take a single
parameter and insert or delete that many lines can be given as il and dl.

If the terminal has a settable destructive scrolling region (like the VT100) the com
mand to set this can be described with the esr capability, which takes two parame
ters: the top and bottom lines of the scrolling region. The cursor position is, alas,
undefined after using this command. It is possible to get the effect of insert or
delete line using this command - the se and re (save and restore cursor) com
mands are also useful. Inserting lines at the top or bottom of the screen can also be
done using ri or ind on many terminals without a true insert/delete line, and is
often faster even on terminals with those features.·

To determine whether a terminal has destructive scrolling regions or non
destructive scrolling regions, create a scrolling region in the middle of the screen,
place data on the bottom line of the scrolling region, move the cursor to the top line
of the scrolling region, and do a reverse index (ri) followed by a delete line (dll) or
index (ind). If the data that was originally on the bottom line of the scrolling region
was restored into the scrolling region by the dll or ind, then the terminal has non
destructive scrolling regions. Otherwise, it has destructive scrolling regions. Do
not specify esr if the terminal has non-destructive scrolling regions, unless ind, ri,
indn, rin, dl, and dll all simulate destructive scrolling.

If the terminal has the ability to define a window as part of memory, which all com
mands affect, it should be given as the parameterized string wind. The four param
eters are the starting and ending lines in memory and the starting and ending
columns in memory, in that order.

H the terminal can retain display memory above, then the da capability should be
given; if display memory can be retained below, then db should be given. These
indicate that deleting a line or scrolling a full screen may bring non-blank lines up
from below or that scrolling back with ri may bring down non-blank lines.

terminfo (4)

Section 1-6: Insert/Delete Character
There are two basic kinds of intelligent terminals with respect to insert/ delete char
acter operations which can be described using tenninfo. The most common
insert/ delete character operations affect only the characters on the current line and
shift characters off the end of the line rigidly. Other terminals, such as the Concept
100 and the Perkin Elmer Owl, make a distinction between typed and untyped
blanks on the screen, shifting upon an insert or delete only to an untyped blank on
the screen which is either eliminated, or expanded to two untyped blanks. You can
determine the kind of terminal you have by clearing the screen and then typing text
separated by cursor motions. Type "abc def" using local cursor motions (not
spaces) between the abc and the def. Then position the cursor before the abc and
put the terminal in insert mode. If typing characters causes the rest of the line to
shift rigidly and characters to fall off the end, then your terminal does not distin
guish between blanks and untyped positions. If the abc shifts over to the def
which then move together around the end of the current line and onto the next as
you insert, you have the second type of terminal, and should give the capability in,
which stands for "insert null." While these are two logically separate attributes
(one line versus multiline insert mode, and special treatment of untyped spaces) we
have seen no terminals whose insert mode cannot be described with the single attri
bute.

tenninfo can describe both terminals that have an insert mode and terminals
which send a simple sequence to open a blank position on the current line. Give as
smir the sequence to get into insert mode. Give as nnir the sequence to leave
insert mode. Now give as iehl any sequence needed to be sent just before sending
the character to be inserted. Most terminals with a true insert mode will not give
iehl; terminals that send a sequence to open a screen position should give it here.
(If your terminal has both, insert mode is usually preferable to iehl. Do not give
both unless the terminal actually requires both to be used in combination.) If post
insert padding is needed, give this as a number of milliseconds padding in ip (a
string option). Any other sequence which may need to be sent after an insert of a
single character may also be given in ip. If your terminal needs both to be placed
into an 'insert mode' and a special code to precede each inserted character, then
both smir/rmir and iehl can be given, and both will be used. The ieh capability,
with one parameter, n, will insert n blanks.

If padding is necessary between characters typed while not in insert mode, give this
as a number of milliseconds padding in nnp.

It is occasionally necessary to move around while in insert mode to delete charac
ters on the same line (for example, if there is a tab after the insertion position). If
your terminal allows motion while in insert mode you can give the capability mir to
speed up inserting in this case. Omitting mir will affect only speed. Some termi
nals (notably Datamedia's) must not have mir because of the way their insert mode
works.

Finally, you can specify dehl to delete a single character, deh with one parameter,
n, to delete n characters, and delete mode by giving smde and rmde to enter and exit
delete mode (any mode the terminal needs to be placed in for dehl to work).

245

terminfo (4)

246

A command to erase n characters (equivalent to outputting n blanks without mov
ing the cursor) can be given as ech with one parameter.

Section 1-7: Highlighting, Underlining, and Visible Bells
Your device may have one or more kinds of display attributes that allow you to
highlight selected characters when they appear on the screen. The following
display modes (shown with the names by which they are set) may be available: a
blinking screen (blink), bold or extra-bright characters (bold), dim or half-bright
characters (dim), blanking or invisible text (invis), protected text (prot), a reverse
video screen (rev), and an alternate character set (smacs to enter this mode and
rmacs to exit it). (If a command is necessary before you can enter alternate charac
ter set mode, give the sequence in enacs or "enable alternate-character-set" mode.)
Turning on any of these modes singly mayor may not turn off other modes.

sgrO should be used to turn off all video enhancement capabilities. It should
always be specified because it represents the only way to turn off some capabilities,
such as dim or blink.

You should choose one display method as standout mode [see curses(3curses)] and
use it to highlight error messages and other kinds of text to which you want to
draw attention. Choose a form of display that provides strong contrast but that is
easy on the eyes. (We recommend reverse-video plus half-bright or reverse-video
alone.) The sequences to enter and exit standout mode are given as smso and rmso,
respectively. If the code to change into or out of standout mode leaves one or even
two blank spaces on the screen, as the TVI 912 and Teleray 1061 do, then xmc
should be given to tell how many spaces are left.

Sequences to begin underlining and end underlining can be specified as smul and
rmul ,respectively. If the device has a sequence to underline the current character
and to move the cursor one space to the right (such as the Micro-Term MIME), this
sequence can be specified as uc.

Terminals with the "magic cookie" glitch (xmc) deposit special "cookies" when
they receive mode-setting sequences, which affect the display algorithm rather than
having extra bits for each character. Some terminals, such as the Hewlett-Packard
2621, automatically leave standout mode when they move to a new line or the cur
sor is addressed. Programs using standout mode should exit standout mode before
moving the cursor or sending a newline, unless the msgr capability, asserting that it
is safe to move in standout mode, is present.

If the terminal has a way of flashing the screen to indicate an error quietly (a bell
replacement), then this can be given as flash; it must not move the cursor. A good
flash can be done by changing the screen into reverse video, pad for 200 ms, then
return the screen to normal video.

If the cursor needs to be made more visible than normal when it is not on the bot
tom line (to make, for example, a non-blinking underline into an easier to find block
or blinking underline) give this sequence as cvvis. The boolean chts should also
be given. If there is a way to make the cursor completely invisible, give that as
civis. The capability cnorm should be given which undoes the effects of either of
these modes.

terminfo (4)

If your terminal generates underlined characters by using the underline character
(with no special sequences needed) even though it does not otherwise overstrike
characters, then you should specify the capability ul. For devices on which a char
acter overstriking another leaves both characters on the screen, specify the capabil
ity os. If overstrikes are erasable with a blank, then this should be indicated by
specifying eo.

If there is a sequence to set arbitrary combinations of modes, this should be given as
sgr (set attributes), taking nine parameters. Each parameter is either 0 or non-zero,
as the corresponding attribute is on or off. The nine parameters are, in order: stan
dout, underline, reverse, blink, dim, bold, blank, protect, alternate character set.
Not all modes need to be supported by sgr; only those for which corresponding
separate attribute commands exist should be supported. For example, let's assume
that the terminal in question needs the following escape sequences to turn on
various modes.

tparm
parameter attribute escape sequence

none \E[Om
pI standout \E[O;4;7m
p2 underline \E[O;3m
p3 reverse \E[O;4m
p4 blink \E[O;5m
p5 dim \E[O;7m
p6 bold \E[O;3;4m
p7 invis \E[O;8m
p8 protect not available
p9 altcharset AQ (off) AN (on)

Note that each escape sequence requires a 0 to turn off other modes before turning
on its own mode. Also note that, as suggested above, standout is set up to be the
combination of reverse and dim. Also, because this terminal has no bold mode, bold is
set up as the combination of reverse and underline. In addition, to allow combina
tions, such as underline+blink, the sequence to use would be \E [0; 3; 5m. The termi
nal doesn't have protect mode, either, but that cannot be simulated in any way, so
p8 is ignored. The altcharset mode is different in that it is either AQ or AN, depending
on whether it is off or on. If all modes were to be turned on, the sequence would be
\E[O;3;4;5;7;8mA N.

Now look at when different sequences are output. For example, ; 3 is output when
either p2 or p6 is true, that is, if either underline or bold modes are turned on. Writ
ing out the above sequences, along with their dependencies, gives the following:

sequence when to output terminfo translation

\E[O
;3
;4
;5
;7

always
ifp2 or p6
if pI or p3 or p6
ifp4
ifpI or p5

\E[O
%?%p2%p6%I%ti3%i
%?%pl%p3%I%p6%I%t;4%;
%?%p4%ti5%;
%?%pl%p5%I%t;7%;

247

terminfo (4)

248

;8
m
~N or ~O

ifp7
always
if p9 ~N, else ~o

%?%p7%ti8%;
m
%?%p9%t~W-oe~0%;

Putting this all together into the sgr sequence gives:

sgr=\E[O%?%p2%p6%I%t;3%;%?%pl%p3%I%p6%
l%t;4%;%?%p5%t;5%;%?%pl%p5%
l%ti7%;%?%p7%t;8%im%?%p9%tA~oeAO%i,

Remember that sgr and sgrO must always be specified.

Section 1-8: Keypad
If the device has a keypad that transmits sequences when the keys are pressed, this
information can also be specified. Note that it is not possible to handle devices
where the keypad only works in local (this applies, for example, to the unshifted
Hewlett-Packard 2621 keys). If the keypad can be set to transmit or not transmit,
specify these sequences as smkx and:nnkx. Otherwise the keypad is assumed to
always transmit.

The sequences sent by the left arrow, right arrow, up arrow, down arrow, and
home keys can be given as kcubl, kcufl, kcuul, kcudl, and khome, respec
tively. If there are function keys such as £0, fl, ... , f63, the sequences they send can
be specified as kfO, kfl, ••• , kf63. If the first 11 keys have labels other than
the default £0 through flO, the labels can be given as lfO, lfl, ••. , lflO. The
codes transmitted by certain other special keys can be given: kll (home down), kbs
(backspace), ktbc (clear all tabs), kctab (clear the tab stop in this column), kcir
(clear screen or erase key), kdchl (delete character), kdll (delete line), krmir (exit
insert mode), kei (clear to end of line), ked (clear to end of screen), kichl (insert
character or enter insert mode), kill (insert line), knp (next page), kpp (previous
page), kind (scroll forward/down), kri (scroll backward/up), khts (set a tab stop
in this column). In addition, if the keypad has a 3 by 3 array of keys including the
four arrow keys, the other five keys can be given as kal, ka3, kb2, kcl, and kc3.
These keys are useful when the effects of a 3 by 3 directional pad are needed.
Further keys are defined above in the capabilities list.

Strings to program function keys can be specified as pfkey, pfioc, and pfx. A
string to program screen labels should be specified as pin. Each of these strings
takes two parameters: a function key identifier and a string to program it with.
pfkey causes pressing the given key to be the same as the user typing the given
string; pfloc causes the string to be executed by the terminal in local mode; and
pfx causes the string to be transmitted to the computer. The capabilities niab, iw
and ih define the number of programmable screen labels and their width and
height. If there are commands to turn the labels on and off, give them in smln
and rmin. smin is normally output after one or more pin sequences to make sure
that the change becomes visible.

Section 1-9: Tabs and Initialization
If the device has hardware tabs, the command to advance to the next tab stop can
be given as ht (usually control I). A "backtab" command that moves leftward to
the next tab stop can be given as cbt. By convention, if tty modes show that tabs
are being expanded by the computer rather than being sent to the device, programs
should not use ht or cbt (even if they are present) because the user may not have

terminfo (4)

the tab stops properly set. If the device has hardware tabs that are initially set
every n spaces when the device is powered up, the numeric parameter it is given,
showing the number of spaces the tabs are set to. This is normally used by tput
init [see tput(l)] to determine whether to set the mode for hardware tab expan
sion and whether to set the tab stops. If the device has tab stops that can be saved
in nonvolatile memory, the terminfo description can assume that they are properly
set. If there are commands to set and clear tab stops, they can be given as tbe (clear
all tab stops) and hts (set a tab stop in the current column of every row).

Other capabilities include: isi, is2, and is3, initialization strings for the device;
iprog, the path name of a program to be run to initialize the device; and if, the
name of a file containing long initialization strings. These strings are expected to
set the device into modes consistent with the rest of the terminfo description.
They must be sent to the device each time the user logs in and be output in the fol
lowing order: run the program iprog; output isi; output is2; set the margins
using mge, smgl and smgr; set the tabs using too and hts; print the file if; and
finally output is3. This is usually done using the init option of tput.

Most initialization is done with is2. Special device modes can be set up without
duplicating strings by putting the common sequences in is2 and special cases in
isi and is3. Sequences that do a reset from a totally unknown state can be given
as rsi, rs2, rf, and rs3, analogous to isi, is2, is3, and if. (The method using
files, if and rf, is used for a few terminals, from /usr/share/lib/tabset/*;
however, the recommended method is to use the initialization and reset strings.)
These strings are output by tput reset, which is used when the terminal gets into a
wedged state. Commands are normally placed in rsi, rs2, rs3, and rf only if they
produce annoying effects on the screen and are not necessary when logging in. For
example, the command to set a terminal into 80-column mode would normally be
part of is2, but on some terminals it causes an annoying glitch on the screen and is
not normally needed because the terminal is usually already in 80-column mode.

If a more complex sequence is needed to set the tabs than can be described by using
tbe and hts, the sequence can be placed in is2 or if.

Any margin can be cleared with mge. (For instructions on how to specify
commands to set and clear margins, see "Margins" below under "PRINTER
CAPABILITIES.")

Section 1-10: Delays
Certain capabilities control padding in the tty driver. These are primarily needed
by hard-copy terminals, and are used by tput init to set tty modes appropriately.
Delays embedded in the capabilities er, ind, eubi, ff, and tab can be used to set
the appropriate delay bits to be set in the tty driver. If pb (padding baud rate) is
given, these values can be ignored at baud rates below the value of pb.

Section 1-11: Status Lines
If the terminal has an extra "status line" that is not normally used by software, this
fact can be indicated. If the status line is viewed as an extra line below the bottom
line, into which one can cursor address normally (such as the Heathkit h19's 25th
line, or the 24th line of a VT100 which is set to a 23-line scrolling region), the capa
bility hs should be given. Special strings that go to a given column of the status line
and return from the status line can be given as tsl and fsl. (fsl must leave the
cursor position in the same place it was before tsl. If necessary, the se and re

249

terminfo (4)

250

strings can be included in tsl and fsl to get this effect.} The capability tsl takes
one parameter, which is the column number of the status line the cursor is to be
moved to.

If escape sequences and other special commands, such as tab, work while in the
status line, the flag eslok can be given. A string which turns off the status line (or
otherwise erases its contents) should be given as dsl. If the terminal has com
mands to save and restore the position of the cursor, give them as sc and rc. The
status line is normally assumed to be the same width as the rest of the screen, for
example, cols. If the status line is a different width (possibly because the terminal
does not allow an entire line to be loaded) the width, in columns, can be indicated
with the numeric parameter wsl.

Section 1-12: Line Graphics
If the device has a line drawing alternate character set, the mapping of glyph to
character would be given in acsc. The definition of this string is based on the alter
nate character set used in the DEC VT100 terminal, extended slightly with some
characters from the AT&T 44lOvl terminal.

vtloo+
glyph name character

arrow pointing right +
arrow pointing left
arrow pointing down
solid square block 0
lantern symbol I
arrow pointing up
diamond
checker board (stipple) a
degree symbol f
plus/minus g
board of squares h
lower right comer j
upper right comer k
upper left comer 1
lower left comer m
plus n
scan line 1 0

horizontal line q
scan line 9 s
left tee (~) t
right tee (-I) u
bottom tee (1) v
top tee (I) - w
vertical line x
bullet

The best way to describe a new device's line graphics set is to add a third column to
the above table with the characters for the new device that produce the appropriate
glyph when the device is in the alternate character set mode. For example,

terminfo (4)

vtloo+ new tty
glyph name char char

upper left corner I R
lower left corner m F
upper right corner k T
lower right corner j G
horizontal line q
vertical line x

Now write down the characters left to right, as in "acsc=IRmFkTjGq\,x.".

In addition, terminfo allows you to define multiple character sets. See Section 2-5
for details.

Section 1·13: Color Manipulation
Let us define two methods of color manipulation: the Tektronix method and the HP
method. The Tektronix method uses a set of N predefined colors (usually 8) from
which a user can select "current" foreground and background colors. Thus a termi
nal can support up to N colors mixed into N*N color-pairs to be displayed on the
screen at the same time. When using an HP method the user cannot define the fore
ground independently of the background, or vice-versa. Instead, the user must
define an entire color-pair at once. Up to M color-pairs, made from 2*M different
colors, can be defined this way. Most existing color terminals belong to one of these
two classes of terminals.

The numeric variables colors and pairs define the number of colors and color
pairs that can be displayed on the screen at the same time. If a terminal can change
the definition of a color (for example, the Tektronix 4100 and 4200 series terminals),
this should be specified with ccc (can change color). To change the definition of a
color (Tektronix 4200 method), use initc (initialize color). It requires four argu
ments: color number (ranging from 0 to colors-I) and three RGB (red, green, and
blue) values or three HLS colors (Hue, Lightness, Saturation). Ranges of RGB and
HLS values are terminal dependent.

Tektronix 4100 series terminals only use HLS color notation. For such terminals (or
dual-mode terminals to be operated in HLS mode) one must define a boolean vari
able hIs; that would instruct the curses init_color routine to convert its RGB
arguments to HLS before sending them to the terminal. The last three arguments to
the initc string would then be HLS values.

If a terminal can change the definitions of colors, but uses a color notation different
from RGB and HLS, a mapping to either RGB or HLS must be developed.

To set current foreground or background to a given color, use setaf (set ANSI
foreground) and setab (set ANSI background). They require one parameter: the
number of the color. To initialize a color-pair (HP method), use initp (initialize
pair). It requires seven parameters: the number of a color-pair (range=O to
pairs-I), and six RGB values: three for the foreground followed by three for the
background. (Each of these groups of three should be in the order RGB.) When
initc or initp are used, RGB or HLS arguments should be in the order "red,
green, blue" or "hue, lightness, saturation"), respectively. To make a color-pair
current, use scp (set color-pair). It takes one parameter, the number of a color-pair.

251

terminfo(4)

252

Some terminals (for example, most color terminal emulators for pes) erase areas of
the screen with current background color. In such cases, bee (background color
erase) should be defined. The variable op (original pair) contains a sequence for set
ting the foreground and the background colors to what they were at the terminal
start-up time. Similarly, oc (original colors) contains a control sequence for setting
all colors (for the Tektronix method) or color-pairs (for the HP method) to the
values they had at the terminal start-up time.

Some color terminals substitute color for video attributes. Such video attributes
should not be combined with colors. Information about these video attributes
should be packed into the ncv (no color video) variable. There is a one-ta-one
correspondence between the nine least significant bits of that variable and the video
attributes. The following table depicts this correspondence.

Attribute
A_STANDOUT
A_UNDERLINE
A_REVERSE
A_BLINK
A_DIM
A_BOLD
A_INVIS
A_PROTECT
A_ALTCHARSET

Bit Decimal
Position

0
1
2
3
4
5
6
7
8

Value
1
2
4
8

16
32
64

128
256

When a particular video attribute should not be used with colors, the correspond
ing ncv bit should be set to 1; otherwise it should be set to zero. To determine the
information to pack into the ncv variable, you must add together the decimal
values corresponding to those attributes that cannot coexist with colors. For exam
ple, if the terminal uses colors to simulate reverse video (bit number 2 and decimal
value 4) and bold (bit number 5 and decimal value 32), the resulting value for ncv
will be 36 (4 + 32).

Section 1-14: Miscellaneous
If the terminal requires other than a null (zero) character as a pad, then this can be
given as pad. Only the first character of the pad string is used. If the terminal does
not have a pad character, specify Dpc.

If the terminal can move up or down half a line, this can be indicated with hu (half
line up) and hd (half-line down). This is primarily useful for superscripts and sub
scripts on hardcopy terminals. If a hardcopy terminal can eject to the next page
(form feed), give this as ff (usually control L).

If there is a command to repeat a given character a given number of times (to save
time transmitting a large number of identical characters) this can be indicated with
the parameterized string rep. The first parameter is the character to be repeated
and the second is the number of times to repeat it. Thus, tparm(repeat_char,
'x', 10) is the same as xxxxxxxxxx.

terminfo (4)

If the terminal has a settable command character, such as the Tektronix 4025, this
can be indicated with cmdch. A prototype command character is chosen which is
used in all capabilities. This character is given in the cmdch capability to identify it.
The following convention is supported on some UNIX systems: If the environment
variable CC exists, all occurrences of the prototype character are replaced with the
character in CC.

Terminal descriptions that do not represent a specific kind of known terminal, such
as switch, dialup, patch, and network, should include the gn (generic) capability so
that programs can complain that they do not know how to talk to the terminal.
(This capability does not apply to virtual terminal descriptions for which the escape
sequences are known.) If the terminal is one of those supported by the UNIX sys
tem virtual terminal protocol, the terminal number can be given as vt. A line-turn
around sequence to be transmitted before doing reads should be specified in rf i.

If the device uses xon/xoff handshaking for flow control, give xon. Padding infor
mation should still be included so that routines can make better decisions about
costs, but actual pad characters will not be transmitted. Sequences to turn on and
off xon/xoff handshaking may be given in SIllXon and rmxon. If the characters used
for handshaking are not ~s and ~Q, they may be specified with xonc and xoffc.

If the terminal has a "meta key" which acts as a shift key, setting the 8th bit of any
character transmitted, this fact can be indicated with kIn. Otherwise, software will
assume that the 8th bit is parity and it will usually be cleared. If strings exist to turn
this "meta mode" on and off, they can be given as smm and rmm.

If the terminal has more lines of memory than will fit on the screen at once, the
number of lines of memory can be indicated with 1m. A value of lm#O indicates that
the number of lines is not fixed, but that there is still more memory than fits on the
screen.

Media copy strings which control an auxiliary printer connected to the terminal can
be given as meO: print the contents of the screen, me4: turn off the printer, and me5:
turn on the printer. When the printer is on, all text sent to the terminal will be sent
to the printer. A variation, mc5p, takes one parameter, and leaves the printer on for
as many characters as the value of the parameter, then turns the printer off. The
parameter should not exceed 255. If the text is not displayed on the terminal screen
when the printer is on, specify mc5i (silent printer). All text, including mc4, is tran
sparently passed to the printer while an me5p is in effect.

Section 1-15: Special Cases
The working model used by terminfo fits most terminals reasonably well. How
ever, some terminals do not completely match that model, requiring special support
by terminfo. These are not meant to be construed as deficiencies in the terminals;
they are just differences between the working model and the actual hardware. They
may be unusual devices or, for some reason, do not have all the features of the ter
minfo model implemented.

Terminals that cannot display tilde n characters, such as certain Hazeltine termi
nals, should indicate hz.

253

term info (4)

254

Terminals that ignore a linefeed immediately after an am wrap, such as the Concept
100, should indicate xenl. Those terminals whose cursor remains on the right-most
column until another character has been received, rather than wrapping immedi
ately upon receiving the right-most character, such as the VT100, should also indi
cate xenl.

If el is required to get rid of standout (instead of writing normal text on top of it),
xhp should be given.

Those Teleray terminals whose tabs turn all characters moved over to blanks,
should indicate xt (destructive tabs). This capability is also taken to mean that it is
not possible to position the cursor on top of a "magic cookie." Therefore, to erase
standout mode, it is necessary, instead, to use delete and insert line.

Those Beehive Superbee terminals which do not transmit the escape or control-C
characters, should specify xsb, indicating that the f1 key is to be used for escape
and the f2 key for control C.

Section 1-16: Similar Terminals
If there are two very similar terminals, one can be defined as being just like the
other with certain exceptions. The string capability use can be given with the name
of the similar terminal. The capabilities given before use override those in the ter
minal type invoked by use. A capability can be canceled by placing xx@ to the left
of the capability definition, where xx is the capability. For example, the entry

att4424-2lTeletype 4424 in display function group ii,
reV@, sgr@, smul@, use=att4424,

defines an AT&T 4424 terminal that does not have the rev, sgr, and smul capabili
ties, and hence cannot do highlighting. This is useful for different modes for a ter
minal, or for different user preferences. More than one use capability may be
given.

PART 2: PRINTER CAPABILITIES
The terminfo database allows you to define capabilities of printers as well as ter
minals. To find out what capabilities are available for printers as well as for termi
nals, see the two lists under "DEVICE CAPABILITIES" that list capabilities by vari
able and by capability name.

Section 2-1: Rounding Values
Because parameterized string capabilities work only with integer values, we recom
mend that terminfo deSigners create strings that expect numeric values that have
been rounded. Application designers should note this and should always round
values to the nearest integer before using them with a parameterized string capabil
ity.

Section 2-2: Printer Resolution
A printer's resolution is defined to be the smallest spacing of characters it can
achieve. In general printers have independent resolution horizontally and verti
cally. Thus the vertical resolution of a printer can be determined by measuring the
smallest achievable distance between consecutive printing baselines, while the hor
izontal resolution can be determined by measuring the smallest achievable distance
between the left-most edges of consecutive printed, identical, characters.

terminfo (4)

All printers are assumed to be capable of printing with a uniform horizontal and
vertical resolution. The view of printing that terminfo currently presents is one of
printing inside a uniform matrix: All characters are printed at fixed positions rela
tive to each "cell" in the matrix; furthermore, each cell has the same size given by
the smallest horizontal and vertical step sizes dictated by the resolution. (The cell
size can be changed as will be seen later.)

Many printers are capable of "proportional printing," where the horizontal spacing
depends on the size of the character last printed. terminfo does not make use of
this capability, although it does provide enough capability definitions to allow an
application to simulate proportional printing.

A printer must not only be able to print characters as close together as the horizon
tal and vertical resolutions suggest, but also of "moving" to a position an integral
multiple of the smallest distance away from a previous position. Thus printed char
acters can be spaced apart a distance that is an integral multiple of the smallest dis
tance, up to the length or width of a single page.

Some printers can have different resolutions depending on different "modes." In
"normal mode," the existing terminfo capabilities are assumed to work on
columns and lines, just like a video terminal. Thus the old lines capability would
give the length of a page in lines, and the eols capability would give the width of a
page in columns. In "micro mode," many tenninfo capabilities work on incre
ments of lines and columns. With some printers the micro mode may be concomi
tant with normal mode, so that all the capabilities work at the same time.

Section 2-3: Specifying Printer Resolution
The printing resolution of a printer is given in several ways. Each specifies the reso
lution as the number of smallest steps per distance:

Specification of Printer Resolution
Characteristic Number of Smallest Steps
orhi Steps per inch horizontally
orvi Steps per inch vertically
ore Steps per column
orl Steps per line

When printing in normal mode, each character printed causes movement to the
next column, except in special cases described later; the distance moved is the same
as the per-column resolution. Some printers cause an automatic movement to the
next line when a character is printed in the rightmost position; the distance moved
vertically is the same as the per-line resolution. When printing in micro mode,
these distances can be different, and may be zero for some printers.

Specification of Printer Resolution
Automatic Motion after Printing

Normal Mode:
ore Steps moved horizontally
orl Steps moved vertically

255

terminfo (4)

256

Micro Mode:
mes Steps moved horizontally
mls Steps moved vertically

Some printers are capable of printing wide characters. The distance moved when a
wide character is printed in normal mode may be different from when a regular
width character is printed. The distance moved when a wide character is printed in
micro mode may also be different from when a regular character is printed in micro
mode, but the differences are assumed to be related: If the distance moved for a reg
ular character is the same whether in normal mode or micro mode (mes=ore), then
the distance moved for a wide character is also the same whether in normal mode
or micro mode. This doesn't mean the normal character distance is necessarily the
same as the wide character distance, just that the distances don't change with a
change in normal to micro mode. However, if the distance moved for a regular
character is different in micro mode from the distance moved in normal mode
(mes<ore), the micro mode distance is assumed to be the same for a wide character
printed in micro mode, as the table below shows.

Specification of Printer Resolution
Automatic Motion after Printing Wide Character
Normal Mode or Micro Mode (mes = ore):
wides Steps moved horizontally

Micro Mode (mes < ore):
mes Steps moved horizontally

There may be control sequences to change the number of columns per inch (the
character pitch) and to change the number of lines per inch (the line pitch). If these
are used, the resolution of the printer changes, but the type of change depends on
the printer:

Specification of Printer Resolution
Changing the Character/Line Pitches

epi Change character pitch
epix If set, cpi changes orhi, otherwise changes ore

lpi Change line pitch
lpix If set, lpi changes orvi, otherwise changes orl

chr Change steps per column
cvr Change steps per line

The cpi and lpi string capabilities are each used with a single argument, the pitch
in columns (or characters) and lines per inch, respectively. The chr and cvr string
capabilities are each used with a single argument, the number of steps per column
and line, respectively.

Using any of the control sequences in these strings will imply a change in some of
the values of orc, orhi, orl, and orvi. Also, the distance moved when a wide
character is printed, widcs, changes in relation to orc. The distance moved when a
character is printed in micro mode, mes, changes similarly, with one exception: if

terminfo (4)

the distance is 0 or 1, then no change is assumed (see items marked with t in the
following table).

Programs that use epi, lpi, ehr, or evr should recalculate the printer resolution
(and should recalculate other values see "Effect of Changing Printing Resolution"
under "Dot-Mapped Graphics").

Specification of Printer Resolution
Effects of Changing the Character /Line Pitches

Before After
Using epi with epix clear:
orhi'

ore'

Using epi with epix set:
orhi'
ore'

Using lpi with lpix clear:
orvi'

orl'

Using lpi with lpix set:
.,

Orvl
orl'

Usingehr:
orhi'
ore'

Using evr:
0' Orvl

orl'

Using epi or ehr:

wides'

mes'

orhi
orhi

orc=-
Vcpi

orhi = ore' V cpi

ore

orvi
orvi

orl=-
V lpi

orvi = orl' V Ipi

orl

orhi
V chr

orvi
Vcvr

'd 'd' ore WI es=wI es --,
ore

, ore
mes=mes -

ore'

V cpi ' V lpi ' V chrt and Vcvr are the arguments used with epi, lpi, ehr, and evr,
respectively. The prime marks (') indicate the old values.

Section 2-4: Capabilities that Cause Movement
In the following descriptions, "movement" refers to the motion of the "current
position." With video terminals this would be the cursor; with some printers this is
the carriage position. Other printers have different equivalents. In general, the
current position is where a character would be displayed if printed.

257

terminfo (4)

258

terminfo has string capabilities for control sequences that cause movement a
number of full columns or lines. It also has equivalent string capabilities for control
sequences that cause movement a number of smallest steps.

String Capabilities for Motion
mcubl Move 1 step left
mcufl Move 1 step right
mcuul Move 1 step up
mcudl Move 1 step down

mcub Move N steps left
mcuf Move N steps right
mcuu Move N steps up
mcud Move N steps down

mhpa
mvpa

Move N steps from the left
Move N steps from the top

The latter six strings are each used with a single argument, N.

Sometimes the motion is limited to less than the width or length of a page. Also,
some printers don't accept absolute motion to the left of the current position. ter
minfo has capabilities for specifying these limits.

mjump
maddr

xhpa
xvpa

Limits to Motion
Limit on use of mcubl, mcufl, mcuul, mcudl
Limit on use of mhpa, mvpa

If set, hpa and mhpa can't move left
If set, vpa and mvpa can't move up

If a printer needs to be in a "micro mode" for the motion capabilities described
above to work, there are string capabilities defined to contain the control sequence
to enter and exit this mode. A boolean is available for those printers where using a
carriage return causes an automatic return to normal mode.

Entering/Exiting Micro Mode
smicm Enter micro mode
rmicm Exit micro mode

crxm Using cr exits micro mode

The movement made when a character is printed in the rightmost position varies
among printers. Some make no movement, some move to the beginning of the next
line, others move to the beginning of the same line. terminfo has boolean capabili
ties for describing all three cases.

What Happens After Character
Printed in Rightmost Position

sam Automatic move to beginning of same line

terminfo (4)

Some printers can be put in a mode where the normal direction of motion is
reversed. This mode can be especially useful when there are no capabilities for left
ward or upward motion, because those capabilities can be built from the motion
reversal capability and the rightward or downward motion capabilities. It is best to
leave it up to an application to build the leftward or upward capabilities, though,
and not enter them in the terminfo database. This allows several reverse motions
to be strung together without intervening wasted steps that leave and reenter
reverse mode.

Entering/Exiting Reverse Modes
slm Reverse sense of horizontal motions
rim Restore sense of horizontal motions
sum Reverse sense of vertical motions
rum Restore sense of vertical motions

While sense of horizontal motions reversed:
mcubl Move 1 step right
mcufl Move 1 step left
mcub Move N steps right
mcuf Move N steps left
cubl Move 1 column right
cufl Move 1 column left
cub Move N columns right
cuf Move N columns left

While sense of vertical motions reversed:
mcuul Move 1 step down
mcudl Move 1 step up
mcuu Move N steps down
mcud Move N steps up
cuul Move 1 line down
cudl Move 1 line up
cuu Move N lines down
cud Move N lines up

The reverse motion modes should not affect the mvpa and mhpa absolute motion
capabilities. The reverse vertical motion mode should, however, also reverse the
action of the line "wrapping" that occurs when a character is printed in the right
most position. Thus printers that have the standard terminfo capability am
defined should experience motion to the beginning of the previous line when a
character is printed in the right-most position under reverse vertical motion mode.

The action when any other motion capabilities are used in reverse motion modes is
not defined; thus, programs must exit reverse motion modes before using other
motion capabilities.

259

terminfo (4)

260

Two miscellaneous capabilities complete the list of new motion capabilities. One of
these is needed for printers that move the current position to the beginning of a line
when certain control characters, such as "line-feed" or "form-feed," are used. The
other is used for the capability of suspending the motion that normally occurs after
printing a character.

Miscellaneous Motion Strings
doer List of control characters causing er
zerom Prevent auto motion after printing next single character

Margins
tenninfo provides two strings for setting margins on terminals: one for the left and
one for the right margin. Printers, however, have two additional margins, for the
top and bottom margins of each page. Furthermore, some printers require not
using motion strings to move the current position to a margin and then fixing the
margin there, but require the specification of where a margin should be regardless
of the current position. Therefore tenninfo offers six additional strings for
defining margins with printers.

smgl
smgr
smgb
smgt

smgbp
smglp
smgrp
smgtp

Setting Margins
Set left margin at current column
Set right margin at current column
Set bottom margin at current line
Set top margin at current line

Set bottom margin at line N
Set left margin at column N
Set right margin at column N
Set top margin at line N

The last four strings are used with one or more arguments that give the position of
the margin or margins to set. If both of smglp and smgrp are set, each is used with
a single argument, N, that gives the column number of the left and right margin,
respectively. If both of smgtp and smgbp are set, each is used to set the top and bot
tom margin, respectively: smgtp is used with a single argument, N, the line number
of the top margin; however, smgbp is used with two arguments, Nand M, that give
the line number of the bottom margin, the first counting from the top of the page
and the second counting from the bottom. This accommodates the two styles of
specifying the bottom margin in different manufacturers' printers. When coding a
terminfo entry for a printer that has a settable bottom margin, only the first or
second parameter should be used, depending on the printer. When writing an
application that uses smgbp to set the bottom margin, both arguments must be
given.

If only one of smglp and smgrp is set, then it is used with two arguments, the
column number of the left and right margins, in that order. Likewise, if only one of
smgtp and smgbp is set, then it is used with two arguments that give the top and
bottom margins, in that order, counting from the top of the page. Thus when cod
ing a tenninfo entry for a printer that requires setting both left and right or top
and bottom margins simultaneously, only one of smglp and smgrp or smgtp and
smgbp should be defined; the other should be left blank. When writing an

terminfo (4)

application that uses these string capabilities, the pairs should be first checked to
see if each in the pair is set or only one is set, and should then be used accordingly.

In counting lines or columns, line zero is the top line and column zero is the left
most column. A zero value for the second argument with smgbp means the bottom
line of the page.

All margins can be cleared with mge.

Shadows, Italics, Wide Characters, Superscripts, Subscripts
Five new sets of strings are used to describe the capabilities printers have of
enhancing printed text.

Enhanced Printing
sshm Enter shadow-printing mode
rshm Exit shadow-printing mode

sitm Enter italicizing mode
ritm Exit italicizing mode

swidm Enter wide character mode
rwidm Exit wide character mode

ssupm Enter superscript mode
rsupm Exit superscript mode
supes List of characters available as superscripts

ssubm Enter subscript mode
rsubm Exit subscript mode
subes List of characters available as subscripts

If a printer requires the sshm control sequence before every character to be
shadow-printed, the rshm string is left blank. Thus programs that find a control
sequence in sshm but none in rshm should use the sshm control sequence before
every character to be shadow-printed; otherwise, the sshm control sequence should
be used once before the set of characters to be shadow-printed, followed by rshm.
The same is also true of each of the sitm/ritm, swidm/rwidm, ssupm/rsupm, and
ssubm/ rsubm pairs.

Note that terminfo also has a capability for printing emboldened text (bold).
While shadow printing and emboldened printing are similar in that they "darken"
the text, many printers produce these two types of print in slightly different ways.
Generally, emboldened printing is done by overstriking the same character one or
more times. Shadow printing likewise usually involves overstriking, but with a
slight movement up and/ or to the side so that the character is "fatter."

It is assumed that enhanced printing modes are independent modes, so that it
would be possible, for instance, to shadow print italicized subscripts.

As mentioned earlier, the amount of motion automatically made after printing a
wide character should be given in wides.

If only a subset of the printable ASCII characters can be printed as superscripts or
subscripts, they should be listed in supes or subes strings, respectively. If the
ssupm or ssubm strings contain control sequences, but the corresponding supes or

261

terminfo (4)

262

subes strings are empty, it is assumed that all printable ASCII characters are avail
able as superscripts or subscripts.

Automatic motion made after printing a superscript or subscript is assumed to be
the same as for regular characters. Thus, for example, printing any of the following
three examples will result in equivalent motion:

Bi B Bi

Note that the existing msgr boolean capability describes whether motion control
sequences can be used while in "standout mode." This capability is extended to
cover the enhanced printing modes added here. msgr should be set for those
printers that accept any motion control sequences without affecting shadow, itali
cized, widened, superscript, or subscript printing. Conversely, if msgr is not set, a
program should end these modes before attempting any motion.

Section 2-5: Alternate Character Sets
In addition to allowing you to define line graphics (described in Section 1-12), ter
minfo lets you define alternate character sets. The following capabilities cover
printers and terminals with multiple selectable or definable character sets.

ses

sesd
defe
resd

esnm

daisy

Alternate Character Sets
Select character set N

Start definition of character set N, M characters
Define character A, B dots wide, descender D
End definition of character set N

List of character set names

Printer has manually changed print-wheels

The ses, resd, and esnm strings are used with a single argument, N, a number from
o to 63 that identifies the character set. The sesd string is also used with the argu
ment N and another, M, that gives the number of characters in the set. The defe
string is used with three arguments: A gives the ASCII code representation for the
character, B gives the width of the character in dots, and D is zero or one depending
on whether the character is a "descender" or not. The defe string is also followed
by a string of "image-data" bytes that describe how the character looks (see below).

Character set 0 is the default character set present after the printer has been initial
ized. Not every printer has 64 character sets, of course; using ses with an argu
ment that doesn't select an available character set should cause a null result from
tparm.

If a character set has to be defined before it can be used, the sesd control sequence
is to be used before defining the character set, and the resd is to be used after.
They should also cause a null result from tparm when used with an argument N
that doesn't apply. If a character set still has to be selected after being defined, the
ses control sequence should follow the resd control sequence. By examining the
results of using each of the ses, sesd, and resd strings with a character set number
in a call to tparm, a program can determine which of the three are needed.

terminfo (4)

Between use of the scsd and rcsd strings, the defc string should be used to define
each character. To print any character on printers covered by terminfo, the ASCII
code is sent to the printer. This is true for characters in an alternate set as well as
"normal" characters. Thus the definition of a character includes the ASCII code
that represents it. In addition, the width of the character in dots is given, along
with an indication of whether the character should descend below the print line
(such as the lower case letter "g" in most character sets). The width of the character
in dots also indicates the number of image-data bytes that will follow the defc
string. These image-data bytes indicate where in a dot-matrix pattern ink should be
applied to "draw" the character; the number of these bytes and their form are
defined below under "Dot-Mapped Graphics."

It's easiest for the creator of terminfo entries to refer to each character set by
number; however, these numbers will be meaningless to the application developer.
The csnm string alleviates this problem by providing names for each number.

When used with a character set number in a call to tparm, the csnm string will pro
duce the equivalent name. These names should be used as a reference only. No
naming convention is implied, although anyone who creates a terminfo entry for a
printer should use names consistent with the names found in user documents for
the printer. Application developers should allow a user to specify a character set by
number (leaving it up to the user to examine the csnm string to determine the
correct number), or by name, where the application examines the csnm string to
determine the corresponding character set number.

These capabilities are likely to be used only with dot-matrix printers. If they are not
available, the strings should not be defined. For printers that have manually
changed print-wheels or font cartridges, the boolean daisy is set.

Section 2-6: Dot-Matrix Graphics
Dot-matrix printers typically have the capability of reproducing "raster-graphics"
images. Three new numeric capabilities and three new string capabilities can
help a program draw raster-graphics images independent of the type of dot-matrix
printer or the number of pins or dots the printer can handle at one time.

npins
spinv
spinh
porder
sbim
rbim

Dot-Matrix Graphics
Number of pins, N, in print-head
Spacing of pins vertically in pins per inch
Spacing of dots horizontally in dots per inch
Matches software bits to print-head pins
Start printing bit image graphics, B bits wide
End printing bit image graphics

The sbim sring is used with a single argument, B, the width of the image in dots.

The model of dot-matrix or raster-graphics that terminfo presents is similar to the
technique used for most dot-matrix printers: each pass of the printer's print-head is
assumed to produce a dot-matrix that is N dots high and B dots wide. This is typi
cally a wide, squat, rectangle of dots. The height of this rectangle in dots will vary
from one printer to the next; this is given in the npins numeric capability. The size
of the rectangle in fractions of an inch will also vary; it can be deduced from the
spinv and spinh numeric capabilities. With these three values an application can

263

terminfo (4)

264

divide a complete raster-graphics image into several horizontal strips, perhaps
interpolating to account for different dot spacing vertically and horizontally.

The sbim and rbim strings are used to start and end a dot-matrix image, respec
tively. The sbim string is used with a single argument that gives the width of the
dot-matrix in dots. A sequence of "image-data bytes" are sent to the printer after
the sbim string and before the rbim string. The number of bytes is a integral multi
ple of the width of the dot-matrix; the multiple and the form of each byte is deter
mined by the porder string as described below.

The porder string is a comma separated list of pin numbers optionally followed by
an numerical offset. The offset, if given, is separated from the list with a semicolon.
The position of each pin number in the list corresponds to a bit in an 8-bit data byte.
The pins are numbered consecutively from 1 to npins, with 1 being the top pin.
Note that the term "pin" is used loosely here; "ink-jet" dot-matrix printers don't
have pins, but can be considered to have an equivalent method of applying a single
dot of ink to paper. The bit positions in porder are in groups of 8, with the first
position in each group the most significant bit and the last position the least
significant bit. An application produces 8-bit bytes in the order of the groups in
porder.

An application computes the "image-data bytes" from the internal image, mapping
vertical dot positions in each print-head pass into 8-bit bytes, using a 1 bit where
ink should be applied and 0 where no ink should be applied. This can be reversed
(0 bit for ink, 1 bit for no ink) by giving a negative pin number. If a position is
skipped in porder, a 0 bit is used. If a position has a lower case 'x' instead of a pin
number, a 1 bit is used in the skipped position. For consistency, a lower case '0' can
be used to represent a 0 filled, skipped bit. There must be a multiple of 8 bit posi
tions used or skipped in porder; if not, 0 bits are used to fill the last byte in the least
significant bits. The offset, if given, is added to each data byte; the offset can be
negative.

Some examples may help clarify the use of the porder string. The AT&T 470,
AT&T 475 and C.Itoh 8510 printers provide eight pins for graphics. The pins are
identified top to bottom by the 8 bits in a byte, from least significant to most. The
porder strings for these printers would be 8, 7, 6, 5,4, 3,2, 1. The AT&T 478 and
AT&T 479 printers also provide eight pins for graphics. However, the pins are
identified in the reverse order. The porder strings for these printers would be
1,2,3,4,5,6,7,8. The AT&T 5310, AT&T 5320, DEC LA100, and DEC LN03
printers provide six pins for graphics. The pins are identified top to bottom by the
decimal values 1, 2, 4, 8, 16 and 32. These correspond to the low six bits in an 8-bit
byte, although the decimal values are further offset by the value 63. The porder
string for these printers would be " 6, 5,4,3,2, 1; 63, or alternately
0,0,6,5,4,3,2,1;63.

Section 2-7: Effect of Changing Printing Resolution
If the control sequences to change the character pitch or the line pitch are used, the
pin or dot spacing may change:

terminfo (4)

Dot-Matrix Graphics
Changing the Character jLine Pitches
cpi Change character pitch
cpix If set, cpi changes spinh

Ipi Change line pitch
Ipix If set, Ipi changes spinv

Programs that use cpi or Ipi should recalculate the dot spacing:

Dot-Matrix Graphics
Effects of Changing the Character jLine Pitches

Before After
Using cpi with cpix clear:

spinh'

Using cpi with cpix set:

spinh'

Using Ipi with Ipix clear:

spinv'

Using Ipi with Ipix set:

spinv'

Using chr:

spinh'

Usingcvr:

spinv'

spinh

. h . h' orhi spIn = spIn. . --.-,
orhl

spinv

. ., orhi
splnv = spmv . -h"

or 1

spinh

spinv

orhi' and orhi are the values of the horizontal resolution in steps per inch, before
using cpi and after using cpi, respectively. Likewise, orvi' and orvi are the values
of the vertical resolution in steps per inch, before using Ipi and after using Ipi,
respectively. Thus, the changes in the dots per inch for dot-matrix graphics follow
the changes in steps per inch for printer resolution.

Section 2-8: Print Quality
Many dot-matrix printers can alter the dot spacing of printed text to produce near
"letter quality" printing or "draft quality" printing. Usually it is important to be
able to choose one or the other because the rate of printing generally falls off as the
quality improves. There are three new strings used to describe these capabilities.

265

terminfo(4)

266

Print Quality
snlq Set near-letter quality print
snrmq Set normal quality print
sdrfq Set draft quality print

The capabilities are listed in decreasing levels of quality. If a printer doesn't have
all three levels, one or two of the strings should be left blank as appropriate.

Section 2-9: Printing Rate and Buffer Size
Because there is no standard protocol that can be used to keep a program synchron
ized with a printer, and because modem printers can buffer data before printing it,
a program generally cannot determine at any time what has been printed. Two
new numeric capabilities can help a program estimate what has been printed.

Print Rate/Buffer Size
cps Nominal print rate in characters per second
bufsz Buffer capacity in characters

cps is the nominal or average rate at which the printer prints characters; if this
value is not given, the rate should be estimated at one-tenth the prevailing baud
rate. bufsz is the maximum number of subsequent characters buffered before the
guaranteed printing of an earlier character, assuming proper flow control has been
used. If this value is not given it is assumed that the printer does not buffer charac
ters, but prints them as they are received.

As an example, if a printer has a 1000-character buffer, then sending the letter "au
followed by 1000 additional characters is guaranteed to cause the letter" aN to print.
If the same printer prints at the rate of 100 characters per second, then it should take
10 seconds to print all the characters in the buffer, less if the buffer is not full. By
keeping track of the characters sent to a printer, and knowing the print rate and
buffer size, a program can synchronize itself with the printer.

Note that most printer manufacturers advertise the maximum print rate, not the
nominal print rate. A good way to get a value to put in for cps is to generate a few
pages of text, count the number of printable characters, and then see how long it
takes to print the text.

Applications that use these values should recognize the variability in the print rate.
Straight text, in short lines, with no embedded control sequences will probably
print at close to the advertised print rate and probably faster than the rate in cps.
Graphics data with a lot of control sequences, or very long lines of text, will print at
well below the advertised rate and below the rate in cps. If the application is using
cps to decide how long it should take a printer to print a block of text, the applica
tion should pad the estimate. If the application is using cps to decide how much
text has already been printed, it should shrink the estimate. The application will
thus err in favor of the user, who wants, above all, to see all the output in its correct
place.

FILES
/usr/share/1ib/termdnfo/?/*

/usr/share/1ib/tabset/*

terminfo(4)

compiled terminal description database

tab settings for some terminals, in a format
appropriate to be output to the terminal
(escape sequences that set margins and tabs)

SEE ALSO

NOTES

curses(3curses), ls(l), pg(l), printf(3S), stty(l), tic (1M), tput(l), tty(l), vi(l)

The most effective way to prepare a terminal description is by imitating the descrip
tion of a similar terminal in termdnfo and to build up a description gradually,
using partial descriptions with a screen oriented editor, such as vi, to check that
they are correct. To easily test a new terminal description the environment variable
TERMINFO can be set to the pathname of a directory containing the compiled
description, and programs will look there rather than in
/usr/share/1ib/termdnfo.

267

timezone (4)

NAME
timezone - set default system time zone

SYNOPSIS
/etc/TIMEZONE

DESCRIPTION
This file sets and exports the time zone environmental variable TZ.

This file is "dotted" into other files that must know the time zone.

EXAMPLES
/etc/TIMEZONE for the United States east coast:

Time Zone
TZ=ESTSEDT
export TZ

SEE ALSO
ctime(3C), environ(5), profile(4), rC2(lM)

268

NAME
ts_dptbl - time-sharing dispatcher parameter table

DESCRIPTION
The process scheduler (or dispatcher) is the portion of the kernel that controls allo
cation of the CPU to processes. The scheduler supports the notion of scheduling
classes where each class defines a scheduling policy, used to schedule processes
within that class. Associated with each scheduling class is a set of priority queues
on which ready to run processes are linked. These priority queues are mapped by
the system configuration into a set of global scheduling priorities which are avail
able to processes within the class. (The dispatcher always selects for execution the
process with the highest global scheduling priority in the system.) The priority
queues associated with a given class are viewed by that class as a contiguous set of
priority levels numbered from 0 (lowest priority) to n (highest priority-a
configuration-dependent value). The set of global scheduling priorities that the
queues for a given class are mapped into might not start at zero and might not be
contiguous (depending on the configuration).

Processes in the time-sharing class which are running in user mode (or in kernel
mode before going to sleep) are scheduled according to the parameters in a time
sharing dispatcher parameter table (ts_dptbl). (Time-sharing processes running in
kernel mode after sleeping are run within a special range of priorities reserved for
such processes and are not affected by the parameters in the ts_dptbl until they
return to user mode.) The ts_dptbl consists of an array of parameter structures
(struct ts_dpent), one for each of the n priority levels used by time-sharing
processes in user mode. The properties of a given priority level i are specified by
the ith parameter structure in this array (t s_dptbl i).

A parameter structure consists of the following members. These are also described
in the /usr/include/sys/ts.h header file.

The global scheduling priority associated with this priority level.
The mapping between time-sharing priority levels and global
scheduling priorities is determined at boot time by the system
configuration. ts_globpri is the only member of the ts_dptbl
which cannot be changed with dispadmin(lM).

The length of the time quantum allocated to processes at this level
in ticks (HZ).

Priority level of the new queue on which to place a process run
ning at the current level if it exceeds its time quantum. Normally
this field links to a lower priority time-sharing level that has a
larger quantum.

Priority level of the new queue on which to place a process, that
was previously in user mode at this level, when it returns to user
mode after sleeping. Normally this field links to a higher priority
level that has a smaller quantum.

A per process counter, ts_dispwait is initialized to zero each
time a time-sharing process is placed back on the dispatcher
queue after its time quantum has expired or when it is awakened
(ts_dispwait is not reset to zero when a process is preempted

269

by a higher priority process). This counter is incremented once
per second for each process on the dispatcher queue. If a
process's ts_dispwait value exceeds the ts_maxwait value for
its level, the process's priority is changed to that indicated by
ts_lwait. The purpose of this field is to prevent starvation.

Move a process to this new priority level if ts_dispwait is
greater than ts_maxwait.

An administrator can affect the behavior of the time-sharing portion of the
scheduler by reconfiguring the ts_dptbl. There are two methods available for
doing this.

DISPADMIN CONFIGURATION FILE
With the exception of ts_globpri all of the members of the ts_dptbl can be
examined and modified on a running system using the dispadmin(lM) command.
Invoking dispadmin for the time-sharing class allows the administrator to retrieve
the current ts_dptbl configuration from the kernel's in-core table, or overwrite the
in-core table with values from a configuration file. The configuration file used for
input to dispadmin must conform to the specific format described below.

Blank lines are ignored and any part of a line to the right of a # symbol is treated as
a comment. The first non-blank, non-comment line must indicate the resolution to
be used for interpreting the ts_quantum time quantum values. The resolution is
specified as

RES=res

where res is a positive integer between 1 and 1,000,000,000 inclusive and the resolu
tion used is the reciprocal of res in seconds (for example, RES=1000 specifies mil
lisecond resolution). Although very fine (nanosecond) resolution may be specified,
the time quantum lengths are rounded up to the next integral multiple of the sys
tem clock's resolution. The system clock's resolution is hardware-dependent; this
resolution can be calculated from the value of HZ, which is defined in the file
/usr/include/sys/param.h. HZ gives the number of clock ticks per second of the
system clock. For example, an HZ of 100 specifies 100 clock ticks per second, or one
tick every 10 milliseconds (that is, this system clock has a resolution of 10 mil
liseconds). If the -t and -r options are used to specify a time quantum of 34 mil
liseconds, it is rounded up to 4 ticks (40 milliseconds) on a machine with an HZ of
100.

The remaining lines in the file are used to specify the parameter values for each of
the time-sharing priority levels. The first line specifies the parameters for time
sharing level 0, the second line specifies the parameters for time-sharing levell, etc.
There must be exactly one line for each configured time-sharing priority level.

EXAMPLE

270

The following excerpt from a dispadmin configuration file illustrates the format.
Note that for each line specifying a set of parameters there is a comment indicating
the corresponding priority level. These level numbers indicate priority within the
time-sharing class, and the mapping between these time-sharing priorities and the
corresponding global scheduling priorities is determined by the configuration
specified in the ts master file. The level numbers are strictly for the convenience of
the administrator reading the file and, as with any comment, they are ignored by

FILES

dispadmin. dispadmin assumes that the lines in the file are ordered by consecu
tive, increasing priority level (from 0 to the maximum configured time-sharing
priority). The level numbers in the comments should normally agree with this ord
ering; if for some reason they don't, however, dispadmin is unaffected.

Time-Sharing Dispatcher Configuration File
RES=1000

ts_quantum ts_tqexp
500
500
500
500
500
500
450
450

50
50

0
0
1
1
2
2
3
3

48
49

ts_slpret
10
11
12
13
14
15
16
17

59
59

ts_maxwait
5
5
5
5
5
5
5
5

5
5

ts_lwait
10
11
12
13
14
15
16
17

59
59

PRIORITY LEVEL
0
1
2
3
4
5
6
7

58
59

/usr/inc1ude/sys/ts.h

SEE ALSO

NOTES

dispadmin(lM), priocntl(l), priocntl(2)

dispadmin does some limited sanity checking' on the values supplied in the
configuration file. The sanity checking is intended to ensure that the new ts_dptbl
values do not cause the system to panic. The sanity checking does not attempt to
analyze the effect that the new values will have on the performance of the system.
Unusual ts_dptbl configurations may have a dramatic negative impact on the per
formance of the system.

No sanity checking is done on the ts_dptbl values specified in the ts master file.
Specifying an inconsistent or nonsensical ts_dptbl configuration through the ts
master file could cause serious performance problems and/or cause the system to
panic.

271

ttydefs(4)

NAME
ttydefs - file contains terminal line settings information for ttymon

DESCRIPTION
/etc/ttydefs is an administrative file that contains information used by ttymon to
set up the speed and terminal settings for a TTY port.

The ttydefs file contains the following fields:

ttylabel The string ttymon tries to match against the TTY port's ttylabel
field in the port monitor administrative file. It often describes the
speed at which the terminal is supposed to run, for example, 1200.

initial-flags Contains the initial tezmio(7) settings to which the terminal is to
be set. For example, the system administrator will be able to
specify what the default erase and kill characters will be. initial
flags must be specified in the syntax recognized by the stty com
mand.

final-flags

autobaud

nextlabel

final-flags must be specified in the same format as initial-flags.
ttymon sets these final settings after a connection request has been
made and immediately prior to invoking a port's service.

If the autobaud field contains the character 'A', autobaud will be
enabled. Otherwise, autobaud will be disabled. ttymon deter
mines what line speed to set the TTY port to by analyzing the
carriage returns entered. If autobaud has been disabled, the hunt
sequence is used for baud rate determination.

If the user indicates that the current terminal setting is not
appropriate by sending a BREAK, ttymon searchs for a ttydefs
entry whose ttylabel field matches the next/abel field. If a match is
found, ttymon uses that field as its ttylabel field. A series of speeds
is often linked together in this way into a closed set called a hunt
sequence. For example, 4800 may be linked to 1200, which in turn
is linked to 2400, which is finally linked to 4800.

SEE ALSO
sttydefs(lM), ttymon(lM)

272

Uysrch (4)

NAME
ttysrch - directory search list for ttymap and ttyname

DESCRIPTION
ttysrch is an optional file used by the ttymap(lM) administrative command. The
ttymap command creates a map file, /var/tmp/ttymap, used by ttyname(3C) for
fast lookups of terminal device names.

The ttysrch file lists the names of directories in /dev that contain terminal and
terminal-related device files, as well as the names of directories that contain no such
files. The purpose of this file is to improve the performance of ttyname by identify
ing subdirectories in / dev to be searched first and subdirectories to be ignored.
These subdirectory names must appear on separate lines and must begin with /dev.
Those path names that do not begin with /dev are ignored and a warning is sent to
the console. Blank lines (lines containing only white space) and lines beginning
with the comment character "#" are ignored. ttymap writes entries into the mapfile
/var/tmp/ttymap in the order in which they occur in the ttysrch file. Subdirec
tories to be ignored are also specified as such in the mapfile. With the exception of
/dev, entries in the ttysrch file are used recursively to identify a directory
sub-tree.

When ttyname searches for device files, it tries to find a file whose major/minor
device number, file system identifier, and inode number match those of the file
descriptor it was given as an argument. If it does not find a match, it settles for a
match of just major/minor device and file system identifier, if one can be found.
However, if the file descriptor is associated with a cloned device [see c1one(7)], this
algorithm does not work efficiently because the inode number of the device file
associated with a clonable device never matches the inode number of the file
deSCriptor that was returned by the open of that clonable device. To help with
these situations, entries can be put into the /etc/ttysrch file to improve perfor
mance when cloned devices are used as terminals on a system (for remote login, for
example). However, this is useful only if the minor devices related to a cloned
device are put into a subdirectory. (It is important to note that device files need not
exist for cloned devices; if they do, ttyname fails.) For example, if /dev/star1an is
a cloned device, there could be a subdirectory /dev/s1an that contains files 0, 1, 2, .
. . that correspond to the minor devices of the starlan driver.

An optional second field is used in the /etc/ttysrch file to indicate the matching
criteria. This field is separated from the first field by whitespace (any combination
of blanks or tabs). The field is made up of a combination of the following letters:

M major/minor device number
F file system identifier
I inode number
X ignore this directory completely

If this field is not specified for an entry, the default is MFI, which means try to
match on all three. For cloned devices the field should be MF, which indicates that it
is not necessary to match on the inode number.

273

Itysrch (4)

Without the /etc/ttysrch file, ttymap maps the /dev directory by first looking in
the directories /dev/term, /dev/pts, and /dev/xt, and by ignoring /dev/dsk and
/dev/rdsk. If a system has terminal devices installed in directories other than
these, it may help performance if the ttysrch file is created and contains that list of
directories.

EXAMPLE

FILES

A sample /etc/ttysrch file follows:

/dev/term MFI
/dev/pts MFI
/dev/xt MFI
/dev/slan MF
/dev/dsk x
/dev/rdsk x

This file tells ttyname that it should first search through those directories listed,
that when searching through the /dev/slan directory, if a file is encountered
whose major/minor devices and file system identifier match those of the file
descriptor argument to ttyname, this device name should be considered a match,
and that neither /dev/dsk nor /dev/rdsk need be searched.

/etc/ttysrch

SEE ALSO
clone(7), ttymap(lM), ttyname(3C)

274

unistd (4)

NAME
unistd - header file for symbolic constants

SYNOPSIS
#include <unistd.h>

DESCRIPTION
The unistd. h header file defines the symbolic constants and structures not already
defined or declared in some other header file. The contents of this file are shown
below.

The following symbolic constants are defined for the access function [see
access(2)]:

R_OK Test for read permission.
W_OK Test for write permission.
X_OK Test for execute (search) permission.
F_OK Test for existence of file.

The constants F _OK, R_OK, W_OK and X_OK and the expressions R_OK I W_OK,
R_OK I X_OK and R_OK I W_OK I X_OK all have distinct values.

Declares the constant

NULL null pointer

The following symbolic constants are defined for the lockf function [see
lockf(3C)]:

F_ULOCK Unlock a previously locked region.
F_LOCK Lock a region for exclusive use.
F_TLOCK Test and lock a region for exclusive use.
F_TEST Test a region for other processes locks.

The following symbolic constants are defined for the lseek [see Iseek(2)] and
fcntl [see fcntl(2)] functions (they have distinct values):

SEEK_SET Set file offset to offset.
SEEK_CUR Set file offset to current plus offset.
SEEK_END Set file offset to EOF plus offset.

The following symbolic constants are defined (with fixed values):

Integer value indicating version of the POSIX
standard.
Integer value indicating version of the XPG to
which system is compliant.

The follOWing symbolic constants are defined to indicate that the option is present:

_POSIX_JOB_CONTROL
_POSIX_BAVED_IDS

Implementation supports job control.
The exec functions [see exec(2)] save the effec
tive user and group.
Terminal special characters defined in
tennios.h [see tennio(7)] can be disabled using
this character.

275

unistd(4)

The following symbolic constants are defined for sysconf [see sysconf(3C)]:

_SC_ARG_MAX
_SC_CHILO_MAX
_SC_CLK_TCK
_SC_JOB_CONTROL
_SC_LOGNAME_MAX
_SC_NGROUPS_MAX
_SC_OPEN_MAX
_SC_PAGESIZE
_SC_PASS_MAX
_SC_SAVED_IDS
_SC_VERSION
_SC_XOPEN_VERSION

The following symbolic constants are defined for pathconf [see fpathconf(2)]:

_PC_CHOWN_RESTRICTED
_PC_LINK_MAX
_PC_MAX_CANON
_PC_MAX_INPUT
_PC_NAME_MAX
_PC_NO_TRUNC
_PC_PATH_MAX
_PC_PIPE_BUF
PC VDISABLE

The following symbolic constants are defined for file streams:

STDIN_FILENO File number of stdin. It is O.
STDOUT_FILENO File number of stout. It is 1.
STDERR_FILENO File number of stderr. It is 2.

The following pathnames are defined:

GF_PATH Pathname of the group file.
PF _PATH Pathname of the passwd file.

SEE ALSO

NOTES

276

access(2), exec(2), fcnt1(2), fpathconf(2), group(4), lseek(2), passwd(4),
sysconf(3C), tennio(7), tennios(2)

The following values for constants are defined for this release of System V:

_POSIX_VERSION 198808L
XOPEN VERSION 3

updaters (4)

NAME
updaters - configuration file for Network Information Service (NIS) updating

SYNOPSIS
/var/yp/updaters

DESCRIPTION

FILES

The file /var/yp/updaters is a makefile [see make(l)] which is used for updating
NIS databases. Databases can only be updated in a secure network, that is, one that
has a publickey(4) database. Each entry in the file is a make target for a particular
NIS database. For example, if there is a NIS database named publickey.byname
that can be updated, there should be a make target named publickey. byname in
the updaters file with the command to update the file.

The information necessary to make the update is passed to the update command
through standard input. The information passed is described below (all items are
followed by a NEWLINE, except for the actual bytes of key and actual bytes of date).

network name of client wishing to make the update (a string)

kind of update (an integer)

number of bytes in key (an integer)

actual bytes of key

number of bytes in data (an integer)

actual bytes of data

After getting this information through standard input, the command to update the
particular database should decide whether the user is allowed to make the change.
If not, it should exit with the status YPERR_ACCESS. If the user is allowed to make
the change, the command should make the change and exit with a status of zero. If
there are any errors that may prevent the updater from making the change, it
should exit with the status that matches a valid NIS error code described in
<rpcsvc/ypclnt. h>.

/var/yp/updaters

SEE ALSO
make(l), publickey(4), ypupdate(3N), ypupdated(lM)

277

utmp(4)

NAME
ut~, wtII\P - utmp and wtmp entry formats

SYNOPSIS
#include <utmp.h>

DESCRIPTION

278

These files, which hold user and accounting information for such commands as who,
write, and login, have the following structure, defined in utmp.h:

#define UTMP_FILE "/var/adm/utmp"
#define WTMP_FILE "/var/adm/wtmp"
#define ut_name ut_user

The utmp structure includes the following members:

char ut_user[81; /* user login name */
char ut_id[41; /* /etc/inittab id (created by */

char
/* process that puts entry in utmp) */
/* device name (console, lnxx) */

short ut-pid;
short ut_type;
struct exit_status

short e_termination;
short e_exit;

} ut_exit;

/* process id * /
/ * type of entry * /

/* process termination status */
/* process exit status */
/* exit status of a process
* marked as DEAD_PROCESS */
/* time entry was made */

/* Definitions for ut_type */

#define EMPTY 0
#define RUN_LVL 1
#define BOOT_TIME 2
#define OLD_TIME 3
#define NEW_TIME 4
#define INIT_PROCESS 5 /* process spawned by "init" */
#define LOGIN_PROCESS 6 /* a "getty" process waiting for
#define USER_PROCESS 7 /* a user process */
#define DEAD_PROCESS 8
#define ACCOUNTING 9

login */

#define UTMAXTYPE ACCOUNTING /* max legal value of ut_type */

/* Below are special strings or formats used in the "ut_line" */
/* field when accounting for something other than a process. */
/* No string for the ut_line field should be no more than 11 chars + */
/* a null character in length. */

#define RUNLVL_MSG "run-level %e"
#define BOOT_MSG "system boot"
#define OTIME_MSG "old time"
#define NTIME_MSG "new time"

FILES
/var/adm/utmp
/var/adm/wtmp

SEE ALSO
getut(3C), login(l), utmpx(4), who(l), write(l)

utmp(4)

279

utmpx(4)

NAME
utmpx, wtllIpx - utmpx and wtmpx entry formats

SYNOPSIS
#include <utmpx.h>

DESCRIPTION

280

utmpx(4) is an extended version of utDi>(4).

These files, which hold user and accounting information for such commands as who,
wri te, and login, have the following structure as defined by ut!lpX. h:

#define UTMPX_FILE "/var/adm!utmpx"
#define WTMPX_FILE "/var/adm/wtmpx"
#define ut_name ut_user
#define ut_xtime ut_tv.tv_sec

The utmpx structure includes the following members:
char ut_user[32]; 1* user login name *1
char ut_id[4]; 1* inittab id *1
char ut_line[32]; 1* device name (console, lnxx) *1
pid_t ut-pid; 1* process id *1
short ut_type; 1* type of entry *1
struct exit_status {
short e_termination;
short e_exit;
} ut_exit;
struct timeval {
long tv_sec;
long tv_usee;
ut_tv;
long
long
short

char

ut_session;
pad[S] ;
ut_syslen;

1* termination status *1
1* exit status *1

1* process terminationlexit status *1

1* seconds *1
1* and microseconds *1

1* time entry was made *1
1* session ID, used for windowing *1
1* reserved for future use *1
1* significant length of ut_host *1
1* including terminating null *1
1* remote host name *1

1* Definitions for ut_type *1

#define EMPTY 0
#define RUN_LVL 1
#define BOOT_TIME 2
#define OLD_TIME 3
#define NEW_TIME 4
#define INIT_PROCESS 5 1* Process spawned by "init" *1
#define LOGIN_PROCESS 6 1* A "getty" process waiting for login *1
#define USER_PROCESS 7 1* A user process *1
#define DEAD_PROCESS 8
#define ACCOUNTING 9

#define UTMAXTYPE ACCOUNTING 1* Largest legal value of ut_type *1

FILES

utmpx(4)

/* Below are special strings or formats used in the "ut_Iine" */
/* field when accounting for something other than a process. */
/* No string for the ut_Iine field should be more than 31 chars + */
/* a null character in length. */

#define RUNLVL_MSG
#define BOOT_MSG
#define OTIME_MSG
#define NTIME_MSG
#define MOD_WIN

/var/adm/u~

/var/adm/~

"run-level %e"
"system boot"
"old tilDe"
"new tilDe"
10

SEE ALSO
getutx(3C), login(l), utmp(4), who(l), write(l)

281

uuencode(4) (Basic Networking Utilities)

NAME
uuencode - format of an encoded uuencode file

DESCRIPTION
Files output by uuencode consist of a header line, followed by a number of body
lines, and a trailer line. uudecode ignores any lines preceding the header or
following the trailer. Lines preceding a header must not, of course, look like a
header.

The header line is distinguished by having the first 6 characters begin (the word
begin followed by a space). begin is followed by a mode (in octal), and a string
which names the remote file. Spaces separate the three items in the header line.

The body consists of a number of lines, each at most 62 characters long (including
the trailing NEWLINE). These consist of a character count, followed by encoded
characters, followed by a NEWLINE. The character count is a single printing char
acter, and represents an integer, the number of bytes the rest of the line represents.
Such integers are always in the range from 0 to 63 and can be determined by sub
tracting the character space (octal 40) from the character.

Groups of 3 bytes are stored in 4 characters, 6 bits per character. All are offset by a
space to make the characters printing. The last line may be shorter than the normal
45 bytes. If the size is not a multiple of 3, this fact can be determined by the value of
the count on the last line. Extra characters will be included to make the character
count a multiple of 4. The body is terminated by a line with a count of zero. This
line consists of one ASCII space.

The trailer line consists of end on a line by itself.

SEE ALSO
mail(l), uucp(lC), uuencode(lC)

282

vfstab (4)

NAME
vfstab - table of file system defaults

SYNOPSIS
#include <sys/fstyp.h>
#include <sys/param.h>
#include <sys/vfstab.h>

DESCRIPTION

NOTES

The file /etc/vfstab describes defaults for each file system. The information is in
the following structure, defined in sys/vfstab.h:

struct vfstab {

} ;

char *vfs_special;
char *vfs_fsckdev;
char *vfs_mountp;
char *vfs_fstype;
char *vfs_fsckpass;
char *vfs_automnt;
char *vfs_mntopts;
char *vfs_macceiling;

The fields in the table are space-separated and show the block special or resource
name, the raw device to fsck, the default mount directory, the name of the file sys
tem type, the number used by fsck to decide whether to check the file system
automatically, whether the file system should be mounted automatically by
mountall, the mount options, and the default file system level ceiling. If Enhanced
Security is not installed, the field that displays the default file system level ceiling is
not used. A' -' is used to indicate no entry in a field.

The getvfsent(3C) family of routines are used to read and write to /etc/vfstab.

Do not store information in the vfstab file other than the fields described above;
fields may be added to this file in future releases and are reserved for future use.

SEE ALSO
fsck(lM), getvfsent(3C), mount(lM), setmnt(lM)

283

Xwincmaps (4)

NAME
Xwincmaps - XWIN color map file

DESCRIPTION

USAGE

284

The server reads the /usr/X/defaults/Xwincmaps file to fill up the static color
map. Each line has 'R', 'G', and 'B' values. There are several colormaps in the
default Xwincmaps file, but custom colormaps can be created and added to this file.
The server takes the first uncommented colormap (without '#' in the first column)
as the valid colormap data.

The format of the colormap data is:

Where

colormap type screen_num num_colors
RED VAL, BLUE VAL, GREEN VAL,
RED=VAL , BLUE=VAL, GREEN=VAL,

colormap key word. This is the same for all entries.

type type of colormap. This can be PseudOColor, StaticColor, or
GrayScale.

screen num screen number

num colors number of colors

RED VAL red value

GREEN VAL green value

BLUE VAL blue value

The number of RED VAL I BLUE _ VAL I GREEN _VAL I lines should be the same as
num colors. -

To use the colormap of your choice, add a # to the current definition and remove
the # sign in front of the new definition line, for example,

colormap StaticColor o. 0 16

To use a private copy of your color map, either of the following commands can be
used.

olinit -- -cmap $HOME/mycmap

X -cmap $HOME/mycmap &

Xwincmaps (4)

EXAMPLES
The following is equivalent to the default colormap on the XWIN server.

colonnap StaticColor 0.0 16
OxOOOO, OxOOOO, OxOOOO,
OxFFFF, OxFFFF, OxFFFF,
OxAAAA, OxAAAA, OxAAAA,
OxOOOO, OxOOOO, OxAAAA,
OxOOOO, OxOOOO, OxFFFF,
OxOOOO, OxAAAA, OxFFFF,
OxOOOO, OxFFFF, OxFFFF,
OxOOOO, OxAAAA, OxOOOO,
OxOOOO, OxFFFF, OxOOOO,
OxAAAA, OxFFFF, Ox5555,
OxAAAA, Ox5555, OxOOOO,
OxFFFF, OxAAAA, OxOOOO,
OxFFFF, OxFFFF, OxOOOO,
OxAAAA, OxOOOO, OxAAAA,
OxFFFF, OxOOOO, OxFFFF,
OxFFFF, OxOOOO, OxOOOO,

#colonnap StaticColor 0.0 16
OxOOOO, OxOOOO, OxOOOO,
Oxffff, Oxffff, Oxffff,
Oxa699, Oxa699, Oxa699 , # a bit darker than openlook gray
OxOOOO, OxOOOO, Oxaaaa, # navy
OxOOOO, Ox5144, Oxffff, # a bit less saturated than blue
OxOOOO, Oxaaaa, Oxffff, # sky blue
OxOOOO, Oxe79d, Oxe79d, # a bit darker than openlook cyan
OxOOOO, Oxaaaa, OxOOOO, # lime green (openlook forestgreen)
OxOOOO, Oxdf7d, OxOOOO, # a bit darker than green
Ox2081, Ox8e38, Ox69a6, # sea green
Oxaaaa, Ox5555, OxOOOO, # brown
Oxf3ce, Oxge79, OxOOOO, # a bit darker than openlook orange
Oxffff, Oxffff, OxOOOO, # yellow
Oxaaaa, OxOOOO, Oxaaaa, # violet
Ox9248, Oxcb2b, Ox9248, # wheat-like color
Oxffff, OxOOOO, OxOOOO, # red

NOTES
PseudoColor is not recommended for 16 colors.

SEE ALSO
Xwinconf ig(4)

285

Xwinconfig (4)

NAME
xwinconfig - XWIN configuration file

DESCRIPTION

USAGE

286

The server reads the first uncommented line in the Xwinconfig file for information
about the display, colormap, and the information needed by the display driver. All
the required data is on one line.

To change the current configuration, use the setvgamode command. To change
modes manually, see the section "Editing the Xwinconfig File" below. In either
case, the user must have appropriate privileges.

The format of the data of the first line in xwinconfig file is:

display class cmap "INFO for SDD" scr_num tty display_lib

Where

display device

class display class, for example, VGA16, VGA256, EGA, 8514, XGA, and
soon.

cmap type of colormap, for example, StaticColor or PseudoColor

INFO_for_SDD
information passed to SDD, for example, info passed to
libvga16 . so. See USAGE for a detailed description of this
field.

scr_num screen number

tty tty, for example, /dev/console

display_lib
display library to link at run time, for example, libvga16. so or
libvga256.so

The following two sample entries in the Xwinconfig file illustrate the file format.
Each line has been split in two (with a \ at the end of the first line) for display here,
in the Xwinconfig file, each is one line.

display VGA16 StaticColor "VGA STDVGA 640x480 16 9.75x7.32" \
o /dev/console /usr/X/lib/libvga16.so

display VGA256 StaticColor "ET4000 MULTISYNC 1024x768 9.75x7.32" \
o /dev/console /usr/X/lib/libvga16.so

Description of the various fields:

1st field type of device (currently, always display)

2nd field video class (for example, VGA16, VGA256, XGA, 8514, and so on)

3rd field color class (always StaticColor for VGA16, PseudoColor for 256
and other high performance boards, and GrayScale for mono
chrome)

Xwinconfig (4)

4th field information passed to the "display driver" which is linked at run
time. The format of this string is dependent on the display driver
and varies for different display boards. Entries for both 16 and 256
colors can reside in the same configuration file. For example:

"ET4000 MULTISYNC 800x600 16 10.0x9.0"

ET4000 vendor or chipset identification.

MULTI SYNC
type of monitor

800x600 resolution (width x height) in pixels

16 number of colors. For a 256 color driver, this field is
omitted, because it supports only 256 colors. For a 16
color driver, this field may be 2, 4, or 16. For mono
chrome, this field must be 2.

10. Ox9 • 0 monitor size (width x height) in inches

5th field display number

6th field the actual device (in most cases /dev/console)

7th field the display driver

Editing the Xwinconfig file
For the advance user, editing the Xwinconfig file manually may be more flexible.
The first uncommented line (without a # in the first column) is treated as a valid
entry in the file.

To use a private copy of a configuration file, either of the following commands can
be used:

olinit -config $HOME/mycfg

X -config $HOME/mycfg &

To return to the default mode (640x480, 16 colors), run the setvgamode command
with the -default option.

Examples
This example illustrates how to manually set up files for a particular mode. The
display is a Tseng Labs ET4000 based board and the mode is 1024x768 mode with
256 colors.

cp /usr/X/lib/vgainit/et4k_256i.so /usr/X/lib/libv256i.so.1
cp /usr/X/lib/vgainit/et4k.256cfg /usr/X/defaults/xwinconfig

Edit the /usr/X/defaults/Xwinconfig file and remove the # sign in the first
column of the line that has the 1024x768 entry. Make sure that all lines in the file
before this entry are commented, as the first line without a # in the 1st column is
treated as the active entry.

287

Xwinconfig (4)

The procedure is the same for 16 modes. (that is, copy the et4k_16i. so and
et4k.16cfg files).

The following example demonstrates creating a private copy of the config files,
(avoids editing the system Xwinconfig file):

cp /usr/X/lib/vgainit/et4k.16cfg $HOME/cfg16
cp /usr/X/lib/vgainit/et4k.256cfg $HOME/cfg256

Now to run the server, either command can be used.

X -config $HOME/cfg16

X -config $HOME/cfg256

The standard VGA 640x480 mode is supported by all the 16 color SDDs. To find
out the various entries provided by a particular SDD, follow the instructions above
and give an invalid entry for the first field of the SDD information (for example, foo
rather than ET4000). The following example prints out all the modes supported by
thatSDD.

Files

display VGA16 StaticColor "foo STDVGA 640x480 16 10.0x9.0" \
o /dev/console /usr/X/lib/libvga16.so

/usr/X/adm/setvgamode
/usr/X/defaults/Xwinconfig
/usr/X/defaults/Xwinconfig.ini

SEE ALSO
setvgamode(lM), xwincmaps(4)

288

Xwinfont (4)

NAME
Xwinfont - XWIN font configuration and defaults file (scalable and bitmapped)

SYNOPSIS
lusr/X/defaults/Xwinfont

DESCRIPTION
The Xwinfont file specifies options concerning font rendering to the X server and
allows several different font renders, both bitmapped and scalable, to be used. For
example, it contains font configuration information showing the library to use for a
renderer, the filename suffix for the renderer's font files, and the default pointsize to
use for a scalable font if none is specified by an application.

The design of the font interface in XWIN provides the flexibility to add renderers to
the X server without any code changes if the renderer uses the interface described in
the document Porting the XWIN Server; this is done using dynamic shared libraries.
This configuration file contains the information needed to use any such renderer
no changes to the server are required.

This file can also be used to tune font rendering in the server by allowing certain
runtime combinations to be easily changed-for example, tuning for memory
versus speed tradeoffs.

The format of the entries in the xwinfont file is a simple keyword-value pair, with
each element separated by an =. This is the same format as the XllR5 Font Server
configuration file. The following types of values are supported:

cardinal

boolean

a non-negative number; generally used for specifying sizes

I, y, or t shows a feature present, 0, n, or f shows a feature absent; used
for yes/no or true/false possibilities.

string an ASCII string

list a list of cardinals or strings separated by commas

Comments can be inserted in the file with lines that start with a #. Invalid options
are logged to stderr ($HOME/.oliniterr) and are skipped. Some options are gen
eral options and affect all renderers; others are renderer-specific.

Renderer-specific options begin with a line containing startrenderer=suffix, fol
lowed by a variable number of lines containing information specific to that
renderer, and ended by either another line containing startrenderer=suffix or the
end of the file. Suffix is the font filename suffix the renderer uses to recognize files
that it can render. Valid suffixes and their meanings are bitmap distribution format
(bdf), server natural format (snf), portable compiled format (pef), PostScript™
Type 1 format (pfa and pfb), Bitstream Speedo format (spd), and Folio
(TypeScalerTM) F3 format (f3b).

1£ several suffixes are valid for a renderer, as when the font files might have several
valid styles of names, multiple start renderer lines should be supplied, each with
a valid suffix; the same options can be defined for each suffix. For example, the
Type 1 outline font files for use with the Adobe Type ManagerTM renderer can have,
among others, suffixes of pfa or pfb.

289

Xwinfont (4)

290

The snf format is the default supported bitmap renderer and need not be explicitly
defined. Its shared library is libbitmap. so in /usr/x/lib.

General Font Configuration Options
The options that apply to all renderers or to the X server appear first in the file,
before the renderer-specific options.

fontpath=listojstring
The X server's default font path. This is a list of font path elements that
the server will use in resolving OpenFont and ListFonts requests. It
contains a comma separated list of string entries. If a full pathname is
not given, the server will check the XWINHOME environment variable for
the location of the default installed tree, and will prep end that path to
each partial path. Font server names for fontpaths contain a colon
separating the font server name from the path within the font server.
The environment variable XWINFONTPATH or a server command line
option (-fp) will override this option.

cachesi ze=cardinal
The cachesize option is the maximum value that the font cache can
grow to without causing a font to be freed from the cache before insert
ing a new font. This value is expressed in K bytes and defaults to 800; it
cannot be set lower than 256. The space is not preallocated for the
cache. The cache will be allowed to grow to this value; if the maximum
value is never reached, the freeing of fonts from the cache will not take
place. Fonts are freed from the cache when they have been closed by all
processes and users that had them open, or when a font is selected by
the cache free routines to keep the maximum cache allocated for fonts
within a maximum size. This maximum size can temporarily be
exceeded if a font is open and more space is needed for the font glyphs;
however, the space will be reduced to below the maximum cachesize at
the first available opportunity. The font that caused the cache to
overflow its maximum value will be chosen to free first, provided it is
not the current font in use.

mincachesize=cardinal
This value is the low water mark for the cache. The value is expressed
in units of K bytes. The cache starts allocating in non-pagesize chunks
when the low water mark is reached. The default value is 90% of
cachesize. The options

cachesize=500
mincachesize=450

would set a maximum font cache size of 500K bytes of memory and a
low-water mark of 450K bytes of memory.

derived -instance-pointsizes=list
Applications may already exist that do not use scalable names, yet use
the ListFonts protocol request with some pattern and expect to receive
a list of fonts that specify a collection of point and pixel sizes. It was
strongly encouraged by the X Logical Font Description Conventions
that server vendors provide a mechanism for including in each scalable

Xwinfont (4)

name a list of specific derived instance names for use by these applica
tions. (A derived instance is the result of replacing scalable fields with
values to yield a font name that could actually be produced from the
font source.)

This option contains a list of cardinal values for point sizes that should
be generated for scalable fonts to satisfy such requests. There is no
default value if this is not specified in the file; the value placed in the file
when outline fonts are installed is 10, 12, 14. This option is not used
directly by the X server; its value can be specified as the value of the
DERIVED_INSTANCE_PS environment variable of the mkfontscale pro
gram, which creates the XLFD names in the fonts. scale in directories
containing outline fonts (one XLFD name is created for each specified
size, as well as for size 0, which indicates a scalable name). The Font
Setup application of the UNIX Desktop runs the mkfontscale program,
with the environment variable thus set, when the Actions / Integrity
Check button menu item is chosen. The mkfontdir program creates the
fonts.dir file from the fonts.scale file '(this is also run by the
Integrity Check menu button item); the X server reads the fonts.dir
file to determine what fonts and derived instances are available.

Renderer-Specific Configuration Options
A renderer-specific configuration option is an option that only applies to the
renderer used for font files who suffix was named in the most recent star
trenderer option. All renderer-specific options must be specified in the entries
that follow a startrenderer=suffix. Duplicate entries, for the same suffix, later in
the file will override any previous entries; only the last set of renderer options in a
file for any given named renderer are set. All options for a given renderer are
grouped together between the start renderer and the next startrenderer in the
file (or the end of the file).

There are both public and private renderer options allowed. Renderer public
options are defined below. Renderer private options are options that are unique to
a specific renderer that might be added to the X server by OEMs and are defined
and checked by the renderering library. Any unrecognized renderer options are
assumed to be private options and are not parsed directly by the configuration file
initialization routines (other than to set a flag to the renderer that private options
were encountered). The renderer must check this flag for possible private options
and for parsing these options. An example of an option that might be useful and
private to a given renderer would be a list of glyphs to preallocate or prerender for
a given font or for all fonts. How to specify the list would be renderer-specific.

startrenderer=suffix
Start defining renderer-specific options for a renderer whose font files
have the file name suffix suffix.

use-renderer=boolean
The use-renderer option shows if this particular renderer should be
used by the X server. The default, if the renderer is specified, and the
use-renderer field is missing, is to include the rendering library. The
server command line option -renderer +suffix or -renderer -suffix
will override this option.

291

Xwinfont (4)

292

font -type=string
The font-type option denotes the type of rendering supported by this
renderer. Valid values are bitmap, scalable and both. If both bitmap
and scalable are valid, then the value both should be used. The
default type is scalable.

sharedlib-filename=string
Contains the name and location of the font rendering library to load for
this font format type. If the name is not a complete pathname, then the
library will be searched for using the lib directory of the XWINHOME
environment variable. This field will be used when the rendering
library needs to be loaded. If the library is not found, an error will be
returned when a font from that library is needed. This is a mandatory
field. It is reqUired since a renderer could be added after the Desktop
product is released, and a full library specification in this field will
enable the server to handle new font rendering libraries that conform to
the specification outlined in Porting the XWIN Server. If more than one
suffix applies to a single library, then multiple startrenderer entries
and sharedlib-filename entries should be used.

defaul tpoint=cardinal
Contains the default point size to be used in resolving scalable names
that do not specify a point size or a pixel size in the request. This will
be used to generate a derived instance of the font, if no other derived
instance point sizes are given. If not specified, a compiled in default
point size will be used (12).

preallocate-glyphs=cardinal
Rendering all the glyphs at open time requires that space be allocated at
open as well. This will have a longer initialization time for the font as
the glyphs are scaled. The other approach scales the character the first
time it is accessed for display.

If glyphs are preallocated but not prerendered, this ensures enough
space exists to render the entire font, and reserves it even though some
glyphs may never get rendered.

A renderer-specific configuration option (preallocate-glyphs=string),
determines how much space for the glyphs in a font should be preallo
cated. Value should be a cardinal value that specifies a number
reflecting a percentage of the entire font to preallocate (that is, 10 for
10%). If the value is 0, no glyphs should be preallocated. If the value is
100, all the glyphs in each font should be preallocated; otherwise a
value can be given that will represent the percentage of the total font
glyph size that should be preallocated. The default for bitmap fonts, if
not specified, is to preallocate the space for all the glyphs when the font
is read.

prerender-glyphs=boolean
Another option (prerender-glyphs=boolean) specifies whether all the
glyphs in the font should be rendered at open time (y), or as each glyph
is used in a blitting routine (n). The default for bitmap fonts is they are
already rendered. The default for scalable fonts is not to render the

Xwinfont (4)

glyph until it is needed, unless some renderer-specific private option
overrides this. (For Adobe Type Manager, when it is installed, this
option is set in the file to y, as this has proven to more efficient, given
the information that the X server must get from the font for each charac
ter when just a single character is rendered.)

Other Options
Additional renderer-specific options are available. However, they should not be
changed by a user or the owner of the machine, just an expert administrator or
OEM developer who is monitoring font-related server performance.

preload-renderer=boolean
This option will determine when the rendering library should be opened
and the symbols resolved. If preload-renderer is set to false, the loading
of the font renderer's library will be deferred until a font is needed. This
will conserve the memory required by the library until it is needed, and will
be the default for scalable renderers. If preload-renderer is true, the
library will be loaded at server start up. This is the default for the bitmap
based library containing the default cursor and text fonts.

free- renderer=boolean
This option will determine when the rendering library will be closed and
consequently when the memory used by the library is released. If set to
true, the library will be closed when the last font is closed. This will free the
space, but if another font from the library is opened later, it might cause a
delay to reload the library. This is a performance/memory tradeoff option
and will be helpful in doing internal performance evaluations. The default
is set to false.

alloe-units=cardinal
Indicates the minimum pagesize chunks that should be allocated for this
renderer when allocating space for font glyphs. The default value is one
pagesize chunk.

The alloe-units are saved in the font structure. This will allow renderers
who wish to supply alloe-units by using renderer private options to
override any general value.

download-glyphs=string
Indicates if glyphs of this renderer should be downloaded to device depen
dent code. Possible values are none, fixed or all. The value fixed indi
cates only fixed width fonts should be downloaded. If download-glyphs is
none, fonts for this renderer will not be downloaded. If set to all, then all
fonts for this renderer will be downloaded.

download-height=cardinal
This is the maximum height for glyphs in fonts that can be downloaded.
Fonts containing any glyphs larger than height will not be downloaded.

download -width=cardinal
This is the maximum width for glyphs in fonts that can be downloaded.
Fonts containing any glyphs wider than width will not be downloaded.

293

Xwinfont (4)

download-maxchars=cardinal
If fonts are downloadable, then this is the maximum number of glyphs in
fonts that can be downloaded. Fonts containing more characters than
download -maxchars will not be downloaded.

EXAMPLES

NOTES

The following options allow the Adobe Type Manager renderer to be used:

derived-instance-pointsizes=lO,12,14

fontpath= lib/fonts/misc/,lib/fonts/Xol/,lib/fonts/75dpi/, \
lib/fonts/100dpi,lib/fonts/typel,lib/fonts/mitTypel

startrenderer=pfa
prerender-glyphs=t
sharedlib-filename=libatm.so

startrenderer=pfb
use-renderer=t
prerender-glyphs=t
sharedlib-filename=libatm.so

The \ at the end of the font path line is just notation showing this line is longer than
can be printed here; the \ is not parsed.

Partial names that contain a colon are reserved for future font server names.

SEE ALSO
mkfontscale(l), mkfontdir(l)

294

ypfiles (4)

NAME
ypfiles - the Network Information Service (NIS) database and directory structure

DESCRIPTION
The NIS network lookup service uses a distributed, replicated database of dbm files
contained in the /var /yp directory hierarchy on each NIS server. A dbm database
consists of two files, one has the filename extension .pag and the other has the
filename extension .dir. For instance, the database named publickey, is imple
mented by the pair of files publickey . pag and publickey . dir.

A dbm database served by the NIS is called a NIS map. A NIS ypdomain is a subdirec
tory of /var/yp containing a set of NIS maps. Any number of NIS domains can
exist. Each may contain any number of maps.

No maps are required by the NIS lookup service itself, although they may be
required for the normal operation of other parts of the system. There is no list of
maps which NIS serves - if the map exists in a given domain, and a client asks
about it, the NIS will serve it. For a map to be accessible consistently, it must exist
on all NIS servers that serve the domain. To provide data consistency between the
replicated maps, an entry to run ypxfr periodically should be made in the
privileged user's crontab file on each server. More information on this topic is in
ypxfr(lM).

NIS maps should contain two distinguished key-value pairs. The first is the key
YP_LAST_MODIFIED, having as a value a ten-character ASCII order number. The
order number should be the system time in seconds when the map was built. The
second key is YP_MASTER_NAME, with the name of the NIS master server as a value.
makedbm(lM) generates both key-value pairs automatically. A map that does not
contain both key-value pairs can be served by the NIS, but the ypserv process will
not be able to return values for "Get order number" or "Get master name"
requests. See ypserv(lM). In addition, values of these two keys are used by ypxfr
when it transfers a map from a master NIS server to a slave. If ypxfr cannot figure
out where to get the map, or if it is unable to determine whether the local copy is
more recent than the copy at the master, extra command line switches must be set
when it is run.

NIS maps must be generated and modified only at the master server. They are
copied to the slaves using ypxfr(lM) to avoid potential byte-ordering problems
among NIS servers running on machines with different architectures, and to minim
ize the amount of disk space required for the dbm files. The NIS database can be ini
tially set up for both masters and slaves by using ypinit(lM).

All NIS maps have entries in /var/yp/aliases. Each entry includes the map
name and map nickname. The map name and nickname may be the same depend
ing on the filesystem limitation of the length of filenames.

After the server databases are set up, it is probable that the contents of some maps
will change. In general, some ASCII source version of the database exists on the
master, and it is changed with a standard text editor. The update is incorporated
into the NIS map and is propagated from the master to the slaves by running
/Var/yp/Makefile, see ypmake(lM). All Sun-supplied maps have entries in
/var/yp/Makefile; if a NIS map is added, edit this file to support the new map.
The makefile uses makedbm(lM) to generate the NIS map on the master, and

295

ypfiles (4)

FILES

yppush(lM) to propagate the changed map to the slaves. yppush is a client of the
map ypservers, which lists all the NIS servers. For more information on this topic,
see yppush(lM).

/var/yp
/var/yp/aliases
/var/yp/Makefile

SEE ALSO

296

dbm(3), makedbm(lM), publickey(4), ypinit(lM), ypmake(lM), yppoll(lM),
yppush(lM), ypserv(lM), ypxfr(lM)

NAME
intro - introduction to miscellany

DESCRIPTION

intro (5)

This section describes miscellaneous facilities such as macro packages, character set
tables, and so forth.

297

ascii (5)

NAME
ascii - map of ASCII character set

DESCRIPTION
This is a map of the ASCII character set, giving both octal and hexadecimal
equivalents of each character.

1000 null001 soh 002 stxl003 etx 004 eotl005 enql006 ackl007 bell
1010 bs 1011 ht 012 nl 1013 vt 014 np 1015 cr 1016 so 1017 si I
1020 dlel021 dc1 022 dc21023 dc3 024 dc41025 nak 026 synl027 etbl
1030 can 031 em 032 sub 033 esc 034 fs 1035 gs 036 rs 037 us
1040 sp 041 042 043 # 044 $ 1045 % 046 & 047 I

1050 (051) 052 * 053 + 054 1055 056 057 /
1060 0 061 1 062 2 063 3 064 4 1065 5 066 6 067 7
1070 8 071 9 072 073 074 < 1075 076 > 077 ?
1100 @ 101 A 102 B 103 C 104 D 1105 E 106 F 107 G
1110 H 111 I 112 J 113 K 114 L 1115 M 116 N 117 0
1120 p 121 Q 122 R 123 S 124 T 1125 U 126 V 127 W
1130 X 131 y 132 Z 133 [134 \ 1135] 136 137
1140 141 a 142 b 143 c 144 d 1145 e 146 f 147 g
1150 h 151 i 152 j 153 k 154 1 1155 m 156 n 157 0

1160 p 161 q 162 r 163 s 1164 t 1165 u 166 v 167 w
1170 x 171 y 172 z 173 1174 I 1175 } 176 177 dell

00 null 01 soh 02 stx 03 etx 04 eotl 05 enql 06 ack 07 bell
08 bs I 09 ht Oa nl Ob vt Oc np , Od cr , Oe so Of si ,
10 dIe' 11 dc1 12 dc2 13 dc3 14 dc4 15 nak 16 syn 17 etb
18 can 19 em 1a sub 1b esc 1c fs 1d gs 1e rs 1f us
20 sp 21 22 23 # 24 $ 25 % 26 & 27
28 (29 2a * 2b + 2c 2d - 2e 2f /
30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7
38 8 39 9 3a 3b 3c < 3d 3e > 3f ?
40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G
48 H 49 I 4a J 4b K 4c L 4d M 4e N 4f 0
50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W
58 X 59 y Sa Z 5b [5c \ 5d] 5e Sf
60 61 a 62 b 63 c 64 d 65 e 66 f 67 g
68 h 69 i 6a j 6b k 6c 1 6d m 6e n 6f 0

70 P 71 q 72 r 73 s 74 t 75 u 76 v 77 w
78 x 79 y 7a z 7b { 7c , 7d 7e - 7f del

298

environ (5)

NAME
environ - user environment

DESCRIPTION
When a process begins execution, exec routines make available an array of strings
called the environment [see exec(2)]. By convention, these strings have the form
variable=value, for example, PATH=/sbin: /usr/sbin. These environmental vari
ables provide a way to make information about a program's environment available
to programs. The following environmental variables can be used by applications
and are expected to be set in the target runtime environment.

HOME The name of the user's login directory, set by login{l) from the pass
word file [see passwd(4)].

LANG The program's locale. Locales consist of files that describe the conven
tions appropriate to some nationality, culture, and language. Gen
erally, users determine which files are selected by manipulating the
environment variables described below. For background, see
set1oca1e{3C).

Locales are partitioned into categories LC_COLLATE, LC_CTYPE,
LC_MESSAGES, LC_MONETARY, LC_NUMERIC, and LC_TIME (see below
for what the categories control). Each category has a corresponding
environment variable that the user can set to specify that category's
locale:

LC_CTYPE=fr[ancais]
The LANG environment variable is searched if the environment vari
able for a category is unset or empty:

LANG=fr
LC_COLLATE=de[utsche]

sets all the categories but LC_COLLATE to French. If LANG is unset or
empty, the default C locale is used.

specifies the collation order used. The information
for this category is stored in a database created by
the colltb1{lM) command. This environment vari
able affects sort{l), strcoll{3C), and strxf:rm{3C).

specifies character classification, character conver-
sion, and widths of multibyte characters. The infor
mation for this category is stored in a database
created by the chrtb1{lM) or wchrtb1{lM) com
mands. The default C locale uses the 7-bit US ASCn
character set. This environment variable affects many
commands and functions, among them, cat{l), ed{l),
ls{l), vi{l), ctype{3C), and mbchar{3C),

LC_MESSAGES specifies the message database used. A command or
application may have French and German message
databases, for example. Message databases are
created by the mkmsgs{l) or gencat{l) commands.
This environment variable affects gettxt{l),

299

environ (5)

300

MSGVERB

srchtxt(l), catgets(3C), and gettxt(3C), and
every command that generates locale-specific output
messages.

LC_MONETARY specifies the monetary symbols and delimiters used.
The information for this category is stored in a data
base created by the montbl(lM) command. This
environment variable affects localeconv(3C).

LC_NtlMERIC specifies the decimal and thousands delimiters. The
information for this category is stored in a database
created by the chrtbl(lM) or wchrtbl(lM) com
mands. The default C locale uses a period (.) as the
decimal delimiter and no thousands delimiter. This
environment variable affects localeconv(3C),
printf(3S), scanf(3S), and strtod(3C).

LC_TlME specifies date and time formats. The information for
this category is stored in a database specified in
strftilne(4). The default C locale uses US date and
time formats. This environment variable affects
many commands and functions, among them, at(l),
calendar(l), date(l), getdate(3C), and
strftilne(3C).

Controls which standard format message components fmtmsg selects
when messages are displayed to stderr [see fmtmsg(l) and
fmtmsg(3C)].

SEV _LEVEL Defines severity levels and associates and prints strings with them in
standard format error messages [see addseverity(3C), fmtmsg(l),
and fmtmsg(3C)].

NETPATH

NLSPATH

A colon-separated list of network identifiers. A network identifier is a
character string used by the Network Selection component of the sys
tem to provide application-specific default network search paths. A
network identifier must consist of non-NULL characters and must
have a length of at least 1. No maximum length is specified. Network
identifiers are normally chosen by the system administrator. A net
work identifier is also the first field in any /etc/netconfig file entry.
NETPATH thus provides a link into the /etc/netconfig file and the
information about a network contained in that network's entry.
/etc/netconfig is maintained by the system administrator. The
library routines described in getnetpath(3N) access the NETPATH
environment variable.

Contains a sequence of templates which catopen(3C) uses when
attempting to locate message catalogs. Each template consists of an
optional prefix, one or more substitution fields, a filename, and an
optional suffix.

PATH

SHELL

TZ

environ (5)

For example:

NLSPATH="/system/n1s1ib/%N.cat"

defines that catopen should look for all message catalogs in the direc
tory /system/nls1ib, where the catalog name should be constructed
from the name parameter passed to catopen, CYaN, with the suffix • cat.

Substitution fields consist of a % symbol, followed by a single-letter
keyword. The following keywords are currently defined:

%N The value of the name parameter passed to catopan.
%L The value of LANG.
%1 The language element from LANG.
%t The territory element from LANG.
%c The codeset element from LANG.
%% A single % character.

An empty string is substituted if the specified value is not currently
defined. The separators "":' and "." are not included in %t and %c
substitutions.

Templates defined in NLSPATH are separated by colons (:). A leading
colon or two adjacent colons (: :) is equivalent to specifying %N.

For example:

NLSPATH=I:%N.cat:/n1s1ib/%L/%N.cat"

indicates to catopen that it should look for the requested message
catalog in name, name • cat, and /n1s1ib/$LANG/name • cat.

The sequence of directory prefixes that sh(l), time(l), nice(l),
nohup(l), and so on apply in searching for a file known by an incom
plete path name. The prefixes are separated by colons (:). login(l)
sets PATH=/usr/bin. [For more detail, see sh(l).]

When the shell is invoked, it scans the environment for this name. If it
is found and rsh is the filename part of its value, the shell becomes a
restricted shell. The value of this variable should be specified with an
absolute pathname. The variable is used by make(l), ksh(l), sh(l),
and vi(l), among other commands.

The kind of terminal for which output is to be prepared. This infor
mation is used by commands, such as vi(l), which may exploit special
capabilities of that terminal.

Time zone information. The contents of the environment variable
named TZ are used by the functions ctime(3C), loca1time [see
ctime(3C)], strftime(3C), and mktime(3C) to override the default
time zone. If the first character of TZ is a colon (:), the behavior is
implementation-defined, otherwise TZ has the form:

std offset [dst [offset], [start [/ time] , end [/ time]]]

301

environ (5)

302

std and dst
Three or more bytes that are the designation for the standard
(std) and daylight savings time (dst) time zones. Only std is
required, if dst is missing, then daylight savings time does not
apply in this locale. Upper- and lowercase letters are allowed.
Any characters except a leading colon (:), digits, a comma (,),
a minus (-), or a plus (+) are allowed.

offset Indicates the value one must add to the local time to arrive at
Coordinated Universal Time. The offset has the form:

hh [: mm [: ss 1 1

The minutes (mm) and seconds (55) are optional. The hour
(hh) is required and may be a single digit. The offset following
std is required. If no offset follows dst , daylight savings time is
assumed to be one hour ahead of standard time. One or more
digits may be used; the value is always interpreted as a
decimal number. The hour must be between 0 and 24, and the
minutes (and seconds) if present between 0 and 59. Out of
range values may cause unpredictable behavior. If preceded
by a "-", the time zone is east of the Prime Meridian; other
wise it is west (which may be indicated by an optional preced
ing "+" sign).

start / time, end / time
Indicates when to change to and back from daylight savings
time, where start/time describes when the change from stan
dard time to daylight savings time occurs, and end/time
describes when the change back happens. Each time field
describes when, in current local time, the change is made.
The formats of start and end are one of the following:

In The Julian day n (1 ~ n ~ 365). Leap days are
not counted. That is, in all years, February 28 is
day 59 and March 1 is day 60. It is impossible
to refer to the occasional February 29.

n The zero-based Julian day (0 ~ n ~ 365). Leap
days are counted, and it is possible to refer to
February 29.

Mm.n.d The dth day, (0 ~ d ~ 6) of week n of month m of
the year (1 ~ n ~ 5, 1 ~ m ~ 12), where week 5
means "the last d-day in month m" which may
occur in either the fourth or the fifth ~eek).
Week 1 is the first week in which the d day
occurs. Day zero is Sunday.

Implementation-specific defaults are used for start and end if
these optional fields are not given.

The time has the same format as offset except that no leading
sign ("-" or "+") is allowed. The default, if time is not given is
02:00:00.

environ (5)

Further names may be placed in the environment by the export command and
name=value arguments in sh(l), or by exec(2). It is unwise to conflict with certain
shell variables that are frequently exported by .profile files: MAIL, PSi, PS2, IFS
[see profile(4)].

SEE ALSO
addseverity(3C), cat(l), catgets(3C), catopen(3C), chrtb1(lM), colltb1(lM),
ctime(3C), ctype(3C), date(l), ed(l), exec(2), fmtmsg(l), fmtmsg(3C), gencat(l),
getdate(3C), getnetpath(3N), gettxt(l), gettxt(3C), 1oca1econv(3C), 1ogin(1),
1s(1), mbchar(3C), mkmsgs(l), mktime(3C), montb1(lM), netconfig(4), nice(l),
nohup(l), passwd(4), printf(3S), profile(4) scanf(3S), setloca1e(3C), sh(l),
sort(l), srchtxt(l), strcoll(3C), strftime(3C), strftime(4), strtod(3C),
strxfrm(3C), time(l), timezone(4) vi(l), wchrtb1(lM)

303

eqnchar(5) (BSO System Compatibility)

NAME
eqnchar - (BSD) special character definitions for eqn

SYNOPSIS
eqn /usr/ucblib/pub/eqnchar [file] I troff [options]

neqn /usr/ucblib/pub/eqnchar [file] I nroff [options]

DESCRIPTION
The eqnchar command contains troff(l) and nroff(l) character definitions for
constructing characters that are not available on the Graphic Systems typesetter.
These definitions are primarily intended for use with eqn(l) and neqn. It contains
definitions for the following characters:

ciplus ® II

citimes Q9 langle

wig rangle

-wig hbar

>wig ? ppd

<wig :s <->

=wig - <=>

star * 1<

bigstar * II>

=dot - ang

orsign \! rang

andsign /\ 3dot

=del L'1 thf

oppA \;/ quarter

oppE ::3 3quarter

angstrom A degree

FILES
/usr/ucblib/pub/eqnchar

SEE ALSO
eqn(l), nroff(l), troff(l)

304

II

I
\

\
I

1

L

o

square

circle

blot

bullet

prop

empty

member

nomem

cup

cap

incl

subset

supset

!subset

!supset

0

0

0

•

0

E

fi.

u

(I

k

c

::)

~

;2

eucioctl (5)

NAME
eucioctl - generic interface to EVC handling tty drivers and modules

SYNOPSIS
#include <sys/eucioctl.h>

ioctl(int fd, I_STR, struct strioctl *sb);

DESCRIPTION
This interface is implemented in tty drivers and pushable STREAMS modules that
handle EVC codes. It is intended as a generic interface for EVC handling, to elim
inate an explosion of module-specific ioctl calls that would otherwise be neces
sary, and to provide uniformity in dealing with EVC code sets in the tty subsystem.

Several calls are defined. The first two calls take an argument, which is expected to
be a pointer to an eucioc structure, defined in the header file sys/ eucioctl. h:

struct eucioc {

} ;

unsigned char eucw[4];
unsigned char scrw[4];

typedef struct eucioceucioc_t;

In all cases, these calls return non-zero on failure. Failure should be usually taken
as an indication that the current driver, or line discipline module, does not support
EVC, in which case errno will be set to EINVAL. For the EUC_WSET or EUC_WGET
calls, errno will be set to EPROTO if struct eucioc argument is invalid.

EUC_WSET This call takes a pointer to an eucioc structure, and uses it to
set the EVC line discipline's local definition for the code set
widths to be used for subsequent operations. Within the
stream, the line discipline may optionally notify other modules
of this setting via M_CTL messages.

EUC_WGET This call takes a pointer to an eucioc structure, and returns in
it the EVC code set widths currently in use by the EVC line dis
cipline. It needs to be recognized only by line diScipline
modules.

The following calls take no arguments. They should only fail if the driver (at the
bottom of the tty stream) does not recognize EVC codes. Drivers that support EVC,
whether the stream contains modules that respond to the calls or not, will recognize
the calls and acknowledge them. These calls are normally only interpreted by
modules that have modes other than ASCII, and/or do some form of I/O conversion
that normally prevents a program from receiving non-EVC characters in its byte
stream. All of these calls, when received by modules, are passed down the tty
stream, to be ultimately acknowledged by the tty driver.

This call has no effect on modules that are currently in ASCII
mode. Otherwise (Le., for modules not in ASCII mode), the fol
lowing actions are taken by all modules that recognize this call:
(1) the current mode status is saved, (2) the mode is changed to
ASCII mode immediately.

305

eucioctl (5)

FILES

NOTES

306

If a mode was saved via a previous EUC_MSAVE call, the saved
mode is restored, and the saved state flag is cleared. If the
mode was not previously saved, this call has no effect. (The
exact semantics are somewhat dependent on the module, since
some modules may respond to specific user requests to switch
modes, even while a mode is being saved via EUC_MSAVE.)

If a module is currently in a state where input conversion is
being performed on the incoming byte stream, then input
conversion is turned off, and the module's mode status is
saved. If no input conversion is being performed, there is no
effect on the module. The purpose of this call is to provide a
way of insuring a pure byte stream to the program. The byte
stream while input conversion is off is, of course, not
guaranteed to be a stream of EUC characters. Turning off input
conversion is roughly equivalent to the old concept of raw
mode, if used in conjunction with ICANON off. It should nor
mally not be used by applications.

If a module previously saved its state and turned off input
conversion, then input conversion is restored (i.e., turned back
on); otherwise, there is no effect.

In a manner similar to EUC_IXLOFF, any output conversion is
turned off and the current mode status saved.

In a manner similar to EUC_IXLON, any saved output conver
sion status is restored (i.e., output conversion is turned back on
if previously turned off via EUC_OXLOFF).

/usr/include/sys/eucioctl.h

Drivers and modules that support EUC should all respond appropriately to these
calls, depending on their type. Line disciplines must respond to EUC_WSET and
EUC_WGET, changing their current code set sizes to match EUC_WSET requests. All
tty STREAMS modules that do any input or output conversion should recognize the
other calls; modules that do no code set conversion are not required to recognize
the calls, but must pass them through. Drivers that support EUC tty streams must
all acknowledge the ON/OFF calls, whether the drivers themselves are affected or
not, since these calls are purposely not acknowledged by modules which receive
them; they are intended to be made available for affecting all modules in the whole
stream.

Adherence to this protocol for all EUC handling modules is strongly encouraged in
order to increase portability and language-independence of applications. These
calls are intended as a small set of primitives to help reduce an anticipated plethora
of module- and language-dependent operations.

NAME
fcntl - file control options

SYNOPSIS
#include <sys/fcntl.h>

DESCRIPTION

fcntl (5)

The fcntl.h header defines the following requests and arguments for use by the
functions fcntl [see fcntl(2)] and open [see open(2)].

Values for cmd used by fcntl (the following values are unique):
F _DUPFD Duplicate file descriptor
F _GETFD Get file descriptor flags
F _SETFD Set file descriptor flags
F _GETFL Get file status flags
F _SETFL Set file status flags
F _GETLK Get record locking information
F _SETLK Set record locking information
F _SETLKW Set record locking information;

wait if blocked
File descriptor flags used for fcntl:

FD_CLOEXEC Close the file descriptor upon
execution of an exec function [see exec(2)]

Values for l_type used for record locking with fcntl
(the following values are unique):

F _RDLCK Shared or read lock
F_UNLCK Unlock
F _WRLCK Exclusive or write lock

The following three sets of values are bitwise distinct:
Values for oflag used by open:

O_CREAT Create file if it does not exist
OJ:XCL Exclusive use flag
O_NOCTTY Do not assign controlling tty
O_TRUNC Truncate flag

File status flags used for open and fcntl:
O_APPEND Set append mode
O_NDELAY Non-blocking mode
O_NONBLOCK Non-blocking mode (POSIX)
O_SYNC Synchronous writes

Mask for use with file access modes:
O_ACCMODE Mask for file access modes

File access modes used for open and fcntl:
O_RDONLY Open for reading only
O_RDWR Open for reading and writing
O_WRONLY Open for writing only

307

fentl (5)

The structure flock describes a file lock. It includes the following members:

short l_type; 1* Type of lock * 1
short l_whence; 1* Flag for starting offset *1
off_t l_start; 1* Relative offset in b¥tes *1
off_t l_len; 1* Size; if 0 then until EOF *1
long l_sysid; 1* Returned with F_GETLK *1
pid_t l-pid; 1* Returned with F_GETLK *1
long l-Pad 1* reserve area *1

SEE ALSO
creat(2), exec(2), fcntl(2), open(2)

308

font(5)

NAME
font - font description files for troff and dpost

SYNOPSIS
troff -T ptty . ..

DESCRIPTION
For each typesetter or printer type supported by troff(l) and available on this sys
tem, there is a directory containing files describing the device and its fonts. This
directory is named /usr/lib/font/devptty where ptty is the abbreviated name of
the typesetter or printer type. Currently supported devices are aps for the Auto
logic APS-5, post for PostScript printers, and ilO for the Imagen Imprint 10 laser
printer.

For a particular phototypesetter, ptty, the ASCII file DESC in the directory
/usr/lib/font/devptty describes its characteristics. Each line starts with a word
identifying the characteristic which is followed by appropriate specifiers. Blank
lines and lines beginning with a # are ignored.

The legal lines for DESC are:

res num resolution of device in basic increments per inch

hor num smallest unit of horizontal motion

vert num smallest unit of vertical motion

unitwidth num pointsize in which widths are specified

sizescale num scaling for fractional pointsizes

paperwidth num width of paper in basic increments

paperlength num length of paper in basic increments

biggest font num maximum size of a font

spare2 num available for use

sizes num num . . . list of pointsizes available on typesetter

fonts num name. .. number of initial fonts followed by the names of the
fonts. For example:

fonts 4 RI B S

charset this always comes last in the file and is on a line by
itself. Following it is the list of special character
names for this device. Names are separated by a
space or a newline. The list can be as long as neces
sary. Names not in this list are not allowed in the
font description files.

Res is the basic resolution of the device in increments per inch. Hor and vert
describe the relationships between motions in the horizontal and vertical directions.
If the device is capable of moving in single basic increments in both directions, both
hor and vert would have values of 1. If the vertical motions only take place in
multiples of two basic units while the horizontal motions take place in the basic
increments, then hor would be 1, while vert would be 2. The unitwidth is the
pointsize in which all width tables in the font description files are given. troff

309

font(5)

310

automatically scales the widths from the unitwidth size to the pointsize it is work
ing with. Sizescale is not currently used and is 1. paperwidth is the width of the
paper in basic increments. The APS-5 is 6120 increments wide. paperlength is the
length of a sheet of paper in the basic increments. biggest font is the maximum
number of characters on a font.

For each font supported by the phototypesetter, there is also an ASCII file with the
same name as the font (e.g., R, I4). The format for a font description file is:

name name name of the font, such as R or' 4

internalname name internal name of font

special sets flag indicating that the font is special

ligatures name. .. 0

spare 1

spacewidth num

charset

Sets flag indicating font has ligatures. The list of liga
tures follows and is terminated by a zero. Accepted liga
tures are: ff fi fl ffi ffl .

available for use

width of space if something other than 1/3 of - is
desired as a space.

The character set must come at the end. Each line fol
lowing the word charset describes one character in the
font. Each line has one of two formats:

name width kerning code
name"

where name is either a single ASCII character or a special
character name from the list found in DESC. The width
is in basic increments. The kerning information is 1 if
the character descends below the line, 2 if it rises above
the letter 'a', and 3 if it both rises and descends. The
kerning information for special characters is not used
and so may be o. The code is the number sent to the
typesetter to produce the character. The second format
is used to indicate that the character has more than one
name. The double quote indicates that this name has the
same values as the preceding line. The kerning and code
fields are not used if the width field is a double quote
character. The total number of different characters in
this list should not be greater than the value of biggest
font in the DESC file (see above).

troff and its postprocessors like dpost read this information from binary files pro
duced from the ASCII files by a program distributed with troff called makedev.
For those with a need to know, a description of the format of these files follows:

The file DESC.out starts with the dev structure, defined by dev.h:

/*
dev.h: characteristics of a typesetter
* /

struct dev {
unsigned short

short res;
short hor;
short vert;
short unitwidth;
short nfonts;
short nsizesi
short sizescale;
short paperwidth;
short paperlength;
short nchtab;
short lchname;
short biggest font;
short spare2;
}i

filesize; /* number of bytes in file,
/* excluding dev part */
/* basic resolution in goobies/inch
/* goobies horizontally */

/* size at which widths are given*/
/* number fonts physically available
/* number of pointsizes */
/* scaling for fractional pointsizes
/* max line length in units */
/* max paper length in units */

/* number of funny names in chtab */
/* length of chname table */
/* max # of chars in a font */

font(5)

*/

*/

*/

*/

Filesize is just the size of everything in DESC.out excluding the dev structure. Nfonts
is the number of different font positions available. Nsizes is the number of different
pointsizes supported by this typesetter. Nchtab is the number of special character
names. Lchname is the total number of characters, including nulls, needed to list all
the special character names. At the end of the structure are two spares for later
expansions.

Immediately following the dev structure are a number of tables. First is the sizes
table, which contains nsizes + 1 shorts(a null at the end), describing the pointsizes of
text available on this device. The second table is the funny-char _index_table. It con
tains indices into the table which follows it, the funny_char_strings. The indices
point to the beginning of each special character name which is stored in the
funny_char _strings table. The funny_char _strings table is lchname characters long,
while the funny_char _index _table is nchtab shorts long.

Following the dev structure will occur nfonts {fontl.out files, which are used to initial
ize the font positions. These {fontl.out files, which also exist as separate files, begin
with a font structure and then are followed by four character arrays:

struct font { /* characteristics of a font */
char nwfont; /* number of width entries */
char specfont; /* 1 == special font */
char ligfont; /* 1 == ligatures exist on this font */
char spare1; /* unused for now */
char namefont [10]; /* name of this font, e.g., R */
char intname [10]; /* internal name of font, in ASCII */
} i

311

font(5)

The font structure tells how many defined characters there are in the font, whether
the font is a "special" font and if it contains ligatures. It also has the ASCII name of
the font, which should match the name of the file it appears in, and the internal
name of the font on the typesetting device (intname). The internal name is indepen
dent of the font position and name that troff knows about. For example, you
might say mount R in position 4, but when asking the typesetter to actually produce
a character from the R font, the postprocessor which instructs the typesetter would
use intname.

The first three character arrays are specific for the font and run in parallel. The first
array, widths, contains the width of each character relative to unitwidth. unitwidth is
defined in DESC. The second array, kerning, contains kerning information. If a
character rises above the letter 'a', 02 is set. If it descends below the line, 01 is set.
The third array, codes, contains the code that is sent to the typesetter to produce the
character.

The fourth array is defined by the device description in DESC. It is the
font _index_table. This table contains indices into the width, kerning, and code tables
for each character. The order that characters appear in these three tables is arbitrary
and changes from one font to the next. In order for troff to be able to translate
from ASCII and the special character names to these arbitrary tables, the
font _index _table is created with an order which is constant for each device. The
number of entries in this table is 96 plus the number of special character names for
this device. The value 96 is 128 - 32, the number of printable characters in the ASCII
alphabet. To determine whether a normal ASCII character exists, troff takes the
ASCII value of the character, subtracts 32, and looks in the font _index_table. If it
finds a 0, the character is not defined in this font. If it finds anything else, that is the
index into widths, kerning, and codes that describe that character.

To look up a special character name, for example \ (pI, the mathematical plus sign,
and determine whether it appears in a particular font or not, the following pro
cedure is followed. A counter is set to 0 and an index to a special character name is
picked out of the counter'th position in thefunny_char_index_table. A string com
parison is performed between funny-char _strings [funny _char _index_table [counter]
] and the special character name, in our example pI, and if it matches, then troff
refers to this character as (96 + counter). When it wants to determine whether a
specific font supports this character, it looks in font_index_table[(96 + counter)], (see
below), to see whether there is a 0, meaning the character does not appear in this
font, or a number, which is the index into the widths, kerning, and codes tables.

Notice that since a value of 0 in the font _index _table indicates that a character does
not exist, the Oth element of the width, kerning, and codes arrays are not used. For
this reason the Oth element of the width array can be used for a special purpose,
defining the width of a space for a font. Normally a space is defined by troff to be
1/3 of the width of the \(em character, but if the Oth element of the width array is
non-zero, then that value is used for the width of a space.

SEE ALSO
dpost(l), troff(l), troff(5)

312

FILES

font(5)

/usr/lib/font/devX/DESC.out description file for phototypesetter X

/usr/lib/font/devX/font . out font description files for phototypesetter X

313

iconv(5)

NAME
iconv - code set conversion tables

DESCRIPTION
The following code set conversions are supported:

Code Set Conversions Supported
Code Symbol Target Code Symbol comment

ISO 646 646 ISO 8859-1 8859 US ASCII
ISO 646de 646de ISO 8859-1 8859 German
ISO 646da 646da ISO 8859-1 8859 Danish
ISO 646en 646en ISO 8859-1 8859 English ASCII
ISO 646es 646es ISO 8859-1 8859 Spanish
ISO 646fr 646fr ISO 8859-1 8859 French
ISO 646it 646it ISO 8859-1 8859 Italian
ISO 646sv 646sv ISO 8859-1 8859 Swedish
ISO 8859-1 8859 ISO 646 646 7 bit ASCII
ISO 8859-1 8859 ISO 646de 646de German
ISO 8859-1 8859 ISO 646da 646da Danish
ISO 8859-1 8859 ISO 646en 646en English ASCII
ISO 8859-1 8859 ISO 646es 646es Spanish
ISO 8859-1 8859 IS0646fr 646fr French
ISO 8859-1 8859 IS0646it 646it Italian
ISO 8859-1 8859 ISO 646sv 646sv Swedish

The conversions are performed according to the tables following. All values in the
tables are given in octal.

ISO 646 (US ASCII) to ISO 8859·1
For the conversion of ISO 646 to ISO 8859-1 all characters in ISO 646 can be mapped
unchanged to ISO 8859-1

ISO 646de (GERMAN) to ISO 8859·1

314

For the conversion of ISO 646de to ISO 8859-1 all characters not in the following
table are mapped unchanged.

Conversions Performed
ISO 646de ISO 8859-1
100 247
133 304
134 326
135 334
173 344
174 366
175 374
176 337

iconv (5)

ISO 646da (DANISH) to ISO 8859-1
For the conversion of ISO 646da to ISO 8859-1 all characters not in the following
table are mapped unchanged.

Conversions Performed
ISO 646da ISO 8859-1
133 306
134 330
135 305
173 346
174 370
175 345

ISO 646en (ENGLISH ASCII) to ISO 8859-1
For the conversion of ISO 646en to ISO 8859-1 all characters not in the following
table are mapped unchanged.

ISO 646fr (FRENCH) to ISO 8859-1

Conversions Performed
ISO 646en [ISO 8859-1
043 I 243

For the conversion of ISO 646fr to ISO 8859-1 all characters not in the following
table are mapped unchanged.

Conversions Performed
ISO 646fr ISO 8859-1
043 243
100 340
133 260
134 347
135 247
173 351
174 371
175 350
176 250

315

iconv(5)

ISO 646it (ITALIAN) to ISO 8859-1
For the conversion of ISO 646it to ISO 8859-1 all characters not in the following
table are mapped unchanged.

Conversions Performed
ISO 646it ISO 8859-1
043 243
100 247
133 260
134 347
135 351
140 371
173 340
174 362
175 350
176 354

ISO 646es (SPANISH) to ISO 8859-1

316

For the conversion of ISO 646es to ISO 8859-1 all characters not in the following
table are mapped unchanged.

Conversions Performed
ISO 646es ISO 8859-1
100 247
133 241
134 321
135 277
173 260
174 361
175 347

iconv (5)

ISO 646sv (SWEDISH) to ISO 8859-1
For the conversion of ISO 646sv to ISO 8859-1 all characters not in the following
table are mapped unchanged.

Conversions Performed
ISO 646sv ISO 8859-1
100 311
133 304
134 326
135 305
136 334
140 351
173 344
174 366
175 345
176 374

ISO 8859-1 to ISO 646 (ASCII)
For the conversion of ISO 8859-1 to ISO 646 all characters not in the following table
are mapped unchanged.

Converted to Underscore' '(137)
200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 243 244 245 246 247
250 251 252 253 254 255 256 257
260 261 262 263 264 265 266 267
270 271 272 273 274 275 276 277
300 301 302 303 304 305 306 307
310 311 312 313 314 315 316 317
320 321 322 323 324 325 326 327
330 331 332 333 334 335 336 337
340 341 342 343 344 345 346 347
350 351 352 353 354 355 356 357
360 361 362 363 364 365 366 367
370 371 372 373 374 375 376 377

317

iconv(5)

ISO 8859·1 to ISO 646de (GERMAN)
For the conversion of ISO 8859-1 to ISO 646de all characters not in the following
tables are mapped unchanged.

Conversions Performed
ISO 8859-1 ISO 646de
247 100
304 133
326 134
334 135
337 176
344 173
366 174
374 175

Converted to Underscore' , (137)
100 133 134 135 173 174 175 176

200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 243 244 245 246
250 251 252 253 254 255 256 257
260 261 262 263 264 265 266 267
270 271 272 273 274 275 276 277
300 301 302 303 305 306 307
310 311 312 313 314 315 316 317
320 321 322 323 324 325 327
330 331 332 333 335 336 337
340 341 342 343 345 346 347
350 351 352 353 354 355 356 357
360 361 362 363 364 365 367
370 371 372 373 375 376 377

318

iconv (5)

ISO 8859-1 to ISO 646da (DANISH)
For the conversion of ISO 8859-1 to ISO 646da all characters not in the following
tables are mapped unchanged.

Conversions Performed
ISO 8859-1 ISO 646da
305 135
306 133
330 134
345 175
346 173
370 174

Converted to Underscore' '(137)
133 134 135 173 174 175

200 201 202 203 204 205 206
210 211 212 213 214 215 216
220 221 222 223 224 225 226
230 231 232 233 234 235 236
240 241 242 243 244 245 246
250 251 252 253 254 255 256
260 261 262 263 264 265 266
270 271 272 273 274 275 276
300 301 302 303 304
310 311 312 313 314 315 316
320 321 322 323 324 325 326

331 332 333 334 335 336
340 341 342 343 344
350 351 352 353 354 355 356
360 361 362 363 364 365 366

371 372 373 374 376

319

iconv(5)

ISO 8859-1 to ISO 646en (ENGLISH ASCII)
For the conversion of ISO 8859-1 to ISO 646en all characters not in the following
tables are mapped unchanged.

Conversions Performed
ISO 8859-1 I ISO 646en
243 I 043

Converted to Underscore' '(137)
043

200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 244 245 246 247
250 251 252 253 254 255 256 257
260 261 262 263 264 265 266 267
270 271 272 273 274 275 276 277
300 301 302 303 304 305 306 307
310 311 312 313 314 315 316 317
320 321 322 323 324 325 326 327
330 331 332 333 334 335 336 337
340 341 342 343 344 345 346 347
350 351 352 353 354 355 356 357
360 361 362 363 364 365 366 367
370 371 372 373 374 375 376 377

320

iconv(5)

ISO 8859-1 to ISO 646fr (FRENCH)
For the conversion of ISO 8859-1 to ISO 646fr all characters not in the following
tables are mapped unchanged.

Conversions Performed
ISO 8859-1 ISO 646fr
243 043
247 135
250 176
260 133
340 100
347 134
350 175
351 173
371 174

Converted to Underscore' '(137)
043
100 133 134 135 173 174 175 176

200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 244 245 246

251 252 253 254 255 256 257
261 262 263 264 265 266 267

270 271 272 273 274 275 276 277
300 301 302 303 304 305 306 307
310 311 312 313 314 315 316 317
320 321 322 323 324 325 326 327
330 331 332 333 334 335 336 337

341 342 343 344 345 346
352 353 354 355 356 357

360 361 362 363 364 365 366 367
370 372 373 374 375 376 377

321

iconv(5)

ISO 8859-1 to ISO 646it (ITALIAN)
For the conversion of ISO 8859-1 to ISO 646it all characters not in the following
tables are mapped unchanged.

Conversions Performed
ISO 8859-1 ISO 646it
243 043
247 100
260 133
340 173
347 134
350 175
351 135
354 176
362 174
371 140

Converted to Underscore' '(137)
043
100 133 134 135 173 174 175 176

200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 244 245 246
250 251 252 253 254 255 256 257

261 262 263 264 265 266 267
270 271 272 273 274 275 276 277
300 301 302 303 304 305 306 307
310 311 312 313 314 315 316 317
320 321 322 323 324 325 326 327
330 331 332 333 334 335 336 337

341 342 343 344 345 346
352 353 354 355 356 357

360 361 363 364 365 366 367
370 372 373 374 375 376 377

322

iconv (5)

ISO 8859-1 to ISO 646e5 (SPANISH)
For the conversion of ISO 8859-1 to ISO 646es all characters not in the following
tables are mapped unchanged.

Conversions Performed
ISO 8859-1 ISO 646es
241 133
247 100
260 173
277 135
321 134
347 175
361 174

Converted to Underscore' '(137)
100 133 134 135 173 174 175

200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 242 243 244 245 246
250 251 252 253 254 255 256 257

261 262 263 264 265 266 267
270 271 272 273 274 275 276
300 301 302 303 304 305 306 307
310 311 312 313 314 315 316 317
320 322 323 324 325 326 327
330 331 332 333 334 335 336 337
340 341 342 343 344 345 346
350 351 352 353 354 355 356 357
360 362 363 364 365 366 367
370 371 372 373 374 375 376 377

323

iconv(5)

ISO 8859-1 to ISO 646sv (SWEDISH)
For the conversion of ISO 8859-1 to ISO 646sv all characters not in the following
tables are mapped unchanged.

Conversions Performed
ISO 8859-1 ISO 646sv
304 133
305 135
311 100
326 134
334 136
344 173
345 175
351 140
366 174
374 176

Converted to Underscore' '(137)
100 133 134 135 136 140
173 174 175 176

200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 243 244 245 246 247
250 251 252 253 254 255 256 257
260 261 262 263 264 265 266 267
270 271 272 273 274 275 276 277
300 301 302 303 306 307
310 312 313 314 315 316 317
320 321 322 323 324 325 327
330 331 332 333 335 336 337
340 341 342 343 346 347
350 352 353 354 355 356 357
360 361 362 363 364 365 367
370 371 372 373 375 376 377

324

iconv (5)

FILES
/usr/lib/iconv/iconv_data lists the conversions supported
/usr/lib/iconv/* conversion tables
/usr/lib/locale/locale/LC_MESSAGES/uxmesg

language-specific message file [See LANG on
environ(5).J

SEE ALSO
iconv(l)

325

langinfo(5)

NAME
langinfo -language information constants

SYNOPSIS
#include <langinfo.h>

DESCRIPTION

326

This header file contains the constants used to identify items of lang info data. The
mode of items is given in nl_types(5).

DAY_I Locale's equivalent of "sunday"

DAY_2

DAY_3

DAY_4

DAY_5

DAY_6

DAY_7

ABDAY_ 1

ABDAY_2

ABDAY_3

ABDAY_4

ABDAY_5

ABDAY_6

ABDAY_7

MON_I

MON_2

MON_3

MON_4

MON_5

MON_6

MON_7

MON_8

MON_9

MON_IO

MON_II

MON_12

ABMON_I

Locale's equivalent of "monday"

Locale's equivalent of "tuesday"

Locale's equivalent of "wednesday"

Locale's equivalent of "thursday"

Locale's equivalent of "friday"

Locale's equivalent of "saturday"

Locale's equivalent of "sun"

Locale's equivalent of "mon"

Locale's equivalent of "tue"

Locale's equivalent of "wed"

Locale's equivalent of "thur"

Locale's equivalent of "fri"

Locale's equivalent of "sat"

Locale's equivalent of "january"

Locale's equivalent of "february"

Locale's equivalent of "march"

Locale's equivalent of "april"

Locale's equivalent of "may"

Locale's equivalent of "june"

Locale's equivalent of "july"

Locale's equivalent of "august"

Locale's equivalent of "september"

Locale's equivalent of "october"

Locale's equivalent of "november"

Locale's equivalent of "december"

Locale's equivalent of "jan"

ABMON_2

ABMON_3

ABMON_4

ABMON_S

ABMON_6

ABMON_7

ABMON_8

ABMON_9

ABMON_10

ABMON_ll

ABMON_12

RADIXCHAR

THOUSEP

YESSTR

NOSTR

CRNCYSTR

D_T_FMT

D_FMT

T_FMT

AM_STR

Locale's equivalent of "feb"

Locale's equivalent of "mar"

Locale's equivalent of "apr"

Locale's equivalent of "may"

Locale's equivalent of "jun"

Locale's equivalent of "jul"

Locale's equivalent of "aug"

Locale's equivalent of "sep"

Locale's equivalent of "oct"

Locale's equivalent of "nov"

Locale's equivalent of "dec"

Locale's equivalent of "."

Locale's equivalent of ","

Locale's equivalent of "yes"

Locale's equivalent of "no"

Locale's currency symbol

Locale's default format for date and time

Locale's default format for the date

Locale's default format for the time

Locale's equivalent of "AM"

PM_STR Locale's eqUivalent of "PM"

This information is retrieved by nl_langinfo(3C).

langinfo (5)

The items CRNCYSTR, RADIXCHAR, and THOUSEP are extracted from the fields
currency_symbol, decimal-point, and thousands_sep in the structure returned
by localeconv(3C).

The items T_FMT, D_FMT, D_T_FMT, YESSTR, and NOSTR are retrieved from a special
message catalog named Xopen_info which should be generated for each locale
supported and installed in the appropriate directory [see mkmsgs(l) and
gettxt(3C)]. This catalog should have the messages in the order T_FMT, D_FMT,
D_T_FMT, YESSTR, and NOSTR.

All other items are as returned by strftllne(3C).

SEE ALSO
cftime(3C), gettxt(3C), localeconv(3C), mkmsgs(l), nl_langinfo(3C),
nl_types(5), strftime(3C)

327

maneS) (BSO System Compatibility)

NAME
man - macros to format Reference Manual pages

SYNOPSIS
nroff -man filename . . .
troff -manfilename .. .

DESCRIPTION

328

These macros are used to layout the reference pages in this manual. Note: if
filename contains format input for a preprocessor, the commands shown above must
be piped through the appropriate preprocessor. This is handled automatically by
man(I). See the "Conventions" section.

Any text argument t may be zero to six words. Quotes may be used to include
SPACE characters in a word. If text is empty, the special treatment is applied to the
next input line with text to be printed. In this way . I may be used to italicize a
whole line, or • SB may be used to make small bold letters.

A prevailing indent distance is remembered between successive indented para
graphs, and is reset to default value upon reaching a non-indented paragraph.
Default units for indents i are ens.

Type font and size are reset to default values before each paragraph, and after pro
cessing font and size setting macros.

These strings are predefined by -man:

\ *R '®', '(Reg)' in nroff.
\ *S Change to default type size.

Requests
* n.t.1. = next text line; pj. = prevailing indent

Request
.B t
.BI t
.BR t
• DT
.HP i

. I t

.IB t

.IP xi

.IR t
• IX t
.LP

. PD d
• PP

Cause If no
Break Argument

no
no
no
no
yes

no
no
yes
no
no
yes

no
yes

t=n.t.l.*
t=n.t.l.
t=n.t.l.
.5i Ii. ..
i=p.i.*

t=n.t.l.
t=n.t.l.
X="11

t=n.t.l.

d=.4v

Explanation
Text is in bold font.
Join words, alternating bold and italic.
Join words, alternating bold and roman.
Restore default tabs .
Begin paragraph with hanging indent. Set
prevailing indent to i.
Text is italic.
Join words, alternating italic and bold.
Same as • TP with tag x.
Join words, alternating italic and roman.
Index macro .
Begin left-aligned paragraph. Set prevailing
indent to .5i.
Set vertical distance between paragraphs .
Same as .LP .

(BSO System Compatibility) man(5}

Request
Cause
Break

If no
Argument Explanation

.RE

.RB

.RI
• RS

. SB
• SH
.SM
.SS t

yes

no
no
yes

t=n.t.l.
t=n.t.l.
i=p.i .

t=n.t.l.
t=n.t.l.

End of relative indent. Restores prevailing
indent.
Join words, alternating roman and bold.
Join words, alternating roman and italic.
Start relative indent, increase indent by i. Sets
prevailing indent to .5i for nested indents.
Reduce size of text by 1 point, make text bold .
Section Heading .
Reduce size of text by 1 point.
Section Subheading.

.TH nsdfm

no
yes
no
yes
yes Begin reference page n, of of section s; d is the

date of the most recent change. If present, f is
the left page footer; m is the main page
(center) header. Sets prevailing indent and
tabs to .5i.

. TP yes i=p.i . Begin indented paragraph, with the tag given
on the next text line. Set prevailing indent to i.

Conventions
When formatting a manual page, man examines the first line to determine whether it
requires special processing. For example a first line consisting of:

'\" t

indicates that the manual page must be run through the tbl(l) preprocessor.

A typical manual page for a command or function is laid out as follows:

• TH title [1-8]
The name of the command or function, which serves as the title of the
manual page. This is followed by the number of the section in which it
appears .

• SH NAME
The name, or list of names, by which the command is called, followed by a
dash and then a one-line summary of the action performed. All in roman
font, this section contains no troff(l) commands or escapes, and no macro
requests. It is used to generate the whatis(l) database .

. SH SYNOPSIS
Commands:

The syntax of the command and its arguments, as typed on the com
mand line. When in boldface, a word must be typed exactly as
printed. When in italics, a word can be replaced with an argument
that you supply. References to bold or italicized items are not capi
talized in other sections, even when they begin a sentence.

329

man(5) (BSO System Compatibility)

FILES

Syntactic symbols appear in roman face:

[1 An argument, when surrounded by brackets is optional.

I Arguments separated by a vertical bar are exclusive. You
can supply only one item from such a list.

Arguments followed by an ellipsis can be repeated. When an
ellipsis follows a bracketed set, the expression within the
brackets can be repeated.

Functions:

If required, the data declaration, or #include directive, is shown
first, followed by the function declaration. Otherwise, the function
declaration is shown .

. SH DESCRIPTION
A narrative overview of the command or function's external behavior. This
includes how it interacts with files or data, and how it handles the standard
input, standard output and standard error. Internals and implementation
details are normally omitted. This section attempts to provide a succinct
overview in answer to the question, "what does it do?"

Literal text from the synopsis appears in constant width, as do literal
filenames and references to items that appear elsewhere in the reference
manuals. Arguments are italicized.

If a command interprets either subcommands or an input grammar, its com
mand interface or input grammar is normally described in a USAGE section,
which follows the OPTIONS section. The DESCRIPTION section only
describes the behavior of the command, not that of subcommands .

. SH OPTIONS
The list of options along with a description of how each affects the
command's operation .

. SH FILES
A list of files associated with the command or function .

• SH SEE ALSO
A comma-separated list of related manual pages, followed by references to
other published materials .

. SH DIAGNOSTICS
A list of diagnostic messages and an explanation of each .

. SH NOTES
A description of limitations, known defects, and possible problems associ
ated with the command or function.

/usr/ucblib/doctools/tmac/an

SEE ALSO
man(l), nroff(l), troff(l), whatis(l)

330

math (5)

NAME
math - math functions and constants

SYNOPSIS
#include <math.h>

DESCRIPTION
This file contains declarations of all the functions in the Math Library (described in
Section 3M), as well as various functions in the C Library (Section 3C) that return
floating-point values.

It defines the structure and constants used by the matherr(3M) error-handling
mechanisms, including the following constant used as a error-return value:

HUGE The maximum value of a single-precision floating-point number.

The following mathematical constants are defined for user convenience:

M_E The base of natural logarithms (c).

M_LOG2E

M_LOG10E

M_LN2

M_LN10

M_PI

M_PI_2

M_P:L4

M_l_PI

M_2_PI

M_2_SQRTPI

M_SQRT2

M_SQRT1_2

The base-2logarithm of c.

The base-10 logarithm of c.

The natural logarithm of 2.

The natural logarithm of 10.

n, the ratio of the circumference of a circle to its diameter.

n/2.

n/4.

l/n.

2/n.
2f'.1n.

The positive square root of 2.

The positive square root of 1/2.

The following mathematical constants are also defined in this header file:

MAXFLOAT The maximum value of a non-infinite single-precision floating
point number.

positive infinity.

For the definitions of various machine-dependent constants, see values(5).

SEE ALSO
intro(3), matherr(3M), values(5)

331

me(5) (BSD System Compatibility)

NAME
me - (BSD) macros for formatting papers

SYNOPSIS
nroff -me [optionsljile .. .

troff -me [optionsljile .. .

DESCRIPTION

332

This package of nroff and troff macro definitions provides a canned formatting
facility for technical papers in various formats. When producing 2-column output
on a terminal, filter the output through co1(1).

The macro requests are defined below. Many nroff and troff requests are unsafe
in conjunction with this package, however, these requests may be used with impun
ity after the first .pp:

· bp begin new page
· br break output line here
· sp n insert n spacing lines
.1s n (line spacing) n=l single, n=2 double space
· na no alignment of right margin
· ce n center next n lines
• u1 n underline next n lines
• sz +n add n to point size

Output of the eqn, neqn, refer, and tb1(1) preprocessors for equations and
tables is acceptable as input.

Requests
In the following list, initialization refers to the first .pp, .1p, . ip, .np, . sh, or . uh
macro. This list is incomplete.

Request

• {c
• {d

• {f

• {I

• (q

• (xx

• (z

• }c
• }d
.) f
.} 1

• }q
• }x
.} z

Initial Cause
Value Break

yes
no
no
yes
yes
no
no
yes
yes
yes
yes
yes
yes
yes

Explanation

Begin centered block
Begin delayed text
Begin footnote
Begin list
Begin major quote
Begin indexed item in index x
Begin floating keep
End centered block
End delayed text
End footnote
End list
End major quote
End index item
End floating keep

Request

.++mH

.+e T

.le

.2e
• EN

• EQxy

• TE

• TH

• TSx

.aeAN

.bx

.ba+n

.be

.bi x
• bxx
· ef 'x'y'z
• eh 'x'y'z
• fo 'x'y'z
• hx
.he 'x'y'z
.hI
. i x

Initial
Value

1
1

no

o

no
no
no

no

(BSD System Compatibility) me(5)

Cause
Break

no

yes

yes
yes
yes
yes

yes
yes
yes
no

no

yes

yes
no
no
no
no
no
no
no
yes
no

Explanation

Define paper section. m defines the part of the
paper, and can be C (chapter), A (appendix), P

(preliminary, for instance, abstract, table of con
tents, and so on), B (bibliography), RC (chapters
renumbered from page one each chapter), or RA

(appendix renumbered from page one).
Begin chapter (or appendix, and so on, as set by
. ++). T is the chapter title.
One column format on a new page.
Two column format.
Space after equation produced by eqn or meqn .
Precede equation; break out and add space .
Equation number is y. The optional argument x
may be I to indent equation (default), L to left
adjust the equation, or C to center the equation.
End table .
End heading section of table .
Begin table; if x is H table has repeated heading .
Set up for ACM style output. A is the Author's
name(s), N is the total number of pages. Must be
given before the first initialization.
Print x in boldface; if no argument switch to
boldface.
Augments the base indent by n. This indent is
used to set the indent on regular text (like para
graphs).
Begin new column
Print x in bold italics (nofill only)
Print x in a box (nofill only) .
Set even footer to x y z
Set even header to x y z
Set footer to x y z
Suppress headers and footers on next page .
Set header to x y z
Draw a horizontal line
Italicize x; if x missing, italic text follows .

333

me(5) (BSO System Compatibility)

FILES

Request

. ipxy

. 1p

. 10

.np

.of 'x'y'z

.oh 'x'y'z

.pd

.pp

.r

.re

.se

.shnx

.sk

.sz +n

.th

. tp

.ux

• uh
• xpx

Initial
Value

no

yes

1

no
yes

no

no

lOp
no

no

Cause
Break

yes

yes
no

yes
no
no
yes
yes
no
no
no

yes

no

no
no

yes
no

yes
no

Explanation

Start indented paragraph, with hanging tag x .
Indentation is yens (default 5).
Start left-blocked paragraph .
Read in a file of local macros of the form . *x .
Must be given before initialization.
Start numbered paragraph.
Set odd footer to x y z
Set odd header to x y z
Print delayed text.
Begin paragraph. First line indented.
Roman text follows.
Reset tabs to default values.
Read in a file of special characters and diacritical
marks. Must be given before initialization.
Section head follows, font automatically bold. n
is level of section, x is title of section.
Leave the next page blank. Only one page is
remembered ahead.
Augment the point size by n points.
Produce the paper in thesis format. Must be
given before initialization.
Begin title page .
Underline argument (even in troff). (Nofill
only).
Like .sh but unnumbered .
Print index x .

/usr/ueb1ib/doeto01s/tmae/e
/usr/ueb1ib/doeto01s/tmae/*.me

SEE ALSO
e01(1), eqn(l), nroff(l), troff(l), refer(l), tb1(1)

334

(BSD System Compatibility) ms(5)

NAME
ms - (BSD) text formatting macros

SYNOPSIS
nroff -rns [options] file . . .

troff -ms [options] file .. .

DESCRIPTION
This package of nroff(l) and troff(l) macro definitions provides a formatting
facility for various styles of articles, theses, and books. When producing 2-column
output on a terminal or lineprinter, or when reverse line motions are needed, filter
the output through col(l). All external-ms macros are defined below.

Many nroff and troff requests are unsafe in conjunction with this package. How
ever, the first four requests below may be used with impunity after initialization,
and the last two may be used even before initialization:

· bp begin new page

.br break output line

• sp n insert n spacing lines

· ce n center next n lines

.ls n line spacing: n=l single, n=2 double space

· na no alignment of right margin

Font and point size changes with \f and \s are also allowed; for example,
\ fIword\fR will italicize word. Output of the tbl(l), eqn(l) and refer(l) prepro
cessors for equations, tables, and references is acceptable as input.

Requests
Macro
Name

.ABx

.AE

.AI

.AM

.AU

.BX

.Bl

.B2

.BD

.BT

.BXx

.CD

.CM

.CT

.DAx

.DE

.DSxy

Initial
Value

date

ift

ifn

Break?
Reset?

y
y
y
n
y
n
y
y
Y
n
n
y
n
y,y
n
y
y

Explanation

begin abstract; if x=no do not label abstract
end abstract
author's institution
better accent mark definitions
author's name
embolden x; if no x, switch to boldface
begin text to be enclosed in a box
end boxed text and print it
block display; center entire block
bottom title, printed at foot of page
print word x in a box
centered display with no keep
cut mark between pages
chapter title: page number moved to CF (TM only)
force date x at bottom of page; today if no x
end display (unfilled text) of any kind
begin display with keep; x=I, L, C, B; y=indent

335

ms(5) (BSO System Compatibility)

Macro Initial Break?
Name Value Reset? Explanation

.EFx n even page footer x (3 part as for. tl)

.EHx n even page header x (3 part as for . tl)

.EN Y end displayed equation produced by eqn

.EQxy y break out equation; x=L,I,C; y=equation number

.FE n end footnote to be placed at bottom of page

.FP n numbered footnote paragraph; may be redefined

.FSx n start footnote; x is optional footnote label

.HD undef n optional page header below header margin

.I x n italicize x; if no x, switch to italics

.IDy 8n,.5i y indented display with no keep; y=indent

.IPXY y,y indented paragraph, with hanging tag x; y=indent

.IXx y y index words x y and so on (up to 5 levels)

.KE n end keep of any kind

.KF n begin floating keep; text fills remainder of page

.KS y begin keep; unit kept together on a single page

.LD y left display with no keep

.LG n larger; increase point size by 2

. LP y,y left (block) paragraph .

.MCx y,y multiple columns; x=column width

.NDx itt n no date in page footer; x is date on cover

.NHxy y,y numbered header; x=level, x=o resets, x=S sets to y

.NL lOp n set point size back to normal

.OFx n odd page footer x (3 part as for. tl)

.OHx n odd page header x (3 part as for . tl)

.pi ifTM n print header on first page

.PP y,y paragraph with first line indented

.PT - %- n page title, printed at head of page

.PXx y print index (table of contents); x=no suppresses title

.QP y,y quote paragraph (indented and shorter)

.R on n return to Roman font

.RE 5n y,y retreat: end level of relative indentation

.RP x n released paper format; x=no stops title on first page

.RS 5n y,y right shift: start level of relative indentation

.SH y,y section header, in boldface

.SM n smaller; decrease point size by 2

.TA 8n,5n n set TAB characters to 8n 16n ... (nroff) 5n IOn ...
(troff)

.TCx y print table of contents at end; x=no suppresses title

.TE y end of table processed by tbl

.TH y end multi-page header of table

.TL y title in boldface and two points larger

.TM off n thesis mode

.TSx y,y begin table; if x=H table has multi-page header

.ULx n underline x, even in troff

336

Macro
Name

.UXx

.XAxy

.XE

.XP

.XSxy

.1C

.2C

.] -
• [0

Registers

Initial
Value

on

(BSO System Compatibility) ms(5) .

Break?
Reset?

n
y
y
y,y
y
y,y
y,y
n
n

Explanation

UNIX; trademark message first time; x appended
another index entry; x=page or no for none; y=indent
end index entry (or series of . IX entries)
paragraph with second and subsequent lines indented
begin index entry; x=page or no for none; y=indent
one column format, on a new page
begin two column format
beginning of refer reference
end of unc1assifiable type of reference

Formatting distances can be controlled in -DIS by means of built-in number regis
ters. For example, this sets the line length to 6.5 inches:

.nr LL 6.5i

Here is a table of number registers and their default values:

Name Register Controls Takes Effect Default

PS point size paragraph 10
VS vertical spacing paragraph 12
LL line length paragraph 6i
LT title length next page same as LL
FL footnote length next .FS 5.5i
PD paragraph distance paragraph Iv (if n), .3v (if t)
DO display distance displays Iv (if n), .5v (if t)
PI paragraph indent paragraph 5n
QI quote indent next .QP 5n
FI footnote indent next .FS 2n
PO page offset next page o (if n), -Ii (if t)
HM header margin next page Ii
FM footer margin next page Ii
FF footnote format next .FS o (1,2,3 available)

When resetting these values, make sure to specify the appropriate units. Setting the
line length to 7, for example, will result in output with one character per line. Set
ting FF to 1 suppresses footnote superscripting; setting it to 2 also suppresses inden
tation of the first line; and setting it to 3 produces an . IP-like footnote paragraph.

Here is a list of string registers available in -me; they may be used anywhere in the
text:

337

ms(5) (BSD System Compatibility)

FILES

Name

*Q
*U
*
*(MO
*(DY
**
*'
*'
*~

* ,
*:
*-

String's Function

quote (" in nroff, "in troff)
unquote (" in nroff, "in troff)
dash (-- in nroff, - in troff)
month (month of the year)
day (current date)
automatically numbered footnote
acute accent (before letter)
grave accent (before letter)
circumflex (before letter)
cedilla (before letter)
umlaut (before letter)
tilde (before letter)

When using the extended accent mark definitions available with .AM, these strings
should come after, rather than before, the letter to be accented.

/usr/ucb/1ib/doctoo1s/tmac/s
/usr/ucb1ib/doctoo1s/tmac/ms.???

SEE ALSO

NOTES

338

co1(1), eqn(l), nroff(l), refer(l), tb1(1), troff(l)

Floating keeps and regular keeps are diverted to the same space, so they cannot be
mixed together with predictable results.

nl_types (5)

NAME
nl_types - native language data types

SYNOPSIS
#include <nl_types.h>

DESCRIPTION
This header file contains the following definitions:

nl_catd used by the message catalog functions cat open, catgets and cat
close to identify a catalog

nl_itern used by nl_langinfo to identify items of langinfo data. Values
for objects of type nl_i tern are defined in langinfo. h

NL_SETD used by gencat when no $set directive is specified in a message
text source file. This constant can be used in subsequent calls to
catgets as the value of the set identifier parameter.

NL_MGSMAX maximum number of messages per set

NL_SE'l'MAX maximum number of sets per catalog

NL_TEXTMAX maximum size of a message

DEF_NLSPATH the default search path for locating catalogs

SEE ALSO
catgets(3C), catopen(3C), gencat(l), langinfo(5), nl_langinfo(3C)

339

priv(5)

NAME
pri v - include file for user-level privilege definitions

SYNOPSIS
#include <priv.h>

DESCRIPTION

340

This header file is used by all user-level privilege commands.

#ifndef
#define

/***
*
* Header file used b¥ the user-level privilege commands.
* Contains several macros used by user-level programs. The
* external (user-level) privilege representation consists of:
*
*
*

type I privilege

* and is defined in <sys/privilege.h>.
*
* Also contained in <sys/privilege.h> are the definitions
* for the privilege position names used b¥ user-level macros
* PllLWOrk() I pm_max() I pm_fixed() I and pm_inher() below.
*
* The syntax for privileges are as follows:
*
*
*
*
*

<pname>
privilege position

string name of privilege

: :=

::=

<A-Z><O-9>
P_<pname>
lowercase «pname»

* It also contains macro definitions for the command arguments
* to the filepriv() I procpriv() I procprivl () I and procprivc()
* calls in addition to the typedef for the user-level definition
* of a privilege type and privilege set.
*
***/

#include <sys/privilege.h>

/***
*
* The following macros are used to specify which privilege sets
* are updated with the specified privilege.

*
***/

#define
#define
#define

pm_work(p)
pm_max(p)
pm_fixed(p)

(priv_t) «(p) & PS_TYPE) ? -1
(priv_t)«(p) & PS_TYPE) ? -1
(priv_t)«(p) & PS_TYPE) ? -1

«p)
«p)
«p)

PS_WKG))
PS_MAX))
PS_FIX))

priv (5)

#define PlILinher (p) (priv_t) («p) & PS_TYPE) ? -1 : «p) I PS_INH}}

1***

*
* The following macros are used to simplify the procprivl(3C} and
* the procprivc(3C} calls for setting/clearing process privileges.
*
***1

#define OWNER_W pm_work (P_OWNER)
#define AUDIT_W pm_work (P_AUDIT)
#define COMPAT_W pm_work (P_COMPAT)
#define DACREAD_W pm_work (P_DACREAD)
#define DACWRITE_W pm_work (P_DACWRITE)
#define DEV_W pm_work (P _DEV)
#define FILESYS_W pm_work (P_FILESYS)
#define MACREAD_W pm_work (P_MACREAD)
#define MACWRITE_W pm_work (P_MACWRITE)
#define MOUNT_W pm_work (P_MOUNT)
#define MULTIDIR_W pm_work (P_MULTIDIR)
#define SETFLEVEL_W pm_work (P_SETFLEVEL)
#define SETPLEVEL_W pm_work (P_SETPLEVEL)
#define SETSPRIV_W pm_work (P_SETSPRIV)
#define SETUID_W pm_work (P_SETUID)
#define SYSOPS_W pm_work (P_SYSOPS)
#define SETUPRIV_W pm_work (P_SETUPRIV)
#define DRIVER_W pm_work (P_DRIVER)
#define RTIME_W pm_work (P_RTIME)
#define MACUPGRADE_W pm_work (P_MACUPGRADE)
#define FSYSRANGE_W pm_work (P_FSYSRANGE)
#define AUDITWR_W pm_work (P_AUDITWR)
#define TSHAR_W pm_work (P_TSHAR)
#define PLOCK_W pm_work (P_PLOCK)
#define ALLPRIVS_W pm_work (P_ALLPRIVS)

#define READ_W DACREAD_W,MACREAD_W
#define WRITE_W DACWRITE_W,MACWRITE_W
#define ACCESS_W READ_W,WRITE_W
#define PRIVS_W ACCESS_W, SETSPRIV_W, FSYSRANGE_W

1*** ************

*
* The following are the definitions for the privilege functions

*
***/

extern int filepriv(const char *, int, priv_t *, int};

341

priv (5)

extern
extern
extern

#eIse

extern
extern
extern
extern

#endif

#endif

SEE ALSO

int procpriv(int, priv_t *, int);
int procpri vI (int, •..);
int procpri vc (int, ...);

int filepriv() ;
int procpriv() ;
int procprivl();
int procprivc();

/* _STDC */

/* _PRIV_H */

filepriv(2), procpriv(2), privilege(5)

342

privilege (5)

NAME
privilege - include file for privilege mechanism definitions

SYNOPSIS
#include <sys/privilege.h>

DESCRIPTION
This header file is used by all privilege mechanisms. All privileges are defined here,
as well as certain operations that are necessary for privilege operations.

/* wrapper symbol for kernel use */ #ifndef
#define

_ACC_PRIV_PRIVILEGE_H
_ACC_PRIV_PRIVILEGE_H /* subject to change without notice */

#ifndef
#include <util/types.h>
#endif/* _UTIL_TYPES_H */

/ * REQUIRED * /

#elif defined(_KERNEL)

#include <sys/types.h> / * REQUIRED * /

/**

*
* The following is the typedef for the user-level privilege
* definition. It is here because kernel routines also need
* to know about this particular type.
*
**/

typedef unsigned

/**

*
* The following are the known privilege sets.
*
* PS_FIX for fixed privilege sets
* PS_INH for inheritable privilege sets
* PS_MAX for maximum privilege sets
* PS_WKG for working privilege sets
*
**/

#define PS_FIX Ox66000000
#define PS_INH Ox69000000
#define PS_MAX Ox6dOOOOOO
#define PS_WKG Ox77000000
#define PS_TYPE OxffOOOOOO

343

privilege (5)

344

1**
*
* The following are the supported object types for
* privilege mechanisms.
*
**/

#define
#define

PS_FILE_OTYPE
PS_PROC_OTYPE

OxO
Oxl

1**

*
* The following is the set of all known privileges.
* The define NPRIVS is the number of privileges
* currently in use. It should be modified whenever a
* privilege is added or deleted. Further description
* of each privilege can be found in intro(2).
*
**/

#define NPRIVS 26

#define P_OWNER OxOOOOOOOO
#define P_AUDIT OxOOOOOOOl
#define P_COMPAT OxOOOOOOO2
#define P_DACREAD OxOOOOOOO3
#define P_DACWRITE OxOOOOOOO4
#define P_DEV OxOOOOOOO5
#define P_FILESYS OxOOOOOOO6
#define P_MACREAD OxOOOOOOO7
#define P_MACWRITE OxOOOOOOO8
#define P_MOUNT OxOOOOOOO9
#define P_MOLTIDIR OxOOOOOOOa
#define P_SETPLEVEL OxOOOOOOOb
#define P_SETSPRIV OxOOOOOOOc
#define P_SETUID OxOOOOOOOd
#define P_SYSOPS OxOOOOOOOe
#define P_SETUPRIV OxOOOOOOOf
#define P_DRIVER OxOOOOOO1O
#define P_RTIME OxOOOOOOll
#define P_MACUPGRADE OxOOOOOO12
#define P_FSYSRANGE OxOOOOOO13
#define P_SETFLEVEL OxOOOOOO14
#define P_AUDITWR OxOOOOOO15
#define P_TSHAR OxOOOOOO16
#define P_PLOCK OxOOOOOO17
#define P_CORE OxOOOOOO18
#define P_LOADMOD OxOOOOOO19
#define P_ALLPRIVS OxOOffffff

1**
*
* The following defines are recognized by the privilege
* mechanisms. They are returned in the argument value of
* the secsys() system call in the form of flags when the
* command is ES_PRVINFO.
*
**·*·*1

#define
#define
#define

PM_UIDBASE
PM_ULVLINIT
PM_PRVMODE

OxOOOOOOOl
Ox00000002
Ox00000004

1**
*
* The following are the CMOS recognized by the procpriv()
* and filepriv() system calls.
*
·*1

#define SETPRV OxO
#define CLRPRV Oxl
#define PUTPRV Ox2
#define GETPRV Ox3
#define CNTPRV Ox4

1**
*
* Structure definition for the privilege sets supported
* by individual privilege servers. Also same defines
* that are used at user-level related to the privilege
* mechanisms.
*
***·**1

#define
#define

PR~IZ 32
PRVMAXSETS 256

typedef struct

privilege (5)

priv_t
uint
char
ulong_t

PIILsetdef
sd_mask;
sd_setcnt;
sd_name[PR~IZ1;

sd_objtype;

/*
/*
/*
/*

masked type for this privilege set * /
number of privileges in this set */
name of this privilege set */
object type of this privilege set */

setdef_t;

#if definedLKERNEL) II definedLKMEMUSER)

1**
*
* The following macros are used by the different privilege
* servers to manipulate privilege bits.

*
**/

345

privilege (5)

346

/* Turn on significant bits within kernel privilege vector. */
#define pm_allon «1 « NPRIVS) - 1)

/* Mask off type field within privilege descriptor and returns */
/* the privilege */
#define pm-POs (p) (pvec_t) «p) & -PS_TYPE)

/* Mask off the privilege field and return the privilege type */
#define pm_type(p) (pvec_t) «p) & PS_TYPE)

/* Convert privilege type to ASCII character */
#define pm-pridc(p) (pvec_t) «p) » 24)

/* Set the pvec_t bit corresponding to the privilege passed */
#define pm-privbit(p) (pvec_t)(1 « (p»

/* Convert an ASCII character to a privilege type */
#define pm-pridt(p) (pvec_t) «p) « 24)

/* Validate the privilege descripter passed */
#define pm_invalid (p) « (pm-pos «p» < 0 I I pm-pos «p»

> NPRIVS) && pm-POs«p» != P_ALLPRIVS) ? 1 0)

/* Turn on privilege passed within vector passed */
#define pm_setbits (p, v) (v 1= « (p) == P_ALLPRIVS)

? pm_allon : (l«pm-pos(p»»

/*
* Check the credential(a) passed,
* to determine if privilege(b) is on within the working privilege set
*/

#define pm-privon(a, b) «a)->cr_wkgpriv & (b»

/*
* Check both credentials(a,b) passed,
* to determine if the maximum privilege set of (b) is a subset of (a)
*/

#define

/*

«(a)->cr_maxpriv & (b)->cr_maxpriv)
(b)->cr_maxpriv)

* If the maximum privileges in the credentials passed are non-zero
* then the process is privileged.
*/

#define pm-privileged(a)

1***
*
* Structure definitions for the kernel privilege table
* data types. Used by any privilege mechanism that stores
* the information in the kernel.

*
***1

privi lege (5)

/* least privilege file table */
typedef struct lpftab {

structlpftab*lpf_next;
ino_t lpf_nodeid;
pvec_tlpf_fixpriv;
pvec_tlpf_inhpriv;
time_tlpf_validity;

lpftab_t;

/*
/*
/*
/*
/*

ptr to next file in list */
node id */
fixed privileges */
inheritable privileges */
validity info for integrity */

/* least privilege file system id table */
typedef struct lpdtab {

structlpdtab*lpd~ext; /*
lpftab_t *lpd_list; /*

ptr to next file system in list */
ptr to a privileged file on

/* this particular file system
*/
*/

dev_t lpd_fsid;
lpdtab_t;

/* the id number for this file system */

/* least privilege device per
typedef struct lpktab {

structlpktab*lpk_next;
lpdtab_t *lpk_list;

dev_t lpk_dev;
lpktab_t;

file system table */

/* ptr to next device in list */
/* ptr to a file system on */
/* this particular device */
/* the id number for this device */

#endif / * _KERNEL I I _KMEMOSER * /

#endif/* _ACC_PRIV_PRIVILEGE_H */

SEE ALSO
filepriv(2), procpriv(2), priv(4)

347

prof(S)

NAME
prof - profile within a function

SYNOPSIS
#define MARK
#include <prof.h>

void MARK (name);

DESCRIPTION
MARK introduces a mark called name that is treated the same as a function entry
point. Execution of the mark adds to a counter for that mark, and program-counter
time spent is accounted to the immediately preceding mark or to the function if
there are no preceding marks within the active function.

name may be any combination of letters, numbers, or underscores. Each name in a
single compilation must be unique, but may be the same as any ordinary program
symbol.

For marks to be effective, the symbol MARK must be defined before the header file
prof.h is included, either by a preprocessor directive as in the synopsis, or by a
command line argument:

cc -p -DMARK foo.c

If MARK is not defined, the MARK(name) statements may be left in the source files
containing them and are ignored. prof -g must be used to get information on all
labels.

EXAMPLE
In this example, marks can be used to determine how much time is spent in each
loop. Unless this example is compiled with MARK defined on the command line, the
marks are ignored.

#include <prof.h>
foo()
{

}

int i, j;

MARK (loopl) ;
for (i = 0; i < 2000; i++) {

}

MARK(loop2);
for (j = 0; j < 2000; j++) {

}

SEE ALSO
monitor(3C) prof(l), profil(2)

348

regexp(5)

NAME
regexp: compile, step, advance - regular expression compile and match routines

SYNOPSIS
#define INIT declarations
#define GETC (void) getc code
#define PEEKC (void) peekc code
#define UNGETC (void) ungetc code
#define RETlJRN(ptr) return code
#define ERROR(val) error code

#include <regexp.h>

char *compile (char *instring, char *expbuJ, char *endbuJ, int eoJ) i

int step (char *string, char *expbuJ) i

int advance (char *string , char *expbuJ) i

extern char *loc1, *loc2, *lOCSi

DESCRIPTION
These functions are general purpose regular expression matching routines to be
used in programs that perform regular expression matching. These functions are
defined by the regexp. h header file.

The functions step and advance do pattern matching given a character string and a
compiled regular expression as input.

The function compile takes as input a regular expression as defined below and pro
duces a compiled expression that can be used with step or advance.

A regular expression specifies a set of character strings. A member of this set of
strings is said to be matched by the regular expression. Some characters have spe
cial meaning when used in a regular expression; other characters stand for them
selves.

The regular expressions available for use with the regexp functions are constructed
as follows:

Expression Meaning

c the character c where c is not a special character.

\c the character c where c is any character, except a digit in the range
1-9.

the beginning of the line being compared.

$ the end of the line being compared.

any character in the input.

[s] any character in the set s, where s is a sequence of characters and/or a
range of characters, for example, [c-cl.

[~sl any character not in the set s, where s is defined as above.

349

regexp(5)

350

r*

rx

zero or more successive occurrences of the regular expression r. The
longest leftmost match is chosen.

the occurrence of regular expression r followed by the occurrence of
regular expression x. (Concatenation)

r\ {m, n \} any number of m through n successive occurrences of the regular
expression r. The regular expression r\{m\} matches exactly m
occurrences; r\ {m, \} matches at least m occurrences.

\ (r\) the regular expression r. When \n (where n is a number greater than
zero) appears in a constructed regular expression, it stands for the reg
ular expression x where x is the nth regular expression enclosed in \ (
and \) that appeared earlier in the constructed regular expression.
For example, \ (r\) x\ (y\) z\2 is the concatenation of regular expres
sions rxyzy.

Characters that have special meaning except when they appear within square brack
ets ([1) or are preceded by \ are: ., *, L \. Other special characters, such as $ have
special meaning in more restricted contexts.

The character ~ at the beginning of an expression permits a successful match only
immediately after a newline, and the character $ at the end of an expression
requires a trailing newline.

Two characters have special meaning only when used within square brackets. The
character - denotes a range, [c-c], unless it is just after the open bracket or before
the closing bracket, [-c] or [c-] in which case it has no special meaning. When
used within brackets, the character ~ has the meaning complement of if it immedi
ately follows the open bracket (example: [~c1); elsewhere between brackets (exam
ple: [c~]) it stands for the ordinary character ~.

The special meaning of the \ operator can be escaped only by preceding it with
another \ , for example, \ \.

Programs must have the following five macros declared before the #include
regexp.h statement. These macros are used by the conpile routine. The macros
GETC, PEEKC, and UNGETC operate on the regular expression given as input to com
pile.

GETC

PEEKC

UNGETC

This macro returns the value of the next character (byte) in the reg
ular expression pattern. Successive calls to GETC should return
successive characters of the regular expression.

This macro returns the next character (byte) in the regular expres
sion. Immediately successive calls to PEEKC should return the
same character, which should also be the next character returned
byGETC.

This macro causes the argument c to be returned by the next call to
GETC and PEEKC. No more than one character of pushback is ever
needed and this character is guaranteed to be the last character
read by GETC. The return value of the macro UNGETC(c) is always
ignored.

RETURN (ptr)

ERROR (val)

regexp(5)

This macro is used on normal exit of the compile routine. The
value of the argument ptr is a pointer to the character after the last
character of the compiled regular expression. This is useful to pro
grams which have memory allocation to manage.

This macro is the abnormal return from the compile routine. The
argument val is an error number [see ERRORS below for meanings].
This call should never return.

The syntax of the compile routine is as follows:

compile (instring, expbuf, endbuf, eof)

The first parameter, instring, is never used explicitly by the compile routine but is
useful for programs that pass down different pointers to input characters. It is
sometimes used in the INIT declaration (see below). Programs which call functions
to input characters or have characters in an external array can pass down a value of
(char *) 0 for this parameter.

The next parameter, expbuj, is a character pointer. It points to the place where the
compiled regular expression will be placed.

The parameter endbuf is one more than the highest address where the compiled reg
ular expression may be placed. If the compiled expression cannot fit in
(endbuf-expbuf) bytes, a call to ERROR(SO) is made.

The parameter eof is the character which marks the end of the regular expression.
This character is usually a /.

Each program that includes the regexp.h header file must have a #define state
ment for INIT. It is used for dependent declarations and initializations. Most often
it is used to set a register variable to point to the beginning of the regular expression
so that this register variable can be used in the declarations for GETC, PEEKC, and
UNGETC. Otherwise it can be used to declare external variables that might be used
by GETC, PEEKC and UNGETC. [See EXAMPLE below.]

The first parameter to the step and advance functions is a pointer to a string of
characters to be checked for a match. This string should be null terminated.

The second parameter, expbuj, is the compiled regular expression which was
obtained by a call to the function compile.

The function step returns non-zero if some substring of string matches the regular
expression in expbuf and zero if there is no match. If there is a match, two external
character pointers are set as a side effect to the call to step. The variable locl
points to the first character that matched the regular expression; the variable loc2
points to the character after the last character that matches the regular expression.
Thus if the regular expression matches the entire input string, locl will point to the
first character of string and loc2 will point to the null at the end of string.

The function advance returns non-zero if the initial substring of string matches the
regular expression in expbuf If there is a match, an external character pointer, loc2,
is set as a side effect. The variable loc2 points to the next character in string after
the last character that matched.

351

regexp(5)

When advance encounters a * or \ { \} sequence in the regular expression, it will
advance its pointer to the string to be matched as far as possible and will recur
sively call itself trying to match the rest of the string to the rest of the regular
expression. As long as there is no match, advance will back up along the string
until it finds a match or reaches the point in the string that initially matched the *
or \ { \}. It is sometimes desirable to stop this backing up before the initial point in
the string is reached. If the external character pointer locs is equal to the point in
the string at sometime during the backing up process, advance will break out of the
loop that backs up and will return zero.

The external variables circf, sed, and nbra are reserved.

DIAGNOSTICS
The function compile uses the macro RETURN on success and the macro ERROR on
failure (see above). The functions step and advance return non-zero on a success
ful match and zero if there is no match. Errors are:

11 range endpoint too large.
16 bad number.
25 \ digit out of range.
36 invalid or missing delimiter.
41 no remembered search string.
42 \ (\) imbalance.
43 too many \ (.
44 more than 2 numbers given in \ { \}.
45 } expected after \.
46 first number exceeds second in \ { \ } .
49 [] imbalance.
50 regular expression overflow.

EXAMPLES
The following is an example of how the regular expression macros and calls might
be defined by an application program:

#define INIT
#define GETC
#define PEEKC
#define UNGETC(c)
#define RETURN(*c)
#define ERROR(c)

#include <regexp.h>

register char *sp = instring;
(*sp++)
(*sp)
(--sp)
return;
regerr

(void) compile (*argv, expbuf, &expbuf[ESIZE],'\O');

if (step (linebuf, expbuf»
succeed;

SEE ALSO
regexpr(3G)

352

siginfo(5)

NAME
siginfo - signal generation information

SYNOPSIS
#include <siginfo.h>

DESCRIPTION
If a process is catching a signal, it may request information that tells why the system
generated that signal [see sigaction(2)]. If a process is monitoring its children, it
may receive information that tells why a child changed state [see waitid(2)]. In
either case, the system returns the information in a structure of type siginfo_t,
which includes the following information:

int si_signo
int si_ermo
int si_code

1* signal number *1
1* error number *1
1* signal code *1

si_signe contains the system-generated signal number. (For the waitid(2) func
tion, si_signe is always SIGCHLD.)

If si_errno is non-zero, it contains an error number associated with this signal, as
defined in errno. h.

si_code contains a code identifying the cause of the signal. If the value of si_code
is less than or equal to 0, then the signal was generated by a user process [see
kill(2) and sigsend(2)] and the siginfo structure contains the following addi
tional information:

pid_t si-l)id 1* sending process ID *1
uid_t si_uid 1* sending user ID *1

Otherwise, si_code contains a signal-specific reason why the signal was generated,
as follows:

Signal Code Reason
SIGILL ILL_ILLOPC illegal opcode

ILL_ILLOPN illegal operand
ILL_ILLADR illegal addressing mode
ILL_ILLTRP illegal trap
ILL_PRVOPC privileged opcode
ILL_PRVREG privileged register
ILL_COPROC co-processor error
ILL_BADSTK internal stack error

SIGFPE FPE_INTDIV integer divide by zero
FPE_IN'1'OVF integer overflow
FPE_FLTDIV floating point divide by zero
FPE_FLTOVF floating point overflow
FPE_FLTUND floating point underflow
FPE_FLTRES floating point inexact result
FPE_FLTINV invalid floating point operation
FPE_FLTSUB subscript out of range

353

siginfo(5)

Signal
SIGSEGV

SIGBUS

SIGTRAP

SIGCHLD

SIGPOLL

Code

BUS_ADRALN
BUS_ADRERR
BUS_OBJERR

eLD_EXITED
eLD_KILLED
eLD_DUMPED
eLD_TRAPPED
eLD_STOPPED
eLD_CONTINUED

POLL_IN
POLL_OUT
POLL_MSG
POLL_ERR
POLL_PRI
POLL_HOP

Reason
address not mapped to object
invalid permissions for mapped object

invalid address alignment
non-existent physical address
object specific hardware error

process breakpoint
process trace trap

child has exited
child was killed
child terminated abnormally
traced child has trapped
child has stopped
stopped child had continued

data input available
output buffers available
input message available
I/O error
high priority input available
device disconnected

In addition, the following signal-dependent information is available for kemel
generated signals:

Signal Field Value
SIGILL caddr_t si_addr address of faulting instruction
SIGFPE
SIGSEGV caddr_t si_addr address of faulting memory reference
SIGBUS
SIGCHLD pid_t si.....pid

int si_status
SIGPOLL long si_band

child process ill
exit value or signal
band event for POLL_IN, POLL_OUT, or
POLL_MSG

SEE ALSO

NOTES

354

sigaction(2), signal(5), waitid(2)

For SIGCHLD signals, if si_code is equal to eLD_EXITED, then si_status is equal
to the exit value of the process; otherwise, it is equal to the signal that caused the
process to change state. For some implementations, the exact value of si_addr
may not be available; in that case, si_addr is guaranteed to be on the same page as
the faulting instruction or memory reference.

signal (5)

NAME
signal - base signals

SYNOPSIS
#include <signal.h>

DESCRIPTION
A signal is an asynchronous notification of an event. A signal is said to be gen
erated for (or sent to) a process when the event associated with that signal first
occurs. Examples of such events include hardware faults, timer expiration and ter
minal activity, as well as the invocation of the kill or sigsend system calls. In
some circumstances, the same event generates signals for multiple processes. A
process may request a detailed notification of the source of the signal and the rea
son why it was generated [see siginfo(5)].

Each process may specify a system action to be taken in response to each signal sent
to it, called the signal's disposition. The set of system signal actions for a process is
initialized from that of its parent. Once an action is installed for a specific signal, it
usually remains installed until another disposition is explicitly requested by a call to
either sigaction, signal or sigset, or until the process execs [see sigaction(2)
and signal(2)]. When a process execs, all signals whose disposition has been set to
catch the signal will be set to SIG_DFL. Alternatively, a process may request that
the system automatically reset the disposition of a signal to SIG_DFL after it has
been caught [see sigaction(2) and signal(2)].

A signal is said to be delivered to a process when the appropriate action for the pro
cess and signal is taken. During the time between the generation of a signal and its
delivery, the signal is said to be pending [see sigpending(2)]. Ordinarily, this inter
val cannot be detected by an application. However, a signal can be blocked from
delivery to a process [see signal(2) and sigprocmask(2)]. If the action associated
with a blocked signal is anything other than to ignore the signal, and if that signal is
generated for the process, the signal remains pending until either it is unblocked or
the signal's disposition requests that the signal be ignored. If the signal disposition
of a blocked signal requests that the signal be ignored, and if that signal is gen
erated for the process, the signal is discarded immediately upon generation.

Each process has a signal mask that defines the set of signals currently blocked from
delivery to it [see sigprocmask(2)]. The signal mask for a process is initialized from
that of its parent.

The determination of which action is taken in response to a signal is made at the
time the signal is delivered, allowing for any changes since the time of generation.
This determination is independent of the means by which the signal was originally
generated.

The signals currently defined in sys/ signal. h are as follows:

355

signal (5)

356

Name Value Default Event
SIGHUP 1 Exit Hangup [see termio(7)]
SIGINT 2 Exit Interrupt [see termio(7)]
SIGQUIT 3 Core Quit [see termio(7)]
SIGILL 4 Core illegal Instruction
SIGTRAP 5 Core Trace/Breakpoint Trap
SIGABR'I' 6 Core Abort
SIGEMT 7 Core Emulation Trap
SIGFPE 8 Core Arithmetic Exception
SIGKILL 9 Exit Killed
SIGBUS 10 Core Bus Error
SIGSEGV 1l Core Segmentation Fault
SIGSYS 12 Core Bad System Call
SIGPIPE 13 Exit Broken Pipe
SIGALRM 14 Exit Alarm Clock
SIGTERM 15 Exit Terminated
SIGUSRI 16 Exit User Signal 1
SIGUSR2 17 Exit User Signal 2
SIGCHLD 18 Ignore Child Status
SIGPWR 19 Ignore Power Fail/Restart
SIGWINCH 20 Ignore Window Size Change
SIGURG 21 Ignore Urgent Socket Condition
SIGPOLL 22 Ignore Socket I/O Possible
SIGSTOP 23 Stop Stopped (signal)
SIGTSTP 24 Stop Stopped (user) [see termio(7)]
SIGCONT 25 Ignore Continued
SIGTTIN 26 Stop Stopped (tty input) [see termio(7)]
SIGTTOU 27 Stop Stopped (tty output) [see termio(7)]
SIGVTALRM 28 Exit Virtual Timer Expired
SIGPROF 29 Exit Profiling Timer Expired
SIGXCPU 30 Core CPU time limit exceeded [see getrlimit(2)]
SIGXFSZ 31 Core File size limit exceeded [see getrlimit(2)]

Using the signal, sigset or sigaction system call, a process may specify one of
three dispositions for a signal: take the default action for the signal, ignore the sig
nal, or catch the signal.

Default Action: SIG_DFL
A disposition of SIG_DFL specifies the default action. The default action for each
signal is listed in the table above and is selected from the follOWing:

Exit When it gets the signal, the receiving process is to be terminated with all
the consequences outlined in exit(2).

Core When it gets the signal, the receiving process is to be terminated with all
the consequences outlined in exit(2). In addition, a "core image" of the
process is constructed in the current working directory.

Stop When it gets the signal, the receiving process is to stop.

signal (5)

Ignore When it gets the signal, the receiving process is to ignore it. This is identi
cal to setting the disposition to SIG_IGN.

Ignore Signal: SIG_IGN
A disposition of SIG_IGN specifies that the signal is to be ignored.

Catch Sig nal: function address

NOTES

A disposition that is a function address specifies that, when it gets the signal, the
receiving process is to execute the signal handler at the specified address. Nor
mally, the signal handler is passed the signal number as its only argument; if the
disposition was set with the sigaction function however, additional arguments
may be requested [see sigaction(2)]. When the signal handler returns, the receiv
ing process resumes execution at the point it was interrupted, unless the signal
handler makes other arrangements. If an invalid function address is specified,
results are undefined.

If the disposition has been set with the sigset or sigaction function, the signal is
automatically blocked by the system while the signal catcher is executing. If a
longjmp [see setjmp(3C)] is used to leave the signal catcher, then the signal must
be explicitly unblocked by the user [see signal(2) and sigprocmask(2)].

If execution of the signal handler interrupts a blocked system call, the handler is
executed and the interrupted system call returns a -1 to the calling process with
errno set to EINTR. However, if the SA_RESTART flag is set the system call will be
transparently restarted.

The dispositions of the SIGKILL and SIGSTOP signals cannot be altered from their
default values. The system generates an error if this is attempted.

The SIGKILL and SIGSTOP signals cannot be blocked. The system silently enforces
this restriction.

Whenever a process receives a SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal,
regardless of its disposition, any pending SIGCONT signal is discarded. A process
stopped by the above four signals is said to be in a job control stop.

Whenever a process receives a SIGCONT signal, regardless of its disposition, any
pending SIGSTOP, SIGTSTP, SIGTTIN, and SIGTTOU signals are discarded. In addi
tion, if the process was stopped, it is continued.

SIGPOLL is issued when a file descriptor corresponding to a STREAMS [see
intro(2)] file has a "selectable" event pending. A process must specifically request
that this signal be sent using the I_SETSIG ioctl call. Otherwise, the process will
never receive SIGPOLL.

If the disposition of the SIGCHLD signal has been set with signal or sigset, or
with sigaction and the SA_NOCLDSTOP flag has been specified, it will only be sent
to the calling process when its children exit; otherwise, it will also be sent when the
calling process's children are stopped or continued due to job control.

For backward compatibility, the names SIGCLD, SIGIOT, and SIGIO are defined in
this header file. SIGCLD identifies the same signal as SIGCHLD. SIGIOT identifies
the same signal as SIGABRT, and SIGIO identifies the same signal as SIGPOLL.
However, new applications should use SIGCHLD, SIGABRT, and SIGPOLL.

357

signal (5)

The disposition of signals that are inherited as SIG_IGN should not be changed.

SEE ALSO

358

exit(2), getrlimit(2), intro(2), kill(2), pause(2),
sigaltstack(2), siginfo(5), signal(2), sigprocmask(2),
sigsetops(3C), sigsuspend(2), ucontext(5), wait(2)

sigaction(2),
sigsend(2),

stat (5)

NAME
stat - data returned by stat system call

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

DESCRIPTION
The system calls stat, lstat and fstat return data in a stat structure, which is
defined in stat.h and includes the following members:

dev_t
ino_t
mode_t
nlink_t
uid_t
gid_t
dev_t
off_t
time_t
time_t
time_t
long
long
char

st_dev;
st_ino;
st_mode;
st_nlink;
st_uid;
st_gid;
st_rdev;
st_size;
st_atime;
st_mtime;
st_ctime;
st_blksize;
st_blocks;
st_fstype[_ST_FSTYPSZ];

int st_aclcnt;
level_t st_level;
ulong_t st_flags; /* general purpose flag */

The following members are only valid if Enhanced Security is installed:

int st_aclcnt;
level_t st_level;
ulong_t st_flags;

The constants used in the st_mode field are also defined in this file:

#define S_IFMT /* type of file */
#define S_IAMB / * access mode bits * /
#define S_IFIFO /* fifo * /
#define S_IFCHR / * character special * /
#define S_IFDIR / * directory * /
#define S_IFNAM / * XENIX special named file * /
#define S_INSEM /* XENIX semaphore subtype of IFNAM * /
#define S_INSHD / * XENIX shared data subtype of IFNAM * /
#define S_IFBLK / * block special * /
#define S_IFREG / * regular * /
#define S_IFLNK / * symbolic link * /
#define S_ISUID / * set user id on execution * /
#define S_ISGID / * set group id on execution * /
#define S_ISVTX / * save swapped text even after use * /

359

stat (5)

#define S_IREAD /* read permission, owner */
#define S_IWRITE / * write permission, owner * /
#define S_IEXEC /* execute/search permission, owner */
#define S_ENFMT /* record locking enforcement flag */
#define S_IRWXU / * read, write, execute: owner * /
#def ine S_IRUSR / * read permission: owner * /
#define S_IWUSR / * write permission: owner * /
#define S_IXUSR /* execute permission: owner */
#define S_IRWXG / * read, write, execute: group * /
#define S_IRGRP / * read permission: group * /
#define S_IWGRP /* write permission: group */
#define S_IXGRP /* execute permission: group */
#define S_IRWXO /* read, write, execute: other */
#define S_IROTH /* read permission: other */
#define S_IWOTH 1* write permission: other * /
#define S_IXOTH 1* execute permission: other * /

The following macros are for POSIX conformance:

#define S_ISBLK{mode) block special file
#define S_ISCHR{mode) character special file
#define S_ISDIR{mode) directory file
#define S_ISFIFO(mode) pipe or fifo file
#define S_ISREG{mode) regular file

One constant used in the st_flags field is also defined in this file:

#def ine S_ISMLD / * indicates multilevel directory * /
Multilevel directories are only supported if the Enhanced Security Utilities are
installed.

SEE ALSO
stat(2), types(5)

360

stdarg(5)

NAME
stdarg - handle variable argument list

SYNOPSIS
#include <stdarg.h>

va_list pvar;
void va_start (va_list pvar, parmN);
type va_arg(va_list pvar, type);

void va_end(va_list pvar);

DESCRIPTION
This set of macros allows portable procedures that accept variable numbers of argu
ments of variable types to be written. Routines that have variable argument lists
(such as printf) but do not use stdarg are inherently non-portable, as different
machines use different argument-passing conventions.

va_list is a type defined for the variable used to traverse the list.

The va_start macro is invoked before any access to the unnamed arguments and
initializes pvar for subsequent use by va_arg and va_end. The parameter parmN is
the identifier of the rightmost parameter in the variable parameter list in the func
tion definition (the one just before the, •••). If this parameter is declared with the
register storage class or with a function or array type, or with a type that is not
compatible with the type that results after application of the default argument pro
motions, the behavior is undefined.

The parameter parmN is required under strict ANSI C compilation. In other compi
lation modes, parmN need not be supplied and the second parameter to the
va_start macro can be left empty [e.g., va_start <pvar,);]. This allows for rou
tines that contain no parameters before the ••. in the variable parameter list.

The va_arg macro expands to an expression that has the type and value of the next
argument in the call. The parameter pvar should have been previously initialized by
va_start. Each invocation of va_arg modifies pvar so that the values of successive
arguments are returned in turn. The parameter type is the type name of the next
argument to be returned. The type name must be specified in such a way so that
the type of a pointer to an object that has the specified type can be obtained Simply
by postfixing a * to type. If there is no actual next argument, or if type is not compa
tible with the type of the actual next argument (as promoted according to the
default argument promotions), the behavior is undefined.

The va_end macro is used to clean up.

Multiple traversals, each bracketed by va_start and va_end, are possible.

EXAMPLE
This example gathers into an array a list of arguments that are pointers to strings
(but not more than MAXARGS arguments) with function £1, then passes the array as a
Single argument to function f2. The number of pointers is specified by the first
argument to fl.

361

stdarg(5)

#include <stdarg.h>
#define MAXARGS 31

void f1(int n-ptrs, .•.)
{

}

va_list ap;
char * array [MAXARGS] ;
int ptr_no = 0;

if (n.....ptrs > MAXARGS)

n-ptrs = MAXARGS;

va_start(ap, n-ptrs);
while (ptr_DO < ~trs)

array [ptr_DO++] = va_arg(ap, char*);
va_end (ap) ;
f2(n.....ptrs, array);

Each call to f1 shall have visible the definition of the function or a declaration such
as

void f1(int, •.•)

SEE ALSO
vprintf(3S)

NOTES

362

It is up to the calling routine to specify in some manner how many arguments there
are, since it is not always possible to determine the number of arguments from the
stack frame. For example, execl is passed a zero pointer to signal the end of the
list. printf can tell how many arguments there are by the format. It is non
portable to specify a second argument of char, short, or float to va_arg, because
arguments seen by the called function are not char, short, or float. C converts
char and short arguments to int and converts float arguments to double before
passing them to a function.

term(5)

NAME
term - conventional names for terminals

DESCRIPTION
Terminal names are maintained as part of the shell environment in the environment
variable TERM [see sh(l), profile(4), and environ(5)]. These names are used by
certain commands [for example, tabs, tput, and vi] and certain functions [for
example, see curses(3curses)].

Files under lusrlshare/lib/terminfo are used to name terminals and describe
their capabilities. These files are in the format described in terminfo(4). Entries in
terminfo source files consist of a number of comma-separated fields. To print a
description of a terminal term, use the command infocnrp -I term [see
infocnp(lM)]. White space after each comma is ignored. The first line of each ter
minal description in the terminfo database gives the names by which terminfo
knows the terminal, separated by bar (I) characters. The first name given is the
most common abbreviation for the terminal [this is the one to use to set the environ
ment variable TERMINFO in $HOMEI .profile; see profile(4)], the last name given
should be a long name fully identifying the terminal, and all others are understood
as synonyms for the terminal name. All names but the last should contain no
blanks and must be unique in the first 14 characters; the last name may contain
blanks for readability.

Terminal names (except for the last, verbose entry) should be chosen using the fol
lowing conventions. The particular piece of hardware making up the terminal
should have a root name chosen, for example, for the AT&T 4425 terminal,
att442S. This name should not contain hyphens, except that synonyms may be
chosen that do not conflict with other names. Up to 8 characters, chosen from the
set a through z and 0 through 9, make up a basic terminal name. Names should
generally be based on original vendors rather than local distributors. A terminal
acquired from one vendor should not have more than one distinct basic name. Ter
minal sub-models, operational modes that the hardware can be in, or user prefer
ences should be indicated by appending a hyphen and an indicator of the mode.
Thus, an AT&T 4425 terminal in 132 column mode is att442S-w. The following
suffixes should be used where possible:

Suffix Meaning Example
-w Wide mode (more than 80 columns) att442S-w
-am With auto. margins (usually default) vt100-am
-nam Without automatic margins vt 10 O-nam
-n Number of lines on the screen
-na No arrow keys (leave them in local)
-np Number of pages of memory
-rv Reverse video

aaa-60
cl00-na
cl00-4p
att441S-rv

To avoid conflicts with the naming conventions used in describing the different
modes of a terminal (for example, -w), it is recommended that a terminal's root
name not contain hyphens. Further, it is good practice to make all terminal names
used in the terminfo(4) database unique. Terminal entries that are present only for
inclusion in other entries via the use= facilities should have a '+' in their name, as in
441S+nl.

363

term (5)

364

Here are some of the known terminal names: (For a complete list, enter the com
mand 1s -C lusrlshare/lib/tenninfol?)

2621,hp2621 Hewlett-Packard 2621 series
2631 Hewlett-Packard 2631 line printer
2631-c Hewlett-Packard 2631 line printer, compressed

mode
2631-e
2640,hp2640
2645,hp2645
3270
33,tty33
35,tty35
37,tty37
4000a
4014,tek4014
40,tty40
43,tty43
4410,5410
4410-nfk,5410-nfk
4410-nsl,5410-ns1
4410-w,5410-w
4410vl,5410vl
4410vl-w,5410vl~

4418,5418
4418-w,5418-w
4420
4424
4424-2

4425,5425
4425-fk,5425-fk
4425-n1,5425-nl

4425-w,5425-w
4425~fk,5425-~fk

4425-n1-w,5425-nl~

4426

Hewlett-Packard 2631 line printer, expanded mode
Hewlett-Packard 2640 series
Hewlett-Packard 2645 series
mM Model 3270
AT&T Teletype Model 33 KSR
AT&T Teletype Model 35 KSR
AT&T Teletype Model 37 KSR
Trendata 4000a
TEKTRONIX 4014
AT&T Teletype Dataspeed 40/2
AT&T Teletype Model 43 KSR
AT&T 4410/5410 in 8O-column mode, version 2
AT&T 4410/5410 without function keys, version 1
AT&T 4410/5410 without pIn defined
AT&T 4410/5410 in 132-column mode
AT&T 4410/5410 in 80-column mode, version 1
AT&T 4410/5410 in 132-column mode, version 1
AT&T 5418 in 80-column mode
AT&T 5418 in 132-column mode
AT&T Teletype Model 4420
AT&T Teletype Mode14424
AT&T Teletype Model 4424 in display function
group ii
AT&T 4425/5425
AT&T 4425/5425 without function keys
AT&T 4425/5425 without changing labels in 80-
column mode
AT&T 4425/5425 in 132-column mode
AT&T 4425/5425 without function keys in 132-
column mode
AT&T 4425/5425 without changing labels in 132-
column mode
AT&T Teletype Model4426S

FILES

450
450-12
500,att500
510,510a
513bct,att513
5320
5420_2
5420_2-w
610, 610bct
610-w,610bct-w
630, 630M'l'G
735,ti
745
dumb

hp
lp
pt505
pt505-24
sync

DASI450 (same as Diablo 1620)
DASI 450 in 12-pitch mode
AT&T-IS 500 terminal
AT&T 510/51Oa in 80-column mode
AT&T 513 bet terminal
AT&T 5320 hardcopy terminal
AT&T 5420 model 2 in 80-column mode
AT&T 5420 model 2 in 132-column mode
AT&T 610 bct terminal in 80-column mode
AT&T 610 bet terminal in 132-column mode
AT&T 630 Multi-Tasking Graphics terminal
Texas Instruments TI735 and TI725
Texas Instruments TI745

term (5)

generic name for terminals that lack reverse line
feed and other special escape sequences
Hewlett-Packard (same as 2645)
generic name for a line printer
AT&T Personal Terminal 505 (22 lines)
AT&T Personal Terminal 505 (24-line mode)
generic name for synchronous Teletype Model
4540-compatible terminals

Commands whose behavior depends on the type of terminal should accept argu
ments of the form -Tterm where term is one of the names given above; if no such
argument is present, such commands should obtain the terminal type from the
environment variable TERM, which, in turn, should contain term.

/usr/share/lib/terminfo/? /* compiled terminal description database

SEE ALSO
curses(3curses), environ(5), infocq>(lM), profile(4), sh(l), stty(l), tabs (1),
terminfo(4), tput(l), vi(1)

365

types (5)

NAME
types - primitive system data types

SYNOPSIS
#include <sys/types.h>

DESCRIPTION

366

The data types defined in types.h are used in UNIX system code. Some data of
these types are accessible to user code:

typedef struct { int r[l]; } *physadr;
typedef long clock_t;
typedef long daddr_t;
typedef char * caddr_t;
typedef unsigned char unchar;
typedef unsigned short ushort;
typedef unsigned int uint;
typedef unsigned long ulong;
typedef unsigned long ino_t;
typedef long uid_t;
typedef long gid_t;
typedef ulong nlink_t;
typedef ulong mode_t;
typedef short cnt_t;
typedef long time_t;
typede£ int label_t[lO];
typedef ulong dev_t;
typedef long off_t;
typedef long pid_t;
typedef ulong paddr_t;
typedef int key_t;
typedef unsigned char use_t;
typedef short sysid_t;
typedef short index_t;
typedef short lock_t;
typedef unsigned int size_t;
typedef long clock_t;
typedef long pid_tf
typedef int ssize_t;

The form daddr_t is used for disk addresses except in an i-node on disk, see fs(4).
Times are encoded in seconds since 00:00:00 UTe, January 1, 1970. The major and
minor parts of a device code specify kind and unit number of a device and are
installation-dependent. Offsets are measured in bytes from the beginning of a file.
The label_t variables are used to save the processor state while another process is
running.

ucontext (5)

NAME
ucontext - user context

SYNOPSIS
#include <ucontext.h>

DESCRIPTION
The ucontext structure defines the context of a thread of control within an execut
ing process.

This structure includes at least the following members:

ucontext_t
sigset_t
stack_t
mcontext_t

*uc_link
uc_sigmask
uc_stack
uc_mcontext

uc_link is a pointer to the context that is to be resumed when this context returns.
If uc_link is equal to 0, then this context is the main context, and the process exits
when this context returns. The uc_link field is only meaningful for contexts
created using makecontext.

uc_sigmask defines the set of Signals that are blocked when this context is active
[see sigprocmask(2)].

uc_stack defines the stack used by this context [see sigaltstack(2)].

uc_mcontext contains the saved set of machine registers and any implementation
specific context data. Portable applications should not modify or access
uc_mcontext.

SEE ALSO
getcontext(2),
sigprocmask(2)

makecontext(3C), sigaction(2), sigaltstack(2),

367

values (5)

NAME
values - machine-dependent values

SYNOPSIS
#include <values.h>

DESCRIPTION

368

This file contains a set of manifest constants, conditionally defined for particular
processor architectures.

The model assumed for integers is binary representation (one's or two's comple
ment), where the sign is represented by the value of the high-order bit.

BITS (type) The number of bits in a specified type (for example, int).

HI BITS

HIBITL

HIBITI

MAXSHORT

MAXLONG

MAXINT

The value of a short integer with only the high-order bit set.

The value of a long integer with only the high-order bit set.

The value of a regular integer with only the high-order bit set.

The maximum value of a signed short integer.

The maximum value of a signed long integer.

The maximum value of a signed regular integer.

MAXFLOAT, LN_MAXFLOAT
The maximum value of a single-precision floating-point number,
and its natural logarithm.

MAXDOUBLE, LN_MAXDOUBLE
The maximum value of a double-precision floating-point number,
and its natural logarithm.

MAXLONGDOUBLE, LN_MAXLONGDOUBLE
The maximum value of a quad-precision floating-point number, and
its natural logarithm.

MINFLOAT,LN_MINFLOAT
The minimum positive value of a single-precision floating-point
number, and its natural logarithm.

MINDOUBLE,LN_MINDOUBLE
The minimum positive value of a double-precision floating-point
number, and its natural logarithm.

MINLONGDOUBLE, LN_MINLONGDOUBLE

FSIGNIF

DSIGNIF

LDSIGNIF

The minimum value of a quad-precision floating-point number, and
its natural logarithm.

The number of significant bits in the mantissa of a single-precision
floating-point number.

The number of Significant bits in the mantissa of a double-precision
floating-point number.

The number of significant bits in the mantissa of a quad-precision
floating-point number.

values(5)

SEE ALSO
intro(3), math(S)

369

varargs (5)

NAME
varargs - handle variable argument list

SYNOPSIS
#inelude <varargs.h>

va_alist

va_del

va_list pvar;

void va_start(va_list pvar);

type va_arg(va_list pvar, type);

void va_end(va_list pvar);

DESCRIPTION
This set of macros allows portable procedures that accept variable argument lists to
be written. Routines that have variable argument lists [such as printf(3S)] but do
not use varargs are inherently non-portable, as different machines use different
argument-passing conventions.

va_alist is used as the parameter list in a function header.

va_del is a declaration for va_alist. No semicolon should follow va_del.

va_list is a type defined for the variable used to traverse the list.

va_start is called to initialize pvar to the beginning of the list.

va_arg will return the next argument in the list pointed to by pvar. type is the type
the argument is expected to be. Different types can be mixed, but it is up to the rou
tine to know what type of argument is expected, as it cannot be determined at run
time.

va_end is used to clean up.

Multiple traversals, each bracketed by va_start and va_end, are possible.

EXAMPLE

370

This example is a possible implementation of exeel [see exee(2)].

#inelude <unistd.h>
#inelude <varargs.h>
#define MAXARGS 100

/* exeel is ealled by
exeel(file, arg1, arg2, ... , (ehar *)0);

*/
exeel(va_alist)
va_del
{

va_list ap;
ehar *file;
ehar *args[MAXARGS];
int argno = 0;

va_start (ap) ;

/* assumed big enough*/

varargs (5)

file = va_arg(ap, char *);
while «args[argno++] = va_arg(ap, char *» != 0)

va_end (ap) ;
return execv(file, args);

SEE ALSO

NOTES

exec(2), printf(3S), stdarg(5), vprintf(3S)

It is up to the calling routine to specify in some manner how many arguments there
are, since it is not always possible to determine the number of arguments from the
stack frame. For example, execl is passed a zero pointer to signal the end of the
list. printf can tell how many arguments are there by the format.

It is non-portable to specify a second argument of char, short, or float to va_arg,
since arguments seen by the called function are not char, short, or float. C con
verts char and short arguments to int and converts float arguments to double
before passing them to a function.

stdarg is the preferred interface.

371

wstat(5)

NAME
wstat - wait status

SYNOPSIS
#include <sys/wait.h>

DESCRIPTION
When a process waits for status from its children via either the wait or waitpid
function, the status returned may be evaluated with th~ following macros, defined
in sys/wait.h. These macros evaluate to integral expressions. The stat argument
to these macros is the integer value returned from wait or waitpid.

WIFEXITED(stat) Evaluates to a non-zero value if status was returned for a
child process that terminated normally.

WEXITSTATUS (stat) If the value of WIFEXlTED(stat) is non-zero, this macro
evaluates to the exit code that the child process passed to
_exit or exit, or the value that the child process returned
from main.

WIFSIGNAL.ED(stat) Evaluates to a non-zero value if status was returned for a
child process that terminated due to the receipt of a signal.

WTERMSIG(stat) If the value of WIFSIGNALED(stat) is non-zero, this macro
evaluates to the number of the signal that caused the termi
nation of the child process.

WIFSTOPPED(stat) Evaluates to a non-zero value if status was returned for a
child process that is currently stopped.

WSTOPSIG(stat) If the value of WIFSTOPPED(stat) is non-zero, this macro
evaluates to the number of the signal that caused the child
process to stop.

WIFCONTlNUED(stat) Evaluates to a non-zero value if status was returned for a
child process that has continued.

WCOREDUMI?(stat) If the value of WIFSIGNALED(stat) is non-zero, this macro
evaluates to a non-zero value if a core image of the ter
minated child was created.

SEE ALSO
exit(2), wait(2), waitpid(2)

372

intro(7)

NAME
intro - introduction to special files

DESCRIPTION
This section describes various special files that refer to specific hardware peri
pherals, and UNIX system device drivers. STREAMS [see intro(2)] software drivers,
modules and the STREAMS-generic set of ioctl(2) system calls are also described.

For hardware related files, the names of the entries are generally derived from
names for the hardware, as opposed to the names of the special files themselves.
Characteristics of both the hardware device and the corresponding UNIX system
device driver are discussed where applicable.

Disk device file names are in the follOWing format:

/dev/ {r}dsk/ {lo O}s# For integral disks

/dev/ {r}dsk/c#t#d#s# For SCSI disks

where r indicates a raw interface to the disk, the c# indicates the SCSI host adapter
number, t# indicates the SCSI target ID of the device, d# indicates the device
attached to the controller and s# indicates the section number of the partitioned
device.

373

adsc(7)

NAME
adsc - Adaptec 1542A SCSI host adapter subsystem

DESCRIPTION
The Adaptec 1542A host adapter subsystem enables SCSI target drivers (such as
sd01, st01, and so on) to communicate on the SCSI bus with target controllers and
logical units. This driver implements the Portable Device Interface (PDI) for such
PDI target drivers.

It is also possible to access the SCSI-bus subsystem directly by using the driver's
pass-through interface. This allows you to issue sb control blocks directly to the
target controller. To find the appropriate pass-through device to use, while any
device is being accessed through the target driver (for example,sd01), use the
B_GETDEV ioctl to get the major and minor numbers of the pass-through node.
This node may be created and opened for pass-through use (SDI_SEND ioctl).

ioetl Calls
The following ioctl(2) commands are supported by this driver:

SDI_SEND
Sends a pass-through command (SCSI control block) to a target controller,
bypassing the associated target driver.

SDI_BRESET
Resets the SCSI bus.

B_REDT
Reads the extended Equipped Device Table (EDT) data structure that is
stored in the adsc driver's internal data structure.

B_GETTYPE

Files

Returns the bus name (for example, SCSI) and device driver name of a
specific device.

/usr/include/sys/ad1542.h
/usr/include/sys/scsi.h
/usr/include/sys/sdi.h
/usr/include/sys/sdi_edt.h
/etc/conf/pack.d/adsc/space.c

NOTICES
Adaptec SCSI controllers cannot be used reliably with Emulex SCSI/ESDI bridge
controllers (also known as AT&T DCM/4E). In the future, a hardware and/or
software fix may be implemented.

REFERENCES
dpt(7), ioctl(2), mcis(7), sc01(7), sd01(7), st01(7), sw01(7), wd7000(7)

374

alp(7)

NAME
alp - algorithm pool management module

DESCRIPTION
The STREAMS module alp maintains a pool of algorithms (in the form of STREAMS
compatible subroutines) that may be used for processing STREAMS data messages.
Interfaces are defined allowing modules to request and initiate processing by any of
the algorithms maintained in the pool. It is expected to help centralize and stand
ardize the interfaces to algorithms that now represent a proliferation of similar
but-different STREAMS modules. Its major use is envisioned as a central registry of
available code set conversion algorithms or other types of common data
manipulating routines.

An algorithm pool is a registry (or pool) of available functions; in this case, routines
for performing transformations on STREAMS data messages. Registered functions
may keep information on attached users, which means that algorithms need not be
stateless, but may maintain extensive state information related to each connection.
An algorithm from the pool is called by another in-kernel module with arguments
that are a STREAMS data message and a unique identifier. If a message is passed
back to the caller, it is the algorithm's output, otherwise the algorithm may store
partially convertible input until enough input is received to give back output on a
subsequent call.

This pool is one means for providing a consistent and flexible interface for code set
conversion within STREAMS modules, especially kbd, but it may also be used to pro
vide other services that are commonly duplicated by several modules.

The alp module contains some subroutines dealing with its (minor) role as a
module, a data definition for an algorithm list, connection and disconnection rou
tines, and a search routine for finding registered items. The module interface incor
porated into alp serves the purpose of providing an ioctl interface, so that users
can find out what algorithms are registered [see alpq(l}].

The programmer of a function for use with alp provides a simple module with a
simple specified interface. The module must have an initialization routine
(xxxinit) which is called at system startup time to register itself with alp, an open
routine, and an interface routine (which actually implements the algOrithm).

The registry method of dynamically building the list of available functions obviates
the need for recompiling modules or otherwise updating a list or reconfiguring
other parts of the system to accommodate additions or deletions. To install a new
function module, one merely links it with the kernel in whatever manner is stan
dard for that system; there is no need for updating or re-configuring any other parts
of the kernel (including alp itself). The remainder of this discussion concerns the
in-kernel operation and use of the module.

Calling Sequence
An algorithm is called from the pool by first requesting a connection via the alp
connection interface. The alp module returns the function address of an interface
routine, and fills in a unique identifier (id) for the connection. The returned func
tion address is NULL on failure (and id is undefined). This is a sample of making a
connection to a function managed by alp:

375

alp (7)

376

unsigned char *name;
caddr_t id;
mblk_t *(*func)();
mblk_t *(*alp_con(»();

/* algorithm name */
/* unique id */
/* func returns ptr to mblk_t */
/* returns pointer to mblk_t */

if (func = alp_con(name, (caddr_t) &id»
regular processing;

else
error processing;

Once the connection has been made, the interface routine can be called directly by
the connecting module to process messages:

mblk_t *inp, *outp;
mblk_t *(*func)();

outp = (*func)(mp, id);
mp = NULL; /* mp cannot be re-used! */
if (outp)

regular processing;

If the interface routine processed the entire message, then outp is a valid pointer to
the algorithm's output message. If, however, the routine needs more information,
or is buffering something, outp will be a null pointer. In either case, the original
message (mp) may not be subsequently accessed by the caller. The interface routine
takes charge of the message mp, and may free it or otherwise dispose of it (it may
even return the same message). The caller may pass a null message pointer to an
interface routine to cause a flush of any data being held by the routine; this is useful
for end-of-file conditions to insure that all data have been passed through. (Inter
face routines must thus recognize a null message pointer and deal with it.)

Synchronization between input and output messages is not guaranteed for all items
in the pool. If one message of input does not produce one message of output, this
fact should be documented for that particular module. Many multibyte code set
conversion algorithms, to cite one instance, buffer partial sequences, so that if a
multibyte character happens to be spread across more than one message, it may
take two or more output messages to complete translation; in this case, it is only
possible to synchronize when input message boundaries coincide with character
boundaries.

Building an Algorithm for the Pool
As mentioned, the modules managed by alp are implemented as simple
modules-not STREAMS modules-each with an initialization routine, an open rou
tine, and a user-interface routine. The initialization routine is called when the sys
tem is booted and prior to nearly everything else that happens at boot-time. The
routine takes no arguments and its sole purpose is to register the algorithm with the
alp module, so that it may subsequently accessed. Any other required initialization
may also be performed at that time. A generic initialization routine for a module
called GEN, with prefix gen is as follows:

alp(7)

geninit()
{

}

mblk_t *genfunc(); 1* interface routine *1
int rval; 1* return value from registrar *1

rval = alp_register(genfunc, "name", "explanation");
if (rval) emn_err(CE_WARN, "warning message");

The registration routine, alp_register takes three arguments and returns zero if
successful. The arguments are (1) a pointer to the algorithm's entry point (in this
case, the function genfunc), (2) a pointer to its name, and (3) a pointer to a charac
ter string containing a brief explanation. The name should be limited to under 16
bytes, and the explanation to under 60 bytes, as shown in the following example.
Neither the name nor the explanation need include a newline.

i = alp_register(sjisfunc, "stou",
"Shift-JIS to UJIS converter");

It is possible for a single module to contain several different, related algorithms,
which can each be registered separately by a single init routine.

A module's open routine is called by alp_con when a connection is first requested
by a user (that is, a module that wishes to use it). The open routine takes two argu
ments. The first argument is an integer; if it is non-zero, the request is an open
request, and the second argument is unused. The function should allocate a unique
identifier and return it as a generic address pointer. If the first argument is zero, the
request is a close request, and the second argument is the unique identifier that was
returned by a previous open request, indicating which of (potentially several) con
nections is to be closed. The routine does any necessary clean-up and closes the
connection; thereafter, any normal interface requests on that identifier will fail. This
use of unique identifiers allows these modules to keep state information relating to
each open connection; no format is imposed upon the unique identifier, so it may
contain any arbitrary type of information, equivalent in size to a core address; alp
and most callers will treat it as being of type caddr_t, in a manner similar to the
private data held by each instantiation of a STREAMS module.

A skeleton for the gen module's open routine is:

genopen(arg, id)
int arg;
caddr_t id;

{

if (arg){

}

open processing;
return (unique-id);

close processing for id;
return(O);

3n

alp(7)

Once a connection has been made, users may proceed as in the example in the pre
vious section. When the connection is to be closed (for example, the connecting
module is being popped), a call is made to alp_discon, passing the unique id and
the name:

caddr_t id;
char *name;
mblk_t *alp_discon (), *mp;

mp = alp_discon(name, id);
if (mp)

process "left-over" data;

If the disconnect request returns a valid message pointer (mp) then there was unpro
cessed or partially processed data left in an internal buffer, and it should be dealt
with by the caller (for example, by flushing it or sending it to the neighboring
module).

The ioctl and Query Interfaces
A kernel-level query interface is provided in addition to the query interface sup
ported by the alpq command. The routine alp_query takes a single argument, a
pointer to a name. If the name matches a registered function, alp_query returns a
pointer to the function's explanation string, otherwise it returns a null pointer. A
calling example is:

unsigned char *alp_query(), *name, *expl;

if (expl = alp_query(name»
regular processing;

else
error processing;

The ioctl interface provides calls for querying registered functions (for which the
explanation discussed above is necessary); this is supported by the alpq command,
which may be used whenever user-level programs need the associated information.

Uses
The alp module can be used to replace various kernel-resident code set conversion
functions in international or multi-language environments. The KBD subsystem
(which supplies code set conversion and keyboard mapping) supports the use of
alp algorithms as processing elements.

Since state information may be maintained, functions may also implement process
ing on larger or more structured data elements, such as transaction records and net
work packets. Currently, STREAMS CPU priority is assumed by alp or should be set
individually by interface and open routines.

EXAMPLES

378

/*
* This is a SAMPLE module that registers with ALP and
* performs a one-message delay.
*/

#include <sys/types.h>
#include <sys/stream.h>

alp(7)

#include <sys/stropts.h>
#include <sys/kmem.h>
#include <sys/alp.h>

static mblk_t *dely();
caddr_t delyopen();

/*
* OUr state structure. Keeps its own address and a pointer.
*/

struct dstruct {
caddr_t d_unique;
mblk_t *d_1II>;

};

/*
* The name is "Dely". It has an open routine "delyopen"
* and an interface "dely".
*/

static struct algo delyalgo
{

};

/*

0, (queue_t *) 0, (queue_t *) 0, dely, delyopen,
(unsigned char *) "Dely",
(unsigned char *) "One Message Delay Buffer",
(struct algo *) 0

* This is the sysinit routine, called when the system is
* being brought up. It registers "Dely" with ALP.
*/

delyinit()
{

if (alp_register(&delyalgo» /* then register with ALP */
printf("DELY: register failed\n");

}

/*
* This is the interface routine itself.
* Holds onto "mp" and returns whatever it had before.
*/

static mblk_t *
delY(1II>, id)

mblk_t *mp;
caddr_t id;

{

register mblk_t *rp;
register struct dstruct *d;

d = (struct dstruct *) id; /* clarify the situation */

379

alp(7)

}

rp = d->d_IIP;
d->d_IIP = lIP;
return(rp); /* return the previous message */

/*
* The open (and. close) routine. Use kmeliLalloc() to get
* a private structure for saving state info.
*/

caddr_t
delyopen(arg, id)

int arg; /* 1 = open, 0 = close */
caddr_t id; /* ignored on open; unique id on close * /

register struct dstruct *d;
register mblk_t *rp;

if (! arg) { /* close processing */

}

d = (struct dstruct *) id;
d->d_unique = (caddr_t) -1;
rp = d->d_IIP;
krnem_free(d, sizeof(struct dstruct»;
return ((caddr_t) rp);

/* otherwise, open processing */
d = (struct dstruct *) kmem_zalloc(sizeof(struct dstruct),

IQCNOSLEEP) ;
d->d_unique = (caddr_t) &:d;
return ((caddr_t) d);

}

SEE ALSO
alpq(l), kbd,(7)

380

ARP(7}

NAME
ARP - Address Resolution Protocol

SYNOPSIS
#include <sys/socket.h>
#include <net/if_arp.h>
#include <netinet/in.h>

s socket (AF _INET, SOCK_DGRAM, 0);

d open ("/dev/arp", O_RDWR);

DESCRIPTION

USAGE

ARP is a protocol used to map dynamically between Internet Protocol (IP) and
lOMb/s Ethernet addresses. It is used by all the lOMb/s Ethernet datalink provid
ers (interface drivers). It is not specific to the Internet Protocol or to the lOMb/s
Ethernet, but this implementation currently supports only that combination. The
STREAMS device /dev/arp is not a Transport Level Interface (TLI) transport pro
vider and may not be used with the TLI interface.

ARP caches IP-to-Ethernet address mappings. When an interface requests a map
ping for an address not in the cache, ARP queues the message that requires the map
ping and broadcasts a message on the associated network requesting the address
mapping. If a response is provided, the new mapping is cached and any pending
message is transmitted. ARP will queue at most one packet while waiting for a
mapping request to be responded to; only the most recently transmitted packet is
kept.

To facilitate communications with systems which do not use ARP, ioctl requests
are provided to enter and delete entries in the Ip-to-Ethernet tables.

#include <sys/sockio.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>

struct arpreq arpreq;

ioctl (s, SIOCSARP, (caddr_t) &arpreq) ;
ioctl (s, SIOCGARP, (caddr_t) &arpreq) ;
ioctl(s, SIOCDARP, (caddr_t)&arpreq);

Each ioctl request takes the same structure as an argument. SIOCSARP sets an ARP
entry, SIOCGARP gets an ARP entry, and SIOCDARP deletes an ARP entry. These
ioctl requests may be applied to any Internet family socket descriptor s, or to a
descriptor for the ARP device, but only by the privileged user. The arpreq struc
ture contains:

/*
* ARP ioctl request
*/
struct arpreq {

struct sockaddr arp~a;
struct sockaddr arp_ha;
int arp_flags;

/* protocol address */
/* hardware address */
/* flags */

381

ARP(7)

} ;

/* arp_flags field values */
#define ATF_lNUSE OxOl /* entry in use */
#define ATF_COM Ox2 /* completed entry (arp_ha valid) */
#define ATF_PERM Ox4 /* permanent entry */
#define ATF_PUBL Ox8 /* publish (respond for other host) */
#define ATF_USETRAILERS OxlO /* send trailer packets to host */

The address family for the arp-pa sockaddr must be AF _INET; for the arp_ha
sockaddr it must be AF _UNSPEC. The only flag bits that may be written are
ATF _PERM, ATF _PUBL and ATF _USETRAILERS. ATF _PERM makes the entry per
manent if the ioctl request succeeds. The peculiar nature of the ARP tables may
cause the ioctl request to fail if too many permanent IP addresses hash to the same
slot. ATF _PUBL specifies that the ARP code should respond to ARP requests for the
indicated host coming from other machines. This allows a host to act as an ARP
server, which may be useful in convincing an ARP-only machine to talk to a non
ARP machine.

ARP is also used to negotiate the use of trailer IP encapsulations; trailers are an alter
nate encapsulation used to allow efficient packet alignment for large packets
despite variable-sized headers. Hosts that wish to receive trailer encapsulations so
indicate by sending gratuitous ARP translation replies along with replies to IP
requests; they are also sent in reply to IP translation replies. The negotiation is thus
fully symmetrical, in that either or both hosts may request trailers. The
ATF _USETRAILERS flag is used to record the receipt of such a reply, and enables the
transmission of trailer packets to that host.

ARP watches passively for hosts impersonating the local host (that is, a host which
responds to an ARP mapping request for the local host's address).

SEE ALSO

382

arp(lM), if(7), ifconfig(lM), inet(7)

Plummer, Dave, " An Ethernet Address Resolution Protocol -or- Converting Network Pro
tocol Addresses to 48.bit Ethernet Addresses for Transmission on Ethernet Hardware ," RFC
826, Network Information Center, SRI International, Menlo Park, Calif., November
1982

Leffler, Sam, and Michael Karels, "Trailer Encapsulations," RFC 893, Network Infor
mation Center, SRI International, Menlo Park, Calif., April 1984

asyc(7)

NAME
asyc - asynchronous serial port

DESCRIPTION

FILES

The asyc driver supports both the system board serial port and an additional serial
adapter simultaneously. Dp to two serial ports are supported. If an adapter for a
port is not installed, an attempt to open it will fail. Depending on your system pro
cessor type and DART, the port can be programmed for speed (50-38400 baud),
character length, and parity. Output speed is always the same as input speed. The
port behaves as described in termio (7).

The asynchronous port is a character-at-a-time device for both input and output.
This characteristic both limits the bandwidth that can be achieved over a line, and
increases the interrupt loading on the central processor. File transfer programs
such as uucp(lC) may be able to function well at speeds greater than 9600 baud,
depending on your system processor type and DART.

The baud rates of the serial adapter programmable baud-rate generator do not
correspond exactly with system baud rates. In particular, setting BO will cause a
disconnect, setting EXTA will set 19200 baud, and setting EXTB will set 38400 baud.
It is not possible to directly set 2000, 3600, or 7200 baud. The asynchronous ports
driver supports line signal (hardware) flow control when the device node
/dev/ttyO?h is used. The /dev/ttyO?s ports are software flow control nodes as
are the /dev/ttyO? nodes.

/dev/tty* /dev/term/*

SEE ALSO
signal(2), termio(7)

383

clone(7)

NAME
clone - open any major/minor device pair on a STREAMS driver

DESCRIPTION
clone is a STREAMS software driver that finds and opens an unused major/minor
device on another STREAMS driver. The major device number passed to clone dur
ing open corresponds to the clone driver and the minor device number
corresponds to the target driver. Each open results in a separate stream to a previ
ously unused major/minor device.

The clone driver consists solely of an open function. This open function performs
all of the necessary work so that subsequent system calls [including close(2)]
require no further involvement of clone.

clone will generate an ENXIO error, without opening the device, if the major / minor
device number provided does not correspond to a valid major/minor device, or if
the driver indicated is not a STREAMS driver.

NOTICES
Multiple opens of the same major/minor device cannot be done through the clone
interface. Executing stat(2) on the file system node for a cloned device yields a dif
ferent result from executing fstat using a file descriptor obtained from opening
the node.

REFERENCES
log(7)

384

connld (7)

NAME
connld -line discipline for unique stream connections

DESCRIPTION
connld is a STREAMS-based module that provides unique connections between
server and client processes. It can only be pushed [see streamio(7)] onto one end
of a STREAMS-based pipe that may subsequently be attached to a name in the file
system name space. After the pipe end is attached, a new pipe is created internally
when an originating process attempts to open(2) or creat(2) the file system name.
A file descriptor for one end of the new pipe is packaged into a message identical to
that for the ioctl I_SENDFD [see streamio(7)] and is transmitted along the stream
to the server process on the other end. The originating process is blocked until the
server responds.

The server responds to the I_SENDFD request by accepting the file descriptor
through the I_RECVFD ioctl message. When this happens, the file descriptor
associated with the other end of the new pipe is transmitted to the originating pro
cess as the file descriptor returned from open(2) or creat(2).

If the server does not respond to the I_SENDFD request, the stream that the connld
module is pushed on becomes uni-directional because the server will not be able to
retrieve any data off the stream until the I_RECVFD request is issued. If the server
process exits before issuing the I_RECVFD request, the open(2) or the creat(2) sys
tem calls will fail and return -1 to the originating process.

When the connld module is pushed onto a pipe, messages going back and forth
through the pipe are ignored by connld.

On success, an open of connld returns O. On failure, ermo is set to the following
values:

EINVAL

EINVAL

EPIPE

ENOMEM

ENXIO

EAGAIN

ENFILE

SEE ALSO
streamio(7)

A stream onto which connld is being pushed is not a pipe or the
pipe does not have a write queue pointer pointing to a stream head
read queue.

The other end of the pipe onto which connld is being pushed is
linked under a multiplexor.

connld is being pushed onto a pipe end whose other end is no
longer there.

An internal pipe could not be created.

An M_HANGUP message is at the stream head of the pipe onto which
connld is being pushed.

Internal data structures could not be allocated.

A file table entry could not be allocated.

385

console (7)

NAME
console - STREAMS-based console interface

DESCRIPTION

FILES

The file / dev / console is the system console and refers to an asynchronous serial
data line originating from the system board.

The file /dev/contty refers to a second asynchronous serial data line originating
from the system board.

Both /dev/console and /dev/contty access the STREAMS-based console driver,
which when used in conjunction with the STREAMS line discipline module ldterm,
supports the termio(7) and termios(2) processing.

/dev/console
/dev/contty

SEE ALSO
crash(lM), ldterm(7), termio(7), termios(2)

386

cram (7)

NAME
cram - CMOS RAM interface

DESCRIPTION
The cram driver provides an interface to the 64 bytes of battery backed-up RAM.
This memory contains information such as diagnostics and configuration informa
tion.

ioetl Calls
CMOSREAD

This call is used to read the contents of one of the CMOS RAM locations.
The argument to the ioctl is the address of a buffer of two unsigned char
acters, the first of which is the address to be read. The ioctl will fill in the
second byte with the data. An address less than 0 or greater than 63 will
result in an error, with errno set to ENXIO.

CMOSWRITE
This call is used to write a value into one of the CMOS RAM locations. The
argument to the ioctl is the address of a buffer of two unsigned characters,
the first of which is the address and the second of which is the value to write
at that address. An address less than 0 or greater than 63 will result in an
error, with errno set to ENXIO. Note that only the super-user may open the
CMOS RAM device for writing, and that the CMOSWRITE ioctl will fail for
any other than the super-user.

Files
Idev/cram

387

DCD(7)

NAME
DCD - Direct-Coupled Disk host adapter Subsystem

DESCRIPTION

388

The DCD subsystem consists of at least one DCD Host Controller card which has at
least one logical unit attached to it.

The DCD subsystem adds support for non-SCSI devices under SDI for use with
related target drivers. This subsystem is accessed indirectly by opening an
appropriate target driver to access a target device that is on a DCD controller.

It is also possible to access this subsystem via the pass-through driver. To find the
appropriate device to use, while the device is being accessed through the target
driver, use the B_GETDEV ioctl to get the major and minor numbers of the pass
though node. This node may either be created and/ or open for use.

There are four groups of ioctl(2) commands supported by DCD. The first group
contains the ioctl commands used by the DCD driver itself.

SDI_SEND Used to send a pass through command to a target con
troller bypassing the associated target driver.

Used to reset the bus.

For a 80386-based computer, used to determine the Driver
Interface Version supported by the driver. It returns the
structure ver_no defined in sdi .h.

The second group is used by the driver and all target drivers that use the SCSI
Driver Interface protocol to communicate with their associated target controllers.

B_GETTYPE Return the bus name (DCD) and device driver name of a
specific device.

The third group should be used by all the target drivers that use the SCSI Driver
Interface protocol to communicate with their associated target controllers. This
ioctl is not supported by the DCD driver.

Return the pass through major and minor numbers to the
calling utility to allow creation of a pass through the special
device file.

The fourth group should be used to get and set device geometry. These return or
accept the structure dsk~eom defined in sdi . h.

HA_GETPARMS Return Host adapters idea of the device geometry. This is
what the system uses during the boot sequence. This is
used by certain target drivers.

HA_SETPARMS Set the Host adapters idea of the device geometry. Note
that some Host adapters do not support this ioctl and
will result in an error.

HA_GETPPARMS Return the actual device geometry. This is the actual as
opposed to virtual device geometry.

DCD(7)

The DCD driver has a halt routine that is executed during shutdown, which allows
the controller enough time to flush the disk cache (if present) to disk. Although two
seconds are allowed for this flush, the actual timeout value is an external variable in
the DCD space.c file. You can modify this variable if a specific controller needs
more time to clear the cache.

Files
/usr/include/sys/sdi.h
/usr/include/sys/sdi_edt.h

REFERENCES
ioctl(2)

389

display (7)

NAME
display - system console display

SYNOPSIS
#include <sys/console.h>
#include <sys/kd.h>
#include <sys/vt.h>

DESCRIPTION

390

The system console (and user's terminal) is composed of two separate pieces: the
keyboard [see keyboard (7)] and the display. Because of their complexity, and
because there are three possible display interfaces (monochrome, color graphics,
and enhanced graphics adapters), they are discussed in separate manual entries.

The display normally consists of 25 lines of 80 columns each; 40-column lines are
also supported by the color/graphics adapter, and 43 lines of 80-columns each are
supported by the enhanced graphics adapter. When characters are written to the
console or one of its virtual screens (ldev/console or /dev/vtxx), the output
depends on the specific characters. All characters written to /dev/console are first
processed by the terminal interface [see tennio (7)]. For example, mapping new
line characters to carriage return plus new-line, and expanding tabs to spaces, will
be done before the follOWing processing:

x

BEL

CR

LF, VT

FF

Where x is not one of the following, displays x.

Generates a bell (audible tone, no modulation).

Places the cursor at column 1 of the current line.

Places the cursor at the same column of the next line (scrolls if the the
current line is line 25).

Clears the screen and places the cursor at line 1, column 1.

BS If the cursor is not at column 1, it is moved to the left one position on
the same line. If the cursor is at column 1 but not line 1, it is moved to
column 79 of the previous line. Finally, if the cursor is at column 1,
line 1, it is not moved.

The display can be controlled by using specific sequences of characters that are
ANSI X3.64 escape sequences preceded by the ASCII character ESC. The escape
sequences, which work on either the monochrome, color graphics, or enhanced
graphics adapter, are the following:

ESC c Clears the screen and places the cursor at line 1, column 1.

ESC Q n 'string'

ESC [n@

ESC [n '

Defines the function key n with string. The string delimiter ' may be
any character not in string. Function keys are numbered 0 through 11
(Fl = 0, F2 = 1, and so on.)

Insert character-inserts n blanks at the current cursor position.

Horizontal Position Absolute-moves active position to column given
byn.

ESC [nA

ESC[na

ESC [nB

ESC[nC

ESC[nc

ESC[nD

ESC[nd

ESC [nE

ESC [n e

ESC[nF

ESC[nG

display (7)

Cursor up-moves the cursor up n lines (default: n=l).

Horizontal Position Relative-moves active position n characters to
the right (default: n=l).

Cursor down-moves the cursor down n lines (default: n=l).

Cursor right-moves the cursor right n columns (default: n=l).

Set Cursor Type-where n is 0 (underline cursor), l(blockcursor), or
2(no cursor). 0 is the default value for n.

Cursor left-moves the cursor left n columns (default: n=l).

Vertical Position Absolute-moves active position to line given by n.
Cursor next line-moves the cursor to column 1 of the next line, then
down n-llines (default: n=l).

Vertical Position Relative-moves the active position down n lines
(default: n=l).

Cursor previous line-moves the cursor to column 1 of the current
line, then up n lines (default: n=l).

Cursor horizontal position-moves the cursor to column n of the
current line (default: n=l).

ESC [n ; m H Position cursor-moves the cursor to column m of line n (default: n=l,
m=l).

ESC [n; m f Position cursor-moves the cursor to column m of line n (default: n=l,
m=l).

ESC [n J

ESC[nK

ESC [n L

ESC [nM

ESC [n P

ESC [n S

ESC[nT

ESC[nX

Erase window--erases from the current cursor position to the end of
the window if n=O, from the beginning of the window to the current
cursor position if n=l, and the entire window if n=2 (default: n=O).

Erase line--erases from the current cursor position to the end of the
line if n=O, from the beginning of the line to the current cursor posi
tion if n=l, and the entire line if n=2 (default: n=O).

Insert line-inserts n lines at the current cursor position (default: n=l).

Delete line-deletes n lines starting at the current cursor position
(default: n=l).

Delete character-deletes n characters from a line starting at the
current cursor position (default: n=l).

Scroll up-scrolls the characters in the current window up n lines.
The bottom n lines are cleared to blanks (default: n=l).

Scroll down-scrolls the characters in the current window down n
lines. The top n lines are cleared to blanks (default: n=l).

Erase character-erases n character positions starting at the current
cursor position (default: n=l).

391

display (7)

ESC [n Z

ESC [2 h

ESC [2 i

ESC [2 1

Cursor Backward Tabulation-moves active position back n tab stops.

Locks the keyboard and ignores keyboard input until unlocked. Char
acters are not saved.

Sends the screen to the host. The current screen display is sent to the
application.

Unlocks the keyboard. Re-enables keyboard input.

ESC [Ps ; Ps; m

392

Character attributes-each Ps is a value in the table below; multiple
characters are separated by semicolons. These parameters apply to
successive characters being displayed, in an additive way (for exam
ple, both bold and underscoring can be selected). Only the parame
ters through 7 apply to the monochrome adapter; all parameters apply
to the color or graphics adapter and the enhanced graphics adapter.
(Default: Ps=O).

Ps Meaning

0 all attributes off (normal display)
(white foreground with black background)

1 bold intensity
4 underscore on

(white foreground with red background on color)
5 blink on
6 VGA only: if blink (5) is on, turn blink off and back-

ground color to its light equivalent (that is, brown to
yellow).

7 reverse video
30 black (gray) foreground
31 red (light red) foreground
32 green (light green) foreground
33 brown (yellow) foreground
34 blue (light blue) foreground
35 magenta (light magenta) foreground
36 cyan (light cyan) foreground
37 white (bright white) foreground
40 black (gray) background
41 red (light red) background
42 green (light green) background
43 brown (yellow) background
44 blue (light blue) background
45 magenta (light magenta) background
46 cyan (light cyan) background
47 white (bright white) background

Note that for character attributes 30-37, the color selected for fore
ground will depend on whether the bold intensity attribute (1) is
currently on. If not, the first color listed will result; otherwise the
second color listed will result.

display (7)

Similarly, for character attributes 40-47, the color selected for back
ground will depend on whether the blink attribute (5) is currently on
and bright background (6) has been turned on. If blink is not turned
on or bright background has not been selected, the first listed color
will result. Otherwise, the second color listed will result.

ESC [8 m sets blank (non-display)

ESC [10 m selects the primary font

ESC [11 m selects the first alternate font; lets ASCII characters less than 32 be
displayed as ROM characters

ESC [12 m selects a second alternate font; toggles high bit of extended ASCII
code before displaying as ROM characters

ESC [38 m enables underline option; white foreground with white underscore
(see the NOTES section)

ESC [39 m disables underline option (see the NOTES section)

The following non-ANSI X3.64 escape sequences are supplied:

ESC [= c A Sets overscan color.

ESc[=p;dB
Sets bell parameters (where p is the pitch in Hz and d is the duration
in milliseconds)

ESC [= s; e C Sets cursor parameters (where s is the starting and e is the ending
scanlines of the cursor).

ESC [= x D Enables/ disables intensity of background color (where x is 0 for
enable and 1 for disable).

ESC [= x E Sets/ clears blink versus bold background (where x is 0 for set and 1
for clear).

ESC [= C F Sets normal foreground color. See GIO_ATTR for the valid values for c.

ESC [= c G Sets normal background color. See GIO_ATTR for the valid values for
c.

ESC [= n g Displays graphic character n.

ESC [= c H Sets reverse foreground color. See GIO_ATTR for the valid values for c.

ESC [= c I Sets reverse background color. See GIO_ATTR for the valid values for
c.

ESC [= C J Sets graphic foreground color. See GIO_ATTR for the valid values for
c.

ESC[= C K

ESC [n z

ESC 7

Sets graphic background color. See GIO_ATTR for the valid values for
c.

Makes virtual terminal number n active.

Saves cursor position.

393

display (7)

394

ESC 8 Restores cursor position to saved value.

ESC [0 k Disables the key-click feature (the default).

ESC [1 k Enables the key-click feature. A tone is produced for each key press.

ioetl Calls
The following ioctl calls may be used to change the display used for the video
monitor. If the virtual terminal has not been put in process mode (see the
VT _ SETMODE ioctl), setting the display mode to a non-text mode will turn off VI
switching. VI switches will be re-enabled after the display mode has been reset to a
text mode.

Note: All the following ioctls are performed on either a file descriptor to the virtual
terminals or to the special file /dev/video. ioctls to /dev/video are indicated
with an asterisk (*). For the ioctls to /dev/video to work, the controlling tty for
the process must be the virtual terminal on which the operation is to be performed.
If the tty is not a virtual terminat the return value will be -1 and ermo will be set
toEINVAL.

SWAPMONO (*)
This call selects the monochrome adapter as the output device for the
system console.

SWAPCGA (*) This call selects the color/graphics adapter as the output device for
the system console.

SWAPEGA (*) This call selects the enhanced graphics adapter as the output device
for the system console.

SWAPVGA (*) This call selects the video graphics array as the output device for the
system console.

The following ioctl call may be used to obtain more information about the display
adapter currently attached to the video monitor:

CONS_CURRENT (*)
This call returns the display adapter type currently attached to the
video monitor. The return value can be one of: MONO, eGA, or EGA.

The following ioctl calls may be used to switch display modes on the various
video adapters:

SW_B40x25 (*)
This call selects 40x25 (40 columns by 25 rows) black and white text
display mode. It is valid only for eGA and EGA devices.

SW_C40x25 (*)
This call selects 40x25 (40 columns by 25 rows) color text display
mode. It is valid only for eGA and EGA devices.

SW_B80x25 (*)
This call selects 80x25 (80 columns by 25 rows) black and white text
display mode. It is valid only for eGA and EGA devices.

display (7)

SW_CBOx25 (*)

SW_BG320 (*)

SW_CG320 (*)

SW_BG640 (*)

This call selects 80x25 (80 columns by 25 rows) color text display
mode. It is valid only for eGA and EGA devices.

This call selects 320x200 black and white graphics display mode. It is
valid only for eGA and EGA devices.

This call selects 320x200 color graphics display mode. It is valid only
for eGA and EGA devices.

This call selects 640x200 black and white graphics display mode. It is
valid only for eGA and EGA devices.

SW_CG320_D (*)
This call selects EGA support for 320x200 graphics display mode
(EGA mode D). It is valid only for EGA devices.

SW_CG640_E (*)
This call selects EGA support for 640x200 graphics display mode
(EGA mode E). It is valid only for EGA devices.

SW_EGAMONOAPA (*)
This call selects EGA support for 640x350 graphics display mode
(EGA mode F). It is valid only for EGA devices.

SW_ENH_MONOAPA2 (*)
This call selects EGA support for 640x350 graphics display mode with
extended memory (EGA mode F*). It is valid only for EGA devices.

SW_CG640x350 (*)
This call selects EGA support for 640x350 graphics display mode
(EGA mode 10). It is valid only for EGA devices.

SW_ENH_CG640 (*)
This call selects EGA support for 640x350 graphics display mode with
extended memory (EGA mode 16). It is valid only for EGA devices.

SW_EGAMONOBOx25 (*)
This call selects EGA monochrome text display mode (EGA mode 7),
which emulates support provided by the monochrome adapter. It is
valid only for EGA devices.

SW_ENHB40x25 (*)
This call selects enhanced 40x25 black and white text display mode. It
is valid only for EGA devices.

SW_ENHC40x25 (*)
This call selects enhanced 40x25 color text display mode. It is valid
only for EGA devices.

SW_ENHBBOx25 (*)
This call selects enhanced 80x25 black and white display mode. It is
valid only for EGA devices.

395

display (7)

396

SW_ENHC80x25 (*)
This call selects enhanced 80x25 color text display mode. It is valid
only for EGA devices.

SW_ENHB80x43 (*)
This call selects enhanced 80x43 black and white text display mode. It
is valid only for EGA devices.

SW_ENHC80x43 (*)
This call selects enhanced 80x43 color text display mode. It is valid
only for EGA devices.

SW_MCAMODE (*)
This call reinitializes the monochrome adapter. It is valid only for
monochrome adapters.

SW_ATT640 (*)
This call selects 640x400 16 color mode, when an AT&T Super-Vu
video controller is attached.

Switching to an invalid display mode for a display device will result in an error.

The following ioctls may be used to obtain information about the current display
modes:

CONS_GET (*)
This call returns the current display mode setting for whatever display
adapter is being used. Possible return values include:

M_B40x25 (0), black and white 40 columns. CGA and EGA only.

M _ C40x25 (1), color 40 columns. CGA and EGA only.

M _ B80x25 (2), black and white 80 columns. CGA and EGA only.

M _ C80x25 (3), color 80 columns. CGA and EGA only.

M_BG320 (4), black and white graphics 320 by 200. CGA and EGA
only.

M _ CG320 (5), color graphics 320 by 200. CGA and EGA only.

M_BG640 (6), black and white graphics 640 by 200 high-resolution.
CGA and EGA only.

M _ EGAMON080x25 (7), EGA-mono 80 by 25. EGA only.

M _ CG320 _ D (13), EGA mode D.

M_CG640_E (14), EGA mode E.

M _ EFAMONOAPA (15), EGA mode F.

M _ CG640x350 (16), EGA mode 10.

M _ ENHMONOAP A2 (17), EGA mode F with extended memory.

M _ ENH _ CG640 (18), EGA mode 16.

display (7)

M_ENH_B40x25 (19), EGA enhanced black and white 40 columns.

M _ ENH _ C40x25 (20), EGA enhanced color 40 columns.

M _ ENH _ B80x25 (21), EGA enhanced black and white 80 columns.

M _ ENH _ C80x25 (22), EGA enhanced color 80 columns.

M _ ENH _ B80x43 (Ox70), EGA black and white 80 by 43.

M _ ENH _ C80x43 (Ox71), EGA color 80 by 43.

M _ MCA _MODE (Oxff), monochrome adapter mode.

MCA_GET (*) This call returns the current display mode setting of the monochrome
adapter. See CONS_GET for a list of return values. If the monochrome
adapter is not installed, the call will fail and ermo will be set to 22
(EINVAL).

CGA_GET (*) This call returns the current display mode setting of the
color/graphics adapter. See CONS_GET for a list of return values. If
the color graphics adapter is not installed, the call will fail and ermo
will be set to 22 (EINVAL).

EGA_GET (*) This call returns the current display mode setting of the enhanced
graphics adapter. See CONS_GET for a list of return values. If the
enhanced graphics adapter is not installed, the call will fail and ermo
will be set to 22 (EINVAL).

The following ioctl calls may be used to map the video adapter's memory into the
user's data space.

MAPCONS (*) This call maps the display memory of the adapter currently being
used into the user's data space.

MAPMONO (*) This call maps the monochrome adapter's display memory into the
user's data space.

MAPCGA (*) This call maps the color/graphics adapter's display memory into the
user's data space.

MAPEGA (*) This call maps the enhanced graphics adapter's display memory into
the user's data space.

MAPVGA (*) This call maps the video graphics array's display memory into the
user's data space.

You can use ioctl calls to input a byte from the graphics adapter port or to output
a byte to the graphics adapter port. The argument to the ioctl uses the port _io _arg
data structure:

struct port_io_arg {

} ;

The previous example shows that the port _io _arg structure points to an array of four
port _io _struc data structures. The port _io _struc has the following format:

397

display (7)

398

struc port_io_struc
char dir;
ushort port;
char data;

};

/*direction flag (in VS. out)*/
/*port address*/

/*b¥te of data*/

You can specify one, two, three, or four of the port_io_struc structures in the array
for one ioctl call. The value of dir can be either IN_aN_PORT (to specify a byte
being input from the graphics adapter port) or OUT _ ON]ORT (to specify a byte
being output to the graphics adapter port). Port is an integer specifying the port
address of the desired graphics adapter port. Data is the byte of data being input or
output as specified by the call. If you are not using any of the port _io _struc struc
tures, load the port with 0, and leave the unused structures at the end of the array.
Refer to your hardware manuals for port addresses and functions for the various
adapters.

The following ioctl calls may be used to input or output bytes on the graphics
adapter port:

MCAIO (*) This call inputs or outputs a byte on the monochrome adapter port as
specified.

CGAIO (*) This call inputs or outputs a byte on the color/graphics adapter port
as specified.

EGAIO (*) This call inputs or outputs a byte on the enhanced graphics adapter
port as specified.

VGAIO (*) This call inputs or outputs a byte on the video graphics array port as
specified.

To input a byte on any of the graphics adapter ports, load dir with IN_aN_PORT
and load port with the port address of the graphics adapter. The byte input from
the graphics adapter port will be returned in data.

To output a byte, load dir with OUT_aN_PORT, load port with the port address of
the graphics adapter, and load data with the byte you want to output to the graph
ics adapter port.

The following ioctls may be used with either the monochrome, color graphics, or
enhanced graphicS adapters:

GIO_FONT8x8 (*)
This call gets the current 8x8 font in use.

GIO_FONT8x14 (*)
This call gets the current 8x14 font in use.

GIO_FONT8x16 (*)
This call gets the current 8x16 font in use.

KDDISPTYPE (*)
This call returns display information to the user. The argument
expected is the buffer address of a structure of type kd _ disparam into
which display information is returned to the user. The kd_disparam
structure is defined as follows:

display (7)

struct kd_disparam
long type; /*display type*/
char *addr; /*display memory address*/
ushort ioaddr[MKDIOADDR); /*valid I/O addresses*/

Possible values for the type field include:

KD_MONO (Ox01), for the IBM monochrome display adapter.

KD HERCULES (Ox02), for the Hercules monochrome graphics
adapter.

KD _ CGA (Ox03), for the IBM color graphics adapter.

KD _EGA (Ox04), for the IBM enhanced graphics adapter.

KIOCSOUND (*)
Start sound generation. Turn on sound. The "arg" is the frequency
desired. A frequency of 0 turns off the sound.

KDGETLED Get keyboard LED status. The argument is a pointer to a character.
The character will be filled with a boolean combination of the follow
ing values:

LED SCR Ox01 (flag bit for scroll lock)
LED-CAP Ox04 (flag bit for caps lock)
LED-NUM Ox02 (flag bit for num lock)

KDSETLED Set keyboard LED status. The argument is a character whose value is
the boolean combination of the values listed under KDGETLED.

KDMKTONE (*)
Generate a fixed length tone. The argument is a 32 bit value, with the
lower 16 bits set to the frequency and the upper 16 bits set to the dura
tion (in milliseconds).

KDGKBTYPE Get keyboard type. The argument is a pointer to a character type.

KDADDIO (*)

The character will be returned with one of the following values:

KB _ 84 Ox01 (84 key keyboard)
KB _101 Ox02 (101 key keyboard)
KB OTHER Ox03

Add I/O port address to list of valid video adaptor addresses. Argu
ment is an unsigned short type that should contain a valid port
address for the installed video adaptor.

KDDELIO (*) Delete I/O port address from list of valid video adaptor addresses.

KDENABIO (*)

Argument is an unsigned short type that should contain a valid port
address for the installed video adaptor.

Enable in's and out's to video adaptor ports. No argument.

399

display (7)

400

lIDDISABIO (*)
Disable in's and out's to video adaptor ports. No argument.

KDQUEMODE (*)
Enable/Disable special queue mode. Queue mode is used by AT&T's
X-Windows software to establish a shared queue for access to key
board and mouse event information. The argument is a pointer to a
structure "kd _ quemode." If a NULL pointer is sent as an argument,
the queue will be closed and the mode disabled. The structure
"kd _ quemode" is as follows:

struct kcUlUemode {

KDSBORDER (*)

int qsize; 1* desired # of elements in queue *1
int signo; 1* signal number to send when queue

goes non-empty *1
void char *qaddr; 1 * user virtual address of queue (set by

driver) *1
};

Set screen color border in EGA text mode. The argument is of type
character. Each bit position corresponds to a color selection. From bit
position 0 to bit position 6, the color selections are respectively; blue,
green, red, secondary blue, secondary green, and secondary red. Set
ting the bit position to a logic one will select the desired color or
colors. See the NOTES section.

KDSETMODE (*)
Set console in text or graphics mode. The argument is of type integer,
which should contain one of the following values:

KD TEXT OxOO (sets console to text mode)
KD -GRAPHICS OxOl (sets console in graphics mode)

If the mode is set to KD GRAPHICS and the Virtual Terminal is not in
process mode (see the VT_SETMODE ioctl), no virtual terminal
switches will be possible until the mode is reset to KD _TEXT,
KD _ TEXTO, or KD JEXTl.

Note, the user is responsible for programming the color/graphics
adaptor registers for the appropriate graphical state.

KDGETMODE (*)
Get current mode of console. Returns integer argument containing
either lID_TEXT or KD_GRAPHICS as defined in the KDSETMODE ioctl
description.

KDMAPDISP (*)
Maps display memory into user process address space. Argument is a
pointer to structure type "kd_memloc." Structure definition is as
follows:

char
char
long
long
}

*vaddr;
*physaddr;
length;
ioflg;

disp\ay(7)

/* virtual address to map to */
/* physical address to map from */
/* size in bytes to map */
/* enable i/o addresses if set */

KDUNMAPDISP (*)
Unmap display memory from user process address space. No argu
ment required.

KDVDCTYPE This call returns VDC controller / display information.

PIO_FONT8x8 (*)
This call uses the user supplied 8x8 font.

PIO_FONT8x14 (*)
This call uses the user supplied 8x14 font.

PIO_FONT8x16 (*)

VT_OPENQRY

This call uses the user supplied 8x16 font.

Inquires if this virtual terminal is already open. Find an available vir
tual terminal. The argument is a pointer to a long. The long will be
filled with the number of the first available "VT" that no other process
has open or -1 if none is available.

VT_GETMODE (*)
Determine what mode the active virtual terminal is currently in, either
VT_AUTO or VT_PROCESS. The argument to the ioctl is the address
of the following type of structure:

struct vt_mode {
char mode; /* VT mode */
char waitv; /* if set, hang on writes when not active */
short relsig; /* signal to use for release request */
short acqsig; /* signal to use for display acquired */
short frsig; /* not used set to 0 */

/* automatic VT switching */ #defineVT_AUTOOxOO
#defineVT_PROCESS OxOl /* process controls switching */

The "vt mode" structure will be filled in with the current value for
each field.

VT_GETSTATE (*)
The VT_GETSTATE ioctl returns global virtual terminal state informa
tion. It returns the active virtual terminal in the v active field, and the
number of active virtual terminals and a bit mask of the global state in
the v state field, where bit x is the state of vt x (1 indicates that the
virtual terminal is open).

401

display (7)

402

VT_SETMODE (*)
Set the virtual terminal mode (Auto or Proced). The argument is a
pointer to a "vt_ mode" structure, as defined above.

VT_SENDSIG (*)
The VT_SENDSIG ioctl specifies a signal (in v_signal) to be sent to a
bit mask of virtual terminals (in v_state).

The data structure used by the VT_GETSTATE and VT_SENDSIG ioctls is:

struct vt_stat {

};

ushort v_active;
ushort v_signal;
ushort v_state;

/* active vt*/
/* signal to send (VT_SENDSIG) */
/* vt bit mask (VT_SENDSIG and

VT_GETSTATE)*/

and is defined in /usr/include/sys/vt.h.

VT_RELDISP (*)
Used to tell the virtual terminal manager that the display has or has not
been released by the process. A zero value indicates refusal to release the
display. A value of VT_ACKACQ indicates an acquisition of a device. EIN
VAL is returned if a non-zero value that is not equal to VT _ ACKACQ is
received and the virtual terminal has not yet been acquired. Otherwise, the
virtual terminal will be released.

VT_ACTIVATE (*)
Makes the virtual terminal number specified in the argument the
active "VT." The "VT" manager will cause a switch to occur in the
same way as if a hotkey sequence had been typed at the keyboard. If
the specified "VT" is not open or does not exist, the call will fail and
errno will be set to ENXIO.

KIOCINFO This call tells the user what the device is.

GIO_SCRNMAP (*)
This call gets the screen mapping table from the kernel.

GIO_ATTR This call returns the current screen attribute. The bits are interpreted
as follows:

Bit 0 determines underlining for black and white monitors (l=under
lining on).

Bits 0-2, for color monitors only, select the foreground color. The fol
lowing list indicates what colors are selected by the given value:

The value 0 selects black.
The value 1 selects red.
The value 2 selects green.
The value 3 selects brown.
The value 4 selects blue.
The value 5 selects magenta.
The value 6 selects cyan.
The value 7 selects white.

FILES

display (7)

Bit 3 is the intensity bit (l=blink on).

Bits 4-6, for color monitors only, select the background color. For a
list of colors and their values, see the list under foreground colors.

Bit 7 is the blink bit (l=blink on).

GIO_COLOR (*)
This call returns a non-zero value if the current display is a color
display, otherwise, it returns a zero.

PIO_SClmMAP
This call puts the screen mapping table in the kernel.

The screen mapping table maps extended ASCII (8-bit) characters to ROM charac
ters. It is an array [256] of char (typedef scmmap _t) and is indexed by extended
ASCII values. The value of the elements of the array are the ROM character to
display.

/dev/console
/dev/vtOO-n
/dev/video
/usr/include/sys/kd.h

SEE ALSO

NOTES

console(7), ioctl(2), keyboard(7), stty(l), termio(7)

Although it is possible to write character sequences that set arbitrary bits on the
screen in any of the three graphics modes, this mode of operation is not currently
supported.

Monochrome adaptors support underscore option as the default. EGA and VGA
adaptors require the use of the ESC [38m and ESC [39m escape sequences to
enable/ disable the underscore option respectively. After the underscore option has
been enabled on a EGA or VGA adaptor by using the ESC [38m sequence and until
the underline option has been disabled by using the ESC [39m sequence, characters
that have blue foreground attributes will be displayed in cyan foreground and char
acters that have blue background attributes will be displayed in white background
attributes.

It is currently not possible to access the 6845 start address registers. Thus, it is
impossible to determine the beginning of the color monitor's screen memory.

The alternate/background color bit (bit 4) of the color select register does not
appear to affect background colors in alphanumeric modes.

KDSBORDER ioctl calls will not work with AT&T's Super-Vu enhanced
color/graphics video adaptor. It will however, work with the IBM EGA card and
other EGA compatible video adaptors.

The low-resolution graphics mode appears to be 80 across by 100 down.

403

dpt(7)

NAME
dpt - DPT PM2012 SCSI host adapter subsystem

DESCRIPTION
The dpt host adapter subsystem enables SCSI target drivers (such as sdOl, stOl,
and so on) to communicate on the SCSI bus with target controllers and logical units.
This driver implements the Portable Device Interface (PDI) for such PDI target
drivers.

It is also possible to access this subsystem directly usiflg the pass-through driver
interface. This allows you to issue sb control blocks directly to the target controller.
To find the appropriate device to use, while any device is being accessed through
the target driver (for example, sdOl), use the B_GETDEV loctl to get the major and
minor numbers of the pass-through node. This node may be created and opened
for pass-through use (SDI_SEND ioctl).

ioctl Calls
The following ioct1(2) commands are supported by dpt:

SDI_SEND
Sends a pass-through command (SCSI control block) to a target controller,
bypassing the associated target driver.

SDI_BRESET
Resets the SCSI bus.

B_REDT
Reads the extended Equipped Device Table (EDT) data structure that is
stored in the dpt driver's internal data structure.

B_GETTYPE
Returns the bus name (for example, SCSI) and device driver name of a
specific device.

NOTICES
The DPT SCSI adapter will not work reliably with the Emulex SCSI/ESDI bridge
controller (also known as the AT&T DCM/4E). In the future, a hardware or
software solution may be implemented.

Files
/usr/include/sys/dpt.h
/usr/lnclude/sys/scsl.h
/usr/include/sys/sdl.h
/usr/include/sys/sdl_edt.h
/etc/conf/pack.d/dpt/space.c

REFERENCES
adsc(7), loctl(2), mcis(7), scOl(7), sdOl(7), stOl(7), swOl(7), wd7000(7)

404

ee16(7)

NAME
ee16 - EtherExpress 16 Ethernet Adapter Driver

SYNOPSIS
#include <sys/dlpi.h>
#include <sys/dlpi_ether.h>
#include <sys/ee16.h>

fd = open (n/dev/ee16_0 n, O_RDWR)

DESCRIPTION

USAGE

The ee16 driver provides a data link interface to the EtherExpress 16 Ethernet
adapter from Intel. It is a STREAMS-based driver that is compatible with the Data
Link Provider Interface (DLPI) and Logical Link Interface (LLI) software interfaces.

It supports DL_ETHER and DL_CSMACD for MAC type, DL_CL_ETHER for service
mode, and DL_STYLE1 for provider style. The ee16 driver can operate as a cloned
or non-cloned device.

A process must issue a DL_BIND_REQ primitive to receive frames from the network.
The process must specify the dl_sap field of the dl_bind_r~t structure. The type
field of an incoming frame is compared to the dCsap value. If the values are equal,
it is placed on the STREAMS read queue of the process. A privileged process may
set the dl_sap field to PROMISCUOUS_SAP. The PROMISCUOUS_SAP matches all incom
ing frames.

A privileged process may also bind to a SAP already bound by another process. In
cases where a frame qualifies to be sent to more than one process, independent
copies of the frame will be made and placed on the STREAMS read queue of each
process.

Received frames are delivered in dl_unitdata_ind_t structures. The source and
destination address each contain a 6-byte Ethernet address, followed by a 2-byte
type value.

ioetl Calls
The following ioctls are supported:

DLIOCGMIB
Returns the DL_mib_t structure, which contains the Management Informa
tion Base (MIB). The MIB holds the Ethernet statistics kept in the driver.

1*
* Ether statistics structure.
*1

typedef struct {
ulang_t etherAlignErrors;
ulang_t etherCRCerrors;
ulong_t etherMissedPkts;
ulang_t etherOverrunErrors;
ulang_t etherUnderrunErrors;
ulang_t etherCollisians;
ulang_t etherAbortErrors;
ulong_t etherCarrierLost;

1* Frame alignment errors *1
1* CRC erros *1
1* Packet overflow or missed inter *1
1* OVerrun errors *1
1* Underrun errors *1
1* Total collisions *1
1* Transmits aborted at interface *1
1* Carrier sense signal lost *1

405

ee16 (7)

406

ulong_t etherReadqFull; /* STREAMS read queue full * /
ulong_t etherRcvResources; /* Receive resource alloc faliure
ulong_t etherDependentl; /* Device dependent statistic */
ulong_t etherDependent2; /* Device dependent statistic */
ulong_t etherDependent3; /* Device dependent statistic */
ulong_t etherDependent4; /* Device dependent statistic */
ulong_t etherDependent5 ; /* Device dependent statistic */

/*
* Interface statistics compatible with MIB II SNMP requirements.
*/

typedef struct {
/* ranges between 1 and if Number */

*/

int
int
int

if Index;
ifDescrLen;
if Type;

/* len of desc. following this struct */
/* type of interface */

int ifMtu; /* datagram size that can be sent/rcv */
ulong_t if Speed; /* estimate of bandwidth in bits PS */
uchar_t ifPhyAddress[DL_MAC_ADDR_LEN1;/* Ethernet Address */
int ifAdminStatus; /* desired state of the interface */
int ifOperStatus; /* current state of the interface */
ulong_t ifLastChange; /* sysQpTime when state was entered */
ulong_t ifInOctets; /* octets received on interface */
ulong_t ifInUcastPkts; /* unicast packets delivered */
ulong_t ifInNUcastPkts; /* non-unicast packets delivered */
ulong_t ifInDiscards; /* good packets received but dropped */
ulong_t ifInErrors; /* packets received with errors */
ulong_t ifInunknownProtos; /* packets recv'd to unbound proto */
ulong_t ifOUtOctets; /* octets transmitted on interface */
ulong_t ifOUtUcastPkts; /* unicast packets transmited */
ulong_t ifOUtNUcastPkts; /* non-unicast packets transmited */
ulong_t ifOUtDiscards; /* good outbound packets dropped * /
ulong_t ifOUtErrors; /* number of transmit errors */
ulong_t ifOUtQlen; /* length of output queue * /
DL_etherstat_t if Specific; /* ethernet specific stats */
DL_mib_t;

The values in the MIB are compatible with those needed by the SNMP
protocol.

The ifDescrLen field indicates the length of the null terminated deSCription
string that immediately follows the DL_mib_t structure.

There are three fields in the MIB that are specific to the ee16 driver. The
ifSpecific.etherDependent1 field tracks the number of times the transceiver
failed to transmit a collision signal after transmission of a packet. The
ifSpecific.etherDependent2 field contains the number of collisions that
occurred after a slot time (out of window collisions). The
ifSpecific.etherDependent3 field tracks the number of times a transmit
interrupt timeout condition occurred.

ee16(7)

DLIOCSMIG
Allows a privileged process to initialize the values in the MIB (that is, the
DL_mib_t structure). A process cannot use this ioctl to change the
ifPhyAddress, the ifDeserLen, or the text of the description fields.

DLIOCGENADDR
Returns the Ethernet address in network order.

DLIOCGLPCFLG
Returns the state of the local packet copy flag in the ioe Jval of the iocblk
structure. The local copy flag determines if packets looped back by the
driver should also be sent to the network. A non-zero value indicates that
frames should also be be sent to the network after being looped back. The
default value of this flag is zero.

DLIOCSLPCFLG
Allows a privileged process to set the local packet copy flag, causing all
packets looped back by the driver to be sent to the network as well.

DLIOCGPROMISC
Returns the value of the promiscuous flag in the ioe Jval of the iocblk struc
ture. A non-zero value indicates that the Ethernet interface will receive all
frames on the network. The default value of this flag is zero.

DLIOCSPROMISC
Allows a privileged process to toggle the current state of the promiscuous
flag. When the flag is set, the driver captures all frames from the network.
Processes that are bound to a promiscuous SAP, or to a SAP that matches
the type field of the received frame, receive a copy of the frame.

DLIOCGETMULTI
Returns a list of multicast addresses (if it exists).

DLIOCADDMULTI
Allows a privileged process to add a new multicast address and enable its
reception. A 6-byte buffer pointing to the multicast address must be passed
as the parameter.

DLIOCDELMULTI
Allows a privileged process to delete a multicast address by passing a 6-byte
multicast address as the parameter.

Installation
You must select the interrupt level and the base I/O address for the EtherExpress
card at package installation time. Refer to the User's Guide that came with your
adaptor for more information.

You can also set these parameters in the /etc/conf/sdevice.d/ee16 file.

If there is one EtherExpress 16 card in the system, it is configured automatically to
the parameters specified at installation each time the system is initialized. During
initialization, the system determines the current base I/O address of the card, and
then programs the card to its new configuration. If the system doesn't find an Eth
erExpress 16 card, it displays an error message. Because of the way the system
searches for an EtherExpress 16 card, reads to I/O addresses without EtherExpress
16 cards may occur during the automatic configuration process.

407

ee16(7)

408

Automatic configuration occurs only when one EtherExpress 16 card is installed in
the system. If you want to install more than one card, use the following procedure:

When you install the ee16 package, specify the interrupt level and the base
I/O address for one EtherExpress 16 card, install the card in the system,
reboot the system, and use the automatic configuration process to assign
those parameters to the card.

Then, for each additional card, edit the /etc/conf/sdevice.d/ee16 file
and specify the interrupt level and base I/O address for the next EtherEx
press 16 card (being careful not to use an interrupt level or base I/O address
that are being used by any other board in the system), shut down the sys
tem, remove the EtherExpress 16 card that's in the system, replace it with
the next EtherExpress 16 card, and reboot the system. The automatic
configuration process will assign the parameters in
/etc/conf/sdevice.d/ee16 to the new card.

When you have programmed the parameters for all the cards, shut down
and turn off the system, and install all the cards. The configuration files
need to reflect the fact that multiple cards are in use. When you boot the
system it recognizes that there are multiple EtherExpress 16 cards installed
and does not try to autoconfigure them.

Configuration
The ee16 driver has four configurable parameters in the
/etc/conf/pack.d/ee16/space.c file. Any changes to this file must be followed
by a rebuild of the kernel and a reboot of the system for the changes to take effect.

The configurable parameters are:

N_SAPS
Defines the number of SAPs that can be bound at anyone time. This value
should be only slightly larger than anticipated SAP usage. A typical
TCP /IP system requires two SAPs (OxSOO and OxS06). A large value will
degrade performance and increase memory usage.

CABLE_TYPE
Defines the type of Ethernet cable attached to the Ethernet controller card.
A value of 0 specifies a thin Ethernet cable with a BNC connector. A value
of 1 specifies a thick Ethernet cable with an AUI connector.

STREAMS_LOG
Defines whether the driver should log debugging messages to the
STREAMS logger for the strace(lM) utility to display. The module ID
used with strace is 2101. A value of 0 indicates that no STREAMS debug
messages should be generated. A value of 1 will cause messages to be gen
erated. You can temporarily set the driver to log messages by changing the
value of ee16strlog (a 4-byte integer) to 1 using the kernel debugger.

STREAMS tracing should only be performed when debugging a network
problem. It can cause a severe performance degradation if you use full ee16
STREAMS logging.

ee16(7)

IFNAME

Errors

This parameter is important only in a TCP lIP networking environment. It
defines the string used in displaying network statistics. This string should
match the logical interface name assigned in
letc/confnet .d/inet/interfaces file and with ifconfig(lM)
commands used in letc/inet/rc.inet configuration script.

The ee16 driver can return the following error codes:

ENXIO Invalid major number or board is not installed.

ECHRNG
No minor devices left if configured as a cloned device. Increase N SAP value
in letc/conf/pack.d/ee16/space.c Invalid minor device number if
configured as a non-cloned device.

EPERM An ioctl was made without the appropriate privilege.

EINVAL
An ioctl was made that did not supply a required input andlor output
buffer.

DL_NOTSUPPORTED
Requested service primitive is not supported.

DL_BADPRIM
Unknown service primitive was requested.

DL_OUTSTATE
DL_BIND_REQ was issued when the Stream was bound, or DL_UNBIND_REQ
or DL_UNITDATA_REQ was issued when the Stream was unbound.

DL_ACCESS
An attempt was made to bind to PROMISCUOUS_SAP with insufficient
privilege.

DL_BOUND
The requested SAP is already bound. A privileged process may bind to an
already bound SAP.

DL_NOTINIT
DL_UNITDATA_REQ was made on an Ethernet board that has gone offline due
to an error.

DL_BADDATA
DL_UNITDATA_REQ was made with a data size that was either larger than the
SPDU maximum or smaller than the SPDU minimum.

Files
Idev/ee16*
letc/conf/pack.d/ee16/space.c
letc/conf/sdevice.d/ee16

REFERENCES
getmsg(2), ioctl(2), open(2), putmsg(2)

409

el16 (7)

NAME
e1l6 - EtherLink 16 Ethernet Adapter Driver

SYNOPSIS
#include <sys/dlpi.h>
#include <sys/dlpi_ether.h>
#include <sys/el16.h>

fd = open ("/dev/el16_0", O_RDWR)

DESCRIPTION

USAGE

The e1l6 driver provides a data link interface to the EtherLink 16 and
Etherlink/MC adapters from 3Com. It is a STREAMS-based driver compatible with
the Data Link Provider Interface (DLPI) and Logical Link Interface (LU) software
interfaces.

It supports DL_ETHER and DL_CSMACD for MAC type, DL _ CLDLS for service mode,
and DL _ STYLE 1 for provider style. The e1l6 driver can operate as a cloned or
non-cloned device.

A process must issue a DL_BIND_REQ primitive to receive frames from the network.
The process must specify the dl_sap field of the dl_bind_reCLt structure. The type
field of an incoming frame is compared to the dl_sap value. If the values are equal,
it is placed on the STREAMS read queue of the process. A privileged process may
set the dl_sap field to PROMISCUOUS_SAP. The PROMISCUOUS_SAP matches all incom
ing frames.

A privileged process may also bind to a SAP already bound by another process. In
cases where a frame qualifies to be sent to more than one process, independent
copies of the frame are created and placed on the STREAMS read queue of each
process.

Received frames are delivered in dl_unitdata_ind_t structures. The source and
destination address each contain contain a 6-byte Ethernet address, followed by a
2-byte type value.

ioctl Calls

410

The following ioctls are supported:

DLIOCGMIB

Returns the DL_mib_t structure, which contains the Management Informa
tion Base (MIB). The MIB holds the Ethernet statistics kept in the driver.

/*
* Ether statistics structure.
*/

typedef struct {
ulong_t etherAlignErrors;
ulong_t etherCRCerrors;
ulong_t etherMissedPkts;
ulong_t etherOverrunErrors;
ulong_t etherUnderrunErrors;
ulong_t ethereollisions;

/* Frame alignment errors */
/* CRC erros */
/* Packet overflow or missed inter */
/* OVerrun errors */
/* Underrun errors */
/* Total collisions */

el16 (7)

ulong_t etherAbortErrors; /* Transmits aborted at interface */
ulong_t etherCarrierLost; /* Ca=ier sense signal lost * /
ulong_t etherReadqFull ; /* STREAMS read queue full */
ulong_t etherRcvResources; /* Receive resource alloc faliure */
ulong_t etherDependentl; /* Device dependent statistic */
ulong_t etherDependent2 ; /* Device dependent statistic */
ulong_t etherDependent3 ; /* Device dependent statistic */
ulong_t etherDependent4 ; /* Device dependent statistic */
ulong_t etherDependentS; /* Device dependent statistic */
DL_etherstat_t;

/*
* Interface statistics compatible with MIB II SNMP requirements.
*/

typedef
int
int
int

struct {

ifIndex;
ifDescrLen;
if Type;

/*
/*
/*

ranges between 1 and if Number * /
len of desc. following this struct */
type of interface */

int
ulong_t
uchar_t
int

ifMtu; /* datagram size that can be sent/rcv * /
if Speed; /* estimate of bandwidth in bits PS * /
ifPhyAddress [DL_MAC_ADDR_LENl ; /* Ethernet Address * /

int
ulong_t
ulong_t
ulong_t
ulong_t
ulong_t
ulong_t
ulong_t
ulong_t
ulong_t
ulong_t
ulong_t
ulong_t
ulong_t

ifAdminStatus;
ifOperStatus;
ifLastChange;
ifInOctets;
ifInUcastPkts;
ifIDNUcastPkts;
ifInDiscards;
ifInErrors;
ifInUnknownProtos;
ifOutOctets;
ifOutUcastPkts;
ifOutNUcastPkts;
ifOutDiscards;
ifOutErrors;
ifOutQlen;

DL_etherstat_t if Specific;
DL_mib_t;

/* desired state of the interface */
/* cu=ent state of the interface */
/* sySUpTime when state was entered */
/* octets received on interface */
/* unicast packets delivered */
/* non-unicast packets delivered */
/* good packets received but dropped */
/* packets received with errors */
/* packets recv'd to unbound proto */
/* octets transmitted on interface */
/* unicast packets transmited * /
/* non-unicast packets transmited */
/* good outbound packets dropped */
/* number of transmit e=ors */
/* length of output queue */
/* ethernet specific stats */

The values in the MIB are compatible with those needed by the SNMP
protocol.

The ifDescrLen field indicates the length of the null terminated description
string that immediately follows the DL _ mib _t structure.

There are three fields in the MIB that are specific to the e116 driver. The
ifSpecific.etherDependentl field tracks the number of times the transceiver
failed to transmit a collision signal after transmission of a packet. The
ifSpecific.etherDependent2 field contains the number of collisions that
occurred after a slot time (out of window collisions). The

411

el16 (7)

412

ifSpeeifie.etherDependent3 field tracks the number of times a transmit inter
rupt timeout condition occurred.

DLIOCSMIB
Allows a privileged process to initialize the values in the MIB (that is, the
DL_mib_t structure). A process cannot use this ioctl to change the
ifPhyAddress, the ijDeserLen, or the text of the description fields.

DLIOCGENADDR
Returns the Ethernet address in network order.

DLIOCGLPCFLG
Returns the state of the local packet copy flag in the ioe Jval of the iocblk
structure. The local copy flag determines if packets looped back by the
driver should also be sent to the network. A non-zero value indicates that
frames should also be be sent to the network after being looped back. The
default value of this flag is zero.

DLIOCSLPCFLG
Allows a privileged process to set the local packet copy flag, causing all
packets looped back by the driver to be sent to the network as well.

DLIOCGPROMISC
Returns the value of the promiscuous flag in the ioe Jval of the iocblk struc
ture. A non-zero value indicates that the Ethernet interface will receive all
frames on the network. The default value of this flag is zero.

DLIOCSPROMISC
Allows a privileged process to toggle the current state of the promiscuous
flag. When the flag is set, the driver captures all frames from the network.
Processes that are bound to a promiscuous SAP, or to a SAP that matches
the type field of the received frame, receive a copy of the frame.

DLIOCGETMULTI
Retries the current list of multicast addresses (if it exists).

DLIOCADDMULTI
Allows a privileged process to add a new multicast address and enable its
reception. A 6-byte buffer pointing to the multicast address must be passed
as the parameter.

DLIOCDELMULTI
Allows a privileged process to delete a multicast address by passing a 6-byte
multicast address as the parameter.

Installation
You can select the interrupt vector, the base I/O address, and the base RAM
address for the EtherLink 16 adaptor at package installation time. Consult the
User's Manual that came with your adaptor for more information.

You can also set these parameters in the /etc/conf/sdevice.d/e116 file.

In addition, zero-wait-state operation of memory can be enabled or disabled at
installation time.

el16 (7)

If there is one EtherLink 16 card in the system, it is configured automatically to the
parameters specified at installation when the system is initialized. During initializa
tion, the system determines the current base I/O address of the card, and then pro
grams the card to its new configuration. If the system doesn't find an EtherLink 16
card, it displays an error message.

Automatic configuration occurs only when one EtherLink 16 card is installed in the
system. If more than one EtherLink 16 card needs to be present in the system, the
cards are assumed to have been configured already (the cards may be configured
using the configuration software that comes with the card).

Configuration
The el16 driver has six configurable parameters in the
/etc/conf/pack.d/e116/space.c file. Any changes to this file must be followed
by a rebuild of the kernel and a reboot of the system for the changes to take effect.

The configurable parameters are:

N_SAPS
This defines the number of SAPs that can be bound at anyone time. This
value should be only slightly larger than anticipated SAP usage. A typical
TCP /IP system would require two SAPs (Ox800 and Ox806). A large value
will degrade system performance and increase memory usage.

CABLE_TYPE
Defines the type of ethernet cable attached to the Ethernet controller card.
A value of 0 specifies a thin Ethernet cable with a BNC connector. A value
of 1 specifies a thick Ethernet cable with an AUI connector.

STREAMS_LOG
Defines whether the driver should log debugging messages to the
STREAMS logger for the strace(lM) utility to display. The module ID
used with strace is 2101. A value of 0 indicates that no STREAMS debug
messages should be generated. A value of 1 causes messages to be gen
erated. You can temporarily instruct the driver to log messages by changing
the value of e116strlog (a 4-byte integer) to 1 using the kernel debugger.

STREAMS tracing should only be performed when debugging a network
problem. It can cause a severe performance degradation if full el16
STREAMS logging is performed.

IFNAME
This parameter is important only in a TCP /IP networking environment. It
defines the string used in displaying network statistics. This string should
match the logical interface name assigned in
/etc/confnet.d/inet/interface file and with ifconfig(lM) commands
used in /etc/inet/rc. inet configuration script.

ZWS Enables or disables zero-wait-state operation of the memory. A value of 0
disables zero-wait-state operation while a value of 1 enables it.

SAAD Enables or disables software address decode in the adapter. In machines
which use the VTI chip set, this bit needs to be set.

413

el16 (7)

Errors
The el16 driver can return the following error codes:

ENXIO Invalid major number or board is not installed.

ECHRNG

No minor devices left if configured as a cloned device. Increase N_SAP value
in /etc/conf/pack.d/e116/space.c Invalid minor device number if
configured as a non-cloned device.

EPERM An ioctl was made without the appropriate privilege.

EINVAL
An ioctl was made that did not supply a required input and/or output
buffer.

DL_NOTSUPPORTED
Requested service primitive is not supported.

DL_BADPRIM
Unknown service primitive was requested.

DL_OUTSTATE
DL_BIND_REQ or DL_UNBIND_REQ was issued when the Stream was bound,
or DL_UNITDATA_REQ was issued when the Stream was unbound.

DL_ACCESS
An attempt was made to bind to PROMISCUOUS_SAP with insufficient
privilege.

DL_BOUND
The requested SAP is already bound. A privileged process may bind to an
already bound SAP.

DL_NOTINIT
A DL_UNITDATA_REQ was made on an Ethernet board that has gone offline
due to an error.

DL_BADDATA

Files

DL_UNITDATA_REQ was made with a data size that was either larger than the
SPDU maximum or smaller than the SPDU minimum.

/dev/e116*
/etc/conf/pack.d/el16/space.c
/etc/conf/sdevice.d/el16

REFERENCES
open(2), getmsg(2), ioctl(2), putmsg(2)

414

fd(7)

NAME
fd - diskette (floppy disk)

DESCRIPTION
The diskette driver provides access to diskettes as both block and character devices.
Diskettes must be formatted before their use [see fonnat(lM)J. Both 5.25" and 3.50"
diskette formats are supported. The driver controls up to two diskette drives. The
minor device number specifies the drive number, the format of the diskette and the
partition number.

Diskette device file names (which correspond to a specific major and minor device)
use the following format:

/dev/{r}dsk/f{O,1}{5h,5d9,5d8,5d4,5d16,5q,3h,3d}{t,u}

where r indicates a raw (character) interface to the diskette, rdsk selects the raw
device interface and dsk selects the block device interface. 0 or 1 selects the drive to
be accessed: fO selects floppy drive 0, while fl selects drive 1. The following list
describes the format to be interacted with:

5h 5.25" high density diskette (1.2MB).
5d9 5.25" double density diskette, 9 sectors per track (360KB).
5d8 5.25" double density diskette, 8 sectors per track (320KB).
5d4 5.25" double density diskette, 4 sectors per track (320KB).
5d16 5.25" double density diskette, 16 sectors per track (320KB).
5q 5.25" quad density diskette (720KB).
3h 3.50" high density diskette (1.44MB).
3d 3.50" double density diskette (720KB).

Format specification is mandatory when opening the device for formatting. How
ever, when accessing a floppy disk for other operations (read and write), the format
specification field can be omitted. In this case, the floppy disk driver will automati
cally determine the format previously established on the diskette and then perform
the requested operation (for example, cpio -itv</dev/rsdk/fl).

The last parameter, t or u, selects the partition to be accessed. t represents the
whole diskette. Without t or u specified, the whole diskette except cylinder 0 will
be selected. u represents the whole diskette except track 0 of cylinder 0 and applies
only to the 5d8 type of floppy.

Besides the device file naming convention described above, some of the formats
have alias names that correlate to previous releases. The following list describes the
formats that have an alias:

format alias
5h q15d
5d8 d8d
5d9 d9d

For example, the device file /dev/rdsk/fOq15dt is equivalent to
/dev/rdsk/f05ht.

415

fd(7)

In order to minimize errors when using diskettes, the driver attempts to assure that
the diskette is installed when needed, and that the operations requested have been
completed before the device close is completed. In particular, the drive is checked
for the presence of a diskette each time a read/write request is made to the drive. If
this is not true (either the diskette is not physically present or the door is open), the
driver retries the request continually, at five-second intervals. The message:

FD(n): diskette not present - please insert

appears after each attempt (the n represents the drive number). The INTR and
QUIT signals are honored in this case, so that the process accessing the diskette
drive in question will receive these signals (unless, of course, the process itself is
ignoring them). In particular, if the diskette is removed prematurely, or not
inserted soon enough, no data is lost, provided the correct diskette is inserted in the
drive when the message to do so is displayed.

ioetl Calls

416

V_GETPARMS
This call is used to get information about the current drive configuration.
The argument to the ioctl is the address of one of the following structures,
defined in sys/vtoc. h, which will be filled in by the ioctl:

struct disk-parms {

}

char dp_type;
unchar dp_heads;
ushort dp_cyls;
unchar dp_sectors;
ushort dp_secsiz;

ushort dp-ptag;
ushort dp-pflag;
ushort dp-pstartsec;
ushort dp-pnumsec;

/* Disk types */
#defineDPT_WINI
#defineDPT_FLOPPY
#defineDPT_OTHER
#defineDPT_NOTDISK

1
2
3
o

/* Disk type (see below) */
/* Number of heads */
/* Number of cylinders */
/* Number of sectors/track */
/* Number of qytes/sector */
/* for this partition: */
/* Partition tag (not used) */
/* Partition flag (not used) */
/* Starting sector number */
/* Number of sectors */

/* Winchester disk */
/* Floppy */
/* Other type of disk */
/* Not a disk device */

For the floppy driver, the disk type will always be DPT]LOPPY. The
unused fields in the disk -.rarms structure are only applicable to hard disks;
however, returning the same structure from both the hard disk driver and
the diskette driver allows programs to be written that can understand either
one.

V_FORMAT
This call is used to format tracks on a diskette. The argument passed to the
ioctl is the address of one of the following structures, defined in
sys/vtoc .h, containing the starting track, number of tracks, and interleave
factor:

union io_arg {
struct {

ushort start_trk;
ushort num_trks;

ushort intlv;
} ia_fmt;

/* first track */
/* number of tracks
to format */

fd(7)

/* interleave factor */

Formatting will start at the given track and will continue so that the given
number of tracks are formatted, using the given interleave factor.

Note that the file descriptor must refer to the character (raw) special device
for the desired drive, and the file must have been opened in exclusive mode
(that is, 0_ EXCL).

Files
/dev/dsk/fO, /dev/rdsk/fO,
/dev/dsk/fOt, /dev/rdsk/fOt, .. .
/dev/dsk/f05h, /dev/rdsk/f05h, .. .
/dev/dsk/f05ht, /dev/rdsk/f05ht, .. .
/dev/dsk/f05d9, /dev/rdsk/f05d9, .. .
/dev/dsk/f05d9t, /dev/rdsk/f05d9t, .. .
/dev/dsk/fOfd8, /dev/rdsk/fOSd8, •..
/dev/dsk/fOSd8t, /dev/rdsk/f05d8t, ...
/dev/dsk/fOSd4, /dev/rdsk/fOSd4, •..
/dev/dsk/fOSd4t, /dev/rdsk/f05d4t, .. .
/dev/dsk/f05d16, /dev/rdsk/f05d16, .. .
/dev/dsk/fOSd16t, /dev/rdsk/f05d16t,
/dev/dsk/fOSq, /dev/rdsk/fOSq, .••
/dev/dsk/fOSqt, /dev/rdsk/fOSqt, .. .
/dev/dsk/f03h, /dev/rdsk/f03h, .. .
/dev/dsk/f03ht, /dev/rdsk/f03ht, •••
/dev/dsk/f03d, /dev/rdsk/f03d, ...
/dev/dsk/f03dt, /dev/rdsk/f03dt, .•.

Errors
The driver will retry failed transfers up to ten times. If the request still has not suc
ceeded, the driver will display an appropriate message. Errors from the diskette
controller, other than the above, are displayed as follows:

FD drv n, blk b: drive error message
FDcontroller controller error message

The first message occurs on an error after a transfer has begun, where n is the drive
where the error occurred, and b is the block number that is being read or written.
The drive error message is one of the messages appearing in the following list:

Missing data address mark
The diskette may not be formatted properly.

417

fd(7)

Cylinder marked bad
The accessed cylinder has been marked bad by the formatter.

Seek error (wrong cylinder)
The drive positioned itself at the wrong cylinder when attempting to set up
for the requested transfer.

Uncorrectable data read error
A CRC error was detected when attempting to read the requested block
from the drive.

Sector marked bad
The accessed sector has been marked bad by the formatter.

Missing header address mark
The diskette may not be formatted properly.

Write protected
A write was attempted to a diskette that is currently write-protected.

Sector not found
The diskette may not be formatted properly.

Data overrun
The system could not keep up with the requested transfer of data. (Should
not occur.)

Header read error
The diskette may not be formatted properly.

Illegal sector specified
The driver is confused about the format of the diskette that has been
inserted. (Should not occur.)

The second message occurs when there is a controller error during the setup for, or
actual transfer of, a block. The controller error message is one of the messages appear
ing in the following list:

command timeout
The controller failed to complete the requested command in a reasonable
length of time.

status timeout
The controller failed to return its status after a command was completed.

busy During an attempt to access the controller, a timeout occurred.

REFERENCES
format(lM), ioct1(2)

418

filesystem (7)

NAME
filesystem- file system organization

SYNOPSIS
I
lusr

DESCRIPTION
The System V file system tree is organized for administrative convenience. Distinct
areas within the file system tree are provided for files that are private to one
machine, files that can be shared by multiple machines of a common architecture,
files that can be shared by all machines, and home directories. This organization
allows sharable files to be stored on one machine but accessed by many machines
using a remote file access mechanism such as RFS or NFS. Grouping together simi
lar files makes the file system tree easier to upgrade and manage.

The file system tree consists of a root file system and a collection of mountable file
systems. The mount (1M) program attaches mountable file systems to the file system
tree at mount points (directory entries) in the root file system or other previously
mounted file systems. I If /f4/usr is configured as a separate file system, it must be
mounted in order to have a completely functional system. The root file system is
mounted automatically by the kernel at boot time.

The root file system contains files that are unique to each machine. It contains the
following directories:

ldev Character and block special files. These device files provide
hooks into hardware devices or operating system facilities.
Typically, device files are built to match the kernel and
hardware configuration of the machine.

Idev/term

Idev/pts

ldev/sxt

lete

Ihcnne

Imnt

lopt

Iproe

Isbin

Terminal devices.

Pseudo-terminal devices.

Shell layers device files used by shl.

Machine-specific administrative configuration files and system
administration databases. I ete may be viewed as the home
directory of a machine, the directory that in a sense defines the
machine's identity. Executable programs are no longer kept in
lete.

Root of a subtree for user directories.

Temporary mount point for file systems. This is an empty
directory on which file systems may be temporarily mounted.

Root of a subtree for add-on application packages.

Root of a subtree for the process file system.

Essential executables used in the booting process and in
manual system recovery. The full complement of utilities is
available only after lusr is mounted,

419

filesystem (7)

420

/tIll>

/var

/var/adm

/var/cron

/var/mail

/var/opt

/var/preserve

/var/spool

/var/tllI>

Temporary files; initialized to empty during the boot opera
tion.

Root of a subtree for varying files. Varying files are files that
are unique to a machine but that can grow to an arbitrary (that
is, variable) size. An example is a log file.

System logging and accounting files.

cron's log file.

Where users' mail is kept.

Top-level directory used by application packages.

Backup files for vi(l) and ex(l).

Subdirectories for files used in printer spooling, mail delivery,
cron(lM), at (1), etc.

Transitory files; initialized to empty during the boot operation.

Because it is desirable to keep the root file system small and not volatile, on disk
based systems larger file systems are often mounted on /hame, /opt, /usr, and
/var.

The file system mounted on /usr contains architecture-dependent and
architecture-independent sharable files. The subtree rooted at /usr/share contains
architecture-independent sharable files; the rest of the /usr tree contains
architecture-dependent files. By mounting a common remote file system, a group
of machines with a common architecture may share a single /usr file system. A
single /usr/share file system can be shared by machines of any architecture. A
machine acting as a file server may export many different /usr file systems to
support several different architectures and operating system releases. Clients
usually mount /usr read-only so that they don't accidentally change any shared
files. The /usr file system contains the following subdirectories:

/usr /bin Most system utilities.

/usr / sbin Executables for system administration.

/usr/games Game binaries and data.

/usr/include Include header files (for C programs, etc).

/usr/lib Program libraries, various architecture-dependent databases,
and executables not invoked directly by the user (system
daemons, etc).

/usr/share Subtree for architecture-independent sharable files.

/usr / share/man Subdirectories for on-line reference manual pages (if present).

/usr/share/lib Architecture-independent databases.

/usr/src Source code for utilities and libraries.

/usr/ucb Berkeley compatibility package binaries.

filesystem (7)

/usr/ucbinclude Berkeley compatibility package header files.

/usr/ucblib Berkeley compatibility package libraries.

A machine with disks may export root file systems, swap files, and /usr file sys
tems to diskless or partially-disked machines that mount them into the standard file
system hierarchy. The standard directory tree for sharing these file systems from a
server is:

/export The default root of the exported file system tree.

/ export/ exec/ architecture-name
The exported /usr file system supporting architecture-name for
the current release.

/ export/exec/ architecture-name. release-name
The exported /usr file system supporting architecture-name for
System V release-name.

/export/exec/share
The exported common /usr / share directory tree.

/ export/ exec/ share. release-name
The exported common /usr / share directory tree for System V
release-name.

/export/root/hostname
The exported root file system for hostname.

/ export / swap / hostname
The exported swap file for hostname.

/ export /var / hostname
The exported /var directory tree for hostname.

SEE ALSO
at(l), fsck(lM), init(lM), mknod(lM), mount(lM), sh(l), vi(l)

421

iS96(7)

NAME
i596 - i596 Ethernet Driver

SYNOPSIS
#include <sys/dlpi.h>
#include <sys/dlpi_ether.h>
#include <sys/i596.h>

fd = open (l/dev/i596_0", O_RDWR)

DESCRIPTION

USAGE

The i596 driver provides a data link interface to the 82596 high-performance 32-bit
LAN coprocessor in the LP486/33E system. In this system, the 82596CA resides on
the host bus, sharing address, data, and control lines with the i486 processor. This
driver is a STREAMS-based driver that is compatible with the Data Link Provider
Interface (DLPI) and Logical Link Interface (LLI) software interfaces.

It supports DL_ETHER as MAC type, DL_CL_ETHER for service mode, and
DL_STYLEl for provider style. The i596 driver can operate as a cloned or non
cloned device.

A process must issue a DL_BIND_REQ primitive to receive frames from the network.
The process must specify the dl_sap field of the dl_bind_re~t structure. The type
field of an incoming frame is compared to the dl_sap value. If the values are equal,
it is placed on the STREAMS read queue of the process. A privileged process may
set the dl_sap field to PROMISCUOUS_SAP. The PROMISCUOUS_SAP matches all incom
ing frames.

A privileged process may also bind to a SAP already bound by another process. In
cases where a frame qualifies to be sent to more than one process, independent
copies of the frame are created and placed on the STREAMS read queue of each
process.

Received frames are delivered in dl_unitdata_ind_t structures. The source and
destination address each contain a 6-byte Ethernet address followed by a 2-byte
type value.

ioetl Calls

422

The following ioctls are supported:

DLIOCGMIB
Returns the DL_mib_t structure, which contains the Management Informa
tion Base (MIB). The MIB holds the Ethernet statistics that are kept in the
driver.

/*
* Ether statistics structure.
*/

typedef struct {
int etherAlignErrors;
int etherCRCerrors;
int etherMissedPkts;
int etherOverrunErrors;
int etherUnderrunErrors;

/* Frame alignment errors */
/* CRC errors */

/* Packet overflow or missed inter */
/* Overrun errors */
/* Underrun errors */

int etherCollisions; /*
int etherAbortErrors; /*
int etherCarrierLost; /*
int etherReadqFuII; /*
int etherRcvResources; /*
int etherDependent 1; /*
int etherDependent2; /*
int etherDependent3; /*
int etherDependent4; /*
int etherDependent5 ; /*
DL_etherstat_t;

/*

iS96(7)

Total collisions */
Transmits aborted at interface */
Carrier sense signal lost */
STREAMS read queue full */
Receive resource alloc failure */
Device dependent statistic */
Device dependent statistic */
Device dependent statistic */
Device dependent statistic */
Device dependent statistic */

* Interface statistics compatible with MIB II SNMP requirements.
*/

typedef struct {
int /* ranges between 1 and if Number */
int
int

if Index;
ifDescrLen;
if Type;

/* len of desc. following this struct */
/* type of interface */

int
ulong_t
uchar_t
int

ifMtu; /* datagram size that can be sent/rcv */
if Speed; /* estimate of bandwidth in bits PS */
ifPhyAddress[DL_MAC_ADDR_LEN];/* Ethernet Address */

/* desired state of the interface */
/* current state of the interface */ int

ulong_t
ulong_t
ulong_t
ulong_t
ulong_t
ulong_t
ulong_t
ulong_t
ulong_t
ulong_t
ulong_t

ifAdminStatus;
ifOperStatus;
ifLastChange;
ifInOctets;
ifInUcastPkts;
ifInNUcastPkts;
ifInDiscards;
ifInErrors;
ifInUnknownProtos;
ifOUtOctets;
ifOUtUcastPkts;
ifOUtNUcastPkts;
ifOUtDiscards;

/* sysUpTime when state was entered */
/* octets received on interface */
/* unicast packets delivered */
/* non-unicast packets delivered */
/* good packets received but dropped
/* packets received with errors */
/* packets recv'd to unbound proto */
/* octets transmitted on interface */
/* unicast packets transmited */
/* non-unicast packets transmited */

ulong_t ifOUtErrors;
ulong_t ifOUtQlen;
DL_etherstat_t if Specific;
DL_mib_t;

/*
/*
/*
/*

good outbound packets dropped */
number of transmit errors */
length of output queue */
ethernet specific stats */

The values in the MIB are compatible with those needed by the SNMP pro
tocol.

The ifDescrLen field indicates the length of the null terminated description
string that immediately follows the DL_mib_t structure.

There are three fields in the MIB that are specific to the i596 driver: The
ifSpecific.etherDependentl field tracks the number of times the transceiver
failed to transmit a collision signal after transmission of a packet. The
ifSpecific.etherDependent2 field contains the number of collisions that

423

*/

i596 (7)

424

occurred after a slot time (out of window collisions). The
ifSpeeifie.etherDependent3 field tracks the number of times a transmit inter
rupt timeout condition occurred.

DLIOCSMIG
Allows a privileged process to initialize the values in the MIB (that is, the
DL_mib_t structure). A process cannot use this ioctl to change the
ifPhyAddress, the ijDeserLen, or the text of the description fields.

DLIOCGENADDR
Returns the Ethernet address in network order.

DLIOCGLPCFLG
Returns the state of the local packet copy flag in the ioe Jval of the iocblk
structure. The local copy flag determines whether packets looped back by
the driver should also be sent to the network. A non-zero value indicates
that frames should also be be sent to the network after being looped back.
The default value of this flag is zero.

DLIOCSLPCFLG
Allows a privileged process to set the local packet copy flag, causing all
packets looped back by the driver to be sent to the network as well.

DLIOCGPROMISC
Returns the value of the promiscuous flag in the ioe Jval field of the iocblk
structure. A non-zero value indicates that the Ethernet interface will receive
all frames on the network. The default value of this flag is zero.

DLIOCSPROMISC
Allows a privileged process to toggle the current state of the promiscuous
flag. When the flag is set, the driver captures all frames from the network.
Processes that are bound to a promiscuous SAP, or to a SAP that matches
the type field of the received frame, receive a copy of the frame.

Installation
You select the interrupt level for the i596 at package installation time. The follow
ing interrupts are valid: 9, 10, 11, or 15.

This interrupt should match the "LAN IRQ Level" value configured by the EISA
Configuration Utility (ECU). In addition, the "Onboard LAN" must be enabled and
the "LAN Media Type" set to either AUI or Twisted Pair, whichever is appropriate.

You can also set the interrupt level in the /etc/conf/sdevice.d/i596 file.

Configuration
The i596 driver has three configurable parameters in the
/etc/conf/pack.d/i596/space.c file. Any changes to this file must be followed
by a rebuild of the kernel and a reboot of the system for the changes to take effect.

The configurable parameters are:

N_SAPS
Defines the number of SAPs that can be bound at anyone time. This value
should be only slightly larger than anticipated SAP usage. A typical
TCP lIP system would require two SAPs (OxSOO and OxS06). A large value
will degrade performance and increase memory usage.

i596 (7)

STREAMS_LOG
Defines whether the driver should log debugging messages to the
STREAMS logger for the strace(lM) utility to display. The module ID
used with strace is 2101. A value of 0 indicates that STREAMS debug
messages should not be generated. A value of 1 enables STREAMS debug
messages. You can make the driver temporarily log messages by changing
the value of i596strlog (a 4-byte integer) to 1 using the kernel debugger.

STREAMS tracing should only be performed when debugging a network
problem. It can cause a severe performance degradation if you use full i596
STREAMS logging.

IFNAME

Errors

This parameter is important only in a Tep lIP networking environment. It
defines the string used in displaying network statistics. This string should
match the logical interface name assigned in /etc/inet/strcf file and
with ifconfig(lM) commands used in / etc/ inet/rc. inet configuration
script.

The i596 driver can return the following error codes:

ENXIO Invalid major number or board is not installed.

ECHRNG
No minor devices left if configured as a cloned device. Increase N SAP value
in /etc/conf!pack.d/i596/space.c Invalid minor device number if
configured as a non-cloned device.

EPERM An ioctl was issued without the appropriate privilege.

EINVAL
An ioctl was issued that did not supply a required input andlor output
buffer.

DL_NOTSUPPORTED
The requested service primitive is not supported.

DL_BADPRIM
An unknown service primitive was requested.

DL_OUTSTATE
DL~IND_REQ was issued when the Stream was bound, or DL_UNBIND_REQ
or DL_UNITDATA_REQ was issued when the Stream was unbound.

DL_ACCESS
An attempt was made to bind to PROMISCUOUS_SAP with insufficient
privilege.

DL_BOUND
The requested SAP is already bound. A privileged process may bind to an
already bound SAP.

DL_NOTINIT
DL_UNITDATA_REQ was issued on an Ethernet board that has gone offline
due to an error.

425

i596 (7)

DL_BADDATA

Files

DL_tlNITDATA_REQ was issued with a data size that was either larger than
the SPDU maximum. or smaller than the SPDU minimum..

/dev/i596_0
/etc/conf/pack.d/i596/space.c
/etc/conf/sdevice.d/i596

REFERENCES
open(2), getmsg(2), ioctl(2), putmsg(2)

426

ibmtok(7)

NAME
ibmtok - IBM Token Ring Driver

SYNOPSIS
#include <sys/dlpi.h>
#include <sys/ibmtokhw.h>
#include <sys/ibmtok.h>

DESCRIPTION

USAGE

The ibmtok driver provides a data link interface to both the 16/4 and the 16/4A
token ring adapters from IBM. It is a STREAMS-based driver that is compatible
with the Data Link Provider Interface (DLPI) and Logical Link Interface (LU)
software interfaces.

The ibmtok driver can operate as a cloned or non-cloned device.

A process must issue a DL _BIND _REQ primitive to receive frames from the net
work. The process must specify the dl_sap field of the dl_bind_re~t structure.
The type field of an incoming frame is compared to the dl_sap value. If the values
are equal, it is placed on the STREAMS read queue of the process.

Received frames are delivered in dl_unitdata_ind_t structures. The source and
destination address each contain a 6-byte Ethernet address, followed by the 1- or 2-
byte type value.

Any user process that has a Stream bound (using a DL_BIND_REQ) to the token ring
driver should explicitly unbind (using DL_UNBIND_REQ) before closing the Stream.
Any destructive close (closing without unbind) will render the SAP useless until the
board can be closed and opened again.

You can select the interrupt level, base I/O address, ROM address and the shared
RAM address for the token ring card at package installation time. While interrupts
2,3,6, and 7 are valid for the AT version of the card, 2, 3,10, and 12 should be used
for the MeA version of the card. The shared RAM is a movable section of memory
and can be 8K, 16K, 32K or 64K. The starting address of the shared RAM is a func
tion of the size and should fall on appropriate boundaries. For example, the start
ing address of a 16K RAM should only be on 16K boundaries. Similarly, you can
also choose the starting address of an 8K ROM. The ROM contains adapter
configuration information and is also used to control the adapter.

The base I/O address of the card can be one of the following addresses:

OxA20 OxA23
OxA24 OxA27

You can also set these parameters in the / etc / conf / sdevice . d/ ibmtok file.

Configuration
The ibmtok driver has four configurable parameters in the
/etc/conf/pack.d/ibmtok/space.c file. Any changes to this file must be

427

ibmtok(7)

428

followed by a rebuild of the kernel and a reboot of the system for the changes to
take effect.

The configurable parameters are:

tok_nhr_rcv_buffers
Defines the number of receive buffers that are minimally required. The
receive buffers are allocated in the shared RAM. Though the default value
is 20, the adapter can and will allocate all unused memory to the receive
buffers.

tok_rcv_buff_size
Defines the size of the receive buffers. The default value is 264.

tok_tx_buff_size
The size of the transmit buffer. The default value is 2048 bytes.

tok_nhr_tx_buffers
The number of transmit buffers. The default value is 1.

loctl Calls
The following ioctls are supported:

DLGDEVSTAT
Returns the tokstat structure, which contains the information about the
number of packets and bytes transmitted and received for that particular
SAP.

/*
* Per sap statistics structure.
*/

typedef struct {

ulong toks_xpkts; /*The number
ulong toks_xbytes; /*The number
ulong toks_rpkts; /*The number
ulong toks_rbytes; /*The number
tokdevstat;

DLGADDR
Returns the Ethernet address in network order.

Error Codes
The ibmtok driver can return the follOWing error codes:

of packets transmitted */
of bytes transmitted */
of packets received */
of bytes received */

ENXIO Invalid major number, board not installed, or a non-functional board.

ECHRNG
No minor devices left, if configured as a cloned device.

EINTR Signal terminating a process sleeping on an event.

EINVAL
An ioctl was issued that did not supply a required input and/ or output
buffer.

ibmtok(7)

DL_NOTSUPPORTED
Requested service primitive is not supported.

DL_BADPRIM
Unknown service primitive was requested.

DL_OUTSTATE
DL_BIND_REQ was issued when the stream was bound, or DL_UNBIND_REQ
or DL_UNITDATA_REQ was issued when the stream was unbound.

DL_BOUND
The requested SAP is already bound.

DL_NOTINIT
A service primitive was issued to a token ring board that has gone offline
due to an error.

DL_BADDATA
DL_UNITDATA_REQ was issued with a data size that was either larger than
the SPDU maximum or smaller than the SPDU minimum.

Files
/dev/ibmtok*
/etc/conf/pack.d/ibmtok/space.c
/etc/conf/sdevice.d/ibmtok

REFERENCES
getmsg(2), ioctl(2), open(2), putmsg(2)

429

ICMP(7)

NAME
ICMP - Internet Control Message Protocol

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/ip_icmp.h>

s = socket (AF_lNET, SOClCRAW, proto);

t = t_open(lI/dev/icmpll, O_RDWR};

DESCRIPTION
ICMP is the error and control message protocol used by the Internet protocol family.
It is used by the kernel to handle and report errors in protocol processing. It may
also be accessed by programs using the socket interface or the Transport Level
Interface (TLI) for network monitoring and diagnostic functions. When used with
the socket interface, a raw socket type is used. The protocol number for ICMP, used
in the proto parameter to the socket call, can be obtained from getprotobyname()
[see getprotoent(3N)]. ICMP file descriptors and sockets are connectionless, and
are normally used with the t_sndudata I t_rcvudata and the sendto () I
recvfrom{) calls [see send(3N) and recv(3N)].

Outgoing packets automatically have an Internet Protocol (IP) header prepended to
them. Incoming packets are provided to the user with the IP header and options
intact.

ICMP is an datagram protocol layered above IP. It is used internally by the protocol
code for various purposes including routing, fault isolation, and congestion control.
Receipt of an ICMP redirect message will add a new entry in the routing table, or
modify an existing one. ICMP messages are routinely sent by the protocol code.
Received ICMP messages may be reflected back to users of higher-level protocols
such as TCP or UDP as error returns from system calls. A copy of all ICMP message
received by the system is provided to every holder of an open ICMP socket or TLI
descriptor.

SEE ALSO
getprotoent(3N), inet(7), ip(7), recv(3N), routing(4), send(3N),
t_rcvudata(3N), t_sndudata(3N)

Postel, Jon, Internet Control Message Protocol - DARPA Internet Program Protocol
Specification, RFC 792, Network Information Center, SRI International, Menlo Park,
Calif., September 1981

DIAGNOSTICS

430

A socket operation may fail with one of the following errors returned:

EISCONN An attempt was made to establish a connection on a socket
which already has one, or when trying to send a datagram with
the destination address specified and the socket is already con
nected.

ENOTCONN An attempt was made to send a datagram, but no destination
address is specified, and the socket has not been connected.

NOTES

ENOBUFS

EADDRNOTAVAIL

ICMP(7)

The system ran out of memory for an internal data structure.

An attempt was made to create a socket with a network
address for which no network interface exists.

Replies to ICMP echo messages which are source routed are not sent back using
inverted source routes, but rather go back through the normal routing mechanisms.

431

ie6(7)

NAME
ie6 - 3C503 3Com Ethernet Driver

SYNOPSIS
#include <sys/dlpi.h>
#include <sys/dlpi_ether.h>
#include <sys/ie6.h>

fd = open (.. /dev/ie6_0" I O_RDWR)

DESCRIPTION

USAGE

The ie6 driver provides a data link interface to the 3C503 Ethernet controller from
3Com. It is a STREAMS-based driver, compatible with the Data Link Provider
Interface (DLPI) and Logical Link Interface (LL!) software interfaces.

The ie6 driver supports both DL_ETHER and DL_CSMACD for MAC type,
DL_CL_ETHER for service mode, and DL_STYLEl for provider style. The driver can
operate as a cloned or non-cloned device.

A process must issue a DL_BIND_REQ primitive to receive frames from the network.
This primitive includes a dl_bind_re~t structure.

The process must specify the dl_sap field of the dl_bind_r~t structure in host
order. The type field of an incoming frame is converted to host order and com
pared to the dl_sap value. If the values are equal, the frame is placed on the
STREAMS read queue of the requesting process. A privileged process may set the
dl_sap field to PROMISCUOUS_SAP. The PROMISCUOUS_SAP matches all incoming
frames.

A privileged process may bind to an SAP already bound by another process. In
cases where a frame qualifies to be sent to more than one process, independent
copies of the frame are made and placed on the STREAMS read queue of each pro
cess.

Received frames are delivered in dl_unitdata_ind_t structures. The source and
destination address each contain a 6-byte Ethernet address, followed by the 2-byte
type value, written in network order.

ioetl Calls

432

The following ioctls are supported:

DLIOCGMIB
Returns the DL_mib_t structure, which contains the Management Informa
tion Base (MIB). The MIB holds the Ethernet statistics kept in the driver.

1*
* Ether statistics structure.
*1

typedef struct {
ulong_tetherAlignErrors; 1* Frame aligmnent errors * I
ulong_tetherCRCerrors; 1* CRe errors *1
ulong_tetherMissedPkts; 1* Packet overflow or missed inter *1
ulong_tetherOverrunErrors; 1* OVerrun errors *1
ulong_tetherunderrunErrors; 1* und.errun errors *1
ulong_tetherCollisions; 1* Total collisions *1

ie6(7)

ulong_t etherAbortErrors; 1* Transmits aborted at interface *1
ulong_tetherCarrierLost; 1* carrier sense signal lost *1
ulong_tetherReadqFull; 1* STREAMS read queue full * 1
ulong_tetherRcvResources; 1* Receive resource alloc faliure

*1
ulong_tetherDependentl; 1* Device dependent statistic *1
ulong_tetherDependent2; 1* Device dependent statistic *1
ulong_tetherDependent3; 1* Device dependent statistic *1
ulong_tetherDependent4; 1* Device dependent statistic *1
ulong_tetherDependent5; 1* Device dependent statistic *1
DL_etherstat_t;

1*
* Interface statistics compatible with MIB II SNMP requirements.
*1

typedef struct {

*1

int ifIndex; 1* 1 through if Number *1
int ifDescrLen; 1* len of desc. following this struct *1
int if Type; 1* type of interface *1
int ifMtu; 1* datagram size that can be sent/rev *1
ulong_tifSpeed; 1* estimate of bandwith in bits PS *1
uchar_tifPhyAddress[DL_MAC_ADDR_LEN];I* Ethernet Address *1
int ifAdminStatus;
int ifQperStatus;
ulong_tifLastChange;
ulong_tifInOctets;
ulong_tifInUcastPkts;
ulong_tifInNUcastPkts;
ulong_tifInDiscards;
ulong_tifInErrors;
ulong_tifInUnknow.nProtos;

ulong_tifOutOctets;
ulong_tifOutUcastPkts;
ulong_tifOutNUcastPkts;
ulong_tifOutDiscards;
ulang_tifOutErrors;
ulang_tifOutQlen;
DL_etherstat_t if Specific;
DL_mib_t;

1*
1*
1*
1*
1*
1*
1*
1*
1*

1*
1*
1*
1*
1*
1*
1*

desired state of the interface *1
current state of the interface *1
sySupTime when state was entered * 1
octets received on interface *1
unicast packets delivered *1
non-unicast packets delivered *1
good packets received but dropped *1
packets received with errors *1
packets reev'd to unbound proto

octets transmitted on interface '*1
unicast packets transmited *1
non-unicast packets transmited *1
good outbound packets dropped * 1
number of transmit errors * 1
length of output queue * 1
Ethernet specific stats *1

The values in the MIB are compatible with those needed by the SNMP pro
tocol.

The ifDescrLen field indicates the length of the null-terminated description
string that immediately follows the DL_mib_t structure.

433

ie6(7)

434

There are three fields in the MIB that are specific to the ie6 driver: The
ifSpeeifie.etherDependentl field tracks the number of times the transceiver
failed to transmit a collision signal after transmission of a packet. The
ifSpeeifie.etherDependent2 field tracks the number of collisions that occurred
after a slot time (out-of-window collisions). The ifSpeeifie.etherDependent3
field tracks the number of times a transmit interrupt timeout condition
occurred.

DLIOCSMIG
Allows a privileged process to initialize the values in the MIB (that is, the
DL_mib_t structure). A process cannot use this ioctl to change the
ifPhyAddress, the ifDescrLen, or the text of the description fields.

DLIOCGENADDR
Returns the Ethernet address in network order.

DLIOCGLPCFLG
Returns the state of the local packet copy flag in the ioe -,val field of the
iocblk structure. The local copy flag determines if packets looped back by
the driver should also be sent to the network. A non-zero value indicates
that frames should also be be sent to the network after being looped back.
The default value of this flag is zero.

DLIOCSLPCFLG
Allows a privileged process to set the local packet copy flag, causing all
packets looped back by the driver to also be sent to the network.

DLIOCGPROMISC
Returns the value of the promiscuous flag in the ioe -,val of the iocblk struc
ture. A non-zero value indicates that the Ethernet interface will receive all
frames on the network. The default value of this flag is zero.

DLIOCSPROMISC
Allows a privileged process to toggle the current state of the promiscuous
flag. When the flag is non-zero, the driver captures all frames from the net
work. Processes that are bound to the promiscuous SAP, or to an SAP that
matches the type field of the received frame, receive a copy of the frame.

DLIOCGETMULTI
Returns the current list of multicast addresses (if it exists).

DLIOCADDMULTI
Allows a privileged process to add a new multicast address and enable its
reception. A 6-byte buffer pointing to the multicast address must be passed
as the parameter.

DLIOCDELMULTI
Allows a privileged process to delete a multicast address by passing a 6-byte
multicast address as the parameter.

Configuration
The ie6 driver has four configurable parameters in the
/etc/conf/pack.d/ie6/space.c file. If you change this file, you must rebuild
the kernel and reboot the system for the changes to take effect.

ie6(7)

The configurable parameters are:

N_SAPS
Defines the number of SAPs that can be bound at anyone time. This value
should be only slightly larger than anticipated SAP usage. A typical
TCP lIP system requires two SAPs (Ox800 and Ox806). If you assign too
large a value to this parameter, system performance and memory usage may
suffer.

CABLE_TYPE
Defines the type of Ethernet cable attached to the Ethernet controller card.
A value of 0 specifies thin Ethernet cable with a BNC connector. A value of
1 specifies thick Ethernet cable with a AUI connector.

STREAMS_LOG
Defines whether the driver should log debugging messages to the
STREAMS logger for the strace(lM) utility to display. The module ID
used with strace is 2101. A value of 0 indicates that no STREAMS debug
messages should be generated. A value of 1 enables STREAMS debug mes
sages to be generated. You can also direct the driver to log messages tem
porarily by using the kernel debugger to change the value of ie6strlog (a
4-byte integer) to 1.

Use STREAMS tracing only when debugging a network problem, because
system performance suffers when full ie6 STREAMS logging is in progress.

IFNAME

Errors

This parameter is important only in a TCP lIP networking environment. It
defines the string used in displaying network statistics. This string should
match the logical interface name assigned in the
/etc/confnet.d/inet/interfaces file and with ifconfig(lM) com
mands used in the / etc/ inet/rc . inet configuration script.

The ie6 driver can return the following error codes:

ENXIO Invalid major number or board is not installed.

ECHRNG
No minor devices left if configured as a cloned device. Increase N SAP value
in /etc/conf/pack.d/ie6/space.c Invalid minor device number if
configured as a non-cloned device.

EPERM An ioctl was made without the appropriate priVilege.

EINVAL
An ioctl was made that did not supply a required input and I or output
buffer.

DL_NOTSUPPORTED
Requested service primitive is not supported.

DL_BADPRIM
Unknown service primitive was requested.

435

ie6 (7)

DL_OUTSTATE
DL_BIND_REQ was issued when the Stream was bound, or DL_UNBIND_REQ
or DL_UNITDATA_REQ were issued when the Stream was unbound.

DL_ACCESS
An attempt was made to bind to PROMISCUOUS_SAP with insufficient
privilege.

DL_BOUND
The requested SAP is already bound. A privileged process may bind to an
already bound SAP.

DL_NOTINIT
DL_UNITDATA_REQ was issued on an Ethernet board that has gone offline
due to an error.

DL_BADDATA

Files

DL_UNITDATA_REQ was issued with a data size that was either larger than
the SPDU maximum or smaller than the SPDU minimum.

/dev/ie6_*
/etc/conf/pack.d/ie6/space.c

REFERENCES
getmsg(2), ifconfig(lM), ioctl(2), open(2), putmsg(2), strace(lM)

436

if(7)

NAME
if - general properties of Internet Protocol network interfaces

DESCRIPTION

locns

A network interface is a device for sending and receiving packets on a network. A
network interface is usually a hardware device, although certain interfaces such as
the loopback interface, 10(7), are implemented in software. Network interfaces
used by the Internet Protocol (IP) must be STREAMS devices conforming to the
Datalink Provider Interface (DLPI).

An interface becomes available to IP when it is linked below the IP STREAMS device
with the I_LINK ioctl () call. This may be initiated by the kernel at boot time or by
a user program some time after the system is running. Each IP interface must have
a name assigned to it with the SIOCSIFNAME ioct1 (). This name is used as a
unique handle on the interface by all of the other network interface ioct1 () calls.
Each interface must be assigned an IP address with the SIOCSIFADDR ioct1 ()
before it can be used. On interfaces where the network-to-link layer address map
ping is static, only the network number is taken from the ioct1 () request; the
remainder is found in a hardware specific manner. On interfaces which provide
dynamic network-to-link layer address mapping facilities [for example, lOMb/s
Ethernets using arp(7)], the entire address specified in the ioctl () is used. A
routing table entry for destinations on the network of the interface is installed
automatically when an interface's address is set.

The following ioct1 () calls may be used to manipulate IP network interfaces.
Unless specified otherwise, the request takes an ifreq structure as its parameter.
This structure has the form:

/* Interface request structure used for socket ioctl's. All */
/* interface ioctl's must have parameter definitions which */
/* begin with ifr_name. The remainder may be interface specific. */

struct ifreq {
#define IFNAMSIZ 16

char
union {

ifr_name[IFNAMSIZ]; /* if name, for exarrple "emdl" * /

struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
char ifru_oname[IFNAMSIZ];
struct sockaddr ifru_broadaddr;
short ifru_flags;
int
char

ifru_metric;
ifru_data[1] ;

char ifru_enaddr[6];
ifr_ifru;

#define ifr_addr
#define ifr_dstaddr

ifr_ifru.ifru_addr
ifr_ifru.ifru_dstaddr

#define ifr_oname ifr_ifru.ifru_oname
#define ifr_broadaddr ifr_ifru.ifru_broadaddr
#define ifr_flags ifr_ifru.ifru_flags
#define ifr_metric ifr_ifru.ifru_metric
#define ifr_data ifr_ifru.ifru_data
#define ifr_enaddr ifr_ifru.ifru_enaddr
} ;

/* other if name */

/* interface dependent data */

/* address */
/* other end of p-to-p link */
/* other if name */
/* broadcast address */
/* flags */
/* metric */
/* for use by interface */
/* ethernet address */

437

if(7)

SIOCSIFADDR

SIOCGIFADDR

SIOCSIFDSTADDR

SIOCGIFDSTADDR

SIOCSIFFLAGS

SIOCGIFFLAGS

SIOCGIFCONF

Set interface address. Following the address assignment, the
initialization routine for the interface is called.

Get interface address.

Set point to point address for interface.

Get point to point address for interface.

Set interface flags field. If the interface is marked down, any
processes currently routing packets through the interface are
notified. The interface can be marked up or down by using
ifconfig(lM).

Get interface flags.

Get interface configuration list. This request takes an ifconf
structure (see below) as a value-result parameter. The
ifc_len field should be initially set to the size of the buffer
pointed to by ifc_buf. On return it will contain the length,
in bytes, of the configuration list.

The ifconf structure has the form:

1*
* Structure used in SIOCGIFCONF request.
* Used to retrieve interface configuration
* for machine (useful for programs which
* must know all networks accessible).
*1

structifconf {
int ifc_Ien; 1* size of associated buffer *1
union {

caddr_t ifcu_buf;
struct ifreq *ifcu_req;

ifc_ifcu;
#define ifc_buf ifc_ifcu.ifcu_buf 1* buffer address *1
#define ifc_req ifc_ifcu.ifcu_req 1* array of structures returned *1
};

SIOCSIFNAME
Set the name of the interface.

SEE ALSO
arp(7), ip(7), ifconfig(lM), 10(7)

438

irnx586 (7)

NAME
imx586 - IMXLAN586 Intel Ethernet Driver

SYNOPSIS
#include <sys/dlpi.h>
#include <sys/dlpi_ether.h>
#include <sys/imx586.h>

fd = open ("/dev/imx586_0", O_RDWR)

DESCRIPTION

USAGE

The imx586 driver provides a data link interface to the iMX-LAN/586 Ethernet con
troller from Intel. It is a STREAMS-based driver, compatible with the Data Link
Provider Interface (DLPI) and Logical Link Interface (LU) software interfaces.

The imx586 driver supports both DL_ETHER and DL_CSMACD for MAC type,
DL_CL_ETHER for service mode, and DL_STYLEl for provider style. The driver can
operate as a cloned or non-cloned device.

A process must issue a DL_BIND_REQ primitive to receive frames from the network.
This primitive includes a dl_bind_re~t structure.

The process must specify the dl_sap field of the dl_bind_re~t structure in host
order. The type field of an incoming frame is converted to host order and com
pared to the dl_sap value. If the values are equal, the frame is placed on the
STREAMS read queue of the requesting process. A privileged process may set the
dl_sap field to PROMISCUOUS_SAP. The PROMISCUOUS_SAP matches all incoming
frames.

A privileged process may bind to an SAP already bound by another process. In
cases where a frame qualifies to be sent to more than one process, independent
copies of the frame are made and placed on the STREAMS read queue of each pro
cess.

Received frames are delivered in dl_unitdata_ind_t structures. The source and
destination address each contain a 6-byte Ethernet address, followed by a 2-byte
type value, written in network order.

ioetl Calls
The following ioctls are supported:

DLIOCGMIB
Returns the DL_mib_t structure, which contains the Management Informa
tion Base (MIB). The MIB holds the Ethernet statistics kept in the driver.

/*
* Ether statistics structure.
*/

typedef struct {
ulong_tetherAlignErrors;
ulong_tetherCRCerrors;
ulong_tetherMissedPkts;

/* Frame alignment errors */
/* CRC errors */
/* Packet overflow or missed inter */

ulong_tetherOverrunErrors; /* Overrun errors */
ulong_tetherUnderrunErrors; /* Underrun errors */
ulong_tetherCollisions; /* Total collisions */

439

irnx586 (7)

440

ulang_tetherAbortErrors; 1* Transmits aborted at interface *1
ulang_tetherCarrierLost; 1* Carrier sense signal lost *1
ulang_tetherReadqFull; 1* STREAMS read queue full *1
ulang_tetherRevResources; 1* Receive resource alloc faliure

*1
ulong_tetherDependentl; 1* Device dependent statistic *1
ulong_tetherDependent2; 1* Device dependent statistic *1
ulong_tetherDependent3; 1* Device dependent statistic *1
ulong_tetherDependent4; 1* Device dependent statistic *1
ulang_tetherDependent5; 1* Device dependent statistic *1
DIcetherstat_t;

1*
* Interface statistics compatible with MIB II SNMP requirements.
*1

typedef struct {

*1

int if Index; 1* 1 through ifNumber *1
int ifDescrLen; 1* len of desc. following this struct *1
int if Type; 1* type of interface *1
int ifMtu; 1* datagram size that can be sent/rev *1
ulang_tif8peed; 1* estimate of bandwith in bits PS *1
uchar_tifPhyAddress[DL_MAC_ADDR_LEN1;1* Ethernet Address *1
int ifAdminStatus; 1* desired state of the interface *1
int ifQperStatus; 1* current state of the interface *1
ulong_tifLastChange; 1* systJ:pTime when state was entered *1
ulong_tifInOctets; 1* octets received on interface *1
ulang_tifInUcastPkts; 1* unicast packets delivered *1
ulang_tifInNUcastPkts;
ulong_tifInDiscards;
ulang_tifInErrors;
ulong_tifInUnknownProtos;

ulong_tifOutOctets;
ulong_tifOutUcastPkts;
ulong_tifOutNOcastPkts;
ulong_tifOutDiscards;
ulong_tifOutErrors;
ulong_tifOutQlen;
DL_etherstat_t if8pecific;
DL_mib_t;

1* non-unicast packets delivered *1
1* good packets received but dropped *1
1* packets received with errors *1
1* packets reev'd to unbound proto

1* octets transmitted on interface '*1
1* unicast packets transmited *1
1* non-unicast packets transmited *1
1* good outbound packets dropped *1
1* number of transmit errors *1
1* length of output queue *1
1* Ethernet specific stats *1

The values in the MIB are compatible with those needed by the SNMP pro
tocol.

The ifDescrLen field indicates the length of the null-terminated description
string that immediately follows the DL_mib_t structure.

irnx586 (7)

There are three fields in the MIB that are specific to the imx586 driver: The
ifSpecijie.etherDependentl field tracks the number of times the transceiver
failed to transmit a collision signal after transmission of a packet. The
ifSpeeijie.etherDependent2 field tracks the number of collisions that occurred
after a slot time (out-of-window collisions). The ifSpecijie.etherDependent3
field tracks the number of times a transmit interrupt timeout condition
occurred.

DLIOCSMIG
Allows a privileged process to initialize the values in the MIB (that is, the
DL_mib_t structure). A process cannot use this ioctl to change the
ifPhyAddress, the ifDescrLen, or the text of the description fields.

DLIOCGENADDR
Returns the Ethernet address in network order.

DLIOCGLPCFLG
Returns the state of the local packet copy flag in the ioe Jval field of the
iocblk structure. The local copy flag determines if packets looped back by
the driver should also be sent to the network. A non-zero value indicates
that frames should also be be sent to the network after being looped back.
The default value of this flag is zero.

DLIOCSLPCFLG
Allows a privileged process to set the local packet copy flag, causing all
packets looped back by the driver to also be sent to the network.

DLIOCGPROMISC
Returns the value of the promiscuous flag in the ioe Jval of the iocblk struc
ture. A non-zero value indicates that the Ethernet interface will receive all
frames on the network. The default value of this flag is zero.

DLIOCSPROMISC
Allows a privileged process to toggle the current state of the promiscuous
flag. When the flag is non-zero, the driver captures all frames from the net
work. Processes that are bound to the promiscuous SAP, or to an SAP that
matches the type field of the received frame, receive a copy of the frame.

DLIOCGETMULTI
Returns the current list of multicast addresses (if it exists).

DLIOCADDMULTI
Allows a privileged process to add a new multicast address and enable its
reception. A 6-byte buffer pointing to the multicast address must be passed
as the parameter.

DLIOCDELMULTI
Allows a privileged process to delete a multicast address by passing a 6-byte
multicast address as the parameter.

Configuration
The imx586 driver has four configurable parameters in the
/etc/conf/pack.d/imx586/space.c file. If you change this file, you must
rebuild the kernel and reboot the system for the changes to take effect.

441

imx586 (7)

442

The configurable parameters are:

N_SAPS
Defines the number of SAPs that can be bound at anyone time. This value
should be only slightly larger than anticipated SAP usage. A typical
TCP lIP system requires two SAPs (Ox800 and Ox806). If you assign too
large a value to this parameter, system performance and memory usage may
suffer.

STREAMS_LOG
Defines whether the driver should log debugging messages to the
STREAMS logger for the strace(lM) utility to display. The module ID
used with strace is 2101. A value of 0 indicates that no STREAMS debug
messages should be generated. A value of 1 enables STREAMS debug mes
sages to be generated. You can also direct the driver to log messages tem
porarily by using the kernel debugger to change the value of imx586strIog
(a 4-byte integer) to 1.

Use STREAMS tracing only when debugging a network problem, because
system performance suffers when full imx586 STREAMS logging is in pro
gress.

IFNAME

Errors

This parameter is important only in a TCP lIP networking environment. It
defines the string used in displaying network statistics. This string should
match the logical interface name assigned in the
/etc/confnet.d/inet/interfaces file and with ifconfig(lM) com
mands used in the /etc/inet/rc.inet configuration script.

The imx586 driver can return the following error codes:

ENXIO Invalid major number or board is not installed.

ECHRNG
No minor devices left if configured as a cloned device. Increase N_SAP value
in /etc/conf/pack.d/imx586/space.c Invalid minor device number if
configured as a non-cloned device.

EPERM An ioctl was made without the appropriate privilege.

EINVAL
An ioctl was made that did not supply a required input and I or output
buffer.

DL_NOTSUPPORTED
Requested service primitive is not supported.

DL_BADPRIM
Unknown service primitive was requested.

DL_OUTSTATE
DL_BIND_REQ was issued when the Stream was bound, or DL_tlNBIND_REQ
or DL_UNITDATA_REQ were issued when the Stream was unbound.

irnx586 (7)

DL_ACCESS
An attempt was made to bind to PROMISCUOUS_SAP with insufficient
privilege.

DL_BOUND
The requested SAP is already bound. A privileged process may bind to an
already bound SAP.

DL_NOTINIT
DL_UNITDATA_REQ was issued on an Ethernet board that has gone offline
due to an error.

DL_BADDATA
DL_UNITDATA_REQ was issued with a data size that was either larger than
the SPDU maximum or smaller than the SPDU minimum.

Files
/dev/imxS86_*
/etc/conf/pack.d/imxS86/space.c

REFERENCES
getmsg(2), ifconfig(lM), ioctl(2), open(2), putmsg(2), strace(lM)

443

inet(7}

NAME
inet - Internet protocol family

SYNOPSIS
#include <sys/types.h>
#include <netinet/in.h>

DESCRIPTION
The Internet protocol family implements a collection of protocols which are cen
tered around the Internet Protocol (IP) and which share a common address format.
The Internet family protocols can be accessed via the socket interface, where they
support the SOCICSTREAM, SOCICDGRAM, and SOCK_RAW socket types, or the Tran
sport Level Interface (TLI), where they support the connectionless (T_CLTS) and
connection oriented (T_COTS_ORD) service types.

PROTOCOLS
The Internet protocol family comprises the Internet Protocol (IP), the Address Reso
lution Protocol (ARP), the Internet Control Message Protocol (ICMP), the Transmis
sion Control Protocol (TCP), and the User Datagram Protocol (UDP).

TCP supports the socket interface's SOCICSTREAM abstraction and TLI's T_COTS_ORD
service type. UDP supports the SOCICDGRAM socket abstraction and the TLI T_CLTS
service type. See tcp(7) and udp(7). A direct interface to IP is available via both TLI
and the socket interface; See ip(7). ICMP is used by the kernel to handle and report
errors in protocol processing. It is also accessible to user programs; see iCIli>(7).
ARP is used to translate 32-bit IP addresses into 48-bit Ethernet addresses; see
arp(7).

The 32-bit IP address is divided into network number and host number parts. It is
frequency-encoded; The most-significant bit is zero in Class A addresses, in which
the high-order 8 bits represent the network number. Class B addresses have their
high order two bits set to 10 and use the high-order 16 bits as the network number
field. Class C addresses have a 24-bit network number part of which the high order
three bits are 110. Rather than using the default class A, B, or C address, a subnet
mask can be used for the network interface. See "Setting Up Subnets" in the
"Expanding Your TCP lIP Network" chapter in Network Administration for more
information on subnet masks. Subnet addressing is enabled and examined by the
following ioctl(2) commands; They have the same form as the SIOCSIFADDR com
mand [see if(7)].

SIOCSIFNETMASK

SIOCGIFNETMASK

Set interface network mask. The network mask defines the
network part of the address; If it contains more of the
address than the address type would indicate, then subnets
are in use.

Get interface network mask.

ADDRESSING

444

IP addresses are four byte quantities, stored in network byte order. IP addresses
should be manipulated using the byte order conversion routines [see
byteorder(3N)].

inet (7)

Addresses in the Internet protocol family use the following structure:

struct sockaddr_in {
short sin_family;
u_short sin-port;
struct in_addr sin_addr;
char sin_zero[8];

};

Library routines are provided to manipulate structures of this form; See inet(3N).

The sin_addr field of the sockaddr_in structure specifies a local or remote IP
address. Each network interface has its own unique IP address. The special value
INADDR_ANY may be used in this field to effect wildcard matching. Given in a
bind(3N) call, this value leaves the local IP address of the socket unspecified, so that
the socket will receive connections or messages directed at any of the valid IP
addresses of the system. This can prove useful when a process neither knows nor
cares what the local IP address is or when a process wishes to receive requests using
all of its network interfaces. The sockaddr_in structure given in the bind(3N) call
must specify an in_addr value of either IPADDR_ANY or one of the system's valid IP
addresses. Requests to bind any other address will elicit the error EADDRNOTAVAI.
When a connect(3N) call is made for a socket that has a wildcard local address, the
system sets the sin_addr field of the socket to the IP address of the network inter
face that the packets for that connection are routed via.

The sin-port field of the sockaddr_in structure specifies a port number used by
TCP or UDP. The local port address specified in a bind(3N) call is restricted to be
greater than IPPORT_RESERVED (defined in <netinet/in.h» unless the creating
process is running as the super-user, providing a space of protected port numbers.
In addition, the local port address must not be in use by any socket of same address
family and type. Requests to bind sockets to port numbers being used by other
sockets return the error EADDRlNUSE. If the local port address is specified as 0, then
the system picks a unique port address greater than IPPORT_RESERVED. A unique
local port address is also picked when a socket which is not bound is used in a
connect(3N) or sendtoO [see send(3N)] call. This allows programs which do not
care which local port number is used to set up TCP connections by simply calling
socket(3N) and then connect(3N), and to send UDP datagrams with a socket(3N)
call followed by a sendtoO [see send(3N)] call.

Although this implementation restricts sockets to unique local port numbers, TCP
allows multiple simultaneous connections involving the same local port number so
long as the remote IP addresses or port numbers are different for each connection.
Programs may explicitly override the socket restriction by setting the
SO_REUSEADDR socket option with setsockopt [see getsockopt(3N)].

TLI applies somewhat different semantics to the binding of local port numbers.
These semantics apply when Internet family protocols are used via the TLI.

SEE ALSO
arp(7), bind(3N), byteorder(3N), connect(3N), icmp(7), if(7), ioct1(2), ip(7),
gethostent(3N), getnetent(3N), getprotoent(3N), getservent(3N),
getsockopt(3N), send(3N), socket(3N), tcp(7), udp(7)

445

inet (7)

NOTES

446

Network Information Center, DDN Protocol Handbook (3 vols.), Network Informa
tion Center, SRI International, Menlo Park, Calif., 1985

The Internet protocol support is subject to change as the Internet protocols develop.
Users should not depend on details of the current implementation, but rather the
services exported.

IP(7)

NAME
IP - Internet Protocol

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>

s socket (AF _INET I SOCK_RAW I proto);

t t_open (" /dev/rawip" I O_RDWR);

d open (" /dev/ip" I O_RDWR);

DESCRIPTION
IP is the internetwork datagram delivery protocol that is central to the Internet pro
tocol family. Programs may use IP through higher-level protocols such as the
Transmission Control Protocol (TCP) or the User Datagram Protocol (UDP), or may
interface directly to IP. See tcp(7) and udp(7). Direct access may be via the socket
interface (using a raw socket) or the Transport Level Interface (TLI). The protocol
options defined in the IP specification may be set in outgoing datagrams.

The STREAMS driver /dev/rawip is the TLI transport provider that provides raw
access to IP. The device /dev/ip is the multiplexing STREAMS driver that imple
ments the protocol processing of IP. The latter connects below to datalink providers
[interface drivers, see if(7)], and above to transport providers such as TCP and UDP.

Raw IP sockets are connectionless and are normally used with the sendto () and
recvfrom() calls, [see send(3N) and recv(3N)] although the connect(3N) call
may also be used to fix the destination for future datagrams [in which case the
read(2) or recv(3N) and write(2) or send(3N) calls may be used]. If proto is zero,
the default protocol, IPPROTO_RAW, is used. If proto is non-zero, that protocol
number will be set in outgoing datagrams and will be used to filter incoming
datagrams. An IP header will be generated and prep ended to each outgoing
datagram; received datagrams are returned with the IP header and options intact.

A single socket option, IP_OPTIONS, is supported at the IP level. This socket option
may be used to set IP options to be included in each outgoing datagram. IP options
to be sent are set with setsockopt () [see getsockopt(3N)]. The getsockopt(3N)
call returns the IP options set in the last setsockopt () call. IP options on received
datagrams are visible to user programs only using raw IP sockets. The format of IP
options given in setsockopt () matches those defined in the IP specification with
one exception: the list of addresses for the source routing options must include the
first-hop gateway at the beginning of the list of gateways. The first-hop gateway
address will be extracted from the option list and the size adjusted accordingly
before use. IP options may be used with any socket type in the Internet family.

At the socket level, the socket option SO_DONTROUTE may be applied. This option
forces datagrams being sent to bypass the routing step in output. Normally, IP
selects a network interface to send the datagram, and possibly an intermediate gate
way, based on an entry in the routing table. See routing(4). When SO_OONTROUTE is
set, the datagram will be sent using the interface whose network number or full IP
address matches the destination address. If no interface matches, the error
ENETUNRCH will be returned.

447

IP(7}

Raw IP datagrams can also be sent and received using the TLI connectionless primi
tives.

Datagrams flow through the IP layer in two directions: from the network up to user
processes and from user processes down to the network. Using this orientation, IF is
layered above the network interface drivers and below the transport protocols such
as UDP and TCP. The Internet Control Message Protocol (ICMP) is logically a part of
IP. See icmp(7).

IP provides for a checksum of the header part, but not the data part of the
datagram. The checksum value is computed and set in the process of sending
datagrams and checked when receiving datagrams. IP header checksumming may
be disabled for debugging purposes by patching the kernel variable ipcksum to
have the value zero.

IP options in received datagrams are processed in the IP layer according to the pro
tocol specification. Currently recognized IF options include: security, loose source
and record route (LSRR), strict source and record route (SSRR), record route, stream
identifier, and internet timestamp.

The IP layer will normally forward received datagrams that are not addressed to it.
Forwarding is under the control of the kernel variable ipforwarding: if ipforwarding is
zero, IP datagrams will not be forwarded; if ipforwarding is one, IP datagrams will
be forwarded. ipforwarding is usually set to one only in machines with more than
one network interface (internetwork routers). This kernel variable can be patched
to enable or disable forwarding.

The IP layer will send an ICMP message back to the source host in many cases when
it receives a datagram that can not be handled. A time exceeded ICMP message will
be sent if the time to live field in the IP header drops to zero in the process of for
warding a datagram. A destination unreachable message will be sent if a datagram
can not be forwarded because there is no route to the final destination, or if it can
not be fragmented. If the datagram is addressed to the local host but is destined for
a protocol that is not supported or a port that is not in use, a destination unreach
able message will also be sent. The IP layer may send an ICMP source quench mes
sage if it is receiving datagrams too quickly. ICMP messages are only sent for the
first fragment of a fragmented datagram and are never returned in response to
errors in other ICMP messages.

The IP layer supports fragmentation and reassembly. Datagrams are fragmented on
output if the datagram is larger than the maximum transmission unit (MTU) of the
network interface. Fragments of received datagrams are dropped from the
reassembly queues if the complete datagram is not reconstructed within a short
time period.

Errors in sending discovered at the network interface driver layer are passed by IP
back up to the user process.

SEE ALSO

448

connect(3N), get sockopt (3N), icmp(7), if(7), inet(7), read(2), recv(3N),
routing(4), send(3N), tcp(7), udp(7), write(2)

IP (7)

Postel, Jon, Internet Protocol - DARPA Internet Program Protocol Specification, RFC 791,
Network Information Center, SRI International, Menlo Park, CaliL, September 1981

DIAGNOSTICS

NOTES

A socket operation may fail with one of the following errors returned:

EACCES A IP broadcast destination address was specified and the caller
was not the privileged user.

EISCONN

EMSGSIZE

ENETUNREACH

ENOTCONN

ENOBUFS

EADDRNOTAVAIL

An attempt was made to establish a connection on a socket
which already had one, or to send a datagram with the destina
tion address specified and the socket was already connected.

An attempt was made to send a datagram that was too large
for an interface, but was not allowed to be fragmented (such as
broadcasts).

An attempt was made to establish a connection or send a
datagram, where there was no matching entry in the routing
table, or if an ICMP destination unreachable message was
received.

A datagram was sent, but no destination address was specified,
and the socket had not been connected.

The system ran out of memory for fragmentation buffers or
other internal data structures.

An attempt was made to create a socket with a local address
that did not match any network interface, or an IP broadcast
destination address was specified and the network interface
does not support broadcast.

The following errors may occur when setting or getting IP options:

EINVAL

EINVAL

An unknown socket option name was given.

The IP option field was improperly formed; an option field was
shorter than the minimum value or longer than the option
buffer provided.

Raw sockets should receive ICMP error packets relating to the protocol; currently
such packets are simply discarded.

Users of higher-level protocols such as TCP and UDP should be able to see received
IP options.

449

kbd(7)

NAME
kbd - generalized string translation module

DESCRIPTION

450

The STREAMS module kbd is a programmable string translation module. It per
forms two types of operations on an input stream: the first type is simple byte
swapping via a lookup table, the second is string translation. It is useful for code
set conversion and compose-key or dead-key character production on terminals and
production of overstriking sequences on printers. It also can be used for minor
types of key-rebinding, expansion of abbreviations, and keyboard re-arrangement
(an example of the latter would be swapping the positions of the Y and Z keys,
required for German keyboards, or providing Dvorak keyboard emulation for
QWERTY keyboards). The kbdcamp(lM) manual page discusses table construction,
the input language, and contains sample uses. It is intended mainly to aid adminis
trators in configuring the module on a particular system; the user interface to the
module is only through the commands kbdload(lM) and kbdset(l).

The kbd module works by changing an input stream according to instructions
embodied in tables. It has no built in default tables. Some tables may be loaded
when the system is first brought up by pushing the module and loading standard or
often-used tables [see kbdload(lM)] that are retained in main-memory across invo
cations and made available to all users. These are called public tables. Users may
also load private tables at any time; these tables do not remain resident.

With the kbdset command, users may query the module for a list of available and
attached tables, attach various tables, and set the optional per-user hotkey, hot-key
mode, and verbose string for their particular invocation.

When a user attaches more than one table, the user's hot-key may be used to cycle
to the next table in the list. If only one table is specified, the hot-key may be used to
toggle translation on and off. When multiple tables are in use, the hot-key may be
used to cycle through the list of tables. [See kbdset(l) for a description of the avail
able modes.]

In its initial state, kbd scans input for occurrences of bytes beginning a translation
sequence. When receiving such a byte, kbd attempts to match subsequent bytes of
the input to programmed sequences. Input is buffered beginning with the byte that
caused the state change and is released if a match is not found. When a match fails,
the first byte of the invalid sequence is sent upstream, the buffered input is shifted,
and the scan begins again with the resulting input sequence. If the current table
contains an error entry, its value (one or more bytes) is substituted for the offending
input byte. When a sequence is found to be valid, the entire sequence is replaced
with the result string specified for it.

The kbd module may be used in either the read or write directions, or both simul
taneously. Maps and hot-keys may be specified independently for input and out
put.

The kbd also supports the use of external kernel-resident functions as if they were
tables; once declared and attached (via kbdload and kbdset respectively) they may
be used as simple tables or members of composites. To accomplish this, kbd under
stands the registration functions of the alp module and can access any function
registered with that module. Further information on external functions and their

kbd(7)

definition is contained in alp(7). External functions are especially useful in sup
porting multibyte code set conversions that would be difficult or impossible with
normal kbd tables.

Limitations
It is not an error to attach multiple tables without defining a hot-key, but the tables
will not all be accessible. It is recommended that the user's hot-key be set before
loading and attaching tables to avoid unpleasant side effects when an unfamiliar
arrangement is first loaded.

Each user has a limitation on the amount of memory that may be used for private
and attached tables. This "quota" is controlled by the kbd_umeIn variable described
below. When a user that is not a privileged user attempts to load a table or create a
composite table, the quota is checked, and the load will fail if it would cause the
quota to be exceeded. When a composite table is attached, the space for attachment
(which requires more space than the composite table itself) is charged against this
quota (attachment of simple tables is not charged against the quota). The quota is
enforced only when loading new tables. Detaching temporarily from unneeded
composite tables may reduce the current allocation enough to load a table that
would otherwise fail because of quota enforcement. To minimize chances of failure
while loading tables, it is advisable to load all required tables and make all required
composite tables before attaching any of them.

Configuration Parameters

FILES

The master (or space. c) file contains configurable parameters.

NKBDU is the maximum number of tables that may be attached by a single user. The
number should be large enough to cover uncommon cases, and must be at least 2.
Default is 6.

ZUMEM, from which the variable kbd_umem is assigned, is the maximum number of
bytes that a user (other than a privileged user) may have allocated to private tables
(that is, the quota). Default is 4096.

KBDTlME is the default timer value for timeout mode. It is the number of clock ticks
allowed before timing out. The value of one clock tick depends on the hardware,
but is usually 1/100 or 1/60 of a second. A timeout value of 20 is 1/5 second at
100Hz; with a 60Hz clock, a value of 12 produces a 1/5 second timeout. Values
from 5 to 400 inclusive are allowed by the module; if the value set for KBDTlME is
outside this range, the module forces it to the nearest limit. (This value is only a
default; users may change their particular stream to use a different value depending
on their own preferences, terminal baud-rate, and typing speed.)

/usr/lib/kbd
/usr/lib/kbd/*.map

- directory containing system standard table files.
- source for some system table files.

SEE ALSO

NOTES

alp(7), kbdcomp(lM), kbdload(lM), kbdset(l)

NULL characters may not be used in result or input strings, because they are used as
string delimiters.

451

keyboard (7)

NAME
keyboard - system console keyboard

DESCRIPTION

452

The system console has two separate parts: the keyboard and the display [see
display (7)].

The keyboard is used to type data, and send certain control signals to the computer.
UNIX system software performs terminal emulation on the console screen and key
board, and, in doing so, makes use of several particular keys and key combinations.
These keys and key combinations have special names that are unique to the UNIX
system, and mayor may not correspond to the key top labels on your keyboard.

When you press a key, one of the following happens:

- An ASCII value is entered

- The meaning of another key, or keys, is changed.

- A string is sent to the computer.

- A function is initiated.

When a key is pressed (a keystroke), the keyboard sends a scancode to the com
puter. This scancode is interpreted by the keyboard driver. The actual code
sequence delivered to the terminal input routine [see tennio (7)] is defined by a set
of internal tables in the driver. These tables can be modified by software (see the
discussion of ioctl calls below). In addition, the driver can be instructed not to do
translations, delivering the keyboard up and down scan codes directly.

Changing Meanings
The action performed by a key can be changed by using certain keys in combina
tion. For example, the SHIFT key changes the ASCII values of the alphanumeric
keys. Holding down the CTRL key while pressing another key sends a control code
(such as CTRL-d, CTRL-s, and CTRL-q). Holding down the ALT key also modifies a
key's value. The SHIFT, CTRL, and ALT keys can be used in combination.

Switching Screens
To change screens (virtual terminals), first run the vtlmgr command [see
vtlmgr(l)]. Switch the current screen by typing ALT-SYSREQ (also labeled ALT
PRINTSCRN on some systems) followed by a key that identifies the desired screen.
Any active screen can be selected by following ALT-SYSREQ with Fn, where Fn is
one of the function keys. Fl refers to the first virtual terminal screen, F2 refers to
the second virtual terminal screen, and so on. ALT-SYSREQ h (home) refers to the
main console display (ldev/console). The next active screen can be selected with
ALT-SYSREQ n, and the previous screen can be selected with ALT-SYSREQ p.

The default screen switch enable sequence (ALT-SYSREQ) is configurable. The SYS
REQ table entry can be changed by software (see discussion of ioctl calls below).

Special Keys
The follOWing table shows which keys on a typical console correspond to UNIX sys
tem keys. In this table, a hyphen (-) between keys means you must hold down the
first key while pressing the second. The mapping between characters that generate
signals and the signal generated is set with stty(l), and may be changed [see
stty(l)].

Name Key top

INTR DEL

keyboard (7)

Action

Stops current action and returns to the shell. This key is
also called the RUB OUT or INTERRUPT key.

BACKSPACE f-o Deletes the first character to the left of the cursor.

CTRL-d CTRL-D

CTRL-h CTRL-H

CTRL-q CTRL-Q

CTRL-s CTRL-S

CTRL-u CTRL-U

CTRL-\ CTRL-\

ESCAPE ESC

RETURN (down-left
arrow or
ENTER)

Fn Fn

Note that the "cursor left" key also has a left arrow (f-o) on
its key top, but you cannot backspace using that key.

Signals the end of input from the keyboard; also exits
current shell.

Deletes the first character to the left of the cursor. Also
called the ERASE key.

Restarts printing after it has been stopped with CTRL-s.

Suspends printing on the screen (does not stop the pro
gram).

Deletes all characters on the current line. Also called the
KILL key.

Quits current command and creates a core
file, if allowed. (Recommended for debugging only.)

Special code for some programs. For example, changes
from insert mode to command mode in the vi(l) text editor.

Terminates a command line and initiates an action from the
shell.

Function key n. Fl-F12 are unshifted, F13-F24 are shifted
Fl-F12, F25-F36 are CTRL-Fl through F12, and F37-F48
are CTRL-SHIFT-Fl through F12.

The next Fn keys (F49-F60) are on the number pad
(unshifted):

F49 - '7' F55 - '6'
F50 - '8' F56 - '+'
F51 - '9' F57 - '1'
F52 - ' , F58 - '2'
F53 - '4' F59 - '3'
F54 - '5' F60 - '0'

Keyboard Map
The keyboard mapping structure is defined in /usr/include/sys/kd.h. Each key
can have ten states. The first eight states are:

- BASE - CTRL-SHIFT
- SHIFT - ALT-SHIFT
- CTRL - ALT-CTRL
- ALT - ALT-CTRL-SHIFT

453

keyboard (7)

454

The two remaining states are indicated by two special bytes. The first byte is a spe
cial state byte whose bits indicate whether the key is special in one or more of the
first eight states. The second byte is one of four codes represented by the characters
C, N, B, or 0 which indicate how the lock keys affect the particular key.

The following table describes the default keyboard mapping. All values, except for
special keywords (which are described later), are ASCII character values.

Heading Description

SCAN CODE This column contains the scan code generated by the keyboard
hardware when a key is pressed. There are no table entries for the
scan code generated by releasing a key.

BASE

SHIFT

LOCK

This column contains the normal value of a key press.

This column contains the value of a key press when the SHIFT is
also being held down.

This column indicates which lock keys affect that particular key:

- C indicates CAPSLOCK

- N indicates NUMLOCK
- B indicates both
- a indicates locking is off

The remaining columns are the values of key presses when combinations of the
CTRL, ALT and SHIFT keys are also held down.

The SRQTAB column entry is included in this table to provide a simple index of the
default virtual terminal key selectors to the scan code to which it is assigned. The
actual SRQTAB table is a stand-alone table which can be read or written using the
KDGKBENT and KDSKBENT ioctl calls.

SCAN

CODE BASE

2

3

4
5

6

7

8

9

10

11

12

13
14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42
43
44

esc
'1'

'2'

'3'

'4'

'5'

'6'

'7'

'8'

'9'

'0'

bs
ht

'q'
'w'

'e'

'r'

'I'

'y'
'u'

'i'

'0'

'p'

T
T
cr

letrl
'a'

's'

'd'

'f'

'g'

'h'

'j'
'k'

'1'

Ishift

'\ \'
'z'

SHIFT CTRL

esc
'1'
'@'

'#'

'$'

'&'

'C
')'

'+'
bs
btab
'Q'

'W'

'E'

'R'

'T'

'Y'

'U'

T
'0'

'P'

'{'

T
cr

letrl

'A'

'S'

'D'

'F'

'G'

'H'

T
'K'

'L'

Ishift

'I'
'Z'

esc

'1'

'2'

'3'

'4'

'5'

'6'

'7'

'8'

'9'

'0'

bs
ht

del

etb

enq

dc2
dc4

em

nak

ht

si

die
esc

gs
cr

letrl

soh

dc3
eat

ack

bel

bs
nl

vt

np

Ishift

fs

sub

CTRL

SHIFT ALT

esc
'1'

nul

'3'

'4'

'5'

rs

'T
'8'

'9'

'0'

ns

'='
bs
btab

del

etb

enq
dc2

dc4

em

nak

ht

si

die

nap
nap
cr

letrl

soh

dc3
eat

ack

bel

bs
n1

vt

np

Ismft

'I'
sub

esc
esen

esen
esen
esen
esen
esen

esen

esen

esen

esen
esen
esen

bs
ht

esen

esen
esen

esen
esen
esen
esen
esen

esen
escn
esen

esen

cr

ktrl

esen
esen

esen

esen

esen
esen
esen
esen

esen

esen
esen

esen
Ishift

esen

esen

ALT ALT

SHIFT CTRL

esc
esen

esen
esen
esen
esen

esen

esen
esen
esen
esen
esen
esen

bs
btab

esen

esen
escn
esen
esen

esen
esen

esen

esen

esen
esen

esen
cr

letrl

esen

esen

esen

esen

esen
esen
esen

esen

esen

esen

esen
escn
Ismft

esen

esen

esc

nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
bs
ht

nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
cr

ktrl

nap
nap
k_dbg

nap
nap
nap
nap
nap
nap
nap
nap
nap
Ismft

nap
nap

ALT

CTRL

keyboard (7)

SHIFT LOCK SRQT AB

esc

nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
bs
btab

nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
cr

letrl

nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
Ishift

nap
nap

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
C

C

C

C

C

C

C

C

C

C

o
o
o
o
C

C

C

C

C

C

C

C

C

o
o
o
o
o
C

nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
K PREY

nap
nap
nap
nap
nap
nap
nap
K FRCNEXT

nap
KVTF

nap
nap
nap
nap
nap
nap
nap
nop
nap

455

keyboard (7)

456

SCAN
CODE BASE

45 'x'
46 'c'

47 'v'

48 'b'

49 'n'
50 'm'

51
52
53
54
55
56
57

58
59
60
61
62
63
64
65
66
67

68
69
70
71

72

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

, /'
rshift

lalt

clock
fkey1
fkey2
fkey3
fkey4
fkey5
fkey6
fkey7
fkey8
fkey9
fkeylO
nlock
slock
fkey49
fkey50
fkey51
fkey52

fkey53
fkey54
fkey55
fkey56
fkey57
fkey58
fkey59
fkey60
del
fkey60
fkey58
fkey53
fkeyll
fkey12

CTRL
SHIFT CTRL SHIFT ALT

'X' can can esen
'C' etx etx escn
'V' syn syn escn
'B' stx stx esen
'N' so so esen
'M' cr cr escn

'<'
'>'
'?'

rshift

lalt

clock
fkey13
fkey14
fkey15
fkey16
fkey17
fkey18
fkey19
fkey20
fkey21
fkey22
nlock
slock
'7'

'8'

'9'

'4'

'5'

'6'

'+'
'1'

'2'

'3'

'0'

fkey26
fkey58
fkey53
fkey23
fkey24

, /'
rshift

lalt
nul
clock
fkey25
fkey26
fkey27
fkey28
fkey29
fkey30
fkey31
fkey32
fkey33
fkey34
nlock
slock
fkey49
fkey50
fkey51
fkey52
fkey53
fkey54
fkey55
fkey56
fkey57
fkey58
fkey59
fkey60
del
fkey60
fkey58
fkey53
fkey35
fkey36

'<'
'>'
ns
rshift

lalt
nul
clock
fkey37
fkey38
fkey39
fkey40
fkey41
fkey42
fkey43
fkey44
fkey45
fkey46
nlock
slock
'7'

'8'

'9'

'4'
'5'

'6'

'+'
'1'

'2'

'3'

'0'

nop
fkey58
fkey53
fkey47
fkey48

esen

esen
escn
rshift
esen
lalt
esen
clock
fkey1
fkey2
fkey3
fkey4
fkey5
fkey6
fkey7
fkey8
fkey9
fkeylO
nlock
slock
fkey49
fkey50
fkey51
fkey52
fkey53
fkey54
fkey55
fkey56
fkey57
fkey58
fkey59
fkey60
del
sysreq
fkey58
fkey53
fkeyll
fkey12

ALT
ALT ALT CTRL
SHIFT CTRL SHIFT LOCK SRQTAB

escn nop nop C nop
escn nop nop C nop
escn nop nop C nop
escn nop nop C nop
escn nop nop C K NEXT

escn nop nop C nop
esen

esen
escn
rshift
esen
lalt
esen

clock
fkey13
fkey14
fkey15
fkey16
fkey17

fkey18
fkey19
fkey20
fkey21
fkey22
nlock
slock
esen
escn
esen
escn
esen
escn
esen
escn
esen
escn
esen

esen
esen

sysreq
fkey58
fkey53
fkey23
fkey24

nop
nop
nop
rshift
nop
lalt
nop
clock
fkey25
fkey26
fkey27
fkey28
fkey29
fkey30
fkey31
fkey32
fkey33
fkey34
nlock
slock

nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
rboot
sysreq
fkey58
fkey53
fkey35
fkey36

nop
nop
nop
rshift

nop
lalt

nop
clock
fkey37
fkey38
fkey39
fkey40
fkey41
fkey42
fkey43
fkey44
fkey45
fkey46
nlock
slock

nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
sysreq
fkey58
fkey53
fkey47
fkey48

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
N
N

N

N

N
N

N
N
N

N

N

N

N

o
o
o
o
o

nop
nop
nop
nop
nop
nop
nop
nop
K VTF+1
K VTF+2
K VTF+3
K VTF+4
K VTF+5
K VTF+6
K VTF+7
K VTF+8
K VTF+9
K VTF+lO

K VTF+l1
K VTF+12

SCAN
CODE

89

90
91

92

93

94

95

96
97

98
99

100

101

102
103
104
105

106

107
108

109

110
111
112
113
114
115
116
117
118
119
120

121

122
123

124
125

126

127

BASE

nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
fkey53

nap
nap
nap
fkey51

nap
nap
ralt

rctrl

slack

'I'
nap
slack

fkey50
del

fkey57

fkey60

nap
fkey55
fkey59

fkey49

SHIFT

nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nop
nap
fkey53

nap
nap
nap
fkey51

nap
nap
ralt

retrl

slack

'/'
nap
slack

fkey50
del

fkey57

fkey60

nap
fkcy55

fkey59
fkey49

CTRL

nap
nap
nop
nop
nap
nap
nap
nap
nap
nap
nap
nap
nop
nap
nop
nap
nap
nap
fkey53

nap
nap
nap
nap
nap
nap
ralt

rctrl

brk

nap
nap
brk

nap
del

nap
nap
nap
nap
nap
nap

CTRL
SHIFT

nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
fkey53

nap
nap
nap
nap
nap
nap
raIt

rctrl

brk

nap
nap
brk

nap
del

nap
nap
nap
nap
nap
nap

ALT

nap
nap
nop
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
fkey53

nap
nap
nap
nap
nap
nap
raIt

rctrl

slack

escn

nap
slack

nap
del

nap
nap
nap
nap
nap
nap

ALT
SHIFT

nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
fkey53

nap
nap
nop
nap
nap
nap
raIt

rctrl

slock

escn

nap
slack

nop
del

nap
nap
nap
nap
nap
nap

ALT
CTRL

nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
fkey53

nap
nap
nap
nap
nap
nap
raIt

rctrl

brk

nap
nap
brk

nap
rboot

nap
nap
nap
nap
nap
nap

keyboard (7)

ALT
CTRL
SHIFT

nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
nap
fkey53

nap
nap
nap
nap
nap
nap
raIt

rctrl

brk

nap
nap
brk
nap
del

nap
nap
nap
nap
nap
nap

LOCK

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

SRQTAB

K NOP

K NOP
K NOP
K NOP

K NOP

K NOP

K NOP
K NOP

K NOP
K NOP

K NOP

K NOP

K NOP

K NOP
K NOP

K NOP
K NOP

K NOP

K NOP
K NOP

K NOP
K NOP

K NOP

K NOP

K NOP
K NOP

nline
K NOP
K NOP

K NOP
K NOP

K NOP

K NOP
K NOP

K NOP

K NOP
K NOP

K NOP

The following table lists the value of each of the special keywords used in the
preceding tables. The keywords are used only in the preceding tables for read
ability. In the actual keyboard map, a special keyword is represented by its value
with the corresponding special state bit being set.

457

keyboard (7)

Name Value

nop 0
lshift 2
rshift 3
clock 4
nlock 5
slock 6
alt 7
btab 8
ctrl 9
lalt 10
ralt 11
lctrl 12
rctrl 13
agr 14
fkey1 27

fkey96 122
sysreq 123
brk 124
escn 125

esco 126

escl 127

rboot 128
debug 129
NEXT 130
PREV 131
FNEXT 132
FPREV 133
VTF 134

VTL 148
MGRF 149

MGRL 179

458

Meaning

No operation - no action from keypress
Left-hand shift
Right-hand shift
Caps lock
Numeric lock
Scroll lock
Alt key
Back tab key - generates fixed sequence (ESC[Z)
Control key
Left-hand alt key
right-hand alt key
Left-hand control key
Right-hand control key
ALT-GR key (European keyboards only)
Function key #1

Function key #96
System request
Break key
Generate an ESC N x sequence, where x is the un-alt'ed value
of the scan code
Generate an ESC 0 x sequence, where x is the un-alt' ed value
of the scan code
Generate an ESC L x sequence, where x is the un-alt' ed value
of the scan code
Reboot system
Invoke kernel debugger
Switch to next virtual terminal on queue
Switch to previous virtual terminal on queue
Forced switch to next virtual terminal on queue
Forced switch to previous virtual terminal on queue
Virtual Terminal First (VTOO)

Virtual Terminal Last (VT14)
Virtual Terminal Manager First. Allows assigning special
significance to key sequence for actions by virtual terminal
layer manager. Used in SRQTAB table.

Virtual Terminal Manager Last. Used in SRQTAB table.

keyboard (7)

The following table lists names and decimal values for ASCII characters in the
preceding table. Names are used in place of numeric constants to make it easier to
read the scan code table. Only the decimal values are placed in the ioctl buffer.
These values are taken from ascii(5).

Name Value Name Value

nul 0 del 17
soh 1 dc2 18
stx 2 dc3 19
etx 3 dc4 20
eat 4 nak 21
enq 5 syn 22
ack 6 etb 23
bel 7 can 24
bs 8 em 25
ht 9 sub 26
nl 10 esc 27
vt 11 fs 28
np 12 gs 29
cr 13 rs 30
so 14 ns 31
si 15 del 127
dIe 16

String Key Mapping
The string mapping table is an array of 512 bytes (typedef strmap_t) containing
null-terminated strings that redefine the function keys. The first null-terminated
string is assigned to the first function key, the second string is assigned to the
second function key, and so on.

There is no limit to the length of any particular string; however, the whole table can
not exceed 512 bytes, including nulls. To make a string a null, add extra null
characters. The following table contains default function key values.

459

keyboard (7)

460

Default Function Key Values

Ctrl
Function Shift Ctrl Shift

Key # Function Function Function Function

1 ESCOP ESCOp ESCOP ESCOp
2 ESCOQ ESCOq ESCOQ ESCOq
3 ESC OR ESC Or ESC OR ESC Or
4 ESC OS ESC Os ESC OS ESC Os
5 ESCOT ESCOt ESCOT ESCOt
6 ESCOU ESCOu ESCOU ESCOu
7 ESCOV ESCOv ESCOV ESCOv
8 ESC OW ESC Ow ESC OW ESC Ow
9 ESC OX ESC Ox ESC OX ESC Ox

10 ESCOY ESCOy ESCOY ESCOy
11 ESCOZ ESCOz ESCOZ ESCOz
12 ESCOA ESCOa ESCOA ESCOa

loctl Calls:
KDGKBMODE

This call gets the current keyboard mode. It returns one of the following
values, as defined in /usr/include/sys/kd.h:

#defineK_RAW OxOO /* Send row scan codes * /
#defineK_XLATE Ox01 /* Translate to ASCII * /

KDSKBMODE
This call sets the keyboard mode. The argument to the call is either K_RAW
or K_XLATE. By using raw mode, the program can see the raw up and down
scan codes from the keyboard. In translate mode, the translation tables are
used to generate the appropriate character code.

KDGKBTYPE
This call gets the keyboard type. It returns one of the following values, as
defined in /usr/include/sys/kd.h:

KDGKBENT

#defineKB_84
#define KB_IO 1
#defineKB_OTHER

1
2
3

/*84 key keyboard* /
/*101 key keyboard* /
/*Other type keyboard * /

This call reads one of the entries in the translation tables. The argument to
the call is the address of one of the following structures, defined in
/usr/include/sys/kd.h, with the first two fields filled in:

struct kbentry {

};

unchar kb_table;
unchar kb_index;
ushort kb_value;

/* Table to use */
/* Entry in table */
/* Value to get/set */

keyboard (7)

Valid values for the kb table field are:

#defineK_NORMTAB
#defineK_SHIFTTAB
#defineK_ALTTAB
#defineK_ALTSHIFTTAB
#defineK_SRQTAB

OxOO
OxOl
Ox02
Ox03
Ox04

/* Base */
/* Shifted * /
/*Alt*/
/* Shifted alt * /
/* Select sysreq

table * /

The ioctl will get the indicated entry from the indicated table and return it
in the third field.

The K_SRQTAB value for the kb table field allows access to the scancode
indexed table which allows assignment of a given virtual terminal selector
(K_VTF-K_VTL) or the virtual terminal layer manager (K_MGRF-K_MGRL)
specialkey assignments.

The virtual terminal selector (K_VTF) is normally associated with
/dev/ttyOO, on which the user login shell is commonly found. The follow
ing terminal selectors also are used to select virtual terminals:

KDSKBENT

K VTF+ 1 for the 1st virtual terminal (I dev /vt01)
K=VTF+2 for the 2nd virtual terminal (ldev /vt02)

K _ VTF+ 12 for the 12th virtual terminal (I dev /vt12)

This call sets an entry in one of the translation tables. It uses the same struc
ture as the KDGKBENT ioctl, but with the third field filled in with the value
that should be placed in the translation table. This can be used to partially
or completely remap the keyboard. This ioctl does not work for all key
codes.

The kd driver provides support for virtual terminals. The console minor device,
/dev/vtmon, provides virtual terminal key requests from the kd driver to the
process that has /dev/vtmon open. Two ioctls are provided for virtual terminal
support:

VT_GETSTATE
The VT_GETSTATE ioctl returns global virtual terminal state information.
It returns the active virtual terminal in the v active field, and the number of
active virtual terminals and a bit mask of the-global state in the v_state open
field, where bit x is the state of vt x (1 indicates that the virtual terminal is
open).

VT_SENDSIG
The VT_SENDSIG ioctl specifies a signal (in v_signal) to be sent to a bit
mask of virtual terminals (in v_state).

461

keyboard (7)

462

The data structure used by the VT_GETSTATE and VT_SENDSIG ioctls is:

struct vt_stat {
ushort v_active;
ushort v_signal;
ushort v_state;

/* active vt * /
/* signal to send (VT_SENDSIG) * /
/* vt bit mask (VT_SENDSIG and VT_GETSTATE) * /

};

and is defined in /usr/include/sys/vt.h.

VT_OPENQRY
The VT_OPENQRY ioctl is used to get the next available virtual terminal. It
inquires if this vt is already open. This value is set in the last argument of
the ioctl (2) call.

GIO_KEYMAP
This call gets the entire keyboard mapping table from the kernel. The struc
ture of the argument is given in /usr/include/sys/kd.h.

PIO_KEYMAP
This call sets the entire keyboard mapping table. The structure of the argu
ment is given in /usr/include/sys/kd.h.

GIO_STRMAP
This call gets the function key string mapping table from the kernel. The
structure of the argument is given in /usr/include/sys/kd.h.

PIO_STRMAP
This call sets the function key string mapping table. The structure of the
argument is given in /usr/include/sys/kd.h.

TIOCKBOF
Extended character codes are disabled. This is the default mode.

TIOCKBON
Allows extended characters to be transmitted to the user program when the
extended keys are enabled. Then the keyboard is said to be fully enabled.
The extended characters are transmitted as a null byte followed by a second
byte containing the character's extended code. When a true null byte is sent,
it is transmitted as two consecutive null bytes.

When the keyboard is fully enabled, an 8-bit character code can be obtained by
holding down the ALT key and entering the 3-digit decimal value of the character
from the numeric keypad. The character is transmitted when the ALT key is
released.

Some keyboard characters have special meaning. Under default operations, press
ing the DELETE key generates an interrupt signal that is sent to all processes desig
nated with the associated control terminal. When the keyboard is fully enabled,
holding down the ALT key and pressing the 8 key on the home keyboard (not on the
numeric keypad) returns a null byte followed by Ox7F. This will produce the same
effect as the DELETE key (Ox7F) unless you have executed the stty(l) command
with the -isig option.

FILES

keyboard (7)

KBENABLED
If the keyboard is fully enabled (TIOCKBON), a non-zero value will be
returned. If the keyboard is not fully enabled (TIOCKBOF), a value of zero
will be returned.

GETFKEY
Obtains the current definition of a function key. The argument to the call is
the address of one of the following structures defined in
/usr/include/sys/kd.h:

struct fkeyarg {

};

unsigned short keynum;
unchar keydef [MAXFK1;
char flen;

I*Comes from ioctl.h via comcrt.h* /

The function key number must be passed in keynum (see arg structure
above). The string currently assigned to the key will be returned in keydeJ
and the length of the string will be returned in flen when the ioctl is
performed.

SETFKEY
Assigns a given string to a function key. It uses the same structure as the
GETFKEY ioctl. The function key number must be passed in keynum, the
string must be passed in keydeJ, and the length of the string (number of
characters) must be passed inflen.

/dev/console
/dev/vtOO-n
/usr/include/sys/kd.h

SEE ALSO
ascii(5), console(7), display(7), ioctl(2), stty(l), termio(7), vtlmgr(l)

463

kmem(7)

NAME
kmem - perform I/O on kernel memory based on symbol name

SYNOPSIS
#include <sys/ksym.h>

int ioctl (int kmemfd, MIOC_READKSYM, st:ruct mioc_rksym *rks);
int ioctl (int kmemfd, MIOC_IREADKSYM, st:ruct mioc_rksym *rks);
int ioctl (int kmemfd, MIOC_WRITEKSYM, st:ruct mioc_rksym *rks);

DESCRIPTION
When used with a valid file descriptor for /dev/kmem (kmemfd), these ioctl com
mands [see ioctl(2)] can be used to read or write kernel memory based on infor
mation provided in the mioc_rksym structure, which includes the following
members:

char *mirk_symname;
void *mirk_buf;
size_t mirk_buflen;

1* symbol at whose address read will start *1
1* buffer into which data will be written *1
1* length (in bytes) of read buffer *1

The second argument to ioctl determines which I/O operation is being per
formed:

ioctl Meaning

MIOC_READKSYM Read bufLen bytes of kernel memory starting at the address for
symname into buf.

MIOC_IREADKSYM Read sizeof (void *) bytes of kernel memory starting at the
address for symname and use that as the address from which to
read bufLen bytes of kernel memory into buf.

MIOC_WRITEKSYM Write bufLen bytes into kernel memory starting at the address
for symname from buf.

DIAGNOSTICS

464

In addition to the error conditions listed on ioctl(2), these ioctl commands can
fail for the following reasons:

EBADF kmemfd open for reading and this is MIOC_WRITEKSYM or
kmemfd open for writing and this is MIOC_READKSYM

EFAULT Value of mirk_buflen results in attempt to read outside ker
nel virtual address space, or the third argument to ioctl is
an invalid pointer, or an invalid pointer is given for the sym
bol name or buffer in the mioc_rksym structure

EINVAL Second argument to ioctl is invalid
ENAMETOOLONG Symbol name is longer than MAXSYMNMLEN characters
ENOMATCH Symbol names not found in the running kernel (including

loaded modules)
ENXIO kmemfd open on wrong minor device (that is, not /dev/kmem)

kmem(7)

SEE ALSO
getksym(2), ioctl(2), nlist(3E)

465

Idterm (7)

NAME
ldterm - standard STREAMS terminal line discipline module

DESCRIPTION

466

ldterm is a STREAMS module that provides most of the tennio(7) terminal inter
face. This module does not perform the low-level device control functions specified
by flags in the c_cflag word of the termio/termios structure or by the IGNBRK,
IGNPAR, PARMRK, or INPCK flags in the c_iflag word of the termio/termios struc
ture; those functions must be performed by the driver or by modules pushed below
the ldterm module. All other termio/termios functions are performed by
ldterm; some of them, however, require the cooperation of the driver or modules
pushed below ldterm and may not be performed in some cases. These include the
IXOFF flag in the c_iflag word and the delays specified in the c_oflag word.

ldterm also handles EUC and multi-byte characters.

When ldterm is pushed onto a stream, the open routine initializes the settings of
the tennio flags. The default settings are:

c_iflag BRKINTi ICRNLi IXONi ISTRIP
c_oflag OPOSTiONLCRiTAB3
c_cflag 0
c_lflag ISIGilCANONiECHOiECHOK

The remainder of this section describes the processing of various STREAMS mes
sages on the read- and write-side.

Read-side Behavior
Various types of STREAMS messages are processed as follows:

M_BREAK When this message is received, either an interrupt signal is generated or
the message is treated as if it were an M_DATA message containing a sin
gle ASCII NUL character, depending on the state of the BRKINT flag.

M_DATA This message is normally processed using the standard termio input
processing. If the lCANON flag is set, a single input record ("line") is
accumulated in an internal buffer and sent upstream when a line
terminating character is received. If the lCANON flag is not set, other
input processing is performed and the processed data are passed
upstream.

If output is to be stopped or started as a result of the arrival of charac
ters (usually CNTRL-Q and CNTRL-S), M_STOP and M_START messages are
sent downstream. If the IXOFF flag is set and input is to be stopped or
started as a result of flow-control considerations, M_STOPI and
loLSTARTI messages are sent downstream.

M_DATA messages are sent downstream, as necessary, to perform echo
ing.

If a signal is to be generated, an M_FLUSH message with a flag byte of
FLUSHR is placed on the read queue. If the signal is also to flush output,
an M_FLUSH message with a flag byte of FLUSHW is sent downstream.

Idterm (7)

M_CTL If the size of the data buffer associated with the message is the size of
struct iocblk, Idterm will perform functional negotiation to deter
mine where the termio(7) processing is to be done. If the command
field of the iocblk structure (ioc_cmd) is set to MC_NO_CANON, the input
canonical processing normally performed on M_DATA messages is dis
abled and those messages are passed upstream unmodified; this is for
the use of modules or drivers that perform their own input processing,
such as a pseudo-terminal in TIOCREMOTE mode connected to a program
that performs this processing. If the command is MC_DO_CANON, all input
processing is enabled. If the command is MC_PART_CANON, then an
M_DATA message containing a termios structure is expected to be
attached to the original M_CTL message. The Idterm module will exam
ine the iflag, oflag, and Iflag fields of the termios structure and
from then on will process only those flags which have not been turned
ON. If none of the above commands are found, the message is ignored;
in any case, the message is passed upstream.

M_FLUSH The read queue of the module is flushed of all its data messages and all
data in the record being accumulated are also flushed. The message is
passed upstream.

M_IOCACK The data contained within the message, which is to be returned to the
process, are augmented if necessary, and the message is passed
upstream.

All other messages are passed upstream unchanged.

Write-side Behavior
Various types of STREAMS messages are processed as follows:

M_FLUSH The write queue of the module is flushed of all its data messages and
the message is passed downstream.

M_IOCTL The function of this ioctl is performed and the message is passed
downstream in most cases. The TCFLSH and TCXONC ioctls can be per
formed entirely in the Idterm module, so the reply is sent upstream and
the message is not passed downstream.

M_DATA If the OPOST flag is set, or both the XCASE and lCANON flags are set, out
put processing is performed and the processed message is passed
downstream along with any M_DELAY messages generated. Otherwise,
the message is passed downstream without change.

All other messages are passed downstream unchanged.

ioetls
The following ioctls are processed by the Idterm module. All others are passed
downstream. EUC_WSET and EUC_WGET are I_STR ioctl calls whereas other
ioctls listed here are TRANSPARENT ioctls.

TCGETS/TCGETA
The message is passed downstream; if an acknowledgment is seen, the
data provided by the driver and modules downstream are augmented
and the acknowledgement is passed upstream.

467

Idterm (7)

TCSETS/TCSETSW/TCSETSF/TCSETA/TCSETAW/TCSETAF
The parameters that control the behavior of the Idterm module are
changed. If a mode change requires options at the stream head to be
changed, an M_SETOPTS message is sent upstream. If the lCANON flag is
turned on or off, the read mode at the stream head is changed to
message-nondiscard or byte-stream mode, respectively. If the TOSTOP
flag is turned on or off, the tostop mode at the stream head is turned on
or off, respectively.

TCFLSH If the argument is 0, an M_FLUSH message with a flag byte of FLUSHR is
sent downstream and placed on the read queue. If the argument is 1,
the write queue is flushed of all its data messages and an M_FLUSH mes
sage with a flag byte of FLUSHW is sent upstream and downstream. If
the argument is 2, the write queue is flushed of all its data messages and
an M_FLUSH message with a flag byte of FLUSHRW is sent downstream
and placed on the read queue.

TCXONC If the argument is 0 and output is not already stopped, an M_STOP mes
sage is sent downstream. If the argument is 1 and output is stopped, an
M_START message is sent downstream. If the argument is 2 and input is
not already stopped, an M_STOPI message is sent downstream. If the
argument is 3 and input is stopped, an M_STARTI message is sent down
stream.

TCSBRK The message is passed downstream, so the driver has a chance to drain
the data and then send and an M_IOCACK message upstream.

EUC_WSET This call takes a pointer to an eucioc structure, and uses it to set the
EUC line discipline's local definition for the code set widths to be used
for subsequent operations. Within the stream, the line discipline may
optionally notify other modules of this setting via M_CTL messages.

EUC_WGET This call takes a pointer to an eucioc structure, and returns in it the
EUC code set widths currently in use by the EUC line discipline.

SEE ALSO
pseudo(I), console(7), termio(7), termios(2)

468

10 (7)

NAME
10 - software loopback network interface

SYNOPSIS
d = open (n/dev/10opn, O_RDWR);

DESCRIPTION
The 100pback device is a software datalink provider (interface driver) that returns
all packets it receives to their source without involving any hardware devices. It is
a STREAMS device conforming to the datalink provider interface (DLPI). See if(7)
for a general description of network interfaces.

The 100pback interface is used to access Internet services on the local machine.
Because it is available on all machines, including those with no hardware network
interfaces, programs can use it for guaranteed access to local servers. A typical
application is the comsat(lM) server which accepts notification of mail delivery
from a local client. The loopback interface is also used for performance analysis
and testing.

By convention, the name of the loopback interface is 100, and it is configured with
Internet address 127.0.0.1. This address may be changed with the
SIOCSIFADDR ioct1 ().

SEE ALSO
comsat(lM), if(7), inet(7)

469

log(7)

NAME
log - interface to STREAMS error logging and event tracing

SYNOPSIS
#inc1ude <sys/stream.h>
#inc1ude <sys/1og.h>
#inc1ude <sys/str1og.h>
#inc1ude <sys/sys1og.h>

DESCRIPTION

470

log is a STREAMS software device driver that provides an interface for console log
ging and for the STREAMS error logging and event tracing processes [strerr(lM),
strace(lM)]. log presents two separate interfaces: a function call interface in the
kernel through which STREAMS drivers and modules submit log messages; and a
subset of ioct1(2) system calls and STREAMS messages for interaction with a user
level console logger, an error logger, a trace logger, or processes that need to submit
their own log messages.

Kernel Interface
log messages are generated within the kernel by calls to the function str1og:

str1og{short mid, short sid, char level, ushort flags,
char *fmt, unsigned argl, •.•);

Required definitions are contained in stream.h, str1og.h, log.h, and sys1og.h
in /usr/inc1ude/sys. mid is the STREAMS module JD number for the module or
driver submitting the log message. sid is an internal sub-JD number usually used to
identify a particular minor device of a driver. level is a tracing level that allows for
selective screening out of low priority messages from the tracer. flags are any com
bination of SL_ERROR (the message is for the error logger), SL_TRACE (the message
is for the tracer), SL_CONSOLE (the message is for the console logger), SL_FATAL
(advisory notification of a fatal error), and SL_NOTIFY (request that a copy of the
message be mailed to the system administrator). fmt is a printf(3S) style format
string, except that %s, 'Yoe, %E, %g, and %G conversion specifications are not handled.
Up to NLOGARGS (currently 3) numeric or character arguments can be provided.

User Interface
log is opened via the clone interface, /dev/1og. Each open of /dev/1og obtains a
separate stream to log. In order to receive log messages, a process must first notify
log whether it is an error logger, trace logger, or console logger via a STREAMS
I_STR ioct1 call (see below). For the console logger, the I_STR ioct1 has an
ic_cmd field of I_CONSLOG, with no accompanying data. For the error logger, the
I_STR ioct1 has an ic_cmd field of I_ERRLOG, with no accompanying data. For
the trace logger, the ioctl has an ic_cmd field of I_TRCLOG, and must be accom
panied by a data buffer containing an array of one or more struct trace_ids
elements. Each trace_ids structure specifies an mid, sid, and level from which mes
sage will be accepted. str10g will accept messages whose mid and sid exactly
match those in the trace_ids structure, and whose level is less than or equal to the
level given in the trace_ids structure. A value of -1 in any of the fields of the
trace_ids structure indicates that any value is accepted for that field.

log (7)

Once the logger process has identified itself via the ioctl call, log will begin send
ing up messages subject to the restrictions noted above. These messages are
obtained via the getrnsg (2) system call. The control part of this message contains a
log_ctl structure, which specifies the mid, sid, level, flags, time in ticks since boot
that the message was submitted, the corresponding time in seconds since Jan. I,
1970, a sequence number, and a priority. The time in seconds since 1970 is provided
so that the date and time of the message can be easily computed, and the time in
ticks since boot is provided so that the relative timing of log messages can be deter
mined.

The priority is comprised of a priority code and a facility code, found in
sys/ syslog. h. If SL_CONSOLE is set in flags, the priority code is set as follows. If
SL_WARN is set, the priority code is set to LOG_WARNING. If SL_FATAL is set, the
priority code is set to LOG_CRIT. If SL_ERROR is set, the priority code is set to
LOG_ERR. If SL_NOTE is set, the priority code is set to LOG_NOTICE. If SL_TRACE is
set, the priority code is set to LOG_DEBUG. If only SL_CONSOLE is set, the priority
code is set to LOG_INFO. Messages originating from the kernel have the facility
code set to LOG_KERN. Most messages originating from user processes will have the
facility code set to LOG_USER.

Different sequence numbers are maintained for the error and trace logging streams,
and are provided so that gaps in the sequence of messages can be determined (dur
ing times of high message traffic some messages may not be delivered by the logger
to avoid hogging system resources). The data part of the message contains the
unexpanded text of the format string (null terminated), followed by NLOGARGS
words for the arguments to the format string, aligned on the first word boundary
following the format string.

A process may also send a message of the same structure to log, even if it is not an
error or trace logger. The only fields of the log_ctl structure in the control part of
the message that are accepted are the level, flags, and pri fields; all other fields are
filled in by log before being forwarded to the appropriate logger. The data portion
must contain a null terminated format string, and any arguments (up to NLOGARGS)
must be packed one word each, on the next word boundary follOWing the end of
the format string.

ENXIO is returned for I_TRCLOG ioctls without any trace_ids structures, or for
any unrecognized I_STR ioctl calls. Incorrectly formatted log messages sent to
the driver by a user process are silently ignored (no error results).

Processes that wish to write a message to the console logger may direct their output
to /dev/conslog, using either write(2) or putrnsg(2).

EXAMPLES
Example of I_ERRLOG notification:

struct strioctl ioc;

ioc.ic_crnd = I_ERRLOG;
ioc.ic_tirnout = 0; /* default timeout (15 secs.) */
ioc.ic_len = 0;
ioc.ic_dp = NULL;

ioctl(1og, I_STR, &ioc);

471

log (7)

FILES

Example of I_TRCLOG notification:

struct trace_ids tid[2];

tid[O].ti_mid = 2;
tid[O].ti_sid = 0;
tid[O].ti_level = 1;

tid[1].ti_mid = 1002;
tid[1].ti_sid = -1; /* any sub-id will be allowed */
tid[1].ti_level = -1; /* any level will be allowed */

ioc.ic_cmd = I_TRCLOG;
ioc.ic_timout = 0;
ioc.ic_len = 2 * sizeof(struct trace_ids);
ioc.ic_dp = (char *)tid;

ioctl(log, I_STR, &ioc);

Example of submitting a log message (no arguments):

struct strbuf ctl, dat;
struct log_ctl lc;
char *message = "Don't forget to pick up some milk

on the way home";

ctl.len
ctl.buf

ctl.maxlen = sizeof(lc);
(char *)&lc;

dat.len dat.maxlen
dat.buf message;

lc.level = 0;

strlen(message);

lc.flags = SL_ERRORISL_NOTIFY;

putmsg(log, &ctl, &dat, 0);

/dev/log
/dev/conslog

SEE ALSO
c1one(7), getmsg(2), intro(2), putmsg(2), strace(lM), strerr(lM), write(2)

NOTES
The log driver high and low water marks are tunable via the master file.

472

Ip (7)

NAME
lp - parallel port interface

DESCRIPTION

FILES

The parallel port (lp) driver supports both the primary (monochrome) and secon
dary parallel printer adapters simultaneously. Up to two printers are supported. If
an adapter for a printer is not installed, an attempt to open it will fail. The close
waits until all output is completed before returning to the user. The lp driver
allows only one process at a time to write to the adapter. If it is already busy, an
open for writing will return an error. However, the driver allows multiple opens to
occur if they are read-only.

The parallel printer adapters are character devices. The minor device number
corresponds to the primary or secondary parallel printer adapter. Thus, minor
device 0 corresponds to the primary parallel printer adapter, while minor device 1
corresponds to the secondary adapter.

The parallel port behaves as described in tennio(7).

/dev/lp*

SEE ALSO
stty(l), termio(7)

473

mcis(7)

NAME
mds - MCIS SCSI host adapter driver

DESCRIPTION

474

The MCIS host adapter subsystem serves as a means for SCSI target drivers (such as
sdOl, stOl, and so on) to communicate on the SCSI bus with target controllers and
logical units. This driver implements the SCSI Driver Interface (SDI) for such SCSI
target drivers.

It is also possible to access this subsystem using the pass-through driver interface.
To find the appropriate device to use, while any device is being accessed through
the target driver, use the B_GETDEV ioctl to get the major and minor numbers of the
pass-through node. This node may be created and opened for use.

ioetl Calls
There are three groups of ioctl(2) commands supported by mds. The first group
contains the ioctl commands used by the mcis driver itself:

SDI_SEND
Sends a pass-through command to a target controller, bypassing the associ
ated target driver.

SDI_BRESET
Resets the SCSI bus.

B_REDT
Reads the extended edt data structure that is stored in the mds driver's
internal data structure.

B_HA_CNT
Gets the value of the number of host adapters for which the mcis driver is
configured.

The second group is used by the mcis driver and all target drivers that use the SDI
protocol to communicate with their associated target controllers.

B_GETTYPE
Returns the bus name (for example, scsi) and device driver name of a
specific device.

The third group should be supported by all target drivers that use the SDI protocol
to communicate with their associated target controllers. However, this ioctl is not
supported by the mcis driver.

B_GETDEV

Files

Returns the pass-through major and minor numbers to the calling utility to
allow creation of a pass-through special device file.

/usr/include/sys/mcis.h
/usr/include/sys/scsi.h
/usr/include/sys/sdi.h
/usr/include/sys/sdi_edt.h
/etc/conf/pack.d/mcis/space.c

mcis(7)

NOTICES
On IBM MCA SCSI systems (for example, Model 57 and Model 90), the SCSI boot
disk must be configured to be at SCSI target address (SCSI ID) 6. If you attempt to
use a SCSI disk not at SCSI ID 6 as a boot device, it may not work.

REFERENCES
ioctl(2)

475

mem(7}

NAME
mem, kmem - core memory

DESCRIPTION
The file /dev/msm is a special file that is an image of the core memory of the com
puter. For example, it may be used to examine and patch the system.

Byte addresses in /dev/m.em. are interpreted as memory addresses. References to
non-existent locations cause errors to be returned.

Examining and patching device registers is likely to lead to unexpected results
when read-only or write-only bits are present.

The file /dev/lanem is the same as /dev/mer.n except that kernel virtual memory
rather than physical memory is accessed.

Files
/dev/msm
/dev/kmem

NOTES

476

Some of /dev/kmem cannot be read because of write-only addresses or unequipped
memory addresses.

mouse(7)

NAME
mouse - mouse device driver for bus, serial, and PS/2 mouse devices

DESCRIPTION
The mouse device driver supports several types of mouse devices:

Logitech bus mouse that attaches to a plug-in card and is designed to be
used in an eight-bit card slot.

Logitech serial type mouse that plugs directly into a serial port connec
tor.

PS/2 compatible mouse that connects to a PS/2 auxiliary port.

Microsoft bus mouse that attaches to a plug-in card and is designed to
be used in an eight-bit card slot.

Microsoft serial type mouse that plugs directly into a serial port connec
tor.

The driver will support multiple mouse applications running in virtual terminal
screens, both under the UNIX System and MS-DOS via SimulTask, VP fix, Merge,
or another similar product.

Support for mouse administration is also provided. See mouseadmin(l).

The following ioctl's are supported:

MOUSEIOCMON Used exclusively by /usr/lib/mousemgr to receive open and
close commands from /dev/mouse driver.

MOUSEISOPEN Used exclusively by mouseadmin. Returns 16-byte character array
indicating which mouse devices are currently open; 1 is open, 0 is
not open. The array is in the linear order established by
/usr/bin/mouseadmin in building the display and device map
pairs.

MOUSEIOCCONFIG
Used exclusively by mouseadmin to configure display and mouse
pairs. The mse_cfg data structure is used to pass display and
device mapping and map pair count information to the driver:

struct mse_cfg {
struct mousemap *mapping;
unsigned count;

}

struct mousemap {
dev_t disp_dev;
dev_t mse_dev;

}

int type;

MOUSEIOCREAD Read mouse position and status data. The following data structure
is used to return mouse position information to a user application:

477

mouse(7)

MOUSE320

478

struct mouseinfo {
unsigned char status;
char xmotion:
char ymotion;

MOUSEIOCREAD will set errno to EFAULT for failure to return a
valid mouseinfo structure. The status byte contains the button
state information according to the following format:

o Mv Lc Mc Rc L M R

where:

Mv: is 1 if the mouse has moved since last MOUSEIOCREAD

Lc: is 1 if Left button has changed state since last
MOUSEIOCREAD

Mc: is 1 if Middle button has changed state since last
MOUSEIOCREAD

Rc: is 1 if Right button has changed state since last
MOUSEIOCREAD

L: current state of Left button (1 == depressed)

M: current state of Middle button

R: current state of Right button

The Mv bit is required because the total x and y delta since the last
MOUSEIOCREAD ioctl could be 0 yet the mouse may have been
moved. The Lc, Mc, and Rc bits are required for a similar reason; if
a button had been pushed and released since the last
MOUSEIOCREAD ioctl, the current state bit would be unchanged but
the application would want to know the button had been pushed.

The xmotion and ymotion fields are signed quantities relative to
the previous position in the range -127 to 127. Deltas that would
overflow a signed char have been truncated.

Used to send commands and receive responses from the PS/2
compatible mouse devices. Failed MOUSE320 commands will
return ENXIO as the errno value. The following data structure is
used to pass commands, status, and position information between
the driver and a user application:

struct cmd_32 0
int cmd;
int argl;
int arg2;
int arg3;

Valid commands for the PS/2 compatible devices are as follows:

mouse(7)

MSERESET reset mouse

MSERESEND resend last data

MSESETDEF set default status

MSEOFF disable mouse

MSEON enable mouse

MSESPROMPT set prompt mode

MSEECHON set echo mode

MSEECHOFF reset echo mode

MSESTREAM set stream mode

MSESETRES set resolution (counts per millimeter)
valid arg1 values are as follows:

00 = 1 count/mm.
01 = 2 count/mm.
02 = 4 count/mm.
03 = 8 count/mm.

MSESCALE2 set 2:1 scaling

MSESCALEl set 1:1 scaling

MSECHGMOD set sampling rate (reports per second)
valid arg1 values are as follows:

OA = 10 reports/sec.
14 = 20 reports/sec.
28 = 40 reports/sec.
3C = 60 reports/sec.
50 = 80 reports/sec.
64 = 100 reports/sec.
C8 = 200 reports/sec.

MSEGETDEV read device type returns a zero (0) for the PS/2
compatible mouse.

MSEREPORT read mouse report returns three-byte
mouse/button position where bytes two and
three are 9-bit 2's complement relative motions
with the 9th bit (sign bit) coming from byte 1.

Byte 1
bO -left button (1 == depressed)
b1 - right button
b2 - middle button
b3 - always 1
b4 - X data sign (1 == negative)
b5 - Y data sign
b6 - X data overflow
b7 - Y data overflow

479

mouse (7)

NOTE

FILES

Byte 2
X axis position data

Byte 3
Y axis position data

MSESTATREQ status request returns three-byte report with the
following format:

Byte 1
bO - right button (1 == depressed)
bl - middle button
b2 - left button
b3 - always 0
b4 - scaling 1:1 = 0, 2:1 = 1
b5 - disabled(O)/enabled(l)
b6 - stream(O)/prompt(l) mode
b7 - always 0

Byte 2
bO - 6 current resolution
b7 - always 0

Byte 3
bO - 7 current sampling rate

The mouse also supports queue mode for accessing mouse input, both motion and
button events; see display(7) for more information on the KDQUEMODE ioctl.

/dev/mouse
/usr/lib/mousemgr
/usr/include/sys/mouse.h

SEE ALSO
mouseadmin(1)

480

NAME
null - the null file

DESCRIPTION
Data written on the null special file, /dev/null, is discarded.

Reads from a null special file always return 0 bytes.

Files
/dev/null

null (7)

481

pckt(7)

NAME
pckt - STREAMS Packet Mode module

DESCRIPTION
pckt is a STREAMS module that may be used with a pseudo terminal to packetize
certain messages. The pckt module should be pushed [see I_PUSH, streamio(7)]
onto the master side of a pseudo terminal.

Packetizing is performed by prefixing a message with an loLPROTO message. The
original message type is stored in the 4 byte data portion of the M_PROTO message.

On the read-side, only the M_PROTO, M_PCPROTO, M_STOP, loLSTART, M_STOPI,
M_STARTI, M_IOCTL, M_DATA, M_FLUSH, and M_READ messages are packetized. All
other message types are passed upstream unmodified.

Since all unread state information is held in the master's stream head read queue,
flushing of this queue is disabled.

On the write-side, all messages are sent down unmodified.

With this module in place, all reads from the master side of the pseudo terminal
should be performed with the getmsg(2) or getpmsg system call. The control part
of the message contains the message type. The data part contains the actual data
associated with that message type. The onus is on the application to separate the
data into its component parts.

SEE ALSO

482

crash(lM), getmsg(2), ioctl(2), Idtenn(7), ptem(7), pty(7), streamio(7),
tennio(7)

prf(7)

NAME
prf - operating system pro filer

DESCRIPTION

FILES

The special file /dev/prf provides access to activity information in the operating
system. The profiler commands load the measurement facility with text addresses
to be monitored. Reading the file returns these addresses and a set of counters indi
cative of activity between adjacent text addresses.

The recording mechanism is driven by the system clock and samples the program
counter at line frequency. Samples that catch the operating system are matched
against the stored text addresses and increment corresponding counters for later
processing.

The file /dev/prf is a pseudo-device with no associated hardware.

/dev/prf

NOTES
If the prf device is not configured into the kernel, to tum it on you must edit the
/etc/conf/sdevice.d/prf file, change the second field from N to Y, and
reconfigure the kernel.

When the profiler is turned on, loadable modules are locked into memory and can
not be unloaded. Subsequently loaded modules will also be locked until profiling is
disabled.

SEE ALSO
profiler(lM)

483

ptem(7)

NAME
ptem - STREAMS pseudo-terminal emulation module

DESCRIPTION
ptem is a SJREAMS module that when used in conjunction with a line discipline and
pseudo terminal driver emulates a terminal. See pseudo(l).

The ptem module must be pushed [see I_PUSH, streamio(7)] onto the slave side
of a pseudo terminal STREAM, before the Idterm module is pushed.

On the write-side, the TCSETA, TCSETAF, TCSETAW, TCGETA, TCSETS, TCSETSW,
TCSETSF, TCGETS, TCSBRK, JWINSIZE, TIOCGWINSZ, and TIOCSWINSZ termio
ioctl(2) messages are processed and acknowledged. A hang up (such as stty 0) is
converted to a zero length M_DATA message and passed downstream. termio
cflags and window row and column information are stored locally one per
stream. M_DELAY messages are discarded. All other messages are passed down
stream unmodified;

On the read-side all messages are passed upstream unmodified with the following
exceptions. All M_READ and M_DELAY messages are freed in both directions. An
ioctl TCSBRK is converted to an M_BREAK message and passed upstream and an
acknowledgement is returned downstream. An ioctl TIOCSIGNAL is converted
into an M_PCSIG message, and passed upstream and an acknowledgement is
returned downstream. Finally an ioctl TIOCREMOTE is converted into an M_CTL
message, acknowledged, and passed upstream.

SEE ALSO

484

crash(lM), ioctl(2), Idterm(7), pckt(7), pseudo(l), pty(7), streamio(7), stty(l),
termio(7)

pty(7)

NAME
pty - STREAMS pseudo-terminal driver

DESCRIPTION
The pseudo-terminal subsystem (pty) supports a pair of STREAMS-based devices
called the master device and the slave device. The slave device provides processes
with an interface that is identical to the terminal interface. However, whereas all
devices that provide the terminal interface have some kind of hardware device
behind them, the slave device has another process manipulating it through the mas
ter half of the pseudo terminal. Anything written on the master device is given to
the slave as input and anything written on the slave device is presented as input on
the master side.

The master device, called ptm, is accessed through the clone driver and is the con
trolling part of the system. The slave device, called pts, works with a line discip
line module such as Idterm.(7), a hardware emulation module such as ptem(7), and
optionally with an ioctl translation module such as ttcOIl\Pat(7) to provide a ter
minal interface to the user process. An optional packetizing module called pCkt(7)
is also provided to support "packet mode" when it is pushed on the master side.

The master device is opened via the open(2) system call with /dev/ptmx as the
device to be opened. The clone open finds the next available minor device for that
major device; a master device is available only if it and its corresponding slave
device are not already open.

When the master device is opened, the corresponding slave device is automatically
locked out, and no user may open that device until it is unlocked. A user may
invoke grantpt(3C) to change the owner and permissions of the slave device to
that of the user who is running the process. Once the permissions have been
changed, the device may be unlocked by the user. Only the owner or a privileged
user can access the slave device. The user then invokes unlockpt(3C) to unlock the
slave device. The user calls ptsname(3C) to get the name of the slave device, and
then invokes the open system call with the name that was returned by the function.

After both the master and slave devices have been opened, the user has two file
deScriptors that provide full-duplex communication using two streams. The two
streams are automatically connected. The user may then push modules onto either
side of the stream. The user also must push the ptem and Idterm. modules onto the
slave side to get terminal semantics.

The master and slave devices pass all STREAMS messages to their adjacent queues.
Only M_FLUSH needs some processing. Because the read queue of one side is con
nected to the write queue of the other, the FLUSHR flag is changed to FLUSHW and
vice versa.

When the master device is closed, an M_HANGUP message is sent to the slave device,
which renders the device unusable. The process on the slave side gets the ermo
ENXIO when attempting to write on that stream, but it can read any data remaining
on the stream head read queue. When all the data have been read, read returns 0,
indicating that the stream can no longer be used.

485

pty(7)

On the last close of the slave device, a zero-length message is sent to the master
side. When the master side application issues a read and a is returned, the user
decides whether to issue a close, which dismantles the pseudo-terminal, or not close
the master device so that the pseudo-tty subsystem will be available for another
user to open the slave device.

ioctls

FILES

The master device supports the ISPTM and UNLKPT ioctls that are used by the
grantpt, unlockpt, and ptsname functions.

The ioctl ISPTM determines whether the file descriptor is that of an open
master device. On success, it returns the major/minor number (type dev_t)
of the master device, which can be used to determine the name of the
corresponding slave device. On failure it returns -1.

The ioctl UNLKPT unlocks the master and slave devices. It returns a on
success. On failure, it returns -1 and sets ermo to EINVAL, indicating that
the master device is not open.

The format of these commands is:

int ioctl (int fd, int command, int arg);

where command is either ISPTM or UNLKPT and arg is O.

The master side application is responsible for detecting an interrupt character and
sending an interrupt signal SIGINT to the process on the slave side. This can be
done as follows:

ioctl (fd, TIOCSIGNAL, SIGINT);

where SIGINT is defined in the header file signal. h.

/dev/ptmx

/dev/pts/*

pseudo-terminal master device

pseudo-terminal slave devices

SEE ALSO

486

grantpt(3C), ldtenn(7), pckt(7), pseudo(l), ptem(7), ptsname(3C), ttcompat(7),
unlockpt(3C)

rtc(7)

NAME
rtc - real time clock interface

DESCRIPTION
The rtc driver supports the real time clock chip, allowing it to be set with the
correct local time and allowing the time to be read from the chip.

loctl Calls

FILES

RTCRTlME
This call is used to read the local time from the real time clock chip. The
argument to the ioctl is the address of a buffer of RTCNREG unsigned charac
ters (RTCNREG is defined in sys/rtc.h). The ioctl will fill in the buffer
with the contents of the chip registers. Currently, RTCNREG is 14, and the
meanings of the byte registers are as follows:

Register

a
1
2
3
4
5
6
7
8
9
A
B
C
D

Contents

Seconds
Second alarm
Minutes
Minute alarm
Hours
Hour alarm
Day of week
Date of month
Month
Year
Status register A
Status register B
Status register C
Status register D

For further information on the functions of these registers, see your
hardware technical reference manual.

RTCSTlME
This call is used to set the time into the real time clock chip. The argument
to ioctl is the address of a buffer of RTCNREGP unsigned characters
(RTCNREGP is defined in sys/rtc.h). These bytes should be the desired chip
register contents. Currently, RTCNREGP is 10, representing registers 0-9 as
shown above. Note that only the super-user may open the real time clock
device for writing and that the RTCSTlME ioctl will fail for any other than
the super-user.

Idev/rtc

487

sad (7)

NAME
sad - STREAMS Administrative Driver

SYNOPSIS
#include <sys/types.h>
#include <sys/conf.h>
#include <sys/sad.h>
#include <sys/stropts.h>

int ioctl (int fildes, int command, ••• 1* arg *!);

DESCRIPTION

488

The STREAMS Administrative Driver provides an interface for applications to per
form administrative operations on STREAMS modules and drivers. The interface is
provided through ioctl(2) commands. Privileged operations may access the sad
driver via Idev/sad/admin. Unprivileged operations may access the sad driver
via Idev/sad/user.

fildes is an open file descriptor that refers to the sad driver. command determines the
control function to be performed as described below. arg represents additional
information that is needed by this command. The type of arg depends upon the
command, but it is generally an integer or a pointer to a command-specific data
structure.

Commands
The autopush facility [see autopush(lM)] allows one to configure a list of modules
to be automatically pushed on a stream when a driver is first opened. Autopush is
controlled by the next commands.

SAD_SAP Allows the administrator to configure the autopush information for
the given device. arg points to a strapush structure which contains
the following members:

uint
long
long
long
long
uint

sap_cmd;
sap_major;
sap_minor;
sap_lastminor;
sap_npush;
sap_list [MAXAPUSH] [FMNAMESZ + 1];

The sap_cmd field indicates the type of configuration being done. It
may take on one of the following values:

SAP_ONE Configure one minor device of a driver.

SAP_RANGE Configure a range of minor devices of a driver.

SAP_ALL Configure all minor devices of a driver.

SAP_CLEAR Undo configuration information for a driver.

The sap_major field is the major device number of the device to be
configured. The sap_minor field is the minor device number of the
device to be configured. The SatLlastminor field is used only with
the SAP_RANGE command, with which a range of minor devices
between sap_minor and sap_lastminor, inclusive, are to be
configured. The minor fields have no meaning for the SAP_ALL

sad(7)

command. The sap_npush field indicates the number of modules to
be automatically pushed when the device is opened. It must be less
than or equal to MAXAPUSH, defined in sad.h. It must also be less
than or equal to NSTRPUSH, the maximum number of modules that
can be pushed on a stream, defined in the kernel master file. The
field sap_list is an array of module names to be pushed in the
order in which they appear in the list.

When using the SAP_CLEAR command, the user sets only sap_major
and sap_minor. This will undo the configuration information for
any of the other commands. If a previous entry was configured as
SAP_ALL, sap_minor should be set to zero. If a previous entry was
configured as SAP_RANGE, sap_minor should be set to the lowest
minor device number in the range configured.

On failure, errno is set to the following value:

EFAULT arg points outside the allocated address space.

EINVAL

ENOSTR

EEXIST

ERANGE

ENODEV

ENOSR

The major device number is invalid, the number of
modules is invalid, or the list of module names is
invalid.

The major device number does not represent a
STREAMS driver.

The major-minor device pair is already configured.

The command is SAP_RANGE and sap_lastminor is
not greater than sap_minor, or the command is
SAP_CLEAR and sap_minor is not equal to the first
minor in the range.

The command is SAP_CLEAR and the device is not
configured for autopush.

An internal autopush data structure cannot be allo
cated.

Allows any user to query the sad driver to get the autopush
configuration information for a given device. arg points to a stra
push structure as described in the previous command.

The user should set the sap_major and sap_minor fields of the
strapush structure to the major and minor device numbers, respec
tively, of the device in question. On return, the strapush structure
will be filled in with the entire information used to configure the
device. Unused entries in the module list will be zero-filled.

On failure, errno is set to one of the following values:

EFAULT arg points outside the allocated address space.

EINVAL The major device number is invalid.

489

sad(7}

SEE ALSO

ENOSTR

ENODEV

The major device number does not represent a
STREAMS driver.

The device is not configured for autopush.

Allows any user to validate a list of modules (for example, to see if
they are installed on the system). arg is a pointer to a str_list
structure with the following members:

int sl_nmods;
struct str_mlist *sl_modlist;

The str_mlist structure has the following member:

char 1_name[FMNAMESZ+1];

sl_mnods indicates the number of entries the user has allocated in
the array and sl_modlist points to the array of module names. The
return value is 0 if the list is valid, 1 if the list contains an invalid
module name, or -Ion failure. On failure, errno is set to one of the
following values:

EFAULT

EINVAL

arg points outside the allocated address space.

The sl_mnods field of the str_list structure is less
than or equal to zero.

intro(2), ioctl(2), open(2)

DIAGNOSTICS

490

Unless specified otherwise above, the return value from ioctl is 0 upon success
and -1 upon failure with errno set as indicated.

sc01(7)

NAME
seQl - CD-ROM Target Driver

DESCRIPTION
seQl is a Portable Device Interface (PDI)-compliant CD-ROM target driver that
provides access to one or more CD-ROM drives. Each drive must be attached to a
SCSI bus controlled by an PDI-compliant host adapter driver [for example, see
adse(7)].

Access to a particular drive is accomplished using the seQl device files located in
/dev/ [r] edrom. Each device file identifies a particular drive based on the SCSI ID
assigned to that drive. The binding between a device file and a CD-ROM drive is as
follows:

/dev/redrom/edQ CD-ROM drive with lowest SCSI ID

/dev/redrom/edl CD-ROM drive with next to lowest SCSI ID

and so on.

Most CD-ROM drives can handle CD-ROM disks that contain two types of data:
informational data and audio data. The seQl driver allows access to both types of
data.

A CD-ROM disk that contains informational data is treated as a random-access
storage device, such as a hard disk. The information on the disk is divided into
consecutively numbered, fixed-size (usually 2 Kbytes) sectors that can be accessed
in any order. The standard tools for reading data from a random-access device,
such as dd(l) or read (2), can be used to read informational data from a CD-ROM.
However, all write operations are prohibited.

Audio commands control the operation of the drive's audio output hardware (usu
ally a headphone jack located on the drive). For example, the C_PLAYAUDIO ioctl
causes the audio hardware to decode and convert the audio data to analog at a
specific location on the disk, and play the audio on the drive's audio output
hardware. Audio data is not returned to the host system.

All audio data commands are executed through the ioctl interface and often require
a parameter structure that identifies the audio data to be acted upon. Unlike infor
mational data, audio data is not referenced by a sector address. The methods used
to identify a particular section of audio data should be described in the SCSI inter
face section of the reference manual supplied with your CD-ROM drive. Audio
data cannot be read as if it were informational data, and informational data cannot
be played using the drive's audio hardware.

ioetl Calls
The seQl driver uses several ioetl(2) commands, listed below. Many of these
ioetl(2) commands provide a convenient method for sending one of the
preselected SCSI commands directly to the drive. SCSI commands not explicitly
supported by the seQl driver can be sent to the drive using the pass-through
facility provided by the SDI host adapter driver. For an example, see adse(7).

The following ioctls are used to identify a target driver and to get a pass-through
major and minor number for a target device.

491

sc01(7)

492

B_GETTYPE
Returns the type of peripheral bus (for example, scsi) used and the name of
this driver (for example, sc01).

B_GETDEV
Returns the major and minor number of the pass-through device for the
CD-ROM drive. For example, see adsc(7) for details.

The following ioctls cause the appropriate Group-a, Group-I, or Group-6 SCSI com
mands to be sent to the device. These commands are defined by the SCSI bus
specification and should also be described in the SCSI Interface section of the refer
ence manual supplied with your CD-ROM drive.

Group a

C_TESTUNIT
Sends a Test Unit Ready command to the device.

C_REZERO
Sends a Rezero Device command to the device.

C_SEEK
Sends a Seek command to the device.

C_INQUIR
Sends an Inquiry command to the device and returns the resulting
data back to the caller.

C_STARTUNIT
Sends a Start Unit command to the device.

C_STOPUNIT
Sends a Stop Unit command to the device.

C_PREVMV
Sends a Prevent Media Removal command to the device.

C_ALLOMV
Sends an Allow Media Removal command to the device.

Group-I

C_READCAPA
Sends a Read Capacity command to the device and returns the
data sent by the drive.

Group-6

C_AUDIOSEARCH
Sends an Audio Search command to the device.

C_PLAYAUDIO
Sends a Play Audio command to the device.

C_STILL
Sends a Still command to the device.

sc01(7)

C_TRAYOPEN
Sends a Tray Open command to the device.

C_TRAYCLOSE
Sends a Tray Close command to the device.

Note: The Group 6 IOCTL's support only the drives that are software compatible
with the Toshiba XM-320lB.

The following ioctls are also supported by the scOl driver.

B_GET_SUBDEVS
Returns the number of sub-devices supported by this driver (for
example, 1).

Files
/usr/include/sys/cd_ioctl.h
/usr/include/sys/cdram.h
/usr/include/sys/scOl.h
/etc/conf/pack.d/scOl/space.c
/dev/[r]cdram/cd*
/usr/include/sys/scsi.h
/usr/include/sys/sdi.h
/usr/include/sys/sdi_edt.h

REFERENCES
adsc(7), dpt(7), ioctl(2), mcis(7), sdOl(7), stOl(7), swOl(7), wd7000(7)

493

sd01 (7)

NAME
sdOl- POI disk target driver

DESCRIPTION

494

The sdOl disk target driver is the device-level driver for both Small Computer Sys
tem Interface (SCSI) hard disks, SCSI optical disks, and ESOI/ST506/IDE/MFM
integral disks. It provides block and character (raw) access to the disk, and I/O
controls (ioctl) to the disk. sdOl sets up two levels of organization to the disk, to
allow the disk to be shared with other operating systems, and provide efficient
sized portions within the UNIX system.

The first level of organization of the disk by sdOl is the partition table. The parti
tion table divides the disk into pieces (called partitions) which serve as a logical
disks. There are a maximum of 4 partitions for each disk. A partition has four
characteristics: a start sector, a length, an operating system type (for example,
UNIX, DOS, Extended DOS, and so on), and an active flag (which indicates the
current boatable partition). A valid partition has at least the first three fields
defined. A boatable valid partition has all four fields defined/ on.

The partition table is maintained by the fdisk(lM) command. The sdOl target
driver searches the partition table for UNIX partitions. The active flag is used not
only to indicate that a partition on the boot disk is boatable, but also indicates
whether it is accessible (for example, a UNIX partition on the second disk which
isn't active cannot be accessed).

Within a UNIX partition is the second level of organization of the disk. The UNIX
partition is broken into contiguous sections called slices. The slices of a UNIX parti
tion are defined by the Virtual Table Of Contents (VTOC). The VTOC provides the
means to break up the UNIX partition in smaller pieces to better manage the space,
to differentiate slices for special purposes, and to allow protection of some of the
slices. The VTOC allows for a maximum of 16 slices per disk. A slice also has four
characteristics: a start sector, a length, a slice type (for example, root, user, swap,
stand, and so on), and permissions (valid and mountable/unmountable). A slice
can contain a filesystem (for example, VXFS, S5, BFS, and so on), can be used as
swap space for paging, or left to be organized by an application such as a database.

Several of the slices have required definitions as follows:

Slice 0 The whole UNIX partition; that is, it has the same start and length as the
UNIX partition.

Slice 7 The boot slice which contains UNIX boot code (if it is the boot disk), the
VTOC information, and the POINFO (described later). This slice occupies
sector 1 through 34 of UNIX partition.

Slice 8 The alternates slice, containing the table of remapped sectors, sectors which
have been remapped, and spare sectors available for remapping.

Slice 9 Used in 4.0 and earlier UNIX releases additionally as the alternate track
area. The alternates mechanism was consolidated in SVR4.2 to use one slice.

On the boot disk, there are several other slices which also have required definitions:

Slice 1 The root filesystem

Slice 2 The swap slice

Slice 10
The boot slice which contains the BFS filesystem

Finally, on a boot disk, the optional filesystems are organized as follows:

Slice 3 The /usr filesystem

Slice 4 The /home filesystem

Slice 5 Points to the first DOS partition, if defined

Slice 6 The dump slice (holds memory dumps)

Slice 11
The /var filesystem

Slice 12
The /home2 filesystem

Slice 13
The /tmp filesystem

Slice 14
Points to the second DOS partition, if defined

Slice 15
Points to the third DOS partition, if defined

sd01(7)

The slices of a disk are represented by device nodes, which have the major number
for sdOl and a minor number pointing to one of slices. Since there are sixteen
slices, there are therefore sixteen minors per disk, so minor 0 through 15 are for the
first disk, 16 through 31 are for the second disk, 32 through 47 for the third disk and
so on. The system supports 256 minors per major number so thus there are 16 sets
of disk devices per major number. sdOl supports multiple major numbers, and
currently supports 7 major numbers, which allows for up to 112 disks. When the
disk device is opened, the partition table and the VTOC are read by sdOl to fill out
its tables of partitions and slices.

Mapping of bad blocks is performed dynamically and automatically by the sdOl
disk driver, without user intervention and without retaining a fixed bad block log
on the disk. The SCSI direct-access controllers reassign the defective blocks to an
area on the disk reserved for this purpose. The sdOl disk driver can map both mar
ginal bad blocks (that is, readable with some difficulty) and actual bad blocks (that
is, unreadable). The sdOl driver does not map or report a bad block residing in a
non-UNIX System (that is, MS-DOS) partition of the disk. In addition, even with
dynamic bad block handling, it is possible for damage to occur that cannot be
mapped automatically. This means that you may have to restore the file system
from the last full backup, if the bad block occurs in a critical area of the disk which
cannot tolerate bad sectors.

The sdOl disk driver reports problems with driver error messages. The error
numbers in the error messages identify the type of error. For SCSI sense codes,
extended sense codes, and command codes, see the file
/usr/include/sys/scsLh. For SDI return codes, see the file

495

sd01(7)

496

/usr/include/sys/sdi.h.

The sdOl driver receives command requests from the kernel through the
Input/Output (I/O) control call ioct1(2). The sdOl driver generates the requested
commands and passes them to the host adapter driver. When command execution
is complete, the host adapter driver notifies the sdOl driver through an interrupt.
After this notification, the sdOl driver performs any required error recovery and
indicates to the kernel that the I/O request is complete.

The files in the /dev/dsk directory access the disk thi-ough the system's normal
buffering mechanism, and may be read and written without regard to physical disk
records.

There is also a [r] raw interface that provides for direct transmission between the
disk and the user's read or write buffer. A single read or write call results in exactly
one I/O operation. Therefore, raw I/O is considerably more efficient when many
words are transmitted. The names of the raw disk files contain /dev/rdsk and
have the same form as the /dev/dsk files.

In raw I/O, the buffer must begin on a 512-byte boundary, and transfer counts
must be integral multiples of 512 bytes.

The special device file names associated with the sdOl disk driver have the form:

/dev/[r]dsk/c#t#d#s#

The naming convention for the sdOl disk special device file name components is as
follows:

[r] The optional r in / [r]dsk denotes a raw (that is, character) device; /dsk
without the optional r indicates a block device

c# # is the occurrence of the host adapter board in the system (that is, card
number), ranging are from 0-2 (machine dependent)

t# # is the target controller number, ranging are from O-F hexadecimal

d# # is the logical unit number of the disk device, ranging are from 0-3, since
each target controller currently supports up to four disks

s# # is the disk slice number or VTOC partition number, ranging are from O-F
hexadecimal

The disk parameters-number of cylinders, heads, and sectors per track-are
obtained at driver initialization (init) time. If the disk is an ESDI/ST506/IDE drive,
the CMOS contains parameters for the first two disks. For SCSI disks, a read capa
city command is issued, and the disk parameters are calculated based on a disk
geometry of 32 sectors per track and 64 heads. This geometry is for drives with 512
byte sectors. It is adjusted if the number of bytes per sector changes. The disk
parameters are stored in Physical Descriptor Information (PDINFO) structure
which is stored in the boot slice of the disk. The PDINFO is kept as a sanity check
against those found at driver init time.

When the machine is booted, the primary boot code (BIOS) looks in the fdisk table
for the active partition and jumps to sector 0 of that partition to find the first-stage
bootstrap. If the first-stage bootstrap is over one sector in length, it is the responsi
bility of the first-stage bootstrap to understand this. The boot code will read in the
VTOC to locate the BFS filesystem. It will then load the kernel and begin executing

sd01(7)

the kernel.

ioetl Calls
The ioctl calls used by the sdOl driver to control the reading and writing of data
to disk are as follows:

V_CONFIG
Used to modify the parameters (cylinders and heads) of a disk device. Its
usage is not recommended and it is no longer used in any of the system
commands. The argument to the ioctl is the address of one of the follow
ing structures, defined in sys/vtoc.h, containing the new configuration
parameters:

union io_arg {
struct {
ushortncyl;/* NUmber of cylinders */
uncharnhead;/* Heads/cylinder */
uncharnsec;/* Sectors/track */
ushortsecsiz;/* Bytes/sector */
} ia_cd;
}

Note that it is not possible to change the sector size on the hard disk with
this ioctl, and that an attempt to do so results in the ioctl failing, with
erma set to EINVAL. This call is provided for backward compatibility with
any commands which use it. This call should no longer be used and will be
removed in the future.

V_REMOUNT
Forces sdOl to re-read the VTOC on the next open operation of the drive. It
fails if any slice other than slice 0 is currently open, since the VTOC informa
tion cannot be updated while a process is using a slice. This is used by
disksetup when it changes the VTOC to signal sdOl to update its internal
tables.

V_GETPARMS
Gets information about the current drive configuration. The argument to
the ioctl is the address of the following structure, defined in sys/vtoc. h,
which are filled in by the ioctl:

struct disk-ParmS {
chardp_type;/* Disk type (see below) */
unchardp_heads;/* No. of heads */
ushortdp_cyls;/* No. of cylinders */
unchardp_sectors;/* No. of sectors/track */
ushortdp_secsiz;/* No. of b¥tes/sector */
ushortdp-ptag;/* CUrrently not used */
ushortdp-pflag; /* CUrrently not used * /
daddr_tdp-pstartsec;/* Starting abs. sector no. */
daddr_tdp-Pnumsec;/* CUrrently not used */
}

1* Disk types */

497

sd01(7}

498

#defineDPT_NOTDISKO/* Not a disk device */
#defineDPT_WINI1/* Winchester disk */
#defineDPT_FLOPPY2/* Floppy */
#defineDPT_OTHER3/* Other type of disk */
#defineDPT_SCSI_HD4/* SCSI hard disk */
#defineDPT_SCSI_ODS/* SCSI optical disk */

/* Partition tag */
#defineV_BOOT1/* Boatable partition */
#defineV_ROOT2/* Root filesystem */
#defineV_SWAP3/* swap slice */
#defineV_USR4/* User filesystem */
#defineV_BACKDPS/* Entire disk */
#defineV_ALTS6/* Alternate sectors (SVR4.0 and earlier) */
#defineV_OTHER7/* Non-UNIX System partition */
#defineV_ALTTRK8/* Alternate tracks (SVR4.0 and earlier) */
#defineV_STAND9/* stand (BFS) filesystem */
#defineV_VAROA/* Var filesystem */
#defineV_HOMEOB/* Home filesystem */
#defineV_DUMPOC/* Dump slice */
#defineV_ALTSCTROD/* Alternate sectors (SVR4.2) */

/* Partition flag */
#defineV_UNMNTOx001/* Unmountable partition */
#defineV_RONLYOx010/* Read only partition */
#defineV_OPENOxlOO/* Partition open */
#defineV_VALID0x200/* Partition valid to use */

For SCSI disks the disk type is DPT_SCSI_HD. For ESDI/ST506/IDE disks
the disk type is DPT_WINI.

V_PDLOC
Returns the logical sector address of the pdinfo structure. The value is
returned in pdloc.

unsignedlongpdloc;

V_RDABS/V_WRABS
Used as a means for reading/writing any sector on the hard disk. Only
users with root privilege can freely access any sector. Users who do not
have root privilege can access the partition table (sector 0) or the boot slice
(to allow access to the VTOC). The absolute sector address to be written to
is placed in abs_sec. The data for the sector is read to or written from
abs_buf. The size of abs_buf should be disk yarrns.dp _secsize for the
current drive. Note that both the first cylinder (containing the fdisk table,
first-stage bootstrap and VTOC) and the first track of the active partition
(containing the first-stage bootstrap) can only be accessed using partition 0,
since these tracks are normally not considered part of any other partition in
the VTOC. The absio structure is defined in sys/vtoc.h.

struct absio {
daddr_tabs_sec;/* Absolute sector no. (from O) */
char*abs_buf;/* Sector buffer */
};

V_PREAD/V_PWRITE

sd01(7)

Used to read or write any size data block on the disk, regardless of the phy
sical sector size. Only users with root privilege can use these calls. The
starting logical sector address to be written to or read from is placed in
sectst, the number of bytes to be transferred is placed in datasz, the data
to be transferred is placed in memaddr, and the phyio structure is defined in
sys/vtoc.h.

struct phyio
intretval;/* Return value */
unsignedlong sectst;/* Sector address */
unsignedlong memaddr;/* Buffer address */
unsignedlong datasz;/* Transfer size in bytes */
} ;

V_PDREAD/V_PDWRITE
Used to read or write the Physical Description sector on the disk, regardless
of this sector's location. Only users with root privilege can use these calls.
The starting logical sector address to be written to or read from is assigned
by the sdOl driver, the physical sector size of the disk must be placed in
datasz, the data to be transferred is placed in memaddr, and the phyio
structure is defined in sys/vtoc.h.

SD_PDLOC
Returns the physical sector address of the pdinfo structure. The value is
returned in pdloc.

unsignedlongpdloc;

SDI_RESERVE
Reserves a SCSI disk for a processor.

SDI_RELEASE
Releases a SCSI disk from a processor.

SDI_RESTAT
Returns device reservation status.

The following ioctl commands are used to identify a target driver and to get
pass-through major and minor numbers for a target device:

B_GETTYPE
Returns the bus name (for example, scsi) and device driver name (for
example, sdOl) of a specific device.

B_GETDEV
Returns the pass-through major and minor numbers to the calling utility,
allowing creation of a pass-through special device file.

499

sd01(7)

Files

NOTES

/dev/dsk/*
/dev/rdsk/*
/usr/inelude/sys/sesi.h
/usr/inelude/sys/sdi.h
/usr/inelude/sys/sdi_edt.h
/usr/inelude/sys/vtoe.h

The sdOl driver retries failed transfers up to two times depending on the error
type. Certain errors are not retried. sdOl displays an appropriate message upon
encountering an error during the transfer.

The VTOC and second-stage bootstrap require that no bad sectors occur in the first
30 sectors of the UNIX System partition on the disk. When a marginal bad block
occurs, the driver's warning indicates that the controller's error-correction algo
rithm successfully recovered from an error. This may be a symptom of a sector
going bad.

REFERENCES

500

adse(7), disksetup(lM), dpt(7), edvtoe(lM), fdisk(lM), fs(4), ioctl(2) mcis(7)
mount(lM), prtvtoe(lM), seOl(7), stOl(7), swOl(7), wd7000(7)

sockio(7)

NAME
sookio - iootls that operate directly on sockets

SYNOPSIS
#include <sys/sookio.h>

DESCRIPTION
The ioctls listed in this manual page apply directly to sockets, independent of any
underlying protocol. The setsockopt call (see getsockopt(3N» is the primary
method for operating on sockets, rather than on the underlying protocol or network
interface. iootls for a specific network interface or protocol are documented in the
manual page for that interface or protocol.

SIOCSPGRP The argument is a pointer to an into Set the process-group
ID that will subsequently receive SIGIO or SIGURG signals for
the socket referred to by the descriptor passed to iootl to
the value of that into

SIOCGPGRP

SIOCCATMARK

SEE ALSO

The argument is a pointer to an into Set the value of that
int to the process-group ID that is receiving SIGIO or
SIGURG signals for the socket referred to by the descriptor
passed to ioctl.

The argument is a pointer to an into Set the value of that
int to 1 if the read pointer for the socket referred to by the
descriptor passed to iootl points to a mark in the data
stream for an out-of-band message. Set the value of that int
to 0 if the read pointer for the socket referred to by the
descriptor passed to ioctl does not point to a mark in the
data stream for an out-of-band message.

ioctl(2) getsockopt(3N),

501

st01 (7)

NAME
stOl - Portable Device Interface (PDI) tape target driver

DESCRIPTION

502

The stOl tape driver receives command requests from the kernel through the
read(2), write(2), and ioctl(2) system calls. The stOl driver generates the
appropriate commands and passes them through the host adapter driver to the tape
device. When command execution is complete, the host adapter driver notifies
stOl through an interrupt. After this notification, stOl performs any required
error recovery, and indicates to the kernel that the Input/Output (I/O) request is
complete. The stOl driver operates independently of the hardware used to com
municate with the HBA bus.

I/O requests must be in length a multiple of the tape block length. The default
value is 512 bytes.

Only raw character interface files are provided. When opened, the tape is assumed
to be positioned as desired. If a retension-on-open special file is opened, the tape is
retensioned before any I/O is performed. When a T_RWD, T_RETENSION, T_LOAD, or
T_UNLOAD ioctl is requested and the tape has been written, two file marks are
written before the ioctl is executed.

The open(2) on a tape device can fail is a tape is not inserted, resulting in the error
report EIO. An open(2) can also fail if the tape controller associated with the special
file is not detected by the driver. In this case, the error reported is ENXIO.

The following table lists the actions that occur on close. depending on whether the
file is designated as rewind or no-rewind, and if the tape was written or read:

Rewind Tape Tape Action
on Close? Read? Written? on Close
Yes Yes N / A Rewind tape.
Yes N/ A Yes Write two file marks and rewind

Yes
No
No
No

No
No
Yes
N/A

No
No
N/A
Yes

tape.
Rewind tape
No tape movement
Position tape after next file mark
Write one file mark and position
tape after this file mark

A read occurring when the tape is positioned immediately before a file mark
returns zero(O) bytes, and the tape is positioned after the file mark. As with other
raw devices, seeks are ignored. Some tape devices allow both reads and writes to
occur between rewinds; the stOl driver supports these devices.

ioetl Calls
The following ioctl calls are used by the stOl driver to control tape positioning:

T_SFF/T_SFB Positions the tape forward or backward arg [see ioct1(2)] number
of file marks from the current tape head position toward the End
of-Tape (EOT) or Beginning-of-Tape (BOT). Forward movement of
the tape leaves the tape positioned on the EOT side of a file mark
or at EOT, and backwards movement leaves the tape positioned on

st01 (7)

the BOT side of a file mark or at BOT. A backward positioning
operation causes the next read to return 0 bytes unless arg is
greater than the number of file marks between the current position
and BOT. The value of arg must be a positive integer. A value of 0
is not considered an error, but does not result in any tape move
ment.

T_SBF /T_SBB Positions the tape forward or backward arg number of blocks from
the current tape head position toward the EaT or BOT. Upon
command completion, the tape head is positioned in the gap
between tape blocks. Thus, skipping a block forward advances to
the next block, and skipping a block backward retreats to the last
block. The value of arg must be a positive integer. Upon any
attempt to skip over a file mark, the tape is positioned on the
EaT /BOT side of the file mark for forward/backward movement,
and the positioning operation ceases. A value of 0 is not con
sidered an error, but does not result in any tape movement.

T_RWD Rewinds the tape from the current tape position to the BOT. Two
file marks are written before the rewind if the tape has been writ
ten. This command does not unload the tape.

T_WRFlLEM Writes file marks to the tape. The value of arg defines the number
of consecutive file marks to be written. If an error occurs while
writing file marks, the number of file marks that have been suc
cessfully written is indeterminate.

T_EOD Positions the tape just beyond the last file mark.

T_STD Defines the recording density of the tape media being used. The
numeric density code used is as defined in the SCSI-2 draft
specification.

T_PREVMV Locks the tape in the drive. This prevention may be in the form of
a mechanical lock or an LED to indicate the device is in use.
T_PREVMV is supported only on devices that implement this
feature. For example, ICT devices are among those which do not
support this ioctl.

T_ALLOMV Unlocks the tape in the drive. This command is used to undo the
lock created by T_PREVMV. T_ALLOMV is supported only on devices
that implement this feature. For example, ICT devices are among
those which do not support this ioctl.

T_LOAD Loads the tape media and position the tape BOT.

T_UNLOAD Unloads the tape. Most devices rewind the tape before unloading.
Devices capable of ejecting the tape will do so in response to this
command.

T_ERASE Erases the tape, from BOT to EaT. If the tape is not positioned at
BOT, the tape is positioned at BOT before performing the erase
function.

503

5t01 (7)

T_RDBLKLEN Returns the minimum and maximum block lengths supported by
the tape device. The value of arg must be a struct blklen. See
the me /usr/include/sys/st01.h for more information.

T_WRBLKLEN Sets the current block length for the tape device. The value of arg
must be a struct blklen with both max bien and min bien set to
the desired block length. See the file /usr/include/sYs/st01.h
for more information.

T_RETENSION Retensions the tape in the drive, running the tape at high speed
from BOT to EaT, and then back again. The retension operation
leaves the tape positioned at BOT.

The following ioctl commands identify a target driver and get a pass-through
major and minor number for a target device.

B_GETTYPE Gets the bus name (for example, scsi) and device driver name (for
example, stOl) of a specific device

Gets the pass-through major and minor number to the calling util
ity, allowing creation of a pass-through special device file.

Files
/usr/include/sys/stOl_ioctl.h
/usr/include/sys/stOl.h
/usr/include/sys/sdi_edt.h

NOTES
Once any drive error is encountered, the driver will not perform any other func
tions until the file is closed.

The stOl tape driver does not always require block sizes that are in multiples of 512
bytes, but block size is device dependent. You should set the tape driver to use the
block size supported by the tape device. Failure to set the block
size correctly will result in an error when the driver attempts to write a block of the
unsupported size.

The tape driver does not support the use of the sar command.

REFERENCES

504

adsc(7), close(2), dpt(7), ioctl(2), mcis(7), read(2), scOl(7), sdOl(7), swOl(7),
wd7000(7), write(2)

streamio (7)

NAME
streamio - STREAMS ioctl commands

SYNOPSIS
#include <sys/types.h>
#include <stropts.h>

int ioctl (intfildes, int command, ••• /* arg *!);

DESCRIPTION
STREAMS [see intro(2)] ioctl commands are a subset of the ioctl(2) system calls
which perform a variety of control functions on streams.

fildes is an open file descriptor that refers to a stream. command determines the con
trol function to be performed as described below. arg represents additional infor
mation that is needed by this command. The type of arg depends upon the com
mand, but it is generally an integer or a pointer to a command-specific data struc
ture. The command and arg are interpreted by the stream head. Certain combina
tions of these arguments may be passed to a module or driver in the stream.

Since these STREAMS commands are a subset of ioctl, they are subject to the errors
described there. In addition to those errors, the call will fail with ermo set to EIN
VAL, without processing a control function, if the stream referenced by fildes is
linked below a multiplexor, or if command is not a valid value for a stream.

Also, as described in ioctl, STREAMS modules and drivers can detect errors. In
this case, the module or driver sends an error message to the stream head contain
ing an error value. This causes subsequent system calls to fail with ermo set to this
value.

Command Functions
The following ioctl commands, with error values indicated, are applicable to all
STREAMS files:

Pushes the module whose name is pointed to by arg onto the top of
the current stream, just below the stream head. If the stream is a
pipe, the module will be inserted between the stream heads of both
ends of the pipe. It then calls the open routine of the newly-pushed
module. On failure, ermo is set to one of the following values:

EINVAL Invalid module name.

EFAULT

ENXIO

ENXIO

arg points outside the allocated address space.

Open routine of new module failed.

Hangup received on fildes.

Removes the module just below the stream head of the stream
pointed to by fildes. To remove a module from a pipe requires that
the module was pushed on the side it is being removed from. arg
should be 0 in an I_POP request. On failure, errno is set to one of
the following values:

EINVAL No module present in the stream.

505

streamio (7)

I_FLUSHBAND

506

ENXIO Hangup received on fildes.

Retrieves the name of the module just below the stream head of the
stream pointed to by fildes, and places it in a null terminated charac
ter string pointed at by argo The buffer pointed to by arg should be at
least FMNAMEsz+l bytes long. A #include <sys/conLh> declara
tion is required. On failure, ermo is set to one of the following
values:

EFAULT arg points outside the allocated address space.

EINVAL No module present in stream.

This request flushes all input and/or output queues, depending on
the value of argo Valid arg values are:

FLUSHR

FLUSHW

FLUSHRW

Flush read queues.

Flush write queues.

Flush read and write queues.

If a pipe or FIFO does not have any modules pushed, the read queue
of the stream head on either end is flushed depending on the value of
argo

If FLUSHR is set and fildes is a pipe, the read queue for that end of the
pipe is flushed and the write queue for the other end is flushed. If
fildes is a FIFO, both queues are flushed.

If FLUSHW is set and fildes is a pipe and the other end of the pipe
exists, the read queue for the other end of the pipe is flushed and the
write queue for this end is flushed. If fildes is a FIFO, both queues of
the FIFO are flushed.

If FLUSHRW is set, all read queues are flushed, that is, the read queue
for the FIFO and the read queue on both ends of the pipe are flushed.

Correct flush handling of a pipe or FIFO with modules pushed is
achieved via the pipemod module. This module should be the first
module pushed onto a pipe so that it is at the midpoint of the pipe
itself.

On failure, ermo is set to one of the following values:

ENOSR Unable to allocate buffers for flush message due to
insufficient STREAMS memory resources.

EINVAL Invalid arg value.

ENXIO Hangup received on fildes.

Flushes a particular band of messages. arg points to a bandinfo
structure that has the following members:

unsigned char
int

bi....,pri;
bi_flag;

The bi_flag field may be one of FLUSHR, FLUSHW, or FLUSHRW as
described earlier.

streamio (7)

Informs the stream head that the user wants the kernel to issue the
SIGPOLL signal [see signal(2)] when a particular event has occurred
on the stream associated with fildes. I_SETSIG supports an asyn
chronous processing capability in STREAMS. The value of arg is a bit
mask that specifies the events for which the user should be signaled.
It is the bitwise-GR of any combination, except where noted, of the
following constants:

S_INPUT Any message other than an M_PCPROTO has arrived on
a stream head read queue. This event is maintained
for compatibility with prior releases. This is set even
if the message is of zero length.

An ordinary (non-priority) message has arrived on a
stream head read queue. This is set even if the mes
sage is of zero length.

A priority band message (band> 0) has arrived on a
stream head read queue. This is set even if the mes
sage is of zero length.

A high priority message is present on the stream head
read queue. This is set even if the message is of zero
length.

The write queue just below the stream head is no
longer full. This notifies the user that there is room on
the queue for sending (or writing) data downstream.

This event is the same as S_OUTPUT.

A priority band greater than 0 of a queue downstream
exists and is writable. This notifies the user that there
is room on the queue for sending (or writing) priority
data downstream.

A STREAMS signal message that contains the SIGPOLL
signal has reached the front of the stream head read
queue.

An M_ERROR message has reached the stream head.

An M_HANGUP message has reached the stream head.

S_BANDURG When used in conjunction with S_RDBAND, SIGURG is
generated instead of SIGPOLL when a priority mes
sage reaches the front of the stream head read queue.

A user process may choose to be signaled only of high priority mes
sages by setting the arg bitrnask to the value S_HIPRI.

Processes that want to receive SIGPOLL signals must explicitly regis
ter to receive them using I_SETSIG. If several processes register to
receive this signal for the same event on the same stream, each
process will be signaled when the event occurs.

507

streamio (7)

508

If the value of arg is zero, the calling process will be unregistered and
will not receive further SIGPOLL Signals. On failure, ermo is set to
one of the following values:

EINVAL arg value is invalid or arg is zero and process is not
registered to receive the SIGPOLL signal.

EAGAIN Allocation of a data structure to store the signal
request failed.

Returns the events for which the calling process is currently
registered to be sent a SIGPOLL signal. The events are returned as a
bitmask pointed to by arg, where the events are those specified in the
description of I_SETSIG above. On failure, ermo is set to one of the
following values:

EINVAL Process not registered to receive the SIGPOLL signal.

EFAULT arg points outside the allocated address space.

Compares the names of all modules currently present in the stream
to the name pointed to by arg, and returns 1 if the named module is
present in the stream. It returns 0 if the named module is not
present. On failure, ermo is set to one of the following values:

EFAULT arg points outside the allocated address space.

EINVAL arg does not contain a valid module name.

Allows a user to retrieve the information in the first message on the
stream head read queue without taking the message off the queue.
I_PEEK is analogous to getmsg(2) except that it does not remove the
message from the queue. arg points to a strpeek structure which
contains the following members:

struct strbuf ctlbuf;
struct strbuf databuf;
long flags;

The maxlen field in the ctlbuf and databuf strbuf structures [see
getmsg(2)] must be set to the number of bytes of control information
and/ or data information, respectively, to retrieve. flags may be set
to RS_HIPRI or O. If RS_HIPRI is set, I_PEEK will look for a high
priority message on the stream head read queue. Otherwise, I_PEEK
will look for the first message on the stream head read queue.

I_PEEK returns 1 if a message was retrieved, and returns 0 if no mes
sage was found on the stream head read queue. It does not wait for
a message to arrive. On return, ctlbuf specifies information in the
control buffer, databuf specifies information in the data
buffer, and flags contains the value RS_HIPRI or O. On failure,
ermo is set to the following value:

EFAULT arg points, or the buffer area specified in ctlbuf or
databuf is, outside the allocated address space.

streamio (7)

EBADMSG Queued message to be read is not valid for I_PEEK

EINVAL Invalid value for flags.

Sets the read mode [see read(2)] using the value of the argument argo
Valid arg values are:

RNORM Byte-stream mode, the default.

RMSGD Message-discard mode.

RMSGN Message-nondiscard mode.

Setting both RMSGD and RMSGN is an error. RMSGD and RMSGN override
RNORM.

In addition, treatment of control messages by the stream head may
be changed by setting the following flags in arg:

RPROTNORM Fail read with EBADMSG if a control message is at the
front of the stream head read queue. This is the
default behavior.

RPROTDAT Deliver the control portion of a message as data when
a user issues read.

RPROTDIS Discard the control portion of a message, delivering
any data portion, when a user issues a read.

On failure, errno is set to the following value:

EINVAL arg is not one of the above valid values.

EINVAL Both RMSGD and RMSGN are set.

I_GRDOPT Returns the current read mode setting in an int pointed to by the
argument argo Read modes are described in read(2). On failure,
errno is set to the following value:

EFAULT arg points outside the allocated address space.

I_NREAD Counts the number of data bytes in data blocks in the first message
on the stream head read queue, and places this value in the location
pointed to by argo The return value for the command is the number
of messages on the stream head read queue. For example, if zero is
returned in arg, but the ioctl return value is greater than zero, this
indicates that a zero-length message is next on the queue. On failure,
errno is set to the following value:

EFAULT arg points outside the allocated address space.

I_FDINSERT Creates a message from user specified buffer(s), adds information
about another stream and sends the message downstream. The mes
sage contains a control part and an optional data part. The data and
control parts to be sent are distinguished by placement in separate
buffers, as described below.

arg points to a strfdinsert structure which contains the following
members:

509

streamio (7)

510

struct strbuf ctlbuf;
struct strbuf databuf;
long flags;
int fildes;
int offset;

The len field in the ctlbuf strbuf structure [see putmsg(2)] must
be set to the size of a pointer plus the number of bytes of control
information to be sent with the message. fildes in the strfdinsert
structure specifies the file descriptor of the other stream. offset,
which must be word-aligned, specifies the number of bytes beyond
the beginning of the control buffer where I_FDINSERT will store a
pointer. This pointer will be the address of the read queue structure
of the driver for the stream corresponding to fildes in the strfd
insert structure. The len field in the databuf strbuf structure
must be set to the number of bytes of data information to be sent
with the message or zero if no data part is to be sent.

flags specifies the type of message to be created. An ordinary
(non-priority) message is created if flags is set to 0, a high priority
message is created if flags is set to RS_HIPRI. For normal mes
sages, I_FDINSERT will block if the stream write queue is full due to
internal flow control conditions. For high priority messages,
I_FDINSERT does not block on this condition. For normal messages,
I_FDINSERT does not block when the write queue is full and
O_NDELAY or O_NONBLOCK is set. Instead, it fails and sets ermo to
EAGAIN.

I_FDINSERT also blocks, unless prevented by lack of internal
resources, waiting for the availability of message blocks, regardless
of priority or whether O_NDELAY or O_NONBLOCK has been specified.
No partial message is sent. On failure, ermo is set to one of the
following values:

EAGAIN A non-priority message was specified, the O_NDELAY or
O_NONBLOCK flag is set, and the stream write queue is full
due to internal flow control conditions.

ENOSR Buffers could not be allocated for the message that was to
be created due to insufficient STREAMS memory resources.

EFAULT arg points, or the buffer area specified in ctlbuf or data
buf is, outside the allocated address space.

EINVAL One of the following: fildes in the strfdinsert structure
is not a valid, open stream file descriptor; the size of a
pointer plus offset is greater than the len field for the
buffer specified through ctlptr; offset does not specify a
properly-aligned location in the data buffer; an undefined
value is stored in flags.

streamio (7)

ENXIO Hangup received on fildes of the ioctl call or fildes in
the strfdinsert structure.

ERANGE The len field for the buffer specified through databuf does
not fall within the range specified by the maximum and
minimum packet sizes of the topmost stream module, or the
len field for the buffer specified through databuf is larger
than the maximum configured size of the data part of a
message, or the len field for the buffer specified through
ctlbuf is larger than the maximum configured size of the
control part of a message.

I_FDINSERT can also fail if an error message was received by the
stream head of the stream corresponding to fildes in the strfd
insert structure. In this case, ermo will be set to the value in the
message.

Constructs an internal STREAMS ioctl message from the data pOinted
to by arg, and sends that message downstream.

This mechanism is provided to send user ioctl requests to down
stream modules and drivers. It allows information to be sent with
the ioctl, and will return to the user any information sent upstream
by the downstream recipient. I_STR blocks until the system
responds with either a positive or negative acknowledgement mes
sage, or until the request "times out" after some period of time. If
the request times out, it fails with ermo set to ETlME.

At most, one I_STR can be active on a stream. Further I_STR calls
will block until the active I_STR completes at the stream head. The
default timeout interval for these requests is 15 seconds. The
O_NDELAY and O_NONBLOCK [see open(2)] flags have no effect on this
call.

To send requests downstream, arg must point to a strioctl struc
ture which contains the following members:

int ic_cmd;
int ic_timout;
int ic_Ien;
char *ic_dp;

ic_cmd is the internal ioctl command intended for a downstream
module or driver and ic_timout is the number of seconds (-1 =
infinite, 0 = use default, >0 = as specified) an I_STR request will wait
for acknowledgement before timing out. The default timeout is
infinite. ic_Ien is the number of bytes in the data argument and
ic_dp is a pointer to the data argument. The ic_Ien field has two
uses: on input, it contains the length of the data argument passed in,
and on return from the command, it contains the number of bytes
being returned to the user (the buffer pointed to by ic_dp should be
large enough to contain the maximum amount of data that any
module or the driver in the stream can return).

511

streamio (7)

512

The stream head will convert the information pointed to by the
strioctl structure to an internal ioctl command message and
send it downstream. On failure, errno is set to one of the following
values:

ENOSR

EFAULT

EINVAL

ENXIO

ETIME

Unable to allocate buffers for the ioctl message due
to insufficient STREAMS memory resources.

arg points, or the buffer area specified by ic_dp and
ic_Ien (separately for data sent and data returned) is,
outside the allocated address space.

ic_Ien is less than 0 or ic_Ien is larger than the max
imum configured size of the data part of a message or
ic_timout is less than-l.

Hangup received on fildes.

A downstream ioctl timed out before acknowledge
ment was received.

An I_STR can also fail while waiting for an acknowledgement if a
message indicating an error or a hangup is received at the stream
head. In addition, an error code can be returned in the positive or
negative acknowledgement message, in the event the ioctl command
sent downstream fails. For these cases, I_STR will fail with errno
set to the value in the message.

Sets the write mode using the value of the argument argo Legal bit
settings for arg are:

SNDZERO Send a zero-length message downstream when a write
of 0 bytes occurs.

To not send a zero-length message when a write of 0 bytes occurs,
this bit must not be set in argo

On failure, errno may be set to the following value:

EINVAL arg is not the above valid value.

Returns the current write mode setting, as described above, in the
int that is pointed to by the argument argo

Requests the stream associated with fildes to send a message, contain
ing a file pointer, to the stream head at the other end of a stream
pipe. The file pointer corresponds to arg, which must be an open file
descriptor.

I_SENDFD converts arg into the corresponding system file pointer. It
allocates a message block and inserts the file pointer in the block.
The user ID and group ID associated with the sending process are
also inserted. This message is placed directly on the read queue [see
intro(2)] of the stream head at the other end of the stream pipe to
which it is connected. On failure, errno is set to one of the following
values:

EAGAIN

EAGAIN

EBADF

EINVAL

ENXIO

streamio (7)

The sending stream is unable to allocate a message
block to contain the file pointer.

The read queue of the receiving stream head is full
and cannot accept the message sent by I_SENDFD.

arg is not a valid, open file descriptor.

fildes is not connected to a stream pipe.

Hangup received on fildes.

Retrieves the file descriptor associated with the message sent by an
I_SENDFD ioctl over a stream pipe. arg is a pointer to a data buffer
large enough to hold an strrecvfd data structure containing the
following members:

int fd;
uid_t uid;
gid_t gid;
char fill [8] ;

fd is an integer file descriptor. uid and gid are the user ID and
group ID, respectively, of the sending stream.

If O_NDELAY and O_NONBLOCK are clear [see open(2)], I_RECVFD will
block until a message is present at the stream head. If O_NDELAY or
O_NONBLOCK is set, I_RECVFD will fail with ermo set to EAGAIN if no
message is present at the stream head.

If the message at the stream head is a message sent by an I_SENDFD,
a new user file descriptor is allocated for the file pointer contained in
the message. The new file descriptor is placed in the fd field of the
strrecvfd structure. The structure is copied into the user data
buffer pointed to by argo

On failure, ermo is set to one of the following values:

EAGAIN A message is not present at the stream head read
queue, and the O_NDELAY or O_NONBLOCK flag is set.

EBADMSG The message at the stream head read queue is not a
message containing a passed file descriptor.

EFAULT arg points outside the allocated address space.

EMFlLE NOFILES file descriptors are currently open.

ENXIO Hangup received on fildes.

EOVERFLOW uid or gid is too large to be stored in the structure
pointed to by argo

I_S_RECVFD Retrieves the file descriptor associated with the message sent by an
I_SENDFD ioctl over a stream pipe. arg is a pointer to a data buffer
large enough to hold an s_strrecvfd data structure containing the
following members:

513

streamio (7)

514

int fd;
uid_t uid;
gid_t gid;
struct sub_attr s_attrs;

fd is an integer file descriptor. uid and gid are the user lO and
group lO, respectively, of the sending stream. sub_attr contains
security relevant information. The sub_attr structure is used as an
argument for the secadvise(2) system call, which provides advisory
access information.

If O_NDELAY and O_NONBLOCK are clear [see open(2»), I_RECVFD will
block until a message is present at the stream head. If O_NDELAY or
O_NONBLOCK is set, I_RECVFD will fail with errno set to EAGAIN if no
message is present at the stream head.

If the message at the stream head is a message sent by an I_SENDFD,
a new user file descriptor is allocated for the file pointer contained in
the message. The new file descriptor is placed in the fd field of the
s_strrecvfd structure. The structure is copied into the user data
buffer pointed to by argo

On failure, errno is set to one of the following values:

ENOMEM The system cannot allocate memory for the
s_strrecvfd structure.

EAGAIN A message is not present at the stream head read
queue, and the O_NDELAY or O_NONBLOCK flag is set.

EBADMSG The message at the stream head read queue is not a
message containing a passed file descriptor.

EFAULT arg points outside the alloc~ted address space.

EMFILE NOFILES file descriptors are currently open.

ENXIO Hangup received onfildes.

EOVERFLOW uid or gid is too large to be stored in the structure
pointed to byarg.

Allows the user to list all the module names on the stream, up to and
including the topmost driver name. If arg is NULL, the return value is
the number of modules, including the driver, that are on the stream
pOinted to by fildes. This allows the user to allocate enough space for
the module names. If arg is non-NULL, it should point to an
str_list structure that has the following members:

int sl_nmods;
struct str_mlist

The str_mlist structure has the following member:

char l_name[FMNAMESZ+l];

streamio (7)

sl_nmods indicates the number of entries the user has allocated in
the array. On success, the return value is 0, sl_modlist contains the
list of module names, and sl_mnods indicates the number of entries
that have been filled in. On failure, errno may be set to one of the
following values:

EINVAL

EAGAIN

The sl_mnods member is less than 1.

Unable to allocate buffers

Allows the user to see if the current message on the stream head read
queue is "marked" by some module downstream. arg determines
how the checking is done when there may be multiple marked mes
sages on the stream head read queue. It may take the following
values:

ANYMARK

LASTMARK

Check if the message is marked.

Check if the message is the last one marked on the
queue.

If both ANYMARK and LASTMARK are set, ANYMARK supersedes LAST

MARK.

The return value is 1 if the mark condition is satisfied and ° other
wise. On failure, errno may be set to the following value:

EINVAL A value other than (ANYMARK I LASTMARK) is set in argo

I_CKBAND Check if the message of a given priority band exists on the stream
head read queue. This returns 1 if a message of a given priority
exists, or -Ion error. arg should be an integer containing the value
of the priority band in question. On failure, errno may be set to the
following value:

EINVAL Invalid arg value.

I_GETBAND Returns the priority band of the first message on the stream head
read queue in the integer referenced by argo On failure, errno may
be set to the following value:

ENODATA No message on the stream head read queue.

I_CANPUT Check if a certain band is writable. arg is set to the priority band in
question. The return value is 0 if the priority band arg is flow con
trolled, 1 if the band is writable, or -Ion error. On failure, errno
may be set to the following value:

I_SETCLTIME

EINVAL Invalid arg value.

Allows the user to set the time the stream head will delay when a
stream is closing and there is data on the write queues. Before clos
ing each module and driver, the stream head will delay for the
specified amount of time to allow the data to drain. If, after the
delay, data is still present, data will be flushed. arg is a pointer to the
number of milliseconds to delay, rounded up to the nearest valid

515

streamio (7)

516

I_GETCLTIME

value on the system. The default is fifteen seconds. On failure,
errno may be set to the following value:

EINVAL Invalid arg value.

Returns the close time delay in the long pointed by argo

The following four commands are used for connecting and disconnecting multi
plexed STREAMS configurations.

I_LINK Connects two streams, where fildes is the file descriptor of the stream
connected to the multiplexing driver, and arg is the file descriptor of
the stream connected to another driver. The stream designated by
arg gets connected below the multiplexing driver. I_LINK requires
the multiplexing driver to send an acknowledgement message to the
stream head regarding the linking operation. This call returns a mul
tiplexor ID number (an identifier used to disconnect the multiplexor,
see I_UNLINK) on success, and a -Ion failure. On failure, errno is
set to one of the following values:

ENXIO Hangup received onfildes.

ETIME

EAGAIN

ENOSR

EBADF

EINVAL

EINVAL

EINVAL

EINVAL

Time out before acknowledgement message was
received at stream head.

Temporarily unable to allocate storage to perform the
I_LINK.

Unable to allocate storage to perform the I_LINK due
to insufficient STREAMS memory resources.

arg is not a valid, open file descriptor.

fildes stream does not support multiplexing.

arg is not a stream, or is already linked under a multi
plexor.

The specified link operation would cause a "cycle" in
the resulting configuration; that is, if a given driver is
linked into a multiplexing configuration in more than
one place.

fildes is the file descriptor of a pipe or FIFO.

An I_LINK can also fail while waiting for the multiplexing driver to
acknowledge the link request, if a message indicating an error or a
hangup is received at the stream head of fildes. In addition, an error
code can be returned in the positive or negative acknowledgement
message. For these cases, I_LINK will fail with errno set to the
value in the message.

Disconnects the two streams specified by fildes and argo fildes is the
file descriptor of the stream connected to the multipleXing driver.
arg is the multiplexor ID number that was returned by the I_LINK. If
arg is -1, then all Streams which were linked to fildes are discon
nected. As in I_LINK, this command requires the multiplexing

streamio (7)

driver to acknowledge the unlink. On failure, ermo is set to one of
the following values:

ENXIO

ETIME

ENOSR

EINVAL

EINVAL

Hangup received on fildes.

Time out before acknowledgement message was
received at stream head.

Unable to allocate storage to perform the I_UNLINK
due to insufficient STREAMS memory resources.

arg is an invalid multiplexor ID number or fildes is not
the stream on which the I_LINK that returned arg was
performed.

fildes is the file descriptor of a pipe or FIFO.

An I_UNLINK can also fail while waiting for the multiplexing driver
to acknowledge the link request, if a message indicating an error or a
hangup is received at the stream head of fildes. In addition, an error
code can be returned in the positive or negative acknowledgement
message. For these cases, I_UNLINK will fail with ermo set to the
value in the message.

Connects two streams, where fildes is the file descriptor of the stream
connected to the multiplexing driver, and arg is the file descriptor of
the stream connected to another driver. The stream designated by
arg gets connected via a persistent link below the multiplexing
driver. I_PLINK requires the multiplexing driver to send an ack
nowledgement message to the stream head regarding the linking
operation. This call creates a persistent link which can exist even if
the file descriptor fildes associated with the upper stream to the mul
tiplexing driver is closed. This call returns a multiplexor ID number
(an identifier that may be used to disconnect the multiplexor, see
I_PUNLINK) on success, and a -Ion failure. On failure, ermo may
be set to one of the following values:

ENXIO Hangup received on fildes.

ETIME

EAGAIN

EBADF

EINVAL

EINVAL

EINVAL

Time out before acknowledgement message was
received at the stream head.

Unable to allocate STREAMS storage to perform the
I_PLINK.

arg is not a valid, open file descriptor.

fildes does not support multiplexing.

arg is not a stream or is already linked under a multi
plexor.

The specified link operation would cause a "cycle" in
the resulting configuration; that is, if a given stream
head is linked into a multiplexing configuration in
more than one place.

517

streamio (7)

EINVAL fildes is the file descriptor of a pipe or FIFO.

An I_PLINK can also fail while waiting for the multiplexing driver to
acknowledge the link request, if a message indicating an error on a
hangup is received at the stream head of fildes. In addition, an error
code can be returned in the positive or negative acknowledgement
message. For these cases, I_PLINK will fail with errno set to the
value in the message.

I_PUNLINK Disconnects the two streams specified by fildes and arg that are con
nected with a persistent link. fildes is the file descriptor of the stream
connected to the multiplexing driver. arg is the multiplexor ID
number that was returned by I_PLINK when a stream was linked
below the multiplexing driver. If arg is MUXID_ALL then all streams
which are persistent links to fildes are disconnected. As in I_PLINK,
this command requires the multiplexing driver to acknowledge the
unlink. On failure, errno may be set to one of the following values:

ENXIO Hangup received on fildes.

ETIME

EAGAIN

EINVAL

EINVAL

Time out before acknowledgement message was
received at the stream head.

Unable to allocate buffers for the acknowledgement
message.

Invalid multiplexor ID number.

fildes is the file descriptor of a pipe or FIFO.

An I_PUNLINK can also fail while waiting for the multiplexing driver
to acknowledge the link request if a message indicating an error or a
hangup is received at the stream head of fildes. In addition, an error
code can be returned in the positive or negative acknowledgement
message. For these cases, I_PUNLINK will fail with errno set to the
value in the message.

SEE ALSO
close(2), fcntl(2), getmsg(2), intro(2), ioctl(2), open(2), poll(2), putmsg(2),
read(2), signal(2), signal(5), write(2)

DIAGNOSTICS

518

Unless specified otherwise above, ioctl returns 0 on success and -Ion failure and
sets errno as indicated.

sw01 (7)

NAME
swOl- Portable Device Interface (PDI) WORM Target Driver

DESCRIPTION
The swOl driver is a PDI-compliant WORM (Write Once Read Many) target driver
that provides access to one or more WORM drives. Each drive must be attached to
a SCSI Bus that is controlled by a PDI-compliant host adapter driver.

Access to the particular drive is accomplished through the swOl device nodes
located in /dev/ [rlwonn.

Each device node identifies a particular drive based on the SCSI ID assigned to that
drive. The binding between a device node and a WORM drive is as follows:

/dev/rwonn/wonnO WORM drive with lowest SCSI ID

/dev/rwonn/wonnl WORM drive with next to lowest SCSI ID

and so on.

A WORM drive uses removable media divided into consecutively numbered,
fixed-size sectors that may be accessed in any order, similar to a hard disk. Most of
the standard tools for reading and writing to and from a hard disk, such as such as
dd(l) or read(2), work with a WORM drive. However, keep in mind that for
WORM drives, each sector can be written to only once. This characteristic causes
problems if a WORM device is mounted [mount(lM)] without using the read-only
flag, -r.

ioetl Calls
The swOl driver supports several ioctl functions [see ioctl(2) in the Programmer's
Reference Manual], which are accessed through the ioctl system call. Many of the
supported ioctl calls provide a convenient method for sending one of the
preselected SCSI commands directly to the drive. SCSI commands not explicitly
supported by swOl can be sent to the drive using the pass-through facility provided
by the SDI host adapter driver.

The following ioctl calls are defined and required by the SDI interface.

Returns the type of peripheral bus (for example, scsi)
used and the name of the driver (for example, swOl) for
this specific device

Returns the major and minor number of the pass
through device for the WORM drive

Sends a SCSI Reserve command to the drive

SDI RELEASE Sends a SCSI Release command to the drive

The following ioctl calls send the appropriate Group-O SCSI command to the
device. These commands are defined by the SCSI bus specification and should also
be described in the SCSI interface section of the reference manual supplied with
your WORM drive.

Sends a Test Unit Ready command to the device

519

sw01 (7)

520

W_REZERO

W_SEEK

W_INQUIR

W_STARTUNIT

W_STOPUNIT

W_PREVMV

W_ALLOMV

Sends a Rezero Device command to the device

Sends a Seek command to the device

Sends an Inquiry command to the device, and returns
the resulting data back to the calling process

Sends a Start Unit command to the device

Sends a Stop Unit command to the device

Sends a Prevent Media Removal command to the device

Sends an Allow Media Removal command to the device

The following ioctl calls send the appropriate Group-l SCSI command to the
device. The Group-l SCSI commands are defined by the SCSI bus specification and
should be described in the SCSI interface section of the reference manual supplied
with your WORM drive.

Sends a Read Capacity command to the device, and
returns the data sent by the drive

W_VERIFY Sends a Verify command to the device

The following ioctl calls send the appropriate Group-6 SCSI command to the
drive. Group-6 SCSI commands are vendor specific and should be described in the
SCSI interface section of the reference manual supplied with your drive. Since the
format of these SCSI commands is vendor specific, these ioctl calls are supported
only by products compatible with the Toshiba D070 drive.

W_STNCHECK

W_LOADCART

W_UNLOADCA

Sends a Stand-By Check command to the device

Sends a Load Cartridge command to the device

Sends an Unload Cartridge command to the device

W_READCB Sends a Read Control Block command to the device

The following ioctl calls send the appropriate Group-7 SCSI command to the
drive. Group-7 SCSI commands are vendor specific and should be described in the
SCSI interface section of the reference manual supplied with your drive. Since the
format of these SCSI commands is vendor specific, these ioctl calls are supported
only by products compatible with the Toshiba D070 drive.

Sends a Check command to the device

Sends a Contrary Check command to the device

The following ioctl calls are also supported the swOl driver.

Files

B_GET_SUBDEVS Returns the number of sub-devices supported by this
driver

Enables the swOl related system error messages

Disables the swOl related system error messages

/usr/include/sys/swOl.h
/etc/conf/pack.d/swOl/space.c
/dev/[r]worm./*

/usr/inelude/sys/sesi.h
/usr/inelude/sys/sdi.h
/usr/inelude/sys/sdi_edt.h

REFERENCES

sw01 (7)

adse(7), dpt(7), ioctl(2), mcis(7), mount(lM), seOl(7), sdOl(7), stOl(7), wd7000(7)

521

sxt(7)

NAME
sxt - pseudo-device driver

DESCRIPTION

522

The special file /dev/sxt is a pseudo-device driver that interposes a discipline
between the standard tty line disciplines and a real device driver. The standard
disciplines manipulate virtual tty structures (channels) declared by the /dev/sxt
driver. /dev/sxt acts as a discipline manipulating a real tty structure declared by a
real device driver. The /dev/sxt driver is currently only used by the shl(l)
command.

Virtual ttys are named by inodes in the subdirectory /dev/sxt and are allocated in
groups of up to eight. To allocate a group, a program should exclusively open a file
with a name of the form /dev/sxt/??O (channel 0) and then execute a SXTIOCLINK
ioctl call to initiate the multiplexing.

Only one channel, the controlling channel, can receive input from the keyboard at a
time; others attempting to read will be blocked.

There are two groups of ioctl(2) commands supported by sxt. The first group
contains the standard ioctl commands described in termio(7), with the addition
of the following:

TIOCEXCL

TIOCNXCL

Set exclusive use mode: no further opens are permitted until
the file has been closed.

Reset exclusive use mode: further opens are once again per
mitted.

The second group are commands to sxt itself. Some of these may only be executed
on channel o.
SXTIOCLINK

SXTIOCSWl'CH

Allocate a channel group and multiplex the virtual ttys onto
the real tty. The argument is the number of channels to allo
cate. This command may only be executed on channel o.
Possible errors include:

EINVAL The argument is out of range.

ENOTTY The command was not issued from a real tty.

ENXIO linesw is not configured with sxt.

EBUSY An SXTIOCLINK command has already been
issued for this real tty.

ENOMEM There is no system memory available for allocat-
ing the virtual tty structures.

EBADF Channel 0 was not opened before this call.

Set the controlling channel. Possible errors include:

EINVAL An invalid channel number was given.

EPERM The command was not executed from channel o.

SXTIOCWF

SXTIOCUBLK

SXTIOCSTAT

SXTIOCTRACE

SXTIOCNOTRACE

FILES

sxt(7)

Cause a channel to wait until it is the controlling channel.
This command will return the error, EINVAL, if an invalid
channel number is given.

Turn off the loblk control flag in the virtual tty of the indi
cated channel. The error EINVAL will be returned if an
invalid number or channel 0 is given.

Get the status (blocked on input or output) of each channel
and store in the sxtblock structure referenced by the argu
ment. The error EFAULT will be returned if the structure can
not be written.

Enable tracing. Tracing information is written to the console.
This command has no effect if tracing is not configured.

Disable tracing. This command has no effect if tracing is not
configured.

/dev/sxt/?? [0-7] Virtual tty devices

SEE ALSO
ioctl(2), open(2), shl(l), stty(l) termio(7)

523

TCP(7)

NAME
TCP - Internet Transmission Control Protocol

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>

s = socket (AF _INET, SOCK_STREAM, 0);

t = t_open("/dev/tcp", O_RrMR);

DESCRIPTION

524

TCP is the virtual circuit protocol of the Internet protocol family. It provides reli
able, flow-controlled, in order, two-way transmission of data. It is a byte-stream
protocol layered above the Internet Protocol (IP), the Internet protocol family's
internetwork datagram delivery protocol.

Programs can access TCP using the socket interface as a SOCK_STREAM socket type,
or using the Transport Level Interface (TLI) where it supports the connection
oriented (T_COTS_ORD) service type.

TCP uses IP's host-level addressing and adds its own per-host collection of port
addresses. The endpoints of a TCP connection are identified by the combination of
an IP address and a TCP port number. Although other protocols, such as the User
Datagram Protocol (UDP), may use the same host and port address format, the port
space of these protocols is distinct. See inet(7) for details on the common aspects
of addressing in the Internet protocol family.

Sockets utilizing TCP are either active or passive. Active sockets initiate connections
to passive sockets. Both types of sockets must have their local IP address and TCP
port number bound with the bind(3N) system call after the socket is created. By
default, TCP sockets are active. A passive socket is created by calling the
listen(3N) system call after binding the socket with bind (). This establishes a
queuing parameter for the passive socket. After this, connections to the passive
socket can be received with the accept(3N) system call. Active sockets use the
connect(3N) call after binding to initiate connections.

By using the special value INADDR_ANY, the local IP address can be left unspecified
in the bind () call by either active or passive TCP sockets. This feature is usually
used if the local address is either unknown or irrelevant. If left unspecified, the
local IP address will be bound at connection time to the address of the network
interface used to service the connection.

Once a connection has been established, data can be exchanged using the read(2)
and write(2) system calls.

TCP supports one socket option, TCP _NODELAY, which is set with setsockopt ()
and tested with getsockopt(3N). Under most circumstances, TCP sends data when
it is presented. When outstanding data has not yet been acknowledged, it gathers
small amounts of output to be sent in a single packet once an acknowledgement is
received. For a small number of clients, such as window systems that send a stream
of mouse events which receive no replies, this packetization may cause significant
delays. Therefore, TCP provides a boolean option, TCP_NODELAY (defined in
/usr/include/netinet/tcp.h), to defeat this algorithm. The option level for

TCP(7)

the setsockopt () call is the protocol number for TCP, available from
getprotobyname () [see getprotoent(3N)].

Options at the IP level may be used with TCP; See ip(7).

TCP provides an urgent data mechanism, which may be invoked using the out-of
band provisions of send(3N). The caller may mark one byte as urgent with the
MSG_OOB flag to send(3N). This sets an urgent pointer pointing to this byte in the
TCP stream. The receiver on the other side of the stream is notified of the urgent
data by a SIGURG signal. The SIOCATMARK ioctl () request returns a value indicat
ing whether the stream is at the urgent mark. Because the system never returns
data across the urgent mark in a single read(2) call, it is possible to advance to the
urgent data in a simple loop which reads data, testing the socket with the SIOCAT
MARK ioctl () request, until it reaches the mark.

Incoming connection requests that include an IP source route option are noted, and
the reverse source route is used in responding.

A checksum over all data helps TCP implement reliability. Using a window-based
flow control mechanism that makes use of positive acknowledgements, sequence
numbers, and a retransmission strategy, TCP can usually recover when datagrams
are damaged, delayed, duplicated or delivered out of order by the underlying com
munication medium.

If the local TCP receives no acknowledgements from its peer for a period of time, as
would be the case if the remote machine crashed, the connection is closed and an
error is returned to the user. If the remote machine reboots or otherwise loses state
information about a TCP connection, the connection is aborted and an error is
returned to the user.

SEE ALSO
accept(3N), bind(3N), connect(3N), getprotoent(3N), getsockopt(3N),
inet(7), ip(7), listen(3N), read(2), send(3N), write(2)

Postel, Jon, Transmission Control Protocol- DARPA Internet Program Protocol
Specification, RFC 793, Network Information Center, SRI International, Menlo Park,
Calif., September 1981

DIAGNOSTICS
A socket operation may fail if:

EISCONN A connect () operation was attempted on a socket on which a
connect () operation had already been performed.

ETIMEOOUT

ECONNRESET

ECONNREFUSED

EADDRINUSE

A connection was dropped due to excessive retransmissions.

The remote peer forced the connection to be closed (usually
because the remote machine has lost state information about
the connection due to a crash).

The remote peer actively refused connection establishment
(usually because no process is listening to the port).

A bind () operation was attempted on a socket with a network
address/port pair that has already been bound to another
socket.

525

TCP(7)

EADDRNOTAVAIL

EACCES

ENOBUFS

526

A bind () operation was attempted on a socket with a network
address for which no network interface exists.

A bind () operation was attempted with a reserved port
number and the effective user ID of the process was not the
privileged user.

The system ran out of memory for internal data structures.

termio(7)

NAME
tennio - general terminal interface

SYNOPSIS
#include <tennio.h>

ioctl (int fildes, int request, struct tennio *arg) i

ioctl (int fildes, int request, int arg) i

#include <ter.mios.h>

ioctl (int fildes, int request, struct ter.mios *arg) i

DESCRIPTION
System V supports a general interface for asynchronous communications ports that
is hardware-independent. The user interface to this functionality is via function
calls (the preferred interface) described in tennios(2) or ioctl commands
described in this section. This section also discusses the common features of the
terminal subsystem which are relevant with both user interfaces.

When a terminal file is opened, it normally causes the process to wait until a con
nection is established. In practice, users' programs seldom open terminal files; they
are opened by the system and become a user's standard input, output, and error
files. The very first terminal file opened by the session leader, which is not already
associated with a session, becomes the controlling terminal for that session. The
controlling terminal plays a special role in handling quit and interrupt signals, as
discussed below. The controlling terminal is inherited by a child process during a
fork(2). A process can break this association by changing its session using
setsid(2).

A terminal associated with one of these files ordinarily operates in full-duplex
mode. Characters may be typed at any time, even while output is occurring, and
are only lost when the character input buffers of the system become completely full,
which is rare (for example, if the number of characters in the line discipline buffer
exceeds {MAJCCANON} and IMAXBEL [see below] is not set), or when the user has
accumulated {MAX_INPUT} number of input characters that have not yet been read
by some program. When the input limit is reached, all the characters saved in the
buffer up to that point are thrown away without notice.

Session Management (Job Control)
A control terminal will distinguish one of the process groups in the session associ
ated with it to be the foreground process group. All other process groups in the
session are designated as background process groups. This foreground process
group plays a special role in handling signal-generating input characters, as dis
cussed below. By default, when a controlling terminal is allocated, the controlling
process's process group is assigned as foreground process group.

Background process groups in the controlling process's session are subject to a job
control line discipline when they attempt to access their controlling terminal. Pro
cess groups can be sent signals that will cause them to stop, unless they have made
other arrangements. An exception is made for members of orphaned process
groups. These are process groups which do not have a member with a parent in
another process group that is in the same session and therefore shares the same con
trolling terminal. When a member's orphaned process group attempts to access its

527

termio(7)

528

controlling terminal, errors will be returned. since there is no process to continue it
if it should stop.

If a member of a background process group attempts to read its controlling termi
nal, its process group will be sent a SIGTTIN signal, which will normally cause the
members of that process group to stop. If, however, the process is ignoring or hold
ing SIGTTIN, or is a member of an orphaned process group, the read will fail with
errno set to EIO, and no signal will be sent.

If a member of a background process group attempts to write its controlling termi
nal and the TOSTOP bit is set in the c_lflag field, its process group will be sent a
SIGTTOU signal, which will normally cause the members of that process group to
stop. If, however, the process is ignoring or holding SIGTTOU, the write will
succeed. If the process is not ignoring or holding SIGTTOU and is a member of an
orphaned process group, the write will fail with ermo set to EIO, and no signal will
be sent.

If TOSTOP is set and a member of a background process group attempts to ioctl its
controlling terminal, and that ioctl will modify terminal parameters (for example,
TCSETA, TCSETAW, TCSETAF, or TIOCSPGRP), its process group will be sent a
SIGTTOU signal, which will normally cause the members of that process group to
stop. If, however, the process is ignoring or holding SIGTTOU, the ioctl will
succeed. If the process is not ignoring or holding SIGTTOU and is a member of an
orphaned process group, the write will fail with errno set to EIO, and no signal will
be sent.

Canonical Mode Input Processing
Normally, terminal input is processed in units of lines. A line is delimited by a
newline (ASCII LF) character, an end-of-file (ASCII EOT) character, or an end-of-line
character. This means that a program attempting to read will be suspended until an
entire line has been typed. Also, no matter how many characters are requested in
the read call, at most one line will be returned. It is not necessary, however, to read
a whole line at once; any number of characters may be requested in a read, even
one, without losing information.

During input, erase and kill processing is normally done. The ERASE character (by
default, the character #) erases the last character typed. The WERASE character (the
character control-W) erases the last "word" typed in the current input line (but not
any preceding spaces or tabs). A "word" is defined as a sequence of non-blank
characters, with tabs counted as blanks. Neither ERASE nor WERASE will erase
beyond the beginning of the line. The KILL character (by default, the character @)
kills (deletes) the entire input line, and optionally outputs a newline character. All
these characters operate on a key stroke basis, independent of any backspacing or
tabbing that may have been done. The REPRINT character (the character control-R)
prints a newline followed by all characters that have not been read. Reprinting also
occurs automatically if characters that would normally be erased from the screen
are fouled by program output. The characters are reprinted as if they were being
echoed; consequencely, if ECHO is not set, they are not printed.

The ERASE and KILL characters may be entered literally by preceding them with the
escape character (\). In this case, the escape character is not read. The erase and
kill characters may be changed.

termio(7)

Non-canonical Mode Input Processing
In non-canonical mode input processing, input characters are not assembled into
lines, and erase and kill processing does not occur. The MIN and TIME values are
used to determine how to process the characters received.

MIN represents the minimum number of characters that should be received when
the read is satisfied (that is, when the characters are returned to the user). TIME is a
timer of O.lO-second granularity that is used to timeout bursty and short-term data
transmissions. The values for MIN and TIME should be set by the programmer in the
tennios or tennio structure. The four possible values for MIN and TIME and their
interactions are described below.

Case A: MIN> a, TIME > a
In this case, TIME serves as an intercharacter timer and is activated after the first
character is received. Since it is an intercharacter timer, it is reset after a charac
ter is received. The interaction between MIN and TIME is as follows: as soon as
one character is received, the intercharacter timer is started. If MIN characters
are received before the intercharacter timer expires (note that the timer is reset
upon receipt of each character), the read is satisfied. If the timer expires before
MIN characters are received, the characters received to that point are returned to
the user. Note that if TIME expires, at least one character will be returned
because the timer would not have been enabled unless a character was received.
In this case (MIN> a, TIME > a), the read sleeps until the MIN and TIME mechan
isms are activated by the receipt of the first character. If the number of charac
ters read is less than the number of characters available, the timer is not re
activated and the subsequent read is satisfied immediately.

Case B: MIN> a, TIME = a
In this case, since the value of TIME is zero, the timer plays no role and only MIN
is Significant. A pending read is not satisfied until MIN characters are received
(the pending read sleeps until MIN characters are received). A program that uses
this case to read record based terminalI/O may block indefinitely in the read
operation.

Case C: MIN = a, TIME > a
In this case, since MIN = a, TIME no longer represents an intercharacter timer: it
now serves as a read timer that is activated as soon as a read is done. A read is
satisfied as soon as a single character is received or the read timer expires. Note
that, in this case, if the timer expires, no character is returned. If the timer does
not expire, the only way the read can be satisfied is if a character is received. In
this case, the read will not block indefinitely waiting for a character; if no char
acter is received within TIME*.lO seconds after the read is initiated, the read
returns with zero characters.

Case D: MIN = a, TIME = a
In this case, return is immediate. The minimum of either the number of charac
ters requested or the number of characters currently available is returned
without waiting for more characters to be input.

Comparison of the Different Cases of MIN, TIME Interaction
Some points to note about MIN and TIME:

529

termio(7)

530

1. In the following explanations, note that the interactions of MIN and TIME are not
symmetric. For example, when MIN > 0 and TIME = 0, TIME has no effect. How
ever, in the opposite case, where MIN = 0 and TIME> 0, both MIN and TIME playa
role in that MIN is satisfied with the receipt of a single character.

2. Also note that in case A (MIN> 0, TIME > 0), TIME represents an intercharacter
timer, whereas in case C (TIME = 0, TIME> 0), TIME represents a read timer.

These two points highlight the dual purpose of the MIN/TIME feature. Cases A and
B, where MIN > 0, exist to handle burst mode activity (for example, file transfer pro
grams), where a program would like to process at least MIN characters at a time. In
case A, the intercharacter timer is activated by a user as a safety measure; in case B,
the timer is turned off.

Cases C and D exist to handle single character, timed transfers. These cases are
readily adaptable to screen-based applications that need to know if a character is
present in the input queue before refreshing the screen. In case C, the read is timed,
whereas in case D, it is not.

Another important note is that MIN is always just a minimum. It does not denote a
record length. For example, if a program does a read of 20 bytes, MIN is 10, and 25
characters are present, then 20 characters will be returned to the user.

Writing Characters
When one or more characters are written, they are transmitted to the terminal as
soon as previously written characters have finished typing. Input characters are
echoed as they are typed if echoing has been enabled. If a process produces charac
ters more rapidly than they can be typed, it will be suspended when its output
queue exceeds some limit. When the queue is drained down to some threshold, the
program is resumed.

Special Characters
Certain characters have special functions on input. These functions and their
default character values are summarized as follows:

INTR (Rubout or ASCII DEL) generates a SIGINT signal. SIGINT is sent to all
frequent processes associated with the controlling terminal. Normally,
each such process is forced to terminate, but arrangements may be made
either to ignore the signal or to receive a trap to an agreed upon loca
tion. [See signal(5)].

QUIT (CTRL-I or ASCII FS) generates a SIGQUIT signal. Its treatment is identi
cal to the interrupt signal except that, unless a receiving process has
made other arrangements, it will not only be terminated but a core
image file (called core) will be created in the current working directory.

ERASE

WERASE

(#) erases the preceding character. It does not erase beyond the start of a
line, as delimited by a NL, EOF, EOL, or EOL2 character.

(CTRL-W or ASCII ETX) erases the preceding "word". It does not erase
beyond the start of a line, as delimited by a NL, EOF, EOL, or EOL2 char-
acter.

termio (7)

KILL (@) deletes the entire line, as delimited by a NL, EOF, EOL, or EOL2 char
acter.

REPRINT (CTRL-R or ASCII DC2) reprints all characters, preceded by a newline,
that have not been read.

EOF (CTRL-D or ASCII EOT) may be used to generate an end-of-file from a ter
minal. When received, all the characters waiting to be read are immedi
ately passed to the program, without waiting for a newline, and the EOF
is discarded. Thus, if no characters are waiting (that is, the EOF
occurred at the beginning of a line) zero characters are passed back,
which is the standard end-of-file indication. The EOF character is not
echoed unless it is escaped or ECHOCTL is set. Because EOT is the
default EOF character, this prevents terminals that respond to EOT from
hanging up.

NL (ASCII LF) is the normal line delimiter. It cannot be changed or escaped.

EOL (ASCII NULL) is an additional line delimiter, like NL. It is not normally
used.

EOL2 is another additional line delimiter.

SWTCH (CTRL-Z or ASCII EM) is used only when shllayers is invoked.

SUSP (CTRL-Z or ASCII SUB) generates a SIGTSTP signal. SIGTSTP stops all
processes in the foreground process group for that terminal.

DSUSP (CTRL-Y or ASCII EM) It generates a SIGTSTP signal as SUSP does, but the
signal is sent when a process in the foreground process group attempts
to read the DSUSP character, rather than when it is typed.

STOP (CTRL-S or ASCII DC3) can be used to suspend output temporarily. It is
useful with CRT terminals to prevent output from disappearing before it
can be read. While output is suspended, STOP characters are ignored
and not read.

START (CTRL-Q or ASCII DCl) is used to resume output. Output has been
suspended by a STOP character. While output is not suspended, START
characters are ignored and not read.

DISCARD (CTRL-O or ASCII SI) causes subsequent output to be discarded. Output
is discarded until another DISCARD character is typed, more input
arrives, or the condition is cleared by a program.

LNEXT (CTRL-V or ASCII SYN) causes the special meaning of the next character
to be ignored. This works for all the special characters mentioned
above. It allows characters to be input that would otherwise be inter
preted by the system (for example, KILL, QUIT).

The character values for INTR, QUIT, ERASE, WERASE, KILL, REPRINT, EOF, EOL, EOL2,
SWTCH, SUSP, DSUSP, STOP, START, DISCARD, and LNEXT may be changed to suit
individual tastes. If the value of a special control character is]OSIX _ VDISABLE (0),
the function of that special control character is disabled. The ERASE, KILL, and EOF
characters may be escaped by a preceding \ character, in which case no special
function is done. Any of the special characters may be preceded by the LNEXT char
acter, in which case no special function is done.

531

termio(7)

532

Modem Disconnect
When a modem disconnect is detected, a SIGHUP signal is sent to the terminal's con
trolling process. Unless other arrangements have been made, these signals cause
the process to terminate. If SIGHUP is ignored or caught, any subsequent read
returns with an end-of-file indication until the terminal is closed.

Processes in background process groups that attempt to access the controlling ter
minal after modem disconnect while the terminal is still allocated to the session will
receive appropriate SIGTTOU and SIGTTIN signals. Unless other arrangements have
been made, this signal causes the processes to stop.

The controlling terminal will remain in this state until it is reinitialized with a suc
cessful open by the controlling process, or deallocated by the controlling process.

Terminal Parameters
The parameters that control the behavior of devices and modules providing the
termios interface are specified by the termios structure defined by termios. h.
Several ioctl(2) system calls that fetch or change these parameters use this struc
ture that contains the following members:

tcflag_t c_iflag; 1* input modes *1
tcflag_t c_oflag; 1* output modes *1
tcflag_t c_cflag; 1* control modes *1
tcflag_t c_lflag; 1* local modes *1
cc_t c_cc[NCCS); 1* control chars *1

The special control characters are defined by the array c_cc. The symbolic name
NCCS is the size of the control-character array and is also defined by tennios .h.
The relative positions, subscript names, and typical default values for each function
are as follows:

a VINTR
1 VQUIT
2 VERASE
3 VKILL
4 VEOF
5 VEOL
6 VEOL2
7 VSWl'CH

8 VSTRT
9 VSTOP
10 VSUSP
11 VDSUSP
12 VREPRINT
13 VDISCRD
14 VWERASE
15 VLNEXT
16-19 reserved

DEL
FS

@

EOT
NUL
NUL
NUL
DCI
DC3
SUB
EM
DC2
S1
ETB
SYN

For the non-canonical mode the positions of VEOF and VEaL are shared by WIN and
VTIME:

4
5

VMIN
VTIME

used to set the value of MIN
used to set the value of TIME

termio(7)

Input Modes
The c_iflag field describes the basic terminal input control:

IGNBRK Ignore break condition.
BRKINT Signal interrupt on break.
IGNPAR Ignore characters with parity errors.
PARMRK Mark parity errors.
INPCK Enable input parity check.
ISTRIP Strip character.
INLCR Map NL to CR on input.
IGNCR Ignore CR.
ICRNL Map CR to NL on input.
IUCLC Map upper-case to lower-case on input.
IXON Enable start! stop output control.
lXANY Enable any character to restart output.
IXOFF Enable start! stop input control.
IMAXBEL Echo BEL on input line too long.

If IGNBRK is set, a break condition (a character framing error with data an zeros)
detected on input is ignored, that is, not put on the input queue and therefore not
read by any process. If IGNBRK is not set and BRKINT is set, the break condition
shan flush the input and output queues and if the terminal is the controlling termi
nal of a foreground process group, the break condition generates a single SIGINT
signal to that foreground process group. If neither IGNBRK nor BRKINT is set, a
break condition is read as a single ASCII NULL character ('\0'), or if PARMRK is set, as
'\377', '\0', '\0'.

If IGNPAR is set, a byte with framing or parity errors (other than break) is ignored.

If PARMRK is set, and IGNPAR is not set, a byte with a framing or parity error (other
than break) is given to the application as the three-character sequence: '\377', '\0',
X, where X is the data of the byte received in error. To avoid ambiguity in this case,
if ISTRIP is not set, a valid character of '\377' is given to the application as '\377',
'\377'. If neither IGNPAR nor PARMRK is set, a framing or parity error (other than
break) is given to the application as a single ASCII NULL character ('\0').

If INPCK is set, input parity checking is enabled. If INPCK is not set, input parity
checking is disabled. This anows output parity generation without input parity
errors. Note that whether input parity checking is enabled or disabled is indepen
dent of whether parity detection is enabled or disabled. If parity detection is
enabled but input parity checking is disabled, the hardware to which the terminal is
connected will recognize the parity bit, but the terminal special file will not check
whether this is set correctly or not.

If ISTRIP is set, valid input characters are first stripped to seven bits, otherwise an
eight bits are processed.

If INLCR is set, a received NL character is translated into a CR character. If IGNCR is
set, a received CR character is ignored (not read). Otherwise, if ICRNL is set, a
received CR character is translated into a NL character.

533

termio(7)

534

If IUCLC is set, a received upper case, alphabetic character is translated into the
corresponding lower case character.

If IXON is set, start/stop output control is enabled. A received STOP character
suspends output and a received START character restarts output. The STOP and
START characters will not be read, but will merely perform flow control functions.
If lXANY is set, any input character restarts output that has been suspended.

If IXOFF is set, the system transmits a STOP character when the input queue is
nearly full, and a START character when enough input has been read so that the
input queue is nearly empty again.

If lMAXBEL is set, the ASCII BEL character is echoed if the input stream overflows.
Further input is not stored, but any input already present in the input stream is not
disturbed. If IMAXBEL is not set, no BEL character is echoed, and all input present in
the input queue is discarded if the input stream overflows.

The initial input control value is BRKINT, ICRNL, IXON, ISTRIP.

Output Modes
The c_oflag field specifies the system treatment of output:

OPOST Post-process output.
OLCUC
ONLCR
OCRNL
ONOCR
ONLRET
OFILL
OFDEL
NLDLY

NLO
NLl

CRDLY
CRO
CRl
CR2
CR3

TABDLY
TABO
TABl
TAB2
TAB3
XTABS

BSDLY
BSO
BSl

VTDLY
VTO
VTl

FFDLY
FFO
FFl

Map lower case to upper on output.
Map NL to CR-NL on output.
Map CR to NL on output.
No CR output at column O.
NL performs CR function.
Use fill characters for delay.
Fill is DEL, else NULL.
Select newline delays:

Select carriage-return delays:

Select horizontal tab delays:
or tab expansion:

Expand tabs to spaces.
Expand tabs to spaces.
Select backspace delays:

Select vertical tab delays:

Select form feed delays:

termio (7)

If OPOST is set, output characters are post-processed as indicated by the remaining
flags; otherwise, characters are transmitted without change.

If OLCUC is set, a lower case alphabetic character is transmitted as the corresponding
upper case character. This function is often used in conjunction with IUCLC.

If ONLCR is set, the NL character is transmitted as the CR-NL character pair. If OCRNL
is set, the CR character is transmitted as the NL character. If ONOCR is set, no CR
character is transmitted when at column 0 (first position). If ONRET is set, the NL
character is assumed to do the carriage-return function; the column pointer is set to
o and the delays specified for CR are used. Otherwise, the NL character is assumed
to do just the line-feed function; the column pointer remains unchanged. The
column pointer is also set to 0 if the CR character is actually transmitted.

The delay bits specify how long transmission stops to allow for mechanical or other
movement when certain characters are sent to the terminal. In all cases, a value of 0
indicates no delay. If OFILL is set, fill characters are transmitted for delay instead of
a timed delay. This is useful for high baud rate terminals that need only a minimal
delay. If OFDEL is set, the fill character is DEL; otherwise it is NULL.

If a form-feed or vertical-tab delay is specified, it lasts for about 2 seconds.

Newline delay lasts about 0.10 seconds. If ONLRET is set, the carriage-return delays
are used instead of the newline delays. If OFILL is set, two fill characters are
transmitted.

Carriage-return delay type 1 is dependent on the current column position, type 2 is
about 0.10 seconds, and type 3 is about O.lS seconds. If OFILL is set, delay type 1
transmits two fill characters, and type 2 transmits four fill characters.

Horizontal-tab delay type 1 is dependent on the current column position. Type 2 is
about 0.10 seconds. Type 3 specifies that tabs are to be expanded into spaces. If
OFILL is set, two fill characters are transmitted for any delay.

Backspace delay lasts about O.OS seconds. If OFILL is set, one fill character is
transmitted.

The actual delays depend on line speed and system load.

The initial output control value is OPOST, ONLCR, TAB3.

Control Modes
The c_cflag field describes the hardware control of the terminal:

CBAUD Baud rate:
BO Hang up
B50 SO baud
B75 7Sbaud
BllO 110 baud
B134 134 baud
B150 lS0baud
B200 200 baud
B300 300 baud
B600 600 baud
B1200 1200 baud
B1800 1800 baud

535

termio (7)

536

B2400
B4S00
B9600
B19200
EXTA
B3S400
EXTB

CSIZE
CS5
CS6
CS7
CSS

CSTOPB
CREAD
PARENB

PARODD
HUPCL
CLOCAL

CIBAUD
PAREXT

2400 baud
4800 baud
9600 baud
19200 baud
External A
38400 baud
External B

Character size:
5 bits
6 bits
7 bits
8 bits

Send two stop bits, else one
Enable receiver
Parity enable
Odd parity, else even
Hang up on last close
Local line, else dial-up
Input baud rate, if different from output rate
Extended parity for mark and space parity

The CBAUD bits specify the baud rate. The zero baud rate, BO, is used to hang up the
connection. If BO is specified, the data-terminal-ready signal is not asserted. Nor
mally, this disconnects the line. If the CIBAUD bits are not zero, they specify the
input baud rate, with the CBAUD bits specifying the output baud rate; otherwise, the
output and input baud rates are both specified by the CBAUD bits. The values for the
CIBAUD bits are the same as the values for the CBAUD bits, shifted left IBSHIFT bits.
For any particular hardware, impossible speed changes are ignored.

The CSIZE bits specify the character size in bits for both transmission and reception.
This size does not include the parity bit, if any. If CSTOPB is set, two stop bits are
used; otherwise, one stop bit is used. For example, at 110 baud, two stops bits are
required.

If PARENB is set, parity generation and detection is enabled, and a parity bit is added
to each character. If parity is enabled, the PARODD flag specifies odd parity if set;
otherwise, even parity is used.

If CREAD is set, the receiver is enabled. Otherwise, no characters are received.

If HUPCL is set, the line is disconnected when the last process with the line open
closes it or terminates. That is, the data-terminal-ready signal is not asserted.

If CLOCAL is set, the line is assumed to be a local, direct connection with no modem
control; otherwise, modem control is assumed.

The initial hardware control value after open is B300, CSS, CREAD, HUPCL.

Local Modes
The c_lflag field of the argument structure is used by the line discipline to control
terminal functions. The basic line discipline provides the following:

termio(7)

ISIG
ICANON
XCASE
ECHO
ECHOE
ECHOK
ECHONL
NOFLSH
TOSTOP
ECHOCTL
ECHOPRT
ECHOKE
FLUSHO
PENDIN
IEXTEN

Enable signals.
Canonical input (erase and kill processing).
Canonical upper flower presentation.
Enable echo.
Echo erase character as BS-SP-BS.
Echo NL after kill character.
Echo NL.
Disable flush after interrupt or quit.
Send SIGTTOU for background output.
Echo control characters as 'char, delete as A?~
Echo erase character as character erased.
BS-SP-BS erase entire line on line kill.
Output is being flushed.
Retype pending input at next read or input character.
Enable extended (implementation-defined) functions.

If ISIG is set, each input character is checked against the special control characters
INTR, QUIT, SWTCH, SUSP, STATUS, and DSUSP. If an input character matches one of
these control characters, the function associated with that character is performed. If
ISIG is not set, no checking is done. Thus, these special input functions are possible
only if ISIG is set.

If ICANON is set, canonical processing is enabled. This enables the erase and kill edit
functions, and the assembly of input characters into lines delimited by NL, EOF, EOL,
and EOL2. If ICANON is not set, read requests are satisfied directly from the input
queue. A read is not satisfied until at least MIN characters have been received or the
timeout value TIME has expired between characters. This allows fast bursts of input
to be read efficiently while still allowing single character input. The time value
represents tenths of seconds.

If XCASE is set, and if ICANON is set, an upper case letter is accepted on input by
preceding it with a \ character, and is output preceded by a \ character. In this
mode, the following escape sequences are generated on output and accepted on
input:

for: use:
\'
\!
\~

{ \ (

} \)
\ \\

For example, A is input as \a, \n as \ \n, and \N as \ \ \n.

If ECHO is set, characters are echoed as received.

When ICANON is set, the following echo functions are possible.

1. If ECHO and ECHOE are set, and ECHOPRT is not set, the ERASE and WERASE char
acters are echoed as one or more ASCII BS SP BS, which clears the last character(s)
from a CRT screen.

537

termio(7)

538

2. If ECHO and ECHOPRT are set, the first ERASE and WERASE character in a sequence
echoes as a backslash (\), followed by the characters being erased. Subsequent
ERASE and WERASE characters echo the characters being erased, in reverse order.
The next non-erase character causes a slash (I) to be typed before it is echoed.
ECHOPRT should be used for hard copy terminals.

3. If ECHOKE is set, the kill character is echoed by erasing each character on the line
from the screen (using the mechanism selected by ECHOE and ECHOPRT).

4. If ECHOK is set, and ECHOKE is not set, the NL character is echoed after the kill
character to emphasize that the line is deleted. Note that an escape character (\)
or an LNEXT character preceding the erase or kill character removes any special
function.

5. If ECHONL is set, the NL character is echoed even if ECHO is not set. This is useful
for terminals set to local echo (so called half-duplex).

If ECHOCTL is set, all control characters (characters with codes between a and 37
octal) other than ASCII TAB, ASCII NL, the START character, and the STOP character,
ASCII CR, and ASCII BS are echoed as AX, where X is the character given by adding
100 octal to the code of the control character (so that the character with octal code 1
is echoed as ~A), and the ASCII DEL character, with code 177 octal, is echoed as A?

If NOFLSH is set, the normal flush of the input and output queues associated with
the INTR, QUIT, and SUSP characters is not done. This bit should be set when res
tarting system calls that read from or write to a terminal [see sigaction(2)].

If TOSTOP is set, the signal SIGTTOU is sent to a process that tries to write to its con
trolling terminal if it is not in the foreground process group for that terminal. This
signal normally stops the process. Otherwise, the output generated by that process
is output to the current output stream. Processes that are blocking or ignoring
SIGTTOU signals are excepted and allowed to produce output, if any.

If FLUSHO is set, data written to the terminal is discarded. This bit is set when the
FLUSH character is typed. A program can cancel the effect of typing the FLUSH
character by clearing FLUSHO.

If PENDIN is set, any input that has not yet been read is reprinted when the next
character arrives as input.

If IEXTEN is set, the following implementation-defined functions are enabled: spe
cial characters (WERASE, REPRINT, DISCARD, and LNEXT) and local flags (TOSTOP,
ECHOCTL, ECHOPRT, ECHOKE, FLUSHO, and PENDIN).

The initial line-discipline control value is ISIG, ICANON, ECHO, ECHOK.

Terminal Size
The number of lines and columns on the terminal's display is specified in the win
size structure defined by sys/tennios.h and includes the following members:

termio(7)

unsigned short ws_raw; /* rows, in characters */
unsigned short ws_col; /* columns, in characters */
unsigned short ws_xpixel;/* horizontal size, in pixels */
unsigned short ws"""ypixel;/* vertical size, in pixels */

termio Structure
The System V tennio structure is used by some ioctls; it is defined by
sys/termio.h and includes the following members:

unsigned short c_iflag; /* input modes * /
unsigned short c_oflag; /* output modes */
unsigned short c_cflag; /* control modes */
unsigned short c_lflag; /* local modes */
char c_line; /* line discipline */
unsigned char c_cc[NCC]; /* control chars */

The special control characters are defined by the array c_cc. The symbolic name
NCC is the size of the control-character array and is also defined by tennio.h. The
relative positions, subscript names, and typical default values for each function are
as follows:

o VINTR
1 VQUIT
2 VERASE
3 VKILL
4 VEOF
5 VEOL
6 VEOL2
7 reserved

DEL
FS

@

EOT
NUL
NUL

For the non-canonical mode the positions of VEOF and VEOL are shared by WIN and
VTIME:

4
5

VMIN
VTIME

used to set the value of MIN
used to set the value of TIME

The calls that use the tennio structure only affect the flags and control characters
that can be stored in the termio structure; all other flags and control characters are
unaffected.

Modem lines
On special files representing serial ports, the modem control lines supported by the
hardware can be read, and the modem status lines supported by the hardware can
be changed. The following modem control and status lines may be supported by a
device; they are defined by sys/tennios.h:

TIOCM_LE
TIOCM_DTR
TIOCM_RTS
TIOCM_ST
TIOCM_SR
TIOCM_CTS
TIOCM_CAR
TIOCM_RNG
TIOCM_DSR

line enable
data terminal ready
request to send
secondary transmit
secondary receive
clear to send
carrier detect
ring
data set ready

539

termio(7)

IOCTLS

540

TIOCM_CD is a synonym for TIOCM_CAR, and TIOCM_RI is a synonym for
TIOCM_RNG. Not all of these are necessarily supported by any particular device;
check the manual page for the device in question.

The ioctls supported by devices and STREAMS modules providing the termios
interface are listed below. Some calls may not be supported by all devices or
modules. The functionality provided by these calls is also available through the
preferred function call interface specified on tennios(2).

TCGETS The argument is a pointer to a tennios structure. The current ter
minal parameters are fetched and stored into that structure.

TCSETS

TCSETSW

TCSETSF

TCGETA

TCSETA

TCSETAW

TCSETAF

TCSBRK

The argument is a pointer to a tennios structure. The current ter
minal parameters are set from the values stored in that structure.
The change is immediate.

The argument is a pointer to a tennios structure. The current ter
minal parameters are set from the values stored in that structure.
The change occurs after all characters queued for output have been
transmitted. This form should be used when changing parameters
that affect output.

The argument is a pointer to a tennios structure. The current ter
minal parameters are set from the values stored in that structure.
The change occurs after all characters queued for output have been
transmitted; all characters queued for input are discarded and then
the change occurs.

The argument is a pointer to a te:rmio structure. The current ter
minal parameters are fetched, and those parameters that can be
stored in a tennio structure are stored into that structure.

The argument is a pointer to a tennio structure. Those terminal
parameters that can be stored in a tennio structure are set from
the values stored in that structure. The change is immediate.

The argument is a pointer to a te:rmio structure. Those terminal
parameters that can be stored in a tennio structure are set from
the values stored in that structure. The change occurs after all
characters queued for output have been transmitted. This form
should be used when changing parameters that affect output.

The argument is a pointer to a tennio structure. Those terminal
parameters that can be stored in a tennio structure are set from
the values stored in that structure. The change occurs after all
characters queued for output have been transmitted; all characters
queued for input are discarded and then the change occurs.

The argument is an int value. Wait for the output to drain. 1£ the
argument is 0, then send a break (zero valued bits for 0.25
seconds).

TOWNC

TCFLSH

TIOCGPGRP

TIOCSPGRP

TIOCGSID

TIOCGWINSZ

TIOCSWINSZ

TIOCMBIS

TIOCMBIC

TIOCMGET

TIOCMSET

FILES
/dev/*

SEE ALSO

termio (7)

Start/stop control. The argument is an int value. If the argument
is 0, suspend output; if 1, restart suspended output; if 2, suspend
input; if 3, restart suspended input.

The argument is an int value. If the argument is 0, flush the input
queue; if 1, flush the output queue; if 2, flush both the input and
output queues. On some controllers, if the argument is 0, input
flow control characters will be flushed, causing the unflushed out
put queue to overflow a busy output device.

The argument is a pointer to a pid_t. Set the value of that pid_t
to the process group ID of the foreground process group associated
with the terminal. See tennios(2) for a description or TCGETPGRP.

The argument is a pointer to a pid_t. Associate the process group
whose process group ID is specified by the value of that pid_t
with the terminal. The new process group value must be in the
range of valid process group ID values. Otherwise, the error EPERM
is returned. See tennios(2) for a description of TCSETPGRP.

The argument is a pointer to a pid_t. The session ID of the termi
nal is fetched and stored in the pid_t.

The argument is a pointer to a winsize structure. The terminal
driver's notion of the terminal size is stored into that structure.

The argument is a pointer to a winsize structure. The terminal
driver's notion of the terminal size is set from the values specified
in that structure. If the new sizes are different from the old sizes, a
SIGWINCH signal is set to the process group of the terminal.

The argument is a pointer to an int whose value is a mask con
taining modem control lines to be turned on. The control lines
whose bits are set in the argument are turned on; no other control
lines are affected.

The argument is a pointer to an int whose value is a mask con
taining modem control lines to be turned off. The control lines
whose bits are set in the argument are turned off; no other control
lines are affected.

The argument is a pointer to an into The current state of the
modem status lines is fetched and stored in the int pointed to by
the argument.

The argument is a pointer to an int containing a new set of
modem control lines. The modem control lines are turned on or
off, depending on whether the bit for that mode is set or clear.

fork(2), ioctl(2), setsid(2), signal(2), streamio(7), tennios(2)

541

termiox(7)

NAME
termiox - extended general terminal interface

DESCRIPTION

542

The extended general terminal interface supplements the termio(7) general termi
nal interface by adding support for asynchronous hardware flow control, isochro
nous flow control and clock modes, and local implementations of additional asyn
chronous features. Some systems may not support all of these capabilities because
of either hardware or software limitations. Other systems may not permit certain
functions to be disabled. In these cases the appropriate bits will be ignored. See
termiox.h for your system to find out which capabilities are supported.

Hardware Flow Control Modes
Hardware flow control supplements the termio(7) IXON, IXOFF, and lXANY charac
ter flow control. Character flow control occurs when one device controls the data
transfer of another device by the insertion of control characters in the data stream
between devices. Hardware flow control occurs when one device controls the data
transfer of another device using electrical control signals on wires (circuits) of the
asynchronous interface. Isochronous hardware flow control occurs when one
device controls the data transfer of another device by asserting or removing the
transmit clock signals of that device. Character flow control and hardware flow
control may be simultaneously set.

In asynchronous, full duplex applications, the use of the Electronic Industries
Association's EIA-232-D Request To Send (RTS) and Clear To Send (CTS) circuits is
the preferred method of hardware flow control. An interface to other hardware
flow control methods is included to provide a standard interface to these existing
methods.

The EIA-232-D standard specified only uni-directional hardware flow control - the
Data Circuit-terminating Equipment or Data Communications Equipment (DCE)
indicates to the Data Terminal Equipment (DTE) to stop transmitting data. The
termiox(7) interface allows both uni-directional and bi-directional hardware flow
control; when bi-directional flow control is enabled, either the DCE or DTE can indi
cate to each other to stop transmitting data across the interface. Note: It is assumed
that the asynchronous port is configured as a DTE. If the connected device is also a
DTE and not a DCE, then DTE to DTE (for example, terminal or printer connected to
computer) hardware flow control is possible by using a null modem to interconnect
the appropriate data and control circuits.

Clock Modes
Isochronous communication is a variation of asynchronous communication
whereby two communicating devices may provide transmit and/ or receive clock to
each other. Incoming clock signals can be taken from the baud rate generator on
the local isochronous port controller, from CCITT V.24 circuit 114, Transmitter Sig
nal Element Timing - DCE source (EIA-232-D pin 15), or from ccrn V.24 circuit 115,
Receiver Signal Element Timing - DCE source (EIA-232-D pin 17). Outgoing clock
signals can be sent on CCITT V.24 circuit 113, Transmitter Signal Element Timing -
DTE source (EIA-232-D pin 24), on CCITT V.24 circuit 128, Receiver Signal Element
Timing - DTE source (no EIA-232-D pin), or not sent at all.

termiox(7)

In terms of clock modes, traditional asynchronous communication is implemented
simply by using the local baud rate generator as the incoming transmit and receive
clock source and not outputting any clock signals.

Terminal Parameters
The parameters that control the behavior of devices providing the termiox inter
face are specified by the termiox structure, defined in the sys/termiox.h header
file. Several ioctl(2) system calls that fetch or change these parameters use this
structure:

#define NFF
struct termiox {

} ;

unsigned short

unsigned short
unsigned short
unsigned short

5

x_hflag; /* hardware flow control
modes */

x_cflag; /* clock modes */
x_rflag[NFF];/* reserved modes */
x_sflag; /* spare local modes */

The x_hflag field describes hardware flow control modes:

RTSXOFF 0000001 Enable RTS hardware flow control on input.
CTSXON 0000002 Enable CTS hardware flow control on output.
DTRXOFF 0000004 Enable DTR hardware flow control on input.
CDXON 0000010 Enable CD hardware flow control on output.
ISXOFF 0000020 Enable isochronous hardware flow control on input.

The EIA-232-D DTR and CD circuits are used to establish a connection between two
systems. The RTS circuit is also used to establish a connection with a modem. Thus,
both DTR and RTS are activated when an asynchronous port is opened. If DTR is
used for hardware flow control, then RTS must be used for connectivity. If CD is
used for hardware flow control, then CTS must be used for connectivity. Thus, RTS
and DTR (or CTS and CD) cannot both be used for hardware flow control at the same
time. Other mutual exclusions may apply, such as the simultaneous setting of the
termio(7) HUPCL and the termiox(7) DTRXOFF bits, which use the DTE ready line for
different functions.

Variations of different hardware flow control methods may be selected by setting
the the appropriate bits. For example, bi-directional RTS/CTS flow control is
selected by setting both the RTSXOFF and CTSXON bits and bi-directional DTR/CTS
flow control is selected by setting both the DTRXOFF and CTSXON. Modem control or
uni-directional CTS hardware flow control is selected by setting only the CTSXON bit.

As previously mentioned, it is assumed that the local asynchronous port (for exam
ple, computer) is configured as a DTE. If the connected device (for example, printer)
is also a DTE, it is assumed that the device is connected to the computer's asynchro
nous port via a null modem that swaps control circuits (typically RTS and CTS). The
connected DTE drives RTS and the null modem swaps RTS and CTS so that the
remote RTS is received as CTS by the local DTE. In the case that CTSXON is set for
hardware flow control, printer's lowering of its RTS would cause CTS seen by the
computer to be lowered. Output to the printer is suspended

543

termiox(7)

544

until the printer's raising of its RTS, which would cause CTS seen by the computer to
be raised.

If RTSXOFF is set, the Request To Send (RTS) circuit (line) will be raised, and if the
asynchronous port needs to have its input stopped, it will lower the Request To
Send (RTS) line. If the RTS line is lowered, it is assumed that the connected device
will stop its output until RTS is raised.

If CTSXON is set, output will occur only if the Clear To Send (CTS) circuit (line) is
raised by the connected device. If the CTS line is lowered by the connected device,
output is suspended until CTS is raised.

If DTRXOFF is set, the DTE Ready (DTR) circuit (line) will be raised, and if the asyn
chronous port needs to have its input stopped, it will lower the DTE Ready (DTR)
line. If the DTR line is lowered, it is assumed that the connected device will stop its
output until DTR is raised.

If CDXON is set, output will occur only if the Received Line Signal Detector (CD) cir
cuit (line) is raised by the connected device. If the CD line is lowered by the con
nected device, output is suspended until CD is raised.

If ISXOFF is set, and if the isochronous port needs to have its input stopped, it will
stop the outgoing clock signal. It is assumed that the connected device is using this
clock signal to create its output. Transit and receive clock sources are programmed
using the x_cflag fields. If the port is not programmed for external clock genera
tion, ISXOFF is ignored. Output isochronous flow control is supported by
appropriate clock source programming using the JCcflag field and enabled at the
remote connected device.

The x_cflag field specifies the system treatment of clock modes.

XMTCLK 0000007 Transmit clock source:
XCIBRG 0000000 Get transmit clock from internal baud rate

generator.
XCTSET 0000001 Get transmit clock from transmitter signal

element timing (DCE source) lead, CCITT
V.24 circuit 114, EIA-232-D pin 15.

XCRSET 0000002 Get transmit clock from receiver signal
element timing (DCE source) lead, CCITT
V.24 circuit 115, EIA-232-D pin 17.

RCVCLK 0000070 Receive clock source:
RCIBRG 0000000 Get receive clock from internal baud rate

generator.
RCTSET 0000010 Get receive clock from transmitter signal

element timing (DCE source) lead, ccnT
V.24 circuit 114, EIA-232-D pin 15.

RCRSET 0000020 Get receive clock from receiver signal
element timing (DCE source) lead, CCITT
V.24 circuit 115, EIA-232-D pin 17.

TSETCLK 0000700 Transmitter signal element timing (DTE source)
lead, CCITT V.24 circuit 113, EIA-232-D
pin 24, clock source:

TSETCOFF 0000000 TSET clock not provided.

termiox(7)

TSETCRBRG 0000100 Output receive baud rate generator on
circuit 113.

TSETCTBRG 0000200 Output transmit baud rate generator on
circuit 113.

TSETCTSET 0000300 Output transmitter signal element timing
(DCE source) on circuit 113.

TSETCRSET 0000400 Output receiver signal element timing
(DCE source) on circuit 113.

RSETCLK 0007000 Receiver signal element timing (DTE source)
lead, CCITT V.24 circuit 128, no EIA-232-D
pin, clock source:

RSETCOFF 0000000 RSET clock not provided.
RSETCRBRG 0001000 Output receive baud rate generator on

circuit 128.
RSETCTBRG 0002000 Output transmit baud rate generator on

circuit 128.
RSETCTSET 0003000 Output transmitter signal element timing

(DCE source) on circuit 128.
RSETCRSET 0004000 Output receiver signal element timing

(DCE) on circuit 128.

If the XMTCLK field has a value of XCIBRG the transmit clock is taken from the
hardware internal baud rate generator, as in normal asynchronous transmission. If
XMTCLK = XCTSET the transmit clock is taken from the Transmitter Signal Element
Timing (DCE source) circuit. If XMTCLK = XCRSET the transmit clock is taken from
the Receiver Signal Element Timing (DCE source) circuit.

If the RCVCLK field has a value of RCIBRG the receive clock is taken from the
hardware Internal Baud Rate Generator, as in normal asynchronous transmission.
If ReveLK = RCTSET the receive clock is taken from the Transmitter Signal Element
Timing (DCE source) circuit. If RCVCLK = RCRSET the receive clock is taken from the
Receiver Signal Element Timing (DCE source) circuit.

If the TSETCLK field has a value of TSETCOFF the Transmitter Signal Element Timing
(DTE source) circuit is not driven. If TSETCLK = TSETCRBRG the Transmitter Signal
Element Timing (DTE source) circuit is driven by the Receive Baud Rate Generator.
If TSETCLK = TSETCTBRG the Transmitter Signal Element Timing (DTE source) cir
cuit is driven by the Transmit Baud Rate Generator. If TSETCLK = TSETCTSET the
Transmitter Signal Element Timing (DTE source) circuit is driven by the Transmitter
Signal Element Timing (DCE source). If TSETCLK = TSETCRBRG the Transmitter Sig
nal Element Timing (DTE source) circuit is driven by the Receiver Signal Element
Timing (DCE source).

If the RSETCLK field has a value of RSETCOFF the Receiver Signal Element Timing
(DTE source) circuit is not driven. If RSETCLK = RSETCRBRG the Receiver Signal Ele
ment Timing (DTE source) circuit is driven by the Receive Baud Rate Generator. If
RSETCLK = RSETCTBRG the Receiver Signal Element Timing (DTE source) circuit is
driven by the Transmit Baud Rate Generator. If RSETCLK = RSETCTSET the Receiver
Signal Element Timing (DTE source) circuit is driven by the Transmitter Signal Ele
ment Timing (DCE source). If RSE'l'CLK = RSETCRBRG the Receiver Signal Element
Timing (DTE source) circuit is driven by the Receiver Signal Element Timing (DCE
source).

545

termiox(7)

The x_rflag is reserved for future interface definitions and should not be used by
any implementations. The x_sflag may be used by local implementations wishing
to customize their terminal interface using the termiox(7) ioctl system calls.

ioctls

FILES

The ioctl(2) system calls have the form:

ioctl (int fildes, int command, struct termiox *arg>;

The commands using this form are:

TCGETX The argument is a pointer to a termiox structure. The current terminal
parameters are fetched and stored into that structure.

TCSETX The argument is a pointer to a termiox structure. The current terminal
parameters are set from the values stored in that structure. The change
is immediate.

TCSETXW The argument is a pointer to a termiox structure. The current terminal
parameters are set from the values stored in that structure. The change
occurs after all characters queued for output have been transmitted.
This form should be used when changing parameters that will affect
output.

TCSETXF The argument is a pointer to a termiox structure. The current terminal
parameters are set from the values stored in that structure. The change
occurs after all characters queued for output have been transmitted; all
characters queued for input are discarded and then the change occurs.

/dev/*

SEE ALSO
ioctl(2), stty(l), termio(7)

546

ticlts (7)

NAME
ticlts, ticots, ticotsord -loopback transport providers

SYNOPSIS
#include <ticlts.h>
#include <ticots.h>
#include <ticotsord.h>

DESCRIPTION

USAGE

The devices known as ticlts, ticots, and ticotsord are "loopback transport
providers," that is, stand-alone networks at the transport level. Loopback transport
providers are transport providers in every sense except one: only one host (the local
machine) is "connected to" a loopback network. Loopback transports present a TPI
(STREAMS-level) interface to application processes and are intended to be accessed
via the TLI (application-level) interface. They are implemented as clone devices and
support address spaces consisting of "flex-addresses," that is, arbitrary sequences
of octets, of length> 0, represented by a netbuf structure.

ticlts is a datagram-mode transport provider. It offers (connectionless) service of
type T_CLTS. Its default address size is TCL_DEFAULTADDRSZ. ticlts prints the
following error messages [see t_rcvuderr(3N)]:

TCL_BADADDR
TCL_BADOPT
TCL_NOPEER

bad address specification
bad option specification
bound

TCL_PEERBADSTATE peer in wrong state

ticots is a virtual circuit-mode transport provider. It offers (connection-oriented)
service of type T_COTS. Its default address size is TCO_DEFAULTADDRSZ. ticots
prints the following disconnect messages [see t_rcvdis(3N)]:

TCO_NOPEER no listener on destination address
TCO_PEERNOROOMONQ peer has no room on connect queue
TCO_PEERBADSTATE peer in wrong state
TCO_PEERINITIATED peer-initiated disconnect
TCO_PROVIDERINITIATED provider-initiated disconnect

ticotsord is a virtual circuit-mode transport provider, offering service of type
T_COTS_ORD (connection-oriented service with orderly release). Its default address
size is TCOO_DEFAULTADORSZ. ticotsord prints the following disconnect messages
[see t_rcvdis(3N)]:

TCOO_NOPEER
TCOO_PEERNOROOMONQ
TCOO_PEERBADSTATE
TCOO_PEERINITIATED
TCOO~ROVIDERINITIATED

no listener on destination address
peer has no room on connect queue
peer in wrong state
peer-initiated disconnect
provider-initiated disconnect

Loopback transports support a local !PC mechanism through the TLI interface.
Applications implemented in a transport provider-independent manner on a
client-server model using this IPC are transparently transportable to networked
environments.

547

ticlts (7)

FILES

548

Transport provider-independent applications must not include the header files
listed in the synopsis section above. In particular, the options are (like all transport
provider options) provider dependent.

ticlts and ticots support the same service types (T_CLTS and T_COTS) sup
ported by the OSI transport-level model. The use of ticlts and ticots is
encouraged.

ticotsord supports the same service type (T_COTS_ORD) supported by the rep lIP
model. The use of ticotsord is discouraged except for reasons of compatibility.

Idev/ticlts
Idev/ticots
/dev/ticotsord

timod(7)

NAME
timod - Transport Interface cooperating STREAMS module

DESCRIPTION
timod is a STREAMS module for use with the Transport Interface (TI) functions of
the Network Services library. The timod module converts a set of ioct1(2) calls
into STREAMS messages that may be consumed by a transport protocol provider
which supports the Transport Interface. This allows a user to initiate certain TI
functions as atomic operations.

The timod module must be pushed onto only a stream terminated by a transport
protocol provider which supports the TI.

All STREAMS messages, with the exception of the message types generated from the
ioctl commands described below, will be transparently passed to the neighboring
STREAMS module or driver. The messages generated from the following ioctl
commands are recognized and processed by the timod module. The format of the
ioctl call is:

#include <sys/stropts.h>

struct strioctl strioctl;

strioctl.ic_cmd = cmd;
strioctl.ic_timeout = INFTIM;
strioctl. ic_Ien = size;
strioctl.ic_dp = {char *}buf
ioctl{fildes, I_STR, &strioctl};

Where, on issuance, size is the size of the appropriate TI message to be sent to the
transport provider and on return size is the size of the appropriate TI message from
the transport provider in response to the issued TI message. buf is a pointer to a
buffer large enough to hold the contents of the appropriate TI messages. The TI
message types are defined in sys/tihdr.h. The possible values for the cmd field
are:

Bind an address to the underlying transport protocol provider.
The message issued to the TI_BIND ioctl is equivalent to the TI
message type T_BIND_REQ and the message returned by the suc
cessful completion of the ioctl is equivalent to the TI message
type T_BIND_ACK.

Unbind an address from the underlying transport protocol pro
vider. The message issued to the TI_UNBIND ioctl is equivalent
to the TI message type T_UNBIND_REQ and the message returned
by the successful completion of the ioctl is equivalent to the TI
message type T_OK_ACK.

Get the TI protocol specific information from the transport protocol
provider. The message issued to the TI_GETINFO ioctl is
equivalent to the TI message type T_INFO_REQ and the message

549

timod(7)

FILES
sys/timod.h
sys/tiuser.h
sys/tihdr.h
sys/errno.h

returned by the successful completion of the ioctl is equivalent to
the TI message type T_INFO_ACK.

Get, set or negotiate protocol specific options with the transport
protocol provider. The message issued to the TI_OPTMGMT ioctl
is equivalent to the TI message type T_OPTMGMT_REQ and the mes
sage returned by the successful completion of the ioctl is
equivalent to the TI message type T_OPTMGMT_ACK.

SEE ALSO
tirdwr(7)

DIAGNOSTICS

550

If the ioctl system call returns with a value greater than 0, the lower 8 bits of the
return value will be one of the TI error codes as defined in sys/tiuser. h. If the TI
error is of type TSYSERR, then the next 8 bits of the return value will contain an
error as defined in sys/errno.h [see intro(2)].

tirdwr (7)

NAME
tirdwr - Transport Interface read/write interface STREAMS module

DESCRIPTION
tirdwr is a STREAMS module that provides an alternate interface to a transport pro
vider which supports the Transport Interface (TI) functions of the Network Services
library (see Section 3N). This alternate interface allows a user to communicate with
the transport protocol provider using the read(2) and write(2) system calls. The
putmsg(2) and getmsg(2) system calls may also be used. However, putmsg and
getmsg can only transfer data messages between user and stream.

The tirdwr module must only be pushed [see I_PUSH in strearnio(7)] onto a
stream terminated by a transport protocol provider which supports the TI. After
the tirdwr module has been pushed onto a stream, none of the Transport Interface
functions can be used. Subsequent calls to TI functions will cause an error on the
stream. Once the error is detected, subsequent system calls on the stream will
return an error with errno set to EPROTO.

The following are the actions taken by the tirdwr module when pushed on the
stream, popped [see I_POP in strearnio(7)] off the stream, or when data passes
through it.

push When the module is pushed onto a stream, it will check any existing data
destined for the user to ensure that only regular data messages are present.
It will ignore any messages on the stream that relate to process manage
ment, such as messages that generate signals to the user processes associ
ated with the stream. If any other messages are present, the I_PUSH will
return an error with ermo set to EPROTO.

write The module will take the following actions on data that originated from a
wri te system call:

All messages with the exception of messages that contain control
portions (see the putmsg and getmsg system calls) will be trans
parently passed onto the module's downstream neighbor.

Any zero length data messages will be freed by the module and they
will not be passed onto the module's downstream neighbor.

Any messages with control portions will generate an error, and any
further system calls associated with the stream will fail with errno
set to EPROTO.

read The module will take the following actions on data that originated from
the transport protocol provider:

All messages with the exception of those that contain control
portions (see the putmsg and getmsg system calls) will be trans
parently passed onto the module's upstream neighbor.

The action taken on messages with control portions will be as
follows:

551

tirdwr(7)

Messages that represent expedited data will generate an error.
All further system calls associated with the stream will fail with
errno set to EPROTO.

Any data messages with control portions will have the control
portions removed from the message prior to passing the
message on to the upstream neighbor.

Messages that represent an orderly release indication from the
transport provider will generate a zero length data message,
indicating the end of file, which will be sent to the reader of the
stream. The orderly release message itself will be freed by the
module.

Messages that represent an abortive disconnect indication from
the transport provider will cause all further write and putmsg
system calls to fail with errno set to ENXIO. All further read
and getmsg system calls will return zero length data (indicating
end of file) once all previous data has been read.

With the exception of the above rules, all other messages with
control portions will generate an error and all further system
calls associated with the stream will fail with ermo set to
EPROTO.

Any zero length data messages will be freed by the module and they
will not be passed onto the module's upstream neighbor.

pop When the module is popped off the stream or the stream is closed, the

SEE ALSO

module will take the following action:

If an orderly release indication has been previously received, then an
orderly release request will be sent to the remote side of the tran
sport connection.

getmsg(2), intro(2), intro(3) putmsg(2), read(2), streamio(7), timod(7), write(2)

552

ttcompat (7)

NAME
ttcompat - V7, 4BSD and XENIX STREAMS compatibility module

SYNOPSIS
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/ttcompat.h>
#include <sys/ttold.h>

ioctl(fd, I_PUSH, "ttcompat")i

DESCRIPTION
ttcompat is a STREAMS module that translates the ioctl calls supported by the
older Version 7, 4BSD and XENIX terminal drivers into the ioctl calls supported by
the termio interface [see termio(7)]. All other messages pass through this module
unchanged; the behavior of read and write calls is unchanged, as is the behavior of
ioctl calls other than the ones supported by ttcompat.

This module can be automatically pushed onto a stream with the autopush(lM)
mechanism when a terminal device is opened; it does not have to be explicitly
pushed onto a stream. This module requires that the termios interface be sup
ported by the modules and the application can push the driver downstream. The
TCGETS, TCSETS, and TCSETSF ioctl calls must be supported; if any information
set or fetched by those ioctl calls is not supported by the modules and driver
downstream, some of the V7 / 4BSD /XENIX functions may not be supported. For
example, if the CBAUD bits in the c_cflag field are not supported, the functions pro
vided by the sg_ispeed and sg_ospeed fields of the sgttyb structure (see below)
will not be supported. If the TCFLSH ioctl is not supported, the function provided
by the TIOCFLUSH ioctl will not be supported. If the TCXONC ioctl is not sup
ported, the functions provided by the TIOCSTOP and TIOCSTART ioctl calls will
not be supported. If the TIOCMBIS and TIOCMBIC ioctl calls are not supported,
the functions provided by the TIOCSDTR and TIOCCDTR ioctl calls will not be sup
ported.

The basic ioctl calls use the sgttyb structure defined by sys/ioctl.h:

struct sgttyb
char sg_i speed i

sg_ospeedi char
char sg_erasei
char sg_killi
int sg_flags i

}i

The sg_ispeed and sg_ospeed fields describe the input and output speeds of the
device, and reflect the values in the c_cflag field of the termios structure. The
sg_erase and sg_kill fields of the argument structure specify the erase and kill
characters respectively, and reflect the values in the VERASE and VKILL members of
the c_cc field of the termios structure.

The sg_flags field of the argument structure contains several flags that determine
the system's treatment of the terminal. They are mapped into flags in fields of the
terminal state, represented by the termios structure.

553

ttcompat(7)

554

Delay type 0 is always mapped into the equivalent delay type 0 in the c_oflag
field of the termios structure. Other delay mappings are performed as follows:

sg_flags c_oflag

BSl BSl
FFl VTl
CRl CR2
CR2 CR3
CR3 not supported
TABl TABl
TAB2 TAB2
XTABS TAB3
NLl ONLRETI CRl
NL2 NLl

If previous TIOCLSET or TIOCLBIS ioctl calls have not selected LlTOUT or PASSB
mode, and if RAN mode is not selected, the ISTRIP flag is set in the c_iflag field of
the termios structure, and the EVENP and ODDP flags control the parity of charac
ters sent to the terminal and accepted from the terminal:

Parity is not to be generated on output or checked on input:

The character size is set to CSB and the flag is cleared in the c_cflag
field of the termios structure.

Even parity characters are to be generated on output and accepted on input:

The flag is set in the c_iflag field of the termios structure, the charac
ter size is set to CS7 and the flag is set in the c_cflag field of the
termios structure.

Odd parity characters are to be generated on output and accepted on input:

The flag is set in the c_iflag field, the character size is set to CS7 and
the and flags are set in the c_cflag field of the termios structure.

Even parity characters are to be generated on output and characters of either
parity are to be accepted on input:

The flag is cleared in the c_iflag field, the character size is set to CS7
and the flag is set in the c_cflag field of the termios structure.

The RAW flag disables all output processing (the OPOST flag in the c_oflag field, and
the XCASE flag in the c_lflag field, are cleared in the termios structure) and input
processing (all flags in the c_iflag field other than the lXOFF and lXANY flags are
cleared in the termios structure). 8 bits of data, with no parity bit, are accepted on
input and generated on output; the character size is set to CSB and the PARENB and
PARODD flags are cleared in the c_cflag field of the termios structure. The signal
generating and line-editing control characters are disabled by clearing the ISIG and
lCANON flags in the c_lflag field of the termios structure.

The CRMOD flag turns input RETURN characters into NEWLINE characters, and out
put and echoed NEWLINE characters to be output as a RETURN followed by a
LINEFEED. The ICRNL flag in the c_iflag field, and the OPOST and ONLCR flags in
the c_oflag field, are set in the termios structure.

ttcompat (7)

The LCASE flag maps upper-case letters in the ASCII character set to their lower-case
equivalents on input (the IUCLC flag is set in the c_iflag field), and maps lower
case letters in the ASCII character set to their upper-case equivalents on output (the
OLCUC flag is set in the c_oflag field). Escape sequences are accepted on input, and
generated on output, to handle certain ASCII characters not supported by older ter
minals (the XCASE flag is set in the c_lflag field).

Other flags are directly mapped to flags in the tennios structure:

sg_flags flags in tennios structure

CBREAK complement of ICANON in c_lflag field
ECHO ECHO in c_lflag field
TANDEM IXOFF in c_iflag field

Another structure associated with each terminal specifies characters that are special
in both the old Version 7 and the newer 4BSD terminal interfaces. The following
structure is defined by sys/ ioctl. h:

struct tchars
char t_intrc; /* interrupt */
char t_quitc; /* quit */
char t_startc; /* start output */
char t_stopc; /* stop output */
char t_eofc; /* end-of - file * /
char t_brkc; /* input delimiter (like nl) */

};

XENIX defines the tchar structure as tc. The characters are mapped to members of
the c_cc field of the tennios structure as follows:

tchars c_cc index

t_intrc VINTR
t_quitc VQUIT
t_startc VSTART
t_stopc VSTOP
t_eofc VEOF
t_brkc VEOL

Also associated with each terminal is a local flag word, specifying flags supported
by the new 4BSD terminal interface. Most of these flags are directly mapped to flags
in the tennios structure:

local flags

LCRTBS
LPRTERA
LCRTERA
LTILDE
LTOSTOP
LFLUSHO
LNOHANG

flags in tennios structure

not supported
ECHOPRT in the c_lflag field
ECHOE in the c_lflag field
not supported
TOSTOP in the c_lflag field
FLUSHO in the c_lflag field
CLOCAL in the c_cflag field

555

ttcompat(7)

ioctls

556

LCRTKIL
LCTLECH
LPENDIN
LDECCTQ
LNOFLSH

ECHOKE in the c_lflag field
CTLECH in the c_lflag field
PENDIN in the c_lflag field
complement of IXANY in the c_iflag field
NOFLSH in the c_lflag field

Another structure associated with each terminal is the ltchars structure which
defines control characters for the new 4BSD terminal interface. Its structure is:

struct ltchars {

char t_suspc; 1* stop process signal *1
char t_dsuspc; 1* delayed stop process signal *1
char t_rprntc; 1* reprint line *1
char t_flushc; 1* flush output (toggles) *1
char t_werasc; 1* word erase *1
char t_lnextc; 1* literal next character *1

} ;

The characters are mapped to members of the c_cc field of the tennios structure
as follows:

ltchars c_cc index

t_suspc VSUSP
t_dsuspc VDSUSP
t_rprntc VREPRINT
t_flushc VDISCARD
t_werasc VWERASE
t_lnextc VLNEXT

ttcOIl\Pat responds to the following ioctl calls. All others are passed to the
module below.

TIOCGETP The argument is a pointer to an sgttyb structure. The current termi
nal state is fetched; the appropriate characters in the terminal state are
stored in that structure, as are the input and output speeds. The
values of the flags in the sg_flags field are derived from the flags in
the terminal state and stored in the structure.

TIOCEXCL Set "exclusive-use" mode; no further opens (except by a privileged
user) are permitted until the file has been closed.

TIOCNXCL Turn off "exclusive-use" mode.

TIOCSETP The argument is a pointer to an sgttyb structure. The appropriate
characters and input and output speeds in the terminal state are set
from the values in that structure, and the flags in the terminal state are
set to match the values of the flags in the sg_flags field of that struc
ture. The state is changed with a TCSETSF ioctl so that the interface
delays until output is quiescent, then throws away any unread charac
ters, before changing the modes.

ttcompat(7)

TIOCSETN The argument is a pointer to an sgttyb structure. The terminal state
is changed as TIOCSETP would change it, but a TCSETS ioctl is used,
so that the interface neither delays nor discards input.

TIOCHPCL The argument is ignored. The HUPCL flag is set in the c_cflag word
of the terminal state.

TIOCFLUSH The argument is a pointer to an int variable. If its value is zero, all
characters waiting in input or output queues are flushed. Otherwise,
the value of the int is treated as the logical OR of the FREAD and
FWRlTE flags defined by sys/file.h; if the FREAD bit is set, all charac
ters waiting in input queues are flushed, and if the FWRITE bit is set,
all characters waiting in output queues are flushed.

TIOCBRK The argument is ignored. The break bit is set for the device.

TIOCCBRK The argument is ignored. The break bit is cleared for the device.

TIOCSDTR The argument is ignored. The Data Terminal Ready bit is set for the
device.

TIOCCDTR The argument is ignored. The Data Terminal Ready bit is cleared for
the device.

TIOCSTOP The argument is ignored. Output is stopped as if the STOP character
had been typed.

TIOCSTART The argument is ignored. Output is restarted as if the START character
had been typed.

TIOCGETC The argument is a pointer to a tchars structure. The current terminal
state is fetched, and the appropriate characters in the terminal state
are stored in that structure.

TIOCSETC The argument is a pointer to a tchars structure. The values of the
appropriate characters in the terminal state are set from the characters
in that structure.

TIOCLGET The argument is a pointer to an into The current terminal state is
fetched, and the values of the local flags are derived from the flags in
the terminal state and stored in the int pointed to by the argument.

TIOCLBIS The argument is a pointer to an int whose value is a mask containing
flags to be set in the local flags word. The current terminal state is
fetched, and the values of the local flags are derived from the flags in
the terminal state; the specified flags are set, and the flags in
the terminal state are set to match the new value of the local flags
word.

TIOCLBIC The argument is a pointer to an int whose value is a mask containing
flags to be cleared in the local flags word. The current terminal state is
fetched, and the values of the local flags are derived from the flags in
the terminal state; the specified flags are cleared, and the flags in the
terminal state are set to match the new value of the local flags word.

557

ttcompat (7)

TIOCLSET The argument is a pointer to an int containing a new set of local flags.
The flags in the terminal state are set to match the new value of the
local flags word.

TIOCGLTC The argument is a pointer to an ltchars structure. The values of the
appropriate characters in the terminal state are stored in that struc
ture.

TIOCSLTC The argument is a pointer to an ltchars structure. The values of the
appropriate characters in the terminal state are set from the characters
in that structure.

FIORDCHK FIORDCHK returns the number of immediately readable characters.
The argument is ignored.

FIONREAD FIONREAD returns the number of immediately readable characters in
the int pointed to by the argument.

LDSMAP Calls the function emsetmap (tp, mp) if the function is configured in
the kernel.

LDGMAP Calls the function emgetmap (tp, mp) if the function is configured in
the kernel.

LDNMAP Calls the function emumnap (tp , mp) if the function is configured in
the kernel.

The following ioctls are returned as successful for the sake of compatibility.
However, nothing significant is done (that is, the state of the terminal is not
changed in any way).

TIOCSETD
TIOCGETD
DIOCSETP
DIOCSETP
DIIOGETP

LOOPEN
LDCLOSE
LDCHG
LDSETT
LDGETT

SEE ALSO

NOTES

558

ioctl(2), ldteIlll(7), teIlllio(7), teIlllios(2)

TIOCBRK and TIOCCBRK should be handled by the driver. FIONREAD and FIORDCHK
are handled in the stream head.

tty (7)

NAME
tty - controlling terminal interface

DESCRIPTION

FILES

The file /dev/tty is, in each process, a synonym for the control terminal associated
with the process group of that process, if any. It is useful for programs or shell
sequences that wish to be sure of writing messages on the terminal no matter how
output has been redirected. It can also be used for programs that demand the name
of a file for output, when typed output is desired and it is tiresome to find out what
terminal is currently in use.

/dev/tty
/dev/tty*

SEE ALSO
console(7)

559

UDP(7)

NAME
UDP - Internet User Datagram Protocol

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>

s = socket (AP _INET , SOC1CDGRAM, 0);

t = t_open(" /dev/udp", O_RDWR);

DESCRIPTION

560

UDP is a simple datagram protocol which is layered directly above the Internet Pro
tocol (IP). Programs may access UDP using the socket interface, where it supports
the SOCK_DGRAM socket type, or using the Transport Level Interface (TIl), where it
supports the connectionless (T_CLTS) service type.

Within the socket interface, UDP is normally used with the sendto (), sendmsg (),
recvfrom(), and recvmsg () calls [see send(3N) and recv(3N)]. If the
connect(3N) call is used to fix the destination for future packets, then the recv(3N)
or read(2) and send(3N) or write(2) calls may be used.

UDP address formats are identical to those used by the Transmission Control Proto
col (TCP). Like TCP, UDP uses a port number along with an IP address to identify
the endpoint of communication. The UDP port number space is separate from the
TCP port number space (that is, a UDP port may not be connected to a TCP port).
The bind(3N) call can be used to set the local address and port number of a UDP
socket. The local IP address may be left unspecified in the bind () call by using the
special value INADDR_ANY. If the bind () call is not done, a local IP address and
port number will be assigned to the endpoint when the first packet is sent. Broad
cast packets may be sent (assuming the underlying network supports this) by using
a reserved broadcast address. This address is network interface dependent. Broad
casts may only be sent by the privileged user.

Options at the IP level may be used with UDP; see ip(7).

As the RFC allows, there are a variety of ways that a UDP packet can be lost or cor
rupted, including a failure of the underlying communication mechanism. UDP
implements a checksum over the data portion of the packet. If the checksum of a
received packet is in error, the packet will be dropped with no indication given to
the user. A queue of received packets is provided for each UDP socket. This queue
has a limited capacity. Arriving datagrams which will not fit within its high-water
capacity are silently discarded.

As the RFC allows, UDP processes Internet Control Message Protocol (ICMP) error
messages received in response to UDP packets it has sent. See iCJlQ;)(7). ICMP source
quench messages are ignored. ICMP destination unreachable, time exceeded and
parameter problem messages disconnect the socket from its peer so that subsequent
attempts to send packets using that socket will return an error. UDP will not
guarantee that packets are delivered in the order they were sent. As well, duplicate
packets may be generated in the communication process.

UDP(7)

SEE ALSO
bind(3N), connect(3N), iC1ll>(7), inet(7), ip(7), read(2), recv(3N), send(3N),
tcp(7), write(2)

Postel, Jon, User Datagram Protocol, RFC 768, Network Information Center, SRI Inter
national, Menlo Park, Calif., August 1980

DIAGNOSTICS
A socket operation may fail if:

EISCONN A connect () operation was attempted on a socket on which a
connect () operation had already been performed, and the
socket could not be successfully disconnected before making
the new connection.

EISCONN

ENOTCONN

EADDRlNUSE

EADDRNOTAVAIL

EINVAL

EACCES

ENOBUFS

A sendto () or sendmsg () operation specifying an address to
which the message should be sent was attempted on a socket
on which a connect () operation had already been performed.

A send() or write() operation, or a sendto() or
sendmsg () operation not specifying an address to which the
message should be sent, was attempted on a socket on which a
connect () operation had not already been performed.

A bind () operation was attempted on a socket with a network
address/port pair that has already been bound to another
socket.

A bind () operation was attempted on a socket with a network
address for which no network interface exists.

A sendmsg () operation with a non-NULL msg_accrights was
attempted.

A bind () operation was attempted with a reserved port
number and the effective user ID of the process was not the
privileged user.

The system ran out of memory for internal data structures.

561

vxfsio (7) (VXFS)

NAME
vxfsio - vxfs file system control functions

SYNOPSIS
#include <sys/types.h>
#include <sys/fs/vx_ioctl.h>

int ioctl (intfildes, int cmd, arg>;

DESCRIPTION

562

The vxfs ioctl(2) enhancements provide for extended control over open files.

The argument fildes is an open file_descriptor.

The data type and value of arg are specific to the type of command specified by cmd.
Unless specified, arg is treated as an int type. The symbolic names for commands
and file status flags are defined by the sys/fs/vx_ioctl.h header file.

The enhancements available are:

VJCSETCACHE
Set caching advisories. These advisories allow an application to indicate to
the file system which forms of caching would be most advantageous.

NOTE: VJCSETCACHE is available with the VxFS Advanced package only.

The values for arg are such that multiple advisories may be set by combining
values with bitwise OR operations. The possible values for arg are:

VX_RANDOM

VX_SEQ

Indicates that the file is being accessed randomly. Read-ahead
should not be performed.

Indicates that the file is being accessed sequentially. Maximum
read-ahead should be performed.

VX_DIRECT
Indicates that data associated with read and write operations is to be
transferred directly to or from the user supplied buffer, without
being cached. When this options is enabled, all I/O operations must
begin on block boundaries and must be a multiple of the block size
in length. The buffer supplied with the I/O operations must be
aligned to a page boundary.

If an I/O request fails to meet alignment criteria, or the file is
currently being accessed for mapped I/O, the I/O request will be
performed as a data synchronous I/O operation.

VX_NOREUSE
Indicates that buffered data does not need to be retained in anticipa
tion of further use by the application.

VJCDSYNC
Indicates that data synchronous I/O mode is desired. In data syn
chronous I/O mode, a write operation returns to the caller after the

(VXFS) vxfsio(7)

data has been transferred to external media, but the inode is not
updated synchronously if only the times in the inode need to be
updated.

Only one of VJCRANDOM, VJCSEQ, or VX_DlRECT may be specified. The
VX_NOREUSE and VX_DSYNC options may not be used in conjunction with
VX_DlRECT. The caching advisories for a file are maintained on a per-file
basis. Changes made to the advisories by a process affect I/O operations by
all processes currently accessing the file.

The VX_SETCACHE ioctl returns a 0 if the caching advisories are successfully
set. If the operation fails, the return value is -1 and the external variable
ermo will be a general DIAGNOSTIC.

VX_GETCACHE
Get caching advisories in effect for the file. The argument arg should be a
pointer to to an into

The VX_GETCACHE ioctl returns a 0 if the caching advisories are successfully
obtained and the advisories are returned in argo If the operation fails, the
return value is -1 and the external variable ermo will be a general DIAG
NOSTIC.

VX_SETEXT
Set extent information.

NOTE: VX_SETEXT is available with the VxFS Advanced package only.

The extent information is set according to the parameters specified by argo
The argument arg points to a structure of type VJcext defined in
sys/fs/vx_ioctl.h, which contains the following members:

off_t ext_size; /* extent size */
off_t reserve; /* space reservation */
int a_flags; /* allocation flags */

The ext size element is used to request a fixed extent size, in
blocks, for the file. If a fixed extent size is not required, zero should
be used to allow the default allocation policy to be used. Changes to
the fixed extent size made after the file contains indirect blocks have
no effect unless all current indirect blocks are freed via file trunca
tion and/or reservation deallocation.

The reserve element is used to set the amount of space preallocated
to the file. If the reserve amount is greater than the current reser
vation, the allocation for the file is increased to match the reserve
amount. If the reserve amount is less than the current reservation,
the allocation is decreased. The allocation will not be reduced to less
than the current file size.

File reservation cannot be increased beyond the ulimi t (2) of the
requesting process. However, an existing reservation will not be
trimmed to the requesting process's ulimit(2). Reservation of
space for existing sparse files will not cause blocks to be allocated to
fill in the holes, but will only allocate blocks after the end of the file.

563

vxfsio(7)

564

(VXFS)

Thus, it's possible to have a larger reservation for a file than blocks
in the file.

The reservation amount is independent of file size since reservation
is used to preallocate space for a file. The a_flags element is used
to indicate the type of reservation required. The choices are:

VJCNOEXTEND
The file may not be extended once the current reservation is
exceeded. The reservation may be increased if necessary by
another invocation of the ioctl, but the file will not be
automatically extended.

VJCTRIM
The reservation for the file is to be trimmed to the current file
size upon last close by all processes that have the file open.

VJCCONTlGUOUS
The reservation must be allocated contiguously (as a single
extent). ext_size will become the fixed extent size for sub
sequent allocations, but has no affect on this one. The reser
vation will fail if the file has gone into indirect extents, unless
the amount of space requested is the same as the indirect
extent size. If the contiguous allocation request is done on an
empty file, this will not happen.

VJCALIGN
Align all new extents on an ext_size boundary relative to
the starting block of an allocation unit. If VJCCONTlGUOUS is
set, the single extent allocated during this invocation is not
subject to the alignment restriction.

VJCNORESERVE
The reservation is to be made as a non-persistent allocation
to the file. The on-disk inode will not be updated with the
reservation information so that the reservation will not sur
vive a system crash. The reservation is associated with the
file until the close of the file. The reservation is trimmed to
the current file size on close.

VJCCHGSIZE
The reservation is to be immediately incorporated into the
file. The file's on-disk inode is updated with the size and
block count information that is increased to include the
reserved space. Unlike an fcntl F_FREESP operation which
"truncates-up" [see fcntl(2»), the space included in the file
is not initialized. This operation is restricted to users with
appropriate privileges.

Write permission to a file is required to set extent information, but
any process that can open the file can get the extent information.
Extent information only applies to regular files. Only one set of
extent information is kept per file. Except in those cases noted above

(VXFS) vxfsio(7}

as non-persistent, the extent information becomes part of the on-disk
inode information, and thus persists across reboots.

The VJCSETEXT ioctl returns a 0 if the extent information is successfully set.
If the operation fails, the return value is -1 and the external variable ermo
will be a general DIAGNOSTIC.

VJCGETEXT
Get extent information. Return the extent information associated with fildes.
The argument arg points to a structure of type vx_ext as defined in
sys/fs/vx_ioctl.h.

The VJCGETEXT ioctl returns a 0 if the extent information is successfully
obtained. If the operation fails, the return value is -1 and the external vari
able ermo will be a general DIAGNOSTIC.

VJCGETFSOPT
Get file system options. The argument arg should be a pointer to to an into
This command may be used by any user who can open the root inode on the
file system. The options returned in arg are:

VJCFSO_BLKCLEAR
Indicates that all newly allocated blocks will be guaranteed to con
tain all zeros.

VJCFSO_CACHE_CLOSESYNC
Indicates that any non-logged changes to the inode or data will be
flushed to disk when the file is closed.

VX_FSO_CACHE_DIRECT
Indicates that any non-synchronous I/O will be handled as if the
VX_DIRECT cache advisory had been set on the file. Also, any non
logged changes to the inode or data will be flushed to disk when the
file is closed.

VX_FSO_CACHE_DSYNC
Indicates that any writes that don't have either O_SYNC or the
VX_DIRECT advisory set will be handled as if the VX_DSYNC advisory
had been set on the file. Also, any non-logged changes to the inode
or data will be flushed to disk when the file is closed.

VX_FSO_NODATAINLOG
Indicates that intent logging of user data for synchronous writes is
disabled.

VX_FSO_NOLOG
Indicates that intent logging of structural changes to the file system
is disabled.

VX_FSO_OSYNC_CLOSESYNC
Indicates that any non-logged changes to the inode or data will be
flushed to disk when a file accessed with O_SYNC is closed.

565

vxfsio(7) (VXFS)

566

VX_FSO_OSYNC_DIRECT
Indicates that any O_SYNC I/O will be handled as if the VX_DIRECT
cache advisory had been set on the file instead. Also, any non
logged changes to the inode or data will be flushed to disk when a
file accessed with O_SYNC is closed.

VX_FSO_OSYNC_DSYNC
Indicates that any O_SYNC writes will be handled as if the VX_DSYNC
cache advisory had been set on the me instead. Also, any non
logged changes to the inode or data will be flushed to disk when a
file accessed with O_SYNC is closed.

VX_FSO_SNAPPED
Indicates that a snapshot backup is in progress on the file system.

VX_FSO_SNAPSHOT
Indicates that this file system is a snapshot backup of another file
system.

VX_FSO_VJFS
Indicates that this is not the VxFS Advanced package.

The VX_GETFSOPT ioctl returns a 0 if the file system options are successfully
obtained. If the operation fails, the return value is -1 and the external vari
able ermo will be a general DIAGNOSTIC.

VX_FREEZE
Sync then freeze the file system. Once frozen, all further operations against
the file system block until a VX_THAW operation is received. The argument
arg is a timeout value expressed in seconds. If a VX_THAW operation is not
received within the specified timeout interval, the file system will perform a
vx_THAwoperation automatically.

This command may only be used by a user with appropriate privilege, on
the root directory of the file system.

The VX_FREEZE ioctl returns a 0 if the file system is successfully frozen. H
the operation fails, the return value is -1 and the external variable ermo will
be a general DIAGNOSTIC.

VX_THAW
Unblock a file system that has been frozen by a VX_FREEZE operation. The
argument arg should be NULL. The process that is to issue a VX_THAW
operation must have the root directory of the file system open, and must
ensure that it does not access the file system after the file system has been
frozen, to ensure that the process itself does not block.

This command may only be used by a user with appropriate privilege, on
the root directory of the file system.

The VX_THAW ioctl returns a 0 if the file system is successfully unfrozen. If
the operation fails, the return value is -1 and the external variable ermo will
be a general DIAGNOSTIC or one of the following:

(VXFS) vxfsio(7)

DIAGNOSTICS
The following values are returned in erma upon operation failures:

EACCESS The calling process does not have write access to the file specified
by fildes.

EAGAIN

EFBIG

EINVAL

EPERM

ENODEV

EROFS

EIO

ENOSPC

EFAULT

The file system is not currently frozen.

An attempt was made to reserve space larger than the maximum
file size limit for this process.

The command or argument is invalid.

The process does not have appropriate privilege.

The file specified by fildes is not the root directory of a vxfs file
system.

The file system is mounted read-only.

An I/O error occurred while attempting to perform the operation.

Requested space could not be obtained.

An address specified by an argument is invalid.

SEE ALSO
getrlimit(2),ioctl(2),ulimit(2)

567

wd(7}

NAME
wd - Western Digital WD8003 Ethernet Driver

SYNOPSIS
#include <sys/dlpi.h>
#include <sys/dlpi_ether.h>
#include <sys/wd.h>

fd = open (l/dev/wd_O", O_RDWR)

DESCRIPTION

568

The wd driver provides a data link interface to the WD8003 family of ISA and MCA
Ethernet controllers from Western Digital. It is a STREAMS-based driver, compati
ble with the Data Link Provider Interface (DLPI) and Logical Link Interface (LU)
software interfaces.

The wd driver supports both DL_ETHER and DL_CSMACD for MAC type,
DL_CL_E'l'HER for service mode, and DL_STYLEl for provider style. The driver can
operate as a cloned or non-cloned device.

A process must issue a DL_BIND_REQ primitive to receive frames from the network.
This primitive includes a dl_bind_re<Lt structure.

The process must specify the dI_sap field of the dl_bind_re~t structure in host
order. The type field of an incoming frame is converted to host order and com
pared to the dI_sap value. If the values are equal, the frame is placed on the
STREAMS read queue of the requesting process. A privileged process may set the
dI_sap field to PROMISCUOUS_SAP. The PROMISCUOUS_SAP matches all incoming
frames.

A privileged process may bind to an SAP already bound by another process. In
cases where a frame qualifies to be sent to more than one process, independent
copies of the frame are made and placed on the STREAMS read queue of each pro
cess.

Received frames are delivered in dl_UDitdata_ind_t structures. The source and
destination address each contain a 6-byte Ethernet address, followed by a 2-byte
type value, written in network order.

ioctl Calls
The following ioctls are supported:

DLIOCGMIB
Returns the DL_mib_t structure, which contains the Management Informa
tion Base (MIB). The MIB holds the Ethernet statistics kept in the driver.

1*
* Ether statistics structure.
*1

typedef struct {
ulang_tetherAlignErrcrs;
ulang_tetherCRCerrcrs;

1* Frame alignment errcrs *1
1* CRC errors *1

ulong_tetheDMissedPkts; 1* Packet overflow or missed inter *1
ulong_tetherOverrunErrcrs; 1* Overrun errcrs *1
ulong_tetherunderrunErrors; 1* Underrun errors *1
ulang_tetherCollisions; 1* Total collisions *1

wd(7)

uloJl~Lt etherAbortErrors; 1* Transmits aborted at interface *1
ulong_tetherCarrierLost; 1* carrier sense signal lost *1
ulong_tethe~ll; 1* STREAMS read queue full * 1
ulong_tetherRcvResources; 1* Receive resou=e alloc faliure

*1
ulong_tetherDependentl; 1* Device dependent statistic *1
ulong_tetherDependent2; 1* Device dependent statistic *1
ulong_tetherDependent3; 1* Device dependent statistic *1
ulong_tetherDependent4; 1* Device dependent statistic *1
ulong_tetherDependent5; 1* Device dependent statistic *1
DL_etherstat_t;

1*
* Interface statistics compatible with MIB II SNMP requirements.
*1

typedef struct {

*1

iDt
int
int

ifIndex;
ifDescrLen;
if Type;

1* 1 through ifNUmber *1
1* len of desc. following this struct *1
1* type of interface *1

int ifMtu; 1* datagram size that can be sent/rev * 1
ulong_tifspeed; 1* estimate of bandwith in bits PS *1
uchar_tifPhyAddreSS[DL_~_ADDR_LEN];I* Ethernet Address *1
int ifAdminStatus; 1* desired state of the interface *1
int ifOperStatus; 1* current state of the interface *1
ulong_tifLastChange; 1* sysUpTime when state was entered * 1
ulong_tifInOctets; 1* octets received an interface *1
ulong_tifInUcastPkts; 1* unicast packets delivered *1
ulong_tifIDNUcastPkts; 1* nan-unicast packets delivered *1
uloDg_tifIDDiscards; 1* good packets received but dropped *1
ulong_tifInErrors; 1* packets received with errors *1
ulong_tifInUnknownProtos; 1* packets reev'd to UDbound proto

ulong_tifOutOctets; 1* octets transmitted on interface '*1
ulong_tifOutUcastPkts; 1* unicast packets tranSllli ted * 1
ulong_tifOutNUcastPkts; 1* nan-unicast packets transmited *1
ulong_tifOutDiscards; 1* good outbound packets dropped. * 1
ulong_tifOutErrors; 1* number of transmit errors *1
ulong_tifOutQlen; 1* length of output queue * 1
DL_etherstat_t ifspecific; 1* Ethernet specific stats *1
DL_mib_t;

The values in the Mm are compatible with those needed by the SNMP pro
tocol.

The ifDescrLen field indicates the length of the null-terminated description
string that immediately follows the DL_mib_t structure.

569

wd(7)

570

There are three fields in the MIB that are specific to the wd driver: The
ifSpecific.etherDependentl field tracks the number of times the transceiver
failed to transmit a collision signal after transmission of a packet. The
ifSpecifie.etherDependent2 field tracks the number of collisions that occurred
after a slot time (out-of-window collisions). The ifSpeeifie.etherDependent3
field tracks the number of times a transmit interrupt timeout condition
occurred.

DLIOCSMIG
Allows a privileged process to initialize the values in the MIB (that is, the
DL_mib_t structure). A process cannot use this ioctl to change the
ifPhyAddress, the ifDescrLen, or the text of the description fields.

DLIOCGENADDR
Returns the Ethernet address in network order.

DLIOCGLPCFLG
Returns the state of the local packet copy flag in the ioe -,val field of the
iocblk structure. The local copy flag determines if packets looped back by
the driver should also be sent to the network. A non-zero value indicates
that frames should also be be sent to the network after being looped back.
The default value of this flag is zero.

DLIOCSLPCFLG
Allows a privileged process to set the local packet copy flag, causing all
packets looped back by the driver to also be sent to the network.

DLIOCGPROMISC
Returns the value of the promiscuous flag in the ioe -,val of the iocblk struc
ture. A non-zero value indicates that the Ethernet interface will receive all
frames on the network. The default value of this flag is zero.

DLIOCSPROMISC
Allows a privileged process to toggle the current state of the promiscuous
flag. When the flag is non-zero, the driver captures all frames from the net
work. Processes that are bound to the promiscuous SAP, or to an SAP that
matches the type field of the received frame, receive a copy of the frame.

DLIOCGETMULTI
Returns the current list of multicast addresses (if it exists).

DLIOCADDMULTI
Allows a privileged process to add a new multicast address and enable its
reception. A 6-byte buffer pointing to the multicast address must be passed
as the parameter.

DLIOCDELMULTI
Allows a privileged process to delete a multicast address by passing a 6-byte
multicast address as the parameter.

Configuration
The wd driver has four configurable parameters in the
/etc/conf/pack.d/wd/space.c file. If you change this file, you must rebuild the
kernel and reboot the system for the changes to take effect.

wd(7)

The configurable parameters are:

N_SAPS
Defines the number of SAPs that can be bound at anyone time. This value
should be only slightly larger than anticipated SAP usage. A typical
TCP lIP system requires two SAPs (Ox800 and Ox806). If you assign too
large a value to this parameter, system performance and memory usage may
suffer.

STREAMS_LOG
Defines whether the driver should log debugging messages to the
STREAMS logger for the strace(lM) utility to display. The module ID
used with strace is 2101. A value of 0 indicates that no STREAMS debug
messages should be generated. A value of 1 enables STREAMS debug mes
sages to be generated. You can also direct the driver to log messages tem
porarily by using the kernel debugger to change the value of wdstrlog (a
4-byte integer) to 1.

Use STREAMS tracing only when debugging a network problem, because
system performance suffers when full wd STREAMS logging is in progress.

IFNAME
This parameter is important only in a TCP lIP networking environment. It
defines the string used in displaying network statistics. This string should
match the logical interface name assigned in the
/etc/confnet.d/inet/interfaces file and with ifconfig(lM) com
mands used in the / etc/ inet/rc. inet configuration script.

Error Codes
The wd driver can return the following error codes:

ENXIO Invalid major number or board is not installed.

ECHRNG
No minor devices left if configured as a cloned device. Increase N SAP value
in /etc/conf/pack.d/wd/space.c Invalid minor device number if
configured as a non-cloned device.

EPERM An ioctl was made without the appropriate privilege.

EINVAL
An ioctl was made that did not supply a required input andlor output
buffer.

DL_NOTSUPPORTED
Requested service primitive is not supported.

DL~PRIM

Unknown service primitive was requested.

DL_OUTSTATE
DL_BIND_REQ was issued when the Stream was bound, or DL_UNBIND_REQ
or DL_UNITDATA_REQ were issued when the Stream was unbound.

571

wd(7)

DL_ACCESS
An attempt was made to bind to PROMISCUOUS_SAP with insufficient
privilege.

DL_BOUND
The requested SAP is already bound. A privileged process may bind to an
already bound SAP.

DL_NOTINIT
DL_UNITDATA_REQ was issued on an Ethernet board that has gone offline
due to an error.

DL_BADDATA

Files

DL_UNITDATA_REQ was issued with a data size that was either larger than
the SPDU maximum or smaller than the SPDU minimum.

/dev/wd_*
/etc/conf/pack.d/wd/space.c

REFERENCES
getmsg(2), ifconfig(lM), ioctl(2), open(2), putmsg(2), strace(lM)

572

wd7000 (7)

NAME
wd7000 - WD7000 FASST2 host adapter subsystem

DESCRIPTION
The WD7000 FASST2 SCSI host adapter subsystem enables SCSI target drivers
(such as sd01, st01, and so on) to communicate on the SCSI bus with target con
trollers and logical units. This driver implements the Portable Device Interface
(PDI) for such PDI target drivers.

It is also possible to access this subsystem directly using the pass-through driver
interface. This allows you to issue sb control blocks directly to the target controller.
To find the appropriate device to use, while any device is being accessed through
the target driver for example sd01), use the B_GETDEV ioctl to get the major and
minor numbers of the pass-though node. This node may be created and opened for
pass-through use (SDI_SEND ioctl).

ioctl Calls
The following ioctl(2) commands are supported by this driver:

SDI_SEND
Sends a pass-through command (SCSI control block) to a target controller,
bypassing the associated target driver.

SDI_BRESET
Resets the SCSI bus.

B_REDT
Reads the extended Equipped Device Table (EDT) data structure that is
stored in the SCSI driver's internal data structure.

B_HA_CNT
Gets the value of the number of host adapters for which the SCSI driver is
configured.

HA_VER
Determines the Driver Interface Version supported by the driver. It returns
the structure ver _no, defined in /usr/include/sys/sdi.h.

B_GET'l'YPE
Returns the bus name (for example, scsi) and device driver name of a
specific device.

Files
/usr/include/sys/wd7000.h
/usr/include/sys/scsi.h
/usr/include/sys/sdi.h
/usr/include/sys/sdi_edt.h
/etc/eanf/paek.d/wd7000/spaee.e/fP

REFERENCES
adee(7), dpt(7), ioetl(2), mcis(7), sc01(7), sd01(7), st01(7), sw01(7)

573

zero (7)

NAME
zero - source of zeroes

DESCRIPTION
A zero special file is a source of zeroed unnamed memory.

Reads from a zero special file always return a buffer full of zeroes. The file is of
infinite length.

Writes to a zero special file are always successful, but the data written is ignored.

Mapping a zero special file creates a zero-initialized unnamed memory object of a
length equal to the length of the mapping and rounded up to the nearest page size
as returned by sysconf. Multiple processes can share such a zero special file object
provided a common ancestor mapped the object MAP_SHARED.

Files
/dev/zero

REFERENCES
fork(2), mmap(2), sysconf(3C)

574

Reference Manual Index

The Permuted Index that follows is a list of keywords, alphabetized in the second
of three columns, together with the context in which each keyword is found. The
manual page that produced an entry is listed in the right column.

Entries are identified with their section numbers shown in parentheses. This is
important because there is considerable duplication of names among the sections,
arising principally from commands and functions that exist only to exercise a par
ticular system call.

The index is produced by rotating the NAME section of each manual page to
alphabetize each keyword in it. Words that cannot fit in the middle column are
rotated into the left column. If the entry is still too long, some words are omitted,
and their omission is indicated with a slash (JI Iff).

How the Permuted Index Is Created

Many users find that understanding a few things about how the permuted index
is created helps them to read it more effectively and clarifies what kind of infor
mation can and cannot be obtained from it.

The basic building block for the index is the one-line description given in the
NAME line on the top of each manual page. For example, this is what the top of
the mountall(lM) manual page looks like:

mountall(1 M) mountall(1 M)

NAME
mountall, umountall- mount, unmount multiple file systems

Each NAME line includes:

• the command, file format, system call or other utility for which the manual
page is named (this is the primary utility; mountall is the primary utility in
the example)

• secondary utilities, which are also described on that manual page and do
not have a separate manual page of their own (umountall is a secondary
utility in the example)

575

• a brief description of the utility function(s)

For each manual page NAME line, the indexing software generates several index
entries, generally one entry for each keyword in the phrase. The middle column
of the index is alphabetized on these keywords.

For:

NAME
mountall, umountall - mount, unmount multiple file systems

This is generated:

mount, unmount multiple
systems. mountall, umountall:
unmount multiple me systems.
lumountall: mount, unmount
mount, unmount multiple me

multiple mel mountall,
mountall, umountall: mount,

How to Use the Index

me systems. lumountall: .. mountall(lM)
mount, unmount multiple me mountall(lM)
mountall, umountall: mount, mountall(lM)
multiple me systems. ... mountall(lM)
systems. mountall, umountall: mountall(lM)
umountall: mount, unmount mountall(lM)
unmount multiple me systems. mountall(lM)

Look in the middle column of the index for the word of interest. Then read the
complete phrase by starting with the utility name, which may appear in the left or
middle column. Utility names are followed by a colon.

The NAME line phrase is contained in the two columns, with long phrases wrap
ping around to the beginning of the left column. The right column of the index
provides the manual page name and section number.

A slash (I) sometimes appears in the index entry to indicate that space limitations
were exceeded and one or more words from the phrase were deleted.

576

Permuted Index

adsc Adaptec
ee16 EtherExpress

e116 EtherLink
ie6

ie63C503
compatibility module ttcompat V7,

acct per-process
holidays

format
subsystem adsc

ee16 EtherExpress 16 Ethernet
e116 EtherLink 16 Ethernet

mcis MCIS SCSI host
adsc Adaptec 1542A SCSI host

DCD Direct-Coupled Disk host
dpt DPT PM2012 SCSI host

wd7000 WD7000 FASST2 host
ARP

domain ethers Ethernet
aliases, addresses, forward (BSD)
and aliases for sendmail aliases,

sad STREAMS
adapter subsystem

and match/ regexp: compile, step,
alp

pathalias
addresses and aliases for sendmail

forward (BSD) addresses and
services Internet services and

module
Format) files

.ott FACE object
ar

stdarg handle variable
varargs handle variable

ascii map of

asyc
loginlog log of failed login
OlIcValues Input Context

OlIm Values a list of 1M
bootparams boot parameter data

Permuted Index

1542A SCSI host adapter subsystem adsc(7)
16 Ethernet Adapter Driver .. ee(7)
16 Ethernet Adapter Driver ... el(7)
3C503 3Com Ethernet Driver .. ie6(7)
3Com Ethernet Driver .. ie6(7)
4BSD and XENIX STREAMS .. ttcompat(7)
accounting file format ... acct(4)
accounting file ... holidays(4)
acct per-process accounting file .. acct(4)
Adaptec 1542A SCSI host adapter adsc(7)
Adapter Driver '" ee(7)
Adapter Driver el(7)
adapter driver '" mcis(7)
adapter subsystem adsc(7)
adapter Subsystem , , DCD(7)
adapter subsystem ... dpt(7)
adapter subsystem .. '" ,. wd7000(7)
Address Resolution Protocol ... ARP(7)
address to hostname database or .. ethers(4)
addresses and aliases for sendmail aliases(4)
addresses, forward (BSD) addresses aliases(4)
adrnin installation defaults file ... admin(4)
Administrative Driver .. '" .. , sad(7)
adsc Adaptec 1542A SCSI host adsc(7)
advance regular expression compile regexp(5)
algorithm pool management module alp(7)
alias file for FACE .. pathalias(4)
aliases, addresses, forward (BSD) aliases(4)
aliases for sendrnail / addresses, aliases(4)
aliases ... services(4)
alp algorithm pool management alp(7)
a.out ELF (Executable and Linking a.out(4)
ar archive file format .. ar(4)
architecture information .. ott(4)
archive file format .. ar(4)
archives device header file ... archives(4)
argument list ... stdarg(5)
argument list ... varargs(5)
ARP Address Resolution Protocol..... ARP(7)
ASCII character set ascii(5)
ascii map of ASCII character set ascii(5)
asyc asynchronous serial port '" asyc(7)
asynchronous serial port asyc(7)
attempts .. loginlog(4)
attribute names and value pairs OlIcValues(4)
attributes .. OlImValues(4)
base ... bootparams(4)

577

hosts host name data
netmasks network mask data
networks network name data
protocols protocol nam.e data
rpc rpc program number data

signal
Ireserved major numbers for

terminfo terminal capability data
kmem perform 1/0 on kernel memory

fs (bfs) format of the
inode

volume fs
inode (bfs) format of a

for the ckbinarsys command
and defaults me (scalable and

netdrivers data file for networking

dump
boot

bootparams

aliases, addresses, forward
syslogd system logl syslog.conf

me
for eqn eqnchar

ms
mouse mouse device driver for

data returned by stat system
stat data returned by stat system

N) terminfo terminal
pnch me format for

I(cdfs) format of CD-ROM me system
fs (cdfs) format of a

fs
inode

(cdfs) directory datal dir
inode (cdfs) format of a

datal dir (cdfs) format of
scOl

eqnchar (BSD) special
ascii map of ASCII

pkginfo package
setinfo set

remote system information for the
rtc real time

pair on a STREAMS driver
cram

me header for common object me
Xwincmaps XWIN

information for the ckbinarsys
form description file for menu(l)

of mail mailsurr surrogate

578

base ... hosts(4)
base .. netmasks(4)
base .. networks(4)
base .. protocols(4)
base ... rpc(4)
base signals ... signal(5)
base system device drivers .. res _ major(4)
base N) ... terminfo(4
based on symbol name ... kmem(7)
bfs me system volume .. fs(4)
(bfs) format of a bfs i-node ... inode(4)
(bfs) format of the bfs file system ... fs(4)
bfs i-node ... inode(4)
binarsys remote system information binarsys(4)
bitmapped) IXWIN font configuration Xwinfont(4)
boards to protocols mappings netdrivers(4)
boot boot options ... boot(4)
boot dump timeout file ... dump(4)
boot options .. boot(4)
boot parameter data base .. bootparams(4)
bootparams boot parameter data base bootparams(4)
(BSD) addresses and aliases fori aliases(4)
(BSD) configuration me for ... syslog.conf(4)
(BSD) macros for formatting papers .. me(5)
(BSD) special character definitions eqnchar(5)
(BSD) text formatting macros ... ms(5)
bus, serial, and PS/2 mouse devices mouse(7)
call stat (XENIX) ... stat(4)
call .. stat(5)
capability data base ... terminfo(4
card images .. pnch(4)
(cdfs) directory data structure .. dir(4)
cdfs me system .. fs(4)
(cdfs) format of a cdfs file system ... fs(4)
(cdfs) format of a cdfs inode ... inode(4)
(cdfs) format of CD-ROM me system dir(4)
cdfs inode .. inode(4)
CD-ROM me system (cdfs) directory dir(4)
CD-ROM Target Driver ... scO(7)
character definitions for eqn .. eqnchar(5)
character set .. ascii(5)
characteristics me ... pkginfo(4)
characteristics me ... setinfo(4)
ckbinarsys command binarsys binarsys(4)
clock interface .. rtc(7)
clone open any major I minor device clone(7)
CMOS RAM interface ... cram(7)
(COFF) filehdr ... mehdr(4)
color map file ... Xwincmaps(4)
command binarsys remote system binarsys(4)
command menu .. menu(4)
commands for routing and transport mailsurr(4)

Permuted Index

dfstab file containing
streamio STREAMS ioctl

filehdr file header for
ttcompat V7, 4BSD and XENIX STREAMS

compver
I step, advance regular expression
expression compile andl regexp:

term format of

Sassign
(scalable andl Xwinfont XWIN font

netconfig network
mass-storage and SCSI! disk.dg

routines resolv.conf
Information Service (NIS) I updaters

TCP lIP strd STREAMS
system logl syslog.conf (BSD)

Xwinconfig XWIN
mass-storage devices tc.index
kernel module Master generic

kernel! System system-specific
Internet network interface

module data structure I Space.c
line discipline for unique stream

stream connections
display system

console STREAMS-based
keyboard system

interface
langinfo language information

file for implementation-specific
math math functions and

unistd header file for symbolic
resources dfstab file

information for I ttydefs file
pkgmap package

pairs OlIcValues Input
ucontext user

vxfsio vxfs file system
ICMP Internet

fentl file
TCP Internet Transmission

tty
term

iconv code set
timod Transport Interface

core
mem,kmem

crontab and at
cron, queuedefs option files for

Permuted Index

commands for sharing resources .. dfstab(4)
commands '" streamio(7)
common object file (COFF) ... filehdr(4)
compatibility module .. ttcompat(7)
compatible versions file ... compver(4)
compile and match routines ... regexp(5)
compile, step, advance regular .. regexp(5)
compiled term file .. term(4)
compver compatible versions file compver(4)
configurable device variables ... Sassign(4)
configuration and defaults file Xwinfont(4)
configuration database ... netconfig(4)
configuration defaults for ... disk.cfg(4)
configuration file for name server resolv.conf(4)
configuration file for Network updaters(4)
Configuration File for STREAMS .. strcf(4)
configuration file for syslogd syslog.conf(4)
configuration file ... Xwinconfig(4)
configuration index file for ... tc.index(4)
configuration information for a ... Master(4)
configuration information for a .. System(4)
configuration parameters interface interface(4)
configuration-dependent kernel Space.c(4)
connections connld .. connld(7)
connld line discipline for unique connld(7)
console display .. display(7)
console interface console(7)
console keyboard .. keyboard(7)
console STREAMS-based console console(7)
constants ... langinfo(5)
constants limits header .. limits(4)
constants ... math(5)
constants .. unistd(4)
containing commands for sharing dfstab(4)
contains terminal line settings ... ttydefs(4)
contents description file ... pkgmap(4)
Context attribute names and value OlIcValues(4)
context .. ucontext(5)
control functions .. vxfsio(7)
Control Message Protocol .. ICMP(7)
control options .. fcntl(5)
Control Protocol ... TCP(7)
controlling terminal interface .. tty(7)
conventional names for terminals ... term(5)
conversion tables .. iconv(5)
cooperating STREAMS module .. timod(7)
core core image file ... core(4)
core image file ... core(4)
core memory .. mem(7)
cram CMOS RAM interface cram(7)
cron, queuedefs option files for ... cron(4)
crontab and at ... cron(4)

579

file for syslogd system log
bootparams boot parameter

hosts host name
netnlasks nen"lork rnask
networks network name
protocols protocol name
rpc rpc program number

N) terminfo terminal capability
protocols mappings netdrivers

priv privilege
netrc file for ftp remote login

stat (XENlX)
stat

CD-ROM file system (cdfs) directory
/kernel module

nt types native language
types primitive system

/Network Information Service (NIS)
inetd.conf Internet servers

distributed file system security
netconfig network configuration

ethers Ethernet address to hostname
publickey public key

UDP Internet User
adapter Subsystem

login login
timezone set

admin installation
/XWIN font configuration and
devices disk.cfg configuration

vfstab table of file system
Node device node

eqnchar (BSD) special character
Mtune tunable parameter

file for user-level privilege
file for privilege mechanism

depend software
command menu form

pkgmap package contents
dpost font font

fd file
help

PS/2 mouse devices mouse mouse
Node device node definitions for a

major numbers for base system
archives

driver stOl Portable
Driver swOl Portable
mapchan format of tty

device driver Node
clone open any major/minor

580

daemon /(BSD) configuration syslog.conf(4)
data base ... bootparams(4)
data base .. hosts(4)
data base ... netItlasks(4)
data base ... networks(4)
data base ... protocols(4)
data base .. rpc(4)
data base terminfo(4
data file for networking boards to netdrivers(4)
data file ... priv(4)
data .. netrc(4)
data returned by stat system call ... stat(4)
data returned by stat system call ... stat(5)
data structure /(cdfs) format of .. dir(4)
data structure initializations .. Space.c(4)
data types ... nt types(5)
data types .. types(5)
database and directory structure ypfiles(4)
database ... inetd.conf(4)
database lid _andyriv .. lid_and yriv(4)
database .. netconfig(4)
database or domain ... ethers(4)
database ... publickey(4)
Datagram Protocol.......... UDP(7)
DCD Direct-Coupled Disk host .. DCD(7)
default file .. login(4)
default system time zone .. timezone(4)
defaults file .. admin(4)
defaults file (scalable and/ ... Xwinfont(4)
defaults for mass-storage and SCSI disk.cfg(4)
defaults ... vfstab(4)
definitions for a device driver .. Node(4)
definitions for eqn eqnchar(5)
definitions .. Mtune(4)
definitions priv include priv(5)
definitions privilege include ... privilege(5)
depend software dependencies files depend(4)
dependencies files .. depend(4)
description file for menu(l) .. menu(4)
description file ... pkgmap(4)
description files for troff and font(5)
descriptor files fd(4)
Desktop help file format ... help(4)
device driver for bus, serial, and mouse(7)
device driver ... Node(4)
device drivers res_major reserved res _ major(4)
device header file .. archives(4)
Device Interface (PDI) tape target stO(7)
Device Interface (PDI) WORM Target swO(7)
device mapping files ... mapchan(4)
device node definitions for a .. Node(4)
device pair on a STREAMS driver clone(7)

Permuted Index

Sassign configurable
defaults for mass-storage and SCSI

for bus, serial, and PS/2 mouse
index file for mass-storage

sharing resources
wd Western

system (cdfs) directory datal

Subsystem DCD
sockio ioctls that operate

dir (s5) format of s5
dir (ufs) format of ufs

format of CD-ROM file system (cdfs)
dirent file system independent

and ttyname ttysrch
Service (NIS) database and

directory entry
connections connld line

standard STREAMS terminal line
fd diskette (floppy

DCD Direct-Coupled
space

setsize
sdOl PDI

mass-storage and SCSI devices
fd

rt_ dptbl real-time
ts _ dptbl time-sharing

display system console

fstypes file that registers
database lid _ andyriv

address to hostname database or
description files for troff and

subsystem
subsystem dpt

device pair on a STREAMS
EtherExpress 16 Ethernet Adapter

e116 EtherLink 16 Ethernet Adapter
mouse devices mouse mouse device

i596 i596 Ethernet
ibmtok IBM Token Ring

ie6 3C503 3Com Ethernet
imx586 IMXLAN586 Intel Ethernet

mds MCIS SCSI host adapter
node definitions for a device

pty STREAMS pseudo-terminal
sad STREAMS Administrative

scOl CD-ROM Target
sdOl PDI disk target

Device Interface (PDI) tape target

Permuted Index

device variables ... Sassign(4)
devices diskcfg configuration .. diskcfg(4)
devices mouse mouse device driver mouse(7)
devices tc.index configuration .. tc.index(4)
dfstab file containing commands for dfstab(4)
Digital WD8003 Ethernet Driver .. wd(7)
dir (cdfs) format of CD-ROM file ... dir(4)
dir (s5) format of s5 directories ... dir(4)
dir (ufs) format of ufs directories ... dir(4)
Direct-Coupled Disk host adapter DCD(7)
directly on sockets sockio(7)
directories .. dir(4)
directories .. dir(4)
directory data structure /(cdfs) .. dir(4)
directory entry ... dirent(4)
directory search list for ttymap ... ttysrch(4)
directory structure /Information ypfiles(4)
dirent file system independent .. dirent(4)
discipline for unique stream .. connld(7)
discipline module ldterm .. Idterm(7)
disk) fd(7)
Disk host adapter Subsystem DCD(7)
disk space requirement file ... space(4)
disk space requirements file setsize(4)
disk target driver sdO(7)
diskcfg configuration defaults for diskcfg(4)
diskette (floppy disk) ... fd(7)
dispatcher parameter table .. rt_ dptbl(4)
dispatcher parameter table .. ts _ dptbl(4)
display .. display(7)
display system console display .. display(7)
distributed file system packages fstypes(4)
distributed file system security lid_and yriv(4)
domain ethers Ethernet .. ethers(4)
dpost font font ... font(5)
dpt DPT PM20l2 SCSI host adapter dpt(7)
DPT PM20l2 SCSI host adapter .. dpt(7)
driver clone open any major/minor clone(7)
Driver ee16 .. ee(7)
Driver el(7)
driver for bus, serial, and PS/2 .. mouse(7)
Driver i596(7)
Driver ibmtok(7)
Driver .. ie6(7)
Driver imx586(7)
driver mcis(7)
driver Node device .. Node(4)
driver pty(7)
Driver sad(7)
Driver scO(7)
driver sdO(7)
driver stOl Portable stO(7)

581

Device Interface (PDI) WORM Target
sxt pseudo-device

wd Western Digital WD8003 Ethernet
interface to EUC handling tty

numbers for base system device

dump boot
Adapter Driver

Driver
files a.out

ptem STREAMS pseudo-terminal
uuencode format of an

Init inittab
file system independent directory

utmp, wtmp utmp and wtmp
utmpx, wtmpx utmpx and wtmpx
user-preference variable files for I

profile setting up an
environ user

special character definitions for
definitions for eqn

log interface to STREAMS
Driver ee16
Driver e116

ee16 EtherExpress 16
e116 EtherLink 16

database or domain ethers
iS96 iS96

ie6 3CS03 3Com
imxS86 IMXLANS86 Intel

wd Western Digital WD8003
database or domain

eucioctl generic interface to
handling tty drivers and modules

to STREAMS error logging and
files a.out ELF

Icompile, step, advance regular
termiox

user-preference variable files for
information .ott

pathalias alias file for
loginlog log of

inet Internet protocol
wd7000 WD7000

582

admin installation defaults
archives device header

file header for common object
compver compatible versions

Driver sw01 Portable .. swO(7)
driver .. sxt(7)
Driver ... ,,. ... : wd(7)
drivers and modules / generic .. eucioctl(5)
drivers res _major reserved major res _ major(4)
dump boot dump timeout file ... dump(4)
dump timeout file ... dump(4)
ee16 EtherExpress 16 Ethernet ... ee(7)
e116 EtherLink 16 Ethernet Adapter ... el(7)
ELF (Executable and Linking Format) a.out(4)
emulation module ... ptem(7)
encoded uuencode file ... uuencode(4)
entries for a kernel module .. Init(4)
entry dirent ... dirent(4)
entry formats ... utmp(4)
entry formats ... utmpx(4)
.environ, .pref, .variables ... environ(4)
environ user environment environ(S)
environment at login time ... profile(4)
environment .. environ(S)
eqn eqnchar (BSD) .. eqnchar(S)
eqnchar (BSD) special character eqnchar(S)
error logging and event tracing ... log(7)
EtherExpress 16 Ethernet Adapter .. ee(7)
EtherLink 16 Ethernet Adapter ... el(7)
Ethernet Adapter Driver ee(7)
Ethernet Adapter Driver .. el(7)
Ethernet address to hostname ... ethers(4)
Ethernet Driver ... iS96(7)
Ethernet Driver ... ie6(7)
Ethernet Driver .. irnxS86(7)
Ethernet Driver ... wd(7)
ethers Ethernet address to hostnarne ethers(4)
EUC handling tty drivers andl .. eucioctl(S)
eucioctl generic interface to EUC eucioctl(S)
event tracing log interface ... log(7)
(Executable and Linking Format) ... a.out(4)
expression compile and matchl regexp(S)
extended general terminal interface termiox(7)
FACE I.pref, .variables .. environ(4)
FACE object architecture .. ott(4)
FACE .. pathalias(4)
failed login attempts ... loginlog(4)
family inet(7)
FASST2 host adapter subsystem wd7000(7)
fentl file control options fent1(S)
fd diskette (floppy disk) fd(7)
fd file descriptor files ... fd(4)
file ... admin(4)
file .. archives(4)
file (COFF) filehdr .. filehdr(4)
file ... compver(4)

Permuted Index

sharing resources dfstab
settings information for I ttydefs

fent!
copyright copyright information

core core image
fd

dump boot dump timeout
pathalias alias

netrc
constants limits header

tc.index configuration index
menu form description

resolv.conf configuration
Service I updaters configuration

protocols mappings netdrivers data
definitions privilege include

strd STREAMS Configuration
unistd header

syslog.conf (BSD) configuration
definitions priv include

acct per-process accounting
ar archive

pnch
utility mkdev

help Desktop help
group group

(COFF) filehdr
holidays accounting

issue issue identification
login login default

null the null
passwd password

pkginfo package characteristics
pkgmap package contents description

priv privilege data
prototype package information

File Sharing name server master
font configuration and defaults

sccsfile format of SCCS
setinfo set characteristics

setsize disk space requirements
shadow shadow password

file rfmaster Remote
space disk space requirement

su su options
dir (cdfs) format of CD-ROM

vxfsio vxfs
vfstab table of

fs (cdfs) format of a cdfs
entry dirent

filesystem
file that registers distributed

Permuted Index

file containing commands for .. dfstab(4)
file contains terminal line ... ttydefs(4)
file control options , fcnt!(5)
file ... copyright(4)
file ... core(4)
file descriptor files .. fd(4)
file .. dump(4)
file for FACE ... pathalias(4)
file for ftp remote login data .. netrc(4)
file for implementation-specific ... limits(4)
file for mass-storage devices .. tc.index(4)
file for menu(l) command .. menu(4)
file for name server routines resolv.conf(4)
file for Network Information .. updaters(4)
file for networking boards to netdrivers(4)
file for privilege mechanism privilege(5)
File for STREAMS TCP lIP ... strd(4)
file for symbolic constants ... unistd(4)
file for syslogd system log daemon syslog.conf(4)
file for user-level privilege ... priv(5)
file format ... acct(4)
file format.. ar(4)
file format for card images ... pnch(4)
file format for the pdimkdev ... mkdev(4)
file format .. help(4)
file .. group(4)
file header for common object file filehdr(4)
file ... holidays(4)
file .. issue(4)
file .. login(4)
file null(7)
file ... passwd(4)
file ... pkginfo(4)
file .. pkgmap(4)
file ... priv(4)
file ... prototype(4)
file rfmaster Remote .. rfmaster(4)
file (scalable and bitmapped) IXWIN Xwinfont(4)
file .. sccsfile(4)
file ... setinfo(4)
file ... setsize(4)
file shadow(4)
File Sharing name server master rfmaster(4)
file ... space(4)
file ... su(4)
file system (cdfs) directory datal ... dir(4)
file system control functions vxfsio(7)
file system defaults ... vfstab(4)
file system .. fs(4)
file system independent directory dirent(4)
file system organization .. filesystem(7)
file system packages fstypes .. fstypes(4)

583

proc process
lid_and jJriv distributed

mnttab mounted
sharetab shared

fs (hfs) format of the bfs
fs (s5) format of s5

fs (sfs) format of sfs
fs (ufs) format of ufs

fs (vxfs) format of vxfs
term format of compiled term
file system packages fstypes

format of an encoded uuencode
Xwincmaps XWIN color map

Xwinconfig XWIN configuration
object file (COFF)

ELF (Executable and Linking Format)
depend software dependencies

fd file descriptor
cron, queuedefs option

user-preference variable
font font description

fspec format specification in text
intro introduction to special

format of tty device mapping

fd diskette
file (scalable andl Xwinfont XWIN

and dpost font
troff and dpost

command menu
acct per-process accounting file

ar archive file
a.out ELF (Executable and Linking

pnchfile
mkdevfile

help Desktop help file
inode (hfs)

fs (cdfs)
inode (cdfs)

inode (sfs)
inode (ufs)

inode (vxfs)

584

uuencode
inode (s5)

directory datal dir (cdfs)
term

dir (s5)
fs (s5)

sccsfile
fs (sfs)

volume fs (hfs)
mapchan

file system ... proc(4)
file system security database lid_and jJriv(4)
file system table ... mnttab(4)
file system table O~,._ ••••• _ ••• ••••••• sharetab(4)
file system volume .. fs(4)
file system volume .. fs(4)
file system volume .. fs(4)
file system volume .. fs(4)
file system volume .. fs(4)
file term(4)
file that registers distributed .. fstypes(4)
file uuencode ... uuencode(4)
file .. Xwincmaps(4)
file .. Xwinconfig(4)
filehdr file header for common .. filehdr(4)
files a.out ... a.out(4)
files depend(4)
files fd(4)
files for crontab and at ... cron(4)
files for FACE I.variables ... environ(4)
files for troff and dpost font(5)
files fspec(4)
files intro(7)
files mapchan .. mapchan(4)
filesystem file system organization filesystem(7)
(floppy disk) .. fd(7)
font configuration and defaults Xwinfont(4)
font description files for troff font(5)
font font description files for ... font(5)
form description file for menu(l) .. menu(4)
format ... acct(4)
format ... ar(4)
Format) files ... a.out(4)
format for card images ... pnch(4)
format for the pdimkdev utility .. mkdev(4)
format ... help(4)
format of a bfs i-node .. inode(4)
format of a cdfs file system .. fs(4)
format of a cdfs inode .. inode(4)
format of a sfs inode .. inode(4)
format of a ufs inode ... inode(4)
format of a vxfs inode ... inode(4)
format of an encoded uuencode file uuencode(4)
format of an s5 i-node ... inode(4)
format of CD-ROM file system (cdfs) dir(4)
format of compiled term file .. term(4)
format of s5 directories .. dir(4)
format of s5 file system volume .. fs(4)
format of SCCS file .. sccsfile(4)
format of sfs file system volume ... fs(4)
format of the bfs file system .. fs(4)
format of tty device mapping files mapchan(4)

Permuted Index

dir (ufs)
fs (ufs)

fs (vxfs)
man macros to

fspec
utmp, wtmp utmp and wtmp entry

utmpx, wtmpx utmpx and wtmpx entry
ms (BSD) text

me (BSD) macros for
for sendmail aliases, addresses,

system volume
system

volume
volume
volume

system volume
files

distributed file system packages
netrc file for

prof profile within a
math math

vxfsio vxfs file system control
Protocol network interfaces if

termio
termiox extended

module kbd
siginfo signal

for a kernel module Master
tty drivers and modules eucioctl

speed and terminal settings used by
settings used by getty

group

stdarg
varargs

eucioctl generic interface to EUC
archives device

implementation-specific/ limits
unistd

(COFF) filehdr file

help Desktop

mcis MCIS SCSI
adsc Adaptec 1542A SCSI

DCD Direct-Coupled Disk
dpt DPT PM2012 SCSI

wd7000 WD7000 FASST2
hosts

ethers Ethernet address to
hosts.equiv, .rhosts trusted

Permuted Index

format of ufs directories dir(4)
format of ufs file system volume .. fs(4)
format of vxfs file system volume .. fs(4)
format Reference Manual pages .. man(5)
format specification in text files .. fspec(4)
formats ... utmp(4)
formats ... utmpx(4)
formatting macros .. ms(5)
formatting papers ... me(5)
forward (BSD) addresses and aliases aliases(4)
fs (bfs) format of the bfs file ... fs(4)
fs (cdfs) format of a cdfs file .. fs(4)
fs (sS) format of s5 file system ... fs(4)
fs (sfs) format of sfs file system ... fs(4)
fs (ufs) format of ufs file system .. fs(4)
fs (vxfs) format of vxfs file ... fs(4)
fspec format specification in text .. fspec(4)
fstypes file that registers fstypes(4)
ftp remote login data .. netrc(4)
function prof(5)
functions and constants .. '" math(5)
functions vxfsio(7)
general properties of Internet .. if(7)
general terminal interface termio(7)
general terminal interface ... termiox(7)
generalized string translation kbd(7)
generation information ... siginfo(5)
generic configuration information Master(4)
generic interface to EUC handling eucioctl(5)
getty gettydefs .. gettydefs(4)
gettydefs speed and terminal .. gettydefs(4)
group file .. group(4)
group group file .. group(4)
handle variable argument list ... stdarg(5)
handle variable argument list ... varargs(5)
handling tty drivers and modules eucioctl(5)
header file ... archives(4)
header file for ... limits(4)
header file for symbolic constants unistd(4)
header for common object file .. filehdr(4)
help Desktop help file format ... help(4)
help file format ... help(4)
holidays accounting file ... holidays(4)
host adapter driver .. mcis(7)
host adapter subsystem .. adsc(7)
host adapter Subsystem .. '" DCD(7)
host adapter subsystem .. dpt(7)
host adapter subsystem ... wd7000(7)
host name data base ... hosts(4)
hostname database or domain .. ethers(4)
hosts by system and by user hosts.equiv(4)
hosts host name data base ... hosts(4)

585

by system and by user
i596

ibmtok

Protocol

issue issue

OHm Values a list of
core core

pnch file format for card
limits header file for

Driver
imx586

mechanism definitions privilege
privilege definitions priv

dirent file system
tc.index configuration

database
langinfo language

copyright copyright
prototype package

Master generic configuration
/ system-specific configuration

mailcnfg initialization
command binarsys remote system

contains terminal line settings
.ott FACE object architecture

and directory / ypfiles the Network
/ configuration file for Network

siginfo signal generation
module

inittab script for
and rmail mai1cnfg

/kernel module data structure
Init

586

inode (hfs) format of a bfs
inode (cdfs) format of a cdfs

inode (s5) format of an s5
inode (sfs) format of a sfs

inode (ufs) format of a ufs
inode (vxfs) format of a vxfs

value pairs OllcValues

hosts.equiv, .rhosts trusted hosts hosts.equiv(4)
i596 Ethernet Driver ... i596(7)
i596 i596 Ethernet Driver i596(7)
IBM Token Ring Driver .. ibmtok(7)
ibmtok IBM Token Ring Driver .. ibmtok(7)
ICMP Internet Control Message .. ICMP(7)
iconv code set conversion tables .. iconv(5)
identification file ... issue(4)
ie6 3C503 3Com Ethernet Driver .. ie6(7)
1M attributes .. OllmValues(4)
image file ... core(4)
images ... pnch(4)
implementation-specific constants limits(4)
imx586 IMXLAN586 Intel Ethernet imx586(7)
IMXLAN586 Intel Ethernet Driver imx586(7)
include file for privilege .. privilege(5)
include file for user-level .. priv(5)
independent directory entry .. dirent(4)
index file for mass-storage devices tc.index(4)
inet Internet protocol family .. inet(7)
inetd.conf Internet servers .. inetd.conf(4)
information constants langinfo(5)
information file ... copyright(4)
information file ... prototype(4)
information for a kernel module Master(4)
information for a kernel module System(4)
information for mail and rmail mailcnfg(4)
information for the ckbinarsys .. binarsys(4)
information for ttyrnon /file .. ttydefs(4)
information .. ott(4)
Information Service (NIS) database ypfiles(4)
Information Service (NIS) updating updaters(4)
information ... siginfo(5)
lnit inittab entries for a kernel .. lnit(4)
init ... inittab(4)
initialization information for mail mai1cnfg(4)
initializations ... Space.c(4)
inittab entries for a kernel module .. Init(4)
inittab script for init ... inittab(4)
inode (hfs) format of a bfs i-node .. inode(4)
inode (cdfs) format of a cdfs inode inode(4)
i-node ... inode(4)
inode .. inode(4)
i-node ... inode(4)
inode .. inode(4)
inode .. inode(4)
inode .. inode(4)
inode (s5) format of an s5 i-node ... inode(4)
inode (sfs) format of a sfs inode ... inode(4)
inode (ufs) format of a ufs inode ... inode(4)
inode (vxfs) format of a vxfs inode inode(4)
Input Context attribute names and OlIcValues(4)

Permuted Index

admin
imx586IMXLAN586

interface Internet network
console STREAMS-based console

module timod Transport
cram CMOS RAM

interface configuration parameters
10 software loopback network

Ip parallel port
stOl Portable Device

swOl Portable Device
STREAMS module tirdwr Transport

rtc real time clock
Transport Interface read/write

termio general terminal
termiox extended general terminal

drivers and/ eucioctl generic
and event tracing log

tty controlling terminal
of Internet Protocol network

ICMP
configuration parameters interface

inet
IP

if general properties of
inetd.conf

services
Protocol TCP

UDP

intro
intro

symbol name kmem perform
streamio STREAMS

sockets sockio

issue

module
kmem perform I/O on

Space.c configuration-dependent
Init inittab entries for a

configuration information for a
Stubs.c stubs for

script Sd
configuration information for a

publickey public
keyboard system console

mem,
based on symbol name

Permuted Index

installation defaults file ... admin(4)
Intel Ethernet Driver ... imx586(7)
interface configuration parameters interface(4)
interface console(7)
Interface cooperating STREAMS .. timod(7)
interface cram(7)
interface Internet network ... interface(4)
interface 10(7)
interface ... Ip(7)
Interface (PDI) tape target driver stO(7)
Interface (PDI) WORM Target Driver swO(7)
Interface read/write interface ... tirdwr(7)
interface rtc(7)
interface STREAMS module tirdwr tirdwr(7)
interface termio(7)
interface termiox(7)
interface to EUC handling tty ... eucioctl(5)
interface to STREAMS error logging log(7)
interface tty(7)
interfaces if general properties if(7)
Internet Control Message Protocol ICMP(7)
Internet network interface ... interface(4)
Internet protocol family ... inet(7)
Internet Protocol......... IP(7)
Internet Protocol network/ .. if(7)
Internet servers database .. inetd.conf(4)
Internet services and aliases ... services(4)
Internet Transmission Control ... TCP(7)
Internet User Datagram Protocol .. UDP(7)
intro introduction to miscellany .. intro(5)
intro introduction to special files .. intro(7)
introduction to miscellany ... intro(5)
introduction to special files .. intro(7)
I/O on kernel memory based on .. kmem(7)
ioctl commands streamio(7)
ioctls that operate directly on ... sockio(7)
IP Internet Protocol... IP(7)
issue identification file .. issue(4)
issue issue identification file .. issue(4)
kbd generalized string translation kbd(7)
kernel memory based on symbol name kmem(7)
kernel module data structure/ ... Space.c(4)
kernel module .. Init(4)
kernel module Master generic ... Master(4)
kernel module symbols .. Stubs.c(4)
kernel module system shutdown .. Sd(4)
kernel module / system-specific System(4)
key database .. publickey(4)
keyboard keyboard(7)
keyboard system console keyboard keyboard(7)
kmem core memory .. mem(7)
kmem perform I/O on kernel memory kmem(7)

587

constants
nl_ types native

langinfo
sLrftiine

line discipline module
system security database

implementation-specific constants
connections connld

ldterm standard STREAMS terminal
ttydefs file contains terminal

a.out ELF (Executable and
ttysrch directory search

OHmValues a
stdarg handle variable argument

varargs handle variable argument
interface

parameters stune
file for syslogd system

logging and event tracing
10ginlog

log interface to STREAMS error
loginlog log of failed

netrc file for ftp remote
login

setting up an environment at
attempts

10 software
ticlts, ticots, ticotsord

values
me (BSD)

illS (BSD) text formatting
pages man

initialization information for
for routing and transport of

for mail and rmail
routing and transport of mail

device drivers res_major reserved
STREAMS driver clone open any

alp algorithm pool
man macros to format Reference

Xwincmaps XWIN color
ascii

mapping files
mapchan format of tty device

for networking boards to protocols
netmasks network

disk.cfg configuration defaults for
configuration index file for

Remote File Sharing name server
information for a kernel module

588

langinfo language information .. langinfo(5)
language data types nUypes(5)
language information constants langinfo(5)
language-specific strings ... strftime(4)
ldterm standard STREAMS terminal ldterm(7)
lid_and J'riv distributed file lid_and J'riv(4)
limits header file for ... limits(4)
line discipline for unique stream connld(7)
line discipline module ... ldterm(7)
line settings information for I .. ttydefs(4)
Linking Format) files .. a.out(4)
list for ttymap and ttyname .. ttysrch(4)
list of 1M attributes ... OHm Values(4)
list stdarg(5)
list varargs(5)
10 software loopback network 10(7)
local system settings for tunable .. stune(4)
log daemon I(BSD) configuration syslog.conf(4)
log interface to STREAMS error 10g(7)
log of failed login attempts .. 10ginlog(4)
logging and event tracing 10g(7)
login attempts .. 10ginlog(4)
login data .. netrc(4)
login default file login(4)
login login default file .. 10gin(4)
login time profile .. profile(4)
loginlog log of failed login ... 10ginlog(4)
loopback network interface 10(7)
loopback transport providers ticlts(7)
lp parallel port interface lp(7)
machine-dependent values values(5)
macros for formatting papers ... me(5)
macros ms(5)
macros to format Reference Manual...... man(5)
mail and rmail mailcnfg mailcnfg(4)
mail mailsurr surrogate commands mailsurr(4)
mailcnfg initialization information mailcnfg(4)
mailsurr surrogate commands for mailsurr(4)
major numbers for base system res _ major(4)
major I minor device pair on a.................. clone(7)
management module ... alp(7)
Manual pages man(5)
map file ... Xwincmaps(4)
map of ASCII character set ascii(5)
mapchan format of tty device .. mapchan(4)
mapping files .. mapchan(4)
mappings netdrivers data file netdrivers(4)
mask data base ... netrnasks(4)
mass-storage and SCSI devices .. disk.cfg(4)
mass-storage devices tc.index .. tc.index(4)
master file rfmaster : .. rfmaster(4)
Master generic configuration ... Master(4)

Permuted Index

regular expression compile and
math

mcis
include file for privilege

kmem perform I/O on kernel
mem, kmem core

menu(l) command
menu form description file for

ICMP Internet Control
intro introduction to

utility

pckt STREAMS Packet
alp algorithm pool management
corUiguration-dependentkernel

Init inittab entries for a kernel
kbd generalized string translation
STREAMS terminal line discipline

information for a kernel
pckt STREAMS Packet Mode

STREAMS pseudo-terminal emulation
Stubs.c stubs for kernel

Sdkernel
information for a kernel

Interface cooperating STREAMS
read/write interface STREAMS

and XENIX STREAMS compatibility
to EUC handling tty drivers and

mnttab
serial, and PS/2 mouse/ mouse

driver for bus, serial, and PS/2
serial, and PS/2 mouse devices

data base
hosts host

networks network
protocols protocol

on kernel memory based on symbol
rfmaster Remote File Sharing

resolv.conf corUiguration file for
OlIcValues Input Context attribute

term conventional
nttypes
database

boards to protocols mappings

Permuted Index

data
netcorUig

match routines / step, advance ... regexp(5)
math functions and constants ... math(5)
math math functions and constants math(5)
mcis MCIS SCSI host adapter driver mcis(7)
MCIS SCSI host adapter driver ... mcis(7)
mechanism definitions privilege privilege(5)
mem, kmem core memory ... mem(7)
memory based on symbol name ... kmem(7)
memory .. mem(7)
menu form description file for ... menu(4)
menu(l) command ... menu(4)
Message Protocol ... ICMP(7)
miscellany ... intro(5)
mkdev file format for the pdimkdev mkdev(4)
mnttab mounted file system table mnttab(4)
Mode module .. pckt(7)
module ... alp(7)
module data structure/ Space.c Space.c(4)
module .. Init(4)
module .. kbd(7)
module ldterm standard ... Idterm(7)
module / generic corUiguration Master(4)
module ... pckt(7)
module ptem .. ptem(7)
module symbols .. Stubs.c(4)
module system shutdown script ... Sd(4)
module /corUiguration ... System(4)
module timod Transport .. timod(7)
module tirdwr Transport Interface tirdwr(7)
module ttcompat V7, 4BSD ... ttcompat(7)
modules eucioctl generic interface eucioctl(5)
mounted file system table .. mnttab(4)
mouse device driver for bus, .. mouse(7)
mouse devices mouse mouse device mouse(7)
mouse mouse device driver for bus, mouse(7)
ms (BSD) text formatting macros ... ms(5)
Mtune tunable parameter definitions Mtune(4)
N) terminfo terminal capability terminfo(4
name data base .. hosts(4)
name data base .. networks(4)
name data base .. protocols(4)
name kmem perform I/O .. kmem(7)
name server master file .. rfmaster(4)
name server routines .. resolv.conf(4)
names and value pairs ... 01IcValues(4)
names for terminals ... term(5)
native language data types .. nt types(5)
netcorUig network corUiguration netcorUig(4)
netdrivers data file for networking netdrivers(4)
netmasks network mask data base netmasks(4)
netrc file for ftpremote login .. netrc(4)
network corUiguration database netcorUig(4)

589

database and directory / ypfiles the
updaters configuration file for
parameters interface Internet

10 soft<.varc loopback
properties of Internet Protocol

netmasks
networks

system supporting for packet
mappings netdrivers data file for

/the Network Information Service
for Network Information Service

driver Node device
device driver

null the

rpc rpc program
drivers res _major reserved major

.0ttFACE
filehdr file header for common

names and value pairs

a STREAMS driver clone
sockio ioctls that

prf
cron, queuedefs

boot boot
fcntl file control

susu
filesystem file system

information
pkginfo
pkgmap

prototype
registers distributed file system

pckt STREAMS
routing system supporting for

macros to format Reference Manual
clone open any major / minor device

Context attribute names and value

590

me (BSD) macros for formatting
lp

bootparams boot
Mtune tunable

rt _ dptbl real-time dispatcher
ts _ dptbl time-sharing dispatcher
network interface configuration
local system settings for tunable

passwd
shadow shadow

Network Information Service (NIS) ypfiles(4)
Network Information Service (NlS)/ updaters(4)
network interface configuration interface(4)
network interface .. 10(7)
network interfaces if general if(7)
network mask data base ... netmasks(4)
network name data base ... networks(4)
network routing routing .. routing(4)
networking boards to protocols netdrivers(4)
networks network name data base networks(4)
(NlS) database and directory / ... ypfiles(4)
(NIS) updating /configuration file updaters(4)
nl_ types native language data types nl_ types(5)
node definitions for a device .. Node(4)
Node device node definitions for a Node(4)
null file .. null(7)
null the null file ... null(7)
number data base ... rpc(4)
numbers for base system device res _ major(4)
object architecture information ... ott(4)
object file (COFF) ... filehdr(4)
OlIcValues Input Context attribute OlIcValues(4)
OlIm Values a list of IM attributes OIIm Values(4)
open any major/minor device pair on clone(7)
operate directly on sockets .. sockio(7)
operating system profiler .. prf(7)
option files for crontab and at .. cron(4)
options ... boot(4)
options ... fcntl(5)
options file .. su(4)
organization .. filesystem(7)
.ott FACE object architecture ... ott(4)
package characteristics file ... pkginfo(4)
package contents description file pkgmap(4)
package information file .. prototype(4)
packages fstypes file that fstypes(4)
Packet Mode module ... pckt(7)
packet network routing ... routing(4)
pages man .. man(5)
pair on a STREAMS driver .. clone(7)
pairs OlIcValues Input ... OlIcValues(4)
papers ... me(5)
parallel port interface ... Ip(7)
parameter data base ... bootparams(4)
parameter definitions .. Mtune(4)
parameter table .. rt_dptbl(4)
parameter table .. ts _ dptbl(4)
parameters interface Internet .. interface(4)
parameters stune .. stune(4)
passwd password file .. passwd(4)
password file ... passwd(4)
password file .. shadow(4)

Permuted Index

sdOl
stOl Portable Device Interface

swOl Portable Device Interface
mkdev file format for the
on symbol name kmem

acct
file
file

dptDPT

alp algorithm
asyc asynchronous serial

lp parallel
tape target driver stOl

WORM Target Driver swOl
user-preference variable/ . environ,

types
privilege definitions

priv
priv include file for user-level

privilege mechanism definitions
privilege include file for

PrivTable

proc

at login time
prof

prf operating system
rpcrpc

network interfaces if general
ARP Address Resolution

inet Internet
ICMP Internet Control Message

IP Internet
protocols

if general properties of Internet
TCP Internet Transmission Control

UDP Internet User Datagram
data file for networking boards to

ticotsord loopback transport
device driver for bus, serial, and

sxt
ptySTREAMS

ptem STREAMS

Permuted Index

pathalias alias file for FACE ... pathalias(4)
pckt STREAMS Packet Mode module pckt(7)
PDI disk target driver sdO(7)
(PDI) tape target driver .. stO(7)
(PDI) WORM Target Driver .. swO(7)
pdimkdev utility .. mkdev(4)
perform II a on kernel memory based kmem(7)
per-process accounting file format ... acct(4)
pkginfo package characteristics pkginfo(4)
pkgmap package contents description pkgmap(4)
PM20l2 SCSI host adapter subsystem dpt(7)
pnch file format for card images ... pnch(4)
pool management module '" alp(7)
port ... '" asyc(7)
port interface Ip(7)
Portable Device Interface (PDI) ... stO(7)
Portable Device Interface (PDI) ... swO(7)
.pref, .variables ... environ(4)
prf operating system profiler .. prf(7)
primitive system data types .. types(5)
priv include file for user-level .. priv(5)
priv privilege data file ... priv(4)
privilege data file .. priv(4)
privilege definitions ... priv(5)
privilege include file for .. privilege(5)
privilege mechanism definitions privilege(5)
privilege table .. PrivTable(4)
PrivTable privilege table .. PrivTable(4)
proc process file system .. proc(4)
process file system ... proc(4)
prof profile within a function ... prof(5)
profile setting up an environment profile(4)
profile within a function .. prof(5)
profiler ... '" '" '" prf(7)
program number data base .. rpc(4)
properties of Internet Protocol if(7)
Protocol...... ARP(7)
protocol family .. inet(7)
Protocol ... ICMP(7)
Protocol .. '" IP(7)
protocol name data base ... protocols(4)
Protocol network interfaces ... if(7)
Protocol.... TCP(7)
Protocol '" '" '" UDP(7)
protocols mappings netdrivers netdrivers(4)
protocols protocol name data base protocols(4)
prototype package information file prototype(4)
providers ticlts, ticots, ... ticlts(7)
PS/2 mouse devices mouse mouse mouse(7)
pseudo-device driver sxt(7)
pseudo-terminal driver ... pty(7)
pseudo-terminal emulation module ptem(7)

591

emulation module

publickey

andat cron,
cram CMOS

tirdwr Transport Interface
rtc

table rt _ dptbl
man macros to format

regular expression compile and/
packages fstypes file that

regexp: compile, step, advance
master file rfmaster

netrc file for ftp
ckbinarsys command binarsys

space disk space
setsize disk space

for base system device drivers
ARP Address

name server routines
containing commands for sharing

stat (XENIX) data
stat data

server master file
by user hosts.equiv,

ibmtok IBM Token
information for mail and

expression compile and match
configuration file for name server
mailsurr surrogate commands for

supporting for packet network
packet network routing

rpc

592

parameter table
dir (sS) format of

fs (sS) format of
inode

dir
volume fs

inode (s5) format of an

variables

configuration and defaults file
sccsfile format of

inittab
Rc system startup

ptem STREAMS pseudo-terminal .. ptem(7)
pty STREAMS pseudo-terminal driver pty(7)
public key database .. publickey(4)
publickey public key database publickey(4)
queuedefs option files for crontab ... cron(4)
RAM interface .. cram(7)
Rc system startup script ... Rc(4)
read/write interface STREAMS module tirdwr(7)
real time clock interface .. rtc(7)
real-time dispatcher parameter rt_ dptbl(4)
Reference Manual pages•... man(5)
regexp: compile, step, advance .. regexp(5)
registers distributed file system .. fstypes(4)
regular expression compile and/ regexp(5)
Remote File Sharing name server rfmaster(4)
remote login data .. netrc(4)
remote system information for the binarsys(4)
requirement file .. space(4)
requirements file ... setsize(4)
res_major reserved major numbers res _ major(4)
Resolution Protocol ... ARP(7)
resolv.conf configuration file for resolv.conf(4)
resources dfstab file .. dfstab(4)
returned by stat system call ... stat(4)
returned by stat system call ... stat(5)
rfmaster Remote File Sharing name rfmaster(4)
.rhosts trusted hosts by system and hosts.equiv(4)
Ring Driver ... ibmtok(7)
rmail mailcnfg initialization .. mailcnfg(4)
routines /step, advance regular regexp(5)
routines resolv.conf .. resolv.conf(4)
routing and transport of mail ... mailsurr(4)
routing routing system ... routing(4)
routing system supporting for .. routing(4)
rpc program number data base .. rpc(4)
rpc rpc program number data base ... rpc(4)
rtc real time clock interface rtc(7)
rt_ dptbl real-time dispatcher ... rt _ dptbl(4)
s5 directories .. dir(4)
sS file system volume ... fs(4)
(sS) format of an s5 i-node .. inode(4)
(s5) format of sS directories ... dir(4)
(sS) format of s5 file system ... fs(4)
85 i-node .. inode(4)
sad STREAMS Administrative Driver sad(7)
Sassign configurable device .. Sassign(4)
scOl CD-ROM Target Driver .. scO(7)
(scalable and bitmapped) /XWIN font Xwinfont(4)
secs file ... sccsfile(4)
sccsfile format of secs file ... sccsfile(4)
script for init .. inittab(4)
script Rc(4)

Permuted Index

Sd kernel module system shutdown
defaults for mass-storage and

mcisMCIS
adsc Adaptec 1542A

dpt DPT PM2012
script

ttysrch directory
distributed file system

(BSD) addresses and aliases for
mouse mouse device driver for bus,

asyc asynchronous
rfmaster Remote File Sharing name

configuration file for name
inetd.conf Internet

ypfiles the Network Information
/ file for Network Information

services Internet
aliases

ascii map of ASCn character
setinfo

iconvcode
timezone

file
time profile

stune local system
ttydefs file contains terminal line

gettydefs speed and terminal
fs (sfs) format of

inode
volume fs

inode (sfs) format of a
shadow

sharetab

rfmaster Remote File
dfstab file containing commands for

Sd kernel module system
information

siginfo
signal base

ioctls that operate directly on
on sockets

depend
10

space disk
setsize disk

kernel module data structure/

Permuted Index

script .. Sd(4)
SCSI devices / configuration ... disk.cfg(4)
SCSI host adapter driver mcis(7)
SCSI host adapter subsystem ... adsc(7)
SCSI host adapter subsystem ... dpt(7)
Sd kernel module system shutdown .. Sd(4)
sdOl PDI disk target driver .. sdO(7)
search list for ttymap and ttyname ttysrch(4)
security database lid_and yriv lid_and yriv(4)
sendmail /addresses, forward ... aliases(4)
serial, and PS/2 mouse devices ... mouse(7)
serial port asyc(7)
server master file ... rfmaster(4)
server routines resolv.conf .. resolv.conf(4)
servers database ... inetd.conf(4)
Service (NIS) database and/ ... ypfiles(4)
Service (NIS) updating .. updaters(4)
services and aliases services(4)
services Internet services and ... services(4)
set .. ascii(5)
set characteristics file ... setinfo(4)
set conversion tables .. iconv(5)
set default system time zone .. timezone(4)
setinfo set characteristics file•.... setinfo(4)
setsize disk space requirements ... setsize(4)
setting up an environment at login profile(4)
settings for tunable parameters .. stune(4)
settings information for ttymon .. ttydefs(4)
settings used by getty ... gettydefs(4)
sfs file system volume .. fs(4)
(sfs) format of a sfs inode .. inode(4)
(sfs) format of sfs file system ... fs(4)
sfs inode .. inode(4)
shadow password file ... shadow(4)
shadow shadow password file .. shadow(4)
shared file system table .. sharetab(4)
sharetab shared file system table sharetab(4)
Sharing name server master file rfmaster(4)
sharing resources .. dfstab(4)
shutdown script ... Sd(4)
siginfo signal generation ... siginfo(5)
signal base signals ... signal(5)
signal generation information .. siginfo(5)
signals ... signal(5)
sockets sockio .. sockio(7)
sockio ioctls that operate directly....................................... sockio(7)
software dependencies files .. depend(4)
software loopback network interface .. 10(7)
space disk space requirement file .. space(4)
space requirement file ... space(4)
space requirements file .. setsize(4)
Space.c configuration-dependent Space.c(4)

593

eqn eqnchar (BSD)
intro introduction to

fspec format
getty gettydefs

(PDI) tape target driver
discipline module ldterm

Rc system
call

stat (XENIX) data returned by
stat data returned by

system call
wstatwait

list
compile and match/ regexp: compile,

for STREAMS TCP /IP
connld line discipline for unique

sad
ttcompat V7, 4BSD and XENIX

STREAMS TCP /IP strd
any major / minor device pair on a

tracing log interface to
streamio

Transport Interface cooperating
Interface read/write interface

pckt
pty

module ptem
STREAMS Configuration File for

module ldterm standard
console

kbd generalized
strftime language-specific

file system (cdfs) directory data
/kernel module data

(NIS) database and directory
Stubs.c

symbols
tunable parameters

su

Adaptec 1542A SCSI host adapter
Direct-Coupled Disk host adapter

dpt DPT PM2012 SCSI host adapter
wd7000 WD7000 FASST2 host adapter

routing routing system
transport of mail mailsurr

(PDI) WORM Target Driver

594

I/O on kernel memory based on
unistd header file for

special character definitions for eqnchar(5)
special files intro(7)
specification in text files ... fspec(4)
speed and terminal settings used by gettydefs(4)
stOl Portable Device Interface ... stO(7)
standard STREAMS terminal line Idterm(7)
startup script .. Rc(4)
stat data returned by stat system .. stat(5)
stat system call ... stat(4)
stat system call ... stat(5)
stat (XENIX) data returned by stat .. stat(4)
status .. wstat(5)
stdarg handle variable argument stdarg(5)
step, advance regular expression regexp(5)
strd STREAMS Configuration File .. strcf(4)
stream connections .. connld(7)
streamio STREAMS ioctl commands streamio(7)
STREAMS Administrative Driver ... sad(7)
STREAMS compatibility module ttcompat(7)
STREAMS Configuration File for .. strd(4)
STREAMS driver clone open .. clone(7)
STREAMS error logging and event ... log(7)
STREAMS ioctl commands ... streamio(7)
STREAMS module timod ... timod(7)
STREAMS module tirdwr Transport tirdwr(7)
STREAMS Packet Mode module ... pckt(7)
STREAMS pseudo-terminal driver ... pty(7)
STREAMS pseudo-terminal emulation ptem(7)
STREAMS TCP /IP strd ... strd(4)
STREAMS terminal line discipline Idterm(7)
STREAMS-based console interface console(7)
strftime language-specific strings strftime(4)
string translation module .. kbd(7)
strings .. strftime(4)
structure /(cdfs) format of CD-ROM dir(4)
structure initializations .. Space.c(4)
structure /Information Service .. ypfiles(4)
stubs for kernel module symbols Stubs.c(4)
Stubs.c stubs for kernel module•........................ Stubs.c(4)
stune local system settings for .. stune(4)
su options file ... su(4)
su su options file .. su(4)
subsystem adsc ... adsc(7)
Subsystem DCD .. DCD(7)
subsystem ... dpt(7)
subsystem .. wd7000(7)
supporting for packet network ... routing(4)
surrogate commands for routing and mailsurr(4)
swOl Portable Device Interface ... swO(7)
sxt pseudo-device driver ... sxt(7)
symbol name kmem perform .. kmem(7)
symbolic constants ... unistd(4)

Permuted Index

Stubs.c stubs for kernel module
file for syslogd system log daemon

I (BSD) configuration file for
.rhosts trusted hosts by

stat (XENIX) data returned by stat
stat data returned by stat

dir (cdfs) format of CD-ROM file
display

keyboard
vxfsio vxfs file

types primitive
vfstab table of file

reserved major numbers for base
fs (cdfs) format of a cdfs file

dirent file
ckbinarsys command binarsys remote

configuration file for syslogd
filesystem file

that registers distributed file
proc process file

prf operating
lid_and yriv distributed file

parameters stune local
Sd kernel module

Rc
network routing routing

configuration information for al
mnttab mounted file
sharetab shared file

timezone set default
fs (hfs) format of the bfs file

fs (s5) format of s5 file
fs (sfs) format of sfs file

fs (ufs) format of ufs file
fs (vxfs) format of vxfs file

information for a kernel! System
mnttab mounted file system

vfstab
PrivTable privilege

real-time dispatcher parameter
sharetab shared file system

time-sharing dispatcher parameter
iconv code set conversion

Portable Device Interface (PDI)
scOlCD-ROM
sdOl PDI disk

Device Interface (PDI) tape
Device Interface (PDI) WORM

for mass-storage devices
Protocol

Configuration File for STREAMS
terminals

Permuted Index

symbols ... Stubs.c(4)
syslog.conf (BSD) configuration syslog.conf(4)
syslogd system log daemon syslog.conf(4)
system and by user hosts.equiv, hosts.equiv(4)
system call .. stat(4)
system call .. stat(5)
system (cdfs) directory datal ... dir(4)
system console display .. display(7)
system console keyboard ... keyboard(7)
system control functions .. vxfsio(7)
system data types ... types(5)
system defaults .. vfstab(4)
system device drivers res_major res _ major(4)
system ... fs(4)
system independent directory entry dirent(4)
system information for the .. binarsys(4)
system log daemon I(BSD) syslog.conf(4)
system organization ... filesystem(7)
system packages fstypes file .. fstypes(4)
system .. proc(4)
system profiler .. prf(7)
system security database ... lid_and yriv(4)
system settings for tunable ... stune(4)
system shutdown script ... Sd(4)
system startup script ... Rc(4)
system supporting for packet ... routing(4)
System system-specific ... System(4)
system table .. mnttab(4)
system table ... sharetab(4)
system time zone ... timezone(4)
system volume .. fs(4)
system volume .. fs(4)
system volume .. fs(4)
system volume .. fs(4)
system volume .. fs(4)
system-specific configuration .. System(4)
table ... mnttab(4)
table of file system defaults ... vfstab(4)
table ... PrivTable(4)
table rt_dptbl .. rt_dptbl(4)
table ... sharetab(4)
table ts_dptbl .. ts_dptbl(4)
tables .. iconv(5)
tape target driver stOl ... stO(7)
Target Driver ... scO(7)
target driver .. sdO(7)
target driver stOl Portable ... stO(7)
Target Driver swOl Portable .. swO(7)
tc.index configuration index file tc.index(4)
TCP Internet Transmission Control...................................... TCP(7)
TCP lIP strcf STREAMS ... strcf(4)
term conventional names for ... term(5)

595

term format of compiled

N)terminfo
termio general

termiox extended general
tty controlling

ldterm standard STREAMS
for ttymon ttydefs me contains

gettydefs speed and
term conventional names for

base N)

interface
fspec format specification in

ms(BSD)
transport providers

transport providers tielts,
providers tielts, ticots,

dump boot dump
table ts _ dptbl

zone
cooperating STREAMS module

read/write interface STREAMS/
ibmtokIBM

to STREAMS error logging and event
kbd generalized string

TCPInternet
STREAMS module timod

interface STREAMS module tirdwr
surrogate commands for routing and

tielts, ticots, ticotsord loopback
font font description files for

hosts.equiv, .rhosts
parameter table

compatibility module

mapchan format of
generic interface to EUC handling

settings information for ttymon
ttysrch directory search list for

line settings information for
search list for ttymap and

ttymap and ttyname
Mtune

stune local system settings for
nl_ types native language data

596

types primitive system data

dir (ufs) format of
fs (ufs) format of

term file .. term(4)
term format of compiled term file ;. term(4)
terminal capability data base ... terminfo(4
terminal interface ... termio(7)
terminal interface ... termiox(7)
terminal interface tty(7)
terminal line discipline module ... Idterm(7)
terminal line settings information ttydefs(4)
terminal settings used by getty gettydefs(4)
terminals ... term(5)
terminfo terminal capability da.ta terminfo(4
termio general terminal interface termio(7)
termiox extended general terminal termiox(7)
text files .. fspec(4)
text formatting macros ... ms(5)
tielts, ticots, ticotsord loopback ... tielts(7)
ticots, ticotsord loopback .. tielts(7)
ticotsord loopback transport .. tielts(7)
timeout file ... dump(4)
time-sharing dispatcher parameter ts _ dptbl(4)
timezone set default system time timezone(4)
timod Transport Interface .. timod(7)
tirdwr Transport Interface .. tirdwr(7)
Token Ring Driver .. ibmtok(7)
tracing log interface log(7)
translation module .. kbd(7)
Transmission Control Protocol .. TCP(7)
Transport Interface cooperating .. timod(7)
Transport Interface read/write .. tirdwr(7)
transport of mail maHsurr .. mailsurr(4)
transport providers ... tielts(7)
troff and dpost ... font(5)
trusted hosts by system and by user hosts.equiv(4)
ts _ dptbl time-sharing dispatcher ts _ dptbl(4)
ttcompat V7, 4BSD and XENIX STREAMS ttcompat(7)
tty controlling terminal interface .. tty(7)
tty device mapping files ... mapchan(4)
tty drivers and modules eucioctl eucioctl(5)
ttydefs me contains terminal line ttydefs(4)
ttymap and ttyname .. ttysrch(4)
ttymon /file contains terminal ... ttydefs(4)
ttyname ttysrch directory ... ttysrch(4)
ttysrch directory search list for .. ttysrch(4)
tunable parameter definitions .. Mtune(4)
tunable parameters .. stune(4)
types .. nl_ types(5)
types primitive system data types types(5)
types ... types(5)
ucontext user context ... ucontext(5)
UDP Internet User Datagram Protocol UDP(7)
ufs directories .. dir(4)
ufs file system volume .. fs(4)

Permuted Index

inode
<lir

volume fs
inode (ufs) formatofa

connld line discipline for
constants

Network Information Service (NIS)I
Network Information Service (NlS)

ucontext
UDP Internet

environ
trusted hosts by system and by

priv include file for
.environ, .pref, .variables

mkdev me format for the pdimkdev
utmp,wtmp

formats
utmpx, wtmpx

formats
uuencode format of an encoded

uuencodeme
compatibility module ttcompat

Input Context attribute names and

values machine-dependent
list

stdarg handle
varargs handle

.variables user-preference
Sassign configurable device

variable mesl .environ, .pref,
compver compatible

defaults
(bfs) format of the bfs me system

fs (s5) format of s5 me system
fs (sfs) format of sfs me system

fs (ufs) format of ufs me system
(vxfs) format of vxfs me system

vxfsio
fs (vxfs) format of

inode
volume fs

inode (vxfs) format of a
functions

wstat
Driver

subsystem wd7000
subsystem

wd Western Digital
Driver wd
prof profile

Portable Device Interface (POI)

Permuted Index

(ufs) format of a ufs inode .. inode(4)
(ufs) format of ufs directories ... dir(4)
(ufs) format of ufs me system .. fs(4)
ufs inode .. inode(4)
unique stream connections ... connld(7)
unistd header me for symbolic ... unistd(4)
updaters configuration me for updaters(4)
updating Iconfiguration file for updaters(4)
user context ... ucontext(5)
User Datagram Protocol... UDP(7)
user environment ... environ(5)
user hosts.equiv, .rhosts .. hosts.equiv(4)
user-level privilege definitions .. priv(5)
user-preference variable mes for Ienviron(4)
utility ... mkdev(4)
utmp and wtmp entry formats ... utmp(4)
utmp, wtmp utmp and wtmp entry utmp(4)
utmpx and wtmpx entry formats utmpx(4)
utmpx, wtmpx utmpx and wtmpx entry , utmpx(4)
uuencode me ... uuencode(4)
uuencode format of an encoded uuencode(4)
V7, 4BSD and XENIX STREAMS ttcompat(7)
value pairs OlIcValues ... OlIcValues(4)
values machine-dependent values values(5)
values ... values(5)
varargs handle variable argument varargs(5)
variable argument list .. stdarg(5)
variable argument list .. varargs(5)
variable mes for FACE I.pref, .. environ(4)
variables ... Sassign(4)
.variables user-preference ... environ(4)
versions me ... compver(4)
vfstab table of me system ... vfstab(4)
volume fs .. fs(4)
volume .. fs(4)
volume .. fs(4)
volume .. fs(4)
volume fs .. fs(4)
vxfs file system control functions vxfsio(7)
vxfs me system volume .. fs(4)
(vxfs) format of a vxfs inode .. inode(4)
(vxfs) format of vxfs me system .. fs(4)
vxfs inode .. inode(4)
vxfsio vxfs me system control... vxfsio(7)
wait status ... wstat(5)
wd Western Digital WD8003 Ethernet wd(7)
WD7000 FASST2 host adapter ... wd7000(7)
wd7000 WD7000 FASST2 host adapter wd7000(7)
WD8003 Ethernet Driver ... wd(7)
Western Digital WD8003 Ethernet .. wd(7)
within a function .. prof(5)
WORM Target Driver swOl ... swO(7)

597

utmp, wtmp utmp and
utmp,

utmp~wtmpxutmpxand
utmpx,

system call stat
ttcompat V7, 4BSD and

Xwincmaps
Xwinconfig

defaults file (scalable/ Xwinfont

and defaults file (scalable and/
Service (NIS) database and/

zero source of
timezone set default system time

598

wstat wait status ... wstat(5)
wtmp entry formats ... utmp(4)
wtmp utmp and wtmp entry formats utmp(4)
wtmpx entry formats ... utmpx(4)
wtmpx utmpx and wtmpx entry formats utmpx(4)
(XENIX) data returned by stat ... stat(4)
XENIX STREAMS compatibility module ttcompat(7)
XWIN color map file ... Xwincmaps(4)
XWIN configuration file ... Xwinconfig(4)
XWIN font configuration and .. Xwinfont(4)
Xwincmaps XWIN color map file Xwincmaps(4)
Xwinconfig XWIN configuration file Xwinconfig(4)
Xwinfont XWIN font configuration Xwinfont(4)
ypfiles the Network Information ypfiles(4)
zero source of zeroes ... zero(7)
zeroes .. zero(7)
zone .. timezone(4)

Permuted Index

UNIXCfi) SVR4.2 PUBLISHED BOOKS

----User's Series----

Guide to the UNIX® Desktop
User's Guide

--Administration Series--

Basic System Administration
Advanced System Administration
Network Administration

--Programming Series--

UNIX® Software Development Tools
Programming in Standard C
Programming with UNIX® System Calls
Character User Interface Programming
Graphical User Interface Programming
. Network Programming Interface

----Reference Series--

Command Reference (a-I)
Command Reference (m-z)
Operating System API Reference

. Windowing System API Reference
System Files and Devices Reference
Device Driver Reference

~ -
REFERENCE

This definitive reference set describes every UNIX® System V Release 4
command, system call, library function, and file format, including the
BSD and XENIX® variants unified under Release 4. Written by UNIX
System Laboratories, source of the UNIX System V operating system,
this set includes the following manuals:

The two-volume Command Reference describes all user and
administrative commands in the UNIX system, including file handling,
basic networking, shell programming, and system management com
mands.

The Operating System API Reference describes UNIX system calls
and library functions, including C language, math, networking, and spe
cialized libraries.

The Windowing System API Reference describes graphical and
character-based libraries, critical elements for building powerful user
interfaces on workstations, X, and character terminals.

The System Files and Devices Reference describes the file formats
for important system files, such as password, hosts, system initialization,
and special (device) files.

The Device Driver Reference, consists of two parts. The first part
describes the Device Driver Interface/Driver-Kernel Interface (DDI/DKI).
The DDI/DKI is a mature interface between drivers and the rest of the
kel?el. The second part describes routines of the Portable Device
Interface (PDI). The PDI is a newer interface for block-oriented devices
that emphasizes the separation of hardware-dependent and hardware
independent pieces of drivers.

UNIX
PRESS

A Prentice Hall Title

UNIX
Documentation

ISBN 0 - 13-017682-6
\::: 1 (-j C) q ,.':. ,:-=!' 0::; (\ ('\ '.

I'illilfllill illii'1I1Ihii'li"ilill 1111111111 11111 1111111111 1111 1111
SYS FILES & DEVICES REF (UNIX SVR4 '
UNIX SY5 LABS UNIX/REL4.2
0130176826 PREN
<$:Y5 • 00 _ ~.~.

- 7 I "'ere I ~ .. i u - I I O OCV- -

~

